1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006, 2007
7 Free Software Foundation, Inc.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25 - structure the opcode space into opcode+flag.
26 - merge with glibc's regex.[ch].
27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
33 /* AIX requires this to be the first thing in the file. */
34 #if defined _AIX && !defined REGEX_MALLOC
42 #if defined STDC_HEADERS && !defined emacs
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
49 /* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
52 #define WIDE_CHAR_SUPPORT 1
54 #define WIDE_CHAR_SUPPORT \
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 /* Make sure we call libc's function even if the user overrides them. */
89 # define btowc __btowc
90 # define iswctype __iswctype
91 # define wctype __wctype
93 # define WEAK_ALIAS(a,b) weak_alias (a, b)
95 /* We are also using some library internals. */
96 # include <locale/localeinfo.h>
97 # include <locale/elem-hash.h>
98 # include <langinfo.h>
100 # define WEAK_ALIAS(a,b)
103 /* This is for other GNU distributions with internationalized messages. */
104 #if HAVE_LIBINTL_H || defined _LIBC
105 # include <libintl.h>
107 # define gettext(msgid) (msgid)
111 /* This define is so xgettext can find the internationalizable
113 # define gettext_noop(String) String
116 /* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
123 /* Make syntax table lookup grant data in gl_state. */
124 # define SYNTAX_ENTRY_VIA_PROPERTY
127 # include "charset.h"
128 # include "category.h"
133 # define malloc xmalloc
137 # define realloc xrealloc
143 /* Converts the pointer to the char to BEG-based offset from the start. */
144 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
145 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
147 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
148 # define RE_STRING_CHAR(p, s) \
149 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
150 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
151 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
153 /* Set C a (possibly multibyte) character before P. P points into a
154 string which is the virtual concatenation of STR1 (which ends at
155 END1) or STR2 (which ends at END2). */
156 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
160 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
161 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
162 re_char *d0 = dtemp; \
163 PREV_CHAR_BOUNDARY (d0, dlimit); \
164 c = STRING_CHAR (d0, dtemp - d0); \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
171 #else /* not emacs */
173 /* If we are not linking with Emacs proper,
174 we can't use the relocating allocator
175 even if config.h says that we can. */
178 # if defined STDC_HEADERS || defined _LIBC
185 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
192 val
= (void *) malloc (size
);
195 write (2, "virtual memory exhausted\n", 25);
202 xrealloc (block
, size
)
207 /* We must call malloc explicitly when BLOCK is 0, since some
208 reallocs don't do this. */
210 val
= (void *) malloc (size
);
212 val
= (void *) realloc (block
, size
);
215 write (2, "virtual memory exhausted\n", 25);
224 # define malloc xmalloc
228 # define realloc xrealloc
230 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
231 If nothing else has been done, use the method below. */
232 # ifdef INHIBIT_STRING_HEADER
233 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
234 # if !defined bzero && !defined bcopy
235 # undef INHIBIT_STRING_HEADER
240 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
241 This is used in most programs--a few other programs avoid this
242 by defining INHIBIT_STRING_HEADER. */
243 # ifndef INHIBIT_STRING_HEADER
244 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
248 # define bzero(s, n) (memset (s, '\0', n), (s))
250 # define bzero(s, n) __bzero (s, n)
254 # include <strings.h>
256 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
259 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
264 /* Define the syntax stuff for \<, \>, etc. */
266 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
267 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
269 # ifdef SWITCH_ENUM_BUG
270 # define SWITCH_ENUM_CAST(x) ((int)(x))
272 # define SWITCH_ENUM_CAST(x) (x)
275 /* Dummy macros for non-Emacs environments. */
276 # define BASE_LEADING_CODE_P(c) (0)
277 # define CHAR_CHARSET(c) 0
278 # define CHARSET_LEADING_CODE_BASE(c) 0
279 # define MAX_MULTIBYTE_LENGTH 1
280 # define RE_MULTIBYTE_P(x) 0
281 # define WORD_BOUNDARY_P(c1, c2) (0)
282 # define CHAR_HEAD_P(p) (1)
283 # define SINGLE_BYTE_CHAR_P(c) (1)
284 # define SAME_CHARSET_P(c1, c2) (1)
285 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
286 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
287 # define STRING_CHAR(p, s) (*(p))
288 # define RE_STRING_CHAR STRING_CHAR
289 # define CHAR_STRING(c, s) (*(s) = (c), 1)
290 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
291 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
292 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
293 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
294 # define MAKE_CHAR(charset, c1, c2) (c1)
295 #endif /* not emacs */
298 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
299 # define RE_TRANSLATE_P(TBL) (TBL)
302 /* Get the interface, including the syntax bits. */
305 /* isalpha etc. are used for the character classes. */
310 /* 1 if C is an ASCII character. */
311 # define IS_REAL_ASCII(c) ((c) < 0200)
313 /* 1 if C is a unibyte character. */
314 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
316 /* The Emacs definitions should not be directly affected by locales. */
318 /* In Emacs, these are only used for single-byte characters. */
319 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
320 # define ISCNTRL(c) ((c) < ' ')
321 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
322 || ((c) >= 'a' && (c) <= 'f') \
323 || ((c) >= 'A' && (c) <= 'F'))
325 /* This is only used for single-byte characters. */
326 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
328 /* The rest must handle multibyte characters. */
330 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
331 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
334 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
335 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
338 # define ISALNUM(c) (IS_REAL_ASCII (c) \
339 ? (((c) >= 'a' && (c) <= 'z') \
340 || ((c) >= 'A' && (c) <= 'Z') \
341 || ((c) >= '0' && (c) <= '9')) \
342 : SYNTAX (c) == Sword)
344 # define ISALPHA(c) (IS_REAL_ASCII (c) \
345 ? (((c) >= 'a' && (c) <= 'z') \
346 || ((c) >= 'A' && (c) <= 'Z')) \
347 : SYNTAX (c) == Sword)
349 # define ISLOWER(c) (LOWERCASEP (c))
351 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
352 ? ((c) > ' ' && (c) < 0177 \
353 && !(((c) >= 'a' && (c) <= 'z') \
354 || ((c) >= 'A' && (c) <= 'Z') \
355 || ((c) >= '0' && (c) <= '9'))) \
356 : SYNTAX (c) != Sword)
358 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
360 # define ISUPPER(c) (UPPERCASEP (c))
362 # define ISWORD(c) (SYNTAX (c) == Sword)
364 #else /* not emacs */
366 /* Jim Meyering writes:
368 "... Some ctype macros are valid only for character codes that
369 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
370 using /bin/cc or gcc but without giving an ansi option). So, all
371 ctype uses should be through macros like ISPRINT... If
372 STDC_HEADERS is defined, then autoconf has verified that the ctype
373 macros don't need to be guarded with references to isascii. ...
374 Defining isascii to 1 should let any compiler worth its salt
375 eliminate the && through constant folding."
376 Solaris defines some of these symbols so we must undefine them first. */
379 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
380 # define ISASCII(c) 1
382 # define ISASCII(c) isascii(c)
385 /* 1 if C is an ASCII character. */
386 # define IS_REAL_ASCII(c) ((c) < 0200)
388 /* This distinction is not meaningful, except in Emacs. */
389 # define ISUNIBYTE(c) 1
392 # define ISBLANK(c) (ISASCII (c) && isblank (c))
394 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
397 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
399 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
403 # define ISPRINT(c) (ISASCII (c) && isprint (c))
404 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
405 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
406 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
407 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
408 # define ISLOWER(c) (ISASCII (c) && islower (c))
409 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
410 # define ISSPACE(c) (ISASCII (c) && isspace (c))
411 # define ISUPPER(c) (ISASCII (c) && isupper (c))
412 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
414 # define ISWORD(c) ISALPHA(c)
417 # define TOLOWER(c) _tolower(c)
419 # define TOLOWER(c) tolower(c)
422 /* How many characters in the character set. */
423 # define CHAR_SET_SIZE 256
427 extern char *re_syntax_table
;
429 # else /* not SYNTAX_TABLE */
431 static char re_syntax_table
[CHAR_SET_SIZE
];
442 bzero (re_syntax_table
, sizeof re_syntax_table
);
444 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
446 re_syntax_table
[c
] = Sword
;
448 re_syntax_table
['_'] = Ssymbol
;
453 # endif /* not SYNTAX_TABLE */
455 # define SYNTAX(c) re_syntax_table[(c)]
457 #endif /* not emacs */
460 # define NULL (void *)0
463 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
464 since ours (we hope) works properly with all combinations of
465 machines, compilers, `char' and `unsigned char' argument types.
466 (Per Bothner suggested the basic approach.) */
467 #undef SIGN_EXTEND_CHAR
469 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
470 #else /* not __STDC__ */
471 /* As in Harbison and Steele. */
472 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
475 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
476 use `alloca' instead of `malloc'. This is because using malloc in
477 re_search* or re_match* could cause memory leaks when C-g is used in
478 Emacs; also, malloc is slower and causes storage fragmentation. On
479 the other hand, malloc is more portable, and easier to debug.
481 Because we sometimes use alloca, some routines have to be macros,
482 not functions -- `alloca'-allocated space disappears at the end of the
483 function it is called in. */
487 # define REGEX_ALLOCATE malloc
488 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE free
491 #else /* not REGEX_MALLOC */
493 /* Emacs already defines alloca, sometimes. */
496 /* Make alloca work the best possible way. */
498 # define alloca __builtin_alloca
499 # else /* not __GNUC__ */
502 # endif /* HAVE_ALLOCA_H */
503 # endif /* not __GNUC__ */
505 # endif /* not alloca */
507 # define REGEX_ALLOCATE alloca
509 /* Assumes a `char *destination' variable. */
510 # define REGEX_REALLOCATE(source, osize, nsize) \
511 (destination = (char *) alloca (nsize), \
512 memcpy (destination, source, osize))
514 /* No need to do anything to free, after alloca. */
515 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
517 #endif /* not REGEX_MALLOC */
519 /* Define how to allocate the failure stack. */
521 #if defined REL_ALLOC && defined REGEX_MALLOC
523 # define REGEX_ALLOCATE_STACK(size) \
524 r_alloc (&failure_stack_ptr, (size))
525 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
526 r_re_alloc (&failure_stack_ptr, (nsize))
527 # define REGEX_FREE_STACK(ptr) \
528 r_alloc_free (&failure_stack_ptr)
530 #else /* not using relocating allocator */
534 # define REGEX_ALLOCATE_STACK malloc
535 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
536 # define REGEX_FREE_STACK free
538 # else /* not REGEX_MALLOC */
540 # define REGEX_ALLOCATE_STACK alloca
542 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
543 REGEX_REALLOCATE (source, osize, nsize)
544 /* No need to explicitly free anything. */
545 # define REGEX_FREE_STACK(arg) ((void)0)
547 # endif /* not REGEX_MALLOC */
548 #endif /* not using relocating allocator */
551 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
552 `string1' or just past its end. This works if PTR is NULL, which is
554 #define FIRST_STRING_P(ptr) \
555 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
557 /* (Re)Allocate N items of type T using malloc, or fail. */
558 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
559 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
560 #define RETALLOC_IF(addr, n, t) \
561 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
562 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
564 #define BYTEWIDTH 8 /* In bits. */
566 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
570 #define MAX(a, b) ((a) > (b) ? (a) : (b))
571 #define MIN(a, b) ((a) < (b) ? (a) : (b))
573 /* Type of source-pattern and string chars. */
574 typedef const unsigned char re_char
;
576 typedef char boolean
;
580 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
581 re_char
*string1
, int size1
,
582 re_char
*string2
, int size2
,
584 struct re_registers
*regs
,
587 /* These are the command codes that appear in compiled regular
588 expressions. Some opcodes are followed by argument bytes. A
589 command code can specify any interpretation whatsoever for its
590 arguments. Zero bytes may appear in the compiled regular expression. */
596 /* Succeed right away--no more backtracking. */
599 /* Followed by one byte giving n, then by n literal bytes. */
602 /* Matches any (more or less) character. */
605 /* Matches any one char belonging to specified set. First
606 following byte is number of bitmap bytes. Then come bytes
607 for a bitmap saying which chars are in. Bits in each byte
608 are ordered low-bit-first. A character is in the set if its
609 bit is 1. A character too large to have a bit in the map is
610 automatically not in the set.
612 If the length byte has the 0x80 bit set, then that stuff
613 is followed by a range table:
614 2 bytes of flags for character sets (low 8 bits, high 8 bits)
615 See RANGE_TABLE_WORK_BITS below.
616 2 bytes, the number of pairs that follow (upto 32767)
617 pairs, each 2 multibyte characters,
618 each multibyte character represented as 3 bytes. */
621 /* Same parameters as charset, but match any character that is
622 not one of those specified. */
625 /* Start remembering the text that is matched, for storing in a
626 register. Followed by one byte with the register number, in
627 the range 0 to one less than the pattern buffer's re_nsub
631 /* Stop remembering the text that is matched and store it in a
632 memory register. Followed by one byte with the register
633 number, in the range 0 to one less than `re_nsub' in the
637 /* Match a duplicate of something remembered. Followed by one
638 byte containing the register number. */
641 /* Fail unless at beginning of line. */
644 /* Fail unless at end of line. */
647 /* Succeeds if at beginning of buffer (if emacs) or at beginning
648 of string to be matched (if not). */
651 /* Analogously, for end of buffer/string. */
654 /* Followed by two byte relative address to which to jump. */
657 /* Followed by two-byte relative address of place to resume at
658 in case of failure. */
661 /* Like on_failure_jump, but pushes a placeholder instead of the
662 current string position when executed. */
663 on_failure_keep_string_jump
,
665 /* Just like `on_failure_jump', except that it checks that we
666 don't get stuck in an infinite loop (matching an empty string
668 on_failure_jump_loop
,
670 /* Just like `on_failure_jump_loop', except that it checks for
671 a different kind of loop (the kind that shows up with non-greedy
672 operators). This operation has to be immediately preceded
674 on_failure_jump_nastyloop
,
676 /* A smart `on_failure_jump' used for greedy * and + operators.
677 It analyses the loop before which it is put and if the
678 loop does not require backtracking, it changes itself to
679 `on_failure_keep_string_jump' and short-circuits the loop,
680 else it just defaults to changing itself into `on_failure_jump'.
681 It assumes that it is pointing to just past a `jump'. */
682 on_failure_jump_smart
,
684 /* Followed by two-byte relative address and two-byte number n.
685 After matching N times, jump to the address upon failure.
686 Does not work if N starts at 0: use on_failure_jump_loop
690 /* Followed by two-byte relative address, and two-byte number n.
691 Jump to the address N times, then fail. */
694 /* Set the following two-byte relative address to the
695 subsequent two-byte number. The address *includes* the two
699 wordbeg
, /* Succeeds if at word beginning. */
700 wordend
, /* Succeeds if at word end. */
702 wordbound
, /* Succeeds if at a word boundary. */
703 notwordbound
, /* Succeeds if not at a word boundary. */
705 symbeg
, /* Succeeds if at symbol beginning. */
706 symend
, /* Succeeds if at symbol end. */
708 /* Matches any character whose syntax is specified. Followed by
709 a byte which contains a syntax code, e.g., Sword. */
712 /* Matches any character whose syntax is not that specified. */
716 ,before_dot
, /* Succeeds if before point. */
717 at_dot
, /* Succeeds if at point. */
718 after_dot
, /* Succeeds if after point. */
720 /* Matches any character whose category-set contains the specified
721 category. The operator is followed by a byte which contains a
722 category code (mnemonic ASCII character). */
725 /* Matches any character whose category-set does not contain the
726 specified category. The operator is followed by a byte which
727 contains the category code (mnemonic ASCII character). */
732 /* Common operations on the compiled pattern. */
734 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
736 #define STORE_NUMBER(destination, number) \
738 (destination)[0] = (number) & 0377; \
739 (destination)[1] = (number) >> 8; \
742 /* Same as STORE_NUMBER, except increment DESTINATION to
743 the byte after where the number is stored. Therefore, DESTINATION
744 must be an lvalue. */
746 #define STORE_NUMBER_AND_INCR(destination, number) \
748 STORE_NUMBER (destination, number); \
749 (destination) += 2; \
752 /* Put into DESTINATION a number stored in two contiguous bytes starting
755 #define EXTRACT_NUMBER(destination, source) \
757 (destination) = *(source) & 0377; \
758 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
762 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
764 extract_number (dest
, source
)
768 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
769 *dest
= *source
& 0377;
773 # ifndef EXTRACT_MACROS /* To debug the macros. */
774 # undef EXTRACT_NUMBER
775 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
776 # endif /* not EXTRACT_MACROS */
780 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
781 SOURCE must be an lvalue. */
783 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
785 EXTRACT_NUMBER (destination, source); \
790 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
793 extract_number_and_incr (destination
, source
)
797 extract_number (destination
, *source
);
801 # ifndef EXTRACT_MACROS
802 # undef EXTRACT_NUMBER_AND_INCR
803 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
804 extract_number_and_incr (&dest, &src)
805 # endif /* not EXTRACT_MACROS */
809 /* Store a multibyte character in three contiguous bytes starting
810 DESTINATION, and increment DESTINATION to the byte after where the
811 character is stored. Therefore, DESTINATION must be an lvalue. */
813 #define STORE_CHARACTER_AND_INCR(destination, character) \
815 (destination)[0] = (character) & 0377; \
816 (destination)[1] = ((character) >> 8) & 0377; \
817 (destination)[2] = (character) >> 16; \
818 (destination) += 3; \
821 /* Put into DESTINATION a character stored in three contiguous bytes
822 starting at SOURCE. */
824 #define EXTRACT_CHARACTER(destination, source) \
826 (destination) = ((source)[0] \
827 | ((source)[1] << 8) \
828 | ((source)[2] << 16)); \
832 /* Macros for charset. */
834 /* Size of bitmap of charset P in bytes. P is a start of charset,
835 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
836 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
838 /* Nonzero if charset P has range table. */
839 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
841 /* Return the address of range table of charset P. But not the start
842 of table itself, but the before where the number of ranges is
843 stored. `2 +' means to skip re_opcode_t and size of bitmap,
844 and the 2 bytes of flags at the start of the range table. */
845 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
847 /* Extract the bit flags that start a range table. */
848 #define CHARSET_RANGE_TABLE_BITS(p) \
849 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
850 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
852 /* Test if C is listed in the bitmap of charset P. */
853 #define CHARSET_LOOKUP_BITMAP(p, c) \
854 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
855 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
857 /* Return the address of end of RANGE_TABLE. COUNT is number of
858 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
859 is start of range and end of range. `* 3' is size of each start
861 #define CHARSET_RANGE_TABLE_END(range_table, count) \
862 ((range_table) + (count) * 2 * 3)
864 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
865 COUNT is number of ranges in RANGE_TABLE. */
866 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
869 re_wchar_t range_start, range_end; \
871 re_char *range_table_end \
872 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
874 for (p = (range_table); p < range_table_end; p += 2 * 3) \
876 EXTRACT_CHARACTER (range_start, p); \
877 EXTRACT_CHARACTER (range_end, p + 3); \
879 if (range_start <= (c) && (c) <= range_end) \
888 /* Test if C is in range table of CHARSET. The flag NOT is negated if
889 C is listed in it. */
890 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
893 /* Number of ranges in range table. */ \
895 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
897 EXTRACT_NUMBER_AND_INCR (count, range_table); \
898 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
902 /* If DEBUG is defined, Regex prints many voluminous messages about what
903 it is doing (if the variable `debug' is nonzero). If linked with the
904 main program in `iregex.c', you can enter patterns and strings
905 interactively. And if linked with the main program in `main.c' and
906 the other test files, you can run the already-written tests. */
910 /* We use standard I/O for debugging. */
913 /* It is useful to test things that ``must'' be true when debugging. */
916 static int debug
= -100000;
918 # define DEBUG_STATEMENT(e) e
919 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
920 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
921 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
922 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
923 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
924 if (debug > 0) print_partial_compiled_pattern (s, e)
925 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
926 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
929 /* Print the fastmap in human-readable form. */
932 print_fastmap (fastmap
)
935 unsigned was_a_range
= 0;
938 while (i
< (1 << BYTEWIDTH
))
944 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
960 /* Print a compiled pattern string in human-readable form, starting at
961 the START pointer into it and ending just before the pointer END. */
964 print_partial_compiled_pattern (start
, end
)
974 fprintf (stderr
, "(null)\n");
978 /* Loop over pattern commands. */
981 fprintf (stderr
, "%d:\t", p
- start
);
983 switch ((re_opcode_t
) *p
++)
986 fprintf (stderr
, "/no_op");
990 fprintf (stderr
, "/succeed");
995 fprintf (stderr
, "/exactn/%d", mcnt
);
998 fprintf (stderr
, "/%c", *p
++);
1004 fprintf (stderr
, "/start_memory/%d", *p
++);
1008 fprintf (stderr
, "/stop_memory/%d", *p
++);
1012 fprintf (stderr
, "/duplicate/%d", *p
++);
1016 fprintf (stderr
, "/anychar");
1022 register int c
, last
= -100;
1023 register int in_range
= 0;
1024 int length
= CHARSET_BITMAP_SIZE (p
- 1);
1025 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
1027 fprintf (stderr
, "/charset [%s",
1028 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
1031 fprintf (stderr
, " !extends past end of pattern! ");
1033 for (c
= 0; c
< 256; c
++)
1035 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
1037 /* Are we starting a range? */
1038 if (last
+ 1 == c
&& ! in_range
)
1040 fprintf (stderr
, "-");
1043 /* Have we broken a range? */
1044 else if (last
+ 1 != c
&& in_range
)
1046 fprintf (stderr
, "%c", last
);
1051 fprintf (stderr
, "%c", c
);
1057 fprintf (stderr
, "%c", last
);
1059 fprintf (stderr
, "]");
1063 if (has_range_table
)
1066 fprintf (stderr
, "has-range-table");
1068 /* ??? Should print the range table; for now, just skip it. */
1069 p
+= 2; /* skip range table bits */
1070 EXTRACT_NUMBER_AND_INCR (count
, p
);
1071 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1077 fprintf (stderr
, "/begline");
1081 fprintf (stderr
, "/endline");
1084 case on_failure_jump
:
1085 extract_number_and_incr (&mcnt
, &p
);
1086 fprintf (stderr
, "/on_failure_jump to %d", p
+ mcnt
- start
);
1089 case on_failure_keep_string_jump
:
1090 extract_number_and_incr (&mcnt
, &p
);
1091 fprintf (stderr
, "/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1094 case on_failure_jump_nastyloop
:
1095 extract_number_and_incr (&mcnt
, &p
);
1096 fprintf (stderr
, "/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1099 case on_failure_jump_loop
:
1100 extract_number_and_incr (&mcnt
, &p
);
1101 fprintf (stderr
, "/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1104 case on_failure_jump_smart
:
1105 extract_number_and_incr (&mcnt
, &p
);
1106 fprintf (stderr
, "/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1110 extract_number_and_incr (&mcnt
, &p
);
1111 fprintf (stderr
, "/jump to %d", p
+ mcnt
- start
);
1115 extract_number_and_incr (&mcnt
, &p
);
1116 extract_number_and_incr (&mcnt2
, &p
);
1117 fprintf (stderr
, "/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1121 extract_number_and_incr (&mcnt
, &p
);
1122 extract_number_and_incr (&mcnt2
, &p
);
1123 fprintf (stderr
, "/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1127 extract_number_and_incr (&mcnt
, &p
);
1128 extract_number_and_incr (&mcnt2
, &p
);
1129 fprintf (stderr
, "/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1133 fprintf (stderr
, "/wordbound");
1137 fprintf (stderr
, "/notwordbound");
1141 fprintf (stderr
, "/wordbeg");
1145 fprintf (stderr
, "/wordend");
1149 fprintf (stderr
, "/symbeg");
1153 fprintf (stderr
, "/symend");
1157 fprintf (stderr
, "/syntaxspec");
1159 fprintf (stderr
, "/%d", mcnt
);
1163 fprintf (stderr
, "/notsyntaxspec");
1165 fprintf (stderr
, "/%d", mcnt
);
1170 fprintf (stderr
, "/before_dot");
1174 fprintf (stderr
, "/at_dot");
1178 fprintf (stderr
, "/after_dot");
1182 fprintf (stderr
, "/categoryspec");
1184 fprintf (stderr
, "/%d", mcnt
);
1187 case notcategoryspec
:
1188 fprintf (stderr
, "/notcategoryspec");
1190 fprintf (stderr
, "/%d", mcnt
);
1195 fprintf (stderr
, "/begbuf");
1199 fprintf (stderr
, "/endbuf");
1203 fprintf (stderr
, "?%d", *(p
-1));
1206 fprintf (stderr
, "\n");
1209 fprintf (stderr
, "%d:\tend of pattern.\n", p
- start
);
1214 print_compiled_pattern (bufp
)
1215 struct re_pattern_buffer
*bufp
;
1217 re_char
*buffer
= bufp
->buffer
;
1219 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1220 printf ("%ld bytes used/%ld bytes allocated.\n",
1221 bufp
->used
, bufp
->allocated
);
1223 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1225 printf ("fastmap: ");
1226 print_fastmap (bufp
->fastmap
);
1229 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1230 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1231 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1232 printf ("no_sub: %d\t", bufp
->no_sub
);
1233 printf ("not_bol: %d\t", bufp
->not_bol
);
1234 printf ("not_eol: %d\t", bufp
->not_eol
);
1235 printf ("syntax: %lx\n", bufp
->syntax
);
1237 /* Perhaps we should print the translate table? */
1242 print_double_string (where
, string1
, size1
, string2
, size2
)
1255 if (FIRST_STRING_P (where
))
1257 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1258 putchar (string1
[this_char
]);
1263 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1264 putchar (string2
[this_char
]);
1268 #else /* not DEBUG */
1273 # define DEBUG_STATEMENT(e)
1274 # define DEBUG_PRINT1(x)
1275 # define DEBUG_PRINT2(x1, x2)
1276 # define DEBUG_PRINT3(x1, x2, x3)
1277 # define DEBUG_PRINT4(x1, x2, x3, x4)
1278 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1279 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1281 #endif /* not DEBUG */
1283 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1284 also be assigned to arbitrarily: each pattern buffer stores its own
1285 syntax, so it can be changed between regex compilations. */
1286 /* This has no initializer because initialized variables in Emacs
1287 become read-only after dumping. */
1288 reg_syntax_t re_syntax_options
;
1291 /* Specify the precise syntax of regexps for compilation. This provides
1292 for compatibility for various utilities which historically have
1293 different, incompatible syntaxes.
1295 The argument SYNTAX is a bit mask comprised of the various bits
1296 defined in regex.h. We return the old syntax. */
1299 re_set_syntax (syntax
)
1300 reg_syntax_t syntax
;
1302 reg_syntax_t ret
= re_syntax_options
;
1304 re_syntax_options
= syntax
;
1307 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1309 /* Regexp to use to replace spaces, or NULL meaning don't. */
1310 static re_char
*whitespace_regexp
;
1313 re_set_whitespace_regexp (regexp
)
1316 whitespace_regexp
= (re_char
*) regexp
;
1318 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1320 /* This table gives an error message for each of the error codes listed
1321 in regex.h. Obviously the order here has to be same as there.
1322 POSIX doesn't require that we do anything for REG_NOERROR,
1323 but why not be nice? */
1325 static const char *re_error_msgid
[] =
1327 gettext_noop ("Success"), /* REG_NOERROR */
1328 gettext_noop ("No match"), /* REG_NOMATCH */
1329 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1330 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1331 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1332 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1333 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1334 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1335 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1336 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1337 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1338 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1339 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1340 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1341 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1342 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1343 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1344 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1347 /* Avoiding alloca during matching, to placate r_alloc. */
1349 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1350 searching and matching functions should not call alloca. On some
1351 systems, alloca is implemented in terms of malloc, and if we're
1352 using the relocating allocator routines, then malloc could cause a
1353 relocation, which might (if the strings being searched are in the
1354 ralloc heap) shift the data out from underneath the regexp
1357 Here's another reason to avoid allocation: Emacs
1358 processes input from X in a signal handler; processing X input may
1359 call malloc; if input arrives while a matching routine is calling
1360 malloc, then we're scrod. But Emacs can't just block input while
1361 calling matching routines; then we don't notice interrupts when
1362 they come in. So, Emacs blocks input around all regexp calls
1363 except the matching calls, which it leaves unprotected, in the
1364 faith that they will not malloc. */
1366 /* Normally, this is fine. */
1367 #define MATCH_MAY_ALLOCATE
1369 /* When using GNU C, we are not REALLY using the C alloca, no matter
1370 what config.h may say. So don't take precautions for it. */
1375 /* The match routines may not allocate if (1) they would do it with malloc
1376 and (2) it's not safe for them to use malloc.
1377 Note that if REL_ALLOC is defined, matching would not use malloc for the
1378 failure stack, but we would still use it for the register vectors;
1379 so REL_ALLOC should not affect this. */
1380 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1381 # undef MATCH_MAY_ALLOCATE
1385 /* Failure stack declarations and macros; both re_compile_fastmap and
1386 re_match_2 use a failure stack. These have to be macros because of
1387 REGEX_ALLOCATE_STACK. */
1390 /* Approximate number of failure points for which to initially allocate space
1391 when matching. If this number is exceeded, we allocate more
1392 space, so it is not a hard limit. */
1393 #ifndef INIT_FAILURE_ALLOC
1394 # define INIT_FAILURE_ALLOC 20
1397 /* Roughly the maximum number of failure points on the stack. Would be
1398 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1399 This is a variable only so users of regex can assign to it; we never
1400 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1401 before using it, so it should probably be a byte-count instead. */
1402 # if defined MATCH_MAY_ALLOCATE
1403 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1404 whose default stack limit is 2mb. In order for a larger
1405 value to work reliably, you have to try to make it accord
1406 with the process stack limit. */
1407 size_t re_max_failures
= 40000;
1409 size_t re_max_failures
= 4000;
1412 union fail_stack_elt
1415 /* This should be the biggest `int' that's no bigger than a pointer. */
1419 typedef union fail_stack_elt fail_stack_elt_t
;
1423 fail_stack_elt_t
*stack
;
1425 size_t avail
; /* Offset of next open position. */
1426 size_t frame
; /* Offset of the cur constructed frame. */
1429 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1430 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1433 /* Define macros to initialize and free the failure stack.
1434 Do `return -2' if the alloc fails. */
1436 #ifdef MATCH_MAY_ALLOCATE
1437 # define INIT_FAIL_STACK() \
1439 fail_stack.stack = (fail_stack_elt_t *) \
1440 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1441 * sizeof (fail_stack_elt_t)); \
1443 if (fail_stack.stack == NULL) \
1446 fail_stack.size = INIT_FAILURE_ALLOC; \
1447 fail_stack.avail = 0; \
1448 fail_stack.frame = 0; \
1451 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1453 # define INIT_FAIL_STACK() \
1455 fail_stack.avail = 0; \
1456 fail_stack.frame = 0; \
1459 # define RESET_FAIL_STACK() ((void)0)
1463 /* Double the size of FAIL_STACK, up to a limit
1464 which allows approximately `re_max_failures' items.
1466 Return 1 if succeeds, and 0 if either ran out of memory
1467 allocating space for it or it was already too large.
1469 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1471 /* Factor to increase the failure stack size by
1472 when we increase it.
1473 This used to be 2, but 2 was too wasteful
1474 because the old discarded stacks added up to as much space
1475 were as ultimate, maximum-size stack. */
1476 #define FAIL_STACK_GROWTH_FACTOR 4
1478 #define GROW_FAIL_STACK(fail_stack) \
1479 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1480 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1482 : ((fail_stack).stack \
1483 = (fail_stack_elt_t *) \
1484 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1485 (fail_stack).size * sizeof (fail_stack_elt_t), \
1486 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1487 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1488 * FAIL_STACK_GROWTH_FACTOR))), \
1490 (fail_stack).stack == NULL \
1492 : ((fail_stack).size \
1493 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1494 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1495 * FAIL_STACK_GROWTH_FACTOR)) \
1496 / sizeof (fail_stack_elt_t)), \
1500 /* Push a pointer value onto the failure stack.
1501 Assumes the variable `fail_stack'. Probably should only
1502 be called from within `PUSH_FAILURE_POINT'. */
1503 #define PUSH_FAILURE_POINTER(item) \
1504 fail_stack.stack[fail_stack.avail++].pointer = (item)
1506 /* This pushes an integer-valued item onto the failure stack.
1507 Assumes the variable `fail_stack'. Probably should only
1508 be called from within `PUSH_FAILURE_POINT'. */
1509 #define PUSH_FAILURE_INT(item) \
1510 fail_stack.stack[fail_stack.avail++].integer = (item)
1512 /* Push a fail_stack_elt_t value onto the failure stack.
1513 Assumes the variable `fail_stack'. Probably should only
1514 be called from within `PUSH_FAILURE_POINT'. */
1515 #define PUSH_FAILURE_ELT(item) \
1516 fail_stack.stack[fail_stack.avail++] = (item)
1518 /* These three POP... operations complement the three PUSH... operations.
1519 All assume that `fail_stack' is nonempty. */
1520 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1521 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1522 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1524 /* Individual items aside from the registers. */
1525 #define NUM_NONREG_ITEMS 3
1527 /* Used to examine the stack (to detect infinite loops). */
1528 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1529 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1530 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1531 #define TOP_FAILURE_HANDLE() fail_stack.frame
1534 #define ENSURE_FAIL_STACK(space) \
1535 while (REMAINING_AVAIL_SLOTS <= space) { \
1536 if (!GROW_FAIL_STACK (fail_stack)) \
1538 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1539 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1542 /* Push register NUM onto the stack. */
1543 #define PUSH_FAILURE_REG(num) \
1545 char *destination; \
1546 ENSURE_FAIL_STACK(3); \
1547 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1548 num, regstart[num], regend[num]); \
1549 PUSH_FAILURE_POINTER (regstart[num]); \
1550 PUSH_FAILURE_POINTER (regend[num]); \
1551 PUSH_FAILURE_INT (num); \
1554 /* Change the counter's value to VAL, but make sure that it will
1555 be reset when backtracking. */
1556 #define PUSH_NUMBER(ptr,val) \
1558 char *destination; \
1560 ENSURE_FAIL_STACK(3); \
1561 EXTRACT_NUMBER (c, ptr); \
1562 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1563 PUSH_FAILURE_INT (c); \
1564 PUSH_FAILURE_POINTER (ptr); \
1565 PUSH_FAILURE_INT (-1); \
1566 STORE_NUMBER (ptr, val); \
1569 /* Pop a saved register off the stack. */
1570 #define POP_FAILURE_REG_OR_COUNT() \
1572 int reg = POP_FAILURE_INT (); \
1575 /* It's a counter. */ \
1576 /* Here, we discard `const', making re_match non-reentrant. */ \
1577 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1578 reg = POP_FAILURE_INT (); \
1579 STORE_NUMBER (ptr, reg); \
1580 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1584 regend[reg] = POP_FAILURE_POINTER (); \
1585 regstart[reg] = POP_FAILURE_POINTER (); \
1586 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1587 reg, regstart[reg], regend[reg]); \
1591 /* Check that we are not stuck in an infinite loop. */
1592 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1594 int failure = TOP_FAILURE_HANDLE (); \
1595 /* Check for infinite matching loops */ \
1596 while (failure > 0 \
1597 && (FAILURE_STR (failure) == string_place \
1598 || FAILURE_STR (failure) == NULL)) \
1600 assert (FAILURE_PAT (failure) >= bufp->buffer \
1601 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1602 if (FAILURE_PAT (failure) == pat_cur) \
1607 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1608 failure = NEXT_FAILURE_HANDLE(failure); \
1610 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1613 /* Push the information about the state we will need
1614 if we ever fail back to it.
1616 Requires variables fail_stack, regstart, regend and
1617 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1620 Does `return FAILURE_CODE' if runs out of memory. */
1622 #define PUSH_FAILURE_POINT(pattern, string_place) \
1624 char *destination; \
1625 /* Must be int, so when we don't save any registers, the arithmetic \
1626 of 0 + -1 isn't done as unsigned. */ \
1628 DEBUG_STATEMENT (nfailure_points_pushed++); \
1629 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1630 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1631 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1633 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1635 DEBUG_PRINT1 ("\n"); \
1637 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1638 PUSH_FAILURE_INT (fail_stack.frame); \
1640 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1641 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1642 DEBUG_PRINT1 ("'\n"); \
1643 PUSH_FAILURE_POINTER (string_place); \
1645 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1646 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1647 PUSH_FAILURE_POINTER (pattern); \
1649 /* Close the frame by moving the frame pointer past it. */ \
1650 fail_stack.frame = fail_stack.avail; \
1653 /* Estimate the size of data pushed by a typical failure stack entry.
1654 An estimate is all we need, because all we use this for
1655 is to choose a limit for how big to make the failure stack. */
1656 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1657 #define TYPICAL_FAILURE_SIZE 20
1659 /* How many items can still be added to the stack without overflowing it. */
1660 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1663 /* Pops what PUSH_FAIL_STACK pushes.
1665 We restore into the parameters, all of which should be lvalues:
1666 STR -- the saved data position.
1667 PAT -- the saved pattern position.
1668 REGSTART, REGEND -- arrays of string positions.
1670 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1671 `pend', `string1', `size1', `string2', and `size2'. */
1673 #define POP_FAILURE_POINT(str, pat) \
1675 assert (!FAIL_STACK_EMPTY ()); \
1677 /* Remove failure points and point to how many regs pushed. */ \
1678 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1679 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1680 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1682 /* Pop the saved registers. */ \
1683 while (fail_stack.frame < fail_stack.avail) \
1684 POP_FAILURE_REG_OR_COUNT (); \
1686 pat = POP_FAILURE_POINTER (); \
1687 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1688 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1690 /* If the saved string location is NULL, it came from an \
1691 on_failure_keep_string_jump opcode, and we want to throw away the \
1692 saved NULL, thus retaining our current position in the string. */ \
1693 str = POP_FAILURE_POINTER (); \
1694 DEBUG_PRINT2 (" Popping string %p: `", str); \
1695 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1696 DEBUG_PRINT1 ("'\n"); \
1698 fail_stack.frame = POP_FAILURE_INT (); \
1699 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1701 assert (fail_stack.avail >= 0); \
1702 assert (fail_stack.frame <= fail_stack.avail); \
1704 DEBUG_STATEMENT (nfailure_points_popped++); \
1705 } while (0) /* POP_FAILURE_POINT */
1709 /* Registers are set to a sentinel when they haven't yet matched. */
1710 #define REG_UNSET(e) ((e) == NULL)
1712 /* Subroutine declarations and macros for regex_compile. */
1714 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1715 reg_syntax_t syntax
,
1716 struct re_pattern_buffer
*bufp
));
1717 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1718 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1719 int arg1
, int arg2
));
1720 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1721 int arg
, unsigned char *end
));
1722 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1723 int arg1
, int arg2
, unsigned char *end
));
1724 static boolean at_begline_loc_p
_RE_ARGS ((re_char
*pattern
,
1726 reg_syntax_t syntax
));
1727 static boolean at_endline_loc_p
_RE_ARGS ((re_char
*p
,
1729 reg_syntax_t syntax
));
1730 static re_char
*skip_one_char
_RE_ARGS ((re_char
*p
));
1731 static int analyse_first
_RE_ARGS ((re_char
*p
, re_char
*pend
,
1732 char *fastmap
, const int multibyte
));
1734 /* Fetch the next character in the uncompiled pattern, with no
1736 #define PATFETCH(c) \
1739 if (p == pend) return REG_EEND; \
1740 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1745 /* If `translate' is non-null, return translate[D], else just D. We
1746 cast the subscript to translate because some data is declared as
1747 `char *', to avoid warnings when a string constant is passed. But
1748 when we use a character as a subscript we must make it unsigned. */
1750 # define TRANSLATE(d) \
1751 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1755 /* Macros for outputting the compiled pattern into `buffer'. */
1757 /* If the buffer isn't allocated when it comes in, use this. */
1758 #define INIT_BUF_SIZE 32
1760 /* Make sure we have at least N more bytes of space in buffer. */
1761 #define GET_BUFFER_SPACE(n) \
1762 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1765 /* Make sure we have one more byte of buffer space and then add C to it. */
1766 #define BUF_PUSH(c) \
1768 GET_BUFFER_SPACE (1); \
1769 *b++ = (unsigned char) (c); \
1773 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1774 #define BUF_PUSH_2(c1, c2) \
1776 GET_BUFFER_SPACE (2); \
1777 *b++ = (unsigned char) (c1); \
1778 *b++ = (unsigned char) (c2); \
1782 /* As with BUF_PUSH_2, except for three bytes. */
1783 #define BUF_PUSH_3(c1, c2, c3) \
1785 GET_BUFFER_SPACE (3); \
1786 *b++ = (unsigned char) (c1); \
1787 *b++ = (unsigned char) (c2); \
1788 *b++ = (unsigned char) (c3); \
1792 /* Store a jump with opcode OP at LOC to location TO. We store a
1793 relative address offset by the three bytes the jump itself occupies. */
1794 #define STORE_JUMP(op, loc, to) \
1795 store_op1 (op, loc, (to) - (loc) - 3)
1797 /* Likewise, for a two-argument jump. */
1798 #define STORE_JUMP2(op, loc, to, arg) \
1799 store_op2 (op, loc, (to) - (loc) - 3, arg)
1801 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1802 #define INSERT_JUMP(op, loc, to) \
1803 insert_op1 (op, loc, (to) - (loc) - 3, b)
1805 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1806 #define INSERT_JUMP2(op, loc, to, arg) \
1807 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1810 /* This is not an arbitrary limit: the arguments which represent offsets
1811 into the pattern are two bytes long. So if 2^15 bytes turns out to
1812 be too small, many things would have to change. */
1813 # define MAX_BUF_SIZE (1L << 15)
1815 #if 0 /* This is when we thought it could be 2^16 bytes. */
1816 /* Any other compiler which, like MSC, has allocation limit below 2^16
1817 bytes will have to use approach similar to what was done below for
1818 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1819 reallocating to 0 bytes. Such thing is not going to work too well.
1820 You have been warned!! */
1821 #if defined _MSC_VER && !defined WIN32
1822 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1823 # define MAX_BUF_SIZE 65500L
1825 # define MAX_BUF_SIZE (1L << 16)
1829 /* Extend the buffer by twice its current size via realloc and
1830 reset the pointers that pointed into the old block to point to the
1831 correct places in the new one. If extending the buffer results in it
1832 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1833 #if __BOUNDED_POINTERS__
1834 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1835 # define MOVE_BUFFER_POINTER(P) \
1836 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1837 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1840 SET_HIGH_BOUND (b); \
1841 SET_HIGH_BOUND (begalt); \
1842 if (fixup_alt_jump) \
1843 SET_HIGH_BOUND (fixup_alt_jump); \
1845 SET_HIGH_BOUND (laststart); \
1846 if (pending_exact) \
1847 SET_HIGH_BOUND (pending_exact); \
1850 # define MOVE_BUFFER_POINTER(P) (P) += incr
1851 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1853 #define EXTEND_BUFFER() \
1855 re_char *old_buffer = bufp->buffer; \
1856 if (bufp->allocated == MAX_BUF_SIZE) \
1858 bufp->allocated <<= 1; \
1859 if (bufp->allocated > MAX_BUF_SIZE) \
1860 bufp->allocated = MAX_BUF_SIZE; \
1861 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1862 if (bufp->buffer == NULL) \
1863 return REG_ESPACE; \
1864 /* If the buffer moved, move all the pointers into it. */ \
1865 if (old_buffer != bufp->buffer) \
1867 int incr = bufp->buffer - old_buffer; \
1868 MOVE_BUFFER_POINTER (b); \
1869 MOVE_BUFFER_POINTER (begalt); \
1870 if (fixup_alt_jump) \
1871 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1873 MOVE_BUFFER_POINTER (laststart); \
1874 if (pending_exact) \
1875 MOVE_BUFFER_POINTER (pending_exact); \
1877 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1881 /* Since we have one byte reserved for the register number argument to
1882 {start,stop}_memory, the maximum number of groups we can report
1883 things about is what fits in that byte. */
1884 #define MAX_REGNUM 255
1886 /* But patterns can have more than `MAX_REGNUM' registers. We just
1887 ignore the excess. */
1888 typedef int regnum_t
;
1891 /* Macros for the compile stack. */
1893 /* Since offsets can go either forwards or backwards, this type needs to
1894 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1895 /* int may be not enough when sizeof(int) == 2. */
1896 typedef long pattern_offset_t
;
1900 pattern_offset_t begalt_offset
;
1901 pattern_offset_t fixup_alt_jump
;
1902 pattern_offset_t laststart_offset
;
1904 } compile_stack_elt_t
;
1909 compile_stack_elt_t
*stack
;
1911 unsigned avail
; /* Offset of next open position. */
1912 } compile_stack_type
;
1915 #define INIT_COMPILE_STACK_SIZE 32
1917 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1918 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1920 /* The next available element. */
1921 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1923 /* Explicit quit checking is only used on NTemacs and whenever we
1924 use polling to process input events. */
1925 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1926 extern int immediate_quit
;
1927 # define IMMEDIATE_QUIT_CHECK \
1929 if (immediate_quit) QUIT; \
1932 # define IMMEDIATE_QUIT_CHECK ((void)0)
1935 /* Structure to manage work area for range table. */
1936 struct range_table_work_area
1938 int *table
; /* actual work area. */
1939 int allocated
; /* allocated size for work area in bytes. */
1940 int used
; /* actually used size in words. */
1941 int bits
; /* flag to record character classes */
1944 /* Make sure that WORK_AREA can hold more N multibyte characters.
1945 This is used only in set_image_of_range and set_image_of_range_1.
1946 It expects WORK_AREA to be a pointer.
1947 If it can't get the space, it returns from the surrounding function. */
1949 #define EXTEND_RANGE_TABLE(work_area, n) \
1951 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1953 extend_range_table_work_area (work_area); \
1954 if ((work_area)->table == 0) \
1955 return (REG_ESPACE); \
1959 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1960 (work_area).bits |= (bit)
1962 /* Bits used to implement the multibyte-part of the various character classes
1963 such as [:alnum:] in a charset's range table. */
1964 #define BIT_WORD 0x1
1965 #define BIT_LOWER 0x2
1966 #define BIT_PUNCT 0x4
1967 #define BIT_SPACE 0x8
1968 #define BIT_UPPER 0x10
1969 #define BIT_MULTIBYTE 0x20
1971 /* Set a range START..END to WORK_AREA.
1972 The range is passed through TRANSLATE, so START and END
1973 should be untranslated. */
1974 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1977 tem = set_image_of_range (&work_area, start, end, translate); \
1979 FREE_STACK_RETURN (tem); \
1982 /* Free allocated memory for WORK_AREA. */
1983 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1985 if ((work_area).table) \
1986 free ((work_area).table); \
1989 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1990 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1991 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1992 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1995 /* Set the bit for character C in a list. */
1996 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1999 /* Get the next unsigned number in the uncompiled pattern. */
2000 #define GET_UNSIGNED_NUMBER(num) \
2003 FREE_STACK_RETURN (REG_EBRACE); \
2007 while ('0' <= c && c <= '9') \
2013 num = num * 10 + c - '0'; \
2014 if (num / 10 != prev) \
2015 FREE_STACK_RETURN (REG_BADBR); \
2017 FREE_STACK_RETURN (REG_EBRACE); \
2023 #if ! WIDE_CHAR_SUPPORT
2025 /* Map a string to the char class it names (if any). */
2030 const char *string
= str
;
2031 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
2032 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
2033 else if (STREQ (string
, "word")) return RECC_WORD
;
2034 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
2035 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
2036 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
2037 else if (STREQ (string
, "lower")) return RECC_LOWER
;
2038 else if (STREQ (string
, "print")) return RECC_PRINT
;
2039 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2040 else if (STREQ (string
, "space")) return RECC_SPACE
;
2041 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2042 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2043 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2044 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2045 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2046 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2047 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2051 /* True if CH is in the char class CC. */
2053 re_iswctype (ch
, cc
)
2059 case RECC_ALNUM
: return ISALNUM (ch
);
2060 case RECC_ALPHA
: return ISALPHA (ch
);
2061 case RECC_BLANK
: return ISBLANK (ch
);
2062 case RECC_CNTRL
: return ISCNTRL (ch
);
2063 case RECC_DIGIT
: return ISDIGIT (ch
);
2064 case RECC_GRAPH
: return ISGRAPH (ch
);
2065 case RECC_LOWER
: return ISLOWER (ch
);
2066 case RECC_PRINT
: return ISPRINT (ch
);
2067 case RECC_PUNCT
: return ISPUNCT (ch
);
2068 case RECC_SPACE
: return ISSPACE (ch
);
2069 case RECC_UPPER
: return ISUPPER (ch
);
2070 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2071 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2072 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2073 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2074 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2075 case RECC_WORD
: return ISWORD (ch
);
2076 case RECC_ERROR
: return false;
2082 /* Return a bit-pattern to use in the range-table bits to match multibyte
2083 chars of class CC. */
2085 re_wctype_to_bit (cc
)
2090 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2091 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2092 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2093 case RECC_LOWER
: return BIT_LOWER
;
2094 case RECC_UPPER
: return BIT_UPPER
;
2095 case RECC_PUNCT
: return BIT_PUNCT
;
2096 case RECC_SPACE
: return BIT_SPACE
;
2097 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2098 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2105 /* Filling in the work area of a range. */
2107 /* Actually extend the space in WORK_AREA. */
2110 extend_range_table_work_area (work_area
)
2111 struct range_table_work_area
*work_area
;
2113 work_area
->allocated
+= 16 * sizeof (int);
2114 if (work_area
->table
)
2116 = (int *) realloc (work_area
->table
, work_area
->allocated
);
2119 = (int *) malloc (work_area
->allocated
);
2124 /* Carefully find the ranges of codes that are equivalent
2125 under case conversion to the range start..end when passed through
2126 TRANSLATE. Handle the case where non-letters can come in between
2127 two upper-case letters (which happens in Latin-1).
2128 Also handle the case of groups of more than 2 case-equivalent chars.
2130 The basic method is to look at consecutive characters and see
2131 if they can form a run that can be handled as one.
2133 Returns -1 if successful, REG_ESPACE if ran out of space. */
2136 set_image_of_range_1 (work_area
, start
, end
, translate
)
2137 RE_TRANSLATE_TYPE translate
;
2138 struct range_table_work_area
*work_area
;
2139 re_wchar_t start
, end
;
2141 /* `one_case' indicates a character, or a run of characters,
2142 each of which is an isolate (no case-equivalents).
2143 This includes all ASCII non-letters.
2145 `two_case' indicates a character, or a run of characters,
2146 each of which has two case-equivalent forms.
2147 This includes all ASCII letters.
2149 `strange' indicates a character that has more than one
2152 enum case_type
{one_case
, two_case
, strange
};
2154 /* Describe the run that is in progress,
2155 which the next character can try to extend.
2156 If run_type is strange, that means there really is no run.
2157 If run_type is one_case, then run_start...run_end is the run.
2158 If run_type is two_case, then the run is run_start...run_end,
2159 and the case-equivalents end at run_eqv_end. */
2161 enum case_type run_type
= strange
;
2162 int run_start
, run_end
, run_eqv_end
;
2164 Lisp_Object eqv_table
;
2166 if (!RE_TRANSLATE_P (translate
))
2168 EXTEND_RANGE_TABLE (work_area
, 2);
2169 work_area
->table
[work_area
->used
++] = (start
);
2170 work_area
->table
[work_area
->used
++] = (end
);
2174 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2176 for (; start
<= end
; start
++)
2178 enum case_type this_type
;
2179 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2180 int minchar
, maxchar
;
2182 /* Classify this character */
2184 this_type
= one_case
;
2185 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2186 this_type
= two_case
;
2188 this_type
= strange
;
2191 minchar
= start
, maxchar
= eqv
;
2193 minchar
= eqv
, maxchar
= start
;
2195 /* Can this character extend the run in progress? */
2196 if (this_type
== strange
|| this_type
!= run_type
2197 || !(minchar
== run_end
+ 1
2198 && (run_type
== two_case
2199 ? maxchar
== run_eqv_end
+ 1 : 1)))
2202 Record each of its equivalent ranges. */
2203 if (run_type
== one_case
)
2205 EXTEND_RANGE_TABLE (work_area
, 2);
2206 work_area
->table
[work_area
->used
++] = run_start
;
2207 work_area
->table
[work_area
->used
++] = run_end
;
2209 else if (run_type
== two_case
)
2211 EXTEND_RANGE_TABLE (work_area
, 4);
2212 work_area
->table
[work_area
->used
++] = run_start
;
2213 work_area
->table
[work_area
->used
++] = run_end
;
2214 work_area
->table
[work_area
->used
++]
2215 = RE_TRANSLATE (eqv_table
, run_start
);
2216 work_area
->table
[work_area
->used
++]
2217 = RE_TRANSLATE (eqv_table
, run_end
);
2222 if (this_type
== strange
)
2224 /* For a strange character, add each of its equivalents, one
2225 by one. Don't start a range. */
2228 EXTEND_RANGE_TABLE (work_area
, 2);
2229 work_area
->table
[work_area
->used
++] = eqv
;
2230 work_area
->table
[work_area
->used
++] = eqv
;
2231 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2233 while (eqv
!= start
);
2236 /* Add this char to the run, or start a new run. */
2237 else if (run_type
== strange
)
2239 /* Initialize a new range. */
2240 run_type
= this_type
;
2243 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2247 /* Extend a running range. */
2249 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2253 /* If a run is still in progress at the end, finish it now
2254 by recording its equivalent ranges. */
2255 if (run_type
== one_case
)
2257 EXTEND_RANGE_TABLE (work_area
, 2);
2258 work_area
->table
[work_area
->used
++] = run_start
;
2259 work_area
->table
[work_area
->used
++] = run_end
;
2261 else if (run_type
== two_case
)
2263 EXTEND_RANGE_TABLE (work_area
, 4);
2264 work_area
->table
[work_area
->used
++] = run_start
;
2265 work_area
->table
[work_area
->used
++] = run_end
;
2266 work_area
->table
[work_area
->used
++]
2267 = RE_TRANSLATE (eqv_table
, run_start
);
2268 work_area
->table
[work_area
->used
++]
2269 = RE_TRANSLATE (eqv_table
, run_end
);
2277 /* Record the the image of the range start..end when passed through
2278 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2279 and is not even necessarily contiguous.
2280 Normally we approximate it with the smallest contiguous range that contains
2281 all the chars we need. However, for Latin-1 we go to extra effort
2284 This function is not called for ASCII ranges.
2286 Returns -1 if successful, REG_ESPACE if ran out of space. */
2289 set_image_of_range (work_area
, start
, end
, translate
)
2290 RE_TRANSLATE_TYPE translate
;
2291 struct range_table_work_area
*work_area
;
2292 re_wchar_t start
, end
;
2294 re_wchar_t cmin
, cmax
;
2297 /* For Latin-1 ranges, use set_image_of_range_1
2298 to get proper handling of ranges that include letters and nonletters.
2299 For a range that includes the whole of Latin-1, this is not necessary.
2300 For other character sets, we don't bother to get this right. */
2301 if (RE_TRANSLATE_P (translate
) && start
< 04400
2302 && !(start
< 04200 && end
>= 04377))
2309 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2319 EXTEND_RANGE_TABLE (work_area
, 2);
2320 work_area
->table
[work_area
->used
++] = (start
);
2321 work_area
->table
[work_area
->used
++] = (end
);
2323 cmin
= -1, cmax
= -1;
2325 if (RE_TRANSLATE_P (translate
))
2329 for (ch
= start
; ch
<= end
; ch
++)
2331 re_wchar_t c
= TRANSLATE (ch
);
2332 if (! (start
<= c
&& c
<= end
))
2338 cmin
= MIN (cmin
, c
);
2339 cmax
= MAX (cmax
, c
);
2346 EXTEND_RANGE_TABLE (work_area
, 2);
2347 work_area
->table
[work_area
->used
++] = (cmin
);
2348 work_area
->table
[work_area
->used
++] = (cmax
);
2355 #ifndef MATCH_MAY_ALLOCATE
2357 /* If we cannot allocate large objects within re_match_2_internal,
2358 we make the fail stack and register vectors global.
2359 The fail stack, we grow to the maximum size when a regexp
2361 The register vectors, we adjust in size each time we
2362 compile a regexp, according to the number of registers it needs. */
2364 static fail_stack_type fail_stack
;
2366 /* Size with which the following vectors are currently allocated.
2367 That is so we can make them bigger as needed,
2368 but never make them smaller. */
2369 static int regs_allocated_size
;
2371 static re_char
** regstart
, ** regend
;
2372 static re_char
**best_regstart
, **best_regend
;
2374 /* Make the register vectors big enough for NUM_REGS registers,
2375 but don't make them smaller. */
2378 regex_grow_registers (num_regs
)
2381 if (num_regs
> regs_allocated_size
)
2383 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2384 RETALLOC_IF (regend
, num_regs
, re_char
*);
2385 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2386 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2388 regs_allocated_size
= num_regs
;
2392 #endif /* not MATCH_MAY_ALLOCATE */
2394 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2398 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2399 Returns one of error codes defined in `regex.h', or zero for success.
2401 Assumes the `allocated' (and perhaps `buffer') and `translate'
2402 fields are set in BUFP on entry.
2404 If it succeeds, results are put in BUFP (if it returns an error, the
2405 contents of BUFP are undefined):
2406 `buffer' is the compiled pattern;
2407 `syntax' is set to SYNTAX;
2408 `used' is set to the length of the compiled pattern;
2409 `fastmap_accurate' is zero;
2410 `re_nsub' is the number of subexpressions in PATTERN;
2411 `not_bol' and `not_eol' are zero;
2413 The `fastmap' field is neither examined nor set. */
2415 /* Insert the `jump' from the end of last alternative to "here".
2416 The space for the jump has already been allocated. */
2417 #define FIXUP_ALT_JUMP() \
2419 if (fixup_alt_jump) \
2420 STORE_JUMP (jump, fixup_alt_jump, b); \
2424 /* Return, freeing storage we allocated. */
2425 #define FREE_STACK_RETURN(value) \
2427 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2428 free (compile_stack.stack); \
2432 static reg_errcode_t
2433 regex_compile (pattern
, size
, syntax
, bufp
)
2436 reg_syntax_t syntax
;
2437 struct re_pattern_buffer
*bufp
;
2439 /* We fetch characters from PATTERN here. */
2440 register re_wchar_t c
, c1
;
2442 /* A random temporary spot in PATTERN. */
2445 /* Points to the end of the buffer, where we should append. */
2446 register unsigned char *b
;
2448 /* Keeps track of unclosed groups. */
2449 compile_stack_type compile_stack
;
2451 /* Points to the current (ending) position in the pattern. */
2453 /* `const' makes AIX compiler fail. */
2454 unsigned char *p
= pattern
;
2456 re_char
*p
= pattern
;
2458 re_char
*pend
= pattern
+ size
;
2460 /* How to translate the characters in the pattern. */
2461 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2463 /* Address of the count-byte of the most recently inserted `exactn'
2464 command. This makes it possible to tell if a new exact-match
2465 character can be added to that command or if the character requires
2466 a new `exactn' command. */
2467 unsigned char *pending_exact
= 0;
2469 /* Address of start of the most recently finished expression.
2470 This tells, e.g., postfix * where to find the start of its
2471 operand. Reset at the beginning of groups and alternatives. */
2472 unsigned char *laststart
= 0;
2474 /* Address of beginning of regexp, or inside of last group. */
2475 unsigned char *begalt
;
2477 /* Place in the uncompiled pattern (i.e., the {) to
2478 which to go back if the interval is invalid. */
2479 re_char
*beg_interval
;
2481 /* Address of the place where a forward jump should go to the end of
2482 the containing expression. Each alternative of an `or' -- except the
2483 last -- ends with a forward jump of this sort. */
2484 unsigned char *fixup_alt_jump
= 0;
2486 /* Counts open-groups as they are encountered. Remembered for the
2487 matching close-group on the compile stack, so the same register
2488 number is put in the stop_memory as the start_memory. */
2489 regnum_t regnum
= 0;
2491 /* Work area for range table of charset. */
2492 struct range_table_work_area range_table_work
;
2494 /* If the object matched can contain multibyte characters. */
2495 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2497 /* Nonzero if we have pushed down into a subpattern. */
2498 int in_subpattern
= 0;
2500 /* These hold the values of p, pattern, and pend from the main
2501 pattern when we have pushed into a subpattern. */
2503 re_char
*main_pattern
;
2508 DEBUG_PRINT1 ("\nCompiling pattern: ");
2511 unsigned debug_count
;
2513 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2514 putchar (pattern
[debug_count
]);
2519 /* Initialize the compile stack. */
2520 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2521 if (compile_stack
.stack
== NULL
)
2524 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2525 compile_stack
.avail
= 0;
2527 range_table_work
.table
= 0;
2528 range_table_work
.allocated
= 0;
2530 /* Initialize the pattern buffer. */
2531 bufp
->syntax
= syntax
;
2532 bufp
->fastmap_accurate
= 0;
2533 bufp
->not_bol
= bufp
->not_eol
= 0;
2534 bufp
->used_syntax
= 0;
2536 /* Set `used' to zero, so that if we return an error, the pattern
2537 printer (for debugging) will think there's no pattern. We reset it
2541 /* Always count groups, whether or not bufp->no_sub is set. */
2544 #if !defined emacs && !defined SYNTAX_TABLE
2545 /* Initialize the syntax table. */
2546 init_syntax_once ();
2549 if (bufp
->allocated
== 0)
2552 { /* If zero allocated, but buffer is non-null, try to realloc
2553 enough space. This loses if buffer's address is bogus, but
2554 that is the user's responsibility. */
2555 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2558 { /* Caller did not allocate a buffer. Do it for them. */
2559 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2561 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2563 bufp
->allocated
= INIT_BUF_SIZE
;
2566 begalt
= b
= bufp
->buffer
;
2568 /* Loop through the uncompiled pattern until we're at the end. */
2573 /* If this is the end of an included regexp,
2574 pop back to the main regexp and try again. */
2578 pattern
= main_pattern
;
2583 /* If this is the end of the main regexp, we are done. */
2595 /* If there's no special whitespace regexp, treat
2596 spaces normally. And don't try to do this recursively. */
2597 if (!whitespace_regexp
|| in_subpattern
)
2600 /* Peek past following spaces. */
2607 /* If the spaces are followed by a repetition op,
2608 treat them normally. */
2610 && (*p1
== '*' || *p1
== '+' || *p1
== '?'
2611 || (*p1
== '\\' && p1
+ 1 != pend
&& p1
[1] == '{')))
2614 /* Replace the spaces with the whitespace regexp. */
2618 main_pattern
= pattern
;
2619 p
= pattern
= whitespace_regexp
;
2620 pend
= p
+ strlen (p
);
2626 if ( /* If at start of pattern, it's an operator. */
2628 /* If context independent, it's an operator. */
2629 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2630 /* Otherwise, depends on what's come before. */
2631 || at_begline_loc_p (pattern
, p
, syntax
))
2632 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2641 if ( /* If at end of pattern, it's an operator. */
2643 /* If context independent, it's an operator. */
2644 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2645 /* Otherwise, depends on what's next. */
2646 || at_endline_loc_p (p
, pend
, syntax
))
2647 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2656 if ((syntax
& RE_BK_PLUS_QM
)
2657 || (syntax
& RE_LIMITED_OPS
))
2661 /* If there is no previous pattern... */
2664 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2665 FREE_STACK_RETURN (REG_BADRPT
);
2666 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2671 /* 1 means zero (many) matches is allowed. */
2672 boolean zero_times_ok
= 0, many_times_ok
= 0;
2675 /* If there is a sequence of repetition chars, collapse it
2676 down to just one (the right one). We can't combine
2677 interval operators with these because of, e.g., `a{2}*',
2678 which should only match an even number of `a's. */
2682 if ((syntax
& RE_FRUGAL
)
2683 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2687 zero_times_ok
|= c
!= '+';
2688 many_times_ok
|= c
!= '?';
2694 || (!(syntax
& RE_BK_PLUS_QM
)
2695 && (*p
== '+' || *p
== '?')))
2697 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2700 FREE_STACK_RETURN (REG_EESCAPE
);
2701 if (p
[1] == '+' || p
[1] == '?')
2702 PATFETCH (c
); /* Gobble up the backslash. */
2708 /* If we get here, we found another repeat character. */
2712 /* Star, etc. applied to an empty pattern is equivalent
2713 to an empty pattern. */
2714 if (!laststart
|| laststart
== b
)
2717 /* Now we know whether or not zero matches is allowed
2718 and also whether or not two or more matches is allowed. */
2723 boolean simple
= skip_one_char (laststart
) == b
;
2724 unsigned int startoffset
= 0;
2726 /* Check if the loop can match the empty string. */
2727 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2728 ? on_failure_jump
: on_failure_jump_loop
;
2729 assert (skip_one_char (laststart
) <= b
);
2731 if (!zero_times_ok
&& simple
)
2732 { /* Since simple * loops can be made faster by using
2733 on_failure_keep_string_jump, we turn simple P+
2734 into PP* if P is simple. */
2735 unsigned char *p1
, *p2
;
2736 startoffset
= b
- laststart
;
2737 GET_BUFFER_SPACE (startoffset
);
2738 p1
= b
; p2
= laststart
;
2744 GET_BUFFER_SPACE (6);
2747 STORE_JUMP (ofj
, b
, b
+ 6);
2749 /* Simple * loops can use on_failure_keep_string_jump
2750 depending on what follows. But since we don't know
2751 that yet, we leave the decision up to
2752 on_failure_jump_smart. */
2753 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2754 laststart
+ startoffset
, b
+ 6);
2756 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2761 /* A simple ? pattern. */
2762 assert (zero_times_ok
);
2763 GET_BUFFER_SPACE (3);
2764 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2768 else /* not greedy */
2769 { /* I wish the greedy and non-greedy cases could be merged. */
2771 GET_BUFFER_SPACE (7); /* We might use less. */
2774 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2776 /* The non-greedy multiple match looks like
2777 a repeat..until: we only need a conditional jump
2778 at the end of the loop. */
2779 if (emptyp
) BUF_PUSH (no_op
);
2780 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2781 : on_failure_jump
, b
, laststart
);
2785 /* The repeat...until naturally matches one or more.
2786 To also match zero times, we need to first jump to
2787 the end of the loop (its conditional jump). */
2788 INSERT_JUMP (jump
, laststart
, b
);
2794 /* non-greedy a?? */
2795 INSERT_JUMP (jump
, laststart
, b
+ 3);
2797 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2814 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2816 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2818 /* Ensure that we have enough space to push a charset: the
2819 opcode, the length count, and the bitset; 34 bytes in all. */
2820 GET_BUFFER_SPACE (34);
2824 /* We test `*p == '^' twice, instead of using an if
2825 statement, so we only need one BUF_PUSH. */
2826 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2830 /* Remember the first position in the bracket expression. */
2833 /* Push the number of bytes in the bitmap. */
2834 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2836 /* Clear the whole map. */
2837 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2839 /* charset_not matches newline according to a syntax bit. */
2840 if ((re_opcode_t
) b
[-2] == charset_not
2841 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2842 SET_LIST_BIT ('\n');
2844 /* Read in characters and ranges, setting map bits. */
2847 boolean escaped_char
= false;
2848 const unsigned char *p2
= p
;
2850 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2852 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2853 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2854 So the translation is done later in a loop. Example:
2855 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2858 /* \ might escape characters inside [...] and [^...]. */
2859 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2861 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2864 escaped_char
= true;
2868 /* Could be the end of the bracket expression. If it's
2869 not (i.e., when the bracket expression is `[]' so
2870 far), the ']' character bit gets set way below. */
2871 if (c
== ']' && p2
!= p1
)
2875 /* What should we do for the character which is
2876 greater than 0x7F, but not BASE_LEADING_CODE_P?
2879 /* See if we're at the beginning of a possible character
2882 if (!escaped_char
&&
2883 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2885 /* Leave room for the null. */
2886 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2887 const unsigned char *class_beg
;
2893 /* If pattern is `[[:'. */
2894 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2899 if ((c
== ':' && *p
== ']') || p
== pend
)
2901 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2904 /* This is in any case an invalid class name. */
2909 /* If isn't a word bracketed by `[:' and `:]':
2910 undo the ending character, the letters, and
2911 leave the leading `:' and `[' (but set bits for
2913 if (c
== ':' && *p
== ']')
2918 cc
= re_wctype (str
);
2921 FREE_STACK_RETURN (REG_ECTYPE
);
2923 /* Throw away the ] at the end of the character
2927 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2929 /* Most character classes in a multibyte match
2930 just set a flag. Exceptions are is_blank,
2931 is_digit, is_cntrl, and is_xdigit, since
2932 they can only match ASCII characters. We
2933 don't need to handle them for multibyte.
2934 They are distinguished by a negative wctype. */
2937 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work
,
2938 re_wctype_to_bit (cc
));
2940 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2942 int translated
= TRANSLATE (ch
);
2943 if (translated
< (1 << BYTEWIDTH
)
2944 && re_iswctype (btowc (ch
), cc
))
2945 SET_LIST_BIT (translated
);
2948 /* In most cases the matching rule for char classes
2949 only uses the syntax table for multibyte chars,
2950 so that the content of the syntax-table it is not
2951 hardcoded in the range_table. SPACE and WORD are
2952 the two exceptions. */
2953 if ((1 << cc
) & ((1 << RECC_SPACE
) | (1 << RECC_WORD
)))
2954 bufp
->used_syntax
= 1;
2956 /* Repeat the loop. */
2961 /* Go back to right after the "[:". */
2965 /* Because the `:' may starts the range, we
2966 can't simply set bit and repeat the loop.
2967 Instead, just set it to C and handle below. */
2972 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2975 /* Discard the `-'. */
2978 /* Fetch the character which ends the range. */
2981 if (SINGLE_BYTE_CHAR_P (c
))
2983 if (! SINGLE_BYTE_CHAR_P (c1
))
2985 /* Handle a range starting with a
2986 character of less than 256, and ending
2987 with a character of not less than 256.
2988 Split that into two ranges, the low one
2989 ending at 0377, and the high one
2990 starting at the smallest character in
2991 the charset of C1 and ending at C1. */
2992 int charset
= CHAR_CHARSET (c1
);
2993 re_wchar_t c2
= MAKE_CHAR (charset
, 0, 0);
2995 SET_RANGE_TABLE_WORK_AREA (range_table_work
,
3000 else if (!SAME_CHARSET_P (c
, c1
))
3001 FREE_STACK_RETURN (REG_ERANGEX
);
3004 /* Range from C to C. */
3007 /* Set the range ... */
3008 if (SINGLE_BYTE_CHAR_P (c
))
3009 /* ... into bitmap. */
3011 re_wchar_t this_char
;
3012 re_wchar_t range_start
= c
, range_end
= c1
;
3014 /* If the start is after the end, the range is empty. */
3015 if (range_start
> range_end
)
3017 if (syntax
& RE_NO_EMPTY_RANGES
)
3018 FREE_STACK_RETURN (REG_ERANGE
);
3019 /* Else, repeat the loop. */
3023 for (this_char
= range_start
; this_char
<= range_end
;
3026 int translated
= TRANSLATE (this_char
);
3027 if (translated
< (1 << BYTEWIDTH
))
3028 SET_LIST_BIT (translated
);
3030 SET_RANGE_TABLE_WORK_AREA
3031 (range_table_work
, translated
, translated
);
3036 /* ... into range table. */
3037 SET_RANGE_TABLE_WORK_AREA (range_table_work
, c
, c1
);
3040 /* Discard any (non)matching list bytes that are all 0 at the
3041 end of the map. Decrease the map-length byte too. */
3042 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3046 /* Build real range table from work area. */
3047 if (RANGE_TABLE_WORK_USED (range_table_work
)
3048 || RANGE_TABLE_WORK_BITS (range_table_work
))
3051 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
3053 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3054 bytes for flags, two for COUNT, and three bytes for
3056 GET_BUFFER_SPACE (4 + used
* 3);
3058 /* Indicate the existence of range table. */
3059 laststart
[1] |= 0x80;
3061 /* Store the character class flag bits into the range table.
3062 If not in emacs, these flag bits are always 0. */
3063 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
3064 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
3066 STORE_NUMBER_AND_INCR (b
, used
/ 2);
3067 for (i
= 0; i
< used
; i
++)
3068 STORE_CHARACTER_AND_INCR
3069 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
3076 if (syntax
& RE_NO_BK_PARENS
)
3083 if (syntax
& RE_NO_BK_PARENS
)
3090 if (syntax
& RE_NEWLINE_ALT
)
3097 if (syntax
& RE_NO_BK_VBAR
)
3104 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3105 goto handle_interval
;
3111 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3113 /* Do not translate the character after the \, so that we can
3114 distinguish, e.g., \B from \b, even if we normally would
3115 translate, e.g., B to b. */
3121 if (syntax
& RE_NO_BK_PARENS
)
3122 goto normal_backslash
;
3129 /* Look for a special (?...) construct */
3130 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3132 PATFETCH (c
); /* Gobble up the '?'. */
3136 case ':': shy
= 1; break;
3138 /* Only (?:...) is supported right now. */
3139 FREE_STACK_RETURN (REG_BADPAT
);
3150 if (COMPILE_STACK_FULL
)
3152 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3153 compile_stack_elt_t
);
3154 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3156 compile_stack
.size
<<= 1;
3159 /* These are the values to restore when we hit end of this
3160 group. They are all relative offsets, so that if the
3161 whole pattern moves because of realloc, they will still
3163 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3164 COMPILE_STACK_TOP
.fixup_alt_jump
3165 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3166 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3167 COMPILE_STACK_TOP
.regnum
= shy
? -regnum
: regnum
;
3170 start_memory for groups beyond the last one we can
3171 represent in the compiled pattern. */
3172 if (regnum
<= MAX_REGNUM
&& !shy
)
3173 BUF_PUSH_2 (start_memory
, regnum
);
3175 compile_stack
.avail
++;
3180 /* If we've reached MAX_REGNUM groups, then this open
3181 won't actually generate any code, so we'll have to
3182 clear pending_exact explicitly. */
3188 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3190 if (COMPILE_STACK_EMPTY
)
3192 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3193 goto normal_backslash
;
3195 FREE_STACK_RETURN (REG_ERPAREN
);
3201 /* See similar code for backslashed left paren above. */
3202 if (COMPILE_STACK_EMPTY
)
3204 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3207 FREE_STACK_RETURN (REG_ERPAREN
);
3210 /* Since we just checked for an empty stack above, this
3211 ``can't happen''. */
3212 assert (compile_stack
.avail
!= 0);
3214 /* We don't just want to restore into `regnum', because
3215 later groups should continue to be numbered higher,
3216 as in `(ab)c(de)' -- the second group is #2. */
3217 regnum_t this_group_regnum
;
3219 compile_stack
.avail
--;
3220 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3222 = COMPILE_STACK_TOP
.fixup_alt_jump
3223 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3225 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3226 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3227 /* If we've reached MAX_REGNUM groups, then this open
3228 won't actually generate any code, so we'll have to
3229 clear pending_exact explicitly. */
3232 /* We're at the end of the group, so now we know how many
3233 groups were inside this one. */
3234 if (this_group_regnum
<= MAX_REGNUM
&& this_group_regnum
> 0)
3235 BUF_PUSH_2 (stop_memory
, this_group_regnum
);
3240 case '|': /* `\|'. */
3241 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3242 goto normal_backslash
;
3244 if (syntax
& RE_LIMITED_OPS
)
3247 /* Insert before the previous alternative a jump which
3248 jumps to this alternative if the former fails. */
3249 GET_BUFFER_SPACE (3);
3250 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3254 /* The alternative before this one has a jump after it
3255 which gets executed if it gets matched. Adjust that
3256 jump so it will jump to this alternative's analogous
3257 jump (put in below, which in turn will jump to the next
3258 (if any) alternative's such jump, etc.). The last such
3259 jump jumps to the correct final destination. A picture:
3265 If we are at `b', then fixup_alt_jump right now points to a
3266 three-byte space after `a'. We'll put in the jump, set
3267 fixup_alt_jump to right after `b', and leave behind three
3268 bytes which we'll fill in when we get to after `c'. */
3272 /* Mark and leave space for a jump after this alternative,
3273 to be filled in later either by next alternative or
3274 when know we're at the end of a series of alternatives. */
3276 GET_BUFFER_SPACE (3);
3285 /* If \{ is a literal. */
3286 if (!(syntax
& RE_INTERVALS
)
3287 /* If we're at `\{' and it's not the open-interval
3289 || (syntax
& RE_NO_BK_BRACES
))
3290 goto normal_backslash
;
3294 /* If got here, then the syntax allows intervals. */
3296 /* At least (most) this many matches must be made. */
3297 int lower_bound
= 0, upper_bound
= -1;
3301 GET_UNSIGNED_NUMBER (lower_bound
);
3304 GET_UNSIGNED_NUMBER (upper_bound
);
3306 /* Interval such as `{1}' => match exactly once. */
3307 upper_bound
= lower_bound
;
3309 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3310 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3311 FREE_STACK_RETURN (REG_BADBR
);
3313 if (!(syntax
& RE_NO_BK_BRACES
))
3316 FREE_STACK_RETURN (REG_BADBR
);
3318 FREE_STACK_RETURN (REG_EESCAPE
);
3323 FREE_STACK_RETURN (REG_BADBR
);
3325 /* We just parsed a valid interval. */
3327 /* If it's invalid to have no preceding re. */
3330 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3331 FREE_STACK_RETURN (REG_BADRPT
);
3332 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3335 goto unfetch_interval
;
3338 if (upper_bound
== 0)
3339 /* If the upper bound is zero, just drop the sub pattern
3342 else if (lower_bound
== 1 && upper_bound
== 1)
3343 /* Just match it once: nothing to do here. */
3346 /* Otherwise, we have a nontrivial interval. When
3347 we're all done, the pattern will look like:
3348 set_number_at <jump count> <upper bound>
3349 set_number_at <succeed_n count> <lower bound>
3350 succeed_n <after jump addr> <succeed_n count>
3352 jump_n <succeed_n addr> <jump count>
3353 (The upper bound and `jump_n' are omitted if
3354 `upper_bound' is 1, though.) */
3356 { /* If the upper bound is > 1, we need to insert
3357 more at the end of the loop. */
3358 unsigned int nbytes
= (upper_bound
< 0 ? 3
3359 : upper_bound
> 1 ? 5 : 0);
3360 unsigned int startoffset
= 0;
3362 GET_BUFFER_SPACE (20); /* We might use less. */
3364 if (lower_bound
== 0)
3366 /* A succeed_n that starts with 0 is really a
3367 a simple on_failure_jump_loop. */
3368 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3374 /* Initialize lower bound of the `succeed_n', even
3375 though it will be set during matching by its
3376 attendant `set_number_at' (inserted next),
3377 because `re_compile_fastmap' needs to know.
3378 Jump to the `jump_n' we might insert below. */
3379 INSERT_JUMP2 (succeed_n
, laststart
,
3384 /* Code to initialize the lower bound. Insert
3385 before the `succeed_n'. The `5' is the last two
3386 bytes of this `set_number_at', plus 3 bytes of
3387 the following `succeed_n'. */
3388 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3393 if (upper_bound
< 0)
3395 /* A negative upper bound stands for infinity,
3396 in which case it degenerates to a plain jump. */
3397 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3400 else if (upper_bound
> 1)
3401 { /* More than one repetition is allowed, so
3402 append a backward jump to the `succeed_n'
3403 that starts this interval.
3405 When we've reached this during matching,
3406 we'll have matched the interval once, so
3407 jump back only `upper_bound - 1' times. */
3408 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3412 /* The location we want to set is the second
3413 parameter of the `jump_n'; that is `b-2' as
3414 an absolute address. `laststart' will be
3415 the `set_number_at' we're about to insert;
3416 `laststart+3' the number to set, the source
3417 for the relative address. But we are
3418 inserting into the middle of the pattern --
3419 so everything is getting moved up by 5.
3420 Conclusion: (b - 2) - (laststart + 3) + 5,
3421 i.e., b - laststart.
3423 We insert this at the beginning of the loop
3424 so that if we fail during matching, we'll
3425 reinitialize the bounds. */
3426 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3427 upper_bound
- 1, b
);
3432 beg_interval
= NULL
;
3437 /* If an invalid interval, match the characters as literals. */
3438 assert (beg_interval
);
3440 beg_interval
= NULL
;
3442 /* normal_char and normal_backslash need `c'. */
3445 if (!(syntax
& RE_NO_BK_BRACES
))
3447 assert (p
> pattern
&& p
[-1] == '\\');
3448 goto normal_backslash
;
3454 /* There is no way to specify the before_dot and after_dot
3455 operators. rms says this is ok. --karl */
3463 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3469 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3475 BUF_PUSH_2 (categoryspec
, c
);
3481 BUF_PUSH_2 (notcategoryspec
, c
);
3487 if (syntax
& RE_NO_GNU_OPS
)
3490 BUF_PUSH_2 (syntaxspec
, Sword
);
3495 if (syntax
& RE_NO_GNU_OPS
)
3498 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3503 if (syntax
& RE_NO_GNU_OPS
)
3509 if (syntax
& RE_NO_GNU_OPS
)
3515 if (syntax
& RE_NO_GNU_OPS
)
3524 FREE_STACK_RETURN (REG_BADPAT
);
3528 if (syntax
& RE_NO_GNU_OPS
)
3530 BUF_PUSH (wordbound
);
3534 if (syntax
& RE_NO_GNU_OPS
)
3536 BUF_PUSH (notwordbound
);
3540 if (syntax
& RE_NO_GNU_OPS
)
3546 if (syntax
& RE_NO_GNU_OPS
)
3551 case '1': case '2': case '3': case '4': case '5':
3552 case '6': case '7': case '8': case '9':
3556 if (syntax
& RE_NO_BK_REFS
)
3557 goto normal_backslash
;
3561 /* Can't back reference to a subexpression before its end. */
3562 if (reg
> regnum
|| group_in_compile_stack (compile_stack
, reg
))
3563 FREE_STACK_RETURN (REG_ESUBREG
);
3566 BUF_PUSH_2 (duplicate
, reg
);
3573 if (syntax
& RE_BK_PLUS_QM
)
3576 goto normal_backslash
;
3580 /* You might think it would be useful for \ to mean
3581 not to translate; but if we don't translate it
3582 it will never match anything. */
3589 /* Expects the character in `c'. */
3591 /* If no exactn currently being built. */
3594 /* If last exactn not at current position. */
3595 || pending_exact
+ *pending_exact
+ 1 != b
3597 /* We have only one byte following the exactn for the count. */
3598 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3600 /* If followed by a repetition operator. */
3601 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3602 || ((syntax
& RE_BK_PLUS_QM
)
3603 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3604 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3605 || ((syntax
& RE_INTERVALS
)
3606 && ((syntax
& RE_NO_BK_BRACES
)
3607 ? p
!= pend
&& *p
== '{'
3608 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3610 /* Start building a new exactn. */
3614 BUF_PUSH_2 (exactn
, 0);
3615 pending_exact
= b
- 1;
3618 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3624 len
= CHAR_STRING (c
, b
);
3628 (*pending_exact
) += len
;
3633 } /* while p != pend */
3636 /* Through the pattern now. */
3640 if (!COMPILE_STACK_EMPTY
)
3641 FREE_STACK_RETURN (REG_EPAREN
);
3643 /* If we don't want backtracking, force success
3644 the first time we reach the end of the compiled pattern. */
3645 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3648 /* We have succeeded; set the length of the buffer. */
3649 bufp
->used
= b
- bufp
->buffer
;
3654 re_compile_fastmap (bufp
);
3655 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3656 print_compiled_pattern (bufp
);
3661 #ifndef MATCH_MAY_ALLOCATE
3662 /* Initialize the failure stack to the largest possible stack. This
3663 isn't necessary unless we're trying to avoid calling alloca in
3664 the search and match routines. */
3666 int num_regs
= bufp
->re_nsub
+ 1;
3668 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3670 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3672 if (! fail_stack
.stack
)
3674 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3675 * sizeof (fail_stack_elt_t
));
3678 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3680 * sizeof (fail_stack_elt_t
)));
3683 regex_grow_registers (num_regs
);
3685 #endif /* not MATCH_MAY_ALLOCATE */
3687 FREE_STACK_RETURN (REG_NOERROR
);
3688 } /* regex_compile */
3690 /* Subroutines for `regex_compile'. */
3692 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3695 store_op1 (op
, loc
, arg
)
3700 *loc
= (unsigned char) op
;
3701 STORE_NUMBER (loc
+ 1, arg
);
3705 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3708 store_op2 (op
, loc
, arg1
, arg2
)
3713 *loc
= (unsigned char) op
;
3714 STORE_NUMBER (loc
+ 1, arg1
);
3715 STORE_NUMBER (loc
+ 3, arg2
);
3719 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3720 for OP followed by two-byte integer parameter ARG. */
3723 insert_op1 (op
, loc
, arg
, end
)
3729 register unsigned char *pfrom
= end
;
3730 register unsigned char *pto
= end
+ 3;
3732 while (pfrom
!= loc
)
3735 store_op1 (op
, loc
, arg
);
3739 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3742 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3748 register unsigned char *pfrom
= end
;
3749 register unsigned char *pto
= end
+ 5;
3751 while (pfrom
!= loc
)
3754 store_op2 (op
, loc
, arg1
, arg2
);
3758 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3759 after an alternative or a begin-subexpression. We assume there is at
3760 least one character before the ^. */
3763 at_begline_loc_p (pattern
, p
, syntax
)
3764 re_char
*pattern
, *p
;
3765 reg_syntax_t syntax
;
3767 re_char
*prev
= p
- 2;
3768 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3771 /* After a subexpression? */
3772 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3773 /* After an alternative? */
3774 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3775 /* After a shy subexpression? */
3776 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3777 && prev
[-1] == '?' && prev
[-2] == '('
3778 && (syntax
& RE_NO_BK_PARENS
3779 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3783 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3784 at least one character after the $, i.e., `P < PEND'. */
3787 at_endline_loc_p (p
, pend
, syntax
)
3789 reg_syntax_t syntax
;
3792 boolean next_backslash
= *next
== '\\';
3793 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3796 /* Before a subexpression? */
3797 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3798 : next_backslash
&& next_next
&& *next_next
== ')')
3799 /* Before an alternative? */
3800 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3801 : next_backslash
&& next_next
&& *next_next
== '|');
3805 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3806 false if it's not. */
3809 group_in_compile_stack (compile_stack
, regnum
)
3810 compile_stack_type compile_stack
;
3815 for (this_element
= compile_stack
.avail
- 1;
3818 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3825 If fastmap is non-NULL, go through the pattern and fill fastmap
3826 with all the possible leading chars. If fastmap is NULL, don't
3827 bother filling it up (obviously) and only return whether the
3828 pattern could potentially match the empty string.
3830 Return 1 if p..pend might match the empty string.
3831 Return 0 if p..pend matches at least one char.
3832 Return -1 if fastmap was not updated accurately. */
3835 analyse_first (p
, pend
, fastmap
, multibyte
)
3838 const int multibyte
;
3843 /* If all elements for base leading-codes in fastmap is set, this
3844 flag is set true. */
3845 boolean match_any_multibyte_characters
= false;
3849 /* The loop below works as follows:
3850 - It has a working-list kept in the PATTERN_STACK and which basically
3851 starts by only containing a pointer to the first operation.
3852 - If the opcode we're looking at is a match against some set of
3853 chars, then we add those chars to the fastmap and go on to the
3854 next work element from the worklist (done via `break').
3855 - If the opcode is a control operator on the other hand, we either
3856 ignore it (if it's meaningless at this point, such as `start_memory')
3857 or execute it (if it's a jump). If the jump has several destinations
3858 (i.e. `on_failure_jump'), then we push the other destination onto the
3860 We guarantee termination by ignoring backward jumps (more or less),
3861 so that `p' is monotonically increasing. More to the point, we
3862 never set `p' (or push) anything `<= p1'. */
3866 /* `p1' is used as a marker of how far back a `on_failure_jump'
3867 can go without being ignored. It is normally equal to `p'
3868 (which prevents any backward `on_failure_jump') except right
3869 after a plain `jump', to allow patterns such as:
3872 10: on_failure_jump 3
3873 as used for the *? operator. */
3876 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3883 /* If the first character has to match a backreference, that means
3884 that the group was empty (since it already matched). Since this
3885 is the only case that interests us here, we can assume that the
3886 backreference must match the empty string. */
3891 /* Following are the cases which match a character. These end
3897 int c
= RE_STRING_CHAR (p
+ 1, pend
- p
);
3898 /* When fast-scanning, the fastmap can be indexed either with
3899 a char (smaller than 256) or with the first byte of
3900 a char's byte sequence. So we have to conservatively add
3901 both to the table. */
3902 if (SINGLE_BYTE_CHAR_P (c
))
3910 /* We could put all the chars except for \n (and maybe \0)
3911 but we don't bother since it is generally not worth it. */
3912 if (!fastmap
) break;
3917 /* Chars beyond end of bitmap are possible matches.
3918 All the single-byte codes can occur in multibyte buffers.
3919 So any that are not listed in the charset
3920 are possible matches, even in multibyte buffers. */
3921 if (!fastmap
) break;
3922 /* We don't need to mark LEADING_CODE_8_BIT_CONTROL specially
3923 because it will automatically be set when needed by virtue of
3924 being larger than the highest char of its charset (0xbf) but
3925 smaller than (1<<BYTEWIDTH). */
3926 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3927 j
< (1 << BYTEWIDTH
); j
++)
3931 if (!fastmap
) break;
3932 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3933 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3935 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3939 if (j
>= 0x80 && j
< 0xa0)
3940 fastmap
[LEADING_CODE_8_BIT_CONTROL
] = 1;
3944 if ((not && multibyte
)
3945 /* Any character set can possibly contain a character
3946 which doesn't match the specified set of characters. */
3947 || (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3948 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3949 /* If we can match a character class, we can match
3950 any character set. */
3952 set_fastmap_for_multibyte_characters
:
3953 if (match_any_multibyte_characters
== false)
3955 for (j
= 0x80; j
< 0xA0; j
++) /* XXX */
3956 if (BASE_LEADING_CODE_P (j
))
3958 match_any_multibyte_characters
= true;
3962 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3963 && match_any_multibyte_characters
== false)
3965 /* Set fastmap[I] 1 where I is a base leading code of each
3966 multibyte character in the range table. */
3969 /* Make P points the range table. `+ 2' is to skip flag
3970 bits for a character class. */
3971 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3973 /* Extract the number of ranges in range table into COUNT. */
3974 EXTRACT_NUMBER_AND_INCR (count
, p
);
3975 for (; count
> 0; count
--, p
+= 2 * 3) /* XXX */
3977 /* Extract the start of each range. */
3978 EXTRACT_CHARACTER (c
, p
);
3979 j
= CHAR_CHARSET (c
);
3980 fastmap
[CHARSET_LEADING_CODE_BASE (j
)] = 1;
3987 if (!fastmap
) break;
3989 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
3991 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3992 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
3996 /* This match depends on text properties. These end with
3997 aborting optimizations. */
4001 case notcategoryspec
:
4002 if (!fastmap
) break;
4003 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
4005 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4006 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
4010 /* Any character set can possibly contain a character
4011 whose category is K (or not). */
4012 goto set_fastmap_for_multibyte_characters
;
4015 /* All cases after this match the empty string. These end with
4037 EXTRACT_NUMBER_AND_INCR (j
, p
);
4039 /* Backward jumps can only go back to code that we've already
4040 visited. `re_compile' should make sure this is true. */
4043 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4045 case on_failure_jump
:
4046 case on_failure_keep_string_jump
:
4047 case on_failure_jump_loop
:
4048 case on_failure_jump_nastyloop
:
4049 case on_failure_jump_smart
:
4055 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4056 to jump back to "just after here". */
4059 case on_failure_jump
:
4060 case on_failure_keep_string_jump
:
4061 case on_failure_jump_nastyloop
:
4062 case on_failure_jump_loop
:
4063 case on_failure_jump_smart
:
4064 EXTRACT_NUMBER_AND_INCR (j
, p
);
4066 ; /* Backward jump to be ignored. */
4068 { /* We have to look down both arms.
4069 We first go down the "straight" path so as to minimize
4070 stack usage when going through alternatives. */
4071 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
4079 /* This code simply does not properly handle forward jump_n. */
4080 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
4082 /* jump_n can either jump or fall through. The (backward) jump
4083 case has already been handled, so we only need to look at the
4084 fallthrough case. */
4088 /* If N == 0, it should be an on_failure_jump_loop instead. */
4089 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
4091 /* We only care about one iteration of the loop, so we don't
4092 need to consider the case where this behaves like an
4109 abort (); /* We have listed all the cases. */
4112 /* Getting here means we have found the possible starting
4113 characters for one path of the pattern -- and that the empty
4114 string does not match. We need not follow this path further. */
4118 /* We reached the end without matching anything. */
4121 } /* analyse_first */
4123 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4124 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4125 characters can start a string that matches the pattern. This fastmap
4126 is used by re_search to skip quickly over impossible starting points.
4128 Character codes above (1 << BYTEWIDTH) are not represented in the
4129 fastmap, but the leading codes are represented. Thus, the fastmap
4130 indicates which character sets could start a match.
4132 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4133 area as BUFP->fastmap.
4135 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4138 Returns 0 if we succeed, -2 if an internal error. */
4141 re_compile_fastmap (bufp
)
4142 struct re_pattern_buffer
*bufp
;
4144 char *fastmap
= bufp
->fastmap
;
4147 assert (fastmap
&& bufp
->buffer
);
4149 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4150 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4152 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4153 fastmap
, RE_MULTIBYTE_P (bufp
));
4154 bufp
->can_be_null
= (analysis
!= 0);
4156 } /* re_compile_fastmap */
4158 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4159 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4160 this memory for recording register information. STARTS and ENDS
4161 must be allocated using the malloc library routine, and must each
4162 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4164 If NUM_REGS == 0, then subsequent matches should allocate their own
4167 Unless this function is called, the first search or match using
4168 PATTERN_BUFFER will allocate its own register data, without
4169 freeing the old data. */
4172 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4173 struct re_pattern_buffer
*bufp
;
4174 struct re_registers
*regs
;
4176 regoff_t
*starts
, *ends
;
4180 bufp
->regs_allocated
= REGS_REALLOCATE
;
4181 regs
->num_regs
= num_regs
;
4182 regs
->start
= starts
;
4187 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4189 regs
->start
= regs
->end
= (regoff_t
*) 0;
4192 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4194 /* Searching routines. */
4196 /* Like re_search_2, below, but only one string is specified, and
4197 doesn't let you say where to stop matching. */
4200 re_search (bufp
, string
, size
, startpos
, range
, regs
)
4201 struct re_pattern_buffer
*bufp
;
4203 int size
, startpos
, range
;
4204 struct re_registers
*regs
;
4206 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4209 WEAK_ALIAS (__re_search
, re_search
)
4211 /* Head address of virtual concatenation of string. */
4212 #define HEAD_ADDR_VSTRING(P) \
4213 (((P) >= size1 ? string2 : string1))
4215 /* End address of virtual concatenation of string. */
4216 #define STOP_ADDR_VSTRING(P) \
4217 (((P) >= size1 ? string2 + size2 : string1 + size1))
4219 /* Address of POS in the concatenation of virtual string. */
4220 #define POS_ADDR_VSTRING(POS) \
4221 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4223 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4224 virtual concatenation of STRING1 and STRING2, starting first at index
4225 STARTPOS, then at STARTPOS + 1, and so on.
4227 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4229 RANGE is how far to scan while trying to match. RANGE = 0 means try
4230 only at STARTPOS; in general, the last start tried is STARTPOS +
4233 In REGS, return the indices of the virtual concatenation of STRING1
4234 and STRING2 that matched the entire BUFP->buffer and its contained
4237 Do not consider matching one past the index STOP in the virtual
4238 concatenation of STRING1 and STRING2.
4240 We return either the position in the strings at which the match was
4241 found, -1 if no match, or -2 if error (such as failure
4245 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
4246 struct re_pattern_buffer
*bufp
;
4247 const char *str1
, *str2
;
4251 struct re_registers
*regs
;
4255 re_char
*string1
= (re_char
*) str1
;
4256 re_char
*string2
= (re_char
*) str2
;
4257 register char *fastmap
= bufp
->fastmap
;
4258 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4259 int total_size
= size1
+ size2
;
4260 int endpos
= startpos
+ range
;
4261 boolean anchored_start
;
4263 /* Nonzero if we have to concern multibyte character. */
4264 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4266 /* Check for out-of-range STARTPOS. */
4267 if (startpos
< 0 || startpos
> total_size
)
4270 /* Fix up RANGE if it might eventually take us outside
4271 the virtual concatenation of STRING1 and STRING2.
4272 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4274 range
= 0 - startpos
;
4275 else if (endpos
> total_size
)
4276 range
= total_size
- startpos
;
4278 /* If the search isn't to be a backwards one, don't waste time in a
4279 search for a pattern anchored at beginning of buffer. */
4280 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4289 /* In a forward search for something that starts with \=.
4290 don't keep searching past point. */
4291 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4293 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4299 /* Update the fastmap now if not correct already. */
4300 if (fastmap
&& !bufp
->fastmap_accurate
)
4301 re_compile_fastmap (bufp
);
4303 /* See whether the pattern is anchored. */
4304 anchored_start
= (bufp
->buffer
[0] == begline
);
4307 gl_state
.object
= re_match_object
;
4309 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4311 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4315 /* Loop through the string, looking for a place to start matching. */
4318 /* If the pattern is anchored,
4319 skip quickly past places we cannot match.
4320 We don't bother to treat startpos == 0 specially
4321 because that case doesn't repeat. */
4322 if (anchored_start
&& startpos
> 0)
4324 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4325 : string2
[startpos
- size1
- 1])
4330 /* If a fastmap is supplied, skip quickly over characters that
4331 cannot be the start of a match. If the pattern can match the
4332 null string, however, we don't need to skip characters; we want
4333 the first null string. */
4334 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4336 register re_char
*d
;
4337 register re_wchar_t buf_ch
;
4339 d
= POS_ADDR_VSTRING (startpos
);
4341 if (range
> 0) /* Searching forwards. */
4343 register int lim
= 0;
4346 if (startpos
< size1
&& startpos
+ range
>= size1
)
4347 lim
= range
- (size1
- startpos
);
4349 /* Written out as an if-else to avoid testing `translate'
4351 if (RE_TRANSLATE_P (translate
))
4358 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
4361 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4366 range
-= buf_charlen
;
4371 /* Convert *d to integer to shut up GCC's
4372 whining about comparison that is always
4377 && !fastmap
[RE_TRANSLATE (translate
, di
)])
4387 re_char
*d_start
= d
;
4388 while (range
> lim
&& !fastmap
[*d
])
4394 if (multibyte
&& range
> lim
)
4396 /* Check that we are at the beginning of a char. */
4398 AT_CHAR_BOUNDARY_P (at_boundary
, d
, d_start
);
4402 { /* We have matched an internal byte of a char
4403 rather than the leading byte, so it's a false
4404 positive: we should keep scanning. */
4413 startpos
+= irange
- range
;
4415 else /* Searching backwards. */
4417 int room
= (startpos
>= size1
4418 ? size2
+ size1
- startpos
4419 : size1
- startpos
);
4420 buf_ch
= RE_STRING_CHAR (d
, room
);
4421 buf_ch
= TRANSLATE (buf_ch
);
4423 if (! (buf_ch
>= 0400
4424 || fastmap
[buf_ch
]))
4429 /* If can't match the null string, and that's all we have left, fail. */
4430 if (range
>= 0 && startpos
== total_size
&& fastmap
4431 && !bufp
->can_be_null
)
4434 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4435 startpos
, regs
, stop
);
4436 #ifndef REGEX_MALLOC
4453 /* Update STARTPOS to the next character boundary. */
4456 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4457 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4458 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
4476 /* Update STARTPOS to the previous character boundary. */
4479 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4481 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4483 /* Find the head of multibyte form. */
4484 PREV_CHAR_BOUNDARY (p
, phead
);
4485 range
+= p0
- 1 - p
;
4489 startpos
-= p0
- 1 - p
;
4495 WEAK_ALIAS (__re_search_2
, re_search_2
)
4497 /* Declarations and macros for re_match_2. */
4499 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4501 RE_TRANSLATE_TYPE translate
,
4502 const int multibyte
));
4504 /* This converts PTR, a pointer into one of the search strings `string1'
4505 and `string2' into an offset from the beginning of that string. */
4506 #define POINTER_TO_OFFSET(ptr) \
4507 (FIRST_STRING_P (ptr) \
4508 ? ((regoff_t) ((ptr) - string1)) \
4509 : ((regoff_t) ((ptr) - string2 + size1)))
4511 /* Call before fetching a character with *d. This switches over to
4512 string2 if necessary.
4513 Check re_match_2_internal for a discussion of why end_match_2 might
4514 not be within string2 (but be equal to end_match_1 instead). */
4515 #define PREFETCH() \
4518 /* End of string2 => fail. */ \
4519 if (dend == end_match_2) \
4521 /* End of string1 => advance to string2. */ \
4523 dend = end_match_2; \
4526 /* Call before fetching a char with *d if you already checked other limits.
4527 This is meant for use in lookahead operations like wordend, etc..
4528 where we might need to look at parts of the string that might be
4529 outside of the LIMITs (i.e past `stop'). */
4530 #define PREFETCH_NOLIMIT() \
4534 dend = end_match_2; \
4537 /* Test if at very beginning or at very end of the virtual concatenation
4538 of `string1' and `string2'. If only one string, it's `string2'. */
4539 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4540 #define AT_STRINGS_END(d) ((d) == end2)
4543 /* Test if D points to a character which is word-constituent. We have
4544 two special cases to check for: if past the end of string1, look at
4545 the first character in string2; and if before the beginning of
4546 string2, look at the last character in string1. */
4547 #define WORDCHAR_P(d) \
4548 (SYNTAX ((d) == end1 ? *string2 \
4549 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4552 /* Disabled due to a compiler bug -- see comment at case wordbound */
4554 /* The comment at case wordbound is following one, but we don't use
4555 AT_WORD_BOUNDARY anymore to support multibyte form.
4557 The DEC Alpha C compiler 3.x generates incorrect code for the
4558 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4559 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4560 macro and introducing temporary variables works around the bug. */
4563 /* Test if the character before D and the one at D differ with respect
4564 to being word-constituent. */
4565 #define AT_WORD_BOUNDARY(d) \
4566 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4567 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4570 /* Free everything we malloc. */
4571 #ifdef MATCH_MAY_ALLOCATE
4572 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4573 # define FREE_VARIABLES() \
4575 REGEX_FREE_STACK (fail_stack.stack); \
4576 FREE_VAR (regstart); \
4577 FREE_VAR (regend); \
4578 FREE_VAR (best_regstart); \
4579 FREE_VAR (best_regend); \
4582 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4583 #endif /* not MATCH_MAY_ALLOCATE */
4586 /* Optimization routines. */
4588 /* If the operation is a match against one or more chars,
4589 return a pointer to the next operation, else return NULL. */
4594 switch (SWITCH_ENUM_CAST (*p
++))
4605 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4608 p
= CHARSET_RANGE_TABLE (p
- 1);
4609 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4610 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4613 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4620 case notcategoryspec
:
4632 /* Jump over non-matching operations. */
4634 skip_noops (p
, pend
)
4640 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4649 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4660 /* Non-zero if "p1 matches something" implies "p2 fails". */
4662 mutually_exclusive_p (bufp
, p1
, p2
)
4663 struct re_pattern_buffer
*bufp
;
4667 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4668 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4670 assert (p1
>= bufp
->buffer
&& p1
< pend
4671 && p2
>= bufp
->buffer
&& p2
<= pend
);
4673 /* Skip over open/close-group commands.
4674 If what follows this loop is a ...+ construct,
4675 look at what begins its body, since we will have to
4676 match at least one of that. */
4677 p2
= skip_noops (p2
, pend
);
4678 /* The same skip can be done for p1, except that this function
4679 is only used in the case where p1 is a simple match operator. */
4680 /* p1 = skip_noops (p1, pend); */
4682 assert (p1
>= bufp
->buffer
&& p1
< pend
4683 && p2
>= bufp
->buffer
&& p2
<= pend
);
4685 op2
= p2
== pend
? succeed
: *p2
;
4687 switch (SWITCH_ENUM_CAST (op2
))
4691 /* If we're at the end of the pattern, we can change. */
4692 if (skip_one_char (p1
))
4694 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4702 register re_wchar_t c
4703 = (re_opcode_t
) *p2
== endline
? '\n'
4704 : RE_STRING_CHAR (p2
+ 2, pend
- p2
- 2);
4706 if ((re_opcode_t
) *p1
== exactn
)
4708 if (c
!= RE_STRING_CHAR (p1
+ 2, pend
- p1
- 2))
4710 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4715 else if ((re_opcode_t
) *p1
== charset
4716 || (re_opcode_t
) *p1
== charset_not
)
4718 int not = (re_opcode_t
) *p1
== charset_not
;
4720 /* Test if C is listed in charset (or charset_not)
4722 if (SINGLE_BYTE_CHAR_P (c
))
4724 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4725 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4728 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4729 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4731 /* `not' is equal to 1 if c would match, which means
4732 that we can't change to pop_failure_jump. */
4735 DEBUG_PRINT1 (" No match => fast loop.\n");
4739 else if ((re_opcode_t
) *p1
== anychar
4742 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4750 if ((re_opcode_t
) *p1
== exactn
)
4751 /* Reuse the code above. */
4752 return mutually_exclusive_p (bufp
, p2
, p1
);
4754 /* It is hard to list up all the character in charset
4755 P2 if it includes multibyte character. Give up in
4757 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4759 /* Now, we are sure that P2 has no range table.
4760 So, for the size of bitmap in P2, `p2[1]' is
4761 enough. But P1 may have range table, so the
4762 size of bitmap table of P1 is extracted by
4763 using macro `CHARSET_BITMAP_SIZE'.
4765 Since we know that all the character listed in
4766 P2 is ASCII, it is enough to test only bitmap
4769 if ((re_opcode_t
) *p1
== charset
)
4772 /* We win if the charset inside the loop
4773 has no overlap with the one after the loop. */
4776 && idx
< CHARSET_BITMAP_SIZE (p1
));
4778 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4782 || idx
== CHARSET_BITMAP_SIZE (p1
))
4784 DEBUG_PRINT1 (" No match => fast loop.\n");
4788 else if ((re_opcode_t
) *p1
== charset_not
)
4791 /* We win if the charset_not inside the loop lists
4792 every character listed in the charset after. */
4793 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4794 if (! (p2
[2 + idx
] == 0
4795 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4796 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4801 DEBUG_PRINT1 (" No match => fast loop.\n");
4810 switch (SWITCH_ENUM_CAST (*p1
))
4814 /* Reuse the code above. */
4815 return mutually_exclusive_p (bufp
, p2
, p1
);
4817 /* When we have two charset_not, it's very unlikely that
4818 they don't overlap. The union of the two sets of excluded
4819 chars should cover all possible chars, which, as a matter of
4820 fact, is virtually impossible in multibyte buffers. */
4826 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
4828 return ((re_opcode_t
) *p1
== syntaxspec
4829 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4831 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
4834 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
4836 return ((re_opcode_t
) *p1
== notsyntaxspec
4837 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4839 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
4842 return (((re_opcode_t
) *p1
== notsyntaxspec
4843 || (re_opcode_t
) *p1
== syntaxspec
)
4848 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4849 case notcategoryspec
:
4850 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4862 /* Matching routines. */
4864 #ifndef emacs /* Emacs never uses this. */
4865 /* re_match is like re_match_2 except it takes only a single string. */
4868 re_match (bufp
, string
, size
, pos
, regs
)
4869 struct re_pattern_buffer
*bufp
;
4872 struct re_registers
*regs
;
4874 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
4876 # if defined C_ALLOCA && !defined REGEX_MALLOC
4881 WEAK_ALIAS (__re_match
, re_match
)
4882 #endif /* not emacs */
4885 /* In Emacs, this is the string or buffer in which we
4886 are matching. It is used for looking up syntax properties. */
4887 Lisp_Object re_match_object
;
4890 /* re_match_2 matches the compiled pattern in BUFP against the
4891 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4892 and SIZE2, respectively). We start matching at POS, and stop
4895 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4896 store offsets for the substring each group matched in REGS. See the
4897 documentation for exactly how many groups we fill.
4899 We return -1 if no match, -2 if an internal error (such as the
4900 failure stack overflowing). Otherwise, we return the length of the
4901 matched substring. */
4904 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4905 struct re_pattern_buffer
*bufp
;
4906 const char *string1
, *string2
;
4909 struct re_registers
*regs
;
4916 gl_state
.object
= re_match_object
;
4917 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4918 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4921 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4922 (re_char
*) string2
, size2
,
4924 #if defined C_ALLOCA && !defined REGEX_MALLOC
4929 WEAK_ALIAS (__re_match_2
, re_match_2
)
4931 /* This is a separate function so that we can force an alloca cleanup
4934 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4935 struct re_pattern_buffer
*bufp
;
4936 re_char
*string1
, *string2
;
4939 struct re_registers
*regs
;
4942 /* General temporaries. */
4947 /* Just past the end of the corresponding string. */
4948 re_char
*end1
, *end2
;
4950 /* Pointers into string1 and string2, just past the last characters in
4951 each to consider matching. */
4952 re_char
*end_match_1
, *end_match_2
;
4954 /* Where we are in the data, and the end of the current string. */
4957 /* Used sometimes to remember where we were before starting matching
4958 an operator so that we can go back in case of failure. This "atomic"
4959 behavior of matching opcodes is indispensable to the correctness
4960 of the on_failure_keep_string_jump optimization. */
4963 /* Where we are in the pattern, and the end of the pattern. */
4964 re_char
*p
= bufp
->buffer
;
4965 re_char
*pend
= p
+ bufp
->used
;
4967 /* We use this to map every character in the string. */
4968 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4970 /* Nonzero if we have to concern multibyte character. */
4971 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4973 /* Failure point stack. Each place that can handle a failure further
4974 down the line pushes a failure point on this stack. It consists of
4975 regstart, and regend for all registers corresponding to
4976 the subexpressions we're currently inside, plus the number of such
4977 registers, and, finally, two char *'s. The first char * is where
4978 to resume scanning the pattern; the second one is where to resume
4979 scanning the strings. */
4980 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4981 fail_stack_type fail_stack
;
4984 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4987 #if defined REL_ALLOC && defined REGEX_MALLOC
4988 /* This holds the pointer to the failure stack, when
4989 it is allocated relocatably. */
4990 fail_stack_elt_t
*failure_stack_ptr
;
4993 /* We fill all the registers internally, independent of what we
4994 return, for use in backreferences. The number here includes
4995 an element for register zero. */
4996 size_t num_regs
= bufp
->re_nsub
+ 1;
4998 /* Information on the contents of registers. These are pointers into
4999 the input strings; they record just what was matched (on this
5000 attempt) by a subexpression part of the pattern, that is, the
5001 regnum-th regstart pointer points to where in the pattern we began
5002 matching and the regnum-th regend points to right after where we
5003 stopped matching the regnum-th subexpression. (The zeroth register
5004 keeps track of what the whole pattern matches.) */
5005 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5006 re_char
**regstart
, **regend
;
5009 /* The following record the register info as found in the above
5010 variables when we find a match better than any we've seen before.
5011 This happens as we backtrack through the failure points, which in
5012 turn happens only if we have not yet matched the entire string. */
5013 unsigned best_regs_set
= false;
5014 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5015 re_char
**best_regstart
, **best_regend
;
5018 /* Logically, this is `best_regend[0]'. But we don't want to have to
5019 allocate space for that if we're not allocating space for anything
5020 else (see below). Also, we never need info about register 0 for
5021 any of the other register vectors, and it seems rather a kludge to
5022 treat `best_regend' differently than the rest. So we keep track of
5023 the end of the best match so far in a separate variable. We
5024 initialize this to NULL so that when we backtrack the first time
5025 and need to test it, it's not garbage. */
5026 re_char
*match_end
= NULL
;
5029 /* Counts the total number of registers pushed. */
5030 unsigned num_regs_pushed
= 0;
5033 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5037 #ifdef MATCH_MAY_ALLOCATE
5038 /* Do not bother to initialize all the register variables if there are
5039 no groups in the pattern, as it takes a fair amount of time. If
5040 there are groups, we include space for register 0 (the whole
5041 pattern), even though we never use it, since it simplifies the
5042 array indexing. We should fix this. */
5045 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5046 regend
= REGEX_TALLOC (num_regs
, re_char
*);
5047 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5048 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
5050 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
5058 /* We must initialize all our variables to NULL, so that
5059 `FREE_VARIABLES' doesn't try to free them. */
5060 regstart
= regend
= best_regstart
= best_regend
= NULL
;
5062 #endif /* MATCH_MAY_ALLOCATE */
5064 /* The starting position is bogus. */
5065 if (pos
< 0 || pos
> size1
+ size2
)
5071 /* Initialize subexpression text positions to -1 to mark ones that no
5072 start_memory/stop_memory has been seen for. Also initialize the
5073 register information struct. */
5074 for (reg
= 1; reg
< num_regs
; reg
++)
5075 regstart
[reg
] = regend
[reg
] = NULL
;
5077 /* We move `string1' into `string2' if the latter's empty -- but not if
5078 `string1' is null. */
5079 if (size2
== 0 && string1
!= NULL
)
5086 end1
= string1
+ size1
;
5087 end2
= string2
+ size2
;
5089 /* `p' scans through the pattern as `d' scans through the data.
5090 `dend' is the end of the input string that `d' points within. `d'
5091 is advanced into the following input string whenever necessary, but
5092 this happens before fetching; therefore, at the beginning of the
5093 loop, `d' can be pointing at the end of a string, but it cannot
5097 /* Only match within string2. */
5098 d
= string2
+ pos
- size1
;
5099 dend
= end_match_2
= string2
+ stop
- size1
;
5100 end_match_1
= end1
; /* Just to give it a value. */
5106 /* Only match within string1. */
5107 end_match_1
= string1
+ stop
;
5109 When we reach end_match_1, PREFETCH normally switches to string2.
5110 But in the present case, this means that just doing a PREFETCH
5111 makes us jump from `stop' to `gap' within the string.
5112 What we really want here is for the search to stop as
5113 soon as we hit end_match_1. That's why we set end_match_2
5114 to end_match_1 (since PREFETCH fails as soon as we hit
5116 end_match_2
= end_match_1
;
5119 { /* It's important to use this code when stop == size so that
5120 moving `d' from end1 to string2 will not prevent the d == dend
5121 check from catching the end of string. */
5123 end_match_2
= string2
+ stop
- size1
;
5129 DEBUG_PRINT1 ("The compiled pattern is: ");
5130 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5131 DEBUG_PRINT1 ("The string to match is: `");
5132 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5133 DEBUG_PRINT1 ("'\n");
5135 /* This loops over pattern commands. It exits by returning from the
5136 function if the match is complete, or it drops through if the match
5137 fails at this starting point in the input data. */
5140 DEBUG_PRINT2 ("\n%p: ", p
);
5143 { /* End of pattern means we might have succeeded. */
5144 DEBUG_PRINT1 ("end of pattern ... ");
5146 /* If we haven't matched the entire string, and we want the
5147 longest match, try backtracking. */
5148 if (d
!= end_match_2
)
5150 /* 1 if this match ends in the same string (string1 or string2)
5151 as the best previous match. */
5152 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5153 == FIRST_STRING_P (d
));
5154 /* 1 if this match is the best seen so far. */
5155 boolean best_match_p
;
5157 /* AIX compiler got confused when this was combined
5158 with the previous declaration. */
5160 best_match_p
= d
> match_end
;
5162 best_match_p
= !FIRST_STRING_P (d
);
5164 DEBUG_PRINT1 ("backtracking.\n");
5166 if (!FAIL_STACK_EMPTY ())
5167 { /* More failure points to try. */
5169 /* If exceeds best match so far, save it. */
5170 if (!best_regs_set
|| best_match_p
)
5172 best_regs_set
= true;
5175 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5177 for (reg
= 1; reg
< num_regs
; reg
++)
5179 best_regstart
[reg
] = regstart
[reg
];
5180 best_regend
[reg
] = regend
[reg
];
5186 /* If no failure points, don't restore garbage. And if
5187 last match is real best match, don't restore second
5189 else if (best_regs_set
&& !best_match_p
)
5192 /* Restore best match. It may happen that `dend ==
5193 end_match_1' while the restored d is in string2.
5194 For example, the pattern `x.*y.*z' against the
5195 strings `x-' and `y-z-', if the two strings are
5196 not consecutive in memory. */
5197 DEBUG_PRINT1 ("Restoring best registers.\n");
5200 dend
= ((d
>= string1
&& d
<= end1
)
5201 ? end_match_1
: end_match_2
);
5203 for (reg
= 1; reg
< num_regs
; reg
++)
5205 regstart
[reg
] = best_regstart
[reg
];
5206 regend
[reg
] = best_regend
[reg
];
5209 } /* d != end_match_2 */
5212 DEBUG_PRINT1 ("Accepting match.\n");
5214 /* If caller wants register contents data back, do it. */
5215 if (regs
&& !bufp
->no_sub
)
5217 /* Have the register data arrays been allocated? */
5218 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5219 { /* No. So allocate them with malloc. We need one
5220 extra element beyond `num_regs' for the `-1' marker
5222 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5223 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5224 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5225 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5230 bufp
->regs_allocated
= REGS_REALLOCATE
;
5232 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5233 { /* Yes. If we need more elements than were already
5234 allocated, reallocate them. If we need fewer, just
5236 if (regs
->num_regs
< num_regs
+ 1)
5238 regs
->num_regs
= num_regs
+ 1;
5239 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5240 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5241 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5250 /* These braces fend off a "empty body in an else-statement"
5251 warning under GCC when assert expands to nothing. */
5252 assert (bufp
->regs_allocated
== REGS_FIXED
);
5255 /* Convert the pointer data in `regstart' and `regend' to
5256 indices. Register zero has to be set differently,
5257 since we haven't kept track of any info for it. */
5258 if (regs
->num_regs
> 0)
5260 regs
->start
[0] = pos
;
5261 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5264 /* Go through the first `min (num_regs, regs->num_regs)'
5265 registers, since that is all we initialized. */
5266 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5268 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5269 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5273 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
5275 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
5279 /* If the regs structure we return has more elements than
5280 were in the pattern, set the extra elements to -1. If
5281 we (re)allocated the registers, this is the case,
5282 because we always allocate enough to have at least one
5284 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5285 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5286 } /* regs && !bufp->no_sub */
5288 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5289 nfailure_points_pushed
, nfailure_points_popped
,
5290 nfailure_points_pushed
- nfailure_points_popped
);
5291 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5293 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
5295 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5301 /* Otherwise match next pattern command. */
5302 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
5304 /* Ignore these. Used to ignore the n of succeed_n's which
5305 currently have n == 0. */
5307 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5311 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5314 /* Match the next n pattern characters exactly. The following
5315 byte in the pattern defines n, and the n bytes after that
5316 are the characters to match. */
5319 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5321 /* Remember the start point to rollback upon failure. */
5324 /* This is written out as an if-else so we don't waste time
5325 testing `translate' inside the loop. */
5326 if (RE_TRANSLATE_P (translate
))
5331 int pat_charlen
, buf_charlen
;
5332 unsigned int pat_ch
, buf_ch
;
5335 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
5336 buf_ch
= STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5338 if (RE_TRANSLATE (translate
, buf_ch
)
5347 mcnt
-= pat_charlen
;
5353 /* Avoid compiler whining about comparison being
5359 if (RE_TRANSLATE (translate
, di
) != *p
++)
5384 /* Match any character except possibly a newline or a null. */
5390 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5393 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5394 buf_ch
= TRANSLATE (buf_ch
);
5396 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5398 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5399 && buf_ch
== '\000'))
5402 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5411 register unsigned int c
;
5412 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5415 /* Start of actual range_table, or end of bitmap if there is no
5417 re_char
*range_table
;
5419 /* Nonzero if there is a range table. */
5420 int range_table_exists
;
5422 /* Number of ranges of range table. This is not included
5423 in the initial byte-length of the command. */
5426 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5428 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5430 if (range_table_exists
)
5432 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5433 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5437 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5438 c
= TRANSLATE (c
); /* The character to match. */
5440 if (SINGLE_BYTE_CHAR_P (c
))
5441 { /* Lookup bitmap. */
5442 /* Cast to `unsigned' instead of `unsigned char' in
5443 case the bit list is a full 32 bytes long. */
5444 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5445 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5449 else if (range_table_exists
)
5451 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5453 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5454 | (class_bits
& BIT_MULTIBYTE
)
5455 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5456 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5457 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5458 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5461 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5465 if (range_table_exists
)
5466 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5468 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5470 if (!not) goto fail
;
5477 /* The beginning of a group is represented by start_memory.
5478 The argument is the register number. The text
5479 matched within the group is recorded (in the internal
5480 registers data structure) under the register number. */
5482 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5484 /* In case we need to undo this operation (via backtracking). */
5485 PUSH_FAILURE_REG ((unsigned int)*p
);
5488 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5489 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5491 /* Move past the register number and inner group count. */
5496 /* The stop_memory opcode represents the end of a group. Its
5497 argument is the same as start_memory's: the register number. */
5499 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5501 assert (!REG_UNSET (regstart
[*p
]));
5502 /* Strictly speaking, there should be code such as:
5504 assert (REG_UNSET (regend[*p]));
5505 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5507 But the only info to be pushed is regend[*p] and it is known to
5508 be UNSET, so there really isn't anything to push.
5509 Not pushing anything, on the other hand deprives us from the
5510 guarantee that regend[*p] is UNSET since undoing this operation
5511 will not reset its value properly. This is not important since
5512 the value will only be read on the next start_memory or at
5513 the very end and both events can only happen if this stop_memory
5517 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5519 /* Move past the register number and the inner group count. */
5524 /* \<digit> has been turned into a `duplicate' command which is
5525 followed by the numeric value of <digit> as the register number. */
5528 register re_char
*d2
, *dend2
;
5529 int regno
= *p
++; /* Get which register to match against. */
5530 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5532 /* Can't back reference a group which we've never matched. */
5533 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5536 /* Where in input to try to start matching. */
5537 d2
= regstart
[regno
];
5539 /* Remember the start point to rollback upon failure. */
5542 /* Where to stop matching; if both the place to start and
5543 the place to stop matching are in the same string, then
5544 set to the place to stop, otherwise, for now have to use
5545 the end of the first string. */
5547 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5548 == FIRST_STRING_P (regend
[regno
]))
5549 ? regend
[regno
] : end_match_1
);
5552 /* If necessary, advance to next segment in register
5556 if (dend2
== end_match_2
) break;
5557 if (dend2
== regend
[regno
]) break;
5559 /* End of string1 => advance to string2. */
5561 dend2
= regend
[regno
];
5563 /* At end of register contents => success */
5564 if (d2
== dend2
) break;
5566 /* If necessary, advance to next segment in data. */
5569 /* How many characters left in this segment to match. */
5572 /* Want how many consecutive characters we can match in
5573 one shot, so, if necessary, adjust the count. */
5574 if (mcnt
> dend2
- d2
)
5577 /* Compare that many; failure if mismatch, else move
5579 if (RE_TRANSLATE_P (translate
)
5580 ? bcmp_translate (d
, d2
, mcnt
, translate
, multibyte
)
5581 : memcmp (d
, d2
, mcnt
))
5586 d
+= mcnt
, d2
+= mcnt
;
5592 /* begline matches the empty string at the beginning of the string
5593 (unless `not_bol' is set in `bufp'), and after newlines. */
5595 DEBUG_PRINT1 ("EXECUTING begline.\n");
5597 if (AT_STRINGS_BEG (d
))
5599 if (!bufp
->not_bol
) break;
5604 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5608 /* In all other cases, we fail. */
5612 /* endline is the dual of begline. */
5614 DEBUG_PRINT1 ("EXECUTING endline.\n");
5616 if (AT_STRINGS_END (d
))
5618 if (!bufp
->not_eol
) break;
5622 PREFETCH_NOLIMIT ();
5629 /* Match at the very beginning of the data. */
5631 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5632 if (AT_STRINGS_BEG (d
))
5637 /* Match at the very end of the data. */
5639 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5640 if (AT_STRINGS_END (d
))
5645 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5646 pushes NULL as the value for the string on the stack. Then
5647 `POP_FAILURE_POINT' will keep the current value for the
5648 string, instead of restoring it. To see why, consider
5649 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5650 then the . fails against the \n. But the next thing we want
5651 to do is match the \n against the \n; if we restored the
5652 string value, we would be back at the foo.
5654 Because this is used only in specific cases, we don't need to
5655 check all the things that `on_failure_jump' does, to make
5656 sure the right things get saved on the stack. Hence we don't
5657 share its code. The only reason to push anything on the
5658 stack at all is that otherwise we would have to change
5659 `anychar's code to do something besides goto fail in this
5660 case; that seems worse than this. */
5661 case on_failure_keep_string_jump
:
5662 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5663 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5666 PUSH_FAILURE_POINT (p
- 3, NULL
);
5669 /* A nasty loop is introduced by the non-greedy *? and +?.
5670 With such loops, the stack only ever contains one failure point
5671 at a time, so that a plain on_failure_jump_loop kind of
5672 cycle detection cannot work. Worse yet, such a detection
5673 can not only fail to detect a cycle, but it can also wrongly
5674 detect a cycle (between different instantiations of the same
5676 So the method used for those nasty loops is a little different:
5677 We use a special cycle-detection-stack-frame which is pushed
5678 when the on_failure_jump_nastyloop failure-point is *popped*.
5679 This special frame thus marks the beginning of one iteration
5680 through the loop and we can hence easily check right here
5681 whether something matched between the beginning and the end of
5683 case on_failure_jump_nastyloop
:
5684 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5685 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5688 assert ((re_opcode_t
)p
[-4] == no_op
);
5691 CHECK_INFINITE_LOOP (p
- 4, d
);
5693 /* If there's a cycle, just continue without pushing
5694 this failure point. The failure point is the "try again"
5695 option, which shouldn't be tried.
5696 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5697 PUSH_FAILURE_POINT (p
- 3, d
);
5701 /* Simple loop detecting on_failure_jump: just check on the
5702 failure stack if the same spot was already hit earlier. */
5703 case on_failure_jump_loop
:
5705 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5706 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5710 CHECK_INFINITE_LOOP (p
- 3, d
);
5712 /* If there's a cycle, get out of the loop, as if the matching
5713 had failed. We used to just `goto fail' here, but that was
5714 aborting the search a bit too early: we want to keep the
5715 empty-loop-match and keep matching after the loop.
5716 We want (x?)*y\1z to match both xxyz and xxyxz. */
5719 PUSH_FAILURE_POINT (p
- 3, d
);
5724 /* Uses of on_failure_jump:
5726 Each alternative starts with an on_failure_jump that points
5727 to the beginning of the next alternative. Each alternative
5728 except the last ends with a jump that in effect jumps past
5729 the rest of the alternatives. (They really jump to the
5730 ending jump of the following alternative, because tensioning
5731 these jumps is a hassle.)
5733 Repeats start with an on_failure_jump that points past both
5734 the repetition text and either the following jump or
5735 pop_failure_jump back to this on_failure_jump. */
5736 case on_failure_jump
:
5737 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5738 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5741 PUSH_FAILURE_POINT (p
-3, d
);
5744 /* This operation is used for greedy *.
5745 Compare the beginning of the repeat with what in the
5746 pattern follows its end. If we can establish that there
5747 is nothing that they would both match, i.e., that we
5748 would have to backtrack because of (as in, e.g., `a*a')
5749 then we can use a non-backtracking loop based on
5750 on_failure_keep_string_jump instead of on_failure_jump. */
5751 case on_failure_jump_smart
:
5752 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5753 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5756 re_char
*p1
= p
; /* Next operation. */
5757 /* Here, we discard `const', making re_match non-reentrant. */
5758 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5759 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5761 p
-= 3; /* Reset so that we will re-execute the
5762 instruction once it's been changed. */
5764 EXTRACT_NUMBER (mcnt
, p2
- 2);
5766 /* Ensure this is a indeed the trivial kind of loop
5767 we are expecting. */
5768 assert (skip_one_char (p1
) == p2
- 3);
5769 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5770 DEBUG_STATEMENT (debug
+= 2);
5771 if (mutually_exclusive_p (bufp
, p1
, p2
))
5773 /* Use a fast `on_failure_keep_string_jump' loop. */
5774 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5775 *p3
= (unsigned char) on_failure_keep_string_jump
;
5776 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5780 /* Default to a safe `on_failure_jump' loop. */
5781 DEBUG_PRINT1 (" smart default => slow loop.\n");
5782 *p3
= (unsigned char) on_failure_jump
;
5784 DEBUG_STATEMENT (debug
-= 2);
5788 /* Unconditionally jump (without popping any failure points). */
5791 IMMEDIATE_QUIT_CHECK
;
5792 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5793 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5794 p
+= mcnt
; /* Do the jump. */
5795 DEBUG_PRINT2 ("(to %p).\n", p
);
5799 /* Have to succeed matching what follows at least n times.
5800 After that, handle like `on_failure_jump'. */
5802 /* Signedness doesn't matter since we only compare MCNT to 0. */
5803 EXTRACT_NUMBER (mcnt
, p
+ 2);
5804 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5806 /* Originally, mcnt is how many times we HAVE to succeed. */
5809 /* Here, we discard `const', making re_match non-reentrant. */
5810 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5813 PUSH_NUMBER (p2
, mcnt
);
5816 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5821 /* Signedness doesn't matter since we only compare MCNT to 0. */
5822 EXTRACT_NUMBER (mcnt
, p
+ 2);
5823 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5825 /* Originally, this is how many times we CAN jump. */
5828 /* Here, we discard `const', making re_match non-reentrant. */
5829 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5831 PUSH_NUMBER (p2
, mcnt
);
5832 goto unconditional_jump
;
5834 /* If don't have to jump any more, skip over the rest of command. */
5841 unsigned char *p2
; /* Location of the counter. */
5842 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5844 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5845 /* Here, we discard `const', making re_match non-reentrant. */
5846 p2
= (unsigned char*) p
+ mcnt
;
5847 /* Signedness doesn't matter since we only copy MCNT's bits . */
5848 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5849 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
5850 PUSH_NUMBER (p2
, mcnt
);
5856 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5857 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5859 /* We SUCCEED (or FAIL) in one of the following cases: */
5861 /* Case 1: D is at the beginning or the end of string. */
5862 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5866 /* C1 is the character before D, S1 is the syntax of C1, C2
5867 is the character at D, and S2 is the syntax of C2. */
5871 int offset
= PTR_TO_OFFSET (d
- 1);
5872 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5873 UPDATE_SYNTAX_TABLE (charpos
);
5875 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5878 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5880 PREFETCH_NOLIMIT ();
5881 c2
= RE_STRING_CHAR (d
, dend
- d
);
5884 if (/* Case 2: Only one of S1 and S2 is Sword. */
5885 ((s1
== Sword
) != (s2
== Sword
))
5886 /* Case 3: Both of S1 and S2 are Sword, and macro
5887 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5888 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5897 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5899 /* We FAIL in one of the following cases: */
5901 /* Case 1: D is at the end of string. */
5902 if (AT_STRINGS_END (d
))
5906 /* C1 is the character before D, S1 is the syntax of C1, C2
5907 is the character at D, and S2 is the syntax of C2. */
5911 int offset
= PTR_TO_OFFSET (d
);
5912 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5913 UPDATE_SYNTAX_TABLE (charpos
);
5916 c2
= RE_STRING_CHAR (d
, dend
- d
);
5919 /* Case 2: S2 is not Sword. */
5923 /* Case 3: D is not at the beginning of string ... */
5924 if (!AT_STRINGS_BEG (d
))
5926 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5928 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5932 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5934 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5941 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5943 /* We FAIL in one of the following cases: */
5945 /* Case 1: D is at the beginning of string. */
5946 if (AT_STRINGS_BEG (d
))
5950 /* C1 is the character before D, S1 is the syntax of C1, C2
5951 is the character at D, and S2 is the syntax of C2. */
5955 int offset
= PTR_TO_OFFSET (d
) - 1;
5956 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5957 UPDATE_SYNTAX_TABLE (charpos
);
5959 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5962 /* Case 2: S1 is not Sword. */
5966 /* Case 3: D is not at the end of string ... */
5967 if (!AT_STRINGS_END (d
))
5969 PREFETCH_NOLIMIT ();
5970 c2
= RE_STRING_CHAR (d
, dend
- d
);
5972 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5976 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5978 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5985 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5987 /* We FAIL in one of the following cases: */
5989 /* Case 1: D is at the end of string. */
5990 if (AT_STRINGS_END (d
))
5994 /* C1 is the character before D, S1 is the syntax of C1, C2
5995 is the character at D, and S2 is the syntax of C2. */
5999 int offset
= PTR_TO_OFFSET (d
);
6000 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6001 UPDATE_SYNTAX_TABLE (charpos
);
6004 c2
= RE_STRING_CHAR (d
, dend
- d
);
6007 /* Case 2: S2 is neither Sword nor Ssymbol. */
6008 if (s2
!= Sword
&& s2
!= Ssymbol
)
6011 /* Case 3: D is not at the beginning of string ... */
6012 if (!AT_STRINGS_BEG (d
))
6014 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6016 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6020 /* ... and S1 is Sword or Ssymbol. */
6021 if (s1
== Sword
|| s1
== Ssymbol
)
6028 DEBUG_PRINT1 ("EXECUTING symend.\n");
6030 /* We FAIL in one of the following cases: */
6032 /* Case 1: D is at the beginning of string. */
6033 if (AT_STRINGS_BEG (d
))
6037 /* C1 is the character before D, S1 is the syntax of C1, C2
6038 is the character at D, and S2 is the syntax of C2. */
6042 int offset
= PTR_TO_OFFSET (d
) - 1;
6043 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6044 UPDATE_SYNTAX_TABLE (charpos
);
6046 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6049 /* Case 2: S1 is neither Ssymbol nor Sword. */
6050 if (s1
!= Sword
&& s1
!= Ssymbol
)
6053 /* Case 3: D is not at the end of string ... */
6054 if (!AT_STRINGS_END (d
))
6056 PREFETCH_NOLIMIT ();
6057 c2
= RE_STRING_CHAR (d
, dend
- d
);
6059 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6063 /* ... and S2 is Sword or Ssymbol. */
6064 if (s2
== Sword
|| s2
== Ssymbol
)
6072 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
6074 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
6078 int offset
= PTR_TO_OFFSET (d
);
6079 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6080 UPDATE_SYNTAX_TABLE (pos1
);
6087 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
6089 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
6097 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6098 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
6103 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6104 if (PTR_BYTE_POS (d
) != PT_BYTE
)
6109 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6110 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
6115 case notcategoryspec
:
6116 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
6118 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
6124 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
6126 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
6137 continue; /* Successfully executed one pattern command; keep going. */
6140 /* We goto here if a matching operation fails. */
6142 IMMEDIATE_QUIT_CHECK
;
6143 if (!FAIL_STACK_EMPTY ())
6146 /* A restart point is known. Restore to that state. */
6147 DEBUG_PRINT1 ("\nFAIL:\n");
6148 POP_FAILURE_POINT (str
, pat
);
6149 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
6151 case on_failure_keep_string_jump
:
6152 assert (str
== NULL
);
6153 goto continue_failure_jump
;
6155 case on_failure_jump_nastyloop
:
6156 assert ((re_opcode_t
)pat
[-2] == no_op
);
6157 PUSH_FAILURE_POINT (pat
- 2, str
);
6160 case on_failure_jump_loop
:
6161 case on_failure_jump
:
6164 continue_failure_jump
:
6165 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6170 /* A special frame used for nastyloops. */
6177 assert (p
>= bufp
->buffer
&& p
<= pend
);
6179 if (d
>= string1
&& d
<= end1
)
6183 break; /* Matching at this starting point really fails. */
6187 goto restore_best_regs
;
6191 return -1; /* Failure to match. */
6194 /* Subroutine definitions for re_match_2. */
6196 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6197 bytes; nonzero otherwise. */
6200 bcmp_translate (s1
, s2
, len
, translate
, multibyte
)
6203 RE_TRANSLATE_TYPE translate
;
6204 const int multibyte
;
6206 register re_char
*p1
= s1
, *p2
= s2
;
6207 re_char
*p1_end
= s1
+ len
;
6208 re_char
*p2_end
= s2
+ len
;
6210 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6211 different lengths, but relying on a single `len' would break this. -sm */
6212 while (p1
< p1_end
&& p2
< p2_end
)
6214 int p1_charlen
, p2_charlen
;
6215 re_wchar_t p1_ch
, p2_ch
;
6217 p1_ch
= RE_STRING_CHAR_AND_LENGTH (p1
, p1_end
- p1
, p1_charlen
);
6218 p2_ch
= RE_STRING_CHAR_AND_LENGTH (p2
, p2_end
- p2
, p2_charlen
);
6220 if (RE_TRANSLATE (translate
, p1_ch
)
6221 != RE_TRANSLATE (translate
, p2_ch
))
6224 p1
+= p1_charlen
, p2
+= p2_charlen
;
6227 if (p1
!= p1_end
|| p2
!= p2_end
)
6233 /* Entry points for GNU code. */
6235 /* re_compile_pattern is the GNU regular expression compiler: it
6236 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6237 Returns 0 if the pattern was valid, otherwise an error string.
6239 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6240 are set in BUFP on entry.
6242 We call regex_compile to do the actual compilation. */
6245 re_compile_pattern (pattern
, length
, bufp
)
6246 const char *pattern
;
6248 struct re_pattern_buffer
*bufp
;
6253 gl_state
.current_syntax_table
= current_buffer
->syntax_table
;
6256 /* GNU code is written to assume at least RE_NREGS registers will be set
6257 (and at least one extra will be -1). */
6258 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6260 /* And GNU code determines whether or not to get register information
6261 by passing null for the REGS argument to re_match, etc., not by
6265 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6269 return gettext (re_error_msgid
[(int) ret
]);
6271 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6273 /* Entry points compatible with 4.2 BSD regex library. We don't define
6274 them unless specifically requested. */
6276 #if defined _REGEX_RE_COMP || defined _LIBC
6278 /* BSD has one and only one pattern buffer. */
6279 static struct re_pattern_buffer re_comp_buf
;
6283 /* Make these definitions weak in libc, so POSIX programs can redefine
6284 these names if they don't use our functions, and still use
6285 regcomp/regexec below without link errors. */
6295 if (!re_comp_buf
.buffer
)
6296 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6297 return (char *) gettext ("No previous regular expression");
6301 if (!re_comp_buf
.buffer
)
6303 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
6304 if (re_comp_buf
.buffer
== NULL
)
6305 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6306 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6307 re_comp_buf
.allocated
= 200;
6309 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6310 if (re_comp_buf
.fastmap
== NULL
)
6311 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6312 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6315 /* Since `re_exec' always passes NULL for the `regs' argument, we
6316 don't need to initialize the pattern buffer fields which affect it. */
6318 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6323 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6324 return (char *) gettext (re_error_msgid
[(int) ret
]);
6335 const int len
= strlen (s
);
6337 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
6339 #endif /* _REGEX_RE_COMP */
6341 /* POSIX.2 functions. Don't define these for Emacs. */
6345 /* regcomp takes a regular expression as a string and compiles it.
6347 PREG is a regex_t *. We do not expect any fields to be initialized,
6348 since POSIX says we shouldn't. Thus, we set
6350 `buffer' to the compiled pattern;
6351 `used' to the length of the compiled pattern;
6352 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6353 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6354 RE_SYNTAX_POSIX_BASIC;
6355 `fastmap' to an allocated space for the fastmap;
6356 `fastmap_accurate' to zero;
6357 `re_nsub' to the number of subexpressions in PATTERN.
6359 PATTERN is the address of the pattern string.
6361 CFLAGS is a series of bits which affect compilation.
6363 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6364 use POSIX basic syntax.
6366 If REG_NEWLINE is set, then . and [^...] don't match newline.
6367 Also, regexec will try a match beginning after every newline.
6369 If REG_ICASE is set, then we considers upper- and lowercase
6370 versions of letters to be equivalent when matching.
6372 If REG_NOSUB is set, then when PREG is passed to regexec, that
6373 routine will report only success or failure, and nothing about the
6376 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6377 the return codes and their meanings.) */
6380 regcomp (preg
, pattern
, cflags
)
6381 regex_t
*__restrict preg
;
6382 const char *__restrict pattern
;
6387 = (cflags
& REG_EXTENDED
) ?
6388 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6390 /* regex_compile will allocate the space for the compiled pattern. */
6392 preg
->allocated
= 0;
6395 /* Try to allocate space for the fastmap. */
6396 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6398 if (cflags
& REG_ICASE
)
6403 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
6404 * sizeof (*(RE_TRANSLATE_TYPE
)0));
6405 if (preg
->translate
== NULL
)
6406 return (int) REG_ESPACE
;
6408 /* Map uppercase characters to corresponding lowercase ones. */
6409 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6410 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6413 preg
->translate
= NULL
;
6415 /* If REG_NEWLINE is set, newlines are treated differently. */
6416 if (cflags
& REG_NEWLINE
)
6417 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6418 syntax
&= ~RE_DOT_NEWLINE
;
6419 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6422 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6424 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6426 /* POSIX says a null character in the pattern terminates it, so we
6427 can use strlen here in compiling the pattern. */
6428 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6430 /* POSIX doesn't distinguish between an unmatched open-group and an
6431 unmatched close-group: both are REG_EPAREN. */
6432 if (ret
== REG_ERPAREN
)
6435 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6436 { /* Compute the fastmap now, since regexec cannot modify the pattern
6438 re_compile_fastmap (preg
);
6439 if (preg
->can_be_null
)
6440 { /* The fastmap can't be used anyway. */
6441 free (preg
->fastmap
);
6442 preg
->fastmap
= NULL
;
6447 WEAK_ALIAS (__regcomp
, regcomp
)
6450 /* regexec searches for a given pattern, specified by PREG, in the
6453 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6454 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6455 least NMATCH elements, and we set them to the offsets of the
6456 corresponding matched substrings.
6458 EFLAGS specifies `execution flags' which affect matching: if
6459 REG_NOTBOL is set, then ^ does not match at the beginning of the
6460 string; if REG_NOTEOL is set, then $ does not match at the end.
6462 We return 0 if we find a match and REG_NOMATCH if not. */
6465 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
6466 const regex_t
*__restrict preg
;
6467 const char *__restrict string
;
6469 regmatch_t pmatch
[__restrict_arr
];
6473 struct re_registers regs
;
6474 regex_t private_preg
;
6475 int len
= strlen (string
);
6476 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6478 private_preg
= *preg
;
6480 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6481 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6483 /* The user has told us exactly how many registers to return
6484 information about, via `nmatch'. We have to pass that on to the
6485 matching routines. */
6486 private_preg
.regs_allocated
= REGS_FIXED
;
6490 regs
.num_regs
= nmatch
;
6491 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6492 if (regs
.start
== NULL
)
6493 return (int) REG_NOMATCH
;
6494 regs
.end
= regs
.start
+ nmatch
;
6497 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6498 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6499 was a little bit longer but still only matching the real part.
6500 This works because the `endline' will check for a '\n' and will find a
6501 '\0', correctly deciding that this is not the end of a line.
6502 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6503 a convenient '\0' there. For all we know, the string could be preceded
6504 by '\n' which would throw things off. */
6506 /* Perform the searching operation. */
6507 ret
= re_search (&private_preg
, string
, len
,
6508 /* start: */ 0, /* range: */ len
,
6509 want_reg_info
? ®s
: (struct re_registers
*) 0);
6511 /* Copy the register information to the POSIX structure. */
6518 for (r
= 0; r
< nmatch
; r
++)
6520 pmatch
[r
].rm_so
= regs
.start
[r
];
6521 pmatch
[r
].rm_eo
= regs
.end
[r
];
6525 /* If we needed the temporary register info, free the space now. */
6529 /* We want zero return to mean success, unlike `re_search'. */
6530 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
6532 WEAK_ALIAS (__regexec
, regexec
)
6535 /* Returns a message corresponding to an error code, ERR_CODE, returned
6536 from either regcomp or regexec. We don't use PREG here.
6538 ERR_CODE was previously called ERRCODE, but that name causes an
6539 error with msvc8 compiler. */
6542 regerror (err_code
, preg
, errbuf
, errbuf_size
)
6544 const regex_t
*preg
;
6552 || err_code
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6553 /* Only error codes returned by the rest of the code should be passed
6554 to this routine. If we are given anything else, or if other regex
6555 code generates an invalid error code, then the program has a bug.
6556 Dump core so we can fix it. */
6559 msg
= gettext (re_error_msgid
[err_code
]);
6561 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6563 if (errbuf_size
!= 0)
6565 if (msg_size
> errbuf_size
)
6567 strncpy (errbuf
, msg
, errbuf_size
- 1);
6568 errbuf
[errbuf_size
- 1] = 0;
6571 strcpy (errbuf
, msg
);
6576 WEAK_ALIAS (__regerror
, regerror
)
6579 /* Free dynamically allocated space used by PREG. */
6585 if (preg
->buffer
!= NULL
)
6586 free (preg
->buffer
);
6587 preg
->buffer
= NULL
;
6589 preg
->allocated
= 0;
6592 if (preg
->fastmap
!= NULL
)
6593 free (preg
->fastmap
);
6594 preg
->fastmap
= NULL
;
6595 preg
->fastmap_accurate
= 0;
6597 if (preg
->translate
!= NULL
)
6598 free (preg
->translate
);
6599 preg
->translate
= NULL
;
6601 WEAK_ALIAS (__regfree
, regfree
)
6603 #endif /* not emacs */
6605 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6606 (do not change this comment) */