Speed up bidi redisplay with selective-display.
[emacs.git] / src / search.c
bloba56df784cd2347df0852c3d989dc1c2f77ff8365
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985-1987, 1993-1994, 1997-1999, 2001-2011
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <setjmp.h>
23 #include "lisp.h"
24 #include "syntax.h"
25 #include "category.h"
26 #include "buffer.h"
27 #include "character.h"
28 #include "charset.h"
29 #include "region-cache.h"
30 #include "commands.h"
31 #include "blockinput.h"
32 #include "intervals.h"
34 #include <sys/types.h>
35 #include "regex.h"
37 #define REGEXP_CACHE_SIZE 20
39 /* If the regexp is non-nil, then the buffer contains the compiled form
40 of that regexp, suitable for searching. */
41 struct regexp_cache
43 struct regexp_cache *next;
44 Lisp_Object regexp, whitespace_regexp;
45 /* Syntax table for which the regexp applies. We need this because
46 of character classes. If this is t, then the compiled pattern is valid
47 for any syntax-table. */
48 Lisp_Object syntax_table;
49 struct re_pattern_buffer buf;
50 char fastmap[0400];
51 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
52 char posix;
55 /* The instances of that struct. */
56 static struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
58 /* The head of the linked list; points to the most recently used buffer. */
59 static struct regexp_cache *searchbuf_head;
62 /* Every call to re_match, etc., must pass &search_regs as the regs
63 argument unless you can show it is unnecessary (i.e., if re_match
64 is certainly going to be called again before region-around-match
65 can be called).
67 Since the registers are now dynamically allocated, we need to make
68 sure not to refer to the Nth register before checking that it has
69 been allocated by checking search_regs.num_regs.
71 The regex code keeps track of whether it has allocated the search
72 buffer using bits in the re_pattern_buffer. This means that whenever
73 you compile a new pattern, it completely forgets whether it has
74 allocated any registers, and will allocate new registers the next
75 time you call a searching or matching function. Therefore, we need
76 to call re_set_registers after compiling a new pattern or after
77 setting the match registers, so that the regex functions will be
78 able to free or re-allocate it properly. */
79 static struct re_registers search_regs;
81 /* The buffer in which the last search was performed, or
82 Qt if the last search was done in a string;
83 Qnil if no searching has been done yet. */
84 static Lisp_Object last_thing_searched;
86 /* error condition signaled when regexp compile_pattern fails */
88 static Lisp_Object Qinvalid_regexp;
90 /* Error condition used for failing searches */
91 static Lisp_Object Qsearch_failed;
93 static void set_search_regs (EMACS_INT, EMACS_INT);
94 static void save_search_regs (void);
95 static EMACS_INT simple_search (EMACS_INT, unsigned char *, EMACS_INT,
96 EMACS_INT, Lisp_Object, EMACS_INT, EMACS_INT,
97 EMACS_INT, EMACS_INT);
98 static EMACS_INT boyer_moore (EMACS_INT, unsigned char *, EMACS_INT,
99 Lisp_Object, Lisp_Object, EMACS_INT,
100 EMACS_INT, int);
101 static EMACS_INT search_buffer (Lisp_Object, EMACS_INT, EMACS_INT,
102 EMACS_INT, EMACS_INT, EMACS_INT, int,
103 Lisp_Object, Lisp_Object, int);
104 static void matcher_overflow (void) NO_RETURN;
106 static void
107 matcher_overflow (void)
109 error ("Stack overflow in regexp matcher");
112 /* Compile a regexp and signal a Lisp error if anything goes wrong.
113 PATTERN is the pattern to compile.
114 CP is the place to put the result.
115 TRANSLATE is a translation table for ignoring case, or nil for none.
116 POSIX is nonzero if we want full backtracking (POSIX style)
117 for this pattern. 0 means backtrack only enough to get a valid match.
119 The behavior also depends on Vsearch_spaces_regexp. */
121 static void
122 compile_pattern_1 (struct regexp_cache *cp, Lisp_Object pattern, Lisp_Object translate, int posix)
124 char *val;
125 reg_syntax_t old;
127 cp->regexp = Qnil;
128 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
129 cp->posix = posix;
130 cp->buf.multibyte = STRING_MULTIBYTE (pattern);
131 cp->buf.charset_unibyte = charset_unibyte;
132 if (STRINGP (Vsearch_spaces_regexp))
133 cp->whitespace_regexp = Vsearch_spaces_regexp;
134 else
135 cp->whitespace_regexp = Qnil;
137 /* rms: I think BLOCK_INPUT is not needed here any more,
138 because regex.c defines malloc to call xmalloc.
139 Using BLOCK_INPUT here means the debugger won't run if an error occurs.
140 So let's turn it off. */
141 /* BLOCK_INPUT; */
142 old = re_set_syntax (RE_SYNTAX_EMACS
143 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
145 if (STRINGP (Vsearch_spaces_regexp))
146 re_set_whitespace_regexp (SSDATA (Vsearch_spaces_regexp));
147 else
148 re_set_whitespace_regexp (NULL);
150 val = (char *) re_compile_pattern (SSDATA (pattern),
151 SBYTES (pattern), &cp->buf);
153 /* If the compiled pattern hard codes some of the contents of the
154 syntax-table, it can only be reused with *this* syntax table. */
155 cp->syntax_table = cp->buf.used_syntax ? BVAR (current_buffer, syntax_table) : Qt;
157 re_set_whitespace_regexp (NULL);
159 re_set_syntax (old);
160 /* UNBLOCK_INPUT; */
161 if (val)
162 xsignal1 (Qinvalid_regexp, build_string (val));
164 cp->regexp = Fcopy_sequence (pattern);
167 /* Shrink each compiled regexp buffer in the cache
168 to the size actually used right now.
169 This is called from garbage collection. */
171 void
172 shrink_regexp_cache (void)
174 struct regexp_cache *cp;
176 for (cp = searchbuf_head; cp != 0; cp = cp->next)
178 cp->buf.allocated = cp->buf.used;
179 cp->buf.buffer
180 = (unsigned char *) xrealloc (cp->buf.buffer, cp->buf.used);
184 /* Clear the regexp cache w.r.t. a particular syntax table,
185 because it was changed.
186 There is no danger of memory leak here because re_compile_pattern
187 automagically manages the memory in each re_pattern_buffer struct,
188 based on its `allocated' and `buffer' values. */
189 void
190 clear_regexp_cache (void)
192 int i;
194 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
195 /* It's tempting to compare with the syntax-table we've actually changed,
196 but it's not sufficient because char-table inheritance means that
197 modifying one syntax-table can change others at the same time. */
198 if (!EQ (searchbufs[i].syntax_table, Qt))
199 searchbufs[i].regexp = Qnil;
202 /* Compile a regexp if necessary, but first check to see if there's one in
203 the cache.
204 PATTERN is the pattern to compile.
205 TRANSLATE is a translation table for ignoring case, or nil for none.
206 REGP is the structure that says where to store the "register"
207 values that will result from matching this pattern.
208 If it is 0, we should compile the pattern not to record any
209 subexpression bounds.
210 POSIX is nonzero if we want full backtracking (POSIX style)
211 for this pattern. 0 means backtrack only enough to get a valid match. */
213 struct re_pattern_buffer *
214 compile_pattern (Lisp_Object pattern, struct re_registers *regp, Lisp_Object translate, int posix, int multibyte)
216 struct regexp_cache *cp, **cpp;
218 for (cpp = &searchbuf_head; ; cpp = &cp->next)
220 cp = *cpp;
221 /* Entries are initialized to nil, and may be set to nil by
222 compile_pattern_1 if the pattern isn't valid. Don't apply
223 string accessors in those cases. However, compile_pattern_1
224 is only applied to the cache entry we pick here to reuse. So
225 nil should never appear before a non-nil entry. */
226 if (NILP (cp->regexp))
227 goto compile_it;
228 if (SCHARS (cp->regexp) == SCHARS (pattern)
229 && STRING_MULTIBYTE (cp->regexp) == STRING_MULTIBYTE (pattern)
230 && !NILP (Fstring_equal (cp->regexp, pattern))
231 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
232 && cp->posix == posix
233 && (EQ (cp->syntax_table, Qt)
234 || EQ (cp->syntax_table, BVAR (current_buffer, syntax_table)))
235 && !NILP (Fequal (cp->whitespace_regexp, Vsearch_spaces_regexp))
236 && cp->buf.charset_unibyte == charset_unibyte)
237 break;
239 /* If we're at the end of the cache, compile into the nil cell
240 we found, or the last (least recently used) cell with a
241 string value. */
242 if (cp->next == 0)
244 compile_it:
245 compile_pattern_1 (cp, pattern, translate, posix);
246 break;
250 /* When we get here, cp (aka *cpp) contains the compiled pattern,
251 either because we found it in the cache or because we just compiled it.
252 Move it to the front of the queue to mark it as most recently used. */
253 *cpp = cp->next;
254 cp->next = searchbuf_head;
255 searchbuf_head = cp;
257 /* Advise the searching functions about the space we have allocated
258 for register data. */
259 if (regp)
260 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
262 /* The compiled pattern can be used both for multibyte and unibyte
263 target. But, we have to tell which the pattern is used for. */
264 cp->buf.target_multibyte = multibyte;
266 return &cp->buf;
270 static Lisp_Object
271 looking_at_1 (Lisp_Object string, int posix)
273 Lisp_Object val;
274 unsigned char *p1, *p2;
275 EMACS_INT s1, s2;
276 register EMACS_INT i;
277 struct re_pattern_buffer *bufp;
279 if (running_asynch_code)
280 save_search_regs ();
282 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
283 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
284 = BVAR (current_buffer, case_eqv_table);
286 CHECK_STRING (string);
287 bufp = compile_pattern (string,
288 (NILP (Vinhibit_changing_match_data)
289 ? &search_regs : NULL),
290 (!NILP (BVAR (current_buffer, case_fold_search))
291 ? BVAR (current_buffer, case_canon_table) : Qnil),
292 posix,
293 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
295 immediate_quit = 1;
296 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
298 /* Get pointers and sizes of the two strings
299 that make up the visible portion of the buffer. */
301 p1 = BEGV_ADDR;
302 s1 = GPT_BYTE - BEGV_BYTE;
303 p2 = GAP_END_ADDR;
304 s2 = ZV_BYTE - GPT_BYTE;
305 if (s1 < 0)
307 p2 = p1;
308 s2 = ZV_BYTE - BEGV_BYTE;
309 s1 = 0;
311 if (s2 < 0)
313 s1 = ZV_BYTE - BEGV_BYTE;
314 s2 = 0;
317 re_match_object = Qnil;
319 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
320 PT_BYTE - BEGV_BYTE,
321 (NILP (Vinhibit_changing_match_data)
322 ? &search_regs : NULL),
323 ZV_BYTE - BEGV_BYTE);
324 immediate_quit = 0;
326 if (i == -2)
327 matcher_overflow ();
329 val = (0 <= i ? Qt : Qnil);
330 if (NILP (Vinhibit_changing_match_data) && i >= 0)
331 for (i = 0; i < search_regs.num_regs; i++)
332 if (search_regs.start[i] >= 0)
334 search_regs.start[i]
335 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
336 search_regs.end[i]
337 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
340 /* Set last_thing_searched only when match data is changed. */
341 if (NILP (Vinhibit_changing_match_data))
342 XSETBUFFER (last_thing_searched, current_buffer);
344 return val;
347 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
348 doc: /* Return t if text after point matches regular expression REGEXP.
349 This function modifies the match data that `match-beginning',
350 `match-end' and `match-data' access; save and restore the match
351 data if you want to preserve them. */)
352 (Lisp_Object regexp)
354 return looking_at_1 (regexp, 0);
357 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
358 doc: /* Return t if text after point matches regular expression REGEXP.
359 Find the longest match, in accord with Posix regular expression rules.
360 This function modifies the match data that `match-beginning',
361 `match-end' and `match-data' access; save and restore the match
362 data if you want to preserve them. */)
363 (Lisp_Object regexp)
365 return looking_at_1 (regexp, 1);
368 static Lisp_Object
369 string_match_1 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start, int posix)
371 EMACS_INT val;
372 struct re_pattern_buffer *bufp;
373 EMACS_INT pos, pos_byte;
374 int i;
376 if (running_asynch_code)
377 save_search_regs ();
379 CHECK_STRING (regexp);
380 CHECK_STRING (string);
382 if (NILP (start))
383 pos = 0, pos_byte = 0;
384 else
386 EMACS_INT len = SCHARS (string);
388 CHECK_NUMBER (start);
389 pos = XINT (start);
390 if (pos < 0 && -pos <= len)
391 pos = len + pos;
392 else if (0 > pos || pos > len)
393 args_out_of_range (string, start);
394 pos_byte = string_char_to_byte (string, pos);
397 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
398 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
399 = BVAR (current_buffer, case_eqv_table);
401 bufp = compile_pattern (regexp,
402 (NILP (Vinhibit_changing_match_data)
403 ? &search_regs : NULL),
404 (!NILP (BVAR (current_buffer, case_fold_search))
405 ? BVAR (current_buffer, case_canon_table) : Qnil),
406 posix,
407 STRING_MULTIBYTE (string));
408 immediate_quit = 1;
409 re_match_object = string;
411 val = re_search (bufp, SSDATA (string),
412 SBYTES (string), pos_byte,
413 SBYTES (string) - pos_byte,
414 (NILP (Vinhibit_changing_match_data)
415 ? &search_regs : NULL));
416 immediate_quit = 0;
418 /* Set last_thing_searched only when match data is changed. */
419 if (NILP (Vinhibit_changing_match_data))
420 last_thing_searched = Qt;
422 if (val == -2)
423 matcher_overflow ();
424 if (val < 0) return Qnil;
426 if (NILP (Vinhibit_changing_match_data))
427 for (i = 0; i < search_regs.num_regs; i++)
428 if (search_regs.start[i] >= 0)
430 search_regs.start[i]
431 = string_byte_to_char (string, search_regs.start[i]);
432 search_regs.end[i]
433 = string_byte_to_char (string, search_regs.end[i]);
436 return make_number (string_byte_to_char (string, val));
439 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
440 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
441 Matching ignores case if `case-fold-search' is non-nil.
442 If third arg START is non-nil, start search at that index in STRING.
443 For index of first char beyond the match, do (match-end 0).
444 `match-end' and `match-beginning' also give indices of substrings
445 matched by parenthesis constructs in the pattern.
447 You can use the function `match-string' to extract the substrings
448 matched by the parenthesis constructions in REGEXP. */)
449 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
451 return string_match_1 (regexp, string, start, 0);
454 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
455 doc: /* Return index of start of first match for REGEXP in STRING, or nil.
456 Find the longest match, in accord with Posix regular expression rules.
457 Case is ignored if `case-fold-search' is non-nil in the current buffer.
458 If third arg START is non-nil, start search at that index in STRING.
459 For index of first char beyond the match, do (match-end 0).
460 `match-end' and `match-beginning' also give indices of substrings
461 matched by parenthesis constructs in the pattern. */)
462 (Lisp_Object regexp, Lisp_Object string, Lisp_Object start)
464 return string_match_1 (regexp, string, start, 1);
467 /* Match REGEXP against STRING, searching all of STRING,
468 and return the index of the match, or negative on failure.
469 This does not clobber the match data. */
471 EMACS_INT
472 fast_string_match (Lisp_Object regexp, Lisp_Object string)
474 EMACS_INT val;
475 struct re_pattern_buffer *bufp;
477 bufp = compile_pattern (regexp, 0, Qnil,
478 0, STRING_MULTIBYTE (string));
479 immediate_quit = 1;
480 re_match_object = string;
482 val = re_search (bufp, SSDATA (string),
483 SBYTES (string), 0,
484 SBYTES (string), 0);
485 immediate_quit = 0;
486 return val;
489 /* Match REGEXP against STRING, searching all of STRING ignoring case,
490 and return the index of the match, or negative on failure.
491 This does not clobber the match data.
492 We assume that STRING contains single-byte characters. */
494 EMACS_INT
495 fast_c_string_match_ignore_case (Lisp_Object regexp, const char *string)
497 EMACS_INT val;
498 struct re_pattern_buffer *bufp;
499 size_t len = strlen (string);
501 regexp = string_make_unibyte (regexp);
502 re_match_object = Qt;
503 bufp = compile_pattern (regexp, 0,
504 Vascii_canon_table, 0,
506 immediate_quit = 1;
507 val = re_search (bufp, string, len, 0, len, 0);
508 immediate_quit = 0;
509 return val;
512 /* Like fast_string_match but ignore case. */
514 EMACS_INT
515 fast_string_match_ignore_case (Lisp_Object regexp, Lisp_Object string)
517 EMACS_INT val;
518 struct re_pattern_buffer *bufp;
520 bufp = compile_pattern (regexp, 0, Vascii_canon_table,
521 0, STRING_MULTIBYTE (string));
522 immediate_quit = 1;
523 re_match_object = string;
525 val = re_search (bufp, SSDATA (string),
526 SBYTES (string), 0,
527 SBYTES (string), 0);
528 immediate_quit = 0;
529 return val;
532 /* Match REGEXP against the characters after POS to LIMIT, and return
533 the number of matched characters. If STRING is non-nil, match
534 against the characters in it. In that case, POS and LIMIT are
535 indices into the string. This function doesn't modify the match
536 data. */
538 EMACS_INT
539 fast_looking_at (Lisp_Object regexp, EMACS_INT pos, EMACS_INT pos_byte, EMACS_INT limit, EMACS_INT limit_byte, Lisp_Object string)
541 int multibyte;
542 struct re_pattern_buffer *buf;
543 unsigned char *p1, *p2;
544 EMACS_INT s1, s2;
545 EMACS_INT len;
547 if (STRINGP (string))
549 if (pos_byte < 0)
550 pos_byte = string_char_to_byte (string, pos);
551 if (limit_byte < 0)
552 limit_byte = string_char_to_byte (string, limit);
553 p1 = NULL;
554 s1 = 0;
555 p2 = SDATA (string);
556 s2 = SBYTES (string);
557 re_match_object = string;
558 multibyte = STRING_MULTIBYTE (string);
560 else
562 if (pos_byte < 0)
563 pos_byte = CHAR_TO_BYTE (pos);
564 if (limit_byte < 0)
565 limit_byte = CHAR_TO_BYTE (limit);
566 pos_byte -= BEGV_BYTE;
567 limit_byte -= BEGV_BYTE;
568 p1 = BEGV_ADDR;
569 s1 = GPT_BYTE - BEGV_BYTE;
570 p2 = GAP_END_ADDR;
571 s2 = ZV_BYTE - GPT_BYTE;
572 if (s1 < 0)
574 p2 = p1;
575 s2 = ZV_BYTE - BEGV_BYTE;
576 s1 = 0;
578 if (s2 < 0)
580 s1 = ZV_BYTE - BEGV_BYTE;
581 s2 = 0;
583 re_match_object = Qnil;
584 multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
587 buf = compile_pattern (regexp, 0, Qnil, 0, multibyte);
588 immediate_quit = 1;
589 len = re_match_2 (buf, (char *) p1, s1, (char *) p2, s2,
590 pos_byte, NULL, limit_byte);
591 immediate_quit = 0;
593 return len;
597 /* The newline cache: remembering which sections of text have no newlines. */
599 /* If the user has requested newline caching, make sure it's on.
600 Otherwise, make sure it's off.
601 This is our cheezy way of associating an action with the change of
602 state of a buffer-local variable. */
603 static void
604 newline_cache_on_off (struct buffer *buf)
606 if (NILP (BVAR (buf, cache_long_line_scans)))
608 /* It should be off. */
609 if (buf->newline_cache)
611 free_region_cache (buf->newline_cache);
612 buf->newline_cache = 0;
615 else
617 /* It should be on. */
618 if (buf->newline_cache == 0)
619 buf->newline_cache = new_region_cache ();
624 /* Search for COUNT instances of the character TARGET between START and END.
626 If COUNT is positive, search forwards; END must be >= START.
627 If COUNT is negative, search backwards for the -COUNTth instance;
628 END must be <= START.
629 If COUNT is zero, do anything you please; run rogue, for all I care.
631 If END is zero, use BEGV or ZV instead, as appropriate for the
632 direction indicated by COUNT.
634 If we find COUNT instances, set *SHORTAGE to zero, and return the
635 position past the COUNTth match. Note that for reverse motion
636 this is not the same as the usual convention for Emacs motion commands.
638 If we don't find COUNT instances before reaching END, set *SHORTAGE
639 to the number of TARGETs left unfound, and return END.
641 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
642 except when inside redisplay. */
644 EMACS_INT
645 scan_buffer (register int target, EMACS_INT start, EMACS_INT end,
646 EMACS_INT count, EMACS_INT *shortage, int allow_quit)
648 struct region_cache *newline_cache;
649 int direction;
651 if (count > 0)
653 direction = 1;
654 if (! end) end = ZV;
656 else
658 direction = -1;
659 if (! end) end = BEGV;
662 newline_cache_on_off (current_buffer);
663 newline_cache = current_buffer->newline_cache;
665 if (shortage != 0)
666 *shortage = 0;
668 immediate_quit = allow_quit;
670 if (count > 0)
671 while (start != end)
673 /* Our innermost scanning loop is very simple; it doesn't know
674 about gaps, buffer ends, or the newline cache. ceiling is
675 the position of the last character before the next such
676 obstacle --- the last character the dumb search loop should
677 examine. */
678 EMACS_INT ceiling_byte = CHAR_TO_BYTE (end) - 1;
679 EMACS_INT start_byte = CHAR_TO_BYTE (start);
680 EMACS_INT tem;
682 /* If we're looking for a newline, consult the newline cache
683 to see where we can avoid some scanning. */
684 if (target == '\n' && newline_cache)
686 EMACS_INT next_change;
687 immediate_quit = 0;
688 while (region_cache_forward
689 (current_buffer, newline_cache, start_byte, &next_change))
690 start_byte = next_change;
691 immediate_quit = allow_quit;
693 /* START should never be after END. */
694 if (start_byte > ceiling_byte)
695 start_byte = ceiling_byte;
697 /* Now the text after start is an unknown region, and
698 next_change is the position of the next known region. */
699 ceiling_byte = min (next_change - 1, ceiling_byte);
702 /* The dumb loop can only scan text stored in contiguous
703 bytes. BUFFER_CEILING_OF returns the last character
704 position that is contiguous, so the ceiling is the
705 position after that. */
706 tem = BUFFER_CEILING_OF (start_byte);
707 ceiling_byte = min (tem, ceiling_byte);
710 /* The termination address of the dumb loop. */
711 register unsigned char *ceiling_addr
712 = BYTE_POS_ADDR (ceiling_byte) + 1;
713 register unsigned char *cursor
714 = BYTE_POS_ADDR (start_byte);
715 unsigned char *base = cursor;
717 while (cursor < ceiling_addr)
719 unsigned char *scan_start = cursor;
721 /* The dumb loop. */
722 while (*cursor != target && ++cursor < ceiling_addr)
725 /* If we're looking for newlines, cache the fact that
726 the region from start to cursor is free of them. */
727 if (target == '\n' && newline_cache)
728 know_region_cache (current_buffer, newline_cache,
729 start_byte + scan_start - base,
730 start_byte + cursor - base);
732 /* Did we find the target character? */
733 if (cursor < ceiling_addr)
735 if (--count == 0)
737 immediate_quit = 0;
738 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
740 cursor++;
744 start = BYTE_TO_CHAR (start_byte + cursor - base);
747 else
748 while (start > end)
750 /* The last character to check before the next obstacle. */
751 EMACS_INT ceiling_byte = CHAR_TO_BYTE (end);
752 EMACS_INT start_byte = CHAR_TO_BYTE (start);
753 EMACS_INT tem;
755 /* Consult the newline cache, if appropriate. */
756 if (target == '\n' && newline_cache)
758 EMACS_INT next_change;
759 immediate_quit = 0;
760 while (region_cache_backward
761 (current_buffer, newline_cache, start_byte, &next_change))
762 start_byte = next_change;
763 immediate_quit = allow_quit;
765 /* Start should never be at or before end. */
766 if (start_byte <= ceiling_byte)
767 start_byte = ceiling_byte + 1;
769 /* Now the text before start is an unknown region, and
770 next_change is the position of the next known region. */
771 ceiling_byte = max (next_change, ceiling_byte);
774 /* Stop scanning before the gap. */
775 tem = BUFFER_FLOOR_OF (start_byte - 1);
776 ceiling_byte = max (tem, ceiling_byte);
779 /* The termination address of the dumb loop. */
780 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
781 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
782 unsigned char *base = cursor;
784 while (cursor >= ceiling_addr)
786 unsigned char *scan_start = cursor;
788 while (*cursor != target && --cursor >= ceiling_addr)
791 /* If we're looking for newlines, cache the fact that
792 the region from after the cursor to start is free of them. */
793 if (target == '\n' && newline_cache)
794 know_region_cache (current_buffer, newline_cache,
795 start_byte + cursor - base,
796 start_byte + scan_start - base);
798 /* Did we find the target character? */
799 if (cursor >= ceiling_addr)
801 if (++count >= 0)
803 immediate_quit = 0;
804 return BYTE_TO_CHAR (start_byte + cursor - base);
806 cursor--;
810 start = BYTE_TO_CHAR (start_byte + cursor - base);
814 immediate_quit = 0;
815 if (shortage != 0)
816 *shortage = count * direction;
817 return start;
820 /* Search for COUNT instances of a line boundary, which means either a
821 newline or (if selective display enabled) a carriage return.
822 Start at START. If COUNT is negative, search backwards.
824 We report the resulting position by calling TEMP_SET_PT_BOTH.
826 If we find COUNT instances. we position after (always after,
827 even if scanning backwards) the COUNTth match, and return 0.
829 If we don't find COUNT instances before reaching the end of the
830 buffer (or the beginning, if scanning backwards), we return
831 the number of line boundaries left unfound, and position at
832 the limit we bumped up against.
834 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
835 except in special cases. */
837 EMACS_INT
838 scan_newline (EMACS_INT start, EMACS_INT start_byte,
839 EMACS_INT limit, EMACS_INT limit_byte,
840 register EMACS_INT count, int allow_quit)
842 int direction = ((count > 0) ? 1 : -1);
844 register unsigned char *cursor;
845 unsigned char *base;
847 EMACS_INT ceiling;
848 register unsigned char *ceiling_addr;
850 int old_immediate_quit = immediate_quit;
852 /* The code that follows is like scan_buffer
853 but checks for either newline or carriage return. */
855 if (allow_quit)
856 immediate_quit++;
858 start_byte = CHAR_TO_BYTE (start);
860 if (count > 0)
862 while (start_byte < limit_byte)
864 ceiling = BUFFER_CEILING_OF (start_byte);
865 ceiling = min (limit_byte - 1, ceiling);
866 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
867 base = (cursor = BYTE_POS_ADDR (start_byte));
868 while (1)
870 while (*cursor != '\n' && ++cursor != ceiling_addr)
873 if (cursor != ceiling_addr)
875 if (--count == 0)
877 immediate_quit = old_immediate_quit;
878 start_byte = start_byte + cursor - base + 1;
879 start = BYTE_TO_CHAR (start_byte);
880 TEMP_SET_PT_BOTH (start, start_byte);
881 return 0;
883 else
884 if (++cursor == ceiling_addr)
885 break;
887 else
888 break;
890 start_byte += cursor - base;
893 else
895 while (start_byte > limit_byte)
897 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
898 ceiling = max (limit_byte, ceiling);
899 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
900 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
901 while (1)
903 while (--cursor != ceiling_addr && *cursor != '\n')
906 if (cursor != ceiling_addr)
908 if (++count == 0)
910 immediate_quit = old_immediate_quit;
911 /* Return the position AFTER the match we found. */
912 start_byte = start_byte + cursor - base + 1;
913 start = BYTE_TO_CHAR (start_byte);
914 TEMP_SET_PT_BOTH (start, start_byte);
915 return 0;
918 else
919 break;
921 /* Here we add 1 to compensate for the last decrement
922 of CURSOR, which took it past the valid range. */
923 start_byte += cursor - base + 1;
927 TEMP_SET_PT_BOTH (limit, limit_byte);
928 immediate_quit = old_immediate_quit;
930 return count * direction;
933 EMACS_INT
934 find_next_newline_no_quit (EMACS_INT from, EMACS_INT cnt)
936 return scan_buffer ('\n', from, 0, cnt, (EMACS_INT *) 0, 0);
939 /* Like find_next_newline, but returns position before the newline,
940 not after, and only search up to TO. This isn't just
941 find_next_newline (...)-1, because you might hit TO. */
943 EMACS_INT
944 find_before_next_newline (EMACS_INT from, EMACS_INT to, EMACS_INT cnt)
946 EMACS_INT shortage;
947 EMACS_INT pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
949 if (shortage == 0)
950 pos--;
952 return pos;
955 /* Subroutines of Lisp buffer search functions. */
957 static Lisp_Object
958 search_command (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror,
959 Lisp_Object count, int direction, int RE, int posix)
961 register EMACS_INT np;
962 EMACS_INT lim, lim_byte;
963 EMACS_INT n = direction;
965 if (!NILP (count))
967 CHECK_NUMBER (count);
968 n *= XINT (count);
971 CHECK_STRING (string);
972 if (NILP (bound))
974 if (n > 0)
975 lim = ZV, lim_byte = ZV_BYTE;
976 else
977 lim = BEGV, lim_byte = BEGV_BYTE;
979 else
981 CHECK_NUMBER_COERCE_MARKER (bound);
982 lim = XINT (bound);
983 if (n > 0 ? lim < PT : lim > PT)
984 error ("Invalid search bound (wrong side of point)");
985 if (lim > ZV)
986 lim = ZV, lim_byte = ZV_BYTE;
987 else if (lim < BEGV)
988 lim = BEGV, lim_byte = BEGV_BYTE;
989 else
990 lim_byte = CHAR_TO_BYTE (lim);
993 /* This is so set_image_of_range_1 in regex.c can find the EQV table. */
994 XCHAR_TABLE (BVAR (current_buffer, case_canon_table))->extras[2]
995 = BVAR (current_buffer, case_eqv_table);
997 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
998 (!NILP (BVAR (current_buffer, case_fold_search))
999 ? BVAR (current_buffer, case_canon_table)
1000 : Qnil),
1001 (!NILP (BVAR (current_buffer, case_fold_search))
1002 ? BVAR (current_buffer, case_eqv_table)
1003 : Qnil),
1004 posix);
1005 if (np <= 0)
1007 if (NILP (noerror))
1008 xsignal1 (Qsearch_failed, string);
1010 if (!EQ (noerror, Qt))
1012 if (lim < BEGV || lim > ZV)
1013 abort ();
1014 SET_PT_BOTH (lim, lim_byte);
1015 return Qnil;
1016 #if 0 /* This would be clean, but maybe programs depend on
1017 a value of nil here. */
1018 np = lim;
1019 #endif
1021 else
1022 return Qnil;
1025 if (np < BEGV || np > ZV)
1026 abort ();
1028 SET_PT (np);
1030 return make_number (np);
1033 /* Return 1 if REGEXP it matches just one constant string. */
1035 static int
1036 trivial_regexp_p (Lisp_Object regexp)
1038 EMACS_INT len = SBYTES (regexp);
1039 unsigned char *s = SDATA (regexp);
1040 while (--len >= 0)
1042 switch (*s++)
1044 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
1045 return 0;
1046 case '\\':
1047 if (--len < 0)
1048 return 0;
1049 switch (*s++)
1051 case '|': case '(': case ')': case '`': case '\'': case 'b':
1052 case 'B': case '<': case '>': case 'w': case 'W': case 's':
1053 case 'S': case '=': case '{': case '}': case '_':
1054 case 'c': case 'C': /* for categoryspec and notcategoryspec */
1055 case '1': case '2': case '3': case '4': case '5':
1056 case '6': case '7': case '8': case '9':
1057 return 0;
1061 return 1;
1064 /* Search for the n'th occurrence of STRING in the current buffer,
1065 starting at position POS and stopping at position LIM,
1066 treating STRING as a literal string if RE is false or as
1067 a regular expression if RE is true.
1069 If N is positive, searching is forward and LIM must be greater than POS.
1070 If N is negative, searching is backward and LIM must be less than POS.
1072 Returns -x if x occurrences remain to be found (x > 0),
1073 or else the position at the beginning of the Nth occurrence
1074 (if searching backward) or the end (if searching forward).
1076 POSIX is nonzero if we want full backtracking (POSIX style)
1077 for this pattern. 0 means backtrack only enough to get a valid match. */
1079 #define TRANSLATE(out, trt, d) \
1080 do \
1082 if (! NILP (trt)) \
1084 Lisp_Object temp; \
1085 temp = Faref (trt, make_number (d)); \
1086 if (INTEGERP (temp)) \
1087 out = XINT (temp); \
1088 else \
1089 out = d; \
1091 else \
1092 out = d; \
1094 while (0)
1096 /* Only used in search_buffer, to record the end position of the match
1097 when searching regexps and SEARCH_REGS should not be changed
1098 (i.e. Vinhibit_changing_match_data is non-nil). */
1099 static struct re_registers search_regs_1;
1101 static EMACS_INT
1102 search_buffer (Lisp_Object string, EMACS_INT pos, EMACS_INT pos_byte,
1103 EMACS_INT lim, EMACS_INT lim_byte, EMACS_INT n,
1104 int RE, Lisp_Object trt, Lisp_Object inverse_trt, int posix)
1106 EMACS_INT len = SCHARS (string);
1107 EMACS_INT len_byte = SBYTES (string);
1108 register int i;
1110 if (running_asynch_code)
1111 save_search_regs ();
1113 /* Searching 0 times means don't move. */
1114 /* Null string is found at starting position. */
1115 if (len == 0 || n == 0)
1117 set_search_regs (pos_byte, 0);
1118 return pos;
1121 if (RE && !(trivial_regexp_p (string) && NILP (Vsearch_spaces_regexp)))
1123 unsigned char *p1, *p2;
1124 EMACS_INT s1, s2;
1125 struct re_pattern_buffer *bufp;
1127 bufp = compile_pattern (string,
1128 (NILP (Vinhibit_changing_match_data)
1129 ? &search_regs : &search_regs_1),
1130 trt, posix,
1131 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
1133 immediate_quit = 1; /* Quit immediately if user types ^G,
1134 because letting this function finish
1135 can take too long. */
1136 QUIT; /* Do a pending quit right away,
1137 to avoid paradoxical behavior */
1138 /* Get pointers and sizes of the two strings
1139 that make up the visible portion of the buffer. */
1141 p1 = BEGV_ADDR;
1142 s1 = GPT_BYTE - BEGV_BYTE;
1143 p2 = GAP_END_ADDR;
1144 s2 = ZV_BYTE - GPT_BYTE;
1145 if (s1 < 0)
1147 p2 = p1;
1148 s2 = ZV_BYTE - BEGV_BYTE;
1149 s1 = 0;
1151 if (s2 < 0)
1153 s1 = ZV_BYTE - BEGV_BYTE;
1154 s2 = 0;
1156 re_match_object = Qnil;
1158 while (n < 0)
1160 EMACS_INT val;
1161 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1162 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1163 (NILP (Vinhibit_changing_match_data)
1164 ? &search_regs : &search_regs_1),
1165 /* Don't allow match past current point */
1166 pos_byte - BEGV_BYTE);
1167 if (val == -2)
1169 matcher_overflow ();
1171 if (val >= 0)
1173 if (NILP (Vinhibit_changing_match_data))
1175 pos_byte = search_regs.start[0] + BEGV_BYTE;
1176 for (i = 0; i < search_regs.num_regs; i++)
1177 if (search_regs.start[i] >= 0)
1179 search_regs.start[i]
1180 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1181 search_regs.end[i]
1182 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1184 XSETBUFFER (last_thing_searched, current_buffer);
1185 /* Set pos to the new position. */
1186 pos = search_regs.start[0];
1188 else
1190 pos_byte = search_regs_1.start[0] + BEGV_BYTE;
1191 /* Set pos to the new position. */
1192 pos = BYTE_TO_CHAR (search_regs_1.start[0] + BEGV_BYTE);
1195 else
1197 immediate_quit = 0;
1198 return (n);
1200 n++;
1202 while (n > 0)
1204 EMACS_INT val;
1205 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1206 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1207 (NILP (Vinhibit_changing_match_data)
1208 ? &search_regs : &search_regs_1),
1209 lim_byte - BEGV_BYTE);
1210 if (val == -2)
1212 matcher_overflow ();
1214 if (val >= 0)
1216 if (NILP (Vinhibit_changing_match_data))
1218 pos_byte = search_regs.end[0] + BEGV_BYTE;
1219 for (i = 0; i < search_regs.num_regs; i++)
1220 if (search_regs.start[i] >= 0)
1222 search_regs.start[i]
1223 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1224 search_regs.end[i]
1225 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1227 XSETBUFFER (last_thing_searched, current_buffer);
1228 pos = search_regs.end[0];
1230 else
1232 pos_byte = search_regs_1.end[0] + BEGV_BYTE;
1233 pos = BYTE_TO_CHAR (search_regs_1.end[0] + BEGV_BYTE);
1236 else
1238 immediate_quit = 0;
1239 return (0 - n);
1241 n--;
1243 immediate_quit = 0;
1244 return (pos);
1246 else /* non-RE case */
1248 unsigned char *raw_pattern, *pat;
1249 EMACS_INT raw_pattern_size;
1250 EMACS_INT raw_pattern_size_byte;
1251 unsigned char *patbuf;
1252 int multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
1253 unsigned char *base_pat;
1254 /* Set to positive if we find a non-ASCII char that need
1255 translation. Otherwise set to zero later. */
1256 int char_base = -1;
1257 int boyer_moore_ok = 1;
1259 /* MULTIBYTE says whether the text to be searched is multibyte.
1260 We must convert PATTERN to match that, or we will not really
1261 find things right. */
1263 if (multibyte == STRING_MULTIBYTE (string))
1265 raw_pattern = SDATA (string);
1266 raw_pattern_size = SCHARS (string);
1267 raw_pattern_size_byte = SBYTES (string);
1269 else if (multibyte)
1271 raw_pattern_size = SCHARS (string);
1272 raw_pattern_size_byte
1273 = count_size_as_multibyte (SDATA (string),
1274 raw_pattern_size);
1275 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1276 copy_text (SDATA (string), raw_pattern,
1277 SCHARS (string), 0, 1);
1279 else
1281 /* Converting multibyte to single-byte.
1283 ??? Perhaps this conversion should be done in a special way
1284 by subtracting nonascii-insert-offset from each non-ASCII char,
1285 so that only the multibyte chars which really correspond to
1286 the chosen single-byte character set can possibly match. */
1287 raw_pattern_size = SCHARS (string);
1288 raw_pattern_size_byte = SCHARS (string);
1289 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1290 copy_text (SDATA (string), raw_pattern,
1291 SBYTES (string), 1, 0);
1294 /* Copy and optionally translate the pattern. */
1295 len = raw_pattern_size;
1296 len_byte = raw_pattern_size_byte;
1297 patbuf = (unsigned char *) alloca (len * MAX_MULTIBYTE_LENGTH);
1298 pat = patbuf;
1299 base_pat = raw_pattern;
1300 if (multibyte)
1302 /* Fill patbuf by translated characters in STRING while
1303 checking if we can use boyer-moore search. If TRT is
1304 non-nil, we can use boyer-moore search only if TRT can be
1305 represented by the byte array of 256 elements. For that,
1306 all non-ASCII case-equivalents of all case-senstive
1307 characters in STRING must belong to the same charset and
1308 row. */
1310 while (--len >= 0)
1312 unsigned char str_base[MAX_MULTIBYTE_LENGTH], *str;
1313 int c, translated, inverse;
1314 int in_charlen, charlen;
1316 /* If we got here and the RE flag is set, it's because we're
1317 dealing with a regexp known to be trivial, so the backslash
1318 just quotes the next character. */
1319 if (RE && *base_pat == '\\')
1321 len--;
1322 raw_pattern_size--;
1323 len_byte--;
1324 base_pat++;
1327 c = STRING_CHAR_AND_LENGTH (base_pat, in_charlen);
1329 if (NILP (trt))
1331 str = base_pat;
1332 charlen = in_charlen;
1334 else
1336 /* Translate the character. */
1337 TRANSLATE (translated, trt, c);
1338 charlen = CHAR_STRING (translated, str_base);
1339 str = str_base;
1341 /* Check if C has any other case-equivalents. */
1342 TRANSLATE (inverse, inverse_trt, c);
1343 /* If so, check if we can use boyer-moore. */
1344 if (c != inverse && boyer_moore_ok)
1346 /* Check if all equivalents belong to the same
1347 group of characters. Note that the check of C
1348 itself is done by the last iteration. */
1349 int this_char_base = -1;
1351 while (boyer_moore_ok)
1353 if (ASCII_BYTE_P (inverse))
1355 if (this_char_base > 0)
1356 boyer_moore_ok = 0;
1357 else
1358 this_char_base = 0;
1360 else if (CHAR_BYTE8_P (inverse))
1361 /* Boyer-moore search can't handle a
1362 translation of an eight-bit
1363 character. */
1364 boyer_moore_ok = 0;
1365 else if (this_char_base < 0)
1367 this_char_base = inverse & ~0x3F;
1368 if (char_base < 0)
1369 char_base = this_char_base;
1370 else if (this_char_base != char_base)
1371 boyer_moore_ok = 0;
1373 else if ((inverse & ~0x3F) != this_char_base)
1374 boyer_moore_ok = 0;
1375 if (c == inverse)
1376 break;
1377 TRANSLATE (inverse, inverse_trt, inverse);
1382 /* Store this character into the translated pattern. */
1383 memcpy (pat, str, charlen);
1384 pat += charlen;
1385 base_pat += in_charlen;
1386 len_byte -= in_charlen;
1389 /* If char_base is still negative we didn't find any translated
1390 non-ASCII characters. */
1391 if (char_base < 0)
1392 char_base = 0;
1394 else
1396 /* Unibyte buffer. */
1397 char_base = 0;
1398 while (--len >= 0)
1400 int c, translated;
1402 /* If we got here and the RE flag is set, it's because we're
1403 dealing with a regexp known to be trivial, so the backslash
1404 just quotes the next character. */
1405 if (RE && *base_pat == '\\')
1407 len--;
1408 raw_pattern_size--;
1409 base_pat++;
1411 c = *base_pat++;
1412 TRANSLATE (translated, trt, c);
1413 *pat++ = translated;
1417 len_byte = pat - patbuf;
1418 pat = base_pat = patbuf;
1420 if (boyer_moore_ok)
1421 return boyer_moore (n, pat, len_byte, trt, inverse_trt,
1422 pos_byte, lim_byte,
1423 char_base);
1424 else
1425 return simple_search (n, pat, raw_pattern_size, len_byte, trt,
1426 pos, pos_byte, lim, lim_byte);
1430 /* Do a simple string search N times for the string PAT,
1431 whose length is LEN/LEN_BYTE,
1432 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1433 TRT is the translation table.
1435 Return the character position where the match is found.
1436 Otherwise, if M matches remained to be found, return -M.
1438 This kind of search works regardless of what is in PAT and
1439 regardless of what is in TRT. It is used in cases where
1440 boyer_moore cannot work. */
1442 static EMACS_INT
1443 simple_search (EMACS_INT n, unsigned char *pat,
1444 EMACS_INT len, EMACS_INT len_byte, Lisp_Object trt,
1445 EMACS_INT pos, EMACS_INT pos_byte,
1446 EMACS_INT lim, EMACS_INT lim_byte)
1448 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1449 int forward = n > 0;
1450 /* Number of buffer bytes matched. Note that this may be different
1451 from len_byte in a multibyte buffer. */
1452 EMACS_INT match_byte;
1454 if (lim > pos && multibyte)
1455 while (n > 0)
1457 while (1)
1459 /* Try matching at position POS. */
1460 EMACS_INT this_pos = pos;
1461 EMACS_INT this_pos_byte = pos_byte;
1462 EMACS_INT this_len = len;
1463 unsigned char *p = pat;
1464 if (pos + len > lim || pos_byte + len_byte > lim_byte)
1465 goto stop;
1467 while (this_len > 0)
1469 int charlen, buf_charlen;
1470 int pat_ch, buf_ch;
1472 pat_ch = STRING_CHAR_AND_LENGTH (p, charlen);
1473 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1474 buf_charlen);
1475 TRANSLATE (buf_ch, trt, buf_ch);
1477 if (buf_ch != pat_ch)
1478 break;
1480 this_len--;
1481 p += charlen;
1483 this_pos_byte += buf_charlen;
1484 this_pos++;
1487 if (this_len == 0)
1489 match_byte = this_pos_byte - pos_byte;
1490 pos += len;
1491 pos_byte += match_byte;
1492 break;
1495 INC_BOTH (pos, pos_byte);
1498 n--;
1500 else if (lim > pos)
1501 while (n > 0)
1503 while (1)
1505 /* Try matching at position POS. */
1506 EMACS_INT this_pos = pos;
1507 EMACS_INT this_len = len;
1508 unsigned char *p = pat;
1510 if (pos + len > lim)
1511 goto stop;
1513 while (this_len > 0)
1515 int pat_ch = *p++;
1516 int buf_ch = FETCH_BYTE (this_pos);
1517 TRANSLATE (buf_ch, trt, buf_ch);
1519 if (buf_ch != pat_ch)
1520 break;
1522 this_len--;
1523 this_pos++;
1526 if (this_len == 0)
1528 match_byte = len;
1529 pos += len;
1530 break;
1533 pos++;
1536 n--;
1538 /* Backwards search. */
1539 else if (lim < pos && multibyte)
1540 while (n < 0)
1542 while (1)
1544 /* Try matching at position POS. */
1545 EMACS_INT this_pos = pos;
1546 EMACS_INT this_pos_byte = pos_byte;
1547 EMACS_INT this_len = len;
1548 const unsigned char *p = pat + len_byte;
1550 if (this_pos - len < lim || (pos_byte - len_byte) < lim_byte)
1551 goto stop;
1553 while (this_len > 0)
1555 int pat_ch, buf_ch;
1557 DEC_BOTH (this_pos, this_pos_byte);
1558 PREV_CHAR_BOUNDARY (p, pat);
1559 pat_ch = STRING_CHAR (p);
1560 buf_ch = STRING_CHAR (BYTE_POS_ADDR (this_pos_byte));
1561 TRANSLATE (buf_ch, trt, buf_ch);
1563 if (buf_ch != pat_ch)
1564 break;
1566 this_len--;
1569 if (this_len == 0)
1571 match_byte = pos_byte - this_pos_byte;
1572 pos = this_pos;
1573 pos_byte = this_pos_byte;
1574 break;
1577 DEC_BOTH (pos, pos_byte);
1580 n++;
1582 else if (lim < pos)
1583 while (n < 0)
1585 while (1)
1587 /* Try matching at position POS. */
1588 EMACS_INT this_pos = pos - len;
1589 EMACS_INT this_len = len;
1590 unsigned char *p = pat;
1592 if (this_pos < lim)
1593 goto stop;
1595 while (this_len > 0)
1597 int pat_ch = *p++;
1598 int buf_ch = FETCH_BYTE (this_pos);
1599 TRANSLATE (buf_ch, trt, buf_ch);
1601 if (buf_ch != pat_ch)
1602 break;
1603 this_len--;
1604 this_pos++;
1607 if (this_len == 0)
1609 match_byte = len;
1610 pos -= len;
1611 break;
1614 pos--;
1617 n++;
1620 stop:
1621 if (n == 0)
1623 if (forward)
1624 set_search_regs ((multibyte ? pos_byte : pos) - match_byte, match_byte);
1625 else
1626 set_search_regs (multibyte ? pos_byte : pos, match_byte);
1628 return pos;
1630 else if (n > 0)
1631 return -n;
1632 else
1633 return n;
1636 /* Do Boyer-Moore search N times for the string BASE_PAT,
1637 whose length is LEN_BYTE,
1638 from buffer position POS_BYTE until LIM_BYTE.
1639 DIRECTION says which direction we search in.
1640 TRT and INVERSE_TRT are translation tables.
1641 Characters in PAT are already translated by TRT.
1643 This kind of search works if all the characters in BASE_PAT that
1644 have nontrivial translation are the same aside from the last byte.
1645 This makes it possible to translate just the last byte of a
1646 character, and do so after just a simple test of the context.
1647 CHAR_BASE is nonzero if there is such a non-ASCII character.
1649 If that criterion is not satisfied, do not call this function. */
1651 static EMACS_INT
1652 boyer_moore (EMACS_INT n, unsigned char *base_pat,
1653 EMACS_INT len_byte,
1654 Lisp_Object trt, Lisp_Object inverse_trt,
1655 EMACS_INT pos_byte, EMACS_INT lim_byte,
1656 int char_base)
1658 int direction = ((n > 0) ? 1 : -1);
1659 register EMACS_INT dirlen;
1660 EMACS_INT limit;
1661 int stride_for_teases = 0;
1662 int BM_tab[0400];
1663 register unsigned char *cursor, *p_limit;
1664 register EMACS_INT i;
1665 register int j;
1666 unsigned char *pat, *pat_end;
1667 int multibyte = ! NILP (BVAR (current_buffer, enable_multibyte_characters));
1669 unsigned char simple_translate[0400];
1670 /* These are set to the preceding bytes of a byte to be translated
1671 if char_base is nonzero. As the maximum byte length of a
1672 multibyte character is 5, we have to check at most four previous
1673 bytes. */
1674 int translate_prev_byte1 = 0;
1675 int translate_prev_byte2 = 0;
1676 int translate_prev_byte3 = 0;
1678 /* The general approach is that we are going to maintain that we know
1679 the first (closest to the present position, in whatever direction
1680 we're searching) character that could possibly be the last
1681 (furthest from present position) character of a valid match. We
1682 advance the state of our knowledge by looking at that character
1683 and seeing whether it indeed matches the last character of the
1684 pattern. If it does, we take a closer look. If it does not, we
1685 move our pointer (to putative last characters) as far as is
1686 logically possible. This amount of movement, which I call a
1687 stride, will be the length of the pattern if the actual character
1688 appears nowhere in the pattern, otherwise it will be the distance
1689 from the last occurrence of that character to the end of the
1690 pattern. If the amount is zero we have a possible match. */
1692 /* Here we make a "mickey mouse" BM table. The stride of the search
1693 is determined only by the last character of the putative match.
1694 If that character does not match, we will stride the proper
1695 distance to propose a match that superimposes it on the last
1696 instance of a character that matches it (per trt), or misses
1697 it entirely if there is none. */
1699 dirlen = len_byte * direction;
1701 /* Record position after the end of the pattern. */
1702 pat_end = base_pat + len_byte;
1703 /* BASE_PAT points to a character that we start scanning from.
1704 It is the first character in a forward search,
1705 the last character in a backward search. */
1706 if (direction < 0)
1707 base_pat = pat_end - 1;
1709 /* A character that does not appear in the pattern induces a
1710 stride equal to the pattern length. */
1711 for (i = 0; i < 0400; i++)
1712 BM_tab[i] = dirlen;
1714 /* We use this for translation, instead of TRT itself.
1715 We fill this in to handle the characters that actually
1716 occur in the pattern. Others don't matter anyway! */
1717 for (i = 0; i < 0400; i++)
1718 simple_translate[i] = i;
1720 if (char_base)
1722 /* Setup translate_prev_byte1/2/3/4 from CHAR_BASE. Only a
1723 byte following them are the target of translation. */
1724 unsigned char str[MAX_MULTIBYTE_LENGTH];
1725 int cblen = CHAR_STRING (char_base, str);
1727 translate_prev_byte1 = str[cblen - 2];
1728 if (cblen > 2)
1730 translate_prev_byte2 = str[cblen - 3];
1731 if (cblen > 3)
1732 translate_prev_byte3 = str[cblen - 4];
1736 i = 0;
1737 while (i != dirlen)
1739 unsigned char *ptr = base_pat + i;
1740 i += direction;
1741 if (! NILP (trt))
1743 /* If the byte currently looking at is the last of a
1744 character to check case-equivalents, set CH to that
1745 character. An ASCII character and a non-ASCII character
1746 matching with CHAR_BASE are to be checked. */
1747 int ch = -1;
1749 if (ASCII_BYTE_P (*ptr) || ! multibyte)
1750 ch = *ptr;
1751 else if (char_base
1752 && ((pat_end - ptr) == 1 || CHAR_HEAD_P (ptr[1])))
1754 unsigned char *charstart = ptr - 1;
1756 while (! (CHAR_HEAD_P (*charstart)))
1757 charstart--;
1758 ch = STRING_CHAR (charstart);
1759 if (char_base != (ch & ~0x3F))
1760 ch = -1;
1763 if (ch >= 0200)
1764 j = (ch & 0x3F) | 0200;
1765 else
1766 j = *ptr;
1768 if (i == dirlen)
1769 stride_for_teases = BM_tab[j];
1771 BM_tab[j] = dirlen - i;
1772 /* A translation table is accompanied by its inverse -- see
1773 comment following downcase_table for details. */
1774 if (ch >= 0)
1776 int starting_ch = ch;
1777 int starting_j = j;
1779 while (1)
1781 TRANSLATE (ch, inverse_trt, ch);
1782 if (ch >= 0200)
1783 j = (ch & 0x3F) | 0200;
1784 else
1785 j = ch;
1787 /* For all the characters that map into CH,
1788 set up simple_translate to map the last byte
1789 into STARTING_J. */
1790 simple_translate[j] = starting_j;
1791 if (ch == starting_ch)
1792 break;
1793 BM_tab[j] = dirlen - i;
1797 else
1799 j = *ptr;
1801 if (i == dirlen)
1802 stride_for_teases = BM_tab[j];
1803 BM_tab[j] = dirlen - i;
1805 /* stride_for_teases tells how much to stride if we get a
1806 match on the far character but are subsequently
1807 disappointed, by recording what the stride would have been
1808 for that character if the last character had been
1809 different. */
1811 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1812 /* loop invariant - POS_BYTE points at where last char (first
1813 char if reverse) of pattern would align in a possible match. */
1814 while (n != 0)
1816 EMACS_INT tail_end;
1817 unsigned char *tail_end_ptr;
1819 /* It's been reported that some (broken) compiler thinks that
1820 Boolean expressions in an arithmetic context are unsigned.
1821 Using an explicit ?1:0 prevents this. */
1822 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1823 < 0)
1824 return (n * (0 - direction));
1825 /* First we do the part we can by pointers (maybe nothing) */
1826 QUIT;
1827 pat = base_pat;
1828 limit = pos_byte - dirlen + direction;
1829 if (direction > 0)
1831 limit = BUFFER_CEILING_OF (limit);
1832 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1833 can take on without hitting edge of buffer or the gap. */
1834 limit = min (limit, pos_byte + 20000);
1835 limit = min (limit, lim_byte - 1);
1837 else
1839 limit = BUFFER_FLOOR_OF (limit);
1840 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1841 can take on without hitting edge of buffer or the gap. */
1842 limit = max (limit, pos_byte - 20000);
1843 limit = max (limit, lim_byte);
1845 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1846 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1848 if ((limit - pos_byte) * direction > 20)
1850 unsigned char *p2;
1852 p_limit = BYTE_POS_ADDR (limit);
1853 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1854 /* In this loop, pos + cursor - p2 is the surrogate for pos. */
1855 while (1) /* use one cursor setting as long as i can */
1857 if (direction > 0) /* worth duplicating */
1859 while (cursor <= p_limit)
1861 if (BM_tab[*cursor] == 0)
1862 goto hit;
1863 cursor += BM_tab[*cursor];
1866 else
1868 while (cursor >= p_limit)
1870 if (BM_tab[*cursor] == 0)
1871 goto hit;
1872 cursor += BM_tab[*cursor];
1875 /* If you are here, cursor is beyond the end of the
1876 searched region. You fail to match within the
1877 permitted region and would otherwise try a character
1878 beyond that region. */
1879 break;
1881 hit:
1882 i = dirlen - direction;
1883 if (! NILP (trt))
1885 while ((i -= direction) + direction != 0)
1887 int ch;
1888 cursor -= direction;
1889 /* Translate only the last byte of a character. */
1890 if (! multibyte
1891 || ((cursor == tail_end_ptr
1892 || CHAR_HEAD_P (cursor[1]))
1893 && (CHAR_HEAD_P (cursor[0])
1894 /* Check if this is the last byte of
1895 a translable character. */
1896 || (translate_prev_byte1 == cursor[-1]
1897 && (CHAR_HEAD_P (translate_prev_byte1)
1898 || (translate_prev_byte2 == cursor[-2]
1899 && (CHAR_HEAD_P (translate_prev_byte2)
1900 || (translate_prev_byte3 == cursor[-3]))))))))
1901 ch = simple_translate[*cursor];
1902 else
1903 ch = *cursor;
1904 if (pat[i] != ch)
1905 break;
1908 else
1910 while ((i -= direction) + direction != 0)
1912 cursor -= direction;
1913 if (pat[i] != *cursor)
1914 break;
1917 cursor += dirlen - i - direction; /* fix cursor */
1918 if (i + direction == 0)
1920 EMACS_INT position, start, end;
1922 cursor -= direction;
1924 position = pos_byte + cursor - p2 + ((direction > 0)
1925 ? 1 - len_byte : 0);
1926 set_search_regs (position, len_byte);
1928 if (NILP (Vinhibit_changing_match_data))
1930 start = search_regs.start[0];
1931 end = search_regs.end[0];
1933 else
1934 /* If Vinhibit_changing_match_data is non-nil,
1935 search_regs will not be changed. So let's
1936 compute start and end here. */
1938 start = BYTE_TO_CHAR (position);
1939 end = BYTE_TO_CHAR (position + len_byte);
1942 if ((n -= direction) != 0)
1943 cursor += dirlen; /* to resume search */
1944 else
1945 return direction > 0 ? end : start;
1947 else
1948 cursor += stride_for_teases; /* <sigh> we lose - */
1950 pos_byte += cursor - p2;
1952 else
1953 /* Now we'll pick up a clump that has to be done the hard
1954 way because it covers a discontinuity. */
1956 limit = ((direction > 0)
1957 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1958 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1959 limit = ((direction > 0)
1960 ? min (limit + len_byte, lim_byte - 1)
1961 : max (limit - len_byte, lim_byte));
1962 /* LIMIT is now the last value POS_BYTE can have
1963 and still be valid for a possible match. */
1964 while (1)
1966 /* This loop can be coded for space rather than
1967 speed because it will usually run only once.
1968 (the reach is at most len + 21, and typically
1969 does not exceed len). */
1970 while ((limit - pos_byte) * direction >= 0)
1972 int ch = FETCH_BYTE (pos_byte);
1973 if (BM_tab[ch] == 0)
1974 goto hit2;
1975 pos_byte += BM_tab[ch];
1977 break; /* ran off the end */
1979 hit2:
1980 /* Found what might be a match. */
1981 i = dirlen - direction;
1982 while ((i -= direction) + direction != 0)
1984 int ch;
1985 unsigned char *ptr;
1986 pos_byte -= direction;
1987 ptr = BYTE_POS_ADDR (pos_byte);
1988 /* Translate only the last byte of a character. */
1989 if (! multibyte
1990 || ((ptr == tail_end_ptr
1991 || CHAR_HEAD_P (ptr[1]))
1992 && (CHAR_HEAD_P (ptr[0])
1993 /* Check if this is the last byte of a
1994 translable character. */
1995 || (translate_prev_byte1 == ptr[-1]
1996 && (CHAR_HEAD_P (translate_prev_byte1)
1997 || (translate_prev_byte2 == ptr[-2]
1998 && (CHAR_HEAD_P (translate_prev_byte2)
1999 || translate_prev_byte3 == ptr[-3])))))))
2000 ch = simple_translate[*ptr];
2001 else
2002 ch = *ptr;
2003 if (pat[i] != ch)
2004 break;
2006 /* Above loop has moved POS_BYTE part or all the way
2007 back to the first pos (last pos if reverse).
2008 Set it once again at the last (first if reverse) char. */
2009 pos_byte += dirlen - i - direction;
2010 if (i + direction == 0)
2012 EMACS_INT position, start, end;
2013 pos_byte -= direction;
2015 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
2016 set_search_regs (position, len_byte);
2018 if (NILP (Vinhibit_changing_match_data))
2020 start = search_regs.start[0];
2021 end = search_regs.end[0];
2023 else
2024 /* If Vinhibit_changing_match_data is non-nil,
2025 search_regs will not be changed. So let's
2026 compute start and end here. */
2028 start = BYTE_TO_CHAR (position);
2029 end = BYTE_TO_CHAR (position + len_byte);
2032 if ((n -= direction) != 0)
2033 pos_byte += dirlen; /* to resume search */
2034 else
2035 return direction > 0 ? end : start;
2037 else
2038 pos_byte += stride_for_teases;
2041 /* We have done one clump. Can we continue? */
2042 if ((lim_byte - pos_byte) * direction < 0)
2043 return ((0 - n) * direction);
2045 return BYTE_TO_CHAR (pos_byte);
2048 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
2049 for the overall match just found in the current buffer.
2050 Also clear out the match data for registers 1 and up. */
2052 static void
2053 set_search_regs (EMACS_INT beg_byte, EMACS_INT nbytes)
2055 int i;
2057 if (!NILP (Vinhibit_changing_match_data))
2058 return;
2060 /* Make sure we have registers in which to store
2061 the match position. */
2062 if (search_regs.num_regs == 0)
2064 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2065 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
2066 search_regs.num_regs = 2;
2069 /* Clear out the other registers. */
2070 for (i = 1; i < search_regs.num_regs; i++)
2072 search_regs.start[i] = -1;
2073 search_regs.end[i] = -1;
2076 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
2077 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
2078 XSETBUFFER (last_thing_searched, current_buffer);
2081 /* Given STRING, a string of words separated by word delimiters,
2082 compute a regexp that matches those exact words separated by
2083 arbitrary punctuation. If LAX is nonzero, the end of the string
2084 need not match a word boundary unless it ends in whitespace. */
2086 static Lisp_Object
2087 wordify (Lisp_Object string, int lax)
2089 register unsigned char *o;
2090 register EMACS_INT i, i_byte, len, punct_count = 0, word_count = 0;
2091 Lisp_Object val;
2092 int prev_c = 0;
2093 EMACS_INT adjust;
2094 int whitespace_at_end;
2096 CHECK_STRING (string);
2097 len = SCHARS (string);
2099 for (i = 0, i_byte = 0; i < len; )
2101 int c;
2103 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2105 if (SYNTAX (c) != Sword)
2107 punct_count++;
2108 if (SYNTAX (prev_c) == Sword)
2109 word_count++;
2112 prev_c = c;
2115 if (SYNTAX (prev_c) == Sword)
2117 word_count++;
2118 whitespace_at_end = 0;
2120 else
2122 whitespace_at_end = 1;
2123 if (!word_count)
2124 return empty_unibyte_string;
2127 adjust = - punct_count + 5 * (word_count - 1)
2128 + ((lax && !whitespace_at_end) ? 2 : 4);
2129 if (STRING_MULTIBYTE (string))
2130 val = make_uninit_multibyte_string (len + adjust,
2131 SBYTES (string)
2132 + adjust);
2133 else
2134 val = make_uninit_string (len + adjust);
2136 o = SDATA (val);
2137 *o++ = '\\';
2138 *o++ = 'b';
2139 prev_c = 0;
2141 for (i = 0, i_byte = 0; i < len; )
2143 int c;
2144 EMACS_INT i_byte_orig = i_byte;
2146 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, i, i_byte);
2148 if (SYNTAX (c) == Sword)
2150 memcpy (o, SDATA (string) + i_byte_orig, i_byte - i_byte_orig);
2151 o += i_byte - i_byte_orig;
2153 else if (SYNTAX (prev_c) == Sword && --word_count)
2155 *o++ = '\\';
2156 *o++ = 'W';
2157 *o++ = '\\';
2158 *o++ = 'W';
2159 *o++ = '*';
2162 prev_c = c;
2165 if (!lax || whitespace_at_end)
2167 *o++ = '\\';
2168 *o++ = 'b';
2171 return val;
2174 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2175 "MSearch backward: ",
2176 doc: /* Search backward from point for STRING.
2177 Set point to the beginning of the occurrence found, and return point.
2178 An optional second argument bounds the search; it is a buffer position.
2179 The match found must not extend before that position.
2180 Optional third argument, if t, means if fail just return nil (no error).
2181 If not nil and not t, position at limit of search and return nil.
2182 Optional fourth argument is repeat count--search for successive occurrences.
2184 Search case-sensitivity is determined by the value of the variable
2185 `case-fold-search', which see.
2187 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2188 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2190 return search_command (string, bound, noerror, count, -1, 0, 0);
2193 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2194 doc: /* Search forward from point for STRING.
2195 Set point to the end of the occurrence found, and return point.
2196 An optional second argument bounds the search; it is a buffer position.
2197 The match found must not extend after that position. A value of nil is
2198 equivalent to (point-max).
2199 Optional third argument, if t, means if fail just return nil (no error).
2200 If not nil and not t, move to limit of search and return nil.
2201 Optional fourth argument is repeat count--search for successive occurrences.
2203 Search case-sensitivity is determined by the value of the variable
2204 `case-fold-search', which see.
2206 See also the functions `match-beginning', `match-end' and `replace-match'. */)
2207 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2209 return search_command (string, bound, noerror, count, 1, 0, 0);
2212 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2213 "sWord search backward: ",
2214 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2215 Set point to the beginning of the occurrence found, and return point.
2216 An optional second argument bounds the search; it is a buffer position.
2217 The match found must not extend before that position.
2218 Optional third argument, if t, means if fail just return nil (no error).
2219 If not nil and not t, move to limit of search and return nil.
2220 Optional fourth argument is repeat count--search for successive occurrences. */)
2221 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2223 return search_command (wordify (string, 0), bound, noerror, count, -1, 1, 0);
2226 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2227 "sWord search: ",
2228 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2229 Set point to the end of the occurrence found, and return point.
2230 An optional second argument bounds the search; it is a buffer position.
2231 The match found must not extend after that position.
2232 Optional third argument, if t, means if fail just return nil (no error).
2233 If not nil and not t, move to limit of search and return nil.
2234 Optional fourth argument is repeat count--search for successive occurrences. */)
2235 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2237 return search_command (wordify (string, 0), bound, noerror, count, 1, 1, 0);
2240 DEFUN ("word-search-backward-lax", Fword_search_backward_lax, Sword_search_backward_lax, 1, 4,
2241 "sWord search backward: ",
2242 doc: /* Search backward from point for STRING, ignoring differences in punctuation.
2243 Set point to the beginning of the occurrence found, and return point.
2245 Unlike `word-search-backward', the end of STRING need not match a word
2246 boundary unless it ends in whitespace.
2248 An optional second argument bounds the search; it is a buffer position.
2249 The match found must not extend before that position.
2250 Optional third argument, if t, means if fail just return nil (no error).
2251 If not nil and not t, move to limit of search and return nil.
2252 Optional fourth argument is repeat count--search for successive occurrences. */)
2253 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2255 return search_command (wordify (string, 1), bound, noerror, count, -1, 1, 0);
2258 DEFUN ("word-search-forward-lax", Fword_search_forward_lax, Sword_search_forward_lax, 1, 4,
2259 "sWord search: ",
2260 doc: /* Search forward from point for STRING, ignoring differences in punctuation.
2261 Set point to the end of the occurrence found, and return point.
2263 Unlike `word-search-forward', the end of STRING need not match a word
2264 boundary unless it ends in whitespace.
2266 An optional second argument bounds the search; it is a buffer position.
2267 The match found must not extend after that position.
2268 Optional third argument, if t, means if fail just return nil (no error).
2269 If not nil and not t, move to limit of search and return nil.
2270 Optional fourth argument is repeat count--search for successive occurrences. */)
2271 (Lisp_Object string, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2273 return search_command (wordify (string, 1), bound, noerror, count, 1, 1, 0);
2276 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2277 "sRE search backward: ",
2278 doc: /* Search backward from point for match for regular expression REGEXP.
2279 Set point to the beginning of the match, and return point.
2280 The match found is the one starting last in the buffer
2281 and yet ending before the origin of the search.
2282 An optional second argument bounds the search; it is a buffer position.
2283 The match found must start at or after that position.
2284 Optional third argument, if t, means if fail just return nil (no error).
2285 If not nil and not t, move to limit of search and return nil.
2286 Optional fourth argument is repeat count--search for successive occurrences.
2288 Search case-sensitivity is determined by the value of the variable
2289 `case-fold-search', which see.
2291 See also the functions `match-beginning', `match-end', `match-string',
2292 and `replace-match'. */)
2293 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2295 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2298 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2299 "sRE search: ",
2300 doc: /* Search forward from point for regular expression REGEXP.
2301 Set point to the end of the occurrence found, and return point.
2302 An optional second argument bounds the search; it is a buffer position.
2303 The match found must not extend after that position.
2304 Optional third argument, if t, means if fail just return nil (no error).
2305 If not nil and not t, move to limit of search and return nil.
2306 Optional fourth argument is repeat count--search for successive occurrences.
2308 Search case-sensitivity is determined by the value of the variable
2309 `case-fold-search', which see.
2311 See also the functions `match-beginning', `match-end', `match-string',
2312 and `replace-match'. */)
2313 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2315 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2318 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2319 "sPosix search backward: ",
2320 doc: /* Search backward from point for match for regular expression REGEXP.
2321 Find the longest match in accord with Posix regular expression rules.
2322 Set point to the beginning of the match, and return point.
2323 The match found is the one starting last in the buffer
2324 and yet ending before the origin of the search.
2325 An optional second argument bounds the search; it is a buffer position.
2326 The match found must start at or after that position.
2327 Optional third argument, if t, means if fail just return nil (no error).
2328 If not nil and not t, move to limit of search and return nil.
2329 Optional fourth argument is repeat count--search for successive occurrences.
2331 Search case-sensitivity is determined by the value of the variable
2332 `case-fold-search', which see.
2334 See also the functions `match-beginning', `match-end', `match-string',
2335 and `replace-match'. */)
2336 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2338 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2341 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2342 "sPosix search: ",
2343 doc: /* Search forward from point for regular expression REGEXP.
2344 Find the longest match in accord with Posix regular expression rules.
2345 Set point to the end of the occurrence found, and return point.
2346 An optional second argument bounds the search; it is a buffer position.
2347 The match found must not extend after that position.
2348 Optional third argument, if t, means if fail just return nil (no error).
2349 If not nil and not t, move to limit of search and return nil.
2350 Optional fourth argument is repeat count--search for successive occurrences.
2352 Search case-sensitivity is determined by the value of the variable
2353 `case-fold-search', which see.
2355 See also the functions `match-beginning', `match-end', `match-string',
2356 and `replace-match'. */)
2357 (Lisp_Object regexp, Lisp_Object bound, Lisp_Object noerror, Lisp_Object count)
2359 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2362 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2363 doc: /* Replace text matched by last search with NEWTEXT.
2364 Leave point at the end of the replacement text.
2366 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.
2367 Otherwise maybe capitalize the whole text, or maybe just word initials,
2368 based on the replaced text.
2369 If the replaced text has only capital letters
2370 and has at least one multiletter word, convert NEWTEXT to all caps.
2371 Otherwise if all words are capitalized in the replaced text,
2372 capitalize each word in NEWTEXT.
2374 If third arg LITERAL is non-nil, insert NEWTEXT literally.
2375 Otherwise treat `\\' as special:
2376 `\\&' in NEWTEXT means substitute original matched text.
2377 `\\N' means substitute what matched the Nth `\\(...\\)'.
2378 If Nth parens didn't match, substitute nothing.
2379 `\\\\' means insert one `\\'.
2380 Case conversion does not apply to these substitutions.
2382 FIXEDCASE and LITERAL are optional arguments.
2384 The optional fourth argument STRING can be a string to modify.
2385 This is meaningful when the previous match was done against STRING,
2386 using `string-match'. When used this way, `replace-match'
2387 creates and returns a new string made by copying STRING and replacing
2388 the part of STRING that was matched.
2390 The optional fifth argument SUBEXP specifies a subexpression;
2391 it says to replace just that subexpression with NEWTEXT,
2392 rather than replacing the entire matched text.
2393 This is, in a vague sense, the inverse of using `\\N' in NEWTEXT;
2394 `\\N' copies subexp N into NEWTEXT, but using N as SUBEXP puts
2395 NEWTEXT in place of subexp N.
2396 This is useful only after a regular expression search or match,
2397 since only regular expressions have distinguished subexpressions. */)
2398 (Lisp_Object newtext, Lisp_Object fixedcase, Lisp_Object literal, Lisp_Object string, Lisp_Object subexp)
2400 enum { nochange, all_caps, cap_initial } case_action;
2401 register EMACS_INT pos, pos_byte;
2402 int some_multiletter_word;
2403 int some_lowercase;
2404 int some_uppercase;
2405 int some_nonuppercase_initial;
2406 register int c, prevc;
2407 int sub;
2408 EMACS_INT opoint, newpoint;
2410 CHECK_STRING (newtext);
2412 if (! NILP (string))
2413 CHECK_STRING (string);
2415 case_action = nochange; /* We tried an initialization */
2416 /* but some C compilers blew it */
2418 if (search_regs.num_regs <= 0)
2419 error ("`replace-match' called before any match found");
2421 if (NILP (subexp))
2422 sub = 0;
2423 else
2425 CHECK_NUMBER (subexp);
2426 sub = XINT (subexp);
2427 if (sub < 0 || sub >= search_regs.num_regs)
2428 args_out_of_range (subexp, make_number (search_regs.num_regs));
2431 if (NILP (string))
2433 if (search_regs.start[sub] < BEGV
2434 || search_regs.start[sub] > search_regs.end[sub]
2435 || search_regs.end[sub] > ZV)
2436 args_out_of_range (make_number (search_regs.start[sub]),
2437 make_number (search_regs.end[sub]));
2439 else
2441 if (search_regs.start[sub] < 0
2442 || search_regs.start[sub] > search_regs.end[sub]
2443 || search_regs.end[sub] > SCHARS (string))
2444 args_out_of_range (make_number (search_regs.start[sub]),
2445 make_number (search_regs.end[sub]));
2448 if (NILP (fixedcase))
2450 /* Decide how to casify by examining the matched text. */
2451 EMACS_INT last;
2453 pos = search_regs.start[sub];
2454 last = search_regs.end[sub];
2456 if (NILP (string))
2457 pos_byte = CHAR_TO_BYTE (pos);
2458 else
2459 pos_byte = string_char_to_byte (string, pos);
2461 prevc = '\n';
2462 case_action = all_caps;
2464 /* some_multiletter_word is set nonzero if any original word
2465 is more than one letter long. */
2466 some_multiletter_word = 0;
2467 some_lowercase = 0;
2468 some_nonuppercase_initial = 0;
2469 some_uppercase = 0;
2471 while (pos < last)
2473 if (NILP (string))
2475 c = FETCH_CHAR_AS_MULTIBYTE (pos_byte);
2476 INC_BOTH (pos, pos_byte);
2478 else
2479 FETCH_STRING_CHAR_AS_MULTIBYTE_ADVANCE (c, string, pos, pos_byte);
2481 if (lowercasep (c))
2483 /* Cannot be all caps if any original char is lower case */
2485 some_lowercase = 1;
2486 if (SYNTAX (prevc) != Sword)
2487 some_nonuppercase_initial = 1;
2488 else
2489 some_multiletter_word = 1;
2491 else if (uppercasep (c))
2493 some_uppercase = 1;
2494 if (SYNTAX (prevc) != Sword)
2496 else
2497 some_multiletter_word = 1;
2499 else
2501 /* If the initial is a caseless word constituent,
2502 treat that like a lowercase initial. */
2503 if (SYNTAX (prevc) != Sword)
2504 some_nonuppercase_initial = 1;
2507 prevc = c;
2510 /* Convert to all caps if the old text is all caps
2511 and has at least one multiletter word. */
2512 if (! some_lowercase && some_multiletter_word)
2513 case_action = all_caps;
2514 /* Capitalize each word, if the old text has all capitalized words. */
2515 else if (!some_nonuppercase_initial && some_multiletter_word)
2516 case_action = cap_initial;
2517 else if (!some_nonuppercase_initial && some_uppercase)
2518 /* Should x -> yz, operating on X, give Yz or YZ?
2519 We'll assume the latter. */
2520 case_action = all_caps;
2521 else
2522 case_action = nochange;
2525 /* Do replacement in a string. */
2526 if (!NILP (string))
2528 Lisp_Object before, after;
2530 before = Fsubstring (string, make_number (0),
2531 make_number (search_regs.start[sub]));
2532 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2534 /* Substitute parts of the match into NEWTEXT
2535 if desired. */
2536 if (NILP (literal))
2538 EMACS_INT lastpos = 0;
2539 EMACS_INT lastpos_byte = 0;
2540 /* We build up the substituted string in ACCUM. */
2541 Lisp_Object accum;
2542 Lisp_Object middle;
2543 EMACS_INT length = SBYTES (newtext);
2545 accum = Qnil;
2547 for (pos_byte = 0, pos = 0; pos_byte < length;)
2549 EMACS_INT substart = -1;
2550 EMACS_INT subend = 0;
2551 int delbackslash = 0;
2553 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2555 if (c == '\\')
2557 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2559 if (c == '&')
2561 substart = search_regs.start[sub];
2562 subend = search_regs.end[sub];
2564 else if (c >= '1' && c <= '9')
2566 if (search_regs.start[c - '0'] >= 0
2567 && c <= search_regs.num_regs + '0')
2569 substart = search_regs.start[c - '0'];
2570 subend = search_regs.end[c - '0'];
2572 else
2574 /* If that subexp did not match,
2575 replace \\N with nothing. */
2576 substart = 0;
2577 subend = 0;
2580 else if (c == '\\')
2581 delbackslash = 1;
2582 else
2583 error ("Invalid use of `\\' in replacement text");
2585 if (substart >= 0)
2587 if (pos - 2 != lastpos)
2588 middle = substring_both (newtext, lastpos,
2589 lastpos_byte,
2590 pos - 2, pos_byte - 2);
2591 else
2592 middle = Qnil;
2593 accum = concat3 (accum, middle,
2594 Fsubstring (string,
2595 make_number (substart),
2596 make_number (subend)));
2597 lastpos = pos;
2598 lastpos_byte = pos_byte;
2600 else if (delbackslash)
2602 middle = substring_both (newtext, lastpos,
2603 lastpos_byte,
2604 pos - 1, pos_byte - 1);
2606 accum = concat2 (accum, middle);
2607 lastpos = pos;
2608 lastpos_byte = pos_byte;
2612 if (pos != lastpos)
2613 middle = substring_both (newtext, lastpos,
2614 lastpos_byte,
2615 pos, pos_byte);
2616 else
2617 middle = Qnil;
2619 newtext = concat2 (accum, middle);
2622 /* Do case substitution in NEWTEXT if desired. */
2623 if (case_action == all_caps)
2624 newtext = Fupcase (newtext);
2625 else if (case_action == cap_initial)
2626 newtext = Fupcase_initials (newtext);
2628 return concat3 (before, newtext, after);
2631 /* Record point, then move (quietly) to the start of the match. */
2632 if (PT >= search_regs.end[sub])
2633 opoint = PT - ZV;
2634 else if (PT > search_regs.start[sub])
2635 opoint = search_regs.end[sub] - ZV;
2636 else
2637 opoint = PT;
2639 /* If we want non-literal replacement,
2640 perform substitution on the replacement string. */
2641 if (NILP (literal))
2643 EMACS_INT length = SBYTES (newtext);
2644 unsigned char *substed;
2645 EMACS_INT substed_alloc_size, substed_len;
2646 int buf_multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
2647 int str_multibyte = STRING_MULTIBYTE (newtext);
2648 int really_changed = 0;
2650 substed_alloc_size = length * 2 + 100;
2651 substed = (unsigned char *) xmalloc (substed_alloc_size + 1);
2652 substed_len = 0;
2654 /* Go thru NEWTEXT, producing the actual text to insert in
2655 SUBSTED while adjusting multibyteness to that of the current
2656 buffer. */
2658 for (pos_byte = 0, pos = 0; pos_byte < length;)
2660 unsigned char str[MAX_MULTIBYTE_LENGTH];
2661 const unsigned char *add_stuff = NULL;
2662 EMACS_INT add_len = 0;
2663 int idx = -1;
2665 if (str_multibyte)
2667 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext, pos, pos_byte);
2668 if (!buf_multibyte)
2669 c = multibyte_char_to_unibyte (c);
2671 else
2673 /* Note that we don't have to increment POS. */
2674 c = SREF (newtext, pos_byte++);
2675 if (buf_multibyte)
2676 MAKE_CHAR_MULTIBYTE (c);
2679 /* Either set ADD_STUFF and ADD_LEN to the text to put in SUBSTED,
2680 or set IDX to a match index, which means put that part
2681 of the buffer text into SUBSTED. */
2683 if (c == '\\')
2685 really_changed = 1;
2687 if (str_multibyte)
2689 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, newtext,
2690 pos, pos_byte);
2691 if (!buf_multibyte && !ASCII_CHAR_P (c))
2692 c = multibyte_char_to_unibyte (c);
2694 else
2696 c = SREF (newtext, pos_byte++);
2697 if (buf_multibyte)
2698 MAKE_CHAR_MULTIBYTE (c);
2701 if (c == '&')
2702 idx = sub;
2703 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2705 if (search_regs.start[c - '0'] >= 1)
2706 idx = c - '0';
2708 else if (c == '\\')
2709 add_len = 1, add_stuff = (unsigned char *) "\\";
2710 else
2712 xfree (substed);
2713 error ("Invalid use of `\\' in replacement text");
2716 else
2718 add_len = CHAR_STRING (c, str);
2719 add_stuff = str;
2722 /* If we want to copy part of a previous match,
2723 set up ADD_STUFF and ADD_LEN to point to it. */
2724 if (idx >= 0)
2726 EMACS_INT begbyte = CHAR_TO_BYTE (search_regs.start[idx]);
2727 add_len = CHAR_TO_BYTE (search_regs.end[idx]) - begbyte;
2728 if (search_regs.start[idx] < GPT && GPT < search_regs.end[idx])
2729 move_gap (search_regs.start[idx]);
2730 add_stuff = BYTE_POS_ADDR (begbyte);
2733 /* Now the stuff we want to add to SUBSTED
2734 is invariably ADD_LEN bytes starting at ADD_STUFF. */
2736 /* Make sure SUBSTED is big enough. */
2737 if (substed_len + add_len >= substed_alloc_size)
2739 substed_alloc_size = substed_len + add_len + 500;
2740 substed = (unsigned char *) xrealloc (substed,
2741 substed_alloc_size + 1);
2744 /* Now add to the end of SUBSTED. */
2745 if (add_stuff)
2747 memcpy (substed + substed_len, add_stuff, add_len);
2748 substed_len += add_len;
2752 if (really_changed)
2754 if (buf_multibyte)
2756 EMACS_INT nchars =
2757 multibyte_chars_in_text (substed, substed_len);
2759 newtext = make_multibyte_string ((char *) substed, nchars,
2760 substed_len);
2762 else
2763 newtext = make_unibyte_string ((char *) substed, substed_len);
2765 xfree (substed);
2768 /* Replace the old text with the new in the cleanest possible way. */
2769 replace_range (search_regs.start[sub], search_regs.end[sub],
2770 newtext, 1, 0, 1);
2771 newpoint = search_regs.start[sub] + SCHARS (newtext);
2773 if (case_action == all_caps)
2774 Fupcase_region (make_number (search_regs.start[sub]),
2775 make_number (newpoint));
2776 else if (case_action == cap_initial)
2777 Fupcase_initials_region (make_number (search_regs.start[sub]),
2778 make_number (newpoint));
2780 /* Adjust search data for this change. */
2782 EMACS_INT oldend = search_regs.end[sub];
2783 EMACS_INT oldstart = search_regs.start[sub];
2784 EMACS_INT change = newpoint - search_regs.end[sub];
2785 int i;
2787 for (i = 0; i < search_regs.num_regs; i++)
2789 if (search_regs.start[i] >= oldend)
2790 search_regs.start[i] += change;
2791 else if (search_regs.start[i] > oldstart)
2792 search_regs.start[i] = oldstart;
2793 if (search_regs.end[i] >= oldend)
2794 search_regs.end[i] += change;
2795 else if (search_regs.end[i] > oldstart)
2796 search_regs.end[i] = oldstart;
2800 /* Put point back where it was in the text. */
2801 if (opoint <= 0)
2802 TEMP_SET_PT (opoint + ZV);
2803 else
2804 TEMP_SET_PT (opoint);
2806 /* Now move point "officially" to the start of the inserted replacement. */
2807 move_if_not_intangible (newpoint);
2809 return Qnil;
2812 static Lisp_Object
2813 match_limit (Lisp_Object num, int beginningp)
2815 register int n;
2817 CHECK_NUMBER (num);
2818 n = XINT (num);
2819 if (n < 0)
2820 args_out_of_range (num, make_number (0));
2821 if (search_regs.num_regs <= 0)
2822 error ("No match data, because no search succeeded");
2823 if (n >= search_regs.num_regs
2824 || search_regs.start[n] < 0)
2825 return Qnil;
2826 return (make_number ((beginningp) ? search_regs.start[n]
2827 : search_regs.end[n]));
2830 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2831 doc: /* Return position of start of text matched by last search.
2832 SUBEXP, a number, specifies which parenthesized expression in the last
2833 regexp.
2834 Value is nil if SUBEXPth pair didn't match, or there were less than
2835 SUBEXP pairs.
2836 Zero means the entire text matched by the whole regexp or whole string. */)
2837 (Lisp_Object subexp)
2839 return match_limit (subexp, 1);
2842 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2843 doc: /* Return position of end of text matched by last search.
2844 SUBEXP, a number, specifies which parenthesized expression in the last
2845 regexp.
2846 Value is nil if SUBEXPth pair didn't match, or there were less than
2847 SUBEXP pairs.
2848 Zero means the entire text matched by the whole regexp or whole string. */)
2849 (Lisp_Object subexp)
2851 return match_limit (subexp, 0);
2854 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 3, 0,
2855 doc: /* Return a list containing all info on what the last search matched.
2856 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.
2857 All the elements are markers or nil (nil if the Nth pair didn't match)
2858 if the last match was on a buffer; integers or nil if a string was matched.
2859 Use `set-match-data' to reinstate the data in this list.
2861 If INTEGERS (the optional first argument) is non-nil, always use
2862 integers \(rather than markers) to represent buffer positions. In
2863 this case, and if the last match was in a buffer, the buffer will get
2864 stored as one additional element at the end of the list.
2866 If REUSE is a list, reuse it as part of the value. If REUSE is long
2867 enough to hold all the values, and if INTEGERS is non-nil, no consing
2868 is done.
2870 If optional third arg RESEAT is non-nil, any previous markers on the
2871 REUSE list will be modified to point to nowhere.
2873 Return value is undefined if the last search failed. */)
2874 (Lisp_Object integers, Lisp_Object reuse, Lisp_Object reseat)
2876 Lisp_Object tail, prev;
2877 Lisp_Object *data;
2878 int i, len;
2880 if (!NILP (reseat))
2881 for (tail = reuse; CONSP (tail); tail = XCDR (tail))
2882 if (MARKERP (XCAR (tail)))
2884 unchain_marker (XMARKER (XCAR (tail)));
2885 XSETCAR (tail, Qnil);
2888 if (NILP (last_thing_searched))
2889 return Qnil;
2891 prev = Qnil;
2893 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs + 1)
2894 * sizeof (Lisp_Object));
2896 len = 0;
2897 for (i = 0; i < search_regs.num_regs; i++)
2899 EMACS_INT start = search_regs.start[i];
2900 if (start >= 0)
2902 if (EQ (last_thing_searched, Qt)
2903 || ! NILP (integers))
2905 XSETFASTINT (data[2 * i], start);
2906 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2908 else if (BUFFERP (last_thing_searched))
2910 data[2 * i] = Fmake_marker ();
2911 Fset_marker (data[2 * i],
2912 make_number (start),
2913 last_thing_searched);
2914 data[2 * i + 1] = Fmake_marker ();
2915 Fset_marker (data[2 * i + 1],
2916 make_number (search_regs.end[i]),
2917 last_thing_searched);
2919 else
2920 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2921 abort ();
2923 len = 2 * i + 2;
2925 else
2926 data[2 * i] = data[2 * i + 1] = Qnil;
2929 if (BUFFERP (last_thing_searched) && !NILP (integers))
2931 data[len] = last_thing_searched;
2932 len++;
2935 /* If REUSE is not usable, cons up the values and return them. */
2936 if (! CONSP (reuse))
2937 return Flist (len, data);
2939 /* If REUSE is a list, store as many value elements as will fit
2940 into the elements of REUSE. */
2941 for (i = 0, tail = reuse; CONSP (tail);
2942 i++, tail = XCDR (tail))
2944 if (i < len)
2945 XSETCAR (tail, data[i]);
2946 else
2947 XSETCAR (tail, Qnil);
2948 prev = tail;
2951 /* If we couldn't fit all value elements into REUSE,
2952 cons up the rest of them and add them to the end of REUSE. */
2953 if (i < len)
2954 XSETCDR (prev, Flist (len - i, data + i));
2956 return reuse;
2959 /* We used to have an internal use variant of `reseat' described as:
2961 If RESEAT is `evaporate', put the markers back on the free list
2962 immediately. No other references to the markers must exist in this
2963 case, so it is used only internally on the unwind stack and
2964 save-match-data from Lisp.
2966 But it was ill-conceived: those supposedly-internal markers get exposed via
2967 the undo-list, so freeing them here is unsafe. */
2969 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 2, 0,
2970 doc: /* Set internal data on last search match from elements of LIST.
2971 LIST should have been created by calling `match-data' previously.
2973 If optional arg RESEAT is non-nil, make markers on LIST point nowhere. */)
2974 (register Lisp_Object list, Lisp_Object reseat)
2976 register int i;
2977 register Lisp_Object marker;
2979 if (running_asynch_code)
2980 save_search_regs ();
2982 CHECK_LIST (list);
2984 /* Unless we find a marker with a buffer or an explicit buffer
2985 in LIST, assume that this match data came from a string. */
2986 last_thing_searched = Qt;
2988 /* Allocate registers if they don't already exist. */
2990 int length = XFASTINT (Flength (list)) / 2;
2992 if (length > search_regs.num_regs)
2994 if (search_regs.num_regs == 0)
2996 search_regs.start
2997 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2998 search_regs.end
2999 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
3001 else
3003 search_regs.start
3004 = (regoff_t *) xrealloc (search_regs.start,
3005 length * sizeof (regoff_t));
3006 search_regs.end
3007 = (regoff_t *) xrealloc (search_regs.end,
3008 length * sizeof (regoff_t));
3011 for (i = search_regs.num_regs; i < length; i++)
3012 search_regs.start[i] = -1;
3014 search_regs.num_regs = length;
3017 for (i = 0; CONSP (list); i++)
3019 marker = XCAR (list);
3020 if (BUFFERP (marker))
3022 last_thing_searched = marker;
3023 break;
3025 if (i >= length)
3026 break;
3027 if (NILP (marker))
3029 search_regs.start[i] = -1;
3030 list = XCDR (list);
3032 else
3034 EMACS_INT from;
3035 Lisp_Object m;
3037 m = marker;
3038 if (MARKERP (marker))
3040 if (XMARKER (marker)->buffer == 0)
3041 XSETFASTINT (marker, 0);
3042 else
3043 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
3046 CHECK_NUMBER_COERCE_MARKER (marker);
3047 from = XINT (marker);
3049 if (!NILP (reseat) && MARKERP (m))
3051 unchain_marker (XMARKER (m));
3052 XSETCAR (list, Qnil);
3055 if ((list = XCDR (list), !CONSP (list)))
3056 break;
3058 m = marker = XCAR (list);
3060 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
3061 XSETFASTINT (marker, 0);
3063 CHECK_NUMBER_COERCE_MARKER (marker);
3064 search_regs.start[i] = from;
3065 search_regs.end[i] = XINT (marker);
3067 if (!NILP (reseat) && MARKERP (m))
3069 unchain_marker (XMARKER (m));
3070 XSETCAR (list, Qnil);
3073 list = XCDR (list);
3076 for (; i < search_regs.num_regs; i++)
3077 search_regs.start[i] = -1;
3080 return Qnil;
3083 /* If non-zero the match data have been saved in saved_search_regs
3084 during the execution of a sentinel or filter. */
3085 static int search_regs_saved;
3086 static struct re_registers saved_search_regs;
3087 static Lisp_Object saved_last_thing_searched;
3089 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
3090 if asynchronous code (filter or sentinel) is running. */
3091 static void
3092 save_search_regs (void)
3094 if (!search_regs_saved)
3096 saved_search_regs.num_regs = search_regs.num_regs;
3097 saved_search_regs.start = search_regs.start;
3098 saved_search_regs.end = search_regs.end;
3099 saved_last_thing_searched = last_thing_searched;
3100 last_thing_searched = Qnil;
3101 search_regs.num_regs = 0;
3102 search_regs.start = 0;
3103 search_regs.end = 0;
3105 search_regs_saved = 1;
3109 /* Called upon exit from filters and sentinels. */
3110 void
3111 restore_search_regs (void)
3113 if (search_regs_saved)
3115 if (search_regs.num_regs > 0)
3117 xfree (search_regs.start);
3118 xfree (search_regs.end);
3120 search_regs.num_regs = saved_search_regs.num_regs;
3121 search_regs.start = saved_search_regs.start;
3122 search_regs.end = saved_search_regs.end;
3123 last_thing_searched = saved_last_thing_searched;
3124 saved_last_thing_searched = Qnil;
3125 search_regs_saved = 0;
3129 static Lisp_Object
3130 unwind_set_match_data (Lisp_Object list)
3132 /* It is NOT ALWAYS safe to free (evaporate) the markers immediately. */
3133 return Fset_match_data (list, Qt);
3136 /* Called to unwind protect the match data. */
3137 void
3138 record_unwind_save_match_data (void)
3140 record_unwind_protect (unwind_set_match_data,
3141 Fmatch_data (Qnil, Qnil, Qnil));
3144 /* Quote a string to inactivate reg-expr chars */
3146 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
3147 doc: /* Return a regexp string which matches exactly STRING and nothing else. */)
3148 (Lisp_Object string)
3150 register char *in, *out, *end;
3151 register char *temp;
3152 int backslashes_added = 0;
3154 CHECK_STRING (string);
3156 temp = (char *) alloca (SBYTES (string) * 2);
3158 /* Now copy the data into the new string, inserting escapes. */
3160 in = SSDATA (string);
3161 end = in + SBYTES (string);
3162 out = temp;
3164 for (; in != end; in++)
3166 if (*in == '['
3167 || *in == '*' || *in == '.' || *in == '\\'
3168 || *in == '?' || *in == '+'
3169 || *in == '^' || *in == '$')
3170 *out++ = '\\', backslashes_added++;
3171 *out++ = *in;
3174 return make_specified_string (temp,
3175 SCHARS (string) + backslashes_added,
3176 out - temp,
3177 STRING_MULTIBYTE (string));
3180 void
3181 syms_of_search (void)
3183 register int i;
3185 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
3187 searchbufs[i].buf.allocated = 100;
3188 searchbufs[i].buf.buffer = (unsigned char *) xmalloc (100);
3189 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
3190 searchbufs[i].regexp = Qnil;
3191 searchbufs[i].whitespace_regexp = Qnil;
3192 searchbufs[i].syntax_table = Qnil;
3193 staticpro (&searchbufs[i].regexp);
3194 staticpro (&searchbufs[i].whitespace_regexp);
3195 staticpro (&searchbufs[i].syntax_table);
3196 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
3198 searchbuf_head = &searchbufs[0];
3200 DEFSYM (Qsearch_failed, "search-failed");
3201 DEFSYM (Qinvalid_regexp, "invalid-regexp");
3203 Fput (Qsearch_failed, Qerror_conditions,
3204 pure_cons (Qsearch_failed, pure_cons (Qerror, Qnil)));
3205 Fput (Qsearch_failed, Qerror_message,
3206 make_pure_c_string ("Search failed"));
3208 Fput (Qinvalid_regexp, Qerror_conditions,
3209 pure_cons (Qinvalid_regexp, pure_cons (Qerror, Qnil)));
3210 Fput (Qinvalid_regexp, Qerror_message,
3211 make_pure_c_string ("Invalid regexp"));
3213 last_thing_searched = Qnil;
3214 staticpro (&last_thing_searched);
3216 saved_last_thing_searched = Qnil;
3217 staticpro (&saved_last_thing_searched);
3219 DEFVAR_LISP ("search-spaces-regexp", Vsearch_spaces_regexp,
3220 doc: /* Regexp to substitute for bunches of spaces in regexp search.
3221 Some commands use this for user-specified regexps.
3222 Spaces that occur inside character classes or repetition operators
3223 or other such regexp constructs are not replaced with this.
3224 A value of nil (which is the normal value) means treat spaces literally. */);
3225 Vsearch_spaces_regexp = Qnil;
3227 DEFVAR_LISP ("inhibit-changing-match-data", Vinhibit_changing_match_data,
3228 doc: /* Internal use only.
3229 If non-nil, the primitive searching and matching functions
3230 such as `looking-at', `string-match', `re-search-forward', etc.,
3231 do not set the match data. The proper way to use this variable
3232 is to bind it with `let' around a small expression. */);
3233 Vinhibit_changing_match_data = Qnil;
3235 defsubr (&Slooking_at);
3236 defsubr (&Sposix_looking_at);
3237 defsubr (&Sstring_match);
3238 defsubr (&Sposix_string_match);
3239 defsubr (&Ssearch_forward);
3240 defsubr (&Ssearch_backward);
3241 defsubr (&Sword_search_forward);
3242 defsubr (&Sword_search_backward);
3243 defsubr (&Sword_search_forward_lax);
3244 defsubr (&Sword_search_backward_lax);
3245 defsubr (&Sre_search_forward);
3246 defsubr (&Sre_search_backward);
3247 defsubr (&Sposix_search_forward);
3248 defsubr (&Sposix_search_backward);
3249 defsubr (&Sreplace_match);
3250 defsubr (&Smatch_beginning);
3251 defsubr (&Smatch_end);
3252 defsubr (&Smatch_data);
3253 defsubr (&Sset_match_data);
3254 defsubr (&Sregexp_quote);