1 \input texinfo @c -*-texinfo-*-
2 @comment %**start of header (This is for running Texinfo on a region.)
4 @setfilename ../../info/calc
6 @settitle GNU Emacs Calc Manual
8 @comment %**end of header (This is for running Texinfo on a region.)
10 @include emacsver.texi
12 @c The following macros are used for conditional output for single lines.
14 @c `foo' will appear only in TeX output
16 @c `foo' will appear only in non-TeX output
18 @c @expr{expr} will typeset an expression;
19 @c $x$ in TeX, @samp{x} otherwise.
24 @alias infoline=comment
38 @alias texline=comment
39 @macro infoline{stuff}
58 % Suggested by Karl Berry <karl@@freefriends.org>
59 \gdef\!{\mskip-\thinmuskip}
62 @c Fix some other things specifically for this manual.
65 @mathcode`@:=`@: @c Make Calc fractions come out right in math mode
67 \gdef\coloneq{\mathrel{\mathord:\mathord=}}
69 \gdef\beforedisplay{\vskip-10pt}
70 \gdef\afterdisplay{\vskip-5pt}
71 \gdef\beforedisplayh{\vskip-25pt}
72 \gdef\afterdisplayh{\vskip-10pt}
74 @newdimen@kyvpos @kyvpos=0pt
75 @newdimen@kyhpos @kyhpos=0pt
76 @newcount@calcclubpenalty @calcclubpenalty=1000
79 @newtoks@calcoldeverypar @calcoldeverypar=@everypar
80 @everypar={@calceverypar@the@calcoldeverypar}
81 @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi
82 @catcode`@\=0 \catcode`\@=11
84 \catcode`\@=0 @catcode`@\=@active
90 This file documents Calc, the GNU Emacs calculator.
93 This file documents Calc, the GNU Emacs calculator, included with
94 GNU Emacs @value{EMACSVER}.
97 Copyright @copyright{} 1990--1991, 2001--2013 Free Software Foundation, Inc.
100 Permission is granted to copy, distribute and/or modify this document
101 under the terms of the GNU Free Documentation License, Version 1.3 or
102 any later version published by the Free Software Foundation; with the
103 Invariant Sections being just ``GNU GENERAL PUBLIC LICENSE'', with the
104 Front-Cover texts being ``A GNU Manual,'' and with the Back-Cover
105 Texts as in (a) below. A copy of the license is included in the section
106 entitled ``GNU Free Documentation License.''
108 (a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
109 modify this GNU manual.''
113 @dircategory Emacs misc features
115 * Calc: (calc). Advanced desk calculator and mathematical tool.
120 @center @titlefont{Calc Manual}
122 @center GNU Emacs Calc
125 @center Dave Gillespie
126 @center daveg@@synaptics.com
129 @vskip 0pt plus 1filll
142 @node Top, Getting Started, (dir), (dir)
143 @chapter The GNU Emacs Calculator
146 @dfn{Calc} is an advanced desk calculator and mathematical tool
147 written by Dave Gillespie that runs as part of the GNU Emacs environment.
149 This manual, also written (mostly) by Dave Gillespie, is divided into
150 three major parts: ``Getting Started,'' the ``Calc Tutorial,'' and the
151 ``Calc Reference.'' The Tutorial introduces all the major aspects of
152 Calculator use in an easy, hands-on way. The remainder of the manual is
153 a complete reference to the features of the Calculator.
157 For help in the Emacs Info system (which you are using to read this
158 file), type @kbd{?}. (You can also type @kbd{h} to run through a
159 longer Info tutorial.)
165 * Getting Started:: General description and overview.
167 * Interactive Tutorial::
169 * Tutorial:: A step-by-step introduction for beginners.
171 * Introduction:: Introduction to the Calc reference manual.
172 * Data Types:: Types of objects manipulated by Calc.
173 * Stack and Trail:: Manipulating the stack and trail buffers.
174 * Mode Settings:: Adjusting display format and other modes.
175 * Arithmetic:: Basic arithmetic functions.
176 * Scientific Functions:: Transcendentals and other scientific functions.
177 * Matrix Functions:: Operations on vectors and matrices.
178 * Algebra:: Manipulating expressions algebraically.
179 * Units:: Operations on numbers with units.
180 * Store and Recall:: Storing and recalling variables.
181 * Graphics:: Commands for making graphs of data.
182 * Kill and Yank:: Moving data into and out of Calc.
183 * Keypad Mode:: Operating Calc from a keypad.
184 * Embedded Mode:: Working with formulas embedded in a file.
185 * Programming:: Calc as a programmable calculator.
187 * Copying:: How you can copy and share Calc.
188 * GNU Free Documentation License:: The license for this documentation.
189 * Customizing Calc:: Customizing Calc.
190 * Reporting Bugs:: How to report bugs and make suggestions.
192 * Summary:: Summary of Calc commands and functions.
194 * Key Index:: The standard Calc key sequences.
195 * Command Index:: The interactive Calc commands.
196 * Function Index:: Functions (in algebraic formulas).
197 * Concept Index:: General concepts.
198 * Variable Index:: Variables used by Calc (both user and internal).
199 * Lisp Function Index:: Internal Lisp math functions.
203 @node Getting Started, Interactive Tutorial, Top, Top
206 @node Getting Started, Tutorial, Top, Top
208 @chapter Getting Started
210 This chapter provides a general overview of Calc, the GNU Emacs
211 Calculator: What it is, how to start it and how to exit from it,
212 and what are the various ways that it can be used.
216 * About This Manual::
217 * Notations Used in This Manual::
218 * Demonstration of Calc::
220 * History and Acknowledgments::
223 @node What is Calc, About This Manual, Getting Started, Getting Started
224 @section What is Calc?
227 @dfn{Calc} is an advanced calculator and mathematical tool that runs as
228 part of the GNU Emacs environment. Very roughly based on the HP-28/48
229 series of calculators, its many features include:
233 Choice of algebraic or RPN (stack-based) entry of calculations.
236 Arbitrary precision integers and floating-point numbers.
239 Arithmetic on rational numbers, complex numbers (rectangular and polar),
240 error forms with standard deviations, open and closed intervals, vectors
241 and matrices, dates and times, infinities, sets, quantities with units,
242 and algebraic formulas.
245 Mathematical operations such as logarithms and trigonometric functions.
248 Programmer's features (bitwise operations, non-decimal numbers).
251 Financial functions such as future value and internal rate of return.
254 Number theoretical features such as prime factorization and arithmetic
255 modulo @var{m} for any @var{m}.
258 Algebraic manipulation features, including symbolic calculus.
261 Moving data to and from regular editing buffers.
264 Embedded mode for manipulating Calc formulas and data directly
265 inside any editing buffer.
268 Graphics using GNUPLOT, a versatile (and free) plotting program.
271 Easy programming using keyboard macros, algebraic formulas,
272 algebraic rewrite rules, or extended Emacs Lisp.
275 Calc tries to include a little something for everyone; as a result it is
276 large and might be intimidating to the first-time user. If you plan to
277 use Calc only as a traditional desk calculator, all you really need to
278 read is the ``Getting Started'' chapter of this manual and possibly the
279 first few sections of the tutorial. As you become more comfortable with
280 the program you can learn its additional features. Calc does not
281 have the scope and depth of a fully-functional symbolic math package,
282 but Calc has the advantages of convenience, portability, and freedom.
284 @node About This Manual, Notations Used in This Manual, What is Calc, Getting Started
285 @section About This Manual
288 This document serves as a complete description of the GNU Emacs
289 Calculator. It works both as an introduction for novices and as
290 a reference for experienced users. While it helps to have some
291 experience with GNU Emacs in order to get the most out of Calc,
292 this manual ought to be readable even if you don't know or use Emacs
295 This manual is divided into three major parts: the ``Getting
296 Started'' chapter you are reading now, the Calc tutorial, and the Calc
299 @c This manual has been printed in two volumes, the @dfn{Tutorial} and the
300 @c @dfn{Reference}. Both volumes include a copy of the ``Getting Started''
303 If you are in a hurry to use Calc, there is a brief ``demonstration''
304 below which illustrates the major features of Calc in just a couple of
305 pages. If you don't have time to go through the full tutorial, this
306 will show you everything you need to know to begin.
307 @xref{Demonstration of Calc}.
309 The tutorial chapter walks you through the various parts of Calc
310 with lots of hands-on examples and explanations. If you are new
311 to Calc and you have some time, try going through at least the
312 beginning of the tutorial. The tutorial includes about 70 exercises
313 with answers. These exercises give you some guided practice with
314 Calc, as well as pointing out some interesting and unusual ways
317 The reference section discusses Calc in complete depth. You can read
318 the reference from start to finish if you want to learn every aspect
319 of Calc. Or, you can look in the table of contents or the Concept
320 Index to find the parts of the manual that discuss the things you
323 @c @cindex Marginal notes
324 Every Calc keyboard command is listed in the Calc Summary, and also
325 in the Key Index. Algebraic functions, @kbd{M-x} commands, and
326 variables also have their own indices.
328 @c @infoline In the printed manual, each
329 @c paragraph that is referenced in the Key or Function Index is marked
330 @c in the margin with its index entry.
332 @c [fix-ref Help Commands]
333 You can access this manual on-line at any time within Calc by pressing
334 the @kbd{h i} key sequence. Outside of the Calc window, you can press
335 @kbd{C-x * i} to read the manual on-line. From within Calc the command
336 @kbd{h t} will jump directly to the Tutorial; from outside of Calc the
337 command @kbd{C-x * t} will jump to the Tutorial and start Calc if
338 necessary. Pressing @kbd{h s} or @kbd{C-x * s} will take you directly
339 to the Calc Summary. Within Calc, you can also go to the part of the
340 manual describing any Calc key, function, or variable using
341 @w{@kbd{h k}}, @kbd{h f}, or @kbd{h v}, respectively. @xref{Help Commands}.
344 The Calc manual can be printed, but because the manual is so large, you
345 should only make a printed copy if you really need it. To print the
346 manual, you will need the @TeX{} typesetting program (this is a free
347 program by Donald Knuth at Stanford University) as well as the
348 @file{texindex} program and @file{texinfo.tex} file, both of which can
349 be obtained from the FSF as part of the @code{texinfo} package.
350 To print the Calc manual in one huge tome, you will need the
351 source code to this manual, @file{calc.texi}, available as part of the
352 Emacs source. Once you have this file, type @kbd{texi2dvi calc.texi}.
353 Alternatively, change to the @file{man} subdirectory of the Emacs
354 source distribution, and type @kbd{make calc.dvi}. (Don't worry if you
355 get some ``overfull box'' warnings while @TeX{} runs.)
356 The result will be a device-independent output file called
357 @file{calc.dvi}, which you must print in whatever way is right
358 for your system. On many systems, the command is
371 @c Printed copies of this manual are also available from the Free Software
374 @node Notations Used in This Manual, Demonstration of Calc, About This Manual, Getting Started
375 @section Notations Used in This Manual
378 This section describes the various notations that are used
379 throughout the Calc manual.
381 In keystroke sequences, uppercase letters mean you must hold down
382 the shift key while typing the letter. Keys pressed with Control
383 held down are shown as @kbd{C-x}. Keys pressed with Meta held down
384 are shown as @kbd{M-x}. Other notations are @key{RET} for the
385 Return key, @key{SPC} for the space bar, @key{TAB} for the Tab key,
386 @key{DEL} for the Delete key, and @key{LFD} for the Line-Feed key.
387 The @key{DEL} key is called Backspace on some keyboards, it is
388 whatever key you would use to correct a simple typing error when
389 regularly using Emacs.
391 (If you don't have the @key{LFD} or @key{TAB} keys on your keyboard,
392 the @kbd{C-j} and @kbd{C-i} keys are equivalent to them, respectively.
393 If you don't have a Meta key, look for Alt or Extend Char. You can
394 also press @key{ESC} or @kbd{C-[} first to get the same effect, so
395 that @kbd{M-x}, @kbd{@key{ESC} x}, and @kbd{C-[ x} are all equivalent.)
397 Sometimes the @key{RET} key is not shown when it is ``obvious''
398 that you must press @key{RET} to proceed. For example, the @key{RET}
399 is usually omitted in key sequences like @kbd{M-x calc-keypad @key{RET}}.
401 Commands are generally shown like this: @kbd{p} (@code{calc-precision})
402 or @kbd{C-x * k} (@code{calc-keypad}). This means that the command is
403 normally used by pressing the @kbd{p} key or @kbd{C-x * k} key sequence,
404 but it also has the full-name equivalent shown, e.g., @kbd{M-x calc-precision}.
406 Commands that correspond to functions in algebraic notation
407 are written: @kbd{C} (@code{calc-cos}) [@code{cos}]. This means
408 the @kbd{C} key is equivalent to @kbd{M-x calc-cos}, and that
409 the corresponding function in an algebraic-style formula would
410 be @samp{cos(@var{x})}.
412 A few commands don't have key equivalents: @code{calc-sincos}
415 @node Demonstration of Calc, Using Calc, Notations Used in This Manual, Getting Started
416 @section A Demonstration of Calc
419 @cindex Demonstration of Calc
420 This section will show some typical small problems being solved with
421 Calc. The focus is more on demonstration than explanation, but
422 everything you see here will be covered more thoroughly in the
425 To begin, start Emacs if necessary (usually the command @code{emacs}
426 does this), and type @kbd{C-x * c} to start the
427 Calculator. (You can also use @kbd{M-x calc} if this doesn't work.
428 @xref{Starting Calc}, for various ways of starting the Calculator.)
430 Be sure to type all the sample input exactly, especially noting the
431 difference between lower-case and upper-case letters. Remember,
432 @key{RET}, @key{TAB}, @key{DEL}, and @key{SPC} are the Return, Tab,
433 Delete, and Space keys.
435 @strong{RPN calculation.} In RPN, you type the input number(s) first,
436 then the command to operate on the numbers.
439 Type @kbd{2 @key{RET} 3 + Q} to compute
440 @texline @math{\sqrt{2+3} = 2.2360679775}.
441 @infoline the square root of 2+3, which is 2.2360679775.
444 Type @kbd{P 2 ^} to compute
445 @texline @math{\pi^2 = 9.86960440109}.
446 @infoline the value of `pi' squared, 9.86960440109.
449 Type @key{TAB} to exchange the order of these two results.
452 Type @kbd{- I H S} to subtract these results and compute the Inverse
453 Hyperbolic sine of the difference, 2.72996136574.
456 Type @key{DEL} to erase this result.
458 @strong{Algebraic calculation.} You can also enter calculations using
459 conventional ``algebraic'' notation. To enter an algebraic formula,
460 use the apostrophe key.
463 Type @kbd{' sqrt(2+3) @key{RET}} to compute
464 @texline @math{\sqrt{2+3}}.
465 @infoline the square root of 2+3.
468 Type @kbd{' pi^2 @key{RET}} to enter
469 @texline @math{\pi^2}.
470 @infoline `pi' squared.
471 To evaluate this symbolic formula as a number, type @kbd{=}.
474 Type @kbd{' arcsinh($ - $$) @key{RET}} to subtract the second-most-recent
475 result from the most-recent and compute the Inverse Hyperbolic sine.
477 @strong{Keypad mode.} If you are using the X window system, press
478 @w{@kbd{C-x * k}} to get Keypad mode. (If you don't use X, skip to
482 Click on the @key{2}, @key{ENTER}, @key{3}, @key{+}, and @key{SQRT}
483 ``buttons'' using your left mouse button.
486 Click on @key{PI}, @key{2}, and @tfn{y^x}.
489 Click on @key{INV}, then @key{ENTER} to swap the two results.
492 Click on @key{-}, @key{INV}, @key{HYP}, and @key{SIN}.
495 Click on @key{<-} to erase the result, then click @key{OFF} to turn
496 the Keypad Calculator off.
498 @strong{Grabbing data.} Type @kbd{C-x * x} if necessary to exit Calc.
499 Now select the following numbers as an Emacs region: ``Mark'' the
500 front of the list by typing @kbd{C-@key{SPC}} or @kbd{C-@@} there,
501 then move to the other end of the list. (Either get this list from
502 the on-line copy of this manual, accessed by @w{@kbd{C-x * i}}, or just
503 type these numbers into a scratch file.) Now type @kbd{C-x * g} to
504 ``grab'' these numbers into Calc.
515 The result @samp{[1.23, 1.97, 1.6, 2, 1.19, 1.08]} is a Calc ``vector.''
516 Type @w{@kbd{V R +}} to compute the sum of these numbers.
519 Type @kbd{U} to Undo this command, then type @kbd{V R *} to compute
520 the product of the numbers.
523 You can also grab data as a rectangular matrix. Place the cursor on
524 the upper-leftmost @samp{1} and set the mark, then move to just after
525 the lower-right @samp{8} and press @kbd{C-x * r}.
528 Type @kbd{v t} to transpose this
529 @texline @math{3\times2}
532 @texline @math{2\times3}
534 matrix. Type @w{@kbd{v u}} to unpack the rows into two separate
535 vectors. Now type @w{@kbd{V R + @key{TAB} V R +}} to compute the sums
536 of the two original columns. (There is also a special
537 grab-and-sum-columns command, @kbd{C-x * :}.)
539 @strong{Units conversion.} Units are entered algebraically.
540 Type @w{@kbd{' 43 mi/hr @key{RET}}} to enter the quantity 43 miles-per-hour.
541 Type @w{@kbd{u c km/hr @key{RET}}}. Type @w{@kbd{u c m/s @key{RET}}}.
543 @strong{Date arithmetic.} Type @kbd{t N} to get the current date and
544 time. Type @kbd{90 +} to find the date 90 days from now. Type
545 @kbd{' <25 dec 87> @key{RET}} to enter a date, then @kbd{- 7 /} to see how
546 many weeks have passed since then.
548 @strong{Algebra.} Algebraic entries can also include formulas
549 or equations involving variables. Type @kbd{@w{' [x + y} = a, x y = 1] @key{RET}}
550 to enter a pair of equations involving three variables.
551 (Note the leading apostrophe in this example; also, note that the space
552 in @samp{x y} is required.) Type @w{@kbd{a S x,y @key{RET}}} to solve
553 these equations for the variables @expr{x} and @expr{y}.
556 Type @kbd{d B} to view the solutions in more readable notation.
557 Type @w{@kbd{d C}} to view them in C language notation, @kbd{d T}
558 to view them in the notation for the @TeX{} typesetting system,
559 and @kbd{d L} to view them in the notation for the @LaTeX{} typesetting
560 system. Type @kbd{d N} to return to normal notation.
563 Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @expr{a = 7.5} in these formulas.
564 (That's the letter @kbd{l}, not the numeral @kbd{1}.)
567 @strong{Help functions.} You can read about any command in the on-line
568 manual. Type @kbd{C-x * c} to return to Calc after each of these
569 commands: @kbd{h k t N} to read about the @kbd{t N} command,
570 @kbd{h f sqrt @key{RET}} to read about the @code{sqrt} function, and
571 @kbd{h s} to read the Calc summary.
574 @strong{Help functions.} You can read about any command in the on-line
575 manual. Remember to type the letter @kbd{l}, then @kbd{C-x * c}, to
576 return here after each of these commands: @w{@kbd{h k t N}} to read
577 about the @w{@kbd{t N}} command, @kbd{h f sqrt @key{RET}} to read about the
578 @code{sqrt} function, and @kbd{h s} to read the Calc summary.
581 Press @key{DEL} repeatedly to remove any leftover results from the stack.
582 To exit from Calc, press @kbd{q} or @kbd{C-x * c} again.
584 @node Using Calc, History and Acknowledgments, Demonstration of Calc, Getting Started
588 Calc has several user interfaces that are specialized for
589 different kinds of tasks. As well as Calc's standard interface,
590 there are Quick mode, Keypad mode, and Embedded mode.
594 * The Standard Interface::
595 * Quick Mode Overview::
596 * Keypad Mode Overview::
597 * Standalone Operation::
598 * Embedded Mode Overview::
599 * Other C-x * Commands::
602 @node Starting Calc, The Standard Interface, Using Calc, Using Calc
603 @subsection Starting Calc
606 On most systems, you can type @kbd{C-x *} to start the Calculator.
607 The key sequence @kbd{C-x *} is bound to the command @code{calc-dispatch},
608 which can be rebound if convenient (@pxref{Customizing Calc}).
610 When you press @kbd{C-x *}, Emacs waits for you to press a second key to
611 complete the command. In this case, you will follow @kbd{C-x *} with a
612 letter (upper- or lower-case, it doesn't matter for @kbd{C-x *}) that says
613 which Calc interface you want to use.
615 To get Calc's standard interface, type @kbd{C-x * c}. To get
616 Keypad mode, type @kbd{C-x * k}. Type @kbd{C-x * ?} to get a brief
617 list of the available options, and type a second @kbd{?} to get
620 To ease typing, @kbd{C-x * *} also works to start Calc. It starts the
621 same interface (either @kbd{C-x * c} or @w{@kbd{C-x * k}}) that you last
622 used, selecting the @kbd{C-x * c} interface by default.
624 If @kbd{C-x *} doesn't work for you, you can always type explicit
625 commands like @kbd{M-x calc} (for the standard user interface) or
626 @w{@kbd{M-x calc-keypad}} (for Keypad mode). First type @kbd{M-x}
627 (that's Meta with the letter @kbd{x}), then, at the prompt,
628 type the full command (like @kbd{calc-keypad}) and press Return.
630 The same commands (like @kbd{C-x * c} or @kbd{C-x * *}) that start
631 the Calculator also turn it off if it is already on.
633 @node The Standard Interface, Quick Mode Overview, Starting Calc, Using Calc
634 @subsection The Standard Calc Interface
637 @cindex Standard user interface
638 Calc's standard interface acts like a traditional RPN calculator,
639 operated by the normal Emacs keyboard. When you type @kbd{C-x * c}
640 to start the Calculator, the Emacs screen splits into two windows
641 with the file you were editing on top and Calc on the bottom.
647 --**-Emacs: myfile (Fundamental)----All----------------------
648 --- Emacs Calculator Mode --- |Emacs Calculator Trail
656 --%*-Calc: 12 Deg (Calculator)----All----- --%*- *Calc Trail*
660 In this figure, the mode-line for @file{myfile} has moved up and the
661 ``Calculator'' window has appeared below it. As you can see, Calc
662 actually makes two windows side-by-side. The lefthand one is
663 called the @dfn{stack window} and the righthand one is called the
664 @dfn{trail window.} The stack holds the numbers involved in the
665 calculation you are currently performing. The trail holds a complete
666 record of all calculations you have done. In a desk calculator with
667 a printer, the trail corresponds to the paper tape that records what
670 In this case, the trail shows that four numbers (17.3, 3, 2, and 4)
671 were first entered into the Calculator, then the 2 and 4 were
672 multiplied to get 8, then the 3 and 8 were subtracted to get @mathit{-5}.
673 (The @samp{>} symbol shows that this was the most recent calculation.)
674 The net result is the two numbers 17.3 and @mathit{-5} sitting on the stack.
676 Most Calculator commands deal explicitly with the stack only, but
677 there is a set of commands that allow you to search back through
678 the trail and retrieve any previous result.
680 Calc commands use the digits, letters, and punctuation keys.
681 Shifted (i.e., upper-case) letters are different from lowercase
682 letters. Some letters are @dfn{prefix} keys that begin two-letter
683 commands. For example, @kbd{e} means ``enter exponent'' and shifted
684 @kbd{E} means @expr{e^x}. With the @kbd{d} (``display modes'') prefix
685 the letter ``e'' takes on very different meanings: @kbd{d e} means
686 ``engineering notation'' and @kbd{d E} means ``@dfn{eqn} language mode.''
688 There is nothing stopping you from switching out of the Calc
689 window and back into your editing window, say by using the Emacs
690 @w{@kbd{C-x o}} (@code{other-window}) command. When the cursor is
691 inside a regular window, Emacs acts just like normal. When the
692 cursor is in the Calc stack or trail windows, keys are interpreted
695 When you quit by pressing @kbd{C-x * c} a second time, the Calculator
696 windows go away but the actual Stack and Trail are not gone, just
697 hidden. When you press @kbd{C-x * c} once again you will get the
698 same stack and trail contents you had when you last used the
701 The Calculator does not remember its state between Emacs sessions.
702 Thus if you quit Emacs and start it again, @kbd{C-x * c} will give you
703 a fresh stack and trail. There is a command (@kbd{m m}) that lets
704 you save your favorite mode settings between sessions, though.
705 One of the things it saves is which user interface (standard or
706 Keypad) you last used; otherwise, a freshly started Emacs will
707 always treat @kbd{C-x * *} the same as @kbd{C-x * c}.
709 The @kbd{q} key is another equivalent way to turn the Calculator off.
711 If you type @kbd{C-x * b} first and then @kbd{C-x * c}, you get a
712 full-screen version of Calc (@code{full-calc}) in which the stack and
713 trail windows are still side-by-side but are now as tall as the whole
714 Emacs screen. When you press @kbd{q} or @kbd{C-x * c} again to quit,
715 the file you were editing before reappears. The @kbd{C-x * b} key
716 switches back and forth between ``big'' full-screen mode and the
717 normal partial-screen mode.
719 Finally, @kbd{C-x * o} (@code{calc-other-window}) is like @kbd{C-x * c}
720 except that the Calc window is not selected. The buffer you were
721 editing before remains selected instead. If you are in a Calc window,
722 then @kbd{C-x * o} will switch you out of it, being careful not to
723 switch you to the Calc Trail window. So @kbd{C-x * o} is a handy
724 way to switch out of Calc momentarily to edit your file; you can then
725 type @kbd{C-x * c} to switch back into Calc when you are done.
727 @node Quick Mode Overview, Keypad Mode Overview, The Standard Interface, Using Calc
728 @subsection Quick Mode (Overview)
731 @dfn{Quick mode} is a quick way to use Calc when you don't need the
732 full complexity of the stack and trail. To use it, type @kbd{C-x * q}
733 (@code{quick-calc}) in any regular editing buffer.
735 Quick mode is very simple: It prompts you to type any formula in
736 standard algebraic notation (like @samp{4 - 2/3}) and then displays
737 the result at the bottom of the Emacs screen (@mathit{3.33333333333}
738 in this case). You are then back in the same editing buffer you
739 were in before, ready to continue editing or to type @kbd{C-x * q}
740 again to do another quick calculation. The result of the calculation
741 will also be in the Emacs ``kill ring'' so that a @kbd{C-y} command
742 at this point will yank the result into your editing buffer.
744 Calc mode settings affect Quick mode, too, though you will have to
745 go into regular Calc (with @kbd{C-x * c}) to change the mode settings.
747 @c [fix-ref Quick Calculator mode]
748 @xref{Quick Calculator}, for further information.
750 @node Keypad Mode Overview, Standalone Operation, Quick Mode Overview, Using Calc
751 @subsection Keypad Mode (Overview)
754 @dfn{Keypad mode} is a mouse-based interface to the Calculator.
755 It is designed for use with terminals that support a mouse. If you
756 don't have a mouse, you will have to operate Keypad mode with your
757 arrow keys (which is probably more trouble than it's worth).
759 Type @kbd{C-x * k} to turn Keypad mode on or off. Once again you
760 get two new windows, this time on the righthand side of the screen
761 instead of at the bottom. The upper window is the familiar Calc
762 Stack; the lower window is a picture of a typical calculator keypad.
766 \advance \dimen0 by 24\baselineskip%
767 \ifdim \dimen0>\pagegoal \vfill\eject \fi%
772 |--- Emacs Calculator Mode ---
776 |--%*-Calc: 12 Deg (Calcul
777 |----+----+--Calc---+----+----1
778 |FLR |CEIL|RND |TRNC|CLN2|FLT |
779 |----+----+----+----+----+----|
780 | LN |EXP | |ABS |IDIV|MOD |
781 |----+----+----+----+----+----|
782 |SIN |COS |TAN |SQRT|y^x |1/x |
783 |----+----+----+----+----+----|
784 | ENTER |+/- |EEX |UNDO| <- |
785 |-----+---+-+--+--+-+---++----|
786 | INV | 7 | 8 | 9 | / |
787 |-----+-----+-----+-----+-----|
788 | HYP | 4 | 5 | 6 | * |
789 |-----+-----+-----+-----+-----|
790 |EXEC | 1 | 2 | 3 | - |
791 |-----+-----+-----+-----+-----|
792 | OFF | 0 | . | PI | + |
793 |-----+-----+-----+-----+-----+
797 Keypad mode is much easier for beginners to learn, because there
798 is no need to memorize lots of obscure key sequences. But not all
799 commands in regular Calc are available on the Keypad. You can
800 always switch the cursor into the Calc stack window to use
801 standard Calc commands if you need. Serious Calc users, though,
802 often find they prefer the standard interface over Keypad mode.
804 To operate the Calculator, just click on the ``buttons'' of the
805 keypad using your left mouse button. To enter the two numbers
806 shown here you would click @w{@kbd{1 7 .@: 3 ENTER 5 +/- ENTER}}; to
807 add them together you would then click @kbd{+} (to get 12.3 on
810 If you click the right mouse button, the top three rows of the
811 keypad change to show other sets of commands, such as advanced
812 math functions, vector operations, and operations on binary
815 Because Keypad mode doesn't use the regular keyboard, Calc leaves
816 the cursor in your original editing buffer. You can type in
817 this buffer in the usual way while also clicking on the Calculator
818 keypad. One advantage of Keypad mode is that you don't need an
819 explicit command to switch between editing and calculating.
821 If you press @kbd{C-x * b} first, you get a full-screen Keypad mode
822 (@code{full-calc-keypad}) with three windows: The keypad in the lower
823 left, the stack in the lower right, and the trail on top.
825 @c [fix-ref Keypad Mode]
826 @xref{Keypad Mode}, for further information.
828 @node Standalone Operation, Embedded Mode Overview, Keypad Mode Overview, Using Calc
829 @subsection Standalone Operation
832 @cindex Standalone Operation
833 If you are not in Emacs at the moment but you wish to use Calc,
834 you must start Emacs first. If all you want is to run Calc, you
835 can give the commands:
845 emacs -f full-calc-keypad
849 which run a full-screen Calculator (as if by @kbd{C-x * b C-x * c}) or
850 a full-screen X-based Calculator (as if by @kbd{C-x * b C-x * k}).
851 In standalone operation, quitting the Calculator (by pressing
852 @kbd{q} or clicking on the keypad @key{EXIT} button) quits Emacs
855 @node Embedded Mode Overview, Other C-x * Commands, Standalone Operation, Using Calc
856 @subsection Embedded Mode (Overview)
859 @dfn{Embedded mode} is a way to use Calc directly from inside an
860 editing buffer. Suppose you have a formula written as part of a
874 and you wish to have Calc compute and format the derivative for
875 you and store this derivative in the buffer automatically. To
876 do this with Embedded mode, first copy the formula down to where
877 you want the result to be, leaving a blank line before and after the
892 Now, move the cursor onto this new formula and press @kbd{C-x * e}.
893 Calc will read the formula (using the surrounding blank lines to tell
894 how much text to read), then push this formula (invisibly) onto the Calc
895 stack. The cursor will stay on the formula in the editing buffer, but
896 the line with the formula will now appear as it would on the Calc stack
897 (in this case, it will be left-aligned) and the buffer's mode line will
898 change to look like the Calc mode line (with mode indicators like
899 @samp{12 Deg} and so on). Even though you are still in your editing
900 buffer, the keyboard now acts like the Calc keyboard, and any new result
901 you get is copied from the stack back into the buffer. To take the
902 derivative, you would type @kbd{a d x @key{RET}}.
916 (Note that by default, Calc gives division lower precedence than multiplication,
917 so that @samp{1 / x ln(x)} is equivalent to @samp{1 / (x ln(x))}.)
919 To make this look nicer, you might want to press @kbd{d =} to center
920 the formula, and even @kbd{d B} to use Big display mode.
929 % [calc-mode: justify: center]
930 % [calc-mode: language: big]
938 Calc has added annotations to the file to help it remember the modes
939 that were used for this formula. They are formatted like comments
940 in the @TeX{} typesetting language, just in case you are using @TeX{} or
941 @LaTeX{}. (In this example @TeX{} is not being used, so you might want
942 to move these comments up to the top of the file or otherwise put them
945 As an extra flourish, we can add an equation number using a
946 righthand label: Type @kbd{d @} (1) @key{RET}}.
950 % [calc-mode: justify: center]
951 % [calc-mode: language: big]
952 % [calc-mode: right-label: " (1)"]
960 To leave Embedded mode, type @kbd{C-x * e} again. The mode line
961 and keyboard will revert to the way they were before.
963 The related command @kbd{C-x * w} operates on a single word, which
964 generally means a single number, inside text. It searches for an
965 expression which ``looks'' like a number containing the point.
966 Here's an example of its use (before you try this, remove the Calc
967 annotations or use a new buffer so that the extra settings in the
968 annotations don't take effect):
971 A slope of one-third corresponds to an angle of 1 degrees.
974 Place the cursor on the @samp{1}, then type @kbd{C-x * w} to enable
975 Embedded mode on that number. Now type @kbd{3 /} (to get one-third),
976 and @kbd{I T} (the Inverse Tangent converts a slope into an angle),
977 then @w{@kbd{C-x * w}} again to exit Embedded mode.
980 A slope of one-third corresponds to an angle of 18.4349488229 degrees.
983 @c [fix-ref Embedded Mode]
984 @xref{Embedded Mode}, for full details.
986 @node Other C-x * Commands, , Embedded Mode Overview, Using Calc
987 @subsection Other @kbd{C-x *} Commands
990 Two more Calc-related commands are @kbd{C-x * g} and @kbd{C-x * r},
991 which ``grab'' data from a selected region of a buffer into the
992 Calculator. The region is defined in the usual Emacs way, by
993 a ``mark'' placed at one end of the region, and the Emacs
994 cursor or ``point'' placed at the other.
996 The @kbd{C-x * g} command reads the region in the usual left-to-right,
997 top-to-bottom order. The result is packaged into a Calc vector
998 of numbers and placed on the stack. Calc (in its standard
999 user interface) is then started. Type @kbd{v u} if you want
1000 to unpack this vector into separate numbers on the stack. Also,
1001 @kbd{C-u C-x * g} interprets the region as a single number or
1004 The @kbd{C-x * r} command reads a rectangle, with the point and
1005 mark defining opposite corners of the rectangle. The result
1006 is a matrix of numbers on the Calculator stack.
1008 Complementary to these is @kbd{C-x * y}, which ``yanks'' the
1009 value at the top of the Calc stack back into an editing buffer.
1010 If you type @w{@kbd{C-x * y}} while in such a buffer, the value is
1011 yanked at the current position. If you type @kbd{C-x * y} while
1012 in the Calc buffer, Calc makes an educated guess as to which
1013 editing buffer you want to use. The Calc window does not have
1014 to be visible in order to use this command, as long as there
1015 is something on the Calc stack.
1017 Here, for reference, is the complete list of @kbd{C-x *} commands.
1018 The shift, control, and meta keys are ignored for the keystroke
1019 following @kbd{C-x *}.
1022 Commands for turning Calc on and off:
1026 Turn Calc on or off, employing the same user interface as last time.
1028 @item =, +, -, /, \, &, #
1029 Alternatives for @kbd{*}.
1032 Turn Calc on or off using its standard bottom-of-the-screen
1033 interface. If Calc is already turned on but the cursor is not
1034 in the Calc window, move the cursor into the window.
1037 Same as @kbd{C}, but don't select the new Calc window. If
1038 Calc is already turned on and the cursor is in the Calc window,
1039 move it out of that window.
1042 Control whether @kbd{C-x * c} and @kbd{C-x * k} use the full screen.
1045 Use Quick mode for a single short calculation.
1048 Turn Calc Keypad mode on or off.
1051 Turn Calc Embedded mode on or off at the current formula.
1054 Turn Calc Embedded mode on or off, select the interesting part.
1057 Turn Calc Embedded mode on or off at the current word (number).
1060 Turn Calc on in a user-defined way, as defined by a @kbd{Z I} command.
1063 Quit Calc; turn off standard, Keypad, or Embedded mode if on.
1064 (This is like @kbd{q} or @key{OFF} inside of Calc.)
1071 Commands for moving data into and out of the Calculator:
1075 Grab the region into the Calculator as a vector.
1078 Grab the rectangular region into the Calculator as a matrix.
1081 Grab the rectangular region and compute the sums of its columns.
1084 Grab the rectangular region and compute the sums of its rows.
1087 Yank a value from the Calculator into the current editing buffer.
1094 Commands for use with Embedded mode:
1098 ``Activate'' the current buffer. Locate all formulas that
1099 contain @samp{:=} or @samp{=>} symbols and record their locations
1100 so that they can be updated automatically as variables are changed.
1103 Duplicate the current formula immediately below and select
1107 Insert a new formula at the current point.
1110 Move the cursor to the next active formula in the buffer.
1113 Move the cursor to the previous active formula in the buffer.
1116 Update (i.e., as if by the @kbd{=} key) the formula at the current point.
1119 Edit (as if by @code{calc-edit}) the formula at the current point.
1126 Miscellaneous commands:
1130 Run the Emacs Info system to read the Calc manual.
1131 (This is the same as @kbd{h i} inside of Calc.)
1134 Run the Emacs Info system to read the Calc Tutorial.
1137 Run the Emacs Info system to read the Calc Summary.
1140 Load Calc entirely into memory. (Normally the various parts
1141 are loaded only as they are needed.)
1144 Read a region of written keystroke names (like @kbd{C-n a b c @key{RET}})
1145 and record them as the current keyboard macro.
1148 (This is the ``zero'' digit key.) Reset the Calculator to
1149 its initial state: Empty stack, and initial mode settings.
1152 @node History and Acknowledgments, , Using Calc, Getting Started
1153 @section History and Acknowledgments
1156 Calc was originally started as a two-week project to occupy a lull
1157 in the author's schedule. Basically, a friend asked if I remembered
1159 @texline @math{2^{32}}.
1160 @infoline @expr{2^32}.
1161 I didn't offhand, but I said, ``that's easy, just call up an
1162 @code{xcalc}.'' @code{Xcalc} duly reported that the answer to our
1163 question was @samp{4.294967e+09}---with no way to see the full ten
1164 digits even though we knew they were there in the program's memory! I
1165 was so annoyed, I vowed to write a calculator of my own, once and for
1168 I chose Emacs Lisp, a) because I had always been curious about it
1169 and b) because, being only a text editor extension language after
1170 all, Emacs Lisp would surely reach its limits long before the project
1171 got too far out of hand.
1173 To make a long story short, Emacs Lisp turned out to be a distressingly
1174 solid implementation of Lisp, and the humble task of calculating
1175 turned out to be more open-ended than one might have expected.
1177 Emacs Lisp didn't have built-in floating point math (now it does), so
1178 this had to be simulated in software. In fact, Emacs integers would
1179 only comfortably fit six decimal digits or so (at the time)---not
1180 enough for a decent calculator. So I had to write my own
1181 high-precision integer code as well, and once I had this I figured
1182 that arbitrary-size integers were just as easy as large integers.
1183 Arbitrary floating-point precision was the logical next step. Also,
1184 since the large integer arithmetic was there anyway it seemed only
1185 fair to give the user direct access to it, which in turn made it
1186 practical to support fractions as well as floats. All these features
1187 inspired me to look around for other data types that might be worth
1190 Around this time, my friend Rick Koshi showed me his nifty new HP-28
1191 calculator. It allowed the user to manipulate formulas as well as
1192 numerical quantities, and it could also operate on matrices. I
1193 decided that these would be good for Calc to have, too. And once
1194 things had gone this far, I figured I might as well take a look at
1195 serious algebra systems for further ideas. Since these systems did
1196 far more than I could ever hope to implement, I decided to focus on
1197 rewrite rules and other programming features so that users could
1198 implement what they needed for themselves.
1200 Rick complained that matrices were hard to read, so I put in code to
1201 format them in a 2D style. Once these routines were in place, Big mode
1202 was obligatory. Gee, what other language modes would be useful?
1204 Scott Hemphill and Allen Knutson, two friends with a strong mathematical
1205 bent, contributed ideas and algorithms for a number of Calc features
1206 including modulo forms, primality testing, and float-to-fraction conversion.
1208 Units were added at the eager insistence of Mass Sivilotti. Later,
1209 Ulrich Mueller at CERN and Przemek Klosowski at NIST provided invaluable
1210 expert assistance with the units table. As far as I can remember, the
1211 idea of using algebraic formulas and variables to represent units dates
1212 back to an ancient article in Byte magazine about muMath, an early
1213 algebra system for microcomputers.
1215 Many people have contributed to Calc by reporting bugs and suggesting
1216 features, large and small. A few deserve special mention: Tim Peters,
1217 who helped develop the ideas that led to the selection commands, rewrite
1218 rules, and many other algebra features;
1219 @texline Fran\c{c}ois
1221 Pinard, who contributed an early prototype of the Calc Summary appendix
1222 as well as providing valuable suggestions in many other areas of Calc;
1223 Carl Witty, whose eagle eyes discovered many typographical and factual
1224 errors in the Calc manual; Tim Kay, who drove the development of
1225 Embedded mode; Ove Ewerlid, who made many suggestions relating to the
1226 algebra commands and contributed some code for polynomial operations;
1227 Randal Schwartz, who suggested the @code{calc-eval} function; Juha
1228 Sarlin, who first worked out how to split Calc into quickly-loading
1229 parts; Bob Weiner, who helped immensely with the Lucid Emacs port; and
1230 Robert J. Chassell, who suggested the Calc Tutorial and exercises as
1231 well as many other things.
1233 @cindex Bibliography
1234 @cindex Knuth, Art of Computer Programming
1235 @cindex Numerical Recipes
1236 @c Should these be expanded into more complete references?
1237 Among the books used in the development of Calc were Knuth's @emph{Art
1238 of Computer Programming} (especially volume II, @emph{Seminumerical
1239 Algorithms}); @emph{Numerical Recipes} by Press, Flannery, Teukolsky,
1240 and Vetterling; Bevington's @emph{Data Reduction and Error Analysis
1241 for the Physical Sciences}; @emph{Concrete Mathematics} by Graham,
1242 Knuth, and Patashnik; Steele's @emph{Common Lisp, the Language}; the
1243 @emph{CRC Standard Math Tables} (William H. Beyer, ed.); and
1244 Abramowitz and Stegun's venerable @emph{Handbook of Mathematical
1245 Functions}. Also, of course, Calc could not have been written without
1246 the excellent @emph{GNU Emacs Lisp Reference Manual}, by Bil Lewis and
1249 Final thanks go to Richard Stallman, without whose fine implementations
1250 of the Emacs editor, language, and environment, Calc would have been
1251 finished in two weeks.
1256 @c This node is accessed by the `C-x * t' command.
1257 @node Interactive Tutorial, Tutorial, Getting Started, Top
1261 Some brief instructions on using the Emacs Info system for this tutorial:
1263 Press the space bar and Delete keys to go forward and backward in a
1264 section by screenfuls (or use the regular Emacs scrolling commands
1267 Press @kbd{n} or @kbd{p} to go to the Next or Previous section.
1268 If the section has a @dfn{menu}, press a digit key like @kbd{1}
1269 or @kbd{2} to go to a sub-section from the menu. Press @kbd{u} to
1270 go back up from a sub-section to the menu it is part of.
1272 Exercises in the tutorial all have cross-references to the
1273 appropriate page of the ``answers'' section. Press @kbd{f}, then
1274 the exercise number, to see the answer to an exercise. After
1275 you have followed a cross-reference, you can press the letter
1276 @kbd{l} to return to where you were before.
1278 You can press @kbd{?} at any time for a brief summary of Info commands.
1280 Press the number @kbd{1} now to enter the first section of the Tutorial.
1286 @node Tutorial, Introduction, Interactive Tutorial, Top
1289 @node Tutorial, Introduction, Getting Started, Top
1294 This chapter explains how to use Calc and its many features, in
1295 a step-by-step, tutorial way. You are encouraged to run Calc and
1296 work along with the examples as you read (@pxref{Starting Calc}).
1297 If you are already familiar with advanced calculators, you may wish
1299 to skip on to the rest of this manual.
1301 @c to skip on to volume II of this manual, the @dfn{Calc Reference}.
1303 @c [fix-ref Embedded Mode]
1304 This tutorial describes the standard user interface of Calc only.
1305 The Quick mode and Keypad mode interfaces are fairly
1306 self-explanatory. @xref{Embedded Mode}, for a description of
1307 the Embedded mode interface.
1309 The easiest way to read this tutorial on-line is to have two windows on
1310 your Emacs screen, one with Calc and one with the Info system. Press
1311 @kbd{C-x * t} to set this up; the on-line tutorial will be opened in the
1312 current window and Calc will be started in another window. From the
1313 Info window, the command @kbd{C-x * c} can be used to switch to the Calc
1314 window and @kbd{C-x * o} can be used to switch back to the Info window.
1315 (If you have a printed copy of the manual you can use that instead; in
1316 that case you only need to press @kbd{C-x * c} to start Calc.)
1318 This tutorial is designed to be done in sequence. But the rest of this
1319 manual does not assume you have gone through the tutorial. The tutorial
1320 does not cover everything in the Calculator, but it touches on most
1324 You may wish to print out a copy of the Calc Summary and keep notes on
1325 it as you learn Calc. @xref{About This Manual}, to see how to make a
1326 printed summary. @xref{Summary}.
1329 The Calc Summary at the end of the reference manual includes some blank
1330 space for your own use. You may wish to keep notes there as you learn
1336 * Arithmetic Tutorial::
1337 * Vector/Matrix Tutorial::
1339 * Algebra Tutorial::
1340 * Programming Tutorial::
1342 * Answers to Exercises::
1345 @node Basic Tutorial, Arithmetic Tutorial, Tutorial, Tutorial
1346 @section Basic Tutorial
1349 In this section, we learn how RPN and algebraic-style calculations
1350 work, how to undo and redo an operation done by mistake, and how
1351 to control various modes of the Calculator.
1354 * RPN Tutorial:: Basic operations with the stack.
1355 * Algebraic Tutorial:: Algebraic entry; variables.
1356 * Undo Tutorial:: If you make a mistake: Undo and the trail.
1357 * Modes Tutorial:: Common mode-setting commands.
1360 @node RPN Tutorial, Algebraic Tutorial, Basic Tutorial, Basic Tutorial
1361 @subsection RPN Calculations and the Stack
1363 @cindex RPN notation
1366 Calc normally uses RPN notation. You may be familiar with the RPN
1367 system from Hewlett-Packard calculators, FORTH, or PostScript.
1368 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1372 Calc normally uses RPN notation. You may be familiar with the RPN
1373 system from Hewlett-Packard calculators, FORTH, or PostScript.
1374 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1378 The central component of an RPN calculator is the @dfn{stack}. A
1379 calculator stack is like a stack of dishes. New dishes (numbers) are
1380 added at the top of the stack, and numbers are normally only removed
1381 from the top of the stack.
1385 In an operation like @expr{2+3}, the 2 and 3 are called the @dfn{operands}
1386 and the @expr{+} is the @dfn{operator}. In an RPN calculator you always
1387 enter the operands first, then the operator. Each time you type a
1388 number, Calc adds or @dfn{pushes} it onto the top of the Stack.
1389 When you press an operator key like @kbd{+}, Calc @dfn{pops} the appropriate
1390 number of operands from the stack and pushes back the result.
1392 Thus we could add the numbers 2 and 3 in an RPN calculator by typing:
1393 @kbd{2 @key{RET} 3 @key{RET} +}. (The @key{RET} key, Return, corresponds to
1394 the @key{ENTER} key on traditional RPN calculators.) Try this now if
1395 you wish; type @kbd{C-x * c} to switch into the Calc window (you can type
1396 @kbd{C-x * c} again or @kbd{C-x * o} to switch back to the Tutorial window).
1397 The first four keystrokes ``push'' the numbers 2 and 3 onto the stack.
1398 The @kbd{+} key ``pops'' the top two numbers from the stack, adds them,
1399 and pushes the result (5) back onto the stack. Here's how the stack
1400 will look at various points throughout the calculation:
1408 C-x * c 2 @key{RET} 3 @key{RET} + @key{DEL}
1412 The @samp{.} symbol is a marker that represents the top of the stack.
1413 Note that the ``top'' of the stack is really shown at the bottom of
1414 the Stack window. This may seem backwards, but it turns out to be
1415 less distracting in regular use.
1417 @cindex Stack levels
1418 @cindex Levels of stack
1419 The numbers @samp{1:} and @samp{2:} on the left are @dfn{stack level
1420 numbers}. Old RPN calculators always had four stack levels called
1421 @expr{x}, @expr{y}, @expr{z}, and @expr{t}. Calc's stack can grow
1422 as large as you like, so it uses numbers instead of letters. Some
1423 stack-manipulation commands accept a numeric argument that says
1424 which stack level to work on. Normal commands like @kbd{+} always
1425 work on the top few levels of the stack.
1427 @c [fix-ref Truncating the Stack]
1428 The Stack buffer is just an Emacs buffer, and you can move around in
1429 it using the regular Emacs motion commands. But no matter where the
1430 cursor is, even if you have scrolled the @samp{.} marker out of
1431 view, most Calc commands always move the cursor back down to level 1
1432 before doing anything. It is possible to move the @samp{.} marker
1433 upwards through the stack, temporarily ``hiding'' some numbers from
1434 commands like @kbd{+}. This is called @dfn{stack truncation} and
1435 we will not cover it in this tutorial; @pxref{Truncating the Stack},
1436 if you are interested.
1438 You don't really need the second @key{RET} in @kbd{2 @key{RET} 3
1439 @key{RET} +}. That's because if you type any operator name or
1440 other non-numeric key when you are entering a number, the Calculator
1441 automatically enters that number and then does the requested command.
1442 Thus @kbd{2 @key{RET} 3 +} will work just as well.
1444 Examples in this tutorial will often omit @key{RET} even when the
1445 stack displays shown would only happen if you did press @key{RET}:
1458 Here, after pressing @kbd{3} the stack would really show @samp{1: 2}
1459 with @samp{Calc:@: 3} in the minibuffer. In these situations, you can
1460 press the optional @key{RET} to see the stack as the figure shows.
1462 (@bullet{}) @strong{Exercise 1.} (This tutorial will include exercises
1463 at various points. Try them if you wish. Answers to all the exercises
1464 are located at the end of the Tutorial chapter. Each exercise will
1465 include a cross-reference to its particular answer. If you are
1466 reading with the Emacs Info system, press @kbd{f} and the
1467 exercise number to go to the answer, then the letter @kbd{l} to
1468 return to where you were.)
1471 Here's the first exercise: What will the keystrokes @kbd{1 @key{RET} 2
1472 @key{RET} 3 @key{RET} 4 + * -} compute? (@samp{*} is the symbol for
1473 multiplication.) Figure it out by hand, then try it with Calc to see
1474 if you're right. @xref{RPN Answer 1, 1}. (@bullet{})
1476 (@bullet{}) @strong{Exercise 2.} Compute
1477 @texline @math{(2\times4) + (7\times9.5) + {5\over4}}
1478 @infoline @expr{2*4 + 7*9.5 + 5/4}
1479 using the stack. @xref{RPN Answer 2, 2}. (@bullet{})
1481 The @key{DEL} key is called Backspace on some keyboards. It is
1482 whatever key you would use to correct a simple typing error when
1483 regularly using Emacs. The @key{DEL} key pops and throws away the
1484 top value on the stack. (You can still get that value back from
1485 the Trail if you should need it later on.) There are many places
1486 in this tutorial where we assume you have used @key{DEL} to erase the
1487 results of the previous example at the beginning of a new example.
1488 In the few places where it is really important to use @key{DEL} to
1489 clear away old results, the text will remind you to do so.
1491 (It won't hurt to let things accumulate on the stack, except that
1492 whenever you give a display-mode-changing command Calc will have to
1493 spend a long time reformatting such a large stack.)
1495 Since the @kbd{-} key is also an operator (it subtracts the top two
1496 stack elements), how does one enter a negative number? Calc uses
1497 the @kbd{_} (underscore) key to act like the minus sign in a number.
1498 So, typing @kbd{-5 @key{RET}} won't work because the @kbd{-} key
1499 will try to do a subtraction, but @kbd{_5 @key{RET}} works just fine.
1501 You can also press @kbd{n}, which means ``change sign.'' It changes
1502 the number at the top of the stack (or the number being entered)
1503 from positive to negative or vice-versa: @kbd{5 n @key{RET}}.
1505 @cindex Duplicating a stack entry
1506 If you press @key{RET} when you're not entering a number, the effect
1507 is to duplicate the top number on the stack. Consider this calculation:
1511 1: 3 2: 3 1: 9 2: 9 1: 81
1515 3 @key{RET} @key{RET} * @key{RET} *
1520 (Of course, an easier way to do this would be @kbd{3 @key{RET} 4 ^},
1521 to raise 3 to the fourth power.)
1523 The space-bar key (denoted @key{SPC} here) performs the same function
1524 as @key{RET}; you could replace all three occurrences of @key{RET} in
1525 the above example with @key{SPC} and the effect would be the same.
1527 @cindex Exchanging stack entries
1528 Another stack manipulation key is @key{TAB}. This exchanges the top
1529 two stack entries. Suppose you have computed @kbd{2 @key{RET} 3 +}
1530 to get 5, and then you realize what you really wanted to compute
1531 was @expr{20 / (2+3)}.
1535 1: 5 2: 5 2: 20 1: 4
1539 2 @key{RET} 3 + 20 @key{TAB} /
1544 Planning ahead, the calculation would have gone like this:
1548 1: 20 2: 20 3: 20 2: 20 1: 4
1553 20 @key{RET} 2 @key{RET} 3 + /
1557 A related stack command is @kbd{M-@key{TAB}} (hold @key{META} and type
1558 @key{TAB}). It rotates the top three elements of the stack upward,
1559 bringing the object in level 3 to the top.
1563 1: 10 2: 10 3: 10 3: 20 3: 30
1564 . 1: 20 2: 20 2: 30 2: 10
1568 10 @key{RET} 20 @key{RET} 30 @key{RET} M-@key{TAB} M-@key{TAB}
1572 (@bullet{}) @strong{Exercise 3.} Suppose the numbers 10, 20, and 30 are
1573 on the stack. Figure out how to add one to the number in level 2
1574 without affecting the rest of the stack. Also figure out how to add
1575 one to the number in level 3. @xref{RPN Answer 3, 3}. (@bullet{})
1577 Operations like @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/}, and @kbd{^} pop two
1578 arguments from the stack and push a result. Operations like @kbd{n} and
1579 @kbd{Q} (square root) pop a single number and push the result. You can
1580 think of them as simply operating on the top element of the stack.
1584 1: 3 1: 9 2: 9 1: 25 1: 5
1588 3 @key{RET} @key{RET} * 4 @key{RET} @key{RET} * + Q
1593 (Note that capital @kbd{Q} means to hold down the Shift key while
1594 typing @kbd{q}. Remember, plain unshifted @kbd{q} is the Quit command.)
1596 @cindex Pythagorean Theorem
1597 Here we've used the Pythagorean Theorem to determine the hypotenuse of a
1598 right triangle. Calc actually has a built-in command for that called
1599 @kbd{f h}, but let's suppose we can't remember the necessary keystrokes.
1600 We can still enter it by its full name using @kbd{M-x} notation:
1608 3 @key{RET} 4 @key{RET} M-x calc-hypot
1612 All Calculator commands begin with the word @samp{calc-}. Since it
1613 gets tiring to type this, Calc provides an @kbd{x} key which is just
1614 like the regular Emacs @kbd{M-x} key except that it types the @samp{calc-}
1623 3 @key{RET} 4 @key{RET} x hypot
1627 What happens if you take the square root of a negative number?
1631 1: 4 1: -4 1: (0, 2)
1639 The notation @expr{(a, b)} represents a complex number.
1640 Complex numbers are more traditionally written @expr{a + b i};
1641 Calc can display in this format, too, but for now we'll stick to the
1642 @expr{(a, b)} notation.
1644 If you don't know how complex numbers work, you can safely ignore this
1645 feature. Complex numbers only arise from operations that would be
1646 errors in a calculator that didn't have complex numbers. (For example,
1647 taking the square root or logarithm of a negative number produces a
1650 Complex numbers are entered in the notation shown. The @kbd{(} and
1651 @kbd{,} and @kbd{)} keys manipulate ``incomplete complex numbers.''
1655 1: ( ... 2: ( ... 1: (2, ... 1: (2, ... 1: (2, 3)
1663 You can perform calculations while entering parts of incomplete objects.
1664 However, an incomplete object cannot actually participate in a calculation:
1668 1: ( ... 2: ( ... 3: ( ... 1: ( ... 1: ( ...
1678 Adding 5 to an incomplete object makes no sense, so the last command
1679 produces an error message and leaves the stack the same.
1681 Incomplete objects can't participate in arithmetic, but they can be
1682 moved around by the regular stack commands.
1686 2: 2 3: 2 3: 3 1: ( ... 1: (2, 3)
1687 1: 3 2: 3 2: ( ... 2 .
1691 2 @key{RET} 3 @key{RET} ( M-@key{TAB} M-@key{TAB} )
1696 Note that the @kbd{,} (comma) key did not have to be used here.
1697 When you press @kbd{)} all the stack entries between the incomplete
1698 entry and the top are collected, so there's never really a reason
1699 to use the comma. It's up to you.
1701 (@bullet{}) @strong{Exercise 4.} To enter the complex number @expr{(2, 3)},
1702 your friend Joe typed @kbd{( 2 , @key{SPC} 3 )}. What happened?
1703 (Joe thought of a clever way to correct his mistake in only two
1704 keystrokes, but it didn't quite work. Try it to find out why.)
1705 @xref{RPN Answer 4, 4}. (@bullet{})
1707 Vectors are entered the same way as complex numbers, but with square
1708 brackets in place of parentheses. We'll meet vectors again later in
1711 Any Emacs command can be given a @dfn{numeric prefix argument} by
1712 typing a series of @key{META}-digits beforehand. If @key{META} is
1713 awkward for you, you can instead type @kbd{C-u} followed by the
1714 necessary digits. Numeric prefix arguments can be negative, as in
1715 @kbd{M-- M-3 M-5} or @w{@kbd{C-u - 3 5}}. Calc commands use numeric
1716 prefix arguments in a variety of ways. For example, a numeric prefix
1717 on the @kbd{+} operator adds any number of stack entries at once:
1721 1: 10 2: 10 3: 10 3: 10 1: 60
1722 . 1: 20 2: 20 2: 20 .
1726 10 @key{RET} 20 @key{RET} 30 @key{RET} C-u 3 +
1730 For stack manipulation commands like @key{RET}, a positive numeric
1731 prefix argument operates on the top @var{n} stack entries at once. A
1732 negative argument operates on the entry in level @var{n} only. An
1733 argument of zero operates on the entire stack. In this example, we copy
1734 the second-to-top element of the stack:
1738 1: 10 2: 10 3: 10 3: 10 4: 10
1739 . 1: 20 2: 20 2: 20 3: 20
1744 10 @key{RET} 20 @key{RET} 30 @key{RET} C-u -2 @key{RET}
1748 @cindex Clearing the stack
1749 @cindex Emptying the stack
1750 Another common idiom is @kbd{M-0 @key{DEL}}, which clears the stack.
1751 (The @kbd{M-0} numeric prefix tells @key{DEL} to operate on the
1754 @node Algebraic Tutorial, Undo Tutorial, RPN Tutorial, Basic Tutorial
1755 @subsection Algebraic-Style Calculations
1758 If you are not used to RPN notation, you may prefer to operate the
1759 Calculator in Algebraic mode, which is closer to the way
1760 non-RPN calculators work. In Algebraic mode, you enter formulas
1761 in traditional @expr{2+3} notation.
1763 @strong{Notice:} Calc gives @samp{/} lower precedence than @samp{*}, so
1764 that @samp{a/b*c} is interpreted as @samp{a/(b*c)}; this is not
1765 standard across all computer languages. See below for details.
1767 You don't really need any special ``mode'' to enter algebraic formulas.
1768 You can enter a formula at any time by pressing the apostrophe (@kbd{'})
1769 key. Answer the prompt with the desired formula, then press @key{RET}.
1770 The formula is evaluated and the result is pushed onto the RPN stack.
1771 If you don't want to think in RPN at all, you can enter your whole
1772 computation as a formula, read the result from the stack, then press
1773 @key{DEL} to delete it from the stack.
1775 Try pressing the apostrophe key, then @kbd{2+3+4}, then @key{RET}.
1776 The result should be the number 9.
1778 Algebraic formulas use the operators @samp{+}, @samp{-}, @samp{*},
1779 @samp{/}, and @samp{^}. You can use parentheses to make the order
1780 of evaluation clear. In the absence of parentheses, @samp{^} is
1781 evaluated first, then @samp{*}, then @samp{/}, then finally
1782 @samp{+} and @samp{-}. For example, the expression
1785 2 + 3*4*5 / 6*7^8 - 9
1792 2 + ((3*4*5) / (6*(7^8)) - 9
1796 or, in large mathematical notation,
1810 $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
1815 The result of this expression will be the number @mathit{-6.99999826533}.
1817 Calc's order of evaluation is the same as for most computer languages,
1818 except that @samp{*} binds more strongly than @samp{/}, as the above
1819 example shows. As in normal mathematical notation, the @samp{*} symbol
1820 can often be omitted: @samp{2 a} is the same as @samp{2*a}.
1822 Operators at the same level are evaluated from left to right, except
1823 that @samp{^} is evaluated from right to left. Thus, @samp{2-3-4} is
1824 equivalent to @samp{(2-3)-4} or @mathit{-5}, whereas @samp{2^3^4} is equivalent
1825 to @samp{2^(3^4)} (a very large integer; try it!).
1827 If you tire of typing the apostrophe all the time, there is
1828 Algebraic mode, where Calc automatically senses
1829 when you are about to type an algebraic expression. To enter this
1830 mode, press the two letters @w{@kbd{m a}}. (An @samp{Alg} indicator
1831 should appear in the Calc window's mode line.)
1833 Press @kbd{m a}, then @kbd{2+3+4} with no apostrophe, then @key{RET}.
1835 In Algebraic mode, when you press any key that would normally begin
1836 entering a number (such as a digit, a decimal point, or the @kbd{_}
1837 key), or if you press @kbd{(} or @kbd{[}, Calc automatically begins
1840 Functions which do not have operator symbols like @samp{+} and @samp{*}
1841 must be entered in formulas using function-call notation. For example,
1842 the function name corresponding to the square-root key @kbd{Q} is
1843 @code{sqrt}. To compute a square root in a formula, you would use
1844 the notation @samp{sqrt(@var{x})}.
1846 Press the apostrophe, then type @kbd{sqrt(5*2) - 3}. The result should
1847 be @expr{0.16227766017}.
1849 Note that if the formula begins with a function name, you need to use
1850 the apostrophe even if you are in Algebraic mode. If you type @kbd{arcsin}
1851 out of the blue, the @kbd{a r} will be taken as an Algebraic Rewrite
1852 command, and the @kbd{csin} will be taken as the name of the rewrite
1855 Some people prefer to enter complex numbers and vectors in algebraic
1856 form because they find RPN entry with incomplete objects to be too
1857 distracting, even though they otherwise use Calc as an RPN calculator.
1859 Still in Algebraic mode, type:
1863 1: (2, 3) 2: (2, 3) 1: (8, -1) 2: (8, -1) 1: (9, -1)
1864 . 1: (1, -2) . 1: 1 .
1867 (2,3) @key{RET} (1,-2) @key{RET} * 1 @key{RET} +
1871 Algebraic mode allows us to enter complex numbers without pressing
1872 an apostrophe first, but it also means we need to press @key{RET}
1873 after every entry, even for a simple number like @expr{1}.
1875 (You can type @kbd{C-u m a} to enable a special Incomplete Algebraic
1876 mode in which the @kbd{(} and @kbd{[} keys use algebraic entry even
1877 though regular numeric keys still use RPN numeric entry. There is also
1878 Total Algebraic mode, started by typing @kbd{m t}, in which all
1879 normal keys begin algebraic entry. You must then use the @key{META} key
1880 to type Calc commands: @kbd{M-m t} to get back out of Total Algebraic
1881 mode, @kbd{M-q} to quit, etc.)
1883 If you're still in Algebraic mode, press @kbd{m a} again to turn it off.
1885 Actual non-RPN calculators use a mixture of algebraic and RPN styles.
1886 In general, operators of two numbers (like @kbd{+} and @kbd{*})
1887 use algebraic form, but operators of one number (like @kbd{n} and @kbd{Q})
1888 use RPN form. Also, a non-RPN calculator allows you to see the
1889 intermediate results of a calculation as you go along. You can
1890 accomplish this in Calc by performing your calculation as a series
1891 of algebraic entries, using the @kbd{$} sign to tie them together.
1892 In an algebraic formula, @kbd{$} represents the number on the top
1893 of the stack. Here, we perform the calculation
1894 @texline @math{\sqrt{2\times4+1}},
1895 @infoline @expr{sqrt(2*4+1)},
1896 which on a traditional calculator would be done by pressing
1897 @kbd{2 * 4 + 1 =} and then the square-root key.
1904 ' 2*4 @key{RET} $+1 @key{RET} Q
1909 Notice that we didn't need to press an apostrophe for the @kbd{$+1},
1910 because the dollar sign always begins an algebraic entry.
1912 (@bullet{}) @strong{Exercise 1.} How could you get the same effect as
1913 pressing @kbd{Q} but using an algebraic entry instead? How about
1914 if the @kbd{Q} key on your keyboard were broken?
1915 @xref{Algebraic Answer 1, 1}. (@bullet{})
1917 The notations @kbd{$$}, @kbd{$$$}, and so on stand for higher stack
1918 entries. For example, @kbd{' $$+$ @key{RET}} is just like typing @kbd{+}.
1920 Algebraic formulas can include @dfn{variables}. To store in a
1921 variable, press @kbd{s s}, then type the variable name, then press
1922 @key{RET}. (There are actually two flavors of store command:
1923 @kbd{s s} stores a number in a variable but also leaves the number
1924 on the stack, while @w{@kbd{s t}} removes a number from the stack and
1925 stores it in the variable.) A variable name should consist of one
1926 or more letters or digits, beginning with a letter.
1930 1: 17 . 1: a + a^2 1: 306
1933 17 s t a @key{RET} ' a+a^2 @key{RET} =
1938 The @kbd{=} key @dfn{evaluates} a formula by replacing all its
1939 variables by the values that were stored in them.
1941 For RPN calculations, you can recall a variable's value on the
1942 stack either by entering its name as a formula and pressing @kbd{=},
1943 or by using the @kbd{s r} command.
1947 1: 17 2: 17 3: 17 2: 17 1: 306
1948 . 1: 17 2: 17 1: 289 .
1952 s r a @key{RET} ' a @key{RET} = 2 ^ +
1956 If you press a single digit for a variable name (as in @kbd{s t 3}, you
1957 get one of ten @dfn{quick variables} @code{q0} through @code{q9}.
1958 They are ``quick'' simply because you don't have to type the letter
1959 @code{q} or the @key{RET} after their names. In fact, you can type
1960 simply @kbd{s 3} as a shorthand for @kbd{s s 3}, and likewise for
1961 @kbd{t 3} and @w{@kbd{r 3}}.
1963 Any variables in an algebraic formula for which you have not stored
1964 values are left alone, even when you evaluate the formula.
1968 1: 2 a + 2 b 1: 2 b + 34
1975 Calls to function names which are undefined in Calc are also left
1976 alone, as are calls for which the value is undefined.
1980 1: log10(0) + log10(x) + log10(5, 6) + foo(3) + 2
1983 ' log10(100) + log10(0) + log10(x) + log10(5,6) + foo(3) @key{RET}
1988 In this example, the first call to @code{log10} works, but the other
1989 calls are not evaluated. In the second call, the logarithm is
1990 undefined for that value of the argument; in the third, the argument
1991 is symbolic, and in the fourth, there are too many arguments. In the
1992 fifth case, there is no function called @code{foo}. You will see a
1993 ``Wrong number of arguments'' message referring to @samp{log10(5,6)}.
1994 Press the @kbd{w} (``why'') key to see any other messages that may
1995 have arisen from the last calculation. In this case you will get
1996 ``logarithm of zero,'' then ``number expected: @code{x}''. Calc
1997 automatically displays the first message only if the message is
1998 sufficiently important; for example, Calc considers ``wrong number
1999 of arguments'' and ``logarithm of zero'' to be important enough to
2000 report automatically, while a message like ``number expected: @code{x}''
2001 will only show up if you explicitly press the @kbd{w} key.
2003 (@bullet{}) @strong{Exercise 2.} Joe entered the formula @samp{2 x y},
2004 stored 5 in @code{x}, pressed @kbd{=}, and got the expected result,
2005 @samp{10 y}. He then tried the same for the formula @samp{2 x (1+y)},
2006 expecting @samp{10 (1+y)}, but it didn't work. Why not?
2007 @xref{Algebraic Answer 2, 2}. (@bullet{})
2009 (@bullet{}) @strong{Exercise 3.} What result would you expect
2010 @kbd{1 @key{RET} 0 /} to give? What if you then type @kbd{0 *}?
2011 @xref{Algebraic Answer 3, 3}. (@bullet{})
2013 One interesting way to work with variables is to use the
2014 @dfn{evaluates-to} (@samp{=>}) operator. It works like this:
2015 Enter a formula algebraically in the usual way, but follow
2016 the formula with an @samp{=>} symbol. (There is also an @kbd{s =}
2017 command which builds an @samp{=>} formula using the stack.) On
2018 the stack, you will see two copies of the formula with an @samp{=>}
2019 between them. The lefthand formula is exactly like you typed it;
2020 the righthand formula has been evaluated as if by typing @kbd{=}.
2024 2: 2 + 3 => 5 2: 2 + 3 => 5
2025 1: 2 a + 2 b => 34 + 2 b 1: 2 a + 2 b => 20 + 2 b
2028 ' 2+3 => @key{RET} ' 2a+2b @key{RET} s = 10 s t a @key{RET}
2033 Notice that the instant we stored a new value in @code{a}, all
2034 @samp{=>} operators already on the stack that referred to @expr{a}
2035 were updated to use the new value. With @samp{=>}, you can push a
2036 set of formulas on the stack, then change the variables experimentally
2037 to see the effects on the formulas' values.
2039 You can also ``unstore'' a variable when you are through with it:
2044 1: 2 a + 2 b => 2 a + 2 b
2051 We will encounter formulas involving variables and functions again
2052 when we discuss the algebra and calculus features of the Calculator.
2054 @node Undo Tutorial, Modes Tutorial, Algebraic Tutorial, Basic Tutorial
2055 @subsection Undo and Redo
2058 If you make a mistake, you can usually correct it by pressing shift-@kbd{U},
2059 the ``undo'' command. First, clear the stack (@kbd{M-0 @key{DEL}}) and exit
2060 and restart Calc (@kbd{C-x * * C-x * *}) to make sure things start off
2061 with a clean slate. Now:
2065 1: 2 2: 2 1: 8 2: 2 1: 6
2073 You can undo any number of times. Calc keeps a complete record of
2074 all you have done since you last opened the Calc window. After the
2075 above example, you could type:
2087 You can also type @kbd{D} to ``redo'' a command that you have undone
2092 . 1: 2 2: 2 1: 6 1: 6
2101 It was not possible to redo past the @expr{6}, since that was placed there
2102 by something other than an undo command.
2105 You can think of undo and redo as a sort of ``time machine.'' Press
2106 @kbd{U} to go backward in time, @kbd{D} to go forward. If you go
2107 backward and do something (like @kbd{*}) then, as any science fiction
2108 reader knows, you have changed your future and you cannot go forward
2109 again. Thus, the inability to redo past the @expr{6} even though there
2110 was an earlier undo command.
2112 You can always recall an earlier result using the Trail. We've ignored
2113 the trail so far, but it has been faithfully recording everything we
2114 did since we loaded the Calculator. If the Trail is not displayed,
2115 press @kbd{t d} now to turn it on.
2117 Let's try grabbing an earlier result. The @expr{8} we computed was
2118 undone by a @kbd{U} command, and was lost even to Redo when we pressed
2119 @kbd{*}, but it's still there in the trail. There should be a little
2120 @samp{>} arrow (the @dfn{trail pointer}) resting on the last trail
2121 entry. If there isn't, press @kbd{t ]} to reset the trail pointer.
2122 Now, press @w{@kbd{t p}} to move the arrow onto the line containing
2123 @expr{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the
2126 If you press @kbd{t ]} again, you will see that even our Yank command
2127 went into the trail.
2129 Let's go further back in time. Earlier in the tutorial we computed
2130 a huge integer using the formula @samp{2^3^4}. We don't remember
2131 what it was, but the first digits were ``241''. Press @kbd{t r}
2132 (which stands for trail-search-reverse), then type @kbd{241}.
2133 The trail cursor will jump back to the next previous occurrence of
2134 the string ``241'' in the trail. This is just a regular Emacs
2135 incremental search; you can now press @kbd{C-s} or @kbd{C-r} to
2136 continue the search forwards or backwards as you like.
2138 To finish the search, press @key{RET}. This halts the incremental
2139 search and leaves the trail pointer at the thing we found. Now we
2140 can type @kbd{t y} to yank that number onto the stack. If we hadn't
2141 remembered the ``241'', we could simply have searched for @kbd{2^3^4},
2142 then pressed @kbd{@key{RET} t n} to halt and then move to the next item.
2144 You may have noticed that all the trail-related commands begin with
2145 the letter @kbd{t}. (The store-and-recall commands, on the other hand,
2146 all began with @kbd{s}.) Calc has so many commands that there aren't
2147 enough keys for all of them, so various commands are grouped into
2148 two-letter sequences where the first letter is called the @dfn{prefix}
2149 key. If you type a prefix key by accident, you can press @kbd{C-g}
2150 to cancel it. (In fact, you can press @kbd{C-g} to cancel almost
2151 anything in Emacs.) To get help on a prefix key, press that key
2152 followed by @kbd{?}. Some prefixes have several lines of help,
2153 so you need to press @kbd{?} repeatedly to see them all.
2154 You can also type @kbd{h h} to see all the help at once.
2156 Try pressing @kbd{t ?} now. You will see a line of the form,
2159 trail/time: Display; Fwd, Back; Next, Prev, Here, [, ]; Yank: [MORE] t-
2163 The word ``trail'' indicates that the @kbd{t} prefix key contains
2164 trail-related commands. Each entry on the line shows one command,
2165 with a single capital letter showing which letter you press to get
2166 that command. We have used @kbd{t n}, @kbd{t p}, @kbd{t ]}, and
2167 @kbd{t y} so far. The @samp{[MORE]} means you can press @kbd{?}
2168 again to see more @kbd{t}-prefix commands. Notice that the commands
2169 are roughly divided (by semicolons) into related groups.
2171 When you are in the help display for a prefix key, the prefix is
2172 still active. If you press another key, like @kbd{y} for example,
2173 it will be interpreted as a @kbd{t y} command. If all you wanted
2174 was to look at the help messages, press @kbd{C-g} afterwards to cancel
2177 One more way to correct an error is by editing the stack entries.
2178 The actual Stack buffer is marked read-only and must not be edited
2179 directly, but you can press @kbd{`} (the backquote or accent grave)
2180 to edit a stack entry.
2182 Try entering @samp{3.141439} now. If this is supposed to represent
2183 @cpi{}, it's got several errors. Press @kbd{`} to edit this number.
2184 Now use the normal Emacs cursor motion and editing keys to change
2185 the second 4 to a 5, and to transpose the 3 and the 9. When you
2186 press @key{RET}, the number on the stack will be replaced by your
2187 new number. This works for formulas, vectors, and all other types
2188 of values you can put on the stack. The @kbd{`} key also works
2189 during entry of a number or algebraic formula.
2191 @node Modes Tutorial, , Undo Tutorial, Basic Tutorial
2192 @subsection Mode-Setting Commands
2195 Calc has many types of @dfn{modes} that affect the way it interprets
2196 your commands or the way it displays data. We have already seen one
2197 mode, namely Algebraic mode. There are many others, too; we'll
2198 try some of the most common ones here.
2200 Perhaps the most fundamental mode in Calc is the current @dfn{precision}.
2201 Notice the @samp{12} on the Calc window's mode line:
2204 --%*-Calc: 12 Deg (Calculator)----All------
2208 Most of the symbols there are Emacs things you don't need to worry
2209 about, but the @samp{12} and the @samp{Deg} are mode indicators.
2210 The @samp{12} means that calculations should always be carried to
2211 12 significant figures. That is why, when we type @kbd{1 @key{RET} 7 /},
2212 we get @expr{0.142857142857} with exactly 12 digits, not counting
2213 leading and trailing zeros.
2215 You can set the precision to anything you like by pressing @kbd{p},
2216 then entering a suitable number. Try pressing @kbd{p 30 @key{RET}},
2217 then doing @kbd{1 @key{RET} 7 /} again:
2222 2: 0.142857142857142857142857142857
2227 Although the precision can be set arbitrarily high, Calc always
2228 has to have @emph{some} value for the current precision. After
2229 all, the true value @expr{1/7} is an infinitely repeating decimal;
2230 Calc has to stop somewhere.
2232 Of course, calculations are slower the more digits you request.
2233 Press @w{@kbd{p 12}} now to set the precision back down to the default.
2235 Calculations always use the current precision. For example, even
2236 though we have a 30-digit value for @expr{1/7} on the stack, if
2237 we use it in a calculation in 12-digit mode it will be rounded
2238 down to 12 digits before it is used. Try it; press @key{RET} to
2239 duplicate the number, then @w{@kbd{1 +}}. Notice that the @key{RET}
2240 key didn't round the number, because it doesn't do any calculation.
2241 But the instant we pressed @kbd{+}, the number was rounded down.
2246 2: 0.142857142857142857142857142857
2253 In fact, since we added a digit on the left, we had to lose one
2254 digit on the right from even the 12-digit value of @expr{1/7}.
2256 How did we get more than 12 digits when we computed @samp{2^3^4}? The
2257 answer is that Calc makes a distinction between @dfn{integers} and
2258 @dfn{floating-point} numbers, or @dfn{floats}. An integer is a number
2259 that does not contain a decimal point. There is no such thing as an
2260 ``infinitely repeating fraction integer,'' so Calc doesn't have to limit
2261 itself. If you asked for @samp{2^10000} (don't try this!), you would
2262 have to wait a long time but you would eventually get an exact answer.
2263 If you ask for @samp{2.^10000}, you will quickly get an answer which is
2264 correct only to 12 places. The decimal point tells Calc that it should
2265 use floating-point arithmetic to get the answer, not exact integer
2268 You can use the @kbd{F} (@code{calc-floor}) command to convert a
2269 floating-point value to an integer, and @kbd{c f} (@code{calc-float})
2270 to convert an integer to floating-point form.
2272 Let's try entering that last calculation:
2276 1: 2. 2: 2. 1: 1.99506311689e3010
2280 2.0 @key{RET} 10000 @key{RET} ^
2285 @cindex Scientific notation, entry of
2286 Notice the letter @samp{e} in there. It represents ``times ten to the
2287 power of,'' and is used by Calc automatically whenever writing the
2288 number out fully would introduce more extra zeros than you probably
2289 want to see. You can enter numbers in this notation, too.
2293 1: 2. 2: 2. 1: 1.99506311678e3010
2297 2.0 @key{RET} 1e4 @key{RET} ^
2301 @cindex Round-off errors
2303 Hey, the answer is different! Look closely at the middle columns
2304 of the two examples. In the first, the stack contained the
2305 exact integer @expr{10000}, but in the second it contained
2306 a floating-point value with a decimal point. When you raise a
2307 number to an integer power, Calc uses repeated squaring and
2308 multiplication to get the answer. When you use a floating-point
2309 power, Calc uses logarithms and exponentials. As you can see,
2310 a slight error crept in during one of these methods. Which
2311 one should we trust? Let's raise the precision a bit and find
2316 . 1: 2. 2: 2. 1: 1.995063116880828e3010
2320 p 16 @key{RET} 2. @key{RET} 1e4 ^ p 12 @key{RET}
2325 @cindex Guard digits
2326 Presumably, it doesn't matter whether we do this higher-precision
2327 calculation using an integer or floating-point power, since we
2328 have added enough ``guard digits'' to trust the first 12 digits
2329 no matter what. And the verdict is@dots{} Integer powers were more
2330 accurate; in fact, the result was only off by one unit in the
2333 @cindex Guard digits
2334 Calc does many of its internal calculations to a slightly higher
2335 precision, but it doesn't always bump the precision up enough.
2336 In each case, Calc added about two digits of precision during
2337 its calculation and then rounded back down to 12 digits
2338 afterward. In one case, it was enough; in the other, it
2339 wasn't. If you really need @var{x} digits of precision, it
2340 never hurts to do the calculation with a few extra guard digits.
2342 What if we want guard digits but don't want to look at them?
2343 We can set the @dfn{float format}. Calc supports four major
2344 formats for floating-point numbers, called @dfn{normal},
2345 @dfn{fixed-point}, @dfn{scientific notation}, and @dfn{engineering
2346 notation}. You get them by pressing @w{@kbd{d n}}, @kbd{d f},
2347 @kbd{d s}, and @kbd{d e}, respectively. In each case, you can
2348 supply a numeric prefix argument which says how many digits
2349 should be displayed. As an example, let's put a few numbers
2350 onto the stack and try some different display modes. First,
2351 use @kbd{M-0 @key{DEL}} to clear the stack, then enter the four
2356 4: 12345 4: 12345 4: 12345 4: 12345 4: 12345
2357 3: 12345. 3: 12300. 3: 1.2345e4 3: 1.23e4 3: 12345.000
2358 2: 123.45 2: 123. 2: 1.2345e2 2: 1.23e2 2: 123.450
2359 1: 12.345 1: 12.3 1: 1.2345e1 1: 1.23e1 1: 12.345
2362 d n M-3 d n d s M-3 d s M-3 d f
2367 Notice that when we typed @kbd{M-3 d n}, the numbers were rounded down
2368 to three significant digits, but then when we typed @kbd{d s} all
2369 five significant figures reappeared. The float format does not
2370 affect how numbers are stored, it only affects how they are
2371 displayed. Only the current precision governs the actual rounding
2372 of numbers in the Calculator's memory.
2374 Engineering notation, not shown here, is like scientific notation
2375 except the exponent (the power-of-ten part) is always adjusted to be
2376 a multiple of three (as in ``kilo,'' ``micro,'' etc.). As a result
2377 there will be one, two, or three digits before the decimal point.
2379 Whenever you change a display-related mode, Calc redraws everything
2380 in the stack. This may be slow if there are many things on the stack,
2381 so Calc allows you to type shift-@kbd{H} before any mode command to
2382 prevent it from updating the stack. Anything Calc displays after the
2383 mode-changing command will appear in the new format.
2387 4: 12345 4: 12345 4: 12345 4: 12345 4: 12345
2388 3: 12345.000 3: 12345.000 3: 12345.000 3: 1.2345e4 3: 12345.
2389 2: 123.450 2: 123.450 2: 1.2345e1 2: 1.2345e1 2: 123.45
2390 1: 12.345 1: 1.2345e1 1: 1.2345e2 1: 1.2345e2 1: 12.345
2393 H d s @key{DEL} U @key{TAB} d @key{SPC} d n
2398 Here the @kbd{H d s} command changes to scientific notation but without
2399 updating the screen. Deleting the top stack entry and undoing it back
2400 causes it to show up in the new format; swapping the top two stack
2401 entries reformats both entries. The @kbd{d @key{SPC}} command refreshes the
2402 whole stack. The @kbd{d n} command changes back to the normal float
2403 format; since it doesn't have an @kbd{H} prefix, it also updates all
2404 the stack entries to be in @kbd{d n} format.
2406 Notice that the integer @expr{12345} was not affected by any
2407 of the float formats. Integers are integers, and are always
2410 @cindex Large numbers, readability
2411 Large integers have their own problems. Let's look back at
2412 the result of @kbd{2^3^4}.
2415 2417851639229258349412352
2419 Quick---how many digits does this have? Try typing @kbd{d g}:
2422 2,417,851,639,229,258,349,412,352
2426 Now how many digits does this have? It's much easier to tell!
2427 We can actually group digits into clumps of any size. Some
2428 people prefer @kbd{M-5 d g}:
2431 24178,51639,22925,83494,12352
2434 Let's see what happens to floating-point numbers when they are grouped.
2435 First, type @kbd{p 25 @key{RET}} to make sure we have enough precision
2436 to get ourselves into trouble. Now, type @kbd{1e13 /}:
2439 24,17851,63922.9258349412352
2443 The integer part is grouped but the fractional part isn't. Now try
2444 @kbd{M-- M-5 d g} (that's meta-minus-sign, meta-five):
2447 24,17851,63922.92583,49412,352
2450 If you find it hard to tell the decimal point from the commas, try
2451 changing the grouping character to a space with @kbd{d , @key{SPC}}:
2454 24 17851 63922.92583 49412 352
2457 Type @kbd{d , ,} to restore the normal grouping character, then
2458 @kbd{d g} again to turn grouping off. Also, press @kbd{p 12} to
2459 restore the default precision.
2461 Press @kbd{U} enough times to get the original big integer back.
2462 (Notice that @kbd{U} does not undo each mode-setting command; if
2463 you want to undo a mode-setting command, you have to do it yourself.)
2464 Now, type @kbd{d r 16 @key{RET}}:
2467 16#200000000000000000000
2471 The number is now displayed in @dfn{hexadecimal}, or ``base-16'' form.
2472 Suddenly it looks pretty simple; this should be no surprise, since we
2473 got this number by computing a power of two, and 16 is a power of 2.
2474 In fact, we can use @w{@kbd{d r 2 @key{RET}}} to see it in actual binary
2478 2#1000000000000000000000000000000000000000000000000000000 @dots{}
2482 We don't have enough space here to show all the zeros! They won't
2483 fit on a typical screen, either, so you will have to use horizontal
2484 scrolling to see them all. Press @kbd{<} and @kbd{>} to scroll the
2485 stack window left and right by half its width. Another way to view
2486 something large is to press @kbd{`} (back-quote) to edit the top of
2487 stack in a separate window. (Press @kbd{C-c C-c} when you are done.)
2489 You can enter non-decimal numbers using the @kbd{#} symbol, too.
2490 Let's see what the hexadecimal number @samp{5FE} looks like in
2491 binary. Type @kbd{16#5FE} (the letters can be typed in upper or
2492 lower case; they will always appear in upper case). It will also
2493 help to turn grouping on with @kbd{d g}:
2499 Notice that @kbd{d g} groups by fours by default if the display radix
2500 is binary or hexadecimal, but by threes if it is decimal, octal, or any
2503 Now let's see that number in decimal; type @kbd{d r 10}:
2509 Numbers are not @emph{stored} with any particular radix attached. They're
2510 just numbers; they can be entered in any radix, and are always displayed
2511 in whatever radix you've chosen with @kbd{d r}. The current radix applies
2512 to integers, fractions, and floats.
2514 @cindex Roundoff errors, in non-decimal numbers
2515 (@bullet{}) @strong{Exercise 1.} Your friend Joe tried to enter one-third
2516 as @samp{3#0.1} in @kbd{d r 3} mode with a precision of 12. He got
2517 @samp{3#0.0222222...} (with 25 2's) in the display. When he multiplied
2518 that by three, he got @samp{3#0.222222...} instead of the expected
2519 @samp{3#1}. Next, Joe entered @samp{3#0.2} and, to his great relief,
2520 saw @samp{3#0.2} on the screen. But when he typed @kbd{2 /}, he got
2521 @samp{3#0.10000001} (some zeros omitted). What's going on here?
2522 @xref{Modes Answer 1, 1}. (@bullet{})
2524 @cindex Scientific notation, in non-decimal numbers
2525 (@bullet{}) @strong{Exercise 2.} Scientific notation works in non-decimal
2526 modes in the natural way (the exponent is a power of the radix instead of
2527 a power of ten, although the exponent itself is always written in decimal).
2528 Thus @samp{8#1.23e3 = 8#1230.0}. Suppose we have the hexadecimal number
2529 @samp{f.e8f} times 16 to the 15th power: We write @samp{16#f.e8fe15}.
2530 What is wrong with this picture? What could we write instead that would
2531 work better? @xref{Modes Answer 2, 2}. (@bullet{})
2533 The @kbd{m} prefix key has another set of modes, relating to the way
2534 Calc interprets your inputs and does computations. Whereas @kbd{d}-prefix
2535 modes generally affect the way things look, @kbd{m}-prefix modes affect
2536 the way they are actually computed.
2538 The most popular @kbd{m}-prefix mode is the @dfn{angular mode}. Notice
2539 the @samp{Deg} indicator in the mode line. This means that if you use
2540 a command that interprets a number as an angle, it will assume the
2541 angle is measured in degrees. For example,
2545 1: 45 1: 0.707106781187 1: 0.500000000001 1: 0.5
2553 The shift-@kbd{S} command computes the sine of an angle. The sine
2555 @texline @math{\sqrt{2}/2};
2556 @infoline @expr{sqrt(2)/2};
2557 squaring this yields @expr{2/4 = 0.5}. However, there has been a slight
2558 roundoff error because the representation of
2559 @texline @math{\sqrt{2}/2}
2560 @infoline @expr{sqrt(2)/2}
2561 wasn't exact. The @kbd{c 1} command is a handy way to clean up numbers
2562 in this case; it temporarily reduces the precision by one digit while it
2563 re-rounds the number on the top of the stack.
2565 @cindex Roundoff errors, examples
2566 (@bullet{}) @strong{Exercise 3.} Your friend Joe computed the sine
2567 of 45 degrees as shown above, then, hoping to avoid an inexact
2568 result, he increased the precision to 16 digits before squaring.
2569 What happened? @xref{Modes Answer 3, 3}. (@bullet{})
2571 To do this calculation in radians, we would type @kbd{m r} first.
2572 (The indicator changes to @samp{Rad}.) 45 degrees corresponds to
2573 @cpiover{4} radians. To get @cpi{}, press the @kbd{P} key. (Once
2574 again, this is a shifted capital @kbd{P}. Remember, unshifted
2575 @kbd{p} sets the precision.)
2579 1: 3.14159265359 1: 0.785398163398 1: 0.707106781187
2586 Likewise, inverse trigonometric functions generate results in
2587 either radians or degrees, depending on the current angular mode.
2591 1: 0.707106781187 1: 0.785398163398 1: 45.
2594 .5 Q m r I S m d U I S
2599 Here we compute the Inverse Sine of
2600 @texline @math{\sqrt{0.5}},
2601 @infoline @expr{sqrt(0.5)},
2602 first in radians, then in degrees.
2604 Use @kbd{c d} and @kbd{c r} to convert a number from radians to degrees
2609 1: 45 1: 0.785398163397 1: 45.
2616 Another interesting mode is @dfn{Fraction mode}. Normally,
2617 dividing two integers produces a floating-point result if the
2618 quotient can't be expressed as an exact integer. Fraction mode
2619 causes integer division to produce a fraction, i.e., a rational
2624 2: 12 1: 1.33333333333 1: 4:3
2628 12 @key{RET} 9 / m f U / m f
2633 In the first case, we get an approximate floating-point result.
2634 In the second case, we get an exact fractional result (four-thirds).
2636 You can enter a fraction at any time using @kbd{:} notation.
2637 (Calc uses @kbd{:} instead of @kbd{/} as the fraction separator
2638 because @kbd{/} is already used to divide the top two stack
2639 elements.) Calculations involving fractions will always
2640 produce exact fractional results; Fraction mode only says
2641 what to do when dividing two integers.
2643 @cindex Fractions vs. floats
2644 @cindex Floats vs. fractions
2645 (@bullet{}) @strong{Exercise 4.} If fractional arithmetic is exact,
2646 why would you ever use floating-point numbers instead?
2647 @xref{Modes Answer 4, 4}. (@bullet{})
2649 Typing @kbd{m f} doesn't change any existing values in the stack.
2650 In the above example, we had to Undo the division and do it over
2651 again when we changed to Fraction mode. But if you use the
2652 evaluates-to operator you can get commands like @kbd{m f} to
2657 1: 12 / 9 => 1.33333333333 1: 12 / 9 => 1.333 1: 12 / 9 => 4:3
2660 ' 12/9 => @key{RET} p 4 @key{RET} m f
2665 In this example, the righthand side of the @samp{=>} operator
2666 on the stack is recomputed when we change the precision, then
2667 again when we change to Fraction mode. All @samp{=>} expressions
2668 on the stack are recomputed every time you change any mode that
2669 might affect their values.
2671 @node Arithmetic Tutorial, Vector/Matrix Tutorial, Basic Tutorial, Tutorial
2672 @section Arithmetic Tutorial
2675 In this section, we explore the arithmetic and scientific functions
2676 available in the Calculator.
2678 The standard arithmetic commands are @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/},
2679 and @kbd{^}. Each normally takes two numbers from the top of the stack
2680 and pushes back a result. The @kbd{n} and @kbd{&} keys perform
2681 change-sign and reciprocal operations, respectively.
2685 1: 5 1: 0.2 1: 5. 1: -5. 1: 5.
2692 @cindex Binary operators
2693 You can apply a ``binary operator'' like @kbd{+} across any number of
2694 stack entries by giving it a numeric prefix. You can also apply it
2695 pairwise to several stack elements along with the top one if you use
2700 3: 2 1: 9 3: 2 4: 2 3: 12
2701 2: 3 . 2: 3 3: 3 2: 13
2702 1: 4 1: 4 2: 4 1: 14
2706 2 @key{RET} 3 @key{RET} 4 M-3 + U 10 M-- M-3 +
2710 @cindex Unary operators
2711 You can apply a ``unary operator'' like @kbd{&} to the top @var{n}
2712 stack entries with a numeric prefix, too.
2717 2: 3 2: 0.333333333333 2: 3.
2721 2 @key{RET} 3 @key{RET} 4 M-3 & M-2 &
2725 Notice that the results here are left in floating-point form.
2726 We can convert them back to integers by pressing @kbd{F}, the
2727 ``floor'' function. This function rounds down to the next lower
2728 integer. There is also @kbd{R}, which rounds to the nearest
2746 Since dividing-and-flooring (i.e., ``integer quotient'') is such a
2747 common operation, Calc provides a special command for that purpose, the
2748 backslash @kbd{\}. Another common arithmetic operator is @kbd{%}, which
2749 computes the remainder that would arise from a @kbd{\} operation, i.e.,
2750 the ``modulo'' of two numbers. For example,
2754 2: 1234 1: 12 2: 1234 1: 34
2758 1234 @key{RET} 100 \ U %
2762 These commands actually work for any real numbers, not just integers.
2766 2: 3.1415 1: 3 2: 3.1415 1: 0.1415
2770 3.1415 @key{RET} 1 \ U %
2774 (@bullet{}) @strong{Exercise 1.} The @kbd{\} command would appear to be a
2775 frill, since you could always do the same thing with @kbd{/ F}. Think
2776 of a situation where this is not true---@kbd{/ F} would be inadequate.
2777 Now think of a way you could get around the problem if Calc didn't
2778 provide a @kbd{\} command. @xref{Arithmetic Answer 1, 1}. (@bullet{})
2780 We've already seen the @kbd{Q} (square root) and @kbd{S} (sine)
2781 commands. Other commands along those lines are @kbd{C} (cosine),
2782 @kbd{T} (tangent), @kbd{E} (@expr{e^x}) and @kbd{L} (natural
2783 logarithm). These can be modified by the @kbd{I} (inverse) and
2784 @kbd{H} (hyperbolic) prefix keys.
2786 Let's compute the sine and cosine of an angle, and verify the
2788 @texline @math{\sin^2x + \cos^2x = 1}.
2789 @infoline @expr{sin(x)^2 + cos(x)^2 = 1}.
2790 We'll arbitrarily pick @mathit{-64} degrees as a good value for @expr{x}.
2791 With the angular mode set to degrees (type @w{@kbd{m d}}), do:
2795 2: -64 2: -64 2: -0.89879 2: -0.89879 1: 1.
2796 1: -64 1: -0.89879 1: -64 1: 0.43837 .
2799 64 n @key{RET} @key{RET} S @key{TAB} C f h
2804 (For brevity, we're showing only five digits of the results here.
2805 You can of course do these calculations to any precision you like.)
2807 Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum
2808 of squares, command.
2811 @texline @math{\displaystyle\tan x = {\sin x \over \cos x}}.
2812 @infoline @expr{tan(x) = sin(x) / cos(x)}.
2816 2: -0.89879 1: -2.0503 1: -64.
2824 A physical interpretation of this calculation is that if you move
2825 @expr{0.89879} units downward and @expr{0.43837} units to the right,
2826 your direction of motion is @mathit{-64} degrees from horizontal. Suppose
2827 we move in the opposite direction, up and to the left:
2831 2: -0.89879 2: 0.89879 1: -2.0503 1: -64.
2832 1: 0.43837 1: -0.43837 . .
2840 How can the angle be the same? The answer is that the @kbd{/} operation
2841 loses information about the signs of its inputs. Because the quotient
2842 is negative, we know exactly one of the inputs was negative, but we
2843 can't tell which one. There is an @kbd{f T} [@code{arctan2}] function which
2844 computes the inverse tangent of the quotient of a pair of numbers.
2845 Since you feed it the two original numbers, it has enough information
2846 to give you a full 360-degree answer.
2850 2: 0.89879 1: 116. 3: 116. 2: 116. 1: 180.
2851 1: -0.43837 . 2: -0.89879 1: -64. .
2855 U U f T M-@key{RET} M-2 n f T -
2860 The resulting angles differ by 180 degrees; in other words, they
2861 point in opposite directions, just as we would expect.
2863 The @key{META}-@key{RET} we used in the third step is the
2864 ``last-arguments'' command. It is sort of like Undo, except that it
2865 restores the arguments of the last command to the stack without removing
2866 the command's result. It is useful in situations like this one,
2867 where we need to do several operations on the same inputs. We could
2868 have accomplished the same thing by using @kbd{M-2 @key{RET}} to duplicate
2869 the top two stack elements right after the @kbd{U U}, then a pair of
2870 @kbd{M-@key{TAB}} commands to cycle the 116 up around the duplicates.
2872 A similar identity is supposed to hold for hyperbolic sines and cosines,
2873 except that it is the @emph{difference}
2874 @texline @math{\cosh^2x - \sinh^2x}
2875 @infoline @expr{cosh(x)^2 - sinh(x)^2}
2876 that always equals one. Let's try to verify this identity.
2880 2: -64 2: -64 2: -64 2: 9.7192e54 2: 9.7192e54
2881 1: -64 1: -3.1175e27 1: 9.7192e54 1: -64 1: 9.7192e54
2884 64 n @key{RET} @key{RET} H C 2 ^ @key{TAB} H S 2 ^
2889 @cindex Roundoff errors, examples
2890 Something's obviously wrong, because when we subtract these numbers
2891 the answer will clearly be zero! But if you think about it, if these
2892 numbers @emph{did} differ by one, it would be in the 55th decimal
2893 place. The difference we seek has been lost entirely to roundoff
2896 We could verify this hypothesis by doing the actual calculation with,
2897 say, 60 decimal places of precision. This will be slow, but not
2898 enormously so. Try it if you wish; sure enough, the answer is
2899 0.99999, reasonably close to 1.
2901 Of course, a more reasonable way to verify the identity is to use
2902 a more reasonable value for @expr{x}!
2904 @cindex Common logarithm
2905 Some Calculator commands use the Hyperbolic prefix for other purposes.
2906 The logarithm and exponential functions, for example, work to the base
2907 @expr{e} normally but use base-10 instead if you use the Hyperbolic
2912 1: 1000 1: 6.9077 1: 1000 1: 3
2920 First, we mistakenly compute a natural logarithm. Then we undo
2921 and compute a common logarithm instead.
2923 The @kbd{B} key computes a general base-@var{b} logarithm for any
2928 2: 1000 1: 3 1: 1000. 2: 1000. 1: 6.9077
2929 1: 10 . . 1: 2.71828 .
2932 1000 @key{RET} 10 B H E H P B
2937 Here we first use @kbd{B} to compute the base-10 logarithm, then use
2938 the ``hyperbolic'' exponential as a cheap hack to recover the number
2939 1000, then use @kbd{B} again to compute the natural logarithm. Note
2940 that @kbd{P} with the hyperbolic prefix pushes the constant @expr{e}
2943 You may have noticed that both times we took the base-10 logarithm
2944 of 1000, we got an exact integer result. Calc always tries to give
2945 an exact rational result for calculations involving rational numbers
2946 where possible. But when we used @kbd{H E}, the result was a
2947 floating-point number for no apparent reason. In fact, if we had
2948 computed @kbd{10 @key{RET} 3 ^} we @emph{would} have gotten an
2949 exact integer 1000. But the @kbd{H E} command is rigged to generate
2950 a floating-point result all of the time so that @kbd{1000 H E} will
2951 not waste time computing a thousand-digit integer when all you
2952 probably wanted was @samp{1e1000}.
2954 (@bullet{}) @strong{Exercise 2.} Find a pair of integer inputs to
2955 the @kbd{B} command for which Calc could find an exact rational
2956 result but doesn't. @xref{Arithmetic Answer 2, 2}. (@bullet{})
2958 The Calculator also has a set of functions relating to combinatorics
2959 and statistics. You may be familiar with the @dfn{factorial} function,
2960 which computes the product of all the integers up to a given number.
2964 1: 100 1: 93326215443... 1: 100. 1: 9.3326e157
2972 Recall, the @kbd{c f} command converts the integer or fraction at the
2973 top of the stack to floating-point format. If you take the factorial
2974 of a floating-point number, you get a floating-point result
2975 accurate to the current precision. But if you give @kbd{!} an
2976 exact integer, you get an exact integer result (158 digits long
2979 If you take the factorial of a non-integer, Calc uses a generalized
2980 factorial function defined in terms of Euler's Gamma function
2981 @texline @math{\Gamma(n)}
2982 @infoline @expr{gamma(n)}
2983 (which is itself available as the @kbd{f g} command).
2987 3: 4. 3: 24. 1: 5.5 1: 52.342777847
2988 2: 4.5 2: 52.3427777847 . .
2992 M-3 ! M-0 @key{DEL} 5.5 f g
2997 Here we verify the identity
2998 @texline @math{n! = \Gamma(n+1)}.
2999 @infoline @expr{@var{n}!@: = gamma(@var{n}+1)}.
3001 The binomial coefficient @var{n}-choose-@var{m}
3002 @texline or @math{\displaystyle {n \choose m}}
3004 @texline @math{\displaystyle {n! \over m! \, (n-m)!}}
3005 @infoline @expr{n!@: / m!@: (n-m)!}
3006 for all reals @expr{n} and @expr{m}. The intermediate results in this
3007 formula can become quite large even if the final result is small; the
3008 @kbd{k c} command computes a binomial coefficient in a way that avoids
3009 large intermediate values.
3011 The @kbd{k} prefix key defines several common functions out of
3012 combinatorics and number theory. Here we compute the binomial
3013 coefficient 30-choose-20, then determine its prime factorization.
3017 2: 30 1: 30045015 1: [3, 3, 5, 7, 11, 13, 23, 29]
3021 30 @key{RET} 20 k c k f
3026 You can verify these prime factors by using @kbd{V R *} to multiply
3027 together the elements of this vector. The result is the original
3031 Suppose a program you are writing needs a hash table with at least
3032 10000 entries. It's best to use a prime number as the actual size
3033 of a hash table. Calc can compute the next prime number after 10000:
3037 1: 10000 1: 10007 1: 9973
3045 Just for kicks we've also computed the next prime @emph{less} than
3048 @c [fix-ref Financial Functions]
3049 @xref{Financial Functions}, for a description of the Calculator
3050 commands that deal with business and financial calculations (functions
3051 like @code{pv}, @code{rate}, and @code{sln}).
3053 @c [fix-ref Binary Number Functions]
3054 @xref{Binary Functions}, to read about the commands for operating
3055 on binary numbers (like @code{and}, @code{xor}, and @code{lsh}).
3057 @node Vector/Matrix Tutorial, Types Tutorial, Arithmetic Tutorial, Tutorial
3058 @section Vector/Matrix Tutorial
3061 A @dfn{vector} is a list of numbers or other Calc data objects.
3062 Calc provides a large set of commands that operate on vectors. Some
3063 are familiar operations from vector analysis. Others simply treat
3064 a vector as a list of objects.
3067 * Vector Analysis Tutorial::
3072 @node Vector Analysis Tutorial, Matrix Tutorial, Vector/Matrix Tutorial, Vector/Matrix Tutorial
3073 @subsection Vector Analysis
3076 If you add two vectors, the result is a vector of the sums of the
3077 elements, taken pairwise.
3081 1: [1, 2, 3] 2: [1, 2, 3] 1: [8, 8, 3]
3085 [1,2,3] s 1 [7 6 0] s 2 +
3090 Note that we can separate the vector elements with either commas or
3091 spaces. This is true whether we are using incomplete vectors or
3092 algebraic entry. The @kbd{s 1} and @kbd{s 2} commands save these
3093 vectors so we can easily reuse them later.
3095 If you multiply two vectors, the result is the sum of the products
3096 of the elements taken pairwise. This is called the @dfn{dot product}
3110 The dot product of two vectors is equal to the product of their
3111 lengths times the cosine of the angle between them. (Here the vector
3112 is interpreted as a line from the origin @expr{(0,0,0)} to the
3113 specified point in three-dimensional space.) The @kbd{A}
3114 (absolute value) command can be used to compute the length of a
3119 3: 19 3: 19 1: 0.550782 1: 56.579
3120 2: [1, 2, 3] 2: 3.741657 . .
3121 1: [7, 6, 0] 1: 9.219544
3124 M-@key{RET} M-2 A * / I C
3129 First we recall the arguments to the dot product command, then
3130 we compute the absolute values of the top two stack entries to
3131 obtain the lengths of the vectors, then we divide the dot product
3132 by the product of the lengths to get the cosine of the angle.
3133 The inverse cosine finds that the angle between the vectors
3134 is about 56 degrees.
3136 @cindex Cross product
3137 @cindex Perpendicular vectors
3138 The @dfn{cross product} of two vectors is a vector whose length
3139 is the product of the lengths of the inputs times the sine of the
3140 angle between them, and whose direction is perpendicular to both
3141 input vectors. Unlike the dot product, the cross product is
3142 defined only for three-dimensional vectors. Let's double-check
3143 our computation of the angle using the cross product.
3147 2: [1, 2, 3] 3: [-18, 21, -8] 1: [-0.52, 0.61, -0.23] 1: 56.579
3148 1: [7, 6, 0] 2: [1, 2, 3] . .
3152 r 1 r 2 V C s 3 M-@key{RET} M-2 A * / A I S
3157 First we recall the original vectors and compute their cross product,
3158 which we also store for later reference. Now we divide the vector
3159 by the product of the lengths of the original vectors. The length of
3160 this vector should be the sine of the angle; sure enough, it is!
3162 @c [fix-ref General Mode Commands]
3163 Vector-related commands generally begin with the @kbd{v} prefix key.
3164 Some are uppercase letters and some are lowercase. To make it easier
3165 to type these commands, the shift-@kbd{V} prefix key acts the same as
3166 the @kbd{v} key. (@xref{General Mode Commands}, for a way to make all
3167 prefix keys have this property.)
3169 If we take the dot product of two perpendicular vectors we expect
3170 to get zero, since the cosine of 90 degrees is zero. Let's check
3171 that the cross product is indeed perpendicular to both inputs:
3175 2: [1, 2, 3] 1: 0 2: [7, 6, 0] 1: 0
3176 1: [-18, 21, -8] . 1: [-18, 21, -8] .
3179 r 1 r 3 * @key{DEL} r 2 r 3 *
3183 @cindex Normalizing a vector
3184 @cindex Unit vectors
3185 (@bullet{}) @strong{Exercise 1.} Given a vector on the top of the
3186 stack, what keystrokes would you use to @dfn{normalize} the
3187 vector, i.e., to reduce its length to one without changing its
3188 direction? @xref{Vector Answer 1, 1}. (@bullet{})
3190 (@bullet{}) @strong{Exercise 2.} Suppose a certain particle can be
3191 at any of several positions along a ruler. You have a list of
3192 those positions in the form of a vector, and another list of the
3193 probabilities for the particle to be at the corresponding positions.
3194 Find the average position of the particle.
3195 @xref{Vector Answer 2, 2}. (@bullet{})
3197 @node Matrix Tutorial, List Tutorial, Vector Analysis Tutorial, Vector/Matrix Tutorial
3198 @subsection Matrices
3201 A @dfn{matrix} is just a vector of vectors, all the same length.
3202 This means you can enter a matrix using nested brackets. You can
3203 also use the semicolon character to enter a matrix. We'll show
3208 1: [ [ 1, 2, 3 ] 1: [ [ 1, 2, 3 ]
3209 [ 4, 5, 6 ] ] [ 4, 5, 6 ] ]
3212 [[1 2 3] [4 5 6]] ' [1 2 3; 4 5 6] @key{RET}
3217 We'll be using this matrix again, so type @kbd{s 4} to save it now.
3219 Note that semicolons work with incomplete vectors, but they work
3220 better in algebraic entry. That's why we use the apostrophe in
3223 When two matrices are multiplied, the lefthand matrix must have
3224 the same number of columns as the righthand matrix has rows.
3225 Row @expr{i}, column @expr{j} of the result is effectively the
3226 dot product of row @expr{i} of the left matrix by column @expr{j}
3227 of the right matrix.
3229 If we try to duplicate this matrix and multiply it by itself,
3230 the dimensions are wrong and the multiplication cannot take place:
3234 1: [ [ 1, 2, 3 ] * [ [ 1, 2, 3 ]
3235 [ 4, 5, 6 ] ] [ 4, 5, 6 ] ]
3243 Though rather hard to read, this is a formula which shows the product
3244 of two matrices. The @samp{*} function, having invalid arguments, has
3245 been left in symbolic form.
3247 We can multiply the matrices if we @dfn{transpose} one of them first.
3251 2: [ [ 1, 2, 3 ] 1: [ [ 14, 32 ] 1: [ [ 17, 22, 27 ]
3252 [ 4, 5, 6 ] ] [ 32, 77 ] ] [ 22, 29, 36 ]
3253 1: [ [ 1, 4 ] . [ 27, 36, 45 ] ]
3258 U v t * U @key{TAB} *
3262 Matrix multiplication is not commutative; indeed, switching the
3263 order of the operands can even change the dimensions of the result
3264 matrix, as happened here!
3266 If you multiply a plain vector by a matrix, it is treated as a
3267 single row or column depending on which side of the matrix it is
3268 on. The result is a plain vector which should also be interpreted
3269 as a row or column as appropriate.
3273 2: [ [ 1, 2, 3 ] 1: [14, 32]
3282 Multiplying in the other order wouldn't work because the number of
3283 rows in the matrix is different from the number of elements in the
3286 (@bullet{}) @strong{Exercise 1.} Use @samp{*} to sum along the rows
3288 @texline @math{2\times3}
3290 matrix to get @expr{[6, 15]}. Now use @samp{*} to sum along the columns
3291 to get @expr{[5, 7, 9]}.
3292 @xref{Matrix Answer 1, 1}. (@bullet{})
3294 @cindex Identity matrix
3295 An @dfn{identity matrix} is a square matrix with ones along the
3296 diagonal and zeros elsewhere. It has the property that multiplication
3297 by an identity matrix, on the left or on the right, always produces
3298 the original matrix.
3302 1: [ [ 1, 2, 3 ] 2: [ [ 1, 2, 3 ] 1: [ [ 1, 2, 3 ]
3303 [ 4, 5, 6 ] ] [ 4, 5, 6 ] ] [ 4, 5, 6 ] ]
3304 . 1: [ [ 1, 0, 0 ] .
3309 r 4 v i 3 @key{RET} *
3313 If a matrix is square, it is often possible to find its @dfn{inverse},
3314 that is, a matrix which, when multiplied by the original matrix, yields
3315 an identity matrix. The @kbd{&} (reciprocal) key also computes the
3316 inverse of a matrix.
3320 1: [ [ 1, 2, 3 ] 1: [ [ -2.4, 1.2, -0.2 ]
3321 [ 4, 5, 6 ] [ 2.8, -1.4, 0.4 ]
3322 [ 7, 6, 0 ] ] [ -0.73333, 0.53333, -0.2 ] ]
3330 The vertical bar @kbd{|} @dfn{concatenates} numbers, vectors, and
3331 matrices together. Here we have used it to add a new row onto
3332 our matrix to make it square.
3334 We can multiply these two matrices in either order to get an identity.
3338 1: [ [ 1., 0., 0. ] 1: [ [ 1., 0., 0. ]
3339 [ 0., 1., 0. ] [ 0., 1., 0. ]
3340 [ 0., 0., 1. ] ] [ 0., 0., 1. ] ]
3343 M-@key{RET} * U @key{TAB} *
3347 @cindex Systems of linear equations
3348 @cindex Linear equations, systems of
3349 Matrix inverses are related to systems of linear equations in algebra.
3350 Suppose we had the following set of equations:
3363 $$ \openup1\jot \tabskip=0pt plus1fil
3364 \halign to\displaywidth{\tabskip=0pt
3365 $\hfil#$&$\hfil{}#{}$&
3366 $\hfil#$&$\hfil{}#{}$&
3367 $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3376 This can be cast into the matrix equation,
3381 [ [ 1, 2, 3 ] [ [ a ] [ [ 6 ]
3382 [ 4, 5, 6 ] * [ b ] = [ 2 ]
3383 [ 7, 6, 0 ] ] [ c ] ] [ 3 ] ]
3389 $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 }
3391 \pmatrix{ a \cr b \cr c } = \pmatrix{ 6 \cr 2 \cr 3 }
3396 We can solve this system of equations by multiplying both sides by the
3397 inverse of the matrix. Calc can do this all in one step:
3401 2: [6, 2, 3] 1: [-12.6, 15.2, -3.93333]
3412 The result is the @expr{[a, b, c]} vector that solves the equations.
3413 (Dividing by a square matrix is equivalent to multiplying by its
3416 Let's verify this solution:
3420 2: [ [ 1, 2, 3 ] 1: [6., 2., 3.]
3423 1: [-12.6, 15.2, -3.93333]
3431 Note that we had to be careful about the order in which we multiplied
3432 the matrix and vector. If we multiplied in the other order, Calc would
3433 assume the vector was a row vector in order to make the dimensions
3434 come out right, and the answer would be incorrect. If you
3435 don't feel safe letting Calc take either interpretation of your
3436 vectors, use explicit
3437 @texline @math{N\times1}
3440 @texline @math{1\times N}
3442 matrices instead. In this case, you would enter the original column
3443 vector as @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
3445 (@bullet{}) @strong{Exercise 2.} Algebraic entry allows you to make
3446 vectors and matrices that include variables. Solve the following
3447 system of equations to get expressions for @expr{x} and @expr{y}
3448 in terms of @expr{a} and @expr{b}.
3460 $$ \eqalign{ x &+ a y = 6 \cr
3467 @xref{Matrix Answer 2, 2}. (@bullet{})
3469 @cindex Least-squares for over-determined systems
3470 @cindex Over-determined systems of equations
3471 (@bullet{}) @strong{Exercise 3.} A system of equations is ``over-determined''
3472 if it has more equations than variables. It is often the case that
3473 there are no values for the variables that will satisfy all the
3474 equations at once, but it is still useful to find a set of values
3475 which ``nearly'' satisfy all the equations. In terms of matrix equations,
3476 you can't solve @expr{A X = B} directly because the matrix @expr{A}
3477 is not square for an over-determined system. Matrix inversion works
3478 only for square matrices. One common trick is to multiply both sides
3479 on the left by the transpose of @expr{A}:
3481 @samp{trn(A)*A*X = trn(A)*B}.
3484 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
3487 @texline @math{A^T A}
3488 @infoline @expr{trn(A)*A}
3489 is a square matrix so a solution is possible. It turns out that the
3490 @expr{X} vector you compute in this way will be a ``least-squares''
3491 solution, which can be regarded as the ``closest'' solution to the set
3492 of equations. Use Calc to solve the following over-determined
3507 $$ \openup1\jot \tabskip=0pt plus1fil
3508 \halign to\displaywidth{\tabskip=0pt
3509 $\hfil#$&$\hfil{}#{}$&
3510 $\hfil#$&$\hfil{}#{}$&
3511 $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3515 2a&+&4b&+&6c&=11 \cr}
3521 @xref{Matrix Answer 3, 3}. (@bullet{})
3523 @node List Tutorial, , Matrix Tutorial, Vector/Matrix Tutorial
3524 @subsection Vectors as Lists
3528 Although Calc has a number of features for manipulating vectors and
3529 matrices as mathematical objects, you can also treat vectors as
3530 simple lists of values. For example, we saw that the @kbd{k f}
3531 command returns a vector which is a list of the prime factors of a
3534 You can pack and unpack stack entries into vectors:
3538 3: 10 1: [10, 20, 30] 3: 10
3547 You can also build vectors out of consecutive integers, or out
3548 of many copies of a given value:
3552 1: [1, 2, 3, 4] 2: [1, 2, 3, 4] 2: [1, 2, 3, 4]
3553 . 1: 17 1: [17, 17, 17, 17]
3556 v x 4 @key{RET} 17 v b 4 @key{RET}
3560 You can apply an operator to every element of a vector using the
3565 1: [17, 34, 51, 68] 1: [289, 1156, 2601, 4624] 1: [17, 34, 51, 68]
3573 In the first step, we multiply the vector of integers by the vector
3574 of 17's elementwise. In the second step, we raise each element to
3575 the power two. (The general rule is that both operands must be
3576 vectors of the same length, or else one must be a vector and the
3577 other a plain number.) In the final step, we take the square root
3580 (@bullet{}) @strong{Exercise 1.} Compute a vector of powers of two
3582 @texline @math{2^{-4}}
3583 @infoline @expr{2^-4}
3584 to @expr{2^4}. @xref{List Answer 1, 1}. (@bullet{})
3586 You can also @dfn{reduce} a binary operator across a vector.
3587 For example, reducing @samp{*} computes the product of all the
3588 elements in the vector:
3592 1: 123123 1: [3, 7, 11, 13, 41] 1: 123123
3600 In this example, we decompose 123123 into its prime factors, then
3601 multiply those factors together again to yield the original number.
3603 We could compute a dot product ``by hand'' using mapping and
3608 2: [1, 2, 3] 1: [7, 12, 0] 1: 19
3617 Recalling two vectors from the previous section, we compute the
3618 sum of pairwise products of the elements to get the same answer
3619 for the dot product as before.
3621 A slight variant of vector reduction is the @dfn{accumulate} operation,
3622 @kbd{V U}. This produces a vector of the intermediate results from
3623 a corresponding reduction. Here we compute a table of factorials:
3627 1: [1, 2, 3, 4, 5, 6] 1: [1, 2, 6, 24, 120, 720]
3630 v x 6 @key{RET} V U *
3634 Calc allows vectors to grow as large as you like, although it gets
3635 rather slow if vectors have more than about a hundred elements.
3636 Actually, most of the time is spent formatting these large vectors
3637 for display, not calculating on them. Try the following experiment
3638 (if your computer is very fast you may need to substitute a larger
3643 1: [1, 2, 3, 4, ... 1: [2, 3, 4, 5, ...
3646 v x 500 @key{RET} 1 V M +
3650 Now press @kbd{v .} (the letter @kbd{v}, then a period) and try the
3651 experiment again. In @kbd{v .} mode, long vectors are displayed
3652 ``abbreviated'' like this:
3656 1: [1, 2, 3, ..., 500] 1: [2, 3, 4, ..., 501]
3659 v x 500 @key{RET} 1 V M +
3664 (where now the @samp{...} is actually part of the Calc display).
3665 You will find both operations are now much faster. But notice that
3666 even in @w{@kbd{v .}} mode, the full vectors are still shown in the Trail.
3667 Type @w{@kbd{t .}} to cause the trail to abbreviate as well, and try the
3668 experiment one more time. Operations on long vectors are now quite
3669 fast! (But of course if you use @kbd{t .} you will lose the ability
3670 to get old vectors back using the @kbd{t y} command.)
3672 An easy way to view a full vector when @kbd{v .} mode is active is
3673 to press @kbd{`} (back-quote) to edit the vector; editing always works
3674 with the full, unabbreviated value.
3676 @cindex Least-squares for fitting a straight line
3677 @cindex Fitting data to a line
3678 @cindex Line, fitting data to
3679 @cindex Data, extracting from buffers
3680 @cindex Columns of data, extracting
3681 As a larger example, let's try to fit a straight line to some data,
3682 using the method of least squares. (Calc has a built-in command for
3683 least-squares curve fitting, but we'll do it by hand here just to
3684 practice working with vectors.) Suppose we have the following list
3685 of values in a file we have loaded into Emacs:
3712 If you are reading this tutorial in printed form, you will find it
3713 easiest to press @kbd{C-x * i} to enter the on-line Info version of
3714 the manual and find this table there. (Press @kbd{g}, then type
3715 @kbd{List Tutorial}, to jump straight to this section.)
3717 Position the cursor at the upper-left corner of this table, just
3718 to the left of the @expr{1.34}. Press @kbd{C-@@} to set the mark.
3719 (On your system this may be @kbd{C-2}, @kbd{C-@key{SPC}}, or @kbd{NUL}.)
3720 Now position the cursor to the lower-right, just after the @expr{1.354}.
3721 You have now defined this region as an Emacs ``rectangle.'' Still
3722 in the Info buffer, type @kbd{C-x * r}. This command
3723 (@code{calc-grab-rectangle}) will pop you back into the Calculator, with
3724 the contents of the rectangle you specified in the form of a matrix.
3728 1: [ [ 1.34, 0.234 ]
3735 (You may wish to use @kbd{v .} mode to abbreviate the display of this
3738 We want to treat this as a pair of lists. The first step is to
3739 transpose this matrix into a pair of rows. Remember, a matrix is
3740 just a vector of vectors. So we can unpack the matrix into a pair
3741 of row vectors on the stack.
3745 1: [ [ 1.34, 1.41, 1.49, ... ] 2: [1.34, 1.41, 1.49, ... ]
3746 [ 0.234, 0.298, 0.402, ... ] ] 1: [0.234, 0.298, 0.402, ... ]
3754 Let's store these in quick variables 1 and 2, respectively.
3758 1: [1.34, 1.41, 1.49, ... ] .
3766 (Recall that @kbd{t 2} is a variant of @kbd{s 2} that removes the
3767 stored value from the stack.)
3769 In a least squares fit, the slope @expr{m} is given by the formula
3773 m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2)
3778 $$ m = {N \sum x y - \sum x \sum y \over
3779 N \sum x^2 - \left( \sum x \right)^2} $$
3785 @texline @math{\sum x}
3786 @infoline @expr{sum(x)}
3787 represents the sum of all the values of @expr{x}. While there is an
3788 actual @code{sum} function in Calc, it's easier to sum a vector using a
3789 simple reduction. First, let's compute the four different sums that
3797 r 1 V R + t 3 r 1 2 V M ^ V R + t 4
3804 1: 13.613 1: 33.36554
3807 r 2 V R + t 5 r 1 r 2 V M * V R + t 6
3813 These are @samp{sum(x)}, @samp{sum(x^2)}, @samp{sum(y)}, and @samp{sum(x y)},
3814 respectively. (We could have used @kbd{*} to compute @samp{sum(x^2)} and
3818 These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$,
3819 respectively. (We could have used \kbd{*} to compute $\sum x^2$ and
3823 Finally, we also need @expr{N}, the number of data points. This is just
3824 the length of either of our lists.
3836 (That's @kbd{v} followed by a lower-case @kbd{l}.)
3838 Now we grind through the formula:
3842 1: 633.94526 2: 633.94526 1: 67.23607
3846 r 7 r 6 * r 3 r 5 * -
3853 2: 67.23607 3: 67.23607 2: 67.23607 1: 0.52141679
3854 1: 1862.0057 2: 1862.0057 1: 128.9488 .
3858 r 7 r 4 * r 3 2 ^ - / t 8
3862 That gives us the slope @expr{m}. The y-intercept @expr{b} can now
3863 be found with the simple formula,
3867 b = (sum(y) - m sum(x)) / N
3872 $$ b = {\sum y - m \sum x \over N} $$
3879 1: 13.613 2: 13.613 1: -8.09358 1: -0.425978
3883 r 5 r 8 r 3 * - r 7 / t 9
3887 Let's ``plot'' this straight line approximation,
3888 @texline @math{y \approx m x + b},
3889 @infoline @expr{m x + b},
3890 and compare it with the original data.
3894 1: [0.699, 0.735, ... ] 1: [0.273, 0.309, ... ]
3902 Notice that multiplying a vector by a constant, and adding a constant
3903 to a vector, can be done without mapping commands since these are
3904 common operations from vector algebra. As far as Calc is concerned,
3905 we've just been doing geometry in 19-dimensional space!
3907 We can subtract this vector from our original @expr{y} vector to get
3908 a feel for the error of our fit. Let's find the maximum error:
3912 1: [0.0387, 0.0112, ... ] 1: [0.0387, 0.0112, ... ] 1: 0.0897
3920 First we compute a vector of differences, then we take the absolute
3921 values of these differences, then we reduce the @code{max} function
3922 across the vector. (The @code{max} function is on the two-key sequence
3923 @kbd{f x}; because it is so common to use @code{max} in a vector
3924 operation, the letters @kbd{X} and @kbd{N} are also accepted for
3925 @code{max} and @code{min} in this context. In general, you answer
3926 the @kbd{V M} or @kbd{V R} prompt with the actual key sequence that
3927 invokes the function you want. You could have typed @kbd{V R f x} or
3928 even @kbd{V R x max @key{RET}} if you had preferred.)
3930 If your system has the GNUPLOT program, you can see graphs of your
3931 data and your straight line to see how well they match. (If you have
3932 GNUPLOT 3.0 or higher, the following instructions will work regardless
3933 of the kind of display you have. Some GNUPLOT 2.0, non-X-windows systems
3934 may require additional steps to view the graphs.)
3936 Let's start by plotting the original data. Recall the ``@var{x}'' and ``@var{y}''
3937 vectors onto the stack and press @kbd{g f}. This ``fast'' graphing
3938 command does everything you need to do for simple, straightforward
3943 2: [1.34, 1.41, 1.49, ... ]
3944 1: [0.234, 0.298, 0.402, ... ]
3951 If all goes well, you will shortly get a new window containing a graph
3952 of the data. (If not, contact your GNUPLOT or Calc installer to find
3953 out what went wrong.) In the X window system, this will be a separate
3954 graphics window. For other kinds of displays, the default is to
3955 display the graph in Emacs itself using rough character graphics.
3956 Press @kbd{q} when you are done viewing the character graphics.
3958 Next, let's add the line we got from our least-squares fit.
3960 (If you are reading this tutorial on-line while running Calc, typing
3961 @kbd{g a} may cause the tutorial to disappear from its window and be
3962 replaced by a buffer named @samp{*Gnuplot Commands*}. The tutorial
3963 will reappear when you terminate GNUPLOT by typing @kbd{g q}.)
3968 2: [1.34, 1.41, 1.49, ... ]
3969 1: [0.273, 0.309, 0.351, ... ]
3972 @key{DEL} r 0 g a g p
3976 It's not very useful to get symbols to mark the data points on this
3977 second curve; you can type @kbd{g S g p} to remove them. Type @kbd{g q}
3978 when you are done to remove the X graphics window and terminate GNUPLOT.
3980 (@bullet{}) @strong{Exercise 2.} An earlier exercise showed how to do
3981 least squares fitting to a general system of equations. Our 19 data
3982 points are really 19 equations of the form @expr{y_i = m x_i + b} for
3983 different pairs of @expr{(x_i,y_i)}. Use the matrix-transpose method
3984 to solve for @expr{m} and @expr{b}, duplicating the above result.
3985 @xref{List Answer 2, 2}. (@bullet{})
3987 @cindex Geometric mean
3988 (@bullet{}) @strong{Exercise 3.} If the input data do not form a
3989 rectangle, you can use @w{@kbd{C-x * g}} (@code{calc-grab-region})
3990 to grab the data the way Emacs normally works with regions---it reads
3991 left-to-right, top-to-bottom, treating line breaks the same as spaces.
3992 Use this command to find the geometric mean of the following numbers.
3993 (The geometric mean is the @var{n}th root of the product of @var{n} numbers.)
4002 The @kbd{C-x * g} command accepts numbers separated by spaces or commas,
4003 with or without surrounding vector brackets.
4004 @xref{List Answer 3, 3}. (@bullet{})
4007 As another example, a theorem about binomial coefficients tells
4008 us that the alternating sum of binomial coefficients
4009 @var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so
4010 on up to @var{n}-choose-@var{n},
4011 always comes out to zero. Let's verify this
4015 As another example, a theorem about binomial coefficients tells
4016 us that the alternating sum of binomial coefficients
4017 ${n \choose 0} - {n \choose 1} + {n \choose 2} - \cdots \pm {n \choose n}$
4018 always comes out to zero. Let's verify this
4024 1: [1, 2, 3, 4, 5, 6, 7] 1: [0, 1, 2, 3, 4, 5, 6]
4034 1: [1, -6, 15, -20, 15, -6, 1] 1: 0
4037 V M ' (-1)^$ choose(6,$) @key{RET} V R +
4041 The @kbd{V M '} command prompts you to enter any algebraic expression
4042 to define the function to map over the vector. The symbol @samp{$}
4043 inside this expression represents the argument to the function.
4044 The Calculator applies this formula to each element of the vector,
4045 substituting each element's value for the @samp{$} sign(s) in turn.
4047 To define a two-argument function, use @samp{$$} for the first
4048 argument and @samp{$} for the second: @kbd{V M ' $$-$ @key{RET}} is
4049 equivalent to @kbd{V M -}. This is analogous to regular algebraic
4050 entry, where @samp{$$} would refer to the next-to-top stack entry
4051 and @samp{$} would refer to the top stack entry, and @kbd{' $$-$ @key{RET}}
4052 would act exactly like @kbd{-}.
4054 Notice that the @kbd{V M '} command has recorded two things in the
4055 trail: The result, as usual, and also a funny-looking thing marked
4056 @samp{oper} that represents the operator function you typed in.
4057 The function is enclosed in @samp{< >} brackets, and the argument is
4058 denoted by a @samp{#} sign. If there were several arguments, they
4059 would be shown as @samp{#1}, @samp{#2}, and so on. (For example,
4060 @kbd{V M ' $$-$} will put the function @samp{<#1 - #2>} on the
4061 trail.) This object is a ``nameless function''; you can use nameless
4062 @w{@samp{< >}} notation to answer the @kbd{V M '} prompt if you like.
4063 Nameless function notation has the interesting, occasionally useful
4064 property that a nameless function is not actually evaluated until
4065 it is used. For example, @kbd{V M ' $+random(2.0)} evaluates
4066 @samp{random(2.0)} once and adds that random number to all elements
4067 of the vector, but @kbd{V M ' <#+random(2.0)>} evaluates the
4068 @samp{random(2.0)} separately for each vector element.
4070 Another group of operators that are often useful with @kbd{V M} are
4071 the relational operators: @kbd{a =}, for example, compares two numbers
4072 and gives the result 1 if they are equal, or 0 if not. Similarly,
4073 @w{@kbd{a <}} checks for one number being less than another.
4075 Other useful vector operations include @kbd{v v}, to reverse a
4076 vector end-for-end; @kbd{V S}, to sort the elements of a vector
4077 into increasing order; and @kbd{v r} and @w{@kbd{v c}}, to extract
4078 one row or column of a matrix, or (in both cases) to extract one
4079 element of a plain vector. With a negative argument, @kbd{v r}
4080 and @kbd{v c} instead delete one row, column, or vector element.
4082 @cindex Divisor functions
4083 (@bullet{}) @strong{Exercise 4.} The @expr{k}th @dfn{divisor function}
4087 is the sum of the @expr{k}th powers of all the divisors of an
4088 integer @expr{n}. Figure out a method for computing the divisor
4089 function for reasonably small values of @expr{n}. As a test,
4090 the 0th and 1st divisor functions of 30 are 8 and 72, respectively.
4091 @xref{List Answer 4, 4}. (@bullet{})
4093 @cindex Square-free numbers
4094 @cindex Duplicate values in a list
4095 (@bullet{}) @strong{Exercise 5.} The @kbd{k f} command produces a
4096 list of prime factors for a number. Sometimes it is important to
4097 know that a number is @dfn{square-free}, i.e., that no prime occurs
4098 more than once in its list of prime factors. Find a sequence of
4099 keystrokes to tell if a number is square-free; your method should
4100 leave 1 on the stack if it is, or 0 if it isn't.
4101 @xref{List Answer 5, 5}. (@bullet{})
4103 @cindex Triangular lists
4104 (@bullet{}) @strong{Exercise 6.} Build a list of lists that looks
4105 like the following diagram. (You may wish to use the @kbd{v /}
4106 command to enable multi-line display of vectors.)
4115 [1, 2, 3, 4, 5, 6] ]
4120 @xref{List Answer 6, 6}. (@bullet{})
4122 (@bullet{}) @strong{Exercise 7.} Build the following list of lists.
4130 [10, 11, 12, 13, 14],
4131 [15, 16, 17, 18, 19, 20] ]
4136 @xref{List Answer 7, 7}. (@bullet{})
4138 @cindex Maximizing a function over a list of values
4139 @c [fix-ref Numerical Solutions]
4140 (@bullet{}) @strong{Exercise 8.} Compute a list of values of Bessel's
4141 @texline @math{J_1(x)}
4143 function @samp{besJ(1,x)} for @expr{x} from 0 to 5 in steps of 0.25.
4144 Find the value of @expr{x} (from among the above set of values) for
4145 which @samp{besJ(1,x)} is a maximum. Use an ``automatic'' method,
4146 i.e., just reading along the list by hand to find the largest value
4147 is not allowed! (There is an @kbd{a X} command which does this kind
4148 of thing automatically; @pxref{Numerical Solutions}.)
4149 @xref{List Answer 8, 8}. (@bullet{})
4151 @cindex Digits, vectors of
4152 (@bullet{}) @strong{Exercise 9.} You are given an integer in the range
4153 @texline @math{0 \le N < 10^m}
4154 @infoline @expr{0 <= N < 10^m}
4155 for @expr{m=12} (i.e., an integer of less than
4156 twelve digits). Convert this integer into a vector of @expr{m}
4157 digits, each in the range from 0 to 9. In vector-of-digits notation,
4158 add one to this integer to produce a vector of @expr{m+1} digits
4159 (since there could be a carry out of the most significant digit).
4160 Convert this vector back into a regular integer. A good integer
4161 to try is 25129925999. @xref{List Answer 9, 9}. (@bullet{})
4163 (@bullet{}) @strong{Exercise 10.} Your friend Joe tried to use
4164 @kbd{V R a =} to test if all numbers in a list were equal. What
4165 happened? How would you do this test? @xref{List Answer 10, 10}. (@bullet{})
4167 (@bullet{}) @strong{Exercise 11.} The area of a circle of radius one
4168 is @cpi{}. The area of the
4169 @texline @math{2\times2}
4171 square that encloses that circle is 4. So if we throw @var{n} darts at
4172 random points in the square, about @cpiover{4} of them will land inside
4173 the circle. This gives us an entertaining way to estimate the value of
4174 @cpi{}. The @w{@kbd{k r}}
4175 command picks a random number between zero and the value on the stack.
4176 We could get a random floating-point number between @mathit{-1} and 1 by typing
4177 @w{@kbd{2.0 k r 1 -}}. Build a vector of 100 random @expr{(x,y)} points in
4178 this square, then use vector mapping and reduction to count how many
4179 points lie inside the unit circle. Hint: Use the @kbd{v b} command.
4180 @xref{List Answer 11, 11}. (@bullet{})
4182 @cindex Matchstick problem
4183 (@bullet{}) @strong{Exercise 12.} The @dfn{matchstick problem} provides
4184 another way to calculate @cpi{}. Say you have an infinite field
4185 of vertical lines with a spacing of one inch. Toss a one-inch matchstick
4186 onto the field. The probability that the matchstick will land crossing
4187 a line turns out to be
4188 @texline @math{2/\pi}.
4189 @infoline @expr{2/pi}.
4190 Toss 100 matchsticks to estimate @cpi{}. (If you want still more fun,
4191 the probability that the GCD (@w{@kbd{k g}}) of two large integers is
4193 @texline @math{6/\pi^2}.
4194 @infoline @expr{6/pi^2}.
4195 That provides yet another way to estimate @cpi{}.)
4196 @xref{List Answer 12, 12}. (@bullet{})
4198 (@bullet{}) @strong{Exercise 13.} An algebraic entry of a string in
4199 double-quote marks, @samp{"hello"}, creates a vector of the numerical
4200 (ASCII) codes of the characters (here, @expr{[104, 101, 108, 108, 111]}).
4201 Sometimes it is convenient to compute a @dfn{hash code} of a string,
4202 which is just an integer that represents the value of that string.
4203 Two equal strings have the same hash code; two different strings
4204 @dfn{probably} have different hash codes. (For example, Calc has
4205 over 400 function names, but Emacs can quickly find the definition for
4206 any given name because it has sorted the functions into ``buckets'' by
4207 their hash codes. Sometimes a few names will hash into the same bucket,
4208 but it is easier to search among a few names than among all the names.)
4209 One popular hash function is computed as follows: First set @expr{h = 0}.
4210 Then, for each character from the string in turn, set @expr{h = 3h + c_i}
4211 where @expr{c_i} is the character's ASCII code. If we have 511 buckets,
4212 we then take the hash code modulo 511 to get the bucket number. Develop a
4213 simple command or commands for converting string vectors into hash codes.
4214 The hash code for @samp{"Testing, 1, 2, 3"} is 1960915098, which modulo
4215 511 is 121. @xref{List Answer 13, 13}. (@bullet{})
4217 (@bullet{}) @strong{Exercise 14.} The @kbd{H V R} and @kbd{H V U}
4218 commands do nested function evaluations. @kbd{H V U} takes a starting
4219 value and a number of steps @var{n} from the stack; it then applies the
4220 function you give to the starting value 0, 1, 2, up to @var{n} times
4221 and returns a vector of the results. Use this command to create a
4222 ``random walk'' of 50 steps. Start with the two-dimensional point
4223 @expr{(0,0)}; then take one step a random distance between @mathit{-1} and 1
4224 in both @expr{x} and @expr{y}; then take another step, and so on. Use the
4225 @kbd{g f} command to display this random walk. Now modify your random
4226 walk to walk a unit distance, but in a random direction, at each step.
4227 (Hint: The @code{sincos} function returns a vector of the cosine and
4228 sine of an angle.) @xref{List Answer 14, 14}. (@bullet{})
4230 @node Types Tutorial, Algebra Tutorial, Vector/Matrix Tutorial, Tutorial
4231 @section Types Tutorial
4234 Calc understands a variety of data types as well as simple numbers.
4235 In this section, we'll experiment with each of these types in turn.
4237 The numbers we've been using so far have mainly been either @dfn{integers}
4238 or @dfn{floats}. We saw that floats are usually a good approximation to
4239 the mathematical concept of real numbers, but they are only approximations
4240 and are susceptible to roundoff error. Calc also supports @dfn{fractions},
4241 which can exactly represent any rational number.
4245 1: 3628800 2: 3628800 1: 518400:7 1: 518414:7 1: 7:518414
4249 10 ! 49 @key{RET} : 2 + &
4254 The @kbd{:} command divides two integers to get a fraction; @kbd{/}
4255 would normally divide integers to get a floating-point result.
4256 Notice we had to type @key{RET} between the @kbd{49} and the @kbd{:}
4257 since the @kbd{:} would otherwise be interpreted as part of a
4258 fraction beginning with 49.
4260 You can convert between floating-point and fractional format using
4261 @kbd{c f} and @kbd{c F}:
4265 1: 1.35027217629e-5 1: 7:518414
4272 The @kbd{c F} command replaces a floating-point number with the
4273 ``simplest'' fraction whose floating-point representation is the
4274 same, to within the current precision.
4278 1: 3.14159265359 1: 1146408:364913 1: 3.1416 1: 355:113
4281 P c F @key{DEL} p 5 @key{RET} P c F
4285 (@bullet{}) @strong{Exercise 1.} A calculation has produced the
4286 result 1.26508260337. You suspect it is the square root of the
4287 product of @cpi{} and some rational number. Is it? (Be sure
4288 to allow for roundoff error!) @xref{Types Answer 1, 1}. (@bullet{})
4290 @dfn{Complex numbers} can be stored in both rectangular and polar form.
4294 1: -9 1: (0, 3) 1: (3; 90.) 1: (6; 90.) 1: (2.4495; 45.)
4302 The square root of @mathit{-9} is by default rendered in rectangular form
4303 (@w{@expr{0 + 3i}}), but we can convert it to polar form (3 with a
4304 phase angle of 90 degrees). All the usual arithmetic and scientific
4305 operations are defined on both types of complex numbers.
4307 Another generalized kind of number is @dfn{infinity}. Infinity
4308 isn't really a number, but it can sometimes be treated like one.
4309 Calc uses the symbol @code{inf} to represent positive infinity,
4310 i.e., a value greater than any real number. Naturally, you can
4311 also write @samp{-inf} for minus infinity, a value less than any
4312 real number. The word @code{inf} can only be input using
4317 2: inf 2: -inf 2: -inf 2: -inf 1: nan
4318 1: -17 1: -inf 1: -inf 1: inf .
4321 ' inf @key{RET} 17 n * @key{RET} 72 + A +
4326 Since infinity is infinitely large, multiplying it by any finite
4327 number (like @mathit{-17}) has no effect, except that since @mathit{-17}
4328 is negative, it changes a plus infinity to a minus infinity.
4329 (``A huge positive number, multiplied by @mathit{-17}, yields a huge
4330 negative number.'') Adding any finite number to infinity also
4331 leaves it unchanged. Taking an absolute value gives us plus
4332 infinity again. Finally, we add this plus infinity to the minus
4333 infinity we had earlier. If you work it out, you might expect
4334 the answer to be @mathit{-72} for this. But the 72 has been completely
4335 lost next to the infinities; by the time we compute @w{@samp{inf - inf}}
4336 the finite difference between them, if any, is undetectable.
4337 So we say the result is @dfn{indeterminate}, which Calc writes
4338 with the symbol @code{nan} (for Not A Number).
4340 Dividing by zero is normally treated as an error, but you can get
4341 Calc to write an answer in terms of infinity by pressing @kbd{m i}
4342 to turn on Infinite mode.
4346 3: nan 2: nan 2: nan 2: nan 1: nan
4347 2: 1 1: 1 / 0 1: uinf 1: uinf .
4351 1 @key{RET} 0 / m i U / 17 n * +
4356 Dividing by zero normally is left unevaluated, but after @kbd{m i}
4357 it instead gives an infinite result. The answer is actually
4358 @code{uinf}, ``undirected infinity.'' If you look at a graph of
4359 @expr{1 / x} around @w{@expr{x = 0}}, you'll see that it goes toward
4360 plus infinity as you approach zero from above, but toward minus
4361 infinity as you approach from below. Since we said only @expr{1 / 0},
4362 Calc knows that the answer is infinite but not in which direction.
4363 That's what @code{uinf} means. Notice that multiplying @code{uinf}
4364 by a negative number still leaves plain @code{uinf}; there's no
4365 point in saying @samp{-uinf} because the sign of @code{uinf} is
4366 unknown anyway. Finally, we add @code{uinf} to our @code{nan},
4367 yielding @code{nan} again. It's easy to see that, because
4368 @code{nan} means ``totally unknown'' while @code{uinf} means
4369 ``unknown sign but known to be infinite,'' the more mysterious
4370 @code{nan} wins out when it is combined with @code{uinf}, or, for
4371 that matter, with anything else.
4373 (@bullet{}) @strong{Exercise 2.} Predict what Calc will answer
4374 for each of these formulas: @samp{inf / inf}, @samp{exp(inf)},
4375 @samp{exp(-inf)}, @samp{sqrt(-inf)}, @samp{sqrt(uinf)},
4376 @samp{abs(uinf)}, @samp{ln(0)}.
4377 @xref{Types Answer 2, 2}. (@bullet{})
4379 (@bullet{}) @strong{Exercise 3.} We saw that @samp{inf - inf = nan},
4380 which stands for an unknown value. Can @code{nan} stand for
4381 a complex number? Can it stand for infinity?
4382 @xref{Types Answer 3, 3}. (@bullet{})
4384 @dfn{HMS forms} represent a value in terms of hours, minutes, and
4389 1: 2@@ 30' 0" 1: 3@@ 30' 0" 2: 3@@ 30' 0" 1: 2.
4390 . . 1: 1@@ 45' 0." .
4393 2@@ 30' @key{RET} 1 + @key{RET} 2 / /
4397 HMS forms can also be used to hold angles in degrees, minutes, and
4402 1: 0.5 1: 26.56505 1: 26@@ 33' 54.18" 1: 0.44721
4410 First we convert the inverse tangent of 0.5 to degrees-minutes-seconds
4411 form, then we take the sine of that angle. Note that the trigonometric
4412 functions will accept HMS forms directly as input.
4415 (@bullet{}) @strong{Exercise 4.} The Beatles' @emph{Abbey Road} is
4416 47 minutes and 26 seconds long, and contains 17 songs. What is the
4417 average length of a song on @emph{Abbey Road}? If the Extended Disco
4418 Version of @emph{Abbey Road} added 20 seconds to the length of each
4419 song, how long would the album be? @xref{Types Answer 4, 4}. (@bullet{})
4421 A @dfn{date form} represents a date, or a date and time. Dates must
4422 be entered using algebraic entry. Date forms are surrounded by
4423 @samp{< >} symbols; most standard formats for dates are recognized.
4427 2: <Sun Jan 13, 1991> 1: 2.25
4428 1: <6:00pm Thu Jan 10, 1991> .
4431 ' <13 Jan 1991>, <1/10/91, 6pm> @key{RET} -
4436 In this example, we enter two dates, then subtract to find the
4437 number of days between them. It is also possible to add an
4438 HMS form or a number (of days) to a date form to get another
4443 1: <4:45:59pm Mon Jan 14, 1991> 1: <2:50:59am Thu Jan 17, 1991>
4450 @c [fix-ref Date Arithmetic]
4452 The @kbd{t N} (``now'') command pushes the current date and time on the
4453 stack; then we add two days, ten hours and five minutes to the date and
4454 time. Other date-and-time related commands include @kbd{t J}, which
4455 does Julian day conversions, @kbd{t W}, which finds the beginning of
4456 the week in which a date form lies, and @kbd{t I}, which increments a
4457 date by one or several months. @xref{Date Arithmetic}, for more.
4459 (@bullet{}) @strong{Exercise 5.} How many days until the next
4460 Friday the 13th? @xref{Types Answer 5, 5}. (@bullet{})
4462 (@bullet{}) @strong{Exercise 6.} How many leap years will there be
4463 between now and the year 10001 AD@? @xref{Types Answer 6, 6}. (@bullet{})
4465 @cindex Slope and angle of a line
4466 @cindex Angle and slope of a line
4467 An @dfn{error form} represents a mean value with an attached standard
4468 deviation, or error estimate. Suppose our measurements indicate that
4469 a certain telephone pole is about 30 meters away, with an estimated
4470 error of 1 meter, and 8 meters tall, with an estimated error of 0.2
4471 meters. What is the slope of a line from here to the top of the
4472 pole, and what is the equivalent angle in degrees?
4476 1: 8 +/- 0.2 2: 8 +/- 0.2 1: 0.266 +/- 0.011 1: 14.93 +/- 0.594
4480 8 p .2 @key{RET} 30 p 1 / I T
4485 This means that the angle is about 15 degrees, and, assuming our
4486 original error estimates were valid standard deviations, there is about
4487 a 60% chance that the result is correct within 0.59 degrees.
4489 @cindex Torus, volume of
4490 (@bullet{}) @strong{Exercise 7.} The volume of a torus (a donut shape) is
4491 @texline @math{2 \pi^2 R r^2}
4492 @infoline @w{@expr{2 pi^2 R r^2}}
4493 where @expr{R} is the radius of the circle that
4494 defines the center of the tube and @expr{r} is the radius of the tube
4495 itself. Suppose @expr{R} is 20 cm and @expr{r} is 4 cm, each known to
4496 within 5 percent. What is the volume and the relative uncertainty of
4497 the volume? @xref{Types Answer 7, 7}. (@bullet{})
4499 An @dfn{interval form} represents a range of values. While an
4500 error form is best for making statistical estimates, intervals give
4501 you exact bounds on an answer. Suppose we additionally know that
4502 our telephone pole is definitely between 28 and 31 meters away,
4503 and that it is between 7.7 and 8.1 meters tall.
4507 1: [7.7 .. 8.1] 2: [7.7 .. 8.1] 1: [0.24 .. 0.28] 1: [13.9 .. 16.1]
4511 [ 7.7 .. 8.1 ] [ 28 .. 31 ] / I T
4516 If our bounds were correct, then the angle to the top of the pole
4517 is sure to lie in the range shown.
4519 The square brackets around these intervals indicate that the endpoints
4520 themselves are allowable values. In other words, the distance to the
4521 telephone pole is between 28 and 31, @emph{inclusive}. You can also
4522 make an interval that is exclusive of its endpoints by writing
4523 parentheses instead of square brackets. You can even make an interval
4524 which is inclusive (``closed'') on one end and exclusive (``open'') on
4529 1: [1 .. 10) 1: (0.1 .. 1] 2: (0.1 .. 1] 1: (0.2 .. 3)
4533 [ 1 .. 10 ) & [ 2 .. 3 ) *
4538 The Calculator automatically keeps track of which end values should
4539 be open and which should be closed. You can also make infinite or
4540 semi-infinite intervals by using @samp{-inf} or @samp{inf} for one
4543 (@bullet{}) @strong{Exercise 8.} What answer would you expect from
4544 @samp{@w{1 /} @w{(0 .. 10)}}? What about @samp{@w{1 /} @w{(-10 .. 0)}}? What
4545 about @samp{@w{1 /} @w{[0 .. 10]}} (where the interval actually includes
4546 zero)? What about @samp{@w{1 /} @w{(-10 .. 10)}}?
4547 @xref{Types Answer 8, 8}. (@bullet{})
4549 (@bullet{}) @strong{Exercise 9.} Two easy ways of squaring a number
4550 are @kbd{@key{RET} *} and @w{@kbd{2 ^}}. Normally these produce the same
4551 answer. Would you expect this still to hold true for interval forms?
4552 If not, which of these will result in a larger interval?
4553 @xref{Types Answer 9, 9}. (@bullet{})
4555 A @dfn{modulo form} is used for performing arithmetic modulo @var{m}.
4556 For example, arithmetic involving time is generally done modulo 12
4561 1: 17 mod 24 1: 3 mod 24 1: 21 mod 24 1: 9 mod 24
4564 17 M 24 @key{RET} 10 + n 5 /
4569 In this last step, Calc has divided by 5 modulo 24; i.e., it has found a
4570 new number which, when multiplied by 5 modulo 24, produces the original
4571 number, 21. If @var{m} is prime and the divisor is not a multiple of
4572 @var{m}, it is always possible to find such a number. For non-prime
4573 @var{m} like 24, it is only sometimes possible.
4577 1: 10 mod 24 1: 16 mod 24 1: 1000000... 1: 16
4580 10 M 24 @key{RET} 100 ^ 10 @key{RET} 100 ^ 24 %
4585 These two calculations get the same answer, but the first one is
4586 much more efficient because it avoids the huge intermediate value
4587 that arises in the second one.
4589 @cindex Fermat, primality test of
4590 (@bullet{}) @strong{Exercise 10.} A theorem of Pierre de Fermat
4592 @texline @math{x^{n-1} \bmod n = 1}
4593 @infoline @expr{x^(n-1) mod n = 1}
4594 if @expr{n} is a prime number and @expr{x} is an integer less than
4595 @expr{n}. If @expr{n} is @emph{not} a prime number, this will
4596 @emph{not} be true for most values of @expr{x}. Thus we can test
4597 informally if a number is prime by trying this formula for several
4598 values of @expr{x}. Use this test to tell whether the following numbers
4599 are prime: 811749613, 15485863. @xref{Types Answer 10, 10}. (@bullet{})
4601 It is possible to use HMS forms as parts of error forms, intervals,
4602 modulo forms, or as the phase part of a polar complex number.
4603 For example, the @code{calc-time} command pushes the current time
4604 of day on the stack as an HMS/modulo form.
4608 1: 17@@ 34' 45" mod 24@@ 0' 0" 1: 6@@ 22' 15" mod 24@@ 0' 0"
4616 This calculation tells me it is six hours and 22 minutes until midnight.
4618 (@bullet{}) @strong{Exercise 11.} A rule of thumb is that one year
4620 @texline @math{\pi \times 10^7}
4621 @infoline @w{@expr{pi * 10^7}}
4622 seconds. What time will it be that many seconds from right now?
4623 @xref{Types Answer 11, 11}. (@bullet{})
4625 (@bullet{}) @strong{Exercise 12.} You are preparing to order packaging
4626 for the CD release of the Extended Disco Version of @emph{Abbey Road}.
4627 You are told that the songs will actually be anywhere from 20 to 60
4628 seconds longer than the originals. One CD can hold about 75 minutes
4629 of music. Should you order single or double packages?
4630 @xref{Types Answer 12, 12}. (@bullet{})
4632 Another kind of data the Calculator can manipulate is numbers with
4633 @dfn{units}. This isn't strictly a new data type; it's simply an
4634 application of algebraic expressions, where we use variables with
4635 suggestive names like @samp{cm} and @samp{in} to represent units
4636 like centimeters and inches.
4640 1: 2 in 1: 5.08 cm 1: 0.027778 fath 1: 0.0508 m
4643 ' 2in @key{RET} u c cm @key{RET} u c fath @key{RET} u b
4648 We enter the quantity ``2 inches'' (actually an algebraic expression
4649 which means two times the variable @samp{in}), then we convert it
4650 first to centimeters, then to fathoms, then finally to ``base'' units,
4651 which in this case means meters.
4655 1: 9 acre 1: 3 sqrt(acre) 1: 190.84 m 1: 190.84 m + 30 cm
4658 ' 9 acre @key{RET} Q u s ' $+30 cm @key{RET}
4665 1: 191.14 m 1: 36536.3046 m^2 1: 365363046 cm^2
4673 Since units expressions are really just formulas, taking the square
4674 root of @samp{acre} is undefined. After all, @code{acre} might be an
4675 algebraic variable that you will someday assign a value. We use the
4676 ``units-simplify'' command to simplify the expression with variables
4677 being interpreted as unit names.
4679 In the final step, we have converted not to a particular unit, but to a
4680 units system. The ``cgs'' system uses centimeters instead of meters
4681 as its standard unit of length.
4683 There is a wide variety of units defined in the Calculator.
4687 1: 55 mph 1: 88.5139 kph 1: 88.5139 km / hr 1: 8.201407e-8 c
4690 ' 55 mph @key{RET} u c kph @key{RET} u c km/hr @key{RET} u c c @key{RET}
4695 We express a speed first in miles per hour, then in kilometers per
4696 hour, then again using a slightly more explicit notation, then
4697 finally in terms of fractions of the speed of light.
4699 Temperature conversions are a bit more tricky. There are two ways to
4700 interpret ``20 degrees Fahrenheit''---it could mean an actual
4701 temperature, or it could mean a change in temperature. For normal
4702 units there is no difference, but temperature units have an offset
4703 as well as a scale factor and so there must be two explicit commands
4708 1: 20 degF 1: 11.1111 degC 1: -6.666 degC
4711 ' 20 degF @key{RET} u c degC @key{RET} U u t degC @key{RET}
4716 First we convert a change of 20 degrees Fahrenheit into an equivalent
4717 change in degrees Celsius (or Centigrade). Then, we convert the
4718 absolute temperature 20 degrees Fahrenheit into Celsius.
4720 For simple unit conversions, you can put a plain number on the stack.
4721 Then @kbd{u c} and @kbd{u t} will prompt for both old and new units.
4722 When you use this method, you're responsible for remembering which
4723 numbers are in which units:
4727 1: 55 1: 88.5139 1: 8.201407e-8
4730 55 u c mph @key{RET} kph @key{RET} u c km/hr @key{RET} c @key{RET}
4734 To see a complete list of built-in units, type @kbd{u v}. Press
4735 @w{@kbd{C-x * c}} again to re-enter the Calculator when you're done looking
4738 (@bullet{}) @strong{Exercise 13.} How many seconds are there really
4739 in a year? @xref{Types Answer 13, 13}. (@bullet{})
4741 @cindex Speed of light
4742 (@bullet{}) @strong{Exercise 14.} Supercomputer designs are limited by
4743 the speed of light (and of electricity, which is nearly as fast).
4744 Suppose a computer has a 4.1 ns (nanosecond) clock cycle, and its
4745 cabinet is one meter across. Is speed of light going to be a
4746 significant factor in its design? @xref{Types Answer 14, 14}. (@bullet{})
4748 (@bullet{}) @strong{Exercise 15.} Sam the Slug normally travels about
4749 five yards in an hour. He has obtained a supply of Power Pills; each
4750 Power Pill he eats doubles his speed. How many Power Pills can he
4751 swallow and still travel legally on most US highways?
4752 @xref{Types Answer 15, 15}. (@bullet{})
4754 @node Algebra Tutorial, Programming Tutorial, Types Tutorial, Tutorial
4755 @section Algebra and Calculus Tutorial
4758 This section shows how to use Calc's algebra facilities to solve
4759 equations, do simple calculus problems, and manipulate algebraic
4763 * Basic Algebra Tutorial::
4764 * Rewrites Tutorial::
4767 @node Basic Algebra Tutorial, Rewrites Tutorial, Algebra Tutorial, Algebra Tutorial
4768 @subsection Basic Algebra
4771 If you enter a formula in Algebraic mode that refers to variables,
4772 the formula itself is pushed onto the stack. You can manipulate
4773 formulas as regular data objects.
4777 1: 2 x^2 - 6 1: 6 - 2 x^2 1: (3 x^2 + y) (6 - 2 x^2)
4780 ' 2x^2-6 @key{RET} n ' 3x^2+y @key{RET} *
4784 (@bullet{}) @strong{Exercise 1.} Do @kbd{' x @key{RET} Q 2 ^} and
4785 @kbd{' x @key{RET} 2 ^ Q} both wind up with the same result (@samp{x})?
4786 Why or why not? @xref{Algebra Answer 1, 1}. (@bullet{})
4788 There are also commands for doing common algebraic operations on
4789 formulas. Continuing with the formula from the last example,
4793 1: 18 x^2 - 6 x^4 + 6 y - 2 y x^2 1: (18 - 2 y) x^2 - 6 x^4 + 6 y
4801 First we ``expand'' using the distributive law, then we ``collect''
4802 terms involving like powers of @expr{x}.
4804 Let's find the value of this expression when @expr{x} is 2 and @expr{y}
4809 1: 17 x^2 - 6 x^4 + 3 1: -25
4812 1:2 s l y @key{RET} 2 s l x @key{RET}
4817 The @kbd{s l} command means ``let''; it takes a number from the top of
4818 the stack and temporarily assigns it as the value of the variable
4819 you specify. It then evaluates (as if by the @kbd{=} key) the
4820 next expression on the stack. After this command, the variable goes
4821 back to its original value, if any.
4823 (An earlier exercise in this tutorial involved storing a value in the
4824 variable @code{x}; if this value is still there, you will have to
4825 unstore it with @kbd{s u x @key{RET}} before the above example will work
4828 @cindex Maximum of a function using Calculus
4829 Let's find the maximum value of our original expression when @expr{y}
4830 is one-half and @expr{x} ranges over all possible values. We can
4831 do this by taking the derivative with respect to @expr{x} and examining
4832 values of @expr{x} for which the derivative is zero. If the second
4833 derivative of the function at that value of @expr{x} is negative,
4834 the function has a local maximum there.
4838 1: 17 x^2 - 6 x^4 + 3 1: 34 x - 24 x^3
4841 U @key{DEL} s 1 a d x @key{RET} s 2
4846 Well, the derivative is clearly zero when @expr{x} is zero. To find
4847 the other root(s), let's divide through by @expr{x} and then solve:
4851 1: (34 x - 24 x^3) / x 1: 34 - 24 x^2
4861 1: 0.70588 x^2 = 1 1: x = 1.19023
4864 0 a = s 3 a S x @key{RET}
4869 Now we compute the second derivative and plug in our values of @expr{x}:
4873 1: 1.19023 2: 1.19023 2: 1.19023
4874 . 1: 34 x - 24 x^3 1: 34 - 72 x^2
4877 a . r 2 a d x @key{RET} s 4
4882 (The @kbd{a .} command extracts just the righthand side of an equation.
4883 Another method would have been to use @kbd{v u} to unpack the equation
4884 @w{@samp{x = 1.19}} to @samp{x} and @samp{1.19}, then use @kbd{M-- M-2 @key{DEL}}
4885 to delete the @samp{x}.)
4889 2: 34 - 72 x^2 1: -68. 2: 34 - 72 x^2 1: 34
4893 @key{TAB} s l x @key{RET} U @key{DEL} 0 s l x @key{RET}
4898 The first of these second derivatives is negative, so we know the function
4899 has a maximum value at @expr{x = 1.19023}. (The function also has a
4900 local @emph{minimum} at @expr{x = 0}.)
4902 When we solved for @expr{x}, we got only one value even though
4903 @expr{0.70588 x^2 = 1} is a quadratic equation that ought to have
4904 two solutions. The reason is that @w{@kbd{a S}} normally returns a
4905 single ``principal'' solution. If it needs to come up with an
4906 arbitrary sign (as occurs in the quadratic formula) it picks @expr{+}.
4907 If it needs an arbitrary integer, it picks zero. We can get a full
4908 solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}.
4912 1: 0.70588 x^2 = 1 1: x = 1.19023 s1 1: x = -1.19023
4915 r 3 H a S x @key{RET} s 5 1 n s l s1 @key{RET}
4920 Calc has invented the variable @samp{s1} to represent an unknown sign;
4921 it is supposed to be either @mathit{+1} or @mathit{-1}. Here we have used
4922 the ``let'' command to evaluate the expression when the sign is negative.
4923 If we plugged this into our second derivative we would get the same,
4924 negative, answer, so @expr{x = -1.19023} is also a maximum.
4926 To find the actual maximum value, we must plug our two values of @expr{x}
4927 into the original formula.
4931 2: 17 x^2 - 6 x^4 + 3 1: 24.08333 s1^2 - 12.04166 s1^4 + 3
4935 r 1 r 5 s l @key{RET}
4940 (Here we see another way to use @kbd{s l}; if its input is an equation
4941 with a variable on the lefthand side, then @kbd{s l} treats the equation
4942 like an assignment to that variable if you don't give a variable name.)
4944 It's clear that this will have the same value for either sign of
4945 @code{s1}, but let's work it out anyway, just for the exercise:
4949 2: [-1, 1] 1: [15.04166, 15.04166]
4950 1: 24.08333 s1^2 ... .
4953 [ 1 n , 1 ] @key{TAB} V M $ @key{RET}
4958 Here we have used a vector mapping operation to evaluate the function
4959 at several values of @samp{s1} at once. @kbd{V M $} is like @kbd{V M '}
4960 except that it takes the formula from the top of the stack. The
4961 formula is interpreted as a function to apply across the vector at the
4962 next-to-top stack level. Since a formula on the stack can't contain
4963 @samp{$} signs, Calc assumes the variables in the formula stand for
4964 different arguments. It prompts you for an @dfn{argument list}, giving
4965 the list of all variables in the formula in alphabetical order as the
4966 default list. In this case the default is @samp{(s1)}, which is just
4967 what we want so we simply press @key{RET} at the prompt.
4969 If there had been several different values, we could have used
4970 @w{@kbd{V R X}} to find the global maximum.
4972 Calc has a built-in @kbd{a P} command that solves an equation using
4973 @w{@kbd{H a S}} and returns a vector of all the solutions. It simply
4974 automates the job we just did by hand. Applied to our original
4975 cubic polynomial, it would produce the vector of solutions
4976 @expr{[1.19023, -1.19023, 0]}. (There is also an @kbd{a X} command
4977 which finds a local maximum of a function. It uses a numerical search
4978 method rather than examining the derivatives, and thus requires you
4979 to provide some kind of initial guess to show it where to look.)
4981 (@bullet{}) @strong{Exercise 2.} Given a vector of the roots of a
4982 polynomial (such as the output of an @kbd{a P} command), what
4983 sequence of commands would you use to reconstruct the original
4984 polynomial? (The answer will be unique to within a constant
4985 multiple; choose the solution where the leading coefficient is one.)
4986 @xref{Algebra Answer 2, 2}. (@bullet{})
4988 The @kbd{m s} command enables Symbolic mode, in which formulas
4989 like @samp{sqrt(5)} that can't be evaluated exactly are left in
4990 symbolic form rather than giving a floating-point approximate answer.
4991 Fraction mode (@kbd{m f}) is also useful when doing algebra.
4995 2: 34 x - 24 x^3 2: 34 x - 24 x^3
4996 1: 34 x - 24 x^3 1: [sqrt(51) / 6, sqrt(51) / -6, 0]
4999 r 2 @key{RET} m s m f a P x @key{RET}
5003 One more mode that makes reading formulas easier is Big mode.
5012 1: [-----, -----, 0]
5021 Here things like powers, square roots, and quotients and fractions
5022 are displayed in a two-dimensional pictorial form. Calc has other
5023 language modes as well, such as C mode, FORTRAN mode, @TeX{} mode
5028 2: 34*x - 24*pow(x, 3) 2: 34*x - 24*x**3
5029 1: @{sqrt(51) / 6, sqrt(51) / -6, 0@} 1: /sqrt(51) / 6, sqrt(51) / -6, 0/
5040 2: [@{\sqrt@{51@} \over 6@}, @{\sqrt@{51@} \over -6@}, 0]
5041 1: @{2 \over 3@} \sqrt@{5@}
5044 d T ' 2 \sqrt@{5@} \over 3 @key{RET}
5049 As you can see, language modes affect both entry and display of
5050 formulas. They affect such things as the names used for built-in
5051 functions, the set of arithmetic operators and their precedences,
5052 and notations for vectors and matrices.
5054 Notice that @samp{sqrt(51)} may cause problems with older
5055 implementations of C and FORTRAN, which would require something more
5056 like @samp{sqrt(51.0)}. It is always wise to check over the formulas
5057 produced by the various language modes to make sure they are fully
5060 Type @kbd{m s}, @kbd{m f}, and @kbd{d N} to reset these modes. (You
5061 may prefer to remain in Big mode, but all the examples in the tutorial
5062 are shown in normal mode.)
5064 @cindex Area under a curve
5065 What is the area under the portion of this curve from @expr{x = 1} to @expr{2}?
5066 This is simply the integral of the function:
5070 1: 17 x^2 - 6 x^4 + 3 1: 5.6666 x^3 - 1.2 x^5 + 3 x
5078 We want to evaluate this at our two values for @expr{x} and subtract.
5079 One way to do it is again with vector mapping and reduction:
5083 2: [2, 1] 1: [12.93333, 7.46666] 1: 5.46666
5084 1: 5.6666 x^3 ... . .
5086 [ 2 , 1 ] @key{TAB} V M $ @key{RET} V R -
5090 (@bullet{}) @strong{Exercise 3.} Find the integral from 1 to @expr{y}
5092 @texline @math{x \sin \pi x}
5093 @infoline @w{@expr{x sin(pi x)}}
5094 (where the sine is calculated in radians). Find the values of the
5095 integral for integers @expr{y} from 1 to 5. @xref{Algebra Answer 3,
5098 Calc's integrator can do many simple integrals symbolically, but many
5099 others are beyond its capabilities. Suppose we wish to find the area
5101 @texline @math{\sin x \ln x}
5102 @infoline @expr{sin(x) ln(x)}
5103 over the same range of @expr{x}. If you entered this formula and typed
5104 @kbd{a i x @key{RET}} (don't bother to try this), Calc would work for a
5105 long time but would be unable to find a solution. In fact, there is no
5106 closed-form solution to this integral. Now what do we do?
5108 @cindex Integration, numerical
5109 @cindex Numerical integration
5110 One approach would be to do the integral numerically. It is not hard
5111 to do this by hand using vector mapping and reduction. It is rather
5112 slow, though, since the sine and logarithm functions take a long time.
5113 We can save some time by reducing the working precision.
5117 3: 10 1: [1, 1.1, 1.2, ... , 1.8, 1.9]
5122 10 @key{RET} 1 @key{RET} .1 @key{RET} C-u v x
5127 (Note that we have used the extended version of @kbd{v x}; we could
5128 also have used plain @kbd{v x} as follows: @kbd{v x 10 @key{RET} 9 + .1 *}.)
5132 2: [1, 1.1, ... ] 1: [0., 0.084941, 0.16993, ... ]
5136 ' sin(x) ln(x) @key{RET} s 1 m r p 5 @key{RET} V M $ @key{RET}
5151 (If you got wildly different results, did you remember to switch
5154 Here we have divided the curve into ten segments of equal width;
5155 approximating these segments as rectangular boxes (i.e., assuming
5156 the curve is nearly flat at that resolution), we compute the areas
5157 of the boxes (height times width), then sum the areas. (It is
5158 faster to sum first, then multiply by the width, since the width
5159 is the same for every box.)
5161 The true value of this integral turns out to be about 0.374, so
5162 we're not doing too well. Let's try another approach.
5166 1: ln(x) sin(x) 1: 0.84147 x + 0.11957 (x - 1)^2 - ...
5169 r 1 a t x=1 @key{RET} 4 @key{RET}
5174 Here we have computed the Taylor series expansion of the function
5175 about the point @expr{x=1}. We can now integrate this polynomial
5176 approximation, since polynomials are easy to integrate.
5180 1: 0.42074 x^2 + ... 1: [-0.0446, -0.42073] 1: 0.3761
5183 a i x @key{RET} [ 2 , 1 ] @key{TAB} V M $ @key{RET} V R -
5188 Better! By increasing the precision and/or asking for more terms
5189 in the Taylor series, we can get a result as accurate as we like.
5190 (Taylor series converge better away from singularities in the
5191 function such as the one at @code{ln(0)}, so it would also help to
5192 expand the series about the points @expr{x=2} or @expr{x=1.5} instead
5195 @cindex Simpson's rule
5196 @cindex Integration by Simpson's rule
5197 (@bullet{}) @strong{Exercise 4.} Our first method approximated the
5198 curve by stairsteps of width 0.1; the total area was then the sum
5199 of the areas of the rectangles under these stairsteps. Our second
5200 method approximated the function by a polynomial, which turned out
5201 to be a better approximation than stairsteps. A third method is
5202 @dfn{Simpson's rule}, which is like the stairstep method except
5203 that the steps are not required to be flat. Simpson's rule boils
5204 down to the formula,
5208 (h/3) * (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + ...
5209 + 2 f(a+(n-2)*h) + 4 f(a+(n-1)*h) + f(a+n*h))
5215 \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots
5216 \hfill \cr \hfill {} + 2 f(a+(n-2)h) + 4 f(a+(n-1)h) + f(a+n h)) \qquad
5222 where @expr{n} (which must be even) is the number of slices and @expr{h}
5223 is the width of each slice. These are 10 and 0.1 in our example.
5224 For reference, here is the corresponding formula for the stairstep
5229 h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ...
5230 + f(a+(n-2)*h) + f(a+(n-1)*h))
5235 $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
5236 + f(a+(n-2)h) + f(a+(n-1)h)) $$
5240 Compute the integral from 1 to 2 of
5241 @texline @math{\sin x \ln x}
5242 @infoline @expr{sin(x) ln(x)}
5243 using Simpson's rule with 10 slices.
5244 @xref{Algebra Answer 4, 4}. (@bullet{})
5246 Calc has a built-in @kbd{a I} command for doing numerical integration.
5247 It uses @dfn{Romberg's method}, which is a more sophisticated cousin
5248 of Simpson's rule. In particular, it knows how to keep refining the
5249 result until the current precision is satisfied.
5251 @c [fix-ref Selecting Sub-Formulas]
5252 Aside from the commands we've seen so far, Calc also provides a
5253 large set of commands for operating on parts of formulas. You
5254 indicate the desired sub-formula by placing the cursor on any part
5255 of the formula before giving a @dfn{selection} command. Selections won't
5256 be covered in the tutorial; @pxref{Selecting Subformulas}, for
5257 details and examples.
5259 @c hard exercise: simplify (2^(n r) - 2^(r*(n - 1))) / (2^r - 1) 2^(n - 1)
5260 @c to 2^((n-1)*(r-1)).
5262 @node Rewrites Tutorial, , Basic Algebra Tutorial, Algebra Tutorial
5263 @subsection Rewrite Rules
5266 No matter how many built-in commands Calc provided for doing algebra,
5267 there would always be something you wanted to do that Calc didn't have
5268 in its repertoire. So Calc also provides a @dfn{rewrite rule} system
5269 that you can use to define your own algebraic manipulations.
5271 Suppose we want to simplify this trigonometric formula:
5275 1: 2 sec(x)^2 / tan(x)^2 - 2 / tan(x)^2
5278 ' 2sec(x)^2/tan(x)^2 - 2/tan(x)^2 @key{RET} s 1
5283 If we were simplifying this by hand, we'd probably combine over the common
5284 denominator. The @kbd{a n} algebra command will do this, but we'll do
5285 it with a rewrite rule just for practice.
5287 Rewrite rules are written with the @samp{:=} symbol.
5291 1: (2 sec(x)^2 - 2) / tan(x)^2
5294 a r a/x + b/x := (a+b)/x @key{RET}
5299 (The ``assignment operator'' @samp{:=} has several uses in Calc. All
5300 by itself the formula @samp{a/x + b/x := (a+b)/x} doesn't do anything,
5301 but when it is given to the @kbd{a r} command, that command interprets
5302 it as a rewrite rule.)
5304 The lefthand side, @samp{a/x + b/x}, is called the @dfn{pattern} of the
5305 rewrite rule. Calc searches the formula on the stack for parts that
5306 match the pattern. Variables in a rewrite pattern are called
5307 @dfn{meta-variables}, and when matching the pattern each meta-variable
5308 can match any sub-formula. Here, the meta-variable @samp{a} matched
5309 the expression @samp{2 sec(x)^2}, the meta-variable @samp{b} matched
5310 the constant @samp{-2} and the meta-variable @samp{x} matched
5311 the expression @samp{tan(x)^2}.
5313 This rule points out several interesting features of rewrite patterns.
5314 First, if a meta-variable appears several times in a pattern, it must
5315 match the same thing everywhere. This rule detects common denominators
5316 because the same meta-variable @samp{x} is used in both of the
5319 Second, meta-variable names are independent from variables in the
5320 target formula. Notice that the meta-variable @samp{x} here matches
5321 the subformula @samp{tan(x)^2}; Calc never confuses the two meanings of
5324 And third, rewrite patterns know a little bit about the algebraic
5325 properties of formulas. The pattern called for a sum of two quotients;
5326 Calc was able to match a difference of two quotients by matching
5327 @samp{a = 2 sec(x)^2}, @samp{b = -2}, and @samp{x = tan(x)^2}.
5329 When the pattern part of a rewrite rule matches a part of the formula,
5330 that part is replaced by the righthand side with all the meta-variables
5331 substituted with the things they matched. So the result is
5332 @samp{(2 sec(x)^2 - 2) / tan(x)^2}.
5334 @c [fix-ref Algebraic Properties of Rewrite Rules]
5335 We could just as easily have written @samp{a/x - b/x := (a-b)/x} for
5336 the rule. It would have worked just the same in all cases. (If we
5337 really wanted the rule to apply only to @samp{+} or only to @samp{-},
5338 we could have used the @code{plain} symbol. @xref{Algebraic Properties
5339 of Rewrite Rules}, for some examples of this.)
5341 One more rewrite will complete the job. We want to use the identity
5342 @samp{tan(x)^2 + 1 = sec(x)^2}, but of course we must first rearrange
5343 the identity in a way that matches our formula. The obvious rule
5344 would be @samp{@w{2 sec(x)^2 - 2} := 2 tan(x)^2}, but a little thought shows
5345 that the rule @samp{sec(x)^2 := 1 + tan(x)^2} will also work. The
5346 latter rule has a more general pattern so it will work in many other
5354 a r sec(x)^2 := 1 + tan(x)^2 @key{RET}
5358 You may ask, what's the point of using the most general rule if you
5359 have to type it in every time anyway? The answer is that Calc allows
5360 you to store a rewrite rule in a variable, then give the variable
5361 name in the @kbd{a r} command. In fact, this is the preferred way to
5362 use rewrites. For one, if you need a rule once you'll most likely
5363 need it again later. Also, if the rule doesn't work quite right you
5364 can simply Undo, edit the variable, and run the rule again without
5365 having to retype it.
5369 ' a/x + b/x := (a+b)/x @key{RET} s t merge @key{RET}
5370 ' sec(x)^2 := 1 + tan(x)^2 @key{RET} s t secsqr @key{RET}
5372 1: 2 sec(x)^2 / tan(x)^2 - 2 / tan(x)^2 1: 2
5375 r 1 a r merge @key{RET} a r secsqr @key{RET}
5379 To edit a variable, type @kbd{s e} and the variable name, use regular
5380 Emacs editing commands as necessary, then type @kbd{C-c C-c} to store
5381 the edited value back into the variable.
5382 You can also use @w{@kbd{s e}} to create a new variable if you wish.
5384 Notice that the first time you use each rule, Calc puts up a ``compiling''
5385 message briefly. The pattern matcher converts rules into a special
5386 optimized pattern-matching language rather than using them directly.
5387 This allows @kbd{a r} to apply even rather complicated rules very
5388 efficiently. If the rule is stored in a variable, Calc compiles it
5389 only once and stores the compiled form along with the variable. That's
5390 another good reason to store your rules in variables rather than
5391 entering them on the fly.
5393 (@bullet{}) @strong{Exercise 1.} Type @kbd{m s} to get Symbolic
5394 mode, then enter the formula @samp{@w{(2 + sqrt(2))} / @w{(1 + sqrt(2))}}.
5395 Using a rewrite rule, simplify this formula by multiplying the top and
5396 bottom by the conjugate @w{@samp{1 - sqrt(2)}}. The result will have
5397 to be expanded by the distributive law; do this with another
5398 rewrite. @xref{Rewrites Answer 1, 1}. (@bullet{})
5400 The @kbd{a r} command can also accept a vector of rewrite rules, or
5401 a variable containing a vector of rules.
5405 1: [merge, secsqr] 1: [a/x + b/x := (a + b)/x, ... ]
5408 ' [merge,sinsqr] @key{RET} =
5415 1: 2 sec(x)^2 / tan(x)^2 - 2 / tan(x)^2 1: 2
5418 s t trig @key{RET} r 1 a r trig @key{RET}
5422 @c [fix-ref Nested Formulas with Rewrite Rules]
5423 Calc tries all the rules you give against all parts of the formula,
5424 repeating until no further change is possible. (The exact order in
5425 which things are tried is rather complex, but for simple rules like
5426 the ones we've used here the order doesn't really matter.
5427 @xref{Nested Formulas with Rewrite Rules}.)
5429 Calc actually repeats only up to 100 times, just in case your rule set
5430 has gotten into an infinite loop. You can give a numeric prefix argument
5431 to @kbd{a r} to specify any limit. In particular, @kbd{M-1 a r} does
5432 only one rewrite at a time.
5436 1: (2 sec(x)^2 - 2) / tan(x)^2 1: 2
5439 r 1 M-1 a r trig @key{RET} M-1 a r trig @key{RET}
5443 You can type @kbd{M-0 a r} if you want no limit at all on the number
5444 of rewrites that occur.
5446 Rewrite rules can also be @dfn{conditional}. Simply follow the rule
5447 with a @samp{::} symbol and the desired condition. For example,
5451 1: sin(x + 2 pi) + sin(x + 3 pi) + sin(x + 4 pi)
5454 ' sin(x+2pi) + sin(x+3pi) + sin(x+4pi) @key{RET}
5461 1: sin(x + 3 pi) + 2 sin(x)
5464 a r sin(a + k pi) := sin(a) :: k % 2 = 0 @key{RET}
5469 (Recall, @samp{k % 2} is the remainder from dividing @samp{k} by 2,
5470 which will be zero only when @samp{k} is an even integer.)
5472 An interesting point is that the variable @samp{pi} was matched
5473 literally rather than acting as a meta-variable.
5474 This is because it is a special-constant variable. The special
5475 constants @samp{e}, @samp{i}, @samp{phi}, and so on also match literally.
5476 A common error with rewrite
5477 rules is to write, say, @samp{f(a,b,c,d,e) := g(a+b+c+d+e)}, expecting
5478 to match any @samp{f} with five arguments but in fact matching
5479 only when the fifth argument is literally @samp{e}!
5481 @cindex Fibonacci numbers
5486 Rewrite rules provide an interesting way to define your own functions.
5487 Suppose we want to define @samp{fib(n)} to produce the @var{n}th
5488 Fibonacci number. The first two Fibonacci numbers are each 1;
5489 later numbers are formed by summing the two preceding numbers in
5490 the sequence. This is easy to express in a set of three rules:
5494 ' [fib(1) := 1, fib(2) := 1, fib(n) := fib(n-1) + fib(n-2)] @key{RET} s t fib
5499 ' fib(7) @key{RET} a r fib @key{RET}
5503 One thing that is guaranteed about the order that rewrites are tried
5504 is that, for any given subformula, earlier rules in the rule set will
5505 be tried for that subformula before later ones. So even though the
5506 first and third rules both match @samp{fib(1)}, we know the first will
5507 be used preferentially.
5509 This rule set has one dangerous bug: Suppose we apply it to the
5510 formula @samp{fib(x)}? (Don't actually try this.) The third rule
5511 will match @samp{fib(x)} and replace it with @w{@samp{fib(x-1) + fib(x-2)}}.
5512 Each of these will then be replaced to get @samp{fib(x-2) + 2 fib(x-3) +
5513 fib(x-4)}, and so on, expanding forever. What we really want is to apply
5514 the third rule only when @samp{n} is an integer greater than two. Type
5515 @w{@kbd{s e fib @key{RET}}}, then edit the third rule to:
5518 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2
5526 1: fib(6) + fib(x) + fib(0) 1: fib(x) + fib(0) + 8
5529 ' fib(6)+fib(x)+fib(0) @key{RET} a r fib @key{RET}
5534 We've created a new function, @code{fib}, and a new command,
5535 @w{@kbd{a r fib @key{RET}}}, which means ``evaluate all @code{fib} calls in
5536 this formula.'' To make things easier still, we can tell Calc to
5537 apply these rules automatically by storing them in the special
5538 variable @code{EvalRules}.
5542 1: [fib(1) := ...] . 1: [8, 13]
5545 s r fib @key{RET} s t EvalRules @key{RET} ' [fib(6), fib(7)] @key{RET}
5549 It turns out that this rule set has the problem that it does far
5550 more work than it needs to when @samp{n} is large. Consider the
5551 first few steps of the computation of @samp{fib(6)}:
5557 fib(4) + fib(3) + fib(3) + fib(2) =
5558 fib(3) + fib(2) + fib(2) + fib(1) + fib(2) + fib(1) + 1 = ...
5563 Note that @samp{fib(3)} appears three times here. Unless Calc's
5564 algebraic simplifier notices the multiple @samp{fib(3)}s and combines
5565 them (and, as it happens, it doesn't), this rule set does lots of
5566 needless recomputation. To cure the problem, type @code{s e EvalRules}
5567 to edit the rules (or just @kbd{s E}, a shorthand command for editing
5568 @code{EvalRules}) and add another condition:
5571 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2 :: remember
5575 If a @samp{:: remember} condition appears anywhere in a rule, then if
5576 that rule succeeds Calc will add another rule that describes that match
5577 to the front of the rule set. (Remembering works in any rule set, but
5578 for technical reasons it is most effective in @code{EvalRules}.) For
5579 example, if the rule rewrites @samp{fib(7)} to something that evaluates
5580 to 13, then the rule @samp{fib(7) := 13} will be added to the rule set.
5582 Type @kbd{' fib(8) @key{RET}} to compute the eighth Fibonacci number, then
5583 type @kbd{s E} again to see what has happened to the rule set.
5585 With the @code{remember} feature, our rule set can now compute
5586 @samp{fib(@var{n})} in just @var{n} steps. In the process it builds
5587 up a table of all Fibonacci numbers up to @var{n}. After we have
5588 computed the result for a particular @var{n}, we can get it back
5589 (and the results for all smaller @var{n}) later in just one step.
5591 All Calc operations will run somewhat slower whenever @code{EvalRules}
5592 contains any rules. You should type @kbd{s u EvalRules @key{RET}} now to
5593 un-store the variable.
5595 (@bullet{}) @strong{Exercise 2.} Sometimes it is possible to reformulate
5596 a problem to reduce the amount of recursion necessary to solve it.
5597 Create a rule that, in about @var{n} simple steps and without recourse
5598 to the @code{remember} option, replaces @samp{fib(@var{n}, 1, 1)} with
5599 @samp{fib(1, @var{x}, @var{y})} where @var{x} and @var{y} are the
5600 @var{n}th and @var{n+1}st Fibonacci numbers, respectively. This rule is
5601 rather clunky to use, so add a couple more rules to make the ``user
5602 interface'' the same as for our first version: enter @samp{fib(@var{n})},
5603 get back a plain number. @xref{Rewrites Answer 2, 2}. (@bullet{})
5605 There are many more things that rewrites can do. For example, there
5606 are @samp{&&&} and @samp{|||} pattern operators that create ``and''
5607 and ``or'' combinations of rules. As one really simple example, we
5608 could combine our first two Fibonacci rules thusly:
5611 [fib(1 ||| 2) := 1, fib(n) := ... ]
5615 That means ``@code{fib} of something matching either 1 or 2 rewrites
5618 You can also make meta-variables optional by enclosing them in @code{opt}.
5619 For example, the pattern @samp{a + b x} matches @samp{2 + 3 x} but not
5620 @samp{2 + x} or @samp{3 x} or @samp{x}. The pattern @samp{opt(a) + opt(b) x}
5621 matches all of these forms, filling in a default of zero for @samp{a}
5622 and one for @samp{b}.
5624 (@bullet{}) @strong{Exercise 3.} Your friend Joe had @samp{2 + 3 x}
5625 on the stack and tried to use the rule
5626 @samp{opt(a) + opt(b) x := f(a, b, x)}. What happened?
5627 @xref{Rewrites Answer 3, 3}. (@bullet{})
5629 (@bullet{}) @strong{Exercise 4.} Starting with a positive integer @expr{a},
5630 divide @expr{a} by two if it is even, otherwise compute @expr{3 a + 1}.
5631 Now repeat this step over and over. A famous unproved conjecture
5632 is that for any starting @expr{a}, the sequence always eventually
5633 reaches 1. Given the formula @samp{seq(@var{a}, 0)}, write a set of
5634 rules that convert this into @samp{seq(1, @var{n})} where @var{n}
5635 is the number of steps it took the sequence to reach the value 1.
5636 Now enhance the rules to accept @samp{seq(@var{a})} as a starting
5637 configuration, and to stop with just the number @var{n} by itself.
5638 Now make the result be a vector of values in the sequence, from @var{a}
5639 to 1. (The formula @samp{@var{x}|@var{y}} appends the vectors @var{x}
5640 and @var{y}.) For example, rewriting @samp{seq(6)} should yield the
5641 vector @expr{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
5642 @xref{Rewrites Answer 4, 4}. (@bullet{})
5644 (@bullet{}) @strong{Exercise 5.} Define, using rewrite rules, a function
5645 @samp{nterms(@var{x})} that returns the number of terms in the sum
5646 @var{x}, or 1 if @var{x} is not a sum. (A @dfn{sum} for our purposes
5647 is one or more non-sum terms separated by @samp{+} or @samp{-} signs,
5648 so that @expr{2 - 3 (x + y) + x y} is a sum of three terms.)
5649 @xref{Rewrites Answer 5, 5}. (@bullet{})
5651 (@bullet{}) @strong{Exercise 6.} A Taylor series for a function is an
5652 infinite series that exactly equals the value of that function at
5653 values of @expr{x} near zero.
5657 cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...
5662 $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
5666 The @kbd{a t} command produces a @dfn{truncated Taylor series} which
5667 is obtained by dropping all the terms higher than, say, @expr{x^2}.
5668 Calc represents the truncated Taylor series as a polynomial in @expr{x}.
5669 Mathematicians often write a truncated series using a ``big-O'' notation
5670 that records what was the lowest term that was truncated.
5674 cos(x) = 1 - x^2 / 2! + O(x^3)
5679 $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
5684 The meaning of @expr{O(x^3)} is ``a quantity which is negligibly small
5685 if @expr{x^3} is considered negligibly small as @expr{x} goes to zero.''
5687 The exercise is to create rewrite rules that simplify sums and products of
5688 power series represented as @samp{@var{polynomial} + O(@var{var}^@var{n})}.
5689 For example, given @samp{1 - x^2 / 2 + O(x^3)} and @samp{x - x^3 / 6 + O(x^4)}
5690 on the stack, we want to be able to type @kbd{*} and get the result
5691 @samp{x - 2:3 x^3 + O(x^4)}. Don't worry if the terms of the sum are
5692 rearranged. (This one is rather tricky; the solution at the end of
5693 this chapter uses 6 rewrite rules. Hint: The @samp{constant(x)}
5694 condition tests whether @samp{x} is a number.) @xref{Rewrites Answer
5697 Just for kicks, try adding the rule @code{2+3 := 6} to @code{EvalRules}.
5698 What happens? (Be sure to remove this rule afterward, or you might get
5699 a nasty surprise when you use Calc to balance your checkbook!)
5701 @xref{Rewrite Rules}, for the whole story on rewrite rules.
5703 @node Programming Tutorial, Answers to Exercises, Algebra Tutorial, Tutorial
5704 @section Programming Tutorial
5707 The Calculator is written entirely in Emacs Lisp, a highly extensible
5708 language. If you know Lisp, you can program the Calculator to do
5709 anything you like. Rewrite rules also work as a powerful programming
5710 system. But Lisp and rewrite rules take a while to master, and often
5711 all you want to do is define a new function or repeat a command a few
5712 times. Calc has features that allow you to do these things easily.
5714 One very limited form of programming is defining your own functions.
5715 Calc's @kbd{Z F} command allows you to define a function name and
5716 key sequence to correspond to any formula. Programming commands use
5717 the shift-@kbd{Z} prefix; the user commands they create use the lower
5718 case @kbd{z} prefix.
5722 1: x + x^2 / 2 + x^3 / 6 + 1 1: x + x^2 / 2 + x^3 / 6 + 1
5725 ' 1 + x + x^2/2! + x^3/3! @key{RET} Z F e myexp @key{RET} @key{RET} @key{RET} y
5729 This polynomial is a Taylor series approximation to @samp{exp(x)}.
5730 The @kbd{Z F} command asks a number of questions. The above answers
5731 say that the key sequence for our function should be @kbd{z e}; the
5732 @kbd{M-x} equivalent should be @code{calc-myexp}; the name of the
5733 function in algebraic formulas should also be @code{myexp}; the
5734 default argument list @samp{(x)} is acceptable; and finally @kbd{y}
5735 answers the question ``leave it in symbolic form for non-constant
5740 1: 1.3495 2: 1.3495 3: 1.3495
5741 . 1: 1.34986 2: 1.34986
5745 .3 z e .3 E ' a+1 @key{RET} z e
5750 First we call our new @code{exp} approximation with 0.3 as an
5751 argument, and compare it with the true @code{exp} function. Then
5752 we note that, as requested, if we try to give @kbd{z e} an
5753 argument that isn't a plain number, it leaves the @code{myexp}
5754 function call in symbolic form. If we had answered @kbd{n} to the
5755 final question, @samp{myexp(a + 1)} would have evaluated by plugging
5756 in @samp{a + 1} for @samp{x} in the defining formula.
5758 @cindex Sine integral Si(x)
5763 (@bullet{}) @strong{Exercise 1.} The ``sine integral'' function
5764 @texline @math{{\rm Si}(x)}
5765 @infoline @expr{Si(x)}
5766 is defined as the integral of @samp{sin(t)/t} for
5767 @expr{t = 0} to @expr{x} in radians. (It was invented because this
5768 integral has no solution in terms of basic functions; if you give it
5769 to Calc's @kbd{a i} command, it will ponder it for a long time and then
5770 give up.) We can use the numerical integration command, however,
5771 which in algebraic notation is written like @samp{ninteg(f(t), t, 0, x)}
5772 with any integrand @samp{f(t)}. Define a @kbd{z s} command and
5773 @code{Si} function that implement this. You will need to edit the
5774 default argument list a bit. As a test, @samp{Si(1)} should return
5775 0.946083. (If you don't get this answer, you might want to check that
5776 Calc is in Radians mode. Also, @code{ninteg} will run a lot faster if
5777 you reduce the precision to, say, six digits beforehand.)
5778 @xref{Programming Answer 1, 1}. (@bullet{})
5780 The simplest way to do real ``programming'' of Emacs is to define a
5781 @dfn{keyboard macro}. A keyboard macro is simply a sequence of
5782 keystrokes which Emacs has stored away and can play back on demand.
5783 For example, if you find yourself typing @kbd{H a S x @key{RET}} often,
5784 you may wish to program a keyboard macro to type this for you.
5788 1: y = sqrt(x) 1: x = y^2
5791 ' y=sqrt(x) @key{RET} C-x ( H a S x @key{RET} C-x )
5793 1: y = cos(x) 1: x = s1 arccos(y) + 2 n1 pi
5796 ' y=cos(x) @key{RET} X
5801 When you type @kbd{C-x (}, Emacs begins recording. But it is also
5802 still ready to execute your keystrokes, so you're really ``training''
5803 Emacs by walking it through the procedure once. When you type
5804 @w{@kbd{C-x )}}, the macro is recorded. You can now type @kbd{X} to
5805 re-execute the same keystrokes.
5807 You can give a name to your macro by typing @kbd{Z K}.
5811 1: . 1: y = x^4 1: x = s2 sqrt(s1 sqrt(y))
5814 Z K x @key{RET} ' y=x^4 @key{RET} z x
5819 Notice that we use shift-@kbd{Z} to define the command, and lower-case
5820 @kbd{z} to call it up.
5822 Keyboard macros can call other macros.
5826 1: abs(x) 1: x = s1 y 1: 2 / x 1: x = 2 / y
5829 ' abs(x) @key{RET} C-x ( ' y @key{RET} a = z x C-x ) ' 2/x @key{RET} X
5833 (@bullet{}) @strong{Exercise 2.} Define a keyboard macro to negate
5834 the item in level 3 of the stack, without disturbing the rest of
5835 the stack. @xref{Programming Answer 2, 2}. (@bullet{})
5837 (@bullet{}) @strong{Exercise 3.} Define keyboard macros to compute
5838 the following functions:
5843 @texline @math{\displaystyle{\sin x \over x}},
5844 @infoline @expr{sin(x) / x},
5845 where @expr{x} is the number on the top of the stack.
5848 Compute the base-@expr{b} logarithm, just like the @kbd{B} key except
5849 the arguments are taken in the opposite order.
5852 Produce a vector of integers from 1 to the integer on the top of
5856 @xref{Programming Answer 3, 3}. (@bullet{})
5858 (@bullet{}) @strong{Exercise 4.} Define a keyboard macro to compute
5859 the average (mean) value of a list of numbers.
5860 @xref{Programming Answer 4, 4}. (@bullet{})
5862 In many programs, some of the steps must execute several times.
5863 Calc has @dfn{looping} commands that allow this. Loops are useful
5864 inside keyboard macros, but actually work at any time.
5868 1: x^6 2: x^6 1: 360 x^2
5872 ' x^6 @key{RET} 4 Z < a d x @key{RET} Z >
5877 Here we have computed the fourth derivative of @expr{x^6} by
5878 enclosing a derivative command in a ``repeat loop'' structure.
5879 This structure pops a repeat count from the stack, then
5880 executes the body of the loop that many times.
5882 If you make a mistake while entering the body of the loop,
5883 type @w{@kbd{Z C-g}} to cancel the loop command.
5885 @cindex Fibonacci numbers
5886 Here's another example:
5895 1 @key{RET} @key{RET} 20 Z < @key{TAB} C-j + Z >
5900 The numbers in levels 2 and 1 should be the 21st and 22nd Fibonacci
5901 numbers, respectively. (To see what's going on, try a few repetitions
5902 of the loop body by hand; @kbd{C-j}, also on the Line-Feed or @key{LFD}
5903 key if you have one, makes a copy of the number in level 2.)
5905 @cindex Golden ratio
5906 @cindex Phi, golden ratio
5907 A fascinating property of the Fibonacci numbers is that the @expr{n}th
5908 Fibonacci number can be found directly by computing
5909 @texline @math{\phi^n / \sqrt{5}}
5910 @infoline @expr{phi^n / sqrt(5)}
5911 and then rounding to the nearest integer, where
5912 @texline @math{\phi} (``phi''),
5913 @infoline @expr{phi},
5914 the ``golden ratio,'' is
5915 @texline @math{(1 + \sqrt{5}) / 2}.
5916 @infoline @expr{(1 + sqrt(5)) / 2}.
5917 (For convenience, this constant is available from the @code{phi}
5918 variable, or the @kbd{I H P} command.)
5922 1: 1.61803 1: 24476.0000409 1: 10945.9999817 1: 10946
5929 @cindex Continued fractions
5930 (@bullet{}) @strong{Exercise 5.} The @dfn{continued fraction}
5932 @texline @math{\phi}
5933 @infoline @expr{phi}
5935 @texline @math{1 + 1/(1 + 1/(1 + 1/( \ldots )))}.
5936 @infoline @expr{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
5937 We can compute an approximate value by carrying this however far
5938 and then replacing the innermost
5939 @texline @math{1/( \ldots )}
5940 @infoline @expr{1/( ...@: )}
5942 @texline @math{\phi}
5943 @infoline @expr{phi}
5944 using a twenty-term continued fraction.
5945 @xref{Programming Answer 5, 5}. (@bullet{})
5947 (@bullet{}) @strong{Exercise 6.} Linear recurrences like the one for
5948 Fibonacci numbers can be expressed in terms of matrices. Given a
5949 vector @w{@expr{[a, b]}} determine a matrix which, when multiplied by this
5950 vector, produces the vector @expr{[b, c]}, where @expr{a}, @expr{b} and
5951 @expr{c} are three successive Fibonacci numbers. Now write a program
5952 that, given an integer @expr{n}, computes the @expr{n}th Fibonacci number
5953 using matrix arithmetic. @xref{Programming Answer 6, 6}. (@bullet{})
5955 @cindex Harmonic numbers
5956 A more sophisticated kind of loop is the @dfn{for} loop. Suppose
5957 we wish to compute the 20th ``harmonic'' number, which is equal to
5958 the sum of the reciprocals of the integers from 1 to 20.
5967 0 @key{RET} 1 @key{RET} 20 Z ( & + 1 Z )
5972 The ``for'' loop pops two numbers, the lower and upper limits, then
5973 repeats the body of the loop as an internal counter increases from
5974 the lower limit to the upper one. Just before executing the loop
5975 body, it pushes the current loop counter. When the loop body
5976 finishes, it pops the ``step,'' i.e., the amount by which to
5977 increment the loop counter. As you can see, our loop always
5980 This harmonic number function uses the stack to hold the running
5981 total as well as for the various loop housekeeping functions. If
5982 you find this disorienting, you can sum in a variable instead:
5986 1: 0 2: 1 . 1: 3.597739
5990 0 t 7 1 @key{RET} 20 Z ( & s + 7 1 Z ) r 7
5995 The @kbd{s +} command adds the top-of-stack into the value in a
5996 variable (and removes that value from the stack).
5998 It's worth noting that many jobs that call for a ``for'' loop can
5999 also be done more easily by Calc's high-level operations. Two
6000 other ways to compute harmonic numbers are to use vector mapping
6001 and reduction (@kbd{v x 20}, then @w{@kbd{V M &}}, then @kbd{V R +}),
6002 or to use the summation command @kbd{a +}. Both of these are
6003 probably easier than using loops. However, there are some
6004 situations where loops really are the way to go:
6006 (@bullet{}) @strong{Exercise 7.} Use a ``for'' loop to find the first
6007 harmonic number which is greater than 4.0.
6008 @xref{Programming Answer 7, 7}. (@bullet{})
6010 Of course, if we're going to be using variables in our programs,
6011 we have to worry about the programs clobbering values that the
6012 caller was keeping in those same variables. This is easy to
6017 . 1: 0.6667 1: 0.6667 3: 0.6667
6022 Z ` p 4 @key{RET} 2 @key{RET} 3 / s 7 s s a @key{RET} Z ' r 7 s r a @key{RET}
6027 When we type @kbd{Z `} (that's a back-quote character), Calc saves
6028 its mode settings and the contents of the ten ``quick variables''
6029 for later reference. When we type @kbd{Z '} (that's an apostrophe
6030 now), Calc restores those saved values. Thus the @kbd{p 4} and
6031 @kbd{s 7} commands have no effect outside this sequence. Wrapping
6032 this around the body of a keyboard macro ensures that it doesn't
6033 interfere with what the user of the macro was doing. Notice that
6034 the contents of the stack, and the values of named variables,
6035 survive past the @kbd{Z '} command.
6037 @cindex Bernoulli numbers, approximate
6038 The @dfn{Bernoulli numbers} are a sequence with the interesting
6039 property that all of the odd Bernoulli numbers are zero, and the
6040 even ones, while difficult to compute, can be roughly approximated
6042 @texline @math{\displaystyle{2 n! \over (2 \pi)^n}}.
6043 @infoline @expr{2 n!@: / (2 pi)^n}.
6044 Let's write a keyboard macro to compute (approximate) Bernoulli numbers.
6045 (Calc has a command, @kbd{k b}, to compute exact Bernoulli numbers, but
6046 this command is very slow for large @expr{n} since the higher Bernoulli
6047 numbers are very large fractions.)
6054 10 C-x ( @key{RET} 2 % Z [ @key{DEL} 0 Z : ' 2 $! / (2 pi)^$ @key{RET} = Z ] C-x )
6059 You can read @kbd{Z [} as ``then,'' @kbd{Z :} as ``else,'' and
6060 @kbd{Z ]} as ``end-if.'' There is no need for an explicit ``if''
6061 command. For the purposes of @w{@kbd{Z [}}, the condition is ``true''
6062 if the value it pops from the stack is a nonzero number, or ``false''
6063 if it pops zero or something that is not a number (like a formula).
6064 Here we take our integer argument modulo 2; this will be nonzero
6065 if we're asking for an odd Bernoulli number.
6067 The actual tenth Bernoulli number is @expr{5/66}.
6071 3: 0.0756823 1: 0 1: 0.25305 1: 0 1: 1.16659
6076 10 k b @key{RET} c f M-0 @key{DEL} 11 X @key{DEL} 12 X @key{DEL} 13 X @key{DEL} 14 X
6080 Just to exercise loops a bit more, let's compute a table of even
6085 3: [] 1: [0.10132, 0.03079, 0.02340, 0.033197, ...]
6090 [ ] 2 @key{RET} 30 Z ( X | 2 Z )
6095 The vertical-bar @kbd{|} is the vector-concatenation command. When
6096 we execute it, the list we are building will be in stack level 2
6097 (initially this is an empty list), and the next Bernoulli number
6098 will be in level 1. The effect is to append the Bernoulli number
6099 onto the end of the list. (To create a table of exact fractional
6100 Bernoulli numbers, just replace @kbd{X} with @kbd{k b} in the above
6101 sequence of keystrokes.)
6103 With loops and conditionals, you can program essentially anything
6104 in Calc. One other command that makes looping easier is @kbd{Z /},
6105 which takes a condition from the stack and breaks out of the enclosing
6106 loop if the condition is true (non-zero). You can use this to make
6107 ``while'' and ``until'' style loops.
6109 If you make a mistake when entering a keyboard macro, you can edit
6110 it using @kbd{Z E}. First, you must attach it to a key with @kbd{Z K}.
6111 One technique is to enter a throwaway dummy definition for the macro,
6112 then enter the real one in the edit command.
6116 1: 3 1: 3 Calc Macro Edit Mode.
6117 . . Original keys: 1 <return> 2 +
6124 C-x ( 1 @key{RET} 2 + C-x ) Z K h @key{RET} Z E h
6129 A keyboard macro is stored as a pure keystroke sequence. The
6130 @file{edmacro} package (invoked by @kbd{Z E}) scans along the
6131 macro and tries to decode it back into human-readable steps.
6132 Descriptions of the keystrokes are given as comments, which begin with
6133 @samp{;;}, and which are ignored when the edited macro is saved.
6134 Spaces and line breaks are also ignored when the edited macro is saved.
6135 To enter a space into the macro, type @code{SPC}. All the special
6136 characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC}, @code{DEL},
6137 and @code{NUL} must be written in all uppercase, as must the prefixes
6138 @code{C-} and @code{M-}.
6140 Let's edit in a new definition, for computing harmonic numbers.
6141 First, erase the four lines of the old definition. Then, type
6142 in the new definition (or use Emacs @kbd{M-w} and @kbd{C-y} commands
6143 to copy it from this page of the Info file; you can of course skip
6144 typing the comments, which begin with @samp{;;}).
6147 Z` ;; calc-kbd-push (Save local values)
6148 0 ;; calc digits (Push a zero onto the stack)
6149 st ;; calc-store-into (Store it in the following variable)
6150 1 ;; calc quick variable (Quick variable q1)
6151 1 ;; calc digits (Initial value for the loop)
6152 TAB ;; calc-roll-down (Swap initial and final)
6153 Z( ;; calc-kbd-for (Begin the "for" loop)
6154 & ;; calc-inv (Take the reciprocal)
6155 s+ ;; calc-store-plus (Add to the following variable)
6156 1 ;; calc quick variable (Quick variable q1)
6157 1 ;; calc digits (The loop step is 1)
6158 Z) ;; calc-kbd-end-for (End the "for" loop)
6159 sr ;; calc-recall (Recall the final accumulated value)
6160 1 ;; calc quick variable (Quick variable q1)
6161 Z' ;; calc-kbd-pop (Restore values)
6165 Press @kbd{C-c C-c} to finish editing and return to the Calculator.
6176 The @file{edmacro} package defines a handy @code{read-kbd-macro} command
6177 which reads the current region of the current buffer as a sequence of
6178 keystroke names, and defines that sequence on the @kbd{X}
6179 (and @kbd{C-x e}) key. Because this is so useful, Calc puts this
6180 command on the @kbd{C-x * m} key. Try reading in this macro in the
6181 following form: Press @kbd{C-@@} (or @kbd{C-@key{SPC}}) at
6182 one end of the text below, then type @kbd{C-x * m} at the other.
6194 (@bullet{}) @strong{Exercise 8.} A general algorithm for solving
6195 equations numerically is @dfn{Newton's Method}. Given the equation
6196 @expr{f(x) = 0} for any function @expr{f}, and an initial guess
6197 @expr{x_0} which is reasonably close to the desired solution, apply
6198 this formula over and over:
6202 new_x = x - f(x)/f'(x)
6207 $$ x_{\rm new} = x - {f(x) \over f^{\prime}(x)} $$
6212 where @expr{f'(x)} is the derivative of @expr{f}. The @expr{x}
6213 values will quickly converge to a solution, i.e., eventually
6214 @texline @math{x_{\rm new}}
6215 @infoline @expr{new_x}
6216 and @expr{x} will be equal to within the limits
6217 of the current precision. Write a program which takes a formula
6218 involving the variable @expr{x}, and an initial guess @expr{x_0},
6219 on the stack, and produces a value of @expr{x} for which the formula
6220 is zero. Use it to find a solution of
6221 @texline @math{\sin(\cos x) = 0.5}
6222 @infoline @expr{sin(cos(x)) = 0.5}
6223 near @expr{x = 4.5}. (Use angles measured in radians.) Note that
6224 the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's
6225 method when it is able. @xref{Programming Answer 8, 8}. (@bullet{})
6227 @cindex Digamma function
6228 @cindex Gamma constant, Euler's
6229 @cindex Euler's gamma constant
6230 (@bullet{}) @strong{Exercise 9.} The @dfn{digamma} function
6231 @texline @math{\psi(z) (``psi'')}
6232 @infoline @expr{psi(z)}
6233 is defined as the derivative of
6234 @texline @math{\ln \Gamma(z)}.
6235 @infoline @expr{ln(gamma(z))}.
6236 For large values of @expr{z}, it can be approximated by the infinite sum
6240 psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf)
6245 $$ \psi(z) \approx \ln z - {1\over2z} -
6246 \sum_{n=1}^\infty {\code{bern}(2 n) \over 2 n z^{2n}}
6253 @texline @math{\sum}
6254 @infoline @expr{sum}
6255 represents the sum over @expr{n} from 1 to infinity
6256 (or to some limit high enough to give the desired accuracy), and
6257 the @code{bern} function produces (exact) Bernoulli numbers.
6258 While this sum is not guaranteed to converge, in practice it is safe.
6259 An interesting mathematical constant is Euler's gamma, which is equal
6260 to about 0.5772. One way to compute it is by the formula,
6261 @texline @math{\gamma = -\psi(1)}.
6262 @infoline @expr{gamma = -psi(1)}.
6263 Unfortunately, 1 isn't a large enough argument
6264 for the above formula to work (5 is a much safer value for @expr{z}).
6265 Fortunately, we can compute
6266 @texline @math{\psi(1)}
6267 @infoline @expr{psi(1)}
6269 @texline @math{\psi(5)}
6270 @infoline @expr{psi(5)}
6271 using the recurrence
6272 @texline @math{\psi(z+1) = \psi(z) + {1 \over z}}.
6273 @infoline @expr{psi(z+1) = psi(z) + 1/z}.
6274 Your task: Develop a program to compute
6275 @texline @math{\psi(z)};
6276 @infoline @expr{psi(z)};
6277 it should ``pump up'' @expr{z}
6278 if necessary to be greater than 5, then use the above summation
6279 formula. Use looping commands to compute the sum. Use your function
6281 @texline @math{\gamma}
6282 @infoline @expr{gamma}
6283 to twelve decimal places. (Calc has a built-in command
6284 for Euler's constant, @kbd{I P}, which you can use to check your answer.)
6285 @xref{Programming Answer 9, 9}. (@bullet{})
6287 @cindex Polynomial, list of coefficients
6288 (@bullet{}) @strong{Exercise 10.} Given a polynomial in @expr{x} and
6289 a number @expr{m} on the stack, where the polynomial is of degree
6290 @expr{m} or less (i.e., does not have any terms higher than @expr{x^m}),
6291 write a program to convert the polynomial into a list-of-coefficients
6292 notation. For example, @expr{5 x^4 + (x + 1)^2} with @expr{m = 6}
6293 should produce the list @expr{[1, 2, 1, 0, 5, 0, 0]}. Also develop
6294 a way to convert from this form back to the standard algebraic form.
6295 @xref{Programming Answer 10, 10}. (@bullet{})
6298 (@bullet{}) @strong{Exercise 11.} The @dfn{Stirling numbers of the
6299 first kind} are defined by the recurrences,
6303 s(n,n) = 1 for n >= 0,
6304 s(n,0) = 0 for n > 0,
6305 s(n+1,m) = s(n,m-1) - n s(n,m) for n >= m >= 1.
6310 $$ \eqalign{ s(n,n) &= 1 \qquad \hbox{for } n \ge 0, \cr
6311 s(n,0) &= 0 \qquad \hbox{for } n > 0, \cr
6312 s(n+1,m) &= s(n,m-1) - n \, s(n,m) \qquad
6313 \hbox{for } n \ge m \ge 1.}
6317 (These numbers are also sometimes written $\displaystyle{n \brack m}$.)
6320 This can be implemented using a @dfn{recursive} program in Calc; the
6321 program must invoke itself in order to calculate the two righthand
6322 terms in the general formula. Since it always invokes itself with
6323 ``simpler'' arguments, it's easy to see that it must eventually finish
6324 the computation. Recursion is a little difficult with Emacs keyboard
6325 macros since the macro is executed before its definition is complete.
6326 So here's the recommended strategy: Create a ``dummy macro'' and assign
6327 it to a key with, e.g., @kbd{Z K s}. Now enter the true definition,
6328 using the @kbd{z s} command to call itself recursively, then assign it
6329 to the same key with @kbd{Z K s}. Now the @kbd{z s} command will run
6330 the complete recursive program. (Another way is to use @w{@kbd{Z E}}
6331 or @kbd{C-x * m} (@code{read-kbd-macro}) to read the whole macro at once,
6332 thus avoiding the ``training'' phase.) The task: Write a program
6333 that computes Stirling numbers of the first kind, given @expr{n} and
6334 @expr{m} on the stack. Test it with @emph{small} inputs like
6335 @expr{s(4,2)}. (There is a built-in command for Stirling numbers,
6336 @kbd{k s}, which you can use to check your answers.)
6337 @xref{Programming Answer 11, 11}. (@bullet{})
6339 The programming commands we've seen in this part of the tutorial
6340 are low-level, general-purpose operations. Often you will find
6341 that a higher-level function, such as vector mapping or rewrite
6342 rules, will do the job much more easily than a detailed, step-by-step
6345 (@bullet{}) @strong{Exercise 12.} Write another program for
6346 computing Stirling numbers of the first kind, this time using
6347 rewrite rules. Once again, @expr{n} and @expr{m} should be taken
6348 from the stack. @xref{Programming Answer 12, 12}. (@bullet{})
6353 This ends the tutorial section of the Calc manual. Now you know enough
6354 about Calc to use it effectively for many kinds of calculations. But
6355 Calc has many features that were not even touched upon in this tutorial.
6357 The rest of this manual tells the whole story.
6359 @c Volume II of this manual, the @dfn{Calc Reference}, tells the whole story.
6362 @node Answers to Exercises, , Programming Tutorial, Tutorial
6363 @section Answers to Exercises
6366 This section includes answers to all the exercises in the Calc tutorial.
6369 * RPN Answer 1:: 1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -
6370 * RPN Answer 2:: 2*4 + 7*9.5 + 5/4
6371 * RPN Answer 3:: Operating on levels 2 and 3
6372 * RPN Answer 4:: Joe's complex problems
6373 * Algebraic Answer 1:: Simulating Q command
6374 * Algebraic Answer 2:: Joe's algebraic woes
6375 * Algebraic Answer 3:: 1 / 0
6376 * Modes Answer 1:: 3#0.1 = 3#0.0222222?
6377 * Modes Answer 2:: 16#f.e8fe15
6378 * Modes Answer 3:: Joe's rounding bug
6379 * Modes Answer 4:: Why floating point?
6380 * Arithmetic Answer 1:: Why the \ command?
6381 * Arithmetic Answer 2:: Tripping up the B command
6382 * Vector Answer 1:: Normalizing a vector
6383 * Vector Answer 2:: Average position
6384 * Matrix Answer 1:: Row and column sums
6385 * Matrix Answer 2:: Symbolic system of equations
6386 * Matrix Answer 3:: Over-determined system
6387 * List Answer 1:: Powers of two
6388 * List Answer 2:: Least-squares fit with matrices
6389 * List Answer 3:: Geometric mean
6390 * List Answer 4:: Divisor function
6391 * List Answer 5:: Duplicate factors
6392 * List Answer 6:: Triangular list
6393 * List Answer 7:: Another triangular list
6394 * List Answer 8:: Maximum of Bessel function
6395 * List Answer 9:: Integers the hard way
6396 * List Answer 10:: All elements equal
6397 * List Answer 11:: Estimating pi with darts
6398 * List Answer 12:: Estimating pi with matchsticks
6399 * List Answer 13:: Hash codes
6400 * List Answer 14:: Random walk
6401 * Types Answer 1:: Square root of pi times rational
6402 * Types Answer 2:: Infinities
6403 * Types Answer 3:: What can "nan" be?
6404 * Types Answer 4:: Abbey Road
6405 * Types Answer 5:: Friday the 13th
6406 * Types Answer 6:: Leap years
6407 * Types Answer 7:: Erroneous donut
6408 * Types Answer 8:: Dividing intervals
6409 * Types Answer 9:: Squaring intervals
6410 * Types Answer 10:: Fermat's primality test
6411 * Types Answer 11:: pi * 10^7 seconds
6412 * Types Answer 12:: Abbey Road on CD
6413 * Types Answer 13:: Not quite pi * 10^7 seconds
6414 * Types Answer 14:: Supercomputers and c
6415 * Types Answer 15:: Sam the Slug
6416 * Algebra Answer 1:: Squares and square roots
6417 * Algebra Answer 2:: Building polynomial from roots
6418 * Algebra Answer 3:: Integral of x sin(pi x)
6419 * Algebra Answer 4:: Simpson's rule
6420 * Rewrites Answer 1:: Multiplying by conjugate
6421 * Rewrites Answer 2:: Alternative fib rule
6422 * Rewrites Answer 3:: Rewriting opt(a) + opt(b) x
6423 * Rewrites Answer 4:: Sequence of integers
6424 * Rewrites Answer 5:: Number of terms in sum
6425 * Rewrites Answer 6:: Truncated Taylor series
6426 * Programming Answer 1:: Fresnel's C(x)
6427 * Programming Answer 2:: Negate third stack element
6428 * Programming Answer 3:: Compute sin(x) / x, etc.
6429 * Programming Answer 4:: Average value of a list
6430 * Programming Answer 5:: Continued fraction phi
6431 * Programming Answer 6:: Matrix Fibonacci numbers
6432 * Programming Answer 7:: Harmonic number greater than 4
6433 * Programming Answer 8:: Newton's method
6434 * Programming Answer 9:: Digamma function
6435 * Programming Answer 10:: Unpacking a polynomial
6436 * Programming Answer 11:: Recursive Stirling numbers
6437 * Programming Answer 12:: Stirling numbers with rewrites
6440 @c The following kludgery prevents the individual answers from
6441 @c being entered on the table of contents.
6443 \global\let\oldwrite=\write
6444 \gdef\skipwrite#1#2{\let\write=\oldwrite}
6445 \global\let\oldchapternofonts=\chapternofonts
6446 \gdef\chapternofonts{\let\write=\skipwrite\oldchapternofonts}
6449 @node RPN Answer 1, RPN Answer 2, Answers to Exercises, Answers to Exercises
6450 @subsection RPN Tutorial Exercise 1
6453 @kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -}
6456 @texline @math{1 - (2 \times (3 + 4)) = -13}.
6457 @infoline @expr{1 - (2 * (3 + 4)) = -13}.
6459 @node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises
6460 @subsection RPN Tutorial Exercise 2
6463 @texline @math{2\times4 + 7\times9.5 + {5\over4} = 75.75}
6464 @infoline @expr{2*4 + 7*9.5 + 5/4 = 75.75}
6466 After computing the intermediate term
6467 @texline @math{2\times4 = 8},
6468 @infoline @expr{2*4 = 8},
6469 you can leave that result on the stack while you compute the second
6470 term. With both of these results waiting on the stack you can then
6471 compute the final term, then press @kbd{+ +} to add everything up.
6480 2 @key{RET} 4 * 7 @key{RET} 9.5 *
6487 4: 8 3: 8 2: 8 1: 75.75
6488 3: 66.5 2: 66.5 1: 67.75 .
6497 Alternatively, you could add the first two terms before going on
6498 with the third term.
6502 2: 8 1: 74.5 3: 74.5 2: 74.5 1: 75.75
6503 1: 66.5 . 2: 5 1: 1.25 .
6507 ... + 5 @key{RET} 4 / +
6511 On an old-style RPN calculator this second method would have the
6512 advantage of using only three stack levels. But since Calc's stack
6513 can grow arbitrarily large this isn't really an issue. Which method
6514 you choose is purely a matter of taste.
6516 @node RPN Answer 3, RPN Answer 4, RPN Answer 2, Answers to Exercises
6517 @subsection RPN Tutorial Exercise 3
6520 The @key{TAB} key provides a way to operate on the number in level 2.
6524 3: 10 3: 10 4: 10 3: 10 3: 10
6525 2: 20 2: 30 3: 30 2: 30 2: 21
6526 1: 30 1: 20 2: 20 1: 21 1: 30
6530 @key{TAB} 1 + @key{TAB}
6534 Similarly, @kbd{M-@key{TAB}} gives you access to the number in level 3.
6538 3: 10 3: 21 3: 21 3: 30 3: 11
6539 2: 21 2: 30 2: 30 2: 11 2: 21
6540 1: 30 1: 10 1: 11 1: 21 1: 30
6543 M-@key{TAB} 1 + M-@key{TAB} M-@key{TAB}
6547 @node RPN Answer 4, Algebraic Answer 1, RPN Answer 3, Answers to Exercises
6548 @subsection RPN Tutorial Exercise 4
6551 Either @kbd{( 2 , 3 )} or @kbd{( 2 @key{SPC} 3 )} would have worked,
6552 but using both the comma and the space at once yields:
6556 1: ( ... 2: ( ... 1: (2, ... 2: (2, ... 2: (2, ...
6557 . 1: 2 . 1: (2, ... 1: (2, 3)
6564 Joe probably tried to type @kbd{@key{TAB} @key{DEL}} to swap the
6565 extra incomplete object to the top of the stack and delete it.
6566 But a feature of Calc is that @key{DEL} on an incomplete object
6567 deletes just one component out of that object, so he had to press
6568 @key{DEL} twice to finish the job.
6572 2: (2, ... 2: (2, 3) 2: (2, 3) 1: (2, 3)
6573 1: (2, 3) 1: (2, ... 1: ( ... .
6576 @key{TAB} @key{DEL} @key{DEL}
6580 (As it turns out, deleting the second-to-top stack entry happens often
6581 enough that Calc provides a special key, @kbd{M-@key{DEL}}, to do just that.
6582 @kbd{M-@key{DEL}} is just like @kbd{@key{TAB} @key{DEL}}, except that it doesn't exhibit
6583 the ``feature'' that tripped poor Joe.)
6585 @node Algebraic Answer 1, Algebraic Answer 2, RPN Answer 4, Answers to Exercises
6586 @subsection Algebraic Entry Tutorial Exercise 1
6589 Type @kbd{' sqrt($) @key{RET}}.
6591 If the @kbd{Q} key is broken, you could use @kbd{' $^0.5 @key{RET}}.
6592 Or, RPN style, @kbd{0.5 ^}.
6594 (Actually, @samp{$^1:2}, using the fraction one-half as the power, is
6595 a closer equivalent, since @samp{9^0.5} yields @expr{3.0} whereas
6596 @samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @expr{3}.)
6598 @node Algebraic Answer 2, Algebraic Answer 3, Algebraic Answer 1, Answers to Exercises
6599 @subsection Algebraic Entry Tutorial Exercise 2
6602 In the formula @samp{2 x (1+y)}, @samp{x} was interpreted as a function
6603 name with @samp{1+y} as its argument. Assigning a value to a variable
6604 has no relation to a function by the same name. Joe needed to use an
6605 explicit @samp{*} symbol here: @samp{2 x*(1+y)}.
6607 @node Algebraic Answer 3, Modes Answer 1, Algebraic Answer 2, Answers to Exercises
6608 @subsection Algebraic Entry Tutorial Exercise 3
6611 The result from @kbd{1 @key{RET} 0 /} will be the formula @expr{1 / 0}.
6612 The ``function'' @samp{/} cannot be evaluated when its second argument
6613 is zero, so it is left in symbolic form. When you now type @kbd{0 *},
6614 the result will be zero because Calc uses the general rule that ``zero
6615 times anything is zero.''
6617 @c [fix-ref Infinities]
6618 The @kbd{m i} command enables an @dfn{Infinite mode} in which @expr{1 / 0}
6619 results in a special symbol that represents ``infinity.'' If you
6620 multiply infinity by zero, Calc uses another special new symbol to
6621 show that the answer is ``indeterminate.'' @xref{Infinities}, for
6622 further discussion of infinite and indeterminate values.
6624 @node Modes Answer 1, Modes Answer 2, Algebraic Answer 3, Answers to Exercises
6625 @subsection Modes Tutorial Exercise 1
6628 Calc always stores its numbers in decimal, so even though one-third has
6629 an exact base-3 representation (@samp{3#0.1}), it is still stored as
6630 0.3333333 (chopped off after 12 or however many decimal digits) inside
6631 the calculator's memory. When this inexact number is converted back
6632 to base 3 for display, it may still be slightly inexact. When we
6633 multiply this number by 3, we get 0.999999, also an inexact value.
6635 When Calc displays a number in base 3, it has to decide how many digits
6636 to show. If the current precision is 12 (decimal) digits, that corresponds
6637 to @samp{12 / log10(3) = 25.15} base-3 digits. Because 25.15 is not an
6638 exact integer, Calc shows only 25 digits, with the result that stored
6639 numbers carry a little bit of extra information that may not show up on
6640 the screen. When Joe entered @samp{3#0.2}, the stored number 0.666666
6641 happened to round to a pleasing value when it lost that last 0.15 of a
6642 digit, but it was still inexact in Calc's memory. When he divided by 2,
6643 he still got the dreaded inexact value 0.333333. (Actually, he divided
6644 0.666667 by 2 to get 0.333334, which is why he got something a little
6645 higher than @code{3#0.1} instead of a little lower.)
6647 If Joe didn't want to be bothered with all this, he could have typed
6648 @kbd{M-24 d n} to display with one less digit than the default. (If
6649 you give @kbd{d n} a negative argument, it uses default-minus-that,
6650 so @kbd{M-- d n} would be an easier way to get the same effect.) Those
6651 inexact results would still be lurking there, but they would now be
6652 rounded to nice, natural-looking values for display purposes. (Remember,
6653 @samp{0.022222} in base 3 is like @samp{0.099999} in base 10; rounding
6654 off one digit will round the number up to @samp{0.1}.) Depending on the
6655 nature of your work, this hiding of the inexactness may be a benefit or
6656 a danger. With the @kbd{d n} command, Calc gives you the choice.
6658 Incidentally, another consequence of all this is that if you type
6659 @kbd{M-30 d n} to display more digits than are ``really there,''
6660 you'll see garbage digits at the end of the number. (In decimal
6661 display mode, with decimally-stored numbers, these garbage digits are
6662 always zero so they vanish and you don't notice them.) Because Calc
6663 rounds off that 0.15 digit, there is the danger that two numbers could
6664 be slightly different internally but still look the same. If you feel
6665 uneasy about this, set the @kbd{d n} precision to be a little higher
6666 than normal; you'll get ugly garbage digits, but you'll always be able
6667 to tell two distinct numbers apart.
6669 An interesting side note is that most computers store their
6670 floating-point numbers in binary, and convert to decimal for display.
6671 Thus everyday programs have the same problem: Decimal 0.1 cannot be
6672 represented exactly in binary (try it: @kbd{0.1 d 2}), so @samp{0.1 * 10}
6673 comes out as an inexact approximation to 1 on some machines (though
6674 they generally arrange to hide it from you by rounding off one digit as
6675 we did above). Because Calc works in decimal instead of binary, you can
6676 be sure that numbers that look exact @emph{are} exact as long as you stay
6677 in decimal display mode.
6679 It's not hard to show that any number that can be represented exactly
6680 in binary, octal, or hexadecimal is also exact in decimal, so the kinds
6681 of problems we saw in this exercise are likely to be severe only when
6682 you use a relatively unusual radix like 3.
6684 @node Modes Answer 2, Modes Answer 3, Modes Answer 1, Answers to Exercises
6685 @subsection Modes Tutorial Exercise 2
6687 If the radix is 15 or higher, we can't use the letter @samp{e} to mark
6688 the exponent because @samp{e} is interpreted as a digit. When Calc
6689 needs to display scientific notation in a high radix, it writes
6690 @samp{16#F.E8F*16.^15}. You can enter a number like this as an
6691 algebraic entry. Also, pressing @kbd{e} without any digits before it
6692 normally types @kbd{1e}, but in a high radix it types @kbd{16.^} and
6693 puts you in algebraic entry: @kbd{16#f.e8f @key{RET} e 15 @key{RET} *} is another
6694 way to enter this number.
6696 The reason Calc puts a decimal point in the @samp{16.^} is to prevent
6697 huge integers from being generated if the exponent is large (consider
6698 @samp{16#1.23*16^1000}, where we compute @samp{16^1000} as a giant
6699 exact integer and then throw away most of the digits when we multiply
6700 it by the floating-point @samp{16#1.23}). While this wouldn't normally
6701 matter for display purposes, it could give you a nasty surprise if you
6702 copied that number into a file and later moved it back into Calc.
6704 @node Modes Answer 3, Modes Answer 4, Modes Answer 2, Answers to Exercises
6705 @subsection Modes Tutorial Exercise 3
6708 The answer he got was @expr{0.5000000000006399}.
6710 The problem is not that the square operation is inexact, but that the
6711 sine of 45 that was already on the stack was accurate to only 12 places.
6712 Arbitrary-precision calculations still only give answers as good as
6715 The real problem is that there is no 12-digit number which, when
6716 squared, comes out to 0.5 exactly. The @kbd{f [} and @kbd{f ]}
6717 commands decrease or increase a number by one unit in the last
6718 place (according to the current precision). They are useful for
6719 determining facts like this.
6723 1: 0.707106781187 1: 0.500000000001
6733 1: 0.707106781187 1: 0.707106781186 1: 0.499999999999
6740 A high-precision calculation must be carried out in high precision
6741 all the way. The only number in the original problem which was known
6742 exactly was the quantity 45 degrees, so the precision must be raised
6743 before anything is done after the number 45 has been entered in order
6744 for the higher precision to be meaningful.
6746 @node Modes Answer 4, Arithmetic Answer 1, Modes Answer 3, Answers to Exercises
6747 @subsection Modes Tutorial Exercise 4
6750 Many calculations involve real-world quantities, like the width and
6751 height of a piece of wood or the volume of a jar. Such quantities
6752 can't be measured exactly anyway, and if the data that is input to
6753 a calculation is inexact, doing exact arithmetic on it is a waste
6756 Fractions become unwieldy after too many calculations have been
6757 done with them. For example, the sum of the reciprocals of the
6758 integers from 1 to 10 is 7381:2520. The sum from 1 to 30 is
6759 9304682830147:2329089562800. After a point it will take a long
6760 time to add even one more term to this sum, but a floating-point
6761 calculation of the sum will not have this problem.
6763 Also, rational numbers cannot express the results of all calculations.
6764 There is no fractional form for the square root of two, so if you type
6765 @w{@kbd{2 Q}}, Calc has no choice but to give you a floating-point answer.
6767 @node Arithmetic Answer 1, Arithmetic Answer 2, Modes Answer 4, Answers to Exercises
6768 @subsection Arithmetic Tutorial Exercise 1
6771 Dividing two integers that are larger than the current precision may
6772 give a floating-point result that is inaccurate even when rounded
6773 down to an integer. Consider @expr{123456789 / 2} when the current
6774 precision is 6 digits. The true answer is @expr{61728394.5}, but
6775 with a precision of 6 this will be rounded to
6776 @texline @math{12345700.0/2.0 = 61728500.0}.
6777 @infoline @expr{12345700.@: / 2.@: = 61728500.}.
6778 The result, when converted to an integer, will be off by 106.
6780 Here are two solutions: Raise the precision enough that the
6781 floating-point round-off error is strictly to the right of the
6782 decimal point. Or, convert to Fraction mode so that @expr{123456789 / 2}
6783 produces the exact fraction @expr{123456789:2}, which can be rounded
6784 down by the @kbd{F} command without ever switching to floating-point
6787 @node Arithmetic Answer 2, Vector Answer 1, Arithmetic Answer 1, Answers to Exercises
6788 @subsection Arithmetic Tutorial Exercise 2
6791 @kbd{27 @key{RET} 9 B} could give the exact result @expr{3:2}, but it
6792 does a floating-point calculation instead and produces @expr{1.5}.
6794 Calc will find an exact result for a logarithm if the result is an integer
6795 or (when in Fraction mode) the reciprocal of an integer. But there is
6796 no efficient way to search the space of all possible rational numbers
6797 for an exact answer, so Calc doesn't try.
6799 @node Vector Answer 1, Vector Answer 2, Arithmetic Answer 2, Answers to Exercises
6800 @subsection Vector Tutorial Exercise 1
6803 Duplicate the vector, compute its length, then divide the vector
6804 by its length: @kbd{@key{RET} A /}.
6808 1: [1, 2, 3] 2: [1, 2, 3] 1: [0.27, 0.53, 0.80] 1: 1.
6809 . 1: 3.74165738677 . .
6816 The final @kbd{A} command shows that the normalized vector does
6817 indeed have unit length.
6819 @node Vector Answer 2, Matrix Answer 1, Vector Answer 1, Answers to Exercises
6820 @subsection Vector Tutorial Exercise 2
6823 The average position is equal to the sum of the products of the
6824 positions times their corresponding probabilities. This is the
6825 definition of the dot product operation. So all you need to do
6826 is to put the two vectors on the stack and press @kbd{*}.
6828 @node Matrix Answer 1, Matrix Answer 2, Vector Answer 2, Answers to Exercises
6829 @subsection Matrix Tutorial Exercise 1
6832 The trick is to multiply by a vector of ones. Use @kbd{r 4 [1 1 1] *} to
6833 get the row sum. Similarly, use @kbd{[1 1] r 4 *} to get the column sum.
6835 @node Matrix Answer 2, Matrix Answer 3, Matrix Answer 1, Answers to Exercises
6836 @subsection Matrix Tutorial Exercise 2
6848 $$ \eqalign{ x &+ a y = 6 \cr
6854 Just enter the righthand side vector, then divide by the lefthand side
6859 1: [6, 10] 2: [6, 10] 1: [4 a / (a - b) + 6, 4 / (b - a) ]
6864 ' [6 10] @key{RET} ' [1 a; 1 b] @key{RET} /
6868 This can be made more readable using @kbd{d B} to enable Big display
6874 1: [----- + 6, -----]
6879 Type @kbd{d N} to return to Normal display mode afterwards.
6881 @node Matrix Answer 3, List Answer 1, Matrix Answer 2, Answers to Exercises
6882 @subsection Matrix Tutorial Exercise 3
6886 @texline @math{A^T A \, X = A^T B},
6887 @infoline @expr{trn(A) * A * X = trn(A) * B},
6889 @texline @math{A' = A^T A}
6890 @infoline @expr{A2 = trn(A) * A}
6892 @texline @math{B' = A^T B};
6893 @infoline @expr{B2 = trn(A) * B};
6894 now, we have a system
6895 @texline @math{A' X = B'}
6896 @infoline @expr{A2 * X = B2}
6897 which we can solve using Calc's @samp{/} command.
6911 $$ \openup1\jot \tabskip=0pt plus1fil
6912 \halign to\displaywidth{\tabskip=0pt
6913 $\hfil#$&$\hfil{}#{}$&
6914 $\hfil#$&$\hfil{}#{}$&
6915 $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
6919 2a&+&4b&+&6c&=11 \cr}
6924 The first step is to enter the coefficient matrix. We'll store it in
6925 quick variable number 7 for later reference. Next, we compute the
6932 1: [ [ 1, 2, 3 ] 2: [ [ 1, 4, 7, 2 ] 1: [57, 84, 96]
6933 [ 4, 5, 6 ] [ 2, 5, 6, 4 ] .
6934 [ 7, 6, 0 ] [ 3, 6, 0, 6 ] ]
6935 [ 2, 4, 6 ] ] 1: [6, 2, 3, 11]
6938 ' [1 2 3; 4 5 6; 7 6 0; 2 4 6] @key{RET} s 7 v t [6 2 3 11] *
6943 Now we compute the matrix
6950 2: [57, 84, 96] 1: [-11.64, 14.08, -3.64]
6951 1: [ [ 70, 72, 39 ] .
6961 (The actual computed answer will be slightly inexact due to
6964 Notice that the answers are similar to those for the
6965 @texline @math{3\times3}
6967 system solved in the text. That's because the fourth equation that was
6968 added to the system is almost identical to the first one multiplied
6969 by two. (If it were identical, we would have gotten the exact same
6971 @texline @math{4\times3}
6973 system would be equivalent to the original
6974 @texline @math{3\times3}
6978 Since the first and fourth equations aren't quite equivalent, they
6979 can't both be satisfied at once. Let's plug our answers back into
6980 the original system of equations to see how well they match.
6984 2: [-11.64, 14.08, -3.64] 1: [5.6, 2., 3., 11.2]
6996 This is reasonably close to our original @expr{B} vector,
6997 @expr{[6, 2, 3, 11]}.
6999 @node List Answer 1, List Answer 2, Matrix Answer 3, Answers to Exercises
7000 @subsection List Tutorial Exercise 1
7003 We can use @kbd{v x} to build a vector of integers. This needs to be
7004 adjusted to get the range of integers we desire. Mapping @samp{-}
7005 across the vector will accomplish this, although it turns out the
7006 plain @samp{-} key will work just as well.
7011 1: [1, 2, 3, 4, 5, 6, 7, 8, 9] 1: [-4, -3, -2, -1, 0, 1, 2, 3, 4]
7014 2 v x 9 @key{RET} 5 V M - or 5 -
7019 Now we use @kbd{V M ^} to map the exponentiation operator across the
7024 1: [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
7031 @node List Answer 2, List Answer 3, List Answer 1, Answers to Exercises
7032 @subsection List Tutorial Exercise 2
7035 Given @expr{x} and @expr{y} vectors in quick variables 1 and 2 as before,
7036 the first job is to form the matrix that describes the problem.
7045 $$ m \times x + b \times 1 = y $$
7050 @texline @math{19\times2}
7052 matrix with our @expr{x} vector as one column and
7053 ones as the other column. So, first we build the column of ones, then
7054 we combine the two columns to form our @expr{A} matrix.
7058 2: [1.34, 1.41, 1.49, ... ] 1: [ [ 1.34, 1 ]
7059 1: [1, 1, 1, ...] [ 1.41, 1 ]
7063 r 1 1 v b 19 @key{RET} M-2 v p v t s 3
7069 @texline @math{A^T y}
7070 @infoline @expr{trn(A) * y}
7072 @texline @math{A^T A}
7073 @infoline @expr{trn(A) * A}
7078 1: [33.36554, 13.613] 2: [33.36554, 13.613]
7079 . 1: [ [ 98.0003, 41.63 ]
7083 v t r 2 * r 3 v t r 3 *
7088 (Hey, those numbers look familiar!)
7092 1: [0.52141679, -0.425978]
7099 Since we were solving equations of the form
7100 @texline @math{m \times x + b \times 1 = y},
7101 @infoline @expr{m*x + b*1 = y},
7102 these numbers should be @expr{m} and @expr{b}, respectively. Sure
7103 enough, they agree exactly with the result computed using @kbd{V M} and
7106 The moral of this story: @kbd{V M} and @kbd{V R} will probably solve
7107 your problem, but there is often an easier way using the higher-level
7108 arithmetic functions!
7110 @c [fix-ref Curve Fitting]
7111 In fact, there is a built-in @kbd{a F} command that does least-squares
7112 fits. @xref{Curve Fitting}.
7114 @node List Answer 3, List Answer 4, List Answer 2, Answers to Exercises
7115 @subsection List Tutorial Exercise 3
7118 Move to one end of the list and press @kbd{C-@@} (or @kbd{C-@key{SPC}} or
7119 whatever) to set the mark, then move to the other end of the list
7120 and type @w{@kbd{C-x * g}}.
7124 1: [2.3, 6, 22, 15.1, 7, 15, 14, 7.5, 2.5]
7129 To make things interesting, let's assume we don't know at a glance
7130 how many numbers are in this list. Then we could type:
7134 2: [2.3, 6, 22, ... ] 2: [2.3, 6, 22, ... ]
7135 1: [2.3, 6, 22, ... ] 1: 126356422.5
7145 2: 126356422.5 2: 126356422.5 1: 7.94652913734
7146 1: [2.3, 6, 22, ... ] 1: 9 .
7154 (The @kbd{I ^} command computes the @var{n}th root of a number.
7155 You could also type @kbd{& ^} to take the reciprocal of 9 and
7156 then raise the number to that power.)
7158 @node List Answer 4, List Answer 5, List Answer 3, Answers to Exercises
7159 @subsection List Tutorial Exercise 4
7162 A number @expr{j} is a divisor of @expr{n} if
7163 @texline @math{n \mathbin{\hbox{\code{\%}}} j = 0}.
7164 @infoline @samp{n % j = 0}.
7165 The first step is to get a vector that identifies the divisors.
7169 2: 30 2: [0, 0, 0, 2, ...] 1: [1, 1, 1, 0, ...]
7170 1: [1, 2, 3, 4, ...] 1: 0 .
7173 30 @key{RET} v x 30 @key{RET} s 1 V M % 0 V M a = s 2
7178 This vector has 1's marking divisors of 30 and 0's marking non-divisors.
7180 The zeroth divisor function is just the total number of divisors.
7181 The first divisor function is the sum of the divisors.
7186 2: [1, 2, 3, 4, ...] 1: [1, 2, 3, 0, ...] 1: 72
7187 1: [1, 1, 1, 0, ...] . .
7190 V R + r 1 r 2 V M * V R +
7195 Once again, the last two steps just compute a dot product for which
7196 a simple @kbd{*} would have worked equally well.
7198 @node List Answer 5, List Answer 6, List Answer 4, Answers to Exercises
7199 @subsection List Tutorial Exercise 5
7202 The obvious first step is to obtain the list of factors with @kbd{k f}.
7203 This list will always be in sorted order, so if there are duplicates
7204 they will be right next to each other. A suitable method is to compare
7205 the list with a copy of itself shifted over by one.
7209 1: [3, 7, 7, 7, 19] 2: [3, 7, 7, 7, 19] 2: [3, 7, 7, 7, 19, 0]
7210 . 1: [3, 7, 7, 7, 19, 0] 1: [0, 3, 7, 7, 7, 19]
7213 19551 k f @key{RET} 0 | @key{TAB} 0 @key{TAB} |
7220 1: [0, 0, 1, 1, 0, 0] 1: 2 1: 0
7228 Note that we have to arrange for both vectors to have the same length
7229 so that the mapping operation works; no prime factor will ever be
7230 zero, so adding zeros on the left and right is safe. From then on
7231 the job is pretty straightforward.
7233 Incidentally, Calc provides the
7234 @texline @dfn{M@"obius} @math{\mu}
7235 @infoline @dfn{Moebius mu}
7236 function which is zero if and only if its argument is square-free. It
7237 would be a much more convenient way to do the above test in practice.
7239 @node List Answer 6, List Answer 7, List Answer 5, Answers to Exercises
7240 @subsection List Tutorial Exercise 6
7243 First use @kbd{v x 6 @key{RET}} to get a list of integers, then @kbd{V M v x}
7244 to get a list of lists of integers!
7246 @node List Answer 7, List Answer 8, List Answer 6, Answers to Exercises
7247 @subsection List Tutorial Exercise 7
7250 Here's one solution. First, compute the triangular list from the previous
7251 exercise and type @kbd{1 -} to subtract one from all the elements.
7264 The numbers down the lefthand edge of the list we desire are called
7265 the ``triangular numbers'' (now you know why!). The @expr{n}th
7266 triangular number is the sum of the integers from 1 to @expr{n}, and
7267 can be computed directly by the formula
7268 @texline @math{n (n+1) \over 2}.
7269 @infoline @expr{n * (n+1) / 2}.
7273 2: [ [0], [0, 1], ... ] 2: [ [0], [0, 1], ... ]
7274 1: [0, 1, 2, 3, 4, 5] 1: [0, 1, 3, 6, 10, 15]
7277 v x 6 @key{RET} 1 - V M ' $ ($+1)/2 @key{RET}
7282 Adding this list to the above list of lists produces the desired
7291 [10, 11, 12, 13, 14],
7292 [15, 16, 17, 18, 19, 20] ]
7299 If we did not know the formula for triangular numbers, we could have
7300 computed them using a @kbd{V U +} command. We could also have
7301 gotten them the hard way by mapping a reduction across the original
7306 2: [ [0], [0, 1], ... ] 2: [ [0], [0, 1], ... ]
7307 1: [ [0], [0, 1], ... ] 1: [0, 1, 3, 6, 10, 15]
7315 (This means ``map a @kbd{V R +} command across the vector,'' and
7316 since each element of the main vector is itself a small vector,
7317 @kbd{V R +} computes the sum of its elements.)
7319 @node List Answer 8, List Answer 9, List Answer 7, Answers to Exercises
7320 @subsection List Tutorial Exercise 8
7323 The first step is to build a list of values of @expr{x}.
7327 1: [1, 2, 3, ..., 21] 1: [0, 1, 2, ..., 20] 1: [0, 0.25, 0.5, ..., 5]
7330 v x 21 @key{RET} 1 - 4 / s 1
7334 Next, we compute the Bessel function values.
7338 1: [0., 0.124, 0.242, ..., -0.328]
7341 V M ' besJ(1,$) @key{RET}
7346 (Another way to do this would be @kbd{1 @key{TAB} V M f j}.)
7348 A way to isolate the maximum value is to compute the maximum using
7349 @kbd{V R X}, then compare all the Bessel values with that maximum.
7353 2: [0., 0.124, 0.242, ... ] 1: [0, 0, 0, ... ] 2: [0, 0, 0, ... ]
7357 @key{RET} V R X V M a = @key{RET} V R + @key{DEL}
7362 It's a good idea to verify, as in the last step above, that only
7363 one value is equal to the maximum. (After all, a plot of
7364 @texline @math{\sin x}
7365 @infoline @expr{sin(x)}
7366 might have many points all equal to the maximum value, 1.)
7368 The vector we have now has a single 1 in the position that indicates
7369 the maximum value of @expr{x}. Now it is a simple matter to convert
7370 this back into the corresponding value itself.
7374 2: [0, 0, 0, ... ] 1: [0, 0., 0., ... ] 1: 1.75
7375 1: [0, 0.25, 0.5, ... ] . .
7382 If @kbd{a =} had produced more than one @expr{1} value, this method
7383 would have given the sum of all maximum @expr{x} values; not very
7384 useful! In this case we could have used @kbd{v m} (@code{calc-mask-vector})
7385 instead. This command deletes all elements of a ``data'' vector that
7386 correspond to zeros in a ``mask'' vector, leaving us with, in this
7387 example, a vector of maximum @expr{x} values.
7389 The built-in @kbd{a X} command maximizes a function using more
7390 efficient methods. Just for illustration, let's use @kbd{a X}
7391 to maximize @samp{besJ(1,x)} over this same interval.
7395 2: besJ(1, x) 1: [1.84115, 0.581865]
7399 ' besJ(1,x), [0..5] @key{RET} a X x @key{RET}
7404 The output from @kbd{a X} is a vector containing the value of @expr{x}
7405 that maximizes the function, and the function's value at that maximum.
7406 As you can see, our simple search got quite close to the right answer.
7408 @node List Answer 9, List Answer 10, List Answer 8, Answers to Exercises
7409 @subsection List Tutorial Exercise 9
7412 Step one is to convert our integer into vector notation.
7416 1: 25129925999 3: 25129925999
7418 1: [11, 10, 9, ..., 1, 0]
7421 25129925999 @key{RET} 10 @key{RET} 12 @key{RET} v x 12 @key{RET} -
7428 1: 25129925999 1: [0, 2, 25, 251, 2512, ... ]
7429 2: [100000000000, ... ] .
7437 (Recall, the @kbd{\} command computes an integer quotient.)
7441 1: [0, 2, 5, 1, 2, 9, 9, 2, 5, 9, 9, 9]
7448 Next we must increment this number. This involves adding one to
7449 the last digit, plus handling carries. There is a carry to the
7450 left out of a digit if that digit is a nine and all the digits to
7451 the right of it are nines.
7455 1: [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1] 1: [1, 1, 1, 0, 0, 1, ... ]
7465 1: [1, 1, 1, 0, 0, 0, ... ] 1: [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
7473 Accumulating @kbd{*} across a vector of ones and zeros will preserve
7474 only the initial run of ones. These are the carries into all digits
7475 except the rightmost digit. Concatenating a one on the right takes
7476 care of aligning the carries properly, and also adding one to the
7481 2: [0, 0, 0, 0, ... ] 1: [0, 0, 2, 5, 1, 2, 9, 9, 2, 6, 0, 0, 0]
7482 1: [0, 0, 2, 5, ... ] .
7485 0 r 2 | V M + 10 V M %
7490 Here we have concatenated 0 to the @emph{left} of the original number;
7491 this takes care of shifting the carries by one with respect to the
7492 digits that generated them.
7494 Finally, we must convert this list back into an integer.
7498 3: [0, 0, 2, 5, ... ] 2: [0, 0, 2, 5, ... ]
7499 2: 1000000000000 1: [1000000000000, 100000000000, ... ]
7500 1: [100000000000, ... ] .
7503 10 @key{RET} 12 ^ r 1 |
7510 1: [0, 0, 20000000000, 5000000000, ... ] 1: 25129926000
7518 Another way to do this final step would be to reduce the formula
7519 @w{@samp{10 $$ + $}} across the vector of digits.
7523 1: [0, 0, 2, 5, ... ] 1: 25129926000
7526 V R ' 10 $$ + $ @key{RET}
7530 @node List Answer 10, List Answer 11, List Answer 9, Answers to Exercises
7531 @subsection List Tutorial Exercise 10
7534 For the list @expr{[a, b, c, d]}, the result is @expr{((a = b) = c) = d},
7535 which will compare @expr{a} and @expr{b} to produce a 1 or 0, which is
7536 then compared with @expr{c} to produce another 1 or 0, which is then
7537 compared with @expr{d}. This is not at all what Joe wanted.
7539 Here's a more correct method:
7543 1: [7, 7, 7, 8, 7] 2: [7, 7, 7, 8, 7]
7547 ' [7,7,7,8,7] @key{RET} @key{RET} v r 1 @key{RET}
7554 1: [1, 1, 1, 0, 1] 1: 0
7561 @node List Answer 11, List Answer 12, List Answer 10, Answers to Exercises
7562 @subsection List Tutorial Exercise 11
7565 The circle of unit radius consists of those points @expr{(x,y)} for which
7566 @expr{x^2 + y^2 < 1}. We start by generating a vector of @expr{x^2}
7567 and a vector of @expr{y^2}.
7569 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7574 2: [2., 2., ..., 2.] 2: [2., 2., ..., 2.]
7575 1: [2., 2., ..., 2.] 1: [1.16, 1.98, ..., 0.81]
7578 v . t . 2. v b 100 @key{RET} @key{RET} V M k r
7585 2: [2., 2., ..., 2.] 1: [0.026, 0.96, ..., 0.036]
7586 1: [0.026, 0.96, ..., 0.036] 2: [0.53, 0.81, ..., 0.094]
7589 1 - 2 V M ^ @key{TAB} V M k r 1 - 2 V M ^
7593 Now we sum the @expr{x^2} and @expr{y^2} values, compare with 1 to
7594 get a vector of 1/0 truth values, then sum the truth values.
7598 1: [0.56, 1.78, ..., 0.13] 1: [1, 0, ..., 1] 1: 84
7606 The ratio @expr{84/100} should approximate the ratio @cpiover{4}.
7610 1: 0.84 1: 3.36 2: 3.36 1: 1.0695
7618 Our estimate, 3.36, is off by about 7%. We could get a better estimate
7619 by taking more points (say, 1000), but it's clear that this method is
7622 (Naturally, since this example uses random numbers your own answer
7623 will be slightly different from the one shown here!)
7625 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7626 return to full-sized display of vectors.
7628 @node List Answer 12, List Answer 13, List Answer 11, Answers to Exercises
7629 @subsection List Tutorial Exercise 12
7632 This problem can be made a lot easier by taking advantage of some
7633 symmetries. First of all, after some thought it's clear that the
7634 @expr{y} axis can be ignored altogether. Just pick a random @expr{x}
7635 component for one end of the match, pick a random direction
7636 @texline @math{\theta},
7637 @infoline @expr{theta},
7638 and see if @expr{x} and
7639 @texline @math{x + \cos \theta}
7640 @infoline @expr{x + cos(theta)}
7641 (which is the @expr{x} coordinate of the other endpoint) cross a line.
7642 The lines are at integer coordinates, so this happens when the two
7643 numbers surround an integer.
7645 Since the two endpoints are equivalent, we may as well choose the leftmost
7646 of the two endpoints as @expr{x}. Then @expr{theta} is an angle pointing
7647 to the right, in the range -90 to 90 degrees. (We could use radians, but
7648 it would feel like cheating to refer to @cpiover{2} radians while trying
7649 to estimate @cpi{}!)
7651 In fact, since the field of lines is infinite we can choose the
7652 coordinates 0 and 1 for the lines on either side of the leftmost
7653 endpoint. The rightmost endpoint will be between 0 and 1 if the
7654 match does not cross a line, or between 1 and 2 if it does. So:
7655 Pick random @expr{x} and
7656 @texline @math{\theta},
7657 @infoline @expr{theta},
7659 @texline @math{x + \cos \theta},
7660 @infoline @expr{x + cos(theta)},
7661 and count how many of the results are greater than one. Simple!
7663 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7668 1: [0.52, 0.71, ..., 0.72] 2: [0.52, 0.71, ..., 0.72]
7669 . 1: [78.4, 64.5, ..., -42.9]
7672 v . t . 1. v b 100 @key{RET} V M k r 180. v b 100 @key{RET} V M k r 90 -
7677 (The next step may be slow, depending on the speed of your computer.)
7681 2: [0.52, 0.71, ..., 0.72] 1: [0.72, 1.14, ..., 1.45]
7682 1: [0.20, 0.43, ..., 0.73] .
7692 1: [0, 1, ..., 1] 1: 0.64 1: 3.125
7695 1 V M a > V R + 100 / 2 @key{TAB} /
7699 Let's try the third method, too. We'll use random integers up to
7700 one million. The @kbd{k r} command with an integer argument picks
7705 2: [1000000, 1000000, ..., 1000000] 2: [78489, 527587, ..., 814975]
7706 1: [1000000, 1000000, ..., 1000000] 1: [324014, 358783, ..., 955450]
7709 1000000 v b 100 @key{RET} @key{RET} V M k r @key{TAB} V M k r
7716 1: [1, 1, ..., 25] 1: [1, 1, ..., 0] 1: 0.56
7719 V M k g 1 V M a = V R + 100 /
7733 For a proof of this property of the GCD function, see section 4.5.2,
7734 exercise 10, of Knuth's @emph{Art of Computer Programming}, volume II.
7736 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7737 return to full-sized display of vectors.
7739 @node List Answer 13, List Answer 14, List Answer 12, Answers to Exercises
7740 @subsection List Tutorial Exercise 13
7743 First, we put the string on the stack as a vector of ASCII codes.
7747 1: [84, 101, 115, ..., 51]
7750 "Testing, 1, 2, 3 @key{RET}
7755 Note that the @kbd{"} key, like @kbd{$}, initiates algebraic entry so
7756 there was no need to type an apostrophe. Also, Calc didn't mind that
7757 we omitted the closing @kbd{"}. (The same goes for all closing delimiters
7758 like @kbd{)} and @kbd{]} at the end of a formula.
7760 We'll show two different approaches here. In the first, we note that
7761 if the input vector is @expr{[a, b, c, d]}, then the hash code is
7762 @expr{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}. In other words,
7763 it's a sum of descending powers of three times the ASCII codes.
7767 2: [84, 101, 115, ..., 51] 2: [84, 101, 115, ..., 51]
7768 1: 16 1: [15, 14, 13, ..., 0]
7771 @key{RET} v l v x 16 @key{RET} -
7778 2: [84, 101, 115, ..., 51] 1: 1960915098 1: 121
7779 1: [14348907, ..., 1] . .
7782 3 @key{TAB} V M ^ * 511 %
7787 Once again, @kbd{*} elegantly summarizes most of the computation.
7788 But there's an even more elegant approach: Reduce the formula
7789 @kbd{3 $$ + $} across the vector. Recall that this represents a
7790 function of two arguments that computes its first argument times three
7791 plus its second argument.
7795 1: [84, 101, 115, ..., 51] 1: 1960915098
7798 "Testing, 1, 2, 3 @key{RET} V R ' 3$$+$ @key{RET}
7803 If you did the decimal arithmetic exercise, this will be familiar.
7804 Basically, we're turning a base-3 vector of digits into an integer,
7805 except that our ``digits'' are much larger than real digits.
7807 Instead of typing @kbd{511 %} again to reduce the result, we can be
7808 cleverer still and notice that rather than computing a huge integer
7809 and taking the modulo at the end, we can take the modulo at each step
7810 without affecting the result. While this means there are more
7811 arithmetic operations, the numbers we operate on remain small so
7812 the operations are faster.
7816 1: [84, 101, 115, ..., 51] 1: 121
7819 "Testing, 1, 2, 3 @key{RET} V R ' (3$$+$)%511 @key{RET}
7823 Why does this work? Think about a two-step computation:
7824 @w{@expr{3 (3a + b) + c}}. Taking a result modulo 511 basically means
7825 subtracting off enough 511's to put the result in the desired range.
7826 So the result when we take the modulo after every step is,
7830 3 (3 a + b - 511 m) + c - 511 n
7835 $$ 3 (3 a + b - 511 m) + c - 511 n $$
7840 for some suitable integers @expr{m} and @expr{n}. Expanding out by
7841 the distributive law yields
7845 9 a + 3 b + c - 511*3 m - 511 n
7850 $$ 9 a + 3 b + c - 511\times3 m - 511 n $$
7855 The @expr{m} term in the latter formula is redundant because any
7856 contribution it makes could just as easily be made by the @expr{n}
7857 term. So we can take it out to get an equivalent formula with
7862 9 a + 3 b + c - 511 n'
7867 $$ 9 a + 3 b + c - 511 n^{\prime} $$
7872 which is just the formula for taking the modulo only at the end of
7873 the calculation. Therefore the two methods are essentially the same.
7875 Later in the tutorial we will encounter @dfn{modulo forms}, which
7876 basically automate the idea of reducing every intermediate result
7877 modulo some value @var{m}.
7879 @node List Answer 14, Types Answer 1, List Answer 13, Answers to Exercises
7880 @subsection List Tutorial Exercise 14
7882 We want to use @kbd{H V U} to nest a function which adds a random
7883 step to an @expr{(x,y)} coordinate. The function is a bit long, but
7884 otherwise the problem is quite straightforward.
7888 2: [0, 0] 1: [ [ 0, 0 ]
7889 1: 50 [ 0.4288, -0.1695 ]
7890 . [ -0.4787, -0.9027 ]
7893 [0,0] 50 H V U ' <# + [random(2.0)-1, random(2.0)-1]> @key{RET}
7897 Just as the text recommended, we used @samp{< >} nameless function
7898 notation to keep the two @code{random} calls from being evaluated
7899 before nesting even begins.
7901 We now have a vector of @expr{[x, y]} sub-vectors, which by Calc's
7902 rules acts like a matrix. We can transpose this matrix and unpack
7903 to get a pair of vectors, @expr{x} and @expr{y}, suitable for graphing.
7907 2: [ 0, 0.4288, -0.4787, ... ]
7908 1: [ 0, -0.1696, -0.9027, ... ]
7915 Incidentally, because the @expr{x} and @expr{y} are completely
7916 independent in this case, we could have done two separate commands
7917 to create our @expr{x} and @expr{y} vectors of numbers directly.
7919 To make a random walk of unit steps, we note that @code{sincos} of
7920 a random direction exactly gives us an @expr{[x, y]} step of unit
7921 length; in fact, the new nesting function is even briefer, though
7922 we might want to lower the precision a bit for it.
7926 2: [0, 0] 1: [ [ 0, 0 ]
7927 1: 50 [ 0.1318, 0.9912 ]
7928 . [ -0.5965, 0.3061 ]
7931 [0,0] 50 m d p 6 @key{RET} H V U ' <# + sincos(random(360.0))> @key{RET}
7935 Another @kbd{v t v u g f} sequence will graph this new random walk.
7937 An interesting twist on these random walk functions would be to use
7938 complex numbers instead of 2-vectors to represent points on the plane.
7939 In the first example, we'd use something like @samp{random + random*(0,1)},
7940 and in the second we could use polar complex numbers with random phase
7941 angles. (This exercise was first suggested in this form by Randal
7944 @node Types Answer 1, Types Answer 2, List Answer 14, Answers to Exercises
7945 @subsection Types Tutorial Exercise 1
7948 If the number is the square root of @cpi{} times a rational number,
7949 then its square, divided by @cpi{}, should be a rational number.
7953 1: 1.26508260337 1: 0.509433962268 1: 2486645810:4881193627
7961 Technically speaking this is a rational number, but not one that is
7962 likely to have arisen in the original problem. More likely, it just
7963 happens to be the fraction which most closely represents some
7964 irrational number to within 12 digits.
7966 But perhaps our result was not quite exact. Let's reduce the
7967 precision slightly and try again:
7971 1: 0.509433962268 1: 27:53
7974 U p 10 @key{RET} c F
7979 Aha! It's unlikely that an irrational number would equal a fraction
7980 this simple to within ten digits, so our original number was probably
7981 @texline @math{\sqrt{27 \pi / 53}}.
7982 @infoline @expr{sqrt(27 pi / 53)}.
7984 Notice that we didn't need to re-round the number when we reduced the
7985 precision. Remember, arithmetic operations always round their inputs
7986 to the current precision before they begin.
7988 @node Types Answer 2, Types Answer 3, Types Answer 1, Answers to Exercises
7989 @subsection Types Tutorial Exercise 2
7992 @samp{inf / inf = nan}. Perhaps @samp{1} is the ``obvious'' answer.
7993 But if @w{@samp{17 inf = inf}}, then @samp{17 inf / inf = inf / inf = 17}, too.
7995 @samp{exp(inf) = inf}. It's tempting to say that the exponential
7996 of infinity must be ``bigger'' than ``regular'' infinity, but as
7997 far as Calc is concerned all infinities are the same size.
7998 In other words, as @expr{x} goes to infinity, @expr{e^x} also goes
7999 to infinity, but the fact the @expr{e^x} grows much faster than
8000 @expr{x} is not relevant here.
8002 @samp{exp(-inf) = 0}. Here we have a finite answer even though
8003 the input is infinite.
8005 @samp{sqrt(-inf) = (0, 1) inf}. Remember that @expr{(0, 1)}
8006 represents the imaginary number @expr{i}. Here's a derivation:
8007 @samp{sqrt(-inf) = @w{sqrt((-1) * inf)} = sqrt(-1) * sqrt(inf)}.
8008 The first part is, by definition, @expr{i}; the second is @code{inf}
8009 because, once again, all infinities are the same size.
8011 @samp{sqrt(uinf) = uinf}. In fact, we do know something about the
8012 direction because @code{sqrt} is defined to return a value in the
8013 right half of the complex plane. But Calc has no notation for this,
8014 so it settles for the conservative answer @code{uinf}.
8016 @samp{abs(uinf) = inf}. No matter which direction @expr{x} points,
8017 @samp{abs(x)} always points along the positive real axis.
8019 @samp{ln(0) = -inf}. Here we have an infinite answer to a finite
8020 input. As in the @expr{1 / 0} case, Calc will only use infinities
8021 here if you have turned on Infinite mode. Otherwise, it will
8022 treat @samp{ln(0)} as an error.
8024 @node Types Answer 3, Types Answer 4, Types Answer 2, Answers to Exercises
8025 @subsection Types Tutorial Exercise 3
8028 We can make @samp{inf - inf} be any real number we like, say,
8029 @expr{a}, just by claiming that we added @expr{a} to the first
8030 infinity but not to the second. This is just as true for complex
8031 values of @expr{a}, so @code{nan} can stand for a complex number.
8032 (And, similarly, @code{uinf} can stand for an infinity that points
8033 in any direction in the complex plane, such as @samp{(0, 1) inf}).
8035 In fact, we can multiply the first @code{inf} by two. Surely
8036 @w{@samp{2 inf - inf = inf}}, but also @samp{2 inf - inf = inf - inf = nan}.
8037 So @code{nan} can even stand for infinity. Obviously it's just
8038 as easy to make it stand for minus infinity as for plus infinity.
8040 The moral of this story is that ``infinity'' is a slippery fish
8041 indeed, and Calc tries to handle it by having a very simple model
8042 for infinities (only the direction counts, not the ``size''); but
8043 Calc is careful to write @code{nan} any time this simple model is
8044 unable to tell what the true answer is.
8046 @node Types Answer 4, Types Answer 5, Types Answer 3, Answers to Exercises
8047 @subsection Types Tutorial Exercise 4
8051 2: 0@@ 47' 26" 1: 0@@ 2' 47.411765"
8055 0@@ 47' 26" @key{RET} 17 /
8060 The average song length is two minutes and 47.4 seconds.
8064 2: 0@@ 2' 47.411765" 1: 0@@ 3' 7.411765" 1: 0@@ 53' 6.000005"
8073 The album would be 53 minutes and 6 seconds long.
8075 @node Types Answer 5, Types Answer 6, Types Answer 4, Answers to Exercises
8076 @subsection Types Tutorial Exercise 5
8079 Let's suppose it's January 14, 1991. The easiest thing to do is
8080 to keep trying 13ths of months until Calc reports a Friday.
8081 We can do this by manually entering dates, or by using @kbd{t I}:
8085 1: <Wed Feb 13, 1991> 1: <Wed Mar 13, 1991> 1: <Sat Apr 13, 1991>
8088 ' <2/13> @key{RET} @key{DEL} ' <3/13> @key{RET} t I
8093 (Calc assumes the current year if you don't say otherwise.)
8095 This is getting tedious---we can keep advancing the date by typing
8096 @kbd{t I} over and over again, but let's automate the job by using
8097 vector mapping. The @kbd{t I} command actually takes a second
8098 ``how-many-months'' argument, which defaults to one. This
8099 argument is exactly what we want to map over:
8103 2: <Sat Apr 13, 1991> 1: [<Mon May 13, 1991>, <Thu Jun 13, 1991>,
8104 1: [1, 2, 3, 4, 5, 6] <Sat Jul 13, 1991>, <Tue Aug 13, 1991>,
8105 . <Fri Sep 13, 1991>, <Sun Oct 13, 1991>]
8108 v x 6 @key{RET} V M t I
8113 Et voil@`a, September 13, 1991 is a Friday.
8120 ' <sep 13> - <jan 14> @key{RET}
8125 And the answer to our original question: 242 days to go.
8127 @node Types Answer 6, Types Answer 7, Types Answer 5, Answers to Exercises
8128 @subsection Types Tutorial Exercise 6
8131 The full rule for leap years is that they occur in every year divisible
8132 by four, except that they don't occur in years divisible by 100, except
8133 that they @emph{do} in years divisible by 400. We could work out the
8134 answer by carefully counting the years divisible by four and the
8135 exceptions, but there is a much simpler way that works even if we
8136 don't know the leap year rule.
8138 Let's assume the present year is 1991. Years have 365 days, except
8139 that leap years (whenever they occur) have 366 days. So let's count
8140 the number of days between now and then, and compare that to the
8141 number of years times 365. The number of extra days we find must be
8142 equal to the number of leap years there were.
8146 1: <Mon Jan 1, 10001> 2: <Mon Jan 1, 10001> 1: 2925593
8147 . 1: <Tue Jan 1, 1991> .
8150 ' <jan 1 10001> @key{RET} ' <jan 1 1991> @key{RET} -
8157 3: 2925593 2: 2925593 2: 2925593 1: 1943
8158 2: 10001 1: 8010 1: 2923650 .
8162 10001 @key{RET} 1991 - 365 * -
8166 @c [fix-ref Date Forms]
8168 There will be 1943 leap years before the year 10001. (Assuming,
8169 of course, that the algorithm for computing leap years remains
8170 unchanged for that long. @xref{Date Forms}, for some interesting
8171 background information in that regard.)
8173 @node Types Answer 7, Types Answer 8, Types Answer 6, Answers to Exercises
8174 @subsection Types Tutorial Exercise 7
8177 The relative errors must be converted to absolute errors so that
8178 @samp{+/-} notation may be used.
8186 20 @key{RET} .05 * 4 @key{RET} .05 *
8190 Now we simply chug through the formula.
8194 1: 19.7392088022 1: 394.78 +/- 19.739 1: 6316.5 +/- 706.21
8197 2 P 2 ^ * 20 p 1 * 4 p .2 @key{RET} 2 ^ *
8201 It turns out the @kbd{v u} command will unpack an error form as
8202 well as a vector. This saves us some retyping of numbers.
8206 3: 6316.5 +/- 706.21 2: 6316.5 +/- 706.21
8211 @key{RET} v u @key{TAB} /
8216 Thus the volume is 6316 cubic centimeters, within about 11 percent.
8218 @node Types Answer 8, Types Answer 9, Types Answer 7, Answers to Exercises
8219 @subsection Types Tutorial Exercise 8
8222 The first answer is pretty simple: @samp{1 / (0 .. 10) = (0.1 .. inf)}.
8223 Since a number in the interval @samp{(0 .. 10)} can get arbitrarily
8224 close to zero, its reciprocal can get arbitrarily large, so the answer
8225 is an interval that effectively means, ``any number greater than 0.1''
8226 but with no upper bound.
8228 The second answer, similarly, is @samp{1 / (-10 .. 0) = (-inf .. -0.1)}.
8230 Calc normally treats division by zero as an error, so that the formula
8231 @w{@samp{1 / 0}} is left unsimplified. Our third problem,
8232 @w{@samp{1 / [0 .. 10]}}, also (potentially) divides by zero because zero
8233 is now a member of the interval. So Calc leaves this one unevaluated, too.
8235 If you turn on Infinite mode by pressing @kbd{m i}, you will
8236 instead get the answer @samp{[0.1 .. inf]}, which includes infinity
8237 as a possible value.
8239 The fourth calculation, @samp{1 / (-10 .. 10)}, has the same problem.
8240 Zero is buried inside the interval, but it's still a possible value.
8241 It's not hard to see that the actual result of @samp{1 / (-10 .. 10)}
8242 will be either greater than @mathit{0.1}, or less than @mathit{-0.1}. Thus
8243 the interval goes from minus infinity to plus infinity, with a ``hole''
8244 in it from @mathit{-0.1} to @mathit{0.1}. Calc doesn't have any way to
8245 represent this, so it just reports @samp{[-inf .. inf]} as the answer.
8246 It may be disappointing to hear ``the answer lies somewhere between
8247 minus infinity and plus infinity, inclusive,'' but that's the best
8248 that interval arithmetic can do in this case.
8250 @node Types Answer 9, Types Answer 10, Types Answer 8, Answers to Exercises
8251 @subsection Types Tutorial Exercise 9
8255 1: [-3 .. 3] 2: [-3 .. 3] 2: [0 .. 9]
8256 . 1: [0 .. 9] 1: [-9 .. 9]
8259 [ 3 n .. 3 ] @key{RET} 2 ^ @key{TAB} @key{RET} *
8264 In the first case the result says, ``if a number is between @mathit{-3} and
8265 3, its square is between 0 and 9.'' The second case says, ``the product
8266 of two numbers each between @mathit{-3} and 3 is between @mathit{-9} and 9.''
8268 An interval form is not a number; it is a symbol that can stand for
8269 many different numbers. Two identical-looking interval forms can stand
8270 for different numbers.
8272 The same issue arises when you try to square an error form.
8274 @node Types Answer 10, Types Answer 11, Types Answer 9, Answers to Exercises
8275 @subsection Types Tutorial Exercise 10
8278 Testing the first number, we might arbitrarily choose 17 for @expr{x}.
8282 1: 17 mod 811749613 2: 17 mod 811749613 1: 533694123 mod 811749613
8286 17 M 811749613 @key{RET} 811749612 ^
8291 Since 533694123 is (considerably) different from 1, the number 811749613
8294 It's awkward to type the number in twice as we did above. There are
8295 various ways to avoid this, and algebraic entry is one. In fact, using
8296 a vector mapping operation we can perform several tests at once. Let's
8297 use this method to test the second number.
8301 2: [17, 42, 100000] 1: [1 mod 15485863, 1 mod ... ]
8305 [17 42 100000] 15485863 @key{RET} V M ' ($$ mod $)^($-1) @key{RET}
8310 The result is three ones (modulo @expr{n}), so it's very probable that
8311 15485863 is prime. (In fact, this number is the millionth prime.)
8313 Note that the functions @samp{($$^($-1)) mod $} or @samp{$$^($-1) % $}
8314 would have been hopelessly inefficient, since they would have calculated
8315 the power using full integer arithmetic.
8317 Calc has a @kbd{k p} command that does primality testing. For small
8318 numbers it does an exact test; for large numbers it uses a variant
8319 of the Fermat test we used here. You can use @kbd{k p} repeatedly
8320 to prove that a large integer is prime with any desired probability.
8322 @node Types Answer 11, Types Answer 12, Types Answer 10, Answers to Exercises
8323 @subsection Types Tutorial Exercise 11
8326 There are several ways to insert a calculated number into an HMS form.
8327 One way to convert a number of seconds to an HMS form is simply to
8328 multiply the number by an HMS form representing one second:
8332 1: 31415926.5359 2: 31415926.5359 1: 8726@@ 38' 46.5359"
8343 2: 8726@@ 38' 46.5359" 1: 6@@ 6' 2.5359" mod 24@@ 0' 0"
8344 1: 15@@ 27' 16" mod 24@@ 0' 0" .
8352 It will be just after six in the morning.
8354 The algebraic @code{hms} function can also be used to build an
8359 1: hms(0, 0, 10000000. pi) 1: 8726@@ 38' 46.5359"
8362 ' hms(0, 0, 1e7 pi) @key{RET} =
8367 The @kbd{=} key is necessary to evaluate the symbol @samp{pi} to
8368 the actual number 3.14159...
8370 @node Types Answer 12, Types Answer 13, Types Answer 11, Answers to Exercises
8371 @subsection Types Tutorial Exercise 12
8374 As we recall, there are 17 songs of about 2 minutes and 47 seconds
8379 2: 0@@ 2' 47" 1: [0@@ 3' 7" .. 0@@ 3' 47"]
8380 1: [0@@ 0' 20" .. 0@@ 1' 0"] .
8383 [ 0@@ 20" .. 0@@ 1' ] +
8390 1: [0@@ 52' 59." .. 1@@ 4' 19."]
8398 No matter how long it is, the album will fit nicely on one CD.
8400 @node Types Answer 13, Types Answer 14, Types Answer 12, Answers to Exercises
8401 @subsection Types Tutorial Exercise 13
8404 Type @kbd{' 1 yr @key{RET} u c s @key{RET}}. The answer is 31557600 seconds.
8406 @node Types Answer 14, Types Answer 15, Types Answer 13, Answers to Exercises
8407 @subsection Types Tutorial Exercise 14
8410 How long will it take for a signal to get from one end of the computer
8415 1: m / c 1: 3.3356 ns
8418 ' 1 m / c @key{RET} u c ns @key{RET}
8423 (Recall, @samp{c} is a ``unit'' corresponding to the speed of light.)
8427 1: 3.3356 ns 1: 0.81356
8431 ' 4.1 ns @key{RET} /
8436 Thus a signal could take up to 81 percent of a clock cycle just to
8437 go from one place to another inside the computer, assuming the signal
8438 could actually attain the full speed of light. Pretty tight!
8440 @node Types Answer 15, Algebra Answer 1, Types Answer 14, Answers to Exercises
8441 @subsection Types Tutorial Exercise 15
8444 The speed limit is 55 miles per hour on most highways. We want to
8445 find the ratio of Sam's speed to the US speed limit.
8449 1: 55 mph 2: 55 mph 3: 11 hr mph / yd
8453 ' 55 mph @key{RET} ' 5 yd/hr @key{RET} /
8457 The @kbd{u s} command cancels out these units to get a plain
8458 number. Now we take the logarithm base two to find the final
8459 answer, assuming that each successive pill doubles his speed.
8463 1: 19360. 2: 19360. 1: 14.24
8472 Thus Sam can take up to 14 pills without a worry.
8474 @node Algebra Answer 1, Algebra Answer 2, Types Answer 15, Answers to Exercises
8475 @subsection Algebra Tutorial Exercise 1
8478 @c [fix-ref Declarations]
8479 The result @samp{sqrt(x)^2} is simplified back to @expr{x} by the
8480 Calculator, but @samp{sqrt(x^2)} is not. (Consider what happens
8481 if @w{@expr{x = -4}}.) If @expr{x} is real, this formula could be
8482 simplified to @samp{abs(x)}, but for general complex arguments even
8483 that is not safe. (@xref{Declarations}, for a way to tell Calc
8484 that @expr{x} is known to be real.)
8486 @node Algebra Answer 2, Algebra Answer 3, Algebra Answer 1, Answers to Exercises
8487 @subsection Algebra Tutorial Exercise 2
8490 Suppose our roots are @expr{[a, b, c]}. We want a polynomial which
8491 is zero when @expr{x} is any of these values. The trivial polynomial
8492 @expr{x-a} is zero when @expr{x=a}, so the product @expr{(x-a)(x-b)(x-c)}
8493 will do the job. We can use @kbd{a c x} to write this in a more
8498 1: 34 x - 24 x^3 1: [1.19023, -1.19023, 0]
8508 1: [x - 1.19023, x + 1.19023, x] 1: x*(x + 1.19023) (x - 1.19023)
8511 V M ' x-$ @key{RET} V R *
8518 1: x^3 - 1.41666 x 1: 34 x - 24 x^3
8521 a c x @key{RET} 24 n * a x
8526 Sure enough, our answer (multiplied by a suitable constant) is the
8527 same as the original polynomial.
8529 @node Algebra Answer 3, Algebra Answer 4, Algebra Answer 2, Answers to Exercises
8530 @subsection Algebra Tutorial Exercise 3
8534 1: x sin(pi x) 1: sin(pi x) / pi^2 - x cos(pi x) / pi
8537 ' x sin(pi x) @key{RET} m r a i x @key{RET}
8545 2: sin(pi x) / pi^2 - x cos(pi x) / pi
8548 ' [y,1] @key{RET} @key{TAB}
8555 1: [sin(pi y) / pi^2 - y cos(pi y) / pi, 1 / pi]
8565 1: sin(pi y) / pi^2 - y cos(pi y) / pi - 1 / pi
8575 1: sin(3.14159 y) / 9.8696 - y cos(3.14159 y) / 3.14159 - 0.3183
8585 1: [0., -0.95493, 0.63662, -1.5915, 1.2732]
8588 v x 5 @key{RET} @key{TAB} V M $ @key{RET}
8592 @node Algebra Answer 4, Rewrites Answer 1, Algebra Answer 3, Answers to Exercises
8593 @subsection Algebra Tutorial Exercise 4
8596 The hard part is that @kbd{V R +} is no longer sufficient to add up all
8597 the contributions from the slices, since the slices have varying
8598 coefficients. So first we must come up with a vector of these
8599 coefficients. Here's one way:
8603 2: -1 2: 3 1: [4, 2, ..., 4]
8604 1: [1, 2, ..., 9] 1: [-1, 1, ..., -1] .
8607 1 n v x 9 @key{RET} V M ^ 3 @key{TAB} -
8614 1: [4, 2, ..., 4, 1] 1: [1, 4, 2, ..., 4, 1]
8622 Now we compute the function values. Note that for this method we need
8623 eleven values, including both endpoints of the desired interval.
8627 2: [1, 4, 2, ..., 4, 1]
8628 1: [1, 1.1, 1.2, ... , 1.8, 1.9, 2.]
8631 11 @key{RET} 1 @key{RET} .1 @key{RET} C-u v x
8638 2: [1, 4, 2, ..., 4, 1]
8639 1: [0., 0.084941, 0.16993, ... ]
8642 ' sin(x) ln(x) @key{RET} m r p 5 @key{RET} V M $ @key{RET}
8647 Once again this calls for @kbd{V M * V R +}; a simple @kbd{*} does the
8652 1: 11.22 1: 1.122 1: 0.374
8660 Wow! That's even better than the result from the Taylor series method.
8662 @node Rewrites Answer 1, Rewrites Answer 2, Algebra Answer 4, Answers to Exercises
8663 @subsection Rewrites Tutorial Exercise 1
8666 We'll use Big mode to make the formulas more readable.
8672 1: (2 + sqrt(2)) / (1 + sqrt(2)) 1: ---------
8678 ' (2+sqrt(2)) / (1+sqrt(2)) @key{RET} d B
8683 Multiplying by the conjugate helps because @expr{(a+b) (a-b) = a^2 - b^2}.
8688 1: (2 + V 2 ) (V 2 - 1)
8691 a r a/(b+c) := a*(b-c) / (b^2-c^2) @key{RET}
8702 a r a*(b+c) := a*b + a*c
8707 (We could have used @kbd{a x} instead of a rewrite rule for the
8710 The multiply-by-conjugate rule turns out to be useful in many
8711 different circumstances, such as when the denominator involves
8712 sines and cosines or the imaginary constant @code{i}.
8714 @node Rewrites Answer 2, Rewrites Answer 3, Rewrites Answer 1, Answers to Exercises
8715 @subsection Rewrites Tutorial Exercise 2
8718 Here is the rule set:
8722 [ fib(n) := fib(n, 1, 1) :: integer(n) :: n >= 1,
8724 fib(n, x, y) := fib(n-1, y, x+y) ]
8729 The first rule turns a one-argument @code{fib} that people like to write
8730 into a three-argument @code{fib} that makes computation easier. The
8731 second rule converts back from three-argument form once the computation
8732 is done. The third rule does the computation itself. It basically
8733 says that if @expr{x} and @expr{y} are two consecutive Fibonacci numbers,
8734 then @expr{y} and @expr{x+y} are the next (overlapping) pair of Fibonacci
8737 Notice that because the number @expr{n} was ``validated'' by the
8738 conditions on the first rule, there is no need to put conditions on
8739 the other rules because the rule set would never get that far unless
8740 the input were valid. That further speeds computation, since no
8741 extra conditions need to be checked at every step.
8743 Actually, a user with a nasty sense of humor could enter a bad
8744 three-argument @code{fib} call directly, say, @samp{fib(0, 1, 1)},
8745 which would get the rules into an infinite loop. One thing that would
8746 help keep this from happening by accident would be to use something like
8747 @samp{ZzFib} instead of @code{fib} as the name of the three-argument
8750 @node Rewrites Answer 3, Rewrites Answer 4, Rewrites Answer 2, Answers to Exercises
8751 @subsection Rewrites Tutorial Exercise 3
8754 He got an infinite loop. First, Calc did as expected and rewrote
8755 @w{@samp{2 + 3 x}} to @samp{f(2, 3, x)}. Then it looked for ways to
8756 apply the rule again, and found that @samp{f(2, 3, x)} looks like
8757 @samp{a + b x} with @w{@samp{a = 0}} and @samp{b = 1}, so it rewrote to
8758 @samp{f(0, 1, f(2, 3, x))}. It then wrapped another @samp{f(0, 1, ...)}
8759 around that, and so on, ad infinitum. Joe should have used @kbd{M-1 a r}
8760 to make sure the rule applied only once.
8762 (Actually, even the first step didn't work as he expected. What Calc
8763 really gives for @kbd{M-1 a r} in this situation is @samp{f(3 x, 1, 2)},
8764 treating 2 as the ``variable,'' and @samp{3 x} as a constant being added
8765 to it. While this may seem odd, it's just as valid a solution as the
8766 ``obvious'' one. One way to fix this would be to add the condition
8767 @samp{:: variable(x)} to the rule, to make sure the thing that matches
8768 @samp{x} is indeed a variable, or to change @samp{x} to @samp{quote(x)}
8769 on the lefthand side, so that the rule matches the actual variable
8770 @samp{x} rather than letting @samp{x} stand for something else.)
8772 @node Rewrites Answer 4, Rewrites Answer 5, Rewrites Answer 3, Answers to Exercises
8773 @subsection Rewrites Tutorial Exercise 4
8780 Here is a suitable set of rules to solve the first part of the problem:
8784 [ seq(n, c) := seq(n/2, c+1) :: n%2 = 0,
8785 seq(n, c) := seq(3n+1, c+1) :: n%2 = 1 :: n > 1 ]
8789 Given the initial formula @samp{seq(6, 0)}, application of these
8790 rules produces the following sequence of formulas:
8804 whereupon neither of the rules match, and rewriting stops.
8806 We can pretty this up a bit with a couple more rules:
8810 [ seq(n) := seq(n, 0),
8817 Now, given @samp{seq(6)} as the starting configuration, we get 8
8820 The change to return a vector is quite simple:
8824 [ seq(n) := seq(n, []) :: integer(n) :: n > 0,
8826 seq(n, v) := seq(n/2, v | n) :: n%2 = 0,
8827 seq(n, v) := seq(3n+1, v | n) :: n%2 = 1 ]
8832 Given @samp{seq(6)}, the result is @samp{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
8834 Notice that the @expr{n > 1} guard is no longer necessary on the last
8835 rule since the @expr{n = 1} case is now detected by another rule.
8836 But a guard has been added to the initial rule to make sure the
8837 initial value is suitable before the computation begins.
8839 While still a good idea, this guard is not as vitally important as it
8840 was for the @code{fib} function, since calling, say, @samp{seq(x, [])}
8841 will not get into an infinite loop. Calc will not be able to prove
8842 the symbol @samp{x} is either even or odd, so none of the rules will
8843 apply and the rewrites will stop right away.
8845 @node Rewrites Answer 5, Rewrites Answer 6, Rewrites Answer 4, Answers to Exercises
8846 @subsection Rewrites Tutorial Exercise 5
8853 If @expr{x} is the sum @expr{a + b}, then `@tfn{nterms(}@var{x}@tfn{)}' must
8854 be `@tfn{nterms(}@var{a}@tfn{)}' plus `@tfn{nterms(}@var{b}@tfn{)}'. If @expr{x}
8855 is not a sum, then `@tfn{nterms(}@var{x}@tfn{)}' = 1.
8859 [ nterms(a + b) := nterms(a) + nterms(b),
8865 Here we have taken advantage of the fact that earlier rules always
8866 match before later rules; @samp{nterms(x)} will only be tried if we
8867 already know that @samp{x} is not a sum.
8869 @node Rewrites Answer 6, Programming Answer 1, Rewrites Answer 5, Answers to Exercises
8870 @subsection Rewrites Tutorial Exercise 6
8873 Here is a rule set that will do the job:
8877 [ a*(b + c) := a*b + a*c,
8878 opt(a) O(x^n) + opt(b) O(x^m) := O(x^n) :: n <= m
8879 :: constant(a) :: constant(b),
8880 opt(a) O(x^n) + opt(b) x^m := O(x^n) :: n <= m
8881 :: constant(a) :: constant(b),
8882 a O(x^n) := O(x^n) :: constant(a),
8883 x^opt(m) O(x^n) := O(x^(n+m)),
8884 O(x^n) O(x^m) := O(x^(n+m)) ]
8888 If we really want the @kbd{+} and @kbd{*} keys to operate naturally
8889 on power series, we should put these rules in @code{EvalRules}. For
8890 testing purposes, it is better to put them in a different variable,
8891 say, @code{O}, first.
8893 The first rule just expands products of sums so that the rest of the
8894 rules can assume they have an expanded-out polynomial to work with.
8895 Note that this rule does not mention @samp{O} at all, so it will
8896 apply to any product-of-sum it encounters---this rule may surprise
8897 you if you put it into @code{EvalRules}!
8899 In the second rule, the sum of two O's is changed to the smaller O@.
8900 The optional constant coefficients are there mostly so that
8901 @samp{O(x^2) - O(x^3)} and @samp{O(x^3) - O(x^2)} are handled
8902 as well as @samp{O(x^2) + O(x^3)}.
8904 The third rule absorbs higher powers of @samp{x} into O's.
8906 The fourth rule says that a constant times a negligible quantity
8907 is still negligible. (This rule will also match @samp{O(x^3) / 4},
8908 with @samp{a = 1/4}.)
8910 The fifth rule rewrites, for example, @samp{x^2 O(x^3)} to @samp{O(x^5)}.
8911 (It is easy to see that if one of these forms is negligible, the other
8912 is, too.) Notice the @samp{x^opt(m)} to pick up terms like
8913 @w{@samp{x O(x^3)}}. Optional powers will match @samp{x} as @samp{x^1}
8914 but not 1 as @samp{x^0}. This turns out to be exactly what we want here.
8916 The sixth rule is the corresponding rule for products of two O's.
8918 Another way to solve this problem would be to create a new ``data type''
8919 that represents truncated power series. We might represent these as
8920 function calls @samp{series(@var{coefs}, @var{x})} where @var{coefs} is
8921 a vector of coefficients for @expr{x^0}, @expr{x^1}, @expr{x^2}, and so
8922 on. Rules would exist for sums and products of such @code{series}
8923 objects, and as an optional convenience could also know how to combine a
8924 @code{series} object with a normal polynomial. (With this, and with a
8925 rule that rewrites @samp{O(x^n)} to the equivalent @code{series} form,
8926 you could still enter power series in exactly the same notation as
8927 before.) Operations on such objects would probably be more efficient,
8928 although the objects would be a bit harder to read.
8930 @c [fix-ref Compositions]
8931 Some other symbolic math programs provide a power series data type
8932 similar to this. Mathematica, for example, has an object that looks
8933 like @samp{PowerSeries[@var{x}, @var{x0}, @var{coefs}, @var{nmin},
8934 @var{nmax}, @var{den}]}, where @var{x0} is the point about which the
8935 power series is taken (we've been assuming this was always zero),
8936 and @var{nmin}, @var{nmax}, and @var{den} allow pseudo-power-series
8937 with fractional or negative powers. Also, the @code{PowerSeries}
8938 objects have a special display format that makes them look like
8939 @samp{2 x^2 + O(x^4)} when they are printed out. (@xref{Compositions},
8940 for a way to do this in Calc, although for something as involved as
8941 this it would probably be better to write the formatting routine
8944 @node Programming Answer 1, Programming Answer 2, Rewrites Answer 6, Answers to Exercises
8945 @subsection Programming Tutorial Exercise 1
8948 Just enter the formula @samp{ninteg(sin(t)/t, t, 0, x)}, type
8949 @kbd{Z F}, and answer the questions. Since this formula contains two
8950 variables, the default argument list will be @samp{(t x)}. We want to
8951 change this to @samp{(x)} since @expr{t} is really a dummy variable
8952 to be used within @code{ninteg}.
8954 The exact keystrokes are @kbd{Z F s Si @key{RET} @key{RET} C-b C-b @key{DEL} @key{DEL} @key{RET} y}.
8955 (The @kbd{C-b C-b @key{DEL} @key{DEL}} are what fix the argument list.)
8957 @node Programming Answer 2, Programming Answer 3, Programming Answer 1, Answers to Exercises
8958 @subsection Programming Tutorial Exercise 2
8961 One way is to move the number to the top of the stack, operate on
8962 it, then move it back: @kbd{C-x ( M-@key{TAB} n M-@key{TAB} M-@key{TAB} C-x )}.
8964 Another way is to negate the top three stack entries, then negate
8965 again the top two stack entries: @kbd{C-x ( M-3 n M-2 n C-x )}.
8967 Finally, it turns out that a negative prefix argument causes a
8968 command like @kbd{n} to operate on the specified stack entry only,
8969 which is just what we want: @kbd{C-x ( M-- 3 n C-x )}.
8971 Just for kicks, let's also do it algebraically:
8972 @w{@kbd{C-x ( ' -$$$, $$, $ @key{RET} C-x )}}.
8974 @node Programming Answer 3, Programming Answer 4, Programming Answer 2, Answers to Exercises
8975 @subsection Programming Tutorial Exercise 3
8978 Each of these functions can be computed using the stack, or using
8979 algebraic entry, whichever way you prefer:
8983 @texline @math{\displaystyle{\sin x \over x}}:
8984 @infoline @expr{sin(x) / x}:
8986 Using the stack: @kbd{C-x ( @key{RET} S @key{TAB} / C-x )}.
8988 Using algebraic entry: @kbd{C-x ( ' sin($)/$ @key{RET} C-x )}.
8991 Computing the logarithm:
8993 Using the stack: @kbd{C-x ( @key{TAB} B C-x )}
8995 Using algebraic entry: @kbd{C-x ( ' log($,$$) @key{RET} C-x )}.
8998 Computing the vector of integers:
9000 Using the stack: @kbd{C-x ( 1 @key{RET} 1 C-u v x C-x )}. (Recall that
9001 @kbd{C-u v x} takes the vector size, starting value, and increment
9004 Alternatively: @kbd{C-x ( ~ v x C-x )}. (The @kbd{~} key pops a
9005 number from the stack and uses it as the prefix argument for the
9008 Using algebraic entry: @kbd{C-x ( ' index($) @key{RET} C-x )}.
9010 @node Programming Answer 4, Programming Answer 5, Programming Answer 3, Answers to Exercises
9011 @subsection Programming Tutorial Exercise 4
9014 Here's one way: @kbd{C-x ( @key{RET} V R + @key{TAB} v l / C-x )}.
9016 @node Programming Answer 5, Programming Answer 6, Programming Answer 4, Answers to Exercises
9017 @subsection Programming Tutorial Exercise 5
9021 2: 1 1: 1.61803398502 2: 1.61803398502
9022 1: 20 . 1: 1.61803398875
9025 1 @key{RET} 20 Z < & 1 + Z > I H P
9030 This answer is quite accurate.
9032 @node Programming Answer 6, Programming Answer 7, Programming Answer 5, Answers to Exercises
9033 @subsection Programming Tutorial Exercise 6
9039 [ [ 0, 1 ] * [a, b] = [b, a + b]
9044 Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @expr{n+1}
9045 and @expr{n+2}. Here's one program that does the job:
9048 C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
9052 This program is quite efficient because Calc knows how to raise a
9053 matrix (or other value) to the power @expr{n} in only
9054 @texline @math{\log_2 n}
9055 @infoline @expr{log(n,2)}
9056 steps. For example, this program can compute the 1000th Fibonacci
9057 number (a 209-digit integer!) in about 10 steps; even though the
9058 @kbd{Z < ... Z >} solution had much simpler steps, it would have
9059 required so many steps that it would not have been practical.
9061 @node Programming Answer 7, Programming Answer 8, Programming Answer 6, Answers to Exercises
9062 @subsection Programming Tutorial Exercise 7
9065 The trick here is to compute the harmonic numbers differently, so that
9066 the loop counter itself accumulates the sum of reciprocals. We use
9067 a separate variable to hold the integer counter.
9075 1 t 1 1 @key{RET} 4 Z ( t 2 r 1 1 + s 1 & Z )
9080 The body of the loop goes as follows: First save the harmonic sum
9081 so far in variable 2. Then delete it from the stack; the for loop
9082 itself will take care of remembering it for us. Next, recall the
9083 count from variable 1, add one to it, and feed its reciprocal to
9084 the for loop to use as the step value. The for loop will increase
9085 the ``loop counter'' by that amount and keep going until the
9086 loop counter exceeds 4.
9091 1: 3.99498713092 2: 3.99498713092
9095 r 1 r 2 @key{RET} 31 & +
9099 Thus we find that the 30th harmonic number is 3.99, and the 31st
9100 harmonic number is 4.02.
9102 @node Programming Answer 8, Programming Answer 9, Programming Answer 7, Answers to Exercises
9103 @subsection Programming Tutorial Exercise 8
9106 The first step is to compute the derivative @expr{f'(x)} and thus
9108 @texline @math{\displaystyle{x - {f(x) \over f'(x)}}}.
9109 @infoline @expr{x - f(x)/f'(x)}.
9111 (Because this definition is long, it will be repeated in concise form
9112 below. You can use @w{@kbd{C-x * m}} to load it from there. While you are
9113 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9114 keystrokes without executing them. In the following diagrams we'll
9115 pretend Calc actually executed the keystrokes as you typed them,
9116 just for purposes of illustration.)
9120 2: sin(cos(x)) - 0.5 3: 4.5
9121 1: 4.5 2: sin(cos(x)) - 0.5
9122 . 1: -(sin(x) cos(cos(x)))
9125 ' sin(cos(x))-0.5 @key{RET} 4.5 m r C-x ( Z ` @key{TAB} @key{RET} a d x @key{RET}
9133 1: x + (sin(cos(x)) - 0.5) / sin(x) cos(cos(x))
9136 / ' x @key{RET} @key{TAB} - t 1
9140 Now, we enter the loop. We'll use a repeat loop with a 20-repetition
9141 limit just in case the method fails to converge for some reason.
9142 (Normally, the @w{@kbd{Z /}} command will stop the loop before all 20
9143 repetitions are done.)
9147 1: 4.5 3: 4.5 2: 4.5
9148 . 2: x + (sin(cos(x)) ... 1: 5.24196456928
9152 20 Z < @key{RET} r 1 @key{TAB} s l x @key{RET}
9156 This is the new guess for @expr{x}. Now we compare it with the
9157 old one to see if we've converged.
9161 3: 5.24196 2: 5.24196 1: 5.24196 1: 5.26345856348
9166 @key{RET} M-@key{TAB} a = Z / Z > Z ' C-x )
9170 The loop converges in just a few steps to this value. To check
9171 the result, we can simply substitute it back into the equation.
9179 @key{RET} ' sin(cos($)) @key{RET}
9183 Let's test the new definition again:
9191 ' x^2-9 @key{RET} 1 X
9195 Once again, here's the full Newton's Method definition:
9199 C-x ( Z ` @key{TAB} @key{RET} a d x @key{RET} / ' x @key{RET} @key{TAB} - t 1
9200 20 Z < @key{RET} r 1 @key{TAB} s l x @key{RET}
9201 @key{RET} M-@key{TAB} a = Z /
9208 @c [fix-ref Nesting and Fixed Points]
9209 It turns out that Calc has a built-in command for applying a formula
9210 repeatedly until it converges to a number. @xref{Nesting and Fixed Points},
9211 to see how to use it.
9213 @c [fix-ref Root Finding]
9214 Also, of course, @kbd{a R} is a built-in command that uses Newton's
9215 method (among others) to look for numerical solutions to any equation.
9216 @xref{Root Finding}.
9218 @node Programming Answer 9, Programming Answer 10, Programming Answer 8, Answers to Exercises
9219 @subsection Programming Tutorial Exercise 9
9222 The first step is to adjust @expr{z} to be greater than 5. A simple
9223 ``for'' loop will do the job here. If @expr{z} is less than 5, we
9224 reduce the problem using
9225 @texline @math{\psi(z) = \psi(z+1) - 1/z}.
9226 @infoline @expr{psi(z) = psi(z+1) - 1/z}. We go
9228 @texline @math{\psi(z+1)},
9229 @infoline @expr{psi(z+1)},
9230 and remember to add back a factor of @expr{-1/z} when we're done. This
9231 step is repeated until @expr{z > 5}.
9233 (Because this definition is long, it will be repeated in concise form
9234 below. You can use @w{@kbd{C-x * m}} to load it from there. While you are
9235 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9236 keystrokes without executing them. In the following diagrams we'll
9237 pretend Calc actually executed the keystrokes as you typed them,
9238 just for purposes of illustration.)
9245 1.0 @key{RET} C-x ( Z ` s 1 0 t 2
9249 Here, variable 1 holds @expr{z} and variable 2 holds the adjustment
9250 factor. If @expr{z < 5}, we use a loop to increase it.
9252 (By the way, we started with @samp{1.0} instead of the integer 1 because
9253 otherwise the calculation below will try to do exact fractional arithmetic,
9254 and will never converge because fractions compare equal only if they
9255 are exactly equal, not just equal to within the current precision.)
9264 @key{RET} 5 a < Z [ 5 Z ( & s + 2 1 s + 1 1 Z ) r 1 Z ]
9268 Now we compute the initial part of the sum:
9269 @texline @math{\ln z - {1 \over 2z}}
9270 @infoline @expr{ln(z) - 1/2z}
9271 minus the adjustment factor.
9275 2: 1.79175946923 2: 1.7084261359 1: -0.57490719743
9276 1: 0.0833333333333 1: 2.28333333333 .
9283 Now we evaluate the series. We'll use another ``for'' loop counting
9284 up the value of @expr{2 n}. (Calc does have a summation command,
9285 @kbd{a +}, but we'll use loops just to get more practice with them.)
9289 3: -0.5749 3: -0.5749 4: -0.5749 2: -0.5749
9290 2: 2 2: 1:6 3: 1:6 1: 2.3148e-3
9295 2 @key{RET} 40 Z ( @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * /
9302 3: -0.5749 3: -0.5772 2: -0.5772 1: -0.577215664892
9303 2: -0.5749 2: -0.5772 1: 0 .
9304 1: 2.3148e-3 1: -0.5749 .
9307 @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z / 2 Z ) Z ' C-x )
9311 This is the value of
9312 @texline @math{-\gamma},
9313 @infoline @expr{- gamma},
9314 with a slight bit of roundoff error. To get a full 12 digits, let's use
9319 2: -0.577215664892 2: -0.577215664892
9320 1: 1. 1: -0.577215664901532
9322 1. @key{RET} p 16 @key{RET} X
9326 Here's the complete sequence of keystrokes:
9331 @key{RET} 5 a < Z [ 5 Z ( & s + 2 1 s + 1 1 Z ) r 1 Z ]
9333 2 @key{RET} 40 Z ( @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * /
9334 @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z /
9341 @node Programming Answer 10, Programming Answer 11, Programming Answer 9, Answers to Exercises
9342 @subsection Programming Tutorial Exercise 10
9345 Taking the derivative of a term of the form @expr{x^n} will produce
9347 @texline @math{n x^{n-1}}.
9348 @infoline @expr{n x^(n-1)}.
9349 Taking the derivative of a constant
9350 produces zero. From this it is easy to see that the @expr{n}th
9351 derivative of a polynomial, evaluated at @expr{x = 0}, will equal the
9352 coefficient on the @expr{x^n} term times @expr{n!}.
9354 (Because this definition is long, it will be repeated in concise form
9355 below. You can use @w{@kbd{C-x * m}} to load it from there. While you are
9356 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9357 keystrokes without executing them. In the following diagrams we'll
9358 pretend Calc actually executed the keystrokes as you typed them,
9359 just for purposes of illustration.)
9363 2: 5 x^4 + (x + 1)^2 3: 5 x^4 + (x + 1)^2
9368 ' 5 x^4 + (x+1)^2 @key{RET} 6 C-x ( Z ` [ ] t 1 0 @key{TAB}
9373 Variable 1 will accumulate the vector of coefficients.
9377 2: 0 3: 0 2: 5 x^4 + ...
9378 1: 5 x^4 + ... 2: 5 x^4 + ... 1: 1
9382 Z ( @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! / s | 1
9387 Note that @kbd{s | 1} appends the top-of-stack value to the vector
9388 in a variable; it is completely analogous to @kbd{s + 1}. We could
9389 have written instead, @kbd{r 1 @key{TAB} | t 1}.
9393 1: 20 x^3 + 2 x + 2 1: 0 1: [1, 2, 1, 0, 5, 0, 0]
9396 a d x @key{RET} 1 Z ) @key{DEL} r 1 Z ' C-x )
9400 To convert back, a simple method is just to map the coefficients
9401 against a table of powers of @expr{x}.
9405 2: [1, 2, 1, 0, 5, 0, 0] 2: [1, 2, 1, 0, 5, 0, 0]
9406 1: 6 1: [0, 1, 2, 3, 4, 5, 6]
9409 6 @key{RET} 1 + 0 @key{RET} 1 C-u v x
9416 2: [1, 2, 1, 0, 5, 0, 0] 2: 1 + 2 x + x^2 + 5 x^4
9417 1: [1, x, x^2, x^3, ... ] .
9420 ' x @key{RET} @key{TAB} V M ^ *
9424 Once again, here are the whole polynomial to/from vector programs:
9428 C-x ( Z ` [ ] t 1 0 @key{TAB}
9429 Z ( @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! / s | 1
9435 C-x ( 1 + 0 @key{RET} 1 C-u v x ' x @key{RET} @key{TAB} V M ^ * C-x )
9439 @node Programming Answer 11, Programming Answer 12, Programming Answer 10, Answers to Exercises
9440 @subsection Programming Tutorial Exercise 11
9443 First we define a dummy program to go on the @kbd{z s} key. The true
9444 @w{@kbd{z s}} key is supposed to take two numbers from the stack and
9445 return one number, so @key{DEL} as a dummy definition will make
9446 sure the stack comes out right.
9454 4 @key{RET} 2 C-x ( @key{DEL} C-x ) Z K s @key{RET} 2
9458 The last step replaces the 2 that was eaten during the creation
9459 of the dummy @kbd{z s} command. Now we move on to the real
9460 definition. The recurrence needs to be rewritten slightly,
9461 to the form @expr{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}.
9463 (Because this definition is long, it will be repeated in concise form
9464 below. You can use @kbd{C-x * m} to load it from there.)
9474 C-x ( M-2 @key{RET} a = Z [ @key{DEL} @key{DEL} 1 Z :
9481 4: 4 2: 4 2: 3 4: 3 4: 3 3: 3
9482 3: 2 1: 2 1: 2 3: 2 3: 2 2: 2
9483 2: 2 . . 2: 3 2: 3 1: 3
9487 @key{RET} 0 a = Z [ @key{DEL} @key{DEL} 0 Z : @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s
9492 (Note that the value 3 that our dummy @kbd{z s} produces is not correct;
9493 it is merely a placeholder that will do just as well for now.)
9497 3: 3 4: 3 3: 3 2: 3 1: -6
9498 2: 3 3: 3 2: 3 1: 9 .
9503 M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * -
9510 1: -6 2: 4 1: 11 2: 11
9514 Z ] Z ] C-x ) Z K s @key{RET} @key{DEL} 4 @key{RET} 2 z s M-@key{RET} k s
9518 Even though the result that we got during the definition was highly
9519 bogus, once the definition is complete the @kbd{z s} command gets
9522 Here's the full program once again:
9526 C-x ( M-2 @key{RET} a =
9527 Z [ @key{DEL} @key{DEL} 1
9529 Z [ @key{DEL} @key{DEL} 0
9530 Z : @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s
9531 M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * -
9538 You can read this definition using @kbd{C-x * m} (@code{read-kbd-macro})
9539 followed by @kbd{Z K s}, without having to make a dummy definition
9540 first, because @code{read-kbd-macro} doesn't need to execute the
9541 definition as it reads it in. For this reason, @code{C-x * m} is often
9542 the easiest way to create recursive programs in Calc.
9544 @node Programming Answer 12, , Programming Answer 11, Answers to Exercises
9545 @subsection Programming Tutorial Exercise 12
9548 This turns out to be a much easier way to solve the problem. Let's
9549 denote Stirling numbers as calls of the function @samp{s}.
9551 First, we store the rewrite rules corresponding to the definition of
9552 Stirling numbers in a convenient variable:
9555 s e StirlingRules @key{RET}
9556 [ s(n,n) := 1 :: n >= 0,
9557 s(n,0) := 0 :: n > 0,
9558 s(n,m) := s(n-1,m-1) - (n-1) s(n-1,m) :: n >= m :: m >= 1 ]
9562 Now, it's just a matter of applying the rules:
9566 2: 4 1: s(4, 2) 1: 11
9570 4 @key{RET} 2 C-x ( ' s($$,$) @key{RET} a r StirlingRules @key{RET} C-x )
9574 As in the case of the @code{fib} rules, it would be useful to put these
9575 rules in @code{EvalRules} and to add a @samp{:: remember} condition to
9578 @c This ends the table-of-contents kludge from above:
9580 \global\let\chapternofonts=\oldchapternofonts
9585 @node Introduction, Data Types, Tutorial, Top
9586 @chapter Introduction
9589 This chapter is the beginning of the Calc reference manual.
9590 It covers basic concepts such as the stack, algebraic and
9591 numeric entry, undo, numeric prefix arguments, etc.
9594 @c (Chapter 2, the Tutorial, has been printed in a separate volume.)
9602 * Quick Calculator::
9603 * Prefix Arguments::
9606 * Multiple Calculators::
9607 * Troubleshooting Commands::
9610 @node Basic Commands, Help Commands, Introduction, Introduction
9611 @section Basic Commands
9616 @cindex Starting the Calculator
9617 @cindex Running the Calculator
9618 To start the Calculator in its standard interface, type @kbd{M-x calc}.
9619 By default this creates a pair of small windows, @samp{*Calculator*}
9620 and @samp{*Calc Trail*}. The former displays the contents of the
9621 Calculator stack and is manipulated exclusively through Calc commands.
9622 It is possible (though not usually necessary) to create several Calc
9623 mode buffers each of which has an independent stack, undo list, and
9624 mode settings. There is exactly one Calc Trail buffer; it records a
9625 list of the results of all calculations that have been done. The
9626 Calc Trail buffer uses a variant of Calc mode, so Calculator commands
9627 still work when the trail buffer's window is selected. It is possible
9628 to turn the trail window off, but the @samp{*Calc Trail*} buffer itself
9629 still exists and is updated silently. @xref{Trail Commands}.
9636 In most installations, the @kbd{C-x * c} key sequence is a more
9637 convenient way to start the Calculator. Also, @kbd{C-x * *}
9638 is a synonym for @kbd{C-x * c} unless you last used Calc
9643 @pindex calc-execute-extended-command
9644 Most Calc commands use one or two keystrokes. Lower- and upper-case
9645 letters are distinct. Commands may also be entered in full @kbd{M-x} form;
9646 for some commands this is the only form. As a convenience, the @kbd{x}
9647 key (@code{calc-execute-extended-command})
9648 is like @kbd{M-x} except that it enters the initial string @samp{calc-}
9649 for you. For example, the following key sequences are equivalent:
9650 @kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}.
9652 Although Calc is designed to be used from the keyboard, some of
9653 Calc's more common commands are available from a menu. In the menu, the
9654 arguments to the functions are given by referring to their stack level
9657 @cindex Extensions module
9658 @cindex @file{calc-ext} module
9659 The Calculator exists in many parts. When you type @kbd{C-x * c}, the
9660 Emacs ``auto-load'' mechanism will bring in only the first part, which
9661 contains the basic arithmetic functions. The other parts will be
9662 auto-loaded the first time you use the more advanced commands like trig
9663 functions or matrix operations. This is done to improve the response time
9664 of the Calculator in the common case when all you need to do is a
9665 little arithmetic. If for some reason the Calculator fails to load an
9666 extension module automatically, you can force it to load all the
9667 extensions by using the @kbd{C-x * L} (@code{calc-load-everything})
9668 command. @xref{Mode Settings}.
9670 If you type @kbd{M-x calc} or @kbd{C-x * c} with any numeric prefix argument,
9671 the Calculator is loaded if necessary, but it is not actually started.
9672 If the argument is positive, the @file{calc-ext} extensions are also
9673 loaded if necessary. User-written Lisp code that wishes to make use
9674 of Calc's arithmetic routines can use @samp{(calc 0)} or @samp{(calc 1)}
9675 to auto-load the Calculator.
9679 If you type @kbd{C-x * b}, then next time you use @kbd{C-x * c} you
9680 will get a Calculator that uses the full height of the Emacs screen.
9681 When full-screen mode is on, @kbd{C-x * c} runs the @code{full-calc}
9682 command instead of @code{calc}. From the Unix shell you can type
9683 @samp{emacs -f full-calc} to start a new Emacs specifically for use
9684 as a calculator. When Calc is started from the Emacs command line
9685 like this, Calc's normal ``quit'' commands actually quit Emacs itself.
9688 @pindex calc-other-window
9689 The @kbd{C-x * o} command is like @kbd{C-x * c} except that the Calc
9690 window is not actually selected. If you are already in the Calc
9691 window, @kbd{C-x * o} switches you out of it. (The regular Emacs
9692 @kbd{C-x o} command would also work for this, but it has a
9693 tendency to drop you into the Calc Trail window instead, which
9694 @kbd{C-x * o} takes care not to do.)
9699 For one quick calculation, you can type @kbd{C-x * q} (@code{quick-calc})
9700 which prompts you for a formula (like @samp{2+3/4}). The result is
9701 displayed at the bottom of the Emacs screen without ever creating
9702 any special Calculator windows. @xref{Quick Calculator}.
9707 Finally, if you are using the X window system you may want to try
9708 @kbd{C-x * k} (@code{calc-keypad}) which runs Calc with a
9709 ``calculator keypad'' picture as well as a stack display. Click on
9710 the keys with the mouse to operate the calculator. @xref{Keypad Mode}.
9714 @cindex Quitting the Calculator
9715 @cindex Exiting the Calculator
9716 The @kbd{q} key (@code{calc-quit}) exits Calc mode and closes the
9717 Calculator's window(s). It does not delete the Calculator buffers.
9718 If you type @kbd{M-x calc} again, the Calculator will reappear with the
9719 contents of the stack intact. Typing @kbd{C-x * c} or @kbd{C-x * *}
9720 again from inside the Calculator buffer is equivalent to executing
9721 @code{calc-quit}; you can think of @kbd{C-x * *} as toggling the
9722 Calculator on and off.
9725 The @kbd{C-x * x} command also turns the Calculator off, no matter which
9726 user interface (standard, Keypad, or Embedded) is currently active.
9727 It also cancels @code{calc-edit} mode if used from there.
9730 @pindex calc-refresh
9731 @cindex Refreshing a garbled display
9732 @cindex Garbled displays, refreshing
9733 The @kbd{d @key{SPC}} key sequence (@code{calc-refresh}) redraws the contents
9734 of the Calculator buffer from memory. Use this if the contents of the
9735 buffer have been damaged somehow.
9740 The @kbd{o} key (@code{calc-realign}) moves the cursor back to its
9741 ``home'' position at the bottom of the Calculator buffer.
9745 @pindex calc-scroll-left
9746 @pindex calc-scroll-right
9747 @cindex Horizontal scrolling
9749 @cindex Wide text, scrolling
9750 The @kbd{<} and @kbd{>} keys are bound to @code{calc-scroll-left} and
9751 @code{calc-scroll-right}. These are just like the normal horizontal
9752 scrolling commands except that they scroll one half-screen at a time by
9753 default. (Calc formats its output to fit within the bounds of the
9754 window whenever it can.)
9758 @pindex calc-scroll-down
9759 @pindex calc-scroll-up
9760 @cindex Vertical scrolling
9761 The @kbd{@{} and @kbd{@}} keys are bound to @code{calc-scroll-down}
9762 and @code{calc-scroll-up}. They scroll up or down by one-half the
9763 height of the Calc window.
9767 The @kbd{C-x * 0} command (@code{calc-reset}; that's @kbd{C-x *} followed
9768 by a zero) resets the Calculator to its initial state. This clears
9769 the stack, resets all the modes to their initial values (the values
9770 that were saved with @kbd{m m} (@code{calc-save-modes})), clears the
9771 caches (@pxref{Caches}), and so on. (It does @emph{not} erase the
9772 values of any variables.) With an argument of 0, Calc will be reset to
9773 its default state; namely, the modes will be given their default values.
9774 With a positive prefix argument, @kbd{C-x * 0} preserves the contents of
9775 the stack but resets everything else to its initial state; with a
9776 negative prefix argument, @kbd{C-x * 0} preserves the contents of the
9777 stack but resets everything else to its default state.
9779 @node Help Commands, Stack Basics, Basic Commands, Introduction
9780 @section Help Commands
9783 @cindex Help commands
9803 The @kbd{?} key (@code{calc-help}) displays a series of brief help messages.
9804 Some keys (such as @kbd{b} and @kbd{d}) are prefix keys, like Emacs's
9805 @key{ESC} and @kbd{C-x} prefixes. You can type
9806 @kbd{?} after a prefix to see a list of commands beginning with that
9807 prefix. (If the message includes @samp{[MORE]}, press @kbd{?} again
9808 to see additional commands for that prefix.)
9811 @pindex calc-full-help
9812 The @kbd{h h} (@code{calc-full-help}) command displays all the @kbd{?}
9813 responses at once. When printed, this makes a nice, compact (three pages)
9814 summary of Calc keystrokes.
9816 In general, the @kbd{h} key prefix introduces various commands that
9817 provide help within Calc. Many of the @kbd{h} key functions are
9818 Calc-specific analogues to the @kbd{C-h} functions for Emacs help.
9824 The @kbd{h i} (@code{calc-info}) command runs the Emacs Info system
9825 to read this manual on-line. This is basically the same as typing
9826 @kbd{C-h i} (the regular way to run the Info system), then, if Info
9827 is not already in the Calc manual, selecting the beginning of the
9828 manual. The @kbd{C-x * i} command is another way to read the Calc
9829 manual; it is different from @kbd{h i} in that it works any time,
9830 not just inside Calc. The plain @kbd{i} key is also equivalent to
9831 @kbd{h i}, though this key is obsolete and may be replaced with a
9832 different command in a future version of Calc.
9836 @pindex calc-tutorial
9837 The @kbd{h t} (@code{calc-tutorial}) command runs the Info system on
9838 the Tutorial section of the Calc manual. It is like @kbd{h i},
9839 except that it selects the starting node of the tutorial rather
9840 than the beginning of the whole manual. (It actually selects the
9841 node ``Interactive Tutorial'' which tells a few things about
9842 using the Info system before going on to the actual tutorial.)
9843 The @kbd{C-x * t} key is equivalent to @kbd{h t} (but it works at
9848 @pindex calc-info-summary
9849 The @kbd{h s} (@code{calc-info-summary}) command runs the Info system
9850 on the Summary node of the Calc manual. @xref{Summary}. The @kbd{C-x * s}
9851 key is equivalent to @kbd{h s}.
9854 @pindex calc-describe-key
9855 The @kbd{h k} (@code{calc-describe-key}) command looks up a key
9856 sequence in the Calc manual. For example, @kbd{h k H a S} looks
9857 up the documentation on the @kbd{H a S} (@code{calc-solve-for})
9858 command. This works by looking up the textual description of
9859 the key(s) in the Key Index of the manual, then jumping to the
9860 node indicated by the index.
9862 Most Calc commands do not have traditional Emacs documentation
9863 strings, since the @kbd{h k} command is both more convenient and
9864 more instructive. This means the regular Emacs @kbd{C-h k}
9865 (@code{describe-key}) command will not be useful for Calc keystrokes.
9868 @pindex calc-describe-key-briefly
9869 The @kbd{h c} (@code{calc-describe-key-briefly}) command reads a
9870 key sequence and displays a brief one-line description of it at
9871 the bottom of the screen. It looks for the key sequence in the
9872 Summary node of the Calc manual; if it doesn't find the sequence
9873 there, it acts just like its regular Emacs counterpart @kbd{C-h c}
9874 (@code{describe-key-briefly}). For example, @kbd{h c H a S}
9875 gives the description:
9878 H a S runs calc-solve-for: a `H a S' v => fsolve(a,v) (?=notes)
9882 which means the command @kbd{H a S} or @kbd{H M-x calc-solve-for}
9883 takes a value @expr{a} from the stack, prompts for a value @expr{v},
9884 then applies the algebraic function @code{fsolve} to these values.
9885 The @samp{?=notes} message means you can now type @kbd{?} to see
9886 additional notes from the summary that apply to this command.
9889 @pindex calc-describe-function
9890 The @kbd{h f} (@code{calc-describe-function}) command looks up an
9891 algebraic function or a command name in the Calc manual. Enter an
9892 algebraic function name to look up that function in the Function
9893 Index or enter a command name beginning with @samp{calc-} to look it
9894 up in the Command Index. This command will also look up operator
9895 symbols that can appear in algebraic formulas, like @samp{%} and
9899 @pindex calc-describe-variable
9900 The @kbd{h v} (@code{calc-describe-variable}) command looks up a
9901 variable in the Calc manual. Enter a variable name like @code{pi} or
9905 @pindex describe-bindings
9906 The @kbd{h b} (@code{calc-describe-bindings}) command is just like
9907 @kbd{C-h b}, except that only local (Calc-related) key bindings are
9911 The @kbd{h n} or @kbd{h C-n} (@code{calc-view-news}) command displays
9912 the ``news'' or change history of Calc. This is kept in the file
9913 @file{README}, which Calc looks for in the same directory as the Calc
9919 The @kbd{h C-c}, @kbd{h C-d}, and @kbd{h C-w} keys display copying,
9920 distribution, and warranty information about Calc. These work by
9921 pulling up the appropriate parts of the ``Copying'' or ``Reporting
9922 Bugs'' sections of the manual.
9924 @node Stack Basics, Numeric Entry, Help Commands, Introduction
9925 @section Stack Basics
9928 @cindex Stack basics
9929 @c [fix-tut RPN Calculations and the Stack]
9930 Calc uses RPN notation. If you are not familiar with RPN, @pxref{RPN
9933 To add the numbers 1 and 2 in Calc you would type the keys:
9934 @kbd{1 @key{RET} 2 +}.
9935 (@key{RET} corresponds to the @key{ENTER} key on most calculators.)
9936 The first three keystrokes ``push'' the numbers 1 and 2 onto the stack. The
9937 @kbd{+} key always ``pops'' the top two numbers from the stack, adds them,
9938 and pushes the result (3) back onto the stack. This number is ready for
9939 further calculations: @kbd{5 -} pushes 5 onto the stack, then pops the
9940 3 and 5, subtracts them, and pushes the result (@mathit{-2}).
9942 Note that the ``top'' of the stack actually appears at the @emph{bottom}
9943 of the buffer. A line containing a single @samp{.} character signifies
9944 the end of the buffer; Calculator commands operate on the number(s)
9945 directly above this line. The @kbd{d t} (@code{calc-truncate-stack})
9946 command allows you to move the @samp{.} marker up and down in the stack;
9947 @pxref{Truncating the Stack}.
9950 @pindex calc-line-numbering
9951 Stack elements are numbered consecutively, with number 1 being the top of
9952 the stack. These line numbers are ordinarily displayed on the lefthand side
9953 of the window. The @kbd{d l} (@code{calc-line-numbering}) command controls
9954 whether these numbers appear. (Line numbers may be turned off since they
9955 slow the Calculator down a bit and also clutter the display.)
9958 @pindex calc-realign
9959 The unshifted letter @kbd{o} (@code{calc-realign}) command repositions
9960 the cursor to its top-of-stack ``home'' position. It also undoes any
9961 horizontal scrolling in the window. If you give it a numeric prefix
9962 argument, it instead moves the cursor to the specified stack element.
9964 The @key{RET} (or equivalent @key{SPC}) key is only required to separate
9965 two consecutive numbers.
9966 (After all, if you typed @kbd{1 2} by themselves the Calculator
9967 would enter the number 12.) If you press @key{RET} or @key{SPC} @emph{not}
9968 right after typing a number, the key duplicates the number on the top of
9969 the stack. @kbd{@key{RET} *} is thus a handy way to square a number.
9971 The @key{DEL} key pops and throws away the top number on the stack.
9972 The @key{TAB} key swaps the top two objects on the stack.
9973 @xref{Stack and Trail}, for descriptions of these and other stack-related
9976 @node Numeric Entry, Algebraic Entry, Stack Basics, Introduction
9977 @section Numeric Entry
9983 @cindex Numeric entry
9984 @cindex Entering numbers
9985 Pressing a digit or other numeric key begins numeric entry using the
9986 minibuffer. The number is pushed on the stack when you press the @key{RET}
9987 or @key{SPC} keys. If you press any other non-numeric key, the number is
9988 pushed onto the stack and the appropriate operation is performed. If
9989 you press a numeric key which is not valid, the key is ignored.
9992 @cindex Negative numbers, entering
9994 There are three different concepts corresponding to the word ``minus,''
9995 typified by @expr{a-b} (subtraction), @expr{-x}
9996 (change-sign), and @expr{-5} (negative number). Calc uses three
9997 different keys for these operations, respectively:
9998 @kbd{-}, @kbd{n}, and @kbd{_} (the underscore). The @kbd{-} key subtracts
9999 the two numbers on the top of the stack. The @kbd{n} key changes the sign
10000 of the number on the top of the stack or the number currently being entered.
10001 The @kbd{_} key begins entry of a negative number or changes the sign of
10002 the number currently being entered. The following sequences all enter the
10003 number @mathit{-5} onto the stack: @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
10004 @kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.
10006 Some other keys are active during numeric entry, such as @kbd{#} for
10007 non-decimal numbers, @kbd{:} for fractions, and @kbd{@@} for HMS forms.
10008 These notations are described later in this manual with the corresponding
10009 data types. @xref{Data Types}.
10011 During numeric entry, the only editing key available is @key{DEL}.
10013 @node Algebraic Entry, Quick Calculator, Numeric Entry, Introduction
10014 @section Algebraic Entry
10018 @pindex calc-algebraic-entry
10019 @cindex Algebraic notation
10020 @cindex Formulas, entering
10021 The @kbd{'} (@code{calc-algebraic-entry}) command can be used to enter
10022 calculations in algebraic form. This is accomplished by typing the
10023 apostrophe key, ', followed by the expression in standard format:
10031 @texline @math{2+(3\times4) = 14}
10032 @infoline @expr{2+(3*4) = 14}
10033 and push it on the stack. If you wish you can
10034 ignore the RPN aspect of Calc altogether and simply enter algebraic
10035 expressions in this way. You may want to use @key{DEL} every so often to
10036 clear previous results off the stack.
10038 You can press the apostrophe key during normal numeric entry to switch
10039 the half-entered number into Algebraic entry mode. One reason to do
10040 this would be to fix a typo, as the full Emacs cursor motion and editing
10041 keys are available during algebraic entry but not during numeric entry.
10043 In the same vein, during either numeric or algebraic entry you can
10044 press @kbd{`} (backquote) to switch to @code{calc-edit} mode, where
10045 you complete your half-finished entry in a separate buffer.
10046 @xref{Editing Stack Entries}.
10049 @pindex calc-algebraic-mode
10050 @cindex Algebraic Mode
10051 If you prefer algebraic entry, you can use the command @kbd{m a}
10052 (@code{calc-algebraic-mode}) to set Algebraic mode. In this mode,
10053 digits and other keys that would normally start numeric entry instead
10054 start full algebraic entry; as long as your formula begins with a digit
10055 you can omit the apostrophe. Open parentheses and square brackets also
10056 begin algebraic entry. You can still do RPN calculations in this mode,
10057 but you will have to press @key{RET} to terminate every number:
10058 @kbd{2 @key{RET} 3 @key{RET} * 4 @key{RET} +} would accomplish the same
10059 thing as @kbd{2*3+4 @key{RET}}.
10061 @cindex Incomplete Algebraic Mode
10062 If you give a numeric prefix argument like @kbd{C-u} to the @kbd{m a}
10063 command, it enables Incomplete Algebraic mode; this is like regular
10064 Algebraic mode except that it applies to the @kbd{(} and @kbd{[} keys
10065 only. Numeric keys still begin a numeric entry in this mode.
10068 @pindex calc-total-algebraic-mode
10069 @cindex Total Algebraic Mode
10070 The @kbd{m t} (@code{calc-total-algebraic-mode}) gives you an even
10071 stronger algebraic-entry mode, in which @emph{all} regular letter and
10072 punctuation keys begin algebraic entry. Use this if you prefer typing
10073 @w{@kbd{sqrt( )}} instead of @kbd{Q}, @w{@kbd{factor( )}} instead of
10074 @kbd{a f}, and so on. To type regular Calc commands when you are in
10075 Total Algebraic mode, hold down the @key{META} key. Thus @kbd{M-q}
10076 is the command to quit Calc, @kbd{M-p} sets the precision, and
10077 @kbd{M-m t} (or @kbd{M-m M-t}, if you prefer) turns Total Algebraic
10078 mode back off again. Meta keys also terminate algebraic entry, so
10079 that @kbd{2+3 M-S} is equivalent to @kbd{2+3 @key{RET} M-S}. The symbol
10080 @samp{Alg*} will appear in the mode line whenever you are in this mode.
10082 Pressing @kbd{'} (the apostrophe) a second time re-enters the previous
10083 algebraic formula. You can then use the normal Emacs editing keys to
10084 modify this formula to your liking before pressing @key{RET}.
10087 @cindex Formulas, referring to stack
10088 Within a formula entered from the keyboard, the symbol @kbd{$}
10089 represents the number on the top of the stack. If an entered formula
10090 contains any @kbd{$} characters, the Calculator replaces the top of
10091 stack with that formula rather than simply pushing the formula onto the
10092 stack. Thus, @kbd{' 1+2 @key{RET}} pushes 3 on the stack, and @kbd{$*2
10093 @key{RET}} replaces it with 6. Note that the @kbd{$} key always
10094 initiates algebraic entry; the @kbd{'} is unnecessary if @kbd{$} is the
10095 first character in the new formula.
10097 Higher stack elements can be accessed from an entered formula with the
10098 symbols @kbd{$$}, @kbd{$$$}, and so on. The number of stack elements
10099 removed (to be replaced by the entered values) equals the number of dollar
10100 signs in the longest such symbol in the formula. For example, @samp{$$+$$$}
10101 adds the second and third stack elements, replacing the top three elements
10102 with the answer. (All information about the top stack element is thus lost
10103 since no single @samp{$} appears in this formula.)
10105 A slightly different way to refer to stack elements is with a dollar
10106 sign followed by a number: @samp{$1}, @samp{$2}, and so on are much
10107 like @samp{$}, @samp{$$}, etc., except that stack entries referred
10108 to numerically are not replaced by the algebraic entry. That is, while
10109 @samp{$+1} replaces 5 on the stack with 6, @samp{$1+1} leaves the 5
10110 on the stack and pushes an additional 6.
10112 If a sequence of formulas are entered separated by commas, each formula
10113 is pushed onto the stack in turn. For example, @samp{1,2,3} pushes
10114 those three numbers onto the stack (leaving the 3 at the top), and
10115 @samp{$+1,$-1} replaces a 5 on the stack with 4 followed by 6. Also,
10116 @samp{$,$$} exchanges the top two elements of the stack, just like the
10119 You can finish an algebraic entry with @kbd{M-=} or @kbd{M-@key{RET}} instead
10120 of @key{RET}. This uses @kbd{=} to evaluate the variables in each
10121 formula that goes onto the stack. (Thus @kbd{' pi @key{RET}} pushes
10122 the variable @samp{pi}, but @kbd{' pi M-@key{RET}} pushes 3.1415.)
10124 If you finish your algebraic entry by pressing @key{LFD} (or @kbd{C-j})
10125 instead of @key{RET}, Calc disables simplification
10126 (as if by @kbd{m O}; @pxref{Simplification Modes}) while the entry
10127 is being pushed on the stack. Thus @kbd{' 1+2 @key{RET}} pushes 3
10128 on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @expr{1+2};
10129 you might then press @kbd{=} when it is time to evaluate this formula.
10131 @node Quick Calculator, Prefix Arguments, Algebraic Entry, Introduction
10132 @section ``Quick Calculator'' Mode
10137 @cindex Quick Calculator
10138 There is another way to invoke the Calculator if all you need to do
10139 is make one or two quick calculations. Type @kbd{C-x * q} (or
10140 @kbd{M-x quick-calc}), then type any formula as an algebraic entry.
10141 The Calculator will compute the result and display it in the echo
10142 area, without ever actually putting up a Calc window.
10144 You can use the @kbd{$} character in a Quick Calculator formula to
10145 refer to the previous Quick Calculator result. Older results are
10146 not retained; the Quick Calculator has no effect on the full
10147 Calculator's stack or trail. If you compute a result and then
10148 forget what it was, just run @code{C-x * q} again and enter
10149 @samp{$} as the formula.
10151 If this is the first time you have used the Calculator in this Emacs
10152 session, the @kbd{C-x * q} command will create the @code{*Calculator*}
10153 buffer and perform all the usual initializations; it simply will
10154 refrain from putting that buffer up in a new window. The Quick
10155 Calculator refers to the @code{*Calculator*} buffer for all mode
10156 settings. Thus, for example, to set the precision that the Quick
10157 Calculator uses, simply run the full Calculator momentarily and use
10158 the regular @kbd{p} command.
10160 If you use @code{C-x * q} from inside the Calculator buffer, the
10161 effect is the same as pressing the apostrophe key (algebraic entry).
10163 The result of a Quick calculation is placed in the Emacs ``kill ring''
10164 as well as being displayed. A subsequent @kbd{C-y} command will
10165 yank the result into the editing buffer. You can also use this
10166 to yank the result into the next @kbd{C-x * q} input line as a more
10167 explicit alternative to @kbd{$} notation, or to yank the result
10168 into the Calculator stack after typing @kbd{C-x * c}.
10170 If you finish your formula by typing @key{LFD} (or @kbd{C-j}) instead
10171 of @key{RET}, the result is inserted immediately into the current
10172 buffer rather than going into the kill ring.
10174 Quick Calculator results are actually evaluated as if by the @kbd{=}
10175 key (which replaces variable names by their stored values, if any).
10176 If the formula you enter is an assignment to a variable using the
10177 @samp{:=} operator, say, @samp{foo := 2 + 3} or @samp{foo := foo + 1},
10178 then the result of the evaluation is stored in that Calc variable.
10179 @xref{Store and Recall}.
10181 If the result is an integer and the current display radix is decimal,
10182 the number will also be displayed in hex, octal and binary formats. If
10183 the integer is in the range from 1 to 126, it will also be displayed as
10184 an ASCII character.
10186 For example, the quoted character @samp{"x"} produces the vector
10187 result @samp{[120]} (because 120 is the ASCII code of the lower-case
10188 `x'; @pxref{Strings}). Since this is a vector, not an integer, it
10189 is displayed only according to the current mode settings. But
10190 running Quick Calc again and entering @samp{120} will produce the
10191 result @samp{120 (16#78, 8#170, x)} which shows the number in its
10192 decimal, hexadecimal, octal, and ASCII forms.
10194 Please note that the Quick Calculator is not any faster at loading
10195 or computing the answer than the full Calculator; the name ``quick''
10196 merely refers to the fact that it's much less hassle to use for
10197 small calculations.
10199 @node Prefix Arguments, Undo, Quick Calculator, Introduction
10200 @section Numeric Prefix Arguments
10203 Many Calculator commands use numeric prefix arguments. Some, such as
10204 @kbd{d s} (@code{calc-sci-notation}), set a parameter to the value of
10205 the prefix argument or use a default if you don't use a prefix.
10206 Others (like @kbd{d f} (@code{calc-fix-notation})) require an argument
10207 and prompt for a number if you don't give one as a prefix.
10209 As a rule, stack-manipulation commands accept a numeric prefix argument
10210 which is interpreted as an index into the stack. A positive argument
10211 operates on the top @var{n} stack entries; a negative argument operates
10212 on the @var{n}th stack entry in isolation; and a zero argument operates
10213 on the entire stack.
10215 Most commands that perform computations (such as the arithmetic and
10216 scientific functions) accept a numeric prefix argument that allows the
10217 operation to be applied across many stack elements. For unary operations
10218 (that is, functions of one argument like absolute value or complex
10219 conjugate), a positive prefix argument applies that function to the top
10220 @var{n} stack entries simultaneously, and a negative argument applies it
10221 to the @var{n}th stack entry only. For binary operations (functions of
10222 two arguments like addition, GCD, and vector concatenation), a positive
10223 prefix argument ``reduces'' the function across the top @var{n}
10224 stack elements (for example, @kbd{C-u 5 +} sums the top 5 stack entries;
10225 @pxref{Reducing and Mapping}), and a negative argument maps the next-to-top
10226 @var{n} stack elements with the top stack element as a second argument
10227 (for example, @kbd{7 c-u -5 +} adds 7 to the top 5 stack elements).
10228 This feature is not available for operations which use the numeric prefix
10229 argument for some other purpose.
10231 Numeric prefixes are specified the same way as always in Emacs: Press
10232 a sequence of @key{META}-digits, or press @key{ESC} followed by digits,
10233 or press @kbd{C-u} followed by digits. Some commands treat plain
10234 @kbd{C-u} (without any actual digits) specially.
10237 @pindex calc-num-prefix
10238 You can type @kbd{~} (@code{calc-num-prefix}) to pop an integer from the
10239 top of the stack and enter it as the numeric prefix for the next command.
10240 For example, @kbd{C-u 16 p} sets the precision to 16 digits; an alternate
10241 (silly) way to do this would be @kbd{2 @key{RET} 4 ^ ~ p}, i.e., compute 2
10242 to the fourth power and set the precision to that value.
10244 Conversely, if you have typed a numeric prefix argument the @kbd{~} key
10245 pushes it onto the stack in the form of an integer.
10247 @node Undo, Error Messages, Prefix Arguments, Introduction
10248 @section Undoing Mistakes
10254 @cindex Mistakes, undoing
10255 @cindex Undoing mistakes
10256 @cindex Errors, undoing
10257 The shift-@kbd{U} key (@code{calc-undo}) undoes the most recent operation.
10258 If that operation added or dropped objects from the stack, those objects
10259 are removed or restored. If it was a ``store'' operation, you are
10260 queried whether or not to restore the variable to its original value.
10261 The @kbd{U} key may be pressed any number of times to undo successively
10262 farther back in time; with a numeric prefix argument it undoes a
10263 specified number of operations. When the Calculator is quit, as with
10264 the @kbd{q} (@code{calc-quit}) command, the undo history will be
10265 truncated to the length of the customizable variable
10266 @code{calc-undo-length} (@pxref{Customizing Calc}), which by default
10267 is @expr{100}. (Recall that @kbd{C-x * c} is synonymous with
10268 @code{calc-quit} while inside the Calculator; this also truncates the
10271 Currently the mode-setting commands (like @code{calc-precision}) are not
10272 undoable. You can undo past a point where you changed a mode, but you
10273 will need to reset the mode yourself.
10277 @cindex Redoing after an Undo
10278 The shift-@kbd{D} key (@code{calc-redo}) redoes an operation that was
10279 mistakenly undone. Pressing @kbd{U} with a negative prefix argument is
10280 equivalent to executing @code{calc-redo}. You can redo any number of
10281 times, up to the number of recent consecutive undo commands. Redo
10282 information is cleared whenever you give any command that adds new undo
10283 information, i.e., if you undo, then enter a number on the stack or make
10284 any other change, then it will be too late to redo.
10286 @kindex M-@key{RET}
10287 @pindex calc-last-args
10288 @cindex Last-arguments feature
10289 @cindex Arguments, restoring
10290 The @kbd{M-@key{RET}} key (@code{calc-last-args}) is like undo in that
10291 it restores the arguments of the most recent command onto the stack;
10292 however, it does not remove the result of that command. Given a numeric
10293 prefix argument, this command applies to the @expr{n}th most recent
10294 command which removed items from the stack; it pushes those items back
10297 The @kbd{K} (@code{calc-keep-args}) command provides a related function
10298 to @kbd{M-@key{RET}}. @xref{Stack and Trail}.
10300 It is also possible to recall previous results or inputs using the trail.
10301 @xref{Trail Commands}.
10303 The standard Emacs @kbd{C-_} undo key is recognized as a synonym for @kbd{U}.
10305 @node Error Messages, Multiple Calculators, Undo, Introduction
10306 @section Error Messages
10311 @cindex Errors, messages
10312 @cindex Why did an error occur?
10313 Many situations that would produce an error message in other calculators
10314 simply create unsimplified formulas in the Emacs Calculator. For example,
10315 @kbd{1 @key{RET} 0 /} pushes the formula @expr{1 / 0}; @w{@kbd{0 L}} pushes
10316 the formula @samp{ln(0)}. Floating-point overflow and underflow are also
10317 reasons for this to happen.
10319 When a function call must be left in symbolic form, Calc usually
10320 produces a message explaining why. Messages that are probably
10321 surprising or indicative of user errors are displayed automatically.
10322 Other messages are simply kept in Calc's memory and are displayed only
10323 if you type @kbd{w} (@code{calc-why}). You can also press @kbd{w} if
10324 the same computation results in several messages. (The first message
10325 will end with @samp{[w=more]} in this case.)
10328 @pindex calc-auto-why
10329 The @kbd{d w} (@code{calc-auto-why}) command controls when error messages
10330 are displayed automatically. (Calc effectively presses @kbd{w} for you
10331 after your computation finishes.) By default, this occurs only for
10332 ``important'' messages. The other possible modes are to report
10333 @emph{all} messages automatically, or to report none automatically (so
10334 that you must always press @kbd{w} yourself to see the messages).
10336 @node Multiple Calculators, Troubleshooting Commands, Error Messages, Introduction
10337 @section Multiple Calculators
10340 @pindex another-calc
10341 It is possible to have any number of Calc mode buffers at once.
10342 Usually this is done by executing @kbd{M-x another-calc}, which
10343 is similar to @kbd{C-x * c} except that if a @samp{*Calculator*}
10344 buffer already exists, a new, independent one with a name of the
10345 form @samp{*Calculator*<@var{n}>} is created. You can also use the
10346 command @code{calc-mode} to put any buffer into Calculator mode, but
10347 this would ordinarily never be done.
10349 The @kbd{q} (@code{calc-quit}) command does not destroy a Calculator buffer;
10350 it only closes its window. Use @kbd{M-x kill-buffer} to destroy a
10353 Each Calculator buffer keeps its own stack, undo list, and mode settings
10354 such as precision, angular mode, and display formats. In Emacs terms,
10355 variables such as @code{calc-stack} are buffer-local variables. The
10356 global default values of these variables are used only when a new
10357 Calculator buffer is created. The @code{calc-quit} command saves
10358 the stack and mode settings of the buffer being quit as the new defaults.
10360 There is only one trail buffer, @samp{*Calc Trail*}, used by all
10361 Calculator buffers.
10363 @node Troubleshooting Commands, , Multiple Calculators, Introduction
10364 @section Troubleshooting Commands
10367 This section describes commands you can use in case a computation
10368 incorrectly fails or gives the wrong answer.
10370 @xref{Reporting Bugs}, if you find a problem that appears to be due
10371 to a bug or deficiency in Calc.
10374 * Autoloading Problems::
10375 * Recursion Depth::
10380 @node Autoloading Problems, Recursion Depth, Troubleshooting Commands, Troubleshooting Commands
10381 @subsection Autoloading Problems
10384 The Calc program is split into many component files; components are
10385 loaded automatically as you use various commands that require them.
10386 Occasionally Calc may lose track of when a certain component is
10387 necessary; typically this means you will type a command and it won't
10388 work because some function you've never heard of was undefined.
10391 @pindex calc-load-everything
10392 If this happens, the easiest workaround is to type @kbd{C-x * L}
10393 (@code{calc-load-everything}) to force all the parts of Calc to be
10394 loaded right away. This will cause Emacs to take up a lot more
10395 memory than it would otherwise, but it's guaranteed to fix the problem.
10397 @node Recursion Depth, Caches, Autoloading Problems, Troubleshooting Commands
10398 @subsection Recursion Depth
10403 @pindex calc-more-recursion-depth
10404 @pindex calc-less-recursion-depth
10405 @cindex Recursion depth
10406 @cindex ``Computation got stuck'' message
10407 @cindex @code{max-lisp-eval-depth}
10408 @cindex @code{max-specpdl-size}
10409 Calc uses recursion in many of its calculations. Emacs Lisp keeps a
10410 variable @code{max-lisp-eval-depth} which limits the amount of recursion
10411 possible in an attempt to recover from program bugs. If a calculation
10412 ever halts incorrectly with the message ``Computation got stuck or
10413 ran too long,'' use the @kbd{M} command (@code{calc-more-recursion-depth})
10414 to increase this limit. (Of course, this will not help if the
10415 calculation really did get stuck due to some problem inside Calc.)
10417 The limit is always increased (multiplied) by a factor of two. There
10418 is also an @kbd{I M} (@code{calc-less-recursion-depth}) command which
10419 decreases this limit by a factor of two, down to a minimum value of 200.
10420 The default value is 1000.
10422 These commands also double or halve @code{max-specpdl-size}, another
10423 internal Lisp recursion limit. The minimum value for this limit is 600.
10425 @node Caches, Debugging Calc, Recursion Depth, Troubleshooting Commands
10430 @cindex Flushing caches
10431 Calc saves certain values after they have been computed once. For
10432 example, the @kbd{P} (@code{calc-pi}) command initially ``knows'' the
10433 constant @cpi{} to about 20 decimal places; if the current precision
10434 is greater than this, it will recompute @cpi{} using a series
10435 approximation. This value will not need to be recomputed ever again
10436 unless you raise the precision still further. Many operations such as
10437 logarithms and sines make use of similarly cached values such as
10439 @texline @math{\ln 2}.
10440 @infoline @expr{ln(2)}.
10441 The visible effect of caching is that
10442 high-precision computations may seem to do extra work the first time.
10443 Other things cached include powers of two (for the binary arithmetic
10444 functions), matrix inverses and determinants, symbolic integrals, and
10445 data points computed by the graphing commands.
10447 @pindex calc-flush-caches
10448 If you suspect a Calculator cache has become corrupt, you can use the
10449 @code{calc-flush-caches} command to reset all caches to the empty state.
10450 (This should only be necessary in the event of bugs in the Calculator.)
10451 The @kbd{C-x * 0} (with the zero key) command also resets caches along
10452 with all other aspects of the Calculator's state.
10454 @node Debugging Calc, , Caches, Troubleshooting Commands
10455 @subsection Debugging Calc
10458 A few commands exist to help in the debugging of Calc commands.
10459 @xref{Programming}, to see the various ways that you can write
10460 your own Calc commands.
10463 @pindex calc-timing
10464 The @kbd{Z T} (@code{calc-timing}) command turns on and off a mode
10465 in which the timing of slow commands is reported in the Trail.
10466 Any Calc command that takes two seconds or longer writes a line
10467 to the Trail showing how many seconds it took. This value is
10468 accurate only to within one second.
10470 All steps of executing a command are included; in particular, time
10471 taken to format the result for display in the stack and trail is
10472 counted. Some prompts also count time taken waiting for them to
10473 be answered, while others do not; this depends on the exact
10474 implementation of the command. For best results, if you are timing
10475 a sequence that includes prompts or multiple commands, define a
10476 keyboard macro to run the whole sequence at once. Calc's @kbd{X}
10477 command (@pxref{Keyboard Macros}) will then report the time taken
10478 to execute the whole macro.
10480 Another advantage of the @kbd{X} command is that while it is
10481 executing, the stack and trail are not updated from step to step.
10482 So if you expect the output of your test sequence to leave a result
10483 that may take a long time to format and you don't wish to count
10484 this formatting time, end your sequence with a @key{DEL} keystroke
10485 to clear the result from the stack. When you run the sequence with
10486 @kbd{X}, Calc will never bother to format the large result.
10488 Another thing @kbd{Z T} does is to increase the Emacs variable
10489 @code{gc-cons-threshold} to a much higher value (two million; the
10490 usual default in Calc is 250,000) for the duration of each command.
10491 This generally prevents garbage collection during the timing of
10492 the command, though it may cause your Emacs process to grow
10493 abnormally large. (Garbage collection time is a major unpredictable
10494 factor in the timing of Emacs operations.)
10496 Another command that is useful when debugging your own Lisp
10497 extensions to Calc is @kbd{M-x calc-pass-errors}, which disables
10498 the error handler that changes the ``@code{max-lisp-eval-depth}
10499 exceeded'' message to the much more friendly ``Computation got
10500 stuck or ran too long.'' This handler interferes with the Emacs
10501 Lisp debugger's @code{debug-on-error} mode. Errors are reported
10502 in the handler itself rather than at the true location of the
10503 error. After you have executed @code{calc-pass-errors}, Lisp
10504 errors will be reported correctly but the user-friendly message
10507 @node Data Types, Stack and Trail, Introduction, Top
10508 @chapter Data Types
10511 This chapter discusses the various types of objects that can be placed
10512 on the Calculator stack, how they are displayed, and how they are
10513 entered. (@xref{Data Type Formats}, for information on how these data
10514 types are represented as underlying Lisp objects.)
10516 Integers, fractions, and floats are various ways of describing real
10517 numbers. HMS forms also for many purposes act as real numbers. These
10518 types can be combined to form complex numbers, modulo forms, error forms,
10519 or interval forms. (But these last four types cannot be combined
10520 arbitrarily: error forms may not contain modulo forms, for example.)
10521 Finally, all these types of numbers may be combined into vectors,
10522 matrices, or algebraic formulas.
10525 * Integers:: The most basic data type.
10526 * Fractions:: This and above are called @dfn{rationals}.
10527 * Floats:: This and above are called @dfn{reals}.
10528 * Complex Numbers:: This and above are called @dfn{numbers}.
10530 * Vectors and Matrices::
10537 * Incomplete Objects::
10542 @node Integers, Fractions, Data Types, Data Types
10547 The Calculator stores integers to arbitrary precision. Addition,
10548 subtraction, and multiplication of integers always yields an exact
10549 integer result. (If the result of a division or exponentiation of
10550 integers is not an integer, it is expressed in fractional or
10551 floating-point form according to the current Fraction mode.
10552 @xref{Fraction Mode}.)
10554 A decimal integer is represented as an optional sign followed by a
10555 sequence of digits. Grouping (@pxref{Grouping Digits}) can be used to
10556 insert a comma at every third digit for display purposes, but you
10557 must not type commas during the entry of numbers.
10560 A non-decimal integer is represented as an optional sign, a radix
10561 between 2 and 36, a @samp{#} symbol, and one or more digits. For radix 11
10562 and above, the letters A through Z (upper- or lower-case) count as
10563 digits and do not terminate numeric entry mode. @xref{Radix Modes}, for how
10564 to set the default radix for display of integers. Numbers of any radix
10565 may be entered at any time. If you press @kbd{#} at the beginning of a
10566 number, the current display radix is used.
10568 @node Fractions, Floats, Integers, Data Types
10573 A @dfn{fraction} is a ratio of two integers. Fractions are traditionally
10574 written ``2/3'' but Calc uses the notation @samp{2:3}. (The @kbd{/} key
10575 performs RPN division; the following two sequences push the number
10576 @samp{2:3} on the stack: @kbd{2 :@: 3 @key{RET}}, or @kbd{2 @key{RET} 3 /}
10577 assuming Fraction mode has been enabled.)
10578 When the Calculator produces a fractional result it always reduces it to
10579 simplest form, which may in fact be an integer.
10581 Fractions may also be entered in a three-part form, where @samp{2:3:4}
10582 represents two-and-three-quarters. @xref{Fraction Formats}, for fraction
10585 Non-decimal fractions are entered and displayed as
10586 @samp{@var{radix}#@var{num}:@var{denom}} (or in the analogous three-part
10587 form). The numerator and denominator always use the same radix.
10589 @node Floats, Complex Numbers, Fractions, Data Types
10593 @cindex Floating-point numbers
10594 A floating-point number or @dfn{float} is a number stored in scientific
10595 notation. The number of significant digits in the fractional part is
10596 governed by the current floating precision (@pxref{Precision}). The
10597 range of acceptable values is from
10598 @texline @math{10^{-3999999}}
10599 @infoline @expr{10^-3999999}
10601 @texline @math{10^{4000000}}
10602 @infoline @expr{10^4000000}
10603 (exclusive), plus the corresponding negative values and zero.
10605 Calculations that would exceed the allowable range of values (such
10606 as @samp{exp(exp(20))}) are left in symbolic form by Calc. The
10607 messages ``floating-point overflow'' or ``floating-point underflow''
10608 indicate that during the calculation a number would have been produced
10609 that was too large or too close to zero, respectively, to be represented
10610 by Calc. This does not necessarily mean the final result would have
10611 overflowed, just that an overflow occurred while computing the result.
10612 (In fact, it could report an underflow even though the final result
10613 would have overflowed!)
10615 If a rational number and a float are mixed in a calculation, the result
10616 will in general be expressed as a float. Commands that require an integer
10617 value (such as @kbd{k g} [@code{gcd}]) will also accept integer-valued
10618 floats, i.e., floating-point numbers with nothing after the decimal point.
10620 Floats are identified by the presence of a decimal point and/or an
10621 exponent. In general a float consists of an optional sign, digits
10622 including an optional decimal point, and an optional exponent consisting
10623 of an @samp{e}, an optional sign, and up to seven exponent digits.
10624 For example, @samp{23.5e-2} is 23.5 times ten to the minus-second power,
10627 Floating-point numbers are normally displayed in decimal notation with
10628 all significant figures shown. Exceedingly large or small numbers are
10629 displayed in scientific notation. Various other display options are
10630 available. @xref{Float Formats}.
10632 @cindex Accuracy of calculations
10633 Floating-point numbers are stored in decimal, not binary. The result
10634 of each operation is rounded to the nearest value representable in the
10635 number of significant digits specified by the current precision,
10636 rounding away from zero in the case of a tie. Thus (in the default
10637 display mode) what you see is exactly what you get. Some operations such
10638 as square roots and transcendental functions are performed with several
10639 digits of extra precision and then rounded down, in an effort to make the
10640 final result accurate to the full requested precision. However,
10641 accuracy is not rigorously guaranteed. If you suspect the validity of a
10642 result, try doing the same calculation in a higher precision. The
10643 Calculator's arithmetic is not intended to be IEEE-conformant in any
10646 While floats are always @emph{stored} in decimal, they can be entered
10647 and displayed in any radix just like integers and fractions. Since a
10648 float that is entered in a radix other that 10 will be converted to
10649 decimal, the number that Calc stores may not be exactly the number that
10650 was entered, it will be the closest decimal approximation given the
10651 current precision. The notation @samp{@var{radix}#@var{ddd}.@var{ddd}}
10652 is a floating-point number whose digits are in the specified radix.
10653 Note that the @samp{.} is more aptly referred to as a ``radix point''
10654 than as a decimal point in this case. The number @samp{8#123.4567} is
10655 defined as @samp{8#1234567 * 8^-4}. If the radix is 14 or less, you can
10656 use @samp{e} notation to write a non-decimal number in scientific
10657 notation. The exponent is written in decimal, and is considered to be a
10658 power of the radix: @samp{8#1234567e-4}. If the radix is 15 or above,
10659 the letter @samp{e} is a digit, so scientific notation must be written
10660 out, e.g., @samp{16#123.4567*16^2}. The first two exercises of the
10661 Modes Tutorial explore some of the properties of non-decimal floats.
10663 @node Complex Numbers, Infinities, Floats, Data Types
10664 @section Complex Numbers
10667 @cindex Complex numbers
10668 There are two supported formats for complex numbers: rectangular and
10669 polar. The default format is rectangular, displayed in the form
10670 @samp{(@var{real},@var{imag})} where @var{real} is the real part and
10671 @var{imag} is the imaginary part, each of which may be any real number.
10672 Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i}
10673 notation; @pxref{Complex Formats}.
10675 Polar complex numbers are displayed in the form
10676 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'
10677 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'
10678 where @var{r} is the nonnegative magnitude and
10679 @texline @math{\theta}
10680 @infoline @var{theta}
10681 is the argument or phase angle. The range of
10682 @texline @math{\theta}
10683 @infoline @var{theta}
10684 depends on the current angular mode (@pxref{Angular Modes}); it is
10685 generally between @mathit{-180} and @mathit{+180} degrees or the equivalent range
10688 Complex numbers are entered in stages using incomplete objects.
10689 @xref{Incomplete Objects}.
10691 Operations on rectangular complex numbers yield rectangular complex
10692 results, and similarly for polar complex numbers. Where the two types
10693 are mixed, or where new complex numbers arise (as for the square root of
10694 a negative real), the current @dfn{Polar mode} is used to determine the
10695 type. @xref{Polar Mode}.
10697 A complex result in which the imaginary part is zero (or the phase angle
10698 is 0 or 180 degrees or @cpi{} radians) is automatically converted to a real
10701 @node Infinities, Vectors and Matrices, Complex Numbers, Data Types
10702 @section Infinities
10706 @cindex @code{inf} variable
10707 @cindex @code{uinf} variable
10708 @cindex @code{nan} variable
10712 The word @code{inf} represents the mathematical concept of @dfn{infinity}.
10713 Calc actually has three slightly different infinity-like values:
10714 @code{inf}, @code{uinf}, and @code{nan}. These are just regular
10715 variable names (@pxref{Variables}); you should avoid using these
10716 names for your own variables because Calc gives them special
10717 treatment. Infinities, like all variable names, are normally
10718 entered using algebraic entry.
10720 Mathematically speaking, it is not rigorously correct to treat
10721 ``infinity'' as if it were a number, but mathematicians often do
10722 so informally. When they say that @samp{1 / inf = 0}, what they
10723 really mean is that @expr{1 / x}, as @expr{x} becomes larger and
10724 larger, becomes arbitrarily close to zero. So you can imagine
10725 that if @expr{x} got ``all the way to infinity,'' then @expr{1 / x}
10726 would go all the way to zero. Similarly, when they say that
10727 @samp{exp(inf) = inf}, they mean that
10728 @texline @math{e^x}
10729 @infoline @expr{exp(x)}
10730 grows without bound as @expr{x} grows. The symbol @samp{-inf} likewise
10731 stands for an infinitely negative real value; for example, we say that
10732 @samp{exp(-inf) = 0}. You can have an infinity pointing in any
10733 direction on the complex plane: @samp{sqrt(-inf) = i inf}.
10735 The same concept of limits can be used to define @expr{1 / 0}. We
10736 really want the value that @expr{1 / x} approaches as @expr{x}
10737 approaches zero. But if all we have is @expr{1 / 0}, we can't
10738 tell which direction @expr{x} was coming from. If @expr{x} was
10739 positive and decreasing toward zero, then we should say that
10740 @samp{1 / 0 = inf}. But if @expr{x} was negative and increasing
10741 toward zero, the answer is @samp{1 / 0 = -inf}. In fact, @expr{x}
10742 could be an imaginary number, giving the answer @samp{i inf} or
10743 @samp{-i inf}. Calc uses the special symbol @samp{uinf} to mean
10744 @dfn{undirected infinity}, i.e., a value which is infinitely
10745 large but with an unknown sign (or direction on the complex plane).
10747 Calc actually has three modes that say how infinities are handled.
10748 Normally, infinities never arise from calculations that didn't
10749 already have them. Thus, @expr{1 / 0} is treated simply as an
10750 error and left unevaluated. The @kbd{m i} (@code{calc-infinite-mode})
10751 command (@pxref{Infinite Mode}) enables a mode in which
10752 @expr{1 / 0} evaluates to @code{uinf} instead. There is also
10753 an alternative type of infinite mode which says to treat zeros
10754 as if they were positive, so that @samp{1 / 0 = inf}. While this
10755 is less mathematically correct, it may be the answer you want in
10758 Since all infinities are ``as large'' as all others, Calc simplifies,
10759 e.g., @samp{5 inf} to @samp{inf}. Another example is
10760 @samp{5 - inf = -inf}, where the @samp{-inf} is so large that
10761 adding a finite number like five to it does not affect it.
10762 Note that @samp{a - inf} also results in @samp{-inf}; Calc assumes
10763 that variables like @code{a} always stand for finite quantities.
10764 Just to show that infinities really are all the same size,
10765 note that @samp{sqrt(inf) = inf^2 = exp(inf) = inf} in Calc's
10768 It's not so easy to define certain formulas like @samp{0 * inf} and
10769 @samp{inf / inf}. Depending on where these zeros and infinities
10770 came from, the answer could be literally anything. The latter
10771 formula could be the limit of @expr{x / x} (giving a result of one),
10772 or @expr{2 x / x} (giving two), or @expr{x^2 / x} (giving @code{inf}),
10773 or @expr{x / x^2} (giving zero). Calc uses the symbol @code{nan}
10774 to represent such an @dfn{indeterminate} value. (The name ``nan''
10775 comes from analogy with the ``NAN'' concept of IEEE standard
10776 arithmetic; it stands for ``Not A Number.'' This is somewhat of a
10777 misnomer, since @code{nan} @emph{does} stand for some number or
10778 infinity, it's just that @emph{which} number it stands for
10779 cannot be determined.) In Calc's notation, @samp{0 * inf = nan}
10780 and @samp{inf / inf = nan}. A few other common indeterminate
10781 expressions are @samp{inf - inf} and @samp{inf ^ 0}. Also,
10782 @samp{0 / 0 = nan} if you have turned on Infinite mode
10783 (as described above).
10785 Infinities are especially useful as parts of @dfn{intervals}.
10786 @xref{Interval Forms}.
10788 @node Vectors and Matrices, Strings, Infinities, Data Types
10789 @section Vectors and Matrices
10793 @cindex Plain vectors
10795 The @dfn{vector} data type is flexible and general. A vector is simply a
10796 list of zero or more data objects. When these objects are numbers, the
10797 whole is a vector in the mathematical sense. When these objects are
10798 themselves vectors of equal (nonzero) length, the whole is a @dfn{matrix}.
10799 A vector which is not a matrix is referred to here as a @dfn{plain vector}.
10801 A vector is displayed as a list of values separated by commas and enclosed
10802 in square brackets: @samp{[1, 2, 3]}. Thus the following is a 2 row by
10803 3 column matrix: @samp{[[1, 2, 3], [4, 5, 6]]}. Vectors, like complex
10804 numbers, are entered as incomplete objects. @xref{Incomplete Objects}.
10805 During algebraic entry, vectors are entered all at once in the usual
10806 brackets-and-commas form. Matrices may be entered algebraically as nested
10807 vectors, or using the shortcut notation @w{@samp{[1, 2, 3; 4, 5, 6]}},
10808 with rows separated by semicolons. The commas may usually be omitted
10809 when entering vectors: @samp{[1 2 3]}. Curly braces may be used in
10810 place of brackets: @samp{@{1, 2, 3@}}, but the commas are required in
10813 Traditional vector and matrix arithmetic is also supported;
10814 @pxref{Basic Arithmetic} and @pxref{Matrix Functions}.
10815 Many other operations are applied to vectors element-wise. For example,
10816 the complex conjugate of a vector is a vector of the complex conjugates
10823 Algebraic functions for building vectors include @samp{vec(a, b, c)}
10824 to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an
10825 @texline @math{n\times m}
10826 @infoline @var{n}x@var{m}
10827 matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers
10828 from 1 to @samp{n}.
10830 @node Strings, HMS Forms, Vectors and Matrices, Data Types
10836 @cindex Character strings
10837 Character strings are not a special data type in the Calculator.
10838 Rather, a string is represented simply as a vector all of whose
10839 elements are integers in the range 0 to 255 (ASCII codes). You can
10840 enter a string at any time by pressing the @kbd{"} key. Quotation
10841 marks and backslashes are written @samp{\"} and @samp{\\}, respectively,
10842 inside strings. Other notations introduced by backslashes are:
10858 Finally, a backslash followed by three octal digits produces any
10859 character from its ASCII code.
10862 @pindex calc-display-strings
10863 Strings are normally displayed in vector-of-integers form. The
10864 @w{@kbd{d "}} (@code{calc-display-strings}) command toggles a mode in
10865 which any vectors of small integers are displayed as quoted strings
10868 The backslash notations shown above are also used for displaying
10869 strings. Characters 128 and above are not translated by Calc; unless
10870 you have an Emacs modified for 8-bit fonts, these will show up in
10871 backslash-octal-digits notation. For characters below 32, and
10872 for character 127, Calc uses the backslash-letter combination if
10873 there is one, or otherwise uses a @samp{\^} sequence.
10875 The only Calc feature that uses strings is @dfn{compositions};
10876 @pxref{Compositions}. Strings also provide a convenient
10877 way to do conversions between ASCII characters and integers.
10883 There is a @code{string} function which provides a different display
10884 format for strings. Basically, @samp{string(@var{s})}, where @var{s}
10885 is a vector of integers in the proper range, is displayed as the
10886 corresponding string of characters with no surrounding quotation
10887 marks or other modifications. Thus @samp{string("ABC")} (or
10888 @samp{string([65 66 67])}) will look like @samp{ABC} on the stack.
10889 This happens regardless of whether @w{@kbd{d "}} has been used. The
10890 only way to turn it off is to use @kbd{d U} (unformatted language
10891 mode) which will display @samp{string("ABC")} instead.
10893 Control characters are displayed somewhat differently by @code{string}.
10894 Characters below 32, and character 127, are shown using @samp{^} notation
10895 (same as shown above, but without the backslash). The quote and
10896 backslash characters are left alone, as are characters 128 and above.
10902 The @code{bstring} function is just like @code{string} except that
10903 the resulting string is breakable across multiple lines if it doesn't
10904 fit all on one line. Potential break points occur at every space
10905 character in the string.
10907 @node HMS Forms, Date Forms, Strings, Data Types
10911 @cindex Hours-minutes-seconds forms
10912 @cindex Degrees-minutes-seconds forms
10913 @dfn{HMS} stands for Hours-Minutes-Seconds; when used as an angular
10914 argument, the interpretation is Degrees-Minutes-Seconds. All functions
10915 that operate on angles accept HMS forms. These are interpreted as
10916 degrees regardless of the current angular mode. It is also possible to
10917 use HMS as the angular mode so that calculated angles are expressed in
10918 degrees, minutes, and seconds.
10924 @kindex ' (HMS forms)
10928 @kindex " (HMS forms)
10932 @kindex h (HMS forms)
10936 @kindex o (HMS forms)
10940 @kindex m (HMS forms)
10944 @kindex s (HMS forms)
10945 The default format for HMS values is
10946 @samp{@var{hours}@@ @var{mins}' @var{secs}"}. During entry, the letters
10947 @samp{h} (for ``hours'') or
10948 @samp{o} (approximating the ``degrees'' symbol) are accepted as well as
10949 @samp{@@}, @samp{m} is accepted in place of @samp{'}, and @samp{s} is
10950 accepted in place of @samp{"}.
10951 The @var{hours} value is an integer (or integer-valued float).
10952 The @var{mins} value is an integer or integer-valued float between 0 and 59.
10953 The @var{secs} value is a real number between 0 (inclusive) and 60
10954 (exclusive). A positive HMS form is interpreted as @var{hours} +
10955 @var{mins}/60 + @var{secs}/3600. A negative HMS form is interpreted
10956 as @mathit{- @var{hours}} @mathit{-} @var{mins}/60 @mathit{-} @var{secs}/3600.
10957 Display format for HMS forms is quite flexible. @xref{HMS Formats}.
10959 HMS forms can be added and subtracted. When they are added to numbers,
10960 the numbers are interpreted according to the current angular mode. HMS
10961 forms can also be multiplied and divided by real numbers. Dividing
10962 two HMS forms produces a real-valued ratio of the two angles.
10965 @cindex Time of day
10966 Just for kicks, @kbd{M-x calc-time} pushes the current time of day on
10967 the stack as an HMS form.
10969 @node Date Forms, Modulo Forms, HMS Forms, Data Types
10970 @section Date Forms
10974 A @dfn{date form} represents a date and possibly an associated time.
10975 Simple date arithmetic is supported: Adding a number to a date
10976 produces a new date shifted by that many days; adding an HMS form to
10977 a date shifts it by that many hours. Subtracting two date forms
10978 computes the number of days between them (represented as a simple
10979 number). Many other operations, such as multiplying two date forms,
10980 are nonsensical and are not allowed by Calc.
10982 Date forms are entered and displayed enclosed in @samp{< >} brackets.
10983 The default format is, e.g., @samp{<Wed Jan 9, 1991>} for dates,
10984 or @samp{<3:32:20pm Wed Jan 9, 1991>} for dates with times.
10985 Input is flexible; date forms can be entered in any of the usual
10986 notations for dates and times. @xref{Date Formats}.
10988 Date forms are stored internally as numbers, specifically the number
10989 of days since midnight on the morning of December 31 of the year 1 BC@.
10990 If the internal number is an integer, the form represents a date only;
10991 if the internal number is a fraction or float, the form represents
10992 a date and time. For example, @samp{<6:00am Thu Jan 10, 1991>}
10993 is represented by the number 726842.25. The standard precision of
10994 12 decimal digits is enough to ensure that a (reasonable) date and
10995 time can be stored without roundoff error.
10997 If the current precision is greater than 12, date forms will keep
10998 additional digits in the seconds position. For example, if the
10999 precision is 15, the seconds will keep three digits after the
11000 decimal point. Decreasing the precision below 12 may cause the
11001 time part of a date form to become inaccurate. This can also happen
11002 if astronomically high years are used, though this will not be an
11003 issue in everyday (or even everymillennium) use. Note that date
11004 forms without times are stored as exact integers, so roundoff is
11005 never an issue for them.
11007 You can use the @kbd{v p} (@code{calc-pack}) and @kbd{v u}
11008 (@code{calc-unpack}) commands to get at the numerical representation
11009 of a date form. @xref{Packing and Unpacking}.
11011 Date forms can go arbitrarily far into the future or past. Negative
11012 year numbers represent years BC@. There is no ``year 0''; the day
11013 before @samp{<Mon Jan 1, +1>} is @samp{<Sun Dec 31, -1>}. These are
11014 days 1 and 0 respectively in Calc's internal numbering scheme. The
11015 Gregorian calendar is used for all dates, including dates before the
11016 Gregorian calendar was invented (although that can be configured; see
11017 below). Thus Calc's use of the day number @mathit{-10000} to
11018 represent August 15, 28 BC should be taken with a grain of salt.
11020 @cindex Julian calendar
11021 @cindex Gregorian calendar
11022 Some historical background: The Julian calendar was created by
11023 Julius Caesar in the year 46 BC as an attempt to fix the confusion
11024 caused by the irregular Roman calendar that was used before that time.
11025 The Julian calendar introduced an extra day in all years divisible by
11026 four. After some initial confusion, the calendar was adopted around
11027 the year we call 8 AD@. Some centuries later it became
11028 apparent that the Julian year of 365.25 days was itself not quite
11029 right. In 1582 Pope Gregory XIII introduced the Gregorian calendar,
11030 which added the new rule that years divisible by 100, but not by 400,
11031 were not to be considered leap years despite being divisible by four.
11032 Many countries delayed adoption of the Gregorian calendar
11033 because of religious differences. For example, Great Britain and the
11034 British colonies switched to the Gregorian calendar in September
11035 1752, when the Julian calendar was eleven days behind the
11036 Gregorian calendar. That year in Britain, the day after September 2
11037 was September 14. To take another example, Russia did not adopt the
11038 Gregorian calendar until 1918, and that year in Russia the day after
11039 January 31 was February 14. Calc's reckoning therefore matches English
11040 practice starting in 1752 and Russian practice starting in 1918, but
11041 disagrees with earlier dates in both countries.
11043 When the Julian calendar was introduced, it had January 1 as the first
11044 day of the year. By the Middle Ages, many European countries
11045 had changed the beginning of a new year to a different date, often to
11046 a religious festival. Almost all countries reverted to using January 1
11047 as the beginning of the year by the time they adopted the Gregorian
11050 Some calendars attempt to mimic the historical situation by using the
11051 Gregorian calendar for recent dates and the Julian calendar for older
11052 dates. The @code{cal} program in most Unix implementations does this,
11053 for example. While January 1 wasn't always the beginning of a calendar
11054 year, these hybrid calendars still use January 1 as the beginning of
11055 the year even for older dates. The customizable variable
11056 @code{calc-gregorian-switch} (@pxref{Customizing Calc}) can be set to
11057 have Calc's date forms switch from the Julian to Gregorian calendar at
11058 any specified date.
11060 Today's timekeepers introduce an occasional ``leap second''.
11061 These do not occur regularly and Calc does not take these minor
11062 effects into account. (If it did, it would have to report a
11063 non-integer number of days between, say,
11064 @samp{<12:00am Mon Jan 1, 1900>} and
11065 @samp{<12:00am Sat Jan 1, 2000>}.)
11067 @cindex Julian day counting
11068 Another day counting system in common use is, confusingly, also called
11069 ``Julian.'' Julian days go from noon to noon. The Julian day number
11070 is the numbers of days since 12:00 noon (GMT) on November 24, 4714 BC
11071 in the Gregorian calendar (i.e., January 1, 4713 BC in the Julian
11072 calendar). In Calc's scheme (in GMT) the Julian day origin is
11073 @mathit{-1721422.5}, because Calc starts at midnight instead of noon.
11074 Thus to convert a Calc date code obtained by unpacking a
11075 date form into a Julian day number, simply add 1721422.5 after
11076 compensating for the time zone difference. The built-in @kbd{t J}
11077 command performs this conversion for you.
11079 The Julian day number is based on the Julian cycle, which was invented
11080 in 1583 by Joseph Justus Scaliger. Scaliger named it the Julian cycle
11081 since it involves the Julian calendar, but some have suggested that
11082 Scaliger named it in honor of his father, Julius Caesar Scaliger. The
11083 Julian cycle is based on three other cycles: the indiction cycle, the
11084 Metonic cycle, and the solar cycle. The indiction cycle is a 15 year
11085 cycle originally used by the Romans for tax purposes but later used to
11086 date medieval documents. The Metonic cycle is a 19 year cycle; 19
11087 years is close to being a common multiple of a solar year and a lunar
11088 month, and so every 19 years the phases of the moon will occur on the
11089 same days of the year. The solar cycle is a 28 year cycle; the Julian
11090 calendar repeats itself every 28 years. The smallest time period
11091 which contains multiples of all three cycles is the least common
11092 multiple of 15 years, 19 years and 28 years, which (since they're
11093 pairwise relatively prime) is
11094 @texline @math{15\times 19\times 28 = 7980} years.
11095 @infoline 15*19*28 = 7980 years.
11096 This is the length of a Julian cycle. Working backwards, the previous
11097 year in which all three cycles began was 4713 BC, and so Scaliger
11098 chose that year as the beginning of a Julian cycle. Since at the time
11099 there were no historical records from before 4713 BC, using this year
11100 as a starting point had the advantage of avoiding negative year
11101 numbers. In 1849, the astronomer John Herschel (son of William
11102 Herschel) suggested using the number of days since the beginning of
11103 the Julian cycle as an astronomical dating system; this idea was taken
11104 up by other astronomers. (At the time, noon was the start of the
11105 astronomical day. Herschel originally suggested counting the days
11106 since Jan 1, 4713 BC at noon Alexandria time; this was later amended to
11107 noon GMT@.) Julian day numbering is largely used in astronomy.
11109 @cindex Unix time format
11110 The Unix operating system measures time as an integer number of
11111 seconds since midnight, Jan 1, 1970. To convert a Calc date
11112 value into a Unix time stamp, first subtract 719164 (the code
11113 for @samp{<Jan 1, 1970>}), then multiply by 86400 (the number of
11114 seconds in a day) and press @kbd{R} to round to the nearest
11115 integer. If you have a date form, you can simply subtract the
11116 day @samp{<Jan 1, 1970>} instead of unpacking and subtracting
11117 719164. Likewise, divide by 86400 and add @samp{<Jan 1, 1970>}
11118 to convert from Unix time to a Calc date form. (Note that
11119 Unix normally maintains the time in the GMT time zone; you may
11120 need to subtract five hours to get New York time, or eight hours
11121 for California time. The same is usually true of Julian day
11122 counts.) The built-in @kbd{t U} command performs these
11125 @node Modulo Forms, Error Forms, Date Forms, Data Types
11126 @section Modulo Forms
11129 @cindex Modulo forms
11130 A @dfn{modulo form} is a real number which is taken modulo (i.e., within
11131 an integer multiple of) some value @var{M}. Arithmetic modulo @var{M}
11132 often arises in number theory. Modulo forms are written
11133 `@var{a} @tfn{mod} @var{M}',
11134 where @var{a} and @var{M} are real numbers or HMS forms, and
11135 @texline @math{0 \le a < M}.
11136 @infoline @expr{0 <= a < @var{M}}.
11137 In many applications @expr{a} and @expr{M} will be
11138 integers but this is not required.
11143 @kindex M (modulo forms)
11147 @tindex mod (operator)
11148 To create a modulo form during numeric entry, press the shift-@kbd{M}
11149 key to enter the word @samp{mod}. As a special convenience, pressing
11150 shift-@kbd{M} a second time automatically enters the value of @expr{M}
11151 that was most recently used before. During algebraic entry, either
11152 type @samp{mod} by hand or press @kbd{M-m} (that's @kbd{@key{META}-m}).
11153 Once again, pressing this a second time enters the current modulo.
11155 Modulo forms are not to be confused with the modulo operator @samp{%}.
11156 The expression @samp{27 % 10} means to compute 27 modulo 10 to produce
11157 the result 7. Further computations treat this 7 as just a regular integer.
11158 The expression @samp{27 mod 10} produces the result @samp{7 mod 10};
11159 further computations with this value are again reduced modulo 10 so that
11160 the result always lies in the desired range.
11162 When two modulo forms with identical @expr{M}'s are added or multiplied,
11163 the Calculator simply adds or multiplies the values, then reduces modulo
11164 @expr{M}. If one argument is a modulo form and the other a plain number,
11165 the plain number is treated like a compatible modulo form. It is also
11166 possible to raise modulo forms to powers; the result is the value raised
11167 to the power, then reduced modulo @expr{M}. (When all values involved
11168 are integers, this calculation is done much more efficiently than
11169 actually computing the power and then reducing.)
11171 @cindex Modulo division
11172 Two modulo forms `@var{a} @tfn{mod} @var{M}' and `@var{b} @tfn{mod} @var{M}'
11173 can be divided if @expr{a}, @expr{b}, and @expr{M} are all
11174 integers. The result is the modulo form which, when multiplied by
11175 `@var{b} @tfn{mod} @var{M}', produces `@var{a} @tfn{mod} @var{M}'. If
11176 there is no solution to this equation (which can happen only when
11177 @expr{M} is non-prime), or if any of the arguments are non-integers, the
11178 division is left in symbolic form. Other operations, such as square
11179 roots, are not yet supported for modulo forms. (Note that, although
11180 @w{`@tfn{(}@var{a} @tfn{mod} @var{M}@tfn{)^.5}'} will compute a ``modulo square root''
11181 in the sense of reducing
11182 @texline @math{\sqrt a}
11183 @infoline @expr{sqrt(a)}
11184 modulo @expr{M}, this is not a useful definition from the
11185 number-theoretical point of view.)
11187 It is possible to mix HMS forms and modulo forms. For example, an
11188 HMS form modulo 24 could be used to manipulate clock times; an HMS
11189 form modulo 360 would be suitable for angles. Making the modulo @expr{M}
11190 also be an HMS form eliminates troubles that would arise if the angular
11191 mode were inadvertently set to Radians, in which case
11192 @w{@samp{2@@ 0' 0" mod 24}} would be interpreted as two degrees modulo
11195 Modulo forms cannot have variables or formulas for components. If you
11196 enter the formula @samp{(x + 2) mod 5}, Calc propagates the modulus
11197 to each of the coefficients: @samp{(1 mod 5) x + (2 mod 5)}.
11199 You can use @kbd{v p} and @kbd{%} to modify modulo forms.
11200 @xref{Packing and Unpacking}. @xref{Basic Arithmetic}.
11206 The algebraic function @samp{makemod(a, m)} builds the modulo form
11207 @w{@samp{a mod m}}.
11209 @node Error Forms, Interval Forms, Modulo Forms, Data Types
11210 @section Error Forms
11213 @cindex Error forms
11214 @cindex Standard deviations
11215 An @dfn{error form} is a number with an associated standard
11216 deviation, as in @samp{2.3 +/- 0.12}. The notation
11217 @texline `@var{x} @tfn{+/-} @math{\sigma}'
11218 @infoline `@var{x} @tfn{+/-} sigma'
11219 stands for an uncertain value which follows
11220 a normal or Gaussian distribution of mean @expr{x} and standard
11221 deviation or ``error''
11222 @texline @math{\sigma}.
11223 @infoline @expr{sigma}.
11224 Both the mean and the error can be either numbers or
11225 formulas. Generally these are real numbers but the mean may also be
11226 complex. If the error is negative or complex, it is changed to its
11227 absolute value. An error form with zero error is converted to a
11228 regular number by the Calculator.
11230 All arithmetic and transcendental functions accept error forms as input.
11231 Operations on the mean-value part work just like operations on regular
11232 numbers. The error part for any function @expr{f(x)} (such as
11233 @texline @math{\sin x}
11234 @infoline @expr{sin(x)})
11235 is defined by the error of @expr{x} times the derivative of @expr{f}
11236 evaluated at the mean value of @expr{x}. For a two-argument function
11237 @expr{f(x,y)} (such as addition) the error is the square root of the sum
11238 of the squares of the errors due to @expr{x} and @expr{y}.
11241 f(x \hbox{\code{ +/- }} \sigma)
11242 &= f(x) \hbox{\code{ +/- }} \sigma \left| {df(x) \over dx} \right| \cr
11243 f(x \hbox{\code{ +/- }} \sigma_x, y \hbox{\code{ +/- }} \sigma_y)
11244 &= f(x,y) \hbox{\code{ +/- }}
11245 \sqrt{\left(\sigma_x \left| {\partial f(x,y) \over \partial x}
11247 +\left(\sigma_y \left| {\partial f(x,y) \over \partial y}
11248 \right| \right)^2 } \cr
11252 definition assumes the errors in @expr{x} and @expr{y} are uncorrelated.
11253 A side effect of this definition is that @samp{(2 +/- 1) * (2 +/- 1)}
11254 is not the same as @samp{(2 +/- 1)^2}; the former represents the product
11255 of two independent values which happen to have the same probability
11256 distributions, and the latter is the product of one random value with itself.
11257 The former will produce an answer with less error, since on the average
11258 the two independent errors can be expected to cancel out.
11260 Consult a good text on error analysis for a discussion of the proper use
11261 of standard deviations. Actual errors often are neither Gaussian-distributed
11262 nor uncorrelated, and the above formulas are valid only when errors
11263 are small. As an example, the error arising from
11264 @texline `@tfn{sin(}@var{x} @tfn{+/-} @math{\sigma}@tfn{)}'
11265 @infoline `@tfn{sin(}@var{x} @tfn{+/-} @var{sigma}@tfn{)}'
11267 @texline `@math{\sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.
11268 @infoline `@var{sigma} @tfn{abs(cos(}@var{x}@tfn{))}'.
11269 When @expr{x} is close to zero,
11270 @texline @math{\cos x}
11271 @infoline @expr{cos(x)}
11272 is close to one so the error in the sine is close to
11273 @texline @math{\sigma};
11274 @infoline @expr{sigma};
11275 this makes sense, since
11276 @texline @math{\sin x}
11277 @infoline @expr{sin(x)}
11278 is approximately @expr{x} near zero, so a given error in @expr{x} will
11279 produce about the same error in the sine. Likewise, near 90 degrees
11280 @texline @math{\cos x}
11281 @infoline @expr{cos(x)}
11282 is nearly zero and so the computed error is
11283 small: The sine curve is nearly flat in that region, so an error in @expr{x}
11284 has relatively little effect on the value of
11285 @texline @math{\sin x}.
11286 @infoline @expr{sin(x)}.
11287 However, consider @samp{sin(90 +/- 1000)}. The cosine of 90 is zero, so
11288 Calc will report zero error! We get an obviously wrong result because
11289 we have violated the small-error approximation underlying the error
11290 analysis. If the error in @expr{x} had been small, the error in
11291 @texline @math{\sin x}
11292 @infoline @expr{sin(x)}
11293 would indeed have been negligible.
11298 @kindex p (error forms)
11300 To enter an error form during regular numeric entry, use the @kbd{p}
11301 (``plus-or-minus'') key to type the @samp{+/-} symbol. (If you try actually
11302 typing @samp{+/-} the @kbd{+} key will be interpreted as the Calculator's
11303 @kbd{+} command!) Within an algebraic formula, you can press @kbd{M-+} to
11304 type the @samp{+/-} symbol, or type it out by hand.
11306 Error forms and complex numbers can be mixed; the formulas shown above
11307 are used for complex numbers, too; note that if the error part evaluates
11308 to a complex number its absolute value (or the square root of the sum of
11309 the squares of the absolute values of the two error contributions) is
11310 used. Mathematically, this corresponds to a radially symmetric Gaussian
11311 distribution of numbers on the complex plane. However, note that Calc
11312 considers an error form with real components to represent a real number,
11313 not a complex distribution around a real mean.
11315 Error forms may also be composed of HMS forms. For best results, both
11316 the mean and the error should be HMS forms if either one is.
11322 The algebraic function @samp{sdev(a, b)} builds the error form @samp{a +/- b}.
11324 @node Interval Forms, Incomplete Objects, Error Forms, Data Types
11325 @section Interval Forms
11328 @cindex Interval forms
11329 An @dfn{interval} is a subset of consecutive real numbers. For example,
11330 the interval @samp{[2 ..@: 4]} represents all the numbers from 2 to 4,
11331 inclusive. If you multiply it by the interval @samp{[0.5 ..@: 2]} you
11332 obtain @samp{[1 ..@: 8]}. This calculation represents the fact that if
11333 you multiply some number in the range @samp{[2 ..@: 4]} by some other
11334 number in the range @samp{[0.5 ..@: 2]}, your result will lie in the range
11335 from 1 to 8. Interval arithmetic is used to get a worst-case estimate
11336 of the possible range of values a computation will produce, given the
11337 set of possible values of the input.
11340 Calc supports several varieties of intervals, including @dfn{closed}
11341 intervals of the type shown above, @dfn{open} intervals such as
11342 @samp{(2 ..@: 4)}, which represents the range of numbers from 2 to 4
11343 @emph{exclusive}, and @dfn{semi-open} intervals in which one end
11344 uses a round parenthesis and the other a square bracket. In mathematical
11346 @samp{[2 ..@: 4]} means @expr{2 <= x <= 4}, whereas
11347 @samp{[2 ..@: 4)} represents @expr{2 <= x < 4},
11348 @samp{(2 ..@: 4]} represents @expr{2 < x <= 4}, and
11349 @samp{(2 ..@: 4)} represents @expr{2 < x < 4}.
11352 Calc supports several varieties of intervals, including \dfn{closed}
11353 intervals of the type shown above, \dfn{open} intervals such as
11354 \samp{(2 ..\: 4)}, which represents the range of numbers from 2 to 4
11355 \emph{exclusive}, and \dfn{semi-open} intervals in which one end
11356 uses a round parenthesis and the other a square bracket. In mathematical
11359 [2 \hbox{\cite{..}} 4] &\quad\hbox{means}\quad 2 \le x \le 4 \cr
11360 [2 \hbox{\cite{..}} 4) &\quad\hbox{means}\quad 2 \le x < 4 \cr
11361 (2 \hbox{\cite{..}} 4] &\quad\hbox{means}\quad 2 < x \le 4 \cr
11362 (2 \hbox{\cite{..}} 4) &\quad\hbox{means}\quad 2 < x < 4 \cr
11366 The lower and upper limits of an interval must be either real numbers
11367 (or HMS or date forms), or symbolic expressions which are assumed to be
11368 real-valued, or @samp{-inf} and @samp{inf}. In general the lower limit
11369 must be less than the upper limit. A closed interval containing only
11370 one value, @samp{[3 ..@: 3]}, is converted to a plain number (3)
11371 automatically. An interval containing no values at all (such as
11372 @samp{[3 ..@: 2]} or @samp{[2 ..@: 2)}) can be represented but is not
11373 guaranteed to behave well when used in arithmetic. Note that the
11374 interval @samp{[3 .. inf)} represents all real numbers greater than
11375 or equal to 3, and @samp{(-inf .. inf)} represents all real numbers.
11376 In fact, @samp{[-inf .. inf]} represents all real numbers including
11377 the real infinities.
11379 Intervals are entered in the notation shown here, either as algebraic
11380 formulas, or using incomplete forms. (@xref{Incomplete Objects}.)
11381 In algebraic formulas, multiple periods in a row are collected from
11382 left to right, so that @samp{1...1e2} is interpreted as @samp{1.0 ..@: 1e2}
11383 rather than @samp{1 ..@: 0.1e2}. Add spaces or zeros if you want to
11384 get the other interpretation. If you omit the lower or upper limit,
11385 a default of @samp{-inf} or @samp{inf} (respectively) is furnished.
11387 Infinite mode also affects operations on intervals
11388 (@pxref{Infinities}). Calc will always introduce an open infinity,
11389 as in @samp{1 / (0 .. 2] = [0.5 .. inf)}. But closed infinities,
11390 @w{@samp{1 / [0 .. 2] = [0.5 .. inf]}}, arise only in Infinite mode;
11391 otherwise they are left unevaluated. Note that the ``direction'' of
11392 a zero is not an issue in this case since the zero is always assumed
11393 to be continuous with the rest of the interval. For intervals that
11394 contain zero inside them Calc is forced to give the result,
11395 @samp{1 / (-2 .. 2) = [-inf .. inf]}.
11397 While it may seem that intervals and error forms are similar, they are
11398 based on entirely different concepts of inexact quantities. An error
11400 @texline `@var{x} @tfn{+/-} @math{\sigma}'
11401 @infoline `@var{x} @tfn{+/-} @var{sigma}'
11402 means a variable is random, and its value could
11403 be anything but is ``probably'' within one
11404 @texline @math{\sigma}
11405 @infoline @var{sigma}
11406 of the mean value @expr{x}. An interval
11407 `@tfn{[}@var{a} @tfn{..@:} @var{b}@tfn{]}' means a
11408 variable's value is unknown, but guaranteed to lie in the specified
11409 range. Error forms are statistical or ``average case'' approximations;
11410 interval arithmetic tends to produce ``worst case'' bounds on an
11413 Intervals may not contain complex numbers, but they may contain
11414 HMS forms or date forms.
11416 @xref{Set Operations}, for commands that interpret interval forms
11417 as subsets of the set of real numbers.
11423 The algebraic function @samp{intv(n, a, b)} builds an interval form
11424 from @samp{a} to @samp{b}; @samp{n} is an integer code which must
11425 be 0 for @samp{(..)}, 1 for @samp{(..]}, 2 for @samp{[..)}, or
11428 Please note that in fully rigorous interval arithmetic, care would be
11429 taken to make sure that the computation of the lower bound rounds toward
11430 minus infinity, while upper bound computations round toward plus
11431 infinity. Calc's arithmetic always uses a round-to-nearest mode,
11432 which means that roundoff errors could creep into an interval
11433 calculation to produce intervals slightly smaller than they ought to
11434 be. For example, entering @samp{[1..2]} and pressing @kbd{Q 2 ^}
11435 should yield the interval @samp{[1..2]} again, but in fact it yields the
11436 (slightly too small) interval @samp{[1..1.9999999]} due to roundoff
11439 @node Incomplete Objects, Variables, Interval Forms, Data Types
11440 @section Incomplete Objects
11460 @cindex Incomplete vectors
11461 @cindex Incomplete complex numbers
11462 @cindex Incomplete interval forms
11463 When @kbd{(} or @kbd{[} is typed to begin entering a complex number or
11464 vector, respectively, the effect is to push an @dfn{incomplete} complex
11465 number or vector onto the stack. The @kbd{,} key adds the value(s) at
11466 the top of the stack onto the current incomplete object. The @kbd{)}
11467 and @kbd{]} keys ``close'' the incomplete object after adding any values
11468 on the top of the stack in front of the incomplete object.
11470 As a result, the sequence of keystrokes @kbd{[ 2 , 3 @key{RET} 2 * , 9 ]}
11471 pushes the vector @samp{[2, 6, 9]} onto the stack. Likewise, @kbd{( 1 , 2 Q )}
11472 pushes the complex number @samp{(1, 1.414)} (approximately).
11474 If several values lie on the stack in front of the incomplete object,
11475 all are collected and appended to the object. Thus the @kbd{,} key
11476 is redundant: @kbd{[ 2 @key{RET} 3 @key{RET} 2 * 9 ]}. Some people
11477 prefer the equivalent @key{SPC} key to @key{RET}.
11479 As a special case, typing @kbd{,} immediately after @kbd{(}, @kbd{[}, or
11480 @kbd{,} adds a zero or duplicates the preceding value in the list being
11481 formed. Typing @key{DEL} during incomplete entry removes the last item
11485 The @kbd{;} key is used in the same way as @kbd{,} to create polar complex
11486 numbers: @kbd{( 1 ; 2 )}. When entering a vector, @kbd{;} is useful for
11487 creating a matrix. In particular, @kbd{[ [ 1 , 2 ; 3 , 4 ; 5 , 6 ] ]} is
11488 equivalent to @kbd{[ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] ]}.
11492 Incomplete entry is also used to enter intervals. For example,
11493 @kbd{[ 2 ..@: 4 )} enters a semi-open interval. Note that when you type
11494 the first period, it will be interpreted as a decimal point, but when
11495 you type a second period immediately afterward, it is re-interpreted as
11496 part of the interval symbol. Typing @kbd{..} corresponds to executing
11497 the @code{calc-dots} command.
11499 If you find incomplete entry distracting, you may wish to enter vectors
11500 and complex numbers as algebraic formulas by pressing the apostrophe key.
11502 @node Variables, Formulas, Incomplete Objects, Data Types
11506 @cindex Variables, in formulas
11507 A @dfn{variable} is somewhere between a storage register on a conventional
11508 calculator, and a variable in a programming language. (In fact, a Calc
11509 variable is really just an Emacs Lisp variable that contains a Calc number
11510 or formula.) A variable's name is normally composed of letters and digits.
11511 Calc also allows apostrophes and @code{#} signs in variable names.
11512 (The Calc variable @code{foo} corresponds to the Emacs Lisp variable
11513 @code{var-foo}, but unless you access the variable from within Emacs
11514 Lisp, you don't need to worry about it. Variable names in algebraic
11515 formulas implicitly have @samp{var-} prefixed to their names. The
11516 @samp{#} character in variable names used in algebraic formulas
11517 corresponds to a dash @samp{-} in the Lisp variable name. If the name
11518 contains any dashes, the prefix @samp{var-} is @emph{not} automatically
11519 added. Thus the two formulas @samp{foo + 1} and @samp{var#foo + 1} both
11520 refer to the same variable.)
11522 In a command that takes a variable name, you can either type the full
11523 name of a variable, or type a single digit to use one of the special
11524 convenience variables @code{q0} through @code{q9}. For example,
11525 @kbd{3 s s 2} stores the number 3 in variable @code{q2}, and
11526 @w{@kbd{3 s s foo @key{RET}}} stores that number in variable
11529 To push a variable itself (as opposed to the variable's value) on the
11530 stack, enter its name as an algebraic expression using the apostrophe
11534 @pindex calc-evaluate
11535 @cindex Evaluation of variables in a formula
11536 @cindex Variables, evaluation
11537 @cindex Formulas, evaluation
11538 The @kbd{=} (@code{calc-evaluate}) key ``evaluates'' a formula by
11539 replacing all variables in the formula which have been given values by a
11540 @code{calc-store} or @code{calc-let} command by their stored values.
11541 Other variables are left alone. Thus a variable that has not been
11542 stored acts like an abstract variable in algebra; a variable that has
11543 been stored acts more like a register in a traditional calculator.
11544 With a positive numeric prefix argument, @kbd{=} evaluates the top
11545 @var{n} stack entries; with a negative argument, @kbd{=} evaluates
11546 the @var{n}th stack entry.
11548 @cindex @code{e} variable
11549 @cindex @code{pi} variable
11550 @cindex @code{i} variable
11551 @cindex @code{phi} variable
11552 @cindex @code{gamma} variable
11558 A few variables are called @dfn{special constants}. Their names are
11559 @samp{e}, @samp{pi}, @samp{i}, @samp{phi}, and @samp{gamma}.
11560 (@xref{Scientific Functions}.) When they are evaluated with @kbd{=},
11561 their values are calculated if necessary according to the current precision
11562 or complex polar mode. If you wish to use these symbols for other purposes,
11563 simply undefine or redefine them using @code{calc-store}.
11565 The variables @samp{inf}, @samp{uinf}, and @samp{nan} stand for
11566 infinite or indeterminate values. It's best not to use them as
11567 regular variables, since Calc uses special algebraic rules when
11568 it manipulates them. Calc displays a warning message if you store
11569 a value into any of these special variables.
11571 @xref{Store and Recall}, for a discussion of commands dealing with variables.
11573 @node Formulas, , Variables, Data Types
11578 @cindex Expressions
11579 @cindex Operators in formulas
11580 @cindex Precedence of operators
11581 When you press the apostrophe key you may enter any expression or formula
11582 in algebraic form. (Calc uses the terms ``expression'' and ``formula''
11583 interchangeably.) An expression is built up of numbers, variable names,
11584 and function calls, combined with various arithmetic operators.
11586 be used to indicate grouping. Spaces are ignored within formulas, except
11587 that spaces are not permitted within variable names or numbers.
11588 Arithmetic operators, in order from highest to lowest precedence, and
11589 with their equivalent function names, are:
11591 @samp{_} [@code{subscr}] (subscripts);
11593 postfix @samp{%} [@code{percent}] (as in @samp{25% = 0.25});
11595 prefix @samp{!} [@code{lnot}] (logical ``not,'' as in @samp{!x});
11597 @samp{+/-} [@code{sdev}] (the standard deviation symbol) and
11598 @samp{mod} [@code{makemod}] (the symbol for modulo forms);
11600 postfix @samp{!} [@code{fact}] (factorial, as in @samp{n!})
11601 and postfix @samp{!!} [@code{dfact}] (double factorial);
11603 @samp{^} [@code{pow}] (raised-to-the-power-of);
11605 prefix @samp{+} and @samp{-} [@code{neg}] (as in @samp{-x});
11607 @samp{*} [@code{mul}];
11609 @samp{/} [@code{div}], @samp{%} [@code{mod}] (modulo), and
11610 @samp{\} [@code{idiv}] (integer division);
11612 infix @samp{+} [@code{add}] and @samp{-} [@code{sub}] (as in @samp{x-y});
11614 @samp{|} [@code{vconcat}] (vector concatenation);
11616 relations @samp{=} [@code{eq}], @samp{!=} [@code{neq}], @samp{<} [@code{lt}],
11617 @samp{>} [@code{gt}], @samp{<=} [@code{leq}], and @samp{>=} [@code{geq}];
11619 @samp{&&} [@code{land}] (logical ``and'');
11621 @samp{||} [@code{lor}] (logical ``or'');
11623 the C-style ``if'' operator @samp{a?b:c} [@code{if}];
11625 @samp{!!!} [@code{pnot}] (rewrite pattern ``not'');
11627 @samp{&&&} [@code{pand}] (rewrite pattern ``and'');
11629 @samp{|||} [@code{por}] (rewrite pattern ``or'');
11631 @samp{:=} [@code{assign}] (for assignments and rewrite rules);
11633 @samp{::} [@code{condition}] (rewrite pattern condition);
11635 @samp{=>} [@code{evalto}].
11637 Note that, unlike in usual computer notation, multiplication binds more
11638 strongly than division: @samp{a*b/c*d} is equivalent to
11639 @texline @math{a b \over c d}.
11640 @infoline @expr{(a*b)/(c*d)}.
11642 @cindex Multiplication, implicit
11643 @cindex Implicit multiplication
11644 The multiplication sign @samp{*} may be omitted in many cases. In particular,
11645 if the righthand side is a number, variable name, or parenthesized
11646 expression, the @samp{*} may be omitted. Implicit multiplication has the
11647 same precedence as the explicit @samp{*} operator. The one exception to
11648 the rule is that a variable name followed by a parenthesized expression,
11650 is interpreted as a function call, not an implicit @samp{*}. In many
11651 cases you must use a space if you omit the @samp{*}: @samp{2a} is the
11652 same as @samp{2*a}, and @samp{a b} is the same as @samp{a*b}, but @samp{ab}
11653 is a variable called @code{ab}, @emph{not} the product of @samp{a} and
11654 @samp{b}! Also note that @samp{f (x)} is still a function call.
11656 @cindex Implicit comma in vectors
11657 The rules are slightly different for vectors written with square brackets.
11658 In vectors, the space character is interpreted (like the comma) as a
11659 separator of elements of the vector. Thus @w{@samp{[ 2a b+c d ]}} is
11660 equivalent to @samp{[2*a, b+c, d]}, whereas @samp{2a b+c d} is equivalent
11661 to @samp{2*a*b + c*d}.
11662 Note that spaces around the brackets, and around explicit commas, are
11663 ignored. To force spaces to be interpreted as multiplication you can
11664 enclose a formula in parentheses as in @samp{[(a b) 2(c d)]}, which is
11665 interpreted as @samp{[a*b, 2*c*d]}. An implicit comma is also inserted
11666 between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}.
11668 Vectors that contain commas (not embedded within nested parentheses or
11669 brackets) do not treat spaces specially: @samp{[a b, 2 c d]} is a vector
11670 of two elements. Also, if it would be an error to treat spaces as
11671 separators, but not otherwise, then Calc will ignore spaces:
11672 @w{@samp{[a - b]}} is a vector of one element, but @w{@samp{[a -b]}} is
11673 a vector of two elements. Finally, vectors entered with curly braces
11674 instead of square brackets do not give spaces any special treatment.
11675 When Calc displays a vector that does not contain any commas, it will
11676 insert parentheses if necessary to make the meaning clear:
11677 @w{@samp{[(a b)]}}.
11679 The expression @samp{5%-2} is ambiguous; is this five-percent minus two,
11680 or five modulo minus-two? Calc always interprets the leftmost symbol as
11681 an infix operator preferentially (modulo, in this case), so you would
11682 need to write @samp{(5%)-2} to get the former interpretation.
11684 @cindex Function call notation
11685 A function call is, e.g., @samp{sin(1+x)}. (The Calc algebraic function
11686 @code{foo} corresponds to the Emacs Lisp function @code{calcFunc-foo},
11687 but unless you access the function from within Emacs Lisp, you don't
11688 need to worry about it.) Most mathematical Calculator commands like
11689 @code{calc-sin} have function equivalents like @code{sin}.
11690 If no Lisp function is defined for a function called by a formula, the
11691 call is left as it is during algebraic manipulation: @samp{f(x+y)} is
11692 left alone. Beware that many innocent-looking short names like @code{in}
11693 and @code{re} have predefined meanings which could surprise you; however,
11694 single letters or single letters followed by digits are always safe to
11695 use for your own function names. @xref{Function Index}.
11697 In the documentation for particular commands, the notation @kbd{H S}
11698 (@code{calc-sinh}) [@code{sinh}] means that the key sequence @kbd{H S}, the
11699 command @kbd{M-x calc-sinh}, and the algebraic function @code{sinh(x)} all
11700 represent the same operation.
11702 Commands that interpret (``parse'') text as algebraic formulas include
11703 algebraic entry (@kbd{'}), editing commands like @kbd{`} which parse
11704 the contents of the editing buffer when you finish, the @kbd{C-x * g}
11705 and @w{@kbd{C-x * r}} commands, the @kbd{C-y} command, the X window system
11706 ``paste'' mouse operation, and Embedded mode. All of these operations
11707 use the same rules for parsing formulas; in particular, language modes
11708 (@pxref{Language Modes}) affect them all in the same way.
11710 When you read a large amount of text into the Calculator (say a vector
11711 which represents a big set of rewrite rules; @pxref{Rewrite Rules}),
11712 you may wish to include comments in the text. Calc's formula parser
11713 ignores the symbol @samp{%%} and anything following it on a line:
11716 [ a + b, %% the sum of "a" and "b"
11718 %% last line is coming up:
11723 This is parsed exactly the same as @samp{[ a + b, c + d, e + f ]}.
11725 @xref{Syntax Tables}, for a way to create your own operators and other
11726 input notations. @xref{Compositions}, for a way to create new display
11729 @xref{Algebra}, for commands for manipulating formulas symbolically.
11731 @node Stack and Trail, Mode Settings, Data Types, Top
11732 @chapter Stack and Trail Commands
11735 This chapter describes the Calc commands for manipulating objects on the
11736 stack and in the trail buffer. (These commands operate on objects of any
11737 type, such as numbers, vectors, formulas, and incomplete objects.)
11740 * Stack Manipulation::
11741 * Editing Stack Entries::
11746 @node Stack Manipulation, Editing Stack Entries, Stack and Trail, Stack and Trail
11747 @section Stack Manipulation Commands
11753 @cindex Duplicating stack entries
11754 To duplicate the top object on the stack, press @key{RET} or @key{SPC}
11755 (two equivalent keys for the @code{calc-enter} command).
11756 Given a positive numeric prefix argument, these commands duplicate
11757 several elements at the top of the stack.
11758 Given a negative argument,
11759 these commands duplicate the specified element of the stack.
11760 Given an argument of zero, they duplicate the entire stack.
11761 For example, with @samp{10 20 30} on the stack,
11762 @key{RET} creates @samp{10 20 30 30},
11763 @kbd{C-u 2 @key{RET}} creates @samp{10 20 30 20 30},
11764 @kbd{C-u - 2 @key{RET}} creates @samp{10 20 30 20}, and
11765 @kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}.
11769 The @key{LFD} (@code{calc-over}) command (on a key marked Line-Feed if you
11770 have it, else on @kbd{C-j}) is like @code{calc-enter}
11771 except that the sign of the numeric prefix argument is interpreted
11772 oppositely. Also, with no prefix argument the default argument is 2.
11773 Thus with @samp{10 20 30} on the stack, @key{LFD} and @kbd{C-u 2 @key{LFD}}
11774 are both equivalent to @kbd{C-u - 2 @key{RET}}, producing
11775 @samp{10 20 30 20}.
11780 @cindex Removing stack entries
11781 @cindex Deleting stack entries
11782 To remove the top element from the stack, press @key{DEL} (@code{calc-pop}).
11783 The @kbd{C-d} key is a synonym for @key{DEL}.
11784 (If the top element is an incomplete object with at least one element, the
11785 last element is removed from it.) Given a positive numeric prefix argument,
11786 several elements are removed. Given a negative argument, the specified
11787 element of the stack is deleted. Given an argument of zero, the entire
11789 For example, with @samp{10 20 30} on the stack,
11790 @key{DEL} leaves @samp{10 20},
11791 @kbd{C-u 2 @key{DEL}} leaves @samp{10},
11792 @kbd{C-u - 2 @key{DEL}} leaves @samp{10 30}, and
11793 @kbd{C-u 0 @key{DEL}} leaves an empty stack.
11795 @kindex M-@key{DEL}
11796 @pindex calc-pop-above
11797 The @kbd{M-@key{DEL}} (@code{calc-pop-above}) command is to @key{DEL} what
11798 @key{LFD} is to @key{RET}: It interprets the sign of the numeric
11799 prefix argument in the opposite way, and the default argument is 2.
11800 Thus @kbd{M-@key{DEL}} by itself removes the second-from-top stack element,
11801 leaving the first, third, fourth, and so on; @kbd{M-3 M-@key{DEL}} deletes
11802 the third stack element.
11805 @pindex calc-roll-down
11806 To exchange the top two elements of the stack, press @key{TAB}
11807 (@code{calc-roll-down}). Given a positive numeric prefix argument, the
11808 specified number of elements at the top of the stack are rotated downward.
11809 Given a negative argument, the entire stack is rotated downward the specified
11810 number of times. Given an argument of zero, the entire stack is reversed
11812 For example, with @samp{10 20 30 40 50} on the stack,
11813 @key{TAB} creates @samp{10 20 30 50 40},
11814 @kbd{C-u 3 @key{TAB}} creates @samp{10 20 50 30 40},
11815 @kbd{C-u - 2 @key{TAB}} creates @samp{40 50 10 20 30}, and
11816 @kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}.
11818 @kindex M-@key{TAB}
11819 @pindex calc-roll-up
11820 The command @kbd{M-@key{TAB}} (@code{calc-roll-up}) is analogous to @key{TAB}
11821 except that it rotates upward instead of downward. Also, the default
11822 with no prefix argument is to rotate the top 3 elements.
11823 For example, with @samp{10 20 30 40 50} on the stack,
11824 @kbd{M-@key{TAB}} creates @samp{10 20 40 50 30},
11825 @kbd{C-u 4 M-@key{TAB}} creates @samp{10 30 40 50 20},
11826 @kbd{C-u - 2 M-@key{TAB}} creates @samp{30 40 50 10 20}, and
11827 @kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}.
11829 A good way to view the operation of @key{TAB} and @kbd{M-@key{TAB}} is in
11830 terms of moving a particular element to a new position in the stack.
11831 With a positive argument @var{n}, @key{TAB} moves the top stack
11832 element down to level @var{n}, making room for it by pulling all the
11833 intervening stack elements toward the top. @kbd{M-@key{TAB}} moves the
11834 element at level @var{n} up to the top. (Compare with @key{LFD},
11835 which copies instead of moving the element in level @var{n}.)
11837 With a negative argument @mathit{-@var{n}}, @key{TAB} rotates the stack
11838 to move the object in level @var{n} to the deepest place in the
11839 stack, and the object in level @mathit{@var{n}+1} to the top. @kbd{M-@key{TAB}}
11840 rotates the deepest stack element to be in level @var{n}, also
11841 putting the top stack element in level @mathit{@var{n}+1}.
11843 @xref{Selecting Subformulas}, for a way to apply these commands to
11844 any portion of a vector or formula on the stack.
11847 @pindex calc-transpose-lines
11848 @cindex Moving stack entries
11849 The command @kbd{C-x C-t} (@code{calc-transpose-lines}) will transpose
11850 the stack object determined by the point with the stack object at the
11851 next higher level. For example, with @samp{10 20 30 40 50} on the
11852 stack and the point on the line containing @samp{30}, @kbd{C-x C-t}
11853 creates @samp{10 20 40 30 50}. More generally, @kbd{C-x C-t} acts on
11854 the stack objects determined by the current point (and mark) similar
11855 to how the text-mode command @code{transpose-lines} acts on
11856 lines. With argument @var{n}, @kbd{C-x C-t} will move the stack object
11857 at the level above the current point and move it past N other objects;
11858 for example, with @samp{10 20 30 40 50} on the stack and the point on
11859 the line containing @samp{30}, @kbd{C-u 2 C-x C-t} creates
11860 @samp{10 40 20 30 50}. With an argument of 0, @kbd{C-x C-t} will switch
11861 the stack objects at the levels determined by the point and the mark.
11863 @node Editing Stack Entries, Trail Commands, Stack Manipulation, Stack and Trail
11864 @section Editing Stack Entries
11869 @pindex calc-edit-finish
11870 @cindex Editing the stack with Emacs
11871 The @kbd{`} (@code{calc-edit}) command creates a temporary buffer
11872 (@samp{*Calc Edit*}) for editing the top-of-stack value using regular
11873 Emacs commands. Note that @kbd{`} is a backquote, not a quote. With a
11874 numeric prefix argument, it edits the specified number of stack entries
11875 at once. (An argument of zero edits the entire stack; a negative
11876 argument edits one specific stack entry.)
11878 When you are done editing, press @kbd{C-c C-c} to finish and return
11879 to Calc. The @key{RET} and @key{LFD} keys also work to finish most
11880 sorts of editing, though in some cases Calc leaves @key{RET} with its
11881 usual meaning (``insert a newline'') if it's a situation where you
11882 might want to insert new lines into the editing buffer.
11884 When you finish editing, the Calculator parses the lines of text in
11885 the @samp{*Calc Edit*} buffer as numbers or formulas, replaces the
11886 original stack elements in the original buffer with these new values,
11887 then kills the @samp{*Calc Edit*} buffer. The original Calculator buffer
11888 continues to exist during editing, but for best results you should be
11889 careful not to change it until you have finished the edit. You can
11890 also cancel the edit by killing the buffer with @kbd{C-x k}.
11892 The formula is normally reevaluated as it is put onto the stack.
11893 For example, editing @samp{a + 2} to @samp{3 + 2} and pressing
11894 @kbd{C-c C-c} will push 5 on the stack. If you use @key{LFD} to
11895 finish, Calc will put the result on the stack without evaluating it.
11897 If you give a prefix argument to @kbd{C-c C-c},
11898 Calc will not kill the @samp{*Calc Edit*} buffer. You can switch
11899 back to that buffer and continue editing if you wish. However, you
11900 should understand that if you initiated the edit with @kbd{`}, the
11901 @kbd{C-c C-c} operation will be programmed to replace the top of the
11902 stack with the new edited value, and it will do this even if you have
11903 rearranged the stack in the meanwhile. This is not so much of a problem
11904 with other editing commands, though, such as @kbd{s e}
11905 (@code{calc-edit-variable}; @pxref{Operations on Variables}).
11907 If the @code{calc-edit} command involves more than one stack entry,
11908 each line of the @samp{*Calc Edit*} buffer is interpreted as a
11909 separate formula. Otherwise, the entire buffer is interpreted as
11910 one formula, with line breaks ignored. (You can use @kbd{C-o} or
11911 @kbd{C-q C-j} to insert a newline in the buffer without pressing @key{RET}.)
11913 The @kbd{`} key also works during numeric or algebraic entry. The
11914 text entered so far is moved to the @code{*Calc Edit*} buffer for
11915 more extensive editing than is convenient in the minibuffer.
11917 @node Trail Commands, Keep Arguments, Editing Stack Entries, Stack and Trail
11918 @section Trail Commands
11921 @cindex Trail buffer
11922 The commands for manipulating the Calc Trail buffer are two-key sequences
11923 beginning with the @kbd{t} prefix.
11926 @pindex calc-trail-display
11927 The @kbd{t d} (@code{calc-trail-display}) command turns display of the
11928 trail on and off. Normally the trail display is toggled on if it was off,
11929 off if it was on. With a numeric prefix of zero, this command always
11930 turns the trail off; with a prefix of one, it always turns the trail on.
11931 The other trail-manipulation commands described here automatically turn
11932 the trail on. Note that when the trail is off values are still recorded
11933 there; they are simply not displayed. To set Emacs to turn the trail
11934 off by default, type @kbd{t d} and then save the mode settings with
11935 @kbd{m m} (@code{calc-save-modes}).
11938 @pindex calc-trail-in
11940 @pindex calc-trail-out
11941 The @kbd{t i} (@code{calc-trail-in}) and @kbd{t o}
11942 (@code{calc-trail-out}) commands switch the cursor into and out of the
11943 Calc Trail window. In practice they are rarely used, since the commands
11944 shown below are a more convenient way to move around in the
11945 trail, and they work ``by remote control'' when the cursor is still
11946 in the Calculator window.
11948 @cindex Trail pointer
11949 There is a @dfn{trail pointer} which selects some entry of the trail at
11950 any given time. The trail pointer looks like a @samp{>} symbol right
11951 before the selected number. The following commands operate on the
11952 trail pointer in various ways.
11955 @pindex calc-trail-yank
11956 @cindex Retrieving previous results
11957 The @kbd{t y} (@code{calc-trail-yank}) command reads the selected value in
11958 the trail and pushes it onto the Calculator stack. It allows you to
11959 re-use any previously computed value without retyping. With a numeric
11960 prefix argument @var{n}, it yanks the value @var{n} lines above the current
11964 @pindex calc-trail-scroll-left
11966 @pindex calc-trail-scroll-right
11967 The @kbd{t <} (@code{calc-trail-scroll-left}) and @kbd{t >}
11968 (@code{calc-trail-scroll-right}) commands horizontally scroll the trail
11969 window left or right by one half of its width.
11972 @pindex calc-trail-next
11974 @pindex calc-trail-previous
11976 @pindex calc-trail-forward
11978 @pindex calc-trail-backward
11979 The @kbd{t n} (@code{calc-trail-next}) and @kbd{t p}
11980 (@code{calc-trail-previous)} commands move the trail pointer down or up
11981 one line. The @kbd{t f} (@code{calc-trail-forward}) and @kbd{t b}
11982 (@code{calc-trail-backward}) commands move the trail pointer down or up
11983 one screenful at a time. All of these commands accept numeric prefix
11984 arguments to move several lines or screenfuls at a time.
11987 @pindex calc-trail-first
11989 @pindex calc-trail-last
11991 @pindex calc-trail-here
11992 The @kbd{t [} (@code{calc-trail-first}) and @kbd{t ]}
11993 (@code{calc-trail-last}) commands move the trail pointer to the first or
11994 last line of the trail. The @kbd{t h} (@code{calc-trail-here}) command
11995 moves the trail pointer to the cursor position; unlike the other trail
11996 commands, @kbd{t h} works only when Calc Trail is the selected window.
11999 @pindex calc-trail-isearch-forward
12001 @pindex calc-trail-isearch-backward
12003 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12004 (@code{calc-trail-isearch-backward}) commands perform an incremental
12005 search forward or backward through the trail. You can press @key{RET}
12006 to terminate the search; the trail pointer moves to the current line.
12007 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12008 it was when the search began.
12011 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12012 (@code{calc-trail-isearch-backward}) com\-mands perform an incremental
12013 search forward or backward through the trail. You can press @key{RET}
12014 to terminate the search; the trail pointer moves to the current line.
12015 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12016 it was when the search began.
12020 @pindex calc-trail-marker
12021 The @kbd{t m} (@code{calc-trail-marker}) command allows you to enter a
12022 line of text of your own choosing into the trail. The text is inserted
12023 after the line containing the trail pointer; this usually means it is
12024 added to the end of the trail. Trail markers are useful mainly as the
12025 targets for later incremental searches in the trail.
12028 @pindex calc-trail-kill
12029 The @kbd{t k} (@code{calc-trail-kill}) command removes the selected line
12030 from the trail. The line is saved in the Emacs kill ring suitable for
12031 yanking into another buffer, but it is not easy to yank the text back
12032 into the trail buffer. With a numeric prefix argument, this command
12033 kills the @var{n} lines below or above the selected one.
12035 The @kbd{t .} (@code{calc-full-trail-vectors}) command is described
12036 elsewhere; @pxref{Vector and Matrix Formats}.
12038 @node Keep Arguments, , Trail Commands, Stack and Trail
12039 @section Keep Arguments
12043 @pindex calc-keep-args
12044 The @kbd{K} (@code{calc-keep-args}) command acts like a prefix for
12045 the following command. It prevents that command from removing its
12046 arguments from the stack. For example, after @kbd{2 @key{RET} 3 +},
12047 the stack contains the sole number 5, but after @kbd{2 @key{RET} 3 K +},
12048 the stack contains the arguments and the result: @samp{2 3 5}.
12050 With the exception of keyboard macros, this works for all commands that
12051 take arguments off the stack. (To avoid potentially unpleasant behavior,
12052 a @kbd{K} prefix before a keyboard macro will be ignored. A @kbd{K}
12053 prefix called @emph{within} the keyboard macro will still take effect.)
12054 As another example, @kbd{K a s} simplifies a formula, pushing the
12055 simplified version of the formula onto the stack after the original
12056 formula (rather than replacing the original formula). Note that you
12057 could get the same effect by typing @kbd{@key{RET} a s}, copying the
12058 formula and then simplifying the copy. One difference is that for a very
12059 large formula the time taken to format the intermediate copy in
12060 @kbd{@key{RET} a s} could be noticeable; @kbd{K a s} would avoid this
12063 Even stack manipulation commands are affected. @key{TAB} works by
12064 popping two values and pushing them back in the opposite order,
12065 so @kbd{2 @key{RET} 3 K @key{TAB}} produces @samp{2 3 3 2}.
12067 A few Calc commands provide other ways of doing the same thing.
12068 For example, @kbd{' sin($)} replaces the number on the stack with
12069 its sine using algebraic entry; to push the sine and keep the
12070 original argument you could use either @kbd{' sin($1)} or
12071 @kbd{K ' sin($)}. @xref{Algebraic Entry}. Also, the @kbd{s s}
12072 command is effectively the same as @kbd{K s t}. @xref{Storing Variables}.
12074 If you execute a command and then decide you really wanted to keep
12075 the argument, you can press @kbd{M-@key{RET}} (@code{calc-last-args}).
12076 This command pushes the last arguments that were popped by any command
12077 onto the stack. Note that the order of things on the stack will be
12078 different than with @kbd{K}: @kbd{2 @key{RET} 3 + M-@key{RET}} leaves
12079 @samp{5 2 3} on the stack instead of @samp{2 3 5}. @xref{Undo}.
12081 @node Mode Settings, Arithmetic, Stack and Trail, Top
12082 @chapter Mode Settings
12085 This chapter describes commands that set modes in the Calculator.
12086 They do not affect the contents of the stack, although they may change
12087 the @emph{appearance} or @emph{interpretation} of the stack's contents.
12090 * General Mode Commands::
12092 * Inverse and Hyperbolic::
12093 * Calculation Modes::
12094 * Simplification Modes::
12102 @node General Mode Commands, Precision, Mode Settings, Mode Settings
12103 @section General Mode Commands
12107 @pindex calc-save-modes
12108 @cindex Continuous memory
12109 @cindex Saving mode settings
12110 @cindex Permanent mode settings
12111 @cindex Calc init file, mode settings
12112 You can save all of the current mode settings in your Calc init file
12113 (the file given by the variable @code{calc-settings-file}, typically
12114 @file{~/.emacs.d/calc.el}) with the @kbd{m m} (@code{calc-save-modes})
12115 command. This will cause Emacs to reestablish these modes each time
12116 it starts up. The modes saved in the file include everything
12117 controlled by the @kbd{m} and @kbd{d} prefix keys, the current
12118 precision and binary word size, whether or not the trail is displayed,
12119 the current height of the Calc window, and more. The current
12120 interface (used when you type @kbd{C-x * *}) is also saved. If there
12121 were already saved mode settings in the file, they are replaced.
12122 Otherwise, the new mode information is appended to the end of the
12126 @pindex calc-mode-record-mode
12127 The @kbd{m R} (@code{calc-mode-record-mode}) command tells Calc to
12128 record all the mode settings (as if by pressing @kbd{m m}) every
12129 time a mode setting changes. If the modes are saved this way, then this
12130 ``automatic mode recording'' mode is also saved.
12131 Type @kbd{m R} again to disable this method of recording the mode
12132 settings. To turn it off permanently, the @kbd{m m} command will also be
12133 necessary. (If Embedded mode is enabled, other options for recording
12134 the modes are available; @pxref{Mode Settings in Embedded Mode}.)
12137 @pindex calc-settings-file-name
12138 The @kbd{m F} (@code{calc-settings-file-name}) command allows you to
12139 choose a different file than the current value of @code{calc-settings-file}
12140 for @kbd{m m}, @kbd{Z P}, and similar commands to save permanent information.
12141 You are prompted for a file name. All Calc modes are then reset to
12142 their default values, then settings from the file you named are loaded
12143 if this file exists, and this file becomes the one that Calc will
12144 use in the future for commands like @kbd{m m}. The default settings
12145 file name is @file{~/.emacs.d/calc.el}. You can see the current file name by
12146 giving a blank response to the @kbd{m F} prompt. See also the
12147 discussion of the @code{calc-settings-file} variable; @pxref{Customizing Calc}.
12149 If the file name you give is your user init file (typically
12150 @file{~/.emacs}), @kbd{m F} will not automatically load the new file. This
12151 is because your user init file may contain other things you don't want
12152 to reread. You can give
12153 a numeric prefix argument of 1 to @kbd{m F} to force it to read the
12154 file no matter what. Conversely, an argument of @mathit{-1} tells
12155 @kbd{m F} @emph{not} to read the new file. An argument of 2 or @mathit{-2}
12156 tells @kbd{m F} not to reset the modes to their defaults beforehand,
12157 which is useful if you intend your new file to have a variant of the
12158 modes present in the file you were using before.
12161 @pindex calc-always-load-extensions
12162 The @kbd{m x} (@code{calc-always-load-extensions}) command enables a mode
12163 in which the first use of Calc loads the entire program, including all
12164 extensions modules. Otherwise, the extensions modules will not be loaded
12165 until the various advanced Calc features are used. Since this mode only
12166 has effect when Calc is first loaded, @kbd{m x} is usually followed by
12167 @kbd{m m} to make the mode-setting permanent. To load all of Calc just
12168 once, rather than always in the future, you can press @kbd{C-x * L}.
12171 @pindex calc-shift-prefix
12172 The @kbd{m S} (@code{calc-shift-prefix}) command enables a mode in which
12173 all of Calc's letter prefix keys may be typed shifted as well as unshifted.
12174 If you are typing, say, @kbd{a S} (@code{calc-solve-for}) quite often
12175 you might find it easier to turn this mode on so that you can type
12176 @kbd{A S} instead. When this mode is enabled, the commands that used to
12177 be on those single shifted letters (e.g., @kbd{A} (@code{calc-abs})) can
12178 now be invoked by pressing the shifted letter twice: @kbd{A A}. Note
12179 that the @kbd{v} prefix key always works both shifted and unshifted, and
12180 the @kbd{z} and @kbd{Z} prefix keys are always distinct. Also, the @kbd{h}
12181 prefix is not affected by this mode. Press @kbd{m S} again to disable
12182 shifted-prefix mode.
12184 @node Precision, Inverse and Hyperbolic, General Mode Commands, Mode Settings
12189 @pindex calc-precision
12190 @cindex Precision of calculations
12191 The @kbd{p} (@code{calc-precision}) command controls the precision to
12192 which floating-point calculations are carried. The precision must be
12193 at least 3 digits and may be arbitrarily high, within the limits of
12194 memory and time. This affects only floats: Integer and rational
12195 calculations are always carried out with as many digits as necessary.
12197 The @kbd{p} key prompts for the current precision. If you wish you
12198 can instead give the precision as a numeric prefix argument.
12200 Many internal calculations are carried to one or two digits higher
12201 precision than normal. Results are rounded down afterward to the
12202 current precision. Unless a special display mode has been selected,
12203 floats are always displayed with their full stored precision, i.e.,
12204 what you see is what you get. Reducing the current precision does not
12205 round values already on the stack, but those values will be rounded
12206 down before being used in any calculation. The @kbd{c 0} through
12207 @kbd{c 9} commands (@pxref{Conversions}) can be used to round an
12208 existing value to a new precision.
12210 @cindex Accuracy of calculations
12211 It is important to distinguish the concepts of @dfn{precision} and
12212 @dfn{accuracy}. In the normal usage of these words, the number
12213 123.4567 has a precision of 7 digits but an accuracy of 4 digits.
12214 The precision is the total number of digits not counting leading
12215 or trailing zeros (regardless of the position of the decimal point).
12216 The accuracy is simply the number of digits after the decimal point
12217 (again not counting trailing zeros). In Calc you control the precision,
12218 not the accuracy of computations. If you were to set the accuracy
12219 instead, then calculations like @samp{exp(100)} would generate many
12220 more digits than you would typically need, while @samp{exp(-100)} would
12221 probably round to zero! In Calc, both these computations give you
12222 exactly 12 (or the requested number of) significant digits.
12224 The only Calc features that deal with accuracy instead of precision
12225 are fixed-point display mode for floats (@kbd{d f}; @pxref{Float Formats}),
12226 and the rounding functions like @code{floor} and @code{round}
12227 (@pxref{Integer Truncation}). Also, @kbd{c 0} through @kbd{c 9}
12228 deal with both precision and accuracy depending on the magnitudes
12229 of the numbers involved.
12231 If you need to work with a particular fixed accuracy (say, dollars and
12232 cents with two digits after the decimal point), one solution is to work
12233 with integers and an ``implied'' decimal point. For example, $8.99
12234 divided by 6 would be entered @kbd{899 @key{RET} 6 /}, yielding 149.833
12235 (actually $1.49833 with our implied decimal point); pressing @kbd{R}
12236 would round this to 150 cents, i.e., $1.50.
12238 @xref{Floats}, for still more on floating-point precision and related
12241 @node Inverse and Hyperbolic, Calculation Modes, Precision, Mode Settings
12242 @section Inverse and Hyperbolic Flags
12246 @pindex calc-inverse
12247 There is no single-key equivalent to the @code{calc-arcsin} function.
12248 Instead, you must first press @kbd{I} (@code{calc-inverse}) to set
12249 the @dfn{Inverse Flag}, then press @kbd{S} (@code{calc-sin}).
12250 The @kbd{I} key actually toggles the Inverse Flag. When this flag
12251 is set, the word @samp{Inv} appears in the mode line.
12254 @pindex calc-hyperbolic
12255 Likewise, the @kbd{H} key (@code{calc-hyperbolic}) sets or clears the
12256 Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}.
12257 If both of these flags are set at once, the effect will be
12258 @code{calc-arcsinh}. (The Hyperbolic flag is also used by some
12259 non-trigonometric commands; for example @kbd{H L} computes a base-10,
12260 instead of base-@mathit{e}, logarithm.)
12262 Command names like @code{calc-arcsin} are provided for completeness, and
12263 may be executed with @kbd{x} or @kbd{M-x}. Their effect is simply to
12264 toggle the Inverse and/or Hyperbolic flags and then execute the
12265 corresponding base command (@code{calc-sin} in this case).
12268 @pindex calc-option
12269 The @kbd{O} key (@code{calc-option}) sets another flag, the
12270 @dfn{Option Flag}, which also can alter the subsequent Calc command in
12273 The Inverse, Hyperbolic and Option flags apply only to the next
12274 Calculator command, after which they are automatically cleared. (They
12275 are also cleared if the next keystroke is not a Calc command.) Digits
12276 you type after @kbd{I}, @kbd{H} or @kbd{O} (or @kbd{K}) are treated as
12277 prefix arguments for the next command, not as numeric entries. The
12278 same is true of @kbd{C-u}, but not of the minus sign (@kbd{K -} means
12279 to subtract and keep arguments).
12281 Another Calc prefix flag, @kbd{K} (keep-arguments), is discussed
12282 elsewhere. @xref{Keep Arguments}.
12284 @node Calculation Modes, Simplification Modes, Inverse and Hyperbolic, Mode Settings
12285 @section Calculation Modes
12288 The commands in this section are two-key sequences beginning with
12289 the @kbd{m} prefix. (That's the letter @kbd{m}, not the @key{META} key.)
12290 The @samp{m a} (@code{calc-algebraic-mode}) command is described elsewhere
12291 (@pxref{Algebraic Entry}).
12300 * Automatic Recomputation::
12301 * Working Message::
12304 @node Angular Modes, Polar Mode, Calculation Modes, Calculation Modes
12305 @subsection Angular Modes
12308 @cindex Angular mode
12309 The Calculator supports three notations for angles: radians, degrees,
12310 and degrees-minutes-seconds. When a number is presented to a function
12311 like @code{sin} that requires an angle, the current angular mode is
12312 used to interpret the number as either radians or degrees. If an HMS
12313 form is presented to @code{sin}, it is always interpreted as
12314 degrees-minutes-seconds.
12316 Functions that compute angles produce a number in radians, a number in
12317 degrees, or an HMS form depending on the current angular mode. If the
12318 result is a complex number and the current mode is HMS, the number is
12319 instead expressed in degrees. (Complex-number calculations would
12320 normally be done in Radians mode, though. Complex numbers are converted
12321 to degrees by calculating the complex result in radians and then
12322 multiplying by 180 over @cpi{}.)
12325 @pindex calc-radians-mode
12327 @pindex calc-degrees-mode
12329 @pindex calc-hms-mode
12330 The @kbd{m r} (@code{calc-radians-mode}), @kbd{m d} (@code{calc-degrees-mode}),
12331 and @kbd{m h} (@code{calc-hms-mode}) commands control the angular mode.
12332 The current angular mode is displayed on the Emacs mode line.
12333 The default angular mode is Degrees.
12335 @node Polar Mode, Fraction Mode, Angular Modes, Calculation Modes
12336 @subsection Polar Mode
12340 The Calculator normally ``prefers'' rectangular complex numbers in the
12341 sense that rectangular form is used when the proper form can not be
12342 decided from the input. This might happen by multiplying a rectangular
12343 number by a polar one, by taking the square root of a negative real
12344 number, or by entering @kbd{( 2 @key{SPC} 3 )}.
12347 @pindex calc-polar-mode
12348 The @kbd{m p} (@code{calc-polar-mode}) command toggles complex-number
12349 preference between rectangular and polar forms. In Polar mode, all
12350 of the above example situations would produce polar complex numbers.
12352 @node Fraction Mode, Infinite Mode, Polar Mode, Calculation Modes
12353 @subsection Fraction Mode
12356 @cindex Fraction mode
12357 @cindex Division of integers
12358 Division of two integers normally yields a floating-point number if the
12359 result cannot be expressed as an integer. In some cases you would
12360 rather get an exact fractional answer. One way to accomplish this is
12361 to use the @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command, which
12362 divides the two integers on the top of the stack to produce a fraction:
12363 @kbd{6 @key{RET} 4 :} produces @expr{3:2} even though
12364 @kbd{6 @key{RET} 4 /} produces @expr{1.5}.
12367 @pindex calc-frac-mode
12368 To set the Calculator to produce fractional results for normal integer
12369 divisions, use the @kbd{m f} (@code{calc-frac-mode}) command.
12370 For example, @expr{8/4} produces @expr{2} in either mode,
12371 but @expr{6/4} produces @expr{3:2} in Fraction mode, @expr{1.5} in
12374 At any time you can use @kbd{c f} (@code{calc-float}) to convert a
12375 fraction to a float, or @kbd{c F} (@code{calc-fraction}) to convert a
12376 float to a fraction. @xref{Conversions}.
12378 @node Infinite Mode, Symbolic Mode, Fraction Mode, Calculation Modes
12379 @subsection Infinite Mode
12382 @cindex Infinite mode
12383 The Calculator normally treats results like @expr{1 / 0} as errors;
12384 formulas like this are left in unsimplified form. But Calc can be
12385 put into a mode where such calculations instead produce ``infinite''
12389 @pindex calc-infinite-mode
12390 The @kbd{m i} (@code{calc-infinite-mode}) command turns this mode
12391 on and off. When the mode is off, infinities do not arise except
12392 in calculations that already had infinities as inputs. (One exception
12393 is that infinite open intervals like @samp{[0 .. inf)} can be
12394 generated; however, intervals closed at infinity (@samp{[0 .. inf]})
12395 will not be generated when Infinite mode is off.)
12397 With Infinite mode turned on, @samp{1 / 0} will generate @code{uinf},
12398 an undirected infinity. @xref{Infinities}, for a discussion of the
12399 difference between @code{inf} and @code{uinf}. Also, @expr{0 / 0}
12400 evaluates to @code{nan}, the ``indeterminate'' symbol. Various other
12401 functions can also return infinities in this mode; for example,
12402 @samp{ln(0) = -inf}, and @samp{gamma(-7) = uinf}. Once again,
12403 note that @samp{exp(inf) = inf} regardless of Infinite mode because
12404 this calculation has infinity as an input.
12406 @cindex Positive Infinite mode
12407 The @kbd{m i} command with a numeric prefix argument of zero,
12408 i.e., @kbd{C-u 0 m i}, turns on a Positive Infinite mode in
12409 which zero is treated as positive instead of being directionless.
12410 Thus, @samp{1 / 0 = inf} and @samp{-1 / 0 = -inf} in this mode.
12411 Note that zero never actually has a sign in Calc; there are no
12412 separate representations for @mathit{+0} and @mathit{-0}. Positive
12413 Infinite mode merely changes the interpretation given to the
12414 single symbol, @samp{0}. One consequence of this is that, while
12415 you might expect @samp{1 / -0 = -inf}, actually @samp{1 / -0}
12416 is equivalent to @samp{1 / 0}, which is equal to positive @code{inf}.
12418 @node Symbolic Mode, Matrix Mode, Infinite Mode, Calculation Modes
12419 @subsection Symbolic Mode
12422 @cindex Symbolic mode
12423 @cindex Inexact results
12424 Calculations are normally performed numerically wherever possible.
12425 For example, the @code{calc-sqrt} command, or @code{sqrt} function in an
12426 algebraic expression, produces a numeric answer if the argument is a
12427 number or a symbolic expression if the argument is an expression:
12428 @kbd{2 Q} pushes 1.4142 but @kbd{@key{'} x+1 @key{RET} Q} pushes @samp{sqrt(x+1)}.
12431 @pindex calc-symbolic-mode
12432 In @dfn{Symbolic mode}, controlled by the @kbd{m s} (@code{calc-symbolic-mode})
12433 command, functions which would produce inexact, irrational results are
12434 left in symbolic form. Thus @kbd{16 Q} pushes 4, but @kbd{2 Q} pushes
12438 @pindex calc-eval-num
12439 The shift-@kbd{N} (@code{calc-eval-num}) command evaluates numerically
12440 the expression at the top of the stack, by temporarily disabling
12441 @code{calc-symbolic-mode} and executing @kbd{=} (@code{calc-evaluate}).
12442 Given a numeric prefix argument, it also
12443 sets the floating-point precision to the specified value for the duration
12446 To evaluate a formula numerically without expanding the variables it
12447 contains, you can use the key sequence @kbd{m s a v m s} (this uses
12448 @code{calc-alg-evaluate}, which resimplifies but doesn't evaluate
12451 @node Matrix Mode, Automatic Recomputation, Symbolic Mode, Calculation Modes
12452 @subsection Matrix and Scalar Modes
12455 @cindex Matrix mode
12456 @cindex Scalar mode
12457 Calc sometimes makes assumptions during algebraic manipulation that
12458 are awkward or incorrect when vectors and matrices are involved.
12459 Calc has two modes, @dfn{Matrix mode} and @dfn{Scalar mode}, which
12460 modify its behavior around vectors in useful ways.
12463 @pindex calc-matrix-mode
12464 Press @kbd{m v} (@code{calc-matrix-mode}) once to enter Matrix mode.
12465 In this mode, all objects are assumed to be matrices unless provably
12466 otherwise. One major effect is that Calc will no longer consider
12467 multiplication to be commutative. (Recall that in matrix arithmetic,
12468 @samp{A*B} is not the same as @samp{B*A}.) This assumption affects
12469 rewrite rules and algebraic simplification. Another effect of this
12470 mode is that calculations that would normally produce constants like
12471 0 and 1 (e.g., @expr{a - a} and @expr{a / a}, respectively) will now
12472 produce function calls that represent ``generic'' zero or identity
12473 matrices: @samp{idn(0)}, @samp{idn(1)}. The @code{idn} function
12474 @samp{idn(@var{a},@var{n})} returns @var{a} times an @var{n}x@var{n}
12475 identity matrix; if @var{n} is omitted, it doesn't know what
12476 dimension to use and so the @code{idn} call remains in symbolic
12477 form. However, if this generic identity matrix is later combined
12478 with a matrix whose size is known, it will be converted into
12479 a true identity matrix of the appropriate size. On the other hand,
12480 if it is combined with a scalar (as in @samp{idn(1) + 2}), Calc
12481 will assume it really was a scalar after all and produce, e.g., 3.
12483 Press @kbd{m v} a second time to get Scalar mode. Here, objects are
12484 assumed @emph{not} to be vectors or matrices unless provably so.
12485 For example, normally adding a variable to a vector, as in
12486 @samp{[x, y, z] + a}, will leave the sum in symbolic form because
12487 as far as Calc knows, @samp{a} could represent either a number or
12488 another 3-vector. In Scalar mode, @samp{a} is assumed to be a
12489 non-vector, and the addition is evaluated to @samp{[x+a, y+a, z+a]}.
12491 Press @kbd{m v} a third time to return to the normal mode of operation.
12493 If you press @kbd{m v} with a numeric prefix argument @var{n}, you
12494 get a special ``dimensioned'' Matrix mode in which matrices of
12495 unknown size are assumed to be @var{n}x@var{n} square matrices.
12496 Then, the function call @samp{idn(1)} will expand into an actual
12497 matrix rather than representing a ``generic'' matrix. Simply typing
12498 @kbd{C-u m v} will get you a square Matrix mode, in which matrices of
12499 unknown size are assumed to be square matrices of unspecified size.
12501 @cindex Declaring scalar variables
12502 Of course these modes are approximations to the true state of
12503 affairs, which is probably that some quantities will be matrices
12504 and others will be scalars. One solution is to ``declare''
12505 certain variables or functions to be scalar-valued.
12506 @xref{Declarations}, to see how to make declarations in Calc.
12508 There is nothing stopping you from declaring a variable to be
12509 scalar and then storing a matrix in it; however, if you do, the
12510 results you get from Calc may not be valid. Suppose you let Calc
12511 get the result @samp{[x+a, y+a, z+a]} shown above, and then stored
12512 @samp{[1, 2, 3]} in @samp{a}. The result would not be the same as
12513 for @samp{[x, y, z] + [1, 2, 3]}, but that's because you have broken
12514 your earlier promise to Calc that @samp{a} would be scalar.
12516 Another way to mix scalars and matrices is to use selections
12517 (@pxref{Selecting Subformulas}). Use Matrix mode when operating on
12518 your formula normally; then, to apply Scalar mode to a certain part
12519 of the formula without affecting the rest just select that part,
12520 change into Scalar mode and press @kbd{=} to resimplify the part
12521 under this mode, then change back to Matrix mode before deselecting.
12523 @node Automatic Recomputation, Working Message, Matrix Mode, Calculation Modes
12524 @subsection Automatic Recomputation
12527 The @dfn{evaluates-to} operator, @samp{=>}, has the special
12528 property that any @samp{=>} formulas on the stack are recomputed
12529 whenever variable values or mode settings that might affect them
12530 are changed. @xref{Evaluates-To Operator}.
12533 @pindex calc-auto-recompute
12534 The @kbd{m C} (@code{calc-auto-recompute}) command turns this
12535 automatic recomputation on and off. If you turn it off, Calc will
12536 not update @samp{=>} operators on the stack (nor those in the
12537 attached Embedded mode buffer, if there is one). They will not
12538 be updated unless you explicitly do so by pressing @kbd{=} or until
12539 you press @kbd{m C} to turn recomputation back on. (While automatic
12540 recomputation is off, you can think of @kbd{m C m C} as a command
12541 to update all @samp{=>} operators while leaving recomputation off.)
12543 To update @samp{=>} operators in an Embedded buffer while
12544 automatic recomputation is off, use @w{@kbd{C-x * u}}.
12545 @xref{Embedded Mode}.
12547 @node Working Message, , Automatic Recomputation, Calculation Modes
12548 @subsection Working Messages
12551 @cindex Performance
12552 @cindex Working messages
12553 Since the Calculator is written entirely in Emacs Lisp, which is not
12554 designed for heavy numerical work, many operations are quite slow.
12555 The Calculator normally displays the message @samp{Working...} in the
12556 echo area during any command that may be slow. In addition, iterative
12557 operations such as square roots and trigonometric functions display the
12558 intermediate result at each step. Both of these types of messages can
12559 be disabled if you find them distracting.
12562 @pindex calc-working
12563 Type @kbd{m w} (@code{calc-working}) with a numeric prefix of 0 to
12564 disable all ``working'' messages. Use a numeric prefix of 1 to enable
12565 only the plain @samp{Working...} message. Use a numeric prefix of 2 to
12566 see intermediate results as well. With no numeric prefix this displays
12569 While it may seem that the ``working'' messages will slow Calc down
12570 considerably, experiments have shown that their impact is actually
12571 quite small. But if your terminal is slow you may find that it helps
12572 to turn the messages off.
12574 @node Simplification Modes, Declarations, Calculation Modes, Mode Settings
12575 @section Simplification Modes
12578 The current @dfn{simplification mode} controls how numbers and formulas
12579 are ``normalized'' when being taken from or pushed onto the stack.
12580 Some normalizations are unavoidable, such as rounding floating-point
12581 results to the current precision, and reducing fractions to simplest
12582 form. Others, such as simplifying a formula like @expr{a+a} (or @expr{2+3}),
12583 are done automatically but can be turned off when necessary.
12585 When you press a key like @kbd{+} when @expr{2} and @expr{3} are on the
12586 stack, Calc pops these numbers, normalizes them, creates the formula
12587 @expr{2+3}, normalizes it, and pushes the result. Of course the standard
12588 rules for normalizing @expr{2+3} will produce the result @expr{5}.
12590 Simplification mode commands consist of the lower-case @kbd{m} prefix key
12591 followed by a shifted letter.
12594 @pindex calc-no-simplify-mode
12595 The @kbd{m O} (@code{calc-no-simplify-mode}) command turns off all optional
12596 simplifications. These would leave a formula like @expr{2+3} alone. In
12597 fact, nothing except simple numbers are ever affected by normalization
12598 in this mode. Explicit simplification commands, such as @kbd{=} or
12599 @kbd{a s}, can still be given to simplify any formulas.
12600 @xref{Algebraic Definitions}, for a sample use of
12601 No-Simplification mode.
12605 @pindex calc-num-simplify-mode
12606 The @kbd{m N} (@code{calc-num-simplify-mode}) command turns off simplification
12607 of any formulas except those for which all arguments are constants. For
12608 example, @expr{1+2} is simplified to @expr{3}, and @expr{a+(2-2)} is
12609 simplified to @expr{a+0} but no further, since one argument of the sum
12610 is not a constant. Unfortunately, @expr{(a+2)-2} is @emph{not} simplified
12611 because the top-level @samp{-} operator's arguments are not both
12612 constant numbers (one of them is the formula @expr{a+2}).
12613 A constant is a number or other numeric object (such as a constant
12614 error form or modulo form), or a vector all of whose
12615 elements are constant.
12618 @pindex calc-basic-simplify-mode
12619 The @kbd{m I} (@code{calc-basic-simplify-mode}) command does some basic
12620 simplifications for all formulas. This includes many easy and
12621 fast algebraic simplifications such as @expr{a+0} to @expr{a}, and
12622 @expr{a + 2 a} to @expr{3 a}, as well as evaluating functions like
12623 @expr{@tfn{deriv}(x^2, x)} to @expr{2 x}.
12626 @pindex calc-bin-simplify-mode
12627 The @kbd{m B} (@code{calc-bin-simplify-mode}) mode applies the basic
12628 simplifications to a result and then, if the result is an integer,
12629 uses the @kbd{b c} (@code{calc-clip}) command to clip the integer according
12630 to the current binary word size. @xref{Binary Functions}. Real numbers
12631 are rounded to the nearest integer and then clipped; other kinds of
12632 results (after the basic simplifications) are left alone.
12635 @pindex calc-alg-simplify-mode
12636 The @kbd{m A} (@code{calc-alg-simplify-mode}) mode does standard
12637 algebraic simplifications. @xref{Algebraic Simplifications}.
12640 @pindex calc-ext-simplify-mode
12641 The @kbd{m E} (@code{calc-ext-simplify-mode}) mode does ``extended'', or
12642 ``unsafe'', algebraic simplification. @xref{Unsafe Simplifications}.
12645 @pindex calc-units-simplify-mode
12646 The @kbd{m U} (@code{calc-units-simplify-mode}) mode does units
12647 simplification. @xref{Simplification of Units}. These include the
12648 algebraic simplifications, plus variable names which
12649 are identifiable as unit names (like @samp{mm} for ``millimeters'')
12650 are simplified with their unit definitions in mind.
12652 A common technique is to set the simplification mode down to the lowest
12653 amount of simplification you will allow to be applied automatically, then
12654 use manual commands like @kbd{a s} and @kbd{c c} (@code{calc-clean}) to
12655 perform higher types of simplifications on demand.
12656 @node Declarations, Display Modes, Simplification Modes, Mode Settings
12657 @section Declarations
12660 A @dfn{declaration} is a statement you make that promises you will
12661 use a certain variable or function in a restricted way. This may
12662 give Calc the freedom to do things that it couldn't do if it had to
12663 take the fully general situation into account.
12666 * Declaration Basics::
12667 * Kinds of Declarations::
12668 * Functions for Declarations::
12671 @node Declaration Basics, Kinds of Declarations, Declarations, Declarations
12672 @subsection Declaration Basics
12676 @pindex calc-declare-variable
12677 The @kbd{s d} (@code{calc-declare-variable}) command is the easiest
12678 way to make a declaration for a variable. This command prompts for
12679 the variable name, then prompts for the declaration. The default
12680 at the declaration prompt is the previous declaration, if any.
12681 You can edit this declaration, or press @kbd{C-k} to erase it and
12682 type a new declaration. (Or, erase it and press @key{RET} to clear
12683 the declaration, effectively ``undeclaring'' the variable.)
12685 A declaration is in general a vector of @dfn{type symbols} and
12686 @dfn{range} values. If there is only one type symbol or range value,
12687 you can write it directly rather than enclosing it in a vector.
12688 For example, @kbd{s d foo @key{RET} real @key{RET}} declares @code{foo} to
12689 be a real number, and @kbd{s d bar @key{RET} [int, const, [1..6]] @key{RET}}
12690 declares @code{bar} to be a constant integer between 1 and 6.
12691 (Actually, you can omit the outermost brackets and Calc will
12692 provide them for you: @kbd{s d bar @key{RET} int, const, [1..6] @key{RET}}.)
12694 @cindex @code{Decls} variable
12696 Declarations in Calc are kept in a special variable called @code{Decls}.
12697 This variable encodes the set of all outstanding declarations in
12698 the form of a matrix. Each row has two elements: A variable or
12699 vector of variables declared by that row, and the declaration
12700 specifier as described above. You can use the @kbd{s D} command to
12701 edit this variable if you wish to see all the declarations at once.
12702 @xref{Operations on Variables}, for a description of this command
12703 and the @kbd{s p} command that allows you to save your declarations
12704 permanently if you wish.
12706 Items being declared can also be function calls. The arguments in
12707 the call are ignored; the effect is to say that this function returns
12708 values of the declared type for any valid arguments. The @kbd{s d}
12709 command declares only variables, so if you wish to make a function
12710 declaration you will have to edit the @code{Decls} matrix yourself.
12712 For example, the declaration matrix
12718 [ f(1,2,3), [0 .. inf) ] ]
12723 declares that @code{foo} represents a real number, @code{j}, @code{k}
12724 and @code{n} represent integers, and the function @code{f} always
12725 returns a real number in the interval shown.
12728 If there is a declaration for the variable @code{All}, then that
12729 declaration applies to all variables that are not otherwise declared.
12730 It does not apply to function names. For example, using the row
12731 @samp{[All, real]} says that all your variables are real unless they
12732 are explicitly declared without @code{real} in some other row.
12733 The @kbd{s d} command declares @code{All} if you give a blank
12734 response to the variable-name prompt.
12736 @node Kinds of Declarations, Functions for Declarations, Declaration Basics, Declarations
12737 @subsection Kinds of Declarations
12740 The type-specifier part of a declaration (that is, the second prompt
12741 in the @kbd{s d} command) can be a type symbol, an interval, or a
12742 vector consisting of zero or more type symbols followed by zero or
12743 more intervals or numbers that represent the set of possible values
12748 [ [ a, [1, 2, 3, 4, 5] ]
12750 [ c, [int, 1 .. 5] ] ]
12754 Here @code{a} is declared to contain one of the five integers shown;
12755 @code{b} is any number in the interval from 1 to 5 (any real number
12756 since we haven't specified), and @code{c} is any integer in that
12757 interval. Thus the declarations for @code{a} and @code{c} are
12758 nearly equivalent (see below).
12760 The type-specifier can be the empty vector @samp{[]} to say that
12761 nothing is known about a given variable's value. This is the same
12762 as not declaring the variable at all except that it overrides any
12763 @code{All} declaration which would otherwise apply.
12765 The initial value of @code{Decls} is the empty vector @samp{[]}.
12766 If @code{Decls} has no stored value or if the value stored in it
12767 is not valid, it is ignored and there are no declarations as far
12768 as Calc is concerned. (The @kbd{s d} command will replace such a
12769 malformed value with a fresh empty matrix, @samp{[]}, before recording
12770 the new declaration.) Unrecognized type symbols are ignored.
12772 The following type symbols describe what sorts of numbers will be
12773 stored in a variable:
12779 Numerical integers. (Integers or integer-valued floats.)
12781 Fractions. (Rational numbers which are not integers.)
12783 Rational numbers. (Either integers or fractions.)
12785 Floating-point numbers.
12787 Real numbers. (Integers, fractions, or floats. Actually,
12788 intervals and error forms with real components also count as
12791 Positive real numbers. (Strictly greater than zero.)
12793 Nonnegative real numbers. (Greater than or equal to zero.)
12795 Numbers. (Real or complex.)
12798 Calc uses this information to determine when certain simplifications
12799 of formulas are safe. For example, @samp{(x^y)^z} cannot be
12800 simplified to @samp{x^(y z)} in general; for example,
12801 @samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @mathit{-3}.
12802 However, this simplification @emph{is} safe if @code{z} is known
12803 to be an integer, or if @code{x} is known to be a nonnegative
12804 real number. If you have given declarations that allow Calc to
12805 deduce either of these facts, Calc will perform this simplification
12808 Calc can apply a certain amount of logic when using declarations.
12809 For example, @samp{(x^y)^(2n+1)} will be simplified if @code{n}
12810 has been declared @code{int}; Calc knows that an integer times an
12811 integer, plus an integer, must always be an integer. (In fact,
12812 Calc would simplify @samp{(-x)^(2n+1)} to @samp{-(x^(2n+1))} since
12813 it is able to determine that @samp{2n+1} must be an odd integer.)
12815 Similarly, @samp{(abs(x)^y)^z} will be simplified to @samp{abs(x)^(y z)}
12816 because Calc knows that the @code{abs} function always returns a
12817 nonnegative real. If you had a @code{myabs} function that also had
12818 this property, you could get Calc to recognize it by adding the row
12819 @samp{[myabs(), nonneg]} to the @code{Decls} matrix.
12821 One instance of this simplification is @samp{sqrt(x^2)} (since the
12822 @code{sqrt} function is effectively a one-half power). Normally
12823 Calc leaves this formula alone. After the command
12824 @kbd{s d x @key{RET} real @key{RET}}, however, it can simplify the formula to
12825 @samp{abs(x)}. And after @kbd{s d x @key{RET} nonneg @key{RET}}, Calc can
12826 simplify this formula all the way to @samp{x}.
12828 If there are any intervals or real numbers in the type specifier,
12829 they comprise the set of possible values that the variable or
12830 function being declared can have. In particular, the type symbol
12831 @code{real} is effectively the same as the range @samp{[-inf .. inf]}
12832 (note that infinity is included in the range of possible values);
12833 @code{pos} is the same as @samp{(0 .. inf]}, and @code{nonneg} is
12834 the same as @samp{[0 .. inf]}. Saying @samp{[real, [-5 .. 5]]} is
12835 redundant because the fact that the variable is real can be
12836 deduced just from the interval, but @samp{[int, [-5 .. 5]]} and
12837 @samp{[rat, [-5 .. 5]]} are useful combinations.
12839 Note that the vector of intervals or numbers is in the same format
12840 used by Calc's set-manipulation commands. @xref{Set Operations}.
12842 The type specifier @samp{[1, 2, 3]} is equivalent to
12843 @samp{[numint, 1, 2, 3]}, @emph{not} to @samp{[int, 1, 2, 3]}.
12844 In other words, the range of possible values means only that
12845 the variable's value must be numerically equal to a number in
12846 that range, but not that it must be equal in type as well.
12847 Calc's set operations act the same way; @samp{in(2, [1., 2., 3.])}
12848 and @samp{in(1.5, [1:2, 3:2, 5:2])} both report ``true.''
12850 If you use a conflicting combination of type specifiers, the
12851 results are unpredictable. An example is @samp{[pos, [0 .. 5]]},
12852 where the interval does not lie in the range described by the
12855 ``Real'' declarations mostly affect simplifications involving powers
12856 like the one described above. Another case where they are used
12857 is in the @kbd{a P} command which returns a list of all roots of a
12858 polynomial; if the variable has been declared real, only the real
12859 roots (if any) will be included in the list.
12861 ``Integer'' declarations are used for simplifications which are valid
12862 only when certain values are integers (such as @samp{(x^y)^z}
12865 Calc's algebraic simplifications also make use of declarations when
12866 simplifying equations and inequalities. They will cancel @code{x}
12867 from both sides of @samp{a x = b x} only if it is sure @code{x}
12868 is non-zero, say, because it has a @code{pos} declaration.
12869 To declare specifically that @code{x} is real and non-zero,
12870 use @samp{[[-inf .. 0), (0 .. inf]]}. (There is no way in the
12871 current notation to say that @code{x} is nonzero but not necessarily
12872 real.) The @kbd{a e} command does ``unsafe'' simplifications,
12873 including canceling @samp{x} from the equation when @samp{x} is
12874 not known to be nonzero.
12876 Another set of type symbols distinguish between scalars and vectors.
12880 The value is not a vector.
12882 The value is a vector.
12884 The value is a matrix (a rectangular vector of vectors).
12886 The value is a square matrix.
12889 These type symbols can be combined with the other type symbols
12890 described above; @samp{[int, matrix]} describes an object which
12891 is a matrix of integers.
12893 Scalar/vector declarations are used to determine whether certain
12894 algebraic operations are safe. For example, @samp{[a, b, c] + x}
12895 is normally not simplified to @samp{[a + x, b + x, c + x]}, but
12896 it will be if @code{x} has been declared @code{scalar}. On the
12897 other hand, multiplication is usually assumed to be commutative,
12898 but the terms in @samp{x y} will never be exchanged if both @code{x}
12899 and @code{y} are known to be vectors or matrices. (Calc currently
12900 never distinguishes between @code{vector} and @code{matrix}
12903 @xref{Matrix Mode}, for a discussion of Matrix mode and
12904 Scalar mode, which are similar to declaring @samp{[All, matrix]}
12905 or @samp{[All, scalar]} but much more convenient.
12907 One more type symbol that is recognized is used with the @kbd{H a d}
12908 command for taking total derivatives of a formula. @xref{Calculus}.
12912 The value is a constant with respect to other variables.
12915 Calc does not check the declarations for a variable when you store
12916 a value in it. However, storing @mathit{-3.5} in a variable that has
12917 been declared @code{pos}, @code{int}, or @code{matrix} may have
12918 unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @expr{3.5}
12919 if it substitutes the value first, or to @expr{-3.5} if @code{x}
12920 was declared @code{pos} and the formula @samp{sqrt(x^2)} is
12921 simplified to @samp{x} before the value is substituted. Before
12922 using a variable for a new purpose, it is best to use @kbd{s d}
12923 or @kbd{s D} to check to make sure you don't still have an old
12924 declaration for the variable that will conflict with its new meaning.
12926 @node Functions for Declarations, , Kinds of Declarations, Declarations
12927 @subsection Functions for Declarations
12930 Calc has a set of functions for accessing the current declarations
12931 in a convenient manner. These functions return 1 if the argument
12932 can be shown to have the specified property, or 0 if the argument
12933 can be shown @emph{not} to have that property; otherwise they are
12934 left unevaluated. These functions are suitable for use with rewrite
12935 rules (@pxref{Conditional Rewrite Rules}) or programming constructs
12936 (@pxref{Conditionals in Macros}). They can be entered only using
12937 algebraic notation. @xref{Logical Operations}, for functions
12938 that perform other tests not related to declarations.
12940 For example, @samp{dint(17)} returns 1 because 17 is an integer, as
12941 do @samp{dint(n)} and @samp{dint(2 n - 3)} if @code{n} has been declared
12942 @code{int}, but @samp{dint(2.5)} and @samp{dint(n + 0.5)} return 0.
12943 Calc consults knowledge of its own built-in functions as well as your
12944 own declarations: @samp{dint(floor(x))} returns 1.
12958 The @code{dint} function checks if its argument is an integer.
12959 The @code{dnatnum} function checks if its argument is a natural
12960 number, i.e., a nonnegative integer. The @code{dnumint} function
12961 checks if its argument is numerically an integer, i.e., either an
12962 integer or an integer-valued float. Note that these and the other
12963 data type functions also accept vectors or matrices composed of
12964 suitable elements, and that real infinities @samp{inf} and @samp{-inf}
12965 are considered to be integers for the purposes of these functions.
12971 The @code{drat} function checks if its argument is rational, i.e.,
12972 an integer or fraction. Infinities count as rational, but intervals
12973 and error forms do not.
12979 The @code{dreal} function checks if its argument is real. This
12980 includes integers, fractions, floats, real error forms, and intervals.
12986 The @code{dimag} function checks if its argument is imaginary,
12987 i.e., is mathematically equal to a real number times @expr{i}.
13001 The @code{dpos} function checks for positive (but nonzero) reals.
13002 The @code{dneg} function checks for negative reals. The @code{dnonneg}
13003 function checks for nonnegative reals, i.e., reals greater than or
13004 equal to zero. Note that Calc's algebraic simplifications, which are
13005 effectively applied to all conditions in rewrite rules, can simplify
13006 an expression like @expr{x > 0} to 1 or 0 using @code{dpos}.
13007 So the actual functions @code{dpos}, @code{dneg}, and @code{dnonneg}
13008 are rarely necessary.
13014 The @code{dnonzero} function checks that its argument is nonzero.
13015 This includes all nonzero real or complex numbers, all intervals that
13016 do not include zero, all nonzero modulo forms, vectors all of whose
13017 elements are nonzero, and variables or formulas whose values can be
13018 deduced to be nonzero. It does not include error forms, since they
13019 represent values which could be anything including zero. (This is
13020 also the set of objects considered ``true'' in conditional contexts.)
13030 The @code{deven} function returns 1 if its argument is known to be
13031 an even integer (or integer-valued float); it returns 0 if its argument
13032 is known not to be even (because it is known to be odd or a non-integer).
13033 Calc's algebraic simplifications use this to simplify a test of the form
13034 @samp{x % 2 = 0}. There is also an analogous @code{dodd} function.
13040 The @code{drange} function returns a set (an interval or a vector
13041 of intervals and/or numbers; @pxref{Set Operations}) that describes
13042 the set of possible values of its argument. If the argument is
13043 a variable or a function with a declaration, the range is copied
13044 from the declaration. Otherwise, the possible signs of the
13045 expression are determined using a method similar to @code{dpos},
13046 etc., and a suitable set like @samp{[0 .. inf]} is returned. If
13047 the expression is not provably real, the @code{drange} function
13048 remains unevaluated.
13054 The @code{dscalar} function returns 1 if its argument is provably
13055 scalar, or 0 if its argument is provably non-scalar. It is left
13056 unevaluated if this cannot be determined. (If Matrix mode or Scalar
13057 mode is in effect, this function returns 1 or 0, respectively,
13058 if it has no other information.) When Calc interprets a condition
13059 (say, in a rewrite rule) it considers an unevaluated formula to be
13060 ``false.'' Thus, @samp{dscalar(a)} is ``true'' only if @code{a} is
13061 provably scalar, and @samp{!dscalar(a)} is ``true'' only if @code{a}
13062 is provably non-scalar; both are ``false'' if there is insufficient
13063 information to tell.
13065 @node Display Modes, Language Modes, Declarations, Mode Settings
13066 @section Display Modes
13069 The commands in this section are two-key sequences beginning with the
13070 @kbd{d} prefix. The @kbd{d l} (@code{calc-line-numbering}) and @kbd{d b}
13071 (@code{calc-line-breaking}) commands are described elsewhere;
13072 @pxref{Stack Basics} and @pxref{Normal Language Modes}, respectively.
13073 Display formats for vectors and matrices are also covered elsewhere;
13074 @pxref{Vector and Matrix Formats}.
13076 One thing all display modes have in common is their treatment of the
13077 @kbd{H} prefix. This prefix causes any mode command that would normally
13078 refresh the stack to leave the stack display alone. The word ``Dirty''
13079 will appear in the mode line when Calc thinks the stack display may not
13080 reflect the latest mode settings.
13082 @kindex d @key{RET}
13083 @pindex calc-refresh-top
13084 The @kbd{d @key{RET}} (@code{calc-refresh-top}) command reformats the
13085 top stack entry according to all the current modes. Positive prefix
13086 arguments reformat the top @var{n} entries; negative prefix arguments
13087 reformat the specified entry, and a prefix of zero is equivalent to
13088 @kbd{d @key{SPC}} (@code{calc-refresh}), which reformats the entire stack.
13089 For example, @kbd{H d s M-2 d @key{RET}} changes to scientific notation
13090 but reformats only the top two stack entries in the new mode.
13092 The @kbd{I} prefix has another effect on the display modes. The mode
13093 is set only temporarily; the top stack entry is reformatted according
13094 to that mode, then the original mode setting is restored. In other
13095 words, @kbd{I d s} is equivalent to @kbd{H d s d @key{RET} H d (@var{old mode})}.
13099 * Grouping Digits::
13101 * Complex Formats::
13102 * Fraction Formats::
13105 * Truncating the Stack::
13110 @node Radix Modes, Grouping Digits, Display Modes, Display Modes
13111 @subsection Radix Modes
13114 @cindex Radix display
13115 @cindex Non-decimal numbers
13116 @cindex Decimal and non-decimal numbers
13117 Calc normally displays numbers in decimal (@dfn{base-10} or @dfn{radix-10})
13118 notation. Calc can actually display in any radix from two (binary) to 36.
13119 When the radix is above 10, the letters @code{A} to @code{Z} are used as
13120 digits. When entering such a number, letter keys are interpreted as
13121 potential digits rather than terminating numeric entry mode.
13127 @cindex Hexadecimal integers
13128 @cindex Octal integers
13129 The key sequences @kbd{d 2}, @kbd{d 8}, @kbd{d 6}, and @kbd{d 0} select
13130 binary, octal, hexadecimal, and decimal as the current display radix,
13131 respectively. Numbers can always be entered in any radix, though the
13132 current radix is used as a default if you press @kbd{#} without any initial
13133 digits. A number entered without a @kbd{#} is @emph{always} interpreted
13138 To set the radix generally, use @kbd{d r} (@code{calc-radix}) and enter
13139 an integer from 2 to 36. You can specify the radix as a numeric prefix
13140 argument; otherwise you will be prompted for it.
13143 @pindex calc-leading-zeros
13144 @cindex Leading zeros
13145 Integers normally are displayed with however many digits are necessary to
13146 represent the integer and no more. The @kbd{d z} (@code{calc-leading-zeros})
13147 command causes integers to be padded out with leading zeros according to the
13148 current binary word size. (@xref{Binary Functions}, for a discussion of
13149 word size.) If the absolute value of the word size is @expr{w}, all integers
13150 are displayed with at least enough digits to represent
13151 @texline @math{2^w-1}
13152 @infoline @expr{(2^w)-1}
13153 in the current radix. (Larger integers will still be displayed in their
13156 @cindex Two's complements
13157 Calc can display @expr{w}-bit integers using two's complement
13158 notation, although this is most useful with the binary, octal and
13159 hexadecimal display modes. This option is selected by using the
13160 @kbd{O} option prefix before setting the display radix, and a negative word
13161 size might be appropriate (@pxref{Binary Functions}). In two's
13162 complement notation, the integers in the (nearly) symmetric interval
13164 @texline @math{-2^{w-1}}
13165 @infoline @expr{-2^(w-1)}
13167 @texline @math{2^{w-1}-1}
13168 @infoline @expr{2^(w-1)-1}
13169 are represented by the integers from @expr{0} to @expr{2^w-1}:
13170 the integers from @expr{0} to
13171 @texline @math{2^{w-1}-1}
13172 @infoline @expr{2^(w-1)-1}
13173 are represented by themselves and the integers from
13174 @texline @math{-2^{w-1}}
13175 @infoline @expr{-2^(w-1)}
13176 to @expr{-1} are represented by the integers from
13177 @texline @math{2^{w-1}}
13178 @infoline @expr{2^(w-1)}
13179 to @expr{2^w-1} (the integer @expr{k} is represented by @expr{k+2^w}).
13180 Calc will display a two's complement integer by the radix (either
13181 @expr{2}, @expr{8} or @expr{16}), two @kbd{#} symbols, and then its
13182 representation (including any leading zeros necessary to include all
13183 @expr{w} bits). In a two's complement display mode, numbers that
13184 are not displayed in two's complement notation (i.e., that aren't
13186 @texline @math{-2^{w-1}}
13187 @infoline @expr{-2^(w-1)}
13190 @texline @math{2^{w-1}-1})
13191 @infoline @expr{2^(w-1)-1})
13192 will be represented using Calc's usual notation (in the appropriate
13195 @node Grouping Digits, Float Formats, Radix Modes, Display Modes
13196 @subsection Grouping Digits
13200 @pindex calc-group-digits
13201 @cindex Grouping digits
13202 @cindex Digit grouping
13203 Long numbers can be hard to read if they have too many digits. For
13204 example, the factorial of 30 is 33 digits long! Press @kbd{d g}
13205 (@code{calc-group-digits}) to enable @dfn{Grouping} mode, in which digits
13206 are displayed in clumps of 3 or 4 (depending on the current radix)
13207 separated by commas.
13209 The @kbd{d g} command toggles grouping on and off.
13210 With a numeric prefix of 0, this command displays the current state of
13211 the grouping flag; with an argument of minus one it disables grouping;
13212 with a positive argument @expr{N} it enables grouping on every @expr{N}
13213 digits. For floating-point numbers, grouping normally occurs only
13214 before the decimal point. A negative prefix argument @expr{-N} enables
13215 grouping every @expr{N} digits both before and after the decimal point.
13218 @pindex calc-group-char
13219 The @kbd{d ,} (@code{calc-group-char}) command allows you to choose any
13220 character as the grouping separator. The default is the comma character.
13221 If you find it difficult to read vectors of large integers grouped with
13222 commas, you may wish to use spaces or some other character instead.
13223 This command takes the next character you type, whatever it is, and
13224 uses it as the digit separator. As a special case, @kbd{d , \} selects
13225 @samp{\,} (@TeX{}'s thin-space symbol) as the digit separator.
13227 Please note that grouped numbers will not generally be parsed correctly
13228 if re-read in textual form, say by the use of @kbd{C-x * y} and @kbd{C-x * g}.
13229 (@xref{Kill and Yank}, for details on these commands.) One exception is
13230 the @samp{\,} separator, which doesn't interfere with parsing because it
13231 is ignored by @TeX{} language mode.
13233 @node Float Formats, Complex Formats, Grouping Digits, Display Modes
13234 @subsection Float Formats
13237 Floating-point quantities are normally displayed in standard decimal
13238 form, with scientific notation used if the exponent is especially high
13239 or low. All significant digits are normally displayed. The commands
13240 in this section allow you to choose among several alternative display
13241 formats for floats.
13244 @pindex calc-normal-notation
13245 The @kbd{d n} (@code{calc-normal-notation}) command selects the normal
13246 display format. All significant figures in a number are displayed.
13247 With a positive numeric prefix, numbers are rounded if necessary to
13248 that number of significant digits. With a negative numerix prefix,
13249 the specified number of significant digits less than the current
13250 precision is used. (Thus @kbd{C-u -2 d n} displays 10 digits if the
13251 current precision is 12.)
13254 @pindex calc-fix-notation
13255 The @kbd{d f} (@code{calc-fix-notation}) command selects fixed-point
13256 notation. The numeric argument is the number of digits after the
13257 decimal point, zero or more. This format will relax into scientific
13258 notation if a nonzero number would otherwise have been rounded all the
13259 way to zero. Specifying a negative number of digits is the same as
13260 for a positive number, except that small nonzero numbers will be rounded
13261 to zero rather than switching to scientific notation.
13264 @pindex calc-sci-notation
13265 @cindex Scientific notation, display of
13266 The @kbd{d s} (@code{calc-sci-notation}) command selects scientific
13267 notation. A positive argument sets the number of significant figures
13268 displayed, of which one will be before and the rest after the decimal
13269 point. A negative argument works the same as for @kbd{d n} format.
13270 The default is to display all significant digits.
13273 @pindex calc-eng-notation
13274 @cindex Engineering notation, display of
13275 The @kbd{d e} (@code{calc-eng-notation}) command selects engineering
13276 notation. This is similar to scientific notation except that the
13277 exponent is rounded down to a multiple of three, with from one to three
13278 digits before the decimal point. An optional numeric prefix sets the
13279 number of significant digits to display, as for @kbd{d s}.
13281 It is important to distinguish between the current @emph{precision} and
13282 the current @emph{display format}. After the commands @kbd{C-u 10 p}
13283 and @kbd{C-u 6 d n} the Calculator computes all results to ten
13284 significant figures but displays only six. (In fact, intermediate
13285 calculations are often carried to one or two more significant figures,
13286 but values placed on the stack will be rounded down to ten figures.)
13287 Numbers are never actually rounded to the display precision for storage,
13288 except by commands like @kbd{C-k} and @kbd{C-x * y} which operate on the
13289 actual displayed text in the Calculator buffer.
13292 @pindex calc-point-char
13293 The @kbd{d .} (@code{calc-point-char}) command selects the character used
13294 as a decimal point. Normally this is a period; users in some countries
13295 may wish to change this to a comma. Note that this is only a display
13296 style; on entry, periods must always be used to denote floating-point
13297 numbers, and commas to separate elements in a list.
13299 @node Complex Formats, Fraction Formats, Float Formats, Display Modes
13300 @subsection Complex Formats
13304 @pindex calc-complex-notation
13305 There are three supported notations for complex numbers in rectangular
13306 form. The default is as a pair of real numbers enclosed in parentheses
13307 and separated by a comma: @samp{(a,b)}. The @kbd{d c}
13308 (@code{calc-complex-notation}) command selects this style.
13311 @pindex calc-i-notation
13313 @pindex calc-j-notation
13314 The other notations are @kbd{d i} (@code{calc-i-notation}), in which
13315 numbers are displayed in @samp{a+bi} form, and @kbd{d j}
13316 (@code{calc-j-notation}) which displays the form @samp{a+bj} preferred
13317 in some disciplines.
13319 @cindex @code{i} variable
13321 Complex numbers are normally entered in @samp{(a,b)} format.
13322 If you enter @samp{2+3i} as an algebraic formula, it will be stored as
13323 the formula @samp{2 + 3 * i}. However, if you use @kbd{=} to evaluate
13324 this formula and you have not changed the variable @samp{i}, the @samp{i}
13325 will be interpreted as @samp{(0,1)} and the formula will be simplified
13326 to @samp{(2,3)}. Other commands (like @code{calc-sin}) will @emph{not}
13327 interpret the formula @samp{2 + 3 * i} as a complex number.
13328 @xref{Variables}, under ``special constants.''
13330 @node Fraction Formats, HMS Formats, Complex Formats, Display Modes
13331 @subsection Fraction Formats
13335 @pindex calc-over-notation
13336 Display of fractional numbers is controlled by the @kbd{d o}
13337 (@code{calc-over-notation}) command. By default, a number like
13338 eight thirds is displayed in the form @samp{8:3}. The @kbd{d o} command
13339 prompts for a one- or two-character format. If you give one character,
13340 that character is used as the fraction separator. Common separators are
13341 @samp{:} and @samp{/}. (During input of numbers, the @kbd{:} key must be
13342 used regardless of the display format; in particular, the @kbd{/} is used
13343 for RPN-style division, @emph{not} for entering fractions.)
13345 If you give two characters, fractions use ``integer-plus-fractional-part''
13346 notation. For example, the format @samp{+/} would display eight thirds
13347 as @samp{2+2/3}. If two colons are present in a number being entered,
13348 the number is interpreted in this form (so that the entries @kbd{2:2:3}
13349 and @kbd{8:3} are equivalent).
13351 It is also possible to follow the one- or two-character format with
13352 a number. For example: @samp{:10} or @samp{+/3}. In this case,
13353 Calc adjusts all fractions that are displayed to have the specified
13354 denominator, if possible. Otherwise it adjusts the denominator to
13355 be a multiple of the specified value. For example, in @samp{:6} mode
13356 the fraction @expr{1:6} will be unaffected, but @expr{2:3} will be
13357 displayed as @expr{4:6}, @expr{1:2} will be displayed as @expr{3:6},
13358 and @expr{1:8} will be displayed as @expr{3:24}. Integers are also
13359 affected by this mode: 3 is displayed as @expr{18:6}. Note that the
13360 format @samp{:1} writes fractions the same as @samp{:}, but it writes
13361 integers as @expr{n:1}.
13363 The fraction format does not affect the way fractions or integers are
13364 stored, only the way they appear on the screen. The fraction format
13365 never affects floats.
13367 @node HMS Formats, Date Formats, Fraction Formats, Display Modes
13368 @subsection HMS Formats
13372 @pindex calc-hms-notation
13373 The @kbd{d h} (@code{calc-hms-notation}) command controls the display of
13374 HMS (hours-minutes-seconds) forms. It prompts for a string which
13375 consists basically of an ``hours'' marker, optional punctuation, a
13376 ``minutes'' marker, more optional punctuation, and a ``seconds'' marker.
13377 Punctuation is zero or more spaces, commas, or semicolons. The hours
13378 marker is one or more non-punctuation characters. The minutes and
13379 seconds markers must be single non-punctuation characters.
13381 The default HMS format is @samp{@@ ' "}, producing HMS values of the form
13382 @samp{23@@ 30' 15.75"}. The format @samp{deg, ms} would display this same
13383 value as @samp{23deg, 30m15.75s}. During numeric entry, the @kbd{h} or @kbd{o}
13384 keys are recognized as synonyms for @kbd{@@} regardless of display format.
13385 The @kbd{m} and @kbd{s} keys are recognized as synonyms for @kbd{'} and
13386 @kbd{"}, respectively, but only if an @kbd{@@} (or @kbd{h} or @kbd{o}) has
13387 already been typed; otherwise, they have their usual meanings
13388 (@kbd{m-} prefix and @kbd{s-} prefix). Thus, @kbd{5 "}, @kbd{0 @@ 5 "}, and
13389 @kbd{0 h 5 s} are some of the ways to enter the quantity ``five seconds.''
13390 The @kbd{'} key is recognized as ``minutes'' only if @kbd{@@} (or @kbd{h} or
13391 @kbd{o}) has already been pressed; otherwise it means to switch to algebraic
13394 @node Date Formats, Truncating the Stack, HMS Formats, Display Modes
13395 @subsection Date Formats
13399 @pindex calc-date-notation
13400 The @kbd{d d} (@code{calc-date-notation}) command controls the display
13401 of date forms (@pxref{Date Forms}). It prompts for a string which
13402 contains letters that represent the various parts of a date and time.
13403 To show which parts should be omitted when the form represents a pure
13404 date with no time, parts of the string can be enclosed in @samp{< >}
13405 marks. If you don't include @samp{< >} markers in the format, Calc
13406 guesses at which parts, if any, should be omitted when formatting
13409 The default format is: @samp{<H:mm:SSpp >Www Mmm D, YYYY}.
13410 An example string in this format is @samp{3:32pm Wed Jan 9, 1991}.
13411 If you enter a blank format string, this default format is
13414 Calc uses @samp{< >} notation for nameless functions as well as for
13415 dates. @xref{Specifying Operators}. To avoid confusion with nameless
13416 functions, your date formats should avoid using the @samp{#} character.
13420 * Date Formatting Codes::
13421 * Free-Form Dates::
13422 * Standard Date Formats::
13425 @node ISO 8601, Date Formatting Codes, Date Formats, Date Formats
13426 @subsubsection ISO 8601
13430 The same date can be written down in different formats and Calc tries
13431 to allow you to choose your preferred format. Some common formats are
13432 ambiguous, however; for example, 10/11/2012 means October 11,
13433 2012 in the United States but it means November 10, 2012 in
13434 Europe. To help avoid such ambiguities, the International Organization
13435 for Standardization (ISO) provides the ISO 8601 standard, which
13436 provides three different but easily distinguishable and unambiguous
13437 ways to represent a date.
13439 The ISO 8601 calendar date representation is
13442 @var{YYYY}-@var{MM}-@var{DD}
13446 where @var{YYYY} is the four digit year, @var{MM} is the two-digit month
13447 number (01 for January to 12 for December), and @var{DD} is the
13448 two-digit day of the month (01 to 31). (Note that @var{YYYY} does not
13449 correspond to Calc's date formatting code, which will be introduced
13450 later.) The year, which should be padded with zeros to ensure it has at
13451 least four digits, is the Gregorian year, except that the year before
13452 0001 (1 AD) is the year 0000 (1 BC). The date October 11, 2012 is
13453 written 2012-10-11 in this representation and November 10, 2012 is
13454 written 2012-11-10.
13456 The ISO 8601 ordinal date representation is
13459 @var{YYYY}-@var{DDD}
13463 where @var{YYYY} is the year, as above, and @var{DDD} is the day of the year.
13464 The date December 31, 2011 is written 2011-365 in this representation
13465 and January 1, 2012 is written 2012-001.
13467 The ISO 8601 week date representation is
13470 @var{YYYY}-W@var{ww}-@var{D}
13474 where @var{YYYY} is the ISO week-numbering year, @var{ww} is the two
13475 digit week number (preceded by a literal ``W''), and @var{D} is the day
13476 of the week (1 for Monday through 7 for Sunday). The ISO week-numbering
13477 year is based on the Gregorian year but can differ slightly. The first
13478 week of an ISO week-numbering year is the week with the Gregorian year's
13479 first Thursday in it (equivalently, the week containing January 4);
13480 any day of that week (Monday through Sunday) is part of the same ISO
13481 week-numbering year, any day from the previous week is part of the
13482 previous year. For example, January 4, 2013 is on a Friday, and so
13483 the first week for the ISO week-numbering year 2013 starts on
13484 Monday, December 31, 2012. The day December 31, 2012 is then part of the
13485 Gregorian year 2012 but ISO week-numbering year 2013. In the week
13486 date representation, this week goes from 2013-W01-1 (December 31,
13487 2012) to 2013-W01-7 (January 6, 2013).
13489 All three ISO 8601 representations arrange the numbers from most
13490 significant to least significant; as well as being unambiguous
13491 representations, they are easy to sort since chronological order in
13492 this formats corresponds to lexicographical order. The hyphens are
13495 The ISO 8601 standard uses a 24 hour clock; a particular time is
13496 represented by @var{hh}:@var{mm}:@var{ss} where @var{hh} is the
13497 two-digit hour (from 00 to 24), @var{mm} is the two-digit minute (from
13498 00 to 59) and @var{ss} is the two-digit second. The seconds or minutes
13499 and seconds can be omitted, and decimals can be added. If a date with a
13500 time is represented, they should be separated by a literal ``T'', so noon
13501 on December 13, 2012 can be represented as 2012-12-13T12:00.
13503 @node Date Formatting Codes, Free-Form Dates, ISO 8601, Date Formats
13504 @subsubsection Date Formatting Codes
13507 When displaying a date, the current date format is used. All
13508 characters except for letters and @samp{<} and @samp{>} are
13509 copied literally when dates are formatted. The portion between
13510 @samp{< >} markers is omitted for pure dates, or included for
13511 date/time forms. Letters are interpreted according to the table
13514 When dates are read in during algebraic entry, Calc first tries to
13515 match the input string to the current format either with or without
13516 the time part. The punctuation characters (including spaces) must
13517 match exactly; letter fields must correspond to suitable text in
13518 the input. If this doesn't work, Calc checks if the input is a
13519 simple number; if so, the number is interpreted as a number of days
13520 since Dec 31, 1 BC@. Otherwise, Calc tries a much more relaxed and
13521 flexible algorithm which is described in the next section.
13523 Weekday names are ignored during reading.
13525 Two-digit year numbers are interpreted as lying in the range
13526 from 1941 to 2039. Years outside that range are always
13527 entered and displayed in full. Year numbers with a leading
13528 @samp{+} sign are always interpreted exactly, allowing the
13529 entry and display of the years 1 through 99 AD.
13531 Here is a complete list of the formatting codes for dates:
13535 Year: ``91'' for 1991, ``7'' for 2007, ``+23'' for 23 AD.
13537 Year: ``91'' for 1991, ``07'' for 2007, ``+23'' for 23 AD.
13539 Year: ``91'' for 1991, `` 7'' for 2007, ``+23'' for 23 AD.
13541 Year: ``1991'' for 1991, ``23'' for 23 AD.
13543 Year: ``1991'' for 1991, ``+23'' for 23 AD.
13545 Year: ``1991'' for 1991, ``0023'' for 23 AD, ``0000'' for 1 BC.
13547 Year: ISO 8601 week-numbering year.
13549 Year: ``ad'' or blank.
13551 Year: ``AD'' or blank.
13553 Year: ``ad '' or blank. (Note trailing space.)
13555 Year: ``AD '' or blank.
13557 Year: ``a.d.@:'' or blank.
13559 Year: ``A.D.'' or blank.
13561 Year: ``bc'' or blank.
13563 Year: ``BC'' or blank.
13565 Year: `` bc'' or blank. (Note leading space.)
13567 Year: `` BC'' or blank.
13569 Year: ``b.c.@:'' or blank.
13571 Year: ``B.C.'' or blank.
13573 Month: ``8'' for August.
13575 Month: ``08'' for August.
13577 Month: `` 8'' for August.
13579 Month: ``AUG'' for August.
13581 Month: ``Aug'' for August.
13583 Month: ``aug'' for August.
13585 Month: ``AUGUST'' for August.
13587 Month: ``August'' for August.
13589 Day: ``7'' for 7th day of month.
13591 Day: ``07'' for 7th day of month.
13593 Day: `` 7'' for 7th day of month.
13595 Weekday: ``0'' for Sunday, ``6'' for Saturday.
13597 Weekday: ``1'' for Monday, ``7'' for Sunday.
13599 Weekday: ``SUN'' for Sunday.
13601 Weekday: ``Sun'' for Sunday.
13603 Weekday: ``sun'' for Sunday.
13605 Weekday: ``SUNDAY'' for Sunday.
13607 Weekday: ``Sunday'' for Sunday.
13609 Week number: ISO 8601 week number, ``W01'' for week 1.
13611 Day of year: ``34'' for Feb. 3.
13613 Day of year: ``034'' for Feb. 3.
13615 Day of year: `` 34'' for Feb. 3.
13617 Letter: Literal ``T''.
13619 Hour: ``5'' for 5 AM; ``17'' for 5 PM.
13621 Hour: ``05'' for 5 AM; ``17'' for 5 PM.
13623 Hour: `` 5'' for 5 AM; ``17'' for 5 PM.
13625 Hour: ``5'' for 5 AM and 5 PM.
13627 Hour: ``05'' for 5 AM and 5 PM.
13629 Hour: `` 5'' for 5 AM and 5 PM.
13631 AM/PM: ``a'' or ``p''.
13633 AM/PM: ``A'' or ``P''.
13635 AM/PM: ``am'' or ``pm''.
13637 AM/PM: ``AM'' or ``PM''.
13639 AM/PM: ``a.m.@:'' or ``p.m.''.
13641 AM/PM: ``A.M.'' or ``P.M.''.
13643 Minutes: ``7'' for 7.
13645 Minutes: ``07'' for 7.
13647 Minutes: `` 7'' for 7.
13649 Seconds: ``7'' for 7; ``7.23'' for 7.23.
13651 Seconds: ``07'' for 7; ``07.23'' for 7.23.
13653 Seconds: `` 7'' for 7; `` 7.23'' for 7.23.
13655 Optional seconds: ``07'' for 7; blank for 0.
13657 Optional seconds: `` 7'' for 7; blank for 0.
13659 Numeric date/time: ``726842.25'' for 6:00am Wed Jan 9, 1991.
13661 Numeric date: ``726842'' for any time on Wed Jan 9, 1991.
13663 Julian date/time: ``2448265.75'' for 6:00am Wed Jan 9, 1991.
13665 Julian date: ``2448266'' for any time on Wed Jan 9, 1991.
13667 Unix time: ``663400800'' for 6:00am Wed Jan 9, 1991.
13669 Brackets suppression. An ``X'' at the front of the format
13670 causes the surrounding @w{@samp{< >}} delimiters to be omitted
13671 when formatting dates. Note that the brackets are still
13672 required for algebraic entry.
13675 If ``SS'' or ``BS'' (optional seconds) is preceded by a colon, the
13676 colon is also omitted if the seconds part is zero.
13678 If ``bb,'' ``bbb'' or ``bbbb'' or their upper-case equivalents
13679 appear in the format, then negative year numbers are displayed
13680 without a minus sign. Note that ``aa'' and ``bb'' are mutually
13681 exclusive. Some typical usages would be @samp{YYYY AABB};
13682 @samp{AAAYYYYBBB}; @samp{YYYYBBB}.
13684 The formats ``YY,'' ``YYYY,'' ``MM,'' ``DD,'' ``ddd,'' ``hh,'' ``HH,''
13685 ``mm,'' ``ss,'' and ``SS'' actually match any number of digits during
13686 reading unless several of these codes are strung together with no
13687 punctuation in between, in which case the input must have exactly as
13688 many digits as there are letters in the format.
13690 The ``j,'' ``J,'' and ``U'' formats do not make any time zone
13691 adjustment. They effectively use @samp{julian(x,0)} and
13692 @samp{unixtime(x,0)} to make the conversion; @pxref{Date Arithmetic}.
13694 @node Free-Form Dates, Standard Date Formats, Date Formatting Codes, Date Formats
13695 @subsubsection Free-Form Dates
13698 When reading a date form during algebraic entry, Calc falls back
13699 on the algorithm described here if the input does not exactly
13700 match the current date format. This algorithm generally
13701 ``does the right thing'' and you don't have to worry about it,
13702 but it is described here in full detail for the curious.
13704 Calc does not distinguish between upper- and lower-case letters
13705 while interpreting dates.
13707 First, the time portion, if present, is located somewhere in the
13708 text and then removed. The remaining text is then interpreted as
13711 A time is of the form @samp{hh:mm:ss}, possibly with the seconds
13712 part omitted and possibly with an AM/PM indicator added to indicate
13713 12-hour time. If the AM/PM is present, the minutes may also be
13714 omitted. The AM/PM part may be any of the words @samp{am},
13715 @samp{pm}, @samp{noon}, or @samp{midnight}; each of these may be
13716 abbreviated to one letter, and the alternate forms @samp{a.m.},
13717 @samp{p.m.}, and @samp{mid} are also understood. Obviously
13718 @samp{noon} and @samp{midnight} are allowed only on 12:00:00.
13719 The words @samp{noon}, @samp{mid}, and @samp{midnight} are also
13720 recognized with no number attached. Midnight will represent the
13721 beginning of a day.
13723 If there is no AM/PM indicator, the time is interpreted in 24-hour
13726 When reading the date portion, Calc first checks to see if it is an
13727 ISO 8601 week-numbering date; if the string contains an integer
13728 representing the year, a ``W'' followed by two digits for the week
13729 number, and an integer from 1 to 7 representing the weekday (in that
13730 order), then all other characters are ignored and this information
13731 determines the date. Otherwise, all words and numbers are isolated
13732 from the string; other characters are ignored. All words must be
13733 either month names or day-of-week names (the latter of which are
13734 ignored). Names can be written in full or as three-letter
13737 Large numbers, or numbers with @samp{+} or @samp{-} signs,
13738 are interpreted as years. If one of the other numbers is
13739 greater than 12, then that must be the day and the remaining
13740 number in the input is therefore the month. Otherwise, Calc
13741 assumes the month, day and year are in the same order that they
13742 appear in the current date format. If the year is omitted, the
13743 current year is taken from the system clock.
13745 If there are too many or too few numbers, or any unrecognizable
13746 words, then the input is rejected.
13748 If there are any large numbers (of five digits or more) other than
13749 the year, they are ignored on the assumption that they are something
13750 like Julian dates that were included along with the traditional
13751 date components when the date was formatted.
13753 One of the words @samp{ad}, @samp{a.d.}, @samp{bc}, or @samp{b.c.}
13754 may optionally be used; the latter two are equivalent to a
13755 minus sign on the year value.
13757 If you always enter a four-digit year, and use a name instead
13758 of a number for the month, there is no danger of ambiguity.
13760 @node Standard Date Formats, , Free-Form Dates, Date Formats
13761 @subsubsection Standard Date Formats
13764 There are actually ten standard date formats, numbered 0 through 9.
13765 Entering a blank line at the @kbd{d d} command's prompt gives
13766 you format number 1, Calc's usual format. You can enter any digit
13767 to select the other formats.
13769 To create your own standard date formats, give a numeric prefix
13770 argument from 0 to 9 to the @w{@kbd{d d}} command. The format you
13771 enter will be recorded as the new standard format of that
13772 number, as well as becoming the new current date format.
13773 You can save your formats permanently with the @w{@kbd{m m}}
13774 command (@pxref{Mode Settings}).
13778 @samp{N} (Numerical format)
13780 @samp{<H:mm:SSpp >Www Mmm D, YYYY} (American format)
13782 @samp{D Mmm YYYY<, h:mm:SS>} (European format)
13784 @samp{Www Mmm BD< hh:mm:ss> YYYY} (Unix written date format)
13786 @samp{M/D/Y< H:mm:SSpp>} (American slashed format)
13788 @samp{D.M.Y< h:mm:SS>} (European dotted format)
13790 @samp{M-D-Y< H:mm:SSpp>} (American dashed format)
13792 @samp{D-M-Y< h:mm:SS>} (European dashed format)
13794 @samp{j<, h:mm:ss>} (Julian day plus time)
13796 @samp{YYddd< hh:mm:ss>} (Year-day format)
13798 @samp{ZYYY-MM-DD Www< hh:mm>} (Org mode format)
13800 @samp{IYYY-Iww-w<Thh:mm:ss>} (ISO 8601 week numbering format)
13803 @node Truncating the Stack, Justification, Date Formats, Display Modes
13804 @subsection Truncating the Stack
13808 @pindex calc-truncate-stack
13809 @cindex Truncating the stack
13810 @cindex Narrowing the stack
13811 The @kbd{d t} (@code{calc-truncate-stack}) command moves the @samp{.}@:
13812 line that marks the top-of-stack up or down in the Calculator buffer.
13813 The number right above that line is considered to the be at the top of
13814 the stack. Any numbers below that line are ``hidden'' from all stack
13815 operations (although still visible to the user). This is similar to the
13816 Emacs ``narrowing'' feature, except that the values below the @samp{.}
13817 are @emph{visible}, just temporarily frozen. This feature allows you to
13818 keep several independent calculations running at once in different parts
13819 of the stack, or to apply a certain command to an element buried deep in
13822 Pressing @kbd{d t} by itself moves the @samp{.} to the line the cursor
13823 is on. Thus, this line and all those below it become hidden. To un-hide
13824 these lines, move down to the end of the buffer and press @w{@kbd{d t}}.
13825 With a positive numeric prefix argument @expr{n}, @kbd{d t} hides the
13826 bottom @expr{n} values in the buffer. With a negative argument, it hides
13827 all but the top @expr{n} values. With an argument of zero, it hides zero
13828 values, i.e., moves the @samp{.} all the way down to the bottom.
13831 @pindex calc-truncate-up
13833 @pindex calc-truncate-down
13834 The @kbd{d [} (@code{calc-truncate-up}) and @kbd{d ]}
13835 (@code{calc-truncate-down}) commands move the @samp{.} up or down one
13836 line at a time (or several lines with a prefix argument).
13838 @node Justification, Labels, Truncating the Stack, Display Modes
13839 @subsection Justification
13843 @pindex calc-left-justify
13845 @pindex calc-center-justify
13847 @pindex calc-right-justify
13848 Values on the stack are normally left-justified in the window. You can
13849 control this arrangement by typing @kbd{d <} (@code{calc-left-justify}),
13850 @kbd{d >} (@code{calc-right-justify}), or @kbd{d =}
13851 (@code{calc-center-justify}). For example, in Right-Justification mode,
13852 stack entries are displayed flush-right against the right edge of the
13855 If you change the width of the Calculator window you may have to type
13856 @kbd{d @key{SPC}} (@code{calc-refresh}) to re-align right-justified or centered
13859 Right-justification is especially useful together with fixed-point
13860 notation (see @code{d f}; @code{calc-fix-notation}). With these modes
13861 together, the decimal points on numbers will always line up.
13863 With a numeric prefix argument, the justification commands give you
13864 a little extra control over the display. The argument specifies the
13865 horizontal ``origin'' of a display line. It is also possible to
13866 specify a maximum line width using the @kbd{d b} command (@pxref{Normal
13867 Language Modes}). For reference, the precise rules for formatting and
13868 breaking lines are given below. Notice that the interaction between
13869 origin and line width is slightly different in each justification
13872 In Left-Justified mode, the line is indented by a number of spaces
13873 given by the origin (default zero). If the result is longer than the
13874 maximum line width, if given, or too wide to fit in the Calc window
13875 otherwise, then it is broken into lines which will fit; each broken
13876 line is indented to the origin.
13878 In Right-Justified mode, lines are shifted right so that the rightmost
13879 character is just before the origin, or just before the current
13880 window width if no origin was specified. If the line is too long
13881 for this, then it is broken; the current line width is used, if
13882 specified, or else the origin is used as a width if that is
13883 specified, or else the line is broken to fit in the window.
13885 In Centering mode, the origin is the column number of the center of
13886 each stack entry. If a line width is specified, lines will not be
13887 allowed to go past that width; Calc will either indent less or
13888 break the lines if necessary. If no origin is specified, half the
13889 line width or Calc window width is used.
13891 Note that, in each case, if line numbering is enabled the display
13892 is indented an additional four spaces to make room for the line
13893 number. The width of the line number is taken into account when
13894 positioning according to the current Calc window width, but not
13895 when positioning by explicit origins and widths. In the latter
13896 case, the display is formatted as specified, and then uniformly
13897 shifted over four spaces to fit the line numbers.
13899 @node Labels, , Justification, Display Modes
13904 @pindex calc-left-label
13905 The @kbd{d @{} (@code{calc-left-label}) command prompts for a string,
13906 then displays that string to the left of every stack entry. If the
13907 entries are left-justified (@pxref{Justification}), then they will
13908 appear immediately after the label (unless you specified an origin
13909 greater than the length of the label). If the entries are centered
13910 or right-justified, the label appears on the far left and does not
13911 affect the horizontal position of the stack entry.
13913 Give a blank string (with @kbd{d @{ @key{RET}}) to turn the label off.
13916 @pindex calc-right-label
13917 The @kbd{d @}} (@code{calc-right-label}) command similarly adds a
13918 label on the righthand side. It does not affect positioning of
13919 the stack entries unless they are right-justified. Also, if both
13920 a line width and an origin are given in Right-Justified mode, the
13921 stack entry is justified to the origin and the righthand label is
13922 justified to the line width.
13924 One application of labels would be to add equation numbers to
13925 formulas you are manipulating in Calc and then copying into a
13926 document (possibly using Embedded mode). The equations would
13927 typically be centered, and the equation numbers would be on the
13928 left or right as you prefer.
13930 @node Language Modes, Modes Variable, Display Modes, Mode Settings
13931 @section Language Modes
13934 The commands in this section change Calc to use a different notation for
13935 entry and display of formulas, corresponding to the conventions of some
13936 other common language such as Pascal or @LaTeX{}. Objects displayed on the
13937 stack or yanked from the Calculator to an editing buffer will be formatted
13938 in the current language; objects entered in algebraic entry or yanked from
13939 another buffer will be interpreted according to the current language.
13941 The current language has no effect on things written to or read from the
13942 trail buffer, nor does it affect numeric entry. Only algebraic entry is
13943 affected. You can make even algebraic entry ignore the current language
13944 and use the standard notation by giving a numeric prefix, e.g., @kbd{C-u '}.
13946 For example, suppose the formula @samp{2*a[1] + atan(a[2])} occurs in a C
13947 program; elsewhere in the program you need the derivatives of this formula
13948 with respect to @samp{a[1]} and @samp{a[2]}. First, type @kbd{d C}
13949 to switch to C notation. Now use @code{C-u C-x * g} to grab the formula
13950 into the Calculator, @kbd{a d a[1] @key{RET}} to differentiate with respect
13951 to the first variable, and @kbd{C-x * y} to yank the formula for the derivative
13952 back into your C program. Press @kbd{U} to undo the differentiation and
13953 repeat with @kbd{a d a[2] @key{RET}} for the other derivative.
13955 Without being switched into C mode first, Calc would have misinterpreted
13956 the brackets in @samp{a[1]} and @samp{a[2]}, would not have known that
13957 @code{atan} was equivalent to Calc's built-in @code{arctan} function,
13958 and would have written the formula back with notations (like implicit
13959 multiplication) which would not have been valid for a C program.
13961 As another example, suppose you are maintaining a C program and a @LaTeX{}
13962 document, each of which needs a copy of the same formula. You can grab the
13963 formula from the program in C mode, switch to @LaTeX{} mode, and yank the
13964 formula into the document in @LaTeX{} math-mode format.
13966 Language modes are selected by typing the letter @kbd{d} followed by a
13967 shifted letter key.
13970 * Normal Language Modes::
13971 * C FORTRAN Pascal::
13972 * TeX and LaTeX Language Modes::
13973 * Eqn Language Mode::
13974 * Yacas Language Mode::
13975 * Maxima Language Mode::
13976 * Giac Language Mode::
13977 * Mathematica Language Mode::
13978 * Maple Language Mode::
13983 @node Normal Language Modes, C FORTRAN Pascal, Language Modes, Language Modes
13984 @subsection Normal Language Modes
13988 @pindex calc-normal-language
13989 The @kbd{d N} (@code{calc-normal-language}) command selects the usual
13990 notation for Calc formulas, as described in the rest of this manual.
13991 Matrices are displayed in a multi-line tabular format, but all other
13992 objects are written in linear form, as they would be typed from the
13996 @pindex calc-flat-language
13997 @cindex Matrix display
13998 The @kbd{d O} (@code{calc-flat-language}) command selects a language
13999 identical with the normal one, except that matrices are written in
14000 one-line form along with everything else. In some applications this
14001 form may be more suitable for yanking data into other buffers.
14004 @pindex calc-line-breaking
14005 @cindex Line breaking
14006 @cindex Breaking up long lines
14007 Even in one-line mode, long formulas or vectors will still be split
14008 across multiple lines if they exceed the width of the Calculator window.
14009 The @kbd{d b} (@code{calc-line-breaking}) command turns this line-breaking
14010 feature on and off. (It works independently of the current language.)
14011 If you give a numeric prefix argument of five or greater to the @kbd{d b}
14012 command, that argument will specify the line width used when breaking
14016 @pindex calc-big-language
14017 The @kbd{d B} (@code{calc-big-language}) command selects a language
14018 which uses textual approximations to various mathematical notations,
14019 such as powers, quotients, and square roots:
14029 in place of @samp{sqrt((a+1)/b + c^2)}.
14031 Subscripts like @samp{a_i} are displayed as actual subscripts in Big
14032 mode. Double subscripts, @samp{a_i_j} (@samp{subscr(subscr(a, i), j)})
14033 are displayed as @samp{a} with subscripts separated by commas:
14034 @samp{i, j}. They must still be entered in the usual underscore
14037 One slight ambiguity of Big notation is that
14046 can represent either the negative rational number @expr{-3:4}, or the
14047 actual expression @samp{-(3/4)}; but the latter formula would normally
14048 never be displayed because it would immediately be evaluated to
14049 @expr{-3:4} or @expr{-0.75}, so this ambiguity is not a problem in
14052 Non-decimal numbers are displayed with subscripts. Thus there is no
14053 way to tell the difference between @samp{16#C2} and @samp{C2_16},
14054 though generally you will know which interpretation is correct.
14055 Logarithms @samp{log(x,b)} and @samp{log10(x)} also use subscripts
14058 In Big mode, stack entries often take up several lines. To aid
14059 readability, stack entries are separated by a blank line in this mode.
14060 You may find it useful to expand the Calc window's height using
14061 @kbd{C-x ^} (@code{enlarge-window}) or to make the Calc window the only
14062 one on the screen with @kbd{C-x 1} (@code{delete-other-windows}).
14064 Long lines are currently not rearranged to fit the window width in
14065 Big mode, so you may need to use the @kbd{<} and @kbd{>} keys
14066 to scroll across a wide formula. For really big formulas, you may
14067 even need to use @kbd{@{} and @kbd{@}} to scroll up and down.
14070 @pindex calc-unformatted-language
14071 The @kbd{d U} (@code{calc-unformatted-language}) command altogether disables
14072 the use of operator notation in formulas. In this mode, the formula
14073 shown above would be displayed:
14076 sqrt(add(div(add(a, 1), b), pow(c, 2)))
14079 These four modes differ only in display format, not in the format
14080 expected for algebraic entry. The standard Calc operators work in
14081 all four modes, and unformatted notation works in any language mode
14082 (except that Mathematica mode expects square brackets instead of
14085 @node C FORTRAN Pascal, TeX and LaTeX Language Modes, Normal Language Modes, Language Modes
14086 @subsection C, FORTRAN, and Pascal Modes
14090 @pindex calc-c-language
14092 The @kbd{d C} (@code{calc-c-language}) command selects the conventions
14093 of the C language for display and entry of formulas. This differs from
14094 the normal language mode in a variety of (mostly minor) ways. In
14095 particular, C language operators and operator precedences are used in
14096 place of Calc's usual ones. For example, @samp{a^b} means @samp{xor(a,b)}
14097 in C mode; a value raised to a power is written as a function call,
14100 In C mode, vectors and matrices use curly braces instead of brackets.
14101 Octal and hexadecimal values are written with leading @samp{0} or @samp{0x}
14102 rather than using the @samp{#} symbol. Array subscripting is
14103 translated into @code{subscr} calls, so that @samp{a[i]} in C
14104 mode is the same as @samp{a_i} in Normal mode. Assignments
14105 turn into the @code{assign} function, which Calc normally displays
14106 using the @samp{:=} symbol.
14108 The variables @code{pi} and @code{e} would be displayed @samp{pi}
14109 and @samp{e} in Normal mode, but in C mode they are displayed as
14110 @samp{M_PI} and @samp{M_E}, corresponding to the names of constants
14111 typically provided in the @file{<math.h>} header. Functions whose
14112 names are different in C are translated automatically for entry and
14113 display purposes. For example, entering @samp{asin(x)} will push the
14114 formula @samp{arcsin(x)} onto the stack; this formula will be displayed
14115 as @samp{asin(x)} as long as C mode is in effect.
14118 @pindex calc-pascal-language
14119 @cindex Pascal language
14120 The @kbd{d P} (@code{calc-pascal-language}) command selects Pascal
14121 conventions. Like C mode, Pascal mode interprets array brackets and uses
14122 a different table of operators. Hexadecimal numbers are entered and
14123 displayed with a preceding dollar sign. (Thus the regular meaning of
14124 @kbd{$2} during algebraic entry does not work in Pascal mode, though
14125 @kbd{$} (and @kbd{$$}, etc.) not followed by digits works the same as
14126 always.) No special provisions are made for other non-decimal numbers,
14127 vectors, and so on, since there is no universally accepted standard way
14128 of handling these in Pascal.
14131 @pindex calc-fortran-language
14132 @cindex FORTRAN language
14133 The @kbd{d F} (@code{calc-fortran-language}) command selects FORTRAN
14134 conventions. Various function names are transformed into FORTRAN
14135 equivalents. Vectors are written as @samp{/1, 2, 3/}, and may be
14136 entered this way or using square brackets. Since FORTRAN uses round
14137 parentheses for both function calls and array subscripts, Calc displays
14138 both in the same way; @samp{a(i)} is interpreted as a function call
14139 upon reading, and subscripts must be entered as @samp{subscr(a, i)}.
14140 If the variable @code{a} has been declared to have type
14141 @code{vector} or @code{matrix}, however, then @samp{a(i)} will be
14142 parsed as a subscript. (@xref{Declarations}.) Usually it doesn't
14143 matter, though; if you enter the subscript expression @samp{a(i)} and
14144 Calc interprets it as a function call, you'll never know the difference
14145 unless you switch to another language mode or replace @code{a} with an
14146 actual vector (or unless @code{a} happens to be the name of a built-in
14149 Underscores are allowed in variable and function names in all of these
14150 language modes. The underscore here is equivalent to the @samp{#} in
14151 Normal mode, or to hyphens in the underlying Emacs Lisp variable names.
14153 FORTRAN and Pascal modes normally do not adjust the case of letters in
14154 formulas. Most built-in Calc names use lower-case letters. If you use a
14155 positive numeric prefix argument with @kbd{d P} or @kbd{d F}, these
14156 modes will use upper-case letters exclusively for display, and will
14157 convert to lower-case on input. With a negative prefix, these modes
14158 convert to lower-case for display and input.
14160 @node TeX and LaTeX Language Modes, Eqn Language Mode, C FORTRAN Pascal, Language Modes
14161 @subsection @TeX{} and @LaTeX{} Language Modes
14165 @pindex calc-tex-language
14166 @cindex TeX language
14168 @pindex calc-latex-language
14169 @cindex LaTeX language
14170 The @kbd{d T} (@code{calc-tex-language}) command selects the conventions
14171 of ``math mode'' in Donald Knuth's @TeX{} typesetting language,
14172 and the @kbd{d L} (@code{calc-latex-language}) command selects the
14173 conventions of ``math mode'' in @LaTeX{}, a typesetting language that
14174 uses @TeX{} as its formatting engine. Calc's @LaTeX{} language mode can
14175 read any formula that the @TeX{} language mode can, although @LaTeX{}
14176 mode may display it differently.
14178 Formulas are entered and displayed in the appropriate notation;
14179 @texline @math{\sin(a/b)}
14180 @infoline @expr{sin(a/b)}
14181 will appear as @samp{\sin\left( @{a \over b@} \right)} in @TeX{} mode and
14182 @samp{\sin\left(\frac@{a@}@{b@}\right)} in @LaTeX{} mode.
14183 Math formulas are often enclosed by @samp{$ $} signs in @TeX{} and
14184 @LaTeX{}; these should be omitted when interfacing with Calc. To Calc,
14185 the @samp{$} sign has the same meaning it always does in algebraic
14186 formulas (a reference to an existing entry on the stack).
14188 Complex numbers are displayed as in @samp{3 + 4i}. Fractions and
14189 quotients are written using @code{\over} in @TeX{} mode (as in
14190 @code{@{a \over b@}}) and @code{\frac} in @LaTeX{} mode (as in
14191 @code{\frac@{a@}@{b@}}); binomial coefficients are written with
14192 @code{\choose} in @TeX{} mode (as in @code{@{a \choose b@}}) and
14193 @code{\binom} in @LaTeX{} mode (as in @code{\binom@{a@}@{b@}}).
14194 Interval forms are written with @code{\ldots}, and error forms are
14195 written with @code{\pm}. Absolute values are written as in
14196 @samp{|x + 1|}, and the floor and ceiling functions are written with
14197 @code{\lfloor}, @code{\rfloor}, etc. The words @code{\left} and
14198 @code{\right} are ignored when reading formulas in @TeX{} and @LaTeX{}
14199 modes. Both @code{inf} and @code{uinf} are written as @code{\infty};
14200 when read, @code{\infty} always translates to @code{inf}.
14202 Function calls are written the usual way, with the function name followed
14203 by the arguments in parentheses. However, functions for which @TeX{}
14204 and @LaTeX{} have special names (like @code{\sin}) will use curly braces
14205 instead of parentheses for very simple arguments. During input, curly
14206 braces and parentheses work equally well for grouping, but when the
14207 document is formatted the curly braces will be invisible. Thus the
14209 @texline @math{\sin{2 x}}
14210 @infoline @expr{sin 2x}
14212 @texline @math{\sin(2 + x)}.
14213 @infoline @expr{sin(2 + x)}.
14215 The @TeX{} specific unit names (@pxref{Predefined Units}) will not use
14216 the @samp{tex} prefix; the unit name for a @TeX{} point will be
14217 @samp{pt} instead of @samp{texpt}, for example.
14219 Function and variable names not treated specially by @TeX{} and @LaTeX{}
14220 are simply written out as-is, which will cause them to come out in
14221 italic letters in the printed document. If you invoke @kbd{d T} or
14222 @kbd{d L} with a positive numeric prefix argument, names of more than
14223 one character will instead be enclosed in a protective commands that
14224 will prevent them from being typeset in the math italics; they will be
14225 written @samp{\hbox@{@var{name}@}} in @TeX{} mode and
14226 @samp{\text@{@var{name}@}} in @LaTeX{} mode. The
14227 @samp{\hbox@{ @}} and @samp{\text@{ @}} notations are ignored during
14228 reading. If you use a negative prefix argument, such function names are
14229 written @samp{\@var{name}}, and function names that begin with @code{\} during
14230 reading have the @code{\} removed. (Note that in this mode, long
14231 variable names are still written with @code{\hbox} or @code{\text}.
14232 However, you can always make an actual variable name like @code{\bar} in
14235 During reading, text of the form @samp{\matrix@{ ...@: @}} is replaced
14236 by @samp{[ ...@: ]}. The same also applies to @code{\pmatrix} and
14237 @code{\bmatrix}. In @LaTeX{} mode this also applies to
14238 @samp{\begin@{matrix@} ... \end@{matrix@}},
14239 @samp{\begin@{bmatrix@} ... \end@{bmatrix@}},
14240 @samp{\begin@{pmatrix@} ... \end@{pmatrix@}}, as well as
14241 @samp{\begin@{smallmatrix@} ... \end@{smallmatrix@}}.
14242 The symbol @samp{&} is interpreted as a comma,
14243 and the symbols @samp{\cr} and @samp{\\} are interpreted as semicolons.
14244 During output, matrices are displayed in @samp{\matrix@{ a & b \\ c & d@}}
14245 format in @TeX{} mode and in
14246 @samp{\begin@{pmatrix@} a & b \\ c & d \end@{pmatrix@}} format in
14247 @LaTeX{} mode; you may need to edit this afterwards to change to your
14248 preferred matrix form. If you invoke @kbd{d T} or @kbd{d L} with an
14249 argument of 2 or -2, then matrices will be displayed in two-dimensional
14260 This may be convenient for isolated matrices, but could lead to
14261 expressions being displayed like
14264 \begin@{pmatrix@} \times x
14271 While this wouldn't bother Calc, it is incorrect @LaTeX{}.
14272 (Similarly for @TeX{}.)
14274 Accents like @code{\tilde} and @code{\bar} translate into function
14275 calls internally (@samp{tilde(x)}, @samp{bar(x)}). The @code{\underline}
14276 sequence is treated as an accent. The @code{\vec} accent corresponds
14277 to the function name @code{Vec}, because @code{vec} is the name of
14278 a built-in Calc function. The following table shows the accents
14279 in Calc, @TeX{}, @LaTeX{} and @dfn{eqn} (described in the next section):
14284 @let@calcindexershow=@calcindexernoshow @c Suppress marginal notes
14285 @let@calcindexersh=@calcindexernoshow
14394 acute \acute \acute
14398 breve \breve \breve
14400 check \check \check
14406 dotdot \ddot \ddot dotdot
14409 grave \grave \grave
14414 tilde \tilde \tilde tilde
14416 under \underline \underline under
14421 The @samp{=>} (evaluates-to) operator appears as a @code{\to} symbol:
14422 @samp{@{@var{a} \to @var{b}@}}. @TeX{} defines @code{\to} as an
14423 alias for @code{\rightarrow}. However, if the @samp{=>} is the
14424 top-level expression being formatted, a slightly different notation
14425 is used: @samp{\evalto @var{a} \to @var{b}}. The @code{\evalto}
14426 word is ignored by Calc's input routines, and is undefined in @TeX{}.
14427 You will typically want to include one of the following definitions
14428 at the top of a @TeX{} file that uses @code{\evalto}:
14432 \def\evalto#1\to@{@}
14435 The first definition formats evaluates-to operators in the usual
14436 way. The second causes only the @var{b} part to appear in the
14437 printed document; the @var{a} part and the arrow are hidden.
14438 Another definition you may wish to use is @samp{\let\to=\Rightarrow}
14439 which causes @code{\to} to appear more like Calc's @samp{=>} symbol.
14440 @xref{Evaluates-To Operator}, for a discussion of @code{evalto}.
14442 The complete set of @TeX{} control sequences that are ignored during
14446 \hbox \mbox \text \left \right
14447 \, \> \: \; \! \quad \qquad \hfil \hfill
14448 \displaystyle \textstyle \dsize \tsize
14449 \scriptstyle \scriptscriptstyle \ssize \ssize
14450 \rm \bf \it \sl \roman \bold \italic \slanted
14451 \cal \mit \Cal \Bbb \frak \goth
14455 Note that, because these symbols are ignored, reading a @TeX{} or
14456 @LaTeX{} formula into Calc and writing it back out may lose spacing and
14459 Also, the ``discretionary multiplication sign'' @samp{\*} is read
14460 the same as @samp{*}.
14463 The @TeX{} version of this manual includes some printed examples at the
14464 end of this section.
14467 Here are some examples of how various Calc formulas are formatted in @TeX{}:
14472 \sin\left( {a^2 \over b_i} \right)
14476 $$ \sin\left( a^2 \over b_i \right) $$
14482 [(3, 4), 3:4, 3 +/- 4, [3 .. inf)]
14483 [3 + 4i, @{3 \over 4@}, 3 \pm 4, [3 \ldots \infty)]
14487 $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$
14493 [abs(a), abs(a / b), floor(a), ceil(a / b)]
14494 [|a|, \left| a \over b \right|,
14495 \lfloor a \rfloor, \left\lceil a \over b \right\rceil]
14499 $$ [|a|, \left| a \over b \right|,
14500 \lfloor a \rfloor, \left\lceil a \over b \right\rceil] $$
14506 [sin(a), sin(2 a), sin(2 + a), sin(a / b)]
14507 [\sin@{a@}, \sin@{2 a@}, \sin(2 + a),
14508 \sin\left( @{a \over b@} \right)]
14512 $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
14516 First with plain @kbd{d T}, then with @kbd{C-u d T}, then finally with
14517 @kbd{C-u - d T} (using the example definition
14518 @samp{\def\foo#1@{\tilde F(#1)@}}:
14522 [f(a), foo(bar), sin(pi)]
14523 [f(a), foo(bar), \sin{\pi}]
14524 [f(a), \hbox@{foo@}(\hbox@{bar@}), \sin@{\pi@}]
14525 [f(a), \foo@{\hbox@{bar@}@}, \sin@{\pi@}]
14529 $$ [f(a), foo(bar), \sin{\pi}] $$
14530 $$ [f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}] $$
14531 $$ [f(a), \tilde F(\hbox{bar}), \sin{\pi}] $$
14535 First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}:
14540 \evalto 2 + 3 \to 5
14549 First with standard @code{\to}, then with @samp{\let\to\Rightarrow}:
14553 [2 + 3 => 5, a / 2 => (b + c) / 2]
14554 [@{2 + 3 \to 5@}, @{@{a \over 2@} \to @{b + c \over 2@}@}]
14558 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$
14559 {\let\to\Rightarrow
14560 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$}
14564 Matrices normally, then changing @code{\matrix} to @code{\pmatrix}:
14568 [ [ a / b, 0 ], [ 0, 2^(x + 1) ] ]
14569 \matrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14570 \pmatrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14574 $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14575 $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14580 @node Eqn Language Mode, Yacas Language Mode, TeX and LaTeX Language Modes, Language Modes
14581 @subsection Eqn Language Mode
14585 @pindex calc-eqn-language
14586 @dfn{Eqn} is another popular formatter for math formulas. It is
14587 designed for use with the TROFF text formatter, and comes standard
14588 with many versions of Unix. The @kbd{d E} (@code{calc-eqn-language})
14589 command selects @dfn{eqn} notation.
14591 The @dfn{eqn} language's main idiosyncrasy is that whitespace plays
14592 a significant part in the parsing of the language. For example,
14593 @samp{sqrt x+1 + y} treats @samp{x+1} as the argument of the
14594 @code{sqrt} operator. @dfn{Eqn} also understands more conventional
14595 grouping using curly braces: @samp{sqrt@{x+1@} + y}. Braces are
14596 required only when the argument contains spaces.
14598 In Calc's @dfn{eqn} mode, however, curly braces are required to
14599 delimit arguments of operators like @code{sqrt}. The first of the
14600 above examples would treat only the @samp{x} as the argument of
14601 @code{sqrt}, and in fact @samp{sin x+1} would be interpreted as
14602 @samp{sin * x + 1}, because @code{sin} is not a special operator
14603 in the @dfn{eqn} language. If you always surround the argument
14604 with curly braces, Calc will never misunderstand.
14606 Calc also understands parentheses as grouping characters. Another
14607 peculiarity of @dfn{eqn}'s syntax makes it advisable to separate
14608 words with spaces from any surrounding characters that aren't curly
14609 braces, so Calc writes @samp{sin ( x + y )} in @dfn{eqn} mode.
14610 (The spaces around @code{sin} are important to make @dfn{eqn}
14611 recognize that @code{sin} should be typeset in a roman font, and
14612 the spaces around @code{x} and @code{y} are a good idea just in
14613 case the @dfn{eqn} document has defined special meanings for these
14616 Powers and subscripts are written with the @code{sub} and @code{sup}
14617 operators, respectively. Note that the caret symbol @samp{^} is
14618 treated the same as a space in @dfn{eqn} mode, as is the @samp{~}
14619 symbol (these are used to introduce spaces of various widths into
14620 the typeset output of @dfn{eqn}).
14622 As in @LaTeX{} mode, Calc's formatter omits parentheses around the
14623 arguments of functions like @code{ln} and @code{sin} if they are
14624 ``simple-looking''; in this case Calc surrounds the argument with
14625 braces, separated by a @samp{~} from the function name: @samp{sin~@{x@}}.
14627 Font change codes (like @samp{roman @var{x}}) and positioning codes
14628 (like @samp{~} and @samp{down @var{n} @var{x}}) are ignored by the
14629 @dfn{eqn} reader. Also ignored are the words @code{left}, @code{right},
14630 @code{mark}, and @code{lineup}. Quotation marks in @dfn{eqn} mode input
14631 are treated the same as curly braces: @samp{sqrt "1+x"} is equivalent to
14632 @samp{sqrt @{1+x@}}; this is only an approximation to the true meaning
14633 of quotes in @dfn{eqn}, but it is good enough for most uses.
14635 Accent codes (@samp{@var{x} dot}) are handled by treating them as
14636 function calls (@samp{dot(@var{x})}) internally.
14637 @xref{TeX and LaTeX Language Modes}, for a table of these accent
14638 functions. The @code{prime} accent is treated specially if it occurs on
14639 a variable or function name: @samp{f prime prime @w{( x prime )}} is
14640 stored internally as @samp{f'@w{'}(x')}. For example, taking the
14641 derivative of @samp{f(2 x)} with @kbd{a d x} will produce @samp{2 f'(2
14642 x)}, which @dfn{eqn} mode will display as @samp{2 f prime ( 2 x )}.
14644 Assignments are written with the @samp{<-} (left-arrow) symbol,
14645 and @code{evalto} operators are written with @samp{->} or
14646 @samp{evalto ... ->} (@pxref{TeX and LaTeX Language Modes}, for a discussion
14647 of this). The regular Calc symbols @samp{:=} and @samp{=>} are also
14648 recognized for these operators during reading.
14650 Vectors in @dfn{eqn} mode use regular Calc square brackets, but
14651 matrices are formatted as @samp{matrix @{ ccol @{ a above b @} ... @}}.
14652 The words @code{lcol} and @code{rcol} are recognized as synonyms
14653 for @code{ccol} during input, and are generated instead of @code{ccol}
14654 if the matrix justification mode so specifies.
14656 @node Yacas Language Mode, Maxima Language Mode, Eqn Language Mode, Language Modes
14657 @subsection Yacas Language Mode
14661 @pindex calc-yacas-language
14662 @cindex Yacas language
14663 The @kbd{d Y} (@code{calc-yacas-language}) command selects the
14664 conventions of Yacas, a free computer algebra system. While the
14665 operators and functions in Yacas are similar to those of Calc, the names
14666 of built-in functions in Yacas are capitalized. The Calc formula
14667 @samp{sin(2 x)}, for example, is entered and displayed @samp{Sin(2 x)}
14668 in Yacas mode, and `@samp{arcsin(x^2)} is @samp{ArcSin(x^2)} in Yacas
14669 mode. Complex numbers are written are written @samp{3 + 4 I}.
14670 The standard special constants are written @code{Pi}, @code{E},
14671 @code{I}, @code{GoldenRatio} and @code{Gamma}. @code{Infinity}
14672 represents both @code{inf} and @code{uinf}, and @code{Undefined}
14673 represents @code{nan}.
14675 Certain operators on functions, such as @code{D} for differentiation
14676 and @code{Integrate} for integration, take a prefix form in Yacas. For
14677 example, the derivative of @w{@samp{e^x sin(x)}} can be computed with
14678 @w{@samp{D(x) Exp(x)*Sin(x)}}.
14680 Other notable differences between Yacas and standard Calc expressions
14681 are that vectors and matrices use curly braces in Yacas, and subscripts
14682 use square brackets. If, for example, @samp{A} represents the list
14683 @samp{@{a,2,c,4@}}, then @samp{A[3]} would equal @samp{c}.
14686 @node Maxima Language Mode, Giac Language Mode, Yacas Language Mode, Language Modes
14687 @subsection Maxima Language Mode
14691 @pindex calc-maxima-language
14692 @cindex Maxima language
14693 The @kbd{d X} (@code{calc-maxima-language}) command selects the
14694 conventions of Maxima, another free computer algebra system. The
14695 function names in Maxima are similar, but not always identical, to Calc.
14696 For example, instead of @samp{arcsin(x)}, Maxima will use
14697 @samp{asin(x)}. Complex numbers are written @samp{3 + 4 %i}. The
14698 standard special constants are written @code{%pi}, @code{%e},
14699 @code{%i}, @code{%phi} and @code{%gamma}. In Maxima, @code{inf} means
14700 the same as in Calc, but @code{infinity} represents Calc's @code{uinf}.
14702 Underscores as well as percent signs are allowed in function and
14703 variable names in Maxima mode. The underscore again is equivalent to
14704 the @samp{#} in Normal mode, and the percent sign is equivalent to
14707 Maxima uses square brackets for lists and vectors, and matrices are
14708 written as calls to the function @code{matrix}, given the row vectors of
14709 the matrix as arguments. Square brackets are also used as subscripts.
14711 @node Giac Language Mode, Mathematica Language Mode, Maxima Language Mode, Language Modes
14712 @subsection Giac Language Mode
14716 @pindex calc-giac-language
14717 @cindex Giac language
14718 The @kbd{d A} (@code{calc-giac-language}) command selects the
14719 conventions of Giac, another free computer algebra system. The function
14720 names in Giac are similar to Maxima. Complex numbers are written
14721 @samp{3 + 4 i}. The standard special constants in Giac are the same as
14722 in Calc, except that @code{infinity} represents both Calc's @code{inf}
14725 Underscores are allowed in function and variable names in Giac mode.
14726 Brackets are used for subscripts. In Giac, indexing of lists begins at
14727 0, instead of 1 as in Calc. So if @samp{A} represents the list
14728 @samp{[a,2,c,4]}, then @samp{A[2]} would equal @samp{c}. In general,
14729 @samp{A[n]} in Giac mode corresponds to @samp{A_(n+1)} in Normal mode.
14731 The Giac interval notation @samp{2 .. 3} has no surrounding brackets;
14732 Calc reads @samp{2 .. 3} as the closed interval @samp{[2 .. 3]} and
14733 writes any kind of interval as @samp{2 .. 3}. This means you cannot see
14734 the difference between an open and a closed interval while in Giac mode.
14736 @node Mathematica Language Mode, Maple Language Mode, Giac Language Mode, Language Modes
14737 @subsection Mathematica Language Mode
14741 @pindex calc-mathematica-language
14742 @cindex Mathematica language
14743 The @kbd{d M} (@code{calc-mathematica-language}) command selects the
14744 conventions of Mathematica. Notable differences in Mathematica mode
14745 are that the names of built-in functions are capitalized, and function
14746 calls use square brackets instead of parentheses. Thus the Calc
14747 formula @samp{sin(2 x)} is entered and displayed @w{@samp{Sin[2 x]}} in
14750 Vectors and matrices use curly braces in Mathematica. Complex numbers
14751 are written @samp{3 + 4 I}. The standard special constants in Calc are
14752 written @code{Pi}, @code{E}, @code{I}, @code{GoldenRatio}, @code{EulerGamma},
14753 @code{Infinity}, @code{ComplexInfinity}, and @code{Indeterminate} in
14755 Non-decimal numbers are written, e.g., @samp{16^^7fff}. Floating-point
14756 numbers in scientific notation are written @samp{1.23*10.^3}.
14757 Subscripts use double square brackets: @samp{a[[i]]}.
14759 @node Maple Language Mode, Compositions, Mathematica Language Mode, Language Modes
14760 @subsection Maple Language Mode
14764 @pindex calc-maple-language
14765 @cindex Maple language
14766 The @kbd{d W} (@code{calc-maple-language}) command selects the
14767 conventions of Maple.
14769 Maple's language is much like C@. Underscores are allowed in symbol
14770 names; square brackets are used for subscripts; explicit @samp{*}s for
14771 multiplications are required. Use either @samp{^} or @samp{**} to
14774 Maple uses square brackets for lists and curly braces for sets. Calc
14775 interprets both notations as vectors, and displays vectors with square
14776 brackets. This means Maple sets will be converted to lists when they
14777 pass through Calc. As a special case, matrices are written as calls
14778 to the function @code{matrix}, given a list of lists as the argument,
14779 and can be read in this form or with all-capitals @code{MATRIX}.
14781 The Maple interval notation @samp{2 .. 3} is like Giac's interval
14782 notation, and is handled the same by Calc.
14784 Maple writes complex numbers as @samp{3 + 4*I}. Its special constants
14785 are @code{Pi}, @code{E}, @code{I}, and @code{infinity} (all three of
14786 @code{inf}, @code{uinf}, and @code{nan} display as @code{infinity}).
14787 Floating-point numbers are written @samp{1.23*10.^3}.
14789 Among things not currently handled by Calc's Maple mode are the
14790 various quote symbols, procedures and functional operators, and
14791 inert (@samp{&}) operators.
14793 @node Compositions, Syntax Tables, Maple Language Mode, Language Modes
14794 @subsection Compositions
14797 @cindex Compositions
14798 There are several @dfn{composition functions} which allow you to get
14799 displays in a variety of formats similar to those in Big language
14800 mode. Most of these functions do not evaluate to anything; they are
14801 placeholders which are left in symbolic form by Calc's evaluator but
14802 are recognized by Calc's display formatting routines.
14804 Two of these, @code{string} and @code{bstring}, are described elsewhere.
14805 @xref{Strings}. For example, @samp{string("ABC")} is displayed as
14806 @samp{ABC}. When viewed on the stack it will be indistinguishable from
14807 the variable @code{ABC}, but internally it will be stored as
14808 @samp{string([65, 66, 67])} and can still be manipulated this way; for
14809 example, the selection and vector commands @kbd{j 1 v v j u} would
14810 select the vector portion of this object and reverse the elements, then
14811 deselect to reveal a string whose characters had been reversed.
14813 The composition functions do the same thing in all language modes
14814 (although their components will of course be formatted in the current
14815 language mode). The one exception is Unformatted mode (@kbd{d U}),
14816 which does not give the composition functions any special treatment.
14817 The functions are discussed here because of their relationship to
14818 the language modes.
14821 * Composition Basics::
14822 * Horizontal Compositions::
14823 * Vertical Compositions::
14824 * Other Compositions::
14825 * Information about Compositions::
14826 * User-Defined Compositions::
14829 @node Composition Basics, Horizontal Compositions, Compositions, Compositions
14830 @subsubsection Composition Basics
14833 Compositions are generally formed by stacking formulas together
14834 horizontally or vertically in various ways. Those formulas are
14835 themselves compositions. @TeX{} users will find this analogous
14836 to @TeX{}'s ``boxes.'' Each multi-line composition has a
14837 @dfn{baseline}; horizontal compositions use the baselines to
14838 decide how formulas should be positioned relative to one another.
14839 For example, in the Big mode formula
14851 the second term of the sum is four lines tall and has line three as
14852 its baseline. Thus when the term is combined with 17, line three
14853 is placed on the same level as the baseline of 17.
14859 Another important composition concept is @dfn{precedence}. This is
14860 an integer that represents the binding strength of various operators.
14861 For example, @samp{*} has higher precedence (195) than @samp{+} (180),
14862 which means that @samp{(a * b) + c} will be formatted without the
14863 parentheses, but @samp{a * (b + c)} will keep the parentheses.
14865 The operator table used by normal and Big language modes has the
14866 following precedences:
14869 _ 1200 @r{(subscripts)}
14870 % 1100 @r{(as in n}%@r{)}
14871 ! 1000 @r{(as in }!@r{n)}
14874 !! 210 @r{(as in n}!!@r{)}
14875 ! 210 @r{(as in n}!@r{)}
14877 - 197 @r{(as in }-@r{n)}
14878 * 195 @r{(or implicit multiplication)}
14880 + - 180 @r{(as in a}+@r{b)}
14882 < = 160 @r{(and other relations)}
14894 The general rule is that if an operator with precedence @expr{n}
14895 occurs as an argument to an operator with precedence @expr{m}, then
14896 the argument is enclosed in parentheses if @expr{n < m}. Top-level
14897 expressions and expressions which are function arguments, vector
14898 components, etc., are formatted with precedence zero (so that they
14899 normally never get additional parentheses).
14901 For binary left-associative operators like @samp{+}, the righthand
14902 argument is actually formatted with one-higher precedence than shown
14903 in the table. This makes sure @samp{(a + b) + c} omits the parentheses,
14904 but the unnatural form @samp{a + (b + c)} keeps its parentheses.
14905 Right-associative operators like @samp{^} format the lefthand argument
14906 with one-higher precedence.
14912 The @code{cprec} function formats an expression with an arbitrary
14913 precedence. For example, @samp{cprec(abc, 185)} will combine into
14914 sums and products as follows: @samp{7 + abc}, @samp{7 (abc)} (because
14915 this @code{cprec} form has higher precedence than addition, but lower
14916 precedence than multiplication).
14922 A final composition issue is @dfn{line breaking}. Calc uses two
14923 different strategies for ``flat'' and ``non-flat'' compositions.
14924 A non-flat composition is anything that appears on multiple lines
14925 (not counting line breaking). Examples would be matrices and Big
14926 mode powers and quotients. Non-flat compositions are displayed
14927 exactly as specified. If they come out wider than the current
14928 window, you must use horizontal scrolling (@kbd{<} and @kbd{>}) to
14931 Flat compositions, on the other hand, will be broken across several
14932 lines if they are too wide to fit the window. Certain points in a
14933 composition are noted internally as @dfn{break points}. Calc's
14934 general strategy is to fill each line as much as possible, then to
14935 move down to the next line starting at the first break point that
14936 didn't fit. However, the line breaker understands the hierarchical
14937 structure of formulas. It will not break an ``inner'' formula if
14938 it can use an earlier break point from an ``outer'' formula instead.
14939 For example, a vector of sums might be formatted as:
14943 [ a + b + c, d + e + f,
14944 g + h + i, j + k + l, m ]
14949 If the @samp{m} can fit, then so, it seems, could the @samp{g}.
14950 But Calc prefers to break at the comma since the comma is part
14951 of a ``more outer'' formula. Calc would break at a plus sign
14952 only if it had to, say, if the very first sum in the vector had
14953 itself been too large to fit.
14955 Of the composition functions described below, only @code{choriz}
14956 generates break points. The @code{bstring} function (@pxref{Strings})
14957 also generates breakable items: A break point is added after every
14958 space (or group of spaces) except for spaces at the very beginning or
14961 Composition functions themselves count as levels in the formula
14962 hierarchy, so a @code{choriz} that is a component of a larger
14963 @code{choriz} will be less likely to be broken. As a special case,
14964 if a @code{bstring} occurs as a component of a @code{choriz} or
14965 @code{choriz}-like object (such as a vector or a list of arguments
14966 in a function call), then the break points in that @code{bstring}
14967 will be on the same level as the break points of the surrounding
14970 @node Horizontal Compositions, Vertical Compositions, Composition Basics, Compositions
14971 @subsubsection Horizontal Compositions
14978 The @code{choriz} function takes a vector of objects and composes
14979 them horizontally. For example, @samp{choriz([17, a b/c, d])} formats
14980 as @w{@samp{17a b / cd}} in Normal language mode, or as
14991 in Big language mode. This is actually one case of the general
14992 function @samp{choriz(@var{vec}, @var{sep}, @var{prec})}, where
14993 either or both of @var{sep} and @var{prec} may be omitted.
14994 @var{Prec} gives the @dfn{precedence} to use when formatting
14995 each of the components of @var{vec}. The default precedence is
14996 the precedence from the surrounding environment.
14998 @var{Sep} is a string (i.e., a vector of character codes as might
14999 be entered with @code{" "} notation) which should separate components
15000 of the composition. Also, if @var{sep} is given, the line breaker
15001 will allow lines to be broken after each occurrence of @var{sep}.
15002 If @var{sep} is omitted, the composition will not be breakable
15003 (unless any of its component compositions are breakable).
15005 For example, @samp{2 choriz([a, b c, d = e], " + ", 180)} is
15006 formatted as @samp{2 a + b c + (d = e)}. To get the @code{choriz}
15007 to have precedence 180 ``outwards'' as well as ``inwards,''
15008 enclose it in a @code{cprec} form: @samp{2 cprec(choriz(...), 180)}
15009 formats as @samp{2 (a + b c + (d = e))}.
15011 The baseline of a horizontal composition is the same as the
15012 baselines of the component compositions, which are all aligned.
15014 @node Vertical Compositions, Other Compositions, Horizontal Compositions, Compositions
15015 @subsubsection Vertical Compositions
15022 The @code{cvert} function makes a vertical composition. Each
15023 component of the vector is centered in a column. The baseline of
15024 the result is by default the top line of the resulting composition.
15025 For example, @samp{f(cvert([a, bb, ccc]), cvert([a^2 + 1, b^2]))}
15026 formats in Big mode as
15041 There are several special composition functions that work only as
15042 components of a vertical composition. The @code{cbase} function
15043 controls the baseline of the vertical composition; the baseline
15044 will be the same as the baseline of whatever component is enclosed
15045 in @code{cbase}. Thus @samp{f(cvert([a, cbase(bb), ccc]),
15046 cvert([a^2 + 1, cbase(b^2)]))} displays as
15066 There are also @code{ctbase} and @code{cbbase} functions which
15067 make the baseline of the vertical composition equal to the top
15068 or bottom line (rather than the baseline) of that component.
15069 Thus @samp{cvert([cbase(a / b)]) + cvert([ctbase(a / b)]) +
15070 cvert([cbbase(a / b)])} gives
15082 There should be only one @code{cbase}, @code{ctbase}, or @code{cbbase}
15083 function in a given vertical composition. These functions can also
15084 be written with no arguments: @samp{ctbase()} is a zero-height object
15085 which means the baseline is the top line of the following item, and
15086 @samp{cbbase()} means the baseline is the bottom line of the preceding
15093 The @code{crule} function builds a ``rule,'' or horizontal line,
15094 across a vertical composition. By itself @samp{crule()} uses @samp{-}
15095 characters to build the rule. You can specify any other character,
15096 e.g., @samp{crule("=")}. The argument must be a character code or
15097 vector of exactly one character code. It is repeated to match the
15098 width of the widest item in the stack. For example, a quotient
15099 with a thick line is @samp{cvert([a + 1, cbase(crule("=")), b^2])}:
15118 Finally, the functions @code{clvert} and @code{crvert} act exactly
15119 like @code{cvert} except that the items are left- or right-justified
15120 in the stack. Thus @samp{clvert([a, bb, ccc]) + crvert([a, bb, ccc])}
15131 Like @code{choriz}, the vertical compositions accept a second argument
15132 which gives the precedence to use when formatting the components.
15133 Vertical compositions do not support separator strings.
15135 @node Other Compositions, Information about Compositions, Vertical Compositions, Compositions
15136 @subsubsection Other Compositions
15143 The @code{csup} function builds a superscripted expression. For
15144 example, @samp{csup(a, b)} looks the same as @samp{a^b} does in Big
15145 language mode. This is essentially a horizontal composition of
15146 @samp{a} and @samp{b}, where @samp{b} is shifted up so that its
15147 bottom line is one above the baseline.
15153 Likewise, the @code{csub} function builds a subscripted expression.
15154 This shifts @samp{b} down so that its top line is one below the
15155 bottom line of @samp{a} (note that this is not quite analogous to
15156 @code{csup}). Other arrangements can be obtained by using
15157 @code{choriz} and @code{cvert} directly.
15163 The @code{cflat} function formats its argument in ``flat'' mode,
15164 as obtained by @samp{d O}, if the current language mode is normal
15165 or Big. It has no effect in other language modes. For example,
15166 @samp{a^(b/c)} is formatted by Big mode like @samp{csup(a, cflat(b/c))}
15167 to improve its readability.
15173 The @code{cspace} function creates horizontal space. For example,
15174 @samp{cspace(4)} is effectively the same as @samp{string(" ")}.
15175 A second string (i.e., vector of characters) argument is repeated
15176 instead of the space character. For example, @samp{cspace(4, "ab")}
15177 looks like @samp{abababab}. If the second argument is not a string,
15178 it is formatted in the normal way and then several copies of that
15179 are composed together: @samp{cspace(4, a^2)} yields
15189 If the number argument is zero, this is a zero-width object.
15195 The @code{cvspace} function creates vertical space, or a vertical
15196 stack of copies of a certain string or formatted object. The
15197 baseline is the center line of the resulting stack. A numerical
15198 argument of zero will produce an object which contributes zero
15199 height if used in a vertical composition.
15209 There are also @code{ctspace} and @code{cbspace} functions which
15210 create vertical space with the baseline the same as the baseline
15211 of the top or bottom copy, respectively, of the second argument.
15212 Thus @samp{cvspace(2, a/b) + ctspace(2, a/b) + cbspace(2, a/b)}
15229 @node Information about Compositions, User-Defined Compositions, Other Compositions, Compositions
15230 @subsubsection Information about Compositions
15233 The functions in this section are actual functions; they compose their
15234 arguments according to the current language and other display modes,
15235 then return a certain measurement of the composition as an integer.
15241 The @code{cwidth} function measures the width, in characters, of a
15242 composition. For example, @samp{cwidth(a + b)} is 5, and
15243 @samp{cwidth(a / b)} is 5 in Normal mode, 1 in Big mode, and 11 in
15244 @TeX{} mode (for @samp{@{a \over b@}}). The argument may involve
15245 the composition functions described in this section.
15251 The @code{cheight} function measures the height of a composition.
15252 This is the total number of lines in the argument's printed form.
15262 The functions @code{cascent} and @code{cdescent} measure the amount
15263 of the height that is above (and including) the baseline, or below
15264 the baseline, respectively. Thus @samp{cascent(@var{x}) + cdescent(@var{x})}
15265 always equals @samp{cheight(@var{x})}. For a one-line formula like
15266 @samp{a + b}, @code{cascent} returns 1 and @code{cdescent} returns 0.
15267 For @samp{a / b} in Big mode, @code{cascent} returns 2 and @code{cdescent}
15268 returns 1. The only formula for which @code{cascent} will return zero
15269 is @samp{cvspace(0)} or equivalents.
15271 @node User-Defined Compositions, , Information about Compositions, Compositions
15272 @subsubsection User-Defined Compositions
15276 @pindex calc-user-define-composition
15277 The @kbd{Z C} (@code{calc-user-define-composition}) command lets you
15278 define the display format for any algebraic function. You provide a
15279 formula containing a certain number of argument variables on the stack.
15280 Any time Calc formats a call to the specified function in the current
15281 language mode and with that number of arguments, Calc effectively
15282 replaces the function call with that formula with the arguments
15285 Calc builds the default argument list by sorting all the variable names
15286 that appear in the formula into alphabetical order. You can edit this
15287 argument list before pressing @key{RET} if you wish. Any variables in
15288 the formula that do not appear in the argument list will be displayed
15289 literally; any arguments that do not appear in the formula will not
15290 affect the display at all.
15292 You can define formats for built-in functions, for functions you have
15293 defined with @kbd{Z F} (@pxref{Algebraic Definitions}), or for functions
15294 which have no definitions but are being used as purely syntactic objects.
15295 You can define different formats for each language mode, and for each
15296 number of arguments, using a succession of @kbd{Z C} commands. When
15297 Calc formats a function call, it first searches for a format defined
15298 for the current language mode (and number of arguments); if there is
15299 none, it uses the format defined for the Normal language mode. If
15300 neither format exists, Calc uses its built-in standard format for that
15301 function (usually just @samp{@var{func}(@var{args})}).
15303 If you execute @kbd{Z C} with the number 0 on the stack instead of a
15304 formula, any defined formats for the function in the current language
15305 mode will be removed. The function will revert to its standard format.
15307 For example, the default format for the binomial coefficient function
15308 @samp{choose(n, m)} in the Big language mode is
15319 You might prefer the notation,
15329 To define this notation, first make sure you are in Big mode,
15330 then put the formula
15333 choriz([cvert([cvspace(1), n]), C, cvert([cvspace(1), m])])
15337 on the stack and type @kbd{Z C}. Answer the first prompt with
15338 @code{choose}. The second prompt will be the default argument list
15339 of @samp{(C m n)}. Edit this list to be @samp{(n m)} and press
15340 @key{RET}. Now, try it out: For example, turn simplification
15341 off with @kbd{m O} and enter @samp{choose(a,b) + choose(7,3)}
15342 as an algebraic entry.
15351 As another example, let's define the usual notation for Stirling
15352 numbers of the first kind, @samp{stir1(n, m)}. This is just like
15353 the regular format for binomial coefficients but with square brackets
15354 instead of parentheses.
15357 choriz([string("["), cvert([n, cbase(cvspace(1)), m]), string("]")])
15360 Now type @kbd{Z C stir1 @key{RET}}, edit the argument list to
15361 @samp{(n m)}, and type @key{RET}.
15363 The formula provided to @kbd{Z C} usually will involve composition
15364 functions, but it doesn't have to. Putting the formula @samp{a + b + c}
15365 onto the stack and typing @kbd{Z C foo @key{RET} @key{RET}} would define
15366 the function @samp{foo(x,y,z)} to display like @samp{x + y + z}.
15367 This ``sum'' will act exactly like a real sum for all formatting
15368 purposes (it will be parenthesized the same, and so on). However
15369 it will be computationally unrelated to a sum. For example, the
15370 formula @samp{2 * foo(1, 2, 3)} will display as @samp{2 (1 + 2 + 3)}.
15371 Operator precedences have caused the ``sum'' to be written in
15372 parentheses, but the arguments have not actually been summed.
15373 (Generally a display format like this would be undesirable, since
15374 it can easily be confused with a real sum.)
15376 The special function @code{eval} can be used inside a @kbd{Z C}
15377 composition formula to cause all or part of the formula to be
15378 evaluated at display time. For example, if the formula is
15379 @samp{a + eval(b + c)}, then @samp{foo(1, 2, 3)} will be displayed
15380 as @samp{1 + 5}. Evaluation will use the default simplifications,
15381 regardless of the current simplification mode. There are also
15382 @code{evalsimp} and @code{evalextsimp} which simplify as if by
15383 @kbd{a s} and @kbd{a e} (respectively). Note that these ``functions''
15384 operate only in the context of composition formulas (and also in
15385 rewrite rules, where they serve a similar purpose; @pxref{Rewrite
15386 Rules}). On the stack, a call to @code{eval} will be left in
15389 It is not a good idea to use @code{eval} except as a last resort.
15390 It can cause the display of formulas to be extremely slow. For
15391 example, while @samp{eval(a + b)} might seem quite fast and simple,
15392 there are several situations where it could be slow. For example,
15393 @samp{a} and/or @samp{b} could be polar complex numbers, in which
15394 case doing the sum requires trigonometry. Or, @samp{a} could be
15395 the factorial @samp{fact(100)} which is unevaluated because you
15396 have typed @kbd{m O}; @code{eval} will evaluate it anyway to
15397 produce a large, unwieldy integer.
15399 You can save your display formats permanently using the @kbd{Z P}
15400 command (@pxref{Creating User Keys}).
15402 @node Syntax Tables, , Compositions, Language Modes
15403 @subsection Syntax Tables
15406 @cindex Syntax tables
15407 @cindex Parsing formulas, customized
15408 Syntax tables do for input what compositions do for output: They
15409 allow you to teach custom notations to Calc's formula parser.
15410 Calc keeps a separate syntax table for each language mode.
15412 (Note that the Calc ``syntax tables'' discussed here are completely
15413 unrelated to the syntax tables described in the Emacs manual.)
15416 @pindex calc-edit-user-syntax
15417 The @kbd{Z S} (@code{calc-edit-user-syntax}) command edits the
15418 syntax table for the current language mode. If you want your
15419 syntax to work in any language, define it in the Normal language
15420 mode. Type @kbd{C-c C-c} to finish editing the syntax table, or
15421 @kbd{C-x k} to cancel the edit. The @kbd{m m} command saves all
15422 the syntax tables along with the other mode settings;
15423 @pxref{General Mode Commands}.
15426 * Syntax Table Basics::
15427 * Precedence in Syntax Tables::
15428 * Advanced Syntax Patterns::
15429 * Conditional Syntax Rules::
15432 @node Syntax Table Basics, Precedence in Syntax Tables, Syntax Tables, Syntax Tables
15433 @subsubsection Syntax Table Basics
15436 @dfn{Parsing} is the process of converting a raw string of characters,
15437 such as you would type in during algebraic entry, into a Calc formula.
15438 Calc's parser works in two stages. First, the input is broken down
15439 into @dfn{tokens}, such as words, numbers, and punctuation symbols
15440 like @samp{+}, @samp{:=}, and @samp{+/-}. Space between tokens is
15441 ignored (except when it serves to separate adjacent words). Next,
15442 the parser matches this string of tokens against various built-in
15443 syntactic patterns, such as ``an expression followed by @samp{+}
15444 followed by another expression'' or ``a name followed by @samp{(},
15445 zero or more expressions separated by commas, and @samp{)}.''
15447 A @dfn{syntax table} is a list of user-defined @dfn{syntax rules},
15448 which allow you to specify new patterns to define your own
15449 favorite input notations. Calc's parser always checks the syntax
15450 table for the current language mode, then the table for the Normal
15451 language mode, before it uses its built-in rules to parse an
15452 algebraic formula you have entered. Each syntax rule should go on
15453 its own line; it consists of a @dfn{pattern}, a @samp{:=} symbol,
15454 and a Calc formula with an optional @dfn{condition}. (Syntax rules
15455 resemble algebraic rewrite rules, but the notation for patterns is
15456 completely different.)
15458 A syntax pattern is a list of tokens, separated by spaces.
15459 Except for a few special symbols, tokens in syntax patterns are
15460 matched literally, from left to right. For example, the rule,
15467 would cause Calc to parse the formula @samp{4+foo()*5} as if it
15468 were @samp{4+(2+3)*5}. Notice that the parentheses were written
15469 as two separate tokens in the rule. As a result, the rule works
15470 for both @samp{foo()} and @w{@samp{foo ( )}}. If we had written
15471 the rule as @samp{foo () := 2+3}, then Calc would treat @samp{()}
15472 as a single, indivisible token, so that @w{@samp{foo( )}} would
15473 not be recognized by the rule. (It would be parsed as a regular
15474 zero-argument function call instead.) In fact, this rule would
15475 also make trouble for the rest of Calc's parser: An unrelated
15476 formula like @samp{bar()} would now be tokenized into @samp{bar ()}
15477 instead of @samp{bar ( )}, so that the standard parser for function
15478 calls would no longer recognize it!
15480 While it is possible to make a token with a mixture of letters
15481 and punctuation symbols, this is not recommended. It is better to
15482 break it into several tokens, as we did with @samp{foo()} above.
15484 The symbol @samp{#} in a syntax pattern matches any Calc expression.
15485 On the righthand side, the things that matched the @samp{#}s can
15486 be referred to as @samp{#1}, @samp{#2}, and so on (where @samp{#1}
15487 matches the leftmost @samp{#} in the pattern). For example, these
15488 rules match a user-defined function, prefix operator, infix operator,
15489 and postfix operator, respectively:
15492 foo ( # ) := myfunc(#1)
15493 foo # := myprefix(#1)
15494 # foo # := myinfix(#1,#2)
15495 # foo := mypostfix(#1)
15498 Thus @samp{foo(3)} will parse as @samp{myfunc(3)}, and @samp{2+3 foo}
15499 will parse as @samp{mypostfix(2+3)}.
15501 It is important to write the first two rules in the order shown,
15502 because Calc tries rules in order from first to last. If the
15503 pattern @samp{foo #} came first, it would match anything that could
15504 match the @samp{foo ( # )} rule, since an expression in parentheses
15505 is itself a valid expression. Thus the @w{@samp{foo ( # )}} rule would
15506 never get to match anything. Likewise, the last two rules must be
15507 written in the order shown or else @samp{3 foo 4} will be parsed as
15508 @samp{mypostfix(3) * 4}. (Of course, the best way to avoid these
15509 ambiguities is not to use the same symbol in more than one way at
15510 the same time! In case you're not convinced, try the following
15511 exercise: How will the above rules parse the input @samp{foo(3,4)},
15512 if at all? Work it out for yourself, then try it in Calc and see.)
15514 Calc is quite flexible about what sorts of patterns are allowed.
15515 The only rule is that every pattern must begin with a literal
15516 token (like @samp{foo} in the first two patterns above), or with
15517 a @samp{#} followed by a literal token (as in the last two
15518 patterns). After that, any mixture is allowed, although putting
15519 two @samp{#}s in a row will not be very useful since two
15520 expressions with nothing between them will be parsed as one
15521 expression that uses implicit multiplication.
15523 As a more practical example, Maple uses the notation
15524 @samp{sum(a(i), i=1..10)} for sums, which Calc's Maple mode doesn't
15525 recognize at present. To handle this syntax, we simply add the
15529 sum ( # , # = # .. # ) := sum(#1,#2,#3,#4)
15533 to the Maple mode syntax table. As another example, C mode can't
15534 read assignment operators like @samp{++} and @samp{*=}. We can
15535 define these operators quite easily:
15538 # *= # := muleq(#1,#2)
15539 # ++ := postinc(#1)
15544 To complete the job, we would use corresponding composition functions
15545 and @kbd{Z C} to cause these functions to display in their respective
15546 Maple and C notations. (Note that the C example ignores issues of
15547 operator precedence, which are discussed in the next section.)
15549 You can enclose any token in quotes to prevent its usual
15550 interpretation in syntax patterns:
15553 # ":=" # := becomes(#1,#2)
15556 Quotes also allow you to include spaces in a token, although once
15557 again it is generally better to use two tokens than one token with
15558 an embedded space. To include an actual quotation mark in a quoted
15559 token, precede it with a backslash. (This also works to include
15560 backslashes in tokens.)
15563 # "bad token" # "/\"\\" # := silly(#1,#2,#3)
15567 This will parse @samp{3 bad token 4 /"\ 5} to @samp{silly(3,4,5)}.
15569 The token @kbd{#} has a predefined meaning in Calc's formula parser;
15570 it is not valid to use @samp{"#"} in a syntax rule. However, longer
15571 tokens that include the @samp{#} character are allowed. Also, while
15572 @samp{"$"} and @samp{"\""} are allowed as tokens, their presence in
15573 the syntax table will prevent those characters from working in their
15574 usual ways (referring to stack entries and quoting strings,
15577 Finally, the notation @samp{%%} anywhere in a syntax table causes
15578 the rest of the line to be ignored as a comment.
15580 @node Precedence in Syntax Tables, Advanced Syntax Patterns, Syntax Table Basics, Syntax Tables
15581 @subsubsection Precedence
15584 Different operators are generally assigned different @dfn{precedences}.
15585 By default, an operator defined by a rule like
15588 # foo # := foo(#1,#2)
15592 will have an extremely low precedence, so that @samp{2*3+4 foo 5 == 6}
15593 will be parsed as @samp{(2*3+4) foo (5 == 6)}. To change the
15594 precedence of an operator, use the notation @samp{#/@var{p}} in
15595 place of @samp{#}, where @var{p} is an integer precedence level.
15596 For example, 185 lies between the precedences for @samp{+} and
15597 @samp{*}, so if we change this rule to
15600 #/185 foo #/186 := foo(#1,#2)
15604 then @samp{2+3 foo 4*5} will be parsed as @samp{2+(3 foo (4*5))}.
15605 Also, because we've given the righthand expression slightly higher
15606 precedence, our new operator will be left-associative:
15607 @samp{1 foo 2 foo 3} will be parsed as @samp{(1 foo 2) foo 3}.
15608 By raising the precedence of the lefthand expression instead, we
15609 can create a right-associative operator.
15611 @xref{Composition Basics}, for a table of precedences of the
15612 standard Calc operators. For the precedences of operators in other
15613 language modes, look in the Calc source file @file{calc-lang.el}.
15615 @node Advanced Syntax Patterns, Conditional Syntax Rules, Precedence in Syntax Tables, Syntax Tables
15616 @subsubsection Advanced Syntax Patterns
15619 To match a function with a variable number of arguments, you could
15623 foo ( # ) := myfunc(#1)
15624 foo ( # , # ) := myfunc(#1,#2)
15625 foo ( # , # , # ) := myfunc(#1,#2,#3)
15629 but this isn't very elegant. To match variable numbers of items,
15630 Calc uses some notations inspired regular expressions and the
15631 ``extended BNF'' style used by some language designers.
15634 foo ( @{ # @}*, ) := apply(myfunc,#1)
15637 The token @samp{@{} introduces a repeated or optional portion.
15638 One of the three tokens @samp{@}*}, @samp{@}+}, or @samp{@}?}
15639 ends the portion. These will match zero or more, one or more,
15640 or zero or one copies of the enclosed pattern, respectively.
15641 In addition, @samp{@}*} and @samp{@}+} can be followed by a
15642 separator token (with no space in between, as shown above).
15643 Thus @samp{@{ # @}*,} matches nothing, or one expression, or
15644 several expressions separated by commas.
15646 A complete @samp{@{ ... @}} item matches as a vector of the
15647 items that matched inside it. For example, the above rule will
15648 match @samp{foo(1,2,3)} to get @samp{apply(myfunc,[1,2,3])}.
15649 The Calc @code{apply} function takes a function name and a vector
15650 of arguments and builds a call to the function with those
15651 arguments, so the net result is the formula @samp{myfunc(1,2,3)}.
15653 If the body of a @samp{@{ ... @}} contains several @samp{#}s
15654 (or nested @samp{@{ ... @}} constructs), then the items will be
15655 strung together into the resulting vector. If the body
15656 does not contain anything but literal tokens, the result will
15657 always be an empty vector.
15660 foo ( @{ # , # @}+, ) := bar(#1)
15661 foo ( @{ @{ # @}*, @}*; ) := matrix(#1)
15665 will parse @samp{foo(1, 2, 3, 4)} as @samp{bar([1, 2, 3, 4])}, and
15666 @samp{foo(1, 2; 3, 4)} as @samp{matrix([[1, 2], [3, 4]])}. Also, after
15667 some thought it's easy to see how this pair of rules will parse
15668 @samp{foo(1, 2, 3)} as @samp{matrix([[1, 2, 3]])}, since the first
15669 rule will only match an even number of arguments. The rule
15672 foo ( # @{ , # , # @}? ) := bar(#1,#2)
15676 will parse @samp{foo(2,3,4)} as @samp{bar(2,[3,4])}, and
15677 @samp{foo(2)} as @samp{bar(2,[])}.
15679 The notation @samp{@{ ... @}?.} (note the trailing period) works
15680 just the same as regular @samp{@{ ... @}?}, except that it does not
15681 count as an argument; the following two rules are equivalent:
15684 foo ( # , @{ also @}? # ) := bar(#1,#3)
15685 foo ( # , @{ also @}?. # ) := bar(#1,#2)
15689 Note that in the first case the optional text counts as @samp{#2},
15690 which will always be an empty vector, but in the second case no
15691 empty vector is produced.
15693 Another variant is @samp{@{ ... @}?$}, which means the body is
15694 optional only at the end of the input formula. All built-in syntax
15695 rules in Calc use this for closing delimiters, so that during
15696 algebraic entry you can type @kbd{[sqrt(2), sqrt(3 @key{RET}}, omitting
15697 the closing parenthesis and bracket. Calc does this automatically
15698 for trailing @samp{)}, @samp{]}, and @samp{>} tokens in syntax
15699 rules, but you can use @samp{@{ ... @}?$} explicitly to get
15700 this effect with any token (such as @samp{"@}"} or @samp{end}).
15701 Like @samp{@{ ... @}?.}, this notation does not count as an
15702 argument. Conversely, you can use quotes, as in @samp{")"}, to
15703 prevent a closing-delimiter token from being automatically treated
15706 Calc's parser does not have full backtracking, which means some
15707 patterns will not work as you might expect:
15710 foo ( @{ # , @}? # , # ) := bar(#1,#2,#3)
15714 Here we are trying to make the first argument optional, so that
15715 @samp{foo(2,3)} parses as @samp{bar([],2,3)}. Unfortunately, Calc
15716 first tries to match @samp{2,} against the optional part of the
15717 pattern, finds a match, and so goes ahead to match the rest of the
15718 pattern. Later on it will fail to match the second comma, but it
15719 doesn't know how to go back and try the other alternative at that
15720 point. One way to get around this would be to use two rules:
15723 foo ( # , # , # ) := bar([#1],#2,#3)
15724 foo ( # , # ) := bar([],#1,#2)
15727 More precisely, when Calc wants to match an optional or repeated
15728 part of a pattern, it scans forward attempting to match that part.
15729 If it reaches the end of the optional part without failing, it
15730 ``finalizes'' its choice and proceeds. If it fails, though, it
15731 backs up and tries the other alternative. Thus Calc has ``partial''
15732 backtracking. A fully backtracking parser would go on to make sure
15733 the rest of the pattern matched before finalizing the choice.
15735 @node Conditional Syntax Rules, , Advanced Syntax Patterns, Syntax Tables
15736 @subsubsection Conditional Syntax Rules
15739 It is possible to attach a @dfn{condition} to a syntax rule. For
15743 foo ( # ) := ifoo(#1) :: integer(#1)
15744 foo ( # ) := gfoo(#1)
15748 will parse @samp{foo(3)} as @samp{ifoo(3)}, but will parse
15749 @samp{foo(3.5)} and @samp{foo(x)} as calls to @code{gfoo}. Any
15750 number of conditions may be attached; all must be true for the
15751 rule to succeed. A condition is ``true'' if it evaluates to a
15752 nonzero number. @xref{Logical Operations}, for a list of Calc
15753 functions like @code{integer} that perform logical tests.
15755 The exact sequence of events is as follows: When Calc tries a
15756 rule, it first matches the pattern as usual. It then substitutes
15757 @samp{#1}, @samp{#2}, etc., in the conditions, if any. Next, the
15758 conditions are simplified and evaluated in order from left to right,
15759 using the algebraic simplifications (@pxref{Simplifying Formulas}).
15760 Each result is true if it is a nonzero number, or an expression
15761 that can be proven to be nonzero (@pxref{Declarations}). If the
15762 results of all conditions are true, the expression (such as
15763 @samp{ifoo(#1)}) has its @samp{#}s substituted, and that is the
15764 result of the parse. If the result of any condition is false, Calc
15765 goes on to try the next rule in the syntax table.
15767 Syntax rules also support @code{let} conditions, which operate in
15768 exactly the same way as they do in algebraic rewrite rules.
15769 @xref{Other Features of Rewrite Rules}, for details. A @code{let}
15770 condition is always true, but as a side effect it defines a
15771 variable which can be used in later conditions, and also in the
15772 expression after the @samp{:=} sign:
15775 foo ( # ) := hifoo(x) :: let(x := #1 + 0.5) :: dnumint(x)
15779 The @code{dnumint} function tests if a value is numerically an
15780 integer, i.e., either a true integer or an integer-valued float.
15781 This rule will parse @code{foo} with a half-integer argument,
15782 like @samp{foo(3.5)}, to a call like @samp{hifoo(4.)}.
15784 The lefthand side of a syntax rule @code{let} must be a simple
15785 variable, not the arbitrary pattern that is allowed in rewrite
15788 The @code{matches} function is also treated specially in syntax
15789 rule conditions (again, in the same way as in rewrite rules).
15790 @xref{Matching Commands}. If the matching pattern contains
15791 meta-variables, then those meta-variables may be used in later
15792 conditions and in the result expression. The arguments to
15793 @code{matches} are not evaluated in this situation.
15796 sum ( # , # ) := sum(#1,a,b,c) :: matches(#2, a=[b..c])
15800 This is another way to implement the Maple mode @code{sum} notation.
15801 In this approach, we allow @samp{#2} to equal the whole expression
15802 @samp{i=1..10}. Then, we use @code{matches} to break it apart into
15803 its components. If the expression turns out not to match the pattern,
15804 the syntax rule will fail. Note that @kbd{Z S} always uses Calc's
15805 Normal language mode for editing expressions in syntax rules, so we
15806 must use regular Calc notation for the interval @samp{[b..c]} that
15807 will correspond to the Maple mode interval @samp{1..10}.
15809 @node Modes Variable, Calc Mode Line, Language Modes, Mode Settings
15810 @section The @code{Modes} Variable
15814 @pindex calc-get-modes
15815 The @kbd{m g} (@code{calc-get-modes}) command pushes onto the stack
15816 a vector of numbers that describes the various mode settings that
15817 are in effect. With a numeric prefix argument, it pushes only the
15818 @var{n}th mode, i.e., the @var{n}th element of this vector. Keyboard
15819 macros can use the @kbd{m g} command to modify their behavior based
15820 on the current mode settings.
15822 @cindex @code{Modes} variable
15824 The modes vector is also available in the special variable
15825 @code{Modes}. In other words, @kbd{m g} is like @kbd{s r Modes @key{RET}}.
15826 It will not work to store into this variable; in fact, if you do,
15827 @code{Modes} will cease to track the current modes. (The @kbd{m g}
15828 command will continue to work, however.)
15830 In general, each number in this vector is suitable as a numeric
15831 prefix argument to the associated mode-setting command. (Recall
15832 that the @kbd{~} key takes a number from the stack and gives it as
15833 a numeric prefix to the next command.)
15835 The elements of the modes vector are as follows:
15839 Current precision. Default is 12; associated command is @kbd{p}.
15842 Binary word size. Default is 32; associated command is @kbd{b w}.
15845 Stack size (not counting the value about to be pushed by @kbd{m g}).
15846 This is zero if @kbd{m g} is executed with an empty stack.
15849 Number radix. Default is 10; command is @kbd{d r}.
15852 Floating-point format. This is the number of digits, plus the
15853 constant 0 for normal notation, 10000 for scientific notation,
15854 20000 for engineering notation, or 30000 for fixed-point notation.
15855 These codes are acceptable as prefix arguments to the @kbd{d n}
15856 command, but note that this may lose information: For example,
15857 @kbd{d s} and @kbd{C-u 12 d s} have similar (but not quite
15858 identical) effects if the current precision is 12, but they both
15859 produce a code of 10012, which will be treated by @kbd{d n} as
15860 @kbd{C-u 12 d s}. If the precision then changes, the float format
15861 will still be frozen at 12 significant figures.
15864 Angular mode. Default is 1 (degrees). Other values are 2 (radians)
15865 and 3 (HMS). The @kbd{m d} command accepts these prefixes.
15868 Symbolic mode. Value is 0 or 1; default is 0. Command is @kbd{m s}.
15871 Fraction mode. Value is 0 or 1; default is 0. Command is @kbd{m f}.
15874 Polar mode. Value is 0 (rectangular) or 1 (polar); default is 0.
15875 Command is @kbd{m p}.
15878 Matrix/Scalar mode. Default value is @mathit{-1}. Value is 0 for Scalar
15879 mode, @mathit{-2} for Matrix mode, @mathit{-3} for square Matrix mode,
15881 @texline @math{N\times N}
15882 @infoline @var{N}x@var{N}
15883 Matrix mode. Command is @kbd{m v}.
15886 Simplification mode. Default is 1. Value is @mathit{-1} for off (@kbd{m O}),
15887 0 for @kbd{m N}, 2 for @kbd{m B}, 3 for @kbd{m A}, 4 for @kbd{m E},
15888 or 5 for @w{@kbd{m U}}. The @kbd{m D} command accepts these prefixes.
15891 Infinite mode. Default is @mathit{-1} (off). Value is 1 if the mode is on,
15892 or 0 if the mode is on with positive zeros. Command is @kbd{m i}.
15895 For example, the sequence @kbd{M-1 m g @key{RET} 2 + ~ p} increases the
15896 precision by two, leaving a copy of the old precision on the stack.
15897 Later, @kbd{~ p} will restore the original precision using that
15898 stack value. (This sequence might be especially useful inside a
15901 As another example, @kbd{M-3 m g 1 - ~ @key{DEL}} deletes all but the
15902 oldest (bottommost) stack entry.
15904 Yet another example: The HP-48 ``round'' command rounds a number
15905 to the current displayed precision. You could roughly emulate this
15906 in Calc with the sequence @kbd{M-5 m g 10000 % ~ c c}. (This
15907 would not work for fixed-point mode, but it wouldn't be hard to
15908 do a full emulation with the help of the @kbd{Z [} and @kbd{Z ]}
15909 programming commands. @xref{Conditionals in Macros}.)
15911 @node Calc Mode Line, , Modes Variable, Mode Settings
15912 @section The Calc Mode Line
15915 @cindex Mode line indicators
15916 This section is a summary of all symbols that can appear on the
15917 Calc mode line, the highlighted bar that appears under the Calc
15918 stack window (or under an editing window in Embedded mode).
15920 The basic mode line format is:
15923 --%*-Calc: 12 Deg @var{other modes} (Calculator)
15926 The @samp{%*} indicates that the buffer is ``read-only''; it shows that
15927 regular Emacs commands are not allowed to edit the stack buffer
15928 as if it were text.
15930 The word @samp{Calc:} changes to @samp{CalcEmbed:} if Embedded mode
15931 is enabled. The words after this describe the various Calc modes
15932 that are in effect.
15934 The first mode is always the current precision, an integer.
15935 The second mode is always the angular mode, either @code{Deg},
15936 @code{Rad}, or @code{Hms}.
15938 Here is a complete list of the remaining symbols that can appear
15943 Algebraic mode (@kbd{m a}; @pxref{Algebraic Entry}).
15946 Incomplete algebraic mode (@kbd{C-u m a}).
15949 Total algebraic mode (@kbd{m t}).
15952 Symbolic mode (@kbd{m s}; @pxref{Symbolic Mode}).
15955 Matrix mode (@kbd{m v}; @pxref{Matrix Mode}).
15957 @item Matrix@var{n}
15958 Dimensioned Matrix mode (@kbd{C-u @var{n} m v}; @pxref{Matrix Mode}).
15961 Square Matrix mode (@kbd{C-u m v}; @pxref{Matrix Mode}).
15964 Scalar mode (@kbd{m v}; @pxref{Matrix Mode}).
15967 Polar complex mode (@kbd{m p}; @pxref{Polar Mode}).
15970 Fraction mode (@kbd{m f}; @pxref{Fraction Mode}).
15973 Infinite mode (@kbd{m i}; @pxref{Infinite Mode}).
15976 Positive Infinite mode (@kbd{C-u 0 m i}).
15979 Default simplifications off (@kbd{m O}; @pxref{Simplification Modes}).
15982 Default simplifications for numeric arguments only (@kbd{m N}).
15984 @item BinSimp@var{w}
15985 Binary-integer simplification mode; word size @var{w} (@kbd{m B}, @kbd{b w}).
15988 Basic simplification mode (@kbd{m I}).
15991 Extended algebraic simplification mode (@kbd{m E}).
15994 Units simplification mode (@kbd{m U}).
15997 Current radix is 2 (@kbd{d 2}; @pxref{Radix Modes}).
16000 Current radix is 8 (@kbd{d 8}).
16003 Current radix is 16 (@kbd{d 6}).
16006 Current radix is @var{n} (@kbd{d r}).
16009 Leading zeros (@kbd{d z}; @pxref{Radix Modes}).
16012 Big language mode (@kbd{d B}; @pxref{Normal Language Modes}).
16015 One-line normal language mode (@kbd{d O}).
16018 Unformatted language mode (@kbd{d U}).
16021 C language mode (@kbd{d C}; @pxref{C FORTRAN Pascal}).
16024 Pascal language mode (@kbd{d P}).
16027 FORTRAN language mode (@kbd{d F}).
16030 @TeX{} language mode (@kbd{d T}; @pxref{TeX and LaTeX Language Modes}).
16033 @LaTeX{} language mode (@kbd{d L}; @pxref{TeX and LaTeX Language Modes}).
16036 @dfn{Eqn} language mode (@kbd{d E}; @pxref{Eqn Language Mode}).
16039 Mathematica language mode (@kbd{d M}; @pxref{Mathematica Language Mode}).
16042 Maple language mode (@kbd{d W}; @pxref{Maple Language Mode}).
16045 Normal float mode with @var{n} digits (@kbd{d n}; @pxref{Float Formats}).
16048 Fixed point mode with @var{n} digits after the point (@kbd{d f}).
16051 Scientific notation mode (@kbd{d s}).
16054 Scientific notation with @var{n} digits (@kbd{d s}).
16057 Engineering notation mode (@kbd{d e}).
16060 Engineering notation with @var{n} digits (@kbd{d e}).
16063 Left-justified display indented by @var{n} (@kbd{d <}; @pxref{Justification}).
16066 Right-justified display (@kbd{d >}).
16069 Right-justified display with width @var{n} (@kbd{d >}).
16072 Centered display (@kbd{d =}).
16074 @item Center@var{n}
16075 Centered display with center column @var{n} (@kbd{d =}).
16078 Line breaking with width @var{n} (@kbd{d b}; @pxref{Normal Language Modes}).
16081 No line breaking (@kbd{d b}).
16084 Selections show deep structure (@kbd{j b}; @pxref{Making Selections}).
16087 Record modes in @file{~/.emacs.d/calc.el} (@kbd{m R}; @pxref{General Mode Commands}).
16090 Record modes in Embedded buffer (@kbd{m R}).
16093 Record modes as editing-only in Embedded buffer (@kbd{m R}).
16096 Record modes as permanent-only in Embedded buffer (@kbd{m R}).
16099 Record modes as global in Embedded buffer (@kbd{m R}).
16102 Automatic recomputation turned off (@kbd{m C}; @pxref{Automatic
16106 GNUPLOT process is alive in background (@pxref{Graphics}).
16109 Top-of-stack has a selection (Embedded only; @pxref{Making Selections}).
16112 The stack display may not be up-to-date (@pxref{Display Modes}).
16115 ``Inverse'' prefix was pressed (@kbd{I}; @pxref{Inverse and Hyperbolic}).
16118 ``Hyperbolic'' prefix was pressed (@kbd{H}).
16121 ``Keep-arguments'' prefix was pressed (@kbd{K}).
16124 Stack is truncated (@kbd{d t}; @pxref{Truncating the Stack}).
16127 In addition, the symbols @code{Active} and @code{~Active} can appear
16128 as minor modes on an Embedded buffer's mode line. @xref{Embedded Mode}.
16130 @node Arithmetic, Scientific Functions, Mode Settings, Top
16131 @chapter Arithmetic Functions
16134 This chapter describes the Calc commands for doing simple calculations
16135 on numbers, such as addition, absolute value, and square roots. These
16136 commands work by removing the top one or two values from the stack,
16137 performing the desired operation, and pushing the result back onto the
16138 stack. If the operation cannot be performed, the result pushed is a
16139 formula instead of a number, such as @samp{2/0} (because division by zero
16140 is invalid) or @samp{sqrt(x)} (because the argument @samp{x} is a formula).
16142 Most of the commands described here can be invoked by a single keystroke.
16143 Some of the more obscure ones are two-letter sequences beginning with
16144 the @kbd{f} (``functions'') prefix key.
16146 @xref{Prefix Arguments}, for a discussion of the effect of numeric
16147 prefix arguments on commands in this chapter which do not otherwise
16148 interpret a prefix argument.
16151 * Basic Arithmetic::
16152 * Integer Truncation::
16153 * Complex Number Functions::
16155 * Date Arithmetic::
16156 * Financial Functions::
16157 * Binary Functions::
16160 @node Basic Arithmetic, Integer Truncation, Arithmetic, Arithmetic
16161 @section Basic Arithmetic
16170 The @kbd{+} (@code{calc-plus}) command adds two numbers. The numbers may
16171 be any of the standard Calc data types. The resulting sum is pushed back
16174 If both arguments of @kbd{+} are vectors or matrices (of matching dimensions),
16175 the result is a vector or matrix sum. If one argument is a vector and the
16176 other a scalar (i.e., a non-vector), the scalar is added to each of the
16177 elements of the vector to form a new vector. If the scalar is not a
16178 number, the operation is left in symbolic form: Suppose you added @samp{x}
16179 to the vector @samp{[1,2]}. You may want the result @samp{[1+x,2+x]}, or
16180 you may plan to substitute a 2-vector for @samp{x} in the future. Since
16181 the Calculator can't tell which interpretation you want, it makes the
16182 safest assumption. @xref{Reducing and Mapping}, for a way to add @samp{x}
16183 to every element of a vector.
16185 If either argument of @kbd{+} is a complex number, the result will in general
16186 be complex. If one argument is in rectangular form and the other polar,
16187 the current Polar mode determines the form of the result. If Symbolic
16188 mode is enabled, the sum may be left as a formula if the necessary
16189 conversions for polar addition are non-trivial.
16191 If both arguments of @kbd{+} are HMS forms, the forms are added according to
16192 the usual conventions of hours-minutes-seconds notation. If one argument
16193 is an HMS form and the other is a number, that number is converted from
16194 degrees or radians (depending on the current Angular mode) to HMS format
16195 and then the two HMS forms are added.
16197 If one argument of @kbd{+} is a date form, the other can be either a
16198 real number, which advances the date by a certain number of days, or
16199 an HMS form, which advances the date by a certain amount of time.
16200 Subtracting two date forms yields the number of days between them.
16201 Adding two date forms is meaningless, but Calc interprets it as the
16202 subtraction of one date form and the negative of the other. (The
16203 negative of a date form can be understood by remembering that dates
16204 are stored as the number of days before or after Jan 1, 1 AD.)
16206 If both arguments of @kbd{+} are error forms, the result is an error form
16207 with an appropriately computed standard deviation. If one argument is an
16208 error form and the other is a number, the number is taken to have zero error.
16209 Error forms may have symbolic formulas as their mean and/or error parts;
16210 adding these will produce a symbolic error form result. However, adding an
16211 error form to a plain symbolic formula (as in @samp{(a +/- b) + c}) will not
16212 work, for the same reasons just mentioned for vectors. Instead you must
16213 write @samp{(a +/- b) + (c +/- 0)}.
16215 If both arguments of @kbd{+} are modulo forms with equal values of @expr{M},
16216 or if one argument is a modulo form and the other a plain number, the
16217 result is a modulo form which represents the sum, modulo @expr{M}, of
16220 If both arguments of @kbd{+} are intervals, the result is an interval
16221 which describes all possible sums of the possible input values. If
16222 one argument is a plain number, it is treated as the interval
16223 @w{@samp{[x ..@: x]}}.
16225 If one argument of @kbd{+} is an infinity and the other is not, the
16226 result is that same infinity. If both arguments are infinite and in
16227 the same direction, the result is the same infinity, but if they are
16228 infinite in different directions the result is @code{nan}.
16236 The @kbd{-} (@code{calc-minus}) command subtracts two values. The top
16237 number on the stack is subtracted from the one behind it, so that the
16238 computation @kbd{5 @key{RET} 2 -} produces 3, not @mathit{-3}. All options
16239 available for @kbd{+} are available for @kbd{-} as well.
16247 The @kbd{*} (@code{calc-times}) command multiplies two numbers. If one
16248 argument is a vector and the other a scalar, the scalar is multiplied by
16249 the elements of the vector to produce a new vector. If both arguments
16250 are vectors, the interpretation depends on the dimensions of the
16251 vectors: If both arguments are matrices, a matrix multiplication is
16252 done. If one argument is a matrix and the other a plain vector, the
16253 vector is interpreted as a row vector or column vector, whichever is
16254 dimensionally correct. If both arguments are plain vectors, the result
16255 is a single scalar number which is the dot product of the two vectors.
16257 If one argument of @kbd{*} is an HMS form and the other a number, the
16258 HMS form is multiplied by that amount. It is an error to multiply two
16259 HMS forms together, or to attempt any multiplication involving date
16260 forms. Error forms, modulo forms, and intervals can be multiplied;
16261 see the comments for addition of those forms. When two error forms
16262 or intervals are multiplied they are considered to be statistically
16263 independent; thus, @samp{[-2 ..@: 3] * [-2 ..@: 3]} is @samp{[-6 ..@: 9]},
16264 whereas @w{@samp{[-2 ..@: 3] ^ 2}} is @samp{[0 ..@: 9]}.
16267 @pindex calc-divide
16272 The @kbd{/} (@code{calc-divide}) command divides two numbers.
16274 When combining multiplication and division in an algebraic formula, it
16275 is good style to use parentheses to distinguish between possible
16276 interpretations; the expression @samp{a/b*c} should be written
16277 @samp{(a/b)*c} or @samp{a/(b*c)}, as appropriate. Without the
16278 parentheses, Calc will interpret @samp{a/b*c} as @samp{a/(b*c)}, since
16279 in algebraic entry Calc gives division a lower precedence than
16280 multiplication. (This is not standard across all computer languages, and
16281 Calc may change the precedence depending on the language mode being used.
16282 @xref{Language Modes}.) This default ordering can be changed by setting
16283 the customizable variable @code{calc-multiplication-has-precedence} to
16284 @code{nil} (@pxref{Customizing Calc}); this will give multiplication and
16285 division equal precedences. Note that Calc's default choice of
16286 precedence allows @samp{a b / c d} to be used as a shortcut for
16295 When dividing a scalar @expr{B} by a square matrix @expr{A}, the
16296 computation performed is @expr{B} times the inverse of @expr{A}. This
16297 also occurs if @expr{B} is itself a vector or matrix, in which case the
16298 effect is to solve the set of linear equations represented by @expr{B}.
16299 If @expr{B} is a matrix with the same number of rows as @expr{A}, or a
16300 plain vector (which is interpreted here as a column vector), then the
16301 equation @expr{A X = B} is solved for the vector or matrix @expr{X}.
16302 Otherwise, if @expr{B} is a non-square matrix with the same number of
16303 @emph{columns} as @expr{A}, the equation @expr{X A = B} is solved. If
16304 you wish a vector @expr{B} to be interpreted as a row vector to be
16305 solved as @expr{X A = B}, make it into a one-row matrix with @kbd{C-u 1
16306 v p} first. To force a left-handed solution with a square matrix
16307 @expr{B}, transpose @expr{A} and @expr{B} before dividing, then
16308 transpose the result.
16310 HMS forms can be divided by real numbers or by other HMS forms. Error
16311 forms can be divided in any combination of ways. Modulo forms where both
16312 values and the modulo are integers can be divided to get an integer modulo
16313 form result. Intervals can be divided; dividing by an interval that
16314 encompasses zero or has zero as a limit will result in an infinite
16323 The @kbd{^} (@code{calc-power}) command raises a number to a power. If
16324 the power is an integer, an exact result is computed using repeated
16325 multiplications. For non-integer powers, Calc uses Newton's method or
16326 logarithms and exponentials. Square matrices can be raised to integer
16327 powers. If either argument is an error (or interval or modulo) form,
16328 the result is also an error (or interval or modulo) form.
16332 If you press the @kbd{I} (inverse) key first, the @kbd{I ^} command
16333 computes an Nth root: @kbd{125 @key{RET} 3 I ^} computes the number 5.
16334 (This is entirely equivalent to @kbd{125 @key{RET} 1:3 ^}.)
16343 The @kbd{\} (@code{calc-idiv}) command divides two numbers on the stack
16344 to produce an integer result. It is equivalent to dividing with
16345 @key{/}, then rounding down with @kbd{F} (@code{calc-floor}), only a bit
16346 more convenient and efficient. Also, since it is an all-integer
16347 operation when the arguments are integers, it avoids problems that
16348 @kbd{/ F} would have with floating-point roundoff.
16356 The @kbd{%} (@code{calc-mod}) command performs a ``modulo'' (or ``remainder'')
16357 operation. Mathematically, @samp{a%b = a - (a\b)*b}, and is defined
16358 for all real numbers @expr{a} and @expr{b} (except @expr{b=0}). For
16359 positive @expr{b}, the result will always be between 0 (inclusive) and
16360 @expr{b} (exclusive). Modulo does not work for HMS forms and error forms.
16361 If @expr{a} is a modulo form, its modulo is changed to @expr{b}, which
16362 must be positive real number.
16367 The @kbd{:} (@code{calc-fdiv}) [@code{fdiv}] command
16368 divides the two integers on the top of the stack to produce a fractional
16369 result. This is a convenient shorthand for enabling Fraction mode (with
16370 @kbd{m f}) temporarily and using @samp{/}. Note that during numeric entry
16371 the @kbd{:} key is interpreted as a fraction separator, so to divide 8 by 6
16372 you would have to type @kbd{8 @key{RET} 6 @key{RET} :}. (Of course, in
16373 this case, it would be much easier simply to enter the fraction directly
16374 as @kbd{8:6 @key{RET}}!)
16377 @pindex calc-change-sign
16378 The @kbd{n} (@code{calc-change-sign}) command negates the number on the top
16379 of the stack. It works on numbers, vectors and matrices, HMS forms, date
16380 forms, error forms, intervals, and modulo forms.
16385 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the absolute
16386 value of a number. The result of @code{abs} is always a nonnegative
16387 real number: With a complex argument, it computes the complex magnitude.
16388 With a vector or matrix argument, it computes the Frobenius norm, i.e.,
16389 the square root of the sum of the squares of the absolute values of the
16390 elements. The absolute value of an error form is defined by replacing
16391 the mean part with its absolute value and leaving the error part the same.
16392 The absolute value of a modulo form is undefined. The absolute value of
16393 an interval is defined in the obvious way.
16396 @pindex calc-abssqr
16398 The @kbd{f A} (@code{calc-abssqr}) [@code{abssqr}] command computes the
16399 absolute value squared of a number, vector or matrix, or error form.
16404 The @kbd{f s} (@code{calc-sign}) [@code{sign}] command returns 1 if its
16405 argument is positive, @mathit{-1} if its argument is negative, or 0 if its
16406 argument is zero. In algebraic form, you can also write @samp{sign(a,x)}
16407 which evaluates to @samp{x * sign(a)}, i.e., either @samp{x}, @samp{-x}, or
16408 zero depending on the sign of @samp{a}.
16414 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
16415 reciprocal of a number, i.e., @expr{1 / x}. Operating on a square
16416 matrix, it computes the inverse of that matrix.
16421 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] command computes the square
16422 root of a number. For a negative real argument, the result will be a
16423 complex number whose form is determined by the current Polar mode.
16428 The @kbd{f h} (@code{calc-hypot}) [@code{hypot}] command computes the square
16429 root of the sum of the squares of two numbers. That is, @samp{hypot(a,b)}
16430 is the length of the hypotenuse of a right triangle with sides @expr{a}
16431 and @expr{b}. If the arguments are complex numbers, their squared
16432 magnitudes are used.
16437 The @kbd{f Q} (@code{calc-isqrt}) [@code{isqrt}] command computes the
16438 integer square root of an integer. This is the true square root of the
16439 number, rounded down to an integer. For example, @samp{isqrt(10)}
16440 produces 3. Note that, like @kbd{\} [@code{idiv}], this uses exact
16441 integer arithmetic throughout to avoid roundoff problems. If the input
16442 is a floating-point number or other non-integer value, this is exactly
16443 the same as @samp{floor(sqrt(x))}.
16451 The @kbd{f n} (@code{calc-min}) [@code{min}] and @kbd{f x} (@code{calc-max})
16452 [@code{max}] commands take the minimum or maximum of two real numbers,
16453 respectively. These commands also work on HMS forms, date forms,
16454 intervals, and infinities. (In algebraic expressions, these functions
16455 take any number of arguments and return the maximum or minimum among
16456 all the arguments.)
16460 @pindex calc-mant-part
16462 @pindex calc-xpon-part
16464 The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts
16465 the ``mantissa'' part @expr{m} of its floating-point argument; @kbd{f X}
16466 (@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part
16467 @expr{e}. The original number is equal to
16468 @texline @math{m \times 10^e},
16469 @infoline @expr{m * 10^e},
16470 where @expr{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
16471 @expr{m=e=0} if the original number is zero. For integers
16472 and fractions, @code{mant} returns the number unchanged and @code{xpon}
16473 returns zero. The @kbd{v u} (@code{calc-unpack}) command can also be
16474 used to ``unpack'' a floating-point number; this produces an integer
16475 mantissa and exponent, with the constraint that the mantissa is not
16476 a multiple of ten (again except for the @expr{m=e=0} case).
16479 @pindex calc-scale-float
16481 The @kbd{f S} (@code{calc-scale-float}) [@code{scf}] function scales a number
16482 by a given power of ten. Thus, @samp{scf(mant(x), xpon(x)) = x} for any
16483 real @samp{x}. The second argument must be an integer, but the first
16484 may actually be any numeric value. For example, @samp{scf(5,-2) = 0.05}
16485 or @samp{1:20} depending on the current Fraction mode.
16489 @pindex calc-decrement
16490 @pindex calc-increment
16493 The @kbd{f [} (@code{calc-decrement}) [@code{decr}] and @kbd{f ]}
16494 (@code{calc-increment}) [@code{incr}] functions decrease or increase
16495 a number by one unit. For integers, the effect is obvious. For
16496 floating-point numbers, the change is by one unit in the last place.
16497 For example, incrementing @samp{12.3456} when the current precision
16498 is 6 digits yields @samp{12.3457}. If the current precision had been
16499 8 digits, the result would have been @samp{12.345601}. Incrementing
16500 @samp{0.0} produces
16501 @texline @math{10^{-p}},
16502 @infoline @expr{10^-p},
16503 where @expr{p} is the current
16504 precision. These operations are defined only on integers and floats.
16505 With numeric prefix arguments, they change the number by @expr{n} units.
16507 Note that incrementing followed by decrementing, or vice-versa, will
16508 almost but not quite always cancel out. Suppose the precision is
16509 6 digits and the number @samp{9.99999} is on the stack. Incrementing
16510 will produce @samp{10.0000}; decrementing will produce @samp{9.9999}.
16511 One digit has been dropped. This is an unavoidable consequence of the
16512 way floating-point numbers work.
16514 Incrementing a date/time form adjusts it by a certain number of seconds.
16515 Incrementing a pure date form adjusts it by a certain number of days.
16517 @node Integer Truncation, Complex Number Functions, Basic Arithmetic, Arithmetic
16518 @section Integer Truncation
16521 There are four commands for truncating a real number to an integer,
16522 differing mainly in their treatment of negative numbers. All of these
16523 commands have the property that if the argument is an integer, the result
16524 is the same integer. An integer-valued floating-point argument is converted
16527 If you press @kbd{H} (@code{calc-hyperbolic}) first, the result will be
16528 expressed as an integer-valued floating-point number.
16530 @cindex Integer part of a number
16539 The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command
16540 truncates a real number to the next lower integer, i.e., toward minus
16541 infinity. Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
16545 @pindex calc-ceiling
16552 The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}]
16553 command truncates toward positive infinity. Thus @kbd{3.6 I F} produces
16554 4, and @kbd{_3.6 I F} produces @mathit{-3}.
16564 The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command
16565 rounds to the nearest integer. When the fractional part is .5 exactly,
16566 this command rounds away from zero. (All other rounding in the
16567 Calculator uses this convention as well.) Thus @kbd{3.5 R} produces 4
16568 but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @mathit{-4}.
16578 The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}]
16579 command truncates toward zero. In other words, it ``chops off''
16580 everything after the decimal point. Thus @kbd{3.6 I R} produces 3 and
16581 @kbd{_3.6 I R} produces @mathit{-3}.
16583 These functions may not be applied meaningfully to error forms, but they
16584 do work for intervals. As a convenience, applying @code{floor} to a
16585 modulo form floors the value part of the form. Applied to a vector,
16586 these functions operate on all elements of the vector one by one.
16587 Applied to a date form, they operate on the internal numerical
16588 representation of dates, converting a date/time form into a pure date.
16606 There are two more rounding functions which can only be entered in
16607 algebraic notation. The @code{roundu} function is like @code{round}
16608 except that it rounds up, toward plus infinity, when the fractional
16609 part is .5. This distinction matters only for negative arguments.
16610 Also, @code{rounde} rounds to an even number in the case of a tie,
16611 rounding up or down as necessary. For example, @samp{rounde(3.5)} and
16612 @samp{rounde(4.5)} both return 4, but @samp{rounde(5.5)} returns 6.
16613 The advantage of round-to-even is that the net error due to rounding
16614 after a long calculation tends to cancel out to zero. An important
16615 subtle point here is that the number being fed to @code{rounde} will
16616 already have been rounded to the current precision before @code{rounde}
16617 begins. For example, @samp{rounde(2.500001)} with a current precision
16618 of 6 will incorrectly, or at least surprisingly, yield 2 because the
16619 argument will first have been rounded down to @expr{2.5} (which
16620 @code{rounde} sees as an exact tie between 2 and 3).
16622 Each of these functions, when written in algebraic formulas, allows
16623 a second argument which specifies the number of digits after the
16624 decimal point to keep. For example, @samp{round(123.4567, 2)} will
16625 produce the answer 123.46, and @samp{round(123.4567, -1)} will
16626 produce 120 (i.e., the cutoff is one digit to the @emph{left} of
16627 the decimal point). A second argument of zero is equivalent to
16628 no second argument at all.
16630 @cindex Fractional part of a number
16631 To compute the fractional part of a number (i.e., the amount which, when
16632 added to `@tfn{floor(}@var{n}@tfn{)}', will produce @var{n}) just take @var{n}
16633 modulo 1 using the @code{%} command.
16635 Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm),
16636 and @kbd{f Q} (integer square root) commands, which are analogous to
16637 @kbd{/}, @kbd{B}, and @kbd{Q}, respectively, except that they take integer
16638 arguments and return the result rounded down to an integer.
16640 @node Complex Number Functions, Conversions, Integer Truncation, Arithmetic
16641 @section Complex Number Functions
16647 The @kbd{J} (@code{calc-conj}) [@code{conj}] command computes the
16648 complex conjugate of a number. For complex number @expr{a+bi}, the
16649 complex conjugate is @expr{a-bi}. If the argument is a real number,
16650 this command leaves it the same. If the argument is a vector or matrix,
16651 this command replaces each element by its complex conjugate.
16654 @pindex calc-argument
16656 The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the
16657 ``argument'' or polar angle of a complex number. For a number in polar
16658 notation, this is simply the second component of the pair
16659 @texline `@tfn{(}@var{r}@tfn{;}@math{\theta}@tfn{)}'.
16660 @infoline `@tfn{(}@var{r}@tfn{;}@var{theta}@tfn{)}'.
16661 The result is expressed according to the current angular mode and will
16662 be in the range @mathit{-180} degrees (exclusive) to @mathit{+180} degrees
16663 (inclusive), or the equivalent range in radians.
16665 @pindex calc-imaginary
16666 The @code{calc-imaginary} command multiplies the number on the
16667 top of the stack by the imaginary number @expr{i = (0,1)}. This
16668 command is not normally bound to a key in Calc, but it is available
16669 on the @key{IMAG} button in Keypad mode.
16674 The @kbd{f r} (@code{calc-re}) [@code{re}] command replaces a complex number
16675 by its real part. This command has no effect on real numbers. (As an
16676 added convenience, @code{re} applied to a modulo form extracts
16682 The @kbd{f i} (@code{calc-im}) [@code{im}] command replaces a complex number
16683 by its imaginary part; real numbers are converted to zero. With a vector
16684 or matrix argument, these functions operate element-wise.
16689 @kindex v p (complex)
16690 @kindex V p (complex)
16692 The @kbd{v p} (@code{calc-pack}) command can pack the top two numbers on
16693 the stack into a composite object such as a complex number. With
16694 a prefix argument of @mathit{-1}, it produces a rectangular complex number;
16695 with an argument of @mathit{-2}, it produces a polar complex number.
16696 (Also, @pxref{Building Vectors}.)
16701 @kindex v u (complex)
16702 @kindex V u (complex)
16703 @pindex calc-unpack
16704 The @kbd{v u} (@code{calc-unpack}) command takes the complex number
16705 (or other composite object) on the top of the stack and unpacks it
16706 into its separate components.
16708 @node Conversions, Date Arithmetic, Complex Number Functions, Arithmetic
16709 @section Conversions
16712 The commands described in this section convert numbers from one form
16713 to another; they are two-key sequences beginning with the letter @kbd{c}.
16718 The @kbd{c f} (@code{calc-float}) [@code{pfloat}] command converts the
16719 number on the top of the stack to floating-point form. For example,
16720 @expr{23} is converted to @expr{23.0}, @expr{3:2} is converted to
16721 @expr{1.5}, and @expr{2.3} is left the same. If the value is a composite
16722 object such as a complex number or vector, each of the components is
16723 converted to floating-point. If the value is a formula, all numbers
16724 in the formula are converted to floating-point. Note that depending
16725 on the current floating-point precision, conversion to floating-point
16726 format may lose information.
16728 As a special exception, integers which appear as powers or subscripts
16729 are not floated by @kbd{c f}. If you really want to float a power,
16730 you can use a @kbd{j s} command to select the power followed by @kbd{c f}.
16731 Because @kbd{c f} cannot examine the formula outside of the selection,
16732 it does not notice that the thing being floated is a power.
16733 @xref{Selecting Subformulas}.
16735 The normal @kbd{c f} command is ``pervasive'' in the sense that it
16736 applies to all numbers throughout the formula. The @code{pfloat}
16737 algebraic function never stays around in a formula; @samp{pfloat(a + 1)}
16738 changes to @samp{a + 1.0} as soon as it is evaluated.
16742 With the Hyperbolic flag, @kbd{H c f} [@code{float}] operates
16743 only on the number or vector of numbers at the top level of its
16744 argument. Thus, @samp{float(1)} is 1.0, but @samp{float(a + 1)}
16745 is left unevaluated because its argument is not a number.
16747 You should use @kbd{H c f} if you wish to guarantee that the final
16748 value, once all the variables have been assigned, is a float; you
16749 would use @kbd{c f} if you wish to do the conversion on the numbers
16750 that appear right now.
16753 @pindex calc-fraction
16755 The @kbd{c F} (@code{calc-fraction}) [@code{pfrac}] command converts a
16756 floating-point number into a fractional approximation. By default, it
16757 produces a fraction whose decimal representation is the same as the
16758 input number, to within the current precision. You can also give a
16759 numeric prefix argument to specify a tolerance, either directly, or,
16760 if the prefix argument is zero, by using the number on top of the stack
16761 as the tolerance. If the tolerance is a positive integer, the fraction
16762 is correct to within that many significant figures. If the tolerance is
16763 a non-positive integer, it specifies how many digits fewer than the current
16764 precision to use. If the tolerance is a floating-point number, the
16765 fraction is correct to within that absolute amount.
16769 The @code{pfrac} function is pervasive, like @code{pfloat}.
16770 There is also a non-pervasive version, @kbd{H c F} [@code{frac}],
16771 which is analogous to @kbd{H c f} discussed above.
16774 @pindex calc-to-degrees
16776 The @kbd{c d} (@code{calc-to-degrees}) [@code{deg}] command converts a
16777 number into degrees form. The value on the top of the stack may be an
16778 HMS form (interpreted as degrees-minutes-seconds), or a real number which
16779 will be interpreted in radians regardless of the current angular mode.
16782 @pindex calc-to-radians
16784 The @kbd{c r} (@code{calc-to-radians}) [@code{rad}] command converts an
16785 HMS form or angle in degrees into an angle in radians.
16788 @pindex calc-to-hms
16790 The @kbd{c h} (@code{calc-to-hms}) [@code{hms}] command converts a real
16791 number, interpreted according to the current angular mode, to an HMS
16792 form describing the same angle. In algebraic notation, the @code{hms}
16793 function also accepts three arguments: @samp{hms(@var{h}, @var{m}, @var{s})}.
16794 (The three-argument version is independent of the current angular mode.)
16796 @pindex calc-from-hms
16797 The @code{calc-from-hms} command converts the HMS form on the top of the
16798 stack into a real number according to the current angular mode.
16805 The @kbd{c p} (@code{calc-polar}) command converts the complex number on
16806 the top of the stack from polar to rectangular form, or from rectangular
16807 to polar form, whichever is appropriate. Real numbers are left the same.
16808 This command is equivalent to the @code{rect} or @code{polar}
16809 functions in algebraic formulas, depending on the direction of
16810 conversion. (It uses @code{polar}, except that if the argument is
16811 already a polar complex number, it uses @code{rect} instead. The
16812 @kbd{I c p} command always uses @code{rect}.)
16817 The @kbd{c c} (@code{calc-clean}) [@code{pclean}] command ``cleans'' the
16818 number on the top of the stack. Floating point numbers are re-rounded
16819 according to the current precision. Polar numbers whose angular
16820 components have strayed from the @mathit{-180} to @mathit{+180} degree range
16821 are normalized. (Note that results will be undesirable if the current
16822 angular mode is different from the one under which the number was
16823 produced!) Integers and fractions are generally unaffected by this
16824 operation. Vectors and formulas are cleaned by cleaning each component
16825 number (i.e., pervasively).
16827 If the simplification mode is set below basic simplification, it is raised
16828 for the purposes of this command. Thus, @kbd{c c} applies the basic
16829 simplifications even if their automatic application is disabled.
16830 @xref{Simplification Modes}.
16832 @cindex Roundoff errors, correcting
16833 A numeric prefix argument to @kbd{c c} sets the floating-point precision
16834 to that value for the duration of the command. A positive prefix (of at
16835 least 3) sets the precision to the specified value; a negative or zero
16836 prefix decreases the precision by the specified amount.
16839 @pindex calc-clean-num
16840 The keystroke sequences @kbd{c 0} through @kbd{c 9} are equivalent
16841 to @kbd{c c} with the corresponding negative prefix argument. If roundoff
16842 errors have changed 2.0 into 1.999999, typing @kbd{c 1} to clip off one
16843 decimal place often conveniently does the trick.
16845 The @kbd{c c} command with a numeric prefix argument, and the @kbd{c 0}
16846 through @kbd{c 9} commands, also ``clip'' very small floating-point
16847 numbers to zero. If the exponent is less than or equal to the negative
16848 of the specified precision, the number is changed to 0.0. For example,
16849 if the current precision is 12, then @kbd{c 2} changes the vector
16850 @samp{[1e-8, 1e-9, 1e-10, 1e-11]} to @samp{[1e-8, 1e-9, 0, 0]}.
16851 Numbers this small generally arise from roundoff noise.
16853 If the numbers you are using really are legitimately this small,
16854 you should avoid using the @kbd{c 0} through @kbd{c 9} commands.
16855 (The plain @kbd{c c} command rounds to the current precision but
16856 does not clip small numbers.)
16858 One more property of @kbd{c 0} through @kbd{c 9}, and of @kbd{c c} with
16859 a prefix argument, is that integer-valued floats are converted to
16860 plain integers, so that @kbd{c 1} on @samp{[1., 1.5, 2., 2.5, 3.]}
16861 produces @samp{[1, 1.5, 2, 2.5, 3]}. This is not done for huge
16862 numbers (@samp{1e100} is technically an integer-valued float, but
16863 you wouldn't want it automatically converted to a 100-digit integer).
16868 With the Hyperbolic flag, @kbd{H c c} and @kbd{H c 0} through @kbd{H c 9}
16869 operate non-pervasively [@code{clean}].
16871 @node Date Arithmetic, Financial Functions, Conversions, Arithmetic
16872 @section Date Arithmetic
16875 @cindex Date arithmetic, additional functions
16876 The commands described in this section perform various conversions
16877 and calculations involving date forms (@pxref{Date Forms}). They
16878 use the @kbd{t} (for time/date) prefix key followed by shifted
16881 The simplest date arithmetic is done using the regular @kbd{+} and @kbd{-}
16882 commands. In particular, adding a number to a date form advances the
16883 date form by a certain number of days; adding an HMS form to a date
16884 form advances the date by a certain amount of time; and subtracting two
16885 date forms produces a difference measured in days. The commands
16886 described here provide additional, more specialized operations on dates.
16888 Many of these commands accept a numeric prefix argument; if you give
16889 plain @kbd{C-u} as the prefix, these commands will instead take the
16890 additional argument from the top of the stack.
16893 * Date Conversions::
16899 @node Date Conversions, Date Functions, Date Arithmetic, Date Arithmetic
16900 @subsection Date Conversions
16906 The @kbd{t D} (@code{calc-date}) [@code{date}] command converts a
16907 date form into a number, measured in days since Jan 1, 1 AD@. The
16908 result will be an integer if @var{date} is a pure date form, or a
16909 fraction or float if @var{date} is a date/time form. Or, if its
16910 argument is a number, it converts this number into a date form.
16912 With a numeric prefix argument, @kbd{t D} takes that many objects
16913 (up to six) from the top of the stack and interprets them in one
16914 of the following ways:
16916 The @samp{date(@var{year}, @var{month}, @var{day})} function
16917 builds a pure date form out of the specified year, month, and
16918 day, which must all be integers. @var{Year} is a year number,
16919 such as 1991 (@emph{not} the same as 91!). @var{Month} must be
16920 an integer in the range 1 to 12; @var{day} must be in the range
16921 1 to 31. If the specified month has fewer than 31 days and
16922 @var{day} is too large, the equivalent day in the following
16923 month will be used.
16925 The @samp{date(@var{month}, @var{day})} function builds a
16926 pure date form using the current year, as determined by the
16929 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hms})}
16930 function builds a date/time form using an @var{hms} form.
16932 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hour},
16933 @var{minute}, @var{second})} function builds a date/time form.
16934 @var{hour} should be an integer in the range 0 to 23;
16935 @var{minute} should be an integer in the range 0 to 59;
16936 @var{second} should be any real number in the range @samp{[0 .. 60)}.
16937 The last two arguments default to zero if omitted.
16940 @pindex calc-julian
16942 @cindex Julian day counts, conversions
16943 The @kbd{t J} (@code{calc-julian}) [@code{julian}] command converts
16944 a date form into a Julian day count, which is the number of days
16945 since noon (GMT) on Jan 1, 4713 BC@. A pure date is converted to an
16946 integer Julian count representing noon of that day. A date/time form
16947 is converted to an exact floating-point Julian count, adjusted to
16948 interpret the date form in the current time zone but the Julian
16949 day count in Greenwich Mean Time. A numeric prefix argument allows
16950 you to specify the time zone; @pxref{Time Zones}. Use a prefix of
16951 zero to suppress the time zone adjustment. Note that pure date forms
16952 are never time-zone adjusted.
16954 This command can also do the opposite conversion, from a Julian day
16955 count (either an integer day, or a floating-point day and time in
16956 the GMT zone), into a pure date form or a date/time form in the
16957 current or specified time zone.
16960 @pindex calc-unix-time
16962 @cindex Unix time format, conversions
16963 The @kbd{t U} (@code{calc-unix-time}) [@code{unixtime}] command
16964 converts a date form into a Unix time value, which is the number of
16965 seconds since midnight on Jan 1, 1970, or vice-versa. The numeric result
16966 will be an integer if the current precision is 12 or less; for higher
16967 precision, the result may be a float with (@var{precision}@minus{}12)
16968 digits after the decimal. Just as for @kbd{t J}, the numeric time
16969 is interpreted in the GMT time zone and the date form is interpreted
16970 in the current or specified zone. Some systems use Unix-like
16971 numbering but with the local time zone; give a prefix of zero to
16972 suppress the adjustment if so.
16975 @pindex calc-convert-time-zones
16977 @cindex Time Zones, converting between
16978 The @kbd{t C} (@code{calc-convert-time-zones}) [@code{tzconv}]
16979 command converts a date form from one time zone to another. You
16980 are prompted for each time zone name in turn; you can answer with
16981 any suitable Calc time zone expression (@pxref{Time Zones}).
16982 If you answer either prompt with a blank line, the local time
16983 zone is used for that prompt. You can also answer the first
16984 prompt with @kbd{$} to take the two time zone names from the
16985 stack (and the date to be converted from the third stack level).
16987 @node Date Functions, Business Days, Date Conversions, Date Arithmetic
16988 @subsection Date Functions
16994 The @kbd{t N} (@code{calc-now}) [@code{now}] command pushes the
16995 current date and time on the stack as a date form. The time is
16996 reported in terms of the specified time zone; with no numeric prefix
16997 argument, @kbd{t N} reports for the current time zone.
17000 @pindex calc-date-part
17001 The @kbd{t P} (@code{calc-date-part}) command extracts one part
17002 of a date form. The prefix argument specifies the part; with no
17003 argument, this command prompts for a part code from 1 to 9.
17004 The various part codes are described in the following paragraphs.
17007 The @kbd{M-1 t P} [@code{year}] function extracts the year number
17008 from a date form as an integer, e.g., 1991. This and the
17009 following functions will also accept a real number for an
17010 argument, which is interpreted as a standard Calc day number.
17011 Note that this function will never return zero, since the year
17012 1 BC immediately precedes the year 1 AD.
17015 The @kbd{M-2 t P} [@code{month}] function extracts the month number
17016 from a date form as an integer in the range 1 to 12.
17019 The @kbd{M-3 t P} [@code{day}] function extracts the day number
17020 from a date form as an integer in the range 1 to 31.
17023 The @kbd{M-4 t P} [@code{hour}] function extracts the hour from
17024 a date form as an integer in the range 0 (midnight) to 23. Note
17025 that 24-hour time is always used. This returns zero for a pure
17026 date form. This function (and the following two) also accept
17027 HMS forms as input.
17030 The @kbd{M-5 t P} [@code{minute}] function extracts the minute
17031 from a date form as an integer in the range 0 to 59.
17034 The @kbd{M-6 t P} [@code{second}] function extracts the second
17035 from a date form. If the current precision is 12 or less,
17036 the result is an integer in the range 0 to 59. For higher
17037 precision, the result may instead be a floating-point number.
17040 The @kbd{M-7 t P} [@code{weekday}] function extracts the weekday
17041 number from a date form as an integer in the range 0 (Sunday)
17045 The @kbd{M-8 t P} [@code{yearday}] function extracts the day-of-year
17046 number from a date form as an integer in the range 1 (January 1)
17047 to 366 (December 31 of a leap year).
17050 The @kbd{M-9 t P} [@code{time}] function extracts the time portion
17051 of a date form as an HMS form. This returns @samp{0@@ 0' 0"}
17052 for a pure date form.
17055 @pindex calc-new-month
17057 The @kbd{t M} (@code{calc-new-month}) [@code{newmonth}] command
17058 computes a new date form that represents the first day of the month
17059 specified by the input date. The result is always a pure date
17060 form; only the year and month numbers of the input are retained.
17061 With a numeric prefix argument @var{n} in the range from 1 to 31,
17062 @kbd{t M} computes the @var{n}th day of the month. (If @var{n}
17063 is greater than the actual number of days in the month, or if
17064 @var{n} is zero, the last day of the month is used.)
17067 @pindex calc-new-year
17069 The @kbd{t Y} (@code{calc-new-year}) [@code{newyear}] command
17070 computes a new pure date form that represents the first day of
17071 the year specified by the input. The month, day, and time
17072 of the input date form are lost. With a numeric prefix argument
17073 @var{n} in the range from 1 to 366, @kbd{t Y} computes the
17074 @var{n}th day of the year (366 is treated as 365 in non-leap
17075 years). A prefix argument of 0 computes the last day of the
17076 year (December 31). A negative prefix argument from @mathit{-1} to
17077 @mathit{-12} computes the first day of the @var{n}th month of the year.
17080 @pindex calc-new-week
17082 The @kbd{t W} (@code{calc-new-week}) [@code{newweek}] command
17083 computes a new pure date form that represents the Sunday on or before
17084 the input date. With a numeric prefix argument, it can be made to
17085 use any day of the week as the starting day; the argument must be in
17086 the range from 0 (Sunday) to 6 (Saturday). This function always
17087 subtracts between 0 and 6 days from the input date.
17089 Here's an example use of @code{newweek}: Find the date of the next
17090 Wednesday after a given date. Using @kbd{M-3 t W} or @samp{newweek(d, 3)}
17091 will give you the @emph{preceding} Wednesday, so @samp{newweek(d+7, 3)}
17092 will give you the following Wednesday. A further look at the definition
17093 of @code{newweek} shows that if the input date is itself a Wednesday,
17094 this formula will return the Wednesday one week in the future. An
17095 exercise for the reader is to modify this formula to yield the same day
17096 if the input is already a Wednesday. Another interesting exercise is
17097 to preserve the time-of-day portion of the input (@code{newweek} resets
17098 the time to midnight; hint: how can @code{newweek} be defined in terms
17099 of the @code{weekday} function?).
17105 The @samp{pwday(@var{date})} function (not on any key) computes the
17106 day-of-month number of the Sunday on or before @var{date}. With
17107 two arguments, @samp{pwday(@var{date}, @var{day})} computes the day
17108 number of the Sunday on or before day number @var{day} of the month
17109 specified by @var{date}. The @var{day} must be in the range from
17110 7 to 31; if the day number is greater than the actual number of days
17111 in the month, the true number of days is used instead. Thus
17112 @samp{pwday(@var{date}, 7)} finds the first Sunday of the month, and
17113 @samp{pwday(@var{date}, 31)} finds the last Sunday of the month.
17114 With a third @var{weekday} argument, @code{pwday} can be made to look
17115 for any day of the week instead of Sunday.
17118 @pindex calc-inc-month
17120 The @kbd{t I} (@code{calc-inc-month}) [@code{incmonth}] command
17121 increases a date form by one month, or by an arbitrary number of
17122 months specified by a numeric prefix argument. The time portion,
17123 if any, of the date form stays the same. The day also stays the
17124 same, except that if the new month has fewer days the day
17125 number may be reduced to lie in the valid range. For example,
17126 @samp{incmonth(<Jan 31, 1991>)} produces @samp{<Feb 28, 1991>}.
17127 Because of this, @kbd{t I t I} and @kbd{M-2 t I} do not always give
17128 the same results (@samp{<Mar 28, 1991>} versus @samp{<Mar 31, 1991>}
17135 The @samp{incyear(@var{date}, @var{step})} function increases
17136 a date form by the specified number of years, which may be
17137 any positive or negative integer. Note that @samp{incyear(d, n)}
17138 is equivalent to @w{@samp{incmonth(d, 12*n)}}, but these do not have
17139 simple equivalents in terms of day arithmetic because
17140 months and years have varying lengths. If the @var{step}
17141 argument is omitted, 1 year is assumed. There is no keyboard
17142 command for this function; use @kbd{C-u 12 t I} instead.
17144 There is no @code{newday} function at all because @kbd{F} [@code{floor}]
17145 serves this purpose. Similarly, instead of @code{incday} and
17146 @code{incweek} simply use @expr{d + n} or @expr{d + 7 n}.
17148 @xref{Basic Arithmetic}, for the @kbd{f ]} [@code{incr}] command
17149 which can adjust a date/time form by a certain number of seconds.
17151 @node Business Days, Time Zones, Date Functions, Date Arithmetic
17152 @subsection Business Days
17155 Often time is measured in ``business days'' or ``working days,''
17156 where weekends and holidays are skipped. Calc's normal date
17157 arithmetic functions use calendar days, so that subtracting two
17158 consecutive Mondays will yield a difference of 7 days. By contrast,
17159 subtracting two consecutive Mondays would yield 5 business days
17160 (assuming two-day weekends and the absence of holidays).
17166 @pindex calc-business-days-plus
17167 @pindex calc-business-days-minus
17168 The @kbd{t +} (@code{calc-business-days-plus}) [@code{badd}]
17169 and @kbd{t -} (@code{calc-business-days-minus}) [@code{bsub}]
17170 commands perform arithmetic using business days. For @kbd{t +},
17171 one argument must be a date form and the other must be a real
17172 number (positive or negative). If the number is not an integer,
17173 then a certain amount of time is added as well as a number of
17174 days; for example, adding 0.5 business days to a time in Friday
17175 evening will produce a time in Monday morning. It is also
17176 possible to add an HMS form; adding @samp{12@@ 0' 0"} also adds
17177 half a business day. For @kbd{t -}, the arguments are either a
17178 date form and a number or HMS form, or two date forms, in which
17179 case the result is the number of business days between the two
17182 @cindex @code{Holidays} variable
17184 By default, Calc considers any day that is not a Saturday or
17185 Sunday to be a business day. You can define any number of
17186 additional holidays by editing the variable @code{Holidays}.
17187 (There is an @w{@kbd{s H}} convenience command for editing this
17188 variable.) Initially, @code{Holidays} contains the vector
17189 @samp{[sat, sun]}. Entries in the @code{Holidays} vector may
17190 be any of the following kinds of objects:
17194 Date forms (pure dates, not date/time forms). These specify
17195 particular days which are to be treated as holidays.
17198 Intervals of date forms. These specify a range of days, all of
17199 which are holidays (e.g., Christmas week). @xref{Interval Forms}.
17202 Nested vectors of date forms. Each date form in the vector is
17203 considered to be a holiday.
17206 Any Calc formula which evaluates to one of the above three things.
17207 If the formula involves the variable @expr{y}, it stands for a
17208 yearly repeating holiday; @expr{y} will take on various year
17209 numbers like 1992. For example, @samp{date(y, 12, 25)} specifies
17210 Christmas day, and @samp{newweek(date(y, 11, 7), 4) + 21} specifies
17211 Thanksgiving (which is held on the fourth Thursday of November).
17212 If the formula involves the variable @expr{m}, that variable
17213 takes on month numbers from 1 to 12: @samp{date(y, m, 15)} is
17214 a holiday that takes place on the 15th of every month.
17217 A weekday name, such as @code{sat} or @code{sun}. This is really
17218 a variable whose name is a three-letter, lower-case day name.
17221 An interval of year numbers (integers). This specifies the span of
17222 years over which this holiday list is to be considered valid. Any
17223 business-day arithmetic that goes outside this range will result
17224 in an error message. Use this if you are including an explicit
17225 list of holidays, rather than a formula to generate them, and you
17226 want to make sure you don't accidentally go beyond the last point
17227 where the holidays you entered are complete. If there is no
17228 limiting interval in the @code{Holidays} vector, the default
17229 @samp{[1 .. 2737]} is used. (This is the absolute range of years
17230 for which Calc's business-day algorithms will operate.)
17233 An interval of HMS forms. This specifies the span of hours that
17234 are to be considered one business day. For example, if this
17235 range is @samp{[9@@ 0' 0" .. 17@@ 0' 0"]} (i.e., 9am to 5pm), then
17236 the business day is only eight hours long, so that @kbd{1.5 t +}
17237 on @samp{<4:00pm Fri Dec 13, 1991>} will add one business day and
17238 four business hours to produce @samp{<12:00pm Tue Dec 17, 1991>}.
17239 Likewise, @kbd{t -} will now express differences in time as
17240 fractions of an eight-hour day. Times before 9am will be treated
17241 as 9am by business date arithmetic, and times at or after 5pm will
17242 be treated as 4:59:59pm. If there is no HMS interval in @code{Holidays},
17243 the full 24-hour day @samp{[0@ 0' 0" .. 24@ 0' 0"]} is assumed.
17244 (Regardless of the type of bounds you specify, the interval is
17245 treated as inclusive on the low end and exclusive on the high end,
17246 so that the work day goes from 9am up to, but not including, 5pm.)
17249 If the @code{Holidays} vector is empty, then @kbd{t +} and
17250 @kbd{t -} will act just like @kbd{+} and @kbd{-} because there will
17251 then be no difference between business days and calendar days.
17253 Calc expands the intervals and formulas you give into a complete
17254 list of holidays for internal use. This is done mainly to make
17255 sure it can detect multiple holidays. (For example,
17256 @samp{<Jan 1, 1989>} is both New Year's Day and a Sunday, but
17257 Calc's algorithms take care to count it only once when figuring
17258 the number of holidays between two dates.)
17260 Since the complete list of holidays for all the years from 1 to
17261 2737 would be huge, Calc actually computes only the part of the
17262 list between the smallest and largest years that have been involved
17263 in business-day calculations so far. Normally, you won't have to
17264 worry about this. Keep in mind, however, that if you do one
17265 calculation for 1992, and another for 1792, even if both involve
17266 only a small range of years, Calc will still work out all the
17267 holidays that fall in that 200-year span.
17269 If you add a (positive) number of days to a date form that falls on a
17270 weekend or holiday, the date form is treated as if it were the most
17271 recent business day. (Thus adding one business day to a Friday,
17272 Saturday, or Sunday will all yield the following Monday.) If you
17273 subtract a number of days from a weekend or holiday, the date is
17274 effectively on the following business day. (So subtracting one business
17275 day from Saturday, Sunday, or Monday yields the preceding Friday.) The
17276 difference between two dates one or both of which fall on holidays
17277 equals the number of actual business days between them. These
17278 conventions are consistent in the sense that, if you add @var{n}
17279 business days to any date, the difference between the result and the
17280 original date will come out to @var{n} business days. (It can't be
17281 completely consistent though; a subtraction followed by an addition
17282 might come out a bit differently, since @kbd{t +} is incapable of
17283 producing a date that falls on a weekend or holiday.)
17289 There is a @code{holiday} function, not on any keys, that takes
17290 any date form and returns 1 if that date falls on a weekend or
17291 holiday, as defined in @code{Holidays}, or 0 if the date is a
17294 @node Time Zones, , Business Days, Date Arithmetic
17295 @subsection Time Zones
17299 @cindex Daylight saving time
17300 Time zones and daylight saving time are a complicated business.
17301 The conversions to and from Julian and Unix-style dates automatically
17302 compute the correct time zone and daylight saving adjustment to use,
17303 provided they can figure out this information. This section describes
17304 Calc's time zone adjustment algorithm in detail, in case you want to
17305 do conversions in different time zones or in case Calc's algorithms
17306 can't determine the right correction to use.
17308 Adjustments for time zones and daylight saving time are done by
17309 @kbd{t U}, @kbd{t J}, @kbd{t N}, and @kbd{t C}, but not by any other
17310 commands. In particular, @samp{<may 1 1991> - <apr 1 1991>} evaluates
17311 to exactly 30 days even though there is a daylight-saving
17312 transition in between. This is also true for Julian pure dates:
17313 @samp{julian(<may 1 1991>) - julian(<apr 1 1991>)}. But Julian
17314 and Unix date/times will adjust for daylight saving time: using Calc's
17315 default daylight saving time rule (see the explanation below),
17316 @samp{julian(<12am may 1 1991>) - julian(<12am apr 1 1991>)}
17317 evaluates to @samp{29.95833} (that's 29 days and 23 hours)
17318 because one hour was lost when daylight saving commenced on
17321 In brief, the idiom @samp{julian(@var{date1}) - julian(@var{date2})}
17322 computes the actual number of 24-hour periods between two dates, whereas
17323 @samp{@var{date1} - @var{date2}} computes the number of calendar
17324 days between two dates without taking daylight saving into account.
17326 @pindex calc-time-zone
17331 The @code{calc-time-zone} [@code{tzone}] command converts the time
17332 zone specified by its numeric prefix argument into a number of
17333 seconds difference from Greenwich mean time (GMT). If the argument
17334 is a number, the result is simply that value multiplied by 3600.
17335 Typical arguments for North America are 5 (Eastern) or 8 (Pacific). If
17336 Daylight Saving time is in effect, one hour should be subtracted from
17337 the normal difference.
17339 If you give a prefix of plain @kbd{C-u}, @code{calc-time-zone} (like other
17340 date arithmetic commands that include a time zone argument) takes the
17341 zone argument from the top of the stack. (In the case of @kbd{t J}
17342 and @kbd{t U}, the normal argument is then taken from the second-to-top
17343 stack position.) This allows you to give a non-integer time zone
17344 adjustment. The time-zone argument can also be an HMS form, or
17345 it can be a variable which is a time zone name in upper- or lower-case.
17346 For example @samp{tzone(PST) = tzone(8)} and @samp{tzone(pdt) = tzone(7)}
17347 (for Pacific standard and daylight saving times, respectively).
17349 North American and European time zone names are defined as follows;
17350 note that for each time zone there is one name for standard time,
17351 another for daylight saving time, and a third for ``generalized'' time
17352 in which the daylight saving adjustment is computed from context.
17356 YST PST MST CST EST AST NST GMT WET MET MEZ
17357 9 8 7 6 5 4 3.5 0 -1 -2 -2
17359 YDT PDT MDT CDT EDT ADT NDT BST WETDST METDST MESZ
17360 8 7 6 5 4 3 2.5 -1 -2 -3 -3
17362 YGT PGT MGT CGT EGT AGT NGT BGT WEGT MEGT MEGZ
17363 9/8 8/7 7/6 6/5 5/4 4/3 3.5/2.5 0/-1 -1/-2 -2/-3 -2/-3
17367 @vindex math-tzone-names
17368 To define time zone names that do not appear in the above table,
17369 you must modify the Lisp variable @code{math-tzone-names}. This
17370 is a list of lists describing the different time zone names; its
17371 structure is best explained by an example. The three entries for
17372 Pacific Time look like this:
17376 ( ( "PST" 8 0 ) ; Name as an upper-case string, then standard
17377 ( "PDT" 8 -1 ) ; adjustment, then daylight saving adjustment.
17378 ( "PGT" 8 "PST" "PDT" ) ) ; Generalized time zone.
17382 @cindex @code{TimeZone} variable
17384 With no arguments, @code{calc-time-zone} or @samp{tzone()} will by
17385 default get the time zone and daylight saving information from the
17386 calendar (@pxref{Daylight Saving,Calendar/Diary,The Calendar and the Diary,
17387 emacs,The GNU Emacs Manual}). To use a different time zone, or if the
17388 calendar does not give the desired result, you can set the Calc variable
17389 @code{TimeZone} (which is by default @code{nil}) to an appropriate
17390 time zone name. (The easiest way to do this is to edit the
17391 @code{TimeZone} variable using Calc's @kbd{s T} command, then use the
17392 @kbd{s p} (@code{calc-permanent-variable}) command to save the value of
17393 @code{TimeZone} permanently.)
17394 If the time zone given by @code{TimeZone} is a generalized time zone,
17395 e.g., @code{EGT}, Calc examines the date being converted to tell whether
17396 to use standard or daylight saving time. But if the current time zone
17397 is explicit, e.g., @code{EST} or @code{EDT}, then that adjustment is
17398 used exactly and Calc's daylight saving algorithm is not consulted.
17399 The special time zone name @code{local}
17400 is equivalent to no argument; i.e., it uses the information obtained
17403 The @kbd{t J} and @code{t U} commands with no numeric prefix
17404 arguments do the same thing as @samp{tzone()}; namely, use the
17405 information from the calendar if @code{TimeZone} is @code{nil},
17406 otherwise use the time zone given by @code{TimeZone}.
17408 @vindex math-daylight-savings-hook
17409 @findex math-std-daylight-savings
17410 When Calc computes the daylight saving information itself (i.e., when
17411 the @code{TimeZone} variable is set), it will by default consider
17412 daylight saving time to begin at 2 a.m.@: on the second Sunday of March
17413 (for years from 2007 on) or on the last Sunday in April (for years
17414 before 2007), and to end at 2 a.m.@: on the first Sunday of
17415 November. (for years from 2007 on) or the last Sunday in October (for
17416 years before 2007). These are the rules that have been in effect in
17417 much of North America since 1966 and take into account the rule change
17418 that began in 2007. If you are in a country that uses different rules
17419 for computing daylight saving time, you have two choices: Write your own
17420 daylight saving hook, or control time zones explicitly by setting the
17421 @code{TimeZone} variable and/or always giving a time-zone argument for
17422 the conversion functions.
17424 The Lisp variable @code{math-daylight-savings-hook} holds the
17425 name of a function that is used to compute the daylight saving
17426 adjustment for a given date. The default is
17427 @code{math-std-daylight-savings}, which computes an adjustment
17428 (either 0 or @mathit{-1}) using the North American rules given above.
17430 The daylight saving hook function is called with four arguments:
17431 The date, as a floating-point number in standard Calc format;
17432 a six-element list of the date decomposed into year, month, day,
17433 hour, minute, and second, respectively; a string which contains
17434 the generalized time zone name in upper-case, e.g., @code{"WEGT"};
17435 and a special adjustment to be applied to the hour value when
17436 converting into a generalized time zone (see below).
17438 @findex math-prev-weekday-in-month
17439 The Lisp function @code{math-prev-weekday-in-month} is useful for
17440 daylight saving computations. This is an internal version of
17441 the user-level @code{pwday} function described in the previous
17442 section. It takes four arguments: The floating-point date value,
17443 the corresponding six-element date list, the day-of-month number,
17444 and the weekday number (0--6).
17446 The default daylight saving hook ignores the time zone name, but a
17447 more sophisticated hook could use different algorithms for different
17448 time zones. It would also be possible to use different algorithms
17449 depending on the year number, but the default hook always uses the
17450 algorithm for 1987 and later. Here is a listing of the default
17451 daylight saving hook:
17454 (defun math-std-daylight-savings (date dt zone bump)
17455 (cond ((< (nth 1 dt) 4) 0)
17457 (let ((sunday (math-prev-weekday-in-month date dt 7 0)))
17458 (cond ((< (nth 2 dt) sunday) 0)
17459 ((= (nth 2 dt) sunday)
17460 (if (>= (nth 3 dt) (+ 3 bump)) -1 0))
17462 ((< (nth 1 dt) 10) -1)
17464 (let ((sunday (math-prev-weekday-in-month date dt 31 0)))
17465 (cond ((< (nth 2 dt) sunday) -1)
17466 ((= (nth 2 dt) sunday)
17467 (if (>= (nth 3 dt) (+ 2 bump)) 0 -1))
17474 The @code{bump} parameter is equal to zero when Calc is converting
17475 from a date form in a generalized time zone into a GMT date value.
17476 It is @mathit{-1} when Calc is converting in the other direction. The
17477 adjustments shown above ensure that the conversion behaves correctly
17478 and reasonably around the 2 a.m.@: transition in each direction.
17480 There is a ``missing'' hour between 2 a.m.@: and 3 a.m.@: at the
17481 beginning of daylight saving time; converting a date/time form that
17482 falls in this hour results in a time value for the following hour,
17483 from 3 a.m.@: to 4 a.m. At the end of daylight saving time, the
17484 hour from 1 a.m.@: to 2 a.m.@: repeats itself; converting a date/time
17485 form that falls in this hour results in a time value for the first
17486 manifestation of that time (@emph{not} the one that occurs one hour
17489 If @code{math-daylight-savings-hook} is @code{nil}, then the
17490 daylight saving adjustment is always taken to be zero.
17492 In algebraic formulas, @samp{tzone(@var{zone}, @var{date})}
17493 computes the time zone adjustment for a given zone name at a
17494 given date. The @var{date} is ignored unless @var{zone} is a
17495 generalized time zone. If @var{date} is a date form, the
17496 daylight saving computation is applied to it as it appears.
17497 If @var{date} is a numeric date value, it is adjusted for the
17498 daylight-saving version of @var{zone} before being given to
17499 the daylight saving hook. This odd-sounding rule ensures
17500 that the daylight-saving computation is always done in
17501 local time, not in the GMT time that a numeric @var{date}
17502 is typically represented in.
17508 The @samp{dsadj(@var{date}, @var{zone})} function computes the
17509 daylight saving adjustment that is appropriate for @var{date} in
17510 time zone @var{zone}. If @var{zone} is explicitly in or not in
17511 daylight saving time (e.g., @code{PDT} or @code{PST}) the
17512 @var{date} is ignored. If @var{zone} is a generalized time zone,
17513 the algorithms described above are used. If @var{zone} is omitted,
17514 the computation is done for the current time zone.
17516 @node Financial Functions, Binary Functions, Date Arithmetic, Arithmetic
17517 @section Financial Functions
17520 Calc's financial or business functions use the @kbd{b} prefix
17521 key followed by a shifted letter. (The @kbd{b} prefix followed by
17522 a lower-case letter is used for operations on binary numbers.)
17524 Note that the rate and the number of intervals given to these
17525 functions must be on the same time scale, e.g., both months or
17526 both years. Mixing an annual interest rate with a time expressed
17527 in months will give you very wrong answers!
17529 It is wise to compute these functions to a higher precision than
17530 you really need, just to make sure your answer is correct to the
17531 last penny; also, you may wish to check the definitions at the end
17532 of this section to make sure the functions have the meaning you expect.
17538 * Related Financial Functions::
17539 * Depreciation Functions::
17540 * Definitions of Financial Functions::
17543 @node Percentages, Future Value, Financial Functions, Financial Functions
17544 @subsection Percentages
17547 @pindex calc-percent
17550 The @kbd{M-%} (@code{calc-percent}) command takes a percentage value,
17551 say 5.4, and converts it to an equivalent actual number. For example,
17552 @kbd{5.4 M-%} enters 0.054 on the stack. (That's the @key{META} or
17553 @key{ESC} key combined with @kbd{%}.)
17555 Actually, @kbd{M-%} creates a formula of the form @samp{5.4%}.
17556 You can enter @samp{5.4%} yourself during algebraic entry. The
17557 @samp{%} operator simply means, ``the preceding value divided by
17558 100.'' The @samp{%} operator has very high precedence, so that
17559 @samp{1+8%} is interpreted as @samp{1+(8%)}, not as @samp{(1+8)%}.
17560 (The @samp{%} operator is just a postfix notation for the
17561 @code{percent} function, just like @samp{20!} is the notation for
17562 @samp{fact(20)}, or twenty-factorial.)
17564 The formula @samp{5.4%} would normally evaluate immediately to
17565 0.054, but the @kbd{M-%} command suppresses evaluation as it puts
17566 the formula onto the stack. However, the next Calc command that
17567 uses the formula @samp{5.4%} will evaluate it as its first step.
17568 The net effect is that you get to look at @samp{5.4%} on the stack,
17569 but Calc commands see it as @samp{0.054}, which is what they expect.
17571 In particular, @samp{5.4%} and @samp{0.054} are suitable values
17572 for the @var{rate} arguments of the various financial functions,
17573 but the number @samp{5.4} is probably @emph{not} suitable---it
17574 represents a rate of 540 percent!
17576 The key sequence @kbd{M-% *} effectively means ``percent-of.''
17577 For example, @kbd{68 @key{RET} 25 M-% *} computes 17, which is 25% of
17578 68 (and also 68% of 25, which comes out to the same thing).
17581 @pindex calc-convert-percent
17582 The @kbd{c %} (@code{calc-convert-percent}) command converts the
17583 value on the top of the stack from numeric to percentage form.
17584 For example, if 0.08 is on the stack, @kbd{c %} converts it to
17585 @samp{8%}. The quantity is the same, it's just represented
17586 differently. (Contrast this with @kbd{M-%}, which would convert
17587 this number to @samp{0.08%}.) The @kbd{=} key is a convenient way
17588 to convert a formula like @samp{8%} back to numeric form, 0.08.
17590 To compute what percentage one quantity is of another quantity,
17591 use @kbd{/ c %}. For example, @w{@kbd{17 @key{RET} 68 / c %}} displays
17595 @pindex calc-percent-change
17597 The @kbd{b %} (@code{calc-percent-change}) [@code{relch}] command
17598 calculates the percentage change from one number to another.
17599 For example, @kbd{40 @key{RET} 50 b %} produces the answer @samp{25%},
17600 since 50 is 25% larger than 40. A negative result represents a
17601 decrease: @kbd{50 @key{RET} 40 b %} produces @samp{-20%}, since 40 is
17602 20% smaller than 50. (The answers are different in magnitude
17603 because, in the first case, we're increasing by 25% of 40, but
17604 in the second case, we're decreasing by 20% of 50.) The effect
17605 of @kbd{40 @key{RET} 50 b %} is to compute @expr{(50-40)/40}, converting
17606 the answer to percentage form as if by @kbd{c %}.
17608 @node Future Value, Present Value, Percentages, Financial Functions
17609 @subsection Future Value
17613 @pindex calc-fin-fv
17615 The @kbd{b F} (@code{calc-fin-fv}) [@code{fv}] command computes
17616 the future value of an investment. It takes three arguments
17617 from the stack: @samp{fv(@var{rate}, @var{n}, @var{payment})}.
17618 If you give payments of @var{payment} every year for @var{n}
17619 years, and the money you have paid earns interest at @var{rate} per
17620 year, then this function tells you what your investment would be
17621 worth at the end of the period. (The actual interval doesn't
17622 have to be years, as long as @var{n} and @var{rate} are expressed
17623 in terms of the same intervals.) This function assumes payments
17624 occur at the @emph{end} of each interval.
17628 The @kbd{I b F} [@code{fvb}] command does the same computation,
17629 but assuming your payments are at the beginning of each interval.
17630 Suppose you plan to deposit $1000 per year in a savings account
17631 earning 5.4% interest, starting right now. How much will be
17632 in the account after five years? @code{fvb(5.4%, 5, 1000) = 5870.73}.
17633 Thus you will have earned $870 worth of interest over the years.
17634 Using the stack, this calculation would have been
17635 @kbd{5.4 M-% 5 @key{RET} 1000 I b F}. Note that the rate is expressed
17636 as a number between 0 and 1, @emph{not} as a percentage.
17640 The @kbd{H b F} [@code{fvl}] command computes the future value
17641 of an initial lump sum investment. Suppose you could deposit
17642 those five thousand dollars in the bank right now; how much would
17643 they be worth in five years? @code{fvl(5.4%, 5, 5000) = 6503.89}.
17645 The algebraic functions @code{fv} and @code{fvb} accept an optional
17646 fourth argument, which is used as an initial lump sum in the sense
17647 of @code{fvl}. In other words, @code{fv(@var{rate}, @var{n},
17648 @var{payment}, @var{initial}) = fv(@var{rate}, @var{n}, @var{payment})
17649 + fvl(@var{rate}, @var{n}, @var{initial})}.
17651 To illustrate the relationships between these functions, we could
17652 do the @code{fvb} calculation ``by hand'' using @code{fvl}. The
17653 final balance will be the sum of the contributions of our five
17654 deposits at various times. The first deposit earns interest for
17655 five years: @code{fvl(5.4%, 5, 1000) = 1300.78}. The second
17656 deposit only earns interest for four years: @code{fvl(5.4%, 4, 1000) =
17657 1234.13}. And so on down to the last deposit, which earns one
17658 year's interest: @code{fvl(5.4%, 1, 1000) = 1054.00}. The sum of
17659 these five values is, sure enough, $5870.73, just as was computed
17660 by @code{fvb} directly.
17662 What does @code{fv(5.4%, 5, 1000) = 5569.96} mean? The payments
17663 are now at the ends of the periods. The end of one year is the same
17664 as the beginning of the next, so what this really means is that we've
17665 lost the payment at year zero (which contributed $1300.78), but we're
17666 now counting the payment at year five (which, since it didn't have
17667 a chance to earn interest, counts as $1000). Indeed, @expr{5569.96 =
17668 5870.73 - 1300.78 + 1000} (give or take a bit of roundoff error).
17670 @node Present Value, Related Financial Functions, Future Value, Financial Functions
17671 @subsection Present Value
17675 @pindex calc-fin-pv
17677 The @kbd{b P} (@code{calc-fin-pv}) [@code{pv}] command computes
17678 the present value of an investment. Like @code{fv}, it takes
17679 three arguments: @code{pv(@var{rate}, @var{n}, @var{payment})}.
17680 It computes the present value of a series of regular payments.
17681 Suppose you have the chance to make an investment that will
17682 pay $2000 per year over the next four years; as you receive
17683 these payments you can put them in the bank at 9% interest.
17684 You want to know whether it is better to make the investment, or
17685 to keep the money in the bank where it earns 9% interest right
17686 from the start. The calculation @code{pv(9%, 4, 2000)} gives the
17687 result 6479.44. If your initial investment must be less than this,
17688 say, $6000, then the investment is worthwhile. But if you had to
17689 put up $7000, then it would be better just to leave it in the bank.
17691 Here is the interpretation of the result of @code{pv}: You are
17692 trying to compare the return from the investment you are
17693 considering, which is @code{fv(9%, 4, 2000) = 9146.26}, with
17694 the return from leaving the money in the bank, which is
17695 @code{fvl(9%, 4, @var{x})} where @var{x} is the amount of money
17696 you would have to put up in advance. The @code{pv} function
17697 finds the break-even point, @expr{x = 6479.44}, at which
17698 @code{fvl(9%, 4, 6479.44)} is also equal to 9146.26. This is
17699 the largest amount you should be willing to invest.
17703 The @kbd{I b P} [@code{pvb}] command solves the same problem,
17704 but with payments occurring at the beginning of each interval.
17705 It has the same relationship to @code{fvb} as @code{pv} has
17706 to @code{fv}. For example @code{pvb(9%, 4, 2000) = 7062.59},
17707 a larger number than @code{pv} produced because we get to start
17708 earning interest on the return from our investment sooner.
17712 The @kbd{H b P} [@code{pvl}] command computes the present value of
17713 an investment that will pay off in one lump sum at the end of the
17714 period. For example, if we get our $8000 all at the end of the
17715 four years, @code{pvl(9%, 4, 8000) = 5667.40}. This is much
17716 less than @code{pv} reported, because we don't earn any interest
17717 on the return from this investment. Note that @code{pvl} and
17718 @code{fvl} are simple inverses: @code{fvl(9%, 4, 5667.40) = 8000}.
17720 You can give an optional fourth lump-sum argument to @code{pv}
17721 and @code{pvb}; this is handled in exactly the same way as the
17722 fourth argument for @code{fv} and @code{fvb}.
17725 @pindex calc-fin-npv
17727 The @kbd{b N} (@code{calc-fin-npv}) [@code{npv}] command computes
17728 the net present value of a series of irregular investments.
17729 The first argument is the interest rate. The second argument is
17730 a vector which represents the expected return from the investment
17731 at the end of each interval. For example, if the rate represents
17732 a yearly interest rate, then the vector elements are the return
17733 from the first year, second year, and so on.
17735 Thus, @code{npv(9%, [2000,2000,2000,2000]) = pv(9%, 4, 2000) = 6479.44}.
17736 Obviously this function is more interesting when the payments are
17739 The @code{npv} function can actually have two or more arguments.
17740 Multiple arguments are interpreted in the same way as for the
17741 vector statistical functions like @code{vsum}.
17742 @xref{Single-Variable Statistics}. Basically, if there are several
17743 payment arguments, each either a vector or a plain number, all these
17744 values are collected left-to-right into the complete list of payments.
17745 A numeric prefix argument on the @kbd{b N} command says how many
17746 payment values or vectors to take from the stack.
17750 The @kbd{I b N} [@code{npvb}] command computes the net present
17751 value where payments occur at the beginning of each interval
17752 rather than at the end.
17754 @node Related Financial Functions, Depreciation Functions, Present Value, Financial Functions
17755 @subsection Related Financial Functions
17758 The functions in this section are basically inverses of the
17759 present value functions with respect to the various arguments.
17762 @pindex calc-fin-pmt
17764 The @kbd{b M} (@code{calc-fin-pmt}) [@code{pmt}] command computes
17765 the amount of periodic payment necessary to amortize a loan.
17766 Thus @code{pmt(@var{rate}, @var{n}, @var{amount})} equals the
17767 value of @var{payment} such that @code{pv(@var{rate}, @var{n},
17768 @var{payment}) = @var{amount}}.
17772 The @kbd{I b M} [@code{pmtb}] command does the same computation
17773 but using @code{pvb} instead of @code{pv}. Like @code{pv} and
17774 @code{pvb}, these functions can also take a fourth argument which
17775 represents an initial lump-sum investment.
17778 The @kbd{H b M} key just invokes the @code{fvl} function, which is
17779 the inverse of @code{pvl}. There is no explicit @code{pmtl} function.
17782 @pindex calc-fin-nper
17784 The @kbd{b #} (@code{calc-fin-nper}) [@code{nper}] command computes
17785 the number of regular payments necessary to amortize a loan.
17786 Thus @code{nper(@var{rate}, @var{payment}, @var{amount})} equals
17787 the value of @var{n} such that @code{pv(@var{rate}, @var{n},
17788 @var{payment}) = @var{amount}}. If @var{payment} is too small
17789 ever to amortize a loan for @var{amount} at interest rate @var{rate},
17790 the @code{nper} function is left in symbolic form.
17794 The @kbd{I b #} [@code{nperb}] command does the same computation
17795 but using @code{pvb} instead of @code{pv}. You can give a fourth
17796 lump-sum argument to these functions, but the computation will be
17797 rather slow in the four-argument case.
17801 The @kbd{H b #} [@code{nperl}] command does the same computation
17802 using @code{pvl}. By exchanging @var{payment} and @var{amount} you
17803 can also get the solution for @code{fvl}. For example,
17804 @code{nperl(8%, 2000, 1000) = 9.006}, so if you place $1000 in a
17805 bank account earning 8%, it will take nine years to grow to $2000.
17808 @pindex calc-fin-rate
17810 The @kbd{b T} (@code{calc-fin-rate}) [@code{rate}] command computes
17811 the rate of return on an investment. This is also an inverse of @code{pv}:
17812 @code{rate(@var{n}, @var{payment}, @var{amount})} computes the value of
17813 @var{rate} such that @code{pv(@var{rate}, @var{n}, @var{payment}) =
17814 @var{amount}}. The result is expressed as a formula like @samp{6.3%}.
17820 The @kbd{I b T} [@code{rateb}] and @kbd{H b T} [@code{ratel}]
17821 commands solve the analogous equations with @code{pvb} or @code{pvl}
17822 in place of @code{pv}. Also, @code{rate} and @code{rateb} can
17823 accept an optional fourth argument just like @code{pv} and @code{pvb}.
17824 To redo the above example from a different perspective,
17825 @code{ratel(9, 2000, 1000) = 8.00597%}, which says you will need an
17826 interest rate of 8% in order to double your account in nine years.
17829 @pindex calc-fin-irr
17831 The @kbd{b I} (@code{calc-fin-irr}) [@code{irr}] command is the
17832 analogous function to @code{rate} but for net present value.
17833 Its argument is a vector of payments. Thus @code{irr(@var{payments})}
17834 computes the @var{rate} such that @code{npv(@var{rate}, @var{payments}) = 0};
17835 this rate is known as the @dfn{internal rate of return}.
17839 The @kbd{I b I} [@code{irrb}] command computes the internal rate of
17840 return assuming payments occur at the beginning of each period.
17842 @node Depreciation Functions, Definitions of Financial Functions, Related Financial Functions, Financial Functions
17843 @subsection Depreciation Functions
17846 The functions in this section calculate @dfn{depreciation}, which is
17847 the amount of value that a possession loses over time. These functions
17848 are characterized by three parameters: @var{cost}, the original cost
17849 of the asset; @var{salvage}, the value the asset will have at the end
17850 of its expected ``useful life''; and @var{life}, the number of years
17851 (or other periods) of the expected useful life.
17853 There are several methods for calculating depreciation that differ in
17854 the way they spread the depreciation over the lifetime of the asset.
17857 @pindex calc-fin-sln
17859 The @kbd{b S} (@code{calc-fin-sln}) [@code{sln}] command computes the
17860 ``straight-line'' depreciation. In this method, the asset depreciates
17861 by the same amount every year (or period). For example,
17862 @samp{sln(12000, 2000, 5)} returns 2000. The asset costs $12000
17863 initially and will be worth $2000 after five years; it loses $2000
17867 @pindex calc-fin-syd
17869 The @kbd{b Y} (@code{calc-fin-syd}) [@code{syd}] command computes the
17870 accelerated ``sum-of-years'-digits'' depreciation. Here the depreciation
17871 is higher during the early years of the asset's life. Since the
17872 depreciation is different each year, @kbd{b Y} takes a fourth @var{period}
17873 parameter which specifies which year is requested, from 1 to @var{life}.
17874 If @var{period} is outside this range, the @code{syd} function will
17878 @pindex calc-fin-ddb
17880 The @kbd{b D} (@code{calc-fin-ddb}) [@code{ddb}] command computes an
17881 accelerated depreciation using the double-declining balance method.
17882 It also takes a fourth @var{period} parameter.
17884 For symmetry, the @code{sln} function will accept a @var{period}
17885 parameter as well, although it will ignore its value except that the
17886 return value will as usual be zero if @var{period} is out of range.
17888 For example, pushing the vector @expr{[1,2,3,4,5]} (perhaps with @kbd{v x 5})
17889 and then mapping @kbd{V M ' [sln(12000,2000,5,$), syd(12000,2000,5,$),
17890 ddb(12000,2000,5,$)] @key{RET}} produces a matrix that allows us to compare
17891 the three depreciation methods:
17895 [ [ 2000, 3333, 4800 ]
17896 [ 2000, 2667, 2880 ]
17897 [ 2000, 2000, 1728 ]
17898 [ 2000, 1333, 592 ]
17904 (Values have been rounded to nearest integers in this figure.)
17905 We see that @code{sln} depreciates by the same amount each year,
17906 @kbd{syd} depreciates more at the beginning and less at the end,
17907 and @kbd{ddb} weights the depreciation even more toward the beginning.
17909 Summing columns with @kbd{V R : +} yields @expr{[10000, 10000, 10000]};
17910 the total depreciation in any method is (by definition) the
17911 difference between the cost and the salvage value.
17913 @node Definitions of Financial Functions, , Depreciation Functions, Financial Functions
17914 @subsection Definitions
17917 For your reference, here are the actual formulas used to compute
17918 Calc's financial functions.
17920 Calc will not evaluate a financial function unless the @var{rate} or
17921 @var{n} argument is known. However, @var{payment} or @var{amount} can
17922 be a variable. Calc expands these functions according to the
17923 formulas below for symbolic arguments only when you use the @kbd{a "}
17924 (@code{calc-expand-formula}) command, or when taking derivatives or
17925 integrals or solving equations involving the functions.
17928 These formulas are shown using the conventions of Big display
17929 mode (@kbd{d B}); for example, the formula for @code{fv} written
17930 linearly is @samp{pmt * ((1 + rate)^n) - 1) / rate}.
17935 fv(rate, n, pmt) = pmt * ---------------
17939 ((1 + rate) - 1) (1 + rate)
17940 fvb(rate, n, pmt) = pmt * ----------------------------
17944 fvl(rate, n, pmt) = pmt * (1 + rate)
17948 pv(rate, n, pmt) = pmt * ----------------
17952 (1 - (1 + rate) ) (1 + rate)
17953 pvb(rate, n, pmt) = pmt * -----------------------------
17957 pvl(rate, n, pmt) = pmt * (1 + rate)
17960 npv(rate, [a, b, c]) = a*(1 + rate) + b*(1 + rate) + c*(1 + rate)
17963 npvb(rate, [a, b, c]) = a + b*(1 + rate) + c*(1 + rate)
17966 (amt - x * (1 + rate) ) * rate
17967 pmt(rate, n, amt, x) = -------------------------------
17972 (amt - x * (1 + rate) ) * rate
17973 pmtb(rate, n, amt, x) = -------------------------------
17975 (1 - (1 + rate) ) (1 + rate)
17978 nper(rate, pmt, amt) = - log(1 - ------------, 1 + rate)
17982 nperb(rate, pmt, amt) = - log(1 - ---------------, 1 + rate)
17986 nperl(rate, pmt, amt) = - log(---, 1 + rate)
17991 ratel(n, pmt, amt) = ------ - 1
17996 sln(cost, salv, life) = -----------
17999 (cost - salv) * (life - per + 1)
18000 syd(cost, salv, life, per) = --------------------------------
18001 life * (life + 1) / 2
18004 ddb(cost, salv, life, per) = --------, book = cost - depreciation so far
18009 $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$
18010 $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$
18011 $$ \code{fvl}(r, n, p) = p (1 + r)^n $$
18012 $$ \code{pv}(r, n, p) = p { 1 - (1 + r)^{-n} \over r } $$
18013 $$ \code{pvb}(r, n, p) = p { (1 - (1 + r)^{-n}) (1 + r) \over r } $$
18014 $$ \code{pvl}(r, n, p) = p (1 + r)^{-n} $$
18015 $$ \code{npv}(r, [a,b,c]) = a (1 + r)^{-1} + b (1 + r)^{-2} + c (1 + r)^{-3} $$
18016 $$ \code{npvb}(r, [a,b,c]) = a + b (1 + r)^{-1} + c (1 + r)^{-2} $$
18017 $$ \code{pmt}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over 1 - (1 + r)^{-n} }$$
18018 $$ \code{pmtb}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over
18019 (1 - (1 + r)^{-n}) (1 + r) } $$
18020 $$ \code{nper}(r, p, a) = -\code{log}(1 - { a r \over p }, 1 + r) $$
18021 $$ \code{nperb}(r, p, a) = -\code{log}(1 - { a r \over p (1 + r) }, 1 + r) $$
18022 $$ \code{nperl}(r, p, a) = -\code{log}({a \over p}, 1 + r) $$
18023 $$ \code{ratel}(n, p, a) = { p^{1/n} \over a^{1/n} } - 1 $$
18024 $$ \code{sln}(c, s, l) = { c - s \over l } $$
18025 $$ \code{syd}(c, s, l, p) = { (c - s) (l - p + 1) \over l (l+1) / 2 } $$
18026 $$ \code{ddb}(c, s, l, p) = { 2 (c - \hbox{depreciation so far}) \over l } $$
18030 In @code{pmt} and @code{pmtb}, @expr{x=0} if omitted.
18032 These functions accept any numeric objects, including error forms,
18033 intervals, and even (though not very usefully) complex numbers. The
18034 above formulas specify exactly the behavior of these functions with
18035 all sorts of inputs.
18037 Note that if the first argument to the @code{log} in @code{nper} is
18038 negative, @code{nper} leaves itself in symbolic form rather than
18039 returning a (financially meaningless) complex number.
18041 @samp{rate(num, pmt, amt)} solves the equation
18042 @samp{pv(rate, num, pmt) = amt} for @samp{rate} using @kbd{H a R}
18043 (@code{calc-find-root}), with the interval @samp{[.01% .. 100%]}
18044 for an initial guess. The @code{rateb} function is the same except
18045 that it uses @code{pvb}. Note that @code{ratel} can be solved
18046 directly; its formula is shown in the above list.
18048 Similarly, @samp{irr(pmts)} solves the equation @samp{npv(rate, pmts) = 0}
18051 If you give a fourth argument to @code{nper} or @code{nperb}, Calc
18052 will also use @kbd{H a R} to solve the equation using an initial
18053 guess interval of @samp{[0 .. 100]}.
18055 A fourth argument to @code{fv} simply sums the two components
18056 calculated from the above formulas for @code{fv} and @code{fvl}.
18057 The same is true of @code{fvb}, @code{pv}, and @code{pvb}.
18059 The @kbd{ddb} function is computed iteratively; the ``book'' value
18060 starts out equal to @var{cost}, and decreases according to the above
18061 formula for the specified number of periods. If the book value
18062 would decrease below @var{salvage}, it only decreases to @var{salvage}
18063 and the depreciation is zero for all subsequent periods. The @code{ddb}
18064 function returns the amount the book value decreased in the specified
18067 @node Binary Functions, , Financial Functions, Arithmetic
18068 @section Binary Number Functions
18071 The commands in this chapter all use two-letter sequences beginning with
18072 the @kbd{b} prefix.
18074 @cindex Binary numbers
18075 The ``binary'' operations actually work regardless of the currently
18076 displayed radix, although their results make the most sense in a radix
18077 like 2, 8, or 16 (as obtained by the @kbd{d 2}, @kbd{d 8}, or @w{@kbd{d 6}}
18078 commands, respectively). You may also wish to enable display of leading
18079 zeros with @kbd{d z}. @xref{Radix Modes}.
18081 @cindex Word size for binary operations
18082 The Calculator maintains a current @dfn{word size} @expr{w}, an
18083 arbitrary positive or negative integer. For a positive word size, all
18084 of the binary operations described here operate modulo @expr{2^w}. In
18085 particular, negative arguments are converted to positive integers modulo
18086 @expr{2^w} by all binary functions.
18088 If the word size is negative, binary operations produce twos-complement
18090 @texline @math{-2^{-w-1}}
18091 @infoline @expr{-(2^(-w-1))}
18093 @texline @math{2^{-w-1}-1}
18094 @infoline @expr{2^(-w-1)-1}
18095 inclusive. Either mode accepts inputs in any range; the sign of
18096 @expr{w} affects only the results produced.
18101 The @kbd{b c} (@code{calc-clip})
18102 [@code{clip}] command can be used to clip a number by reducing it modulo
18103 @expr{2^w}. The commands described in this chapter automatically clip
18104 their results to the current word size. Note that other operations like
18105 addition do not use the current word size, since integer addition
18106 generally is not ``binary.'' (However, @pxref{Simplification Modes},
18107 @code{calc-bin-simplify-mode}.) For example, with a word size of 8
18108 bits @kbd{b c} converts a number to the range 0 to 255; with a word
18109 size of @mathit{-8} @kbd{b c} converts to the range @mathit{-128} to 127.
18112 @pindex calc-word-size
18113 The default word size is 32 bits. All operations except the shifts and
18114 rotates allow you to specify a different word size for that one
18115 operation by giving a numeric prefix argument: @kbd{C-u 8 b c} clips the
18116 top of stack to the range 0 to 255 regardless of the current word size.
18117 To set the word size permanently, use @kbd{b w} (@code{calc-word-size}).
18118 This command displays a prompt with the current word size; press @key{RET}
18119 immediately to keep this word size, or type a new word size at the prompt.
18121 When the binary operations are written in symbolic form, they take an
18122 optional second (or third) word-size parameter. When a formula like
18123 @samp{and(a,b)} is finally evaluated, the word size current at that time
18124 will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of
18125 @mathit{-8} will always be used. A symbolic binary function will be left
18126 in symbolic form unless the all of its argument(s) are integers or
18127 integer-valued floats.
18129 If either or both arguments are modulo forms for which @expr{M} is a
18130 power of two, that power of two is taken as the word size unless a
18131 numeric prefix argument overrides it. The current word size is never
18132 consulted when modulo-power-of-two forms are involved.
18137 The @kbd{b a} (@code{calc-and}) [@code{and}] command computes the bitwise
18138 AND of the two numbers on the top of the stack. In other words, for each
18139 of the @expr{w} binary digits of the two numbers (pairwise), the corresponding
18140 bit of the result is 1 if and only if both input bits are 1:
18141 @samp{and(2#1100, 2#1010) = 2#1000}.
18146 The @kbd{b o} (@code{calc-or}) [@code{or}] command computes the bitwise
18147 inclusive OR of two numbers. A bit is 1 if either of the input bits, or
18148 both, are 1: @samp{or(2#1100, 2#1010) = 2#1110}.
18153 The @kbd{b x} (@code{calc-xor}) [@code{xor}] command computes the bitwise
18154 exclusive OR of two numbers. A bit is 1 if exactly one of the input bits
18155 is 1: @samp{xor(2#1100, 2#1010) = 2#0110}.
18160 The @kbd{b d} (@code{calc-diff}) [@code{diff}] command computes the bitwise
18161 difference of two numbers; this is defined by @samp{diff(a,b) = and(a,not(b))},
18162 so that @samp{diff(2#1100, 2#1010) = 2#0100}.
18167 The @kbd{b n} (@code{calc-not}) [@code{not}] command computes the bitwise
18168 NOT of a number. A bit is 1 if the input bit is 0 and vice-versa.
18171 @pindex calc-lshift-binary
18173 The @kbd{b l} (@code{calc-lshift-binary}) [@code{lsh}] command shifts a
18174 number left by one bit, or by the number of bits specified in the numeric
18175 prefix argument. A negative prefix argument performs a logical right shift,
18176 in which zeros are shifted in on the left. In symbolic form, @samp{lsh(a)}
18177 is short for @samp{lsh(a,1)}, which in turn is short for @samp{lsh(a,n,w)}.
18178 Bits shifted ``off the end,'' according to the current word size, are lost.
18194 The @kbd{H b l} command also does a left shift, but it takes two arguments
18195 from the stack (the value to shift, and, at top-of-stack, the number of
18196 bits to shift). This version interprets the prefix argument just like
18197 the regular binary operations, i.e., as a word size. The Hyperbolic flag
18198 has a similar effect on the rest of the binary shift and rotate commands.
18201 @pindex calc-rshift-binary
18203 The @kbd{b r} (@code{calc-rshift-binary}) [@code{rsh}] command shifts a
18204 number right by one bit, or by the number of bits specified in the numeric
18205 prefix argument: @samp{rsh(a,n) = lsh(a,-n)}.
18208 @pindex calc-lshift-arith
18210 The @kbd{b L} (@code{calc-lshift-arith}) [@code{ash}] command shifts a
18211 number left. It is analogous to @code{lsh}, except that if the shift
18212 is rightward (the prefix argument is negative), an arithmetic shift
18213 is performed as described below.
18216 @pindex calc-rshift-arith
18218 The @kbd{b R} (@code{calc-rshift-arith}) [@code{rash}] command performs
18219 an ``arithmetic'' shift to the right, in which the leftmost bit (according
18220 to the current word size) is duplicated rather than shifting in zeros.
18221 This corresponds to dividing by a power of two where the input is interpreted
18222 as a signed, twos-complement number. (The distinction between the @samp{rsh}
18223 and @samp{rash} operations is totally independent from whether the word
18224 size is positive or negative.) With a negative prefix argument, this
18225 performs a standard left shift.
18228 @pindex calc-rotate-binary
18230 The @kbd{b t} (@code{calc-rotate-binary}) [@code{rot}] command rotates a
18231 number one bit to the left. The leftmost bit (according to the current
18232 word size) is dropped off the left and shifted in on the right. With a
18233 numeric prefix argument, the number is rotated that many bits to the left
18236 @xref{Set Operations}, for the @kbd{b p} and @kbd{b u} commands that
18237 pack and unpack binary integers into sets. (For example, @kbd{b u}
18238 unpacks the number @samp{2#11001} to the set of bit-numbers
18239 @samp{[0, 3, 4]}.) Type @kbd{b u V #} to count the number of ``1''
18240 bits in a binary integer.
18242 Another interesting use of the set representation of binary integers
18243 is to reverse the bits in, say, a 32-bit integer. Type @kbd{b u} to
18244 unpack; type @kbd{31 @key{TAB} -} to replace each bit-number in the set
18245 with 31 minus that bit-number; type @kbd{b p} to pack the set back
18246 into a binary integer.
18248 @node Scientific Functions, Matrix Functions, Arithmetic, Top
18249 @chapter Scientific Functions
18252 The functions described here perform trigonometric and other transcendental
18253 calculations. They generally produce floating-point answers correct to the
18254 full current precision. The @kbd{H} (Hyperbolic) and @kbd{I} (Inverse)
18255 flag keys must be used to get some of these functions from the keyboard.
18259 @cindex @code{pi} variable
18262 @cindex @code{e} variable
18265 @cindex @code{gamma} variable
18267 @cindex Gamma constant, Euler's
18268 @cindex Euler's gamma constant
18270 @cindex @code{phi} variable
18271 @cindex Phi, golden ratio
18272 @cindex Golden ratio
18273 One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes
18274 the value of @cpi{} (at the current precision) onto the stack. With the
18275 Hyperbolic flag, it pushes the value @expr{e}, the base of natural logarithms.
18276 With the Inverse flag, it pushes Euler's constant
18277 @texline @math{\gamma}
18278 @infoline @expr{gamma}
18279 (about 0.5772). With both Inverse and Hyperbolic, it
18280 pushes the ``golden ratio''
18281 @texline @math{\phi}
18282 @infoline @expr{phi}
18283 (about 1.618). (At present, Euler's constant is not available
18284 to unlimited precision; Calc knows only the first 100 digits.)
18285 In Symbolic mode, these commands push the
18286 actual variables @samp{pi}, @samp{e}, @samp{gamma}, and @samp{phi},
18287 respectively, instead of their values; @pxref{Symbolic Mode}.
18297 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] function is described elsewhere;
18298 @pxref{Basic Arithmetic}. With the Inverse flag [@code{sqr}], this command
18299 computes the square of the argument.
18301 @xref{Prefix Arguments}, for a discussion of the effect of numeric
18302 prefix arguments on commands in this chapter which do not otherwise
18303 interpret a prefix argument.
18306 * Logarithmic Functions::
18307 * Trigonometric and Hyperbolic Functions::
18308 * Advanced Math Functions::
18311 * Combinatorial Functions::
18312 * Probability Distribution Functions::
18315 @node Logarithmic Functions, Trigonometric and Hyperbolic Functions, Scientific Functions, Scientific Functions
18316 @section Logarithmic Functions
18326 The shift-@kbd{L} (@code{calc-ln}) [@code{ln}] command computes the natural
18327 logarithm of the real or complex number on the top of the stack. With
18328 the Inverse flag it computes the exponential function instead, although
18329 this is redundant with the @kbd{E} command.
18338 The shift-@kbd{E} (@code{calc-exp}) [@code{exp}] command computes the
18339 exponential, i.e., @expr{e} raised to the power of the number on the stack.
18340 The meanings of the Inverse and Hyperbolic flags follow from those for
18341 the @code{calc-ln} command.
18356 The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common
18357 (base-10) logarithm of a number. (With the Inverse flag [@code{exp10}],
18358 it raises ten to a given power.) Note that the common logarithm of a
18359 complex number is computed by taking the natural logarithm and dividing
18361 @texline @math{\ln10}.
18362 @infoline @expr{ln(10)}.
18369 The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm
18370 to any base. For example, @kbd{1024 @key{RET} 2 B} produces 10, since
18371 @texline @math{2^{10} = 1024}.
18372 @infoline @expr{2^10 = 1024}.
18373 In certain cases like @samp{log(3,9)}, the result
18374 will be either @expr{1:2} or @expr{0.5} depending on the current Fraction
18375 mode setting. With the Inverse flag [@code{alog}], this command is
18376 similar to @kbd{^} except that the order of the arguments is reversed.
18381 The @kbd{f I} (@code{calc-ilog}) [@code{ilog}] command computes the
18382 integer logarithm of a number to any base. The number and the base must
18383 themselves be positive integers. This is the true logarithm, rounded
18384 down to an integer. Thus @kbd{ilog(x,10)} is 3 for all @expr{x} in the
18385 range from 1000 to 9999. If both arguments are positive integers, exact
18386 integer arithmetic is used; otherwise, this is equivalent to
18387 @samp{floor(log(x,b))}.
18392 The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes
18393 @texline @math{e^x - 1},
18394 @infoline @expr{exp(x)-1},
18395 but using an algorithm that produces a more accurate
18396 answer when the result is close to zero, i.e., when
18397 @texline @math{e^x}
18398 @infoline @expr{exp(x)}
18404 The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes
18405 @texline @math{\ln(x+1)},
18406 @infoline @expr{ln(x+1)},
18407 producing a more accurate answer when @expr{x} is close to zero.
18409 @node Trigonometric and Hyperbolic Functions, Advanced Math Functions, Logarithmic Functions, Scientific Functions
18410 @section Trigonometric/Hyperbolic Functions
18416 The shift-@kbd{S} (@code{calc-sin}) [@code{sin}] command computes the sine
18417 of an angle or complex number. If the input is an HMS form, it is interpreted
18418 as degrees-minutes-seconds; otherwise, the input is interpreted according
18419 to the current angular mode. It is best to use Radians mode when operating
18420 on complex numbers.
18422 Calc's ``units'' mechanism includes angular units like @code{deg},
18423 @code{rad}, and @code{grad}. While @samp{sin(45 deg)} is not evaluated
18424 all the time, the @kbd{u s} (@code{calc-simplify-units}) command will
18425 simplify @samp{sin(45 deg)} by taking the sine of 45 degrees, regardless
18426 of the current angular mode. @xref{Basic Operations on Units}.
18428 Also, the symbolic variable @code{pi} is not ordinarily recognized in
18429 arguments to trigonometric functions, as in @samp{sin(3 pi / 4)}, but
18430 the default algebraic simplifications recognize many such
18431 formulas when the current angular mode is Radians @emph{and} Symbolic
18432 mode is enabled; this example would be replaced by @samp{sqrt(2) / 2}.
18433 @xref{Symbolic Mode}. Beware, this simplification occurs even if you
18434 have stored a different value in the variable @samp{pi}; this is one
18435 reason why changing built-in variables is a bad idea. Arguments of
18436 the form @expr{x} plus a multiple of @cpiover{2} are also simplified.
18437 Calc includes similar formulas for @code{cos} and @code{tan}.
18439 Calc's algebraic simplifications know all angles which are integer multiples of
18440 @cpiover{12}, @cpiover{10}, or @cpiover{8} radians. In Degrees mode,
18441 analogous simplifications occur for integer multiples of 15 or 18
18442 degrees, and for arguments plus multiples of 90 degrees.
18445 @pindex calc-arcsin
18447 With the Inverse flag, @code{calc-sin} computes an arcsine. This is also
18448 available as the @code{calc-arcsin} command or @code{arcsin} algebraic
18449 function. The returned argument is converted to degrees, radians, or HMS
18450 notation depending on the current angular mode.
18456 @pindex calc-arcsinh
18458 With the Hyperbolic flag, @code{calc-sin} computes the hyperbolic
18459 sine, also available as @code{calc-sinh} [@code{sinh}]. With the
18460 Hyperbolic and Inverse flags, it computes the hyperbolic arcsine
18461 (@code{calc-arcsinh}) [@code{arcsinh}].
18470 @pindex calc-arccos
18488 @pindex calc-arccosh
18506 @pindex calc-arctan
18524 @pindex calc-arctanh
18529 The shift-@kbd{C} (@code{calc-cos}) [@code{cos}] command computes the cosine
18530 of an angle or complex number, and shift-@kbd{T} (@code{calc-tan}) [@code{tan}]
18531 computes the tangent, along with all the various inverse and hyperbolic
18532 variants of these functions.
18535 @pindex calc-arctan2
18537 The @kbd{f T} (@code{calc-arctan2}) [@code{arctan2}] command takes two
18538 numbers from the stack and computes the arc tangent of their ratio. The
18539 result is in the full range from @mathit{-180} (exclusive) to @mathit{+180}
18540 (inclusive) degrees, or the analogous range in radians. A similar
18541 result would be obtained with @kbd{/} followed by @kbd{I T}, but the
18542 value would only be in the range from @mathit{-90} to @mathit{+90} degrees
18543 since the division loses information about the signs of the two
18544 components, and an error might result from an explicit division by zero
18545 which @code{arctan2} would avoid. By (arbitrary) definition,
18546 @samp{arctan2(0,0)=0}.
18548 @pindex calc-sincos
18560 The @code{calc-sincos} [@code{sincos}] command computes the sine and
18561 cosine of a number, returning them as a vector of the form
18562 @samp{[@var{cos}, @var{sin}]}.
18563 With the Inverse flag [@code{arcsincos}], this command takes a two-element
18564 vector as an argument and computes @code{arctan2} of the elements.
18565 (This command does not accept the Hyperbolic flag.)
18579 The remaining trigonometric functions, @code{calc-sec} [@code{sec}],
18580 @code{calc-csc} [@code{csc}] and @code{calc-cot} [@code{cot}], are also
18581 available. With the Hyperbolic flag, these compute their hyperbolic
18582 counterparts, which are also available separately as @code{calc-sech}
18583 [@code{sech}], @code{calc-csch} [@code{csch}] and @code{calc-coth}
18584 [@code{coth}]. (These commands do not accept the Inverse flag.)
18586 @node Advanced Math Functions, Branch Cuts, Trigonometric and Hyperbolic Functions, Scientific Functions
18587 @section Advanced Mathematical Functions
18590 Calc can compute a variety of less common functions that arise in
18591 various branches of mathematics. All of the functions described in
18592 this section allow arbitrary complex arguments and, except as noted,
18593 will work to arbitrarily large precision. They can not at present
18594 handle error forms or intervals as arguments.
18596 NOTE: These functions are still experimental. In particular, their
18597 accuracy is not guaranteed in all domains. It is advisable to set the
18598 current precision comfortably higher than you actually need when
18599 using these functions. Also, these functions may be impractically
18600 slow for some values of the arguments.
18605 The @kbd{f g} (@code{calc-gamma}) [@code{gamma}] command computes the Euler
18606 gamma function. For positive integer arguments, this is related to the
18607 factorial function: @samp{gamma(n+1) = fact(n)}. For general complex
18608 arguments the gamma function can be defined by the following definite
18610 @texline @math{\Gamma(a) = \int_0^\infty t^{a-1} e^t dt}.
18611 @infoline @expr{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.
18612 (The actual implementation uses far more efficient computational methods.)
18628 @pindex calc-inc-gamma
18641 The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes
18642 the incomplete gamma function, denoted @samp{P(a,x)}. This is defined by
18644 @texline @math{P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)}.
18645 @infoline @expr{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
18646 This implies that @samp{gammaP(a,inf) = 1} for any @expr{a} (see the
18647 definition of the normal gamma function).
18649 Several other varieties of incomplete gamma function are defined.
18650 The complement of @expr{P(a,x)}, called @expr{Q(a,x) = 1-P(a,x)} by
18651 some authors, is computed by the @kbd{I f G} [@code{gammaQ}] command.
18652 You can think of this as taking the other half of the integral, from
18653 @expr{x} to infinity.
18656 The functions corresponding to the integrals that define @expr{P(a,x)}
18657 and @expr{Q(a,x)} but without the normalizing @expr{1/gamma(a)}
18658 factor are called @expr{g(a,x)} and @expr{G(a,x)}, respectively
18659 (where @expr{g} and @expr{G} represent the lower- and upper-case Greek
18660 letter gamma). You can obtain these using the @kbd{H f G} [@code{gammag}]
18661 and @kbd{H I f G} [@code{gammaG}] commands.
18664 The functions corresponding to the integrals that define $P(a,x)$
18665 and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$
18666 factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively.
18667 You can obtain these using the \kbd{H f G} [\code{gammag}] and
18668 \kbd{I H f G} [\code{gammaG}] commands.
18674 The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the
18675 Euler beta function, which is defined in terms of the gamma function as
18676 @texline @math{B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)},
18677 @infoline @expr{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)},
18679 @texline @math{B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt}.
18680 @infoline @expr{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
18684 @pindex calc-inc-beta
18687 The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes
18688 the incomplete beta function @expr{I(x,a,b)}. It is defined by
18689 @texline @math{I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)}.
18690 @infoline @expr{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
18691 Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding
18692 un-normalized version [@code{betaB}].
18699 The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the
18701 @texline @math{\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt}.
18702 @infoline @expr{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
18703 The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}]
18704 is the corresponding integral from @samp{x} to infinity; the sum
18705 @texline @math{\hbox{erf}(x) + \hbox{erfc}(x) = 1}.
18706 @infoline @expr{erf(x) + erfc(x) = 1}.
18710 @pindex calc-bessel-J
18711 @pindex calc-bessel-Y
18714 The @kbd{f j} (@code{calc-bessel-J}) [@code{besJ}] and @kbd{f y}
18715 (@code{calc-bessel-Y}) [@code{besY}] commands compute the Bessel
18716 functions of the first and second kinds, respectively.
18717 In @samp{besJ(n,x)} and @samp{besY(n,x)} the ``order'' parameter
18718 @expr{n} is often an integer, but is not required to be one.
18719 Calc's implementation of the Bessel functions currently limits the
18720 precision to 8 digits, and may not be exact even to that precision.
18723 @node Branch Cuts, Random Numbers, Advanced Math Functions, Scientific Functions
18724 @section Branch Cuts and Principal Values
18727 @cindex Branch cuts
18728 @cindex Principal values
18729 All of the logarithmic, trigonometric, and other scientific functions are
18730 defined for complex numbers as well as for reals.
18731 This section describes the values
18732 returned in cases where the general result is a family of possible values.
18733 Calc follows section 12.5.3 of Steele's @dfn{Common Lisp, the Language},
18734 second edition, in these matters. This section will describe each
18735 function briefly; for a more detailed discussion (including some nifty
18736 diagrams), consult Steele's book.
18738 Note that the branch cuts for @code{arctan} and @code{arctanh} were
18739 changed between the first and second editions of Steele. Recent
18740 versions of Calc follow the second edition.
18742 The new branch cuts exactly match those of the HP-28/48 calculators.
18743 They also match those of Mathematica 1.2, except that Mathematica's
18744 @code{arctan} cut is always in the right half of the complex plane,
18745 and its @code{arctanh} cut is always in the top half of the plane.
18746 Calc's cuts are continuous with quadrants I and III for @code{arctan},
18747 or II and IV for @code{arctanh}.
18749 Note: The current implementations of these functions with complex arguments
18750 are designed with proper behavior around the branch cuts in mind, @emph{not}
18751 efficiency or accuracy. You may need to increase the floating precision
18752 and wait a while to get suitable answers from them.
18754 For @samp{sqrt(a+bi)}: When @expr{a<0} and @expr{b} is small but positive
18755 or zero, the result is close to the @expr{+i} axis. For @expr{b} small and
18756 negative, the result is close to the @expr{-i} axis. The result always lies
18757 in the right half of the complex plane.
18759 For @samp{ln(a+bi)}: The real part is defined as @samp{ln(abs(a+bi))}.
18760 The imaginary part is defined as @samp{arg(a+bi) = arctan2(b,a)}.
18761 Thus the branch cuts for @code{sqrt} and @code{ln} both lie on the
18762 negative real axis.
18764 The following table describes these branch cuts in another way.
18765 If the real and imaginary parts of @expr{z} are as shown, then
18766 the real and imaginary parts of @expr{f(z)} will be as shown.
18767 Here @code{eps} stands for a small positive value; each
18768 occurrence of @code{eps} may stand for a different small value.
18772 ----------------------------------------
18775 -, +eps +eps, + +eps, +
18776 -, -eps +eps, - +eps, -
18779 For @samp{z1^z2}: This is defined by @samp{exp(ln(z1)*z2)}.
18780 One interesting consequence of this is that @samp{(-8)^1:3} does
18781 not evaluate to @mathit{-2} as you might expect, but to the complex
18782 number @expr{(1., 1.732)}. Both of these are valid cube roots
18783 of @mathit{-8} (as is @expr{(1., -1.732)}); Calc chooses a perhaps
18784 less-obvious root for the sake of mathematical consistency.
18786 For @samp{arcsin(z)}: This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}.
18787 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18789 For @samp{arccos(z)}: This is defined by @samp{-i*ln(z + i*sqrt(1-z^2))},
18790 or equivalently by @samp{pi/2 - arcsin(z)}. The branch cuts are on
18791 the real axis, less than @mathit{-1} and greater than 1.
18793 For @samp{arctan(z)}: This is defined by
18794 @samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}. The branch cuts are on the
18795 imaginary axis, below @expr{-i} and above @expr{i}.
18797 For @samp{arcsinh(z)}: This is defined by @samp{ln(z + sqrt(1+z^2))}.
18798 The branch cuts are on the imaginary axis, below @expr{-i} and
18801 For @samp{arccosh(z)}: This is defined by
18802 @samp{ln(z + (z+1)*sqrt((z-1)/(z+1)))}. The branch cut is on the
18803 real axis less than 1.
18805 For @samp{arctanh(z)}: This is defined by @samp{(ln(1+z) - ln(1-z)) / 2}.
18806 The branch cuts are on the real axis, less than @mathit{-1} and greater than 1.
18808 The following tables for @code{arcsin}, @code{arccos}, and
18809 @code{arctan} assume the current angular mode is Radians. The
18810 hyperbolic functions operate independently of the angular mode.
18813 z arcsin(z) arccos(z)
18814 -------------------------------------------------------
18815 (-1..1), 0 (-pi/2..pi/2), 0 (0..pi), 0
18816 (-1..1), +eps (-pi/2..pi/2), +eps (0..pi), -eps
18817 (-1..1), -eps (-pi/2..pi/2), -eps (0..pi), +eps
18818 <-1, 0 -pi/2, + pi, -
18819 <-1, +eps -pi/2 + eps, + pi - eps, -
18820 <-1, -eps -pi/2 + eps, - pi - eps, +
18822 >1, +eps pi/2 - eps, + +eps, -
18823 >1, -eps pi/2 - eps, - +eps, +
18827 z arccosh(z) arctanh(z)
18828 -----------------------------------------------------
18829 (-1..1), 0 0, (0..pi) any, 0
18830 (-1..1), +eps +eps, (0..pi) any, +eps
18831 (-1..1), -eps +eps, (-pi..0) any, -eps
18832 <-1, 0 +, pi -, pi/2
18833 <-1, +eps +, pi - eps -, pi/2 - eps
18834 <-1, -eps +, -pi + eps -, -pi/2 + eps
18835 >1, 0 +, 0 +, -pi/2
18836 >1, +eps +, +eps +, pi/2 - eps
18837 >1, -eps +, -eps +, -pi/2 + eps
18841 z arcsinh(z) arctan(z)
18842 -----------------------------------------------------
18843 0, (-1..1) 0, (-pi/2..pi/2) 0, any
18844 0, <-1 -, -pi/2 -pi/2, -
18845 +eps, <-1 +, -pi/2 + eps pi/2 - eps, -
18846 -eps, <-1 -, -pi/2 + eps -pi/2 + eps, -
18847 0, >1 +, pi/2 pi/2, +
18848 +eps, >1 +, pi/2 - eps pi/2 - eps, +
18849 -eps, >1 -, pi/2 - eps -pi/2 + eps, +
18852 Finally, the following identities help to illustrate the relationship
18853 between the complex trigonometric and hyperbolic functions. They
18854 are valid everywhere, including on the branch cuts.
18857 sin(i*z) = i*sinh(z) arcsin(i*z) = i*arcsinh(z)
18858 cos(i*z) = cosh(z) arcsinh(i*z) = i*arcsin(z)
18859 tan(i*z) = i*tanh(z) arctan(i*z) = i*arctanh(z)
18860 sinh(i*z) = i*sin(z) cosh(i*z) = cos(z)
18863 The ``advanced math'' functions (gamma, Bessel, etc.@:) are also defined
18864 for general complex arguments, but their branch cuts and principal values
18865 are not rigorously specified at present.
18867 @node Random Numbers, Combinatorial Functions, Branch Cuts, Scientific Functions
18868 @section Random Numbers
18872 @pindex calc-random
18874 The @kbd{k r} (@code{calc-random}) [@code{random}] command produces
18875 random numbers of various sorts.
18877 Given a positive numeric prefix argument @expr{M}, it produces a random
18878 integer @expr{N} in the range
18879 @texline @math{0 \le N < M}.
18880 @infoline @expr{0 <= N < M}.
18881 Each possible value @expr{N} appears with equal probability.
18883 With no numeric prefix argument, the @kbd{k r} command takes its argument
18884 from the stack instead. Once again, if this is a positive integer @expr{M}
18885 the result is a random integer less than @expr{M}. However, note that
18886 while numeric prefix arguments are limited to six digits or so, an @expr{M}
18887 taken from the stack can be arbitrarily large. If @expr{M} is negative,
18888 the result is a random integer in the range
18889 @texline @math{M < N \le 0}.
18890 @infoline @expr{M < N <= 0}.
18892 If the value on the stack is a floating-point number @expr{M}, the result
18893 is a random floating-point number @expr{N} in the range
18894 @texline @math{0 \le N < M}
18895 @infoline @expr{0 <= N < M}
18897 @texline @math{M < N \le 0},
18898 @infoline @expr{M < N <= 0},
18899 according to the sign of @expr{M}.
18901 If @expr{M} is zero, the result is a Gaussian-distributed random real
18902 number; the distribution has a mean of zero and a standard deviation
18903 of one. The algorithm used generates random numbers in pairs; thus,
18904 every other call to this function will be especially fast.
18906 If @expr{M} is an error form
18907 @texline @math{m} @code{+/-} @math{\sigma}
18908 @infoline @samp{m +/- s}
18910 @texline @math{\sigma}
18912 are both real numbers, the result uses a Gaussian distribution with mean
18913 @var{m} and standard deviation
18914 @texline @math{\sigma}.
18917 If @expr{M} is an interval form, the lower and upper bounds specify the
18918 acceptable limits of the random numbers. If both bounds are integers,
18919 the result is a random integer in the specified range. If either bound
18920 is floating-point, the result is a random real number in the specified
18921 range. If the interval is open at either end, the result will be sure
18922 not to equal that end value. (This makes a big difference for integer
18923 intervals, but for floating-point intervals it's relatively minor:
18924 with a precision of 6, @samp{random([1.0..2.0))} will return any of one
18925 million numbers from 1.00000 to 1.99999; @samp{random([1.0..2.0])} may
18926 additionally return 2.00000, but the probability of this happening is
18929 If @expr{M} is a vector, the result is one element taken at random from
18930 the vector. All elements of the vector are given equal probabilities.
18933 The sequence of numbers produced by @kbd{k r} is completely random by
18934 default, i.e., the sequence is seeded each time you start Calc using
18935 the current time and other information. You can get a reproducible
18936 sequence by storing a particular ``seed value'' in the Calc variable
18937 @code{RandSeed}. Any integer will do for a seed; integers of from 1
18938 to 12 digits are good. If you later store a different integer into
18939 @code{RandSeed}, Calc will switch to a different pseudo-random
18940 sequence. If you ``unstore'' @code{RandSeed}, Calc will re-seed itself
18941 from the current time. If you store the same integer that you used
18942 before back into @code{RandSeed}, you will get the exact same sequence
18943 of random numbers as before.
18945 @pindex calc-rrandom
18946 The @code{calc-rrandom} command (not on any key) produces a random real
18947 number between zero and one. It is equivalent to @samp{random(1.0)}.
18950 @pindex calc-random-again
18951 The @kbd{k a} (@code{calc-random-again}) command produces another random
18952 number, re-using the most recent value of @expr{M}. With a numeric
18953 prefix argument @var{n}, it produces @var{n} more random numbers using
18954 that value of @expr{M}.
18957 @pindex calc-shuffle
18959 The @kbd{k h} (@code{calc-shuffle}) command produces a vector of several
18960 random values with no duplicates. The value on the top of the stack
18961 specifies the set from which the random values are drawn, and may be any
18962 of the @expr{M} formats described above. The numeric prefix argument
18963 gives the length of the desired list. (If you do not provide a numeric
18964 prefix argument, the length of the list is taken from the top of the
18965 stack, and @expr{M} from second-to-top.)
18967 If @expr{M} is a floating-point number, zero, or an error form (so
18968 that the random values are being drawn from the set of real numbers)
18969 there is little practical difference between using @kbd{k h} and using
18970 @kbd{k r} several times. But if the set of possible values consists
18971 of just a few integers, or the elements of a vector, then there is
18972 a very real chance that multiple @kbd{k r}'s will produce the same
18973 number more than once. The @kbd{k h} command produces a vector whose
18974 elements are always distinct. (Actually, there is a slight exception:
18975 If @expr{M} is a vector, no given vector element will be drawn more
18976 than once, but if several elements of @expr{M} are equal, they may
18977 each make it into the result vector.)
18979 One use of @kbd{k h} is to rearrange a list at random. This happens
18980 if the prefix argument is equal to the number of values in the list:
18981 @kbd{[1, 1.5, 2, 2.5, 3] 5 k h} might produce the permuted list
18982 @samp{[2.5, 1, 1.5, 3, 2]}. As a convenient feature, if the argument
18983 @var{n} is negative it is replaced by the size of the set represented
18984 by @expr{M}. Naturally, this is allowed only when @expr{M} specifies
18985 a small discrete set of possibilities.
18987 To do the equivalent of @kbd{k h} but with duplications allowed,
18988 given @expr{M} on the stack and with @var{n} just entered as a numeric
18989 prefix, use @kbd{v b} to build a vector of copies of @expr{M}, then use
18990 @kbd{V M k r} to ``map'' the normal @kbd{k r} function over the
18991 elements of this vector. @xref{Matrix Functions}.
18994 * Random Number Generator:: (Complete description of Calc's algorithm)
18997 @node Random Number Generator, , Random Numbers, Random Numbers
18998 @subsection Random Number Generator
19000 Calc's random number generator uses several methods to ensure that
19001 the numbers it produces are highly random. Knuth's @emph{Art of
19002 Computer Programming}, Volume II, contains a thorough description
19003 of the theory of random number generators and their measurement and
19006 If @code{RandSeed} has no stored value, Calc calls Emacs's built-in
19007 @code{random} function to get a stream of random numbers, which it
19008 then treats in various ways to avoid problems inherent in the simple
19009 random number generators that many systems use to implement @code{random}.
19011 When Calc's random number generator is first invoked, it ``seeds''
19012 the low-level random sequence using the time of day, so that the
19013 random number sequence will be different every time you use Calc.
19015 Since Emacs Lisp doesn't specify the range of values that will be
19016 returned by its @code{random} function, Calc exercises the function
19017 several times to estimate the range. When Calc subsequently uses
19018 the @code{random} function, it takes only 10 bits of the result
19019 near the most-significant end. (It avoids at least the bottom
19020 four bits, preferably more, and also tries to avoid the top two
19021 bits.) This strategy works well with the linear congruential
19022 generators that are typically used to implement @code{random}.
19024 If @code{RandSeed} contains an integer, Calc uses this integer to
19025 seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A,
19027 @texline @math{X_{n-55} - X_{n-24}}.
19028 @infoline @expr{X_n-55 - X_n-24}).
19029 This method expands the seed
19030 value into a large table which is maintained internally; the variable
19031 @code{RandSeed} is changed from, e.g., 42 to the vector @expr{[42]}
19032 to indicate that the seed has been absorbed into this table. When
19033 @code{RandSeed} contains a vector, @kbd{k r} and related commands
19034 continue to use the same internal table as last time. There is no
19035 way to extract the complete state of the random number generator
19036 so that you can restart it from any point; you can only restart it
19037 from the same initial seed value. A simple way to restart from the
19038 same seed is to type @kbd{s r RandSeed} to get the seed vector,
19039 @kbd{v u} to unpack it back into a number, then @kbd{s t RandSeed}
19040 to reseed the generator with that number.
19042 Calc uses a ``shuffling'' method as described in algorithm 3.2.2B
19043 of Knuth. It fills a table with 13 random 10-bit numbers. Then,
19044 to generate a new random number, it uses the previous number to
19045 index into the table, picks the value it finds there as the new
19046 random number, then replaces that table entry with a new value
19047 obtained from a call to the base random number generator (either
19048 the additive congruential generator or the @code{random} function
19049 supplied by the system). If there are any flaws in the base
19050 generator, shuffling will tend to even them out. But if the system
19051 provides an excellent @code{random} function, shuffling will not
19052 damage its randomness.
19054 To create a random integer of a certain number of digits, Calc
19055 builds the integer three decimal digits at a time. For each group
19056 of three digits, Calc calls its 10-bit shuffling random number generator
19057 (which returns a value from 0 to 1023); if the random value is 1000
19058 or more, Calc throws it out and tries again until it gets a suitable
19061 To create a random floating-point number with precision @var{p}, Calc
19062 simply creates a random @var{p}-digit integer and multiplies by
19063 @texline @math{10^{-p}}.
19064 @infoline @expr{10^-p}.
19065 The resulting random numbers should be very clean, but note
19066 that relatively small numbers will have few significant random digits.
19067 In other words, with a precision of 12, you will occasionally get
19068 numbers on the order of
19069 @texline @math{10^{-9}}
19070 @infoline @expr{10^-9}
19072 @texline @math{10^{-10}},
19073 @infoline @expr{10^-10},
19074 but those numbers will only have two or three random digits since they
19075 correspond to small integers times
19076 @texline @math{10^{-12}}.
19077 @infoline @expr{10^-12}.
19079 To create a random integer in the interval @samp{[0 .. @var{m})}, Calc
19080 counts the digits in @var{m}, creates a random integer with three
19081 additional digits, then reduces modulo @var{m}. Unless @var{m} is a
19082 power of ten the resulting values will be very slightly biased toward
19083 the lower numbers, but this bias will be less than 0.1%. (For example,
19084 if @var{m} is 42, Calc will reduce a random integer less than 100000
19085 modulo 42 to get a result less than 42. It is easy to show that the
19086 numbers 40 and 41 will be only 2380/2381 as likely to result from this
19087 modulo operation as numbers 39 and below.) If @var{m} is a power of
19088 ten, however, the numbers should be completely unbiased.
19090 The Gaussian random numbers generated by @samp{random(0.0)} use the
19091 ``polar'' method described in Knuth section 3.4.1C@. This method
19092 generates a pair of Gaussian random numbers at a time, so only every
19093 other call to @samp{random(0.0)} will require significant calculations.
19095 @node Combinatorial Functions, Probability Distribution Functions, Random Numbers, Scientific Functions
19096 @section Combinatorial Functions
19099 Commands relating to combinatorics and number theory begin with the
19100 @kbd{k} key prefix.
19105 The @kbd{k g} (@code{calc-gcd}) [@code{gcd}] command computes the
19106 Greatest Common Divisor of two integers. It also accepts fractions;
19107 the GCD of two fractions is defined by taking the GCD of the
19108 numerators, and the LCM of the denominators. This definition is
19109 consistent with the idea that @samp{a / gcd(a,x)} should yield an
19110 integer for any @samp{a} and @samp{x}. For other types of arguments,
19111 the operation is left in symbolic form.
19116 The @kbd{k l} (@code{calc-lcm}) [@code{lcm}] command computes the
19117 Least Common Multiple of two integers or fractions. The product of
19118 the LCM and GCD of two numbers is equal to the product of the
19122 @pindex calc-extended-gcd
19124 The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes
19125 the GCD of two integers @expr{x} and @expr{y} and returns a vector
19126 @expr{[g, a, b]} where
19127 @texline @math{g = \gcd(x,y) = a x + b y}.
19128 @infoline @expr{g = gcd(x,y) = a x + b y}.
19131 @pindex calc-factorial
19137 The @kbd{!} (@code{calc-factorial}) [@code{fact}] command computes the
19138 factorial of the number at the top of the stack. If the number is an
19139 integer, the result is an exact integer. If the number is an
19140 integer-valued float, the result is a floating-point approximation. If
19141 the number is a non-integral real number, the generalized factorial is used,
19142 as defined by the Euler Gamma function. Please note that computation of
19143 large factorials can be slow; using floating-point format will help
19144 since fewer digits must be maintained. The same is true of many of
19145 the commands in this section.
19148 @pindex calc-double-factorial
19154 The @kbd{k d} (@code{calc-double-factorial}) [@code{dfact}] command
19155 computes the ``double factorial'' of an integer. For an even integer,
19156 this is the product of even integers from 2 to @expr{N}. For an odd
19157 integer, this is the product of odd integers from 3 to @expr{N}. If
19158 the argument is an integer-valued float, the result is a floating-point
19159 approximation. This function is undefined for negative even integers.
19160 The notation @expr{N!!} is also recognized for double factorials.
19163 @pindex calc-choose
19165 The @kbd{k c} (@code{calc-choose}) [@code{choose}] command computes the
19166 binomial coefficient @expr{N}-choose-@expr{M}, where @expr{M} is the number
19167 on the top of the stack and @expr{N} is second-to-top. If both arguments
19168 are integers, the result is an exact integer. Otherwise, the result is a
19169 floating-point approximation. The binomial coefficient is defined for all
19171 @texline @math{N! \over M! (N-M)!\,}.
19172 @infoline @expr{N! / M! (N-M)!}.
19178 The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the
19179 number-of-permutations function @expr{N! / (N-M)!}.
19182 The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the
19183 number-of-perm\-utations function $N! \over (N-M)!\,$.
19188 @pindex calc-bernoulli-number
19190 The @kbd{k b} (@code{calc-bernoulli-number}) [@code{bern}] command
19191 computes a given Bernoulli number. The value at the top of the stack
19192 is a nonnegative integer @expr{n} that specifies which Bernoulli number
19193 is desired. The @kbd{H k b} command computes a Bernoulli polynomial,
19194 taking @expr{n} from the second-to-top position and @expr{x} from the
19195 top of the stack. If @expr{x} is a variable or formula the result is
19196 a polynomial in @expr{x}; if @expr{x} is a number the result is a number.
19200 @pindex calc-euler-number
19202 The @kbd{k e} (@code{calc-euler-number}) [@code{euler}] command similarly
19203 computes an Euler number, and @w{@kbd{H k e}} computes an Euler polynomial.
19204 Bernoulli and Euler numbers occur in the Taylor expansions of several
19209 @pindex calc-stirling-number
19212 The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command
19213 computes a Stirling number of the first
19214 @texline kind@tie{}@math{n \brack m},
19216 given two integers @expr{n} and @expr{m} on the stack. The @kbd{H k s}
19217 [@code{stir2}] command computes a Stirling number of the second
19218 @texline kind@tie{}@math{n \brace m}.
19220 These are the number of @expr{m}-cycle permutations of @expr{n} objects,
19221 and the number of ways to partition @expr{n} objects into @expr{m}
19222 non-empty sets, respectively.
19225 @pindex calc-prime-test
19227 The @kbd{k p} (@code{calc-prime-test}) command checks if the integer on
19228 the top of the stack is prime. For integers less than eight million, the
19229 answer is always exact and reasonably fast. For larger integers, a
19230 probabilistic method is used (see Knuth vol. II, section 4.5.4, algorithm P).
19231 The number is first checked against small prime factors (up to 13). Then,
19232 any number of iterations of the algorithm are performed. Each step either
19233 discovers that the number is non-prime, or substantially increases the
19234 certainty that the number is prime. After a few steps, the chance that
19235 a number was mistakenly described as prime will be less than one percent.
19236 (Indeed, this is a worst-case estimate of the probability; in practice
19237 even a single iteration is quite reliable.) After the @kbd{k p} command,
19238 the number will be reported as definitely prime or non-prime if possible,
19239 or otherwise ``probably'' prime with a certain probability of error.
19245 The normal @kbd{k p} command performs one iteration of the primality
19246 test. Pressing @kbd{k p} repeatedly for the same integer will perform
19247 additional iterations. Also, @kbd{k p} with a numeric prefix performs
19248 the specified number of iterations. There is also an algebraic function
19249 @samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @expr{n}
19250 is (probably) prime and 0 if not.
19253 @pindex calc-prime-factors
19255 The @kbd{k f} (@code{calc-prime-factors}) [@code{prfac}] command
19256 attempts to decompose an integer into its prime factors. For numbers up
19257 to 25 million, the answer is exact although it may take some time. The
19258 result is a vector of the prime factors in increasing order. For larger
19259 inputs, prime factors above 5000 may not be found, in which case the
19260 last number in the vector will be an unfactored integer greater than 25
19261 million (with a warning message). For negative integers, the first
19262 element of the list will be @mathit{-1}. For inputs @mathit{-1}, @mathit{0}, and
19263 @mathit{1}, the result is a list of the same number.
19266 @pindex calc-next-prime
19268 @mindex nextpr@idots
19271 The @kbd{k n} (@code{calc-next-prime}) [@code{nextprime}] command finds
19272 the next prime above a given number. Essentially, it searches by calling
19273 @code{calc-prime-test} on successive integers until it finds one that
19274 passes the test. This is quite fast for integers less than eight million,
19275 but once the probabilistic test comes into play the search may be rather
19276 slow. Ordinarily this command stops for any prime that passes one iteration
19277 of the primality test. With a numeric prefix argument, a number must pass
19278 the specified number of iterations before the search stops. (This only
19279 matters when searching above eight million.) You can always use additional
19280 @kbd{k p} commands to increase your certainty that the number is indeed
19284 @pindex calc-prev-prime
19286 @mindex prevpr@idots
19289 The @kbd{I k n} (@code{calc-prev-prime}) [@code{prevprime}] command
19290 analogously finds the next prime less than a given number.
19293 @pindex calc-totient
19295 The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the
19297 @texline function@tie{}@math{\phi(n)},
19298 @infoline function,
19299 the number of integers less than @expr{n} which
19300 are relatively prime to @expr{n}.
19303 @pindex calc-moebius
19305 The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the
19306 @texline M@"obius @math{\mu}
19307 @infoline Moebius ``mu''
19308 function. If the input number is a product of @expr{k}
19309 distinct factors, this is @expr{(-1)^k}. If the input number has any
19310 duplicate factors (i.e., can be divided by the same prime more than once),
19311 the result is zero.
19313 @node Probability Distribution Functions, , Combinatorial Functions, Scientific Functions
19314 @section Probability Distribution Functions
19317 The functions in this section compute various probability distributions.
19318 For continuous distributions, this is the integral of the probability
19319 density function from @expr{x} to infinity. (These are the ``upper
19320 tail'' distribution functions; there are also corresponding ``lower
19321 tail'' functions which integrate from minus infinity to @expr{x}.)
19322 For discrete distributions, the upper tail function gives the sum
19323 from @expr{x} to infinity; the lower tail function gives the sum
19324 from minus infinity up to, but not including,@w{ }@expr{x}.
19326 To integrate from @expr{x} to @expr{y}, just use the distribution
19327 function twice and subtract. For example, the probability that a
19328 Gaussian random variable with mean 2 and standard deviation 1 will
19329 lie in the range from 2.5 to 2.8 is @samp{utpn(2.5,2,1) - utpn(2.8,2,1)}
19330 (``the probability that it is greater than 2.5, but not greater than 2.8''),
19331 or equivalently @samp{ltpn(2.8,2,1) - ltpn(2.5,2,1)}.
19338 The @kbd{k B} (@code{calc-utpb}) [@code{utpb}] function uses the
19339 binomial distribution. Push the parameters @var{n}, @var{p}, and
19340 then @var{x} onto the stack; the result (@samp{utpb(x,n,p)}) is the
19341 probability that an event will occur @var{x} or more times out
19342 of @var{n} trials, if its probability of occurring in any given
19343 trial is @var{p}. The @kbd{I k B} [@code{ltpb}] function is
19344 the probability that the event will occur fewer than @var{x} times.
19346 The other probability distribution functions similarly take the
19347 form @kbd{k @var{X}} (@code{calc-utp@var{x}}) [@code{utp@var{x}}]
19348 and @kbd{I k @var{X}} [@code{ltp@var{x}}], for various letters
19349 @var{x}. The arguments to the algebraic functions are the value of
19350 the random variable first, then whatever other parameters define the
19351 distribution. Note these are among the few Calc functions where the
19352 order of the arguments in algebraic form differs from the order of
19353 arguments as found on the stack. (The random variable comes last on
19354 the stack, so that you can type, e.g., @kbd{2 @key{RET} 1 @key{RET} 2.5
19355 k N M-@key{RET} @key{DEL} 2.8 k N -}, using @kbd{M-@key{RET} @key{DEL}} to
19356 recover the original arguments but substitute a new value for @expr{x}.)
19369 The @samp{utpc(x,v)} function uses the chi-square distribution with
19370 @texline @math{\nu}
19372 degrees of freedom. It is the probability that a model is
19373 correct if its chi-square statistic is @expr{x}.
19386 The @samp{utpf(F,v1,v2)} function uses the F distribution, used in
19387 various statistical tests. The parameters
19388 @texline @math{\nu_1}
19389 @infoline @expr{v1}
19391 @texline @math{\nu_2}
19392 @infoline @expr{v2}
19393 are the degrees of freedom in the numerator and denominator,
19394 respectively, used in computing the statistic @expr{F}.
19407 The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution
19408 with mean @expr{m} and standard deviation
19409 @texline @math{\sigma}.
19410 @infoline @expr{s}.
19411 It is the probability that such a normal-distributed random variable
19412 would exceed @expr{x}.
19425 The @samp{utpp(n,x)} function uses a Poisson distribution with
19426 mean @expr{x}. It is the probability that @expr{n} or more such
19427 Poisson random events will occur.
19440 The @samp{utpt(t,v)} function uses the Student's ``t'' distribution
19442 @texline @math{\nu}
19444 degrees of freedom. It is the probability that a
19445 t-distributed random variable will be greater than @expr{t}.
19446 (Note: This computes the distribution function
19447 @texline @math{A(t|\nu)}
19448 @infoline @expr{A(t|v)}
19450 @texline @math{A(0|\nu) = 1}
19451 @infoline @expr{A(0|v) = 1}
19453 @texline @math{A(\infty|\nu) \to 0}.
19454 @infoline @expr{A(inf|v) -> 0}.
19455 The @code{UTPT} operation on the HP-48 uses a different definition which
19456 returns half of Calc's value: @samp{UTPT(t,v) = .5*utpt(t,v)}.)
19458 While Calc does not provide inverses of the probability distribution
19459 functions, the @kbd{a R} command can be used to solve for the inverse.
19460 Since the distribution functions are monotonic, @kbd{a R} is guaranteed
19461 to be able to find a solution given any initial guess.
19462 @xref{Numerical Solutions}.
19464 @node Matrix Functions, Algebra, Scientific Functions, Top
19465 @chapter Vector/Matrix Functions
19468 Many of the commands described here begin with the @kbd{v} prefix.
19469 (For convenience, the shift-@kbd{V} prefix is equivalent to @kbd{v}.)
19470 The commands usually apply to both plain vectors and matrices; some
19471 apply only to matrices or only to square matrices. If the argument
19472 has the wrong dimensions the operation is left in symbolic form.
19474 Vectors are entered and displayed using @samp{[a,b,c]} notation.
19475 Matrices are vectors of which all elements are vectors of equal length.
19476 (Though none of the standard Calc commands use this concept, a
19477 three-dimensional matrix or rank-3 tensor could be defined as a
19478 vector of matrices, and so on.)
19481 * Packing and Unpacking::
19482 * Building Vectors::
19483 * Extracting Elements::
19484 * Manipulating Vectors::
19485 * Vector and Matrix Arithmetic::
19487 * Statistical Operations::
19488 * Reducing and Mapping::
19489 * Vector and Matrix Formats::
19492 @node Packing and Unpacking, Building Vectors, Matrix Functions, Matrix Functions
19493 @section Packing and Unpacking
19496 Calc's ``pack'' and ``unpack'' commands collect stack entries to build
19497 composite objects such as vectors and complex numbers. They are
19498 described in this chapter because they are most often used to build
19504 The @kbd{v p} (@code{calc-pack}) [@code{pack}] command collects several
19505 elements from the stack into a matrix, complex number, HMS form, error
19506 form, etc. It uses a numeric prefix argument to specify the kind of
19507 object to be built; this argument is referred to as the ``packing mode.''
19508 If the packing mode is a nonnegative integer, a vector of that
19509 length is created. For example, @kbd{C-u 5 v p} will pop the top
19510 five stack elements and push back a single vector of those five
19511 elements. (@kbd{C-u 0 v p} simply creates an empty vector.)
19513 The same effect can be had by pressing @kbd{[} to push an incomplete
19514 vector on the stack, using @key{TAB} (@code{calc-roll-down}) to sneak
19515 the incomplete object up past a certain number of elements, and
19516 then pressing @kbd{]} to complete the vector.
19518 Negative packing modes create other kinds of composite objects:
19522 Two values are collected to build a complex number. For example,
19523 @kbd{5 @key{RET} 7 C-u -1 v p} creates the complex number
19524 @expr{(5, 7)}. The result is always a rectangular complex
19525 number. The two input values must both be real numbers,
19526 i.e., integers, fractions, or floats. If they are not, Calc
19527 will instead build a formula like @samp{a + (0, 1) b}. (The
19528 other packing modes also create a symbolic answer if the
19529 components are not suitable.)
19532 Two values are collected to build a polar complex number.
19533 The first is the magnitude; the second is the phase expressed
19534 in either degrees or radians according to the current angular
19538 Three values are collected into an HMS form. The first
19539 two values (hours and minutes) must be integers or
19540 integer-valued floats. The third value may be any real
19544 Two values are collected into an error form. The inputs
19545 may be real numbers or formulas.
19548 Two values are collected into a modulo form. The inputs
19549 must be real numbers.
19552 Two values are collected into the interval @samp{[a .. b]}.
19553 The inputs may be real numbers, HMS or date forms, or formulas.
19556 Two values are collected into the interval @samp{[a .. b)}.
19559 Two values are collected into the interval @samp{(a .. b]}.
19562 Two values are collected into the interval @samp{(a .. b)}.
19565 Two integer values are collected into a fraction.
19568 Two values are collected into a floating-point number.
19569 The first is the mantissa; the second, which must be an
19570 integer, is the exponent. The result is the mantissa
19571 times ten to the power of the exponent.
19574 This is treated the same as @mathit{-11} by the @kbd{v p} command.
19575 When unpacking, @mathit{-12} specifies that a floating-point mantissa
19579 A real number is converted into a date form.
19582 Three numbers (year, month, day) are packed into a pure date form.
19585 Six numbers are packed into a date/time form.
19588 With any of the two-input negative packing modes, either or both
19589 of the inputs may be vectors. If both are vectors of the same
19590 length, the result is another vector made by packing corresponding
19591 elements of the input vectors. If one input is a vector and the
19592 other is a plain number, the number is packed along with each vector
19593 element to produce a new vector. For example, @kbd{C-u -4 v p}
19594 could be used to convert a vector of numbers and a vector of errors
19595 into a single vector of error forms; @kbd{C-u -5 v p} could convert
19596 a vector of numbers and a single number @var{M} into a vector of
19597 numbers modulo @var{M}.
19599 If you don't give a prefix argument to @kbd{v p}, it takes
19600 the packing mode from the top of the stack. The elements to
19601 be packed then begin at stack level 2. Thus
19602 @kbd{1 @key{RET} 2 @key{RET} 4 n v p} is another way to
19603 enter the error form @samp{1 +/- 2}.
19605 If the packing mode taken from the stack is a vector, the result is a
19606 matrix with the dimensions specified by the elements of the vector,
19607 which must each be integers. For example, if the packing mode is
19608 @samp{[2, 3]}, then six numbers will be taken from the stack and
19609 returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}.
19611 If any elements of the vector are negative, other kinds of
19612 packing are done at that level as described above. For
19613 example, @samp{[2, 3, -4]} takes 12 objects and creates a
19614 @texline @math{2\times3}
19616 matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
19617 Also, @samp{[-4, -10]} will convert four integers into an
19618 error form consisting of two fractions: @samp{a:b +/- c:d}.
19624 There is an equivalent algebraic function,
19625 @samp{pack(@var{mode}, @var{items})} where @var{mode} is a
19626 packing mode (an integer or a vector of integers) and @var{items}
19627 is a vector of objects to be packed (re-packed, really) according
19628 to that mode. For example, @samp{pack([3, -4], [a,b,c,d,e,f])}
19629 yields @samp{[a +/- b, @w{c +/- d}, e +/- f]}. The function is
19630 left in symbolic form if the packing mode is invalid, or if the
19631 number of data items does not match the number of items required
19636 @pindex calc-unpack
19637 The @kbd{v u} (@code{calc-unpack}) command takes the vector, complex
19638 number, HMS form, or other composite object on the top of the stack and
19639 ``unpacks'' it, pushing each of its elements onto the stack as separate
19640 objects. Thus, it is the ``inverse'' of @kbd{v p}. If the value
19641 at the top of the stack is a formula, @kbd{v u} unpacks it by pushing
19642 each of the arguments of the top-level operator onto the stack.
19644 You can optionally give a numeric prefix argument to @kbd{v u}
19645 to specify an explicit (un)packing mode. If the packing mode is
19646 negative and the input is actually a vector or matrix, the result
19647 will be two or more similar vectors or matrices of the elements.
19648 For example, given the vector @samp{[@w{a +/- b}, c^2, d +/- 7]},
19649 the result of @kbd{C-u -4 v u} will be the two vectors
19650 @samp{[a, c^2, d]} and @w{@samp{[b, 0, 7]}}.
19652 Note that the prefix argument can have an effect even when the input is
19653 not a vector. For example, if the input is the number @mathit{-5}, then
19654 @kbd{c-u -1 v u} yields @mathit{-5} and 0 (the components of @mathit{-5}
19655 when viewed as a rectangular complex number); @kbd{C-u -2 v u} yields 5
19656 and 180 (assuming Degrees mode); and @kbd{C-u -10 v u} yields @mathit{-5}
19657 and 1 (the numerator and denominator of @mathit{-5}, viewed as a rational
19658 number). Plain @kbd{v u} with this input would complain that the input
19659 is not a composite object.
19661 Unpacking mode @mathit{-11} converts a float into an integer mantissa and
19662 an integer exponent, where the mantissa is not divisible by 10
19663 (except that 0.0 is represented by a mantissa and exponent of 0).
19664 Unpacking mode @mathit{-12} converts a float into a floating-point mantissa
19665 and integer exponent, where the mantissa (for non-zero numbers)
19666 is guaranteed to lie in the range [1 .. 10). In both cases,
19667 the mantissa is shifted left or right (and the exponent adjusted
19668 to compensate) in order to satisfy these constraints.
19670 Positive unpacking modes are treated differently than for @kbd{v p}.
19671 A mode of 1 is much like plain @kbd{v u} with no prefix argument,
19672 except that in addition to the components of the input object,
19673 a suitable packing mode to re-pack the object is also pushed.
19674 Thus, @kbd{C-u 1 v u} followed by @kbd{v p} will re-build the
19677 A mode of 2 unpacks two levels of the object; the resulting
19678 re-packing mode will be a vector of length 2. This might be used
19679 to unpack a matrix, say, or a vector of error forms. Higher
19680 unpacking modes unpack the input even more deeply.
19686 There are two algebraic functions analogous to @kbd{v u}.
19687 The @samp{unpack(@var{mode}, @var{item})} function unpacks the
19688 @var{item} using the given @var{mode}, returning the result as
19689 a vector of components. Here the @var{mode} must be an
19690 integer, not a vector. For example, @samp{unpack(-4, a +/- b)}
19691 returns @samp{[a, b]}, as does @samp{unpack(1, a +/- b)}.
19697 The @code{unpackt} function is like @code{unpack} but instead
19698 of returning a simple vector of items, it returns a vector of
19699 two things: The mode, and the vector of items. For example,
19700 @samp{unpackt(1, 2:3 +/- 1:4)} returns @samp{[-4, [2:3, 1:4]]},
19701 and @samp{unpackt(2, 2:3 +/- 1:4)} returns @samp{[[-4, -10], [2, 3, 1, 4]]}.
19702 The identity for re-building the original object is
19703 @samp{apply(pack, unpackt(@var{n}, @var{x})) = @var{x}}. (The
19704 @code{apply} function builds a function call given the function
19705 name and a vector of arguments.)
19707 @cindex Numerator of a fraction, extracting
19708 Subscript notation is a useful way to extract a particular part
19709 of an object. For example, to get the numerator of a rational
19710 number, you can use @samp{unpack(-10, @var{x})_1}.
19712 @node Building Vectors, Extracting Elements, Packing and Unpacking, Matrix Functions
19713 @section Building Vectors
19716 Vectors and matrices can be added,
19717 subtracted, multiplied, and divided; @pxref{Basic Arithmetic}.
19720 @pindex calc-concat
19725 The @kbd{|} (@code{calc-concat}) [@code{vconcat}] command ``concatenates'' two vectors
19726 into one. For example, after @kbd{@w{[ 1 , 2 ]} [ 3 , 4 ] |}, the stack
19727 will contain the single vector @samp{[1, 2, 3, 4]}. If the arguments
19728 are matrices, the rows of the first matrix are concatenated with the
19729 rows of the second. (In other words, two matrices are just two vectors
19730 of row-vectors as far as @kbd{|} is concerned.)
19732 If either argument to @kbd{|} is a scalar (a non-vector), it is treated
19733 like a one-element vector for purposes of concatenation: @kbd{1 [ 2 , 3 ] |}
19734 produces the vector @samp{[1, 2, 3]}. Likewise, if one argument is a
19735 matrix and the other is a plain vector, the vector is treated as a
19740 The @kbd{H |} (@code{calc-append}) [@code{append}] command concatenates
19741 two vectors without any special cases. Both inputs must be vectors.
19742 Whether or not they are matrices is not taken into account. If either
19743 argument is a scalar, the @code{append} function is left in symbolic form.
19744 See also @code{cons} and @code{rcons} below.
19748 The @kbd{I |} and @kbd{H I |} commands are similar, but they use their
19749 two stack arguments in the opposite order. Thus @kbd{I |} is equivalent
19750 to @kbd{@key{TAB} |}, but possibly more convenient and also a bit faster.
19756 The @kbd{v d} (@code{calc-diag}) [@code{diag}] function builds a diagonal
19757 square matrix. The optional numeric prefix gives the number of rows
19758 and columns in the matrix. If the value at the top of the stack is a
19759 vector, the elements of the vector are used as the diagonal elements; the
19760 prefix, if specified, must match the size of the vector. If the value on
19761 the stack is a scalar, it is used for each element on the diagonal, and
19762 the prefix argument is required.
19764 To build a constant square matrix, e.g., a
19765 @texline @math{3\times3}
19767 matrix filled with ones, use @kbd{0 M-3 v d 1 +}, i.e., build a zero
19768 matrix first and then add a constant value to that matrix. (Another
19769 alternative would be to use @kbd{v b} and @kbd{v a}; see below.)
19775 The @kbd{v i} (@code{calc-ident}) [@code{idn}] function builds an identity
19776 matrix of the specified size. It is a convenient form of @kbd{v d}
19777 where the diagonal element is always one. If no prefix argument is given,
19778 this command prompts for one.
19780 In algebraic notation, @samp{idn(a,n)} acts much like @samp{diag(a,n)},
19781 except that @expr{a} is required to be a scalar (non-vector) quantity.
19782 If @expr{n} is omitted, @samp{idn(a)} represents @expr{a} times an
19783 identity matrix of unknown size. Calc can operate algebraically on
19784 such generic identity matrices, and if one is combined with a matrix
19785 whose size is known, it is converted automatically to an identity
19786 matrix of a suitable matching size. The @kbd{v i} command with an
19787 argument of zero creates a generic identity matrix, @samp{idn(1)}.
19788 Note that in dimensioned Matrix mode (@pxref{Matrix Mode}), generic
19789 identity matrices are immediately expanded to the current default
19796 The @kbd{v x} (@code{calc-index}) [@code{index}] function builds a vector
19797 of consecutive integers from 1 to @var{n}, where @var{n} is the numeric
19798 prefix argument. If you do not provide a prefix argument, you will be
19799 prompted to enter a suitable number. If @var{n} is negative, the result
19800 is a vector of negative integers from @var{n} to @mathit{-1}.
19802 With a prefix argument of just @kbd{C-u}, the @kbd{v x} command takes
19803 three values from the stack: @var{n}, @var{start}, and @var{incr} (with
19804 @var{incr} at top-of-stack). Counting starts at @var{start} and increases
19805 by @var{incr} for successive vector elements. If @var{start} or @var{n}
19806 is in floating-point format, the resulting vector elements will also be
19807 floats. Note that @var{start} and @var{incr} may in fact be any kind
19808 of numbers or formulas.
19810 When @var{start} and @var{incr} are specified, a negative @var{n} has a
19811 different interpretation: It causes a geometric instead of arithmetic
19812 sequence to be generated. For example, @samp{index(-3, a, b)} produces
19813 @samp{[a, a b, a b^2]}. If you omit @var{incr} in the algebraic form,
19814 @samp{index(@var{n}, @var{start})}, the default value for @var{incr}
19815 is one for positive @var{n} or two for negative @var{n}.
19819 @pindex calc-build-vector
19821 The @kbd{v b} (@code{calc-build-vector}) [@code{cvec}] function builds a
19822 vector of @var{n} copies of the value on the top of the stack, where @var{n}
19823 is the numeric prefix argument. In algebraic formulas, @samp{cvec(x,n,m)}
19824 can also be used to build an @var{n}-by-@var{m} matrix of copies of @var{x}.
19825 (Interactively, just use @kbd{v b} twice: once to build a row, then again
19826 to build a matrix of copies of that row.)
19836 The @kbd{v h} (@code{calc-head}) [@code{head}] function returns the first
19837 element of a vector. The @kbd{I v h} (@code{calc-tail}) [@code{tail}]
19838 function returns the vector with its first element removed. In both
19839 cases, the argument must be a non-empty vector.
19845 The @kbd{v k} (@code{calc-cons}) [@code{cons}] function takes a value @var{h}
19846 and a vector @var{t} from the stack, and produces the vector whose head is
19847 @var{h} and whose tail is @var{t}. This is similar to @kbd{|}, except
19848 if @var{h} is itself a vector, @kbd{|} will concatenate the two vectors
19849 whereas @code{cons} will insert @var{h} at the front of the vector @var{t}.
19872 Each of these three functions also accepts the Hyperbolic flag [@code{rhead},
19873 @code{rtail}, @code{rcons}] in which case @var{t} instead represents
19874 the @emph{last} single element of the vector, with @var{h}
19875 representing the remainder of the vector. Thus the vector
19876 @samp{[a, b, c, d] = cons(a, [b, c, d]) = rcons([a, b, c], d)}.
19877 Also, @samp{head([a, b, c, d]) = a}, @samp{tail([a, b, c, d]) = [b, c, d]},
19878 @samp{rhead([a, b, c, d]) = [a, b, c]}, and @samp{rtail([a, b, c, d]) = d}.
19880 @node Extracting Elements, Manipulating Vectors, Building Vectors, Matrix Functions
19881 @section Extracting Vector Elements
19888 The @kbd{v r} (@code{calc-mrow}) [@code{mrow}] command extracts one row of
19889 the matrix on the top of the stack, or one element of the plain vector on
19890 the top of the stack. The row or element is specified by the numeric
19891 prefix argument; the default is to prompt for the row or element number.
19892 The matrix or vector is replaced by the specified row or element in the
19893 form of a vector or scalar, respectively.
19895 @cindex Permutations, applying
19896 With a prefix argument of @kbd{C-u} only, @kbd{v r} takes the index of
19897 the element or row from the top of the stack, and the vector or matrix
19898 from the second-to-top position. If the index is itself a vector of
19899 integers, the result is a vector of the corresponding elements of the
19900 input vector, or a matrix of the corresponding rows of the input matrix.
19901 This command can be used to obtain any permutation of a vector.
19903 With @kbd{C-u}, if the index is an interval form with integer components,
19904 it is interpreted as a range of indices and the corresponding subvector or
19905 submatrix is returned.
19907 @cindex Subscript notation
19909 @pindex calc-subscript
19912 Subscript notation in algebraic formulas (@samp{a_b}) stands for the
19913 Calc function @code{subscr}, which is synonymous with @code{mrow}.
19914 Thus, @samp{[x, y, z]_k} produces @expr{x}, @expr{y}, or @expr{z} if
19915 @expr{k} is one, two, or three, respectively. A double subscript
19916 (@samp{M_i_j}, equivalent to @samp{subscr(subscr(M, i), j)}) will
19917 access the element at row @expr{i}, column @expr{j} of a matrix.
19918 The @kbd{a _} (@code{calc-subscript}) command creates a subscript
19919 formula @samp{a_b} out of two stack entries. (It is on the @kbd{a}
19920 ``algebra'' prefix because subscripted variables are often used
19921 purely as an algebraic notation.)
19924 Given a negative prefix argument, @kbd{v r} instead deletes one row or
19925 element from the matrix or vector on the top of the stack. Thus
19926 @kbd{C-u 2 v r} replaces a matrix with its second row, but @kbd{C-u -2 v r}
19927 replaces the matrix with the same matrix with its second row removed.
19928 In algebraic form this function is called @code{mrrow}.
19931 Given a prefix argument of zero, @kbd{v r} extracts the diagonal elements
19932 of a square matrix in the form of a vector. In algebraic form this
19933 function is called @code{getdiag}.
19940 The @kbd{v c} (@code{calc-mcol}) [@code{mcol} or @code{mrcol}] command is
19941 the analogous operation on columns of a matrix. Given a plain vector
19942 it extracts (or removes) one element, just like @kbd{v r}. If the
19943 index in @kbd{C-u v c} is an interval or vector and the argument is a
19944 matrix, the result is a submatrix with only the specified columns
19945 retained (and possibly permuted in the case of a vector index).
19947 To extract a matrix element at a given row and column, use @kbd{v r} to
19948 extract the row as a vector, then @kbd{v c} to extract the column element
19949 from that vector. In algebraic formulas, it is often more convenient to
19950 use subscript notation: @samp{m_i_j} gives row @expr{i}, column @expr{j}
19951 of matrix @expr{m}.
19955 @pindex calc-subvector
19957 The @kbd{v s} (@code{calc-subvector}) [@code{subvec}] command extracts
19958 a subvector of a vector. The arguments are the vector, the starting
19959 index, and the ending index, with the ending index in the top-of-stack
19960 position. The starting index indicates the first element of the vector
19961 to take. The ending index indicates the first element @emph{past} the
19962 range to be taken. Thus, @samp{subvec([a, b, c, d, e], 2, 4)} produces
19963 the subvector @samp{[b, c]}. You could get the same result using
19964 @samp{mrow([a, b, c, d, e], @w{[2 .. 4)})}.
19966 If either the start or the end index is zero or negative, it is
19967 interpreted as relative to the end of the vector. Thus
19968 @samp{subvec([a, b, c, d, e], 2, -2)} also produces @samp{[b, c]}. In
19969 the algebraic form, the end index can be omitted in which case it
19970 is taken as zero, i.e., elements from the starting element to the
19971 end of the vector are used. The infinity symbol, @code{inf}, also
19972 has this effect when used as the ending index.
19977 With the Inverse flag, @kbd{I v s} [@code{rsubvec}] removes a subvector
19978 from a vector. The arguments are interpreted the same as for the
19979 normal @kbd{v s} command. Thus, @samp{rsubvec([a, b, c, d, e], 2, 4)}
19980 produces @samp{[a, d, e]}. It is always true that @code{subvec} and
19981 @code{rsubvec} return complementary parts of the input vector.
19983 @xref{Selecting Subformulas}, for an alternative way to operate on
19984 vectors one element at a time.
19986 @node Manipulating Vectors, Vector and Matrix Arithmetic, Extracting Elements, Matrix Functions
19987 @section Manipulating Vectors
19992 @pindex calc-vlength
19994 The @kbd{v l} (@code{calc-vlength}) [@code{vlen}] command computes the
19995 length of a vector. The length of a non-vector is considered to be zero.
19996 Note that matrices are just vectors of vectors for the purposes of this
20002 With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector
20003 of the dimensions of a vector, matrix, or higher-order object. For
20004 example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since
20006 @texline @math{2\times3}
20012 @pindex calc-vector-find
20014 The @kbd{v f} (@code{calc-vector-find}) [@code{find}] command searches
20015 along a vector for the first element equal to a given target. The target
20016 is on the top of the stack; the vector is in the second-to-top position.
20017 If a match is found, the result is the index of the matching element.
20018 Otherwise, the result is zero. The numeric prefix argument, if given,
20019 allows you to select any starting index for the search.
20023 @pindex calc-arrange-vector
20025 @cindex Arranging a matrix
20026 @cindex Reshaping a matrix
20027 @cindex Flattening a matrix
20028 The @kbd{v a} (@code{calc-arrange-vector}) [@code{arrange}] command
20029 rearranges a vector to have a certain number of columns and rows. The
20030 numeric prefix argument specifies the number of columns; if you do not
20031 provide an argument, you will be prompted for the number of columns.
20032 The vector or matrix on the top of the stack is @dfn{flattened} into a
20033 plain vector. If the number of columns is nonzero, this vector is
20034 then formed into a matrix by taking successive groups of @var{n} elements.
20035 If the number of columns does not evenly divide the number of elements
20036 in the vector, the last row will be short and the result will not be
20037 suitable for use as a matrix. For example, with the matrix
20038 @samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces
20039 @samp{[[1, 2, 3, 4]]} (a
20040 @texline @math{1\times4}
20042 matrix), @kbd{v a 1} produces @samp{[[1], [2], [3], [4]]} (a
20043 @texline @math{4\times1}
20045 matrix), @kbd{v a 2} produces @samp{[[1, 2], [3, 4]]} (the original
20046 @texline @math{2\times2}
20048 matrix), @w{@kbd{v a 3}} produces @samp{[[1, 2, 3], [4]]} (not a
20049 matrix), and @kbd{v a 0} produces the flattened list
20050 @samp{[1, 2, @w{3, 4}]}.
20052 @cindex Sorting data
20060 The @kbd{V S} (@code{calc-sort}) [@code{sort}] command sorts the elements of
20061 a vector into increasing order. Real numbers, real infinities, and
20062 constant interval forms come first in this ordering; next come other
20063 kinds of numbers, then variables (in alphabetical order), then finally
20064 come formulas and other kinds of objects; these are sorted according
20065 to a kind of lexicographic ordering with the useful property that
20066 one vector is less or greater than another if the first corresponding
20067 unequal elements are less or greater, respectively. Since quoted strings
20068 are stored by Calc internally as vectors of ASCII character codes
20069 (@pxref{Strings}), this means vectors of strings are also sorted into
20070 alphabetical order by this command.
20072 The @kbd{I V S} [@code{rsort}] command sorts a vector into decreasing order.
20074 @cindex Permutation, inverse of
20075 @cindex Inverse of permutation
20076 @cindex Index tables
20077 @cindex Rank tables
20085 The @kbd{V G} (@code{calc-grade}) [@code{grade}, @code{rgrade}] command
20086 produces an index table or permutation vector which, if applied to the
20087 input vector (as the index of @kbd{C-u v r}, say), would sort the vector.
20088 A permutation vector is just a vector of integers from 1 to @var{n}, where
20089 each integer occurs exactly once. One application of this is to sort a
20090 matrix of data rows using one column as the sort key; extract that column,
20091 grade it with @kbd{V G}, then use the result to reorder the original matrix
20092 with @kbd{C-u v r}. Another interesting property of the @code{V G} command
20093 is that, if the input is itself a permutation vector, the result will
20094 be the inverse of the permutation. The inverse of an index table is
20095 a rank table, whose @var{k}th element says where the @var{k}th original
20096 vector element will rest when the vector is sorted. To get a rank
20097 table, just use @kbd{V G V G}.
20099 With the Inverse flag, @kbd{I V G} produces an index table that would
20100 sort the input into decreasing order. Note that @kbd{V S} and @kbd{V G}
20101 use a ``stable'' sorting algorithm, i.e., any two elements which are equal
20102 will not be moved out of their original order. Generally there is no way
20103 to tell with @kbd{V S}, since two elements which are equal look the same,
20104 but with @kbd{V G} this can be an important issue. In the matrix-of-rows
20105 example, suppose you have names and telephone numbers as two columns and
20106 you wish to sort by phone number primarily, and by name when the numbers
20107 are equal. You can sort the data matrix by names first, and then again
20108 by phone numbers. Because the sort is stable, any two rows with equal
20109 phone numbers will remain sorted by name even after the second sort.
20114 @pindex calc-histogram
20116 @mindex histo@idots
20119 The @kbd{V H} (@code{calc-histogram}) [@code{histogram}] command builds a
20120 histogram of a vector of numbers. Vector elements are assumed to be
20121 integers or real numbers in the range [0..@var{n}) for some ``number of
20122 bins'' @var{n}, which is the numeric prefix argument given to the
20123 command. The result is a vector of @var{n} counts of how many times
20124 each value appeared in the original vector. Non-integers in the input
20125 are rounded down to integers. Any vector elements outside the specified
20126 range are ignored. (You can tell if elements have been ignored by noting
20127 that the counts in the result vector don't add up to the length of the
20130 If no prefix is given, then you will be prompted for a vector which
20131 will be used to determine the bins. (If a positive integer is given at
20132 this prompt, it will be still treated as if it were given as a
20133 prefix.) Each bin will consist of the interval of numbers closest to
20134 the corresponding number of this new vector; if the vector
20135 @expr{[a, b, c, ...]} is entered at the prompt, the bins will be
20136 @expr{(-inf, (a+b)/2]}, @expr{((a+b)/2, (b+c)/2]}, etc. The result of
20137 this command will be a vector counting how many elements of the
20138 original vector are in each bin.
20140 The result will then be a vector with the same length as this new vector;
20141 each element of the new vector will be replaced by the number of
20142 elements of the original vector which are closest to it.
20146 With the Hyperbolic flag, @kbd{H V H} pulls two vectors from the stack.
20147 The second-to-top vector is the list of numbers as before. The top
20148 vector is an equal-sized list of ``weights'' to attach to the elements
20149 of the data vector. For example, if the first data element is 4.2 and
20150 the first weight is 10, then 10 will be added to bin 4 of the result
20151 vector. Without the hyperbolic flag, every element has a weight of one.
20155 @pindex calc-transpose
20157 The @kbd{v t} (@code{calc-transpose}) [@code{trn}] command computes
20158 the transpose of the matrix at the top of the stack. If the argument
20159 is a plain vector, it is treated as a row vector and transposed into
20160 a one-column matrix.
20164 @pindex calc-reverse-vector
20166 The @kbd{v v} (@code{calc-reverse-vector}) [@code{rev}] command reverses
20167 a vector end-for-end. Given a matrix, it reverses the order of the rows.
20168 (To reverse the columns instead, just use @kbd{v t v v v t}. The same
20169 principle can be used to apply other vector commands to the columns of
20174 @pindex calc-mask-vector
20176 The @kbd{v m} (@code{calc-mask-vector}) [@code{vmask}] command uses
20177 one vector as a mask to extract elements of another vector. The mask
20178 is in the second-to-top position; the target vector is on the top of
20179 the stack. These vectors must have the same length. The result is
20180 the same as the target vector, but with all elements which correspond
20181 to zeros in the mask vector deleted. Thus, for example,
20182 @samp{vmask([1, 0, 1, 0, 1], [a, b, c, d, e])} produces @samp{[a, c, e]}.
20183 @xref{Logical Operations}.
20187 @pindex calc-expand-vector
20189 The @kbd{v e} (@code{calc-expand-vector}) [@code{vexp}] command
20190 expands a vector according to another mask vector. The result is a
20191 vector the same length as the mask, but with nonzero elements replaced
20192 by successive elements from the target vector. The length of the target
20193 vector is normally the number of nonzero elements in the mask. If the
20194 target vector is longer, its last few elements are lost. If the target
20195 vector is shorter, the last few nonzero mask elements are left
20196 unreplaced in the result. Thus @samp{vexp([2, 0, 3, 0, 7], [a, b])}
20197 produces @samp{[a, 0, b, 0, 7]}.
20201 With the Hyperbolic flag, @kbd{H v e} takes a filler value from the
20202 top of the stack; the mask and target vectors come from the third and
20203 second elements of the stack. This filler is used where the mask is
20204 zero: @samp{vexp([2, 0, 3, 0, 7], [a, b], z)} produces
20205 @samp{[a, z, c, z, 7]}. If the filler value is itself a vector,
20206 then successive values are taken from it, so that the effect is to
20207 interleave two vectors according to the mask:
20208 @samp{vexp([2, 0, 3, 7, 0, 0], [a, b], [x, y])} produces
20209 @samp{[a, x, b, 7, y, 0]}.
20211 Another variation on the masking idea is to combine @samp{[a, b, c, d, e]}
20212 with the mask @samp{[1, 0, 1, 0, 1]} to produce @samp{[a, 0, c, 0, e]}.
20213 You can accomplish this with @kbd{V M a &}, mapping the logical ``and''
20214 operation across the two vectors. @xref{Logical Operations}. Note that
20215 the @code{? :} operation also discussed there allows other types of
20216 masking using vectors.
20218 @node Vector and Matrix Arithmetic, Set Operations, Manipulating Vectors, Matrix Functions
20219 @section Vector and Matrix Arithmetic
20222 Basic arithmetic operations like addition and multiplication are defined
20223 for vectors and matrices as well as for numbers. Division of matrices, in
20224 the sense of multiplying by the inverse, is supported. (Division by a
20225 matrix actually uses LU-decomposition for greater accuracy and speed.)
20226 @xref{Basic Arithmetic}.
20228 The following functions are applied element-wise if their arguments are
20229 vectors or matrices: @code{change-sign}, @code{conj}, @code{arg},
20230 @code{re}, @code{im}, @code{polar}, @code{rect}, @code{clean},
20231 @code{float}, @code{frac}. @xref{Function Index}.
20235 @pindex calc-conj-transpose
20237 The @kbd{V J} (@code{calc-conj-transpose}) [@code{ctrn}] command computes
20238 the conjugate transpose of its argument, i.e., @samp{conj(trn(x))}.
20243 @kindex A (vectors)
20244 @pindex calc-abs (vectors)
20248 @tindex abs (vectors)
20249 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the
20250 Frobenius norm of a vector or matrix argument. This is the square
20251 root of the sum of the squares of the absolute values of the
20252 elements of the vector or matrix. If the vector is interpreted as
20253 a point in two- or three-dimensional space, this is the distance
20254 from that point to the origin.
20260 The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes the
20261 infinity-norm of a vector, or the row norm of a matrix. For a plain
20262 vector, this is the maximum of the absolute values of the elements. For
20263 a matrix, this is the maximum of the row-absolute-value-sums, i.e., of
20264 the sums of the absolute values of the elements along the various rows.
20270 The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes
20271 the one-norm of a vector, or column norm of a matrix. For a plain
20272 vector, this is the sum of the absolute values of the elements.
20273 For a matrix, this is the maximum of the column-absolute-value-sums.
20274 General @expr{k}-norms for @expr{k} other than one or infinity are
20275 not provided. However, the 2-norm (or Frobenius norm) is provided for
20276 vectors by the @kbd{A} (@code{calc-abs}) command.
20282 The @kbd{V C} (@code{calc-cross}) [@code{cross}] command computes the
20283 right-handed cross product of two vectors, each of which must have
20284 exactly three elements.
20289 @kindex & (matrices)
20290 @pindex calc-inv (matrices)
20294 @tindex inv (matrices)
20295 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
20296 inverse of a square matrix. If the matrix is singular, the inverse
20297 operation is left in symbolic form. Matrix inverses are recorded so
20298 that once an inverse (or determinant) of a particular matrix has been
20299 computed, the inverse and determinant of the matrix can be recomputed
20300 quickly in the future.
20302 If the argument to @kbd{&} is a plain number @expr{x}, this
20303 command simply computes @expr{1/x}. This is okay, because the
20304 @samp{/} operator also does a matrix inversion when dividing one
20311 The @kbd{V D} (@code{calc-mdet}) [@code{det}] command computes the
20312 determinant of a square matrix.
20318 The @kbd{V L} (@code{calc-mlud}) [@code{lud}] command computes the
20319 LU decomposition of a matrix. The result is a list of three matrices
20320 which, when multiplied together left-to-right, form the original matrix.
20321 The first is a permutation matrix that arises from pivoting in the
20322 algorithm, the second is lower-triangular with ones on the diagonal,
20323 and the third is upper-triangular.
20327 @pindex calc-mtrace
20329 The @kbd{V T} (@code{calc-mtrace}) [@code{tr}] command computes the
20330 trace of a square matrix. This is defined as the sum of the diagonal
20331 elements of the matrix.
20337 The @kbd{V K} (@code{calc-kron}) [@code{kron}] command computes
20338 the Kronecker product of two matrices.
20340 @node Set Operations, Statistical Operations, Vector and Matrix Arithmetic, Matrix Functions
20341 @section Set Operations using Vectors
20344 @cindex Sets, as vectors
20345 Calc includes several commands which interpret vectors as @dfn{sets} of
20346 objects. A set is a collection of objects; any given object can appear
20347 only once in the set. Calc stores sets as vectors of objects in
20348 sorted order. Objects in a Calc set can be any of the usual things,
20349 such as numbers, variables, or formulas. Two set elements are considered
20350 equal if they are identical, except that numerically equal numbers like
20351 the integer 4 and the float 4.0 are considered equal even though they
20352 are not ``identical.'' Variables are treated like plain symbols without
20353 attached values by the set operations; subtracting the set @samp{[b]}
20354 from @samp{[a, b]} always yields the set @samp{[a]} even though if
20355 the variables @samp{a} and @samp{b} both equaled 17, you might
20356 expect the answer @samp{[]}.
20358 If a set contains interval forms, then it is assumed to be a set of
20359 real numbers. In this case, all set operations require the elements
20360 of the set to be only things that are allowed in intervals: Real
20361 numbers, plus and minus infinity, HMS forms, and date forms. If
20362 there are variables or other non-real objects present in a real set,
20363 all set operations on it will be left in unevaluated form.
20365 If the input to a set operation is a plain number or interval form
20366 @var{a}, it is treated like the one-element vector @samp{[@var{a}]}.
20367 The result is always a vector, except that if the set consists of a
20368 single interval, the interval itself is returned instead.
20370 @xref{Logical Operations}, for the @code{in} function which tests if
20371 a certain value is a member of a given set. To test if the set @expr{A}
20372 is a subset of the set @expr{B}, use @samp{vdiff(A, B) = []}.
20376 @pindex calc-remove-duplicates
20378 The @kbd{V +} (@code{calc-remove-duplicates}) [@code{rdup}] command
20379 converts an arbitrary vector into set notation. It works by sorting
20380 the vector as if by @kbd{V S}, then removing duplicates. (For example,
20381 @kbd{[a, 5, 4, a, 4.0]} is sorted to @samp{[4, 4.0, 5, a, a]} and then
20382 reduced to @samp{[4, 5, a]}). Overlapping intervals are merged as
20383 necessary. You rarely need to use @kbd{V +} explicitly, since all the
20384 other set-based commands apply @kbd{V +} to their inputs before using
20389 @pindex calc-set-union
20391 The @kbd{V V} (@code{calc-set-union}) [@code{vunion}] command computes
20392 the union of two sets. An object is in the union of two sets if and
20393 only if it is in either (or both) of the input sets. (You could
20394 accomplish the same thing by concatenating the sets with @kbd{|},
20395 then using @kbd{V +}.)
20399 @pindex calc-set-intersect
20401 The @kbd{V ^} (@code{calc-set-intersect}) [@code{vint}] command computes
20402 the intersection of two sets. An object is in the intersection if
20403 and only if it is in both of the input sets. Thus if the input
20404 sets are disjoint, i.e., if they share no common elements, the result
20405 will be the empty vector @samp{[]}. Note that the characters @kbd{V}
20406 and @kbd{^} were chosen to be close to the conventional mathematical
20408 @texline union@tie{}(@math{A \cup B})
20411 @texline intersection@tie{}(@math{A \cap B}).
20412 @infoline intersection.
20416 @pindex calc-set-difference
20418 The @kbd{V -} (@code{calc-set-difference}) [@code{vdiff}] command computes
20419 the difference between two sets. An object is in the difference
20420 @expr{A - B} if and only if it is in @expr{A} but not in @expr{B}.
20421 Thus subtracting @samp{[y,z]} from a set will remove the elements
20422 @samp{y} and @samp{z} if they are present. You can also think of this
20423 as a general @dfn{set complement} operator; if @expr{A} is the set of
20424 all possible values, then @expr{A - B} is the ``complement'' of @expr{B}.
20425 Obviously this is only practical if the set of all possible values in
20426 your problem is small enough to list in a Calc vector (or simple
20427 enough to express in a few intervals).
20431 @pindex calc-set-xor
20433 The @kbd{V X} (@code{calc-set-xor}) [@code{vxor}] command computes
20434 the ``exclusive-or,'' or ``symmetric difference'' of two sets.
20435 An object is in the symmetric difference of two sets if and only
20436 if it is in one, but @emph{not} both, of the sets. Objects that
20437 occur in both sets ``cancel out.''
20441 @pindex calc-set-complement
20443 The @kbd{V ~} (@code{calc-set-complement}) [@code{vcompl}] command
20444 computes the complement of a set with respect to the real numbers.
20445 Thus @samp{vcompl(x)} is equivalent to @samp{vdiff([-inf .. inf], x)}.
20446 For example, @samp{vcompl([2, (3 .. 4]])} evaluates to
20447 @samp{[[-inf .. 2), (2 .. 3], (4 .. inf]]}.
20451 @pindex calc-set-floor
20453 The @kbd{V F} (@code{calc-set-floor}) [@code{vfloor}] command
20454 reinterprets a set as a set of integers. Any non-integer values,
20455 and intervals that do not enclose any integers, are removed. Open
20456 intervals are converted to equivalent closed intervals. Successive
20457 integers are converted into intervals of integers. For example, the
20458 complement of the set @samp{[2, 6, 7, 8]} is messy, but if you wanted
20459 the complement with respect to the set of integers you could type
20460 @kbd{V ~ V F} to get @samp{[[-inf .. 1], [3 .. 5], [9 .. inf]]}.
20464 @pindex calc-set-enumerate
20466 The @kbd{V E} (@code{calc-set-enumerate}) [@code{venum}] command
20467 converts a set of integers into an explicit vector. Intervals in
20468 the set are expanded out to lists of all integers encompassed by
20469 the intervals. This only works for finite sets (i.e., sets which
20470 do not involve @samp{-inf} or @samp{inf}).
20474 @pindex calc-set-span
20476 The @kbd{V :} (@code{calc-set-span}) [@code{vspan}] command converts any
20477 set of reals into an interval form that encompasses all its elements.
20478 The lower limit will be the smallest element in the set; the upper
20479 limit will be the largest element. For an empty set, @samp{vspan([])}
20480 returns the empty interval @w{@samp{[0 .. 0)}}.
20484 @pindex calc-set-cardinality
20486 The @kbd{V #} (@code{calc-set-cardinality}) [@code{vcard}] command counts
20487 the number of integers in a set. The result is the length of the vector
20488 that would be produced by @kbd{V E}, although the computation is much
20489 more efficient than actually producing that vector.
20491 @cindex Sets, as binary numbers
20492 Another representation for sets that may be more appropriate in some
20493 cases is binary numbers. If you are dealing with sets of integers
20494 in the range 0 to 49, you can use a 50-bit binary number where a
20495 particular bit is 1 if the corresponding element is in the set.
20496 @xref{Binary Functions}, for a list of commands that operate on
20497 binary numbers. Note that many of the above set operations have
20498 direct equivalents in binary arithmetic: @kbd{b o} (@code{calc-or}),
20499 @kbd{b a} (@code{calc-and}), @kbd{b d} (@code{calc-diff}),
20500 @kbd{b x} (@code{calc-xor}), and @kbd{b n} (@code{calc-not}),
20501 respectively. You can use whatever representation for sets is most
20506 @pindex calc-pack-bits
20507 @pindex calc-unpack-bits
20510 The @kbd{b u} (@code{calc-unpack-bits}) [@code{vunpack}] command
20511 converts an integer that represents a set in binary into a set
20512 in vector/interval notation. For example, @samp{vunpack(67)}
20513 returns @samp{[[0 .. 1], 6]}. If the input is negative, the set
20514 it represents is semi-infinite: @samp{vunpack(-4) = [2 .. inf)}.
20515 Use @kbd{V E} afterwards to expand intervals to individual
20516 values if you wish. Note that this command uses the @kbd{b}
20517 (binary) prefix key.
20519 The @kbd{b p} (@code{calc-pack-bits}) [@code{vpack}] command
20520 converts the other way, from a vector or interval representing
20521 a set of nonnegative integers into a binary integer describing
20522 the same set. The set may include positive infinity, but must
20523 not include any negative numbers. The input is interpreted as a
20524 set of integers in the sense of @kbd{V F} (@code{vfloor}). Beware
20525 that a simple input like @samp{[100]} can result in a huge integer
20527 @texline (@math{2^{100}}, a 31-digit integer, in this case).
20528 @infoline (@expr{2^100}, a 31-digit integer, in this case).
20530 @node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions
20531 @section Statistical Operations on Vectors
20534 @cindex Statistical functions
20535 The commands in this section take vectors as arguments and compute
20536 various statistical measures on the data stored in the vectors. The
20537 references used in the definitions of these functions are Bevington's
20538 @emph{Data Reduction and Error Analysis for the Physical Sciences},
20539 and @emph{Numerical Recipes} by Press, Flannery, Teukolsky and
20542 The statistical commands use the @kbd{u} prefix key followed by
20543 a shifted letter or other character.
20545 @xref{Manipulating Vectors}, for a description of @kbd{V H}
20546 (@code{calc-histogram}).
20548 @xref{Curve Fitting}, for the @kbd{a F} command for doing
20549 least-squares fits to statistical data.
20551 @xref{Probability Distribution Functions}, for several common
20552 probability distribution functions.
20555 * Single-Variable Statistics::
20556 * Paired-Sample Statistics::
20559 @node Single-Variable Statistics, Paired-Sample Statistics, Statistical Operations, Statistical Operations
20560 @subsection Single-Variable Statistics
20563 These functions do various statistical computations on single
20564 vectors. Given a numeric prefix argument, they actually pop
20565 @var{n} objects from the stack and combine them into a data
20566 vector. Each object may be either a number or a vector; if a
20567 vector, any sub-vectors inside it are ``flattened'' as if by
20568 @kbd{v a 0}; @pxref{Manipulating Vectors}. By default one object
20569 is popped, which (in order to be useful) is usually a vector.
20571 If an argument is a variable name, and the value stored in that
20572 variable is a vector, then the stored vector is used. This method
20573 has the advantage that if your data vector is large, you can avoid
20574 the slow process of manipulating it directly on the stack.
20576 These functions are left in symbolic form if any of their arguments
20577 are not numbers or vectors, e.g., if an argument is a formula, or
20578 a non-vector variable. However, formulas embedded within vector
20579 arguments are accepted; the result is a symbolic representation
20580 of the computation, based on the assumption that the formula does
20581 not itself represent a vector. All varieties of numbers such as
20582 error forms and interval forms are acceptable.
20584 Some of the functions in this section also accept a single error form
20585 or interval as an argument. They then describe a property of the
20586 normal or uniform (respectively) statistical distribution described
20587 by the argument. The arguments are interpreted in the same way as
20588 the @var{M} argument of the random number function @kbd{k r}. In
20589 particular, an interval with integer limits is considered an integer
20590 distribution, so that @samp{[2 .. 6)} is the same as @samp{[2 .. 5]}.
20591 An interval with at least one floating-point limit is a continuous
20592 distribution: @samp{[2.0 .. 6.0)} is @emph{not} the same as
20593 @samp{[2.0 .. 5.0]}!
20596 @pindex calc-vector-count
20598 The @kbd{u #} (@code{calc-vector-count}) [@code{vcount}] command
20599 computes the number of data values represented by the inputs.
20600 For example, @samp{vcount(1, [2, 3], [[4, 5], [], x, y])} returns 7.
20601 If the argument is a single vector with no sub-vectors, this
20602 simply computes the length of the vector.
20606 @pindex calc-vector-sum
20607 @pindex calc-vector-prod
20610 @cindex Summations (statistical)
20611 The @kbd{u +} (@code{calc-vector-sum}) [@code{vsum}] command
20612 computes the sum of the data values. The @kbd{u *}
20613 (@code{calc-vector-prod}) [@code{vprod}] command computes the
20614 product of the data values. If the input is a single flat vector,
20615 these are the same as @kbd{V R +} and @kbd{V R *}
20616 (@pxref{Reducing and Mapping}).
20620 @pindex calc-vector-max
20621 @pindex calc-vector-min
20624 The @kbd{u X} (@code{calc-vector-max}) [@code{vmax}] command
20625 computes the maximum of the data values, and the @kbd{u N}
20626 (@code{calc-vector-min}) [@code{vmin}] command computes the minimum.
20627 If the argument is an interval, this finds the minimum or maximum
20628 value in the interval. (Note that @samp{vmax([2..6)) = 5} as
20629 described above.) If the argument is an error form, this returns
20630 plus or minus infinity.
20633 @pindex calc-vector-mean
20635 @cindex Mean of data values
20636 The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command
20637 computes the average (arithmetic mean) of the data values.
20638 If the inputs are error forms
20639 @texline @math{x \pm \sigma},
20640 @infoline @samp{x +/- s},
20641 this is the weighted mean of the @expr{x} values with weights
20642 @texline @math{1 /\sigma^2}.
20643 @infoline @expr{1 / s^2}.
20645 $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
20646 \displaystyle \sum { 1 \over \sigma_i^2 } } $$
20648 If the inputs are not error forms, this is simply the sum of the
20649 values divided by the count of the values.
20651 Note that a plain number can be considered an error form with
20653 @texline @math{\sigma = 0}.
20654 @infoline @expr{s = 0}.
20655 If the input to @kbd{u M} is a mixture of
20656 plain numbers and error forms, the result is the mean of the
20657 plain numbers, ignoring all values with non-zero errors. (By the
20658 above definitions it's clear that a plain number effectively
20659 has an infinite weight, next to which an error form with a finite
20660 weight is completely negligible.)
20662 This function also works for distributions (error forms or
20663 intervals). The mean of an error form `@var{a} @tfn{+/-} @var{b}' is simply
20664 @expr{a}. The mean of an interval is the mean of the minimum
20665 and maximum values of the interval.
20668 @pindex calc-vector-mean-error
20670 The @kbd{I u M} (@code{calc-vector-mean-error}) [@code{vmeane}]
20671 command computes the mean of the data points expressed as an
20672 error form. This includes the estimated error associated with
20673 the mean. If the inputs are error forms, the error is the square
20674 root of the reciprocal of the sum of the reciprocals of the squares
20675 of the input errors. (I.e., the variance is the reciprocal of the
20676 sum of the reciprocals of the variances.)
20678 $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$
20680 If the inputs are plain
20681 numbers, the error is equal to the standard deviation of the values
20682 divided by the square root of the number of values. (This works
20683 out to be equivalent to calculating the standard deviation and
20684 then assuming each value's error is equal to this standard
20687 $$ \sigma_\mu^2 = {\sigma^2 \over N} $$
20691 @pindex calc-vector-median
20693 @cindex Median of data values
20694 The @kbd{H u M} (@code{calc-vector-median}) [@code{vmedian}]
20695 command computes the median of the data values. The values are
20696 first sorted into numerical order; the median is the middle
20697 value after sorting. (If the number of data values is even,
20698 the median is taken to be the average of the two middle values.)
20699 The median function is different from the other functions in
20700 this section in that the arguments must all be real numbers;
20701 variables are not accepted even when nested inside vectors.
20702 (Otherwise it is not possible to sort the data values.) If
20703 any of the input values are error forms, their error parts are
20706 The median function also accepts distributions. For both normal
20707 (error form) and uniform (interval) distributions, the median is
20708 the same as the mean.
20711 @pindex calc-vector-harmonic-mean
20713 @cindex Harmonic mean
20714 The @kbd{H I u M} (@code{calc-vector-harmonic-mean}) [@code{vhmean}]
20715 command computes the harmonic mean of the data values. This is
20716 defined as the reciprocal of the arithmetic mean of the reciprocals
20719 $$ { N \over \displaystyle \sum {1 \over x_i} } $$
20723 @pindex calc-vector-geometric-mean
20725 @cindex Geometric mean
20726 The @kbd{u G} (@code{calc-vector-geometric-mean}) [@code{vgmean}]
20727 command computes the geometric mean of the data values. This
20728 is the @var{n}th root of the product of the values. This is also
20729 equal to the @code{exp} of the arithmetic mean of the logarithms
20730 of the data values.
20732 $$ \exp \left ( \sum { \ln x_i } \right ) =
20733 \left ( \prod { x_i } \right)^{1 / N} $$
20738 The @kbd{H u G} [@code{agmean}] command computes the ``arithmetic-geometric
20739 mean'' of two numbers taken from the stack. This is computed by
20740 replacing the two numbers with their arithmetic mean and geometric
20741 mean, then repeating until the two values converge.
20743 $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$
20746 @cindex Root-mean-square
20747 Another commonly used mean, the RMS (root-mean-square), can be computed
20748 for a vector of numbers simply by using the @kbd{A} command.
20751 @pindex calc-vector-sdev
20753 @cindex Standard deviation
20754 @cindex Sample statistics
20755 The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command
20756 computes the standard
20757 @texline deviation@tie{}@math{\sigma}
20758 @infoline deviation
20759 of the data values. If the values are error forms, the errors are used
20760 as weights just as for @kbd{u M}. This is the @emph{sample} standard
20761 deviation, whose value is the square root of the sum of the squares of
20762 the differences between the values and the mean of the @expr{N} values,
20763 divided by @expr{N-1}.
20765 $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
20768 This function also applies to distributions. The standard deviation
20769 of a single error form is simply the error part. The standard deviation
20770 of a continuous interval happens to equal the difference between the
20772 @texline @math{\sqrt{12}}.
20773 @infoline @expr{sqrt(12)}.
20774 The standard deviation of an integer interval is the same as the
20775 standard deviation of a vector of those integers.
20778 @pindex calc-vector-pop-sdev
20780 @cindex Population statistics
20781 The @kbd{I u S} (@code{calc-vector-pop-sdev}) [@code{vpsdev}]
20782 command computes the @emph{population} standard deviation.
20783 It is defined by the same formula as above but dividing
20784 by @expr{N} instead of by @expr{N-1}. The population standard
20785 deviation is used when the input represents the entire set of
20786 data values in the distribution; the sample standard deviation
20787 is used when the input represents a sample of the set of all
20788 data values, so that the mean computed from the input is itself
20789 only an estimate of the true mean.
20791 $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$
20794 For error forms and continuous intervals, @code{vpsdev} works
20795 exactly like @code{vsdev}. For integer intervals, it computes the
20796 population standard deviation of the equivalent vector of integers.
20800 @pindex calc-vector-variance
20801 @pindex calc-vector-pop-variance
20804 @cindex Variance of data values
20805 The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and
20806 @kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}]
20807 commands compute the variance of the data values. The variance
20809 @texline square@tie{}@math{\sigma^2}
20811 of the standard deviation, i.e., the sum of the
20812 squares of the deviations of the data values from the mean.
20813 (This definition also applies when the argument is a distribution.)
20819 The @code{vflat} algebraic function returns a vector of its
20820 arguments, interpreted in the same way as the other functions
20821 in this section. For example, @samp{vflat(1, [2, [3, 4]], 5)}
20822 returns @samp{[1, 2, 3, 4, 5]}.
20824 @node Paired-Sample Statistics, , Single-Variable Statistics, Statistical Operations
20825 @subsection Paired-Sample Statistics
20828 The functions in this section take two arguments, which must be
20829 vectors of equal size. The vectors are each flattened in the same
20830 way as by the single-variable statistical functions. Given a numeric
20831 prefix argument of 1, these functions instead take one object from
20832 the stack, which must be an
20833 @texline @math{N\times2}
20835 matrix of data values. Once again, variable names can be used in place
20836 of actual vectors and matrices.
20839 @pindex calc-vector-covariance
20842 The @kbd{u C} (@code{calc-vector-covariance}) [@code{vcov}] command
20843 computes the sample covariance of two vectors. The covariance
20844 of vectors @var{x} and @var{y} is the sum of the products of the
20845 differences between the elements of @var{x} and the mean of @var{x}
20846 times the differences between the corresponding elements of @var{y}
20847 and the mean of @var{y}, all divided by @expr{N-1}. Note that
20848 the variance of a vector is just the covariance of the vector
20849 with itself. Once again, if the inputs are error forms the
20850 errors are used as weight factors. If both @var{x} and @var{y}
20851 are composed of error forms, the error for a given data point
20852 is taken as the square root of the sum of the squares of the two
20855 $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$
20856 $$ \sigma_{x\!y}^2 =
20857 {\displaystyle {1 \over N-1}
20858 \sum {(x_i - \mu_x) (y_i - \mu_y) \over \sigma_i^2}
20859 \over \displaystyle {1 \over N} \sum {1 \over \sigma_i^2}}
20864 @pindex calc-vector-pop-covariance
20866 The @kbd{I u C} (@code{calc-vector-pop-covariance}) [@code{vpcov}]
20867 command computes the population covariance, which is the same as the
20868 sample covariance computed by @kbd{u C} except dividing by @expr{N}
20869 instead of @expr{N-1}.
20872 @pindex calc-vector-correlation
20874 @cindex Correlation coefficient
20875 @cindex Linear correlation
20876 The @kbd{H u C} (@code{calc-vector-correlation}) [@code{vcorr}]
20877 command computes the linear correlation coefficient of two vectors.
20878 This is defined by the covariance of the vectors divided by the
20879 product of their standard deviations. (There is no difference
20880 between sample or population statistics here.)
20882 $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$
20885 @node Reducing and Mapping, Vector and Matrix Formats, Statistical Operations, Matrix Functions
20886 @section Reducing and Mapping Vectors
20889 The commands in this section allow for more general operations on the
20890 elements of vectors.
20896 The simplest of these operations is @kbd{V A} (@code{calc-apply})
20897 [@code{apply}], which applies a given operator to the elements of a vector.
20898 For example, applying the hypothetical function @code{f} to the vector
20899 @w{@samp{[1, 2, 3]}} would produce the function call @samp{f(1, 2, 3)}.
20900 Applying the @code{+} function to the vector @samp{[a, b]} gives
20901 @samp{a + b}. Applying @code{+} to the vector @samp{[a, b, c]} is an
20902 error, since the @code{+} function expects exactly two arguments.
20904 While @kbd{V A} is useful in some cases, you will usually find that either
20905 @kbd{V R} or @kbd{V M}, described below, is closer to what you want.
20908 * Specifying Operators::
20911 * Nesting and Fixed Points::
20912 * Generalized Products::
20915 @node Specifying Operators, Mapping, Reducing and Mapping, Reducing and Mapping
20916 @subsection Specifying Operators
20919 Commands in this section (like @kbd{V A}) prompt you to press the key
20920 corresponding to the desired operator. Press @kbd{?} for a partial
20921 list of the available operators. Generally, an operator is any key or
20922 sequence of keys that would normally take one or more arguments from
20923 the stack and replace them with a result. For example, @kbd{V A H C}
20924 uses the hyperbolic cosine operator, @code{cosh}. (Since @code{cosh}
20925 expects one argument, @kbd{V A H C} requires a vector with a single
20926 element as its argument.)
20928 You can press @kbd{x} at the operator prompt to select any algebraic
20929 function by name to use as the operator. This includes functions you
20930 have defined yourself using the @kbd{Z F} command. (@xref{Algebraic
20931 Definitions}.) If you give a name for which no function has been
20932 defined, the result is left in symbolic form, as in @samp{f(1, 2, 3)}.
20933 Calc will prompt for the number of arguments the function takes if it
20934 can't figure it out on its own (say, because you named a function that
20935 is currently undefined). It is also possible to type a digit key before
20936 the function name to specify the number of arguments, e.g.,
20937 @kbd{V M 3 x f @key{RET}} calls @code{f} with three arguments even if it
20938 looks like it ought to have only two. This technique may be necessary
20939 if the function allows a variable number of arguments. For example,
20940 the @kbd{v e} [@code{vexp}] function accepts two or three arguments;
20941 if you want to map with the three-argument version, you will have to
20942 type @kbd{V M 3 v e}.
20944 It is also possible to apply any formula to a vector by treating that
20945 formula as a function. When prompted for the operator to use, press
20946 @kbd{'} (the apostrophe) and type your formula as an algebraic entry.
20947 You will then be prompted for the argument list, which defaults to a
20948 list of all variables that appear in the formula, sorted into alphabetic
20949 order. For example, suppose you enter the formula @w{@samp{x + 2y^x}}.
20950 The default argument list would be @samp{(x y)}, which means that if
20951 this function is applied to the arguments @samp{[3, 10]} the result will
20952 be @samp{3 + 2*10^3}. (If you plan to use a certain formula in this
20953 way often, you might consider defining it as a function with @kbd{Z F}.)
20955 Another way to specify the arguments to the formula you enter is with
20956 @kbd{$}, @kbd{$$}, and so on. For example, @kbd{V A ' $$ + 2$^$$}
20957 has the same effect as the previous example. The argument list is
20958 automatically taken to be @samp{($$ $)}. (The order of the arguments
20959 may seem backwards, but it is analogous to the way normal algebraic
20960 entry interacts with the stack.)
20962 If you press @kbd{$} at the operator prompt, the effect is similar to
20963 the apostrophe except that the relevant formula is taken from top-of-stack
20964 instead. The actual vector arguments of the @kbd{V A $} or related command
20965 then start at the second-to-top stack position. You will still be
20966 prompted for an argument list.
20968 @cindex Nameless functions
20969 @cindex Generic functions
20970 A function can be written without a name using the notation @samp{<#1 - #2>},
20971 which means ``a function of two arguments that computes the first
20972 argument minus the second argument.'' The symbols @samp{#1} and @samp{#2}
20973 are placeholders for the arguments. You can use any names for these
20974 placeholders if you wish, by including an argument list followed by a
20975 colon: @samp{<x, y : x - y>}. When you type @kbd{V A ' $$ + 2$^$$ @key{RET}},
20976 Calc builds the nameless function @samp{<#1 + 2 #2^#1>} as the function
20977 to map across the vectors. When you type @kbd{V A ' x + 2y^x @key{RET} @key{RET}},
20978 Calc builds the nameless function @w{@samp{<x, y : x + 2 y^x>}}. In both
20979 cases, Calc also writes the nameless function to the Trail so that you
20980 can get it back later if you wish.
20982 If there is only one argument, you can write @samp{#} in place of @samp{#1}.
20983 (Note that @samp{< >} notation is also used for date forms. Calc tells
20984 that @samp{<@var{stuff}>} is a nameless function by the presence of
20985 @samp{#} signs inside @var{stuff}, or by the fact that @var{stuff}
20986 begins with a list of variables followed by a colon.)
20988 You can type a nameless function directly to @kbd{V A '}, or put one on
20989 the stack and use it with @w{@kbd{V A $}}. Calc will not prompt for an
20990 argument list in this case, since the nameless function specifies the
20991 argument list as well as the function itself. In @kbd{V A '}, you can
20992 omit the @samp{< >} marks if you use @samp{#} notation for the arguments,
20993 so that @kbd{V A ' #1+#2 @key{RET}} is the same as @kbd{V A ' <#1+#2> @key{RET}},
20994 which in turn is the same as @kbd{V A ' $$+$ @key{RET}}.
20996 @cindex Lambda expressions
21001 The internal format for @samp{<x, y : x + y>} is @samp{lambda(x, y, x + y)}.
21002 (The word @code{lambda} derives from Lisp notation and the theory of
21003 functions.) The internal format for @samp{<#1 + #2>} is @samp{lambda(ArgA,
21004 ArgB, ArgA + ArgB)}. Note that there is no actual Calc function called
21005 @code{lambda}; the whole point is that the @code{lambda} expression is
21006 used in its symbolic form, not evaluated for an answer until it is applied
21007 to specific arguments by a command like @kbd{V A} or @kbd{V M}.
21009 (Actually, @code{lambda} does have one special property: Its arguments
21010 are never evaluated; for example, putting @samp{<(2/3) #>} on the stack
21011 will not simplify the @samp{2/3} until the nameless function is actually
21040 As usual, commands like @kbd{V A} have algebraic function name equivalents.
21041 For example, @kbd{V A k g} with an argument of @samp{v} is equivalent to
21042 @samp{apply(gcd, v)}. The first argument specifies the operator name,
21043 and is either a variable whose name is the same as the function name,
21044 or a nameless function like @samp{<#^3+1>}. Operators that are normally
21045 written as algebraic symbols have the names @code{add}, @code{sub},
21046 @code{mul}, @code{div}, @code{pow}, @code{neg}, @code{mod}, and
21053 The @code{call} function builds a function call out of several arguments:
21054 @samp{call(gcd, x, y)} is the same as @samp{apply(gcd, [x, y])}, which
21055 in turn is the same as @samp{gcd(x, y)}. The first argument of @code{call},
21056 like the other functions described here, may be either a variable naming a
21057 function, or a nameless function (@samp{call(<#1+2#2>, x, y)} is the same
21060 (Experts will notice that it's not quite proper to use a variable to name
21061 a function, since the name @code{gcd} corresponds to the Lisp variable
21062 @code{var-gcd} but to the Lisp function @code{calcFunc-gcd}. Calc
21063 automatically makes this translation, so you don't have to worry
21066 @node Mapping, Reducing, Specifying Operators, Reducing and Mapping
21067 @subsection Mapping
21074 The @kbd{V M} (@code{calc-map}) [@code{map}] command applies a given
21075 operator elementwise to one or more vectors. For example, mapping
21076 @code{A} [@code{abs}] produces a vector of the absolute values of the
21077 elements in the input vector. Mapping @code{+} pops two vectors from
21078 the stack, which must be of equal length, and produces a vector of the
21079 pairwise sums of the elements. If either argument is a non-vector, it
21080 is duplicated for each element of the other vector. For example,
21081 @kbd{[1,2,3] 2 V M ^} squares the elements of the specified vector.
21082 With the 2 listed first, it would have computed a vector of powers of
21083 two. Mapping a user-defined function pops as many arguments from the
21084 stack as the function requires. If you give an undefined name, you will
21085 be prompted for the number of arguments to use.
21087 If any argument to @kbd{V M} is a matrix, the operator is normally mapped
21088 across all elements of the matrix. For example, given the matrix
21089 @expr{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
21091 @texline @math{3\times2}
21093 matrix, @expr{[[1, 2, 3], [4, 5, 6]]}.
21096 The command @kbd{V M _} [@code{mapr}] (i.e., type an underscore at the
21097 operator prompt) maps by rows instead. For example, @kbd{V M _ A} views
21098 the above matrix as a vector of two 3-element row vectors. It produces
21099 a new vector which contains the absolute values of those row vectors,
21100 namely @expr{[3.74, 8.77]}. (Recall, the absolute value of a vector is
21101 defined as the square root of the sum of the squares of the elements.)
21102 Some operators accept vectors and return new vectors; for example,
21103 @kbd{v v} reverses a vector, so @kbd{V M _ v v} would reverse each row
21104 of the matrix to get a new matrix, @expr{[[3, -2, 1], [-6, 5, -4]]}.
21106 Sometimes a vector of vectors (representing, say, strings, sets, or lists)
21107 happens to look like a matrix. If so, remember to use @kbd{V M _} if you
21108 want to map a function across the whole strings or sets rather than across
21109 their individual elements.
21112 The command @kbd{V M :} [@code{mapc}] maps by columns. Basically, it
21113 transposes the input matrix, maps by rows, and then, if the result is a
21114 matrix, transposes again. For example, @kbd{V M : A} takes the absolute
21115 values of the three columns of the matrix, treating each as a 2-vector,
21116 and @kbd{V M : v v} reverses the columns to get the matrix
21117 @expr{[[-4, 5, -6], [1, -2, 3]]}.
21119 (The symbols @kbd{_} and @kbd{:} were chosen because they had row-like
21120 and column-like appearances, and were not already taken by useful
21121 operators. Also, they appear shifted on most keyboards so they are easy
21122 to type after @kbd{V M}.)
21124 The @kbd{_} and @kbd{:} modifiers have no effect on arguments that are
21125 not matrices (so if none of the arguments are matrices, they have no
21126 effect at all). If some of the arguments are matrices and others are
21127 plain numbers, the plain numbers are held constant for all rows of the
21128 matrix (so that @kbd{2 V M _ ^} squares every row of a matrix; squaring
21129 a vector takes a dot product of the vector with itself).
21131 If some of the arguments are vectors with the same lengths as the
21132 rows (for @kbd{V M _}) or columns (for @kbd{V M :}) of the matrix
21133 arguments, those vectors are also held constant for every row or
21136 Sometimes it is useful to specify another mapping command as the operator
21137 to use with @kbd{V M}. For example, @kbd{V M _ V A +} applies @kbd{V A +}
21138 to each row of the input matrix, which in turn adds the two values on that
21139 row. If you give another vector-operator command as the operator for
21140 @kbd{V M}, it automatically uses map-by-rows mode if you don't specify
21141 otherwise; thus @kbd{V M V A +} is equivalent to @kbd{V M _ V A +}. (If
21142 you really want to map-by-elements another mapping command, you can use
21143 a triple-nested mapping command: @kbd{V M V M V A +} means to map
21144 @kbd{V M V A +} over the rows of the matrix; in turn, @kbd{V A +} is
21145 mapped over the elements of each row.)
21149 Previous versions of Calc had ``map across'' and ``map down'' modes
21150 that are now considered obsolete; the old ``map across'' is now simply
21151 @kbd{V M V A}, and ``map down'' is now @kbd{V M : V A}. The algebraic
21152 functions @code{mapa} and @code{mapd} are still supported, though.
21153 Note also that, while the old mapping modes were persistent (once you
21154 set the mode, it would apply to later mapping commands until you reset
21155 it), the new @kbd{:} and @kbd{_} modifiers apply only to the current
21156 mapping command. The default @kbd{V M} always means map-by-elements.
21158 @xref{Algebraic Manipulation}, for the @kbd{a M} command, which is like
21159 @kbd{V M} but for equations and inequalities instead of vectors.
21160 @xref{Storing Variables}, for the @kbd{s m} command which modifies a
21161 variable's stored value using a @kbd{V M}-like operator.
21163 @node Reducing, Nesting and Fixed Points, Mapping, Reducing and Mapping
21164 @subsection Reducing
21169 @pindex calc-reduce
21171 The @kbd{V R} (@code{calc-reduce}) [@code{reduce}] command applies a given
21172 binary operator across all the elements of a vector. A binary operator is
21173 a function such as @code{+} or @code{max} which takes two arguments. For
21174 example, reducing @code{+} over a vector computes the sum of the elements
21175 of the vector. Reducing @code{-} computes the first element minus each of
21176 the remaining elements. Reducing @code{max} computes the maximum element
21177 and so on. In general, reducing @code{f} over the vector @samp{[a, b, c, d]}
21178 produces @samp{f(f(f(a, b), c), d)}.
21183 The @kbd{I V R} [@code{rreduce}] command is similar to @kbd{V R} except
21184 that works from right to left through the vector. For example, plain
21185 @kbd{V R -} on the vector @samp{[a, b, c, d]} produces @samp{a - b - c - d}
21186 but @kbd{I V R -} on the same vector produces @samp{a - (b - (c - d))},
21187 or @samp{a - b + c - d}. This ``alternating sum'' occurs frequently
21188 in power series expansions.
21193 The @kbd{V U} (@code{calc-accumulate}) [@code{accum}] command does an
21194 accumulation operation. Here Calc does the corresponding reduction
21195 operation, but instead of producing only the final result, it produces
21196 a vector of all the intermediate results. Accumulating @code{+} over
21197 the vector @samp{[a, b, c, d]} produces the vector
21198 @samp{[a, a + b, a + b + c, a + b + c + d]}.
21203 The @kbd{I V U} [@code{raccum}] command does a right-to-left accumulation.
21204 For example, @kbd{I V U -} on the vector @samp{[a, b, c, d]} produces the
21205 vector @samp{[a - b + c - d, b - c + d, c - d, d]}.
21211 As for @kbd{V M}, @kbd{V R} normally reduces a matrix elementwise. For
21212 example, given the matrix @expr{[[a, b, c], [d, e, f]]}, @kbd{V R +} will
21213 compute @expr{a + b + c + d + e + f}. You can type @kbd{V R _} or
21214 @kbd{V R :} to modify this behavior. The @kbd{V R _} [@code{reducea}]
21215 command reduces ``across'' the matrix; it reduces each row of the matrix
21216 as a vector, then collects the results. Thus @kbd{V R _ +} of this
21217 matrix would produce @expr{[a + b + c, d + e + f]}. Similarly, @kbd{V R :}
21218 [@code{reduced}] reduces down; @kbd{V R : +} would produce @expr{[a + d,
21223 There is a third ``by rows'' mode for reduction that is occasionally
21224 useful; @kbd{V R =} [@code{reducer}] simply reduces the operator over
21225 the rows of the matrix themselves. Thus @kbd{V R = +} on the above
21226 matrix would get the same result as @kbd{V R : +}, since adding two
21227 row vectors is equivalent to adding their elements. But @kbd{V R = *}
21228 would multiply the two rows (to get a single number, their dot product),
21229 while @kbd{V R : *} would produce a vector of the products of the columns.
21231 These three matrix reduction modes work with @kbd{V R} and @kbd{I V R},
21232 but they are not currently supported with @kbd{V U} or @kbd{I V U}.
21236 The obsolete reduce-by-columns function, @code{reducec}, is still
21237 supported but there is no way to get it through the @kbd{V R} command.
21239 The commands @kbd{C-x * :} and @kbd{C-x * _} are equivalent to typing
21240 @kbd{C-x * r} to grab a rectangle of data into Calc, and then typing
21241 @kbd{V R : +} or @kbd{V R _ +}, respectively, to sum the columns or
21242 rows of the matrix. @xref{Grabbing From Buffers}.
21244 @node Nesting and Fixed Points, Generalized Products, Reducing, Reducing and Mapping
21245 @subsection Nesting and Fixed Points
21251 The @kbd{H V R} [@code{nest}] command applies a function to a given
21252 argument repeatedly. It takes two values, @samp{a} and @samp{n}, from
21253 the stack, where @samp{n} must be an integer. It then applies the
21254 function nested @samp{n} times; if the function is @samp{f} and @samp{n}
21255 is 3, the result is @samp{f(f(f(a)))}. The number @samp{n} may be
21256 negative if Calc knows an inverse for the function @samp{f}; for
21257 example, @samp{nest(sin, a, -2)} returns @samp{arcsin(arcsin(a))}.
21262 The @kbd{H V U} [@code{anest}] command is an accumulating version of
21263 @code{nest}: It returns a vector of @samp{n+1} values, e.g.,
21264 @samp{[a, f(a), f(f(a)), f(f(f(a)))]}. If @samp{n} is negative and
21265 @samp{F} is the inverse of @samp{f}, then the result is of the
21266 form @samp{[a, F(a), F(F(a)), F(F(F(a)))]}.
21271 @cindex Fixed points
21272 The @kbd{H I V R} [@code{fixp}] command is like @kbd{H V R}, except
21273 that it takes only an @samp{a} value from the stack; the function is
21274 applied until it reaches a ``fixed point,'' i.e., until the result
21280 The @kbd{H I V U} [@code{afixp}] command is an accumulating @code{fixp}.
21281 The first element of the return vector will be the initial value @samp{a};
21282 the last element will be the final result that would have been returned
21285 For example, 0.739085 is a fixed point of the cosine function (in radians):
21286 @samp{cos(0.739085) = 0.739085}. You can find this value by putting, say,
21287 1.0 on the stack and typing @kbd{H I V U C}. (We use the accumulating
21288 version so we can see the intermediate results: @samp{[1, 0.540302, 0.857553,
21289 0.65329, ...]}. With a precision of six, this command will take 36 steps
21290 to converge to 0.739085.)
21292 Newton's method for finding roots is a classic example of iteration
21293 to a fixed point. To find the square root of five starting with an
21294 initial guess, Newton's method would look for a fixed point of the
21295 function @samp{(x + 5/x) / 2}. Putting a guess of 1 on the stack
21296 and typing @kbd{H I V R ' ($ + 5/$)/2 @key{RET}} quickly yields the result
21297 2.23607. This is equivalent to using the @kbd{a R} (@code{calc-find-root})
21298 command to find a root of the equation @samp{x^2 = 5}.
21300 These examples used numbers for @samp{a} values. Calc keeps applying
21301 the function until two successive results are equal to within the
21302 current precision. For complex numbers, both the real parts and the
21303 imaginary parts must be equal to within the current precision. If
21304 @samp{a} is a formula (say, a variable name), then the function is
21305 applied until two successive results are exactly the same formula.
21306 It is up to you to ensure that the function will eventually converge;
21307 if it doesn't, you may have to press @kbd{C-g} to stop the Calculator.
21309 The algebraic @code{fixp} function takes two optional arguments, @samp{n}
21310 and @samp{tol}. The first is the maximum number of steps to be allowed,
21311 and must be either an integer or the symbol @samp{inf} (infinity, the
21312 default). The second is a convergence tolerance. If a tolerance is
21313 specified, all results during the calculation must be numbers, not
21314 formulas, and the iteration stops when the magnitude of the difference
21315 between two successive results is less than or equal to the tolerance.
21316 (This implies that a tolerance of zero iterates until the results are
21319 Putting it all together, @samp{fixp(<(# + A/#)/2>, B, 20, 1e-10)}
21320 computes the square root of @samp{A} given the initial guess @samp{B},
21321 stopping when the result is correct within the specified tolerance, or
21322 when 20 steps have been taken, whichever is sooner.
21324 @node Generalized Products, , Nesting and Fixed Points, Reducing and Mapping
21325 @subsection Generalized Products
21329 @pindex calc-outer-product
21331 The @kbd{V O} (@code{calc-outer-product}) [@code{outer}] command applies
21332 a given binary operator to all possible pairs of elements from two
21333 vectors, to produce a matrix. For example, @kbd{V O *} with @samp{[a, b]}
21334 and @samp{[x, y, z]} on the stack produces a multiplication table:
21335 @samp{[[a x, a y, a z], [b x, b y, b z]]}. Element @var{r},@var{c} of
21336 the result matrix is obtained by applying the operator to element @var{r}
21337 of the lefthand vector and element @var{c} of the righthand vector.
21341 @pindex calc-inner-product
21343 The @kbd{V I} (@code{calc-inner-product}) [@code{inner}] command computes
21344 the generalized inner product of two vectors or matrices, given a
21345 ``multiplicative'' operator and an ``additive'' operator. These can each
21346 actually be any binary operators; if they are @samp{*} and @samp{+},
21347 respectively, the result is a standard matrix multiplication. Element
21348 @var{r},@var{c} of the result matrix is obtained by mapping the
21349 multiplicative operator across row @var{r} of the lefthand matrix and
21350 column @var{c} of the righthand matrix, and then reducing with the additive
21351 operator. Just as for the standard @kbd{*} command, this can also do a
21352 vector-matrix or matrix-vector inner product, or a vector-vector
21353 generalized dot product.
21355 Since @kbd{V I} requires two operators, it prompts twice. In each case,
21356 you can use any of the usual methods for entering the operator. If you
21357 use @kbd{$} twice to take both operator formulas from the stack, the
21358 first (multiplicative) operator is taken from the top of the stack
21359 and the second (additive) operator is taken from second-to-top.
21361 @node Vector and Matrix Formats, , Reducing and Mapping, Matrix Functions
21362 @section Vector and Matrix Display Formats
21365 Commands for controlling vector and matrix display use the @kbd{v} prefix
21366 instead of the usual @kbd{d} prefix. But they are display modes; in
21367 particular, they are influenced by the @kbd{I} and @kbd{H} prefix keys
21368 in the same way (@pxref{Display Modes}). Matrix display is also
21369 influenced by the @kbd{d O} (@code{calc-flat-language}) mode;
21370 @pxref{Normal Language Modes}.
21374 @pindex calc-matrix-left-justify
21377 @pindex calc-matrix-center-justify
21380 @pindex calc-matrix-right-justify
21381 The commands @kbd{v <} (@code{calc-matrix-left-justify}), @kbd{v >}
21382 (@code{calc-matrix-right-justify}), and @w{@kbd{v =}}
21383 (@code{calc-matrix-center-justify}) control whether matrix elements
21384 are justified to the left, right, or center of their columns.
21388 @pindex calc-vector-brackets
21391 @pindex calc-vector-braces
21394 @pindex calc-vector-parens
21395 The @kbd{v [} (@code{calc-vector-brackets}) command turns the square
21396 brackets that surround vectors and matrices displayed in the stack on
21397 and off. The @kbd{v @{} (@code{calc-vector-braces}) and @kbd{v (}
21398 (@code{calc-vector-parens}) commands use curly braces or parentheses,
21399 respectively, instead of square brackets. For example, @kbd{v @{} might
21400 be used in preparation for yanking a matrix into a buffer running
21401 Mathematica. (In fact, the Mathematica language mode uses this mode;
21402 @pxref{Mathematica Language Mode}.) Note that, regardless of the
21403 display mode, either brackets or braces may be used to enter vectors,
21404 and parentheses may never be used for this purpose.
21412 @pindex calc-matrix-brackets
21413 The @kbd{v ]} (@code{calc-matrix-brackets}) command controls the
21414 ``big'' style display of matrices, for matrices which have more than
21415 one row. It prompts for a string of code letters; currently
21416 implemented letters are @code{R}, which enables brackets on each row
21417 of the matrix; @code{O}, which enables outer brackets in opposite
21418 corners of the matrix; and @code{C}, which enables commas or
21419 semicolons at the ends of all rows but the last. The default format
21420 is @samp{RO}. (Before Calc 2.00, the format was fixed at @samp{ROC}.)
21421 Here are some example matrices:
21425 [ [ 123, 0, 0 ] [ [ 123, 0, 0 ],
21426 [ 0, 123, 0 ] [ 0, 123, 0 ],
21427 [ 0, 0, 123 ] ] [ 0, 0, 123 ] ]
21436 [ 123, 0, 0 [ 123, 0, 0 ;
21437 0, 123, 0 0, 123, 0 ;
21438 0, 0, 123 ] 0, 0, 123 ]
21447 [ 123, 0, 0 ] 123, 0, 0
21448 [ 0, 123, 0 ] 0, 123, 0
21449 [ 0, 0, 123 ] 0, 0, 123
21456 Note that of the formats shown here, @samp{RO}, @samp{ROC}, and
21457 @samp{OC} are all recognized as matrices during reading, while
21458 the others are useful for display only.
21462 @pindex calc-vector-commas
21463 The @kbd{v ,} (@code{calc-vector-commas}) command turns commas on and
21464 off in vector and matrix display.
21466 In vectors of length one, and in all vectors when commas have been
21467 turned off, Calc adds extra parentheses around formulas that might
21468 otherwise be ambiguous. For example, @samp{[a b]} could be a vector
21469 of the one formula @samp{a b}, or it could be a vector of two
21470 variables with commas turned off. Calc will display the former
21471 case as @samp{[(a b)]}. You can disable these extra parentheses
21472 (to make the output less cluttered at the expense of allowing some
21473 ambiguity) by adding the letter @code{P} to the control string you
21474 give to @kbd{v ]} (as described above).
21478 @pindex calc-full-vectors
21479 The @kbd{v .} (@code{calc-full-vectors}) command turns abbreviated
21480 display of long vectors on and off. In this mode, vectors of six
21481 or more elements, or matrices of six or more rows or columns, will
21482 be displayed in an abbreviated form that displays only the first
21483 three elements and the last element: @samp{[a, b, c, ..., z]}.
21484 When very large vectors are involved this will substantially
21485 improve Calc's display speed.
21488 @pindex calc-full-trail-vectors
21489 The @kbd{t .} (@code{calc-full-trail-vectors}) command controls a
21490 similar mode for recording vectors in the Trail. If you turn on
21491 this mode, vectors of six or more elements and matrices of six or
21492 more rows or columns will be abbreviated when they are put in the
21493 Trail. The @kbd{t y} (@code{calc-trail-yank}) command will be
21494 unable to recover those vectors. If you are working with very
21495 large vectors, this mode will improve the speed of all operations
21496 that involve the trail.
21500 @pindex calc-break-vectors
21501 The @kbd{v /} (@code{calc-break-vectors}) command turns multi-line
21502 vector display on and off. Normally, matrices are displayed with one
21503 row per line but all other types of vectors are displayed in a single
21504 line. This mode causes all vectors, whether matrices or not, to be
21505 displayed with a single element per line. Sub-vectors within the
21506 vectors will still use the normal linear form.
21508 @node Algebra, Units, Matrix Functions, Top
21512 This section covers the Calc features that help you work with
21513 algebraic formulas. First, the general sub-formula selection
21514 mechanism is described; this works in conjunction with any Calc
21515 commands. Then, commands for specific algebraic operations are
21516 described. Finally, the flexible @dfn{rewrite rule} mechanism
21519 The algebraic commands use the @kbd{a} key prefix; selection
21520 commands use the @kbd{j} (for ``just a letter that wasn't used
21521 for anything else'') prefix.
21523 @xref{Editing Stack Entries}, to see how to manipulate formulas
21524 using regular Emacs editing commands.
21526 When doing algebraic work, you may find several of the Calculator's
21527 modes to be helpful, including Algebraic Simplification mode (@kbd{m A})
21528 or No-Simplification mode (@kbd{m O}),
21529 Algebraic entry mode (@kbd{m a}), Fraction mode (@kbd{m f}), and
21530 Symbolic mode (@kbd{m s}). @xref{Mode Settings}, for discussions
21531 of these modes. You may also wish to select Big display mode (@kbd{d B}).
21532 @xref{Normal Language Modes}.
21535 * Selecting Subformulas::
21536 * Algebraic Manipulation::
21537 * Simplifying Formulas::
21540 * Solving Equations::
21541 * Numerical Solutions::
21544 * Logical Operations::
21548 @node Selecting Subformulas, Algebraic Manipulation, Algebra, Algebra
21549 @section Selecting Sub-Formulas
21553 @cindex Sub-formulas
21554 @cindex Parts of formulas
21555 When working with an algebraic formula it is often necessary to
21556 manipulate a portion of the formula rather than the formula as a
21557 whole. Calc allows you to ``select'' a portion of any formula on
21558 the stack. Commands which would normally operate on that stack
21559 entry will now operate only on the sub-formula, leaving the
21560 surrounding part of the stack entry alone.
21562 One common non-algebraic use for selection involves vectors. To work
21563 on one element of a vector in-place, simply select that element as a
21564 ``sub-formula'' of the vector.
21567 * Making Selections::
21568 * Changing Selections::
21569 * Displaying Selections::
21570 * Operating on Selections::
21571 * Rearranging with Selections::
21574 @node Making Selections, Changing Selections, Selecting Subformulas, Selecting Subformulas
21575 @subsection Making Selections
21579 @pindex calc-select-here
21580 To select a sub-formula, move the Emacs cursor to any character in that
21581 sub-formula, and press @w{@kbd{j s}} (@code{calc-select-here}). Calc will
21582 highlight the smallest portion of the formula that contains that
21583 character. By default the sub-formula is highlighted by blanking out
21584 all of the rest of the formula with dots. Selection works in any
21585 display mode but is perhaps easiest in Big mode (@kbd{d B}).
21586 Suppose you enter the following formula:
21598 (by typing @kbd{' ((a+b)^3 + sqrt(c)) / (2x+1)}). If you move the
21599 cursor to the letter @samp{b} and press @w{@kbd{j s}}, the display changes
21612 Every character not part of the sub-formula @samp{b} has been changed
21613 to a dot. (If the customizable variable
21614 @code{calc-highlight-selections-with-faces} is non-nil, then the characters
21615 not part of the sub-formula are de-emphasized by using a less
21616 noticeable face instead of using dots. @pxref{Displaying Selections}.)
21617 The @samp{*} next to the line number is to remind you that
21618 the formula has a portion of it selected. (In this case, it's very
21619 obvious, but it might not always be. If Embedded mode is enabled,
21620 the word @samp{Sel} also appears in the mode line because the stack
21621 may not be visible. @pxref{Embedded Mode}.)
21623 If you had instead placed the cursor on the parenthesis immediately to
21624 the right of the @samp{b}, the selection would have been:
21636 The portion selected is always large enough to be considered a complete
21637 formula all by itself, so selecting the parenthesis selects the whole
21638 formula that it encloses. Putting the cursor on the @samp{+} sign
21639 would have had the same effect.
21641 (Strictly speaking, the Emacs cursor is really the manifestation of
21642 the Emacs ``point,'' which is a position @emph{between} two characters
21643 in the buffer. So purists would say that Calc selects the smallest
21644 sub-formula which contains the character to the right of ``point.'')
21646 If you supply a numeric prefix argument @var{n}, the selection is
21647 expanded to the @var{n}th enclosing sub-formula. Thus, positioning
21648 the cursor on the @samp{b} and typing @kbd{C-u 1 j s} will select
21649 @samp{a + b}; typing @kbd{C-u 2 j s} will select @samp{(a + b)^3},
21652 If the cursor is not on any part of the formula, or if you give a
21653 numeric prefix that is too large, the entire formula is selected.
21655 If the cursor is on the @samp{.} line that marks the top of the stack
21656 (i.e., its normal ``rest position''), this command selects the entire
21657 formula at stack level 1. Most selection commands similarly operate
21658 on the formula at the top of the stack if you haven't positioned the
21659 cursor on any stack entry.
21662 @pindex calc-select-additional
21663 The @kbd{j a} (@code{calc-select-additional}) command enlarges the
21664 current selection to encompass the cursor. To select the smallest
21665 sub-formula defined by two different points, move to the first and
21666 press @kbd{j s}, then move to the other and press @kbd{j a}. This
21667 is roughly analogous to using @kbd{C-@@} (@code{set-mark-command}) to
21668 select the two ends of a region of text during normal Emacs editing.
21671 @pindex calc-select-once
21672 The @kbd{j o} (@code{calc-select-once}) command selects a formula in
21673 exactly the same way as @kbd{j s}, except that the selection will
21674 last only as long as the next command that uses it. For example,
21675 @kbd{j o 1 +} is a handy way to add one to the sub-formula indicated
21678 (A somewhat more precise definition: The @kbd{j o} command sets a flag
21679 such that the next command involving selected stack entries will clear
21680 the selections on those stack entries afterwards. All other selection
21681 commands except @kbd{j a} and @kbd{j O} clear this flag.)
21685 @pindex calc-select-here-maybe
21686 @pindex calc-select-once-maybe
21687 The @kbd{j S} (@code{calc-select-here-maybe}) and @kbd{j O}
21688 (@code{calc-select-once-maybe}) commands are equivalent to @kbd{j s}
21689 and @kbd{j o}, respectively, except that if the formula already
21690 has a selection they have no effect. This is analogous to the
21691 behavior of some commands such as @kbd{j r} (@code{calc-rewrite-selection};
21692 @pxref{Selections with Rewrite Rules}) and is mainly intended to be
21693 used in keyboard macros that implement your own selection-oriented
21696 Selection of sub-formulas normally treats associative terms like
21697 @samp{a + b - c + d} and @samp{x * y * z} as single levels of the formula.
21698 If you place the cursor anywhere inside @samp{a + b - c + d} except
21699 on one of the variable names and use @kbd{j s}, you will select the
21700 entire four-term sum.
21703 @pindex calc-break-selections
21704 The @kbd{j b} (@code{calc-break-selections}) command controls a mode
21705 in which the ``deep structure'' of these associative formulas shows
21706 through. Calc actually stores the above formulas as
21707 @samp{((a + b) - c) + d} and @samp{x * (y * z)}. (Note that for certain
21708 obscure reasons, by default Calc treats multiplication as
21709 right-associative.) Once you have enabled @kbd{j b} mode, selecting
21710 with the cursor on the @samp{-} sign would only select the @samp{a + b -
21711 c} portion, which makes sense when the deep structure of the sum is
21712 considered. There is no way to select the @samp{b - c + d} portion;
21713 although this might initially look like just as legitimate a sub-formula
21714 as @samp{a + b - c}, the deep structure shows that it isn't. The @kbd{d
21715 U} command can be used to view the deep structure of any formula
21716 (@pxref{Normal Language Modes}).
21718 When @kbd{j b} mode has not been enabled, the deep structure is
21719 generally hidden by the selection commands---what you see is what
21723 @pindex calc-unselect
21724 The @kbd{j u} (@code{calc-unselect}) command unselects the formula
21725 that the cursor is on. If there was no selection in the formula,
21726 this command has no effect. With a numeric prefix argument, it
21727 unselects the @var{n}th stack element rather than using the cursor
21731 @pindex calc-clear-selections
21732 The @kbd{j c} (@code{calc-clear-selections}) command unselects all
21735 @node Changing Selections, Displaying Selections, Making Selections, Selecting Subformulas
21736 @subsection Changing Selections
21740 @pindex calc-select-more
21741 Once you have selected a sub-formula, you can expand it using the
21742 @w{@kbd{j m}} (@code{calc-select-more}) command. If @samp{a + b} is
21743 selected, pressing @w{@kbd{j m}} repeatedly works as follows:
21748 (a + b) . . . (a + b) + V c (a + b) + V c
21749 1* ............... 1* ............... 1* ---------------
21750 . . . . . . . . 2 x + 1
21755 In the last example, the entire formula is selected. This is roughly
21756 the same as having no selection at all, but because there are subtle
21757 differences the @samp{*} character is still there on the line number.
21759 With a numeric prefix argument @var{n}, @kbd{j m} expands @var{n}
21760 times (or until the entire formula is selected). Note that @kbd{j s}
21761 with argument @var{n} is equivalent to plain @kbd{j s} followed by
21762 @kbd{j m} with argument @var{n}. If @w{@kbd{j m}} is used when there
21763 is no current selection, it is equivalent to @w{@kbd{j s}}.
21765 Even though @kbd{j m} does not explicitly use the location of the
21766 cursor within the formula, it nevertheless uses the cursor to determine
21767 which stack element to operate on. As usual, @kbd{j m} when the cursor
21768 is not on any stack element operates on the top stack element.
21771 @pindex calc-select-less
21772 The @kbd{j l} (@code{calc-select-less}) command reduces the current
21773 selection around the cursor position. That is, it selects the
21774 immediate sub-formula of the current selection which contains the
21775 cursor, the opposite of @kbd{j m}. If the cursor is not inside the
21776 current selection, the command de-selects the formula.
21779 @pindex calc-select-part
21780 The @kbd{j 1} through @kbd{j 9} (@code{calc-select-part}) commands
21781 select the @var{n}th sub-formula of the current selection. They are
21782 like @kbd{j l} (@code{calc-select-less}) except they use counting
21783 rather than the cursor position to decide which sub-formula to select.
21784 For example, if the current selection is @kbd{a + b + c} or
21785 @kbd{f(a, b, c)} or @kbd{[a, b, c]}, then @kbd{j 1} selects @samp{a},
21786 @kbd{j 2} selects @samp{b}, and @kbd{j 3} selects @samp{c}; in each of
21787 these cases, @kbd{j 4} through @kbd{j 9} would be errors.
21789 If there is no current selection, @kbd{j 1} through @kbd{j 9} select
21790 the @var{n}th top-level sub-formula. (In other words, they act as if
21791 the entire stack entry were selected first.) To select the @var{n}th
21792 sub-formula where @var{n} is greater than nine, you must instead invoke
21793 @w{@kbd{j 1}} with @var{n} as a numeric prefix argument.
21797 @pindex calc-select-next
21798 @pindex calc-select-previous
21799 The @kbd{j n} (@code{calc-select-next}) and @kbd{j p}
21800 (@code{calc-select-previous}) commands change the current selection
21801 to the next or previous sub-formula at the same level. For example,
21802 if @samp{b} is selected in @w{@samp{2 + a*b*c + x}}, then @kbd{j n}
21803 selects @samp{c}. Further @kbd{j n} commands would be in error because,
21804 even though there is something to the right of @samp{c} (namely, @samp{x}),
21805 it is not at the same level; in this case, it is not a term of the
21806 same product as @samp{b} and @samp{c}. However, @kbd{j m} (to select
21807 the whole product @samp{a*b*c} as a term of the sum) followed by
21808 @w{@kbd{j n}} would successfully select the @samp{x}.
21810 Similarly, @kbd{j p} moves the selection from the @samp{b} in this
21811 sample formula to the @samp{a}. Both commands accept numeric prefix
21812 arguments to move several steps at a time.
21814 It is interesting to compare Calc's selection commands with the
21815 Emacs Info system's commands for navigating through hierarchically
21816 organized documentation. Calc's @kbd{j n} command is completely
21817 analogous to Info's @kbd{n} command. Likewise, @kbd{j p} maps to
21818 @kbd{p}, @kbd{j 2} maps to @kbd{2}, and Info's @kbd{u} is like @kbd{j m}.
21819 (Note that @kbd{j u} stands for @code{calc-unselect}, not ``up''.)
21820 The Info @kbd{m} command is somewhat similar to Calc's @kbd{j s} and
21821 @kbd{j l}; in each case, you can jump directly to a sub-component
21822 of the hierarchy simply by pointing to it with the cursor.
21824 @node Displaying Selections, Operating on Selections, Changing Selections, Selecting Subformulas
21825 @subsection Displaying Selections
21829 @pindex calc-show-selections
21830 @vindex calc-highlight-selections-with-faces
21831 @vindex calc-selected-face
21832 @vindex calc-nonselected-face
21833 The @kbd{j d} (@code{calc-show-selections}) command controls how
21834 selected sub-formulas are displayed. One of the alternatives is
21835 illustrated in the above examples; if we press @kbd{j d} we switch
21836 to the other style in which the selected portion itself is obscured
21842 (a + b) . . . ## # ## + V c
21843 1* ............... 1* ---------------
21847 If the customizable variable
21848 @code{calc-highlight-selections-with-faces} is non-nil, then the
21849 non-selected portion of the formula will be de-emphasized by using a
21850 less noticeable face (@code{calc-nonselected-face}) instead of dots
21851 and the selected sub-formula will be highlighted by using a more
21852 noticeable face (@code{calc-selected-face}) instead of @samp{#}
21853 signs. (@pxref{Customizing Calc}.)
21855 @node Operating on Selections, Rearranging with Selections, Displaying Selections, Selecting Subformulas
21856 @subsection Operating on Selections
21859 Once a selection is made, all Calc commands that manipulate items
21860 on the stack will operate on the selected portions of the items
21861 instead. (Note that several stack elements may have selections
21862 at once, though there can be only one selection at a time in any
21863 given stack element.)
21866 @pindex calc-enable-selections
21867 The @kbd{j e} (@code{calc-enable-selections}) command disables the
21868 effect that selections have on Calc commands. The current selections
21869 still exist, but Calc commands operate on whole stack elements anyway.
21870 This mode can be identified by the fact that the @samp{*} markers on
21871 the line numbers are gone, even though selections are visible. To
21872 reactivate the selections, press @kbd{j e} again.
21874 To extract a sub-formula as a new formula, simply select the
21875 sub-formula and press @key{RET}. This normally duplicates the top
21876 stack element; here it duplicates only the selected portion of that
21879 To replace a sub-formula with something different, you can enter the
21880 new value onto the stack and press @key{TAB}. This normally exchanges
21881 the top two stack elements; here it swaps the value you entered into
21882 the selected portion of the formula, returning the old selected
21883 portion to the top of the stack.
21888 (a + b) . . . 17 x y . . . 17 x y + V c
21889 2* ............... 2* ............. 2: -------------
21890 . . . . . . . . 2 x + 1
21893 1: 17 x y 1: (a + b) 1: (a + b)
21897 In this example we select a sub-formula of our original example,
21898 enter a new formula, @key{TAB} it into place, then deselect to see
21899 the complete, edited formula.
21901 If you want to swap whole formulas around even though they contain
21902 selections, just use @kbd{j e} before and after.
21905 @pindex calc-enter-selection
21906 The @kbd{j '} (@code{calc-enter-selection}) command is another way
21907 to replace a selected sub-formula. This command does an algebraic
21908 entry just like the regular @kbd{'} key. When you press @key{RET},
21909 the formula you type replaces the original selection. You can use
21910 the @samp{$} symbol in the formula to refer to the original
21911 selection. If there is no selection in the formula under the cursor,
21912 the cursor is used to make a temporary selection for the purposes of
21913 the command. Thus, to change a term of a formula, all you have to
21914 do is move the Emacs cursor to that term and press @kbd{j '}.
21917 @pindex calc-edit-selection
21918 The @kbd{j `} (@code{calc-edit-selection}) command is a similar
21919 analogue of the @kbd{`} (@code{calc-edit}) command. It edits the
21920 selected sub-formula in a separate buffer. If there is no
21921 selection, it edits the sub-formula indicated by the cursor.
21923 To delete a sub-formula, press @key{DEL}. This generally replaces
21924 the sub-formula with the constant zero, but in a few suitable contexts
21925 it uses the constant one instead. The @key{DEL} key automatically
21926 deselects and re-simplifies the entire formula afterwards. Thus:
21931 17 x y + # # 17 x y 17 # y 17 y
21932 1* ------------- 1: ------- 1* ------- 1: -------
21933 2 x + 1 2 x + 1 2 x + 1 2 x + 1
21937 In this example, we first delete the @samp{sqrt(c)} term; Calc
21938 accomplishes this by replacing @samp{sqrt(c)} with zero and
21939 resimplifying. We then delete the @kbd{x} in the numerator;
21940 since this is part of a product, Calc replaces it with @samp{1}
21943 If you select an element of a vector and press @key{DEL}, that
21944 element is deleted from the vector. If you delete one side of
21945 an equation or inequality, only the opposite side remains.
21947 @kindex j @key{DEL}
21948 @pindex calc-del-selection
21949 The @kbd{j @key{DEL}} (@code{calc-del-selection}) command is like
21950 @key{DEL} but with the auto-selecting behavior of @kbd{j '} and
21951 @kbd{j `}. It deletes the selected portion of the formula
21952 indicated by the cursor, or, in the absence of a selection, it
21953 deletes the sub-formula indicated by the cursor position.
21955 @kindex j @key{RET}
21956 @pindex calc-grab-selection
21957 (There is also an auto-selecting @kbd{j @key{RET}} (@code{calc-copy-selection})
21960 Normal arithmetic operations also apply to sub-formulas. Here we
21961 select the denominator, press @kbd{5 -} to subtract five from the
21962 denominator, press @kbd{n} to negate the denominator, then
21963 press @kbd{Q} to take the square root.
21967 .. . .. . .. . .. .
21968 1* ....... 1* ....... 1* ....... 1* ..........
21969 2 x + 1 2 x - 4 4 - 2 x _________
21974 Certain types of operations on selections are not allowed. For
21975 example, for an arithmetic function like @kbd{-} no more than one of
21976 the arguments may be a selected sub-formula. (As the above example
21977 shows, the result of the subtraction is spliced back into the argument
21978 which had the selection; if there were more than one selection involved,
21979 this would not be well-defined.) If you try to subtract two selections,
21980 the command will abort with an error message.
21982 Operations on sub-formulas sometimes leave the formula as a whole
21983 in an ``un-natural'' state. Consider negating the @samp{2 x} term
21984 of our sample formula by selecting it and pressing @kbd{n}
21985 (@code{calc-change-sign}).
21990 1* .......... 1* ...........
21991 ......... ..........
21992 . . . 2 x . . . -2 x
21996 Unselecting the sub-formula reveals that the minus sign, which would
21997 normally have canceled out with the subtraction automatically, has
21998 not been able to do so because the subtraction was not part of the
21999 selected portion. Pressing @kbd{=} (@code{calc-evaluate}) or doing
22000 any other mathematical operation on the whole formula will cause it
22006 1: ----------- 1: ----------
22007 __________ _________
22008 V 4 - -2 x V 4 + 2 x
22012 @node Rearranging with Selections, , Operating on Selections, Selecting Subformulas
22013 @subsection Rearranging Formulas using Selections
22017 @pindex calc-commute-right
22018 The @kbd{j R} (@code{calc-commute-right}) command moves the selected
22019 sub-formula to the right in its surrounding formula. Generally the
22020 selection is one term of a sum or product; the sum or product is
22021 rearranged according to the commutative laws of algebra.
22023 As with @kbd{j '} and @kbd{j @key{DEL}}, the term under the cursor is used
22024 if there is no selection in the current formula. All commands described
22025 in this section share this property. In this example, we place the
22026 cursor on the @samp{a} and type @kbd{j R}, then repeat.
22029 1: a + b - c 1: b + a - c 1: b - c + a
22033 Note that in the final step above, the @samp{a} is switched with
22034 the @samp{c} but the signs are adjusted accordingly. When moving
22035 terms of sums and products, @kbd{j R} will never change the
22036 mathematical meaning of the formula.
22038 The selected term may also be an element of a vector or an argument
22039 of a function. The term is exchanged with the one to its right.
22040 In this case, the ``meaning'' of the vector or function may of
22041 course be drastically changed.
22044 1: [a, b, c] 1: [b, a, c] 1: [b, c, a]
22046 1: f(a, b, c) 1: f(b, a, c) 1: f(b, c, a)
22050 @pindex calc-commute-left
22051 The @kbd{j L} (@code{calc-commute-left}) command is like @kbd{j R}
22052 except that it swaps the selected term with the one to its left.
22054 With numeric prefix arguments, these commands move the selected
22055 term several steps at a time. It is an error to try to move a
22056 term left or right past the end of its enclosing formula.
22057 With numeric prefix arguments of zero, these commands move the
22058 selected term as far as possible in the given direction.
22061 @pindex calc-sel-distribute
22062 The @kbd{j D} (@code{calc-sel-distribute}) command mixes the selected
22063 sum or product into the surrounding formula using the distributive
22064 law. For example, in @samp{a * (b - c)} with the @samp{b - c}
22065 selected, the result is @samp{a b - a c}. This also distributes
22066 products or quotients into surrounding powers, and can also do
22067 transformations like @samp{exp(a + b)} to @samp{exp(a) exp(b)},
22068 where @samp{a + b} is the selected term, and @samp{ln(a ^ b)}
22069 to @samp{ln(a) b}, where @samp{a ^ b} is the selected term.
22071 For multiple-term sums or products, @kbd{j D} takes off one term
22072 at a time: @samp{a * (b + c - d)} goes to @samp{a * (c - d) + a b}
22073 with the @samp{c - d} selected so that you can type @kbd{j D}
22074 repeatedly to expand completely. The @kbd{j D} command allows a
22075 numeric prefix argument which specifies the maximum number of
22076 times to expand at once; the default is one time only.
22078 @vindex DistribRules
22079 The @kbd{j D} command is implemented using rewrite rules.
22080 @xref{Selections with Rewrite Rules}. The rules are stored in
22081 the Calc variable @code{DistribRules}. A convenient way to view
22082 these rules is to use @kbd{s e} (@code{calc-edit-variable}) which
22083 displays and edits the stored value of a variable. Press @kbd{C-c C-c}
22084 to return from editing mode; be careful not to make any actual changes
22085 or else you will affect the behavior of future @kbd{j D} commands!
22087 To extend @kbd{j D} to handle new cases, just edit @code{DistribRules}
22088 as described above. You can then use the @kbd{s p} command to save
22089 this variable's value permanently for future Calc sessions.
22090 @xref{Operations on Variables}.
22093 @pindex calc-sel-merge
22095 The @kbd{j M} (@code{calc-sel-merge}) command is the complement
22096 of @kbd{j D}; given @samp{a b - a c} with either @samp{a b} or
22097 @samp{a c} selected, the result is @samp{a * (b - c)}. Once
22098 again, @kbd{j M} can also merge calls to functions like @code{exp}
22099 and @code{ln}; examine the variable @code{MergeRules} to see all
22100 the relevant rules.
22103 @pindex calc-sel-commute
22104 @vindex CommuteRules
22105 The @kbd{j C} (@code{calc-sel-commute}) command swaps the arguments
22106 of the selected sum, product, or equation. It always behaves as
22107 if @kbd{j b} mode were in effect, i.e., the sum @samp{a + b + c} is
22108 treated as the nested sums @samp{(a + b) + c} by this command.
22109 If you put the cursor on the first @samp{+}, the result is
22110 @samp{(b + a) + c}; if you put the cursor on the second @samp{+}, the
22111 result is @samp{c + (a + b)} (which the default simplifications
22112 will rearrange to @samp{(c + a) + b}). The relevant rules are stored
22113 in the variable @code{CommuteRules}.
22115 You may need to turn default simplifications off (with the @kbd{m O}
22116 command) in order to get the full benefit of @kbd{j C}. For example,
22117 commuting @samp{a - b} produces @samp{-b + a}, but the default
22118 simplifications will ``simplify'' this right back to @samp{a - b} if
22119 you don't turn them off. The same is true of some of the other
22120 manipulations described in this section.
22123 @pindex calc-sel-negate
22124 @vindex NegateRules
22125 The @kbd{j N} (@code{calc-sel-negate}) command replaces the selected
22126 term with the negative of that term, then adjusts the surrounding
22127 formula in order to preserve the meaning. For example, given
22128 @samp{exp(a - b)} where @samp{a - b} is selected, the result is
22129 @samp{1 / exp(b - a)}. By contrast, selecting a term and using the
22130 regular @kbd{n} (@code{calc-change-sign}) command negates the
22131 term without adjusting the surroundings, thus changing the meaning
22132 of the formula as a whole. The rules variable is @code{NegateRules}.
22135 @pindex calc-sel-invert
22136 @vindex InvertRules
22137 The @kbd{j &} (@code{calc-sel-invert}) command is similar to @kbd{j N}
22138 except it takes the reciprocal of the selected term. For example,
22139 given @samp{a - ln(b)} with @samp{b} selected, the result is
22140 @samp{a + ln(1/b)}. The rules variable is @code{InvertRules}.
22143 @pindex calc-sel-jump-equals
22145 The @kbd{j E} (@code{calc-sel-jump-equals}) command moves the
22146 selected term from one side of an equation to the other. Given
22147 @samp{a + b = c + d} with @samp{c} selected, the result is
22148 @samp{a + b - c = d}. This command also works if the selected
22149 term is part of a @samp{*}, @samp{/}, or @samp{^} formula. The
22150 relevant rules variable is @code{JumpRules}.
22154 @pindex calc-sel-isolate
22155 The @kbd{j I} (@code{calc-sel-isolate}) command isolates the
22156 selected term on its side of an equation. It uses the @kbd{a S}
22157 (@code{calc-solve-for}) command to solve the equation, and the
22158 Hyperbolic flag affects it in the same way. @xref{Solving Equations}.
22159 When it applies, @kbd{j I} is often easier to use than @kbd{j E}.
22160 It understands more rules of algebra, and works for inequalities
22161 as well as equations.
22165 @pindex calc-sel-mult-both-sides
22166 @pindex calc-sel-div-both-sides
22167 The @kbd{j *} (@code{calc-sel-mult-both-sides}) command prompts for a
22168 formula using algebraic entry, then multiplies both sides of the
22169 selected quotient or equation by that formula. It performs the
22170 default algebraic simplifications before re-forming the
22171 quotient or equation. You can suppress this simplification by
22172 providing a prefix argument: @kbd{C-u j *}. There is also a @kbd{j /}
22173 (@code{calc-sel-div-both-sides}) which is similar to @kbd{j *} but
22174 dividing instead of multiplying by the factor you enter.
22176 If the selection is a quotient with numerator 1, then Calc's default
22177 simplifications would normally cancel the new factors. To prevent
22178 this, when the @kbd{j *} command is used on a selection whose numerator is
22179 1 or -1, the denominator is expanded at the top level using the
22180 distributive law (as if using the @kbd{C-u 1 a x} command). Suppose the
22181 formula on the stack is @samp{1 / (a + 1)} and you wish to multiplying the
22182 top and bottom by @samp{a - 1}. Calc's default simplifications would
22183 normally change the result @samp{(a - 1) /(a + 1) (a - 1)} back
22184 to the original form by cancellation; when @kbd{j *} is used, Calc
22185 expands the denominator to @samp{a (a - 1) + a - 1} to prevent this.
22187 If you wish the @kbd{j *} command to completely expand the denominator
22188 of a quotient you can call it with a zero prefix: @kbd{C-u 0 j *}. For
22189 example, if the formula on the stack is @samp{1 / (sqrt(a) + 1)}, you may
22190 wish to eliminate the square root in the denominator by multiplying
22191 the top and bottom by @samp{sqrt(a) - 1}. If you did this simply by using
22192 a simple @kbd{j *} command, you would get
22193 @samp{(sqrt(a)-1)/ (sqrt(a) (sqrt(a) - 1) + sqrt(a) - 1)}. Instead,
22194 you would probably want to use @kbd{C-u 0 j *}, which would expand the
22195 bottom and give you the desired result @samp{(sqrt(a)-1)/(a-1)}. More
22196 generally, if @kbd{j *} is called with an argument of a positive
22197 integer @var{n}, then the denominator of the expression will be
22198 expanded @var{n} times (as if with the @kbd{C-u @var{n} a x} command).
22200 If the selection is an inequality, @kbd{j *} and @kbd{j /} will
22201 accept any factor, but will warn unless they can prove the factor
22202 is either positive or negative. (In the latter case the direction
22203 of the inequality will be switched appropriately.) @xref{Declarations},
22204 for ways to inform Calc that a given variable is positive or
22205 negative. If Calc can't tell for sure what the sign of the factor
22206 will be, it will assume it is positive and display a warning
22209 For selections that are not quotients, equations, or inequalities,
22210 these commands pull out a multiplicative factor: They divide (or
22211 multiply) by the entered formula, simplify, then multiply (or divide)
22212 back by the formula.
22216 @pindex calc-sel-add-both-sides
22217 @pindex calc-sel-sub-both-sides
22218 The @kbd{j +} (@code{calc-sel-add-both-sides}) and @kbd{j -}
22219 (@code{calc-sel-sub-both-sides}) commands analogously add to or
22220 subtract from both sides of an equation or inequality. For other
22221 types of selections, they extract an additive factor. A numeric
22222 prefix argument suppresses simplification of the intermediate
22226 @pindex calc-sel-unpack
22227 The @kbd{j U} (@code{calc-sel-unpack}) command replaces the
22228 selected function call with its argument. For example, given
22229 @samp{a + sin(x^2)} with @samp{sin(x^2)} selected, the result
22230 is @samp{a + x^2}. (The @samp{x^2} will remain selected; if you
22231 wanted to change the @code{sin} to @code{cos}, just press @kbd{C}
22232 now to take the cosine of the selected part.)
22235 @pindex calc-sel-evaluate
22236 The @kbd{j v} (@code{calc-sel-evaluate}) command performs the
22237 basic simplifications on the selected sub-formula.
22238 These simplifications would normally be done automatically
22239 on all results, but may have been partially inhibited by
22240 previous selection-related operations, or turned off altogether
22241 by the @kbd{m O} command. This command is just an auto-selecting
22242 version of the @w{@kbd{a v}} command (@pxref{Algebraic Manipulation}).
22244 With a numeric prefix argument of 2, @kbd{C-u 2 j v} applies
22245 the default algebraic simplifications to the selected
22246 sub-formula. With a prefix argument of 3 or more, e.g., @kbd{C-u j v}
22247 applies the @kbd{a e} (@code{calc-simplify-extended}) command.
22248 @xref{Simplifying Formulas}. With a negative prefix argument
22249 it simplifies at the top level only, just as with @kbd{a v}.
22250 Here the ``top'' level refers to the top level of the selected
22254 @pindex calc-sel-expand-formula
22255 The @kbd{j "} (@code{calc-sel-expand-formula}) command is to @kbd{a "}
22256 (@pxref{Algebraic Manipulation}) what @kbd{j v} is to @kbd{a v}.
22258 You can use the @kbd{j r} (@code{calc-rewrite-selection}) command
22259 to define other algebraic operations on sub-formulas. @xref{Rewrite Rules}.
22261 @node Algebraic Manipulation, Simplifying Formulas, Selecting Subformulas, Algebra
22262 @section Algebraic Manipulation
22265 The commands in this section perform general-purpose algebraic
22266 manipulations. They work on the whole formula at the top of the
22267 stack (unless, of course, you have made a selection in that
22270 Many algebra commands prompt for a variable name or formula. If you
22271 answer the prompt with a blank line, the variable or formula is taken
22272 from top-of-stack, and the normal argument for the command is taken
22273 from the second-to-top stack level.
22276 @pindex calc-alg-evaluate
22277 The @kbd{a v} (@code{calc-alg-evaluate}) command performs the normal
22278 default simplifications on a formula; for example, @samp{a - -b} is
22279 changed to @samp{a + b}. These simplifications are normally done
22280 automatically on all Calc results, so this command is useful only if
22281 you have turned default simplifications off with an @kbd{m O}
22282 command. @xref{Simplification Modes}.
22284 It is often more convenient to type @kbd{=}, which is like @kbd{a v}
22285 but which also substitutes stored values for variables in the formula.
22286 Use @kbd{a v} if you want the variables to ignore their stored values.
22288 If you give a numeric prefix argument of 2 to @kbd{a v}, it simplifies
22289 using Calc's algebraic simplifications; @pxref{Simplifying Formulas}.
22290 If you give a numeric prefix of 3 or more, it uses Extended
22291 Simplification mode (@kbd{a e}).
22293 If you give a negative prefix argument @mathit{-1}, @mathit{-2}, or @mathit{-3},
22294 it simplifies in the corresponding mode but only works on the top-level
22295 function call of the formula. For example, @samp{(2 + 3) * (2 + 3)} will
22296 simplify to @samp{(2 + 3)^2}, without simplifying the sub-formulas
22297 @samp{2 + 3}. As another example, typing @kbd{V R +} to sum the vector
22298 @samp{[1, 2, 3, 4]} produces the formula @samp{reduce(add, [1, 2, 3, 4])}
22299 in No-Simplify mode. Using @kbd{a v} will evaluate this all the way to
22300 10; using @kbd{C-u - a v} will evaluate it only to @samp{1 + 2 + 3 + 4}.
22301 (@xref{Reducing and Mapping}.)
22305 The @kbd{=} command corresponds to the @code{evalv} function, and
22306 the related @kbd{N} command, which is like @kbd{=} but temporarily
22307 disables Symbolic mode (@kbd{m s}) during the evaluation, corresponds
22308 to the @code{evalvn} function. (These commands interpret their prefix
22309 arguments differently than @kbd{a v}; @kbd{=} treats the prefix as
22310 the number of stack elements to evaluate at once, and @kbd{N} treats
22311 it as a temporary different working precision.)
22313 The @code{evalvn} function can take an alternate working precision
22314 as an optional second argument. This argument can be either an
22315 integer, to set the precision absolutely, or a vector containing
22316 a single integer, to adjust the precision relative to the current
22317 precision. Note that @code{evalvn} with a larger than current
22318 precision will do the calculation at this higher precision, but the
22319 result will as usual be rounded back down to the current precision
22320 afterward. For example, @samp{evalvn(pi - 3.1415)} at a precision
22321 of 12 will return @samp{9.265359e-5}; @samp{evalvn(pi - 3.1415, 30)}
22322 will return @samp{9.26535897932e-5} (computing a 25-digit result which
22323 is then rounded down to 12); and @samp{evalvn(pi - 3.1415, [-2])}
22324 will return @samp{9.2654e-5}.
22327 @pindex calc-expand-formula
22328 The @kbd{a "} (@code{calc-expand-formula}) command expands functions
22329 into their defining formulas wherever possible. For example,
22330 @samp{deg(x^2)} is changed to @samp{180 x^2 / pi}. Most functions,
22331 like @code{sin} and @code{gcd}, are not defined by simple formulas
22332 and so are unaffected by this command. One important class of
22333 functions which @emph{can} be expanded is the user-defined functions
22334 created by the @kbd{Z F} command. @xref{Algebraic Definitions}.
22335 Other functions which @kbd{a "} can expand include the probability
22336 distribution functions, most of the financial functions, and the
22337 hyperbolic and inverse hyperbolic functions. A numeric prefix argument
22338 affects @kbd{a "} in the same way as it does @kbd{a v}: A positive
22339 argument expands all functions in the formula and then simplifies in
22340 various ways; a negative argument expands and simplifies only the
22341 top-level function call.
22344 @pindex calc-map-equation
22346 The @kbd{a M} (@code{calc-map-equation}) [@code{mapeq}] command applies
22347 a given function or operator to one or more equations. It is analogous
22348 to @kbd{V M}, which operates on vectors instead of equations.
22349 @pxref{Reducing and Mapping}. For example, @kbd{a M S} changes
22350 @samp{x = y+1} to @samp{sin(x) = sin(y+1)}, and @kbd{a M +} with
22351 @samp{x = y+1} and @expr{6} on the stack produces @samp{x+6 = y+7}.
22352 With two equations on the stack, @kbd{a M +} would add the lefthand
22353 sides together and the righthand sides together to get the two
22354 respective sides of a new equation.
22356 Mapping also works on inequalities. Mapping two similar inequalities
22357 produces another inequality of the same type. Mapping an inequality
22358 with an equation produces an inequality of the same type. Mapping a
22359 @samp{<=} with a @samp{<} or @samp{!=} (not-equal) produces a @samp{<}.
22360 If inequalities with opposite direction (e.g., @samp{<} and @samp{>})
22361 are mapped, the direction of the second inequality is reversed to
22362 match the first: Using @kbd{a M +} on @samp{a < b} and @samp{a > 2}
22363 reverses the latter to get @samp{2 < a}, which then allows the
22364 combination @samp{a + 2 < b + a}, which the algebraic simplifications
22365 can reduce to @samp{2 < b}.
22367 Using @kbd{a M *}, @kbd{a M /}, @kbd{a M n}, or @kbd{a M &} to negate
22368 or invert an inequality will reverse the direction of the inequality.
22369 Other adjustments to inequalities are @emph{not} done automatically;
22370 @kbd{a M S} will change @w{@samp{x < y}} to @samp{sin(x) < sin(y)} even
22371 though this is not true for all values of the variables.
22375 With the Hyperbolic flag, @kbd{H a M} [@code{mapeqp}] does a plain
22376 mapping operation without reversing the direction of any inequalities.
22377 Thus, @kbd{H a M &} would change @kbd{x > 2} to @kbd{1/x > 0.5}.
22378 (This change is mathematically incorrect, but perhaps you were
22379 fixing an inequality which was already incorrect.)
22383 With the Inverse flag, @kbd{I a M} [@code{mapeqr}] always reverses
22384 the direction of the inequality. You might use @kbd{I a M C} to
22385 change @samp{x < y} to @samp{cos(x) > cos(y)} if you know you are
22386 working with small positive angles.
22389 @pindex calc-substitute
22391 The @kbd{a b} (@code{calc-substitute}) [@code{subst}] command substitutes
22393 of some variable or sub-expression of an expression with a new
22394 sub-expression. For example, substituting @samp{sin(x)} with @samp{cos(y)}
22395 in @samp{2 sin(x)^2 + x sin(x) + sin(2 x)} produces
22396 @samp{2 cos(y)^2 + x cos(y) + @w{sin(2 x)}}.
22397 Note that this is a purely structural substitution; the lone @samp{x} and
22398 the @samp{sin(2 x)} stayed the same because they did not look like
22399 @samp{sin(x)}. @xref{Rewrite Rules}, for a more general method for
22400 doing substitutions.
22402 The @kbd{a b} command normally prompts for two formulas, the old
22403 one and the new one. If you enter a blank line for the first
22404 prompt, all three arguments are taken from the stack (new, then old,
22405 then target expression). If you type an old formula but then enter a
22406 blank line for the new one, the new formula is taken from top-of-stack
22407 and the target from second-to-top. If you answer both prompts, the
22408 target is taken from top-of-stack as usual.
22410 Note that @kbd{a b} has no understanding of commutativity or
22411 associativity. The pattern @samp{x+y} will not match the formula
22412 @samp{y+x}. Also, @samp{y+z} will not match inside the formula @samp{x+y+z}
22413 because the @samp{+} operator is left-associative, so the ``deep
22414 structure'' of that formula is @samp{(x+y) + z}. Use @kbd{d U}
22415 (@code{calc-unformatted-language}) mode to see the true structure of
22416 a formula. The rewrite rule mechanism, discussed later, does not have
22419 As an algebraic function, @code{subst} takes three arguments:
22420 Target expression, old, new. Note that @code{subst} is always
22421 evaluated immediately, even if its arguments are variables, so if
22422 you wish to put a call to @code{subst} onto the stack you must
22423 turn the default simplifications off first (with @kbd{m O}).
22425 @node Simplifying Formulas, Polynomials, Algebraic Manipulation, Algebra
22426 @section Simplifying Formulas
22432 @pindex calc-simplify
22435 The sections below describe all the various kinds of
22436 simplifications Calc provides in full detail. None of Calc's
22437 simplification commands are designed to pull rabbits out of hats;
22438 they simply apply certain specific rules to put formulas into
22439 less redundant or more pleasing forms. Serious algebra in Calc
22440 must be done manually, usually with a combination of selections
22441 and rewrite rules. @xref{Rearranging with Selections}.
22442 @xref{Rewrite Rules}.
22444 @xref{Simplification Modes}, for commands to control what level of
22445 simplification occurs automatically. Normally the algebraic
22446 simplifications described below occur. If you have turned on a
22447 simplification mode which does not do these algebraic simplifications,
22448 you can still apply them to a formula with the @kbd{a s}
22449 (@code{calc-simplify}) [@code{simplify}] command.
22451 There are some simplifications that, while sometimes useful, are never
22452 done automatically. For example, the @kbd{I} prefix can be given to
22453 @kbd{a s}; the @kbd{I a s} command will change any trigonometric
22454 function to the appropriate combination of @samp{sin}s and @samp{cos}s
22455 before simplifying. This can be useful in simplifying even mildly
22456 complicated trigonometric expressions. For example, while the algebraic
22457 simplifications can reduce @samp{sin(x) csc(x)} to @samp{1}, they will not
22458 simplify @samp{sin(x)^2 csc(x)}. The command @kbd{I a s} can be used to
22459 simplify this latter expression; it will transform @samp{sin(x)^2
22460 csc(x)} into @samp{sin(x)}. However, @kbd{I a s} will also perform
22461 some ``simplifications'' which may not be desired; for example, it
22462 will transform @samp{tan(x)^2} into @samp{sin(x)^2 / cos(x)^2}. The
22463 Hyperbolic prefix @kbd{H} can be used similarly; the @kbd{H a s} will
22464 replace any hyperbolic functions in the formula with the appropriate
22465 combinations of @samp{sinh}s and @samp{cosh}s before simplifying.
22469 * Basic Simplifications::
22470 * Algebraic Simplifications::
22471 * Unsafe Simplifications::
22472 * Simplification of Units::
22475 @node Basic Simplifications, Algebraic Simplifications, Simplifying Formulas, Simplifying Formulas
22476 @subsection Basic Simplifications
22479 @cindex Basic simplifications
22480 This section describes basic simplifications which Calc performs in many
22481 situations. For example, both binary simplifications and algebraic
22482 simplifications begin by performing these basic simplifications. You
22483 can type @kbd{m I} to restrict the simplifications done on the stack to
22484 these simplifications.
22486 The most basic simplification is the evaluation of functions.
22487 For example, @expr{2 + 3} is evaluated to @expr{5}, and @expr{@tfn{sqrt}(9)}
22488 is evaluated to @expr{3}. Evaluation does not occur if the arguments
22489 to a function are somehow of the wrong type @expr{@tfn{tan}([2,3,4])}),
22490 range (@expr{@tfn{tan}(90)}), or number (@expr{@tfn{tan}(3,5)}),
22491 or if the function name is not recognized (@expr{@tfn{f}(5)}), or if
22492 Symbolic mode (@pxref{Symbolic Mode}) prevents evaluation
22493 (@expr{@tfn{sqrt}(2)}).
22495 Calc simplifies (evaluates) the arguments to a function before it
22496 simplifies the function itself. Thus @expr{@tfn{sqrt}(5+4)} is
22497 simplified to @expr{@tfn{sqrt}(9)} before the @code{sqrt} function
22498 itself is applied. There are very few exceptions to this rule:
22499 @code{quote}, @code{lambda}, and @code{condition} (the @code{::}
22500 operator) do not evaluate their arguments, @code{if} (the @code{? :}
22501 operator) does not evaluate all of its arguments, and @code{evalto}
22502 does not evaluate its lefthand argument.
22504 Most commands apply at least these basic simplifications to all
22505 arguments they take from the stack, perform a particular operation,
22506 then simplify the result before pushing it back on the stack. In the
22507 common special case of regular arithmetic commands like @kbd{+} and
22508 @kbd{Q} [@code{sqrt}], the arguments are simply popped from the stack
22509 and collected into a suitable function call, which is then simplified
22510 (the arguments being simplified first as part of the process, as
22513 Even the basic set of simplifications are too numerous to describe
22514 completely here, but this section will describe the ones that apply to the
22515 major arithmetic operators. This list will be rather technical in
22516 nature, and will probably be interesting to you only if you are
22517 a serious user of Calc's algebra facilities.
22523 As well as the simplifications described here, if you have stored
22524 any rewrite rules in the variable @code{EvalRules} then these rules
22525 will also be applied before any of the basic simplifications.
22526 @xref{Automatic Rewrites}, for details.
22532 And now, on with the basic simplifications:
22534 Arithmetic operators like @kbd{+} and @kbd{*} always take two
22535 arguments in Calc's internal form. Sums and products of three or
22536 more terms are arranged by the associative law of algebra into
22537 a left-associative form for sums, @expr{((a + b) + c) + d}, and
22538 (by default) a right-associative form for products,
22539 @expr{a * (b * (c * d))}. Formulas like @expr{(a + b) + (c + d)} are
22540 rearranged to left-associative form, though this rarely matters since
22541 Calc's algebra commands are designed to hide the inner structure of sums
22542 and products as much as possible. Sums and products in their proper
22543 associative form will be written without parentheses in the examples
22546 Sums and products are @emph{not} rearranged according to the
22547 commutative law (@expr{a + b} to @expr{b + a}) except in a few
22548 special cases described below. Some algebra programs always
22549 rearrange terms into a canonical order, which enables them to
22550 see that @expr{a b + b a} can be simplified to @expr{2 a b}.
22551 If you are using Basic Simplification mode, Calc assumes you have put
22552 the terms into the order you want and generally leaves that order alone,
22553 with the consequence that formulas like the above will only be
22554 simplified if you explicitly give the @kbd{a s} command.
22555 @xref{Algebraic Simplifications}.
22557 Differences @expr{a - b} are treated like sums @expr{a + (-b)}
22558 for purposes of simplification; one of the default simplifications
22559 is to rewrite @expr{a + (-b)} or @expr{(-b) + a}, where @expr{-b}
22560 represents a ``negative-looking'' term, into @expr{a - b} form.
22561 ``Negative-looking'' means negative numbers, negated formulas like
22562 @expr{-x}, and products or quotients in which either term is
22565 Other simplifications involving negation are @expr{-(-x)} to @expr{x};
22566 @expr{-(a b)} or @expr{-(a/b)} where either @expr{a} or @expr{b} is
22567 negative-looking, simplified by negating that term, or else where
22568 @expr{a} or @expr{b} is any number, by negating that number;
22569 @expr{-(a + b)} to @expr{-a - b}, and @expr{-(b - a)} to @expr{a - b}.
22570 (This, and rewriting @expr{(-b) + a} to @expr{a - b}, are the only
22571 cases where the order of terms in a sum is changed by the default
22574 The distributive law is used to simplify sums in some cases:
22575 @expr{a x + b x} to @expr{(a + b) x}, where @expr{a} represents
22576 a number or an implicit 1 or @mathit{-1} (as in @expr{x} or @expr{-x})
22577 and similarly for @expr{b}. Use the @kbd{a c}, @w{@kbd{a f}}, or
22578 @kbd{j M} commands to merge sums with non-numeric coefficients
22579 using the distributive law.
22581 The distributive law is only used for sums of two terms, or
22582 for adjacent terms in a larger sum. Thus @expr{a + b + b + c}
22583 is simplified to @expr{a + 2 b + c}, but @expr{a + b + c + b}
22584 is not simplified. The reason is that comparing all terms of a
22585 sum with one another would require time proportional to the
22586 square of the number of terms; Calc omits potentially slow
22587 operations like this in basic simplification mode.
22589 Finally, @expr{a + 0} and @expr{0 + a} are simplified to @expr{a}.
22590 A consequence of the above rules is that @expr{0 - a} is simplified
22597 The products @expr{1 a} and @expr{a 1} are simplified to @expr{a};
22598 @expr{(-1) a} and @expr{a (-1)} are simplified to @expr{-a};
22599 @expr{0 a} and @expr{a 0} are simplified to @expr{0}, except that
22600 in Matrix mode where @expr{a} is not provably scalar the result
22601 is the generic zero matrix @samp{idn(0)}, and that if @expr{a} is
22602 infinite the result is @samp{nan}.
22604 Also, @expr{(-a) b} and @expr{a (-b)} are simplified to @expr{-(a b)},
22605 where this occurs for negated formulas but not for regular negative
22608 Products are commuted only to move numbers to the front:
22609 @expr{a b 2} is commuted to @expr{2 a b}.
22611 The product @expr{a (b + c)} is distributed over the sum only if
22612 @expr{a} and at least one of @expr{b} and @expr{c} are numbers:
22613 @expr{2 (x + 3)} goes to @expr{2 x + 6}. The formula
22614 @expr{(-a) (b - c)}, where @expr{-a} is a negative number, is
22615 rewritten to @expr{a (c - b)}.
22617 The distributive law of products and powers is used for adjacent
22618 terms of the product: @expr{x^a x^b} goes to
22619 @texline @math{x^{a+b}}
22620 @infoline @expr{x^(a+b)}
22621 where @expr{a} is a number, or an implicit 1 (as in @expr{x}),
22622 or the implicit one-half of @expr{@tfn{sqrt}(x)}, and similarly for
22623 @expr{b}. The result is written using @samp{sqrt} or @samp{1/sqrt}
22624 if the sum of the powers is @expr{1/2} or @expr{-1/2}, respectively.
22625 If the sum of the powers is zero, the product is simplified to
22626 @expr{1} or to @samp{idn(1)} if Matrix mode is enabled.
22628 The product of a negative power times anything but another negative
22629 power is changed to use division:
22630 @texline @math{x^{-2} y}
22631 @infoline @expr{x^(-2) y}
22632 goes to @expr{y / x^2} unless Matrix mode is
22633 in effect and neither @expr{x} nor @expr{y} are scalar (in which
22634 case it is considered unsafe to rearrange the order of the terms).
22636 Finally, @expr{a (b/c)} is rewritten to @expr{(a b)/c}, and also
22637 @expr{(a/b) c} is changed to @expr{(a c)/b} unless in Matrix mode.
22643 Simplifications for quotients are analogous to those for products.
22644 The quotient @expr{0 / x} is simplified to @expr{0}, with the same
22645 exceptions that were noted for @expr{0 x}. Likewise, @expr{x / 1}
22646 and @expr{x / (-1)} are simplified to @expr{x} and @expr{-x},
22649 The quotient @expr{x / 0} is left unsimplified or changed to an
22650 infinite quantity, as directed by the current infinite mode.
22651 @xref{Infinite Mode}.
22654 @texline @math{a / b^{-c}}
22655 @infoline @expr{a / b^(-c)}
22656 is changed to @expr{a b^c}, where @expr{-c} is any negative-looking
22657 power. Also, @expr{1 / b^c} is changed to
22658 @texline @math{b^{-c}}
22659 @infoline @expr{b^(-c)}
22660 for any power @expr{c}.
22662 Also, @expr{(-a) / b} and @expr{a / (-b)} go to @expr{-(a/b)};
22663 @expr{(a/b) / c} goes to @expr{a / (b c)}; and @expr{a / (b/c)}
22664 goes to @expr{(a c) / b} unless Matrix mode prevents this
22665 rearrangement. Similarly, @expr{a / (b:c)} is simplified to
22666 @expr{(c:b) a} for any fraction @expr{b:c}.
22668 The distributive law is applied to @expr{(a + b) / c} only if
22669 @expr{c} and at least one of @expr{a} and @expr{b} are numbers.
22670 Quotients of powers and square roots are distributed just as
22671 described for multiplication.
22673 Quotients of products cancel only in the leading terms of the
22674 numerator and denominator. In other words, @expr{a x b / a y b}
22675 is canceled to @expr{x b / y b} but not to @expr{x / y}. Once
22676 again this is because full cancellation can be slow; use @kbd{a s}
22677 to cancel all terms of the quotient.
22679 Quotients of negative-looking values are simplified according
22680 to @expr{(-a) / (-b)} to @expr{a / b}, @expr{(-a) / (b - c)}
22681 to @expr{a / (c - b)}, and @expr{(a - b) / (-c)} to @expr{(b - a) / c}.
22687 The formula @expr{x^0} is simplified to @expr{1}, or to @samp{idn(1)}
22688 in Matrix mode. The formula @expr{0^x} is simplified to @expr{0}
22689 unless @expr{x} is a negative number, complex number or zero.
22690 If @expr{x} is negative, complex or @expr{0.0}, @expr{0^x} is an
22691 infinity or an unsimplified formula according to the current infinite
22692 mode. The expression @expr{0^0} is simplified to @expr{1}.
22694 Powers of products or quotients @expr{(a b)^c}, @expr{(a/b)^c}
22695 are distributed to @expr{a^c b^c}, @expr{a^c / b^c} only if @expr{c}
22696 is an integer, or if either @expr{a} or @expr{b} are nonnegative
22697 real numbers. Powers of powers @expr{(a^b)^c} are simplified to
22698 @texline @math{a^{b c}}
22699 @infoline @expr{a^(b c)}
22700 only when @expr{c} is an integer and @expr{b c} also
22701 evaluates to an integer. Without these restrictions these simplifications
22702 would not be safe because of problems with principal values.
22704 @texline @math{((-3)^{1/2})^2}
22705 @infoline @expr{((-3)^1:2)^2}
22706 is safe to simplify, but
22707 @texline @math{((-3)^2)^{1/2}}
22708 @infoline @expr{((-3)^2)^1:2}
22709 is not.) @xref{Declarations}, for ways to inform Calc that your
22710 variables satisfy these requirements.
22712 As a special case of this rule, @expr{@tfn{sqrt}(x)^n} is simplified to
22713 @texline @math{x^{n/2}}
22714 @infoline @expr{x^(n/2)}
22715 only for even integers @expr{n}.
22717 If @expr{a} is known to be real, @expr{b} is an even integer, and
22718 @expr{c} is a half- or quarter-integer, then @expr{(a^b)^c} is
22719 simplified to @expr{@tfn{abs}(a^(b c))}.
22721 Also, @expr{(-a)^b} is simplified to @expr{a^b} if @expr{b} is an
22722 even integer, or to @expr{-(a^b)} if @expr{b} is an odd integer,
22723 for any negative-looking expression @expr{-a}.
22725 Square roots @expr{@tfn{sqrt}(x)} generally act like one-half powers
22726 @texline @math{x^{1:2}}
22727 @infoline @expr{x^1:2}
22728 for the purposes of the above-listed simplifications.
22731 @texline @math{1 / x^{1:2}}
22732 @infoline @expr{1 / x^1:2}
22734 @texline @math{x^{-1:2}},
22735 @infoline @expr{x^(-1:2)},
22736 but @expr{1 / @tfn{sqrt}(x)} is left alone.
22742 Generic identity matrices (@pxref{Matrix Mode}) are simplified by the
22743 following rules: @expr{@tfn{idn}(a) + b} to @expr{a + b} if @expr{b}
22744 is provably scalar, or expanded out if @expr{b} is a matrix;
22745 @expr{@tfn{idn}(a) + @tfn{idn}(b)} to @expr{@tfn{idn}(a + b)};
22746 @expr{-@tfn{idn}(a)} to @expr{@tfn{idn}(-a)}; @expr{a @tfn{idn}(b)} to
22747 @expr{@tfn{idn}(a b)} if @expr{a} is provably scalar, or to @expr{a b}
22748 if @expr{a} is provably non-scalar; @expr{@tfn{idn}(a) @tfn{idn}(b)} to
22749 @expr{@tfn{idn}(a b)}; analogous simplifications for quotients involving
22750 @code{idn}; and @expr{@tfn{idn}(a)^n} to @expr{@tfn{idn}(a^n)} where
22751 @expr{n} is an integer.
22757 The @code{floor} function and other integer truncation functions
22758 vanish if the argument is provably integer-valued, so that
22759 @expr{@tfn{floor}(@tfn{round}(x))} simplifies to @expr{@tfn{round}(x)}.
22760 Also, combinations of @code{float}, @code{floor} and its friends,
22761 and @code{ffloor} and its friends, are simplified in appropriate
22762 ways. @xref{Integer Truncation}.
22764 The expression @expr{@tfn{abs}(-x)} changes to @expr{@tfn{abs}(x)}.
22765 The expression @expr{@tfn{abs}(@tfn{abs}(x))} changes to
22766 @expr{@tfn{abs}(x)}; in fact, @expr{@tfn{abs}(x)} changes to @expr{x} or
22767 @expr{-x} if @expr{x} is provably nonnegative or nonpositive
22768 (@pxref{Declarations}).
22770 While most functions do not recognize the variable @code{i} as an
22771 imaginary number, the @code{arg} function does handle the two cases
22772 @expr{@tfn{arg}(@tfn{i})} and @expr{@tfn{arg}(-@tfn{i})} just for convenience.
22774 The expression @expr{@tfn{conj}(@tfn{conj}(x))} simplifies to @expr{x}.
22775 Various other expressions involving @code{conj}, @code{re}, and
22776 @code{im} are simplified, especially if some of the arguments are
22777 provably real or involve the constant @code{i}. For example,
22778 @expr{@tfn{conj}(a + b i)} is changed to
22779 @expr{@tfn{conj}(a) - @tfn{conj}(b) i}, or to @expr{a - b i} if @expr{a}
22780 and @expr{b} are known to be real.
22782 Functions like @code{sin} and @code{arctan} generally don't have
22783 any default simplifications beyond simply evaluating the functions
22784 for suitable numeric arguments and infinity. The algebraic
22785 simplifications described in the next section do provide some
22786 simplifications for these functions, though.
22788 One important simplification that does occur is that
22789 @expr{@tfn{ln}(@tfn{e})} is simplified to 1, and @expr{@tfn{ln}(@tfn{e}^x)} is
22790 simplified to @expr{x} for any @expr{x}. This occurs even if you have
22791 stored a different value in the Calc variable @samp{e}; but this would
22792 be a bad idea in any case if you were also using natural logarithms!
22794 Among the logical functions, @tfn{!(@var{a} <= @var{b})} changes to
22795 @tfn{@var{a} > @var{b}} and so on. Equations and inequalities where both sides
22796 are either negative-looking or zero are simplified by negating both sides
22797 and reversing the inequality. While it might seem reasonable to simplify
22798 @expr{!!x} to @expr{x}, this would not be valid in general because
22799 @expr{!!2} is 1, not 2.
22801 Most other Calc functions have few if any basic simplifications
22802 defined, aside of course from evaluation when the arguments are
22805 @node Algebraic Simplifications, Unsafe Simplifications, Basic Simplifications, Simplifying Formulas
22806 @subsection Algebraic Simplifications
22809 @cindex Algebraic simplifications
22812 This section describes all simplifications that are performed by
22813 the algebraic simplification mode, which is the default simplification
22814 mode. If you have switched to a different simplification mode, you can
22815 switch back with the @kbd{m A} command. Even in other simplification
22816 modes, the @kbd{a s} command will use these algebraic simplifications to
22817 simplify the formula.
22819 There is a variable, @code{AlgSimpRules}, in which you can put rewrites
22820 to be applied. Its use is analogous to @code{EvalRules},
22821 but without the special restrictions. Basically, the simplifier does
22822 @samp{@w{a r} AlgSimpRules} with an infinite repeat count on the whole
22823 expression being simplified, then it traverses the expression applying
22824 the built-in rules described below. If the result is different from
22825 the original expression, the process repeats with the basic
22826 simplifications (including @code{EvalRules}), then @code{AlgSimpRules},
22827 then the built-in simplifications, and so on.
22833 Sums are simplified in two ways. Constant terms are commuted to the
22834 end of the sum, so that @expr{a + 2 + b} changes to @expr{a + b + 2}.
22835 The only exception is that a constant will not be commuted away
22836 from the first position of a difference, i.e., @expr{2 - x} is not
22837 commuted to @expr{-x + 2}.
22839 Also, terms of sums are combined by the distributive law, as in
22840 @expr{x + y + 2 x} to @expr{y + 3 x}. This always occurs for
22841 adjacent terms, but Calc's algebraic simplifications compare all pairs
22842 of terms including non-adjacent ones.
22848 Products are sorted into a canonical order using the commutative
22849 law. For example, @expr{b c a} is commuted to @expr{a b c}.
22850 This allows easier comparison of products; for example, the basic
22851 simplifications will not change @expr{x y + y x} to @expr{2 x y},
22852 but the algebraic simplifications; it first rewrites the sum to
22853 @expr{x y + x y} which can then be recognized as a sum of identical
22856 The canonical ordering used to sort terms of products has the
22857 property that real-valued numbers, interval forms and infinities
22858 come first, and are sorted into increasing order. The @kbd{V S}
22859 command uses the same ordering when sorting a vector.
22861 Sorting of terms of products is inhibited when Matrix mode is
22862 turned on; in this case, Calc will never exchange the order of
22863 two terms unless it knows at least one of the terms is a scalar.
22865 Products of powers are distributed by comparing all pairs of
22866 terms, using the same method that the default simplifications
22867 use for adjacent terms of products.
22869 Even though sums are not sorted, the commutative law is still
22870 taken into account when terms of a product are being compared.
22871 Thus @expr{(x + y) (y + x)} will be simplified to @expr{(x + y)^2}.
22872 A subtle point is that @expr{(x - y) (y - x)} will @emph{not}
22873 be simplified to @expr{-(x - y)^2}; Calc does not notice that
22874 one term can be written as a constant times the other, even if
22875 that constant is @mathit{-1}.
22877 A fraction times any expression, @expr{(a:b) x}, is changed to
22878 a quotient involving integers: @expr{a x / b}. This is not
22879 done for floating-point numbers like @expr{0.5}, however. This
22880 is one reason why you may find it convenient to turn Fraction mode
22881 on while doing algebra; @pxref{Fraction Mode}.
22887 Quotients are simplified by comparing all terms in the numerator
22888 with all terms in the denominator for possible cancellation using
22889 the distributive law. For example, @expr{a x^2 b / c x^3 d} will
22890 cancel @expr{x^2} from the top and bottom to get @expr{a b / c x d}.
22891 (The terms in the denominator will then be rearranged to @expr{c d x}
22892 as described above.) If there is any common integer or fractional
22893 factor in the numerator and denominator, it is canceled out;
22894 for example, @expr{(4 x + 6) / 8 x} simplifies to @expr{(2 x + 3) / 4 x}.
22896 Non-constant common factors are not found even by algebraic
22897 simplifications. To cancel the factor @expr{a} in
22898 @expr{(a x + a) / a^2} you could first use @kbd{j M} on the product
22899 @expr{a x} to Merge the numerator to @expr{a (1+x)}, which can then be
22900 simplified successfully.
22906 Integer powers of the variable @code{i} are simplified according
22907 to the identity @expr{i^2 = -1}. If you store a new value other
22908 than the complex number @expr{(0,1)} in @code{i}, this simplification
22909 will no longer occur. This is not done by the basic
22910 simplifications; in case someone (unwisely) wants to use the name
22911 @code{i} for a variable unrelated to complex numbers, they can use
22912 basic simplification mode.
22914 Square roots of integer or rational arguments are simplified in
22915 several ways. (Note that these will be left unevaluated only in
22916 Symbolic mode.) First, square integer or rational factors are
22917 pulled out so that @expr{@tfn{sqrt}(8)} is rewritten as
22918 @texline @math{2\,@tfn{sqrt}(2)}.
22919 @infoline @expr{2 sqrt(2)}.
22920 Conceptually speaking this implies factoring the argument into primes
22921 and moving pairs of primes out of the square root, but for reasons of
22922 efficiency Calc only looks for primes up to 29.
22924 Square roots in the denominator of a quotient are moved to the
22925 numerator: @expr{1 / @tfn{sqrt}(3)} changes to @expr{@tfn{sqrt}(3) / 3}.
22926 The same effect occurs for the square root of a fraction:
22927 @expr{@tfn{sqrt}(2:3)} changes to @expr{@tfn{sqrt}(6) / 3}.
22933 The @code{%} (modulo) operator is simplified in several ways
22934 when the modulus @expr{M} is a positive real number. First, if
22935 the argument is of the form @expr{x + n} for some real number
22936 @expr{n}, then @expr{n} is itself reduced modulo @expr{M}. For
22937 example, @samp{(x - 23) % 10} is simplified to @samp{(x + 7) % 10}.
22939 If the argument is multiplied by a constant, and this constant
22940 has a common integer divisor with the modulus, then this factor is
22941 canceled out. For example, @samp{12 x % 15} is changed to
22942 @samp{3 (4 x % 5)} by factoring out 3. Also, @samp{(12 x + 1) % 15}
22943 is changed to @samp{3 ((4 x + 1:3) % 5)}. While these forms may
22944 not seem ``simpler,'' they allow Calc to discover useful information
22945 about modulo forms in the presence of declarations.
22947 If the modulus is 1, then Calc can use @code{int} declarations to
22948 evaluate the expression. For example, the idiom @samp{x % 2} is
22949 often used to check whether a number is odd or even. As described
22950 above, @w{@samp{2 n % 2}} and @samp{(2 n + 1) % 2} are simplified to
22951 @samp{2 (n % 1)} and @samp{2 ((n + 1:2) % 1)}, respectively; Calc
22952 can simplify these to 0 and 1 (respectively) if @code{n} has been
22953 declared to be an integer.
22959 Trigonometric functions are simplified in several ways. Whenever a
22960 products of two trigonometric functions can be replaced by a single
22961 function, the replacement is made; for example,
22962 @expr{@tfn{tan}(x) @tfn{cos}(x)} is simplified to @expr{@tfn{sin}(x)}.
22963 Reciprocals of trigonometric functions are replaced by their reciprocal
22964 function; for example, @expr{1/@tfn{sec}(x)} is simplified to
22965 @expr{@tfn{cos}(x)}. The corresponding simplifications for the
22966 hyperbolic functions are also handled.
22968 Trigonometric functions of their inverse functions are
22969 simplified. The expression @expr{@tfn{sin}(@tfn{arcsin}(x))} is
22970 simplified to @expr{x}, and similarly for @code{cos} and @code{tan}.
22971 Trigonometric functions of inverses of different trigonometric
22972 functions can also be simplified, as in @expr{@tfn{sin}(@tfn{arccos}(x))}
22973 to @expr{@tfn{sqrt}(1 - x^2)}.
22975 If the argument to @code{sin} is negative-looking, it is simplified to
22976 @expr{-@tfn{sin}(x)}, and similarly for @code{cos} and @code{tan}.
22977 Finally, certain special values of the argument are recognized;
22978 @pxref{Trigonometric and Hyperbolic Functions}.
22980 Hyperbolic functions of their inverses and of negative-looking
22981 arguments are also handled, as are exponentials of inverse
22982 hyperbolic functions.
22984 No simplifications for inverse trigonometric and hyperbolic
22985 functions are known, except for negative arguments of @code{arcsin},
22986 @code{arctan}, @code{arcsinh}, and @code{arctanh}. Note that
22987 @expr{@tfn{arcsin}(@tfn{sin}(x))} can @emph{not} safely change to
22988 @expr{x}, since this only correct within an integer multiple of
22989 @texline @math{2 \pi}
22990 @infoline @expr{2 pi}
22991 radians or 360 degrees. However, @expr{@tfn{arcsinh}(@tfn{sinh}(x))} is
22992 simplified to @expr{x} if @expr{x} is known to be real.
22994 Several simplifications that apply to logarithms and exponentials
22995 are that @expr{@tfn{exp}(@tfn{ln}(x))},
22996 @texline @tfn{e}@math{^{\ln(x)}},
22997 @infoline @expr{e^@tfn{ln}(x)},
22999 @texline @math{10^{{\rm log10}(x)}}
23000 @infoline @expr{10^@tfn{log10}(x)}
23001 all reduce to @expr{x}. Also, @expr{@tfn{ln}(@tfn{exp}(x))}, etc., can
23002 reduce to @expr{x} if @expr{x} is provably real. The form
23003 @expr{@tfn{exp}(x)^y} is simplified to @expr{@tfn{exp}(x y)}. If @expr{x}
23004 is a suitable multiple of
23005 @texline @math{\pi i}
23006 @infoline @expr{pi i}
23007 (as described above for the trigonometric functions), then
23008 @expr{@tfn{exp}(x)} or @expr{e^x} will be expanded. Finally,
23009 @expr{@tfn{ln}(x)} is simplified to a form involving @code{pi} and
23010 @code{i} where @expr{x} is provably negative, positive imaginary, or
23011 negative imaginary.
23013 The error functions @code{erf} and @code{erfc} are simplified when
23014 their arguments are negative-looking or are calls to the @code{conj}
23021 Equations and inequalities are simplified by canceling factors
23022 of products, quotients, or sums on both sides. Inequalities
23023 change sign if a negative multiplicative factor is canceled.
23024 Non-constant multiplicative factors as in @expr{a b = a c} are
23025 canceled from equations only if they are provably nonzero (generally
23026 because they were declared so; @pxref{Declarations}). Factors
23027 are canceled from inequalities only if they are nonzero and their
23030 Simplification also replaces an equation or inequality with
23031 1 or 0 (``true'' or ``false'') if it can through the use of
23032 declarations. If @expr{x} is declared to be an integer greater
23033 than 5, then @expr{x < 3}, @expr{x = 3}, and @expr{x = 7.5} are
23034 all simplified to 0, but @expr{x > 3} is simplified to 1.
23035 By a similar analysis, @expr{abs(x) >= 0} is simplified to 1,
23036 as is @expr{x^2 >= 0} if @expr{x} is known to be real.
23038 @node Unsafe Simplifications, Simplification of Units, Algebraic Simplifications, Simplifying Formulas
23039 @subsection ``Unsafe'' Simplifications
23042 @cindex Unsafe simplifications
23043 @cindex Extended simplification
23046 @pindex calc-simplify-extended
23048 @mindex esimpl@idots
23051 Calc is capable of performing some simplifications which may sometimes
23052 be desired but which are not ``safe'' in all cases. The @kbd{a e}
23053 (@code{calc-simplify-extended}) [@code{esimplify}] command
23054 applies the algebraic simplifications as well as these extended, or
23055 ``unsafe'', simplifications. Use this only if you know the values in
23056 your formula lie in the restricted ranges for which these
23057 simplifications are valid. You can use Extended Simplification mode
23058 (@kbd{m E}) to have these simplifications done automatically.
23060 The symbolic integrator uses these extended simplifications; one effect
23061 of this is that the integrator's results must be used with caution.
23062 Where an integral table will often attach conditions like ``for positive
23063 @expr{a} only,'' Calc (like most other symbolic integration programs)
23064 will simply produce an unqualified result.
23066 Because @kbd{a e}'s simplifications are unsafe, it is sometimes better
23067 to type @kbd{C-u -3 a v}, which does extended simplification only
23068 on the top level of the formula without affecting the sub-formulas.
23069 In fact, @kbd{C-u -3 j v} allows you to target extended simplification
23070 to any specific part of a formula.
23072 The variable @code{ExtSimpRules} contains rewrites to be applied when
23073 the extended simplifications are used. These are applied in addition to
23074 @code{EvalRules} and @code{AlgSimpRules}. (The @kbd{a r AlgSimpRules}
23075 step described above is simply followed by an @kbd{a r ExtSimpRules} step.)
23077 Following is a complete list of the ``unsafe'' simplifications.
23083 Inverse trigonometric or hyperbolic functions, called with their
23084 corresponding non-inverse functions as arguments, are simplified.
23085 For example, @expr{@tfn{arcsin}(@tfn{sin}(x))} changes
23086 to @expr{x}. Also, @expr{@tfn{arcsin}(@tfn{cos}(x))} and
23087 @expr{@tfn{arccos}(@tfn{sin}(x))} both change to @expr{@tfn{pi}/2 - x}.
23088 These simplifications are unsafe because they are valid only for
23089 values of @expr{x} in a certain range; outside that range, values
23090 are folded down to the 360-degree range that the inverse trigonometric
23091 functions always produce.
23093 Powers of powers @expr{(x^a)^b} are simplified to
23094 @texline @math{x^{a b}}
23095 @infoline @expr{x^(a b)}
23096 for all @expr{a} and @expr{b}. These results will be valid only
23097 in a restricted range of @expr{x}; for example, in
23098 @texline @math{(x^2)^{1:2}}
23099 @infoline @expr{(x^2)^1:2}
23100 the powers cancel to get @expr{x}, which is valid for positive values
23101 of @expr{x} but not for negative or complex values.
23103 Similarly, @expr{@tfn{sqrt}(x^a)} and @expr{@tfn{sqrt}(x)^a} are both
23104 simplified (possibly unsafely) to
23105 @texline @math{x^{a/2}}.
23106 @infoline @expr{x^(a/2)}.
23108 Forms like @expr{@tfn{sqrt}(1 - sin(x)^2)} are simplified to, e.g.,
23109 @expr{@tfn{cos}(x)}. Calc has identities of this sort for @code{sin},
23110 @code{cos}, @code{tan}, @code{sinh}, and @code{cosh}.
23112 Arguments of square roots are partially factored to look for
23113 squared terms that can be extracted. For example,
23114 @expr{@tfn{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to
23115 @expr{a b @tfn{sqrt}(a+b)}.
23117 The simplifications of @expr{@tfn{ln}(@tfn{exp}(x))},
23118 @expr{@tfn{ln}(@tfn{e}^x)}, and @expr{@tfn{log10}(10^x)} to @expr{x} are also
23119 unsafe because of problems with principal values (although these
23120 simplifications are safe if @expr{x} is known to be real).
23122 Common factors are canceled from products on both sides of an
23123 equation, even if those factors may be zero: @expr{a x / b x}
23124 to @expr{a / b}. Such factors are never canceled from
23125 inequalities: Even the extended simplifications are not bold enough to
23126 reduce @expr{a x < b x} to @expr{a < b} (or @expr{a > b}, depending
23127 on whether you believe @expr{x} is positive or negative).
23128 The @kbd{a M /} command can be used to divide a factor out of
23129 both sides of an inequality.
23131 @node Simplification of Units, , Unsafe Simplifications, Simplifying Formulas
23132 @subsection Simplification of Units
23135 The simplifications described in this section (as well as the algebraic
23136 simplifications) are applied when units need to be simplified. They can
23137 be applied using the @kbd{u s} (@code{calc-simplify-units}) command, or
23138 will be done automatically in Units Simplification mode (@kbd{m U}).
23139 @xref{Basic Operations on Units}.
23141 The variable @code{UnitSimpRules} contains rewrites to be applied by
23142 units simplifications. These are applied in addition to @code{EvalRules}
23143 and @code{AlgSimpRules}.
23145 Scalar mode is automatically put into effect when simplifying units.
23146 @xref{Matrix Mode}.
23148 Sums @expr{a + b} involving units are simplified by extracting the
23149 units of @expr{a} as if by the @kbd{u x} command (call the result
23150 @expr{u_a}), then simplifying the expression @expr{b / u_a}
23151 using @kbd{u b} and @kbd{u s}. If the result has units then the sum
23152 is inconsistent and is left alone. Otherwise, it is rewritten
23153 in terms of the units @expr{u_a}.
23155 If units auto-ranging mode is enabled, products or quotients in
23156 which the first argument is a number which is out of range for the
23157 leading unit are modified accordingly.
23159 When canceling and combining units in products and quotients,
23160 Calc accounts for unit names that differ only in the prefix letter.
23161 For example, @samp{2 km m} is simplified to @samp{2000 m^2}.
23162 However, compatible but different units like @code{ft} and @code{in}
23163 are not combined in this way.
23165 Quotients @expr{a / b} are simplified in three additional ways. First,
23166 if @expr{b} is a number or a product beginning with a number, Calc
23167 computes the reciprocal of this number and moves it to the numerator.
23169 Second, for each pair of unit names from the numerator and denominator
23170 of a quotient, if the units are compatible (e.g., they are both
23171 units of area) then they are replaced by the ratio between those
23172 units. For example, in @samp{3 s in N / kg cm} the units
23173 @samp{in / cm} will be replaced by @expr{2.54}.
23175 Third, if the units in the quotient exactly cancel out, so that
23176 a @kbd{u b} command on the quotient would produce a dimensionless
23177 number for an answer, then the quotient simplifies to that number.
23179 For powers and square roots, the ``unsafe'' simplifications
23180 @expr{(a b)^c} to @expr{a^c b^c}, @expr{(a/b)^c} to @expr{a^c / b^c},
23181 and @expr{(a^b)^c} to
23182 @texline @math{a^{b c}}
23183 @infoline @expr{a^(b c)}
23184 are done if the powers are real numbers. (These are safe in the context
23185 of units because all numbers involved can reasonably be assumed to be
23188 Also, if a unit name is raised to a fractional power, and the
23189 base units in that unit name all occur to powers which are a
23190 multiple of the denominator of the power, then the unit name
23191 is expanded out into its base units, which can then be simplified
23192 according to the previous paragraph. For example, @samp{acre^1.5}
23193 is simplified by noting that @expr{1.5 = 3:2}, that @samp{acre}
23194 is defined in terms of @samp{m^2}, and that the 2 in the power of
23195 @code{m} is a multiple of 2 in @expr{3:2}. Thus, @code{acre^1.5} is
23196 replaced by approximately
23197 @texline @math{(4046 m^2)^{1.5}}
23198 @infoline @expr{(4046 m^2)^1.5},
23199 which is then changed to
23200 @texline @math{4046^{1.5} \, (m^2)^{1.5}},
23201 @infoline @expr{4046^1.5 (m^2)^1.5},
23202 then to @expr{257440 m^3}.
23204 The functions @code{float}, @code{frac}, @code{clean}, @code{abs},
23205 as well as @code{floor} and the other integer truncation functions,
23206 applied to unit names or products or quotients involving units, are
23207 simplified. For example, @samp{round(1.6 in)} is changed to
23208 @samp{round(1.6) round(in)}; the lefthand term evaluates to 2,
23209 and the righthand term simplifies to @code{in}.
23211 The functions @code{sin}, @code{cos}, and @code{tan} with arguments
23212 that have angular units like @code{rad} or @code{arcmin} are
23213 simplified by converting to base units (radians), then evaluating
23214 with the angular mode temporarily set to radians.
23216 @node Polynomials, Calculus, Simplifying Formulas, Algebra
23217 @section Polynomials
23219 A @dfn{polynomial} is a sum of terms which are coefficients times
23220 various powers of a ``base'' variable. For example, @expr{2 x^2 + 3 x - 4}
23221 is a polynomial in @expr{x}. Some formulas can be considered
23222 polynomials in several different variables: @expr{1 + 2 x + 3 y + 4 x y^2}
23223 is a polynomial in both @expr{x} and @expr{y}. Polynomial coefficients
23224 are often numbers, but they may in general be any formulas not
23225 involving the base variable.
23228 @pindex calc-factor
23230 The @kbd{a f} (@code{calc-factor}) [@code{factor}] command factors a
23231 polynomial into a product of terms. For example, the polynomial
23232 @expr{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}. As another
23233 example, @expr{a c + b d + b c + a d} is factored into the product
23234 @expr{(a + b) (c + d)}.
23236 Calc currently has three algorithms for factoring. Formulas which are
23237 linear in several variables, such as the second example above, are
23238 merged according to the distributive law. Formulas which are
23239 polynomials in a single variable, with constant integer or fractional
23240 coefficients, are factored into irreducible linear and/or quadratic
23241 terms. The first example above factors into three linear terms
23242 (@expr{x}, @expr{x+1}, and @expr{x+1} again). Finally, formulas
23243 which do not fit the above criteria are handled by the algebraic
23246 Calc's polynomial factorization algorithm works by using the general
23247 root-finding command (@w{@kbd{a P}}) to solve for the roots of the
23248 polynomial. It then looks for roots which are rational numbers
23249 or complex-conjugate pairs, and converts these into linear and
23250 quadratic terms, respectively. Because it uses floating-point
23251 arithmetic, it may be unable to find terms that involve large
23252 integers (whose number of digits approaches the current precision).
23253 Also, irreducible factors of degree higher than quadratic are not
23254 found, and polynomials in more than one variable are not treated.
23255 (A more robust factorization algorithm may be included in a future
23258 @vindex FactorRules
23270 The rewrite-based factorization method uses rules stored in the variable
23271 @code{FactorRules}. @xref{Rewrite Rules}, for a discussion of the
23272 operation of rewrite rules. The default @code{FactorRules} are able
23273 to factor quadratic forms symbolically into two linear terms,
23274 @expr{(a x + b) (c x + d)}. You can edit these rules to include other
23275 cases if you wish. To use the rules, Calc builds the formula
23276 @samp{thecoefs(x, [a, b, c, ...])} where @code{x} is the polynomial
23277 base variable and @code{a}, @code{b}, etc., are polynomial coefficients
23278 (which may be numbers or formulas). The constant term is written first,
23279 i.e., in the @code{a} position. When the rules complete, they should have
23280 changed the formula into the form @samp{thefactors(x, [f1, f2, f3, ...])}
23281 where each @code{fi} should be a factored term, e.g., @samp{x - ai}.
23282 Calc then multiplies these terms together to get the complete
23283 factored form of the polynomial. If the rules do not change the
23284 @code{thecoefs} call to a @code{thefactors} call, @kbd{a f} leaves the
23285 polynomial alone on the assumption that it is unfactorable. (Note that
23286 the function names @code{thecoefs} and @code{thefactors} are used only
23287 as placeholders; there are no actual Calc functions by those names.)
23291 The @kbd{H a f} [@code{factors}] command also factors a polynomial,
23292 but it returns a list of factors instead of an expression which is the
23293 product of the factors. Each factor is represented by a sub-vector
23294 of the factor, and the power with which it appears. For example,
23295 @expr{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @expr{(x + 7) x^2 (x - 3)^2}
23296 in @kbd{a f}, or to @expr{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}.
23297 If there is an overall numeric factor, it always comes first in the list.
23298 The functions @code{factor} and @code{factors} allow a second argument
23299 when written in algebraic form; @samp{factor(x,v)} factors @expr{x} with
23300 respect to the specific variable @expr{v}. The default is to factor with
23301 respect to all the variables that appear in @expr{x}.
23304 @pindex calc-collect
23306 The @kbd{a c} (@code{calc-collect}) [@code{collect}] command rearranges a
23308 polynomial in a given variable, ordered in decreasing powers of that
23309 variable. For example, given @expr{1 + 2 x + 3 y + 4 x y^2} on
23310 the stack, @kbd{a c x} would produce @expr{(2 + 4 y^2) x + (1 + 3 y)},
23311 and @kbd{a c y} would produce @expr{(4 x) y^2 + 3 y + (1 + 2 x)}.
23312 The polynomial will be expanded out using the distributive law as
23313 necessary: Collecting @expr{x} in @expr{(x - 1)^3} produces
23314 @expr{x^3 - 3 x^2 + 3 x - 1}. Terms not involving @expr{x} will
23317 The ``variable'' you specify at the prompt can actually be any
23318 expression: @kbd{a c ln(x+1)} will collect together all terms multiplied
23319 by @samp{ln(x+1)} or integer powers thereof. If @samp{x} also appears
23320 in the formula in a context other than @samp{ln(x+1)}, @kbd{a c} will
23321 treat those occurrences as unrelated to @samp{ln(x+1)}, i.e., as constants.
23324 @pindex calc-expand
23326 The @kbd{a x} (@code{calc-expand}) [@code{expand}] command expands an
23327 expression by applying the distributive law everywhere. It applies to
23328 products, quotients, and powers involving sums. By default, it fully
23329 distributes all parts of the expression. With a numeric prefix argument,
23330 the distributive law is applied only the specified number of times, then
23331 the partially expanded expression is left on the stack.
23333 The @kbd{a x} and @kbd{j D} commands are somewhat redundant. Use
23334 @kbd{a x} if you want to expand all products of sums in your formula.
23335 Use @kbd{j D} if you want to expand a particular specified term of
23336 the formula. There is an exactly analogous correspondence between
23337 @kbd{a f} and @kbd{j M}. (The @kbd{j D} and @kbd{j M} commands
23338 also know many other kinds of expansions, such as
23339 @samp{exp(a + b) = exp(a) exp(b)}, which @kbd{a x} and @kbd{a f}
23342 Calc's automatic simplifications will sometimes reverse a partial
23343 expansion. For example, the first step in expanding @expr{(x+1)^3} is
23344 to write @expr{(x+1) (x+1)^2}. If @kbd{a x} stops there and tries
23345 to put this formula onto the stack, though, Calc will automatically
23346 simplify it back to @expr{(x+1)^3} form. The solution is to turn
23347 simplification off first (@pxref{Simplification Modes}), or to run
23348 @kbd{a x} without a numeric prefix argument so that it expands all
23349 the way in one step.
23354 The @kbd{a a} (@code{calc-apart}) [@code{apart}] command expands a
23355 rational function by partial fractions. A rational function is the
23356 quotient of two polynomials; @code{apart} pulls this apart into a
23357 sum of rational functions with simple denominators. In algebraic
23358 notation, the @code{apart} function allows a second argument that
23359 specifies which variable to use as the ``base''; by default, Calc
23360 chooses the base variable automatically.
23363 @pindex calc-normalize-rat
23365 The @kbd{a n} (@code{calc-normalize-rat}) [@code{nrat}] command
23366 attempts to arrange a formula into a quotient of two polynomials.
23367 For example, given @expr{1 + (a + b/c) / d}, the result would be
23368 @expr{(b + a c + c d) / c d}. The quotient is reduced, so that
23369 @kbd{a n} will simplify @expr{(x^2 + 2x + 1) / (x^2 - 1)} by dividing
23370 out the common factor @expr{x + 1}, yielding @expr{(x + 1) / (x - 1)}.
23373 @pindex calc-poly-div
23375 The @kbd{a \} (@code{calc-poly-div}) [@code{pdiv}] command divides
23376 two polynomials @expr{u} and @expr{v}, yielding a new polynomial
23377 @expr{q}. If several variables occur in the inputs, the inputs are
23378 considered multivariate polynomials. (Calc divides by the variable
23379 with the largest power in @expr{u} first, or, in the case of equal
23380 powers, chooses the variables in alphabetical order.) For example,
23381 dividing @expr{x^2 + 3 x + 2} by @expr{x + 2} yields @expr{x + 1}.
23382 The remainder from the division, if any, is reported at the bottom
23383 of the screen and is also placed in the Trail along with the quotient.
23385 Using @code{pdiv} in algebraic notation, you can specify the particular
23386 variable to be used as the base: @code{pdiv(@var{a},@var{b},@var{x})}.
23387 If @code{pdiv} is given only two arguments (as is always the case with
23388 the @kbd{a \} command), then it does a multivariate division as outlined
23392 @pindex calc-poly-rem
23394 The @kbd{a %} (@code{calc-poly-rem}) [@code{prem}] command divides
23395 two polynomials and keeps the remainder @expr{r}. The quotient
23396 @expr{q} is discarded. For any formulas @expr{a} and @expr{b}, the
23397 results of @kbd{a \} and @kbd{a %} satisfy @expr{a = q b + r}.
23398 (This is analogous to plain @kbd{\} and @kbd{%}, which compute the
23399 integer quotient and remainder from dividing two numbers.)
23403 @pindex calc-poly-div-rem
23406 The @kbd{a /} (@code{calc-poly-div-rem}) [@code{pdivrem}] command
23407 divides two polynomials and reports both the quotient and the
23408 remainder as a vector @expr{[q, r]}. The @kbd{H a /} [@code{pdivide}]
23409 command divides two polynomials and constructs the formula
23410 @expr{q + r/b} on the stack. (Naturally if the remainder is zero,
23411 this will immediately simplify to @expr{q}.)
23414 @pindex calc-poly-gcd
23416 The @kbd{a g} (@code{calc-poly-gcd}) [@code{pgcd}] command computes
23417 the greatest common divisor of two polynomials. (The GCD actually
23418 is unique only to within a constant multiplier; Calc attempts to
23419 choose a GCD which will be unsurprising.) For example, the @kbd{a n}
23420 command uses @kbd{a g} to take the GCD of the numerator and denominator
23421 of a quotient, then divides each by the result using @kbd{a \}. (The
23422 definition of GCD ensures that this division can take place without
23423 leaving a remainder.)
23425 While the polynomials used in operations like @kbd{a /} and @kbd{a g}
23426 often have integer coefficients, this is not required. Calc can also
23427 deal with polynomials over the rationals or floating-point reals.
23428 Polynomials with modulo-form coefficients are also useful in many
23429 applications; if you enter @samp{(x^2 + 3 x - 1) mod 5}, Calc
23430 automatically transforms this into a polynomial over the field of
23431 integers mod 5: @samp{(1 mod 5) x^2 + (3 mod 5) x + (4 mod 5)}.
23433 Congratulations and thanks go to Ove Ewerlid
23434 (@code{ewerlid@@mizar.DoCS.UU.SE}), who contributed many of the
23435 polynomial routines used in the above commands.
23437 @xref{Decomposing Polynomials}, for several useful functions for
23438 extracting the individual coefficients of a polynomial.
23440 @node Calculus, Solving Equations, Polynomials, Algebra
23444 The following calculus commands do not automatically simplify their
23445 inputs or outputs using @code{calc-simplify}. You may find it helps
23446 to do this by hand by typing @kbd{a s} or @kbd{a e}. It may also help
23447 to use @kbd{a x} and/or @kbd{a c} to arrange a result in the most
23451 * Differentiation::
23453 * Customizing the Integrator::
23454 * Numerical Integration::
23458 @node Differentiation, Integration, Calculus, Calculus
23459 @subsection Differentiation
23464 @pindex calc-derivative
23467 The @kbd{a d} (@code{calc-derivative}) [@code{deriv}] command computes
23468 the derivative of the expression on the top of the stack with respect to
23469 some variable, which it will prompt you to enter. Normally, variables
23470 in the formula other than the specified differentiation variable are
23471 considered constant, i.e., @samp{deriv(y,x)} is reduced to zero. With
23472 the Hyperbolic flag, the @code{tderiv} (total derivative) operation is used
23473 instead, in which derivatives of variables are not reduced to zero
23474 unless those variables are known to be ``constant,'' i.e., independent
23475 of any other variables. (The built-in special variables like @code{pi}
23476 are considered constant, as are variables that have been declared
23477 @code{const}; @pxref{Declarations}.)
23479 With a numeric prefix argument @var{n}, this command computes the
23480 @var{n}th derivative.
23482 When working with trigonometric functions, it is best to switch to
23483 Radians mode first (with @w{@kbd{m r}}). The derivative of @samp{sin(x)}
23484 in degrees is @samp{(pi/180) cos(x)}, probably not the expected
23487 If you use the @code{deriv} function directly in an algebraic formula,
23488 you can write @samp{deriv(f,x,x0)} which represents the derivative
23489 of @expr{f} with respect to @expr{x}, evaluated at the point
23490 @texline @math{x=x_0}.
23491 @infoline @expr{x=x0}.
23493 If the formula being differentiated contains functions which Calc does
23494 not know, the derivatives of those functions are produced by adding
23495 primes (apostrophe characters). For example, @samp{deriv(f(2x), x)}
23496 produces @samp{2 f'(2 x)}, where the function @code{f'} represents the
23497 derivative of @code{f}.
23499 For functions you have defined with the @kbd{Z F} command, Calc expands
23500 the functions according to their defining formulas unless you have
23501 also defined @code{f'} suitably. For example, suppose we define
23502 @samp{sinc(x) = sin(x)/x} using @kbd{Z F}. If we then differentiate
23503 the formula @samp{sinc(2 x)}, the formula will be expanded to
23504 @samp{sin(2 x) / (2 x)} and differentiated. However, if we also
23505 define @samp{sinc'(x) = dsinc(x)}, say, then Calc will write the
23506 result as @samp{2 dsinc(2 x)}. @xref{Algebraic Definitions}.
23508 For multi-argument functions @samp{f(x,y,z)}, the derivative with respect
23509 to the first argument is written @samp{f'(x,y,z)}; derivatives with
23510 respect to the other arguments are @samp{f'2(x,y,z)} and @samp{f'3(x,y,z)}.
23511 Various higher-order derivatives can be formed in the obvious way, e.g.,
23512 @samp{f'@var{}'(x)} (the second derivative of @code{f}) or
23513 @samp{f'@var{}'2'3(x,y,z)} (@code{f} differentiated with respect to each
23516 @node Integration, Customizing the Integrator, Differentiation, Calculus
23517 @subsection Integration
23521 @pindex calc-integral
23523 The @kbd{a i} (@code{calc-integral}) [@code{integ}] command computes the
23524 indefinite integral of the expression on the top of the stack with
23525 respect to a prompted-for variable. The integrator is not guaranteed to
23526 work for all integrable functions, but it is able to integrate several
23527 large classes of formulas. In particular, any polynomial or rational
23528 function (a polynomial divided by a polynomial) is acceptable.
23529 (Rational functions don't have to be in explicit quotient form, however;
23530 @texline @math{x/(1+x^{-2})}
23531 @infoline @expr{x/(1+x^-2)}
23532 is not strictly a quotient of polynomials, but it is equivalent to
23533 @expr{x^3/(x^2+1)}, which is.) Also, square roots of terms involving
23534 @expr{x} and @expr{x^2} may appear in rational functions being
23535 integrated. Finally, rational functions involving trigonometric or
23536 hyperbolic functions can be integrated.
23538 With an argument (@kbd{C-u a i}), this command will compute the definite
23539 integral of the expression on top of the stack. In this case, the
23540 command will again prompt for an integration variable, then prompt for a
23541 lower limit and an upper limit.
23544 If you use the @code{integ} function directly in an algebraic formula,
23545 you can also write @samp{integ(f,x,v)} which expresses the resulting
23546 indefinite integral in terms of variable @code{v} instead of @code{x}.
23547 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23548 integral from @code{a} to @code{b}.
23551 If you use the @code{integ} function directly in an algebraic formula,
23552 you can also write @samp{integ(f,x,v)} which expresses the resulting
23553 indefinite integral in terms of variable @code{v} instead of @code{x}.
23554 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
23555 integral $\int_a^b f(x) \, dx$.
23558 Please note that the current implementation of Calc's integrator sometimes
23559 produces results that are significantly more complex than they need to
23560 be. For example, the integral Calc finds for
23561 @texline @math{1/(x+\sqrt{x^2+1})}
23562 @infoline @expr{1/(x+sqrt(x^2+1))}
23563 is several times more complicated than the answer Mathematica
23564 returns for the same input, although the two forms are numerically
23565 equivalent. Also, any indefinite integral should be considered to have
23566 an arbitrary constant of integration added to it, although Calc does not
23567 write an explicit constant of integration in its result. For example,
23568 Calc's solution for
23569 @texline @math{1/(1+\tan x)}
23570 @infoline @expr{1/(1+tan(x))}
23571 differs from the solution given in the @emph{CRC Math Tables} by a
23573 @texline @math{\pi i / 2}
23574 @infoline @expr{pi i / 2},
23575 due to a different choice of constant of integration.
23577 The Calculator remembers all the integrals it has done. If conditions
23578 change in a way that would invalidate the old integrals, say, a switch
23579 from Degrees to Radians mode, then they will be thrown out. If you
23580 suspect this is not happening when it should, use the
23581 @code{calc-flush-caches} command; @pxref{Caches}.
23584 Calc normally will pursue integration by substitution or integration by
23585 parts up to 3 nested times before abandoning an approach as fruitless.
23586 If the integrator is taking too long, you can lower this limit by storing
23587 a number (like 2) in the variable @code{IntegLimit}. (The @kbd{s I}
23588 command is a convenient way to edit @code{IntegLimit}.) If this variable
23589 has no stored value or does not contain a nonnegative integer, a limit
23590 of 3 is used. The lower this limit is, the greater the chance that Calc
23591 will be unable to integrate a function it could otherwise handle. Raising
23592 this limit allows the Calculator to solve more integrals, though the time
23593 it takes may grow exponentially. You can monitor the integrator's actions
23594 by creating an Emacs buffer called @code{*Trace*}. If such a buffer
23595 exists, the @kbd{a i} command will write a log of its actions there.
23597 If you want to manipulate integrals in a purely symbolic way, you can
23598 set the integration nesting limit to 0 to prevent all but fast
23599 table-lookup solutions of integrals. You might then wish to define
23600 rewrite rules for integration by parts, various kinds of substitutions,
23601 and so on. @xref{Rewrite Rules}.
23603 @node Customizing the Integrator, Numerical Integration, Integration, Calculus
23604 @subsection Customizing the Integrator
23608 Calc has two built-in rewrite rules called @code{IntegRules} and
23609 @code{IntegAfterRules} which you can edit to define new integration
23610 methods. @xref{Rewrite Rules}. At each step of the integration process,
23611 Calc wraps the current integrand in a call to the fictitious function
23612 @samp{integtry(@var{expr},@var{var})}, where @var{expr} is the
23613 integrand and @var{var} is the integration variable. If your rules
23614 rewrite this to be a plain formula (not a call to @code{integtry}), then
23615 Calc will use this formula as the integral of @var{expr}. For example,
23616 the rule @samp{integtry(mysin(x),x) := -mycos(x)} would define a rule to
23617 integrate a function @code{mysin} that acts like the sine function.
23618 Then, putting @samp{4 mysin(2y+1)} on the stack and typing @kbd{a i y}
23619 will produce the integral @samp{-2 mycos(2y+1)}. Note that Calc has
23620 automatically made various transformations on the integral to allow it
23621 to use your rule; integral tables generally give rules for
23622 @samp{mysin(a x + b)}, but you don't need to use this much generality
23623 in your @code{IntegRules}.
23625 @cindex Exponential integral Ei(x)
23630 As a more serious example, the expression @samp{exp(x)/x} cannot be
23631 integrated in terms of the standard functions, so the ``exponential
23632 integral'' function
23633 @texline @math{{\rm Ei}(x)}
23634 @infoline @expr{Ei(x)}
23635 was invented to describe it.
23636 We can get Calc to do this integral in terms of a made-up @code{Ei}
23637 function by adding the rule @samp{[integtry(exp(x)/x, x) := Ei(x)]}
23638 to @code{IntegRules}. Now entering @samp{exp(2x)/x} on the stack
23639 and typing @kbd{a i x} yields @samp{Ei(2 x)}. This new rule will
23640 work with Calc's various built-in integration methods (such as
23641 integration by substitution) to solve a variety of other problems
23642 involving @code{Ei}: For example, now Calc will also be able to
23643 integrate @samp{exp(exp(x))} and @samp{ln(ln(x))} (to get @samp{Ei(exp(x))}
23644 and @samp{x ln(ln(x)) - Ei(ln(x))}, respectively).
23646 Your rule may do further integration by calling @code{integ}. For
23647 example, @samp{integtry(twice(u),x) := twice(integ(u))} allows Calc
23648 to integrate @samp{twice(sin(x))} to get @samp{twice(-cos(x))}.
23649 Note that @code{integ} was called with only one argument. This notation
23650 is allowed only within @code{IntegRules}; it means ``integrate this
23651 with respect to the same integration variable.'' If Calc is unable
23652 to integrate @code{u}, the integration that invoked @code{IntegRules}
23653 also fails. Thus integrating @samp{twice(f(x))} fails, returning the
23654 unevaluated integral @samp{integ(twice(f(x)), x)}. It is still valid
23655 to call @code{integ} with two or more arguments, however; in this case,
23656 if @code{u} is not integrable, @code{twice} itself will still be
23657 integrated: If the above rule is changed to @samp{... := twice(integ(u,x))},
23658 then integrating @samp{twice(f(x))} will yield @samp{twice(integ(f(x),x))}.
23660 If a rule instead produces the formula @samp{integsubst(@var{sexpr},
23661 @var{svar})}, either replacing the top-level @code{integtry} call or
23662 nested anywhere inside the expression, then Calc will apply the
23663 substitution @samp{@var{u} = @var{sexpr}(@var{svar})} to try to
23664 integrate the original @var{expr}. For example, the rule
23665 @samp{sqrt(a) := integsubst(sqrt(x),x)} says that if Calc ever finds
23666 a square root in the integrand, it should attempt the substitution
23667 @samp{u = sqrt(x)}. (This particular rule is unnecessary because
23668 Calc always tries ``obvious'' substitutions where @var{sexpr} actually
23669 appears in the integrand.) The variable @var{svar} may be the same
23670 as the @var{var} that appeared in the call to @code{integtry}, but
23673 When integrating according to an @code{integsubst}, Calc uses the
23674 equation solver to find the inverse of @var{sexpr} (if the integrand
23675 refers to @var{var} anywhere except in subexpressions that exactly
23676 match @var{sexpr}). It uses the differentiator to find the derivative
23677 of @var{sexpr} and/or its inverse (it has two methods that use one
23678 derivative or the other). You can also specify these items by adding
23679 extra arguments to the @code{integsubst} your rules construct; the
23680 general form is @samp{integsubst(@var{sexpr}, @var{svar}, @var{sinv},
23681 @var{sprime})}, where @var{sinv} is the inverse of @var{sexpr} (still
23682 written as a function of @var{svar}), and @var{sprime} is the
23683 derivative of @var{sexpr} with respect to @var{svar}. If you don't
23684 specify these things, and Calc is not able to work them out on its
23685 own with the information it knows, then your substitution rule will
23686 work only in very specific, simple cases.
23688 Calc applies @code{IntegRules} as if by @kbd{C-u 1 a r IntegRules};
23689 in other words, Calc stops rewriting as soon as any rule in your rule
23690 set succeeds. (If it weren't for this, the @samp{integsubst(sqrt(x),x)}
23691 example above would keep on adding layers of @code{integsubst} calls
23694 @vindex IntegSimpRules
23695 Another set of rules, stored in @code{IntegSimpRules}, are applied
23696 every time the integrator uses algebraic simplifications to simplify an
23697 intermediate result. For example, putting the rule
23698 @samp{twice(x) := 2 x} into @code{IntegSimpRules} would tell Calc to
23699 convert the @code{twice} function into a form it knows whenever
23700 integration is attempted.
23702 One more way to influence the integrator is to define a function with
23703 the @kbd{Z F} command (@pxref{Algebraic Definitions}). Calc's
23704 integrator automatically expands such functions according to their
23705 defining formulas, even if you originally asked for the function to
23706 be left unevaluated for symbolic arguments. (Certain other Calc
23707 systems, such as the differentiator and the equation solver, also
23710 @vindex IntegAfterRules
23711 Sometimes Calc is able to find a solution to your integral, but it
23712 expresses the result in a way that is unnecessarily complicated. If
23713 this happens, you can either use @code{integsubst} as described
23714 above to try to hint at a more direct path to the desired result, or
23715 you can use @code{IntegAfterRules}. This is an extra rule set that
23716 runs after the main integrator returns its result; basically, Calc does
23717 an @kbd{a r IntegAfterRules} on the result before showing it to you.
23718 (It also does algebraic simplifications, without @code{IntegSimpRules},
23719 after that to further simplify the result.) For example, Calc's integrator
23720 sometimes produces expressions of the form @samp{ln(1+x) - ln(1-x)};
23721 the default @code{IntegAfterRules} rewrite this into the more readable
23722 form @samp{2 arctanh(x)}. Note that, unlike @code{IntegRules},
23723 @code{IntegSimpRules} and @code{IntegAfterRules} are applied any number
23724 of times until no further changes are possible. Rewriting by
23725 @code{IntegAfterRules} occurs only after the main integrator has
23726 finished, not at every step as for @code{IntegRules} and
23727 @code{IntegSimpRules}.
23729 @node Numerical Integration, Taylor Series, Customizing the Integrator, Calculus
23730 @subsection Numerical Integration
23734 @pindex calc-num-integral
23736 If you want a purely numerical answer to an integration problem, you can
23737 use the @kbd{a I} (@code{calc-num-integral}) [@code{ninteg}] command. This
23738 command prompts for an integration variable, a lower limit, and an
23739 upper limit. Except for the integration variable, all other variables
23740 that appear in the integrand formula must have stored values. (A stored
23741 value, if any, for the integration variable itself is ignored.)
23743 Numerical integration works by evaluating your formula at many points in
23744 the specified interval. Calc uses an ``open Romberg'' method; this means
23745 that it does not evaluate the formula actually at the endpoints (so that
23746 it is safe to integrate @samp{sin(x)/x} from zero, for example). Also,
23747 the Romberg method works especially well when the function being
23748 integrated is fairly smooth. If the function is not smooth, Calc will
23749 have to evaluate it at quite a few points before it can accurately
23750 determine the value of the integral.
23752 Integration is much faster when the current precision is small. It is
23753 best to set the precision to the smallest acceptable number of digits
23754 before you use @kbd{a I}. If Calc appears to be taking too long, press
23755 @kbd{C-g} to halt it and try a lower precision. If Calc still appears
23756 to need hundreds of evaluations, check to make sure your function is
23757 well-behaved in the specified interval.
23759 It is possible for the lower integration limit to be @samp{-inf} (minus
23760 infinity). Likewise, the upper limit may be plus infinity. Calc
23761 internally transforms the integral into an equivalent one with finite
23762 limits. However, integration to or across singularities is not supported:
23763 The integral of @samp{1/sqrt(x)} from 0 to 1 exists (it can be found
23764 by Calc's symbolic integrator, for example), but @kbd{a I} will fail
23765 because the integrand goes to infinity at one of the endpoints.
23767 @node Taylor Series, , Numerical Integration, Calculus
23768 @subsection Taylor Series
23772 @pindex calc-taylor
23774 The @kbd{a t} (@code{calc-taylor}) [@code{taylor}] command computes a
23775 power series expansion or Taylor series of a function. You specify the
23776 variable and the desired number of terms. You may give an expression of
23777 the form @samp{@var{var} = @var{a}} or @samp{@var{var} - @var{a}} instead
23778 of just a variable to produce a Taylor expansion about the point @var{a}.
23779 You may specify the number of terms with a numeric prefix argument;
23780 otherwise the command will prompt you for the number of terms. Note that
23781 many series expansions have coefficients of zero for some terms, so you
23782 may appear to get fewer terms than you asked for.
23784 If the @kbd{a i} command is unable to find a symbolic integral for a
23785 function, you can get an approximation by integrating the function's
23788 @node Solving Equations, Numerical Solutions, Calculus, Algebra
23789 @section Solving Equations
23793 @pindex calc-solve-for
23795 @cindex Equations, solving
23796 @cindex Solving equations
23797 The @kbd{a S} (@code{calc-solve-for}) [@code{solve}] command rearranges
23798 an equation to solve for a specific variable. An equation is an
23799 expression of the form @expr{L = R}. For example, the command @kbd{a S x}
23800 will rearrange @expr{y = 3x + 6} to the form, @expr{x = y/3 - 2}. If the
23801 input is not an equation, it is treated like an equation of the
23804 This command also works for inequalities, as in @expr{y < 3x + 6}.
23805 Some inequalities cannot be solved where the analogous equation could
23806 be; for example, solving
23807 @texline @math{a < b \, c}
23808 @infoline @expr{a < b c}
23809 for @expr{b} is impossible
23810 without knowing the sign of @expr{c}. In this case, @kbd{a S} will
23812 @texline @math{b \mathbin{\hbox{\code{!=}}} a/c}
23813 @infoline @expr{b != a/c}
23814 (using the not-equal-to operator) to signify that the direction of the
23815 inequality is now unknown. The inequality
23816 @texline @math{a \le b \, c}
23817 @infoline @expr{a <= b c}
23818 is not even partially solved. @xref{Declarations}, for a way to tell
23819 Calc that the signs of the variables in a formula are in fact known.
23821 Two useful commands for working with the result of @kbd{a S} are
23822 @kbd{a .} (@pxref{Logical Operations}), which converts @expr{x = y/3 - 2}
23823 to @expr{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates
23824 another formula with @expr{x} set equal to @expr{y/3 - 2}.
23827 * Multiple Solutions::
23828 * Solving Systems of Equations::
23829 * Decomposing Polynomials::
23832 @node Multiple Solutions, Solving Systems of Equations, Solving Equations, Solving Equations
23833 @subsection Multiple Solutions
23838 Some equations have more than one solution. The Hyperbolic flag
23839 (@code{H a S}) [@code{fsolve}] tells the solver to report the fully
23840 general family of solutions. It will invent variables @code{n1},
23841 @code{n2}, @dots{}, which represent independent arbitrary integers, and
23842 @code{s1}, @code{s2}, @dots{}, which represent independent arbitrary
23843 signs (either @mathit{+1} or @mathit{-1}). If you don't use the Hyperbolic
23844 flag, Calc will use zero in place of all arbitrary integers, and plus
23845 one in place of all arbitrary signs. Note that variables like @code{n1}
23846 and @code{s1} are not given any special interpretation in Calc except by
23847 the equation solver itself. As usual, you can use the @w{@kbd{s l}}
23848 (@code{calc-let}) command to obtain solutions for various actual values
23849 of these variables.
23851 For example, @kbd{' x^2 = y @key{RET} H a S x @key{RET}} solves to
23852 get @samp{x = s1 sqrt(y)}, indicating that the two solutions to the
23853 equation are @samp{sqrt(y)} and @samp{-sqrt(y)}. Another way to
23854 think about it is that the square-root operation is really a
23855 two-valued function; since every Calc function must return a
23856 single result, @code{sqrt} chooses to return the positive result.
23857 Then @kbd{H a S} doctors this result using @code{s1} to indicate
23858 the full set of possible values of the mathematical square-root.
23860 There is a similar phenomenon going the other direction: Suppose
23861 we solve @samp{sqrt(y) = x} for @code{y}. Calc squares both sides
23862 to get @samp{y = x^2}. This is correct, except that it introduces
23863 some dubious solutions. Consider solving @samp{sqrt(y) = -3}:
23864 Calc will report @expr{y = 9} as a valid solution, which is true
23865 in the mathematical sense of square-root, but false (there is no
23866 solution) for the actual Calc positive-valued @code{sqrt}. This
23867 happens for both @kbd{a S} and @kbd{H a S}.
23869 @cindex @code{GenCount} variable
23879 If you store a positive integer in the Calc variable @code{GenCount},
23880 then Calc will generate formulas of the form @samp{as(@var{n})} for
23881 arbitrary signs, and @samp{an(@var{n})} for arbitrary integers,
23882 where @var{n} represents successive values taken by incrementing
23883 @code{GenCount} by one. While the normal arbitrary sign and
23884 integer symbols start over at @code{s1} and @code{n1} with each
23885 new Calc command, the @code{GenCount} approach will give each
23886 arbitrary value a name that is unique throughout the entire Calc
23887 session. Also, the arbitrary values are function calls instead
23888 of variables, which is advantageous in some cases. For example,
23889 you can make a rewrite rule that recognizes all arbitrary signs
23890 using a pattern like @samp{as(n)}. The @kbd{s l} command only works
23891 on variables, but you can use the @kbd{a b} (@code{calc-substitute})
23892 command to substitute actual values for function calls like @samp{as(3)}.
23894 The @kbd{s G} (@code{calc-edit-GenCount}) command is a convenient
23895 way to create or edit this variable. Press @kbd{C-c C-c} to finish.
23897 If you have not stored a value in @code{GenCount}, or if the value
23898 in that variable is not a positive integer, the regular
23899 @code{s1}/@code{n1} notation is used.
23905 With the Inverse flag, @kbd{I a S} [@code{finv}] treats the expression
23906 on top of the stack as a function of the specified variable and solves
23907 to find the inverse function, written in terms of the same variable.
23908 For example, @kbd{I a S x} inverts @expr{2x + 6} to @expr{x/2 - 3}.
23909 You can use both Inverse and Hyperbolic [@code{ffinv}] to obtain a
23910 fully general inverse, as described above.
23913 @pindex calc-poly-roots
23915 Some equations, specifically polynomials, have a known, finite number
23916 of solutions. The @kbd{a P} (@code{calc-poly-roots}) [@code{roots}]
23917 command uses @kbd{H a S} to solve an equation in general form, then, for
23918 all arbitrary-sign variables like @code{s1}, and all arbitrary-integer
23919 variables like @code{n1} for which @code{n1} only usefully varies over
23920 a finite range, it expands these variables out to all their possible
23921 values. The results are collected into a vector, which is returned.
23922 For example, @samp{roots(x^4 = 1, x)} returns the four solutions
23923 @samp{[1, -1, (0, 1), (0, -1)]}. Generally an @var{n}th degree
23924 polynomial will always have @var{n} roots on the complex plane.
23925 (If you have given a @code{real} declaration for the solution
23926 variable, then only the real-valued solutions, if any, will be
23927 reported; @pxref{Declarations}.)
23929 Note that because @kbd{a P} uses @kbd{H a S}, it is able to deliver
23930 symbolic solutions if the polynomial has symbolic coefficients. Also
23931 note that Calc's solver is not able to get exact symbolic solutions
23932 to all polynomials. Polynomials containing powers up to @expr{x^4}
23933 can always be solved exactly; polynomials of higher degree sometimes
23934 can be: @expr{x^6 + x^3 + 1} is converted to @expr{(x^3)^2 + (x^3) + 1},
23935 which can be solved for @expr{x^3} using the quadratic equation, and then
23936 for @expr{x} by taking cube roots. But in many cases, like
23937 @expr{x^6 + x + 1}, Calc does not know how to rewrite the polynomial
23938 into a form it can solve. The @kbd{a P} command can still deliver a
23939 list of numerical roots, however, provided that Symbolic mode (@kbd{m s})
23940 is not turned on. (If you work with Symbolic mode on, recall that the
23941 @kbd{N} (@code{calc-eval-num}) key is a handy way to reevaluate the
23942 formula on the stack with Symbolic mode temporarily off.) Naturally,
23943 @kbd{a P} can only provide numerical roots if the polynomial coefficients
23944 are all numbers (real or complex).
23946 @node Solving Systems of Equations, Decomposing Polynomials, Multiple Solutions, Solving Equations
23947 @subsection Solving Systems of Equations
23950 @cindex Systems of equations, symbolic
23951 You can also use the commands described above to solve systems of
23952 simultaneous equations. Just create a vector of equations, then
23953 specify a vector of variables for which to solve. (You can omit
23954 the surrounding brackets when entering the vector of variables
23957 For example, putting @samp{[x + y = a, x - y = b]} on the stack
23958 and typing @kbd{a S x,y @key{RET}} produces the vector of solutions
23959 @samp{[x = a - (a-b)/2, y = (a-b)/2]}. The result vector will
23960 have the same length as the variables vector, and the variables
23961 will be listed in the same order there. Note that the solutions
23962 are not always simplified as far as possible; the solution for
23963 @expr{x} here could be improved by an application of the @kbd{a n}
23966 Calc's algorithm works by trying to eliminate one variable at a
23967 time by solving one of the equations for that variable and then
23968 substituting into the other equations. Calc will try all the
23969 possibilities, but you can speed things up by noting that Calc
23970 first tries to eliminate the first variable with the first
23971 equation, then the second variable with the second equation,
23972 and so on. It also helps to put the simpler (e.g., more linear)
23973 equations toward the front of the list. Calc's algorithm will
23974 solve any system of linear equations, and also many kinds of
23981 Normally there will be as many variables as equations. If you
23982 give fewer variables than equations (an ``over-determined'' system
23983 of equations), Calc will find a partial solution. For example,
23984 typing @kbd{a S y @key{RET}} with the above system of equations
23985 would produce @samp{[y = a - x]}. There are now several ways to
23986 express this solution in terms of the original variables; Calc uses
23987 the first one that it finds. You can control the choice by adding
23988 variable specifiers of the form @samp{elim(@var{v})} to the
23989 variables list. This says that @var{v} should be eliminated from
23990 the equations; the variable will not appear at all in the solution.
23991 For example, typing @kbd{a S y,elim(x)} would yield
23992 @samp{[y = a - (b+a)/2]}.
23994 If the variables list contains only @code{elim} specifiers,
23995 Calc simply eliminates those variables from the equations
23996 and then returns the resulting set of equations. For example,
23997 @kbd{a S elim(x)} produces @samp{[a - 2 y = b]}. Every variable
23998 eliminated will reduce the number of equations in the system
24001 Again, @kbd{a S} gives you one solution to the system of
24002 equations. If there are several solutions, you can use @kbd{H a S}
24003 to get a general family of solutions, or, if there is a finite
24004 number of solutions, you can use @kbd{a P} to get a list. (In
24005 the latter case, the result will take the form of a matrix where
24006 the rows are different solutions and the columns correspond to the
24007 variables you requested.)
24009 Another way to deal with certain kinds of overdetermined systems of
24010 equations is the @kbd{a F} command, which does least-squares fitting
24011 to satisfy the equations. @xref{Curve Fitting}.
24013 @node Decomposing Polynomials, , Solving Systems of Equations, Solving Equations
24014 @subsection Decomposing Polynomials
24021 The @code{poly} function takes a polynomial and a variable as
24022 arguments, and returns a vector of polynomial coefficients (constant
24023 coefficient first). For example, @samp{poly(x^3 + 2 x, x)} returns
24024 @expr{[0, 2, 0, 1]}. If the input is not a polynomial in @expr{x},
24025 the call to @code{poly} is left in symbolic form. If the input does
24026 not involve the variable @expr{x}, the input is returned in a list
24027 of length one, representing a polynomial with only a constant
24028 coefficient. The call @samp{poly(x, x)} returns the vector @expr{[0, 1]}.
24029 The last element of the returned vector is guaranteed to be nonzero;
24030 note that @samp{poly(0, x)} returns the empty vector @expr{[]}.
24031 Note also that @expr{x} may actually be any formula; for example,
24032 @samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @expr{[3, -1, 1]}.
24034 @cindex Coefficients of polynomial
24035 @cindex Degree of polynomial
24036 To get the @expr{x^k} coefficient of polynomial @expr{p}, use
24037 @samp{poly(p, x)_(k+1)}. To get the degree of polynomial @expr{p},
24038 use @samp{vlen(poly(p, x)) - 1}. For example, @samp{poly((x+1)^4, x)}
24039 returns @samp{[1, 4, 6, 4, 1]}, so @samp{poly((x+1)^4, x)_(2+1)}
24040 gives the @expr{x^2} coefficient of this polynomial, 6.
24046 One important feature of the solver is its ability to recognize
24047 formulas which are ``essentially'' polynomials. This ability is
24048 made available to the user through the @code{gpoly} function, which
24049 is used just like @code{poly}: @samp{gpoly(@var{expr}, @var{var})}.
24050 If @var{expr} is a polynomial in some term which includes @var{var}, then
24051 this function will return a vector @samp{[@var{x}, @var{c}, @var{a}]}
24052 where @var{x} is the term that depends on @var{var}, @var{c} is a
24053 vector of polynomial coefficients (like the one returned by @code{poly}),
24054 and @var{a} is a multiplier which is usually 1. Basically,
24055 @samp{@var{expr} = @var{a}*(@var{c}_1 + @var{c}_2 @var{x} +
24056 @var{c}_3 @var{x}^2 + ...)}. The last element of @var{c} is
24057 guaranteed to be non-zero, and @var{c} will not equal @samp{[1]}
24058 (i.e., the trivial decomposition @var{expr} = @var{x} is not
24059 considered a polynomial). One side effect is that @samp{gpoly(x, x)}
24060 and @samp{gpoly(6, x)}, both of which might be expected to recognize
24061 their arguments as polynomials, will not because the decomposition
24062 is considered trivial.
24064 For example, @samp{gpoly((x-2)^2, x)} returns @samp{[x, [4, -4, 1], 1]},
24065 since the expanded form of this polynomial is @expr{4 - 4 x + x^2}.
24067 The term @var{x} may itself be a polynomial in @var{var}. This is
24068 done to reduce the size of the @var{c} vector. For example,
24069 @samp{gpoly(x^4 + x^2 - 1, x)} returns @samp{[x^2, [-1, 1, 1], 1]},
24070 since a quadratic polynomial in @expr{x^2} is easier to solve than
24071 a quartic polynomial in @expr{x}.
24073 A few more examples of the kinds of polynomials @code{gpoly} can
24077 sin(x) - 1 [sin(x), [-1, 1], 1]
24078 x + 1/x - 1 [x, [1, -1, 1], 1/x]
24079 x + 1/x [x^2, [1, 1], 1/x]
24080 x^3 + 2 x [x^2, [2, 1], x]
24081 x + x^2:3 + sqrt(x) [x^1:6, [1, 1, 0, 1], x^1:2]
24082 x^(2a) + 2 x^a + 5 [x^a, [5, 2, 1], 1]
24083 (exp(-x) + exp(x)) / 2 [e^(2 x), [0.5, 0.5], e^-x]
24086 The @code{poly} and @code{gpoly} functions accept a third integer argument
24087 which specifies the largest degree of polynomial that is acceptable.
24088 If this is @expr{n}, then only @var{c} vectors of length @expr{n+1}
24089 or less will be returned. Otherwise, the @code{poly} or @code{gpoly}
24090 call will remain in symbolic form. For example, the equation solver
24091 can handle quartics and smaller polynomials, so it calls
24092 @samp{gpoly(@var{expr}, @var{var}, 4)} to discover whether @var{expr}
24093 can be treated by its linear, quadratic, cubic, or quartic formulas.
24099 The @code{pdeg} function computes the degree of a polynomial;
24100 @samp{pdeg(p,x)} is the highest power of @code{x} that appears in
24101 @code{p}. This is the same as @samp{vlen(poly(p,x))-1}, but is
24102 much more efficient. If @code{p} is constant with respect to @code{x},
24103 then @samp{pdeg(p,x) = 0}. If @code{p} is not a polynomial in @code{x}
24104 (e.g., @samp{pdeg(2 cos(x), x)}, the function remains unevaluated.
24105 It is possible to omit the second argument @code{x}, in which case
24106 @samp{pdeg(p)} returns the highest total degree of any term of the
24107 polynomial, counting all variables that appear in @code{p}. Note
24108 that @code{pdeg(c) = pdeg(c,x) = 0} for any nonzero constant @code{c};
24109 the degree of the constant zero is considered to be @code{-inf}
24116 The @code{plead} function finds the leading term of a polynomial.
24117 Thus @samp{plead(p,x)} is equivalent to @samp{poly(p,x)_vlen(poly(p,x))},
24118 though again more efficient. In particular, @samp{plead((2x+1)^10, x)}
24119 returns 1024 without expanding out the list of coefficients. The
24120 value of @code{plead(p,x)} will be zero only if @expr{p = 0}.
24126 The @code{pcont} function finds the @dfn{content} of a polynomial. This
24127 is the greatest common divisor of all the coefficients of the polynomial.
24128 With two arguments, @code{pcont(p,x)} effectively uses @samp{poly(p,x)}
24129 to get a list of coefficients, then uses @code{pgcd} (the polynomial
24130 GCD function) to combine these into an answer. For example,
24131 @samp{pcont(4 x y^2 + 6 x^2 y, x)} is @samp{2 y}. The content is
24132 basically the ``biggest'' polynomial that can be divided into @code{p}
24133 exactly. The sign of the content is the same as the sign of the leading
24136 With only one argument, @samp{pcont(p)} computes the numerical
24137 content of the polynomial, i.e., the @code{gcd} of the numerical
24138 coefficients of all the terms in the formula. Note that @code{gcd}
24139 is defined on rational numbers as well as integers; it computes
24140 the @code{gcd} of the numerators and the @code{lcm} of the
24141 denominators. Thus @samp{pcont(4:3 x y^2 + 6 x^2 y)} returns 2:3.
24142 Dividing the polynomial by this number will clear all the
24143 denominators, as well as dividing by any common content in the
24144 numerators. The numerical content of a polynomial is negative only
24145 if all the coefficients in the polynomial are negative.
24151 The @code{pprim} function finds the @dfn{primitive part} of a
24152 polynomial, which is simply the polynomial divided (using @code{pdiv}
24153 if necessary) by its content. If the input polynomial has rational
24154 coefficients, the result will have integer coefficients in simplest
24157 @node Numerical Solutions, Curve Fitting, Solving Equations, Algebra
24158 @section Numerical Solutions
24161 Not all equations can be solved symbolically. The commands in this
24162 section use numerical algorithms that can find a solution to a specific
24163 instance of an equation to any desired accuracy. Note that the
24164 numerical commands are slower than their algebraic cousins; it is a
24165 good idea to try @kbd{a S} before resorting to these commands.
24167 (@xref{Curve Fitting}, for some other, more specialized, operations
24168 on numerical data.)
24173 * Numerical Systems of Equations::
24176 @node Root Finding, Minimization, Numerical Solutions, Numerical Solutions
24177 @subsection Root Finding
24181 @pindex calc-find-root
24183 @cindex Newton's method
24184 @cindex Roots of equations
24185 @cindex Numerical root-finding
24186 The @kbd{a R} (@code{calc-find-root}) [@code{root}] command finds a
24187 numerical solution (or @dfn{root}) of an equation. (This command treats
24188 inequalities the same as equations. If the input is any other kind
24189 of formula, it is interpreted as an equation of the form @expr{X = 0}.)
24191 The @kbd{a R} command requires an initial guess on the top of the
24192 stack, and a formula in the second-to-top position. It prompts for a
24193 solution variable, which must appear in the formula. All other variables
24194 that appear in the formula must have assigned values, i.e., when
24195 a value is assigned to the solution variable and the formula is
24196 evaluated with @kbd{=}, it should evaluate to a number. Any assigned
24197 value for the solution variable itself is ignored and unaffected by
24200 When the command completes, the initial guess is replaced on the stack
24201 by a vector of two numbers: The value of the solution variable that
24202 solves the equation, and the difference between the lefthand and
24203 righthand sides of the equation at that value. Ordinarily, the second
24204 number will be zero or very nearly zero. (Note that Calc uses a
24205 slightly higher precision while finding the root, and thus the second
24206 number may be slightly different from the value you would compute from
24207 the equation yourself.)
24209 The @kbd{v h} (@code{calc-head}) command is a handy way to extract
24210 the first element of the result vector, discarding the error term.
24212 The initial guess can be a real number, in which case Calc searches
24213 for a real solution near that number, or a complex number, in which
24214 case Calc searches the whole complex plane near that number for a
24215 solution, or it can be an interval form which restricts the search
24216 to real numbers inside that interval.
24218 Calc tries to use @kbd{a d} to take the derivative of the equation.
24219 If this succeeds, it uses Newton's method. If the equation is not
24220 differentiable Calc uses a bisection method. (If Newton's method
24221 appears to be going astray, Calc switches over to bisection if it
24222 can, or otherwise gives up. In this case it may help to try again
24223 with a slightly different initial guess.) If the initial guess is a
24224 complex number, the function must be differentiable.
24226 If the formula (or the difference between the sides of an equation)
24227 is negative at one end of the interval you specify and positive at
24228 the other end, the root finder is guaranteed to find a root.
24229 Otherwise, Calc subdivides the interval into small parts looking for
24230 positive and negative values to bracket the root. When your guess is
24231 an interval, Calc will not look outside that interval for a root.
24235 The @kbd{H a R} [@code{wroot}] command is similar to @kbd{a R}, except
24236 that if the initial guess is an interval for which the function has
24237 the same sign at both ends, then rather than subdividing the interval
24238 Calc attempts to widen it to enclose a root. Use this mode if
24239 you are not sure if the function has a root in your interval.
24241 If the function is not differentiable, and you give a simple number
24242 instead of an interval as your initial guess, Calc uses this widening
24243 process even if you did not type the Hyperbolic flag. (If the function
24244 @emph{is} differentiable, Calc uses Newton's method which does not
24245 require a bounding interval in order to work.)
24247 If Calc leaves the @code{root} or @code{wroot} function in symbolic
24248 form on the stack, it will normally display an explanation for why
24249 no root was found. If you miss this explanation, press @kbd{w}
24250 (@code{calc-why}) to get it back.
24252 @node Minimization, Numerical Systems of Equations, Root Finding, Numerical Solutions
24253 @subsection Minimization
24260 @pindex calc-find-minimum
24261 @pindex calc-find-maximum
24264 @cindex Minimization, numerical
24265 The @kbd{a N} (@code{calc-find-minimum}) [@code{minimize}] command
24266 finds a minimum value for a formula. It is very similar in operation
24267 to @kbd{a R} (@code{calc-find-root}): You give the formula and an initial
24268 guess on the stack, and are prompted for the name of a variable. The guess
24269 may be either a number near the desired minimum, or an interval enclosing
24270 the desired minimum. The function returns a vector containing the
24271 value of the variable which minimizes the formula's value, along
24272 with the minimum value itself.
24274 Note that this command looks for a @emph{local} minimum. Many functions
24275 have more than one minimum; some, like
24276 @texline @math{x \sin x},
24277 @infoline @expr{x sin(x)},
24278 have infinitely many. In fact, there is no easy way to define the
24279 ``global'' minimum of
24280 @texline @math{x \sin x}
24281 @infoline @expr{x sin(x)}
24282 but Calc can still locate any particular local minimum
24283 for you. Calc basically goes downhill from the initial guess until it
24284 finds a point at which the function's value is greater both to the left
24285 and to the right. Calc does not use derivatives when minimizing a function.
24287 If your initial guess is an interval and it looks like the minimum
24288 occurs at one or the other endpoint of the interval, Calc will return
24289 that endpoint only if that endpoint is closed; thus, minimizing @expr{17 x}
24290 over @expr{[2..3]} will return @expr{[2, 38]}, but minimizing over
24291 @expr{(2..3]} would report no minimum found. In general, you should
24292 use closed intervals to find literally the minimum value in that
24293 range of @expr{x}, or open intervals to find the local minimum, if
24294 any, that happens to lie in that range.
24296 Most functions are smooth and flat near their minimum values. Because
24297 of this flatness, if the current precision is, say, 12 digits, the
24298 variable can only be determined meaningfully to about six digits. Thus
24299 you should set the precision to twice as many digits as you need in your
24310 The @kbd{H a N} [@code{wminimize}] command, analogously to @kbd{H a R},
24311 expands the guess interval to enclose a minimum rather than requiring
24312 that the minimum lie inside the interval you supply.
24314 The @kbd{a X} (@code{calc-find-maximum}) [@code{maximize}] and
24315 @kbd{H a X} [@code{wmaximize}] commands effectively minimize the
24316 negative of the formula you supply.
24318 The formula must evaluate to a real number at all points inside the
24319 interval (or near the initial guess if the guess is a number). If
24320 the initial guess is a complex number the variable will be minimized
24321 over the complex numbers; if it is real or an interval it will
24322 be minimized over the reals.
24324 @node Numerical Systems of Equations, , Minimization, Numerical Solutions
24325 @subsection Systems of Equations
24328 @cindex Systems of equations, numerical
24329 The @kbd{a R} command can also solve systems of equations. In this
24330 case, the equation should instead be a vector of equations, the
24331 guess should instead be a vector of numbers (intervals are not
24332 supported), and the variable should be a vector of variables. You
24333 can omit the brackets while entering the list of variables. Each
24334 equation must be differentiable by each variable for this mode to
24335 work. The result will be a vector of two vectors: The variable
24336 values that solved the system of equations, and the differences
24337 between the sides of the equations with those variable values.
24338 There must be the same number of equations as variables. Since
24339 only plain numbers are allowed as guesses, the Hyperbolic flag has
24340 no effect when solving a system of equations.
24342 It is also possible to minimize over many variables with @kbd{a N}
24343 (or maximize with @kbd{a X}). Once again the variable name should
24344 be replaced by a vector of variables, and the initial guess should
24345 be an equal-sized vector of initial guesses. But, unlike the case of
24346 multidimensional @kbd{a R}, the formula being minimized should
24347 still be a single formula, @emph{not} a vector. Beware that
24348 multidimensional minimization is currently @emph{very} slow.
24350 @node Curve Fitting, Summations, Numerical Solutions, Algebra
24351 @section Curve Fitting
24354 The @kbd{a F} command fits a set of data to a @dfn{model formula},
24355 such as @expr{y = m x + b} where @expr{m} and @expr{b} are parameters
24356 to be determined. For a typical set of measured data there will be
24357 no single @expr{m} and @expr{b} that exactly fit the data; in this
24358 case, Calc chooses values of the parameters that provide the closest
24359 possible fit. The model formula can be entered in various ways after
24360 the key sequence @kbd{a F} is pressed.
24362 If the letter @kbd{P} is pressed after @kbd{a F} but before the model
24363 description is entered, the data as well as the model formula will be
24364 plotted after the formula is determined. This will be indicated by a
24365 ``P'' in the minibuffer after the help message.
24369 * Polynomial and Multilinear Fits::
24370 * Error Estimates for Fits::
24371 * Standard Nonlinear Models::
24372 * Curve Fitting Details::
24376 @node Linear Fits, Polynomial and Multilinear Fits, Curve Fitting, Curve Fitting
24377 @subsection Linear Fits
24381 @pindex calc-curve-fit
24383 @cindex Linear regression
24384 @cindex Least-squares fits
24385 The @kbd{a F} (@code{calc-curve-fit}) [@code{fit}] command attempts
24386 to fit a set of data (@expr{x} and @expr{y} vectors of numbers) to a
24387 straight line, polynomial, or other function of @expr{x}. For the
24388 moment we will consider only the case of fitting to a line, and we
24389 will ignore the issue of whether or not the model was in fact a good
24392 In a standard linear least-squares fit, we have a set of @expr{(x,y)}
24393 data points that we wish to fit to the model @expr{y = m x + b}
24394 by adjusting the parameters @expr{m} and @expr{b} to make the @expr{y}
24395 values calculated from the formula be as close as possible to the actual
24396 @expr{y} values in the data set. (In a polynomial fit, the model is
24397 instead, say, @expr{y = a x^3 + b x^2 + c x + d}. In a multilinear fit,
24398 we have data points of the form @expr{(x_1,x_2,x_3,y)} and our model is
24399 @expr{y = a x_1 + b x_2 + c x_3 + d}. These will be discussed later.)
24401 In the model formula, variables like @expr{x} and @expr{x_2} are called
24402 the @dfn{independent variables}, and @expr{y} is the @dfn{dependent
24403 variable}. Variables like @expr{m}, @expr{a}, and @expr{b} are called
24404 the @dfn{parameters} of the model.
24406 The @kbd{a F} command takes the data set to be fitted from the stack.
24407 By default, it expects the data in the form of a matrix. For example,
24408 for a linear or polynomial fit, this would be a
24409 @texline @math{2\times N}
24411 matrix where the first row is a list of @expr{x} values and the second
24412 row has the corresponding @expr{y} values. For the multilinear fit
24413 shown above, the matrix would have four rows (@expr{x_1}, @expr{x_2},
24414 @expr{x_3}, and @expr{y}, respectively).
24416 If you happen to have an
24417 @texline @math{N\times2}
24419 matrix instead of a
24420 @texline @math{2\times N}
24422 matrix, just press @kbd{v t} first to transpose the matrix.
24424 After you type @kbd{a F}, Calc prompts you to select a model. For a
24425 linear fit, press the digit @kbd{1}.
24427 Calc then prompts for you to name the variables. By default it chooses
24428 high letters like @expr{x} and @expr{y} for independent variables and
24429 low letters like @expr{a} and @expr{b} for parameters. (The dependent
24430 variable doesn't need a name.) The two kinds of variables are separated
24431 by a semicolon. Since you generally care more about the names of the
24432 independent variables than of the parameters, Calc also allows you to
24433 name only those and let the parameters use default names.
24435 For example, suppose the data matrix
24440 [ [ 1, 2, 3, 4, 5 ]
24441 [ 5, 7, 9, 11, 13 ] ]
24447 $$ \pmatrix{ 1 & 2 & 3 & 4 & 5 \cr
24448 5 & 7 & 9 & 11 & 13 }
24454 is on the stack and we wish to do a simple linear fit. Type
24455 @kbd{a F}, then @kbd{1} for the model, then @key{RET} to use
24456 the default names. The result will be the formula @expr{3. + 2. x}
24457 on the stack. Calc has created the model expression @kbd{a + b x},
24458 then found the optimal values of @expr{a} and @expr{b} to fit the
24459 data. (In this case, it was able to find an exact fit.) Calc then
24460 substituted those values for @expr{a} and @expr{b} in the model
24463 The @kbd{a F} command puts two entries in the trail. One is, as
24464 always, a copy of the result that went to the stack; the other is
24465 a vector of the actual parameter values, written as equations:
24466 @expr{[a = 3, b = 2]}, in case you'd rather read them in a list
24467 than pick them out of the formula. (You can type @kbd{t y}
24468 to move this vector to the stack; see @ref{Trail Commands}.
24470 Specifying a different independent variable name will affect the
24471 resulting formula: @kbd{a F 1 k @key{RET}} produces @kbd{3 + 2 k}.
24472 Changing the parameter names (say, @kbd{a F 1 k;b,m @key{RET}}) will affect
24473 the equations that go into the trail.
24479 To see what happens when the fit is not exact, we could change
24480 the number 13 in the data matrix to 14 and try the fit again.
24487 Evaluating this formula, say with @kbd{v x 5 @key{RET} @key{TAB} V M $ @key{RET}}, shows
24488 a reasonably close match to the y-values in the data.
24491 [4.8, 7., 9.2, 11.4, 13.6]
24494 Since there is no line which passes through all the @var{n} data points,
24495 Calc has chosen a line that best approximates the data points using
24496 the method of least squares. The idea is to define the @dfn{chi-square}
24501 chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N)
24506 $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
24511 which is clearly zero if @expr{a + b x} exactly fits all data points,
24512 and increases as various @expr{a + b x_i} values fail to match the
24513 corresponding @expr{y_i} values. There are several reasons why the
24514 summand is squared, one of them being to ensure that
24515 @texline @math{\chi^2 \ge 0}.
24516 @infoline @expr{chi^2 >= 0}.
24517 Least-squares fitting simply chooses the values of @expr{a} and @expr{b}
24518 for which the error
24519 @texline @math{\chi^2}
24520 @infoline @expr{chi^2}
24521 is as small as possible.
24523 Other kinds of models do the same thing but with a different model
24524 formula in place of @expr{a + b x_i}.
24530 A numeric prefix argument causes the @kbd{a F} command to take the
24531 data in some other form than one big matrix. A positive argument @var{n}
24532 will take @var{N} items from the stack, corresponding to the @var{n} rows
24533 of a data matrix. In the linear case, @var{n} must be 2 since there
24534 is always one independent variable and one dependent variable.
24536 A prefix of zero or plain @kbd{C-u} is a compromise; Calc takes two
24537 items from the stack, an @var{n}-row matrix of @expr{x} values, and a
24538 vector of @expr{y} values. If there is only one independent variable,
24539 the @expr{x} values can be either a one-row matrix or a plain vector,
24540 in which case the @kbd{C-u} prefix is the same as a @w{@kbd{C-u 2}} prefix.
24542 @node Polynomial and Multilinear Fits, Error Estimates for Fits, Linear Fits, Curve Fitting
24543 @subsection Polynomial and Multilinear Fits
24546 To fit the data to higher-order polynomials, just type one of the
24547 digits @kbd{2} through @kbd{9} when prompted for a model. For example,
24548 we could fit the original data matrix from the previous section
24549 (with 13, not 14) to a parabola instead of a line by typing
24550 @kbd{a F 2 @key{RET}}.
24553 2.00000000001 x - 1.5e-12 x^2 + 2.99999999999
24556 Note that since the constant and linear terms are enough to fit the
24557 data exactly, it's no surprise that Calc chose a tiny contribution
24558 for @expr{x^2}. (The fact that it's not exactly zero is due only
24559 to roundoff error. Since our data are exact integers, we could get
24560 an exact answer by typing @kbd{m f} first to get Fraction mode.
24561 Then the @expr{x^2} term would vanish altogether. Usually, though,
24562 the data being fitted will be approximate floats so Fraction mode
24565 Doing the @kbd{a F 2} fit on the data set with 14 instead of 13
24566 gives a much larger @expr{x^2} contribution, as Calc bends the
24567 line slightly to improve the fit.
24570 0.142857142855 x^2 + 1.34285714287 x + 3.59999999998
24573 An important result from the theory of polynomial fitting is that it
24574 is always possible to fit @var{n} data points exactly using a polynomial
24575 of degree @mathit{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}.
24576 Using the modified (14) data matrix, a model number of 4 gives
24577 a polynomial that exactly matches all five data points:
24580 0.04167 x^4 - 0.4167 x^3 + 1.458 x^2 - 0.08333 x + 4.
24583 The actual coefficients we get with a precision of 12, like
24584 @expr{0.0416666663588}, clearly suffer from loss of precision.
24585 It is a good idea to increase the working precision to several
24586 digits beyond what you need when you do a fitting operation.
24587 Or, if your data are exact, use Fraction mode to get exact
24590 You can type @kbd{i} instead of a digit at the model prompt to fit
24591 the data exactly to a polynomial. This just counts the number of
24592 columns of the data matrix to choose the degree of the polynomial
24595 Fitting data ``exactly'' to high-degree polynomials is not always
24596 a good idea, though. High-degree polynomials have a tendency to
24597 wiggle uncontrollably in between the fitting data points. Also,
24598 if the exact-fit polynomial is going to be used to interpolate or
24599 extrapolate the data, it is numerically better to use the @kbd{a p}
24600 command described below. @xref{Interpolation}.
24606 Another generalization of the linear model is to assume the
24607 @expr{y} values are a sum of linear contributions from several
24608 @expr{x} values. This is a @dfn{multilinear} fit, and it is also
24609 selected by the @kbd{1} digit key. (Calc decides whether the fit
24610 is linear or multilinear by counting the rows in the data matrix.)
24612 Given the data matrix,
24616 [ [ 1, 2, 3, 4, 5 ]
24618 [ 14.5, 15, 18.5, 22.5, 24 ] ]
24623 the command @kbd{a F 1 @key{RET}} will call the first row @expr{x} and the
24624 second row @expr{y}, and will fit the values in the third row to the
24625 model @expr{a + b x + c y}.
24631 Calc can do multilinear fits with any number of independent variables
24632 (i.e., with any number of data rows).
24638 Yet another variation is @dfn{homogeneous} linear models, in which
24639 the constant term is known to be zero. In the linear case, this
24640 means the model formula is simply @expr{a x}; in the multilinear
24641 case, the model might be @expr{a x + b y + c z}; and in the polynomial
24642 case, the model could be @expr{a x + b x^2 + c x^3}. You can get
24643 a homogeneous linear or multilinear model by pressing the letter
24644 @kbd{h} followed by a regular model key, like @kbd{1} or @kbd{2}.
24645 This will be indicated by an ``h'' in the minibuffer after the help
24648 It is certainly possible to have other constrained linear models,
24649 like @expr{2.3 + a x} or @expr{a - 4 x}. While there is no single
24650 key to select models like these, a later section shows how to enter
24651 any desired model by hand. In the first case, for example, you
24652 would enter @kbd{a F ' 2.3 + a x}.
24654 Another class of models that will work but must be entered by hand
24655 are multinomial fits, e.g., @expr{a + b x + c y + d x^2 + e y^2 + f x y}.
24657 @node Error Estimates for Fits, Standard Nonlinear Models, Polynomial and Multilinear Fits, Curve Fitting
24658 @subsection Error Estimates for Fits
24663 With the Hyperbolic flag, @kbd{H a F} [@code{efit}] performs the same
24664 fitting operation as @kbd{a F}, but reports the coefficients as error
24665 forms instead of plain numbers. Fitting our two data matrices (first
24666 with 13, then with 14) to a line with @kbd{H a F} gives the results,
24670 2.6 +/- 0.382970843103 + 2.2 +/- 0.115470053838 x
24673 In the first case the estimated errors are zero because the linear
24674 fit is perfect. In the second case, the errors are nonzero but
24675 moderately small, because the data are still very close to linear.
24677 It is also possible for the @emph{input} to a fitting operation to
24678 contain error forms. The data values must either all include errors
24679 or all be plain numbers. Error forms can go anywhere but generally
24680 go on the numbers in the last row of the data matrix. If the last
24681 row contains error forms
24682 @texline `@var{y_i}@w{ @tfn{+/-} }@math{\sigma_i}',
24683 @infoline `@var{y_i}@w{ @tfn{+/-} }@var{sigma_i}',
24685 @texline @math{\chi^2}
24686 @infoline @expr{chi^2}
24691 chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N)
24696 $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$
24701 so that data points with larger error estimates contribute less to
24702 the fitting operation.
24704 If there are error forms on other rows of the data matrix, all the
24705 errors for a given data point are combined; the square root of the
24706 sum of the squares of the errors forms the
24707 @texline @math{\sigma_i}
24708 @infoline @expr{sigma_i}
24709 used for the data point.
24711 Both @kbd{a F} and @kbd{H a F} can accept error forms in the input
24712 matrix, although if you are concerned about error analysis you will
24713 probably use @kbd{H a F} so that the output also contains error
24716 If the input contains error forms but all the
24717 @texline @math{\sigma_i}
24718 @infoline @expr{sigma_i}
24719 values are the same, it is easy to see that the resulting fitted model
24720 will be the same as if the input did not have error forms at all
24721 @texline (@math{\chi^2}
24722 @infoline (@expr{chi^2}
24723 is simply scaled uniformly by
24724 @texline @math{1 / \sigma^2},
24725 @infoline @expr{1 / sigma^2},
24726 which doesn't affect where it has a minimum). But there @emph{will} be
24727 a difference in the estimated errors of the coefficients reported by
24730 Consult any text on statistical modeling of data for a discussion
24731 of where these error estimates come from and how they should be
24740 With the Inverse flag, @kbd{I a F} [@code{xfit}] produces even more
24741 information. The result is a vector of six items:
24745 The model formula with error forms for its coefficients or
24746 parameters. This is the result that @kbd{H a F} would have
24750 A vector of ``raw'' parameter values for the model. These are the
24751 polynomial coefficients or other parameters as plain numbers, in the
24752 same order as the parameters appeared in the final prompt of the
24753 @kbd{I a F} command. For polynomials of degree @expr{d}, this vector
24754 will have length @expr{M = d+1} with the constant term first.
24757 The covariance matrix @expr{C} computed from the fit. This is
24758 an @var{m}x@var{m} symmetric matrix; the diagonal elements
24759 @texline @math{C_{jj}}
24760 @infoline @expr{C_j_j}
24762 @texline @math{\sigma_j^2}
24763 @infoline @expr{sigma_j^2}
24764 of the parameters. The other elements are covariances
24765 @texline @math{\sigma_{ij}^2}
24766 @infoline @expr{sigma_i_j^2}
24767 that describe the correlation between pairs of parameters. (A related
24768 set of numbers, the @dfn{linear correlation coefficients}
24769 @texline @math{r_{ij}},
24770 @infoline @expr{r_i_j},
24772 @texline @math{\sigma_{ij}^2 / \sigma_i \, \sigma_j}.)
24773 @infoline @expr{sigma_i_j^2 / sigma_i sigma_j}.)
24776 A vector of @expr{M} ``parameter filter'' functions whose
24777 meanings are described below. If no filters are necessary this
24778 will instead be an empty vector; this is always the case for the
24779 polynomial and multilinear fits described so far.
24783 @texline @math{\chi^2}
24784 @infoline @expr{chi^2}
24785 for the fit, calculated by the formulas shown above. This gives a
24786 measure of the quality of the fit; statisticians consider
24787 @texline @math{\chi^2 \approx N - M}
24788 @infoline @expr{chi^2 = N - M}
24789 to indicate a moderately good fit (where again @expr{N} is the number of
24790 data points and @expr{M} is the number of parameters).
24793 A measure of goodness of fit expressed as a probability @expr{Q}.
24794 This is computed from the @code{utpc} probability distribution
24796 @texline @math{\chi^2}
24797 @infoline @expr{chi^2}
24798 with @expr{N - M} degrees of freedom. A
24799 value of 0.5 implies a good fit; some texts recommend that often
24800 @expr{Q = 0.1} or even 0.001 can signify an acceptable fit. In
24802 @texline @math{\chi^2}
24803 @infoline @expr{chi^2}
24804 statistics assume the errors in your inputs
24805 follow a normal (Gaussian) distribution; if they don't, you may
24806 have to accept smaller values of @expr{Q}.
24808 The @expr{Q} value is computed only if the input included error
24809 estimates. Otherwise, Calc will report the symbol @code{nan}
24810 for @expr{Q}. The reason is that in this case the
24811 @texline @math{\chi^2}
24812 @infoline @expr{chi^2}
24813 value has effectively been used to estimate the original errors
24814 in the input, and thus there is no redundant information left
24815 over to use for a confidence test.
24818 @node Standard Nonlinear Models, Curve Fitting Details, Error Estimates for Fits, Curve Fitting
24819 @subsection Standard Nonlinear Models
24822 The @kbd{a F} command also accepts other kinds of models besides
24823 lines and polynomials. Some common models have quick single-key
24824 abbreviations; others must be entered by hand as algebraic formulas.
24826 Here is a complete list of the standard models recognized by @kbd{a F}:
24830 Linear or multilinear. @mathit{a + b x + c y + d z}.
24832 Polynomials. @mathit{a + b x + c x^2 + d x^3}.
24834 Exponential. @mathit{a} @tfn{exp}@mathit{(b x)} @tfn{exp}@mathit{(c y)}.
24836 Base-10 exponential. @mathit{a} @tfn{10^}@mathit{(b x)} @tfn{10^}@mathit{(c y)}.
24838 Exponential (alternate notation). @tfn{exp}@mathit{(a + b x + c y)}.
24840 Base-10 exponential (alternate). @tfn{10^}@mathit{(a + b x + c y)}.
24842 Logarithmic. @mathit{a + b} @tfn{ln}@mathit{(x) + c} @tfn{ln}@mathit{(y)}.
24844 Base-10 logarithmic. @mathit{a + b} @tfn{log10}@mathit{(x) + c} @tfn{log10}@mathit{(y)}.
24846 General exponential. @mathit{a b^x c^y}.
24848 Power law. @mathit{a x^b y^c}.
24850 Quadratic. @mathit{a + b (x-c)^2 + d (x-e)^2}.
24853 @texline @math{{a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)}.
24854 @infoline @mathit{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
24856 Logistic @emph{s} curve.
24857 @texline @math{a/(1+e^{b(x-c)})}.
24858 @infoline @mathit{a/(1 + exp(b (x - c)))}.
24860 Logistic bell curve.
24861 @texline @math{ae^{b(x-c)}/(1+e^{b(x-c)})^2}.
24862 @infoline @mathit{a exp(b (x - c))/(1 + exp(b (x - c)))^2}.
24864 Hubbert linearization.
24865 @texline @math{{y \over x} = a(1-x/b)}.
24866 @infoline @mathit{(y/x) = a (1 - x/b)}.
24869 All of these models are used in the usual way; just press the appropriate
24870 letter at the model prompt, and choose variable names if you wish. The
24871 result will be a formula as shown in the above table, with the best-fit
24872 values of the parameters substituted. (You may find it easier to read
24873 the parameter values from the vector that is placed in the trail.)
24875 All models except Gaussian, logistics, Hubbert and polynomials can
24876 generalize as shown to any number of independent variables. Also, all
24877 the built-in models except for the logistic and Hubbert curves have an
24878 additive or multiplicative parameter shown as @expr{a} in the above table
24879 which can be replaced by zero or one, as appropriate, by typing @kbd{h}
24880 before the model key.
24882 Note that many of these models are essentially equivalent, but express
24883 the parameters slightly differently. For example, @expr{a b^x} and
24884 the other two exponential models are all algebraic rearrangements of
24885 each other. Also, the ``quadratic'' model is just a degree-2 polynomial
24886 with the parameters expressed differently. Use whichever form best
24887 matches the problem.
24889 The HP-28/48 calculators support four different models for curve
24890 fitting, called @code{LIN}, @code{LOG}, @code{EXP}, and @code{PWR}.
24891 These correspond to Calc models @samp{a + b x}, @samp{a + b ln(x)},
24892 @samp{a exp(b x)}, and @samp{a x^b}, respectively. In each case,
24893 @expr{a} is what the HP-48 identifies as the ``intercept,'' and
24894 @expr{b} is what it calls the ``slope.''
24900 If the model you want doesn't appear on this list, press @kbd{'}
24901 (the apostrophe key) at the model prompt to enter any algebraic
24902 formula, such as @kbd{m x - b}, as the model. (Not all models
24903 will work, though---see the next section for details.)
24905 The model can also be an equation like @expr{y = m x + b}.
24906 In this case, Calc thinks of all the rows of the data matrix on
24907 equal terms; this model effectively has two parameters
24908 (@expr{m} and @expr{b}) and two independent variables (@expr{x}
24909 and @expr{y}), with no ``dependent'' variables. Model equations
24910 do not need to take this @expr{y =} form. For example, the
24911 implicit line equation @expr{a x + b y = 1} works fine as a
24914 When you enter a model, Calc makes an alphabetical list of all
24915 the variables that appear in the model. These are used for the
24916 default parameters, independent variables, and dependent variable
24917 (in that order). If you enter a plain formula (not an equation),
24918 Calc assumes the dependent variable does not appear in the formula
24919 and thus does not need a name.
24921 For example, if the model formula has the variables @expr{a,mu,sigma,t,x},
24922 and the data matrix has three rows (meaning two independent variables),
24923 Calc will use @expr{a,mu,sigma} as the default parameters, and the
24924 data rows will be named @expr{t} and @expr{x}, respectively. If you
24925 enter an equation instead of a plain formula, Calc will use @expr{a,mu}
24926 as the parameters, and @expr{sigma,t,x} as the three independent
24929 You can, of course, override these choices by entering something
24930 different at the prompt. If you leave some variables out of the list,
24931 those variables must have stored values and those stored values will
24932 be used as constants in the model. (Stored values for the parameters
24933 and independent variables are ignored by the @kbd{a F} command.)
24934 If you list only independent variables, all the remaining variables
24935 in the model formula will become parameters.
24937 If there are @kbd{$} signs in the model you type, they will stand
24938 for parameters and all other variables (in alphabetical order)
24939 will be independent. Use @kbd{$} for one parameter, @kbd{$$} for
24940 another, and so on. Thus @kbd{$ x + $$} is another way to describe
24943 If you type a @kbd{$} instead of @kbd{'} at the model prompt itself,
24944 Calc will take the model formula from the stack. (The data must then
24945 appear at the second stack level.) The same conventions are used to
24946 choose which variables in the formula are independent by default and
24947 which are parameters.
24949 Models taken from the stack can also be expressed as vectors of
24950 two or three elements, @expr{[@var{model}, @var{vars}]} or
24951 @expr{[@var{model}, @var{vars}, @var{params}]}. Each of @var{vars}
24952 and @var{params} may be either a variable or a vector of variables.
24953 (If @var{params} is omitted, all variables in @var{model} except
24954 those listed as @var{vars} are parameters.)
24956 When you enter a model manually with @kbd{'}, Calc puts a 3-vector
24957 describing the model in the trail so you can get it back if you wish.
24965 Finally, you can store a model in one of the Calc variables
24966 @code{Model1} or @code{Model2}, then use this model by typing
24967 @kbd{a F u} or @kbd{a F U} (respectively). The value stored in
24968 the variable can be any of the formats that @kbd{a F $} would
24969 accept for a model on the stack.
24975 Calc uses the principal values of inverse functions like @code{ln}
24976 and @code{arcsin} when doing fits. For example, when you enter
24977 the model @samp{y = sin(a t + b)} Calc actually uses the easier
24978 form @samp{arcsin(y) = a t + b}. The @code{arcsin} function always
24979 returns results in the range from @mathit{-90} to 90 degrees (or the
24980 equivalent range in radians). Suppose you had data that you
24981 believed to represent roughly three oscillations of a sine wave,
24982 so that the argument of the sine might go from zero to
24983 @texline @math{3\times360}
24984 @infoline @mathit{3*360}
24986 The above model would appear to be a good way to determine the
24987 true frequency and phase of the sine wave, but in practice it
24988 would fail utterly. The righthand side of the actual model
24989 @samp{arcsin(y) = a t + b} will grow smoothly with @expr{t}, but
24990 the lefthand side will bounce back and forth between @mathit{-90} and 90.
24991 No values of @expr{a} and @expr{b} can make the two sides match,
24992 even approximately.
24994 There is no good solution to this problem at present. You could
24995 restrict your data to small enough ranges so that the above problem
24996 doesn't occur (i.e., not straddling any peaks in the sine wave).
24997 Or, in this case, you could use a totally different method such as
24998 Fourier analysis, which is beyond the scope of the @kbd{a F} command.
24999 (Unfortunately, Calc does not currently have any facilities for
25000 taking Fourier and related transforms.)
25002 @node Curve Fitting Details, Interpolation, Standard Nonlinear Models, Curve Fitting
25003 @subsection Curve Fitting Details
25006 Calc's internal least-squares fitter can only handle multilinear
25007 models. More precisely, it can handle any model of the form
25008 @expr{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @expr{a,b,c}
25009 are the parameters and @expr{x,y,z} are the independent variables
25010 (of course there can be any number of each, not just three).
25012 In a simple multilinear or polynomial fit, it is easy to see how
25013 to convert the model into this form. For example, if the model
25014 is @expr{a + b x + c x^2}, then @expr{f(x) = 1}, @expr{g(x) = x},
25015 and @expr{h(x) = x^2} are suitable functions.
25017 For most other models, Calc uses a variety of algebraic manipulations
25018 to try to put the problem into the form
25021 Y(x,y,z) = A(a,b,c) F(x,y,z) + B(a,b,c) G(x,y,z) + C(a,b,c) H(x,y,z)
25025 where @expr{Y,A,B,C,F,G,H} are arbitrary functions. It computes
25026 @expr{Y}, @expr{F}, @expr{G}, and @expr{H} for all the data points,
25027 does a standard linear fit to find the values of @expr{A}, @expr{B},
25028 and @expr{C}, then uses the equation solver to solve for @expr{a,b,c}
25029 in terms of @expr{A,B,C}.
25031 A remarkable number of models can be cast into this general form.
25032 We'll look at two examples here to see how it works. The power-law
25033 model @expr{y = a x^b} with two independent variables and two parameters
25034 can be rewritten as follows:
25039 y = exp(ln(a) + b ln(x))
25040 ln(y) = ln(a) + b ln(x)
25044 which matches the desired form with
25045 @texline @math{Y = \ln(y)},
25046 @infoline @expr{Y = ln(y)},
25047 @texline @math{A = \ln(a)},
25048 @infoline @expr{A = ln(a)},
25049 @expr{F = 1}, @expr{B = b}, and
25050 @texline @math{G = \ln(x)}.
25051 @infoline @expr{G = ln(x)}.
25052 Calc thus computes the logarithms of your @expr{y} and @expr{x} values,
25053 does a linear fit for @expr{A} and @expr{B}, then solves to get
25054 @texline @math{a = \exp(A)}
25055 @infoline @expr{a = exp(A)}
25058 Another interesting example is the ``quadratic'' model, which can
25059 be handled by expanding according to the distributive law.
25062 y = a + b*(x - c)^2
25063 y = a + b c^2 - 2 b c x + b x^2
25067 which matches with @expr{Y = y}, @expr{A = a + b c^2}, @expr{F = 1},
25068 @expr{B = -2 b c}, @expr{G = x} (the @mathit{-2} factor could just as easily
25069 have been put into @expr{G} instead of @expr{B}), @expr{C = b}, and
25072 The Gaussian model looks quite complicated, but a closer examination
25073 shows that it's actually similar to the quadratic model but with an
25074 exponential that can be brought to the top and moved into @expr{Y}.
25076 The logistic models cannot be put into general linear form. For these
25077 models, and the Hubbert linearization, Calc computes a rough
25078 approximation for the parameters, then uses the Levenberg-Marquardt
25079 iterative method to refine the approximations.
25081 Another model that cannot be put into general linear
25082 form is a Gaussian with a constant background added on, i.e.,
25083 @expr{d} + the regular Gaussian formula. If you have a model like
25084 this, your best bet is to replace enough of your parameters with
25085 constants to make the model linearizable, then adjust the constants
25086 manually by doing a series of fits. You can compare the fits by
25087 graphing them, by examining the goodness-of-fit measures returned by
25088 @kbd{I a F}, or by some other method suitable to your application.
25089 Note that some models can be linearized in several ways. The
25090 Gaussian-plus-@var{d} model can be linearized by setting @expr{d}
25091 (the background) to a constant, or by setting @expr{b} (the standard
25092 deviation) and @expr{c} (the mean) to constants.
25094 To fit a model with constants substituted for some parameters, just
25095 store suitable values in those parameter variables, then omit them
25096 from the list of parameters when you answer the variables prompt.
25102 A last desperate step would be to use the general-purpose
25103 @code{minimize} function rather than @code{fit}. After all, both
25104 functions solve the problem of minimizing an expression (the
25105 @texline @math{\chi^2}
25106 @infoline @expr{chi^2}
25107 sum) by adjusting certain parameters in the expression. The @kbd{a F}
25108 command is able to use a vastly more efficient algorithm due to its
25109 special knowledge about linear chi-square sums, but the @kbd{a N}
25110 command can do the same thing by brute force.
25112 A compromise would be to pick out a few parameters without which the
25113 fit is linearizable, and use @code{minimize} on a call to @code{fit}
25114 which efficiently takes care of the rest of the parameters. The thing
25115 to be minimized would be the value of
25116 @texline @math{\chi^2}
25117 @infoline @expr{chi^2}
25118 returned as the fifth result of the @code{xfit} function:
25121 minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess)
25125 where @code{gaus} represents the Gaussian model with background,
25126 @code{data} represents the data matrix, and @code{guess} represents
25127 the initial guess for @expr{d} that @code{minimize} requires.
25128 This operation will only be, shall we say, extraordinarily slow
25129 rather than astronomically slow (as would be the case if @code{minimize}
25130 were used by itself to solve the problem).
25136 The @kbd{I a F} [@code{xfit}] command is somewhat trickier when
25137 nonlinear models are used. The second item in the result is the
25138 vector of ``raw'' parameters @expr{A}, @expr{B}, @expr{C}. The
25139 covariance matrix is written in terms of those raw parameters.
25140 The fifth item is a vector of @dfn{filter} expressions. This
25141 is the empty vector @samp{[]} if the raw parameters were the same
25142 as the requested parameters, i.e., if @expr{A = a}, @expr{B = b},
25143 and so on (which is always true if the model is already linear
25144 in the parameters as written, e.g., for polynomial fits). If the
25145 parameters had to be rearranged, the fifth item is instead a vector
25146 of one formula per parameter in the original model. The raw
25147 parameters are expressed in these ``filter'' formulas as
25148 @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)} for @expr{B},
25151 When Calc needs to modify the model to return the result, it replaces
25152 @samp{fitdummy(1)} in all the filters with the first item in the raw
25153 parameters list, and so on for the other raw parameters, then
25154 evaluates the resulting filter formulas to get the actual parameter
25155 values to be substituted into the original model. In the case of
25156 @kbd{H a F} and @kbd{I a F} where the parameters must be error forms,
25157 Calc uses the square roots of the diagonal entries of the covariance
25158 matrix as error values for the raw parameters, then lets Calc's
25159 standard error-form arithmetic take it from there.
25161 If you use @kbd{I a F} with a nonlinear model, be sure to remember
25162 that the covariance matrix is in terms of the raw parameters,
25163 @emph{not} the actual requested parameters. It's up to you to
25164 figure out how to interpret the covariances in the presence of
25165 nontrivial filter functions.
25167 Things are also complicated when the input contains error forms.
25168 Suppose there are three independent and dependent variables, @expr{x},
25169 @expr{y}, and @expr{z}, one or more of which are error forms in the
25170 data. Calc combines all the error values by taking the square root
25171 of the sum of the squares of the errors. It then changes @expr{x}
25172 and @expr{y} to be plain numbers, and makes @expr{z} into an error
25173 form with this combined error. The @expr{Y(x,y,z)} part of the
25174 linearized model is evaluated, and the result should be an error
25175 form. The error part of that result is used for
25176 @texline @math{\sigma_i}
25177 @infoline @expr{sigma_i}
25178 for the data point. If for some reason @expr{Y(x,y,z)} does not return
25179 an error form, the combined error from @expr{z} is used directly for
25180 @texline @math{\sigma_i}.
25181 @infoline @expr{sigma_i}.
25182 Finally, @expr{z} is also stripped of its error
25183 for use in computing @expr{F(x,y,z)}, @expr{G(x,y,z)} and so on;
25184 the righthand side of the linearized model is computed in regular
25185 arithmetic with no error forms.
25187 (While these rules may seem complicated, they are designed to do
25188 the most reasonable thing in the typical case that @expr{Y(x,y,z)}
25189 depends only on the dependent variable @expr{z}, and in fact is
25190 often simply equal to @expr{z}. For common cases like polynomials
25191 and multilinear models, the combined error is simply used as the
25192 @texline @math{\sigma}
25193 @infoline @expr{sigma}
25194 for the data point with no further ado.)
25201 It may be the case that the model you wish to use is linearizable,
25202 but Calc's built-in rules are unable to figure it out. Calc uses
25203 its algebraic rewrite mechanism to linearize a model. The rewrite
25204 rules are kept in the variable @code{FitRules}. You can edit this
25205 variable using the @kbd{s e FitRules} command; in fact, there is
25206 a special @kbd{s F} command just for editing @code{FitRules}.
25207 @xref{Operations on Variables}.
25209 @xref{Rewrite Rules}, for a discussion of rewrite rules.
25243 Calc uses @code{FitRules} as follows. First, it converts the model
25244 to an equation if necessary and encloses the model equation in a
25245 call to the function @code{fitmodel} (which is not actually a defined
25246 function in Calc; it is only used as a placeholder by the rewrite rules).
25247 Parameter variables are renamed to function calls @samp{fitparam(1)},
25248 @samp{fitparam(2)}, and so on, and independent variables are renamed
25249 to @samp{fitvar(1)}, @samp{fitvar(2)}, etc. The dependent variable
25250 is the highest-numbered @code{fitvar}. For example, the power law
25251 model @expr{a x^b} is converted to @expr{y = a x^b}, then to
25255 fitmodel(fitvar(2) = fitparam(1) fitvar(1)^fitparam(2))
25259 Calc then applies the rewrites as if by @samp{C-u 0 a r FitRules}.
25260 (The zero prefix means that rewriting should continue until no further
25261 changes are possible.)
25263 When rewriting is complete, the @code{fitmodel} call should have
25264 been replaced by a @code{fitsystem} call that looks like this:
25267 fitsystem(@var{Y}, @var{FGH}, @var{abc})
25271 where @var{Y} is a formula that describes the function @expr{Y(x,y,z)},
25272 @var{FGH} is the vector of formulas @expr{[F(x,y,z), G(x,y,z), H(x,y,z)]},
25273 and @var{abc} is the vector of parameter filters which refer to the
25274 raw parameters as @samp{fitdummy(1)} for @expr{A}, @samp{fitdummy(2)}
25275 for @expr{B}, etc. While the number of raw parameters (the length of
25276 the @var{FGH} vector) is usually the same as the number of original
25277 parameters (the length of the @var{abc} vector), this is not required.
25279 The power law model eventually boils down to
25283 fitsystem(ln(fitvar(2)),
25284 [1, ln(fitvar(1))],
25285 [exp(fitdummy(1)), fitdummy(2)])
25289 The actual implementation of @code{FitRules} is complicated; it
25290 proceeds in four phases. First, common rearrangements are done
25291 to try to bring linear terms together and to isolate functions like
25292 @code{exp} and @code{ln} either all the way ``out'' (so that they
25293 can be put into @var{Y}) or all the way ``in'' (so that they can
25294 be put into @var{abc} or @var{FGH}). In particular, all
25295 non-constant powers are converted to logs-and-exponentials form,
25296 and the distributive law is used to expand products of sums.
25297 Quotients are rewritten to use the @samp{fitinv} function, where
25298 @samp{fitinv(x)} represents @expr{1/x} while the @code{FitRules}
25299 are operating. (The use of @code{fitinv} makes recognition of
25300 linear-looking forms easier.) If you modify @code{FitRules}, you
25301 will probably only need to modify the rules for this phase.
25303 Phase two, whose rules can actually also apply during phases one
25304 and three, first rewrites @code{fitmodel} to a two-argument
25305 form @samp{fitmodel(@var{Y}, @var{model})}, where @var{Y} is
25306 initially zero and @var{model} has been changed from @expr{a=b}
25307 to @expr{a-b} form. It then tries to peel off invertible functions
25308 from the outside of @var{model} and put them into @var{Y} instead,
25309 calling the equation solver to invert the functions. Finally, when
25310 this is no longer possible, the @code{fitmodel} is changed to a
25311 four-argument @code{fitsystem}, where the fourth argument is
25312 @var{model} and the @var{FGH} and @var{abc} vectors are initially
25313 empty. (The last vector is really @var{ABC}, corresponding to
25314 raw parameters, for now.)
25316 Phase three converts a sum of items in the @var{model} to a sum
25317 of @samp{fitpart(@var{a}, @var{b}, @var{c})} terms which represent
25318 terms @samp{@var{a}*@var{b}*@var{c}} of the sum, where @var{a}
25319 is all factors that do not involve any variables, @var{b} is all
25320 factors that involve only parameters, and @var{c} is the factors
25321 that involve only independent variables. (If this decomposition
25322 is not possible, the rule set will not complete and Calc will
25323 complain that the model is too complex.) Then @code{fitpart}s
25324 with equal @var{b} or @var{c} components are merged back together
25325 using the distributive law in order to minimize the number of
25326 raw parameters needed.
25328 Phase four moves the @code{fitpart} terms into the @var{FGH} and
25329 @var{ABC} vectors. Also, some of the algebraic expansions that
25330 were done in phase 1 are undone now to make the formulas more
25331 computationally efficient. Finally, it calls the solver one more
25332 time to convert the @var{ABC} vector to an @var{abc} vector, and
25333 removes the fourth @var{model} argument (which by now will be zero)
25334 to obtain the three-argument @code{fitsystem} that the linear
25335 least-squares solver wants to see.
25341 @mindex hasfit@idots
25343 @tindex hasfitparams
25351 Two functions which are useful in connection with @code{FitRules}
25352 are @samp{hasfitparams(x)} and @samp{hasfitvars(x)}, which check
25353 whether @expr{x} refers to any parameters or independent variables,
25354 respectively. Specifically, these functions return ``true'' if the
25355 argument contains any @code{fitparam} (or @code{fitvar}) function
25356 calls, and ``false'' otherwise. (Recall that ``true'' means a
25357 nonzero number, and ``false'' means zero. The actual nonzero number
25358 returned is the largest @var{n} from all the @samp{fitparam(@var{n})}s
25359 or @samp{fitvar(@var{n})}s, respectively, that appear in the formula.)
25365 The @code{fit} function in algebraic notation normally takes four
25366 arguments, @samp{fit(@var{model}, @var{vars}, @var{params}, @var{data})},
25367 where @var{model} is the model formula as it would be typed after
25368 @kbd{a F '}, @var{vars} is the independent variable or a vector of
25369 independent variables, @var{params} likewise gives the parameter(s),
25370 and @var{data} is the data matrix. Note that the length of @var{vars}
25371 must be equal to the number of rows in @var{data} if @var{model} is
25372 an equation, or one less than the number of rows if @var{model} is
25373 a plain formula. (Actually, a name for the dependent variable is
25374 allowed but will be ignored in the plain-formula case.)
25376 If @var{params} is omitted, the parameters are all variables in
25377 @var{model} except those that appear in @var{vars}. If @var{vars}
25378 is also omitted, Calc sorts all the variables that appear in
25379 @var{model} alphabetically and uses the higher ones for @var{vars}
25380 and the lower ones for @var{params}.
25382 Alternatively, @samp{fit(@var{modelvec}, @var{data})} is allowed
25383 where @var{modelvec} is a 2- or 3-vector describing the model
25384 and variables, as discussed previously.
25386 If Calc is unable to do the fit, the @code{fit} function is left
25387 in symbolic form, ordinarily with an explanatory message. The
25388 message will be ``Model expression is too complex'' if the
25389 linearizer was unable to put the model into the required form.
25391 The @code{efit} (corresponding to @kbd{H a F}) and @code{xfit}
25392 (for @kbd{I a F}) functions are completely analogous.
25394 @node Interpolation, , Curve Fitting Details, Curve Fitting
25395 @subsection Polynomial Interpolation
25398 @pindex calc-poly-interp
25400 The @kbd{a p} (@code{calc-poly-interp}) [@code{polint}] command does
25401 a polynomial interpolation at a particular @expr{x} value. It takes
25402 two arguments from the stack: A data matrix of the sort used by
25403 @kbd{a F}, and a single number which represents the desired @expr{x}
25404 value. Calc effectively does an exact polynomial fit as if by @kbd{a F i},
25405 then substitutes the @expr{x} value into the result in order to get an
25406 approximate @expr{y} value based on the fit. (Calc does not actually
25407 use @kbd{a F i}, however; it uses a direct method which is both more
25408 efficient and more numerically stable.)
25410 The result of @kbd{a p} is actually a vector of two values: The @expr{y}
25411 value approximation, and an error measure @expr{dy} that reflects Calc's
25412 estimation of the probable error of the approximation at that value of
25413 @expr{x}. If the input @expr{x} is equal to any of the @expr{x} values
25414 in the data matrix, the output @expr{y} will be the corresponding @expr{y}
25415 value from the matrix, and the output @expr{dy} will be exactly zero.
25417 A prefix argument of 2 causes @kbd{a p} to take separate x- and
25418 y-vectors from the stack instead of one data matrix.
25420 If @expr{x} is a vector of numbers, @kbd{a p} will return a matrix of
25421 interpolated results for each of those @expr{x} values. (The matrix will
25422 have two columns, the @expr{y} values and the @expr{dy} values.)
25423 If @expr{x} is a formula instead of a number, the @code{polint} function
25424 remains in symbolic form; use the @kbd{a "} command to expand it out to
25425 a formula that describes the fit in symbolic terms.
25427 In all cases, the @kbd{a p} command leaves the data vectors or matrix
25428 on the stack. Only the @expr{x} value is replaced by the result.
25432 The @kbd{H a p} [@code{ratint}] command does a rational function
25433 interpolation. It is used exactly like @kbd{a p}, except that it
25434 uses as its model the quotient of two polynomials. If there are
25435 @expr{N} data points, the numerator and denominator polynomials will
25436 each have degree @expr{N/2} (if @expr{N} is odd, the denominator will
25437 have degree one higher than the numerator).
25439 Rational approximations have the advantage that they can accurately
25440 describe functions that have poles (points at which the function's value
25441 goes to infinity, so that the denominator polynomial of the approximation
25442 goes to zero). If @expr{x} corresponds to a pole of the fitted rational
25443 function, then the result will be a division by zero. If Infinite mode
25444 is enabled, the result will be @samp{[uinf, uinf]}.
25446 There is no way to get the actual coefficients of the rational function
25447 used by @kbd{H a p}. (The algorithm never generates these coefficients
25448 explicitly, and quotients of polynomials are beyond @w{@kbd{a F}}'s
25449 capabilities to fit.)
25451 @node Summations, Logical Operations, Curve Fitting, Algebra
25452 @section Summations
25455 @cindex Summation of a series
25457 @pindex calc-summation
25459 The @kbd{a +} (@code{calc-summation}) [@code{sum}] command computes
25460 the sum of a formula over a certain range of index values. The formula
25461 is taken from the top of the stack; the command prompts for the
25462 name of the summation index variable, the lower limit of the
25463 sum (any formula), and the upper limit of the sum. If you
25464 enter a blank line at any of these prompts, that prompt and
25465 any later ones are answered by reading additional elements from
25466 the stack. Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}}
25467 produces the result 55.
25469 $$ \sum_{k=1}^5 k^2 = 55 $$
25472 The choice of index variable is arbitrary, but it's best not to
25473 use a variable with a stored value. In particular, while
25474 @code{i} is often a favorite index variable, it should be avoided
25475 in Calc because @code{i} has the imaginary constant @expr{(0, 1)}
25476 as a value. If you pressed @kbd{=} on a sum over @code{i}, it would
25477 be changed to a nonsensical sum over the ``variable'' @expr{(0, 1)}!
25478 If you really want to use @code{i} as an index variable, use
25479 @w{@kbd{s u i @key{RET}}} first to ``unstore'' this variable.
25480 (@xref{Storing Variables}.)
25482 A numeric prefix argument steps the index by that amount rather
25483 than by one. Thus @kbd{' a_k @key{RET} C-u -2 a + k @key{RET} 10 @key{RET} 0 @key{RET}}
25484 yields @samp{a_10 + a_8 + a_6 + a_4 + a_2 + a_0}. A prefix
25485 argument of plain @kbd{C-u} causes @kbd{a +} to prompt for the
25486 step value, in which case you can enter any formula or enter
25487 a blank line to take the step value from the stack. With the
25488 @kbd{C-u} prefix, @kbd{a +} can take up to five arguments from
25489 the stack: The formula, the variable, the lower limit, the
25490 upper limit, and (at the top of the stack), the step value.
25492 Calc knows how to do certain sums in closed form. For example,
25493 @samp{sum(6 k^2, k, 1, n) = @w{2 n^3} + 3 n^2 + n}. In particular,
25494 this is possible if the formula being summed is polynomial or
25495 exponential in the index variable. Sums of logarithms are
25496 transformed into logarithms of products. Sums of trigonometric
25497 and hyperbolic functions are transformed to sums of exponentials
25498 and then done in closed form. Also, of course, sums in which the
25499 lower and upper limits are both numbers can always be evaluated
25500 just by grinding them out, although Calc will use closed forms
25501 whenever it can for the sake of efficiency.
25503 The notation for sums in algebraic formulas is
25504 @samp{sum(@var{expr}, @var{var}, @var{low}, @var{high}, @var{step})}.
25505 If @var{step} is omitted, it defaults to one. If @var{high} is
25506 omitted, @var{low} is actually the upper limit and the lower limit
25507 is one. If @var{low} is also omitted, the limits are @samp{-inf}
25508 and @samp{inf}, respectively.
25510 Infinite sums can sometimes be evaluated: @samp{sum(.5^k, k, 1, inf)}
25511 returns @expr{1}. This is done by evaluating the sum in closed
25512 form (to @samp{1. - 0.5^n} in this case), then evaluating this
25513 formula with @code{n} set to @code{inf}. Calc's usual rules
25514 for ``infinite'' arithmetic can find the answer from there. If
25515 infinite arithmetic yields a @samp{nan}, or if the sum cannot be
25516 solved in closed form, Calc leaves the @code{sum} function in
25517 symbolic form. @xref{Infinities}.
25519 As a special feature, if the limits are infinite (or omitted, as
25520 described above) but the formula includes vectors subscripted by
25521 expressions that involve the iteration variable, Calc narrows
25522 the limits to include only the range of integers which result in
25523 valid subscripts for the vector. For example, the sum
25524 @samp{sum(k [a,b,c,d,e,f,g]_(2k),k)} evaluates to @samp{b + 2 d + 3 f}.
25526 The limits of a sum do not need to be integers. For example,
25527 @samp{sum(a_k, k, 0, 2 n, n)} produces @samp{a_0 + a_n + a_(2 n)}.
25528 Calc computes the number of iterations using the formula
25529 @samp{1 + (@var{high} - @var{low}) / @var{step}}, which must,
25530 after algebraic simplification, evaluate to an integer.
25532 If the number of iterations according to the above formula does
25533 not come out to an integer, the sum is invalid and will be left
25534 in symbolic form. However, closed forms are still supplied, and
25535 you are on your honor not to misuse the resulting formulas by
25536 substituting mismatched bounds into them. For example,
25537 @samp{sum(k, k, 1, 10, 2)} is invalid, but Calc will go ahead and
25538 evaluate the closed form solution for the limits 1 and 10 to get
25539 the rather dubious answer, 29.25.
25541 If the lower limit is greater than the upper limit (assuming a
25542 positive step size), the result is generally zero. However,
25543 Calc only guarantees a zero result when the upper limit is
25544 exactly one step less than the lower limit, i.e., if the number
25545 of iterations is @mathit{-1}. Thus @samp{sum(f(k), k, n, n-1)} is zero
25546 but the sum from @samp{n} to @samp{n-2} may report a nonzero value
25547 if Calc used a closed form solution.
25549 Calc's logical predicates like @expr{a < b} return 1 for ``true''
25550 and 0 for ``false.'' @xref{Logical Operations}. This can be
25551 used to advantage for building conditional sums. For example,
25552 @samp{sum(prime(k)*k^2, k, 1, 20)} is the sum of the squares of all
25553 prime numbers from 1 to 20; the @code{prime} predicate returns 1 if
25554 its argument is prime and 0 otherwise. You can read this expression
25555 as ``the sum of @expr{k^2}, where @expr{k} is prime.'' Indeed,
25556 @samp{sum(prime(k)*k^2, k)} would represent the sum of @emph{all} primes
25557 squared, since the limits default to plus and minus infinity, but
25558 there are no such sums that Calc's built-in rules can do in
25561 As another example, @samp{sum((k != k_0) * f(k), k, 1, n)} is the
25562 sum of @expr{f(k)} for all @expr{k} from 1 to @expr{n}, excluding
25563 one value @expr{k_0}. Slightly more tricky is the summand
25564 @samp{(k != k_0) / (k - k_0)}, which is an attempt to describe
25565 the sum of all @expr{1/(k-k_0)} except at @expr{k = k_0}, where
25566 this would be a division by zero. But at @expr{k = k_0}, this
25567 formula works out to the indeterminate form @expr{0 / 0}, which
25568 Calc will not assume is zero. Better would be to use
25569 @samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does
25570 an ``if-then-else'' test: This expression says, ``if
25571 @texline @math{k \ne k_0},
25572 @infoline @expr{k != k_0},
25573 then @expr{1/(k-k_0)}, else zero.'' Now the formula @expr{1/(k-k_0)}
25574 will not even be evaluated by Calc when @expr{k = k_0}.
25576 @cindex Alternating sums
25578 @pindex calc-alt-summation
25580 The @kbd{a -} (@code{calc-alt-summation}) [@code{asum}] command
25581 computes an alternating sum. Successive terms of the sequence
25582 are given alternating signs, with the first term (corresponding
25583 to the lower index value) being positive. Alternating sums
25584 are converted to normal sums with an extra term of the form
25585 @samp{(-1)^(k-@var{low})}. This formula is adjusted appropriately
25586 if the step value is other than one. For example, the Taylor
25587 series for the sine function is @samp{asum(x^k / k!, k, 1, inf, 2)}.
25588 (Calc cannot evaluate this infinite series, but it can approximate
25589 it if you replace @code{inf} with any particular odd number.)
25590 Calc converts this series to a regular sum with a step of one,
25591 namely @samp{sum((-1)^k x^(2k+1) / (2k+1)!, k, 0, inf)}.
25593 @cindex Product of a sequence
25595 @pindex calc-product
25597 The @kbd{a *} (@code{calc-product}) [@code{prod}] command is
25598 the analogous way to take a product of many terms. Calc also knows
25599 some closed forms for products, such as @samp{prod(k, k, 1, n) = n!}.
25600 Conditional products can be written @samp{prod(k^prime(k), k, 1, n)}
25601 or @samp{prod(prime(k) ? k : 1, k, 1, n)}.
25604 @pindex calc-tabulate
25606 The @kbd{a T} (@code{calc-tabulate}) [@code{table}] command
25607 evaluates a formula at a series of iterated index values, just
25608 like @code{sum} and @code{prod}, but its result is simply a
25609 vector of the results. For example, @samp{table(a_i, i, 1, 7, 2)}
25610 produces @samp{[a_1, a_3, a_5, a_7]}.
25612 @node Logical Operations, Rewrite Rules, Summations, Algebra
25613 @section Logical Operations
25616 The following commands and algebraic functions return true/false values,
25617 where 1 represents ``true'' and 0 represents ``false.'' In cases where
25618 a truth value is required (such as for the condition part of a rewrite
25619 rule, or as the condition for a @w{@kbd{Z [ Z ]}} control structure), any
25620 nonzero value is accepted to mean ``true.'' (Specifically, anything
25621 for which @code{dnonzero} returns 1 is ``true,'' and anything for
25622 which @code{dnonzero} returns 0 or cannot decide is assumed ``false.''
25623 Note that this means that @w{@kbd{Z [ Z ]}} will execute the ``then''
25624 portion if its condition is provably true, but it will execute the
25625 ``else'' portion for any condition like @expr{a = b} that is not
25626 provably true, even if it might be true. Algebraic functions that
25627 have conditions as arguments, like @code{? :} and @code{&&}, remain
25628 unevaluated if the condition is neither provably true nor provably
25629 false. @xref{Declarations}.)
25632 @pindex calc-equal-to
25636 The @kbd{a =} (@code{calc-equal-to}) command, or @samp{eq(a,b)} function
25637 (which can also be written @samp{a = b} or @samp{a == b} in an algebraic
25638 formula) is true if @expr{a} and @expr{b} are equal, either because they
25639 are identical expressions, or because they are numbers which are
25640 numerically equal. (Thus the integer 1 is considered equal to the float
25641 1.0.) If the equality of @expr{a} and @expr{b} cannot be determined,
25642 the comparison is left in symbolic form. Note that as a command, this
25643 operation pops two values from the stack and pushes back either a 1 or
25644 a 0, or a formula @samp{a = b} if the values' equality cannot be determined.
25646 Many Calc commands use @samp{=} formulas to represent @dfn{equations}.
25647 For example, the @kbd{a S} (@code{calc-solve-for}) command rearranges
25648 an equation to solve for a given variable. The @kbd{a M}
25649 (@code{calc-map-equation}) command can be used to apply any
25650 function to both sides of an equation; for example, @kbd{2 a M *}
25651 multiplies both sides of the equation by two. Note that just
25652 @kbd{2 *} would not do the same thing; it would produce the formula
25653 @samp{2 (a = b)} which represents 2 if the equality is true or
25656 The @code{eq} function with more than two arguments (e.g., @kbd{C-u 3 a =}
25657 or @samp{a = b = c}) tests if all of its arguments are equal. In
25658 algebraic notation, the @samp{=} operator is unusual in that it is
25659 neither left- nor right-associative: @samp{a = b = c} is not the
25660 same as @samp{(a = b) = c} or @samp{a = (b = c)} (which each compare
25661 one variable with the 1 or 0 that results from comparing two other
25665 @pindex calc-not-equal-to
25668 The @kbd{a #} (@code{calc-not-equal-to}) command, or @samp{neq(a,b)} or
25669 @samp{a != b} function, is true if @expr{a} and @expr{b} are not equal.
25670 This also works with more than two arguments; @samp{a != b != c != d}
25671 tests that all four of @expr{a}, @expr{b}, @expr{c}, and @expr{d} are
25688 @pindex calc-less-than
25689 @pindex calc-greater-than
25690 @pindex calc-less-equal
25691 @pindex calc-greater-equal
25720 The @kbd{a <} (@code{calc-less-than}) [@samp{lt(a,b)} or @samp{a < b}]
25721 operation is true if @expr{a} is less than @expr{b}. Similar functions
25722 are @kbd{a >} (@code{calc-greater-than}) [@samp{gt(a,b)} or @samp{a > b}],
25723 @kbd{a [} (@code{calc-less-equal}) [@samp{leq(a,b)} or @samp{a <= b}], and
25724 @kbd{a ]} (@code{calc-greater-equal}) [@samp{geq(a,b)} or @samp{a >= b}].
25726 While the inequality functions like @code{lt} do not accept more
25727 than two arguments, the syntax @w{@samp{a <= b < c}} is translated to an
25728 equivalent expression involving intervals: @samp{b in [a .. c)}.
25729 (See the description of @code{in} below.) All four combinations
25730 of @samp{<} and @samp{<=} are allowed, or any of the four combinations
25731 of @samp{>} and @samp{>=}. Four-argument constructions like
25732 @samp{a < b < c < d}, and mixtures like @w{@samp{a < b = c}} that
25733 involve both equations and inequalities, are not allowed.
25736 @pindex calc-remove-equal
25738 The @kbd{a .} (@code{calc-remove-equal}) [@code{rmeq}] command extracts
25739 the righthand side of the equation or inequality on the top of the
25740 stack. It also works elementwise on vectors. For example, if
25741 @samp{[x = 2.34, y = z / 2]} is on the stack, then @kbd{a .} produces
25742 @samp{[2.34, z / 2]}. As a special case, if the righthand side is a
25743 variable and the lefthand side is a number (as in @samp{2.34 = x}), then
25744 Calc keeps the lefthand side instead. Finally, this command works with
25745 assignments @samp{x := 2.34} as well as equations, always taking the
25746 righthand side, and for @samp{=>} (evaluates-to) operators, always
25747 taking the lefthand side.
25750 @pindex calc-logical-and
25753 The @kbd{a &} (@code{calc-logical-and}) [@samp{land(a,b)} or @samp{a && b}]
25754 function is true if both of its arguments are true, i.e., are
25755 non-zero numbers. In this case, the result will be either @expr{a} or
25756 @expr{b}, chosen arbitrarily. If either argument is zero, the result is
25757 zero. Otherwise, the formula is left in symbolic form.
25760 @pindex calc-logical-or
25763 The @kbd{a |} (@code{calc-logical-or}) [@samp{lor(a,b)} or @samp{a || b}]
25764 function is true if either or both of its arguments are true (nonzero).
25765 The result is whichever argument was nonzero, choosing arbitrarily if both
25766 are nonzero. If both @expr{a} and @expr{b} are zero, the result is
25770 @pindex calc-logical-not
25773 The @kbd{a !} (@code{calc-logical-not}) [@samp{lnot(a)} or @samp{!@: a}]
25774 function is true if @expr{a} is false (zero), or false if @expr{a} is
25775 true (nonzero). It is left in symbolic form if @expr{a} is not a
25779 @pindex calc-logical-if
25789 @cindex Arguments, not evaluated
25790 The @kbd{a :} (@code{calc-logical-if}) [@samp{if(a,b,c)} or @samp{a ? b :@: c}]
25791 function is equal to either @expr{b} or @expr{c} if @expr{a} is a nonzero
25792 number or zero, respectively. If @expr{a} is not a number, the test is
25793 left in symbolic form and neither @expr{b} nor @expr{c} is evaluated in
25794 any way. In algebraic formulas, this is one of the few Calc functions
25795 whose arguments are not automatically evaluated when the function itself
25796 is evaluated. The others are @code{lambda}, @code{quote}, and
25799 One minor surprise to watch out for is that the formula @samp{a?3:4}
25800 will not work because the @samp{3:4} is parsed as a fraction instead of
25801 as three separate symbols. Type something like @samp{a ? 3 : 4} or
25802 @samp{a?(3):4} instead.
25804 As a special case, if @expr{a} evaluates to a vector, then both @expr{b}
25805 and @expr{c} are evaluated; the result is a vector of the same length
25806 as @expr{a} whose elements are chosen from corresponding elements of
25807 @expr{b} and @expr{c} according to whether each element of @expr{a}
25808 is zero or nonzero. Each of @expr{b} and @expr{c} must be either a
25809 vector of the same length as @expr{a}, or a non-vector which is matched
25810 with all elements of @expr{a}.
25813 @pindex calc-in-set
25815 The @kbd{a @{} (@code{calc-in-set}) [@samp{in(a,b)}] function is true if
25816 the number @expr{a} is in the set of numbers represented by @expr{b}.
25817 If @expr{b} is an interval form, @expr{a} must be one of the values
25818 encompassed by the interval. If @expr{b} is a vector, @expr{a} must be
25819 equal to one of the elements of the vector. (If any vector elements are
25820 intervals, @expr{a} must be in any of the intervals.) If @expr{b} is a
25821 plain number, @expr{a} must be numerically equal to @expr{b}.
25822 @xref{Set Operations}, for a group of commands that manipulate sets
25829 The @samp{typeof(a)} function produces an integer or variable which
25830 characterizes @expr{a}. If @expr{a} is a number, vector, or variable,
25831 the result will be one of the following numbers:
25836 3 Floating-point number
25838 5 Rectangular complex number
25839 6 Polar complex number
25845 12 Infinity (inf, uinf, or nan)
25847 101 Vector (but not a matrix)
25851 Otherwise, @expr{a} is a formula, and the result is a variable which
25852 represents the name of the top-level function call.
25866 The @samp{integer(a)} function returns true if @expr{a} is an integer.
25867 The @samp{real(a)} function
25868 is true if @expr{a} is a real number, either integer, fraction, or
25869 float. The @samp{constant(a)} function returns true if @expr{a} is
25870 any of the objects for which @code{typeof} would produce an integer
25871 code result except for variables, and provided that the components of
25872 an object like a vector or error form are themselves constant.
25873 Note that infinities do not satisfy any of these tests, nor do
25874 special constants like @code{pi} and @code{e}.
25876 @xref{Declarations}, for a set of similar functions that recognize
25877 formulas as well as actual numbers. For example, @samp{dint(floor(x))}
25878 is true because @samp{floor(x)} is provably integer-valued, but
25879 @samp{integer(floor(x))} does not because @samp{floor(x)} is not
25880 literally an integer constant.
25886 The @samp{refers(a,b)} function is true if the variable (or sub-expression)
25887 @expr{b} appears in @expr{a}, or false otherwise. Unlike the other
25888 tests described here, this function returns a definite ``no'' answer
25889 even if its arguments are still in symbolic form. The only case where
25890 @code{refers} will be left unevaluated is if @expr{a} is a plain
25891 variable (different from @expr{b}).
25897 The @samp{negative(a)} function returns true if @expr{a} ``looks'' negative,
25898 because it is a negative number, because it is of the form @expr{-x},
25899 or because it is a product or quotient with a term that looks negative.
25900 This is most useful in rewrite rules. Beware that @samp{negative(a)}
25901 evaluates to 1 or 0 for @emph{any} argument @expr{a}, so it can only
25902 be stored in a formula if the default simplifications are turned off
25903 first with @kbd{m O} (or if it appears in an unevaluated context such
25904 as a rewrite rule condition).
25910 The @samp{variable(a)} function is true if @expr{a} is a variable,
25911 or false if not. If @expr{a} is a function call, this test is left
25912 in symbolic form. Built-in variables like @code{pi} and @code{inf}
25913 are considered variables like any others by this test.
25919 The @samp{nonvar(a)} function is true if @expr{a} is a non-variable.
25920 If its argument is a variable it is left unsimplified; it never
25921 actually returns zero. However, since Calc's condition-testing
25922 commands consider ``false'' anything not provably true, this is
25941 @cindex Linearity testing
25942 The functions @code{lin}, @code{linnt}, @code{islin}, and @code{islinnt}
25943 check if an expression is ``linear,'' i.e., can be written in the form
25944 @expr{a + b x} for some constants @expr{a} and @expr{b}, and some
25945 variable or subformula @expr{x}. The function @samp{islin(f,x)} checks
25946 if formula @expr{f} is linear in @expr{x}, returning 1 if so. For
25947 example, @samp{islin(x,x)}, @samp{islin(-x,x)}, @samp{islin(3,x)}, and
25948 @samp{islin(x y / 3 - 2, x)} all return 1. The @samp{lin(f,x)} function
25949 is similar, except that instead of returning 1 it returns the vector
25950 @expr{[a, b, x]}. For the above examples, this vector would be
25951 @expr{[0, 1, x]}, @expr{[0, -1, x]}, @expr{[3, 0, x]}, and
25952 @expr{[-2, y/3, x]}, respectively. Both @code{lin} and @code{islin}
25953 generally remain unevaluated for expressions which are not linear,
25954 e.g., @samp{lin(2 x^2, x)} and @samp{lin(sin(x), x)}. The second
25955 argument can also be a formula; @samp{islin(2 + 3 sin(x), sin(x))}
25958 The @code{linnt} and @code{islinnt} functions perform a similar check,
25959 but require a ``non-trivial'' linear form, which means that the
25960 @expr{b} coefficient must be non-zero. For example, @samp{lin(2,x)}
25961 returns @expr{[2, 0, x]} and @samp{lin(y,x)} returns @expr{[y, 0, x]},
25962 but @samp{linnt(2,x)} and @samp{linnt(y,x)} are left unevaluated
25963 (in other words, these formulas are considered to be only ``trivially''
25964 linear in @expr{x}).
25966 All four linearity-testing functions allow you to omit the second
25967 argument, in which case the input may be linear in any non-constant
25968 formula. Here, the @expr{a=0}, @expr{b=1} case is also considered
25969 trivial, and only constant values for @expr{a} and @expr{b} are
25970 recognized. Thus, @samp{lin(2 x y)} returns @expr{[0, 2, x y]},
25971 @samp{lin(2 - x y)} returns @expr{[2, -1, x y]}, and @samp{lin(x y)}
25972 returns @expr{[0, 1, x y]}. The @code{linnt} function would allow the
25973 first two cases but not the third. Also, neither @code{lin} nor
25974 @code{linnt} accept plain constants as linear in the one-argument
25975 case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false.
25981 The @samp{istrue(a)} function returns 1 if @expr{a} is a nonzero
25982 number or provably nonzero formula, or 0 if @expr{a} is anything else.
25983 Calls to @code{istrue} can only be manipulated if @kbd{m O} mode is
25984 used to make sure they are not evaluated prematurely. (Note that
25985 declarations are used when deciding whether a formula is true;
25986 @code{istrue} returns 1 when @code{dnonzero} would return 1, and
25987 it returns 0 when @code{dnonzero} would return 0 or leave itself
25990 @node Rewrite Rules, , Logical Operations, Algebra
25991 @section Rewrite Rules
25994 @cindex Rewrite rules
25995 @cindex Transformations
25996 @cindex Pattern matching
25998 @pindex calc-rewrite
26000 The @kbd{a r} (@code{calc-rewrite}) [@code{rewrite}] command makes
26001 substitutions in a formula according to a specified pattern or patterns
26002 known as @dfn{rewrite rules}. Whereas @kbd{a b} (@code{calc-substitute})
26003 matches literally, so that substituting @samp{sin(x)} with @samp{cos(x)}
26004 matches only the @code{sin} function applied to the variable @code{x},
26005 rewrite rules match general kinds of formulas; rewriting using the rule
26006 @samp{sin(x) := cos(x)} matches @code{sin} of any argument and replaces
26007 it with @code{cos} of that same argument. The only significance of the
26008 name @code{x} is that the same name is used on both sides of the rule.
26010 Rewrite rules rearrange formulas already in Calc's memory.
26011 @xref{Syntax Tables}, to read about @dfn{syntax rules}, which are
26012 similar to algebraic rewrite rules but operate when new algebraic
26013 entries are being parsed, converting strings of characters into
26017 * Entering Rewrite Rules::
26018 * Basic Rewrite Rules::
26019 * Conditional Rewrite Rules::
26020 * Algebraic Properties of Rewrite Rules::
26021 * Other Features of Rewrite Rules::
26022 * Composing Patterns in Rewrite Rules::
26023 * Nested Formulas with Rewrite Rules::
26024 * Multi-Phase Rewrite Rules::
26025 * Selections with Rewrite Rules::
26026 * Matching Commands::
26027 * Automatic Rewrites::
26028 * Debugging Rewrites::
26029 * Examples of Rewrite Rules::
26032 @node Entering Rewrite Rules, Basic Rewrite Rules, Rewrite Rules, Rewrite Rules
26033 @subsection Entering Rewrite Rules
26036 Rewrite rules normally use the ``assignment'' operator
26037 @samp{@var{old} := @var{new}}.
26038 This operator is equivalent to the function call @samp{assign(old, new)}.
26039 The @code{assign} function is undefined by itself in Calc, so an
26040 assignment formula such as a rewrite rule will be left alone by ordinary
26041 Calc commands. But certain commands, like the rewrite system, interpret
26042 assignments in special ways.
26044 For example, the rule @samp{sin(x)^2 := 1-cos(x)^2} says to replace
26045 every occurrence of the sine of something, squared, with one minus the
26046 square of the cosine of that same thing. All by itself as a formula
26047 on the stack it does nothing, but when given to the @kbd{a r} command
26048 it turns that command into a sine-squared-to-cosine-squared converter.
26050 To specify a set of rules to be applied all at once, make a vector of
26053 When @kbd{a r} prompts you to enter the rewrite rules, you can answer
26058 With a rule: @kbd{f(x) := g(x) @key{RET}}.
26060 With a vector of rules: @kbd{[f1(x) := g1(x), f2(x) := g2(x)] @key{RET}}.
26061 (You can omit the enclosing square brackets if you wish.)
26063 With the name of a variable that contains the rule or rules vector:
26064 @kbd{myrules @key{RET}}.
26066 With any formula except a rule, a vector, or a variable name; this
26067 will be interpreted as the @var{old} half of a rewrite rule,
26068 and you will be prompted a second time for the @var{new} half:
26069 @kbd{f(x) @key{RET} g(x) @key{RET}}.
26071 With a blank line, in which case the rule, rules vector, or variable
26072 will be taken from the top of the stack (and the formula to be
26073 rewritten will come from the second-to-top position).
26076 If you enter the rules directly (as opposed to using rules stored
26077 in a variable), those rules will be put into the Trail so that you
26078 can retrieve them later. @xref{Trail Commands}.
26080 It is most convenient to store rules you use often in a variable and
26081 invoke them by giving the variable name. The @kbd{s e}
26082 (@code{calc-edit-variable}) command is an easy way to create or edit a
26083 rule set stored in a variable. You may also wish to use @kbd{s p}
26084 (@code{calc-permanent-variable}) to save your rules permanently;
26085 @pxref{Operations on Variables}.
26087 Rewrite rules are compiled into a special internal form for faster
26088 matching. If you enter a rule set directly it must be recompiled
26089 every time. If you store the rules in a variable and refer to them
26090 through that variable, they will be compiled once and saved away
26091 along with the variable for later reference. This is another good
26092 reason to store your rules in a variable.
26094 Calc also accepts an obsolete notation for rules, as vectors
26095 @samp{[@var{old}, @var{new}]}. But because it is easily confused with a
26096 vector of two rules, the use of this notation is no longer recommended.
26098 @node Basic Rewrite Rules, Conditional Rewrite Rules, Entering Rewrite Rules, Rewrite Rules
26099 @subsection Basic Rewrite Rules
26102 To match a particular formula @expr{x} with a particular rewrite rule
26103 @samp{@var{old} := @var{new}}, Calc compares the structure of @expr{x} with
26104 the structure of @var{old}. Variables that appear in @var{old} are
26105 treated as @dfn{meta-variables}; the corresponding positions in @expr{x}
26106 may contain any sub-formulas. For example, the pattern @samp{f(x,y)}
26107 would match the expression @samp{f(12, a+1)} with the meta-variable
26108 @samp{x} corresponding to 12 and with @samp{y} corresponding to
26109 @samp{a+1}. However, this pattern would not match @samp{f(12)} or
26110 @samp{g(12, a+1)}, since there is no assignment of the meta-variables
26111 that will make the pattern match these expressions. Notice that if
26112 the pattern is a single meta-variable, it will match any expression.
26114 If a given meta-variable appears more than once in @var{old}, the
26115 corresponding sub-formulas of @expr{x} must be identical. Thus
26116 the pattern @samp{f(x,x)} would match @samp{f(12, 12)} and
26117 @samp{f(a+1, a+1)} but not @samp{f(12, a+1)} or @samp{f(a+b, b+a)}.
26118 (@xref{Conditional Rewrite Rules}, for a way to match the latter.)
26120 Things other than variables must match exactly between the pattern
26121 and the target formula. To match a particular variable exactly, use
26122 the pseudo-function @samp{quote(v)} in the pattern. For example, the
26123 pattern @samp{x+quote(y)} matches @samp{x+y}, @samp{2+y}, or
26126 The special variable names @samp{e}, @samp{pi}, @samp{i}, @samp{phi},
26127 @samp{gamma}, @samp{inf}, @samp{uinf}, and @samp{nan} always match
26128 literally. Thus the pattern @samp{sin(d + e + f)} acts exactly like
26129 @samp{sin(d + quote(e) + f)}.
26131 If the @var{old} pattern is found to match a given formula, that
26132 formula is replaced by @var{new}, where any occurrences in @var{new}
26133 of meta-variables from the pattern are replaced with the sub-formulas
26134 that they matched. Thus, applying the rule @samp{f(x,y) := g(y+x,x)}
26135 to @samp{f(12, a+1)} would produce @samp{g(a+13, 12)}.
26137 The normal @kbd{a r} command applies rewrite rules over and over
26138 throughout the target formula until no further changes are possible
26139 (up to a limit of 100 times). Use @kbd{C-u 1 a r} to make only one
26142 @node Conditional Rewrite Rules, Algebraic Properties of Rewrite Rules, Basic Rewrite Rules, Rewrite Rules
26143 @subsection Conditional Rewrite Rules
26146 A rewrite rule can also be @dfn{conditional}, written in the form
26147 @samp{@var{old} := @var{new} :: @var{cond}}. (There is also the obsolete
26148 form @samp{[@var{old}, @var{new}, @var{cond}]}.) If a @var{cond} part
26150 rule, this is an additional condition that must be satisfied before
26151 the rule is accepted. Once @var{old} has been successfully matched
26152 to the target expression, @var{cond} is evaluated (with all the
26153 meta-variables substituted for the values they matched) and simplified
26154 with Calc's algebraic simplifications. If the result is a nonzero
26155 number or any other object known to be nonzero (@pxref{Declarations}),
26156 the rule is accepted. If the result is zero or if it is a symbolic
26157 formula that is not known to be nonzero, the rule is rejected.
26158 @xref{Logical Operations}, for a number of functions that return
26159 1 or 0 according to the results of various tests.
26161 For example, the formula @samp{n > 0} simplifies to 1 or 0 if @expr{n}
26162 is replaced by a positive or nonpositive number, respectively (or if
26163 @expr{n} has been declared to be positive or nonpositive). Thus,
26164 the rule @samp{f(x,y) := g(y+x,x) :: x+y > 0} would apply to
26165 @samp{f(0, 4)} but not to @samp{f(-3, 2)} or @samp{f(12, a+1)}
26166 (assuming no outstanding declarations for @expr{a}). In the case of
26167 @samp{f(-3, 2)}, the condition can be shown not to be satisfied; in
26168 the case of @samp{f(12, a+1)}, the condition merely cannot be shown
26169 to be satisfied, but that is enough to reject the rule.
26171 While Calc will use declarations to reason about variables in the
26172 formula being rewritten, declarations do not apply to meta-variables.
26173 For example, the rule @samp{f(a) := g(a+1)} will match for any values
26174 of @samp{a}, such as complex numbers, vectors, or formulas, even if
26175 @samp{a} has been declared to be real or scalar. If you want the
26176 meta-variable @samp{a} to match only literal real numbers, use
26177 @samp{f(a) := g(a+1) :: real(a)}. If you want @samp{a} to match only
26178 reals and formulas which are provably real, use @samp{dreal(a)} as
26181 The @samp{::} operator is a shorthand for the @code{condition}
26182 function; @samp{@var{old} := @var{new} :: @var{cond}} is equivalent to
26183 the formula @samp{condition(assign(@var{old}, @var{new}), @var{cond})}.
26185 If you have several conditions, you can use @samp{... :: c1 :: c2 :: c3}
26186 or @samp{... :: c1 && c2 && c3}. The two are entirely equivalent.
26188 It is also possible to embed conditions inside the pattern:
26189 @samp{f(x :: x>0, y) := g(y+x, x)}. This is purely a notational
26190 convenience, though; where a condition appears in a rule has no
26191 effect on when it is tested. The rewrite-rule compiler automatically
26192 decides when it is best to test each condition while a rule is being
26195 Certain conditions are handled as special cases by the rewrite rule
26196 system and are tested very efficiently: Where @expr{x} is any
26197 meta-variable, these conditions are @samp{integer(x)}, @samp{real(x)},
26198 @samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @expr{y}
26199 is either a constant or another meta-variable and @samp{>=} may be
26200 replaced by any of the six relational operators, and @samp{x % a = b}
26201 where @expr{a} and @expr{b} are constants. Other conditions, like
26202 @samp{x >= y+1} or @samp{dreal(x)}, will be less efficient to check
26203 since Calc must bring the whole evaluator and simplifier into play.
26205 An interesting property of @samp{::} is that neither of its arguments
26206 will be touched by Calc's default simplifications. This is important
26207 because conditions often are expressions that cannot safely be
26208 evaluated early. For example, the @code{typeof} function never
26209 remains in symbolic form; entering @samp{typeof(a)} will put the
26210 number 100 (the type code for variables like @samp{a}) on the stack.
26211 But putting the condition @samp{... :: typeof(a) = 6} on the stack
26212 is safe since @samp{::} prevents the @code{typeof} from being
26213 evaluated until the condition is actually used by the rewrite system.
26215 Since @samp{::} protects its lefthand side, too, you can use a dummy
26216 condition to protect a rule that must itself not evaluate early.
26217 For example, it's not safe to put @samp{a(f,x) := apply(f, [x])} on
26218 the stack because it will immediately evaluate to @samp{a(f,x) := f(x)},
26219 where the meta-variable-ness of @code{f} on the righthand side has been
26220 lost. But @samp{a(f,x) := apply(f, [x]) :: 1} is safe, and of course
26221 the condition @samp{1} is always true (nonzero) so it has no effect on
26222 the functioning of the rule. (The rewrite compiler will ensure that
26223 it doesn't even impact the speed of matching the rule.)
26225 @node Algebraic Properties of Rewrite Rules, Other Features of Rewrite Rules, Conditional Rewrite Rules, Rewrite Rules
26226 @subsection Algebraic Properties of Rewrite Rules
26229 The rewrite mechanism understands the algebraic properties of functions
26230 like @samp{+} and @samp{*}. In particular, pattern matching takes
26231 the associativity and commutativity of the following functions into
26235 + - * = != && || and or xor vint vunion vxor gcd lcm max min beta
26238 For example, the rewrite rule:
26241 a x + b x := (a + b) x
26245 will match formulas of the form,
26248 a x + b x, x a + x b, a x + x b, x a + b x
26251 Rewrites also understand the relationship between the @samp{+} and @samp{-}
26252 operators. The above rewrite rule will also match the formulas,
26255 a x - b x, x a - x b, a x - x b, x a - b x
26259 by matching @samp{b} in the pattern to @samp{-b} from the formula.
26261 Applied to a sum of many terms like @samp{r + a x + s + b x + t}, this
26262 pattern will check all pairs of terms for possible matches. The rewrite
26263 will take whichever suitable pair it discovers first.
26265 In general, a pattern using an associative operator like @samp{a + b}
26266 will try @var{2 n} different ways to match a sum of @var{n} terms
26267 like @samp{x + y + z - w}. First, @samp{a} is matched against each
26268 of @samp{x}, @samp{y}, @samp{z}, and @samp{-w} in turn, with @samp{b}
26269 being matched to the remainders @samp{y + z - w}, @samp{x + z - w}, etc.
26270 If none of these succeed, then @samp{b} is matched against each of the
26271 four terms with @samp{a} matching the remainder. Half-and-half matches,
26272 like @samp{(x + y) + (z - w)}, are not tried.
26274 Note that @samp{*} is not commutative when applied to matrices, but
26275 rewrite rules pretend that it is. If you type @kbd{m v} to enable
26276 Matrix mode (@pxref{Matrix Mode}), rewrite rules will match @samp{*}
26277 literally, ignoring its usual commutativity property. (In the
26278 current implementation, the associativity also vanishes---it is as
26279 if the pattern had been enclosed in a @code{plain} marker; see below.)
26280 If you are applying rewrites to formulas with matrices, it's best to
26281 enable Matrix mode first to prevent algebraically incorrect rewrites
26284 The pattern @samp{-x} will actually match any expression. For example,
26292 will rewrite @samp{f(a)} to @samp{-f(-a)}. To avoid this, either use
26293 a @code{plain} marker as described below, or add a @samp{negative(x)}
26294 condition. The @code{negative} function is true if its argument
26295 ``looks'' negative, for example, because it is a negative number or
26296 because it is a formula like @samp{-x}. The new rule using this
26300 f(x) := -f(-x) :: negative(x) @r{or, equivalently,}
26301 f(-x) := -f(x) :: negative(-x)
26304 In the same way, the pattern @samp{x - y} will match the sum @samp{a + b}
26305 by matching @samp{y} to @samp{-b}.
26307 The pattern @samp{a b} will also match the formula @samp{x/y} if
26308 @samp{y} is a number. Thus the rule @samp{a x + @w{b x} := (a+b) x}
26309 will also convert @samp{a x + x / 2} to @samp{(a + 0.5) x} (or
26310 @samp{(a + 1:2) x}, depending on the current fraction mode).
26312 Calc will @emph{not} take other liberties with @samp{*}, @samp{/}, and
26313 @samp{^}. For example, the pattern @samp{f(a b)} will not match
26314 @samp{f(x^2)}, and @samp{f(a + b)} will not match @samp{f(2 x)}, even
26315 though conceivably these patterns could match with @samp{a = b = x}.
26316 Nor will @samp{f(a b)} match @samp{f(x / y)} if @samp{y} is not a
26317 constant, even though it could be considered to match with @samp{a = x}
26318 and @samp{b = 1/y}. The reasons are partly for efficiency, and partly
26319 because while few mathematical operations are substantively different
26320 for addition and subtraction, often it is preferable to treat the cases
26321 of multiplication, division, and integer powers separately.
26323 Even more subtle is the rule set
26326 [ f(a) + f(b) := f(a + b), -f(a) := f(-a) ]
26330 attempting to match @samp{f(x) - f(y)}. You might think that Calc
26331 will view this subtraction as @samp{f(x) + (-f(y))} and then apply
26332 the above two rules in turn, but actually this will not work because
26333 Calc only does this when considering rules for @samp{+} (like the
26334 first rule in this set). So it will see first that @samp{f(x) + (-f(y))}
26335 does not match @samp{f(a) + f(b)} for any assignments of the
26336 meta-variables, and then it will see that @samp{f(x) - f(y)} does
26337 not match @samp{-f(a)} for any assignment of @samp{a}. Because Calc
26338 tries only one rule at a time, it will not be able to rewrite
26339 @samp{f(x) - f(y)} with this rule set. An explicit @samp{f(a) - f(b)}
26340 rule will have to be added.
26342 Another thing patterns will @emph{not} do is break up complex numbers.
26343 The pattern @samp{myconj(a + @w{b i)} := a - b i} will work for formulas
26344 involving the special constant @samp{i} (such as @samp{3 - 4 i}), but
26345 it will not match actual complex numbers like @samp{(3, -4)}. A version
26346 of the above rule for complex numbers would be
26349 myconj(a) := re(a) - im(a) (0,1) :: im(a) != 0
26353 (Because the @code{re} and @code{im} functions understand the properties
26354 of the special constant @samp{i}, this rule will also work for
26355 @samp{3 - 4 i}. In fact, this particular rule would probably be better
26356 without the @samp{im(a) != 0} condition, since if @samp{im(a) = 0} the
26357 righthand side of the rule will still give the correct answer for the
26358 conjugate of a real number.)
26360 It is also possible to specify optional arguments in patterns. The rule
26363 opt(a) x + opt(b) (x^opt(c) + opt(d)) := f(a, b, c, d)
26367 will match the formula
26374 in a fairly straightforward manner, but it will also match reduced
26378 x + x^2, 2(x + 1) - x, x + x
26382 producing, respectively,
26385 f(1, 1, 2, 0), f(-1, 2, 1, 1), f(1, 1, 1, 0)
26388 (The latter two formulas can be entered only if default simplifications
26389 have been turned off with @kbd{m O}.)
26391 The default value for a term of a sum is zero. The default value
26392 for a part of a product, for a power, or for the denominator of a
26393 quotient, is one. Also, @samp{-x} matches the pattern @samp{opt(a) b}
26394 with @samp{a = -1}.
26396 In particular, the distributive-law rule can be refined to
26399 opt(a) x + opt(b) x := (a + b) x
26403 so that it will convert, e.g., @samp{a x - x}, to @samp{(a - 1) x}.
26405 The pattern @samp{opt(a) + opt(b) x} matches almost any formulas which
26406 are linear in @samp{x}. You can also use the @code{lin} and @code{islin}
26407 functions with rewrite conditions to test for this; @pxref{Logical
26408 Operations}. These functions are not as convenient to use in rewrite
26409 rules, but they recognize more kinds of formulas as linear:
26410 @samp{x/z} is considered linear with @expr{b = 1/z} by @code{lin},
26411 but it will not match the above pattern because that pattern calls
26412 for a multiplication, not a division.
26414 As another example, the obvious rule to replace @samp{sin(x)^2 + cos(x)^2}
26418 sin(x)^2 + cos(x)^2 := 1
26422 misses many cases because the sine and cosine may both be multiplied by
26423 an equal factor. Here's a more successful rule:
26426 opt(a) sin(x)^2 + opt(a) cos(x)^2 := a
26429 Note that this rule will @emph{not} match @samp{sin(x)^2 + 6 cos(x)^2}
26430 because one @expr{a} would have ``matched'' 1 while the other matched 6.
26432 Calc automatically converts a rule like
26442 f(temp, x) := g(x) :: temp = x-1
26446 (where @code{temp} stands for a new, invented meta-variable that
26447 doesn't actually have a name). This modified rule will successfully
26448 match @samp{f(6, 7)}, binding @samp{temp} and @samp{x} to 6 and 7,
26449 respectively, then verifying that they differ by one even though
26450 @samp{6} does not superficially look like @samp{x-1}.
26452 However, Calc does not solve equations to interpret a rule. The
26456 f(x-1, x+1) := g(x)
26460 will not work. That is, it will match @samp{f(a - 1 + b, a + 1 + b)}
26461 but not @samp{f(6, 8)}. Calc always interprets at least one occurrence
26462 of a variable by literal matching. If the variable appears ``isolated''
26463 then Calc is smart enough to use it for literal matching. But in this
26464 last example, Calc is forced to rewrite the rule to @samp{f(x-1, temp)
26465 := g(x) :: temp = x+1} where the @samp{x-1} term must correspond to an
26466 actual ``something-minus-one'' in the target formula.
26468 A successful way to write this would be @samp{f(x, x+2) := g(x+1)}.
26469 You could make this resemble the original form more closely by using
26470 @code{let} notation, which is described in the next section:
26473 f(xm1, x+1) := g(x) :: let(x := xm1+1)
26476 Calc does this rewriting or ``conditionalizing'' for any sub-pattern
26477 which involves only the functions in the following list, operating
26478 only on constants and meta-variables which have already been matched
26479 elsewhere in the pattern. When matching a function call, Calc is
26480 careful to match arguments which are plain variables before arguments
26481 which are calls to any of the functions below, so that a pattern like
26482 @samp{f(x-1, x)} can be conditionalized even though the isolated
26483 @samp{x} comes after the @samp{x-1}.
26486 + - * / \ % ^ abs sign round rounde roundu trunc floor ceil
26487 max min re im conj arg
26490 You can suppress all of the special treatments described in this
26491 section by surrounding a function call with a @code{plain} marker.
26492 This marker causes the function call which is its argument to be
26493 matched literally, without regard to commutativity, associativity,
26494 negation, or conditionalization. When you use @code{plain}, the
26495 ``deep structure'' of the formula being matched can show through.
26499 plain(a - a b) := f(a, b)
26503 will match only literal subtractions. However, the @code{plain}
26504 marker does not affect its arguments' arguments. In this case,
26505 commutativity and associativity is still considered while matching
26506 the @w{@samp{a b}} sub-pattern, so the whole pattern will match
26507 @samp{x - y x} as well as @samp{x - x y}. We could go still
26511 plain(a - plain(a b)) := f(a, b)
26515 which would do a completely strict match for the pattern.
26517 By contrast, the @code{quote} marker means that not only the
26518 function name but also the arguments must be literally the same.
26519 The above pattern will match @samp{x - x y} but
26522 quote(a - a b) := f(a, b)
26526 will match only the single formula @samp{a - a b}. Also,
26529 quote(a - quote(a b)) := f(a, b)
26533 will match only @samp{a - quote(a b)}---probably not the desired
26536 A certain amount of algebra is also done when substituting the
26537 meta-variables on the righthand side of a rule. For example,
26541 a + f(b) := f(a + b)
26545 matching @samp{f(x) - y} would produce @samp{f((-y) + x)} if
26546 taken literally, but the rewrite mechanism will simplify the
26547 righthand side to @samp{f(x - y)} automatically. (Of course,
26548 the default simplifications would do this anyway, so this
26549 special simplification is only noticeable if you have turned the
26550 default simplifications off.) This rewriting is done only when
26551 a meta-variable expands to a ``negative-looking'' expression.
26552 If this simplification is not desirable, you can use a @code{plain}
26553 marker on the righthand side:
26556 a + f(b) := f(plain(a + b))
26560 In this example, we are still allowing the pattern-matcher to
26561 use all the algebra it can muster, but the righthand side will
26562 always simplify to a literal addition like @samp{f((-y) + x)}.
26564 @node Other Features of Rewrite Rules, Composing Patterns in Rewrite Rules, Algebraic Properties of Rewrite Rules, Rewrite Rules
26565 @subsection Other Features of Rewrite Rules
26568 Certain ``function names'' serve as markers in rewrite rules.
26569 Here is a complete list of these markers. First are listed the
26570 markers that work inside a pattern; then come the markers that
26571 work in the righthand side of a rule.
26577 One kind of marker, @samp{import(x)}, takes the place of a whole
26578 rule. Here @expr{x} is the name of a variable containing another
26579 rule set; those rules are ``spliced into'' the rule set that
26580 imports them. For example, if @samp{[f(a+b) := f(a) + f(b),
26581 f(a b) := a f(b) :: real(a)]} is stored in variable @samp{linearF},
26582 then the rule set @samp{[f(0) := 0, import(linearF)]} will apply
26583 all three rules. It is possible to modify the imported rules
26584 slightly: @samp{import(x, v1, x1, v2, x2, @dots{})} imports
26585 the rule set @expr{x} with all occurrences of
26586 @texline @math{v_1},
26587 @infoline @expr{v1},
26588 as either a variable name or a function name, replaced with
26589 @texline @math{x_1}
26590 @infoline @expr{x1}
26592 @texline @math{v_1}
26593 @infoline @expr{v1}
26594 is used as a function name, then
26595 @texline @math{x_1}
26596 @infoline @expr{x1}
26597 must be either a function name itself or a @w{@samp{< >}} nameless
26598 function; @pxref{Specifying Operators}.) For example, @samp{[g(0) := 0,
26599 import(linearF, f, g)]} applies the linearity rules to the function
26600 @samp{g} instead of @samp{f}. Imports can be nested, but the
26601 import-with-renaming feature may fail to rename sub-imports properly.
26603 The special functions allowed in patterns are:
26611 This pattern matches exactly @expr{x}; variable names in @expr{x} are
26612 not interpreted as meta-variables. The only flexibility is that
26613 numbers are compared for numeric equality, so that the pattern
26614 @samp{f(quote(12))} will match both @samp{f(12)} and @samp{f(12.0)}.
26615 (Numbers are always treated this way by the rewrite mechanism:
26616 The rule @samp{f(x,x) := g(x)} will match @samp{f(12, 12.0)}.
26617 The rewrite may produce either @samp{g(12)} or @samp{g(12.0)}
26618 as a result in this case.)
26625 Here @expr{x} must be a function call @samp{f(x1,x2,@dots{})}. This
26626 pattern matches a call to function @expr{f} with the specified
26627 argument patterns. No special knowledge of the properties of the
26628 function @expr{f} is used in this case; @samp{+} is not commutative or
26629 associative. Unlike @code{quote}, the arguments @samp{x1,x2,@dots{}}
26630 are treated as patterns. If you wish them to be treated ``plainly''
26631 as well, you must enclose them with more @code{plain} markers:
26632 @samp{plain(plain(@w{-a}) + plain(b c))}.
26639 Here @expr{x} must be a variable name. This must appear as an
26640 argument to a function or an element of a vector; it specifies that
26641 the argument or element is optional.
26642 As an argument to @samp{+}, @samp{-}, @samp{*}, @samp{&&}, or @samp{||},
26643 or as the second argument to @samp{/} or @samp{^}, the value @var{def}
26644 may be omitted. The pattern @samp{x + opt(y)} matches a sum by
26645 binding one summand to @expr{x} and the other to @expr{y}, and it
26646 matches anything else by binding the whole expression to @expr{x} and
26647 zero to @expr{y}. The other operators above work similarly.
26649 For general miscellaneous functions, the default value @code{def}
26650 must be specified. Optional arguments are dropped starting with
26651 the rightmost one during matching. For example, the pattern
26652 @samp{f(opt(a,0), b, opt(c,b))} will match @samp{f(b)}, @samp{f(a,b)},
26653 or @samp{f(a,b,c)}. Default values of zero and @expr{b} are
26654 supplied in this example for the omitted arguments. Note that
26655 the literal variable @expr{b} will be the default in the latter
26656 case, @emph{not} the value that matched the meta-variable @expr{b}.
26657 In other words, the default @var{def} is effectively quoted.
26659 @item condition(x,c)
26665 This matches the pattern @expr{x}, with the attached condition
26666 @expr{c}. It is the same as @samp{x :: c}.
26674 This matches anything that matches both pattern @expr{x} and
26675 pattern @expr{y}. It is the same as @samp{x &&& y}.
26676 @pxref{Composing Patterns in Rewrite Rules}.
26684 This matches anything that matches either pattern @expr{x} or
26685 pattern @expr{y}. It is the same as @w{@samp{x ||| y}}.
26693 This matches anything that does not match pattern @expr{x}.
26694 It is the same as @samp{!!! x}.
26700 @tindex cons (rewrites)
26701 This matches any vector of one or more elements. The first
26702 element is matched to @expr{h}; a vector of the remaining
26703 elements is matched to @expr{t}. Note that vectors of fixed
26704 length can also be matched as actual vectors: The rule
26705 @samp{cons(a,cons(b,[])) := cons(a+b,[])} is equivalent
26706 to the rule @samp{[a,b] := [a+b]}.
26712 @tindex rcons (rewrites)
26713 This is like @code{cons}, except that the @emph{last} element
26714 is matched to @expr{h}, with the remaining elements matched
26717 @item apply(f,args)
26721 @tindex apply (rewrites)
26722 This matches any function call. The name of the function, in
26723 the form of a variable, is matched to @expr{f}. The arguments
26724 of the function, as a vector of zero or more objects, are
26725 matched to @samp{args}. Constants, variables, and vectors
26726 do @emph{not} match an @code{apply} pattern. For example,
26727 @samp{apply(f,x)} matches any function call, @samp{apply(quote(f),x)}
26728 matches any call to the function @samp{f}, @samp{apply(f,[a,b])}
26729 matches any function call with exactly two arguments, and
26730 @samp{apply(quote(f), cons(a,cons(b,x)))} matches any call
26731 to the function @samp{f} with two or more arguments. Another
26732 way to implement the latter, if the rest of the rule does not
26733 need to refer to the first two arguments of @samp{f} by name,
26734 would be @samp{apply(quote(f), x :: vlen(x) >= 2)}.
26735 Here's a more interesting sample use of @code{apply}:
26738 apply(f,[x+n]) := n + apply(f,[x])
26739 :: in(f, [floor,ceil,round,trunc]) :: integer(n)
26742 Note, however, that this will be slower to match than a rule
26743 set with four separate rules. The reason is that Calc sorts
26744 the rules of a rule set according to top-level function name;
26745 if the top-level function is @code{apply}, Calc must try the
26746 rule for every single formula and sub-formula. If the top-level
26747 function in the pattern is, say, @code{floor}, then Calc invokes
26748 the rule only for sub-formulas which are calls to @code{floor}.
26750 Formulas normally written with operators like @code{+} are still
26751 considered function calls: @code{apply(f,x)} matches @samp{a+b}
26752 with @samp{f = add}, @samp{x = [a,b]}.
26754 You must use @code{apply} for meta-variables with function names
26755 on both sides of a rewrite rule: @samp{apply(f, [x]) := f(x+1)}
26756 is @emph{not} correct, because it rewrites @samp{spam(6)} into
26757 @samp{f(7)}. The righthand side should be @samp{apply(f, [x+1])}.
26758 Also note that you will have to use No-Simplify mode (@kbd{m O})
26759 when entering this rule so that the @code{apply} isn't
26760 evaluated immediately to get the new rule @samp{f(x) := f(x+1)}.
26761 Or, use @kbd{s e} to enter the rule without going through the stack,
26762 or enter the rule as @samp{apply(f, [x]) := apply(f, [x+1]) @w{:: 1}}.
26763 @xref{Conditional Rewrite Rules}.
26770 This is used for applying rules to formulas with selections;
26771 @pxref{Selections with Rewrite Rules}.
26774 Special functions for the righthand sides of rules are:
26778 The notation @samp{quote(x)} is changed to @samp{x} when the
26779 righthand side is used. As far as the rewrite rule is concerned,
26780 @code{quote} is invisible. However, @code{quote} has the special
26781 property in Calc that its argument is not evaluated. Thus,
26782 while it will not work to put the rule @samp{t(a) := typeof(a)}
26783 on the stack because @samp{typeof(a)} is evaluated immediately
26784 to produce @samp{t(a) := 100}, you can use @code{quote} to
26785 protect the righthand side: @samp{t(a) := quote(typeof(a))}.
26786 (@xref{Conditional Rewrite Rules}, for another trick for
26787 protecting rules from evaluation.)
26790 Special properties of and simplifications for the function call
26791 @expr{x} are not used. One interesting case where @code{plain}
26792 is useful is the rule, @samp{q(x) := quote(x)}, trying to expand a
26793 shorthand notation for the @code{quote} function. This rule will
26794 not work as shown; instead of replacing @samp{q(foo)} with
26795 @samp{quote(foo)}, it will replace it with @samp{foo}! The correct
26796 rule would be @samp{q(x) := plain(quote(x))}.
26799 Where @expr{t} is a vector, this is converted into an expanded
26800 vector during rewrite processing. Note that @code{cons} is a regular
26801 Calc function which normally does this anyway; the only way @code{cons}
26802 is treated specially by rewrites is that @code{cons} on the righthand
26803 side of a rule will be evaluated even if default simplifications
26804 have been turned off.
26807 Analogous to @code{cons} except putting @expr{h} at the @emph{end} of
26808 the vector @expr{t}.
26810 @item apply(f,args)
26811 Where @expr{f} is a variable and @var{args} is a vector, this
26812 is converted to a function call. Once again, note that @code{apply}
26813 is also a regular Calc function.
26820 The formula @expr{x} is handled in the usual way, then the
26821 default simplifications are applied to it even if they have
26822 been turned off normally. This allows you to treat any function
26823 similarly to the way @code{cons} and @code{apply} are always
26824 treated. However, there is a slight difference: @samp{cons(2+3, [])}
26825 with default simplifications off will be converted to @samp{[2+3]},
26826 whereas @samp{eval(cons(2+3, []))} will be converted to @samp{[5]}.
26833 The formula @expr{x} has meta-variables substituted in the usual
26834 way, then algebraically simplified.
26836 @item evalextsimp(x)
26840 @tindex evalextsimp
26841 The formula @expr{x} has meta-variables substituted in the normal
26842 way, then ``extendedly'' simplified as if by the @kbd{a e} command.
26845 @xref{Selections with Rewrite Rules}.
26848 There are also some special functions you can use in conditions.
26856 The expression @expr{x} is evaluated with meta-variables substituted.
26857 The algebraic simplifications are @emph{not} applied by
26858 default, but @expr{x} can include calls to @code{evalsimp} or
26859 @code{evalextsimp} as described above to invoke higher levels
26860 of simplification. The result of @expr{x} is then bound to the
26861 meta-variable @expr{v}. As usual, if this meta-variable has already
26862 been matched to something else the two values must be equal; if the
26863 meta-variable is new then it is bound to the result of the expression.
26864 This variable can then appear in later conditions, and on the righthand
26866 In fact, @expr{v} may be any pattern in which case the result of
26867 evaluating @expr{x} is matched to that pattern, binding any
26868 meta-variables that appear in that pattern. Note that @code{let}
26869 can only appear by itself as a condition, or as one term of an
26870 @samp{&&} which is a whole condition: It cannot be inside
26871 an @samp{||} term or otherwise buried.
26873 The alternate, equivalent form @samp{let(v, x)} is also recognized.
26874 Note that the use of @samp{:=} by @code{let}, while still being
26875 assignment-like in character, is unrelated to the use of @samp{:=}
26876 in the main part of a rewrite rule.
26878 As an example, @samp{f(a) := g(ia) :: let(ia := 1/a) :: constant(ia)}
26879 replaces @samp{f(a)} with @samp{g} of the inverse of @samp{a}, if
26880 that inverse exists and is constant. For example, if @samp{a} is a
26881 singular matrix the operation @samp{1/a} is left unsimplified and
26882 @samp{constant(ia)} fails, but if @samp{a} is an invertible matrix
26883 then the rule succeeds. Without @code{let} there would be no way
26884 to express this rule that didn't have to invert the matrix twice.
26885 Note that, because the meta-variable @samp{ia} is otherwise unbound
26886 in this rule, the @code{let} condition itself always ``succeeds''
26887 because no matter what @samp{1/a} evaluates to, it can successfully
26888 be bound to @code{ia}.
26890 Here's another example, for integrating cosines of linear
26891 terms: @samp{myint(cos(y),x) := sin(y)/b :: let([a,b,x] := lin(y,x))}.
26892 The @code{lin} function returns a 3-vector if its argument is linear,
26893 or leaves itself unevaluated if not. But an unevaluated @code{lin}
26894 call will not match the 3-vector on the lefthand side of the @code{let},
26895 so this @code{let} both verifies that @code{y} is linear, and binds
26896 the coefficients @code{a} and @code{b} for use elsewhere in the rule.
26897 (It would have been possible to use @samp{sin(a x + b)/b} for the
26898 righthand side instead, but using @samp{sin(y)/b} avoids gratuitous
26899 rearrangement of the argument of the sine.)
26905 Similarly, here is a rule that implements an inverse-@code{erf}
26906 function. It uses @code{root} to search for a solution. If
26907 @code{root} succeeds, it will return a vector of two numbers
26908 where the first number is the desired solution. If no solution
26909 is found, @code{root} remains in symbolic form. So we use
26910 @code{let} to check that the result was indeed a vector.
26913 ierf(x) := y :: let([y,z] := root(erf(a) = x, a, .5))
26917 The meta-variable @var{v}, which must already have been matched
26918 to something elsewhere in the rule, is compared against pattern
26919 @var{p}. Since @code{matches} is a standard Calc function, it
26920 can appear anywhere in a condition. But if it appears alone or
26921 as a term of a top-level @samp{&&}, then you get the special
26922 extra feature that meta-variables which are bound to things
26923 inside @var{p} can be used elsewhere in the surrounding rewrite
26926 The only real difference between @samp{let(p := v)} and
26927 @samp{matches(v, p)} is that the former evaluates @samp{v} using
26928 the default simplifications, while the latter does not.
26932 This is actually a variable, not a function. If @code{remember}
26933 appears as a condition in a rule, then when that rule succeeds
26934 the original expression and rewritten expression are added to the
26935 front of the rule set that contained the rule. If the rule set
26936 was not stored in a variable, @code{remember} is ignored. The
26937 lefthand side is enclosed in @code{quote} in the added rule if it
26938 contains any variables.
26940 For example, the rule @samp{f(n) := n f(n-1) :: remember} applied
26941 to @samp{f(7)} will add the rule @samp{f(7) := 7 f(6)} to the front
26942 of the rule set. The rule set @code{EvalRules} works slightly
26943 differently: There, the evaluation of @samp{f(6)} will complete before
26944 the result is added to the rule set, in this case as @samp{f(7) := 5040}.
26945 Thus @code{remember} is most useful inside @code{EvalRules}.
26947 It is up to you to ensure that the optimization performed by
26948 @code{remember} is safe. For example, the rule @samp{foo(n) := n
26949 :: evalv(eatfoo) > 0 :: remember} is a bad idea (@code{evalv} is
26950 the function equivalent of the @kbd{=} command); if the variable
26951 @code{eatfoo} ever contains 1, rules like @samp{foo(7) := 7} will
26952 be added to the rule set and will continue to operate even if
26953 @code{eatfoo} is later changed to 0.
26960 Remember the match as described above, but only if condition @expr{c}
26961 is true. For example, @samp{remember(n % 4 = 0)} in the above factorial
26962 rule remembers only every fourth result. Note that @samp{remember(1)}
26963 is equivalent to @samp{remember}, and @samp{remember(0)} has no effect.
26966 @node Composing Patterns in Rewrite Rules, Nested Formulas with Rewrite Rules, Other Features of Rewrite Rules, Rewrite Rules
26967 @subsection Composing Patterns in Rewrite Rules
26970 There are three operators, @samp{&&&}, @samp{|||}, and @samp{!!!},
26971 that combine rewrite patterns to make larger patterns. The
26972 combinations are ``and,'' ``or,'' and ``not,'' respectively, and
26973 these operators are the pattern equivalents of @samp{&&}, @samp{||}
26974 and @samp{!} (which operate on zero-or-nonzero logical values).
26976 Note that @samp{&&&}, @samp{|||}, and @samp{!!!} are left in symbolic
26977 form by all regular Calc features; they have special meaning only in
26978 the context of rewrite rule patterns.
26980 The pattern @samp{@var{p1} &&& @var{p2}} matches anything that
26981 matches both @var{p1} and @var{p2}. One especially useful case is
26982 when one of @var{p1} or @var{p2} is a meta-variable. For example,
26983 here is a rule that operates on error forms:
26986 f(x &&& a +/- b, x) := g(x)
26989 This does the same thing, but is arguably simpler than, the rule
26992 f(a +/- b, a +/- b) := g(a +/- b)
26999 Here's another interesting example:
27002 ends(cons(a, x) &&& rcons(y, b)) := [a, b]
27006 which effectively clips out the middle of a vector leaving just
27007 the first and last elements. This rule will change a one-element
27008 vector @samp{[a]} to @samp{[a, a]}. The similar rule
27011 ends(cons(a, rcons(y, b))) := [a, b]
27015 would do the same thing except that it would fail to match a
27016 one-element vector.
27022 The pattern @samp{@var{p1} ||| @var{p2}} matches anything that
27023 matches either @var{p1} or @var{p2}. Calc first tries matching
27024 against @var{p1}; if that fails, it goes on to try @var{p2}.
27030 A simple example of @samp{|||} is
27033 curve(inf ||| -inf) := 0
27037 which converts both @samp{curve(inf)} and @samp{curve(-inf)} to zero.
27039 Here is a larger example:
27042 log(a, b) ||| (ln(a) :: let(b := e)) := mylog(a, b)
27045 This matches both generalized and natural logarithms in a single rule.
27046 Note that the @samp{::} term must be enclosed in parentheses because
27047 that operator has lower precedence than @samp{|||} or @samp{:=}.
27049 (In practice this rule would probably include a third alternative,
27050 omitted here for brevity, to take care of @code{log10}.)
27052 While Calc generally treats interior conditions exactly the same as
27053 conditions on the outside of a rule, it does guarantee that if all the
27054 variables in the condition are special names like @code{e}, or already
27055 bound in the pattern to which the condition is attached (say, if
27056 @samp{a} had appeared in this condition), then Calc will process this
27057 condition right after matching the pattern to the left of the @samp{::}.
27058 Thus, we know that @samp{b} will be bound to @samp{e} only if the
27059 @code{ln} branch of the @samp{|||} was taken.
27061 Note that this rule was careful to bind the same set of meta-variables
27062 on both sides of the @samp{|||}. Calc does not check this, but if
27063 you bind a certain meta-variable only in one branch and then use that
27064 meta-variable elsewhere in the rule, results are unpredictable:
27067 f(a,b) ||| g(b) := h(a,b)
27070 Here if the pattern matches @samp{g(17)}, Calc makes no promises about
27071 the value that will be substituted for @samp{a} on the righthand side.
27077 The pattern @samp{!!! @var{pat}} matches anything that does not
27078 match @var{pat}. Any meta-variables that are bound while matching
27079 @var{pat} remain unbound outside of @var{pat}.
27084 f(x &&& !!! a +/- b, !!![]) := g(x)
27088 converts @code{f} whose first argument is anything @emph{except} an
27089 error form, and whose second argument is not the empty vector, into
27090 a similar call to @code{g} (but without the second argument).
27092 If we know that the second argument will be a vector (empty or not),
27093 then an equivalent rule would be:
27096 f(x, y) := g(x) :: typeof(x) != 7 :: vlen(y) > 0
27100 where of course 7 is the @code{typeof} code for error forms.
27101 Another final condition, that works for any kind of @samp{y},
27102 would be @samp{!istrue(y == [])}. (The @code{istrue} function
27103 returns an explicit 0 if its argument was left in symbolic form;
27104 plain @samp{!(y == [])} or @samp{y != []} would not work to replace
27105 @samp{!!![]} since these would be left unsimplified, and thus cause
27106 the rule to fail, if @samp{y} was something like a variable name.)
27108 It is possible for a @samp{!!!} to refer to meta-variables bound
27109 elsewhere in the pattern. For example,
27116 matches any call to @code{f} with different arguments, changing
27117 this to @code{g} with only the first argument.
27119 If a function call is to be matched and one of the argument patterns
27120 contains a @samp{!!!} somewhere inside it, that argument will be
27128 will be careful to bind @samp{a} to the second argument of @code{f}
27129 before testing the first argument. If Calc had tried to match the
27130 first argument of @code{f} first, the results would have been
27131 disastrous: since @code{a} was unbound so far, the pattern @samp{a}
27132 would have matched anything at all, and the pattern @samp{!!!a}
27133 therefore would @emph{not} have matched anything at all!
27135 @node Nested Formulas with Rewrite Rules, Multi-Phase Rewrite Rules, Composing Patterns in Rewrite Rules, Rewrite Rules
27136 @subsection Nested Formulas with Rewrite Rules
27139 When @kbd{a r} (@code{calc-rewrite}) is used, it takes an expression from
27140 the top of the stack and attempts to match any of the specified rules
27141 to any part of the expression, starting with the whole expression
27142 and then, if that fails, trying deeper and deeper sub-expressions.
27143 For each part of the expression, the rules are tried in the order
27144 they appear in the rules vector. The first rule to match the first
27145 sub-expression wins; it replaces the matched sub-expression according
27146 to the @var{new} part of the rule.
27148 Often, the rule set will match and change the formula several times.
27149 The top-level formula is first matched and substituted repeatedly until
27150 it no longer matches the pattern; then, sub-formulas are tried, and
27151 so on. Once every part of the formula has gotten its chance, the
27152 rewrite mechanism starts over again with the top-level formula
27153 (in case a substitution of one of its arguments has caused it again
27154 to match). This continues until no further matches can be made
27155 anywhere in the formula.
27157 It is possible for a rule set to get into an infinite loop. The
27158 most obvious case, replacing a formula with itself, is not a problem
27159 because a rule is not considered to ``succeed'' unless the righthand
27160 side actually comes out to something different than the original
27161 formula or sub-formula that was matched. But if you accidentally
27162 had both @samp{ln(a b) := ln(a) + ln(b)} and the reverse
27163 @samp{ln(a) + ln(b) := ln(a b)} in your rule set, Calc would
27164 run forever switching a formula back and forth between the two
27167 To avoid disaster, Calc normally stops after 100 changes have been
27168 made to the formula. This will be enough for most multiple rewrites,
27169 but it will keep an endless loop of rewrites from locking up the
27170 computer forever. (On most systems, you can also type @kbd{C-g} to
27171 halt any Emacs command prematurely.)
27173 To change this limit, give a positive numeric prefix argument.
27174 In particular, @kbd{M-1 a r} applies only one rewrite at a time,
27175 useful when you are first testing your rule (or just if repeated
27176 rewriting is not what is called for by your application).
27185 You can also put a ``function call'' @samp{iterations(@var{n})}
27186 in place of a rule anywhere in your rules vector (but usually at
27187 the top). Then, @var{n} will be used instead of 100 as the default
27188 number of iterations for this rule set. You can use
27189 @samp{iterations(inf)} if you want no iteration limit by default.
27190 A prefix argument will override the @code{iterations} limit in the
27198 More precisely, the limit controls the number of ``iterations,''
27199 where each iteration is a successful matching of a rule pattern whose
27200 righthand side, after substituting meta-variables and applying the
27201 default simplifications, is different from the original sub-formula
27204 A prefix argument of zero sets the limit to infinity. Use with caution!
27206 Given a negative numeric prefix argument, @kbd{a r} will match and
27207 substitute the top-level expression up to that many times, but
27208 will not attempt to match the rules to any sub-expressions.
27210 In a formula, @code{rewrite(@var{expr}, @var{rules}, @var{n})}
27211 does a rewriting operation. Here @var{expr} is the expression
27212 being rewritten, @var{rules} is the rule, vector of rules, or
27213 variable containing the rules, and @var{n} is the optional
27214 iteration limit, which may be a positive integer, a negative
27215 integer, or @samp{inf} or @samp{-inf}. If @var{n} is omitted
27216 the @code{iterations} value from the rule set is used; if both
27217 are omitted, 100 is used.
27219 @node Multi-Phase Rewrite Rules, Selections with Rewrite Rules, Nested Formulas with Rewrite Rules, Rewrite Rules
27220 @subsection Multi-Phase Rewrite Rules
27223 It is possible to separate a rewrite rule set into several @dfn{phases}.
27224 During each phase, certain rules will be enabled while certain others
27225 will be disabled. A @dfn{phase schedule} controls the order in which
27226 phases occur during the rewriting process.
27233 If a call to the marker function @code{phase} appears in the rules
27234 vector in place of a rule, all rules following that point will be
27235 members of the phase(s) identified in the arguments to @code{phase}.
27236 Phases are given integer numbers. The markers @samp{phase()} and
27237 @samp{phase(all)} both mean the following rules belong to all phases;
27238 this is the default at the start of the rule set.
27240 If you do not explicitly schedule the phases, Calc sorts all phase
27241 numbers that appear in the rule set and executes the phases in
27242 ascending order. For example, the rule set
27259 has three phases, 1 through 3. Phase 1 consists of the @code{f0},
27260 @code{f1}, and @code{f4} rules (in that order). Phase 2 consists of
27261 @code{f0}, @code{f2}, and @code{f4}. Phase 3 consists of @code{f0}
27264 When Calc rewrites a formula using this rule set, it first rewrites
27265 the formula using only the phase 1 rules until no further changes are
27266 possible. Then it switches to the phase 2 rule set and continues
27267 until no further changes occur, then finally rewrites with phase 3.
27268 When no more phase 3 rules apply, rewriting finishes. (This is
27269 assuming @kbd{a r} with a large enough prefix argument to allow the
27270 rewriting to run to completion; the sequence just described stops
27271 early if the number of iterations specified in the prefix argument,
27272 100 by default, is reached.)
27274 During each phase, Calc descends through the nested levels of the
27275 formula as described previously. (@xref{Nested Formulas with Rewrite
27276 Rules}.) Rewriting starts at the top of the formula, then works its
27277 way down to the parts, then goes back to the top and works down again.
27278 The phase 2 rules do not begin until no phase 1 rules apply anywhere
27285 A @code{schedule} marker appearing in the rule set (anywhere, but
27286 conventionally at the top) changes the default schedule of phases.
27287 In the simplest case, @code{schedule} has a sequence of phase numbers
27288 for arguments; each phase number is invoked in turn until the
27289 arguments to @code{schedule} are exhausted. Thus adding
27290 @samp{schedule(3,2,1)} at the top of the above rule set would
27291 reverse the order of the phases; @samp{schedule(1,2,3)} would have
27292 no effect since this is the default schedule; and @samp{schedule(1,2,1,3)}
27293 would give phase 1 a second chance after phase 2 has completed, before
27294 moving on to phase 3.
27296 Any argument to @code{schedule} can instead be a vector of phase
27297 numbers (or even of sub-vectors). Then the sub-sequence of phases
27298 described by the vector are tried repeatedly until no change occurs
27299 in any phase in the sequence. For example, @samp{schedule([1, 2], 3)}
27300 tries phase 1, then phase 2, then, if either phase made any changes
27301 to the formula, repeats these two phases until they can make no
27302 further progress. Finally, it goes on to phase 3 for finishing
27305 Also, items in @code{schedule} can be variable names as well as
27306 numbers. A variable name is interpreted as the name of a function
27307 to call on the whole formula. For example, @samp{schedule(1, simplify)}
27308 says to apply the phase-1 rules (presumably, all of them), then to
27309 call @code{simplify} which is the function name equivalent of @kbd{a s}.
27310 Likewise, @samp{schedule([1, simplify])} says to alternate between
27311 phase 1 and @kbd{a s} until no further changes occur.
27313 Phases can be used purely to improve efficiency; if it is known that
27314 a certain group of rules will apply only at the beginning of rewriting,
27315 and a certain other group will apply only at the end, then rewriting
27316 will be faster if these groups are identified as separate phases.
27317 Once the phase 1 rules are done, Calc can put them aside and no longer
27318 spend any time on them while it works on phase 2.
27320 There are also some problems that can only be solved with several
27321 rewrite phases. For a real-world example of a multi-phase rule set,
27322 examine the set @code{FitRules}, which is used by the curve-fitting
27323 command to convert a model expression to linear form.
27324 @xref{Curve Fitting Details}. This set is divided into four phases.
27325 The first phase rewrites certain kinds of expressions to be more
27326 easily linearizable, but less computationally efficient. After the
27327 linear components have been picked out, the final phase includes the
27328 opposite rewrites to put each component back into an efficient form.
27329 If both sets of rules were included in one big phase, Calc could get
27330 into an infinite loop going back and forth between the two forms.
27332 Elsewhere in @code{FitRules}, the components are first isolated,
27333 then recombined where possible to reduce the complexity of the linear
27334 fit, then finally packaged one component at a time into vectors.
27335 If the packaging rules were allowed to begin before the recombining
27336 rules were finished, some components might be put away into vectors
27337 before they had a chance to recombine. By putting these rules in
27338 two separate phases, this problem is neatly avoided.
27340 @node Selections with Rewrite Rules, Matching Commands, Multi-Phase Rewrite Rules, Rewrite Rules
27341 @subsection Selections with Rewrite Rules
27344 If a sub-formula of the current formula is selected (as by @kbd{j s};
27345 @pxref{Selecting Subformulas}), the @kbd{a r} (@code{calc-rewrite})
27346 command applies only to that sub-formula. Together with a negative
27347 prefix argument, you can use this fact to apply a rewrite to one
27348 specific part of a formula without affecting any other parts.
27351 @pindex calc-rewrite-selection
27352 The @kbd{j r} (@code{calc-rewrite-selection}) command allows more
27353 sophisticated operations on selections. This command prompts for
27354 the rules in the same way as @kbd{a r}, but it then applies those
27355 rules to the whole formula in question even though a sub-formula
27356 of it has been selected. However, the selected sub-formula will
27357 first have been surrounded by a @samp{select( )} function call.
27358 (Calc's evaluator does not understand the function name @code{select};
27359 this is only a tag used by the @kbd{j r} command.)
27361 For example, suppose the formula on the stack is @samp{2 (a + b)^2}
27362 and the sub-formula @samp{a + b} is selected. This formula will
27363 be rewritten to @samp{2 select(a + b)^2} and then the rewrite
27364 rules will be applied in the usual way. The rewrite rules can
27365 include references to @code{select} to tell where in the pattern
27366 the selected sub-formula should appear.
27368 If there is still exactly one @samp{select( )} function call in
27369 the formula after rewriting is done, it indicates which part of
27370 the formula should be selected afterwards. Otherwise, the
27371 formula will be unselected.
27373 You can make @kbd{j r} act much like @kbd{a r} by enclosing both parts
27374 of the rewrite rule with @samp{select()}. However, @kbd{j r}
27375 allows you to use the current selection in more flexible ways.
27376 Suppose you wished to make a rule which removed the exponent from
27377 the selected term; the rule @samp{select(a)^x := select(a)} would
27378 work. In the above example, it would rewrite @samp{2 select(a + b)^2}
27379 to @samp{2 select(a + b)}. This would then be returned to the
27380 stack as @samp{2 (a + b)} with the @samp{a + b} selected.
27382 The @kbd{j r} command uses one iteration by default, unlike
27383 @kbd{a r} which defaults to 100 iterations. A numeric prefix
27384 argument affects @kbd{j r} in the same way as @kbd{a r}.
27385 @xref{Nested Formulas with Rewrite Rules}.
27387 As with other selection commands, @kbd{j r} operates on the stack
27388 entry that contains the cursor. (If the cursor is on the top-of-stack
27389 @samp{.} marker, it works as if the cursor were on the formula
27392 If you don't specify a set of rules, the rules are taken from the
27393 top of the stack, just as with @kbd{a r}. In this case, the
27394 cursor must indicate stack entry 2 or above as the formula to be
27395 rewritten (otherwise the same formula would be used as both the
27396 target and the rewrite rules).
27398 If the indicated formula has no selection, the cursor position within
27399 the formula temporarily selects a sub-formula for the purposes of this
27400 command. If the cursor is not on any sub-formula (e.g., it is in
27401 the line-number area to the left of the formula), the @samp{select( )}
27402 markers are ignored by the rewrite mechanism and the rules are allowed
27403 to apply anywhere in the formula.
27405 As a special feature, the normal @kbd{a r} command also ignores
27406 @samp{select( )} calls in rewrite rules. For example, if you used the
27407 above rule @samp{select(a)^x := select(a)} with @kbd{a r}, it would apply
27408 the rule as if it were @samp{a^x := a}. Thus, you can write general
27409 purpose rules with @samp{select( )} hints inside them so that they
27410 will ``do the right thing'' in both @kbd{a r} and @kbd{j r},
27411 both with and without selections.
27413 @node Matching Commands, Automatic Rewrites, Selections with Rewrite Rules, Rewrite Rules
27414 @subsection Matching Commands
27420 The @kbd{a m} (@code{calc-match}) [@code{match}] function takes a
27421 vector of formulas and a rewrite-rule-style pattern, and produces
27422 a vector of all formulas which match the pattern. The command
27423 prompts you to enter the pattern; as for @kbd{a r}, you can enter
27424 a single pattern (i.e., a formula with meta-variables), or a
27425 vector of patterns, or a variable which contains patterns, or
27426 you can give a blank response in which case the patterns are taken
27427 from the top of the stack. The pattern set will be compiled once
27428 and saved if it is stored in a variable. If there are several
27429 patterns in the set, vector elements are kept if they match any
27432 For example, @samp{match(a+b, [x, x+y, x-y, 7, x+y+z])}
27433 will return @samp{[x+y, x-y, x+y+z]}.
27435 The @code{import} mechanism is not available for pattern sets.
27437 The @kbd{a m} command can also be used to extract all vector elements
27438 which satisfy any condition: The pattern @samp{x :: x>0} will select
27439 all the positive vector elements.
27443 With the Inverse flag [@code{matchnot}], this command extracts all
27444 vector elements which do @emph{not} match the given pattern.
27450 There is also a function @samp{matches(@var{x}, @var{p})} which
27451 evaluates to 1 if expression @var{x} matches pattern @var{p}, or
27452 to 0 otherwise. This is sometimes useful for including into the
27453 conditional clauses of other rewrite rules.
27459 The function @code{vmatches} is just like @code{matches}, except
27460 that if the match succeeds it returns a vector of assignments to
27461 the meta-variables instead of the number 1. For example,
27462 @samp{vmatches(f(1,2), f(a,b))} returns @samp{[a := 1, b := 2]}.
27463 If the match fails, the function returns the number 0.
27465 @node Automatic Rewrites, Debugging Rewrites, Matching Commands, Rewrite Rules
27466 @subsection Automatic Rewrites
27469 @cindex @code{EvalRules} variable
27471 It is possible to get Calc to apply a set of rewrite rules on all
27472 results, effectively adding to the built-in set of default
27473 simplifications. To do this, simply store your rule set in the
27474 variable @code{EvalRules}. There is a convenient @kbd{s E} command
27475 for editing @code{EvalRules}; @pxref{Operations on Variables}.
27477 For example, suppose you want @samp{sin(a + b)} to be expanded out
27478 to @samp{sin(b) cos(a) + cos(b) sin(a)} wherever it appears, and
27479 similarly for @samp{cos(a + b)}. The corresponding rewrite rule
27484 [ sin(a + b) := cos(a) sin(b) + sin(a) cos(b),
27485 cos(a + b) := cos(a) cos(b) - sin(a) sin(b) ]
27489 To apply these manually, you could put them in a variable called
27490 @code{trigexp} and then use @kbd{a r trigexp} every time you wanted
27491 to expand trig functions. But if instead you store them in the
27492 variable @code{EvalRules}, they will automatically be applied to all
27493 sines and cosines of sums. Then, with @samp{2 x} and @samp{45} on
27494 the stack, typing @kbd{+ S} will (assuming Degrees mode) result in
27495 @samp{0.7071 sin(2 x) + 0.7071 cos(2 x)} automatically.
27497 As each level of a formula is evaluated, the rules from
27498 @code{EvalRules} are applied before the default simplifications.
27499 Rewriting continues until no further @code{EvalRules} apply.
27500 Note that this is different from the usual order of application of
27501 rewrite rules: @code{EvalRules} works from the bottom up, simplifying
27502 the arguments to a function before the function itself, while @kbd{a r}
27503 applies rules from the top down.
27505 Because the @code{EvalRules} are tried first, you can use them to
27506 override the normal behavior of any built-in Calc function.
27508 It is important not to write a rule that will get into an infinite
27509 loop. For example, the rule set @samp{[f(0) := 1, f(n) := n f(n-1)]}
27510 appears to be a good definition of a factorial function, but it is
27511 unsafe. Imagine what happens if @samp{f(2.5)} is simplified. Calc
27512 will continue to subtract 1 from this argument forever without reaching
27513 zero. A safer second rule would be @samp{f(n) := n f(n-1) :: n>0}.
27514 Another dangerous rule is @samp{g(x, y) := g(y, x)}. Rewriting
27515 @samp{g(2, 4)}, this would bounce back and forth between that and
27516 @samp{g(4, 2)} forever. If an infinite loop in @code{EvalRules}
27517 occurs, Emacs will eventually stop with a ``Computation got stuck
27518 or ran too long'' message.
27520 Another subtle difference between @code{EvalRules} and regular rewrites
27521 concerns rules that rewrite a formula into an identical formula. For
27522 example, @samp{f(n) := f(floor(n))} ``fails to match'' when @expr{n} is
27523 already an integer. But in @code{EvalRules} this case is detected only
27524 if the righthand side literally becomes the original formula before any
27525 further simplification. This means that @samp{f(n) := f(floor(n))} will
27526 get into an infinite loop if it occurs in @code{EvalRules}. Calc will
27527 replace @samp{f(6)} with @samp{f(floor(6))}, which is different from
27528 @samp{f(6)}, so it will consider the rule to have matched and will
27529 continue simplifying that formula; first the argument is simplified
27530 to get @samp{f(6)}, then the rule matches again to get @samp{f(floor(6))}
27531 again, ad infinitum. A much safer rule would check its argument first,
27532 say, with @samp{f(n) := f(floor(n)) :: !dint(n)}.
27534 (What really happens is that the rewrite mechanism substitutes the
27535 meta-variables in the righthand side of a rule, compares to see if the
27536 result is the same as the original formula and fails if so, then uses
27537 the default simplifications to simplify the result and compares again
27538 (and again fails if the formula has simplified back to its original
27539 form). The only special wrinkle for the @code{EvalRules} is that the
27540 same rules will come back into play when the default simplifications
27541 are used. What Calc wants to do is build @samp{f(floor(6))}, see that
27542 this is different from the original formula, simplify to @samp{f(6)},
27543 see that this is the same as the original formula, and thus halt the
27544 rewriting. But while simplifying, @samp{f(6)} will again trigger
27545 the same @code{EvalRules} rule and Calc will get into a loop inside
27546 the rewrite mechanism itself.)
27548 The @code{phase}, @code{schedule}, and @code{iterations} markers do
27549 not work in @code{EvalRules}. If the rule set is divided into phases,
27550 only the phase 1 rules are applied, and the schedule is ignored.
27551 The rules are always repeated as many times as possible.
27553 The @code{EvalRules} are applied to all function calls in a formula,
27554 but not to numbers (and other number-like objects like error forms),
27555 nor to vectors or individual variable names. (Though they will apply
27556 to @emph{components} of vectors and error forms when appropriate.) You
27557 might try to make a variable @code{phihat} which automatically expands
27558 to its definition without the need to press @kbd{=} by writing the
27559 rule @samp{quote(phihat) := (1-sqrt(5))/2}, but unfortunately this rule
27560 will not work as part of @code{EvalRules}.
27562 Finally, another limitation is that Calc sometimes calls its built-in
27563 functions directly rather than going through the default simplifications.
27564 When it does this, @code{EvalRules} will not be able to override those
27565 functions. For example, when you take the absolute value of the complex
27566 number @expr{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling
27567 the multiplication, addition, and square root functions directly rather
27568 than applying the default simplifications to this formula. So an
27569 @code{EvalRules} rule that (perversely) rewrites @samp{sqrt(13) := 6}
27570 would not apply. (However, if you put Calc into Symbolic mode so that
27571 @samp{sqrt(13)} will be left in symbolic form by the built-in square
27572 root function, your rule will be able to apply. But if the complex
27573 number were @expr{(3,4)}, so that @samp{sqrt(25)} must be calculated,
27574 then Symbolic mode will not help because @samp{sqrt(25)} can be
27575 evaluated exactly to 5.)
27577 One subtle restriction that normally only manifests itself with
27578 @code{EvalRules} is that while a given rewrite rule is in the process
27579 of being checked, that same rule cannot be recursively applied. Calc
27580 effectively removes the rule from its rule set while checking the rule,
27581 then puts it back once the match succeeds or fails. (The technical
27582 reason for this is that compiled pattern programs are not reentrant.)
27583 For example, consider the rule @samp{foo(x) := x :: foo(x/2) > 0}
27584 attempting to match @samp{foo(8)}. This rule will be inactive while
27585 the condition @samp{foo(4) > 0} is checked, even though it might be
27586 an integral part of evaluating that condition. Note that this is not
27587 a problem for the more usual recursive type of rule, such as
27588 @samp{foo(x) := foo(x/2)}, because there the rule has succeeded and
27589 been reactivated by the time the righthand side is evaluated.
27591 If @code{EvalRules} has no stored value (its default state), or if
27592 anything but a vector is stored in it, then it is ignored.
27594 Even though Calc's rewrite mechanism is designed to compare rewrite
27595 rules to formulas as quickly as possible, storing rules in
27596 @code{EvalRules} may make Calc run substantially slower. This is
27597 particularly true of rules where the top-level call is a commonly used
27598 function, or is not fixed. The rule @samp{f(n) := n f(n-1) :: n>0} will
27599 only activate the rewrite mechanism for calls to the function @code{f},
27600 but @samp{lg(n) + lg(m) := lg(n m)} will check every @samp{+} operator.
27603 apply(f, [a*b]) := apply(f, [a]) + apply(f, [b]) :: in(f, [ln, log10])
27607 may seem more ``efficient'' than two separate rules for @code{ln} and
27608 @code{log10}, but actually it is vastly less efficient because rules
27609 with @code{apply} as the top-level pattern must be tested against
27610 @emph{every} function call that is simplified.
27612 @cindex @code{AlgSimpRules} variable
27613 @vindex AlgSimpRules
27614 Suppose you want @samp{sin(a + b)} to be expanded out not all the time,
27615 but only when algebraic simplifications are used to simplify the
27616 formula. The variable @code{AlgSimpRules} holds rules for this purpose.
27617 The @kbd{a s} command will apply @code{EvalRules} and
27618 @code{AlgSimpRules} to the formula, as well as all of its built-in
27621 Most of the special limitations for @code{EvalRules} don't apply to
27622 @code{AlgSimpRules}. Calc simply does an @kbd{a r AlgSimpRules}
27623 command with an infinite repeat count as the first step of algebraic
27624 simplifications. It then applies its own built-in simplifications
27625 throughout the formula, and then repeats these two steps (along with
27626 applying the default simplifications) until no further changes are
27629 @cindex @code{ExtSimpRules} variable
27630 @cindex @code{UnitSimpRules} variable
27631 @vindex ExtSimpRules
27632 @vindex UnitSimpRules
27633 There are also @code{ExtSimpRules} and @code{UnitSimpRules} variables
27634 that are used by @kbd{a e} and @kbd{u s}, respectively; these commands
27635 also apply @code{EvalRules} and @code{AlgSimpRules}. The variable
27636 @code{IntegSimpRules} contains simplification rules that are used
27637 only during integration by @kbd{a i}.
27639 @node Debugging Rewrites, Examples of Rewrite Rules, Automatic Rewrites, Rewrite Rules
27640 @subsection Debugging Rewrites
27643 If a buffer named @samp{*Trace*} exists, the rewrite mechanism will
27644 record some useful information there as it operates. The original
27645 formula is written there, as is the result of each successful rewrite,
27646 and the final result of the rewriting. All phase changes are also
27649 Calc always appends to @samp{*Trace*}. You must empty this buffer
27650 yourself periodically if it is in danger of growing unwieldy.
27652 Note that the rewriting mechanism is substantially slower when the
27653 @samp{*Trace*} buffer exists, even if the buffer is not visible on
27654 the screen. Once you are done, you will probably want to kill this
27655 buffer (with @kbd{C-x k *Trace* @key{RET}}). If you leave it in
27656 existence and forget about it, all your future rewrite commands will
27657 be needlessly slow.
27659 @node Examples of Rewrite Rules, , Debugging Rewrites, Rewrite Rules
27660 @subsection Examples of Rewrite Rules
27663 Returning to the example of substituting the pattern
27664 @samp{sin(x)^2 + cos(x)^2} with 1, we saw that the rule
27665 @samp{opt(a) sin(x)^2 + opt(a) cos(x)^2 := a} does a good job of
27666 finding suitable cases. Another solution would be to use the rule
27667 @samp{cos(x)^2 := 1 - sin(x)^2}, followed by algebraic simplification
27668 if necessary. This rule will be the most effective way to do the job,
27669 but at the expense of making some changes that you might not desire.
27671 Another algebraic rewrite rule is @samp{exp(x+y) := exp(x) exp(y)}.
27672 To make this work with the @w{@kbd{j r}} command so that it can be
27673 easily targeted to a particular exponential in a large formula,
27674 you might wish to write the rule as @samp{select(exp(x+y)) :=
27675 select(exp(x) exp(y))}. The @samp{select} markers will be
27676 ignored by the regular @kbd{a r} command
27677 (@pxref{Selections with Rewrite Rules}).
27679 A surprisingly useful rewrite rule is @samp{a/(b-c) := a*(b+c)/(b^2-c^2)}.
27680 This will simplify the formula whenever @expr{b} and/or @expr{c} can
27681 be made simpler by squaring. For example, applying this rule to
27682 @samp{2 / (sqrt(2) + 3)} yields @samp{6:7 - 2:7 sqrt(2)} (assuming
27683 Symbolic mode has been enabled to keep the square root from being
27684 evaluated to a floating-point approximation). This rule is also
27685 useful when working with symbolic complex numbers, e.g.,
27686 @samp{(a + b i) / (c + d i)}.
27688 As another example, we could define our own ``triangular numbers'' function
27689 with the rules @samp{[tri(0) := 0, tri(n) := n + tri(n-1) :: n>0]}. Enter
27690 this vector and store it in a variable: @kbd{@w{s t} trirules}. Now, given
27691 a suitable formula like @samp{tri(5)} on the stack, type @samp{a r trirules}
27692 to apply these rules repeatedly. After six applications, @kbd{a r} will
27693 stop with 15 on the stack. Once these rules are debugged, it would probably
27694 be most useful to add them to @code{EvalRules} so that Calc will evaluate
27695 the new @code{tri} function automatically. We could then use @kbd{Z K} on
27696 the keyboard macro @kbd{' tri($) @key{RET}} to make a command that applies
27697 @code{tri} to the value on the top of the stack. @xref{Programming}.
27699 @cindex Quaternions
27700 The following rule set, contributed by
27701 @texline Fran\c cois
27703 Pinard, implements @dfn{quaternions}, a generalization of the concept of
27704 complex numbers. Quaternions have four components, and are here
27705 represented by function calls @samp{quat(@var{w}, [@var{x}, @var{y},
27706 @var{z}])} with ``real part'' @var{w} and the three ``imaginary'' parts
27707 collected into a vector. Various arithmetical operations on quaternions
27708 are supported. To use these rules, either add them to @code{EvalRules},
27709 or create a command based on @kbd{a r} for simplifying quaternion
27710 formulas. A convenient way to enter quaternions would be a command
27711 defined by a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $])
27715 [ quat(w, x, y, z) := quat(w, [x, y, z]),
27716 quat(w, [0, 0, 0]) := w,
27717 abs(quat(w, v)) := hypot(w, v),
27718 -quat(w, v) := quat(-w, -v),
27719 r + quat(w, v) := quat(r + w, v) :: real(r),
27720 r - quat(w, v) := quat(r - w, -v) :: real(r),
27721 quat(w1, v1) + quat(w2, v2) := quat(w1 + w2, v1 + v2),
27722 r * quat(w, v) := quat(r * w, r * v) :: real(r),
27723 plain(quat(w1, v1) * quat(w2, v2))
27724 := quat(w1 * w2 - v1 * v2, w1 * v2 + w2 * v1 + cross(v1, v2)),
27725 quat(w1, v1) / r := quat(w1 / r, v1 / r) :: real(r),
27726 z / quat(w, v) := z * quatinv(quat(w, v)),
27727 quatinv(quat(w, v)) := quat(w, -v) / (w^2 + v^2),
27728 quatsqr(quat(w, v)) := quat(w^2 - v^2, 2 * w * v),
27729 quat(w, v)^k := quatsqr(quat(w, v)^(k / 2))
27730 :: integer(k) :: k > 0 :: k % 2 = 0,
27731 quat(w, v)^k := quatsqr(quat(w, v)^((k - 1) / 2)) * quat(w, v)
27732 :: integer(k) :: k > 2,
27733 quat(w, v)^-k := quatinv(quat(w, v)^k) :: integer(k) :: k > 0 ]
27736 Quaternions, like matrices, have non-commutative multiplication.
27737 In other words, @expr{q1 * q2 = q2 * q1} is not necessarily true if
27738 @expr{q1} and @expr{q2} are @code{quat} forms. The @samp{quat*quat}
27739 rule above uses @code{plain} to prevent Calc from rearranging the
27740 product. It may also be wise to add the line @samp{[quat(), matrix]}
27741 to the @code{Decls} matrix, to ensure that Calc's other algebraic
27742 operations will not rearrange a quaternion product. @xref{Declarations}.
27744 These rules also accept a four-argument @code{quat} form, converting
27745 it to the preferred form in the first rule. If you would rather see
27746 results in the four-argument form, just append the two items
27747 @samp{phase(2), quat(w, [x, y, z]) := quat(w, x, y, z)} to the end
27748 of the rule set. (But remember that multi-phase rule sets don't work
27749 in @code{EvalRules}.)
27751 @node Units, Store and Recall, Algebra, Top
27752 @chapter Operating on Units
27755 One special interpretation of algebraic formulas is as numbers with units.
27756 For example, the formula @samp{5 m / s^2} can be read ``five meters
27757 per second squared.'' The commands in this chapter help you
27758 manipulate units expressions in this form. Units-related commands
27759 begin with the @kbd{u} prefix key.
27762 * Basic Operations on Units::
27763 * The Units Table::
27764 * Predefined Units::
27765 * User-Defined Units::
27766 * Logarithmic Units::
27770 @node Basic Operations on Units, The Units Table, Units, Units
27771 @section Basic Operations on Units
27774 A @dfn{units expression} is a formula which is basically a number
27775 multiplied and/or divided by one or more @dfn{unit names}, which may
27776 optionally be raised to integer powers. Actually, the value part need not
27777 be a number; any product or quotient involving unit names is a units
27778 expression. Many of the units commands will also accept any formula,
27779 where the command applies to all units expressions which appear in the
27782 A unit name is a variable whose name appears in the @dfn{unit table},
27783 or a variable whose name is a prefix character like @samp{k} (for ``kilo'')
27784 or @samp{u} (for ``micro'') followed by a name in the unit table.
27785 A substantial table of built-in units is provided with Calc;
27786 @pxref{Predefined Units}. You can also define your own unit names;
27787 @pxref{User-Defined Units}.
27789 Note that if the value part of a units expression is exactly @samp{1},
27790 it will be removed by the Calculator's automatic algebra routines: The
27791 formula @samp{1 mm} is ``simplified'' to @samp{mm}. This is only a
27792 display anomaly, however; @samp{mm} will work just fine as a
27793 representation of one millimeter.
27795 You may find that Algebraic mode (@pxref{Algebraic Entry}) makes working
27796 with units expressions easier. Otherwise, you will have to remember
27797 to hit the apostrophe key every time you wish to enter units.
27800 @pindex calc-simplify-units
27802 @mindex usimpl@idots
27805 The @kbd{u s} (@code{calc-simplify-units}) [@code{usimplify}] command
27807 expression. It uses Calc's algebraic simplifications to simplify the
27808 expression first as a regular algebraic formula; it then looks for
27809 features that can be further simplified by converting one object's units
27810 to be compatible with another's. For example, @samp{5 m + 23 mm} will
27811 simplify to @samp{5.023 m}. When different but compatible units are
27812 added, the righthand term's units are converted to match those of the
27813 lefthand term. @xref{Simplification Modes}, for a way to have this done
27814 automatically at all times.
27816 Units simplification also handles quotients of two units with the same
27817 dimensionality, as in @w{@samp{2 in s/L cm}} to @samp{5.08 s/L}; fractional
27818 powers of unit expressions, as in @samp{sqrt(9 mm^2)} to @samp{3 mm} and
27819 @samp{sqrt(9 acre)} to a quantity in meters; and @code{floor},
27820 @code{ceil}, @code{round}, @code{rounde}, @code{roundu}, @code{trunc},
27821 @code{float}, @code{frac}, @code{abs}, and @code{clean}
27822 applied to units expressions, in which case
27823 the operation in question is applied only to the numeric part of the
27824 expression. Finally, trigonometric functions of quantities with units
27825 of angle are evaluated, regardless of the current angular mode.
27828 @pindex calc-convert-units
27829 The @kbd{u c} (@code{calc-convert-units}) command converts a units
27830 expression to new, compatible units. For example, given the units
27831 expression @samp{55 mph}, typing @kbd{u c m/s @key{RET}} produces
27832 @samp{24.5872 m/s}. If you have previously converted a units expression
27833 with the same type of units (in this case, distance over time), you will
27834 be offered the previous choice of new units as a default. Continuing
27835 the above example, entering the units expression @samp{100 km/hr} and
27836 typing @kbd{u c @key{RET}} (without specifying new units) produces
27837 @samp{27.7777777778 m/s}.
27840 @pindex calc-convert-temperature
27841 @cindex Temperature conversion
27842 The @kbd{u c} command treats temperature units (like @samp{degC} and
27843 @samp{K}) as relative temperatures. For example, @kbd{u c} converts
27844 @samp{10 degC} to @samp{18 degF}: A change of 10 degrees Celsius
27845 corresponds to a change of 18 degrees Fahrenheit. To convert absolute
27846 temperatures, you can use the @kbd{u t}
27847 (@code{calc-convert-temperature}) command. The value on the stack
27848 must be a simple units expression with units of temperature only.
27849 This command would convert @samp{10 degC} to @samp{50 degF}, the
27850 equivalent temperature on the Fahrenheit scale.
27852 While many of Calc's conversion factors are exact, some are necessarily
27853 approximate. If Calc is in fraction mode (@pxref{Fraction Mode}), then
27854 unit conversions will try to give exact, rational conversions, but it
27855 isn't always possible. Given @samp{55 mph} in fraction mode, typing
27856 @kbd{u c m/s @key{RET}} produces @samp{15367:625 m/s}, for example,
27857 while typing @kbd{u c au/yr @key{RET}} produces
27858 @samp{5.18665819999e-3 au/yr}.
27860 If the units you request are inconsistent with the original units, the
27861 number will be converted into your units times whatever ``remainder''
27862 units are left over. For example, converting @samp{55 mph} into acres
27863 produces @samp{6.08e-3 acre / m s}. (Recall that multiplication binds
27864 more strongly than division in Calc formulas, so the units here are
27865 acres per meter-second.) Remainder units are expressed in terms of
27866 ``fundamental'' units like @samp{m} and @samp{s}, regardless of the
27869 If you want to disallow using inconsistent units, you can set the customizable variable
27870 @code{calc-ensure-consistent-units} to @code{t} (@pxref{Customizing Calc}). In this case,
27871 if you request units which are inconsistent with the original units, you will be warned about
27872 it and no conversion will occur.
27874 One special exception is that if you specify a single unit name, and
27875 a compatible unit appears somewhere in the units expression, then
27876 that compatible unit will be converted to the new unit and the
27877 remaining units in the expression will be left alone. For example,
27878 given the input @samp{980 cm/s^2}, the command @kbd{u c ms} will
27879 change the @samp{s} to @samp{ms} to get @samp{9.8e-4 cm/ms^2}.
27880 The ``remainder unit'' @samp{cm} is left alone rather than being
27881 changed to the base unit @samp{m}.
27883 You can use explicit unit conversion instead of the @kbd{u s} command
27884 to gain more control over the units of the result of an expression.
27885 For example, given @samp{5 m + 23 mm}, you can type @kbd{u c m} or
27886 @kbd{u c mm} to express the result in either meters or millimeters.
27887 (For that matter, you could type @kbd{u c fath} to express the result
27888 in fathoms, if you preferred!)
27890 In place of a specific set of units, you can also enter one of the
27891 units system names @code{si}, @code{mks} (equivalent), or @code{cgs}.
27892 For example, @kbd{u c si @key{RET}} converts the expression into
27893 International System of Units (SI) base units. Also, @kbd{u c base}
27894 converts to Calc's base units, which are the same as @code{si} units
27895 except that @code{base} uses @samp{g} as the fundamental unit of mass
27896 whereas @code{si} uses @samp{kg}.
27898 @cindex Composite units
27899 The @kbd{u c} command also accepts @dfn{composite units}, which
27900 are expressed as the sum of several compatible unit names. For
27901 example, converting @samp{30.5 in} to units @samp{mi+ft+in} (miles,
27902 feet, and inches) produces @samp{2 ft + 6.5 in}. Calc first
27903 sorts the unit names into order of decreasing relative size.
27904 It then accounts for as much of the input quantity as it can
27905 using an integer number times the largest unit, then moves on
27906 to the next smaller unit, and so on. Only the smallest unit
27907 may have a non-integer amount attached in the result. A few
27908 standard unit names exist for common combinations, such as
27909 @code{mfi} for @samp{mi+ft+in}, and @code{tpo} for @samp{ton+lb+oz}.
27910 Composite units are expanded as if by @kbd{a x}, so that
27911 @samp{(ft+in)/hr} is first converted to @samp{ft/hr+in/hr}.
27913 If the value on the stack does not contain any units, @kbd{u c} will
27914 prompt first for the old units which this value should be considered
27915 to have, then for the new units. Assuming the old and new units you
27916 give are consistent with each other, the result also will not contain
27917 any units. For example, @kbd{@w{u c} cm @key{RET} in @key{RET}}
27918 converts the number 2 on the stack to 5.08.
27921 @pindex calc-base-units
27922 The @kbd{u b} (@code{calc-base-units}) command is shorthand for
27923 @kbd{u c base}; it converts the units expression on the top of the
27924 stack into @code{base} units. If @kbd{u s} does not simplify a
27925 units expression as far as you would like, try @kbd{u b}.
27927 Like the @kbd{u c} command, the @kbd{u b} command treats temperature
27928 units as relative temperatures.
27931 @pindex calc-remove-units
27933 @pindex calc-extract-units
27934 The @kbd{u r} (@code{calc-remove-units}) command removes units from the
27935 formula at the top of the stack. The @kbd{u x}
27936 (@code{calc-extract-units}) command extracts only the units portion of a
27937 formula. These commands essentially replace every term of the formula
27938 that does or doesn't (respectively) look like a unit name by the
27939 constant 1, then resimplify the formula.
27942 @pindex calc-autorange-units
27943 The @kbd{u a} (@code{calc-autorange-units}) command turns on and off a
27944 mode in which unit prefixes like @code{k} (``kilo'') are automatically
27945 applied to keep the numeric part of a units expression in a reasonable
27946 range. This mode affects @kbd{u s} and all units conversion commands
27947 except @kbd{u b}. For example, with autoranging on, @samp{12345 Hz}
27948 will be simplified to @samp{12.345 kHz}. Autoranging is useful for
27949 some kinds of units (like @code{Hz} and @code{m}), but is probably
27950 undesirable for non-metric units like @code{ft} and @code{tbsp}.
27951 (Composite units are more appropriate for those; see above.)
27953 Autoranging always applies the prefix to the leftmost unit name.
27954 Calc chooses the largest prefix that causes the number to be greater
27955 than or equal to 1.0. Thus an increasing sequence of adjusted times
27956 would be @samp{1 ms, 10 ms, 100 ms, 1 s, 10 s, 100 s, 1 ks}.
27957 Generally the rule of thumb is that the number will be adjusted
27958 to be in the interval @samp{[1 .. 1000)}, although there are several
27959 exceptions to this rule. First, if the unit has a power then this
27960 is not possible; @samp{0.1 s^2} simplifies to @samp{100000 ms^2}.
27961 Second, the ``centi-'' prefix is allowed to form @code{cm} (centimeters),
27962 but will not apply to other units. The ``deci-,'' ``deka-,'' and
27963 ``hecto-'' prefixes are never used. Thus the allowable interval is
27964 @samp{[1 .. 10)} for millimeters and @samp{[1 .. 100)} for centimeters.
27965 Finally, a prefix will not be added to a unit if the resulting name
27966 is also the actual name of another unit; @samp{1e-15 t} would normally
27967 be considered a ``femto-ton,'' but it is written as @samp{1000 at}
27968 (1000 atto-tons) instead because @code{ft} would be confused with feet.
27970 @node The Units Table, Predefined Units, Basic Operations on Units, Units
27971 @section The Units Table
27975 @pindex calc-enter-units-table
27976 The @kbd{u v} (@code{calc-enter-units-table}) command displays the units table
27977 in another buffer called @code{*Units Table*}. Each entry in this table
27978 gives the unit name as it would appear in an expression, the definition
27979 of the unit in terms of simpler units, and a full name or description of
27980 the unit. Fundamental units are defined as themselves; these are the
27981 units produced by the @kbd{u b} command. The fundamental units are
27982 meters, seconds, grams, kelvins, amperes, candelas, moles, radians,
27985 The Units Table buffer also displays the Unit Prefix Table. Note that
27986 two prefixes, ``kilo'' and ``hecto,'' accept either upper- or lower-case
27987 prefix letters. @samp{Meg} is also accepted as a synonym for the @samp{M}
27988 prefix. Whenever a unit name can be interpreted as either a built-in name
27989 or a prefix followed by another built-in name, the former interpretation
27990 wins. For example, @samp{2 pt} means two pints, not two pico-tons.
27992 The Units Table buffer, once created, is not rebuilt unless you define
27993 new units. To force the buffer to be rebuilt, give any numeric prefix
27994 argument to @kbd{u v}.
27997 @pindex calc-view-units-table
27998 The @kbd{u V} (@code{calc-view-units-table}) command is like @kbd{u v} except
27999 that the cursor is not moved into the Units Table buffer. You can
28000 type @kbd{u V} again to remove the Units Table from the display. To
28001 return from the Units Table buffer after a @kbd{u v}, type @kbd{C-x * c}
28002 again or use the regular Emacs @w{@kbd{C-x o}} (@code{other-window})
28003 command. You can also kill the buffer with @kbd{C-x k} if you wish;
28004 the actual units table is safely stored inside the Calculator.
28007 @pindex calc-get-unit-definition
28008 The @kbd{u g} (@code{calc-get-unit-definition}) command retrieves a unit's
28009 defining expression and pushes it onto the Calculator stack. For example,
28010 @kbd{u g in} will produce the expression @samp{2.54 cm}. This is the
28011 same definition for the unit that would appear in the Units Table buffer.
28012 Note that this command works only for actual unit names; @kbd{u g km}
28013 will report that no such unit exists, for example, because @code{km} is
28014 really the unit @code{m} with a @code{k} (``kilo'') prefix. To see a
28015 definition of a unit in terms of base units, it is easier to push the
28016 unit name on the stack and then reduce it to base units with @kbd{u b}.
28019 @pindex calc-explain-units
28020 The @kbd{u e} (@code{calc-explain-units}) command displays an English
28021 description of the units of the expression on the stack. For example,
28022 for the expression @samp{62 km^2 g / s^2 mol K}, the description is
28023 ``Square-Kilometer Gram per (Second-squared Mole Degree-Kelvin).'' This
28024 command uses the English descriptions that appear in the righthand
28025 column of the Units Table.
28027 @node Predefined Units, User-Defined Units, The Units Table, Units
28028 @section Predefined Units
28031 The definitions of many units have changed over the years. For example,
28032 the meter was originally defined in 1791 as one ten-millionth of the
28033 distance from the equator to the north pole. In order to be more
28034 precise, the definition was adjusted several times, and now a meter is
28035 defined as the distance that light will travel in a vacuum in
28036 1/299792458 of a second; consequently, the speed of light in a
28037 vacuum is exactly 299792458 m/s. Many other units have been
28038 redefined in terms of fundamental physical processes; a second, for
28039 example, is currently defined as 9192631770 periods of a certain
28040 radiation related to the cesium-133 atom. The only SI unit that is not
28041 based on a fundamental physical process (although there are efforts to
28042 change this) is the kilogram, which was originally defined as the mass
28043 of one liter of water, but is now defined as the mass of the
28044 International Prototype Kilogram (IPK), a cylinder of platinum-iridium
28045 kept at the Bureau International des Poids et Mesures in S@`evres,
28046 France. (There are several copies of the IPK throughout the world.)
28047 The British imperial units, once defined in terms of physical objects,
28048 were redefined in 1963 in terms of SI units. The US customary units,
28049 which were the same as British units until the British imperial system
28050 was created in 1824, were also defined in terms of the SI units in 1893.
28051 Because of these redefinitions, conversions between metric, British
28052 Imperial, and US customary units can often be done precisely.
28054 Since the exact definitions of many kinds of units have evolved over the
28055 years, and since certain countries sometimes have local differences in
28056 their definitions, it is a good idea to examine Calc's definition of a
28057 unit before depending on its exact value. For example, there are three
28058 different units for gallons, corresponding to the US (@code{gal}),
28059 Canadian (@code{galC}), and British (@code{galUK}) definitions. Also,
28060 note that @code{oz} is a standard ounce of mass, @code{ozt} is a Troy
28061 ounce, and @code{ozfl} is a fluid ounce.
28063 The temperature units corresponding to degrees Kelvin and Centigrade
28064 (Celsius) are the same in this table, since most units commands treat
28065 temperatures as being relative. The @code{calc-convert-temperature}
28066 command has special rules for handling the different absolute magnitudes
28067 of the various temperature scales.
28069 The unit of volume ``liters'' can be referred to by either the lower-case
28070 @code{l} or the upper-case @code{L}.
28072 The unit @code{A} stands for Amperes; the name @code{Ang} is used
28080 The unit @code{pt} stands for pints; the name @code{point} stands for
28081 a typographical point, defined by @samp{72 point = 1 in}. This is
28082 slightly different than the point defined by the American Typefounder's
28083 Association in 1886, but the point used by Calc has become standard
28084 largely due to its use by the PostScript page description language.
28085 There is also @code{texpt}, which stands for a printer's point as
28086 defined by the @TeX{} typesetting system: @samp{72.27 texpt = 1 in}.
28087 Other units used by @TeX{} are available; they are @code{texpc} (a pica),
28088 @code{texbp} (a ``big point'', equal to a standard point which is larger
28089 than the point used by @TeX{}), @code{texdd} (a Didot point),
28090 @code{texcc} (a Cicero) and @code{texsp} (a scaled @TeX{} point,
28091 all dimensions representable in @TeX{} are multiples of this value).
28093 When Calc is using the @TeX{} or @LaTeX{} language mode (@pxref{TeX
28094 and LaTeX Language Modes}), the @TeX{} specific unit names will not
28095 use the @samp{tex} prefix; the unit name for a @TeX{} point will be
28096 @samp{pt} instead of @samp{texpt}, for example. To avoid conflicts,
28097 the unit names for pint and parsec will simply be @samp{pint} and
28098 @samp{parsec} instead of @samp{pt} and @samp{pc}.
28101 The unit @code{e} stands for the elementary (electron) unit of charge;
28102 because algebra command could mistake this for the special constant
28103 @expr{e}, Calc provides the alternate unit name @code{ech} which is
28104 preferable to @code{e}.
28106 The name @code{g} stands for one gram of mass; there is also @code{gf},
28107 one gram of force. (Likewise for @kbd{lb}, pounds, and @kbd{lbf}.)
28108 Meanwhile, one ``@expr{g}'' of acceleration is denoted @code{ga}.
28110 The unit @code{ton} is a U.S. ton of @samp{2000 lb}, and @code{t} is
28111 a metric ton of @samp{1000 kg}.
28113 The names @code{s} (or @code{sec}) and @code{min} refer to units of
28114 time; @code{arcsec} and @code{arcmin} are units of angle.
28116 Some ``units'' are really physical constants; for example, @code{c}
28117 represents the speed of light, and @code{h} represents Planck's
28118 constant. You can use these just like other units: converting
28119 @samp{.5 c} to @samp{m/s} expresses one-half the speed of light in
28120 meters per second. You can also use this merely as a handy reference;
28121 the @kbd{u g} command gets the definition of one of these constants
28122 in its normal terms, and @kbd{u b} expresses the definition in base
28125 Two units, @code{pi} and @code{alpha} (the fine structure constant,
28126 approximately @mathit{1/137}) are dimensionless. The units simplification
28127 commands simply treat these names as equivalent to their corresponding
28128 values. However you can, for example, use @kbd{u c} to convert a pure
28129 number into multiples of the fine structure constant, or @kbd{u b} to
28130 convert this back into a pure number. (When @kbd{u c} prompts for the
28131 ``old units,'' just enter a blank line to signify that the value
28132 really is unitless.)
28134 @c Describe angular units, luminosity vs. steradians problem.
28136 @node User-Defined Units, Logarithmic Units, Predefined Units, Units
28137 @section User-Defined Units
28140 Calc provides ways to get quick access to your selected ``favorite''
28141 units, as well as ways to define your own new units.
28144 @pindex calc-quick-units
28146 @cindex @code{Units} variable
28147 @cindex Quick units
28148 To select your favorite units, store a vector of unit names or
28149 expressions in the Calc variable @code{Units}. The @kbd{u 1}
28150 through @kbd{u 9} commands (@code{calc-quick-units}) provide access
28151 to these units. If the value on the top of the stack is a plain
28152 number (with no units attached), then @kbd{u 1} gives it the
28153 specified units. (Basically, it multiplies the number by the
28154 first item in the @code{Units} vector.) If the number on the
28155 stack @emph{does} have units, then @kbd{u 1} converts that number
28156 to the new units. For example, suppose the vector @samp{[in, ft]}
28157 is stored in @code{Units}. Then @kbd{30 u 1} will create the
28158 expression @samp{30 in}, and @kbd{u 2} will convert that expression
28161 The @kbd{u 0} command accesses the tenth element of @code{Units}.
28162 Only ten quick units may be defined at a time. If the @code{Units}
28163 variable has no stored value (the default), or if its value is not
28164 a vector, then the quick-units commands will not function. The
28165 @kbd{s U} command is a convenient way to edit the @code{Units}
28166 variable; @pxref{Operations on Variables}.
28169 @pindex calc-define-unit
28170 @cindex User-defined units
28171 The @kbd{u d} (@code{calc-define-unit}) command records the units
28172 expression on the top of the stack as the definition for a new,
28173 user-defined unit. For example, putting @samp{16.5 ft} on the stack and
28174 typing @kbd{u d rod} defines the new unit @samp{rod} to be equivalent to
28175 16.5 feet. The unit conversion and simplification commands will now
28176 treat @code{rod} just like any other unit of length. You will also be
28177 prompted for an optional English description of the unit, which will
28178 appear in the Units Table. If you wish the definition of this unit to
28179 be displayed in a special way in the Units Table buffer (such as with an
28180 asterisk to indicate an approximate value), then you can call this
28181 command with an argument, @kbd{C-u u d}; you will then also be prompted
28182 for a string that will be used to display the definition.
28185 @pindex calc-undefine-unit
28186 The @kbd{u u} (@code{calc-undefine-unit}) command removes a user-defined
28187 unit. It is not possible to remove one of the predefined units,
28190 If you define a unit with an existing unit name, your new definition
28191 will replace the original definition of that unit. If the unit was a
28192 predefined unit, the old definition will not be replaced, only
28193 ``shadowed.'' The built-in definition will reappear if you later use
28194 @kbd{u u} to remove the shadowing definition.
28196 To create a new fundamental unit, use either 1 or the unit name itself
28197 as the defining expression. Otherwise the expression can involve any
28198 other units that you like (except for composite units like @samp{mfi}).
28199 You can create a new composite unit with a sum of other units as the
28200 defining expression. The next unit operation like @kbd{u c} or @kbd{u v}
28201 will rebuild the internal unit table incorporating your modifications.
28202 Note that erroneous definitions (such as two units defined in terms of
28203 each other) will not be detected until the unit table is next rebuilt;
28204 @kbd{u v} is a convenient way to force this to happen.
28206 Temperature units are treated specially inside the Calculator; it is not
28207 possible to create user-defined temperature units.
28210 @pindex calc-permanent-units
28211 @cindex Calc init file, user-defined units
28212 The @kbd{u p} (@code{calc-permanent-units}) command stores the user-defined
28213 units in your Calc init file (the file given by the variable
28214 @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el}), so that the
28215 units will still be available in subsequent Emacs sessions. If there
28216 was already a set of user-defined units in your Calc init file, it
28217 is replaced by the new set. (@xref{General Mode Commands}, for a way to
28218 tell Calc to use a different file for the Calc init file.)
28220 @node Logarithmic Units, Musical Notes, User-Defined Units, Units
28221 @section Logarithmic Units
28223 The units @code{dB} (decibels) and @code{Np} (nepers) are logarithmic
28224 units which are manipulated differently than standard units. Calc
28225 provides commands to work with these logarithmic units.
28227 Decibels and nepers are used to measure power quantities as well as
28228 field quantities (quantities whose squares are proportional to power);
28229 these two types of quantities are handled slightly different from each
28230 other. By default the Calc commands work as if power quantities are
28231 being used; with the @kbd{H} prefix the Calc commands work as if field
28232 quantities are being used.
28234 The decibel level of a power
28235 @infoline @math{P1},
28236 @texline @math{P_1},
28237 relative to a reference power
28238 @infoline @math{P0},
28239 @texline @math{P_0},
28241 @infoline @math{10 log10(P1/P0) dB}.
28242 @texline @math{10 \log_{10}(P_{1}/P_{0}) {\rm dB}}.
28243 (The factor of 10 is because a decibel, as its name implies, is
28244 one-tenth of a bel. The bel, named after Alexander Graham Bell, was
28245 considered to be too large of a unit and was effectively replaced by
28246 the decibel.) If @math{F} is a field quantity with power
28247 @math{P=k F^2}, then a reference quantity of
28248 @infoline @math{F0}
28249 @texline @math{F_0}
28250 would correspond to a power of
28251 @infoline @math{P0=k F0^2}.
28252 @texline @math{P_{0}=kF_{0}^2}.
28254 @infoline @math{P1=k F1^2},
28255 @texline @math{P_{1}=kF_{1}^2},
28260 10 log10(P1/P0) = 10 log10(F1^2/F0^2) = 20 log10(F1/F0).
28264 $$ 10 \log_{10}(P_1/P_0) = 10 \log_{10}(F_1^2/F_0^2) = 20
28265 \log_{10}(F_1/F_0)$$
28269 In order to get the same decibel level regardless of whether a field
28270 quantity or the corresponding power quantity is used, the decibel
28271 level of a field quantity
28272 @infoline @math{F1},
28273 @texline @math{F_1},
28274 relative to a reference
28275 @infoline @math{F0},
28276 @texline @math{F_0},
28278 @infoline @math{20 log10(F1/F0) dB}.
28279 @texline @math{20 \log_{10}(F_{1}/F_{0}) {\rm dB}}.
28280 For example, the decibel value of a sound pressure level of
28281 @infoline @math{60 uPa}
28282 @texline @math{60 \mu{\rm Pa}}
28284 @infoline @math{20 uPa}
28285 @texline @math{20 \mu{\rm Pa}}
28286 (the threshold of human hearing) is
28287 @infoline @math{20 log10(60 uPa/ 20 uPa) dB = 20 log10(3) dB},
28288 @texline @math{20 \log_{10}(60 \mu{\rm Pa}/20 \mu{\rm Pa}) {\rm dB} = 20 \log_{10}(3) {\rm dB}},
28290 @infoline @math{9.54 dB}.
28291 @texline @math{9.54 {\rm dB}}.
28292 Note that in taking the ratio, the original units cancel and so these
28293 logarithmic units are dimensionless.
28295 Nepers (named after John Napier, who is credited with inventing the
28296 logarithm) are similar to bels except they use natural logarithms instead
28297 of common logarithms. The neper level of a power
28298 @infoline @math{P1},
28299 @texline @math{P_1},
28300 relative to a reference power
28301 @infoline @math{P0},
28302 @texline @math{P_0},
28304 @infoline @math{(1/2) ln(P1/P0) Np}.
28305 @texline @math{(1/2) \ln(P_1/P_0) {\rm Np}}.
28306 The neper level of a field
28307 @infoline @math{F1},
28308 @texline @math{F_1},
28309 relative to a reference field
28310 @infoline @math{F0},
28311 @texline @math{F_0},
28313 @infoline @math{ln(F1/F0) Np}.
28314 @texline @math{\ln(F_1/F_0) {\rm Np}}.
28316 @vindex calc-lu-power-reference
28317 @vindex calc-lu-field-reference
28318 For power quantities, Calc uses
28319 @infoline @math{1 mW}
28320 @texline @math{1 {\rm mW}}
28321 as the default reference quantity; this default can be changed by changing
28322 the value of the customizable variable
28323 @code{calc-lu-power-reference} (@pxref{Customizing Calc}).
28324 For field quantities, Calc uses
28325 @infoline @math{20 uPa}
28326 @texline @math{20 \mu{\rm Pa}}
28327 as the default reference quantity; this is the value used in acoustics
28328 which is where decibels are commonly encountered. This default can be
28329 changed by changing the value of the customizable variable
28330 @code{calc-lu-field-reference} (@pxref{Customizing Calc}). A
28331 non-default reference quantity will be read from the stack if the
28332 capital @kbd{O} prefix is used.
28335 @pindex calc-lu-quant
28338 The @kbd{l q} (@code{calc-lu-quant}) [@code{lupquant}]
28339 command computes the power quantity corresponding to a given number of
28340 logarithmic units. With the capital @kbd{O} prefix, @kbd{O l q}, the
28341 reference level will be read from the top of the stack. (In an
28342 algebraic formula, @code{lupquant} can be given an optional second
28343 argument which will be used for the reference level.) For example,
28344 @code{20 dB @key{RET} l q} will return @code{100 mW};
28345 @code{20 dB @key{RET} 4 W @key{RET} O l q} will return @code{400 W}.
28346 The @kbd{H l q} [@code{lufquant}] command behaves like @kbd{l q} but
28347 computes field quantities instead of power quantities.
28357 The @kbd{l d} (@code{calc-db}) [@code{dbpower}] command will compute
28358 the decibel level of a power quantity using the default reference
28359 level; @kbd{H l d} [@code{dbfield}] will compute the decibel level of
28360 a field quantity. The commands @kbd{l n} (@code{calc-np})
28361 [@code{nppower}] and @kbd{H l n} [@code{npfield}] will similarly
28362 compute neper levels. With the capital @kbd{O} prefix these commands
28363 will read a reference level from the stack; in an algebraic formula
28364 the reference level can be given as an optional second argument.
28367 @pindex calc-lu-plus
28371 @pindex calc-lu-minus
28375 @pindex calc-lu-times
28379 @pindex calc-lu-divide
28382 The sum of two power or field quantities doesn't correspond to the sum
28383 of the corresponding decibel or neper levels. If the powers
28384 corresponding to decibel levels
28385 @infoline @math{D1}
28386 @texline @math{D_1}
28388 @infoline @math{D2}
28389 @texline @math{D_2}
28390 are added, the corresponding decibel level ``sum'' will be
28394 10 log10(10^(D1/10) + 10^(D2/10)) dB.
28398 $$ 10 \log_{10}(10^{D_1/10} + 10^{D_2/10}) {\rm dB}.$$
28402 When field quantities are combined, it often means the corresponding
28403 powers are added and so the above formula might be used. In
28404 acoustics, for example, the sound pressure level is a field quantity
28405 and so the decibels are often defined using the field formula, but the
28406 sound pressure levels are combined as the sound power levels, and so
28407 the above formula should be used. If two field quantities themselves
28408 are added, the new decibel level will be
28412 20 log10(10^(D1/20) + 10^(D2/20)) dB.
28416 $$ 20 \log_{10}(10^{D_1/20} + 10^{D_2/20}) {\rm dB}.$$
28420 If the power corresponding to @math{D} dB is multiplied by a number @math{N},
28421 then the corresponding decibel level will be
28425 D + 10 log10(N) dB,
28429 $$ D + 10 \log_{10}(N) {\rm dB},$$
28433 if a field quantity is multiplied by @math{N} the corresponding decibel level
28438 D + 20 log10(N) dB.
28442 $$ D + 20 \log_{10}(N) {\rm dB}.$$
28446 There are similar formulas for combining nepers. The @kbd{l +}
28447 (@code{calc-lu-plus}) [@code{lupadd}] command will ``add'' two
28448 logarithmic unit power levels this way; with the @kbd{H} prefix,
28449 @kbd{H l +} [@code{lufadd}] will add logarithmic unit field levels.
28450 Similarly, logarithmic units can be ``subtracted'' with @kbd{l -}
28451 (@code{calc-lu-minus}) [@code{lupsub}] or @kbd{H l -} [@code{lufsub}].
28452 The @kbd{l *} (@code{calc-lu-times}) [@code{lupmul}] and @kbd{H l *}
28453 [@code{lufmul}] commands will ``multiply'' a logarithmic unit by a
28454 number; the @kbd{l /} (@code{calc-lu-divide}) [@code{lupdiv}] and
28455 @kbd{H l /} [@code{lufdiv}] commands will ``divide'' a logarithmic
28456 unit by a number. Note that the reference quantities don't play a role
28457 in this arithmetic.
28459 @node Musical Notes, , Logarithmic Units, Units
28460 @section Musical Notes
28462 Calc can convert between musical notes and their associated
28463 frequencies. Notes can be given using either scientific pitch
28464 notation or midi numbers. Since these note systems are basically
28465 logarithmic scales, Calc uses the @kbd{l} prefix for functions
28466 operating on notes.
28468 Scientific pitch notation refers to a note by giving a letter
28469 A through G, possibly followed by a flat or sharp) with a subscript
28470 indicating an octave number. Each octave starts with C and ends with
28472 @c increasing each note by a semitone will result
28473 @c in the sequence @expr{C}, @expr{C} sharp, @expr{D}, @expr{E} flat, @expr{E},
28474 @c @expr{F}, @expr{F} sharp, @expr{G}, @expr{A} flat, @expr{A}, @expr{B}
28475 @c flat and @expr{B}.
28476 the octave numbered 0 was chosen to correspond to the lowest
28477 audible frequency. Using this system, middle C (about 261.625 Hz)
28478 corresponds to the note @expr{C} in octave 4 and is denoted
28479 @expr{C_4}. Any frequency can be described by giving a note plus an
28480 offset in cents (where a cent is a ratio of frequencies so that a
28481 semitone consists of 100 cents).
28483 The midi note number system assigns numbers to notes so that
28484 @expr{C_(-1)} corresponds to the midi note number 0 and @expr{G_9}
28485 corresponds to the midi note number 127. A midi controller can have
28486 up to 128 keys and each midi note number from 0 to 127 corresponds to
28492 The @kbd{l s} (@code{calc-spn}) [@code{spn}] command converts either
28493 a frequency or a midi number to scientific pitch notation. For
28494 example, @code{500 Hz} gets converted to
28495 @code{B_4 + 21.3094853649 cents} and @code{84} to @code{C_6}.
28501 The @kbd{l m} (@code{calc-midi}) [@code{midi}] command converts either
28502 a frequency or a note given in scientific pitch notation to the
28503 corresponding midi number. For example, @code{C_6} gets converted to 84
28504 and @code{440 Hz} to 69.
28509 The @kbd{l f} (@code{calc-freq}) [@code{freq}] command converts either
28510 either a midi number or a note given in scientific pitch notation to
28511 the corresponding frequency. For example, @code{Asharp_2 + 30 cents}
28512 gets converted to @code{118.578040134 Hz} and @code{55} to
28513 @code{195.99771799 Hz}.
28515 Since the frequencies of notes are not usually given exactly (and are
28516 typically irrational), the customizable variable
28517 @code{calc-note-threshold} determines how close (in cents) a frequency
28518 needs to be to a note to be recognized as that note
28519 (@pxref{Customizing Calc}). This variable has a default value of
28520 @code{1}. For example, middle @var{C} is approximately
28521 @expr{261.625565302 Hz}; this frequency is often shortened to
28522 @expr{261.625 Hz}. Without @code{calc-note-threshold} (or a value of
28523 @expr{0}), Calc would convert @code{261.625 Hz} to scientific pitch
28524 notation @code{B_3 + 99.9962592773 cents}; with the default value of
28525 @code{1}, Calc converts @code{261.625 Hz} to @code{C_4}.
28529 @node Store and Recall, Graphics, Units, Top
28530 @chapter Storing and Recalling
28533 Calculator variables are really just Lisp variables that contain numbers
28534 or formulas in a form that Calc can understand. The commands in this
28535 section allow you to manipulate variables conveniently. Commands related
28536 to variables use the @kbd{s} prefix key.
28539 * Storing Variables::
28540 * Recalling Variables::
28541 * Operations on Variables::
28543 * Evaluates-To Operator::
28546 @node Storing Variables, Recalling Variables, Store and Recall, Store and Recall
28547 @section Storing Variables
28552 @cindex Storing variables
28553 @cindex Quick variables
28556 The @kbd{s s} (@code{calc-store}) command stores the value at the top of
28557 the stack into a specified variable. It prompts you to enter the
28558 name of the variable. If you press a single digit, the value is stored
28559 immediately in one of the ``quick'' variables @code{q0} through
28560 @code{q9}. Or you can enter any variable name.
28563 @pindex calc-store-into
28564 The @kbd{s s} command leaves the stored value on the stack. There is
28565 also an @kbd{s t} (@code{calc-store-into}) command, which removes a
28566 value from the stack and stores it in a variable.
28568 If the top of stack value is an equation @samp{a = 7} or assignment
28569 @samp{a := 7} with a variable on the lefthand side, then Calc will
28570 assign that variable with that value by default, i.e., if you type
28571 @kbd{s s @key{RET}} or @kbd{s t @key{RET}}. In this example, the
28572 value 7 would be stored in the variable @samp{a}. (If you do type
28573 a variable name at the prompt, the top-of-stack value is stored in
28574 its entirety, even if it is an equation: @samp{s s b @key{RET}}
28575 with @samp{a := 7} on the stack stores @samp{a := 7} in @code{b}.)
28577 In fact, the top of stack value can be a vector of equations or
28578 assignments with different variables on their lefthand sides; the
28579 default will be to store all the variables with their corresponding
28580 righthand sides simultaneously.
28582 It is also possible to type an equation or assignment directly at
28583 the prompt for the @kbd{s s} or @kbd{s t} command: @kbd{s s foo = 7}.
28584 In this case the expression to the right of the @kbd{=} or @kbd{:=}
28585 symbol is evaluated as if by the @kbd{=} command, and that value is
28586 stored in the variable. No value is taken from the stack; @kbd{s s}
28587 and @kbd{s t} are equivalent when used in this way.
28591 The prefix keys @kbd{s} and @kbd{t} may be followed immediately by a
28592 digit; @kbd{s 9} is equivalent to @kbd{s s 9}, and @kbd{t 9} is
28593 equivalent to @kbd{s t 9}. (The @kbd{t} prefix is otherwise used
28594 for trail and time/date commands.)
28630 @pindex calc-store-plus
28631 @pindex calc-store-minus
28632 @pindex calc-store-times
28633 @pindex calc-store-div
28634 @pindex calc-store-power
28635 @pindex calc-store-concat
28636 @pindex calc-store-neg
28637 @pindex calc-store-inv
28638 @pindex calc-store-decr
28639 @pindex calc-store-incr
28640 There are also several ``arithmetic store'' commands. For example,
28641 @kbd{s +} removes a value from the stack and adds it to the specified
28642 variable. The other arithmetic stores are @kbd{s -}, @kbd{s *}, @kbd{s /},
28643 @kbd{s ^}, and @w{@kbd{s |}} (vector concatenation), plus @kbd{s n} and
28644 @kbd{s &} which negate or invert the value in a variable, and @w{@kbd{s [}}
28645 and @kbd{s ]} which decrease or increase a variable by one.
28647 All the arithmetic stores accept the Inverse prefix to reverse the
28648 order of the operands. If @expr{v} represents the contents of the
28649 variable, and @expr{a} is the value drawn from the stack, then regular
28650 @w{@kbd{s -}} assigns
28651 @texline @math{v \coloneq v - a},
28652 @infoline @expr{v := v - a},
28653 but @kbd{I s -} assigns
28654 @texline @math{v \coloneq a - v}.
28655 @infoline @expr{v := a - v}.
28656 While @kbd{I s *} might seem pointless, it is
28657 useful if matrix multiplication is involved. Actually, all the
28658 arithmetic stores use formulas designed to behave usefully both
28659 forwards and backwards:
28663 s + v := v + a v := a + v
28664 s - v := v - a v := a - v
28665 s * v := v * a v := a * v
28666 s / v := v / a v := a / v
28667 s ^ v := v ^ a v := a ^ v
28668 s | v := v | a v := a | v
28669 s n v := v / (-1) v := (-1) / v
28670 s & v := v ^ (-1) v := (-1) ^ v
28671 s [ v := v - 1 v := 1 - v
28672 s ] v := v - (-1) v := (-1) - v
28676 In the last four cases, a numeric prefix argument will be used in
28677 place of the number one. (For example, @kbd{M-2 s ]} increases
28678 a variable by 2, and @kbd{M-2 I s ]} replaces a variable by
28679 minus-two minus the variable.
28681 The first six arithmetic stores can also be typed @kbd{s t +}, @kbd{s t -},
28682 etc. The commands @kbd{s s +}, @kbd{s s -}, and so on are analogous
28683 arithmetic stores that don't remove the value @expr{a} from the stack.
28685 All arithmetic stores report the new value of the variable in the
28686 Trail for your information. They signal an error if the variable
28687 previously had no stored value. If default simplifications have been
28688 turned off, the arithmetic stores temporarily turn them on for numeric
28689 arguments only (i.e., they temporarily do an @kbd{m N} command).
28690 @xref{Simplification Modes}. Large vectors put in the trail by
28691 these commands always use abbreviated (@kbd{t .}) mode.
28694 @pindex calc-store-map
28695 The @kbd{s m} command is a general way to adjust a variable's value
28696 using any Calc function. It is a ``mapping'' command analogous to
28697 @kbd{V M}, @kbd{V R}, etc. @xref{Reducing and Mapping}, to see
28698 how to specify a function for a mapping command. Basically,
28699 all you do is type the Calc command key that would invoke that
28700 function normally. For example, @kbd{s m n} applies the @kbd{n}
28701 key to negate the contents of the variable, so @kbd{s m n} is
28702 equivalent to @kbd{s n}. Also, @kbd{s m Q} takes the square root
28703 of the value stored in a variable, @kbd{s m v v} uses @kbd{v v} to
28704 reverse the vector stored in the variable, and @kbd{s m H I S}
28705 takes the hyperbolic arcsine of the variable contents.
28707 If the mapping function takes two or more arguments, the additional
28708 arguments are taken from the stack; the old value of the variable
28709 is provided as the first argument. Thus @kbd{s m -} with @expr{a}
28710 on the stack computes @expr{v - a}, just like @kbd{s -}. With the
28711 Inverse prefix, the variable's original value becomes the @emph{last}
28712 argument instead of the first. Thus @kbd{I s m -} is also
28713 equivalent to @kbd{I s -}.
28716 @pindex calc-store-exchange
28717 The @kbd{s x} (@code{calc-store-exchange}) command exchanges the value
28718 of a variable with the value on the top of the stack. Naturally, the
28719 variable must already have a stored value for this to work.
28721 You can type an equation or assignment at the @kbd{s x} prompt. The
28722 command @kbd{s x a=6} takes no values from the stack; instead, it
28723 pushes the old value of @samp{a} on the stack and stores @samp{a = 6}.
28726 @pindex calc-unstore
28727 @cindex Void variables
28728 @cindex Un-storing variables
28729 Until you store something in them, most variables are ``void,'' that is,
28730 they contain no value at all. If they appear in an algebraic formula
28731 they will be left alone even if you press @kbd{=} (@code{calc-evaluate}).
28732 The @kbd{s u} (@code{calc-unstore}) command returns a variable to the
28736 @pindex calc-copy-variable
28737 The @kbd{s c} (@code{calc-copy-variable}) command copies the stored
28738 value of one variable to another. One way it differs from a simple
28739 @kbd{s r} followed by an @kbd{s t} (aside from saving keystrokes) is
28740 that the value never goes on the stack and thus is never rounded,
28741 evaluated, or simplified in any way; it is not even rounded down to the
28744 The only variables with predefined values are the ``special constants''
28745 @code{pi}, @code{e}, @code{i}, @code{phi}, and @code{gamma}. You are free
28746 to unstore these variables or to store new values into them if you like,
28747 although some of the algebraic-manipulation functions may assume these
28748 variables represent their standard values. Calc displays a warning if
28749 you change the value of one of these variables, or of one of the other
28750 special variables @code{inf}, @code{uinf}, and @code{nan} (which are
28753 Note that @code{pi} doesn't actually have 3.14159265359 stored in it,
28754 but rather a special magic value that evaluates to @cpi{} at the current
28755 precision. Likewise @code{e}, @code{i}, and @code{phi} evaluate
28756 according to the current precision or polar mode. If you recall a value
28757 from @code{pi} and store it back, this magic property will be lost. The
28758 magic property is preserved, however, when a variable is copied with
28762 @pindex calc-copy-special-constant
28763 If one of the ``special constants'' is redefined (or undefined) so that
28764 it no longer has its magic property, the property can be restored with
28765 @kbd{s k} (@code{calc-copy-special-constant}). This command will prompt
28766 for a special constant and a variable to store it in, and so a special
28767 constant can be stored in any variable. Here, the special constant that
28768 you enter doesn't depend on the value of the corresponding variable;
28769 @code{pi} will represent 3.14159@dots{} regardless of what is currently
28770 stored in the Calc variable @code{pi}. If one of the other special
28771 variables, @code{inf}, @code{uinf} or @code{nan}, is given a value, its
28772 original behavior can be restored by voiding it with @kbd{s u}.
28774 @node Recalling Variables, Operations on Variables, Storing Variables, Store and Recall
28775 @section Recalling Variables
28779 @pindex calc-recall
28780 @cindex Recalling variables
28781 The most straightforward way to extract the stored value from a variable
28782 is to use the @kbd{s r} (@code{calc-recall}) command. This command prompts
28783 for a variable name (similarly to @code{calc-store}), looks up the value
28784 of the specified variable, and pushes that value onto the stack. It is
28785 an error to try to recall a void variable.
28787 It is also possible to recall the value from a variable by evaluating a
28788 formula containing that variable. For example, @kbd{' a @key{RET} =} is
28789 the same as @kbd{s r a @key{RET}} except that if the variable is void, the
28790 former will simply leave the formula @samp{a} on the stack whereas the
28791 latter will produce an error message.
28794 The @kbd{r} prefix may be followed by a digit, so that @kbd{r 9} is
28795 equivalent to @kbd{s r 9}.
28797 @node Operations on Variables, Let Command, Recalling Variables, Store and Recall
28798 @section Other Operations on Variables
28802 @pindex calc-edit-variable
28803 The @kbd{s e} (@code{calc-edit-variable}) command edits the stored
28804 value of a variable without ever putting that value on the stack
28805 or simplifying or evaluating the value. It prompts for the name of
28806 the variable to edit. If the variable has no stored value, the
28807 editing buffer will start out empty. If the editing buffer is
28808 empty when you press @kbd{C-c C-c} to finish, the variable will
28809 be made void. @xref{Editing Stack Entries}, for a general
28810 description of editing.
28812 The @kbd{s e} command is especially useful for creating and editing
28813 rewrite rules which are stored in variables. Sometimes these rules
28814 contain formulas which must not be evaluated until the rules are
28815 actually used. (For example, they may refer to @samp{deriv(x,y)},
28816 where @code{x} will someday become some expression involving @code{y};
28817 if you let Calc evaluate the rule while you are defining it, Calc will
28818 replace @samp{deriv(x,y)} with 0 because the formula @code{x} does
28819 not itself refer to @code{y}.) By contrast, recalling the variable,
28820 editing with @kbd{`}, and storing will evaluate the variable's value
28821 as a side effect of putting the value on the stack.
28869 @pindex calc-store-AlgSimpRules
28870 @pindex calc-store-Decls
28871 @pindex calc-store-EvalRules
28872 @pindex calc-store-FitRules
28873 @pindex calc-store-GenCount
28874 @pindex calc-store-Holidays
28875 @pindex calc-store-IntegLimit
28876 @pindex calc-store-LineStyles
28877 @pindex calc-store-PointStyles
28878 @pindex calc-store-PlotRejects
28879 @pindex calc-store-TimeZone
28880 @pindex calc-store-Units
28881 @pindex calc-store-ExtSimpRules
28882 There are several special-purpose variable-editing commands that
28883 use the @kbd{s} prefix followed by a shifted letter:
28887 Edit @code{AlgSimpRules}. @xref{Algebraic Simplifications}.
28889 Edit @code{Decls}. @xref{Declarations}.
28891 Edit @code{EvalRules}. @xref{Basic Simplifications}.
28893 Edit @code{FitRules}. @xref{Curve Fitting}.
28895 Edit @code{GenCount}. @xref{Solving Equations}.
28897 Edit @code{Holidays}. @xref{Business Days}.
28899 Edit @code{IntegLimit}. @xref{Calculus}.
28901 Edit @code{LineStyles}. @xref{Graphics}.
28903 Edit @code{PointStyles}. @xref{Graphics}.
28905 Edit @code{PlotRejects}. @xref{Graphics}.
28907 Edit @code{TimeZone}. @xref{Time Zones}.
28909 Edit @code{Units}. @xref{User-Defined Units}.
28911 Edit @code{ExtSimpRules}. @xref{Unsafe Simplifications}.
28914 These commands are just versions of @kbd{s e} that use fixed variable
28915 names rather than prompting for the variable name.
28918 @pindex calc-permanent-variable
28919 @cindex Storing variables
28920 @cindex Permanent variables
28921 @cindex Calc init file, variables
28922 The @kbd{s p} (@code{calc-permanent-variable}) command saves a
28923 variable's value permanently in your Calc init file (the file given by
28924 the variable @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el}), so
28925 that its value will still be available in future Emacs sessions. You
28926 can re-execute @w{@kbd{s p}} later on to update the saved value, but the
28927 only way to remove a saved variable is to edit your calc init file
28928 by hand. (@xref{General Mode Commands}, for a way to tell Calc to
28929 use a different file for the Calc init file.)
28931 If you do not specify the name of a variable to save (i.e.,
28932 @kbd{s p @key{RET}}), all Calc variables with defined values
28933 are saved except for the special constants @code{pi}, @code{e},
28934 @code{i}, @code{phi}, and @code{gamma}; the variables @code{TimeZone}
28935 and @code{PlotRejects};
28936 @code{FitRules}, @code{DistribRules}, and other built-in rewrite
28937 rules; and @code{PlotData@var{n}} variables generated
28938 by the graphics commands. (You can still save these variables by
28939 explicitly naming them in an @kbd{s p} command.)
28942 @pindex calc-insert-variables
28943 The @kbd{s i} (@code{calc-insert-variables}) command writes
28944 the values of all Calc variables into a specified buffer.
28945 The variables are written with the prefix @code{var-} in the form of
28946 Lisp @code{setq} commands
28947 which store the values in string form. You can place these commands
28948 in your Calc init file (or @file{.emacs}) if you wish, though in this case it
28949 would be easier to use @kbd{s p @key{RET}}. (Note that @kbd{s i}
28950 omits the same set of variables as @w{@kbd{s p @key{RET}}}; the difference
28951 is that @kbd{s i} will store the variables in any buffer, and it also
28952 stores in a more human-readable format.)
28954 @node Let Command, Evaluates-To Operator, Operations on Variables, Store and Recall
28955 @section The Let Command
28960 @cindex Variables, temporary assignment
28961 @cindex Temporary assignment to variables
28962 If you have an expression like @samp{a+b^2} on the stack and you wish to
28963 compute its value where @expr{b=3}, you can simply store 3 in @expr{b} and
28964 then press @kbd{=} to reevaluate the formula. This has the side-effect
28965 of leaving the stored value of 3 in @expr{b} for future operations.
28967 The @kbd{s l} (@code{calc-let}) command evaluates a formula under a
28968 @emph{temporary} assignment of a variable. It stores the value on the
28969 top of the stack into the specified variable, then evaluates the
28970 second-to-top stack entry, then restores the original value (or lack of one)
28971 in the variable. Thus after @kbd{'@w{ }a+b^2 @key{RET} 3 s l b @key{RET}},
28972 the stack will contain the formula @samp{a + 9}. The subsequent command
28973 @kbd{@w{5 s l a} @key{RET}} will replace this formula with the number 14.
28974 The variables @samp{a} and @samp{b} are not permanently affected in any way
28977 The value on the top of the stack may be an equation or assignment, or
28978 a vector of equations or assignments, in which case the default will be
28979 analogous to the case of @kbd{s t @key{RET}}. @xref{Storing Variables}.
28981 Also, you can answer the variable-name prompt with an equation or
28982 assignment: @kbd{s l b=3 @key{RET}} is the same as storing 3 on the stack
28983 and typing @kbd{s l b @key{RET}}.
28985 The @kbd{a b} (@code{calc-substitute}) command is another way to substitute
28986 a variable with a value in a formula. It does an actual substitution
28987 rather than temporarily assigning the variable and evaluating. For
28988 example, letting @expr{n=2} in @samp{f(n pi)} with @kbd{a b} will
28989 produce @samp{f(2 pi)}, whereas @kbd{s l} would give @samp{f(6.28)}
28990 since the evaluation step will also evaluate @code{pi}.
28992 @node Evaluates-To Operator, , Let Command, Store and Recall
28993 @section The Evaluates-To Operator
28998 @cindex Evaluates-to operator
28999 @cindex @samp{=>} operator
29000 The special algebraic symbol @samp{=>} is known as the @dfn{evaluates-to
29001 operator}. (It will show up as an @code{evalto} function call in
29002 other language modes like Pascal and @LaTeX{}.) This is a binary
29003 operator, that is, it has a lefthand and a righthand argument,
29004 although it can be entered with the righthand argument omitted.
29006 A formula like @samp{@var{a} => @var{b}} is evaluated by Calc as
29007 follows: First, @var{a} is not simplified or modified in any
29008 way. The previous value of argument @var{b} is thrown away; the
29009 formula @var{a} is then copied and evaluated as if by the @kbd{=}
29010 command according to all current modes and stored variable values,
29011 and the result is installed as the new value of @var{b}.
29013 For example, suppose you enter the algebraic formula @samp{2 + 3 => 17}.
29014 The number 17 is ignored, and the lefthand argument is left in its
29015 unevaluated form; the result is the formula @samp{2 + 3 => 5}.
29018 @pindex calc-evalto
29019 You can enter an @samp{=>} formula either directly using algebraic
29020 entry (in which case the righthand side may be omitted since it is
29021 going to be replaced right away anyhow), or by using the @kbd{s =}
29022 (@code{calc-evalto}) command, which takes @var{a} from the stack
29023 and replaces it with @samp{@var{a} => @var{b}}.
29025 Calc keeps track of all @samp{=>} operators on the stack, and
29026 recomputes them whenever anything changes that might affect their
29027 values, i.e., a mode setting or variable value. This occurs only
29028 if the @samp{=>} operator is at the top level of the formula, or
29029 if it is part of a top-level vector. In other words, pushing
29030 @samp{2 + (a => 17)} will change the 17 to the actual value of
29031 @samp{a} when you enter the formula, but the result will not be
29032 dynamically updated when @samp{a} is changed later because the
29033 @samp{=>} operator is buried inside a sum. However, a vector
29034 of @samp{=>} operators will be recomputed, since it is convenient
29035 to push a vector like @samp{[a =>, b =>, c =>]} on the stack to
29036 make a concise display of all the variables in your problem.
29037 (Another way to do this would be to use @samp{[a, b, c] =>},
29038 which provides a slightly different format of display. You
29039 can use whichever you find easiest to read.)
29042 @pindex calc-auto-recompute
29043 The @kbd{m C} (@code{calc-auto-recompute}) command allows you to
29044 turn this automatic recomputation on or off. If you turn
29045 recomputation off, you must explicitly recompute an @samp{=>}
29046 operator on the stack in one of the usual ways, such as by
29047 pressing @kbd{=}. Turning recomputation off temporarily can save
29048 a lot of time if you will be changing several modes or variables
29049 before you look at the @samp{=>} entries again.
29051 Most commands are not especially useful with @samp{=>} operators
29052 as arguments. For example, given @samp{x + 2 => 17}, it won't
29053 work to type @kbd{1 +} to get @samp{x + 3 => 18}. If you want
29054 to operate on the lefthand side of the @samp{=>} operator on
29055 the top of the stack, type @kbd{j 1} (that's the digit ``one'')
29056 to select the lefthand side, execute your commands, then type
29057 @kbd{j u} to unselect.
29059 All current modes apply when an @samp{=>} operator is computed,
29060 including the current simplification mode. Recall that the
29061 formula @samp{arcsin(sin(x))} will not be handled by Calc's algebraic
29062 simplifications, but Calc's unsafe simplifications will reduce it to
29063 @samp{x}. If you enter @samp{arcsin(sin(x)) =>} normally, the result
29064 will be @samp{arcsin(sin(x)) => arcsin(sin(x))}. If you change to
29065 Extended Simplification mode, the result will be
29066 @samp{arcsin(sin(x)) => x}. However, just pressing @kbd{a e}
29067 once will have no effect on @samp{arcsin(sin(x)) => arcsin(sin(x))},
29068 because the righthand side depends only on the lefthand side
29069 and the current mode settings, and the lefthand side is not
29070 affected by commands like @kbd{a e}.
29072 The ``let'' command (@kbd{s l}) has an interesting interaction
29073 with the @samp{=>} operator. The @kbd{s l} command evaluates the
29074 second-to-top stack entry with the top stack entry supplying
29075 a temporary value for a given variable. As you might expect,
29076 if that stack entry is an @samp{=>} operator its righthand
29077 side will temporarily show this value for the variable. In
29078 fact, all @samp{=>}s on the stack will be updated if they refer
29079 to that variable. But this change is temporary in the sense
29080 that the next command that causes Calc to look at those stack
29081 entries will make them revert to the old variable value.
29085 2: a => a 2: a => 17 2: a => a
29086 1: a + 1 => a + 1 1: a + 1 => 18 1: a + 1 => a + 1
29089 17 s l a @key{RET} p 8 @key{RET}
29093 Here the @kbd{p 8} command changes the current precision,
29094 thus causing the @samp{=>} forms to be recomputed after the
29095 influence of the ``let'' is gone. The @kbd{d @key{SPC}} command
29096 (@code{calc-refresh}) is a handy way to force the @samp{=>}
29097 operators on the stack to be recomputed without any other
29101 @pindex calc-assign
29104 Embedded mode also uses @samp{=>} operators. In Embedded mode,
29105 the lefthand side of an @samp{=>} operator can refer to variables
29106 assigned elsewhere in the file by @samp{:=} operators. The
29107 assignment operator @samp{a := 17} does not actually do anything
29108 by itself. But Embedded mode recognizes it and marks it as a sort
29109 of file-local definition of the variable. You can enter @samp{:=}
29110 operators in Algebraic mode, or by using the @kbd{s :}
29111 (@code{calc-assign}) [@code{assign}] command which takes a variable
29112 and value from the stack and replaces them with an assignment.
29114 @xref{TeX and LaTeX Language Modes}, for the way @samp{=>} appears in
29115 @TeX{} language output. The @dfn{eqn} mode gives similar
29116 treatment to @samp{=>}.
29118 @node Graphics, Kill and Yank, Store and Recall, Top
29122 The commands for graphing data begin with the @kbd{g} prefix key. Calc
29123 uses GNUPLOT 2.0 or later to do graphics. These commands will only work
29124 if GNUPLOT is available on your system. (While GNUPLOT sounds like
29125 a relative of GNU Emacs, it is actually completely unrelated.
29126 However, it is free software. It can be obtained from
29127 @samp{http://www.gnuplot.info}.)
29129 @vindex calc-gnuplot-name
29130 If you have GNUPLOT installed on your system but Calc is unable to
29131 find it, you may need to set the @code{calc-gnuplot-name} variable in
29132 your Calc init file or @file{.emacs}. You may also need to set some
29133 Lisp variables to show Calc how to run GNUPLOT on your system; these
29134 are described under @kbd{g D} and @kbd{g O} below. If you are using
29135 the X window system or MS-Windows, Calc will configure GNUPLOT for you
29136 automatically. If you have GNUPLOT 3.0 or later and you are using a
29137 Unix or GNU system without X, Calc will configure GNUPLOT to display
29138 graphs using simple character graphics that will work on any
29139 Posix-compatible terminal.
29143 * Three Dimensional Graphics::
29144 * Managing Curves::
29145 * Graphics Options::
29149 @node Basic Graphics, Three Dimensional Graphics, Graphics, Graphics
29150 @section Basic Graphics
29154 @pindex calc-graph-fast
29155 The easiest graphics command is @kbd{g f} (@code{calc-graph-fast}).
29156 This command takes two vectors of equal length from the stack.
29157 The vector at the top of the stack represents the ``y'' values of
29158 the various data points. The vector in the second-to-top position
29159 represents the corresponding ``x'' values. This command runs
29160 GNUPLOT (if it has not already been started by previous graphing
29161 commands) and displays the set of data points. The points will
29162 be connected by lines, and there will also be some kind of symbol
29163 to indicate the points themselves.
29165 The ``x'' entry may instead be an interval form, in which case suitable
29166 ``x'' values are interpolated between the minimum and maximum values of
29167 the interval (whether the interval is open or closed is ignored).
29169 The ``x'' entry may also be a number, in which case Calc uses the
29170 sequence of ``x'' values @expr{x}, @expr{x+1}, @expr{x+2}, etc.
29171 (Generally the number 0 or 1 would be used for @expr{x} in this case.)
29173 The ``y'' entry may be any formula instead of a vector. Calc effectively
29174 uses @kbd{N} (@code{calc-eval-num}) to evaluate variables in the formula;
29175 the result of this must be a formula in a single (unassigned) variable.
29176 The formula is plotted with this variable taking on the various ``x''
29177 values. Graphs of formulas by default use lines without symbols at the
29178 computed data points. Note that if neither ``x'' nor ``y'' is a vector,
29179 Calc guesses at a reasonable number of data points to use. See the
29180 @kbd{g N} command below. (The ``x'' values must be either a vector
29181 or an interval if ``y'' is a formula.)
29187 If ``y'' is (or evaluates to) a formula of the form
29188 @samp{xy(@var{x}, @var{y})} then the result is a
29189 parametric plot. The two arguments of the fictitious @code{xy} function
29190 are used as the ``x'' and ``y'' coordinates of the curve, respectively.
29191 In this case the ``x'' vector or interval you specified is not directly
29192 visible in the graph. For example, if ``x'' is the interval @samp{[0..360]}
29193 and ``y'' is the formula @samp{xy(sin(t), cos(t))}, the resulting graph
29196 Also, ``x'' and ``y'' may each be variable names, in which case Calc
29197 looks for suitable vectors, intervals, or formulas stored in those
29200 The ``x'' and ``y'' values for the data points (as pulled from the vectors,
29201 calculated from the formulas, or interpolated from the intervals) should
29202 be real numbers (integers, fractions, or floats). One exception to this
29203 is that the ``y'' entry can consist of a vector of numbers combined with
29204 error forms, in which case the points will be plotted with the
29205 appropriate error bars. Other than this, if either the ``x''
29206 value or the ``y'' value of a given data point is not a real number, that
29207 data point will be omitted from the graph. The points on either side
29208 of the invalid point will @emph{not} be connected by a line.
29210 See the documentation for @kbd{g a} below for a description of the way
29211 numeric prefix arguments affect @kbd{g f}.
29213 @cindex @code{PlotRejects} variable
29214 @vindex PlotRejects
29215 If you store an empty vector in the variable @code{PlotRejects}
29216 (i.e., @kbd{[ ] s t PlotRejects}), Calc will append information to
29217 this vector for every data point which was rejected because its
29218 ``x'' or ``y'' values were not real numbers. The result will be
29219 a matrix where each row holds the curve number, data point number,
29220 ``x'' value, and ``y'' value for a rejected data point.
29221 @xref{Evaluates-To Operator}, for a handy way to keep tabs on the
29222 current value of @code{PlotRejects}. @xref{Operations on Variables},
29223 for the @kbd{s R} command which is another easy way to examine
29224 @code{PlotRejects}.
29227 @pindex calc-graph-clear
29228 To clear the graphics display, type @kbd{g c} (@code{calc-graph-clear}).
29229 If the GNUPLOT output device is an X window, the window will go away.
29230 Effects on other kinds of output devices will vary. You don't need
29231 to use @kbd{g c} if you don't want to---if you give another @kbd{g f}
29232 or @kbd{g p} command later on, it will reuse the existing graphics
29233 window if there is one.
29235 @node Three Dimensional Graphics, Managing Curves, Basic Graphics, Graphics
29236 @section Three-Dimensional Graphics
29239 @pindex calc-graph-fast-3d
29240 The @kbd{g F} (@code{calc-graph-fast-3d}) command makes a three-dimensional
29241 graph. It works only if you have GNUPLOT 3.0 or later; with GNUPLOT 2.0,
29242 you will see a GNUPLOT error message if you try this command.
29244 The @kbd{g F} command takes three values from the stack, called ``x'',
29245 ``y'', and ``z'', respectively. As was the case for 2D graphs, there
29246 are several options for these values.
29248 In the first case, ``x'' and ``y'' are each vectors (not necessarily of
29249 the same length); either or both may instead be interval forms. The
29250 ``z'' value must be a matrix with the same number of rows as elements
29251 in ``x'', and the same number of columns as elements in ``y''. The
29252 result is a surface plot where
29253 @texline @math{z_{ij}}
29254 @infoline @expr{z_ij}
29255 is the height of the point
29256 at coordinate @expr{(x_i, y_j)} on the surface. The 3D graph will
29257 be displayed from a certain default viewpoint; you can change this
29258 viewpoint by adding a @samp{set view} to the @samp{*Gnuplot Commands*}
29259 buffer as described later. See the GNUPLOT documentation for a
29260 description of the @samp{set view} command.
29262 Each point in the matrix will be displayed as a dot in the graph,
29263 and these points will be connected by a grid of lines (@dfn{isolines}).
29265 In the second case, ``x'', ``y'', and ``z'' are all vectors of equal
29266 length. The resulting graph displays a 3D line instead of a surface,
29267 where the coordinates of points along the line are successive triplets
29268 of values from the input vectors.
29270 In the third case, ``x'' and ``y'' are vectors or interval forms, and
29271 ``z'' is any formula involving two variables (not counting variables
29272 with assigned values). These variables are sorted into alphabetical
29273 order; the first takes on values from ``x'' and the second takes on
29274 values from ``y'' to form a matrix of results that are graphed as a
29281 If the ``z'' formula evaluates to a call to the fictitious function
29282 @samp{xyz(@var{x}, @var{y}, @var{z})}, then the result is a
29283 ``parametric surface.'' In this case, the axes of the graph are
29284 taken from the @var{x} and @var{y} values in these calls, and the
29285 ``x'' and ``y'' values from the input vectors or intervals are used only
29286 to specify the range of inputs to the formula. For example, plotting
29287 @samp{[0..360], [0..180], xyz(sin(x)*sin(y), cos(x)*sin(y), cos(y))}
29288 will draw a sphere. (Since the default resolution for 3D plots is
29289 5 steps in each of ``x'' and ``y'', this will draw a very crude
29290 sphere. You could use the @kbd{g N} command, described below, to
29291 increase this resolution, or specify the ``x'' and ``y'' values as
29292 vectors with more than 5 elements.
29294 It is also possible to have a function in a regular @kbd{g f} plot
29295 evaluate to an @code{xyz} call. Since @kbd{g f} plots a line, not
29296 a surface, the result will be a 3D parametric line. For example,
29297 @samp{[[0..720], xyz(sin(x), cos(x), x)]} will plot two turns of a
29298 helix (a three-dimensional spiral).
29300 As for @kbd{g f}, each of ``x'', ``y'', and ``z'' may instead be
29301 variables containing the relevant data.
29303 @node Managing Curves, Graphics Options, Three Dimensional Graphics, Graphics
29304 @section Managing Curves
29307 The @kbd{g f} command is really shorthand for the following commands:
29308 @kbd{C-u g d g a g p}. Likewise, @w{@kbd{g F}} is shorthand for
29309 @kbd{C-u g d g A g p}. You can gain more control over your graph
29310 by using these commands directly.
29313 @pindex calc-graph-add
29314 The @kbd{g a} (@code{calc-graph-add}) command adds the ``curve''
29315 represented by the two values on the top of the stack to the current
29316 graph. You can have any number of curves in the same graph. When
29317 you give the @kbd{g p} command, all the curves will be drawn superimposed
29320 The @kbd{g a} command (and many others that affect the current graph)
29321 will cause a special buffer, @samp{*Gnuplot Commands*}, to be displayed
29322 in another window. This buffer is a template of the commands that will
29323 be sent to GNUPLOT when it is time to draw the graph. The first
29324 @kbd{g a} command adds a @code{plot} command to this buffer. Succeeding
29325 @kbd{g a} commands add extra curves onto that @code{plot} command.
29326 Other graph-related commands put other GNUPLOT commands into this
29327 buffer. In normal usage you never need to work with this buffer
29328 directly, but you can if you wish. The only constraint is that there
29329 must be only one @code{plot} command, and it must be the last command
29330 in the buffer. If you want to save and later restore a complete graph
29331 configuration, you can use regular Emacs commands to save and restore
29332 the contents of the @samp{*Gnuplot Commands*} buffer.
29336 If the values on the stack are not variable names, @kbd{g a} will invent
29337 variable names for them (of the form @samp{PlotData@var{n}}) and store
29338 the values in those variables. The ``x'' and ``y'' variables are what
29339 go into the @code{plot} command in the template. If you add a curve
29340 that uses a certain variable and then later change that variable, you
29341 can replot the graph without having to delete and re-add the curve.
29342 That's because the variable name, not the vector, interval or formula
29343 itself, is what was added by @kbd{g a}.
29345 A numeric prefix argument on @kbd{g a} or @kbd{g f} changes the way
29346 stack entries are interpreted as curves. With a positive prefix
29347 argument @expr{n}, the top @expr{n} stack entries are ``y'' values
29348 for @expr{n} different curves which share a common ``x'' value in
29349 the @expr{n+1}st stack entry. (Thus @kbd{g a} with no prefix
29350 argument is equivalent to @kbd{C-u 1 g a}.)
29352 A prefix of zero or plain @kbd{C-u} means to take two stack entries,
29353 ``x'' and ``y'' as usual, but to interpret ``y'' as a vector of
29354 ``y'' values for several curves that share a common ``x''.
29356 A negative prefix argument tells Calc to read @expr{n} vectors from
29357 the stack; each vector @expr{[x, y]} describes an independent curve.
29358 This is the only form of @kbd{g a} that creates several curves at once
29359 that don't have common ``x'' values. (Of course, the range of ``x''
29360 values covered by all the curves ought to be roughly the same if
29361 they are to look nice on the same graph.)
29363 For example, to plot
29364 @texline @math{\sin n x}
29365 @infoline @expr{sin(n x)}
29366 for integers @expr{n}
29367 from 1 to 5, you could use @kbd{v x} to create a vector of integers
29368 (@expr{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)}
29369 across this vector. The resulting vector of formulas is suitable
29370 for use as the ``y'' argument to a @kbd{C-u g a} or @kbd{C-u g f}
29374 @pindex calc-graph-add-3d
29375 The @kbd{g A} (@code{calc-graph-add-3d}) command adds a 3D curve
29376 to the graph. It is not valid to intermix 2D and 3D curves in a
29377 single graph. This command takes three arguments, ``x'', ``y'',
29378 and ``z'', from the stack. With a positive prefix @expr{n}, it
29379 takes @expr{n+2} arguments (common ``x'' and ``y'', plus @expr{n}
29380 separate ``z''s). With a zero prefix, it takes three stack entries
29381 but the ``z'' entry is a vector of curve values. With a negative
29382 prefix @expr{-n}, it takes @expr{n} vectors of the form @expr{[x, y, z]}.
29383 The @kbd{g A} command works by adding a @code{splot} (surface-plot)
29384 command to the @samp{*Gnuplot Commands*} buffer.
29386 (Although @kbd{g a} adds a 2D @code{plot} command to the
29387 @samp{*Gnuplot Commands*} buffer, Calc changes this to @code{splot}
29388 before sending it to GNUPLOT if it notices that the data points are
29389 evaluating to @code{xyz} calls. It will not work to mix 2D and 3D
29390 @kbd{g a} curves in a single graph, although Calc does not currently
29394 @pindex calc-graph-delete
29395 The @kbd{g d} (@code{calc-graph-delete}) command deletes the most
29396 recently added curve from the graph. It has no effect if there are
29397 no curves in the graph. With a numeric prefix argument of any kind,
29398 it deletes all of the curves from the graph.
29401 @pindex calc-graph-hide
29402 The @kbd{g H} (@code{calc-graph-hide}) command ``hides'' or ``unhides''
29403 the most recently added curve. A hidden curve will not appear in
29404 the actual plot, but information about it such as its name and line and
29405 point styles will be retained.
29408 @pindex calc-graph-juggle
29409 The @kbd{g j} (@code{calc-graph-juggle}) command moves the curve
29410 at the end of the list (the ``most recently added curve'') to the
29411 front of the list. The next-most-recent curve is thus exposed for
29412 @w{@kbd{g d}} or similar commands to use. With @kbd{g j} you can work
29413 with any curve in the graph even though curve-related commands only
29414 affect the last curve in the list.
29417 @pindex calc-graph-plot
29418 The @kbd{g p} (@code{calc-graph-plot}) command uses GNUPLOT to draw
29419 the graph described in the @samp{*Gnuplot Commands*} buffer. Any
29420 GNUPLOT parameters which are not defined by commands in this buffer
29421 are reset to their default values. The variables named in the @code{plot}
29422 command are written to a temporary data file and the variable names
29423 are then replaced by the file name in the template. The resulting
29424 plotting commands are fed to the GNUPLOT program. See the documentation
29425 for the GNUPLOT program for more specific information. All temporary
29426 files are removed when Emacs or GNUPLOT exits.
29428 If you give a formula for ``y'', Calc will remember all the values that
29429 it calculates for the formula so that later plots can reuse these values.
29430 Calc throws out these saved values when you change any circumstances
29431 that may affect the data, such as switching from Degrees to Radians
29432 mode, or changing the value of a parameter in the formula. You can
29433 force Calc to recompute the data from scratch by giving a negative
29434 numeric prefix argument to @kbd{g p}.
29436 Calc uses a fairly rough step size when graphing formulas over intervals.
29437 This is to ensure quick response. You can ``refine'' a plot by giving
29438 a positive numeric prefix argument to @kbd{g p}. Calc goes through
29439 the data points it has computed and saved from previous plots of the
29440 function, and computes and inserts a new data point midway between
29441 each of the existing points. You can refine a plot any number of times,
29442 but beware that the amount of calculation involved doubles each time.
29444 Calc does not remember computed values for 3D graphs. This means the
29445 numerix prefix argument, if any, to @kbd{g p} is effectively ignored if
29446 the current graph is three-dimensional.
29449 @pindex calc-graph-print
29450 The @kbd{g P} (@code{calc-graph-print}) command is like @kbd{g p},
29451 except that it sends the output to a printer instead of to the
29452 screen. More precisely, @kbd{g p} looks for @samp{set terminal}
29453 or @samp{set output} commands in the @samp{*Gnuplot Commands*} buffer;
29454 lacking these it uses the default settings. However, @kbd{g P}
29455 ignores @samp{set terminal} and @samp{set output} commands and
29456 uses a different set of default values. All of these values are
29457 controlled by the @kbd{g D} and @kbd{g O} commands discussed below.
29458 Provided everything is set up properly, @kbd{g p} will plot to
29459 the screen unless you have specified otherwise and @kbd{g P} will
29460 always plot to the printer.
29462 @node Graphics Options, Devices, Managing Curves, Graphics
29463 @section Graphics Options
29467 @pindex calc-graph-grid
29468 The @kbd{g g} (@code{calc-graph-grid}) command turns the ``grid''
29469 on and off. It is off by default; tick marks appear only at the
29470 edges of the graph. With the grid turned on, dotted lines appear
29471 across the graph at each tick mark. Note that this command only
29472 changes the setting in @samp{*Gnuplot Commands*}; to see the effects
29473 of the change you must give another @kbd{g p} command.
29476 @pindex calc-graph-border
29477 The @kbd{g b} (@code{calc-graph-border}) command turns the border
29478 (the box that surrounds the graph) on and off. It is on by default.
29479 This command will only work with GNUPLOT 3.0 and later versions.
29482 @pindex calc-graph-key
29483 The @kbd{g k} (@code{calc-graph-key}) command turns the ``key''
29484 on and off. The key is a chart in the corner of the graph that
29485 shows the correspondence between curves and line styles. It is
29486 off by default, and is only really useful if you have several
29487 curves on the same graph.
29490 @pindex calc-graph-num-points
29491 The @kbd{g N} (@code{calc-graph-num-points}) command allows you
29492 to select the number of data points in the graph. This only affects
29493 curves where neither ``x'' nor ``y'' is specified as a vector.
29494 Enter a blank line to revert to the default value (initially 15).
29495 With no prefix argument, this command affects only the current graph.
29496 With a positive prefix argument this command changes or, if you enter
29497 a blank line, displays the default number of points used for all
29498 graphs created by @kbd{g a} that don't specify the resolution explicitly.
29499 With a negative prefix argument, this command changes or displays
29500 the default value (initially 5) used for 3D graphs created by @kbd{g A}.
29501 Note that a 3D setting of 5 means that a total of @expr{5^2 = 25} points
29502 will be computed for the surface.
29504 Data values in the graph of a function are normally computed to a
29505 precision of five digits, regardless of the current precision at the
29506 time. This is usually more than adequate, but there are cases where
29507 it will not be. For example, plotting @expr{1 + x} with @expr{x} in the
29508 interval @samp{[0 ..@: 1e-6]} will round all the data points down
29509 to 1.0! Putting the command @samp{set precision @var{n}} in the
29510 @samp{*Gnuplot Commands*} buffer will cause the data to be computed
29511 at precision @var{n} instead of 5. Since this is such a rare case,
29512 there is no keystroke-based command to set the precision.
29515 @pindex calc-graph-header
29516 The @kbd{g h} (@code{calc-graph-header}) command sets the title
29517 for the graph. This will show up centered above the graph.
29518 The default title is blank (no title).
29521 @pindex calc-graph-name
29522 The @kbd{g n} (@code{calc-graph-name}) command sets the title of an
29523 individual curve. Like the other curve-manipulating commands, it
29524 affects the most recently added curve, i.e., the last curve on the
29525 list in the @samp{*Gnuplot Commands*} buffer. To set the title of
29526 the other curves you must first juggle them to the end of the list
29527 with @kbd{g j}, or edit the @samp{*Gnuplot Commands*} buffer by hand.
29528 Curve titles appear in the key; if the key is turned off they are
29533 @pindex calc-graph-title-x
29534 @pindex calc-graph-title-y
29535 The @kbd{g t} (@code{calc-graph-title-x}) and @kbd{g T}
29536 (@code{calc-graph-title-y}) commands set the titles on the ``x''
29537 and ``y'' axes, respectively. These titles appear next to the
29538 tick marks on the left and bottom edges of the graph, respectively.
29539 Calc does not have commands to control the tick marks themselves,
29540 but you can edit them into the @samp{*Gnuplot Commands*} buffer if
29541 you wish. See the GNUPLOT documentation for details.
29545 @pindex calc-graph-range-x
29546 @pindex calc-graph-range-y
29547 The @kbd{g r} (@code{calc-graph-range-x}) and @kbd{g R}
29548 (@code{calc-graph-range-y}) commands set the range of values on the
29549 ``x'' and ``y'' axes, respectively. You are prompted to enter a
29550 suitable range. This should be either a pair of numbers of the
29551 form, @samp{@var{min}:@var{max}}, or a blank line to revert to the
29552 default behavior of setting the range based on the range of values
29553 in the data, or @samp{$} to take the range from the top of the stack.
29554 Ranges on the stack can be represented as either interval forms or
29555 vectors: @samp{[@var{min} ..@: @var{max}]} or @samp{[@var{min}, @var{max}]}.
29559 @pindex calc-graph-log-x
29560 @pindex calc-graph-log-y
29561 The @kbd{g l} (@code{calc-graph-log-x}) and @kbd{g L} (@code{calc-graph-log-y})
29562 commands allow you to set either or both of the axes of the graph to
29563 be logarithmic instead of linear.
29568 @pindex calc-graph-log-z
29569 @pindex calc-graph-range-z
29570 @pindex calc-graph-title-z
29571 For 3D plots, @kbd{g C-t}, @kbd{g C-r}, and @kbd{g C-l} (those are
29572 letters with the Control key held down) are the corresponding commands
29573 for the ``z'' axis.
29577 @pindex calc-graph-zero-x
29578 @pindex calc-graph-zero-y
29579 The @kbd{g z} (@code{calc-graph-zero-x}) and @kbd{g Z}
29580 (@code{calc-graph-zero-y}) commands control whether a dotted line is
29581 drawn to indicate the ``x'' and/or ``y'' zero axes. (These are the same
29582 dotted lines that would be drawn there anyway if you used @kbd{g g} to
29583 turn the ``grid'' feature on.) Zero-axis lines are on by default, and
29584 may be turned off only in GNUPLOT 3.0 and later versions. They are
29585 not available for 3D plots.
29588 @pindex calc-graph-line-style
29589 The @kbd{g s} (@code{calc-graph-line-style}) command turns the connecting
29590 lines on or off for the most recently added curve, and optionally selects
29591 the style of lines to be used for that curve. Plain @kbd{g s} simply
29592 toggles the lines on and off. With a numeric prefix argument, @kbd{g s}
29593 turns lines on and sets a particular line style. Line style numbers
29594 start at one and their meanings vary depending on the output device.
29595 GNUPLOT guarantees that there will be at least six different line styles
29596 available for any device.
29599 @pindex calc-graph-point-style
29600 The @kbd{g S} (@code{calc-graph-point-style}) command similarly turns
29601 the symbols at the data points on or off, or sets the point style.
29602 If you turn both lines and points off, the data points will show as
29603 tiny dots. If the ``y'' values being plotted contain error forms and
29604 the connecting lines are turned off, then this command will also turn
29605 the error bars on or off.
29607 @cindex @code{LineStyles} variable
29608 @cindex @code{PointStyles} variable
29610 @vindex PointStyles
29611 Another way to specify curve styles is with the @code{LineStyles} and
29612 @code{PointStyles} variables. These variables initially have no stored
29613 values, but if you store a vector of integers in one of these variables,
29614 the @kbd{g a} and @kbd{g f} commands will use those style numbers
29615 instead of the defaults for new curves that are added to the graph.
29616 An entry should be a positive integer for a specific style, or 0 to let
29617 the style be chosen automatically, or @mathit{-1} to turn off lines or points
29618 altogether. If there are more curves than elements in the vector, the
29619 last few curves will continue to have the default styles. Of course,
29620 you can later use @kbd{g s} and @kbd{g S} to change any of these styles.
29622 For example, @kbd{'[2 -1 3] @key{RET} s t LineStyles} causes the first curve
29623 to have lines in style number 2, the second curve to have no connecting
29624 lines, and the third curve to have lines in style 3. Point styles will
29625 still be assigned automatically, but you could store another vector in
29626 @code{PointStyles} to define them, too.
29628 @node Devices, , Graphics Options, Graphics
29629 @section Graphical Devices
29633 @pindex calc-graph-device
29634 The @kbd{g D} (@code{calc-graph-device}) command sets the device name
29635 (or ``terminal name'' in GNUPLOT lingo) to be used by @kbd{g p} commands
29636 on this graph. It does not affect the permanent default device name.
29637 If you enter a blank name, the device name reverts to the default.
29638 Enter @samp{?} to see a list of supported devices.
29640 With a positive numeric prefix argument, @kbd{g D} instead sets
29641 the default device name, used by all plots in the future which do
29642 not override it with a plain @kbd{g D} command. If you enter a
29643 blank line this command shows you the current default. The special
29644 name @code{default} signifies that Calc should choose @code{x11} if
29645 the X window system is in use (as indicated by the presence of a
29646 @code{DISPLAY} environment variable), @code{windows} on MS-Windows, or
29647 otherwise @code{dumb} under GNUPLOT 3.0 and later, or
29648 @code{postscript} under GNUPLOT 2.0. This is the initial default
29651 The @code{dumb} device is an interface to ``dumb terminals,'' i.e.,
29652 terminals with no special graphics facilities. It writes a crude
29653 picture of the graph composed of characters like @code{-} and @code{|}
29654 to a buffer called @samp{*Gnuplot Trail*}, which Calc then displays.
29655 The graph is made the same size as the Emacs screen, which on most
29656 dumb terminals will be
29657 @texline @math{80\times24}
29659 characters. The graph is displayed in
29660 an Emacs ``recursive edit''; type @kbd{q} or @kbd{C-c C-c} to exit
29661 the recursive edit and return to Calc. Note that the @code{dumb}
29662 device is present only in GNUPLOT 3.0 and later versions.
29664 The word @code{dumb} may be followed by two numbers separated by
29665 spaces. These are the desired width and height of the graph in
29666 characters. Also, the device name @code{big} is like @code{dumb}
29667 but creates a graph four times the width and height of the Emacs
29668 screen. You will then have to scroll around to view the entire
29669 graph. In the @samp{*Gnuplot Trail*} buffer, @key{SPC}, @key{DEL},
29670 @kbd{<}, and @kbd{>} are defined to scroll by one screenful in each
29671 of the four directions.
29673 With a negative numeric prefix argument, @kbd{g D} sets or displays
29674 the device name used by @kbd{g P} (@code{calc-graph-print}). This
29675 is initially @code{postscript}. If you don't have a PostScript
29676 printer, you may decide once again to use @code{dumb} to create a
29677 plot on any text-only printer.
29680 @pindex calc-graph-output
29681 The @kbd{g O} (@code{calc-graph-output}) command sets the name of the
29682 output file used by GNUPLOT@. For some devices, notably @code{x11} and
29683 @code{windows}, there is no output file and this information is not
29684 used. Many other ``devices'' are really file formats like
29685 @code{postscript}; in these cases the output in the desired format
29686 goes into the file you name with @kbd{g O}. Type @kbd{g O stdout
29687 @key{RET}} to set GNUPLOT to write to its standard output stream,
29688 i.e., to @samp{*Gnuplot Trail*}. This is the default setting.
29690 Another special output name is @code{tty}, which means that GNUPLOT
29691 is going to write graphics commands directly to its standard output,
29692 which you wish Emacs to pass through to your terminal. Tektronix
29693 graphics terminals, among other devices, operate this way. Calc does
29694 this by telling GNUPLOT to write to a temporary file, then running a
29695 sub-shell executing the command @samp{cat tempfile >/dev/tty}. On
29696 typical Unix systems, this will copy the temporary file directly to
29697 the terminal, bypassing Emacs entirely. You will have to type @kbd{C-l}
29698 to Emacs afterwards to refresh the screen.
29700 Once again, @kbd{g O} with a positive or negative prefix argument
29701 sets the default or printer output file names, respectively. In each
29702 case you can specify @code{auto}, which causes Calc to invent a temporary
29703 file name for each @kbd{g p} (or @kbd{g P}) command. This temporary file
29704 will be deleted once it has been displayed or printed. If the output file
29705 name is not @code{auto}, the file is not automatically deleted.
29707 The default and printer devices and output files can be saved
29708 permanently by the @kbd{m m} (@code{calc-save-modes}) command. The
29709 default number of data points (see @kbd{g N}) and the X geometry
29710 (see @kbd{g X}) are also saved. Other graph information is @emph{not}
29711 saved; you can save a graph's configuration simply by saving the contents
29712 of the @samp{*Gnuplot Commands*} buffer.
29714 @vindex calc-gnuplot-plot-command
29715 @vindex calc-gnuplot-default-device
29716 @vindex calc-gnuplot-default-output
29717 @vindex calc-gnuplot-print-command
29718 @vindex calc-gnuplot-print-device
29719 @vindex calc-gnuplot-print-output
29720 You may wish to configure the default and
29721 printer devices and output files for the whole system. The relevant
29722 Lisp variables are @code{calc-gnuplot-default-device} and @code{-output},
29723 and @code{calc-gnuplot-print-device} and @code{-output}. The output
29724 file names must be either strings as described above, or Lisp
29725 expressions which are evaluated on the fly to get the output file names.
29727 Other important Lisp variables are @code{calc-gnuplot-plot-command} and
29728 @code{calc-gnuplot-print-command}, which give the system commands to
29729 display or print the output of GNUPLOT, respectively. These may be
29730 @code{nil} if no command is necessary, or strings which can include
29731 @samp{%s} to signify the name of the file to be displayed or printed.
29732 Or, these variables may contain Lisp expressions which are evaluated
29733 to display or print the output. These variables are customizable
29734 (@pxref{Customizing Calc}).
29737 @pindex calc-graph-display
29738 The @kbd{g x} (@code{calc-graph-display}) command lets you specify
29739 on which X window system display your graphs should be drawn. Enter
29740 a blank line to see the current display name. This command has no
29741 effect unless the current device is @code{x11}.
29744 @pindex calc-graph-geometry
29745 The @kbd{g X} (@code{calc-graph-geometry}) command is a similar
29746 command for specifying the position and size of the X window.
29747 The normal value is @code{default}, which generally means your
29748 window manager will let you place the window interactively.
29749 Entering @samp{800x500+0+0} would create an 800-by-500 pixel
29750 window in the upper-left corner of the screen. This command has no
29751 effect if the current device is @code{windows}.
29753 The buffer called @samp{*Gnuplot Trail*} holds a transcript of the
29754 session with GNUPLOT@. This shows the commands Calc has ``typed'' to
29755 GNUPLOT and the responses it has received. Calc tries to notice when an
29756 error message has appeared here and display the buffer for you when
29757 this happens. You can check this buffer yourself if you suspect
29758 something has gone wrong@footnote{
29759 On MS-Windows, due to the peculiarities of how the Windows version of
29760 GNUPLOT (called @command{wgnuplot}) works, the GNUPLOT responses are
29761 not communicated back to Calc. Instead, you need to look them up in
29762 the GNUPLOT command window that is displayed as in normal interactive
29767 @pindex calc-graph-command
29768 The @kbd{g C} (@code{calc-graph-command}) command prompts you to
29769 enter any line of text, then simply sends that line to the current
29770 GNUPLOT process. The @samp{*Gnuplot Trail*} buffer looks deceptively
29771 like a Shell buffer but you can't type commands in it yourself.
29772 Instead, you must use @kbd{g C} for this purpose.
29776 @pindex calc-graph-view-commands
29777 @pindex calc-graph-view-trail
29778 The @kbd{g v} (@code{calc-graph-view-commands}) and @kbd{g V}
29779 (@code{calc-graph-view-trail}) commands display the @samp{*Gnuplot Commands*}
29780 and @samp{*Gnuplot Trail*} buffers, respectively, in another window.
29781 This happens automatically when Calc thinks there is something you
29782 will want to see in either of these buffers. If you type @kbd{g v}
29783 or @kbd{g V} when the relevant buffer is already displayed, the
29784 buffer is hidden again. (Note that on MS-Windows, the @samp{*Gnuplot
29785 Trail*} buffer will usually show nothing of interest, because
29786 GNUPLOT's responses are not communicated back to Calc.)
29788 One reason to use @kbd{g v} is to add your own commands to the
29789 @samp{*Gnuplot Commands*} buffer. Press @kbd{g v}, then use
29790 @kbd{C-x o} to switch into that window. For example, GNUPLOT has
29791 @samp{set label} and @samp{set arrow} commands that allow you to
29792 annotate your plots. Since Calc doesn't understand these commands,
29793 you have to add them to the @samp{*Gnuplot Commands*} buffer
29794 yourself, then use @w{@kbd{g p}} to replot using these new commands. Note
29795 that your commands must appear @emph{before} the @code{plot} command.
29796 To get help on any GNUPLOT feature, type, e.g., @kbd{g C help set label}.
29797 You may have to type @kbd{g C @key{RET}} a few times to clear the
29798 ``press return for more'' or ``subtopic of @dots{}'' requests.
29799 Note that Calc always sends commands (like @samp{set nolabel}) to
29800 reset all plotting parameters to the defaults before each plot, so
29801 to delete a label all you need to do is delete the @samp{set label}
29802 line you added (or comment it out with @samp{#}) and then replot
29806 @pindex calc-graph-quit
29807 You can use @kbd{g q} (@code{calc-graph-quit}) to kill the GNUPLOT
29808 process that is running. The next graphing command you give will
29809 start a fresh GNUPLOT process. The word @samp{Graph} appears in
29810 the Calc window's mode line whenever a GNUPLOT process is currently
29811 running. The GNUPLOT process is automatically killed when you
29812 exit Emacs if you haven't killed it manually by then.
29815 @pindex calc-graph-kill
29816 The @kbd{g K} (@code{calc-graph-kill}) command is like @kbd{g q}
29817 except that it also views the @samp{*Gnuplot Trail*} buffer so that
29818 you can see the process being killed. This is better if you are
29819 killing GNUPLOT because you think it has gotten stuck.
29821 @node Kill and Yank, Keypad Mode, Graphics, Top
29822 @chapter Kill and Yank Functions
29825 The commands in this chapter move information between the Calculator and
29826 other Emacs editing buffers.
29828 In many cases Embedded mode is an easier and more natural way to
29829 work with Calc from a regular editing buffer. @xref{Embedded Mode}.
29832 * Killing From Stack::
29833 * Yanking Into Stack::
29834 * Saving Into Registers::
29835 * Inserting From Registers::
29836 * Grabbing From Buffers::
29837 * Yanking Into Buffers::
29838 * X Cut and Paste::
29841 @node Killing From Stack, Yanking Into Stack, Kill and Yank, Kill and Yank
29842 @section Killing from the Stack
29848 @pindex calc-copy-as-kill
29850 @pindex calc-kill-region
29852 @pindex calc-copy-region-as-kill
29855 @dfn{Kill} commands are Emacs commands that insert text into the ``kill
29856 ring,'' from which it can later be ``yanked'' by a @kbd{C-y} command.
29857 Three common kill commands in normal Emacs are @kbd{C-k}, which kills
29858 one line, @kbd{C-w}, which kills the region between mark and point, and
29859 @kbd{M-w}, which puts the region into the kill ring without actually
29860 deleting it. All of these commands work in the Calculator, too,
29861 although in the Calculator they operate on whole stack entries, so they
29862 ``round up'' the specified region to encompass full lines. (To copy
29863 only parts of lines, the @kbd{M-C-w} command in the Calculator will copy
29864 the region to the kill ring without any ``rounding up'', just like the
29865 @kbd{M-w} command in normal Emacs.) Also, @kbd{M-k} has been provided
29866 to complete the set; it puts the current line into the kill ring without
29869 The kill commands are unusual in that they pay attention to the location
29870 of the cursor in the Calculator buffer. If the cursor is on or below
29871 the bottom line, the kill commands operate on the top of the stack.
29872 Otherwise, they operate on whatever stack element the cursor is on. The
29873 text is copied into the kill ring exactly as it appears on the screen,
29874 including line numbers if they are enabled.
29876 A numeric prefix argument to @kbd{C-k} or @kbd{M-k} affects the number
29877 of lines killed. A positive argument kills the current line and @expr{n-1}
29878 lines below it. A negative argument kills the @expr{-n} lines above the
29879 current line. Again this mirrors the behavior of the standard Emacs
29880 @kbd{C-k} command. Although a whole line is always deleted, @kbd{C-k}
29881 with no argument copies only the number itself into the kill ring, whereas
29882 @kbd{C-k} with a prefix argument of 1 copies the number with its trailing
29885 @node Yanking Into Stack, Saving Into Registers, Killing From Stack, Kill and Yank
29886 @section Yanking into the Stack
29891 The @kbd{C-y} command yanks the most recently killed text back into the
29892 Calculator. It pushes this value onto the top of the stack regardless of
29893 the cursor position. In general it re-parses the killed text as a number
29894 or formula (or a list of these separated by commas or newlines). However if
29895 the thing being yanked is something that was just killed from the Calculator
29896 itself, its full internal structure is yanked. For example, if you have
29897 set the floating-point display mode to show only four significant digits,
29898 then killing and re-yanking 3.14159 (which displays as 3.142) will yank the
29899 full 3.14159, even though yanking it into any other buffer would yank the
29900 number in its displayed form, 3.142. (Since the default display modes
29901 show all objects to their full precision, this feature normally makes no
29904 @node Saving Into Registers, Inserting From Registers, Yanking Into Stack, Kill and Yank
29905 @section Saving into Registers
29909 @pindex calc-copy-to-register
29910 @pindex calc-prepend-to-register
29911 @pindex calc-append-to-register
29913 An alternative to killing and yanking stack entries is using
29914 registers in Calc. Saving stack entries in registers is like
29915 saving text in normal Emacs registers; although, like Calc's kill
29916 commands, register commands always operate on whole stack
29919 Registers in Calc are places to store stack entries for later use;
29920 each register is indexed by a single character. To store the current
29921 region (rounded up, of course, to include full stack entries) into a
29922 register, use the command @kbd{r s} (@code{calc-copy-to-register}).
29923 You will then be prompted for a register to use, the next character
29924 you type will be the index for the register. To store the region in
29925 register @var{r}, the full command will be @kbd{r s @var{r}}. With an
29926 argument, @kbd{C-u r s @var{r}}, the region being copied to the
29927 register will be deleted from the Calc buffer.
29929 It is possible to add additional stack entries to a register. The
29930 command @kbd{M-x calc-append-to-register} will prompt for a register,
29931 then add the stack entries in the region to the end of the register
29932 contents. The command @kbd{M-x calc-prepend-to-register} will
29933 similarly prompt for a register and add the stack entries in the
29934 region to the beginning of the register contents. Both commands take
29935 @kbd{C-u} arguments, which will cause the region to be deleted after being
29936 added to the register.
29938 @node Inserting From Registers, Grabbing From Buffers, Saving Into Registers, Kill and Yank
29939 @section Inserting from Registers
29942 @pindex calc-insert-register
29943 The command @kbd{r i} (@code{calc-insert-register}) will prompt for a
29944 register, then insert the contents of that register into the
29945 Calculator. If the contents of the register were placed there from
29946 within Calc, then the full internal structure of the contents will be
29947 inserted into the Calculator, otherwise whatever text is in the
29948 register is reparsed and then inserted into the Calculator.
29950 @node Grabbing From Buffers, Yanking Into Buffers, Inserting From Registers, Kill and Yank
29951 @section Grabbing from Other Buffers
29955 @pindex calc-grab-region
29956 The @kbd{C-x * g} (@code{calc-grab-region}) command takes the text between
29957 point and mark in the current buffer and attempts to parse it as a
29958 vector of values. Basically, it wraps the text in vector brackets
29959 @samp{[ ]} unless the text already is enclosed in vector brackets,
29960 then reads the text as if it were an algebraic entry. The contents
29961 of the vector may be numbers, formulas, or any other Calc objects.
29962 If the @kbd{C-x * g} command works successfully, it does an automatic
29963 @kbd{C-x * c} to enter the Calculator buffer.
29965 A numeric prefix argument grabs the specified number of lines around
29966 point, ignoring the mark. A positive prefix grabs from point to the
29967 @expr{n}th following newline (so that @kbd{M-1 C-x * g} grabs from point
29968 to the end of the current line); a negative prefix grabs from point
29969 back to the @expr{n+1}st preceding newline. In these cases the text
29970 that is grabbed is exactly the same as the text that @kbd{C-k} would
29971 delete given that prefix argument.
29973 A prefix of zero grabs the current line; point may be anywhere on the
29976 A plain @kbd{C-u} prefix interprets the region between point and mark
29977 as a single number or formula rather than a vector. For example,
29978 @kbd{C-x * g} on the text @samp{2 a b} produces the vector of three
29979 values @samp{[2, a, b]}, but @kbd{C-u C-x * g} on the same region
29980 reads a formula which is a product of three things: @samp{2 a b}.
29981 (The text @samp{a + b}, on the other hand, will be grabbed as a
29982 vector of one element by plain @kbd{C-x * g} because the interpretation
29983 @samp{[a, +, b]} would be a syntax error.)
29985 If a different language has been specified (@pxref{Language Modes}),
29986 the grabbed text will be interpreted according to that language.
29989 @pindex calc-grab-rectangle
29990 The @kbd{C-x * r} (@code{calc-grab-rectangle}) command takes the text between
29991 point and mark and attempts to parse it as a matrix. If point and mark
29992 are both in the leftmost column, the lines in between are parsed in their
29993 entirety. Otherwise, point and mark define the corners of a rectangle
29994 whose contents are parsed.
29996 Each line of the grabbed area becomes a row of the matrix. The result
29997 will actually be a vector of vectors, which Calc will treat as a matrix
29998 only if every row contains the same number of values.
30000 If a line contains a portion surrounded by square brackets (or curly
30001 braces), that portion is interpreted as a vector which becomes a row
30002 of the matrix. Any text surrounding the bracketed portion on the line
30005 Otherwise, the entire line is interpreted as a row vector as if it
30006 were surrounded by square brackets. Leading line numbers (in the
30007 format used in the Calc stack buffer) are ignored. If you wish to
30008 force this interpretation (even if the line contains bracketed
30009 portions), give a negative numeric prefix argument to the
30010 @kbd{C-x * r} command.
30012 If you give a numeric prefix argument of zero or plain @kbd{C-u}, each
30013 line is instead interpreted as a single formula which is converted into
30014 a one-element vector. Thus the result of @kbd{C-u C-x * r} will be a
30015 one-column matrix. For example, suppose one line of the data is the
30016 expression @samp{2 a}. A plain @w{@kbd{C-x * r}} will interpret this as
30017 @samp{[2 a]}, which in turn is read as a two-element vector that forms
30018 one row of the matrix. But a @kbd{C-u C-x * r} will interpret this row
30021 If you give a positive numeric prefix argument @var{n}, then each line
30022 will be split up into columns of width @var{n}; each column is parsed
30023 separately as a matrix element. If a line contained
30024 @w{@samp{2 +/- 3 4 +/- 5}}, then grabbing with a prefix argument of 8
30025 would correctly split the line into two error forms.
30027 @xref{Matrix Functions}, to see how to pull the matrix apart into its
30028 constituent rows and columns. (If it is a
30029 @texline @math{1\times1}
30031 matrix, just hit @kbd{v u} (@code{calc-unpack}) twice.)
30035 @pindex calc-grab-sum-across
30036 @pindex calc-grab-sum-down
30037 @cindex Summing rows and columns of data
30038 The @kbd{C-x * :} (@code{calc-grab-sum-down}) command is a handy way to
30039 grab a rectangle of data and sum its columns. It is equivalent to
30040 typing @kbd{C-x * r}, followed by @kbd{V R : +} (the vector reduction
30041 command that sums the columns of a matrix; @pxref{Reducing}). The
30042 result of the command will be a vector of numbers, one for each column
30043 in the input data. The @kbd{C-x * _} (@code{calc-grab-sum-across}) command
30044 similarly grabs a rectangle and sums its rows by executing @w{@kbd{V R _ +}}.
30046 As well as being more convenient, @kbd{C-x * :} and @kbd{C-x * _} are also
30047 much faster because they don't actually place the grabbed vector on
30048 the stack. In a @kbd{C-x * r V R : +} sequence, formatting the vector
30049 for display on the stack takes a large fraction of the total time
30050 (unless you have planned ahead and used @kbd{v .} and @kbd{t .} modes).
30052 For example, suppose we have a column of numbers in a file which we
30053 wish to sum. Go to one corner of the column and press @kbd{C-@@} to
30054 set the mark; go to the other corner and type @kbd{C-x * :}. Since there
30055 is only one column, the result will be a vector of one number, the sum.
30056 (You can type @kbd{v u} to unpack this vector into a plain number if
30057 you want to do further arithmetic with it.)
30059 To compute the product of the column of numbers, we would have to do
30060 it ``by hand'' since there's no special grab-and-multiply command.
30061 Use @kbd{C-x * r} to grab the column of numbers into the calculator in
30062 the form of a column matrix. The statistics command @kbd{u *} is a
30063 handy way to find the product of a vector or matrix of numbers.
30064 @xref{Statistical Operations}. Another approach would be to use
30065 an explicit column reduction command, @kbd{V R : *}.
30067 @node Yanking Into Buffers, X Cut and Paste, Grabbing From Buffers, Kill and Yank
30068 @section Yanking into Other Buffers
30072 @pindex calc-copy-to-buffer
30073 The plain @kbd{y} (@code{calc-copy-to-buffer}) command inserts the number
30074 at the top of the stack into the most recently used normal editing buffer.
30075 (More specifically, this is the most recently used buffer which is displayed
30076 in a window and whose name does not begin with @samp{*}. If there is no
30077 such buffer, this is the most recently used buffer except for Calculator
30078 and Calc Trail buffers.) The number is inserted exactly as it appears and
30079 without a newline. (If line-numbering is enabled, the line number is
30080 normally not included.) The number is @emph{not} removed from the stack.
30082 With a prefix argument, @kbd{y} inserts several numbers, one per line.
30083 A positive argument inserts the specified number of values from the top
30084 of the stack. A negative argument inserts the @expr{n}th value from the
30085 top of the stack. An argument of zero inserts the entire stack. Note
30086 that @kbd{y} with an argument of 1 is slightly different from @kbd{y}
30087 with no argument; the former always copies full lines, whereas the
30088 latter strips off the trailing newline.
30090 With a lone @kbd{C-u} as a prefix argument, @kbd{y} @emph{replaces} the
30091 region in the other buffer with the yanked text, then quits the
30092 Calculator, leaving you in that buffer. A typical use would be to use
30093 @kbd{C-x * g} to read a region of data into the Calculator, operate on the
30094 data to produce a new matrix, then type @kbd{C-u y} to replace the
30095 original data with the new data. One might wish to alter the matrix
30096 display style (@pxref{Vector and Matrix Formats}) or change the current
30097 display language (@pxref{Language Modes}) before doing this. Also, note
30098 that this command replaces a linear region of text (as grabbed by
30099 @kbd{C-x * g}), not a rectangle (as grabbed by @kbd{C-x * r}).
30101 If the editing buffer is in overwrite (as opposed to insert) mode,
30102 and the @kbd{C-u} prefix was not used, then the yanked number will
30103 overwrite the characters following point rather than being inserted
30104 before those characters. The usual conventions of overwrite mode
30105 are observed; for example, characters will be inserted at the end of
30106 a line rather than overflowing onto the next line. Yanking a multi-line
30107 object such as a matrix in overwrite mode overwrites the next @var{n}
30108 lines in the buffer, lengthening or shortening each line as necessary.
30109 Finally, if the thing being yanked is a simple integer or floating-point
30110 number (like @samp{-1.2345e-3}) and the characters following point also
30111 make up such a number, then Calc will replace that number with the new
30112 number, lengthening or shortening as necessary. The concept of
30113 ``overwrite mode'' has thus been generalized from overwriting characters
30114 to overwriting one complete number with another.
30117 The @kbd{C-x * y} key sequence is equivalent to @kbd{y} except that
30118 it can be typed anywhere, not just in Calc. This provides an easy
30119 way to guarantee that Calc knows which editing buffer you want to use!
30121 @node X Cut and Paste, , Yanking Into Buffers, Kill and Yank
30122 @section X Cut and Paste
30125 If you are using Emacs with the X window system, there is an easier
30126 way to move small amounts of data into and out of the calculator:
30127 Use the mouse-oriented cut and paste facilities of X.
30129 The default bindings for a three-button mouse cause the left button
30130 to move the Emacs cursor to the given place, the right button to
30131 select the text between the cursor and the clicked location, and
30132 the middle button to yank the selection into the buffer at the
30133 clicked location. So, if you have a Calc window and an editing
30134 window on your Emacs screen, you can use left-click/right-click
30135 to select a number, vector, or formula from one window, then
30136 middle-click to paste that value into the other window. When you
30137 paste text into the Calc window, Calc interprets it as an algebraic
30138 entry. It doesn't matter where you click in the Calc window; the
30139 new value is always pushed onto the top of the stack.
30141 The @code{xterm} program that is typically used for general-purpose
30142 shell windows in X interprets the mouse buttons in the same way.
30143 So you can use the mouse to move data between Calc and any other
30144 Unix program. One nice feature of @code{xterm} is that a double
30145 left-click selects one word, and a triple left-click selects a
30146 whole line. So you can usually transfer a single number into Calc
30147 just by double-clicking on it in the shell, then middle-clicking
30148 in the Calc window.
30150 @node Keypad Mode, Embedded Mode, Kill and Yank, Top
30151 @chapter Keypad Mode
30155 @pindex calc-keypad
30156 The @kbd{C-x * k} (@code{calc-keypad}) command starts the Calculator
30157 and displays a picture of a calculator-style keypad. If you are using
30158 the X window system, you can click on any of the ``keys'' in the
30159 keypad using the left mouse button to operate the calculator.
30160 The original window remains the selected window; in Keypad mode
30161 you can type in your file while simultaneously performing
30162 calculations with the mouse.
30164 @pindex full-calc-keypad
30165 If you have used @kbd{C-x * b} first, @kbd{C-x * k} instead invokes
30166 the @code{full-calc-keypad} command, which takes over the whole
30167 Emacs screen and displays the keypad, the Calc stack, and the Calc
30168 trail all at once. This mode would normally be used when running
30169 Calc standalone (@pxref{Standalone Operation}).
30171 If you aren't using the X window system, you must switch into
30172 the @samp{*Calc Keypad*} window, place the cursor on the desired
30173 ``key,'' and type @key{SPC} or @key{RET}. If you think this
30174 is easier than using Calc normally, go right ahead.
30176 Calc commands are more or less the same in Keypad mode. Certain
30177 keypad keys differ slightly from the corresponding normal Calc
30178 keystrokes; all such deviations are described below.
30180 Keypad mode includes many more commands than will fit on the keypad
30181 at once. Click the right mouse button [@code{calc-keypad-menu}]
30182 to switch to the next menu. The bottom five rows of the keypad
30183 stay the same; the top three rows change to a new set of commands.
30184 To return to earlier menus, click the middle mouse button
30185 [@code{calc-keypad-menu-back}] or simply advance through the menus
30186 until you wrap around. Typing @key{TAB} inside the keypad window
30187 is equivalent to clicking the right mouse button there.
30189 You can always click the @key{EXEC} button and type any normal
30190 Calc key sequence. This is equivalent to switching into the
30191 Calc buffer, typing the keys, then switching back to your
30195 * Keypad Main Menu::
30196 * Keypad Functions Menu::
30197 * Keypad Binary Menu::
30198 * Keypad Vectors Menu::
30199 * Keypad Modes Menu::
30202 @node Keypad Main Menu, Keypad Functions Menu, Keypad Mode, Keypad Mode
30207 |----+----+--Calc---+----+----1
30208 |FLR |CEIL|RND |TRNC|CLN2|FLT |
30209 |----+----+----+----+----+----|
30210 | LN |EXP | |ABS |IDIV|MOD |
30211 |----+----+----+----+----+----|
30212 |SIN |COS |TAN |SQRT|y^x |1/x |
30213 |----+----+----+----+----+----|
30214 | ENTER |+/- |EEX |UNDO| <- |
30215 |-----+---+-+--+--+-+---++----|
30216 | INV | 7 | 8 | 9 | / |
30217 |-----+-----+-----+-----+-----|
30218 | HYP | 4 | 5 | 6 | * |
30219 |-----+-----+-----+-----+-----|
30220 |EXEC | 1 | 2 | 3 | - |
30221 |-----+-----+-----+-----+-----|
30222 | OFF | 0 | . | PI | + |
30223 |-----+-----+-----+-----+-----+
30228 This is the menu that appears the first time you start Keypad mode.
30229 It will show up in a vertical window on the right side of your screen.
30230 Above this menu is the traditional Calc stack display. On a 24-line
30231 screen you will be able to see the top three stack entries.
30233 The ten digit keys, decimal point, and @key{EEX} key are used for
30234 entering numbers in the obvious way. @key{EEX} begins entry of an
30235 exponent in scientific notation. Just as with regular Calc, the
30236 number is pushed onto the stack as soon as you press @key{ENTER}
30237 or any other function key.
30239 The @key{+/-} key corresponds to normal Calc's @kbd{n} key. During
30240 numeric entry it changes the sign of the number or of the exponent.
30241 At other times it changes the sign of the number on the top of the
30244 The @key{INV} and @key{HYP} keys modify other keys. As well as
30245 having the effects described elsewhere in this manual, Keypad mode
30246 defines several other ``inverse'' operations. These are described
30247 below and in the following sections.
30249 The @key{ENTER} key finishes the current numeric entry, or otherwise
30250 duplicates the top entry on the stack.
30252 The @key{UNDO} key undoes the most recent Calc operation.
30253 @kbd{INV UNDO} is the ``redo'' command, and @kbd{HYP UNDO} is
30254 ``last arguments'' (@kbd{M-@key{RET}}).
30256 The @key{<-} key acts as a ``backspace'' during numeric entry.
30257 At other times it removes the top stack entry. @kbd{INV <-}
30258 clears the entire stack. @kbd{HYP <-} takes an integer from
30259 the stack, then removes that many additional stack elements.
30261 The @key{EXEC} key prompts you to enter any keystroke sequence
30262 that would normally work in Calc mode. This can include a
30263 numeric prefix if you wish. It is also possible simply to
30264 switch into the Calc window and type commands in it; there is
30265 nothing ``magic'' about this window when Keypad mode is active.
30267 The other keys in this display perform their obvious calculator
30268 functions. @key{CLN2} rounds the top-of-stack by temporarily
30269 reducing the precision by 2 digits. @key{FLT} converts an
30270 integer or fraction on the top of the stack to floating-point.
30272 The @key{INV} and @key{HYP} keys combined with several of these keys
30273 give you access to some common functions even if the appropriate menu
30274 is not displayed. Obviously you don't need to learn these keys
30275 unless you find yourself wasting time switching among the menus.
30279 is the same as @key{1/x}.
30281 is the same as @key{SQRT}.
30283 is the same as @key{CONJ}.
30285 is the same as @key{y^x}.
30287 is the same as @key{INV y^x} (the @expr{x}th root of @expr{y}).
30289 are the same as @key{SIN} / @kbd{INV SIN}.
30291 are the same as @key{COS} / @kbd{INV COS}.
30293 are the same as @key{TAN} / @kbd{INV TAN}.
30295 are the same as @key{LN} / @kbd{HYP LN}.
30297 are the same as @key{EXP} / @kbd{HYP EXP}.
30299 is the same as @key{ABS}.
30301 is the same as @key{RND} (@code{calc-round}).
30303 is the same as @key{CLN2}.
30305 is the same as @key{FLT} (@code{calc-float}).
30307 is the same as @key{IMAG}.
30309 is the same as @key{PREC}.
30311 is the same as @key{SWAP}.
30313 is the same as @key{RLL3}.
30314 @item INV HYP ENTER
30315 is the same as @key{OVER}.
30317 packs the top two stack entries as an error form.
30319 packs the top two stack entries as a modulo form.
30321 creates an interval form; this removes an integer which is one
30322 of 0 @samp{[]}, 1 @samp{[)}, 2 @samp{(]} or 3 @samp{()}, followed
30323 by the two limits of the interval.
30326 The @kbd{OFF} key turns Calc off; typing @kbd{C-x * k} or @kbd{C-x * *}
30327 again has the same effect. This is analogous to typing @kbd{q} or
30328 hitting @kbd{C-x * c} again in the normal calculator. If Calc is
30329 running standalone (the @code{full-calc-keypad} command appeared in the
30330 command line that started Emacs), then @kbd{OFF} is replaced with
30331 @kbd{EXIT}; clicking on this actually exits Emacs itself.
30333 @node Keypad Functions Menu, Keypad Binary Menu, Keypad Main Menu, Keypad Mode
30334 @section Functions Menu
30338 |----+----+----+----+----+----2
30339 |IGAM|BETA|IBET|ERF |BESJ|BESY|
30340 |----+----+----+----+----+----|
30341 |IMAG|CONJ| RE |ATN2|RAND|RAGN|
30342 |----+----+----+----+----+----|
30343 |GCD |FACT|DFCT|BNOM|PERM|NXTP|
30344 |----+----+----+----+----+----|
30349 This menu provides various operations from the @kbd{f} and @kbd{k}
30352 @key{IMAG} multiplies the number on the stack by the imaginary
30353 number @expr{i = (0, 1)}.
30355 @key{RE} extracts the real part a complex number. @kbd{INV RE}
30356 extracts the imaginary part.
30358 @key{RAND} takes a number from the top of the stack and computes
30359 a random number greater than or equal to zero but less than that
30360 number. (@xref{Random Numbers}.) @key{RAGN} is the ``random
30361 again'' command; it computes another random number using the
30362 same limit as last time.
30364 @key{INV GCD} computes the LCM (least common multiple) function.
30366 @key{INV FACT} is the gamma function.
30367 @texline @math{\Gamma(x) = (x-1)!}.
30368 @infoline @expr{gamma(x) = (x-1)!}.
30370 @key{PERM} is the number-of-permutations function, which is on the
30371 @kbd{H k c} key in normal Calc.
30373 @key{NXTP} finds the next prime after a number. @kbd{INV NXTP}
30374 finds the previous prime.
30376 @node Keypad Binary Menu, Keypad Vectors Menu, Keypad Functions Menu, Keypad Mode
30377 @section Binary Menu
30381 |----+----+----+----+----+----3
30382 |AND | OR |XOR |NOT |LSH |RSH |
30383 |----+----+----+----+----+----|
30384 |DEC |HEX |OCT |BIN |WSIZ|ARSH|
30385 |----+----+----+----+----+----|
30386 | A | B | C | D | E | F |
30387 |----+----+----+----+----+----|
30392 The keys in this menu perform operations on binary integers.
30393 Note that both logical and arithmetic right-shifts are provided.
30394 @key{INV LSH} rotates one bit to the left.
30396 The ``difference'' function (normally on @kbd{b d}) is on @key{INV AND}.
30397 The ``clip'' function (normally on @w{@kbd{b c}}) is on @key{INV NOT}.
30399 The @key{DEC}, @key{HEX}, @key{OCT}, and @key{BIN} keys select the
30400 current radix for display and entry of numbers: Decimal, hexadecimal,
30401 octal, or binary. The six letter keys @key{A} through @key{F} are used
30402 for entering hexadecimal numbers.
30404 The @key{WSIZ} key displays the current word size for binary operations
30405 and allows you to enter a new word size. You can respond to the prompt
30406 using either the keyboard or the digits and @key{ENTER} from the keypad.
30407 The initial word size is 32 bits.
30409 @node Keypad Vectors Menu, Keypad Modes Menu, Keypad Binary Menu, Keypad Mode
30410 @section Vectors Menu
30414 |----+----+----+----+----+----4
30415 |SUM |PROD|MAX |MAP*|MAP^|MAP$|
30416 |----+----+----+----+----+----|
30417 |MINV|MDET|MTRN|IDNT|CRSS|"x" |
30418 |----+----+----+----+----+----|
30419 |PACK|UNPK|INDX|BLD |LEN |... |
30420 |----+----+----+----+----+----|
30425 The keys in this menu operate on vectors and matrices.
30427 @key{PACK} removes an integer @var{n} from the top of the stack;
30428 the next @var{n} stack elements are removed and packed into a vector,
30429 which is replaced onto the stack. Thus the sequence
30430 @kbd{1 ENTER 3 ENTER 5 ENTER 3 PACK} enters the vector
30431 @samp{[1, 3, 5]} onto the stack. To enter a matrix, build each row
30432 on the stack as a vector, then use a final @key{PACK} to collect the
30433 rows into a matrix.
30435 @key{UNPK} unpacks the vector on the stack, pushing each of its
30436 components separately.
30438 @key{INDX} removes an integer @var{n}, then builds a vector of
30439 integers from 1 to @var{n}. @kbd{INV INDX} takes three numbers
30440 from the stack: The vector size @var{n}, the starting number,
30441 and the increment. @kbd{BLD} takes an integer @var{n} and any
30442 value @var{x} and builds a vector of @var{n} copies of @var{x}.
30444 @key{IDNT} removes an integer @var{n}, then builds an @var{n}-by-@var{n}
30447 @key{LEN} replaces a vector by its length, an integer.
30449 @key{...} turns on or off ``abbreviated'' display mode for large vectors.
30451 @key{MINV}, @key{MDET}, @key{MTRN}, and @key{CROSS} are the matrix
30452 inverse, determinant, and transpose, and vector cross product.
30454 @key{SUM} replaces a vector by the sum of its elements. It is
30455 equivalent to @kbd{u +} in normal Calc (@pxref{Statistical Operations}).
30456 @key{PROD} computes the product of the elements of a vector, and
30457 @key{MAX} computes the maximum of all the elements of a vector.
30459 @key{INV SUM} computes the alternating sum of the first element
30460 minus the second, plus the third, minus the fourth, and so on.
30461 @key{INV MAX} computes the minimum of the vector elements.
30463 @key{HYP SUM} computes the mean of the vector elements.
30464 @key{HYP PROD} computes the sample standard deviation.
30465 @key{HYP MAX} computes the median.
30467 @key{MAP*} multiplies two vectors elementwise. It is equivalent
30468 to the @kbd{V M *} command. @key{MAP^} computes powers elementwise.
30469 The arguments must be vectors of equal length, or one must be a vector
30470 and the other must be a plain number. For example, @kbd{2 MAP^} squares
30471 all the elements of a vector.
30473 @key{MAP$} maps the formula on the top of the stack across the
30474 vector in the second-to-top position. If the formula contains
30475 several variables, Calc takes that many vectors starting at the
30476 second-to-top position and matches them to the variables in
30477 alphabetical order. The result is a vector of the same size as
30478 the input vectors, whose elements are the formula evaluated with
30479 the variables set to the various sets of numbers in those vectors.
30480 For example, you could simulate @key{MAP^} using @key{MAP$} with
30481 the formula @samp{x^y}.
30483 The @kbd{"x"} key pushes the variable name @expr{x} onto the
30484 stack. To build the formula @expr{x^2 + 6}, you would use the
30485 key sequence @kbd{"x" 2 y^x 6 +}. This formula would then be
30486 suitable for use with the @key{MAP$} key described above.
30487 With @key{INV}, @key{HYP}, or @key{INV} and @key{HYP}, the
30488 @kbd{"x"} key pushes the variable names @expr{y}, @expr{z}, and
30489 @expr{t}, respectively.
30491 @node Keypad Modes Menu, , Keypad Vectors Menu, Keypad Mode
30492 @section Modes Menu
30496 |----+----+----+----+----+----5
30497 |FLT |FIX |SCI |ENG |GRP | |
30498 |----+----+----+----+----+----|
30499 |RAD |DEG |FRAC|POLR|SYMB|PREC|
30500 |----+----+----+----+----+----|
30501 |SWAP|RLL3|RLL4|OVER|STO |RCL |
30502 |----+----+----+----+----+----|
30507 The keys in this menu manipulate modes, variables, and the stack.
30509 The @key{FLT}, @key{FIX}, @key{SCI}, and @key{ENG} keys select
30510 floating-point, fixed-point, scientific, or engineering notation.
30511 @key{FIX} displays two digits after the decimal by default; the
30512 others display full precision. With the @key{INV} prefix, these
30513 keys pop a number-of-digits argument from the stack.
30515 The @key{GRP} key turns grouping of digits with commas on or off.
30516 @kbd{INV GRP} enables grouping to the right of the decimal point as
30517 well as to the left.
30519 The @key{RAD} and @key{DEG} keys switch between radians and degrees
30520 for trigonometric functions.
30522 The @key{FRAC} key turns Fraction mode on or off. This affects
30523 whether commands like @kbd{/} with integer arguments produce
30524 fractional or floating-point results.
30526 The @key{POLR} key turns Polar mode on or off, determining whether
30527 polar or rectangular complex numbers are used by default.
30529 The @key{SYMB} key turns Symbolic mode on or off, in which
30530 operations that would produce inexact floating-point results
30531 are left unevaluated as algebraic formulas.
30533 The @key{PREC} key selects the current precision. Answer with
30534 the keyboard or with the keypad digit and @key{ENTER} keys.
30536 The @key{SWAP} key exchanges the top two stack elements.
30537 The @key{RLL3} key rotates the top three stack elements upwards.
30538 The @key{RLL4} key rotates the top four stack elements upwards.
30539 The @key{OVER} key duplicates the second-to-top stack element.
30541 The @key{STO} and @key{RCL} keys are analogous to @kbd{s t} and
30542 @kbd{s r} in regular Calc. @xref{Store and Recall}. Click the
30543 @key{STO} or @key{RCL} key, then one of the ten digits. (Named
30544 variables are not available in Keypad mode.) You can also use,
30545 for example, @kbd{STO + 3} to add to register 3.
30547 @node Embedded Mode, Programming, Keypad Mode, Top
30548 @chapter Embedded Mode
30551 Embedded mode in Calc provides an alternative to copying numbers
30552 and formulas back and forth between editing buffers and the Calc
30553 stack. In Embedded mode, your editing buffer becomes temporarily
30554 linked to the stack and this copying is taken care of automatically.
30557 * Basic Embedded Mode::
30558 * More About Embedded Mode::
30559 * Assignments in Embedded Mode::
30560 * Mode Settings in Embedded Mode::
30561 * Customizing Embedded Mode::
30564 @node Basic Embedded Mode, More About Embedded Mode, Embedded Mode, Embedded Mode
30565 @section Basic Embedded Mode
30569 @pindex calc-embedded
30570 To enter Embedded mode, position the Emacs point (cursor) on a
30571 formula in any buffer and press @kbd{C-x * e} (@code{calc-embedded}).
30572 Note that @kbd{C-x * e} is not to be used in the Calc stack buffer
30573 like most Calc commands, but rather in regular editing buffers that
30574 are visiting your own files.
30576 Calc will try to guess an appropriate language based on the major mode
30577 of the editing buffer. (@xref{Language Modes}.) If the current buffer is
30578 in @code{latex-mode}, for example, Calc will set its language to @LaTeX{}.
30579 Similarly, Calc will use @TeX{} language for @code{tex-mode},
30580 @code{plain-tex-mode} and @code{context-mode}, C language for
30581 @code{c-mode} and @code{c++-mode}, FORTRAN language for
30582 @code{fortran-mode} and @code{f90-mode}, Pascal for @code{pascal-mode},
30583 and eqn for @code{nroff-mode} (@pxref{Customizing Calc}).
30584 These can be overridden with Calc's mode
30585 changing commands (@pxref{Mode Settings in Embedded Mode}). If no
30586 suitable language is available, Calc will continue with its current language.
30588 Calc normally scans backward and forward in the buffer for the
30589 nearest opening and closing @dfn{formula delimiters}. The simplest
30590 delimiters are blank lines. Other delimiters that Embedded mode
30595 The @TeX{} and @LaTeX{} math delimiters @samp{$ $}, @samp{$$ $$},
30596 @samp{\[ \]}, and @samp{\( \)};
30598 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
30600 Lines beginning with @samp{@@} (Texinfo delimiters).
30602 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
30604 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
30607 @xref{Customizing Embedded Mode}, to see how to make Calc recognize
30608 your own favorite delimiters. Delimiters like @samp{$ $} can appear
30609 on their own separate lines or in-line with the formula.
30611 If you give a positive or negative numeric prefix argument, Calc
30612 instead uses the current point as one end of the formula, and includes
30613 that many lines forward or backward (respectively, including the current
30614 line). Explicit delimiters are not necessary in this case.
30616 With a prefix argument of zero, Calc uses the current region (delimited
30617 by point and mark) instead of formula delimiters. With a prefix
30618 argument of @kbd{C-u} only, Calc uses the current line as the formula.
30621 @pindex calc-embedded-word
30622 The @kbd{C-x * w} (@code{calc-embedded-word}) command will start Embedded
30623 mode on the current ``word''; in this case Calc will scan for the first
30624 non-numeric character (i.e., the first character that is not a digit,
30625 sign, decimal point, or upper- or lower-case @samp{e}) forward and
30626 backward to delimit the formula.
30628 When you enable Embedded mode for a formula, Calc reads the text
30629 between the delimiters and tries to interpret it as a Calc formula.
30630 Calc can generally identify @TeX{} formulas and
30631 Big-style formulas even if the language mode is wrong. If Calc
30632 can't make sense of the formula, it beeps and refuses to enter
30633 Embedded mode. But if the current language is wrong, Calc can
30634 sometimes parse the formula successfully (but incorrectly);
30635 for example, the C expression @samp{atan(a[1])} can be parsed
30636 in Normal language mode, but the @code{atan} won't correspond to
30637 the built-in @code{arctan} function, and the @samp{a[1]} will be
30638 interpreted as @samp{a} times the vector @samp{[1]}!
30640 If you press @kbd{C-x * e} or @kbd{C-x * w} to activate an embedded
30641 formula which is blank, say with the cursor on the space between
30642 the two delimiters @samp{$ $}, Calc will immediately prompt for
30643 an algebraic entry.
30645 Only one formula in one buffer can be enabled at a time. If you
30646 move to another area of the current buffer and give Calc commands,
30647 Calc turns Embedded mode off for the old formula and then tries
30648 to restart Embedded mode at the new position. Other buffers are
30649 not affected by Embedded mode.
30651 When Embedded mode begins, Calc pushes the current formula onto
30652 the stack. No Calc stack window is created; however, Calc copies
30653 the top-of-stack position into the original buffer at all times.
30654 You can create a Calc window by hand with @kbd{C-x * o} if you
30655 find you need to see the entire stack.
30657 For example, typing @kbd{C-x * e} while somewhere in the formula
30658 @samp{n>2} in the following line enables Embedded mode on that
30662 We define $F_n = F_(n-1)+F_(n-2)$ for all $n>2$.
30666 The formula @expr{n>2} will be pushed onto the Calc stack, and
30667 the top of stack will be copied back into the editing buffer.
30668 This means that spaces will appear around the @samp{>} symbol
30669 to match Calc's usual display style:
30672 We define $F_n = F_(n-1)+F_(n-2)$ for all $n > 2$.
30676 No spaces have appeared around the @samp{+} sign because it's
30677 in a different formula, one which we have not yet touched with
30680 Now that Embedded mode is enabled, keys you type in this buffer
30681 are interpreted as Calc commands. At this point we might use
30682 the ``commute'' command @kbd{j C} to reverse the inequality.
30683 This is a selection-based command for which we first need to
30684 move the cursor onto the operator (@samp{>} in this case) that
30685 needs to be commuted.
30688 We define $F_n = F_(n-1)+F_(n-2)$ for all $2 < n$.
30691 The @kbd{C-x * o} command is a useful way to open a Calc window
30692 without actually selecting that window. Giving this command
30693 verifies that @samp{2 < n} is also on the Calc stack. Typing
30694 @kbd{17 @key{RET}} would produce:
30697 We define $F_n = F_(n-1)+F_(n-2)$ for all $17$.
30701 with @samp{2 < n} and @samp{17} on the stack; typing @key{TAB}
30702 at this point will exchange the two stack values and restore
30703 @samp{2 < n} to the embedded formula. Even though you can't
30704 normally see the stack in Embedded mode, it is still there and
30705 it still operates in the same way. But, as with old-fashioned
30706 RPN calculators, you can only see the value at the top of the
30707 stack at any given time (unless you use @kbd{C-x * o}).
30709 Typing @kbd{C-x * e} again turns Embedded mode off. The Calc
30710 window reveals that the formula @w{@samp{2 < n}} is automatically
30711 removed from the stack, but the @samp{17} is not. Entering
30712 Embedded mode always pushes one thing onto the stack, and
30713 leaving Embedded mode always removes one thing. Anything else
30714 that happens on the stack is entirely your business as far as
30715 Embedded mode is concerned.
30717 If you press @kbd{C-x * e} in the wrong place by accident, it is
30718 possible that Calc will be able to parse the nearby text as a
30719 formula and will mangle that text in an attempt to redisplay it
30720 ``properly'' in the current language mode. If this happens,
30721 press @kbd{C-x * e} again to exit Embedded mode, then give the
30722 regular Emacs ``undo'' command (@kbd{C-_} or @kbd{C-x u}) to put
30723 the text back the way it was before Calc edited it. Note that Calc's
30724 own Undo command (typed before you turn Embedded mode back off)
30725 will not do you any good, because as far as Calc is concerned
30726 you haven't done anything with this formula yet.
30728 @node More About Embedded Mode, Assignments in Embedded Mode, Basic Embedded Mode, Embedded Mode
30729 @section More About Embedded Mode
30732 When Embedded mode ``activates'' a formula, i.e., when it examines
30733 the formula for the first time since the buffer was created or
30734 loaded, Calc tries to sense the language in which the formula was
30735 written. If the formula contains any @LaTeX{}-like @samp{\} sequences,
30736 it is parsed (i.e., read) in @LaTeX{} mode. If the formula appears to
30737 be written in multi-line Big mode, it is parsed in Big mode. Otherwise,
30738 it is parsed according to the current language mode.
30740 Note that Calc does not change the current language mode according
30741 the formula it reads in. Even though it can read a @LaTeX{} formula when
30742 not in @LaTeX{} mode, it will immediately rewrite this formula using
30743 whatever language mode is in effect.
30750 @pindex calc-show-plain
30751 Calc's parser is unable to read certain kinds of formulas. For
30752 example, with @kbd{v ]} (@code{calc-matrix-brackets}) you can
30753 specify matrix display styles which the parser is unable to
30754 recognize as matrices. The @kbd{d p} (@code{calc-show-plain})
30755 command turns on a mode in which a ``plain'' version of a
30756 formula is placed in front of the fully-formatted version.
30757 When Calc reads a formula that has such a plain version in
30758 front, it reads the plain version and ignores the formatted
30761 Plain formulas are preceded and followed by @samp{%%%} signs
30762 by default. This notation has the advantage that the @samp{%}
30763 character begins a comment in @TeX{} and @LaTeX{}, so if your formula is
30764 embedded in a @TeX{} or @LaTeX{} document its plain version will be
30765 invisible in the final printed copy. Certain major modes have different
30766 delimiters to ensure that the ``plain'' version will be
30767 in a comment for those modes, also.
30768 See @ref{Customizing Embedded Mode} to see how to change the ``plain''
30769 formula delimiters.
30771 There are several notations which Calc's parser for ``big''
30772 formatted formulas can't yet recognize. In particular, it can't
30773 read the large symbols for @code{sum}, @code{prod}, and @code{integ},
30774 and it can't handle @samp{=>} with the righthand argument omitted.
30775 Also, Calc won't recognize special formats you have defined with
30776 the @kbd{Z C} command (@pxref{User-Defined Compositions}). In
30777 these cases it is important to use ``plain'' mode to make sure
30778 Calc will be able to read your formula later.
30780 Another example where ``plain'' mode is important is if you have
30781 specified a float mode with few digits of precision. Normally
30782 any digits that are computed but not displayed will simply be
30783 lost when you save and re-load your embedded buffer, but ``plain''
30784 mode allows you to make sure that the complete number is present
30785 in the file as well as the rounded-down number.
30791 Embedded buffers remember active formulas for as long as they
30792 exist in Emacs memory. Suppose you have an embedded formula
30793 which is @cpi{} to the normal 12 decimal places, and then
30794 type @w{@kbd{C-u 5 d n}} to display only five decimal places.
30795 If you then type @kbd{d n}, all 12 places reappear because the
30796 full number is still there on the Calc stack. More surprisingly,
30797 even if you exit Embedded mode and later re-enter it for that
30798 formula, typing @kbd{d n} will restore all 12 places because
30799 each buffer remembers all its active formulas. However, if you
30800 save the buffer in a file and reload it in a new Emacs session,
30801 all non-displayed digits will have been lost unless you used
30808 In some applications of Embedded mode, you will want to have a
30809 sequence of copies of a formula that show its evolution as you
30810 work on it. For example, you might want to have a sequence
30811 like this in your file (elaborating here on the example from
30812 the ``Getting Started'' chapter):
30821 @r{(the derivative of }ln(ln(x))@r{)}
30823 whose value at x = 2 is
30833 @pindex calc-embedded-duplicate
30834 The @kbd{C-x * d} (@code{calc-embedded-duplicate}) command is a
30835 handy way to make sequences like this. If you type @kbd{C-x * d},
30836 the formula under the cursor (which may or may not have Embedded
30837 mode enabled for it at the time) is copied immediately below and
30838 Embedded mode is then enabled for that copy.
30840 For this example, you would start with just
30849 and press @kbd{C-x * d} with the cursor on this formula. The result
30862 with the second copy of the formula enabled in Embedded mode.
30863 You can now press @kbd{a d x @key{RET}} to take the derivative, and
30864 @kbd{C-x * d C-x * d} to make two more copies of the derivative.
30865 To complete the computations, type @kbd{3 s l x @key{RET}} to evaluate
30866 the last formula, then move up to the second-to-last formula
30867 and type @kbd{2 s l x @key{RET}}.
30869 Finally, you would want to press @kbd{C-x * e} to exit Embedded
30870 mode, then go up and insert the necessary text in between the
30871 various formulas and numbers.
30879 @pindex calc-embedded-new-formula
30880 The @kbd{C-x * f} (@code{calc-embedded-new-formula}) command
30881 creates a new embedded formula at the current point. It inserts
30882 some default delimiters, which are usually just blank lines,
30883 and then does an algebraic entry to get the formula (which is
30884 then enabled for Embedded mode). This is just shorthand for
30885 typing the delimiters yourself, positioning the cursor between
30886 the new delimiters, and pressing @kbd{C-x * e}. The key sequence
30887 @kbd{C-x * '} is equivalent to @kbd{C-x * f}.
30891 @pindex calc-embedded-next
30892 @pindex calc-embedded-previous
30893 The @kbd{C-x * n} (@code{calc-embedded-next}) and @kbd{C-x * p}
30894 (@code{calc-embedded-previous}) commands move the cursor to the
30895 next or previous active embedded formula in the buffer. They
30896 can take positive or negative prefix arguments to move by several
30897 formulas. Note that these commands do not actually examine the
30898 text of the buffer looking for formulas; they only see formulas
30899 which have previously been activated in Embedded mode. In fact,
30900 @kbd{C-x * n} and @kbd{C-x * p} are a useful way to tell which
30901 embedded formulas are currently active. Also, note that these
30902 commands do not enable Embedded mode on the next or previous
30903 formula, they just move the cursor.
30906 @pindex calc-embedded-edit
30907 The @kbd{C-x * `} (@code{calc-embedded-edit}) command edits the
30908 embedded formula at the current point as if by @kbd{`} (@code{calc-edit}).
30909 Embedded mode does not have to be enabled for this to work. Press
30910 @kbd{C-c C-c} to finish the edit, or @kbd{C-x k} to cancel.
30912 @node Assignments in Embedded Mode, Mode Settings in Embedded Mode, More About Embedded Mode, Embedded Mode
30913 @section Assignments in Embedded Mode
30916 The @samp{:=} (assignment) and @samp{=>} (``evaluates-to'') operators
30917 are especially useful in Embedded mode. They allow you to make
30918 a definition in one formula, then refer to that definition in
30919 other formulas embedded in the same buffer.
30921 An embedded formula which is an assignment to a variable, as in
30928 records @expr{5} as the stored value of @code{foo} for the
30929 purposes of Embedded mode operations in the current buffer. It
30930 does @emph{not} actually store @expr{5} as the ``global'' value
30931 of @code{foo}, however. Regular Calc operations, and Embedded
30932 formulas in other buffers, will not see this assignment.
30934 One way to use this assigned value is simply to create an
30935 Embedded formula elsewhere that refers to @code{foo}, and to press
30936 @kbd{=} in that formula. However, this permanently replaces the
30937 @code{foo} in the formula with its current value. More interesting
30938 is to use @samp{=>} elsewhere:
30944 @xref{Evaluates-To Operator}, for a general discussion of @samp{=>}.
30946 If you move back and change the assignment to @code{foo}, any
30947 @samp{=>} formulas which refer to it are automatically updated.
30955 The obvious question then is, @emph{how} can one easily change the
30956 assignment to @code{foo}? If you simply select the formula in
30957 Embedded mode and type 17, the assignment itself will be replaced
30958 by the 17. The effect on the other formula will be that the
30959 variable @code{foo} becomes unassigned:
30967 The right thing to do is first to use a selection command (@kbd{j 2}
30968 will do the trick) to select the righthand side of the assignment.
30969 Then, @kbd{17 @key{TAB} @key{DEL}} will swap the 17 into place (@pxref{Selecting
30970 Subformulas}, to see how this works).
30973 @pindex calc-embedded-select
30974 The @kbd{C-x * j} (@code{calc-embedded-select}) command provides an
30975 easy way to operate on assignments. It is just like @kbd{C-x * e},
30976 except that if the enabled formula is an assignment, it uses
30977 @kbd{j 2} to select the righthand side. If the enabled formula
30978 is an evaluates-to, it uses @kbd{j 1} to select the lefthand side.
30979 A formula can also be a combination of both:
30982 bar := foo + 3 => 20
30986 in which case @kbd{C-x * j} will select the middle part (@samp{foo + 3}).
30988 The formula is automatically deselected when you leave Embedded
30992 @pindex calc-embedded-update-formula
30993 Another way to change the assignment to @code{foo} would simply be
30994 to edit the number using regular Emacs editing rather than Embedded
30995 mode. Then, we have to find a way to get Embedded mode to notice
30996 the change. The @kbd{C-x * u} (@code{calc-embedded-update-formula})
30997 command is a convenient way to do this.
31005 Pressing @kbd{C-x * u} is much like pressing @kbd{C-x * e = C-x * e}, that
31006 is, temporarily enabling Embedded mode for the formula under the
31007 cursor and then evaluating it with @kbd{=}. But @kbd{C-x * u} does
31008 not actually use @kbd{C-x * e}, and in fact another formula somewhere
31009 else can be enabled in Embedded mode while you use @kbd{C-x * u} and
31010 that formula will not be disturbed.
31012 With a numeric prefix argument, @kbd{C-x * u} updates all active
31013 @samp{=>} formulas in the buffer. Formulas which have not yet
31014 been activated in Embedded mode, and formulas which do not have
31015 @samp{=>} as their top-level operator, are not affected by this.
31016 (This is useful only if you have used @kbd{m C}; see below.)
31018 With a plain @kbd{C-u} prefix, @kbd{C-u C-x * u} updates only in the
31019 region between mark and point rather than in the whole buffer.
31021 @kbd{C-x * u} is also a handy way to activate a formula, such as an
31022 @samp{=>} formula that has freshly been typed in or loaded from a
31026 @pindex calc-embedded-activate
31027 The @kbd{C-x * a} (@code{calc-embedded-activate}) command scans
31028 through the current buffer and activates all embedded formulas
31029 that contain @samp{:=} or @samp{=>} symbols. This does not mean
31030 that Embedded mode is actually turned on, but only that the
31031 formulas' positions are registered with Embedded mode so that
31032 the @samp{=>} values can be properly updated as assignments are
31035 It is a good idea to type @kbd{C-x * a} right after loading a file
31036 that uses embedded @samp{=>} operators. Emacs includes a nifty
31037 ``buffer-local variables'' feature that you can use to do this
31038 automatically. The idea is to place near the end of your file
31039 a few lines that look like this:
31042 --- Local Variables: ---
31043 --- eval:(calc-embedded-activate) ---
31048 where the leading and trailing @samp{---} can be replaced by
31049 any suitable strings (which must be the same on all three lines)
31050 or omitted altogether; in a @TeX{} or @LaTeX{} file, @samp{%} would be a good
31051 leading string and no trailing string would be necessary. In a
31052 C program, @samp{/*} and @samp{*/} would be good leading and
31055 When Emacs loads a file into memory, it checks for a Local Variables
31056 section like this one at the end of the file. If it finds this
31057 section, it does the specified things (in this case, running
31058 @kbd{C-x * a} automatically) before editing of the file begins.
31059 The Local Variables section must be within 3000 characters of the
31060 end of the file for Emacs to find it, and it must be in the last
31061 page of the file if the file has any page separators.
31062 @xref{File Variables, , Local Variables in Files, emacs, the
31065 Note that @kbd{C-x * a} does not update the formulas it finds.
31066 To do this, type, say, @kbd{M-1 C-x * u} after @w{@kbd{C-x * a}}.
31067 Generally this should not be a problem, though, because the
31068 formulas will have been up-to-date already when the file was
31071 Normally, @kbd{C-x * a} activates all the formulas it finds, but
31072 any previous active formulas remain active as well. With a
31073 positive numeric prefix argument, @kbd{C-x * a} first deactivates
31074 all current active formulas, then actives the ones it finds in
31075 its scan of the buffer. With a negative prefix argument,
31076 @kbd{C-x * a} simply deactivates all formulas.
31078 Embedded mode has two symbols, @samp{Active} and @samp{~Active},
31079 which it puts next to the major mode name in a buffer's mode line.
31080 It puts @samp{Active} if it has reason to believe that all
31081 formulas in the buffer are active, because you have typed @kbd{C-x * a}
31082 and Calc has not since had to deactivate any formulas (which can
31083 happen if Calc goes to update an @samp{=>} formula somewhere because
31084 a variable changed, and finds that the formula is no longer there
31085 due to some kind of editing outside of Embedded mode). Calc puts
31086 @samp{~Active} in the mode line if some, but probably not all,
31087 formulas in the buffer are active. This happens if you activate
31088 a few formulas one at a time but never use @kbd{C-x * a}, or if you
31089 used @kbd{C-x * a} but then Calc had to deactivate a formula
31090 because it lost track of it. If neither of these symbols appears
31091 in the mode line, no embedded formulas are active in the buffer
31092 (e.g., before Embedded mode has been used, or after a @kbd{M-- C-x * a}).
31094 Embedded formulas can refer to assignments both before and after them
31095 in the buffer. If there are several assignments to a variable, the
31096 nearest preceding assignment is used if there is one, otherwise the
31097 following assignment is used.
31111 As well as simple variables, you can also assign to subscript
31112 expressions of the form @samp{@var{var}_@var{number}} (as in
31113 @code{x_0}), or @samp{@var{var}_@var{var}} (as in @code{x_max}).
31114 Assignments to other kinds of objects can be represented by Calc,
31115 but the automatic linkage between assignments and references works
31116 only for plain variables and these two kinds of subscript expressions.
31118 If there are no assignments to a given variable, the global
31119 stored value for the variable is used (@pxref{Storing Variables}),
31120 or, if no value is stored, the variable is left in symbolic form.
31121 Note that global stored values will be lost when the file is saved
31122 and loaded in a later Emacs session, unless you have used the
31123 @kbd{s p} (@code{calc-permanent-variable}) command to save them;
31124 @pxref{Operations on Variables}.
31126 The @kbd{m C} (@code{calc-auto-recompute}) command turns automatic
31127 recomputation of @samp{=>} forms on and off. If you turn automatic
31128 recomputation off, you will have to use @kbd{C-x * u} to update these
31129 formulas manually after an assignment has been changed. If you
31130 plan to change several assignments at once, it may be more efficient
31131 to type @kbd{m C}, change all the assignments, then use @kbd{M-1 C-x * u}
31132 to update the entire buffer afterwards. The @kbd{m C} command also
31133 controls @samp{=>} formulas on the stack; @pxref{Evaluates-To
31134 Operator}. When you turn automatic recomputation back on, the
31135 stack will be updated but the Embedded buffer will not; you must
31136 use @kbd{C-x * u} to update the buffer by hand.
31138 @node Mode Settings in Embedded Mode, Customizing Embedded Mode, Assignments in Embedded Mode, Embedded Mode
31139 @section Mode Settings in Embedded Mode
31142 @pindex calc-embedded-preserve-modes
31144 The mode settings can be changed while Calc is in embedded mode, but
31145 by default they will revert to their original values when embedded mode
31146 is ended. However, the modes saved when the mode-recording mode is
31147 @code{Save} (see below) and the modes in effect when the @kbd{m e}
31148 (@code{calc-embedded-preserve-modes}) command is given
31149 will be preserved when embedded mode is ended.
31151 Embedded mode has a rather complicated mechanism for handling mode
31152 settings in Embedded formulas. It is possible to put annotations
31153 in the file that specify mode settings either global to the entire
31154 file or local to a particular formula or formulas. In the latter
31155 case, different modes can be specified for use when a formula
31156 is the enabled Embedded mode formula.
31158 When you give any mode-setting command, like @kbd{m f} (for Fraction
31159 mode) or @kbd{d s} (for scientific notation), Embedded mode adds
31160 a line like the following one to the file just before the opening
31161 delimiter of the formula.
31164 % [calc-mode: fractions: t]
31165 % [calc-mode: float-format: (sci 0)]
31168 When Calc interprets an embedded formula, it scans the text before
31169 the formula for mode-setting annotations like these and sets the
31170 Calc buffer to match these modes. Modes not explicitly described
31171 in the file are not changed. Calc scans all the way to the top of
31172 the file, or up to a line of the form
31179 which you can insert at strategic places in the file if this backward
31180 scan is getting too slow, or just to provide a barrier between one
31181 ``zone'' of mode settings and another.
31183 If the file contains several annotations for the same mode, the
31184 closest one before the formula is used. Annotations after the
31185 formula are never used (except for global annotations, described
31188 The scan does not look for the leading @samp{% }, only for the
31189 square brackets and the text they enclose. In fact, the leading
31190 characters are different for different major modes. You can edit the
31191 mode annotations to a style that works better in context if you wish.
31192 @xref{Customizing Embedded Mode}, to see how to change the style
31193 that Calc uses when it generates the annotations. You can write
31194 mode annotations into the file yourself if you know the syntax;
31195 the easiest way to find the syntax for a given mode is to let
31196 Calc write the annotation for it once and see what it does.
31198 If you give a mode-changing command for a mode that already has
31199 a suitable annotation just above the current formula, Calc will
31200 modify that annotation rather than generating a new, conflicting
31203 Mode annotations have three parts, separated by colons. (Spaces
31204 after the colons are optional.) The first identifies the kind
31205 of mode setting, the second is a name for the mode itself, and
31206 the third is the value in the form of a Lisp symbol, number,
31207 or list. Annotations with unrecognizable text in the first or
31208 second parts are ignored. The third part is not checked to make
31209 sure the value is of a valid type or range; if you write an
31210 annotation by hand, be sure to give a proper value or results
31211 will be unpredictable. Mode-setting annotations are case-sensitive.
31213 While Embedded mode is enabled, the word @code{Local} appears in
31214 the mode line. This is to show that mode setting commands generate
31215 annotations that are ``local'' to the current formula or set of
31216 formulas. The @kbd{m R} (@code{calc-mode-record-mode}) command
31217 causes Calc to generate different kinds of annotations. Pressing
31218 @kbd{m R} repeatedly cycles through the possible modes.
31220 @code{LocEdit} and @code{LocPerm} modes generate annotations
31221 that look like this, respectively:
31224 % [calc-edit-mode: float-format: (sci 0)]
31225 % [calc-perm-mode: float-format: (sci 5)]
31228 The first kind of annotation will be used only while a formula
31229 is enabled in Embedded mode. The second kind will be used only
31230 when the formula is @emph{not} enabled. (Whether the formula
31231 is ``active'' or not, i.e., whether Calc has seen this formula
31232 yet, is not relevant here.)
31234 @code{Global} mode generates an annotation like this at the end
31238 % [calc-global-mode: fractions t]
31241 Global mode annotations affect all formulas throughout the file,
31242 and may appear anywhere in the file. This allows you to tuck your
31243 mode annotations somewhere out of the way, say, on a new page of
31244 the file, as long as those mode settings are suitable for all
31245 formulas in the file.
31247 Enabling a formula with @kbd{C-x * e} causes a fresh scan for local
31248 mode annotations; you will have to use this after adding annotations
31249 above a formula by hand to get the formula to notice them. Updating
31250 a formula with @kbd{C-x * u} will also re-scan the local modes, but
31251 global modes are only re-scanned by @kbd{C-x * a}.
31253 Another way that modes can get out of date is if you add a local
31254 mode annotation to a formula that has another formula after it.
31255 In this example, we have used the @kbd{d s} command while the
31256 first of the two embedded formulas is active. But the second
31257 formula has not changed its style to match, even though by the
31258 rules of reading annotations the @samp{(sci 0)} applies to it, too.
31261 % [calc-mode: float-format: (sci 0)]
31267 We would have to go down to the other formula and press @kbd{C-x * u}
31268 on it in order to get it to notice the new annotation.
31270 Two more mode-recording modes selectable by @kbd{m R} are available
31271 which are also available outside of Embedded mode.
31272 (@pxref{General Mode Commands}.) They are @code{Save}, in which mode
31273 settings are recorded permanently in your Calc init file (the file given
31274 by the variable @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el})
31275 rather than by annotating the current document, and no-recording
31276 mode (where there is no symbol like @code{Save} or @code{Local} in
31277 the mode line), in which mode-changing commands do not leave any
31278 annotations at all.
31280 When Embedded mode is not enabled, mode-recording modes except
31281 for @code{Save} have no effect.
31283 @node Customizing Embedded Mode, , Mode Settings in Embedded Mode, Embedded Mode
31284 @section Customizing Embedded Mode
31287 You can modify Embedded mode's behavior by setting various Lisp
31288 variables described here. These variables are customizable
31289 (@pxref{Customizing Calc}), or you can use @kbd{M-x set-variable}
31290 or @kbd{M-x edit-options} to adjust a variable on the fly.
31291 (Another possibility would be to use a file-local variable annotation at
31292 the end of the file;
31293 @pxref{File Variables, , Local Variables in Files, emacs, the Emacs manual}.)
31294 Many of the variables given mentioned here can be set to depend on the
31295 major mode of the editing buffer (@pxref{Customizing Calc}).
31297 @vindex calc-embedded-open-formula
31298 The @code{calc-embedded-open-formula} variable holds a regular
31299 expression for the opening delimiter of a formula. @xref{Regexp Search,
31300 , Regular Expression Search, emacs, the Emacs manual}, to see
31301 how regular expressions work. Basically, a regular expression is a
31302 pattern that Calc can search for. A regular expression that considers
31303 blank lines, @samp{$}, and @samp{$$} to be opening delimiters is
31304 @code{"\\`\\|^\n\\|\\$\\$?"}. Just in case the meaning of this
31305 regular expression is not completely plain, let's go through it
31308 The surrounding @samp{" "} marks quote the text between them as a
31309 Lisp string. If you left them off, @code{set-variable} or
31310 @code{edit-options} would try to read the regular expression as a
31313 The most obvious property of this regular expression is that it
31314 contains indecently many backslashes. There are actually two levels
31315 of backslash usage going on here. First, when Lisp reads a quoted
31316 string, all pairs of characters beginning with a backslash are
31317 interpreted as special characters. Here, @code{\n} changes to a
31318 new-line character, and @code{\\} changes to a single backslash.
31319 So the actual regular expression seen by Calc is
31320 @samp{\`\|^ @r{(newline)} \|\$\$?}.
31322 Regular expressions also consider pairs beginning with backslash
31323 to have special meanings. Sometimes the backslash is used to quote
31324 a character that otherwise would have a special meaning in a regular
31325 expression, like @samp{$}, which normally means ``end-of-line,''
31326 or @samp{?}, which means that the preceding item is optional. So
31327 @samp{\$\$?} matches either one or two dollar signs.
31329 The other codes in this regular expression are @samp{^}, which matches
31330 ``beginning-of-line,'' @samp{\|}, which means ``or,'' and @samp{\`},
31331 which matches ``beginning-of-buffer.'' So the whole pattern means
31332 that a formula begins at the beginning of the buffer, or on a newline
31333 that occurs at the beginning of a line (i.e., a blank line), or at
31334 one or two dollar signs.
31336 The default value of @code{calc-embedded-open-formula} looks just
31337 like this example, with several more alternatives added on to
31338 recognize various other common kinds of delimiters.
31340 By the way, the reason to use @samp{^\n} rather than @samp{^$}
31341 or @samp{\n\n}, which also would appear to match blank lines,
31342 is that the former expression actually ``consumes'' only one
31343 newline character as @emph{part of} the delimiter, whereas the
31344 latter expressions consume zero or two newlines, respectively.
31345 The former choice gives the most natural behavior when Calc
31346 must operate on a whole formula including its delimiters.
31348 See the Emacs manual for complete details on regular expressions.
31349 But just for your convenience, here is a list of all characters
31350 which must be quoted with backslash (like @samp{\$}) to avoid
31351 some special interpretation: @samp{. * + ? [ ] ^ $ \}. (Note
31352 the backslash in this list; for example, to match @samp{\[} you
31353 must use @code{"\\\\\\["}. An exercise for the reader is to
31354 account for each of these six backslashes!)
31356 @vindex calc-embedded-close-formula
31357 The @code{calc-embedded-close-formula} variable holds a regular
31358 expression for the closing delimiter of a formula. A closing
31359 regular expression to match the above example would be
31360 @code{"\\'\\|\n$\\|\\$\\$?"}. This is almost the same as the
31361 other one, except it now uses @samp{\'} (``end-of-buffer'') and
31362 @samp{\n$} (newline occurring at end of line, yet another way
31363 of describing a blank line that is more appropriate for this
31366 @vindex calc-embedded-word-regexp
31367 The @code{calc-embedded-word-regexp} variable holds a regular expression
31368 used to define an expression to look for (a ``word'') when you type
31369 @kbd{C-x * w} to enable Embedded mode.
31371 @vindex calc-embedded-open-plain
31372 The @code{calc-embedded-open-plain} variable is a string which
31373 begins a ``plain'' formula written in front of the formatted
31374 formula when @kbd{d p} mode is turned on. Note that this is an
31375 actual string, not a regular expression, because Calc must be able
31376 to write this string into a buffer as well as to recognize it.
31377 The default string is @code{"%%% "} (note the trailing space), but may
31378 be different for certain major modes.
31380 @vindex calc-embedded-close-plain
31381 The @code{calc-embedded-close-plain} variable is a string which
31382 ends a ``plain'' formula. The default is @code{" %%%\n"}, but may be
31383 different for different major modes. Without
31384 the trailing newline here, the first line of a Big mode formula
31385 that followed might be shifted over with respect to the other lines.
31387 @vindex calc-embedded-open-new-formula
31388 The @code{calc-embedded-open-new-formula} variable is a string
31389 which is inserted at the front of a new formula when you type
31390 @kbd{C-x * f}. Its default value is @code{"\n\n"}. If this
31391 string begins with a newline character and the @kbd{C-x * f} is
31392 typed at the beginning of a line, @kbd{C-x * f} will skip this
31393 first newline to avoid introducing unnecessary blank lines in
31396 @vindex calc-embedded-close-new-formula
31397 The @code{calc-embedded-close-new-formula} variable is the corresponding
31398 string which is inserted at the end of a new formula. Its default
31399 value is also @code{"\n\n"}. The final newline is omitted by
31400 @w{@kbd{C-x * f}} if typed at the end of a line. (It follows that if
31401 @kbd{C-x * f} is typed on a blank line, both a leading opening
31402 newline and a trailing closing newline are omitted.)
31404 @vindex calc-embedded-announce-formula
31405 The @code{calc-embedded-announce-formula} variable is a regular
31406 expression which is sure to be followed by an embedded formula.
31407 The @kbd{C-x * a} command searches for this pattern as well as for
31408 @samp{=>} and @samp{:=} operators. Note that @kbd{C-x * a} will
31409 not activate just anything surrounded by formula delimiters; after
31410 all, blank lines are considered formula delimiters by default!
31411 But if your language includes a delimiter which can only occur
31412 actually in front of a formula, you can take advantage of it here.
31413 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, but may be
31414 different for different major modes.
31415 This pattern will check for @samp{%Embed} followed by any number of
31416 lines beginning with @samp{%} and a space. This last is important to
31417 make Calc consider mode annotations part of the pattern, so that the
31418 formula's opening delimiter really is sure to follow the pattern.
31420 @vindex calc-embedded-open-mode
31421 The @code{calc-embedded-open-mode} variable is a string (not a
31422 regular expression) which should precede a mode annotation.
31423 Calc never scans for this string; Calc always looks for the
31424 annotation itself. But this is the string that is inserted before
31425 the opening bracket when Calc adds an annotation on its own.
31426 The default is @code{"% "}, but may be different for different major
31429 @vindex calc-embedded-close-mode
31430 The @code{calc-embedded-close-mode} variable is a string which
31431 follows a mode annotation written by Calc. Its default value
31432 is simply a newline, @code{"\n"}, but may be different for different
31433 major modes. If you change this, it is a good idea still to end with a
31434 newline so that mode annotations will appear on lines by themselves.
31436 @node Programming, Copying, Embedded Mode, Top
31437 @chapter Programming
31440 There are several ways to ``program'' the Emacs Calculator, depending
31441 on the nature of the problem you need to solve.
31445 @dfn{Keyboard macros} allow you to record a sequence of keystrokes
31446 and play them back at a later time. This is just the standard Emacs
31447 keyboard macro mechanism, dressed up with a few more features such
31448 as loops and conditionals.
31451 @dfn{Algebraic definitions} allow you to use any formula to define a
31452 new function. This function can then be used in algebraic formulas or
31453 as an interactive command.
31456 @dfn{Rewrite rules} are discussed in the section on algebra commands.
31457 @xref{Rewrite Rules}. If you put your rewrite rules in the variable
31458 @code{EvalRules}, they will be applied automatically to all Calc
31459 results in just the same way as an internal ``rule'' is applied to
31460 evaluate @samp{sqrt(9)} to 3 and so on. @xref{Automatic Rewrites}.
31463 @dfn{Lisp} is the programming language that Calc (and most of Emacs)
31464 is written in. If the above techniques aren't powerful enough, you
31465 can write Lisp functions to do anything that built-in Calc commands
31466 can do. Lisp code is also somewhat faster than keyboard macros or
31471 Programming features are available through the @kbd{z} and @kbd{Z}
31472 prefix keys. New commands that you define are two-key sequences
31473 beginning with @kbd{z}. Commands for managing these definitions
31474 use the shift-@kbd{Z} prefix. (The @kbd{Z T} (@code{calc-timing})
31475 command is described elsewhere; @pxref{Troubleshooting Commands}.
31476 The @kbd{Z C} (@code{calc-user-define-composition}) command is also
31477 described elsewhere; @pxref{User-Defined Compositions}.)
31480 * Creating User Keys::
31481 * Keyboard Macros::
31482 * Invocation Macros::
31483 * Algebraic Definitions::
31484 * Lisp Definitions::
31487 @node Creating User Keys, Keyboard Macros, Programming, Programming
31488 @section Creating User Keys
31492 @pindex calc-user-define
31493 Any Calculator command may be bound to a key using the @kbd{Z D}
31494 (@code{calc-user-define}) command. Actually, it is bound to a two-key
31495 sequence beginning with the lower-case @kbd{z} prefix.
31497 The @kbd{Z D} command first prompts for the key to define. For example,
31498 press @kbd{Z D a} to define the new key sequence @kbd{z a}. You are then
31499 prompted for the name of the Calculator command that this key should
31500 run. For example, the @code{calc-sincos} command is not normally
31501 available on a key. Typing @kbd{Z D s sincos @key{RET}} programs the
31502 @kbd{z s} key sequence to run @code{calc-sincos}. This definition will remain
31503 in effect for the rest of this Emacs session, or until you redefine
31504 @kbd{z s} to be something else.
31506 You can actually bind any Emacs command to a @kbd{z} key sequence by
31507 backspacing over the @samp{calc-} when you are prompted for the command name.
31509 As with any other prefix key, you can type @kbd{z ?} to see a list of
31510 all the two-key sequences you have defined that start with @kbd{z}.
31511 Initially, no @kbd{z} sequences (except @kbd{z ?} itself) are defined.
31513 User keys are typically letters, but may in fact be any key.
31514 (@key{META}-keys are not permitted, nor are a terminal's special
31515 function keys which generate multi-character sequences when pressed.)
31516 You can define different commands on the shifted and unshifted versions
31517 of a letter if you wish.
31520 @pindex calc-user-undefine
31521 The @kbd{Z U} (@code{calc-user-undefine}) command unbinds a user key.
31522 For example, the key sequence @kbd{Z U s} will undefine the @code{sincos}
31523 key we defined above.
31526 @pindex calc-user-define-permanent
31527 @cindex Storing user definitions
31528 @cindex Permanent user definitions
31529 @cindex Calc init file, user-defined commands
31530 The @kbd{Z P} (@code{calc-user-define-permanent}) command makes a key
31531 binding permanent so that it will remain in effect even in future Emacs
31532 sessions. (It does this by adding a suitable bit of Lisp code into
31533 your Calc init file; that is, the file given by the variable
31534 @code{calc-settings-file}, typically @file{~/.emacs.d/calc.el}.) For example,
31535 @kbd{Z P s} would register our @code{sincos} command permanently. If
31536 you later wish to unregister this command you must edit your Calc init
31537 file by hand. (@xref{General Mode Commands}, for a way to tell Calc to
31538 use a different file for the Calc init file.)
31540 The @kbd{Z P} command also saves the user definition, if any, for the
31541 command bound to the key. After @kbd{Z F} and @kbd{Z C}, a given user
31542 key could invoke a command, which in turn calls an algebraic function,
31543 which might have one or more special display formats. A single @kbd{Z P}
31544 command will save all of these definitions.
31545 To save an algebraic function, type @kbd{'} (the apostrophe)
31546 when prompted for a key, and type the function name. To save a command
31547 without its key binding, type @kbd{M-x} and enter a function name. (The
31548 @samp{calc-} prefix will automatically be inserted for you.)
31549 (If the command you give implies a function, the function will be saved,
31550 and if the function has any display formats, those will be saved, but
31551 not the other way around: Saving a function will not save any commands
31552 or key bindings associated with the function.)
31555 @pindex calc-user-define-edit
31556 @cindex Editing user definitions
31557 The @kbd{Z E} (@code{calc-user-define-edit}) command edits the definition
31558 of a user key. This works for keys that have been defined by either
31559 keyboard macros or formulas; further details are contained in the relevant
31560 following sections.
31562 @node Keyboard Macros, Invocation Macros, Creating User Keys, Programming
31563 @section Programming with Keyboard Macros
31567 @cindex Programming with keyboard macros
31568 @cindex Keyboard macros
31569 The easiest way to ``program'' the Emacs Calculator is to use standard
31570 keyboard macros. Press @w{@kbd{C-x (}} to begin recording a macro. From
31571 this point on, keystrokes you type will be saved away as well as
31572 performing their usual functions. Press @kbd{C-x )} to end recording.
31573 Press shift-@kbd{X} (or the standard Emacs key sequence @kbd{C-x e}) to
31574 execute your keyboard macro by replaying the recorded keystrokes.
31575 @xref{Keyboard Macros, , , emacs, the Emacs Manual}, for further
31578 When you use @kbd{X} to invoke a keyboard macro, the entire macro is
31579 treated as a single command by the undo and trail features. The stack
31580 display buffer is not updated during macro execution, but is instead
31581 fixed up once the macro completes. Thus, commands defined with keyboard
31582 macros are convenient and efficient. The @kbd{C-x e} command, on the
31583 other hand, invokes the keyboard macro with no special treatment: Each
31584 command in the macro will record its own undo information and trail entry,
31585 and update the stack buffer accordingly. If your macro uses features
31586 outside of Calc's control to operate on the contents of the Calc stack
31587 buffer, or if it includes Undo, Redo, or last-arguments commands, you
31588 must use @kbd{C-x e} to make sure the buffer and undo list are up-to-date
31589 at all times. You could also consider using @kbd{K} (@code{calc-keep-args})
31590 instead of @kbd{M-@key{RET}} (@code{calc-last-args}).
31592 Calc extends the standard Emacs keyboard macros in several ways.
31593 Keyboard macros can be used to create user-defined commands. Keyboard
31594 macros can include conditional and iteration structures, somewhat
31595 analogous to those provided by a traditional programmable calculator.
31598 * Naming Keyboard Macros::
31599 * Conditionals in Macros::
31600 * Loops in Macros::
31601 * Local Values in Macros::
31602 * Queries in Macros::
31605 @node Naming Keyboard Macros, Conditionals in Macros, Keyboard Macros, Keyboard Macros
31606 @subsection Naming Keyboard Macros
31610 @pindex calc-user-define-kbd-macro
31611 Once you have defined a keyboard macro, you can bind it to a @kbd{z}
31612 key sequence with the @kbd{Z K} (@code{calc-user-define-kbd-macro}) command.
31613 This command prompts first for a key, then for a command name. For
31614 example, if you type @kbd{C-x ( n @key{TAB} n @key{TAB} C-x )} you will
31615 define a keyboard macro which negates the top two numbers on the stack
31616 (@key{TAB} swaps the top two stack elements). Now you can type
31617 @kbd{Z K n @key{RET}} to define this keyboard macro onto the @kbd{z n} key
31618 sequence. The default command name (if you answer the second prompt with
31619 just the @key{RET} key as in this example) will be something like
31620 @samp{calc-User-n}. The keyboard macro will now be available as both
31621 @kbd{z n} and @kbd{M-x calc-User-n}. You can backspace and enter a more
31622 descriptive command name if you wish.
31624 Macros defined by @kbd{Z K} act like single commands; they are executed
31625 in the same way as by the @kbd{X} key. If you wish to define the macro
31626 as a standard no-frills Emacs macro (to be executed as if by @kbd{C-x e}),
31627 give a negative prefix argument to @kbd{Z K}.
31629 Once you have bound your keyboard macro to a key, you can use
31630 @kbd{Z P} to register it permanently with Emacs. @xref{Creating User Keys}.
31632 @cindex Keyboard macros, editing
31633 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
31634 been defined by a keyboard macro tries to use the @code{edmacro} package
31635 edit the macro. Type @kbd{C-c C-c} to finish editing and update
31636 the definition stored on the key, or, to cancel the edit, kill the
31637 buffer with @kbd{C-x k}.
31638 The special characters @code{RET}, @code{LFD}, @code{TAB}, @code{SPC},
31639 @code{DEL}, and @code{NUL} must be entered as these three character
31640 sequences, written in all uppercase, as must the prefixes @code{C-} and
31641 @code{M-}. Spaces and line breaks are ignored. Other characters are
31642 copied verbatim into the keyboard macro. Basically, the notation is the
31643 same as is used in all of this manual's examples, except that the manual
31644 takes some liberties with spaces: When we say @kbd{' [1 2 3] @key{RET}},
31645 we take it for granted that it is clear we really mean
31646 @kbd{' [1 @key{SPC} 2 @key{SPC} 3] @key{RET}}.
31649 @pindex read-kbd-macro
31650 The @kbd{C-x * m} (@code{read-kbd-macro}) command reads an Emacs ``region''
31651 of spelled-out keystrokes and defines it as the current keyboard macro.
31652 It is a convenient way to define a keyboard macro that has been stored
31653 in a file, or to define a macro without executing it at the same time.
31655 @node Conditionals in Macros, Loops in Macros, Naming Keyboard Macros, Keyboard Macros
31656 @subsection Conditionals in Keyboard Macros
31661 @pindex calc-kbd-if
31662 @pindex calc-kbd-else
31663 @pindex calc-kbd-else-if
31664 @pindex calc-kbd-end-if
31665 @cindex Conditional structures
31666 The @kbd{Z [} (@code{calc-kbd-if}) and @kbd{Z ]} (@code{calc-kbd-end-if})
31667 commands allow you to put simple tests in a keyboard macro. When Calc
31668 sees the @kbd{Z [}, it pops an object from the stack and, if the object is
31669 a non-zero value, continues executing keystrokes. But if the object is
31670 zero, or if it is not provably nonzero, Calc skips ahead to the matching
31671 @kbd{Z ]} keystroke. @xref{Logical Operations}, for a set of commands for
31672 performing tests which conveniently produce 1 for true and 0 for false.
31674 For example, @kbd{@key{RET} 0 a < Z [ n Z ]} implements an absolute-value
31675 function in the form of a keyboard macro. This macro duplicates the
31676 number on the top of the stack, pushes zero and compares using @kbd{a <}
31677 (@code{calc-less-than}), then, if the number was less than zero,
31678 executes @kbd{n} (@code{calc-change-sign}). Otherwise, the change-sign
31679 command is skipped.
31681 To program this macro, type @kbd{C-x (}, type the above sequence of
31682 keystrokes, then type @kbd{C-x )}. Note that the keystrokes will be
31683 executed while you are making the definition as well as when you later
31684 re-execute the macro by typing @kbd{X}. Thus you should make sure a
31685 suitable number is on the stack before defining the macro so that you
31686 don't get a stack-underflow error during the definition process.
31688 Conditionals can be nested arbitrarily. However, there should be exactly
31689 one @kbd{Z ]} for each @kbd{Z [} in a keyboard macro.
31692 The @kbd{Z :} (@code{calc-kbd-else}) command allows you to choose between
31693 two keystroke sequences. The general format is @kbd{@var{cond} Z [
31694 @var{then-part} Z : @var{else-part} Z ]}. If @var{cond} is true
31695 (i.e., if the top of stack contains a non-zero number after @var{cond}
31696 has been executed), the @var{then-part} will be executed and the
31697 @var{else-part} will be skipped. Otherwise, the @var{then-part} will
31698 be skipped and the @var{else-part} will be executed.
31701 The @kbd{Z |} (@code{calc-kbd-else-if}) command allows you to choose
31702 between any number of alternatives. For example,
31703 @kbd{@var{cond1} Z [ @var{part1} Z : @var{cond2} Z | @var{part2} Z :
31704 @var{part3} Z ]} will execute @var{part1} if @var{cond1} is true,
31705 otherwise it will execute @var{part2} if @var{cond2} is true, otherwise
31706 it will execute @var{part3}.
31708 More precisely, @kbd{Z [} pops a number and conditionally skips to the
31709 next matching @kbd{Z :} or @kbd{Z ]} key. @w{@kbd{Z ]}} has no effect when
31710 actually executed. @kbd{Z :} skips to the next matching @kbd{Z ]}.
31711 @kbd{Z |} pops a number and conditionally skips to the next matching
31712 @kbd{Z :} or @kbd{Z ]}; thus, @kbd{Z [} and @kbd{Z |} are functionally
31713 equivalent except that @kbd{Z [} participates in nesting but @kbd{Z |}
31716 Calc's conditional and looping constructs work by scanning the
31717 keyboard macro for occurrences of character sequences like @samp{Z:}
31718 and @samp{Z]}. One side-effect of this is that if you use these
31719 constructs you must be careful that these character pairs do not
31720 occur by accident in other parts of the macros. Since Calc rarely
31721 uses shift-@kbd{Z} for any purpose except as a prefix character, this
31722 is not likely to be a problem. Another side-effect is that it will
31723 not work to define your own custom key bindings for these commands.
31724 Only the standard shift-@kbd{Z} bindings will work correctly.
31727 If Calc gets stuck while skipping characters during the definition of a
31728 macro, type @kbd{Z C-g} to cancel the definition. (Typing plain @kbd{C-g}
31729 actually adds a @kbd{C-g} keystroke to the macro.)
31731 @node Loops in Macros, Local Values in Macros, Conditionals in Macros, Keyboard Macros
31732 @subsection Loops in Keyboard Macros
31737 @pindex calc-kbd-repeat
31738 @pindex calc-kbd-end-repeat
31739 @cindex Looping structures
31740 @cindex Iterative structures
31741 The @kbd{Z <} (@code{calc-kbd-repeat}) and @kbd{Z >}
31742 (@code{calc-kbd-end-repeat}) commands pop a number from the stack,
31743 which must be an integer, then repeat the keystrokes between the brackets
31744 the specified number of times. If the integer is zero or negative, the
31745 body is skipped altogether. For example, @kbd{1 @key{TAB} Z < 2 * Z >}
31746 computes two to a nonnegative integer power. First, we push 1 on the
31747 stack and then swap the integer argument back to the top. The @kbd{Z <}
31748 pops that argument leaving the 1 back on top of the stack. Then, we
31749 repeat a multiply-by-two step however many times.
31751 Once again, the keyboard macro is executed as it is being entered.
31752 In this case it is especially important to set up reasonable initial
31753 conditions before making the definition: Suppose the integer 1000 just
31754 happened to be sitting on the stack before we typed the above definition!
31755 Another approach is to enter a harmless dummy definition for the macro,
31756 then go back and edit in the real one with a @kbd{Z E} command. Yet
31757 another approach is to type the macro as written-out keystroke names
31758 in a buffer, then use @kbd{C-x * m} (@code{read-kbd-macro}) to read the
31763 The @kbd{Z /} (@code{calc-kbd-break}) command allows you to break out
31764 of a keyboard macro loop prematurely. It pops an object from the stack;
31765 if that object is true (a non-zero number), control jumps out of the
31766 innermost enclosing @kbd{Z <} @dots{} @kbd{Z >} loop and continues
31767 after the @kbd{Z >}. If the object is false, the @kbd{Z /} has no
31768 effect. Thus @kbd{@var{cond} Z /} is similar to @samp{if (@var{cond}) break;}
31773 @pindex calc-kbd-for
31774 @pindex calc-kbd-end-for
31775 The @kbd{Z (} (@code{calc-kbd-for}) and @kbd{Z )} (@code{calc-kbd-end-for})
31776 commands are similar to @kbd{Z <} and @kbd{Z >}, except that they make the
31777 value of the counter available inside the loop. The general layout is
31778 @kbd{@var{init} @var{final} Z ( @var{body} @var{step} Z )}. The @kbd{Z (}
31779 command pops initial and final values from the stack. It then creates
31780 a temporary internal counter and initializes it with the value @var{init}.
31781 The @kbd{Z (} command then repeatedly pushes the counter value onto the
31782 stack and executes @var{body} and @var{step}, adding @var{step} to the
31783 counter each time until the loop finishes.
31785 @cindex Summations (by keyboard macros)
31786 By default, the loop finishes when the counter becomes greater than (or
31787 less than) @var{final}, assuming @var{initial} is less than (greater
31788 than) @var{final}. If @var{initial} is equal to @var{final}, the body
31789 executes exactly once. The body of the loop always executes at least
31790 once. For example, @kbd{0 1 10 Z ( 2 ^ + 1 Z )} computes the sum of the
31791 squares of the integers from 1 to 10, in steps of 1.
31793 If you give a numeric prefix argument of 1 to @kbd{Z (}, the loop is
31794 forced to use upward-counting conventions. In this case, if @var{initial}
31795 is greater than @var{final} the body will not be executed at all.
31796 Note that @var{step} may still be negative in this loop; the prefix
31797 argument merely constrains the loop-finished test. Likewise, a prefix
31798 argument of @mathit{-1} forces downward-counting conventions.
31802 @pindex calc-kbd-loop
31803 @pindex calc-kbd-end-loop
31804 The @kbd{Z @{} (@code{calc-kbd-loop}) and @kbd{Z @}}
31805 (@code{calc-kbd-end-loop}) commands are similar to @kbd{Z <} and
31806 @kbd{Z >}, except that they do not pop a count from the stack---they
31807 effectively create an infinite loop. Every @kbd{Z @{} @dots{} @kbd{Z @}}
31808 loop ought to include at least one @kbd{Z /} to make sure the loop
31809 doesn't run forever. (If any error message occurs which causes Emacs
31810 to beep, the keyboard macro will also be halted; this is a standard
31811 feature of Emacs. You can also generally press @kbd{C-g} to halt a
31812 running keyboard macro, although not all versions of Unix support
31815 The conditional and looping constructs are not actually tied to
31816 keyboard macros, but they are most often used in that context.
31817 For example, the keystrokes @kbd{10 Z < 23 @key{RET} Z >} push
31818 ten copies of 23 onto the stack. This can be typed ``live'' just
31819 as easily as in a macro definition.
31821 @xref{Conditionals in Macros}, for some additional notes about
31822 conditional and looping commands.
31824 @node Local Values in Macros, Queries in Macros, Loops in Macros, Keyboard Macros
31825 @subsection Local Values in Macros
31828 @cindex Local variables
31829 @cindex Restoring saved modes
31830 Keyboard macros sometimes want to operate under known conditions
31831 without affecting surrounding conditions. For example, a keyboard
31832 macro may wish to turn on Fraction mode, or set a particular
31833 precision, independent of the user's normal setting for those
31838 @pindex calc-kbd-push
31839 @pindex calc-kbd-pop
31840 Macros also sometimes need to use local variables. Assignments to
31841 local variables inside the macro should not affect any variables
31842 outside the macro. The @kbd{Z `} (@code{calc-kbd-push}) and @kbd{Z '}
31843 (@code{calc-kbd-pop}) commands give you both of these capabilities.
31845 When you type @kbd{Z `} (with a backquote or accent grave character),
31846 the values of various mode settings are saved away. The ten ``quick''
31847 variables @code{q0} through @code{q9} are also saved. When
31848 you type @w{@kbd{Z '}} (with an apostrophe), these values are restored.
31849 Pairs of @kbd{Z `} and @kbd{Z '} commands may be nested.
31851 If a keyboard macro halts due to an error in between a @kbd{Z `} and
31852 a @kbd{Z '}, the saved values will be restored correctly even though
31853 the macro never reaches the @kbd{Z '} command. Thus you can use
31854 @kbd{Z `} and @kbd{Z '} without having to worry about what happens
31855 in exceptional conditions.
31857 If you type @kbd{Z `} ``live'' (not in a keyboard macro), Calc puts
31858 you into a ``recursive edit.'' You can tell you are in a recursive
31859 edit because there will be extra square brackets in the mode line,
31860 as in @samp{[(Calculator)]}. These brackets will go away when you
31861 type the matching @kbd{Z '} command. The modes and quick variables
31862 will be saved and restored in just the same way as if actual keyboard
31863 macros were involved.
31865 The modes saved by @kbd{Z `} and @kbd{Z '} are the current precision
31866 and binary word size, the angular mode (Deg, Rad, or HMS), the
31867 simplification mode, Algebraic mode, Symbolic mode, Infinite mode,
31868 Matrix or Scalar mode, Fraction mode, and the current complex mode
31869 (Polar or Rectangular). The ten ``quick'' variables' values (or lack
31870 thereof) are also saved.
31872 Most mode-setting commands act as toggles, but with a numeric prefix
31873 they force the mode either on (positive prefix) or off (negative
31874 or zero prefix). Since you don't know what the environment might
31875 be when you invoke your macro, it's best to use prefix arguments
31876 for all mode-setting commands inside the macro.
31878 In fact, @kbd{C-u Z `} is like @kbd{Z `} except that it sets the modes
31879 listed above to their default values. As usual, the matching @kbd{Z '}
31880 will restore the modes to their settings from before the @kbd{C-u Z `}.
31881 Also, @w{@kbd{Z `}} with a negative prefix argument resets the algebraic mode
31882 to its default (off) but leaves the other modes the same as they were
31883 outside the construct.
31885 The contents of the stack and trail, values of non-quick variables, and
31886 other settings such as the language mode and the various display modes,
31887 are @emph{not} affected by @kbd{Z `} and @kbd{Z '}.
31889 @node Queries in Macros, , Local Values in Macros, Keyboard Macros
31890 @subsection Queries in Keyboard Macros
31894 @c @pindex calc-kbd-report
31895 @c The @kbd{Z =} (@code{calc-kbd-report}) command displays an informative
31896 @c message including the value on the top of the stack. You are prompted
31897 @c to enter a string. That string, along with the top-of-stack value,
31898 @c is displayed unless @kbd{m w} (@code{calc-working}) has been used
31899 @c to turn such messages off.
31903 @pindex calc-kbd-query
31904 The @kbd{Z #} (@code{calc-kbd-query}) command prompts for an algebraic
31905 entry which takes its input from the keyboard, even during macro
31906 execution. All the normal conventions of algebraic input, including the
31907 use of @kbd{$} characters, are supported. The prompt message itself is
31908 taken from the top of the stack, and so must be entered (as a string)
31909 before the @kbd{Z #} command. (Recall, as a string it can be entered by
31910 pressing the @kbd{"} key and will appear as a vector when it is put on
31911 the stack. The prompt message is only put on the stack to provide a
31912 prompt for the @kbd{Z #} command; it will not play any role in any
31913 subsequent calculations.) This command allows your keyboard macros to
31914 accept numbers or formulas as interactive input.
31917 @kbd{2 @key{RET} "Power: " @key{RET} Z # 3 @key{RET} ^} will prompt for
31918 input with ``Power: '' in the minibuffer, then return 2 to the provided
31919 power. (The response to the prompt that's given, 3 in this example,
31920 will not be part of the macro.)
31922 @xref{Keyboard Macro Query, , , emacs, the Emacs Manual}, for a description of
31923 @kbd{C-x q} (@code{kbd-macro-query}), the standard Emacs way to accept
31924 keyboard input during a keyboard macro. In particular, you can use
31925 @kbd{C-x q} to enter a recursive edit, which allows the user to perform
31926 any Calculator operations interactively before pressing @kbd{C-M-c} to
31927 return control to the keyboard macro.
31929 @node Invocation Macros, Algebraic Definitions, Keyboard Macros, Programming
31930 @section Invocation Macros
31934 @pindex calc-user-invocation
31935 @pindex calc-user-define-invocation
31936 Calc provides one special keyboard macro, called up by @kbd{C-x * z}
31937 (@code{calc-user-invocation}), that is intended to allow you to define
31938 your own special way of starting Calc. To define this ``invocation
31939 macro,'' create the macro in the usual way with @kbd{C-x (} and
31940 @kbd{C-x )}, then type @kbd{Z I} (@code{calc-user-define-invocation}).
31941 There is only one invocation macro, so you don't need to type any
31942 additional letters after @kbd{Z I}. From now on, you can type
31943 @kbd{C-x * z} at any time to execute your invocation macro.
31945 For example, suppose you find yourself often grabbing rectangles of
31946 numbers into Calc and multiplying their columns. You can do this
31947 by typing @kbd{C-x * r} to grab, and @kbd{V R : *} to multiply columns.
31948 To make this into an invocation macro, just type @kbd{C-x ( C-x * r
31949 V R : * C-x )}, then @kbd{Z I}. Then, to multiply a rectangle of data,
31950 just mark the data in its buffer in the usual way and type @kbd{C-x * z}.
31952 Invocation macros are treated like regular Emacs keyboard macros;
31953 all the special features described above for @kbd{Z K}-style macros
31954 do not apply. @kbd{C-x * z} is just like @kbd{C-x e}, except that it
31955 uses the macro that was last stored by @kbd{Z I}. (In fact, the
31956 macro does not even have to have anything to do with Calc!)
31958 The @kbd{m m} command saves the last invocation macro defined by
31959 @kbd{Z I} along with all the other Calc mode settings.
31960 @xref{General Mode Commands}.
31962 @node Algebraic Definitions, Lisp Definitions, Invocation Macros, Programming
31963 @section Programming with Formulas
31967 @pindex calc-user-define-formula
31968 @cindex Programming with algebraic formulas
31969 Another way to create a new Calculator command uses algebraic formulas.
31970 The @kbd{Z F} (@code{calc-user-define-formula}) command stores the
31971 formula at the top of the stack as the definition for a key. This
31972 command prompts for five things: The key, the command name, the function
31973 name, the argument list, and the behavior of the command when given
31974 non-numeric arguments.
31976 For example, suppose we type @kbd{' a+2b @key{RET}} to push the formula
31977 @samp{a + 2*b} onto the stack. We now type @kbd{Z F m} to define this
31978 formula on the @kbd{z m} key sequence. The next prompt is for a command
31979 name, beginning with @samp{calc-}, which should be the long (@kbd{M-x}) form
31980 for the new command. If you simply press @key{RET}, a default name like
31981 @code{calc-User-m} will be constructed. In our example, suppose we enter
31982 @kbd{spam @key{RET}} to define the new command as @code{calc-spam}.
31984 If you want to give the formula a long-style name only, you can press
31985 @key{SPC} or @key{RET} when asked which single key to use. For example
31986 @kbd{Z F @key{RET} spam @key{RET}} defines the new command as
31987 @kbd{M-x calc-spam}, with no keyboard equivalent.
31989 The third prompt is for an algebraic function name. The default is to
31990 use the same name as the command name but without the @samp{calc-}
31991 prefix. (If this is of the form @samp{User-m}, the hyphen is removed so
31992 it won't be taken for a minus sign in algebraic formulas.)
31993 This is the name you will use if you want to enter your
31994 new function in an algebraic formula. Suppose we enter @kbd{yow @key{RET}}.
31995 Then the new function can be invoked by pushing two numbers on the
31996 stack and typing @kbd{z m} or @kbd{x spam}, or by entering the algebraic
31997 formula @samp{yow(x,y)}.
31999 The fourth prompt is for the function's argument list. This is used to
32000 associate values on the stack with the variables that appear in the formula.
32001 The default is a list of all variables which appear in the formula, sorted
32002 into alphabetical order. In our case, the default would be @samp{(a b)}.
32003 This means that, when the user types @kbd{z m}, the Calculator will remove
32004 two numbers from the stack, substitute these numbers for @samp{a} and
32005 @samp{b} (respectively) in the formula, then simplify the formula and
32006 push the result on the stack. In other words, @kbd{10 @key{RET} 100 z m}
32007 would replace the 10 and 100 on the stack with the number 210, which is
32008 @expr{a + 2 b} with @expr{a=10} and @expr{b=100}. Likewise, the formula
32009 @samp{yow(10, 100)} will be evaluated by substituting @expr{a=10} and
32010 @expr{b=100} in the definition.
32012 You can rearrange the order of the names before pressing @key{RET} to
32013 control which stack positions go to which variables in the formula. If
32014 you remove a variable from the argument list, that variable will be left
32015 in symbolic form by the command. Thus using an argument list of @samp{(b)}
32016 for our function would cause @kbd{10 z m} to replace the 10 on the stack
32017 with the formula @samp{a + 20}. If we had used an argument list of
32018 @samp{(b a)}, the result with inputs 10 and 100 would have been 120.
32020 You can also put a nameless function on the stack instead of just a
32021 formula, as in @samp{<a, b : a + 2 b>}. @xref{Specifying Operators}.
32022 In this example, the command will be defined by the formula @samp{a + 2 b}
32023 using the argument list @samp{(a b)}.
32025 The final prompt is a y-or-n question concerning what to do if symbolic
32026 arguments are given to your function. If you answer @kbd{y}, then
32027 executing @kbd{z m} (using the original argument list @samp{(a b)}) with
32028 arguments @expr{10} and @expr{x} will leave the function in symbolic
32029 form, i.e., @samp{yow(10,x)}. On the other hand, if you answer @kbd{n},
32030 then the formula will always be expanded, even for non-constant
32031 arguments: @samp{10 + 2 x}. If you never plan to feed algebraic
32032 formulas to your new function, it doesn't matter how you answer this
32035 If you answered @kbd{y} to this question you can still cause a function
32036 call to be expanded by typing @kbd{a "} (@code{calc-expand-formula}).
32037 Also, Calc will expand the function if necessary when you take a
32038 derivative or integral or solve an equation involving the function.
32041 @pindex calc-get-user-defn
32042 Once you have defined a formula on a key, you can retrieve this formula
32043 with the @kbd{Z G} (@code{calc-user-define-get-defn}) command. Press a
32044 key, and this command pushes the formula that was used to define that
32045 key onto the stack. Actually, it pushes a nameless function that
32046 specifies both the argument list and the defining formula. You will get
32047 an error message if the key is undefined, or if the key was not defined
32048 by a @kbd{Z F} command.
32050 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
32051 been defined by a formula uses a variant of the @code{calc-edit} command
32052 to edit the defining formula. Press @kbd{C-c C-c} to finish editing and
32053 store the new formula back in the definition, or kill the buffer with
32055 cancel the edit. (The argument list and other properties of the
32056 definition are unchanged; to adjust the argument list, you can use
32057 @kbd{Z G} to grab the function onto the stack, edit with @kbd{`}, and
32058 then re-execute the @kbd{Z F} command.)
32060 As usual, the @kbd{Z P} command records your definition permanently.
32061 In this case it will permanently record all three of the relevant
32062 definitions: the key, the command, and the function.
32064 You may find it useful to turn off the default simplifications with
32065 @kbd{m O} (@code{calc-no-simplify-mode}) when entering a formula to be
32066 used as a function definition. For example, the formula @samp{deriv(a^2,v)}
32067 which might be used to define a new function @samp{dsqr(a,v)} will be
32068 ``simplified'' to 0 immediately upon entry since @code{deriv} considers
32069 @expr{a} to be constant with respect to @expr{v}. Turning off
32070 default simplifications cures this problem: The definition will be stored
32071 in symbolic form without ever activating the @code{deriv} function. Press
32072 @kbd{m D} to turn the default simplifications back on afterwards.
32074 @node Lisp Definitions, , Algebraic Definitions, Programming
32075 @section Programming with Lisp
32078 The Calculator can be programmed quite extensively in Lisp. All you
32079 do is write a normal Lisp function definition, but with @code{defmath}
32080 in place of @code{defun}. This has the same form as @code{defun}, but it
32081 automagically replaces calls to standard Lisp functions like @code{+} and
32082 @code{zerop} with calls to the corresponding functions in Calc's own library.
32083 Thus you can write natural-looking Lisp code which operates on all of the
32084 standard Calculator data types. You can then use @kbd{Z D} if you wish to
32085 bind your new command to a @kbd{z}-prefix key sequence. The @kbd{Z E} command
32086 will not edit a Lisp-based definition.
32088 Emacs Lisp is described in the GNU Emacs Lisp Reference Manual. This section
32089 assumes a familiarity with Lisp programming concepts; if you do not know
32090 Lisp, you may find keyboard macros or rewrite rules to be an easier way
32091 to program the Calculator.
32093 This section first discusses ways to write commands, functions, or
32094 small programs to be executed inside of Calc. Then it discusses how
32095 your own separate programs are able to call Calc from the outside.
32096 Finally, there is a list of internal Calc functions and data structures
32097 for the true Lisp enthusiast.
32100 * Defining Functions::
32101 * Defining Simple Commands::
32102 * Defining Stack Commands::
32103 * Argument Qualifiers::
32104 * Example Definitions::
32106 * Calling Calc from Your Programs::
32110 @node Defining Functions, Defining Simple Commands, Lisp Definitions, Lisp Definitions
32111 @subsection Defining New Functions
32115 The @code{defmath} function (actually a Lisp macro) is like @code{defun}
32116 except that code in the body of the definition can make use of the full
32117 range of Calculator data types. The prefix @samp{calcFunc-} is added
32118 to the specified name to get the actual Lisp function name. As a simple
32122 (defmath myfact (n)
32124 (* n (myfact (1- n)))
32129 This actually expands to the code,
32132 (defun calcFunc-myfact (n)
32134 (math-mul n (calcFunc-myfact (math-add n -1)))
32139 This function can be used in algebraic expressions, e.g., @samp{myfact(5)}.
32141 The @samp{myfact} function as it is defined above has the bug that an
32142 expression @samp{myfact(a+b)} will be simplified to 1 because the
32143 formula @samp{a+b} is not considered to be @code{posp}. A robust
32144 factorial function would be written along the following lines:
32147 (defmath myfact (n)
32149 (* n (myfact (1- n)))
32152 nil))) ; this could be simplified as: (and (= n 0) 1)
32155 If a function returns @code{nil}, it is left unsimplified by the Calculator
32156 (except that its arguments will be simplified). Thus, @samp{myfact(a+1+2)}
32157 will be simplified to @samp{myfact(a+3)} but no further. Beware that every
32158 time the Calculator reexamines this formula it will attempt to resimplify
32159 it, so your function ought to detect the returning-@code{nil} case as
32160 efficiently as possible.
32162 The following standard Lisp functions are treated by @code{defmath}:
32163 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^} or
32164 @code{expt}, @code{=}, @code{<}, @code{>}, @code{<=}, @code{>=},
32165 @code{/=}, @code{1+}, @code{1-}, @code{logand}, @code{logior}, @code{logxor},
32166 @code{logandc2}, @code{lognot}. Also, @code{~=} is an abbreviation for
32167 @code{math-nearly-equal}, which is useful in implementing Taylor series.
32169 For other functions @var{func}, if a function by the name
32170 @samp{calcFunc-@var{func}} exists it is used, otherwise if a function by the
32171 name @samp{math-@var{func}} exists it is used, otherwise if @var{func} itself
32172 is defined as a function it is used, otherwise @samp{calcFunc-@var{func}} is
32173 used on the assumption that this is a to-be-defined math function. Also, if
32174 the function name is quoted as in @samp{('integerp a)} the function name is
32175 always used exactly as written (but not quoted).
32177 Variable names have @samp{var-} prepended to them unless they appear in
32178 the function's argument list or in an enclosing @code{let}, @code{let*},
32179 @code{for}, or @code{foreach} form,
32180 or their names already contain a @samp{-} character. Thus a reference to
32181 @samp{foo} is the same as a reference to @samp{var-foo}.
32183 A few other Lisp extensions are available in @code{defmath} definitions:
32187 The @code{elt} function accepts any number of index variables.
32188 Note that Calc vectors are stored as Lisp lists whose first
32189 element is the symbol @code{vec}; thus, @samp{(elt v 2)} yields
32190 the second element of vector @code{v}, and @samp{(elt m i j)}
32191 yields one element of a Calc matrix.
32194 The @code{setq} function has been extended to act like the Common
32195 Lisp @code{setf} function. (The name @code{setf} is recognized as
32196 a synonym of @code{setq}.) Specifically, the first argument of
32197 @code{setq} can be an @code{nth}, @code{elt}, @code{car}, or @code{cdr} form,
32198 in which case the effect is to store into the specified
32199 element of a list. Thus, @samp{(setq (elt m i j) x)} stores @expr{x}
32200 into one element of a matrix.
32203 A @code{for} looping construct is available. For example,
32204 @samp{(for ((i 0 10)) body)} executes @code{body} once for each
32205 binding of @expr{i} from zero to 10. This is like a @code{let}
32206 form in that @expr{i} is temporarily bound to the loop count
32207 without disturbing its value outside the @code{for} construct.
32208 Nested loops, as in @samp{(for ((i 0 10) (j 0 (1- i) 2)) body)},
32209 are also available. For each value of @expr{i} from zero to 10,
32210 @expr{j} counts from 0 to @expr{i-1} in steps of two. Note that
32211 @code{for} has the same general outline as @code{let*}, except
32212 that each element of the header is a list of three or four
32213 things, not just two.
32216 The @code{foreach} construct loops over elements of a list.
32217 For example, @samp{(foreach ((x (cdr v))) body)} executes
32218 @code{body} with @expr{x} bound to each element of Calc vector
32219 @expr{v} in turn. The purpose of @code{cdr} here is to skip over
32220 the initial @code{vec} symbol in the vector.
32223 The @code{break} function breaks out of the innermost enclosing
32224 @code{while}, @code{for}, or @code{foreach} loop. If given a
32225 value, as in @samp{(break x)}, this value is returned by the
32226 loop. (Lisp loops otherwise always return @code{nil}.)
32229 The @code{return} function prematurely returns from the enclosing
32230 function. For example, @samp{(return (+ x y))} returns @expr{x+y}
32231 as the value of a function. You can use @code{return} anywhere
32232 inside the body of the function.
32235 Non-integer numbers (and extremely large integers) cannot be included
32236 directly into a @code{defmath} definition. This is because the Lisp
32237 reader will fail to parse them long before @code{defmath} ever gets control.
32238 Instead, use the notation, @samp{:"3.1415"}. In fact, any algebraic
32239 formula can go between the quotes. For example,
32242 (defmath sqexp (x) ; sqexp(x) == sqrt(exp(x)) == exp(x*0.5)
32250 (defun calcFunc-sqexp (x)
32251 (and (math-numberp x)
32252 (calcFunc-exp (math-mul x '(float 5 -1)))))
32255 Note the use of @code{numberp} as a guard to ensure that the argument is
32256 a number first, returning @code{nil} if not. The exponential function
32257 could itself have been included in the expression, if we had preferred:
32258 @samp{:"exp(x * 0.5)"}. As another example, the multiplication-and-recursion
32259 step of @code{myfact} could have been written
32265 A good place to put your @code{defmath} commands is your Calc init file
32266 (the file given by @code{calc-settings-file}, typically
32267 @file{~/.emacs.d/calc.el}), which will not be loaded until Calc starts.
32268 If a file named @file{.emacs} exists in your home directory, Emacs reads
32269 and executes the Lisp forms in this file as it starts up. While it may
32270 seem reasonable to put your favorite @code{defmath} commands there,
32271 this has the unfortunate side-effect that parts of the Calculator must be
32272 loaded in to process the @code{defmath} commands whether or not you will
32273 actually use the Calculator! If you want to put the @code{defmath}
32274 commands there (for example, if you redefine @code{calc-settings-file}
32275 to be @file{.emacs}), a better effect can be had by writing
32278 (put 'calc-define 'thing '(progn
32285 @vindex calc-define
32286 The @code{put} function adds a @dfn{property} to a symbol. Each Lisp
32287 symbol has a list of properties associated with it. Here we add a
32288 property with a name of @code{thing} and a @samp{(progn ...)} form as
32289 its value. When Calc starts up, and at the start of every Calc command,
32290 the property list for the symbol @code{calc-define} is checked and the
32291 values of any properties found are evaluated as Lisp forms. The
32292 properties are removed as they are evaluated. The property names
32293 (like @code{thing}) are not used; you should choose something like the
32294 name of your project so as not to conflict with other properties.
32296 The net effect is that you can put the above code in your @file{.emacs}
32297 file and it will not be executed until Calc is loaded. Or, you can put
32298 that same code in another file which you load by hand either before or
32299 after Calc itself is loaded.
32301 The properties of @code{calc-define} are evaluated in the same order
32302 that they were added. They can assume that the Calc modules @file{calc.el},
32303 @file{calc-ext.el}, and @file{calc-macs.el} have been fully loaded, and
32304 that the @samp{*Calculator*} buffer will be the current buffer.
32306 If your @code{calc-define} property only defines algebraic functions,
32307 you can be sure that it will have been evaluated before Calc tries to
32308 call your function, even if the file defining the property is loaded
32309 after Calc is loaded. But if the property defines commands or key
32310 sequences, it may not be evaluated soon enough. (Suppose it defines the
32311 new command @code{tweak-calc}; the user can load your file, then type
32312 @kbd{M-x tweak-calc} before Calc has had chance to do anything.) To
32313 protect against this situation, you can put
32316 (run-hooks 'calc-check-defines)
32319 @findex calc-check-defines
32321 at the end of your file. The @code{calc-check-defines} function is what
32322 looks for and evaluates properties on @code{calc-define}; @code{run-hooks}
32323 has the advantage that it is quietly ignored if @code{calc-check-defines}
32324 is not yet defined because Calc has not yet been loaded.
32326 Examples of things that ought to be enclosed in a @code{calc-define}
32327 property are @code{defmath} calls, @code{define-key} calls that modify
32328 the Calc key map, and any calls that redefine things defined inside Calc.
32329 Ordinary @code{defun}s need not be enclosed with @code{calc-define}.
32331 @node Defining Simple Commands, Defining Stack Commands, Defining Functions, Lisp Definitions
32332 @subsection Defining New Simple Commands
32335 @findex interactive
32336 If a @code{defmath} form contains an @code{interactive} clause, it defines
32337 a Calculator command. Actually such a @code{defmath} results in @emph{two}
32338 function definitions: One, a @samp{calcFunc-} function as was just described,
32339 with the @code{interactive} clause removed. Two, a @samp{calc-} function
32340 with a suitable @code{interactive} clause and some sort of wrapper to make
32341 the command work in the Calc environment.
32343 In the simple case, the @code{interactive} clause has the same form as
32344 for normal Emacs Lisp commands:
32347 (defmath increase-precision (delta)
32348 "Increase precision by DELTA." ; This is the "documentation string"
32349 (interactive "p") ; Register this as a M-x-able command
32350 (setq calc-internal-prec (+ calc-internal-prec delta)))
32353 This expands to the pair of definitions,
32356 (defun calc-increase-precision (delta)
32357 "Increase precision by DELTA."
32360 (setq calc-internal-prec (math-add calc-internal-prec delta))))
32362 (defun calcFunc-increase-precision (delta)
32363 "Increase precision by DELTA."
32364 (setq calc-internal-prec (math-add calc-internal-prec delta)))
32368 where in this case the latter function would never really be used! Note
32369 that since the Calculator stores small integers as plain Lisp integers,
32370 the @code{math-add} function will work just as well as the native
32371 @code{+} even when the intent is to operate on native Lisp integers.
32373 @findex calc-wrapper
32374 The @samp{calc-wrapper} call invokes a macro which surrounds the body of
32375 the function with code that looks roughly like this:
32378 (let ((calc-command-flags nil))
32380 (save-current-buffer
32381 (calc-select-buffer)
32382 @emph{body of function}
32383 @emph{renumber stack}
32384 @emph{clear} Working @emph{message})
32385 @emph{realign cursor and window}
32386 @emph{clear Inverse, Hyperbolic, and Keep Args flags}
32387 @emph{update Emacs mode line}))
32390 @findex calc-select-buffer
32391 The @code{calc-select-buffer} function selects the @samp{*Calculator*}
32392 buffer if necessary, say, because the command was invoked from inside
32393 the @samp{*Calc Trail*} window.
32395 @findex calc-set-command-flag
32396 You can call, for example, @code{(calc-set-command-flag 'no-align)} to
32397 set the above-mentioned command flags. Calc routines recognize the
32398 following command flags:
32402 Stack line numbers @samp{1:}, @samp{2:}, and so on must be renumbered
32403 after this command completes. This is set by routines like
32406 @item clear-message
32407 Calc should call @samp{(message "")} if this command completes normally
32408 (to clear a ``Working@dots{}'' message out of the echo area).
32411 Do not move the cursor back to the @samp{.} top-of-stack marker.
32413 @item position-point
32414 Use the variables @code{calc-position-point-line} and
32415 @code{calc-position-point-column} to position the cursor after
32416 this command finishes.
32419 Do not clear @code{calc-inverse-flag}, @code{calc-hyperbolic-flag},
32420 and @code{calc-keep-args-flag} at the end of this command.
32423 Switch to buffer @samp{*Calc Edit*} after this command.
32426 Do not move trail pointer to end of trail when something is recorded
32432 @vindex calc-Y-help-msgs
32433 Calc reserves a special prefix key, shift-@kbd{Y}, for user-written
32434 extensions to Calc. There are no built-in commands that work with
32435 this prefix key; you must call @code{define-key} from Lisp (probably
32436 from inside a @code{calc-define} property) to add to it. Initially only
32437 @kbd{Y ?} is defined; it takes help messages from a list of strings
32438 (initially @code{nil}) in the variable @code{calc-Y-help-msgs}. All
32439 other undefined keys except for @kbd{Y} are reserved for use by
32440 future versions of Calc.
32442 If you are writing a Calc enhancement which you expect to give to
32443 others, it is best to minimize the number of @kbd{Y}-key sequences
32444 you use. In fact, if you have more than one key sequence you should
32445 consider defining three-key sequences with a @kbd{Y}, then a key that
32446 stands for your package, then a third key for the particular command
32447 within your package.
32449 Users may wish to install several Calc enhancements, and it is possible
32450 that several enhancements will choose to use the same key. In the
32451 example below, a variable @code{inc-prec-base-key} has been defined
32452 to contain the key that identifies the @code{inc-prec} package. Its
32453 value is initially @code{"P"}, but a user can change this variable
32454 if necessary without having to modify the file.
32456 Here is a complete file, @file{inc-prec.el}, which makes a @kbd{Y P I}
32457 command that increases the precision, and a @kbd{Y P D} command that
32458 decreases the precision.
32461 ;;; Increase and decrease Calc precision. Dave Gillespie, 5/31/91.
32462 ;; (Include copyright or copyleft stuff here.)
32464 (defvar inc-prec-base-key "P"
32465 "Base key for inc-prec.el commands.")
32467 (put 'calc-define 'inc-prec '(progn
32469 (define-key calc-mode-map (format "Y%sI" inc-prec-base-key)
32470 'increase-precision)
32471 (define-key calc-mode-map (format "Y%sD" inc-prec-base-key)
32472 'decrease-precision)
32474 (setq calc-Y-help-msgs
32475 (cons (format "%s + Inc-prec, Dec-prec" inc-prec-base-key)
32478 (defmath increase-precision (delta)
32479 "Increase precision by DELTA."
32481 (setq calc-internal-prec (+ calc-internal-prec delta)))
32483 (defmath decrease-precision (delta)
32484 "Decrease precision by DELTA."
32486 (setq calc-internal-prec (- calc-internal-prec delta)))
32488 )) ; end of calc-define property
32490 (run-hooks 'calc-check-defines)
32493 @node Defining Stack Commands, Argument Qualifiers, Defining Simple Commands, Lisp Definitions
32494 @subsection Defining New Stack-Based Commands
32497 To define a new computational command which takes and/or leaves arguments
32498 on the stack, a special form of @code{interactive} clause is used.
32501 (interactive @var{num} @var{tag})
32505 where @var{num} is an integer, and @var{tag} is a string. The effect is
32506 to pop @var{num} values off the stack, resimplify them by calling
32507 @code{calc-normalize}, and hand them to your function according to the
32508 function's argument list. Your function may include @code{&optional} and
32509 @code{&rest} parameters, so long as calling the function with @var{num}
32510 parameters is valid.
32512 Your function must return either a number or a formula in a form
32513 acceptable to Calc, or a list of such numbers or formulas. These value(s)
32514 are pushed onto the stack when the function completes. They are also
32515 recorded in the Calc Trail buffer on a line beginning with @var{tag},
32516 a string of (normally) four characters or less. If you omit @var{tag}
32517 or use @code{nil} as a tag, the result is not recorded in the trail.
32519 As an example, the definition
32522 (defmath myfact (n)
32523 "Compute the factorial of the integer at the top of the stack."
32524 (interactive 1 "fact")
32526 (* n (myfact (1- n)))
32531 is a version of the factorial function shown previously which can be used
32532 as a command as well as an algebraic function. It expands to
32535 (defun calc-myfact ()
32536 "Compute the factorial of the integer at the top of the stack."
32539 (calc-enter-result 1 "fact"
32540 (cons 'calcFunc-myfact (calc-top-list-n 1)))))
32542 (defun calcFunc-myfact (n)
32543 "Compute the factorial of the integer at the top of the stack."
32545 (math-mul n (calcFunc-myfact (math-add n -1)))
32546 (and (math-zerop n) 1)))
32549 @findex calc-slow-wrapper
32550 The @code{calc-slow-wrapper} function is a version of @code{calc-wrapper}
32551 that automatically puts up a @samp{Working...} message before the
32552 computation begins. (This message can be turned off by the user
32553 with an @kbd{m w} (@code{calc-working}) command.)
32555 @findex calc-top-list-n
32556 The @code{calc-top-list-n} function returns a list of the specified number
32557 of values from the top of the stack. It resimplifies each value by
32558 calling @code{calc-normalize}. If its argument is zero it returns an
32559 empty list. It does not actually remove these values from the stack.
32561 @findex calc-enter-result
32562 The @code{calc-enter-result} function takes an integer @var{num} and string
32563 @var{tag} as described above, plus a third argument which is either a
32564 Calculator data object or a list of such objects. These objects are
32565 resimplified and pushed onto the stack after popping the specified number
32566 of values from the stack. If @var{tag} is non-@code{nil}, the values
32567 being pushed are also recorded in the trail.
32569 Note that if @code{calcFunc-myfact} returns @code{nil} this represents
32570 ``leave the function in symbolic form.'' To return an actual empty list,
32571 in the sense that @code{calc-enter-result} will push zero elements back
32572 onto the stack, you should return the special value @samp{'(nil)}, a list
32573 containing the single symbol @code{nil}.
32575 The @code{interactive} declaration can actually contain a limited
32576 Emacs-style code string as well which comes just before @var{num} and
32577 @var{tag}. Currently the only Emacs code supported is @samp{"p"}, as in
32580 (defmath foo (a b &optional c)
32581 (interactive "p" 2 "foo")
32585 In this example, the command @code{calc-foo} will evaluate the expression
32586 @samp{foo(a,b)} if executed with no argument, or @samp{foo(a,b,n)} if
32587 executed with a numeric prefix argument of @expr{n}.
32589 The other code string allowed is @samp{"m"} (unrelated to the usual @samp{"m"}
32590 code as used with @code{defun}). It uses the numeric prefix argument as the
32591 number of objects to remove from the stack and pass to the function.
32592 In this case, the integer @var{num} serves as a default number of
32593 arguments to be used when no prefix is supplied.
32595 @node Argument Qualifiers, Example Definitions, Defining Stack Commands, Lisp Definitions
32596 @subsection Argument Qualifiers
32599 Anywhere a parameter name can appear in the parameter list you can also use
32600 an @dfn{argument qualifier}. Thus the general form of a definition is:
32603 (defmath @var{name} (@var{param} @var{param...}
32604 &optional @var{param} @var{param...}
32610 where each @var{param} is either a symbol or a list of the form
32613 (@var{qual} @var{param})
32616 The following qualifiers are recognized:
32621 The argument must not be an incomplete vector, interval, or complex number.
32622 (This is rarely needed since the Calculator itself will never call your
32623 function with an incomplete argument. But there is nothing stopping your
32624 own Lisp code from calling your function with an incomplete argument.)
32628 The argument must be an integer. If it is an integer-valued float
32629 it will be accepted but converted to integer form. Non-integers and
32630 formulas are rejected.
32634 Like @samp{integer}, but the argument must be non-negative.
32638 Like @samp{integer}, but the argument must fit into a native Lisp integer,
32639 which on most systems means less than 2^23 in absolute value. The
32640 argument is converted into Lisp-integer form if necessary.
32644 The argument is converted to floating-point format if it is a number or
32645 vector. If it is a formula it is left alone. (The argument is never
32646 actually rejected by this qualifier.)
32649 The argument must satisfy predicate @var{pred}, which is one of the
32650 standard Calculator predicates. @xref{Predicates}.
32652 @item not-@var{pred}
32653 The argument must @emph{not} satisfy predicate @var{pred}.
32659 (defmath foo (a (constp (not-matrixp b)) &optional (float c)
32668 (defun calcFunc-foo (a b &optional c &rest d)
32669 (and (math-matrixp b)
32670 (math-reject-arg b 'not-matrixp))
32671 (or (math-constp b)
32672 (math-reject-arg b 'constp))
32673 (and c (setq c (math-check-float c)))
32674 (setq d (mapcar 'math-check-integer d))
32679 which performs the necessary checks and conversions before executing the
32680 body of the function.
32682 @node Example Definitions, Calling Calc from Your Programs, Argument Qualifiers, Lisp Definitions
32683 @subsection Example Definitions
32686 This section includes some Lisp programming examples on a larger scale.
32687 These programs make use of some of the Calculator's internal functions;
32691 * Bit Counting Example::
32695 @node Bit Counting Example, Sine Example, Example Definitions, Example Definitions
32696 @subsubsection Bit-Counting
32703 Calc does not include a built-in function for counting the number of
32704 ``one'' bits in a binary integer. It's easy to invent one using @kbd{b u}
32705 to convert the integer to a set, and @kbd{V #} to count the elements of
32706 that set; let's write a function that counts the bits without having to
32707 create an intermediate set.
32710 (defmath bcount ((natnum n))
32711 (interactive 1 "bcnt")
32715 (setq count (1+ count)))
32716 (setq n (lsh n -1)))
32721 When this is expanded by @code{defmath}, it will become the following
32722 Emacs Lisp function:
32725 (defun calcFunc-bcount (n)
32726 (setq n (math-check-natnum n))
32728 (while (math-posp n)
32730 (setq count (math-add count 1)))
32731 (setq n (calcFunc-lsh n -1)))
32735 If the input numbers are large, this function involves a fair amount
32736 of arithmetic. A binary right shift is essentially a division by two;
32737 recall that Calc stores integers in decimal form so bit shifts must
32738 involve actual division.
32740 To gain a bit more efficiency, we could divide the integer into
32741 @var{n}-bit chunks, each of which can be handled quickly because
32742 they fit into Lisp integers. It turns out that Calc's arithmetic
32743 routines are especially fast when dividing by an integer less than
32744 1000, so we can set @var{n = 9} bits and use repeated division by 512:
32747 (defmath bcount ((natnum n))
32748 (interactive 1 "bcnt")
32750 (while (not (fixnump n))
32751 (let ((qr (idivmod n 512)))
32752 (setq count (+ count (bcount-fixnum (cdr qr)))
32754 (+ count (bcount-fixnum n))))
32756 (defun bcount-fixnum (n)
32759 (setq count (+ count (logand n 1))
32765 Note that the second function uses @code{defun}, not @code{defmath}.
32766 Because this function deals only with native Lisp integers (``fixnums''),
32767 it can use the actual Emacs @code{+} and related functions rather
32768 than the slower but more general Calc equivalents which @code{defmath}
32771 The @code{idivmod} function does an integer division, returning both
32772 the quotient and the remainder at once. Again, note that while it
32773 might seem that @samp{(logand n 511)} and @samp{(lsh n -9)} are
32774 more efficient ways to split off the bottom nine bits of @code{n},
32775 actually they are less efficient because each operation is really
32776 a division by 512 in disguise; @code{idivmod} allows us to do the
32777 same thing with a single division by 512.
32779 @node Sine Example, , Bit Counting Example, Example Definitions
32780 @subsubsection The Sine Function
32787 A somewhat limited sine function could be defined as follows, using the
32788 well-known Taylor series expansion for
32789 @texline @math{\sin x}:
32790 @infoline @samp{sin(x)}:
32793 (defmath mysin ((float (anglep x)))
32794 (interactive 1 "mysn")
32795 (setq x (to-radians x)) ; Convert from current angular mode.
32796 (let ((sum x) ; Initial term of Taylor expansion of sin.
32798 (nfact 1) ; "nfact" equals "n" factorial at all times.
32799 (xnegsqr :"-(x^2)")) ; "xnegsqr" equals -x^2.
32800 (for ((n 3 100 2)) ; Upper limit of 100 is a good precaution.
32801 (working "mysin" sum) ; Display "Working" message, if enabled.
32802 (setq nfact (* nfact (1- n) n)
32804 newsum (+ sum (/ x nfact)))
32805 (if (~= newsum sum) ; If newsum is "nearly equal to" sum,
32806 (break)) ; then we are done.
32811 The actual @code{sin} function in Calc works by first reducing the problem
32812 to a sine or cosine of a nonnegative number less than @cpiover{4}. This
32813 ensures that the Taylor series will converge quickly. Also, the calculation
32814 is carried out with two extra digits of precision to guard against cumulative
32815 round-off in @samp{sum}. Finally, complex arguments are allowed and handled
32816 by a separate algorithm.
32819 (defmath mysin ((float (scalarp x)))
32820 (interactive 1 "mysn")
32821 (setq x (to-radians x)) ; Convert from current angular mode.
32822 (with-extra-prec 2 ; Evaluate with extra precision.
32823 (cond ((complexp x)
32826 (- (mysin-raw (- x))) ; Always call mysin-raw with x >= 0.
32827 (t (mysin-raw x))))))
32829 (defmath mysin-raw (x)
32831 (mysin-raw (% x (two-pi)))) ; Now x < 7.
32833 (- (mysin-raw (- x (pi))))) ; Now -pi/2 <= x <= pi/2.
32835 (mycos-raw (- x (pi-over-2)))) ; Now -pi/2 <= x <= pi/4.
32836 ((< x (- (pi-over-4)))
32837 (- (mycos-raw (+ x (pi-over-2))))) ; Now -pi/4 <= x <= pi/4,
32838 (t (mysin-series x)))) ; so the series will be efficient.
32842 where @code{mysin-complex} is an appropriate function to handle complex
32843 numbers, @code{mysin-series} is the routine to compute the sine Taylor
32844 series as before, and @code{mycos-raw} is a function analogous to
32845 @code{mysin-raw} for cosines.
32847 The strategy is to ensure that @expr{x} is nonnegative before calling
32848 @code{mysin-raw}. This function then recursively reduces its argument
32849 to a suitable range, namely, plus-or-minus @cpiover{4}. Note that each
32850 test, and particularly the first comparison against 7, is designed so
32851 that small roundoff errors cannot produce an infinite loop. (Suppose
32852 we compared with @samp{(two-pi)} instead; if due to roundoff problems
32853 the modulo operator ever returned @samp{(two-pi)} exactly, an infinite
32854 recursion could result!) We use modulo only for arguments that will
32855 clearly get reduced, knowing that the next rule will catch any reductions
32856 that this rule misses.
32858 If a program is being written for general use, it is important to code
32859 it carefully as shown in this second example. For quick-and-dirty programs,
32860 when you know that your own use of the sine function will never encounter
32861 a large argument, a simpler program like the first one shown is fine.
32863 @node Calling Calc from Your Programs, Internals, Example Definitions, Lisp Definitions
32864 @subsection Calling Calc from Your Lisp Programs
32867 A later section (@pxref{Internals}) gives a full description of
32868 Calc's internal Lisp functions. It's not hard to call Calc from
32869 inside your programs, but the number of these functions can be daunting.
32870 So Calc provides one special ``programmer-friendly'' function called
32871 @code{calc-eval} that can be made to do just about everything you
32872 need. It's not as fast as the low-level Calc functions, but it's
32873 much simpler to use!
32875 It may seem that @code{calc-eval} itself has a daunting number of
32876 options, but they all stem from one simple operation.
32878 In its simplest manifestation, @samp{(calc-eval "1+2")} parses the
32879 string @code{"1+2"} as if it were a Calc algebraic entry and returns
32880 the result formatted as a string: @code{"3"}.
32882 Since @code{calc-eval} is on the list of recommended @code{autoload}
32883 functions, you don't need to make any special preparations to load
32884 Calc before calling @code{calc-eval} the first time. Calc will be
32885 loaded and initialized for you.
32887 All the Calc modes that are currently in effect will be used when
32888 evaluating the expression and formatting the result.
32895 @subsubsection Additional Arguments to @code{calc-eval}
32898 If the input string parses to a list of expressions, Calc returns
32899 the results separated by @code{", "}. You can specify a different
32900 separator by giving a second string argument to @code{calc-eval}:
32901 @samp{(calc-eval "1+2,3+4" ";")} returns @code{"3;7"}.
32903 The ``separator'' can also be any of several Lisp symbols which
32904 request other behaviors from @code{calc-eval}. These are discussed
32907 You can give additional arguments to be substituted for
32908 @samp{$}, @samp{$$}, and so on in the main expression. For
32909 example, @samp{(calc-eval "$/$$" nil "7" "1+1")} evaluates the
32910 expression @code{"7/(1+1)"} to yield the result @code{"3.5"}
32911 (assuming Fraction mode is not in effect). Note the @code{nil}
32912 used as a placeholder for the item-separator argument.
32919 @subsubsection Error Handling
32922 If @code{calc-eval} encounters an error, it returns a list containing
32923 the character position of the error, plus a suitable message as a
32924 string. Note that @samp{1 / 0} is @emph{not} an error by Calc's
32925 standards; it simply returns the string @code{"1 / 0"} which is the
32926 division left in symbolic form. But @samp{(calc-eval "1/")} will
32927 return the list @samp{(2 "Expected a number")}.
32929 If you bind the variable @code{calc-eval-error} to @code{t}
32930 using a @code{let} form surrounding the call to @code{calc-eval},
32931 errors instead call the Emacs @code{error} function which aborts
32932 to the Emacs command loop with a beep and an error message.
32934 If you bind this variable to the symbol @code{string}, error messages
32935 are returned as strings instead of lists. The character position is
32938 As a courtesy to other Lisp code which may be using Calc, be sure
32939 to bind @code{calc-eval-error} using @code{let} rather than changing
32940 it permanently with @code{setq}.
32947 @subsubsection Numbers Only
32950 Sometimes it is preferable to treat @samp{1 / 0} as an error
32951 rather than returning a symbolic result. If you pass the symbol
32952 @code{num} as the second argument to @code{calc-eval}, results
32953 that are not constants are treated as errors. The error message
32954 reported is the first @code{calc-why} message if there is one,
32955 or otherwise ``Number expected.''
32957 A result is ``constant'' if it is a number, vector, or other
32958 object that does not include variables or function calls. If it
32959 is a vector, the components must themselves be constants.
32966 @subsubsection Default Modes
32969 If the first argument to @code{calc-eval} is a list whose first
32970 element is a formula string, then @code{calc-eval} sets all the
32971 various Calc modes to their default values while the formula is
32972 evaluated and formatted. For example, the precision is set to 12
32973 digits, digit grouping is turned off, and the Normal language
32976 This same principle applies to the other options discussed below.
32977 If the first argument would normally be @var{x}, then it can also
32978 be the list @samp{(@var{x})} to use the default mode settings.
32980 If there are other elements in the list, they are taken as
32981 variable-name/value pairs which override the default mode
32982 settings. Look at the documentation at the front of the
32983 @file{calc.el} file to find the names of the Lisp variables for
32984 the various modes. The mode settings are restored to their
32985 original values when @code{calc-eval} is done.
32987 For example, @samp{(calc-eval '("$+$$" calc-internal-prec 8) 'num a b)}
32988 computes the sum of two numbers, requiring a numeric result, and
32989 using default mode settings except that the precision is 8 instead
32990 of the default of 12.
32992 It's usually best to use this form of @code{calc-eval} unless your
32993 program actually considers the interaction with Calc's mode settings
32994 to be a feature. This will avoid all sorts of potential ``gotchas'';
32995 consider what happens with @samp{(calc-eval "sqrt(2)" 'num)}
32996 when the user has left Calc in Symbolic mode or No-Simplify mode.
32998 As another example, @samp{(equal (calc-eval '("$<$$") nil a b) "1")}
32999 checks if the number in string @expr{a} is less than the one in
33000 string @expr{b}. Without using a list, the integer 1 might
33001 come out in a variety of formats which would be hard to test for
33002 conveniently: @code{"1"}, @code{"8#1"}, @code{"00001"}. (But
33003 see ``Predicates'' mode, below.)
33010 @subsubsection Raw Numbers
33013 Normally all input and output for @code{calc-eval} is done with strings.
33014 You can do arithmetic with, say, @samp{(calc-eval "$+$$" nil a b)}
33015 in place of @samp{(+ a b)}, but this is very inefficient since the
33016 numbers must be converted to and from string format as they are passed
33017 from one @code{calc-eval} to the next.
33019 If the separator is the symbol @code{raw}, the result will be returned
33020 as a raw Calc data structure rather than a string. You can read about
33021 how these objects look in the following sections, but usually you can
33022 treat them as ``black box'' objects with no important internal
33025 There is also a @code{rawnum} symbol, which is a combination of
33026 @code{raw} (returning a raw Calc object) and @code{num} (signaling
33027 an error if that object is not a constant).
33029 You can pass a raw Calc object to @code{calc-eval} in place of a
33030 string, either as the formula itself or as one of the @samp{$}
33031 arguments. Thus @samp{(calc-eval "$+$$" 'raw a b)} is an
33032 addition function that operates on raw Calc objects. Of course
33033 in this case it would be easier to call the low-level @code{math-add}
33034 function in Calc, if you can remember its name.
33036 In particular, note that a plain Lisp integer is acceptable to Calc
33037 as a raw object. (All Lisp integers are accepted on input, but
33038 integers of more than six decimal digits are converted to ``big-integer''
33039 form for output. @xref{Data Type Formats}.)
33041 When it comes time to display the object, just use @samp{(calc-eval a)}
33042 to format it as a string.
33044 It is an error if the input expression evaluates to a list of
33045 values. The separator symbol @code{list} is like @code{raw}
33046 except that it returns a list of one or more raw Calc objects.
33048 Note that a Lisp string is not a valid Calc object, nor is a list
33049 containing a string. Thus you can still safely distinguish all the
33050 various kinds of error returns discussed above.
33057 @subsubsection Predicates
33060 If the separator symbol is @code{pred}, the result of the formula is
33061 treated as a true/false value; @code{calc-eval} returns @code{t} or
33062 @code{nil}, respectively. A value is considered ``true'' if it is a
33063 non-zero number, or false if it is zero or if it is not a number.
33065 For example, @samp{(calc-eval "$<$$" 'pred a b)} tests whether
33066 one value is less than another.
33068 As usual, it is also possible for @code{calc-eval} to return one of
33069 the error indicators described above. Lisp will interpret such an
33070 indicator as ``true'' if you don't check for it explicitly. If you
33071 wish to have an error register as ``false'', use something like
33072 @samp{(eq (calc-eval ...) t)}.
33079 @subsubsection Variable Values
33082 Variables in the formula passed to @code{calc-eval} are not normally
33083 replaced by their values. If you wish this, you can use the
33084 @code{evalv} function (@pxref{Algebraic Manipulation}). For example,
33085 if 4 is stored in Calc variable @code{a} (i.e., in Lisp variable
33086 @code{var-a}), then @samp{(calc-eval "a+pi")} will return the
33087 formula @code{"a + pi"}, but @samp{(calc-eval "evalv(a+pi)")}
33088 will return @code{"7.14159265359"}.
33090 To store in a Calc variable, just use @code{setq} to store in the
33091 corresponding Lisp variable. (This is obtained by prepending
33092 @samp{var-} to the Calc variable name.) Calc routines will
33093 understand either string or raw form values stored in variables,
33094 although raw data objects are much more efficient. For example,
33095 to increment the Calc variable @code{a}:
33098 (setq var-a (calc-eval "evalv(a+1)" 'raw))
33106 @subsubsection Stack Access
33109 If the separator symbol is @code{push}, the formula argument is
33110 evaluated (with possible @samp{$} expansions, as usual). The
33111 result is pushed onto the Calc stack. The return value is @code{nil}
33112 (unless there is an error from evaluating the formula, in which
33113 case the return value depends on @code{calc-eval-error} in the
33116 If the separator symbol is @code{pop}, the first argument to
33117 @code{calc-eval} must be an integer instead of a string. That
33118 many values are popped from the stack and thrown away. A negative
33119 argument deletes the entry at that stack level. The return value
33120 is the number of elements remaining in the stack after popping;
33121 @samp{(calc-eval 0 'pop)} is a good way to measure the size of
33124 If the separator symbol is @code{top}, the first argument to
33125 @code{calc-eval} must again be an integer. The value at that
33126 stack level is formatted as a string and returned. Thus
33127 @samp{(calc-eval 1 'top)} returns the top-of-stack value. If the
33128 integer is out of range, @code{nil} is returned.
33130 The separator symbol @code{rawtop} is just like @code{top} except
33131 that the stack entry is returned as a raw Calc object instead of
33134 In all of these cases the first argument can be made a list in
33135 order to force the default mode settings, as described above.
33136 Thus @samp{(calc-eval '(2 calc-number-radix 16) 'top)} returns the
33137 second-to-top stack entry, formatted as a string using the default
33138 instead of current display modes, except that the radix is
33139 hexadecimal instead of decimal.
33141 It is, of course, polite to put the Calc stack back the way you
33142 found it when you are done, unless the user of your program is
33143 actually expecting it to affect the stack.
33145 Note that you do not actually have to switch into the @samp{*Calculator*}
33146 buffer in order to use @code{calc-eval}; it temporarily switches into
33147 the stack buffer if necessary.
33154 @subsubsection Keyboard Macros
33157 If the separator symbol is @code{macro}, the first argument must be a
33158 string of characters which Calc can execute as a sequence of keystrokes.
33159 This switches into the Calc buffer for the duration of the macro.
33160 For example, @samp{(calc-eval "vx5\rVR+" 'macro)} pushes the
33161 vector @samp{[1,2,3,4,5]} on the stack and then replaces it
33162 with the sum of those numbers. Note that @samp{\r} is the Lisp
33163 notation for the carriage-return, @key{RET}, character.
33165 If your keyboard macro wishes to pop the stack, @samp{\C-d} is
33166 safer than @samp{\177} (the @key{DEL} character) because some
33167 installations may have switched the meanings of @key{DEL} and
33168 @kbd{C-h}. Calc always interprets @kbd{C-d} as a synonym for
33169 ``pop-stack'' regardless of key mapping.
33171 If you provide a third argument to @code{calc-eval}, evaluation
33172 of the keyboard macro will leave a record in the Trail using
33173 that argument as a tag string. Normally the Trail is unaffected.
33175 The return value in this case is always @code{nil}.
33182 @subsubsection Lisp Evaluation
33185 Finally, if the separator symbol is @code{eval}, then the Lisp
33186 @code{eval} function is called on the first argument, which must
33187 be a Lisp expression rather than a Calc formula. Remember to
33188 quote the expression so that it is not evaluated until inside
33191 The difference from plain @code{eval} is that @code{calc-eval}
33192 switches to the Calc buffer before evaluating the expression.
33193 For example, @samp{(calc-eval '(setq calc-internal-prec 17) 'eval)}
33194 will correctly affect the buffer-local Calc precision variable.
33196 An alternative would be @samp{(calc-eval '(calc-precision 17) 'eval)}.
33197 This is evaluating a call to the function that is normally invoked
33198 by the @kbd{p} key, giving it 17 as its ``numeric prefix argument.''
33199 Note that this function will leave a message in the echo area as
33200 a side effect. Also, all Calc functions switch to the Calc buffer
33201 automatically if not invoked from there, so the above call is
33202 also equivalent to @samp{(calc-precision 17)} by itself.
33203 In all cases, Calc uses @code{save-excursion} to switch back to
33204 your original buffer when it is done.
33206 As usual the first argument can be a list that begins with a Lisp
33207 expression to use default instead of current mode settings.
33209 The result of @code{calc-eval} in this usage is just the result
33210 returned by the evaluated Lisp expression.
33217 @subsubsection Example
33220 @findex convert-temp
33221 Here is a sample Emacs command that uses @code{calc-eval}. Suppose
33222 you have a document with lots of references to temperatures on the
33223 Fahrenheit scale, say ``98.6 F'', and you wish to convert these
33224 references to Centigrade. The following command does this conversion.
33225 Place the Emacs cursor right after the letter ``F'' and invoke the
33226 command to change ``98.6 F'' to ``37 C''. Or, if the temperature is
33227 already in Centigrade form, the command changes it back to Fahrenheit.
33230 (defun convert-temp ()
33233 (re-search-backward "[^-.0-9]\\([-.0-9]+\\) *\\([FC]\\)")
33234 (let* ((top1 (match-beginning 1))
33235 (bot1 (match-end 1))
33236 (number (buffer-substring top1 bot1))
33237 (top2 (match-beginning 2))
33238 (bot2 (match-end 2))
33239 (type (buffer-substring top2 bot2)))
33240 (if (equal type "F")
33242 number (calc-eval "($ - 32)*5/9" nil number))
33244 number (calc-eval "$*9/5 + 32" nil number)))
33246 (delete-region top2 bot2)
33247 (insert-before-markers type)
33249 (delete-region top1 bot1)
33250 (if (string-match "\\.$" number) ; change "37." to "37"
33251 (setq number (substring number 0 -1)))
33255 Note the use of @code{insert-before-markers} when changing between
33256 ``F'' and ``C'', so that the character winds up before the cursor
33257 instead of after it.
33259 @node Internals, , Calling Calc from Your Programs, Lisp Definitions
33260 @subsection Calculator Internals
33263 This section describes the Lisp functions defined by the Calculator that
33264 may be of use to user-written Calculator programs (as described in the
33265 rest of this chapter). These functions are shown by their names as they
33266 conventionally appear in @code{defmath}. Their full Lisp names are
33267 generally gotten by prepending @samp{calcFunc-} or @samp{math-} to their
33268 apparent names. (Names that begin with @samp{calc-} are already in
33269 their full Lisp form.) You can use the actual full names instead if you
33270 prefer them, or if you are calling these functions from regular Lisp.
33272 The functions described here are scattered throughout the various
33273 Calc component files. Note that @file{calc.el} includes @code{autoload}s
33274 for only a few component files; when Calc wants to call an advanced
33275 function it calls @samp{(calc-extensions)} first; this function
33276 autoloads @file{calc-ext.el}, which in turn autoloads all the functions
33277 in the remaining component files.
33279 Because @code{defmath} itself uses the extensions, user-written code
33280 generally always executes with the extensions already loaded, so
33281 normally you can use any Calc function and be confident that it will
33282 be autoloaded for you when necessary. If you are doing something
33283 special, check carefully to make sure each function you are using is
33284 from @file{calc.el} or its components, and call @samp{(calc-extensions)}
33285 before using any function based in @file{calc-ext.el} if you can't
33286 prove this file will already be loaded.
33289 * Data Type Formats::
33290 * Interactive Lisp Functions::
33291 * Stack Lisp Functions::
33293 * Computational Lisp Functions::
33294 * Vector Lisp Functions::
33295 * Symbolic Lisp Functions::
33296 * Formatting Lisp Functions::
33300 @node Data Type Formats, Interactive Lisp Functions, Internals, Internals
33301 @subsubsection Data Type Formats
33304 Integers are stored in either of two ways, depending on their magnitude.
33305 Integers less than one million in absolute value are stored as standard
33306 Lisp integers. This is the only storage format for Calc data objects
33307 which is not a Lisp list.
33309 Large integers are stored as lists of the form @samp{(bigpos @var{d0}
33310 @var{d1} @var{d2} @dots{})} for positive integers 1000000 or more, or
33311 @samp{(bigneg @var{d0} @var{d1} @var{d2} @dots{})} for negative integers
33312 @mathit{-1000000} or less. Each @var{d} is a base-1000 ``digit,'' a Lisp integer
33313 from 0 to 999. The least significant digit is @var{d0}; the last digit,
33314 @var{dn}, which is always nonzero, is the most significant digit. For
33315 example, the integer @mathit{-12345678} is stored as @samp{(bigneg 678 345 12)}.
33317 The distinction between small and large integers is entirely hidden from
33318 the user. In @code{defmath} definitions, the Lisp predicate @code{integerp}
33319 returns true for either kind of integer, and in general both big and small
33320 integers are accepted anywhere the word ``integer'' is used in this manual.
33321 If the distinction must be made, native Lisp integers are called @dfn{fixnums}
33322 and large integers are called @dfn{bignums}.
33324 Fractions are stored as a list of the form, @samp{(frac @var{n} @var{d})}
33325 where @var{n} is an integer (big or small) numerator, @var{d} is an
33326 integer denominator greater than one, and @var{n} and @var{d} are relatively
33327 prime. Note that fractions where @var{d} is one are automatically converted
33328 to plain integers by all math routines; fractions where @var{d} is negative
33329 are normalized by negating the numerator and denominator.
33331 Floating-point numbers are stored in the form, @samp{(float @var{mant}
33332 @var{exp})}, where @var{mant} (the ``mantissa'') is an integer less than
33333 @samp{10^@var{p}} in absolute value (@var{p} represents the current
33334 precision), and @var{exp} (the ``exponent'') is a fixnum. The value of
33335 the float is @samp{@var{mant} * 10^@var{exp}}. For example, the number
33336 @mathit{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}. Other constraints
33337 are that the number 0.0 is always stored as @samp{(float 0 0)}, and,
33338 except for the 0.0 case, the rightmost base-10 digit of @var{mant} is
33339 always nonzero. (If the rightmost digit is zero, the number is
33340 rearranged by dividing @var{mant} by ten and incrementing @var{exp}.)
33342 Rectangular complex numbers are stored in the form @samp{(cplx @var{re}
33343 @var{im})}, where @var{re} and @var{im} are each real numbers, either
33344 integers, fractions, or floats. The value is @samp{@var{re} + @var{im}i}.
33345 The @var{im} part is nonzero; complex numbers with zero imaginary
33346 components are converted to real numbers automatically.
33348 Polar complex numbers are stored in the form @samp{(polar @var{r}
33349 @var{theta})}, where @var{r} is a positive real value and @var{theta}
33350 is a real value or HMS form representing an angle. This angle is
33351 usually normalized to lie in the interval @samp{(-180 ..@: 180)} degrees,
33352 or @samp{(-pi ..@: pi)} radians, according to the current angular mode.
33353 If the angle is 0 the value is converted to a real number automatically.
33354 (If the angle is 180 degrees, the value is usually also converted to a
33355 negative real number.)
33357 Hours-minutes-seconds forms are stored as @samp{(hms @var{h} @var{m}
33358 @var{s})}, where @var{h} is an integer or an integer-valued float (i.e.,
33359 a float with @samp{@var{exp} >= 0}), @var{m} is an integer or integer-valued
33360 float in the range @w{@samp{[0 ..@: 60)}}, and @var{s} is any real number
33361 in the range @samp{[0 ..@: 60)}.
33363 Date forms are stored as @samp{(date @var{n})}, where @var{n} is
33364 a real number that counts days since midnight on the morning of
33365 January 1, 1 AD@. If @var{n} is an integer, this is a pure date
33366 form. If @var{n} is a fraction or float, this is a date/time form.
33368 Modulo forms are stored as @samp{(mod @var{n} @var{m})}, where @var{m} is a
33369 positive real number or HMS form, and @var{n} is a real number or HMS
33370 form in the range @samp{[0 ..@: @var{m})}.
33372 Error forms are stored as @samp{(sdev @var{x} @var{sigma})}, where @var{x}
33373 is the mean value and @var{sigma} is the standard deviation. Each
33374 component is either a number, an HMS form, or a symbolic object
33375 (a variable or function call). If @var{sigma} is zero, the value is
33376 converted to a plain real number. If @var{sigma} is negative or
33377 complex, it is automatically normalized to be a positive real.
33379 Interval forms are stored as @samp{(intv @var{mask} @var{lo} @var{hi})},
33380 where @var{mask} is one of the integers 0, 1, 2, or 3, and @var{lo} and
33381 @var{hi} are real numbers, HMS forms, or symbolic objects. The @var{mask}
33382 is a binary integer where 1 represents the fact that the interval is
33383 closed on the high end, and 2 represents the fact that it is closed on
33384 the low end. (Thus 3 represents a fully closed interval.) The interval
33385 @w{@samp{(intv 3 @var{x} @var{x})}} is converted to the plain number @var{x};
33386 intervals @samp{(intv @var{mask} @var{x} @var{x})} for any other @var{mask}
33387 represent empty intervals. If @var{hi} is less than @var{lo}, the interval
33388 is converted to a standard empty interval by replacing @var{hi} with @var{lo}.
33390 Vectors are stored as @samp{(vec @var{v1} @var{v2} @dots{})}, where @var{v1}
33391 is the first element of the vector, @var{v2} is the second, and so on.
33392 An empty vector is stored as @samp{(vec)}. A matrix is simply a vector
33393 where all @var{v}'s are themselves vectors of equal lengths. Note that
33394 Calc vectors are unrelated to the Emacs Lisp ``vector'' type, which is
33395 generally unused by Calc data structures.
33397 Variables are stored as @samp{(var @var{name} @var{sym})}, where
33398 @var{name} is a Lisp symbol whose print name is used as the visible name
33399 of the variable, and @var{sym} is a Lisp symbol in which the variable's
33400 value is actually stored. Thus, @samp{(var pi var-pi)} represents the
33401 special constant @samp{pi}. Almost always, the form is @samp{(var
33402 @var{v} var-@var{v})}. If the variable name was entered with @code{#}
33403 signs (which are converted to hyphens internally), the form is
33404 @samp{(var @var{u} @var{v})}, where @var{u} is a symbol whose name
33405 contains @code{#} characters, and @var{v} is a symbol that contains
33406 @code{-} characters instead. The value of a variable is the Calc
33407 object stored in its @var{sym} symbol's value cell. If the symbol's
33408 value cell is void or if it contains @code{nil}, the variable has no
33409 value. Special constants have the form @samp{(special-const
33410 @var{value})} stored in their value cell, where @var{value} is a formula
33411 which is evaluated when the constant's value is requested. Variables
33412 which represent units are not stored in any special way; they are units
33413 only because their names appear in the units table. If the value
33414 cell contains a string, it is parsed to get the variable's value when
33415 the variable is used.
33417 A Lisp list with any other symbol as the first element is a function call.
33418 The symbols @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^},
33419 and @code{|} represent special binary operators; these lists are always
33420 of the form @samp{(@var{op} @var{lhs} @var{rhs})} where @var{lhs} is the
33421 sub-formula on the lefthand side and @var{rhs} is the sub-formula on the
33422 right. The symbol @code{neg} represents unary negation; this list is always
33423 of the form @samp{(neg @var{arg})}. Any other symbol @var{func} represents a
33424 function that would be displayed in function-call notation; the symbol
33425 @var{func} is in general always of the form @samp{calcFunc-@var{name}}.
33426 The function cell of the symbol @var{func} should contain a Lisp function
33427 for evaluating a call to @var{func}. This function is passed the remaining
33428 elements of the list (themselves already evaluated) as arguments; such
33429 functions should return @code{nil} or call @code{reject-arg} to signify
33430 that they should be left in symbolic form, or they should return a Calc
33431 object which represents their value, or a list of such objects if they
33432 wish to return multiple values. (The latter case is allowed only for
33433 functions which are the outer-level call in an expression whose value is
33434 about to be pushed on the stack; this feature is considered obsolete
33435 and is not used by any built-in Calc functions.)
33437 @node Interactive Lisp Functions, Stack Lisp Functions, Data Type Formats, Internals
33438 @subsubsection Interactive Functions
33441 The functions described here are used in implementing interactive Calc
33442 commands. Note that this list is not exhaustive! If there is an
33443 existing command that behaves similarly to the one you want to define,
33444 you may find helpful tricks by checking the source code for that command.
33446 @defun calc-set-command-flag flag
33447 Set the command flag @var{flag}. This is generally a Lisp symbol, but
33448 may in fact be anything. The effect is to add @var{flag} to the list
33449 stored in the variable @code{calc-command-flags}, unless it is already
33450 there. @xref{Defining Simple Commands}.
33453 @defun calc-clear-command-flag flag
33454 If @var{flag} appears among the list of currently-set command flags,
33455 remove it from that list.
33458 @defun calc-record-undo rec
33459 Add the ``undo record'' @var{rec} to the list of steps to take if the
33460 current operation should need to be undone. Stack push and pop functions
33461 automatically call @code{calc-record-undo}, so the kinds of undo records
33462 you might need to create take the form @samp{(set @var{sym} @var{value})},
33463 which says that the Lisp variable @var{sym} was changed and had previously
33464 contained @var{value}; @samp{(store @var{var} @var{value})} which says that
33465 the Calc variable @var{var} (a string which is the name of the symbol that
33466 contains the variable's value) was stored and its previous value was
33467 @var{value} (either a Calc data object, or @code{nil} if the variable was
33468 previously void); or @samp{(eval @var{undo} @var{redo} @var{args} @dots{})},
33469 which means that to undo requires calling the function @samp{(@var{undo}
33470 @var{args} @dots{})} and, if the undo is later redone, calling
33471 @samp{(@var{redo} @var{args} @dots{})}.
33474 @defun calc-record-why msg args
33475 Record the error or warning message @var{msg}, which is normally a string.
33476 This message will be replayed if the user types @kbd{w} (@code{calc-why});
33477 if the message string begins with a @samp{*}, it is considered important
33478 enough to display even if the user doesn't type @kbd{w}. If one or more
33479 @var{args} are present, the displayed message will be of the form,
33480 @samp{@var{msg}: @var{arg1}, @var{arg2}, @dots{}}, where the arguments are
33481 formatted on the assumption that they are either strings or Calc objects of
33482 some sort. If @var{msg} is a symbol, it is the name of a Calc predicate
33483 (such as @code{integerp} or @code{numvecp}) which the arguments did not
33484 satisfy; it is expanded to a suitable string such as ``Expected an
33485 integer.'' The @code{reject-arg} function calls @code{calc-record-why}
33486 automatically; @pxref{Predicates}.
33489 @defun calc-is-inverse
33490 This predicate returns true if the current command is inverse,
33491 i.e., if the Inverse (@kbd{I} key) flag was set.
33494 @defun calc-is-hyperbolic
33495 This predicate is the analogous function for the @kbd{H} key.
33498 @node Stack Lisp Functions, Predicates, Interactive Lisp Functions, Internals
33499 @subsubsection Stack-Oriented Functions
33502 The functions described here perform various operations on the Calc
33503 stack and trail. They are to be used in interactive Calc commands.
33505 @defun calc-push-list vals n
33506 Push the Calc objects in list @var{vals} onto the stack at stack level
33507 @var{n}. If @var{n} is omitted it defaults to 1, so that the elements
33508 are pushed at the top of the stack. If @var{n} is greater than 1, the
33509 elements will be inserted into the stack so that the last element will
33510 end up at level @var{n}, the next-to-last at level @var{n}+1, etc.
33511 The elements of @var{vals} are assumed to be valid Calc objects, and
33512 are not evaluated, rounded, or renormalized in any way. If @var{vals}
33513 is an empty list, nothing happens.
33515 The stack elements are pushed without any sub-formula selections.
33516 You can give an optional third argument to this function, which must
33517 be a list the same size as @var{vals} of selections. Each selection
33518 must be @code{eq} to some sub-formula of the corresponding formula
33519 in @var{vals}, or @code{nil} if that formula should have no selection.
33522 @defun calc-top-list n m
33523 Return a list of the @var{n} objects starting at level @var{m} of the
33524 stack. If @var{m} is omitted it defaults to 1, so that the elements are
33525 taken from the top of the stack. If @var{n} is omitted, it also
33526 defaults to 1, so that the top stack element (in the form of a
33527 one-element list) is returned. If @var{m} is greater than 1, the
33528 @var{m}th stack element will be at the end of the list, the @var{m}+1st
33529 element will be next-to-last, etc. If @var{n} or @var{m} are out of
33530 range, the command is aborted with a suitable error message. If @var{n}
33531 is zero, the function returns an empty list. The stack elements are not
33532 evaluated, rounded, or renormalized.
33534 If any stack elements contain selections, and selections have not
33535 been disabled by the @kbd{j e} (@code{calc-enable-selections}) command,
33536 this function returns the selected portions rather than the entire
33537 stack elements. It can be given a third ``selection-mode'' argument
33538 which selects other behaviors. If it is the symbol @code{t}, then
33539 a selection in any of the requested stack elements produces an
33540 ``invalid operation on selections'' error. If it is the symbol @code{full},
33541 the whole stack entry is always returned regardless of selections.
33542 If it is the symbol @code{sel}, the selected portion is always returned,
33543 or @code{nil} if there is no selection. (This mode ignores the @kbd{j e}
33544 command.) If the symbol is @code{entry}, the complete stack entry in
33545 list form is returned; the first element of this list will be the whole
33546 formula, and the third element will be the selection (or @code{nil}).
33549 @defun calc-pop-stack n m
33550 Remove the specified elements from the stack. The parameters @var{n}
33551 and @var{m} are defined the same as for @code{calc-top-list}. The return
33552 value of @code{calc-pop-stack} is uninteresting.
33554 If there are any selected sub-formulas among the popped elements, and
33555 @kbd{j e} has not been used to disable selections, this produces an
33556 error without changing the stack. If you supply an optional third
33557 argument of @code{t}, the stack elements are popped even if they
33558 contain selections.
33561 @defun calc-record-list vals tag
33562 This function records one or more results in the trail. The @var{vals}
33563 are a list of strings or Calc objects. The @var{tag} is the four-character
33564 tag string to identify the values. If @var{tag} is omitted, a blank tag
33568 @defun calc-normalize n
33569 This function takes a Calc object and ``normalizes'' it. At the very
33570 least this involves re-rounding floating-point values according to the
33571 current precision and other similar jobs. Also, unless the user has
33572 selected No-Simplify mode (@pxref{Simplification Modes}), this involves
33573 actually evaluating a formula object by executing the function calls
33574 it contains, and possibly also doing algebraic simplification, etc.
33577 @defun calc-top-list-n n m
33578 This function is identical to @code{calc-top-list}, except that it calls
33579 @code{calc-normalize} on the values that it takes from the stack. They
33580 are also passed through @code{check-complete}, so that incomplete
33581 objects will be rejected with an error message. All computational
33582 commands should use this in preference to @code{calc-top-list}; the only
33583 standard Calc commands that operate on the stack without normalizing
33584 are stack management commands like @code{calc-enter} and @code{calc-roll-up}.
33585 This function accepts the same optional selection-mode argument as
33586 @code{calc-top-list}.
33589 @defun calc-top-n m
33590 This function is a convenient form of @code{calc-top-list-n} in which only
33591 a single element of the stack is taken and returned, rather than a list
33592 of elements. This also accepts an optional selection-mode argument.
33595 @defun calc-enter-result n tag vals
33596 This function is a convenient interface to most of the above functions.
33597 The @var{vals} argument should be either a single Calc object, or a list
33598 of Calc objects; the object or objects are normalized, and the top @var{n}
33599 stack entries are replaced by the normalized objects. If @var{tag} is
33600 non-@code{nil}, the normalized objects are also recorded in the trail.
33601 A typical stack-based computational command would take the form,
33604 (calc-enter-result @var{n} @var{tag} (cons 'calcFunc-@var{func}
33605 (calc-top-list-n @var{n})))
33608 If any of the @var{n} stack elements replaced contain sub-formula
33609 selections, and selections have not been disabled by @kbd{j e},
33610 this function takes one of two courses of action. If @var{n} is
33611 equal to the number of elements in @var{vals}, then each element of
33612 @var{vals} is spliced into the corresponding selection; this is what
33613 happens when you use the @key{TAB} key, or when you use a unary
33614 arithmetic operation like @code{sqrt}. If @var{vals} has only one
33615 element but @var{n} is greater than one, there must be only one
33616 selection among the top @var{n} stack elements; the element from
33617 @var{vals} is spliced into that selection. This is what happens when
33618 you use a binary arithmetic operation like @kbd{+}. Any other
33619 combination of @var{n} and @var{vals} is an error when selections
33623 @defun calc-unary-op tag func arg
33624 This function implements a unary operator that allows a numeric prefix
33625 argument to apply the operator over many stack entries. If the prefix
33626 argument @var{arg} is @code{nil}, this uses @code{calc-enter-result}
33627 as outlined above. Otherwise, it maps the function over several stack
33628 elements; @pxref{Prefix Arguments}. For example,
33631 (defun calc-zeta (arg)
33633 (calc-unary-op "zeta" 'calcFunc-zeta arg))
33637 @defun calc-binary-op tag func arg ident unary
33638 This function implements a binary operator, analogously to
33639 @code{calc-unary-op}. The optional @var{ident} and @var{unary}
33640 arguments specify the behavior when the prefix argument is zero or
33641 one, respectively. If the prefix is zero, the value @var{ident}
33642 is pushed onto the stack, if specified, otherwise an error message
33643 is displayed. If the prefix is one, the unary function @var{unary}
33644 is applied to the top stack element, or, if @var{unary} is not
33645 specified, nothing happens. When the argument is two or more,
33646 the binary function @var{func} is reduced across the top @var{arg}
33647 stack elements; when the argument is negative, the function is
33648 mapped between the next-to-top @mathit{-@var{arg}} stack elements and the
33652 @defun calc-stack-size
33653 Return the number of elements on the stack as an integer. This count
33654 does not include elements that have been temporarily hidden by stack
33655 truncation; @pxref{Truncating the Stack}.
33658 @defun calc-cursor-stack-index n
33659 Move the point to the @var{n}th stack entry. If @var{n} is zero, this
33660 will be the @samp{.} line. If @var{n} is from 1 to the current stack size,
33661 this will be the beginning of the first line of that stack entry's display.
33662 If line numbers are enabled, this will move to the first character of the
33663 line number, not the stack entry itself.
33666 @defun calc-substack-height n
33667 Return the number of lines between the beginning of the @var{n}th stack
33668 entry and the bottom of the buffer. If @var{n} is zero, this
33669 will be one (assuming no stack truncation). If all stack entries are
33670 one line long (i.e., no matrices are displayed), the return value will
33671 be equal @var{n}+1 as long as @var{n} is in range. (Note that in Big
33672 mode, the return value includes the blank lines that separate stack
33676 @defun calc-refresh
33677 Erase the @code{*Calculator*} buffer and reformat its contents from memory.
33678 This must be called after changing any parameter, such as the current
33679 display radix, which might change the appearance of existing stack
33680 entries. (During a keyboard macro invoked by the @kbd{X} key, refreshing
33681 is suppressed, but a flag is set so that the entire stack will be refreshed
33682 rather than just the top few elements when the macro finishes.)
33685 @node Predicates, Computational Lisp Functions, Stack Lisp Functions, Internals
33686 @subsubsection Predicates
33689 The functions described here are predicates, that is, they return a
33690 true/false value where @code{nil} means false and anything else means
33691 true. These predicates are expanded by @code{defmath}, for example,
33692 from @code{zerop} to @code{math-zerop}. In many cases they correspond
33693 to native Lisp functions by the same name, but are extended to cover
33694 the full range of Calc data types.
33697 Returns true if @var{x} is numerically zero, in any of the Calc data
33698 types. (Note that for some types, such as error forms and intervals,
33699 it never makes sense to return true.) In @code{defmath}, the expression
33700 @samp{(= x 0)} will automatically be converted to @samp{(math-zerop x)},
33701 and @samp{(/= x 0)} will be converted to @samp{(not (math-zerop x))}.
33705 Returns true if @var{x} is negative. This accepts negative real numbers
33706 of various types, negative HMS and date forms, and intervals in which
33707 all included values are negative. In @code{defmath}, the expression
33708 @samp{(< x 0)} will automatically be converted to @samp{(math-negp x)},
33709 and @samp{(>= x 0)} will be converted to @samp{(not (math-negp x))}.
33713 Returns true if @var{x} is positive (and non-zero). For complex
33714 numbers, none of these three predicates will return true.
33717 @defun looks-negp x
33718 Returns true if @var{x} is ``negative-looking.'' This returns true if
33719 @var{x} is a negative number, or a formula with a leading minus sign
33720 such as @samp{-a/b}. In other words, this is an object which can be
33721 made simpler by calling @code{(- @var{x})}.
33725 Returns true if @var{x} is an integer of any size.
33729 Returns true if @var{x} is a native Lisp integer.
33733 Returns true if @var{x} is a nonnegative integer of any size.
33736 @defun fixnatnump x
33737 Returns true if @var{x} is a nonnegative Lisp integer.
33740 @defun num-integerp x
33741 Returns true if @var{x} is numerically an integer, i.e., either a
33742 true integer or a float with no significant digits to the right of
33746 @defun messy-integerp x
33747 Returns true if @var{x} is numerically, but not literally, an integer.
33748 A value is @code{num-integerp} if it is @code{integerp} or
33749 @code{messy-integerp} (but it is never both at once).
33752 @defun num-natnump x
33753 Returns true if @var{x} is numerically a nonnegative integer.
33757 Returns true if @var{x} is an even integer.
33760 @defun looks-evenp x
33761 Returns true if @var{x} is an even integer, or a formula with a leading
33762 multiplicative coefficient which is an even integer.
33766 Returns true if @var{x} is an odd integer.
33770 Returns true if @var{x} is a rational number, i.e., an integer or a
33775 Returns true if @var{x} is a real number, i.e., an integer, fraction,
33776 or floating-point number.
33780 Returns true if @var{x} is a real number or HMS form.
33784 Returns true if @var{x} is a float, or a complex number, error form,
33785 interval, date form, or modulo form in which at least one component
33790 Returns true if @var{x} is a rectangular or polar complex number
33791 (but not a real number).
33794 @defun rect-complexp x
33795 Returns true if @var{x} is a rectangular complex number.
33798 @defun polar-complexp x
33799 Returns true if @var{x} is a polar complex number.
33803 Returns true if @var{x} is a real number or a complex number.
33807 Returns true if @var{x} is a real or complex number or an HMS form.
33811 Returns true if @var{x} is a vector (this simply checks if its argument
33812 is a list whose first element is the symbol @code{vec}).
33816 Returns true if @var{x} is a number or vector.
33820 Returns true if @var{x} is a matrix, i.e., a vector of one or more vectors,
33821 all of the same size.
33824 @defun square-matrixp x
33825 Returns true if @var{x} is a square matrix.
33829 Returns true if @var{x} is any numeric Calc object, including real and
33830 complex numbers, HMS forms, date forms, error forms, intervals, and
33831 modulo forms. (Note that error forms and intervals may include formulas
33832 as their components; see @code{constp} below.)
33836 Returns true if @var{x} is an object or a vector. This also accepts
33837 incomplete objects, but it rejects variables and formulas (except as
33838 mentioned above for @code{objectp}).
33842 Returns true if @var{x} is a ``primitive'' or ``atomic'' Calc object,
33843 i.e., one whose components cannot be regarded as sub-formulas. This
33844 includes variables, and all @code{objectp} types except error forms
33849 Returns true if @var{x} is constant, i.e., a real or complex number,
33850 HMS form, date form, or error form, interval, or vector all of whose
33851 components are @code{constp}.
33855 Returns true if @var{x} is numerically less than @var{y}. Returns false
33856 if @var{x} is greater than or equal to @var{y}, or if the order is
33857 undefined or cannot be determined. Generally speaking, this works
33858 by checking whether @samp{@var{x} - @var{y}} is @code{negp}. In
33859 @code{defmath}, the expression @samp{(< x y)} will automatically be
33860 converted to @samp{(lessp x y)}; expressions involving @code{>}, @code{<=},
33861 and @code{>=} are similarly converted in terms of @code{lessp}.
33865 Returns true if @var{x} comes before @var{y} in a canonical ordering
33866 of Calc objects. If @var{x} and @var{y} are both real numbers, this
33867 will be the same as @code{lessp}. But whereas @code{lessp} considers
33868 other types of objects to be unordered, @code{beforep} puts any two
33869 objects into a definite, consistent order. The @code{beforep}
33870 function is used by the @kbd{V S} vector-sorting command, and also
33871 by Calc's algebraic simplifications to put the terms of a product into
33872 canonical order: This allows @samp{x y + y x} to be simplified easily to
33877 This is the standard Lisp @code{equal} predicate; it returns true if
33878 @var{x} and @var{y} are structurally identical. This is the usual way
33879 to compare numbers for equality, but note that @code{equal} will treat
33880 0 and 0.0 as different.
33883 @defun math-equal x y
33884 Returns true if @var{x} and @var{y} are numerically equal, either because
33885 they are @code{equal}, or because their difference is @code{zerop}. In
33886 @code{defmath}, the expression @samp{(= x y)} will automatically be
33887 converted to @samp{(math-equal x y)}.
33890 @defun equal-int x n
33891 Returns true if @var{x} and @var{n} are numerically equal, where @var{n}
33892 is a fixnum which is not a multiple of 10. This will automatically be
33893 used by @code{defmath} in place of the more general @code{math-equal}
33897 @defun nearly-equal x y
33898 Returns true if @var{x} and @var{y}, as floating-point numbers, are
33899 equal except possibly in the last decimal place. For example,
33900 314.159 and 314.166 are considered nearly equal if the current
33901 precision is 6 (since they differ by 7 units), but not if the current
33902 precision is 7 (since they differ by 70 units). Most functions which
33903 use series expansions use @code{with-extra-prec} to evaluate the
33904 series with 2 extra digits of precision, then use @code{nearly-equal}
33905 to decide when the series has converged; this guards against cumulative
33906 error in the series evaluation without doing extra work which would be
33907 lost when the result is rounded back down to the current precision.
33908 In @code{defmath}, this can be written @samp{(~= @var{x} @var{y})}.
33909 The @var{x} and @var{y} can be numbers of any kind, including complex.
33912 @defun nearly-zerop x y
33913 Returns true if @var{x} is nearly zero, compared to @var{y}. This
33914 checks whether @var{x} plus @var{y} would by be @code{nearly-equal}
33915 to @var{y} itself, to within the current precision, in other words,
33916 if adding @var{x} to @var{y} would have a negligible effect on @var{y}
33917 due to roundoff error. @var{X} may be a real or complex number, but
33918 @var{y} must be real.
33922 Return true if the formula @var{x} represents a true value in
33923 Calc, not Lisp, terms. It tests if @var{x} is a non-zero number
33924 or a provably non-zero formula.
33927 @defun reject-arg val pred
33928 Abort the current function evaluation due to unacceptable argument values.
33929 This calls @samp{(calc-record-why @var{pred} @var{val})}, then signals a
33930 Lisp error which @code{normalize} will trap. The net effect is that the
33931 function call which led here will be left in symbolic form.
33934 @defun inexact-value
33935 If Symbolic mode is enabled, this will signal an error that causes
33936 @code{normalize} to leave the formula in symbolic form, with the message
33937 ``Inexact result.'' (This function has no effect when not in Symbolic mode.)
33938 Note that if your function calls @samp{(sin 5)} in Symbolic mode, the
33939 @code{sin} function will call @code{inexact-value}, which will cause your
33940 function to be left unsimplified. You may instead wish to call
33941 @samp{(normalize (list 'calcFunc-sin 5))}, which in Symbolic mode will
33942 return the formula @samp{sin(5)} to your function.
33946 This signals an error that will be reported as a floating-point overflow.
33950 This signals a floating-point underflow.
33953 @node Computational Lisp Functions, Vector Lisp Functions, Predicates, Internals
33954 @subsubsection Computational Functions
33957 The functions described here do the actual computational work of the
33958 Calculator. In addition to these, note that any function described in
33959 the main body of this manual may be called from Lisp; for example, if
33960 the documentation refers to the @code{calc-sqrt} [@code{sqrt}] command,
33961 this means @code{calc-sqrt} is an interactive stack-based square-root
33962 command and @code{sqrt} (which @code{defmath} expands to @code{calcFunc-sqrt})
33963 is the actual Lisp function for taking square roots.
33965 The functions @code{math-add}, @code{math-sub}, @code{math-mul},
33966 @code{math-div}, @code{math-mod}, and @code{math-neg} are not included
33967 in this list, since @code{defmath} allows you to write native Lisp
33968 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, and unary @code{-},
33969 respectively, instead.
33971 @defun normalize val
33972 (Full form: @code{math-normalize}.)
33973 Reduce the value @var{val} to standard form. For example, if @var{val}
33974 is a fixnum, it will be converted to a bignum if it is too large, and
33975 if @var{val} is a bignum it will be normalized by clipping off trailing
33976 (i.e., most-significant) zero digits and converting to a fixnum if it is
33977 small. All the various data types are similarly converted to their standard
33978 forms. Variables are left alone, but function calls are actually evaluated
33979 in formulas. For example, normalizing @samp{(+ 2 (calcFunc-abs -4))} will
33982 If a function call fails, because the function is void or has the wrong
33983 number of parameters, or because it returns @code{nil} or calls
33984 @code{reject-arg} or @code{inexact-result}, @code{normalize} returns
33985 the formula still in symbolic form.
33987 If the current simplification mode is ``none'' or ``numeric arguments
33988 only,'' @code{normalize} will act appropriately. However, the more
33989 powerful simplification modes (like Algebraic Simplification) are
33990 not handled by @code{normalize}. They are handled by @code{calc-normalize},
33991 which calls @code{normalize} and possibly some other routines, such
33992 as @code{simplify} or @code{simplify-units}. Programs generally will
33993 never call @code{calc-normalize} except when popping or pushing values
33997 @defun evaluate-expr expr
33998 Replace all variables in @var{expr} that have values with their values,
33999 then use @code{normalize} to simplify the result. This is what happens
34000 when you press the @kbd{=} key interactively.
34003 @defmac with-extra-prec n body
34004 Evaluate the Lisp forms in @var{body} with precision increased by @var{n}
34005 digits. This is a macro which expands to
34009 (let ((calc-internal-prec (+ calc-internal-prec @var{n})))
34013 The surrounding call to @code{math-normalize} causes a floating-point
34014 result to be rounded down to the original precision afterwards. This
34015 is important because some arithmetic operations assume a number's
34016 mantissa contains no more digits than the current precision allows.
34019 @defun make-frac n d
34020 Build a fraction @samp{@var{n}:@var{d}}. This is equivalent to calling
34021 @samp{(normalize (list 'frac @var{n} @var{d}))}, but more efficient.
34024 @defun make-float mant exp
34025 Build a floating-point value out of @var{mant} and @var{exp}, both
34026 of which are arbitrary integers. This function will return a
34027 properly normalized float value, or signal an overflow or underflow
34028 if @var{exp} is out of range.
34031 @defun make-sdev x sigma
34032 Build an error form out of @var{x} and the absolute value of @var{sigma}.
34033 If @var{sigma} is zero, the result is the number @var{x} directly.
34034 If @var{sigma} is negative or complex, its absolute value is used.
34035 If @var{x} or @var{sigma} is not a valid type of object for use in
34036 error forms, this calls @code{reject-arg}.
34039 @defun make-intv mask lo hi
34040 Build an interval form out of @var{mask} (which is assumed to be an
34041 integer from 0 to 3), and the limits @var{lo} and @var{hi}. If
34042 @var{lo} is greater than @var{hi}, an empty interval form is returned.
34043 This calls @code{reject-arg} if @var{lo} or @var{hi} is unsuitable.
34046 @defun sort-intv mask lo hi
34047 Build an interval form, similar to @code{make-intv}, except that if
34048 @var{lo} is less than @var{hi} they are simply exchanged, and the
34049 bits of @var{mask} are swapped accordingly.
34052 @defun make-mod n m
34053 Build a modulo form out of @var{n} and the modulus @var{m}. Since modulo
34054 forms do not allow formulas as their components, if @var{n} or @var{m}
34055 is not a real number or HMS form the result will be a formula which
34056 is a call to @code{makemod}, the algebraic version of this function.
34060 Convert @var{x} to floating-point form. Integers and fractions are
34061 converted to numerically equivalent floats; components of complex
34062 numbers, vectors, HMS forms, date forms, error forms, intervals, and
34063 modulo forms are recursively floated. If the argument is a variable
34064 or formula, this calls @code{reject-arg}.
34068 Compare the numbers @var{x} and @var{y}, and return @mathit{-1} if
34069 @samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})},
34070 0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is
34071 undefined or cannot be determined.
34075 Return the number of digits of integer @var{n}, effectively
34076 @samp{ceil(log10(@var{n}))}, but much more efficient. Zero is
34077 considered to have zero digits.
34080 @defun scale-int x n
34081 Shift integer @var{x} left @var{n} decimal digits, or right @mathit{-@var{n}}
34082 digits with truncation toward zero.
34085 @defun scale-rounding x n
34086 Like @code{scale-int}, except that a right shift rounds to the nearest
34087 integer rather than truncating.
34091 Return the integer @var{n} as a fixnum, i.e., a native Lisp integer.
34092 If @var{n} is outside the permissible range for Lisp integers (usually
34093 24 binary bits) the result is undefined.
34097 Compute the square of @var{x}; short for @samp{(* @var{x} @var{x})}.
34100 @defun quotient x y
34101 Divide integer @var{x} by integer @var{y}; return an integer quotient
34102 and discard the remainder. If @var{x} or @var{y} is negative, the
34103 direction of rounding is undefined.
34107 Perform an integer division; if @var{x} and @var{y} are both nonnegative
34108 integers, this uses the @code{quotient} function, otherwise it computes
34109 @samp{floor(@var{x}/@var{y})}. Thus the result is well-defined but
34110 slower than for @code{quotient}.
34114 Divide integer @var{x} by integer @var{y}; return the integer remainder
34115 and discard the quotient. Like @code{quotient}, this works only for
34116 integer arguments and is not well-defined for negative arguments.
34117 For a more well-defined result, use @samp{(% @var{x} @var{y})}.
34121 Divide integer @var{x} by integer @var{y}; return a cons cell whose
34122 @code{car} is @samp{(quotient @var{x} @var{y})} and whose @code{cdr}
34123 is @samp{(imod @var{x} @var{y})}.
34127 Compute @var{x} to the power @var{y}. In @code{defmath} code, this can
34128 also be written @samp{(^ @var{x} @var{y})} or
34129 @w{@samp{(expt @var{x} @var{y})}}.
34132 @defun abs-approx x
34133 Compute a fast approximation to the absolute value of @var{x}. For
34134 example, for a rectangular complex number the result is the sum of
34135 the absolute values of the components.
34139 @findex gamma-const
34145 @findex pi-over-180
34146 @findex sqrt-two-pi
34150 The function @samp{(pi)} computes @samp{pi} to the current precision.
34151 Other related constant-generating functions are @code{two-pi},
34152 @code{pi-over-2}, @code{pi-over-4}, @code{pi-over-180}, @code{sqrt-two-pi},
34153 @code{e}, @code{sqrt-e}, @code{ln-2}, @code{ln-10}, @code{phi} and
34154 @code{gamma-const}. Each function returns a floating-point value in the
34155 current precision, and each uses caching so that all calls after the
34156 first are essentially free.
34159 @defmac math-defcache @var{func} @var{initial} @var{form}
34160 This macro, usually used as a top-level call like @code{defun} or
34161 @code{defvar}, defines a new cached constant analogous to @code{pi}, etc.
34162 It defines a function @code{func} which returns the requested value;
34163 if @var{initial} is non-@code{nil} it must be a @samp{(float @dots{})}
34164 form which serves as an initial value for the cache. If @var{func}
34165 is called when the cache is empty or does not have enough digits to
34166 satisfy the current precision, the Lisp expression @var{form} is evaluated
34167 with the current precision increased by four, and the result minus its
34168 two least significant digits is stored in the cache. For example,
34169 calling @samp{(pi)} with a precision of 30 computes @samp{pi} to 34
34170 digits, rounds it down to 32 digits for future use, then rounds it
34171 again to 30 digits for use in the present request.
34174 @findex half-circle
34175 @findex quarter-circle
34176 @defun full-circle symb
34177 If the current angular mode is Degrees or HMS, this function returns the
34178 integer 360. In Radians mode, this function returns either the
34179 corresponding value in radians to the current precision, or the formula
34180 @samp{2*pi}, depending on the Symbolic mode. There are also similar
34181 function @code{half-circle} and @code{quarter-circle}.
34184 @defun power-of-2 n
34185 Compute two to the integer power @var{n}, as a (potentially very large)
34186 integer. Powers of two are cached, so only the first call for a
34187 particular @var{n} is expensive.
34190 @defun integer-log2 n
34191 Compute the base-2 logarithm of @var{n}, which must be an integer which
34192 is a power of two. If @var{n} is not a power of two, this function will
34196 @defun div-mod a b m
34197 Divide @var{a} by @var{b}, modulo @var{m}. This returns @code{nil} if
34198 there is no solution, or if any of the arguments are not integers.
34201 @defun pow-mod a b m
34202 Compute @var{a} to the power @var{b}, modulo @var{m}. If @var{a},
34203 @var{b}, and @var{m} are integers, this uses an especially efficient
34204 algorithm. Otherwise, it simply computes @samp{(% (^ a b) m)}.
34208 Compute the integer square root of @var{n}. This is the square root
34209 of @var{n} rounded down toward zero, i.e., @samp{floor(sqrt(@var{n}))}.
34210 If @var{n} is itself an integer, the computation is especially efficient.
34213 @defun to-hms a ang
34214 Convert the argument @var{a} into an HMS form. If @var{ang} is specified,
34215 it is the angular mode in which to interpret @var{a}, either @code{deg}
34216 or @code{rad}. Otherwise, the current angular mode is used. If @var{a}
34217 is already an HMS form it is returned as-is.
34220 @defun from-hms a ang
34221 Convert the HMS form @var{a} into a real number. If @var{ang} is specified,
34222 it is the angular mode in which to express the result, otherwise the
34223 current angular mode is used. If @var{a} is already a real number, it
34227 @defun to-radians a
34228 Convert the number or HMS form @var{a} to radians from the current
34232 @defun from-radians a
34233 Convert the number @var{a} from radians to the current angular mode.
34234 If @var{a} is a formula, this returns the formula @samp{deg(@var{a})}.
34237 @defun to-radians-2 a
34238 Like @code{to-radians}, except that in Symbolic mode a degrees to
34239 radians conversion yields a formula like @samp{@var{a}*pi/180}.
34242 @defun from-radians-2 a
34243 Like @code{from-radians}, except that in Symbolic mode a radians to
34244 degrees conversion yields a formula like @samp{@var{a}*180/pi}.
34247 @defun random-digit
34248 Produce a random base-1000 digit in the range 0 to 999.
34251 @defun random-digits n
34252 Produce a random @var{n}-digit integer; this will be an integer
34253 in the interval @samp{[0, 10^@var{n})}.
34256 @defun random-float
34257 Produce a random float in the interval @samp{[0, 1)}.
34260 @defun prime-test n iters
34261 Determine whether the integer @var{n} is prime. Return a list which has
34262 one of these forms: @samp{(nil @var{f})} means the number is non-prime
34263 because it was found to be divisible by @var{f}; @samp{(nil)} means it
34264 was found to be non-prime by table look-up (so no factors are known);
34265 @samp{(nil unknown)} means it is definitely non-prime but no factors
34266 are known because @var{n} was large enough that Fermat's probabilistic
34267 test had to be used; @samp{(t)} means the number is definitely prime;
34268 and @samp{(maybe @var{i} @var{p})} means that Fermat's test, after @var{i}
34269 iterations, is @var{p} percent sure that the number is prime. The
34270 @var{iters} parameter is the number of Fermat iterations to use, in the
34271 case that this is necessary. If @code{prime-test} returns ``maybe,''
34272 you can call it again with the same @var{n} to get a greater certainty;
34273 @code{prime-test} remembers where it left off.
34276 @defun to-simple-fraction f
34277 If @var{f} is a floating-point number which can be represented exactly
34278 as a small rational number. return that number, else return @var{f}.
34279 For example, 0.75 would be converted to 3:4. This function is very
34283 @defun to-fraction f tol
34284 Find a rational approximation to floating-point number @var{f} to within
34285 a specified tolerance @var{tol}; this corresponds to the algebraic
34286 function @code{frac}, and can be rather slow.
34289 @defun quarter-integer n
34290 If @var{n} is an integer or integer-valued float, this function
34291 returns zero. If @var{n} is a half-integer (i.e., an integer plus
34292 @mathit{1:2} or 0.5), it returns 2. If @var{n} is a quarter-integer,
34293 it returns 1 or 3. If @var{n} is anything else, this function
34294 returns @code{nil}.
34297 @node Vector Lisp Functions, Symbolic Lisp Functions, Computational Lisp Functions, Internals
34298 @subsubsection Vector Functions
34301 The functions described here perform various operations on vectors and
34304 @defun math-concat x y
34305 Do a vector concatenation; this operation is written @samp{@var{x} | @var{y}}
34306 in a symbolic formula. @xref{Building Vectors}.
34309 @defun vec-length v
34310 Return the length of vector @var{v}. If @var{v} is not a vector, the
34311 result is zero. If @var{v} is a matrix, this returns the number of
34312 rows in the matrix.
34315 @defun mat-dimens m
34316 Determine the dimensions of vector or matrix @var{m}. If @var{m} is not
34317 a vector, the result is an empty list. If @var{m} is a plain vector
34318 but not a matrix, the result is a one-element list containing the length
34319 of the vector. If @var{m} is a matrix with @var{r} rows and @var{c} columns,
34320 the result is the list @samp{(@var{r} @var{c})}. Higher-order tensors
34321 produce lists of more than two dimensions. Note that the object
34322 @samp{[[1, 2, 3], [4, 5]]} is a vector of vectors not all the same size,
34323 and is treated by this and other Calc routines as a plain vector of two
34327 @defun dimension-error
34328 Abort the current function with a message of ``Dimension error.''
34329 The Calculator will leave the function being evaluated in symbolic
34330 form; this is really just a special case of @code{reject-arg}.
34333 @defun build-vector args
34334 Return a Calc vector with @var{args} as elements.
34335 For example, @samp{(build-vector 1 2 3)} returns the Calc vector
34336 @samp{[1, 2, 3]}, stored internally as the list @samp{(vec 1 2 3)}.
34339 @defun make-vec obj dims
34340 Return a Calc vector or matrix all of whose elements are equal to
34341 @var{obj}. For example, @samp{(make-vec 27 3 4)} returns a 3x4 matrix
34345 @defun row-matrix v
34346 If @var{v} is a plain vector, convert it into a row matrix, i.e.,
34347 a matrix whose single row is @var{v}. If @var{v} is already a matrix,
34351 @defun col-matrix v
34352 If @var{v} is a plain vector, convert it into a column matrix, i.e., a
34353 matrix with each element of @var{v} as a separate row. If @var{v} is
34354 already a matrix, leave it alone.
34358 Map the Lisp function @var{f} over the Calc vector @var{v}. For example,
34359 @samp{(map-vec 'math-floor v)} returns a vector of the floored components
34363 @defun map-vec-2 f a b
34364 Map the Lisp function @var{f} over the two vectors @var{a} and @var{b}.
34365 If @var{a} and @var{b} are vectors of equal length, the result is a
34366 vector of the results of calling @samp{(@var{f} @var{ai} @var{bi})}
34367 for each pair of elements @var{ai} and @var{bi}. If either @var{a} or
34368 @var{b} is a scalar, it is matched with each value of the other vector.
34369 For example, @samp{(map-vec-2 'math-add v 1)} returns the vector @var{v}
34370 with each element increased by one. Note that using @samp{'+} would not
34371 work here, since @code{defmath} does not expand function names everywhere,
34372 just where they are in the function position of a Lisp expression.
34375 @defun reduce-vec f v
34376 Reduce the function @var{f} over the vector @var{v}. For example, if
34377 @var{v} is @samp{[10, 20, 30, 40]}, this calls @samp{(f (f (f 10 20) 30) 40)}.
34378 If @var{v} is a matrix, this reduces over the rows of @var{v}.
34381 @defun reduce-cols f m
34382 Reduce the function @var{f} over the columns of matrix @var{m}. For
34383 example, if @var{m} is @samp{[[1, 2], [3, 4], [5, 6]]}, the result
34384 is a vector of the two elements @samp{(f (f 1 3) 5)} and @samp{(f (f 2 4) 6)}.
34388 Return the @var{n}th row of matrix @var{m}. This is equivalent to
34389 @samp{(elt m n)}. For a slower but safer version, use @code{mrow}.
34390 (@xref{Extracting Elements}.)
34394 Return the @var{n}th column of matrix @var{m}, in the form of a vector.
34395 The arguments are not checked for correctness.
34398 @defun mat-less-row m n
34399 Return a copy of matrix @var{m} with its @var{n}th row deleted. The
34400 number @var{n} must be in range from 1 to the number of rows in @var{m}.
34403 @defun mat-less-col m n
34404 Return a copy of matrix @var{m} with its @var{n}th column deleted.
34408 Return the transpose of matrix @var{m}.
34411 @defun flatten-vector v
34412 Flatten nested vector @var{v} into a vector of scalars. For example,
34413 if @var{v} is @samp{[[1, 2, 3], [4, 5]]} the result is @samp{[1, 2, 3, 4, 5]}.
34416 @defun copy-matrix m
34417 If @var{m} is a matrix, return a copy of @var{m}. This maps
34418 @code{copy-sequence} over the rows of @var{m}; in Lisp terms, each
34419 element of the result matrix will be @code{eq} to the corresponding
34420 element of @var{m}, but none of the @code{cons} cells that make up
34421 the structure of the matrix will be @code{eq}. If @var{m} is a plain
34422 vector, this is the same as @code{copy-sequence}.
34425 @defun swap-rows m r1 r2
34426 Exchange rows @var{r1} and @var{r2} of matrix @var{m} in-place. In
34427 other words, unlike most of the other functions described here, this
34428 function changes @var{m} itself rather than building up a new result
34429 matrix. The return value is @var{m}, i.e., @samp{(eq (swap-rows m 1 2) m)}
34430 is true, with the side effect of exchanging the first two rows of
34434 @node Symbolic Lisp Functions, Formatting Lisp Functions, Vector Lisp Functions, Internals
34435 @subsubsection Symbolic Functions
34438 The functions described here operate on symbolic formulas in the
34441 @defun calc-prepare-selection num
34442 Prepare a stack entry for selection operations. If @var{num} is
34443 omitted, the stack entry containing the cursor is used; otherwise,
34444 it is the number of the stack entry to use. This function stores
34445 useful information about the current stack entry into a set of
34446 variables. @code{calc-selection-cache-num} contains the number of
34447 the stack entry involved (equal to @var{num} if you specified it);
34448 @code{calc-selection-cache-entry} contains the stack entry as a
34449 list (such as @code{calc-top-list} would return with @code{entry}
34450 as the selection mode); and @code{calc-selection-cache-comp} contains
34451 a special ``tagged'' composition (@pxref{Formatting Lisp Functions})
34452 which allows Calc to relate cursor positions in the buffer with
34453 their corresponding sub-formulas.
34455 A slight complication arises in the selection mechanism because
34456 formulas may contain small integers. For example, in the vector
34457 @samp{[1, 2, 1]} the first and last elements are @code{eq} to each
34458 other; selections are recorded as the actual Lisp object that
34459 appears somewhere in the tree of the whole formula, but storing
34460 @code{1} would falsely select both @code{1}'s in the vector. So
34461 @code{calc-prepare-selection} also checks the stack entry and
34462 replaces any plain integers with ``complex number'' lists of the form
34463 @samp{(cplx @var{n} 0)}. This list will be displayed the same as a
34464 plain @var{n} and the change will be completely invisible to the
34465 user, but it will guarantee that no two sub-formulas of the stack
34466 entry will be @code{eq} to each other. Next time the stack entry
34467 is involved in a computation, @code{calc-normalize} will replace
34468 these lists with plain numbers again, again invisibly to the user.
34471 @defun calc-encase-atoms x
34472 This modifies the formula @var{x} to ensure that each part of the
34473 formula is a unique atom, using the @samp{(cplx @var{n} 0)} trick
34474 described above. This function may use @code{setcar} to modify
34475 the formula in-place.
34478 @defun calc-find-selected-part
34479 Find the smallest sub-formula of the current formula that contains
34480 the cursor. This assumes @code{calc-prepare-selection} has been
34481 called already. If the cursor is not actually on any part of the
34482 formula, this returns @code{nil}.
34485 @defun calc-change-current-selection selection
34486 Change the currently prepared stack element's selection to
34487 @var{selection}, which should be @code{eq} to some sub-formula
34488 of the stack element, or @code{nil} to unselect the formula.
34489 The stack element's appearance in the Calc buffer is adjusted
34490 to reflect the new selection.
34493 @defun calc-find-nth-part expr n
34494 Return the @var{n}th sub-formula of @var{expr}. This function is used
34495 by the selection commands, and (unless @kbd{j b} has been used) treats
34496 sums and products as flat many-element formulas. Thus if @var{expr}
34497 is @samp{((a + b) - c) + d}, calling @code{calc-find-nth-part} with
34498 @var{n} equal to four will return @samp{d}.
34501 @defun calc-find-parent-formula expr part
34502 Return the sub-formula of @var{expr} which immediately contains
34503 @var{part}. If @var{expr} is @samp{a*b + (c+1)*d} and @var{part}
34504 is @code{eq} to the @samp{c+1} term of @var{expr}, then this function
34505 will return @samp{(c+1)*d}. If @var{part} turns out not to be a
34506 sub-formula of @var{expr}, the function returns @code{nil}. If
34507 @var{part} is @code{eq} to @var{expr}, the function returns @code{t}.
34508 This function does not take associativity into account.
34511 @defun calc-find-assoc-parent-formula expr part
34512 This is the same as @code{calc-find-parent-formula}, except that
34513 (unless @kbd{j b} has been used) it continues widening the selection
34514 to contain a complete level of the formula. Given @samp{a} from
34515 @samp{((a + b) - c) + d}, @code{calc-find-parent-formula} will
34516 return @samp{a + b} but @code{calc-find-assoc-parent-formula} will
34517 return the whole expression.
34520 @defun calc-grow-assoc-formula expr part
34521 This expands sub-formula @var{part} of @var{expr} to encompass a
34522 complete level of the formula. If @var{part} and its immediate
34523 parent are not compatible associative operators, or if @kbd{j b}
34524 has been used, this simply returns @var{part}.
34527 @defun calc-find-sub-formula expr part
34528 This finds the immediate sub-formula of @var{expr} which contains
34529 @var{part}. It returns an index @var{n} such that
34530 @samp{(calc-find-nth-part @var{expr} @var{n})} would return @var{part}.
34531 If @var{part} is not a sub-formula of @var{expr}, it returns @code{nil}.
34532 If @var{part} is @code{eq} to @var{expr}, it returns @code{t}. This
34533 function does not take associativity into account.
34536 @defun calc-replace-sub-formula expr old new
34537 This function returns a copy of formula @var{expr}, with the
34538 sub-formula that is @code{eq} to @var{old} replaced by @var{new}.
34541 @defun simplify expr
34542 Simplify the expression @var{expr} by applying Calc's algebraic
34543 simplifications. This always returns a copy of the expression; the
34544 structure @var{expr} points to remains unchanged in memory.
34546 More precisely, here is what @code{simplify} does: The expression is
34547 first normalized and evaluated by calling @code{normalize}. If any
34548 @code{AlgSimpRules} have been defined, they are then applied. Then
34549 the expression is traversed in a depth-first, bottom-up fashion; at
34550 each level, any simplifications that can be made are made until no
34551 further changes are possible. Once the entire formula has been
34552 traversed in this way, it is compared with the original formula (from
34553 before the call to @code{normalize}) and, if it has changed,
34554 the entire procedure is repeated (starting with @code{normalize})
34555 until no further changes occur. Usually only two iterations are
34556 needed: one to simplify the formula, and another to verify that no
34557 further simplifications were possible.
34560 @defun simplify-extended expr
34561 Simplify the expression @var{expr}, with additional rules enabled that
34562 help do a more thorough job, while not being entirely ``safe'' in all
34563 circumstances. (For example, this mode will simplify @samp{sqrt(x^2)}
34564 to @samp{x}, which is only valid when @var{x} is positive.) This is
34565 implemented by temporarily binding the variable @code{math-living-dangerously}
34566 to @code{t} (using a @code{let} form) and calling @code{simplify}.
34567 Dangerous simplification rules are written to check this variable
34568 before taking any action.
34571 @defun simplify-units expr
34572 Simplify the expression @var{expr}, treating variable names as units
34573 whenever possible. This works by binding the variable
34574 @code{math-simplifying-units} to @code{t} while calling @code{simplify}.
34577 @defmac math-defsimplify funcs body
34578 Register a new simplification rule; this is normally called as a top-level
34579 form, like @code{defun} or @code{defmath}. If @var{funcs} is a symbol
34580 (like @code{+} or @code{calcFunc-sqrt}), this simplification rule is
34581 applied to the formulas which are calls to the specified function. Or,
34582 @var{funcs} can be a list of such symbols; the rule applies to all
34583 functions on the list. The @var{body} is written like the body of a
34584 function with a single argument called @code{expr}. The body will be
34585 executed with @code{expr} bound to a formula which is a call to one of
34586 the functions @var{funcs}. If the function body returns @code{nil}, or
34587 if it returns a result @code{equal} to the original @code{expr}, it is
34588 ignored and Calc goes on to try the next simplification rule that applies.
34589 If the function body returns something different, that new formula is
34590 substituted for @var{expr} in the original formula.
34592 At each point in the formula, rules are tried in the order of the
34593 original calls to @code{math-defsimplify}; the search stops after the
34594 first rule that makes a change. Thus later rules for that same
34595 function will not have a chance to trigger until the next iteration
34596 of the main @code{simplify} loop.
34598 Note that, since @code{defmath} is not being used here, @var{body} must
34599 be written in true Lisp code without the conveniences that @code{defmath}
34600 provides. If you prefer, you can have @var{body} simply call another
34601 function (defined with @code{defmath}) which does the real work.
34603 The arguments of a function call will already have been simplified
34604 before any rules for the call itself are invoked. Since a new argument
34605 list is consed up when this happens, this means that the rule's body is
34606 allowed to rearrange the function's arguments destructively if that is
34607 convenient. Here is a typical example of a simplification rule:
34610 (math-defsimplify calcFunc-arcsinh
34611 (or (and (math-looks-negp (nth 1 expr))
34612 (math-neg (list 'calcFunc-arcsinh
34613 (math-neg (nth 1 expr)))))
34614 (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
34615 (or math-living-dangerously
34616 (math-known-realp (nth 1 (nth 1 expr))))
34617 (nth 1 (nth 1 expr)))))
34620 This is really a pair of rules written with one @code{math-defsimplify}
34621 for convenience; the first replaces @samp{arcsinh(-x)} with
34622 @samp{-arcsinh(x)}, and the second, which is safe only for real @samp{x},
34623 replaces @samp{arcsinh(sinh(x))} with @samp{x}.
34626 @defun common-constant-factor expr
34627 Check @var{expr} to see if it is a sum of terms all multiplied by the
34628 same rational value. If so, return this value. If not, return @code{nil}.
34629 For example, if called on @samp{6x + 9y + 12z}, it would return 3, since
34630 3 is a common factor of all the terms.
34633 @defun cancel-common-factor expr factor
34634 Assuming @var{expr} is a sum with @var{factor} as a common factor,
34635 divide each term of the sum by @var{factor}. This is done by
34636 destructively modifying parts of @var{expr}, on the assumption that
34637 it is being used by a simplification rule (where such things are
34638 allowed; see above). For example, consider this built-in rule for
34642 (math-defsimplify calcFunc-sqrt
34643 (let ((fac (math-common-constant-factor (nth 1 expr))))
34644 (and fac (not (eq fac 1))
34645 (math-mul (math-normalize (list 'calcFunc-sqrt fac))
34647 (list 'calcFunc-sqrt
34648 (math-cancel-common-factor
34649 (nth 1 expr) fac)))))))
34653 @defun frac-gcd a b
34654 Compute a ``rational GCD'' of @var{a} and @var{b}, which must both be
34655 rational numbers. This is the fraction composed of the GCD of the
34656 numerators of @var{a} and @var{b}, over the GCD of the denominators.
34657 It is used by @code{common-constant-factor}. Note that the standard
34658 @code{gcd} function uses the LCM to combine the denominators.
34661 @defun map-tree func expr many
34662 Try applying Lisp function @var{func} to various sub-expressions of
34663 @var{expr}. Initially, call @var{func} with @var{expr} itself as an
34664 argument. If this returns an expression which is not @code{equal} to
34665 @var{expr}, apply @var{func} again until eventually it does return
34666 @var{expr} with no changes. Then, if @var{expr} is a function call,
34667 recursively apply @var{func} to each of the arguments. This keeps going
34668 until no changes occur anywhere in the expression; this final expression
34669 is returned by @code{map-tree}. Note that, unlike simplification rules,
34670 @var{func} functions may @emph{not} make destructive changes to
34671 @var{expr}. If a third argument @var{many} is provided, it is an
34672 integer which says how many times @var{func} may be applied; the
34673 default, as described above, is infinitely many times.
34676 @defun compile-rewrites rules
34677 Compile the rewrite rule set specified by @var{rules}, which should
34678 be a formula that is either a vector or a variable name. If the latter,
34679 the compiled rules are saved so that later @code{compile-rules} calls
34680 for that same variable can return immediately. If there are problems
34681 with the rules, this function calls @code{error} with a suitable
34685 @defun apply-rewrites expr crules heads
34686 Apply the compiled rewrite rule set @var{crules} to the expression
34687 @var{expr}. This will make only one rewrite and only checks at the
34688 top level of the expression. The result @code{nil} if no rules
34689 matched, or if the only rules that matched did not actually change
34690 the expression. The @var{heads} argument is optional; if is given,
34691 it should be a list of all function names that (may) appear in
34692 @var{expr}. The rewrite compiler tags each rule with the
34693 rarest-looking function name in the rule; if you specify @var{heads},
34694 @code{apply-rewrites} can use this information to narrow its search
34695 down to just a few rules in the rule set.
34698 @defun rewrite-heads expr
34699 Compute a @var{heads} list for @var{expr} suitable for use with
34700 @code{apply-rewrites}, as discussed above.
34703 @defun rewrite expr rules many
34704 This is an all-in-one rewrite function. It compiles the rule set
34705 specified by @var{rules}, then uses @code{map-tree} to apply the
34706 rules throughout @var{expr} up to @var{many} (default infinity)
34710 @defun match-patterns pat vec not-flag
34711 Given a Calc vector @var{vec} and an uncompiled pattern set or
34712 pattern set variable @var{pat}, this function returns a new vector
34713 of all elements of @var{vec} which do (or don't, if @var{not-flag} is
34714 non-@code{nil}) match any of the patterns in @var{pat}.
34717 @defun deriv expr var value symb
34718 Compute the derivative of @var{expr} with respect to variable @var{var}
34719 (which may actually be any sub-expression). If @var{value} is specified,
34720 the derivative is evaluated at the value of @var{var}; otherwise, the
34721 derivative is left in terms of @var{var}. If the expression contains
34722 functions for which no derivative formula is known, new derivative
34723 functions are invented by adding primes to the names; @pxref{Calculus}.
34724 However, if @var{symb} is non-@code{nil}, the presence of nondifferentiable
34725 functions in @var{expr} instead cancels the whole differentiation, and
34726 @code{deriv} returns @code{nil} instead.
34728 Derivatives of an @var{n}-argument function can be defined by
34729 adding a @code{math-derivative-@var{n}} property to the property list
34730 of the symbol for the function's derivative, which will be the
34731 function name followed by an apostrophe. The value of the property
34732 should be a Lisp function; it is called with the same arguments as the
34733 original function call that is being differentiated. It should return
34734 a formula for the derivative. For example, the derivative of @code{ln}
34738 (put 'calcFunc-ln\' 'math-derivative-1
34739 (function (lambda (u) (math-div 1 u))))
34742 The two-argument @code{log} function has two derivatives,
34744 (put 'calcFunc-log\' 'math-derivative-2 ; d(log(x,b)) / dx
34745 (function (lambda (x b) ... )))
34746 (put 'calcFunc-log\'2 'math-derivative-2 ; d(log(x,b)) / db
34747 (function (lambda (x b) ... )))
34751 @defun tderiv expr var value symb
34752 Compute the total derivative of @var{expr}. This is the same as
34753 @code{deriv}, except that variables other than @var{var} are not
34754 assumed to be constant with respect to @var{var}.
34757 @defun integ expr var low high
34758 Compute the integral of @var{expr} with respect to @var{var}.
34759 @xref{Calculus}, for further details.
34762 @defmac math-defintegral funcs body
34763 Define a rule for integrating a function or functions of one argument;
34764 this macro is very similar in format to @code{math-defsimplify}.
34765 The main difference is that here @var{body} is the body of a function
34766 with a single argument @code{u} which is bound to the argument to the
34767 function being integrated, not the function call itself. Also, the
34768 variable of integration is available as @code{math-integ-var}. If
34769 evaluation of the integral requires doing further integrals, the body
34770 should call @samp{(math-integral @var{x})} to find the integral of
34771 @var{x} with respect to @code{math-integ-var}; this function returns
34772 @code{nil} if the integral could not be done. Some examples:
34775 (math-defintegral calcFunc-conj
34776 (let ((int (math-integral u)))
34778 (list 'calcFunc-conj int))))
34780 (math-defintegral calcFunc-cos
34781 (and (equal u math-integ-var)
34782 (math-from-radians-2 (list 'calcFunc-sin u))))
34785 In the @code{cos} example, we define only the integral of @samp{cos(x) dx},
34786 relying on the general integration-by-substitution facility to handle
34787 cosines of more complicated arguments. An integration rule should return
34788 @code{nil} if it can't do the integral; if several rules are defined for
34789 the same function, they are tried in order until one returns a non-@code{nil}
34793 @defmac math-defintegral-2 funcs body
34794 Define a rule for integrating a function or functions of two arguments.
34795 This is exactly analogous to @code{math-defintegral}, except that @var{body}
34796 is written as the body of a function with two arguments, @var{u} and
34800 @defun solve-for lhs rhs var full
34801 Attempt to solve the equation @samp{@var{lhs} = @var{rhs}} by isolating
34802 the variable @var{var} on the lefthand side; return the resulting righthand
34803 side, or @code{nil} if the equation cannot be solved. The variable
34804 @var{var} must appear at least once in @var{lhs} or @var{rhs}. Note that
34805 the return value is a formula which does not contain @var{var}; this is
34806 different from the user-level @code{solve} and @code{finv} functions,
34807 which return a rearranged equation or a functional inverse, respectively.
34808 If @var{full} is non-@code{nil}, a full solution including dummy signs
34809 and dummy integers will be produced. User-defined inverses are provided
34810 as properties in a manner similar to derivatives:
34813 (put 'calcFunc-ln 'math-inverse
34814 (function (lambda (x) (list 'calcFunc-exp x))))
34817 This function can call @samp{(math-solve-get-sign @var{x})} to create
34818 a new arbitrary sign variable, returning @var{x} times that sign, and
34819 @samp{(math-solve-get-int @var{x})} to create a new arbitrary integer
34820 variable multiplied by @var{x}. These functions simply return @var{x}
34821 if the caller requested a non-``full'' solution.
34824 @defun solve-eqn expr var full
34825 This version of @code{solve-for} takes an expression which will
34826 typically be an equation or inequality. (If it is not, it will be
34827 interpreted as the equation @samp{@var{expr} = 0}.) It returns an
34828 equation or inequality, or @code{nil} if no solution could be found.
34831 @defun solve-system exprs vars full
34832 This function solves a system of equations. Generally, @var{exprs}
34833 and @var{vars} will be vectors of equal length.
34834 @xref{Solving Systems of Equations}, for other options.
34837 @defun expr-contains expr var
34838 Returns a non-@code{nil} value if @var{var} occurs as a subexpression
34841 This function might seem at first to be identical to
34842 @code{calc-find-sub-formula}. The key difference is that
34843 @code{expr-contains} uses @code{equal} to test for matches, whereas
34844 @code{calc-find-sub-formula} uses @code{eq}. In the formula
34845 @samp{f(a, a)}, the two @samp{a}s will be @code{equal} but not
34846 @code{eq} to each other.
34849 @defun expr-contains-count expr var
34850 Returns the number of occurrences of @var{var} as a subexpression
34851 of @var{expr}, or @code{nil} if there are no occurrences.
34854 @defun expr-depends expr var
34855 Returns true if @var{expr} refers to any variable the occurs in @var{var}.
34856 In other words, it checks if @var{expr} and @var{var} have any variables
34860 @defun expr-contains-vars expr
34861 Return true if @var{expr} contains any variables, or @code{nil} if @var{expr}
34862 contains only constants and functions with constant arguments.
34865 @defun expr-subst expr old new
34866 Returns a copy of @var{expr}, with all occurrences of @var{old} replaced
34867 by @var{new}. This treats @code{lambda} forms specially with respect
34868 to the dummy argument variables, so that the effect is always to return
34869 @var{expr} evaluated at @var{old} = @var{new}.
34872 @defun multi-subst expr old new
34873 This is like @code{expr-subst}, except that @var{old} and @var{new}
34874 are lists of expressions to be substituted simultaneously. If one
34875 list is shorter than the other, trailing elements of the longer list
34879 @defun expr-weight expr
34880 Returns the ``weight'' of @var{expr}, basically a count of the total
34881 number of objects and function calls that appear in @var{expr}. For
34882 ``primitive'' objects, this will be one.
34885 @defun expr-height expr
34886 Returns the ``height'' of @var{expr}, which is the deepest level to
34887 which function calls are nested. (Note that @samp{@var{a} + @var{b}}
34888 counts as a function call.) For primitive objects, this returns zero.
34891 @defun polynomial-p expr var
34892 Check if @var{expr} is a polynomial in variable (or sub-expression)
34893 @var{var}. If so, return the degree of the polynomial, that is, the
34894 highest power of @var{var} that appears in @var{expr}. For example,
34895 for @samp{(x^2 + 3)^3 + 4} this would return 6. This function returns
34896 @code{nil} unless @var{expr}, when expanded out by @kbd{a x}
34897 (@code{calc-expand}), would consist of a sum of terms in which @var{var}
34898 appears only raised to nonnegative integer powers. Note that if
34899 @var{var} does not occur in @var{expr}, then @var{expr} is considered
34900 a polynomial of degree 0.
34903 @defun is-polynomial expr var degree loose
34904 Check if @var{expr} is a polynomial in variable or sub-expression
34905 @var{var}, and, if so, return a list representation of the polynomial
34906 where the elements of the list are coefficients of successive powers of
34907 @var{var}: @samp{@var{a} + @var{b} x + @var{c} x^3} would produce the
34908 list @samp{(@var{a} @var{b} 0 @var{c})}, and @samp{(x + 1)^2} would
34909 produce the list @samp{(1 2 1)}. The highest element of the list will
34910 be non-zero, with the special exception that if @var{expr} is the
34911 constant zero, the returned value will be @samp{(0)}. Return @code{nil}
34912 if @var{expr} is not a polynomial in @var{var}. If @var{degree} is
34913 specified, this will not consider polynomials of degree higher than that
34914 value. This is a good precaution because otherwise an input of
34915 @samp{(x+1)^1000} will cause a huge coefficient list to be built. If
34916 @var{loose} is non-@code{nil}, then a looser definition of a polynomial
34917 is used in which coefficients are no longer required not to depend on
34918 @var{var}, but are only required not to take the form of polynomials
34919 themselves. For example, @samp{sin(x) x^2 + cos(x)} is a loose
34920 polynomial with coefficients @samp{((calcFunc-cos x) 0 (calcFunc-sin
34921 x))}. The result will never be @code{nil} in loose mode, since any
34922 expression can be interpreted as a ``constant'' loose polynomial.
34925 @defun polynomial-base expr pred
34926 Check if @var{expr} is a polynomial in any variable that occurs in it;
34927 if so, return that variable. (If @var{expr} is a multivariate polynomial,
34928 this chooses one variable arbitrarily.) If @var{pred} is specified, it should
34929 be a Lisp function which is called as @samp{(@var{pred} @var{subexpr})},
34930 and which should return true if @code{mpb-top-expr} (a global name for
34931 the original @var{expr}) is a suitable polynomial in @var{subexpr}.
34932 The default predicate uses @samp{(polynomial-p mpb-top-expr @var{subexpr})};
34933 you can use @var{pred} to specify additional conditions. Or, you could
34934 have @var{pred} build up a list of every suitable @var{subexpr} that
34938 @defun poly-simplify poly
34939 Simplify polynomial coefficient list @var{poly} by (destructively)
34940 clipping off trailing zeros.
34943 @defun poly-mix a ac b bc
34944 Mix two polynomial lists @var{a} and @var{b} (in the form returned by
34945 @code{is-polynomial}) in a linear combination with coefficient expressions
34946 @var{ac} and @var{bc}. The result is a (not necessarily simplified)
34947 polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}.
34950 @defun poly-mul a b
34951 Multiply two polynomial coefficient lists @var{a} and @var{b}. The
34952 result will be in simplified form if the inputs were simplified.
34955 @defun build-polynomial-expr poly var
34956 Construct a Calc formula which represents the polynomial coefficient
34957 list @var{poly} applied to variable @var{var}. The @kbd{a c}
34958 (@code{calc-collect}) command uses @code{is-polynomial} to turn an
34959 expression into a coefficient list, then @code{build-polynomial-expr}
34960 to turn the list back into an expression in regular form.
34963 @defun check-unit-name var
34964 Check if @var{var} is a variable which can be interpreted as a unit
34965 name. If so, return the units table entry for that unit. This
34966 will be a list whose first element is the unit name (not counting
34967 prefix characters) as a symbol and whose second element is the
34968 Calc expression which defines the unit. (Refer to the Calc sources
34969 for details on the remaining elements of this list.) If @var{var}
34970 is not a variable or is not a unit name, return @code{nil}.
34973 @defun units-in-expr-p expr sub-exprs
34974 Return true if @var{expr} contains any variables which can be
34975 interpreted as units. If @var{sub-exprs} is @code{t}, the entire
34976 expression is searched. If @var{sub-exprs} is @code{nil}, this
34977 checks whether @var{expr} is directly a units expression.
34980 @defun single-units-in-expr-p expr
34981 Check whether @var{expr} contains exactly one units variable. If so,
34982 return the units table entry for the variable. If @var{expr} does
34983 not contain any units, return @code{nil}. If @var{expr} contains
34984 two or more units, return the symbol @code{wrong}.
34987 @defun to-standard-units expr which
34988 Convert units expression @var{expr} to base units. If @var{which}
34989 is @code{nil}, use Calc's native base units. Otherwise, @var{which}
34990 can specify a units system, which is a list of two-element lists,
34991 where the first element is a Calc base symbol name and the second
34992 is an expression to substitute for it.
34995 @defun remove-units expr
34996 Return a copy of @var{expr} with all units variables replaced by ones.
34997 This expression is generally normalized before use.
35000 @defun extract-units expr
35001 Return a copy of @var{expr} with everything but units variables replaced
35005 @node Formatting Lisp Functions, Hooks, Symbolic Lisp Functions, Internals
35006 @subsubsection I/O and Formatting Functions
35009 The functions described here are responsible for parsing and formatting
35010 Calc numbers and formulas.
35012 @defun calc-eval str sep arg1 arg2 @dots{}
35013 This is the simplest interface to the Calculator from another Lisp program.
35014 @xref{Calling Calc from Your Programs}.
35017 @defun read-number str
35018 If string @var{str} contains a valid Calc number, either integer,
35019 fraction, float, or HMS form, this function parses and returns that
35020 number. Otherwise, it returns @code{nil}.
35023 @defun read-expr str
35024 Read an algebraic expression from string @var{str}. If @var{str} does
35025 not have the form of a valid expression, return a list of the form
35026 @samp{(error @var{pos} @var{msg})} where @var{pos} is an integer index
35027 into @var{str} of the general location of the error, and @var{msg} is
35028 a string describing the problem.
35031 @defun read-exprs str
35032 Read a list of expressions separated by commas, and return it as a
35033 Lisp list. If an error occurs in any expressions, an error list as
35034 shown above is returned instead.
35037 @defun calc-do-alg-entry initial prompt no-norm
35038 Read an algebraic formula or formulas using the minibuffer. All
35039 conventions of regular algebraic entry are observed. The return value
35040 is a list of Calc formulas; there will be more than one if the user
35041 entered a list of values separated by commas. The result is @code{nil}
35042 if the user presses Return with a blank line. If @var{initial} is
35043 given, it is a string which the minibuffer will initially contain.
35044 If @var{prompt} is given, it is the prompt string to use; the default
35045 is ``Algebraic:''. If @var{no-norm} is @code{t}, the formulas will
35046 be returned exactly as parsed; otherwise, they will be passed through
35047 @code{calc-normalize} first.
35049 To support the use of @kbd{$} characters in the algebraic entry, use
35050 @code{let} to bind @code{calc-dollar-values} to a list of the values
35051 to be substituted for @kbd{$}, @kbd{$$}, and so on, and bind
35052 @code{calc-dollar-used} to 0. Upon return, @code{calc-dollar-used}
35053 will have been changed to the highest number of consecutive @kbd{$}s
35054 that actually appeared in the input.
35057 @defun format-number a
35058 Convert the real or complex number or HMS form @var{a} to string form.
35061 @defun format-flat-expr a prec
35062 Convert the arbitrary Calc number or formula @var{a} to string form,
35063 in the style used by the trail buffer and the @code{calc-edit} command.
35064 This is a simple format designed
35065 mostly to guarantee the string is of a form that can be re-parsed by
35066 @code{read-expr}. Most formatting modes, such as digit grouping,
35067 complex number format, and point character, are ignored to ensure the
35068 result will be re-readable. The @var{prec} parameter is normally 0; if
35069 you pass a large integer like 1000 instead, the expression will be
35070 surrounded by parentheses unless it is a plain number or variable name.
35073 @defun format-nice-expr a width
35074 This is like @code{format-flat-expr} (with @var{prec} equal to 0),
35075 except that newlines will be inserted to keep lines down to the
35076 specified @var{width}, and vectors that look like matrices or rewrite
35077 rules are written in a pseudo-matrix format. The @code{calc-edit}
35078 command uses this when only one stack entry is being edited.
35081 @defun format-value a width
35082 Convert the Calc number or formula @var{a} to string form, using the
35083 format seen in the stack buffer. Beware the string returned may
35084 not be re-readable by @code{read-expr}, for example, because of digit
35085 grouping. Multi-line objects like matrices produce strings that
35086 contain newline characters to separate the lines. The @var{w}
35087 parameter, if given, is the target window size for which to format
35088 the expressions. If @var{w} is omitted, the width of the Calculator
35092 @defun compose-expr a prec
35093 Format the Calc number or formula @var{a} according to the current
35094 language mode, returning a ``composition.'' To learn about the
35095 structure of compositions, see the comments in the Calc source code.
35096 You can specify the format of a given type of function call by putting
35097 a @code{math-compose-@var{lang}} property on the function's symbol,
35098 whose value is a Lisp function that takes @var{a} and @var{prec} as
35099 arguments and returns a composition. Here @var{lang} is a language
35100 mode name, one of @code{normal}, @code{big}, @code{c}, @code{pascal},
35101 @code{fortran}, @code{tex}, @code{eqn}, @code{math}, or @code{maple}.
35102 In Big mode, Calc actually tries @code{math-compose-big} first, then
35103 tries @code{math-compose-normal}. If this property does not exist,
35104 or if the function returns @code{nil}, the function is written in the
35105 normal function-call notation for that language.
35108 @defun composition-to-string c w
35109 Convert a composition structure returned by @code{compose-expr} into
35110 a string. Multi-line compositions convert to strings containing
35111 newline characters. The target window size is given by @var{w}.
35112 The @code{format-value} function basically calls @code{compose-expr}
35113 followed by @code{composition-to-string}.
35116 @defun comp-width c
35117 Compute the width in characters of composition @var{c}.
35120 @defun comp-height c
35121 Compute the height in lines of composition @var{c}.
35124 @defun comp-ascent c
35125 Compute the portion of the height of composition @var{c} which is on or
35126 above the baseline. For a one-line composition, this will be one.
35129 @defun comp-descent c
35130 Compute the portion of the height of composition @var{c} which is below
35131 the baseline. For a one-line composition, this will be zero.
35134 @defun comp-first-char c
35135 If composition @var{c} is a ``flat'' composition, return the first
35136 (leftmost) character of the composition as an integer. Otherwise,
35140 @defun comp-last-char c
35141 If composition @var{c} is a ``flat'' composition, return the last
35142 (rightmost) character, otherwise return @code{nil}.
35145 @comment @node Lisp Variables, Hooks, Formatting Lisp Functions, Internals
35146 @comment @subsubsection Lisp Variables
35149 @comment (This section is currently unfinished.)
35151 @node Hooks, , Formatting Lisp Functions, Internals
35152 @subsubsection Hooks
35155 Hooks are variables which contain Lisp functions (or lists of functions)
35156 which are called at various times. Calc defines a number of hooks
35157 that help you to customize it in various ways. Calc uses the Lisp
35158 function @code{run-hooks} to invoke the hooks shown below. Several
35159 other customization-related variables are also described here.
35161 @defvar calc-load-hook
35162 This hook is called at the end of @file{calc.el}, after the file has
35163 been loaded, before any functions in it have been called, but after
35164 @code{calc-mode-map} and similar variables have been set up.
35167 @defvar calc-ext-load-hook
35168 This hook is called at the end of @file{calc-ext.el}.
35171 @defvar calc-start-hook
35172 This hook is called as the last step in a @kbd{M-x calc} command.
35173 At this point, the Calc buffer has been created and initialized if
35174 necessary, the Calc window and trail window have been created,
35175 and the ``Welcome to Calc'' message has been displayed.
35178 @defvar calc-mode-hook
35179 This hook is called when the Calc buffer is being created. Usually
35180 this will only happen once per Emacs session. The hook is called
35181 after Emacs has switched to the new buffer, the mode-settings file
35182 has been read if necessary, and all other buffer-local variables
35183 have been set up. After this hook returns, Calc will perform a
35184 @code{calc-refresh} operation, set up the mode line display, then
35185 evaluate any deferred @code{calc-define} properties that have not
35186 been evaluated yet.
35189 @defvar calc-trail-mode-hook
35190 This hook is called when the Calc Trail buffer is being created.
35191 It is called as the very last step of setting up the Trail buffer.
35192 Like @code{calc-mode-hook}, this will normally happen only once
35196 @defvar calc-end-hook
35197 This hook is called by @code{calc-quit}, generally because the user
35198 presses @kbd{q} or @kbd{C-x * c} while in Calc. The Calc buffer will
35199 be the current buffer. The hook is called as the very first
35200 step, before the Calc window is destroyed.
35203 @defvar calc-window-hook
35204 If this hook is non-@code{nil}, it is called to create the Calc window.
35205 Upon return, this new Calc window should be the current window.
35206 (The Calc buffer will already be the current buffer when the
35207 hook is called.) If the hook is not defined, Calc will
35208 generally use @code{split-window}, @code{set-window-buffer},
35209 and @code{select-window} to create the Calc window.
35212 @defvar calc-trail-window-hook
35213 If this hook is non-@code{nil}, it is called to create the Calc Trail
35214 window. The variable @code{calc-trail-buffer} will contain the buffer
35215 which the window should use. Unlike @code{calc-window-hook}, this hook
35216 must @emph{not} switch into the new window.
35219 @defvar calc-embedded-mode-hook
35220 This hook is called the first time that Embedded mode is entered.
35223 @defvar calc-embedded-new-buffer-hook
35224 This hook is called each time that Embedded mode is entered in a
35228 @defvar calc-embedded-new-formula-hook
35229 This hook is called each time that Embedded mode is enabled for a
35233 @defvar calc-edit-mode-hook
35234 This hook is called by @code{calc-edit} (and the other ``edit''
35235 commands) when the temporary editing buffer is being created.
35236 The buffer will have been selected and set up to be in
35237 @code{calc-edit-mode}, but will not yet have been filled with
35238 text. (In fact it may still have leftover text from a previous
35239 @code{calc-edit} command.)
35242 @defvar calc-mode-save-hook
35243 This hook is called by the @code{calc-save-modes} command,
35244 after Calc's own mode features have been inserted into the
35245 Calc init file and just before the ``End of mode settings''
35246 message is inserted.
35249 @defvar calc-reset-hook
35250 This hook is called after @kbd{C-x * 0} (@code{calc-reset}) has
35251 reset all modes. The Calc buffer will be the current buffer.
35254 @defvar calc-other-modes
35255 This variable contains a list of strings. The strings are
35256 concatenated at the end of the modes portion of the Calc
35257 mode line (after standard modes such as ``Deg'', ``Inv'' and
35258 ``Hyp''). Each string should be a short, single word followed
35259 by a space. The variable is @code{nil} by default.
35262 @defvar calc-mode-map
35263 This is the keymap that is used by Calc mode. The best time
35264 to adjust it is probably in a @code{calc-mode-hook}. If the
35265 Calc extensions package (@file{calc-ext.el}) has not yet been
35266 loaded, many of these keys will be bound to @code{calc-missing-key},
35267 which is a command that loads the extensions package and
35268 ``retypes'' the key. If your @code{calc-mode-hook} rebinds
35269 one of these keys, it will probably be overridden when the
35270 extensions are loaded.
35273 @defvar calc-digit-map
35274 This is the keymap that is used during numeric entry. Numeric
35275 entry uses the minibuffer, but this map binds every non-numeric
35276 key to @code{calcDigit-nondigit} which generally calls
35277 @code{exit-minibuffer} and ``retypes'' the key.
35280 @defvar calc-alg-ent-map
35281 This is the keymap that is used during algebraic entry. This is
35282 mostly a copy of @code{minibuffer-local-map}.
35285 @defvar calc-store-var-map
35286 This is the keymap that is used during entry of variable names for
35287 commands like @code{calc-store} and @code{calc-recall}. This is
35288 mostly a copy of @code{minibuffer-local-completion-map}.
35291 @defvar calc-edit-mode-map
35292 This is the (sparse) keymap used by @code{calc-edit} and other
35293 temporary editing commands. It binds @key{RET}, @key{LFD},
35294 and @kbd{C-c C-c} to @code{calc-edit-finish}.
35297 @defvar calc-mode-var-list
35298 This is a list of variables which are saved by @code{calc-save-modes}.
35299 Each entry is a list of two items, the variable (as a Lisp symbol)
35300 and its default value. When modes are being saved, each variable
35301 is compared with its default value (using @code{equal}) and any
35302 non-default variables are written out.
35305 @defvar calc-local-var-list
35306 This is a list of variables which should be buffer-local to the
35307 Calc buffer. Each entry is a variable name (as a Lisp symbol).
35308 These variables also have their default values manipulated by
35309 the @code{calc} and @code{calc-quit} commands; @pxref{Multiple Calculators}.
35310 Since @code{calc-mode-hook} is called after this list has been
35311 used the first time, your hook should add a variable to the
35312 list and also call @code{make-local-variable} itself.
35315 @node Copying, GNU Free Documentation License, Programming, Top
35316 @appendix GNU GENERAL PUBLIC LICENSE
35319 @node GNU Free Documentation License, Customizing Calc, Copying, Top
35320 @appendix GNU Free Documentation License
35321 @include doclicense.texi
35323 @node Customizing Calc, Reporting Bugs, GNU Free Documentation License, Top
35324 @appendix Customizing Calc
35326 The usual prefix for Calc is the key sequence @kbd{C-x *}. If you wish
35327 to use a different prefix, you can put
35330 (global-set-key "NEWPREFIX" 'calc-dispatch)
35334 in your .emacs file.
35335 (@xref{Key Bindings,,Customizing Key Bindings,emacs,
35336 The GNU Emacs Manual}, for more information on binding keys.)
35337 A convenient way to start Calc is with @kbd{C-x * *}; to make it equally
35338 convenient for users who use a different prefix, the prefix can be
35339 followed by @kbd{=}, @kbd{&}, @kbd{#}, @kbd{\}, @kbd{/}, @kbd{+} or
35340 @kbd{-} as well as @kbd{*} to start Calc, and so in many cases the last
35341 character of the prefix can simply be typed twice.
35343 Calc is controlled by many variables, most of which can be reset
35344 from within Calc. Some variables are less involved with actual
35345 calculation and can be set outside of Calc using Emacs's
35346 customization facilities. These variables are listed below.
35347 Typing @kbd{M-x customize-variable RET @var{variable-name} RET}
35348 will bring up a buffer in which the variable's value can be redefined.
35349 Typing @kbd{M-x customize-group RET calc RET} will bring up a buffer which
35350 contains all of Calc's customizable variables. (These variables can
35351 also be reset by putting the appropriate lines in your .emacs file;
35352 @xref{Init File, ,Init File, emacs, The GNU Emacs Manual}.)
35354 Some of the customizable variables are regular expressions. A regular
35355 expression is basically a pattern that Calc can search for.
35356 See @ref{Regexp Search,, Regular Expression Search, emacs, The GNU Emacs Manual}
35357 to see how regular expressions work.
35359 @defvar calc-settings-file
35360 The variable @code{calc-settings-file} holds the file name in
35361 which commands like @kbd{m m} and @kbd{Z P} store ``permanent''
35363 If @code{calc-settings-file} is not your user init file (typically
35364 @file{~/.emacs}) and if the variable @code{calc-loaded-settings-file} is
35365 @code{nil}, then Calc will automatically load your settings file (if it
35366 exists) the first time Calc is invoked.
35368 The default value for this variable is @code{"~/.emacs.d/calc.el"}
35369 unless the file @file{~/.calc.el} exists, in which case the default
35370 value will be @code{"~/.calc.el"}.
35373 @defvar calc-gnuplot-name
35374 See @ref{Graphics}.@*
35375 The variable @code{calc-gnuplot-name} should be the name of the
35376 GNUPLOT program (a string). If you have GNUPLOT installed on your
35377 system but Calc is unable to find it, you may need to set this
35378 variable. You may also need to set some Lisp variables to show Calc how
35379 to run GNUPLOT on your system, see @ref{Devices, ,Graphical Devices} .
35380 The default value of @code{calc-gnuplot-name} is @code{"gnuplot"}.
35383 @defvar calc-gnuplot-plot-command
35384 @defvarx calc-gnuplot-print-command
35385 See @ref{Devices, ,Graphical Devices}.@*
35386 The variables @code{calc-gnuplot-plot-command} and
35387 @code{calc-gnuplot-print-command} represent system commands to
35388 display and print the output of GNUPLOT, respectively. These may be
35389 @code{nil} if no command is necessary, or strings which can include
35390 @samp{%s} to signify the name of the file to be displayed or printed.
35391 Or, these variables may contain Lisp expressions which are evaluated
35392 to display or print the output.
35394 The default value of @code{calc-gnuplot-plot-command} is @code{nil},
35395 and the default value of @code{calc-gnuplot-print-command} is
35399 @defvar calc-language-alist
35400 See @ref{Basic Embedded Mode}.@*
35401 The variable @code{calc-language-alist} controls the languages that
35402 Calc will associate with major modes. When Calc embedded mode is
35403 enabled, it will try to use the current major mode to
35404 determine what language should be used. (This can be overridden using
35405 Calc's mode changing commands, @xref{Mode Settings in Embedded Mode}.)
35406 The variable @code{calc-language-alist} consists of a list of pairs of
35407 the form @code{(@var{MAJOR-MODE} . @var{LANGUAGE})}; for example,
35408 @code{(latex-mode . latex)} is one such pair. If Calc embedded is
35409 activated in a buffer whose major mode is @var{MAJOR-MODE}, it will set itself
35410 to use the language @var{LANGUAGE}.
35412 The default value of @code{calc-language-alist} is
35414 ((latex-mode . latex)
35416 (plain-tex-mode . tex)
35417 (context-mode . tex)
35419 (pascal-mode . pascal)
35422 (fortran-mode . fortran)
35423 (f90-mode . fortran))
35427 @defvar calc-embedded-announce-formula
35428 @defvarx calc-embedded-announce-formula-alist
35429 See @ref{Customizing Embedded Mode}.@*
35430 The variable @code{calc-embedded-announce-formula} helps determine
35431 what formulas @kbd{C-x * a} will activate in a buffer. It is a
35432 regular expression, and when activating embedded formulas with
35433 @kbd{C-x * a}, it will tell Calc that what follows is a formula to be
35434 activated. (Calc also uses other patterns to find formulas, such as
35435 @samp{=>} and @samp{:=}.)
35437 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, which checks
35438 for @samp{%Embed} followed by any number of lines beginning with
35439 @samp{%} and a space.
35441 The variable @code{calc-embedded-announce-formula-alist} is used to
35442 set @code{calc-embedded-announce-formula} to different regular
35443 expressions depending on the major mode of the editing buffer.
35444 It consists of a list of pairs of the form @code{(@var{MAJOR-MODE} .
35445 @var{REGEXP})}, and its default value is
35447 ((c++-mode . "//Embed\n\\(// .*\n\\)*")
35448 (c-mode . "/\\*Embed\\*/\n\\(/\\* .*\\*/\n\\)*")
35449 (f90-mode . "!Embed\n\\(! .*\n\\)*")
35450 (fortran-mode . "C Embed\n\\(C .*\n\\)*")
35451 (html-helper-mode . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35452 (html-mode . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35453 (nroff-mode . "\\\\\"Embed\n\\(\\\\\" .*\n\\)*")
35454 (pascal-mode . "@{Embed@}\n\\(@{.*@}\n\\)*")
35455 (sgml-mode . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35456 (xml-mode . "<!-- Embed -->\n\\(<!-- .* -->\n\\)*")
35457 (texinfo-mode . "@@c Embed\n\\(@@c .*\n\\)*"))
35459 Any major modes added to @code{calc-embedded-announce-formula-alist}
35460 should also be added to @code{calc-embedded-open-close-plain-alist}
35461 and @code{calc-embedded-open-close-mode-alist}.
35464 @defvar calc-embedded-open-formula
35465 @defvarx calc-embedded-close-formula
35466 @defvarx calc-embedded-open-close-formula-alist
35467 See @ref{Customizing Embedded Mode}.@*
35468 The variables @code{calc-embedded-open-formula} and
35469 @code{calc-embedded-close-formula} control the region that Calc will
35470 activate as a formula when Embedded mode is entered with @kbd{C-x * e}.
35471 They are regular expressions;
35472 Calc normally scans backward and forward in the buffer for the
35473 nearest text matching these regular expressions to be the ``formula
35476 The simplest delimiters are blank lines. Other delimiters that
35477 Embedded mode understands by default are:
35480 The @TeX{} and @LaTeX{} math delimiters @samp{$ $}, @samp{$$ $$},
35481 @samp{\[ \]}, and @samp{\( \)};
35483 Lines beginning with @samp{\begin} and @samp{\end} (except matrix delimiters);
35485 Lines beginning with @samp{@@} (Texinfo delimiters).
35487 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
35489 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
35492 The variable @code{calc-embedded-open-close-formula-alist} is used to
35493 set @code{calc-embedded-open-formula} and
35494 @code{calc-embedded-close-formula} to different regular
35495 expressions depending on the major mode of the editing buffer.
35496 It consists of a list of lists of the form
35497 @code{(@var{MAJOR-MODE} @var{OPEN-FORMULA-REGEXP}
35498 @var{CLOSE-FORMULA-REGEXP})}, and its default value is
35502 @defvar calc-embedded-word-regexp
35503 @defvarx calc-embedded-word-regexp-alist
35504 See @ref{Customizing Embedded Mode}.@*
35505 The variable @code{calc-embedded-word-regexp} determines the expression
35506 that Calc will activate when Embedded mode is entered with @kbd{C-x *
35507 w}. It is a regular expressions.
35509 The default value of @code{calc-embedded-word-regexp} is
35510 @code{"[-+]?[0-9]+\\(\\.[0-9]+\\)?\\([eE][-+]?[0-9]+\\)?"}.
35512 The variable @code{calc-embedded-word-regexp-alist} is used to
35513 set @code{calc-embedded-word-regexp} to a different regular
35514 expression depending on the major mode of the editing buffer.
35515 It consists of a list of lists of the form
35516 @code{(@var{MAJOR-MODE} @var{WORD-REGEXP})}, and its default value is
35520 @defvar calc-embedded-open-plain
35521 @defvarx calc-embedded-close-plain
35522 @defvarx calc-embedded-open-close-plain-alist
35523 See @ref{Customizing Embedded Mode}.@*
35524 The variables @code{calc-embedded-open-plain} and
35525 @code{calc-embedded-open-plain} are used to delimit ``plain''
35526 formulas. Note that these are actual strings, not regular
35527 expressions, because Calc must be able to write these string into a
35528 buffer as well as to recognize them.
35530 The default string for @code{calc-embedded-open-plain} is
35531 @code{"%%% "}, note the trailing space. The default string for
35532 @code{calc-embedded-close-plain} is @code{" %%%\n"}, without
35533 the trailing newline here, the first line of a Big mode formula
35534 that followed might be shifted over with respect to the other lines.
35536 The variable @code{calc-embedded-open-close-plain-alist} is used to
35537 set @code{calc-embedded-open-plain} and
35538 @code{calc-embedded-close-plain} to different strings
35539 depending on the major mode of the editing buffer.
35540 It consists of a list of lists of the form
35541 @code{(@var{MAJOR-MODE} @var{OPEN-PLAIN-STRING}
35542 @var{CLOSE-PLAIN-STRING})}, and its default value is
35544 ((c++-mode "// %% " " %%\n")
35545 (c-mode "/* %% " " %% */\n")
35546 (f90-mode "! %% " " %%\n")
35547 (fortran-mode "C %% " " %%\n")
35548 (html-helper-mode "<!-- %% " " %% -->\n")
35549 (html-mode "<!-- %% " " %% -->\n")
35550 (nroff-mode "\\\" %% " " %%\n")
35551 (pascal-mode "@{%% " " %%@}\n")
35552 (sgml-mode "<!-- %% " " %% -->\n")
35553 (xml-mode "<!-- %% " " %% -->\n")
35554 (texinfo-mode "@@c %% " " %%\n"))
35556 Any major modes added to @code{calc-embedded-open-close-plain-alist}
35557 should also be added to @code{calc-embedded-announce-formula-alist}
35558 and @code{calc-embedded-open-close-mode-alist}.
35561 @defvar calc-embedded-open-new-formula
35562 @defvarx calc-embedded-close-new-formula
35563 @defvarx calc-embedded-open-close-new-formula-alist
35564 See @ref{Customizing Embedded Mode}.@*
35565 The variables @code{calc-embedded-open-new-formula} and
35566 @code{calc-embedded-close-new-formula} are strings which are
35567 inserted before and after a new formula when you type @kbd{C-x * f}.
35569 The default value of @code{calc-embedded-open-new-formula} is
35570 @code{"\n\n"}. If this string begins with a newline character and the
35571 @kbd{C-x * f} is typed at the beginning of a line, @kbd{C-x * f} will skip
35572 this first newline to avoid introducing unnecessary blank lines in the
35573 file. The default value of @code{calc-embedded-close-new-formula} is
35574 also @code{"\n\n"}. The final newline is omitted by @w{@kbd{C-x * f}}
35575 if typed at the end of a line. (It follows that if @kbd{C-x * f} is
35576 typed on a blank line, both a leading opening newline and a trailing
35577 closing newline are omitted.)
35579 The variable @code{calc-embedded-open-close-new-formula-alist} is used to
35580 set @code{calc-embedded-open-new-formula} and
35581 @code{calc-embedded-close-new-formula} to different strings
35582 depending on the major mode of the editing buffer.
35583 It consists of a list of lists of the form
35584 @code{(@var{MAJOR-MODE} @var{OPEN-NEW-FORMULA-STRING}
35585 @var{CLOSE-NEW-FORMULA-STRING})}, and its default value is
35589 @defvar calc-embedded-open-mode
35590 @defvarx calc-embedded-close-mode
35591 @defvarx calc-embedded-open-close-mode-alist
35592 See @ref{Customizing Embedded Mode}.@*
35593 The variables @code{calc-embedded-open-mode} and
35594 @code{calc-embedded-close-mode} are strings which Calc will place before
35595 and after any mode annotations that it inserts. Calc never scans for
35596 these strings; Calc always looks for the annotation itself, so it is not
35597 necessary to add them to user-written annotations.
35599 The default value of @code{calc-embedded-open-mode} is @code{"% "}
35600 and the default value of @code{calc-embedded-close-mode} is
35602 If you change the value of @code{calc-embedded-close-mode}, it is a good
35603 idea still to end with a newline so that mode annotations will appear on
35604 lines by themselves.
35606 The variable @code{calc-embedded-open-close-mode-alist} is used to
35607 set @code{calc-embedded-open-mode} and
35608 @code{calc-embedded-close-mode} to different strings
35609 expressions depending on the major mode of the editing buffer.
35610 It consists of a list of lists of the form
35611 @code{(@var{MAJOR-MODE} @var{OPEN-MODE-STRING}
35612 @var{CLOSE-MODE-STRING})}, and its default value is
35614 ((c++-mode "// " "\n")
35615 (c-mode "/* " " */\n")
35616 (f90-mode "! " "\n")
35617 (fortran-mode "C " "\n")
35618 (html-helper-mode "<!-- " " -->\n")
35619 (html-mode "<!-- " " -->\n")
35620 (nroff-mode "\\\" " "\n")
35621 (pascal-mode "@{ " " @}\n")
35622 (sgml-mode "<!-- " " -->\n")
35623 (xml-mode "<!-- " " -->\n")
35624 (texinfo-mode "@@c " "\n"))
35626 Any major modes added to @code{calc-embedded-open-close-mode-alist}
35627 should also be added to @code{calc-embedded-announce-formula-alist}
35628 and @code{calc-embedded-open-close-plain-alist}.
35631 @defvar calc-lu-power-reference
35632 @defvarx calc-lu-field-reference
35633 See @ref{Logarithmic Units}.@*
35634 The variables @code{calc-lu-power-reference} and
35635 @code{calc-lu-field-reference} are unit expressions (written as
35636 strings) which Calc will use as reference quantities for logarithmic
35639 The default value of @code{calc-lu-power-reference} is @code{"mW"}
35640 and the default value of @code{calc-lu-field-reference} is
35644 @defvar calc-note-threshold
35645 See @ref{Musical Notes}.@*
35646 The variable @code{calc-note-threshold} is a number (written as a
35647 string) which determines how close (in cents) a frequency needs to be
35648 to a note to be recognized as that note.
35650 The default value of @code{calc-note-threshold} is 1.
35653 @defvar calc-highlight-selections-with-faces
35654 @defvarx calc-selected-face
35655 @defvarx calc-nonselected-face
35656 See @ref{Displaying Selections}.@*
35657 The variable @code{calc-highlight-selections-with-faces}
35658 determines how selected sub-formulas are distinguished.
35659 If @code{calc-highlight-selections-with-faces} is nil, then
35660 a selected sub-formula is distinguished either by changing every
35661 character not part of the sub-formula with a dot or by changing every
35662 character in the sub-formula with a @samp{#} sign.
35663 If @code{calc-highlight-selections-with-faces} is t,
35664 then a selected sub-formula is distinguished either by displaying the
35665 non-selected portion of the formula with @code{calc-nonselected-face}
35666 or by displaying the selected sub-formula with
35667 @code{calc-nonselected-face}.
35670 @defvar calc-multiplication-has-precedence
35671 The variable @code{calc-multiplication-has-precedence} determines
35672 whether multiplication has precedence over division in algebraic
35673 formulas in normal language modes. If
35674 @code{calc-multiplication-has-precedence} is non-@code{nil}, then
35675 multiplication has precedence (and, for certain obscure reasons, is
35676 right associative), and so for example @samp{a/b*c} will be interpreted
35677 as @samp{a/(b*c)}. If @code{calc-multiplication-has-precedence} is
35678 @code{nil}, then multiplication has the same precedence as division
35679 (and, like division, is left associative), and so for example
35680 @samp{a/b*c} will be interpreted as @samp{(a/b)*c}. The default value
35681 of @code{calc-multiplication-has-precedence} is @code{t}.
35684 @defvar calc-ensure-consistent-units
35685 When converting units, the variable @code{calc-ensure-consistent-units}
35686 determines whether or not the target units need to be consistent with the
35687 original units. If @code{calc-ensure-consistent-units} is @code{nil}, then
35688 the target units don't need to have the same dimensions as the original units;
35689 for example, converting @samp{100 ft/s} to @samp{m} will produce @samp{30.48 m/s}.
35690 If @code{calc-ensure-consistent-units} is non-@code{nil}, then the target units
35691 need to have the same dimensions as the original units; for example, converting
35692 @samp{100 ft/s} to @samp{m} will result in an error, since @samp{ft/s} and @samp{m}
35693 have different dimensions. The default value of @code{calc-ensure-consistent-units}
35697 @defvar calc-undo-length
35698 The variable @code{calc-undo-length} determines the number of undo
35699 steps that Calc will keep track of when @code{calc-quit} is called.
35700 If @code{calc-undo-length} is a non-negative integer, then this is the
35701 number of undo steps that will be preserved; if
35702 @code{calc-undo-length} has any other value, then all undo steps will
35703 be preserved. The default value of @code{calc-undo-length} is @expr{100}.
35706 @defvar calc-gregorian-switch
35707 See @ref{Date Forms}.@*
35708 The variable @code{calc-gregorian-switch} is either a list of integers
35709 @code{(@var{YEAR} @var{MONTH} @var{DAY})} or @code{nil}.
35710 If it is @code{nil}, then Calc's date forms always represent Gregorian dates.
35711 Otherwise, @code{calc-gregorian-switch} represents the date that the
35712 calendar switches from Julian dates to Gregorian dates;
35713 @code{(@var{YEAR} @var{MONTH} @var{DAY})} will be the first Gregorian
35714 date. The customization buffer will offer several standard dates to
35715 choose from, or the user can enter their own date.
35717 The default value of @code{calc-gregorian-switch} is @code{nil}.
35720 @node Reporting Bugs, Summary, Customizing Calc, Top
35721 @appendix Reporting Bugs
35724 If you find a bug in Calc, send e-mail to Jay Belanger,
35727 jay.p.belanger@@gmail.com
35731 There is an automatic command @kbd{M-x report-calc-bug} which helps
35732 you to report bugs. This command prompts you for a brief subject
35733 line, then leaves you in a mail editing buffer. Type @kbd{C-c C-c} to
35734 send your mail. Make sure your subject line indicates that you are
35735 reporting a Calc bug; this command sends mail to the maintainer's
35738 If you have suggestions for additional features for Calc, please send
35739 them. Some have dared to suggest that Calc is already top-heavy with
35740 features; this obviously cannot be the case, so if you have ideas, send
35743 At the front of the source file, @file{calc.el}, is a list of ideas for
35744 future work. If any enthusiastic souls wish to take it upon themselves
35745 to work on these, please send a message (using @kbd{M-x report-calc-bug})
35746 so any efforts can be coordinated.
35748 The latest version of Calc is available from Savannah, in the Emacs
35749 repository. See @uref{http://savannah.gnu.org/projects/emacs}.
35752 @node Summary, Key Index, Reporting Bugs, Top
35753 @appendix Calc Summary
35756 This section includes a complete list of Calc keystroke commands.
35757 Each line lists the stack entries used by the command (top-of-stack
35758 last), the keystrokes themselves, the prompts asked by the command,
35759 and the result of the command (also with top-of-stack last).
35760 The result is expressed using the equivalent algebraic function.
35761 Commands which put no results on the stack show the full @kbd{M-x}
35762 command name in that position. Numbers preceding the result or
35763 command name refer to notes at the end.
35765 Algebraic functions and @kbd{M-x} commands that don't have corresponding
35766 keystrokes are not listed in this summary.
35767 @xref{Command Index}. @xref{Function Index}.
35772 \vskip-2\baselineskip \null
35773 \gdef\sumrow#1{\sumrowx#1\relax}%
35774 \gdef\sumrowx#1\:#2\:#3\:#4\:#5\:#6\relax{%
35777 \hbox to5em{\sl\hss#1}%
35778 \hbox to5em{\tt#2\hss}%
35779 \hbox to4em{\sl#3\hss}%
35780 \hbox to5em{\rm\hss#4}%
35785 \gdef\sumlpar{{\rm(}}%
35786 \gdef\sumrpar{{\rm)}}%
35787 \gdef\sumcomma{{\rm,\thinspace}}%
35788 \gdef\sumexcl{{\rm!}}%
35789 \gdef\sumbreak{\vskip-2.5\baselineskip\goodbreak}%
35790 \gdef\minus#1{{\tt-}}%
35794 @catcode`@(=@active @let(=@sumlpar
35795 @catcode`@)=@active @let)=@sumrpar
35796 @catcode`@,=@active @let,=@sumcomma
35797 @catcode`@!=@active @let!=@sumexcl
35801 @advance@baselineskip-2.5pt
35804 @r{ @: C-x * a @: @: 33 @:calc-embedded-activate@:}
35805 @r{ @: C-x * b @: @: @:calc-big-or-small@:}
35806 @r{ @: C-x * c @: @: @:calc@:}
35807 @r{ @: C-x * d @: @: @:calc-embedded-duplicate@:}
35808 @r{ @: C-x * e @: @: 34 @:calc-embedded@:}
35809 @r{ @: C-x * f @:formula @: @:calc-embedded-new-formula@:}
35810 @r{ @: C-x * g @: @: 35 @:calc-grab-region@:}
35811 @r{ @: C-x * i @: @: @:calc-info@:}
35812 @r{ @: C-x * j @: @: @:calc-embedded-select@:}
35813 @r{ @: C-x * k @: @: @:calc-keypad@:}
35814 @r{ @: C-x * l @: @: @:calc-load-everything@:}
35815 @r{ @: C-x * m @: @: @:read-kbd-macro@:}
35816 @r{ @: C-x * n @: @: 4 @:calc-embedded-next@:}
35817 @r{ @: C-x * o @: @: @:calc-other-window@:}
35818 @r{ @: C-x * p @: @: 4 @:calc-embedded-previous@:}
35819 @r{ @: C-x * q @:formula @: @:quick-calc@:}
35820 @r{ @: C-x * r @: @: 36 @:calc-grab-rectangle@:}
35821 @r{ @: C-x * s @: @: @:calc-info-summary@:}
35822 @r{ @: C-x * t @: @: @:calc-tutorial@:}
35823 @r{ @: C-x * u @: @: @:calc-embedded-update-formula@:}
35824 @r{ @: C-x * w @: @: @:calc-embedded-word@:}
35825 @r{ @: C-x * x @: @: @:calc-quit@:}
35826 @r{ @: C-x * y @: @:1,28,49 @:calc-copy-to-buffer@:}
35827 @r{ @: C-x * z @: @: @:calc-user-invocation@:}
35828 @r{ @: C-x * : @: @: 36 @:calc-grab-sum-down@:}
35829 @r{ @: C-x * _ @: @: 36 @:calc-grab-sum-across@:}
35830 @r{ @: C-x * ` @:editing @: 30 @:calc-embedded-edit@:}
35831 @r{ @: C-x * 0 @:(zero) @: @:calc-reset@:}
35834 @r{ @: 0-9 @:number @: @:@:number}
35835 @r{ @: . @:number @: @:@:0.number}
35836 @r{ @: _ @:number @: @:-@:number}
35837 @r{ @: e @:number @: @:@:1e number}
35838 @r{ @: # @:number @: @:@:current-radix@tfn{#}number}
35839 @r{ @: P @:(in number) @: @:+/-@:}
35840 @r{ @: M @:(in number) @: @:mod@:}
35841 @r{ @: @@ ' " @: (in number)@: @:@:HMS form}
35842 @r{ @: h m s @: (in number)@: @:@:HMS form}
35845 @r{ @: ' @:formula @: 37,46 @:@:formula}
35846 @r{ @: $ @:formula @: 37,46 @:$@:formula}
35847 @r{ @: " @:string @: 37,46 @:@:string}
35850 @r{ a b@: + @: @: 2 @:add@:(a,b) a+b}
35851 @r{ a b@: - @: @: 2 @:sub@:(a,b) a@minus{}b}
35852 @r{ a b@: * @: @: 2 @:mul@:(a,b) a b, a*b}
35853 @r{ a b@: / @: @: 2 @:div@:(a,b) a/b}
35854 @r{ a b@: ^ @: @: 2 @:pow@:(a,b) a^b}
35855 @r{ a b@: I ^ @: @: 2 @:nroot@:(a,b) a^(1/b)}
35856 @r{ a b@: % @: @: 2 @:mod@:(a,b) a%b}
35857 @r{ a b@: \ @: @: 2 @:idiv@:(a,b) a\b}
35858 @r{ a b@: : @: @: 2 @:fdiv@:(a,b)}
35859 @r{ a b@: | @: @: 2 @:vconcat@:(a,b) a|b}
35860 @r{ a b@: I | @: @: @:vconcat@:(b,a) b|a}
35861 @r{ a b@: H | @: @: 2 @:append@:(a,b)}
35862 @r{ a b@: I H | @: @: @:append@:(b,a)}
35863 @r{ a@: & @: @: 1 @:inv@:(a) 1/a}
35864 @r{ a@: ! @: @: 1 @:fact@:(a) a!}
35865 @r{ a@: = @: @: 1 @:evalv@:(a)}
35866 @r{ a@: M-% @: @: @:percent@:(a) a%}
35869 @r{ ... a@: @summarykey{RET} @: @: 1 @:@:... a a}
35870 @r{ ... a@: @summarykey{SPC} @: @: 1 @:@:... a a}
35871 @r{... a b@: @summarykey{TAB} @: @: 3 @:@:... b a}
35872 @r{. a b c@: M-@summarykey{TAB} @: @: 3 @:@:... b c a}
35873 @r{... a b@: @summarykey{LFD} @: @: 1 @:@:... a b a}
35874 @r{ ... a@: @summarykey{DEL} @: @: 1 @:@:...}
35875 @r{... a b@: M-@summarykey{DEL} @: @: 1 @:@:... b}
35876 @r{ @: M-@summarykey{RET} @: @: 4 @:calc-last-args@:}
35877 @r{ a@: ` @:editing @: 1,30 @:calc-edit@:}
35880 @r{ ... a@: C-d @: @: 1 @:@:...}
35881 @r{ @: C-k @: @: 27 @:calc-kill@:}
35882 @r{ @: C-w @: @: 27 @:calc-kill-region@:}
35883 @r{ @: C-y @: @: @:calc-yank@:}
35884 @r{ @: C-_ @: @: 4 @:calc-undo@:}
35885 @r{ @: M-k @: @: 27 @:calc-copy-as-kill@:}
35886 @r{ @: M-w @: @: 27 @:calc-copy-region-as-kill@:}
35889 @r{ @: [ @: @: @:@:[...}
35890 @r{[.. a b@: ] @: @: @:@:[a,b]}
35891 @r{ @: ( @: @: @:@:(...}
35892 @r{(.. a b@: ) @: @: @:@:(a,b)}
35893 @r{ @: , @: @: @:@:vector or rect complex}
35894 @r{ @: ; @: @: @:@:matrix or polar complex}
35895 @r{ @: .. @: @: @:@:interval}
35898 @r{ @: ~ @: @: @:calc-num-prefix@:}
35899 @r{ @: < @: @: 4 @:calc-scroll-left@:}
35900 @r{ @: > @: @: 4 @:calc-scroll-right@:}
35901 @r{ @: @{ @: @: 4 @:calc-scroll-down@:}
35902 @r{ @: @} @: @: 4 @:calc-scroll-up@:}
35903 @r{ @: ? @: @: @:calc-help@:}
35906 @r{ a@: n @: @: 1 @:neg@:(a) @minus{}a}
35907 @r{ @: o @: @: 4 @:calc-realign@:}
35908 @r{ @: p @:precision @: 31 @:calc-precision@:}
35909 @r{ @: q @: @: @:calc-quit@:}
35910 @r{ @: w @: @: @:calc-why@:}
35911 @r{ @: x @:command @: @:M-x calc-@:command}
35912 @r{ a@: y @: @:1,28,49 @:calc-copy-to-buffer@:}
35915 @r{ a@: A @: @: 1 @:abs@:(a)}
35916 @r{ a b@: B @: @: 2 @:log@:(a,b)}
35917 @r{ a b@: I B @: @: 2 @:alog@:(a,b) b^a}
35918 @r{ a@: C @: @: 1 @:cos@:(a)}
35919 @r{ a@: I C @: @: 1 @:arccos@:(a)}
35920 @r{ a@: H C @: @: 1 @:cosh@:(a)}
35921 @r{ a@: I H C @: @: 1 @:arccosh@:(a)}
35922 @r{ @: D @: @: 4 @:calc-redo@:}
35923 @r{ a@: E @: @: 1 @:exp@:(a)}
35924 @r{ a@: H E @: @: 1 @:exp10@:(a) 10.^a}
35925 @r{ a@: F @: @: 1,11 @:floor@:(a,d)}
35926 @r{ a@: I F @: @: 1,11 @:ceil@:(a,d)}
35927 @r{ a@: H F @: @: 1,11 @:ffloor@:(a,d)}
35928 @r{ a@: I H F @: @: 1,11 @:fceil@:(a,d)}
35929 @r{ a@: G @: @: 1 @:arg@:(a)}
35930 @r{ @: H @:command @: 32 @:@:Hyperbolic}
35931 @r{ @: I @:command @: 32 @:@:Inverse}
35932 @r{ a@: J @: @: 1 @:conj@:(a)}
35933 @r{ @: K @:command @: 32 @:@:Keep-args}
35934 @r{ a@: L @: @: 1 @:ln@:(a)}
35935 @r{ a@: H L @: @: 1 @:log10@:(a)}
35936 @r{ @: M @: @: @:calc-more-recursion-depth@:}
35937 @r{ @: I M @: @: @:calc-less-recursion-depth@:}
35938 @r{ a@: N @: @: 5 @:evalvn@:(a)}
35939 @r{ @: O @:command @: 32 @:@:Option}
35940 @r{ @: P @: @: @:@:pi}
35941 @r{ @: I P @: @: @:@:gamma}
35942 @r{ @: H P @: @: @:@:e}
35943 @r{ @: I H P @: @: @:@:phi}
35944 @r{ a@: Q @: @: 1 @:sqrt@:(a)}
35945 @r{ a@: I Q @: @: 1 @:sqr@:(a) a^2}
35946 @r{ a@: R @: @: 1,11 @:round@:(a,d)}
35947 @r{ a@: I R @: @: 1,11 @:trunc@:(a,d)}
35948 @r{ a@: H R @: @: 1,11 @:fround@:(a,d)}
35949 @r{ a@: I H R @: @: 1,11 @:ftrunc@:(a,d)}
35950 @r{ a@: S @: @: 1 @:sin@:(a)}
35951 @r{ a@: I S @: @: 1 @:arcsin@:(a)}
35952 @r{ a@: H S @: @: 1 @:sinh@:(a)}
35953 @r{ a@: I H S @: @: 1 @:arcsinh@:(a)}
35954 @r{ a@: T @: @: 1 @:tan@:(a)}
35955 @r{ a@: I T @: @: 1 @:arctan@:(a)}
35956 @r{ a@: H T @: @: 1 @:tanh@:(a)}
35957 @r{ a@: I H T @: @: 1 @:arctanh@:(a)}
35958 @r{ @: U @: @: 4 @:calc-undo@:}
35959 @r{ @: X @: @: 4 @:calc-call-last-kbd-macro@:}
35962 @r{ a b@: a = @: @: 2 @:eq@:(a,b) a=b}
35963 @r{ a b@: a # @: @: 2 @:neq@:(a,b) a!=b}
35964 @r{ a b@: a < @: @: 2 @:lt@:(a,b) a<b}
35965 @r{ a b@: a > @: @: 2 @:gt@:(a,b) a>b}
35966 @r{ a b@: a [ @: @: 2 @:leq@:(a,b) a<=b}
35967 @r{ a b@: a ] @: @: 2 @:geq@:(a,b) a>=b}
35968 @r{ a b@: a @{ @: @: 2 @:in@:(a,b)}
35969 @r{ a b@: a & @: @: 2,45 @:land@:(a,b) a&&b}
35970 @r{ a b@: a | @: @: 2,45 @:lor@:(a,b) a||b}
35971 @r{ a@: a ! @: @: 1,45 @:lnot@:(a) !a}
35972 @r{ a b c@: a : @: @: 45 @:if@:(a,b,c) a?b:c}
35973 @r{ a@: a . @: @: 1 @:rmeq@:(a)}
35974 @r{ a@: a " @: @: 7,8 @:calc-expand-formula@:}
35977 @r{ a@: a + @:i, l, h @: 6,38 @:sum@:(a,i,l,h)}
35978 @r{ a@: a - @:i, l, h @: 6,38 @:asum@:(a,i,l,h)}
35979 @r{ a@: a * @:i, l, h @: 6,38 @:prod@:(a,i,l,h)}
35980 @r{ a b@: a _ @: @: 2 @:subscr@:(a,b) a_b}
35983 @r{ a b@: a \ @: @: 2 @:pdiv@:(a,b)}
35984 @r{ a b@: a % @: @: 2 @:prem@:(a,b)}
35985 @r{ a b@: a / @: @: 2 @:pdivrem@:(a,b) [q,r]}
35986 @r{ a b@: H a / @: @: 2 @:pdivide@:(a,b) q+r/b}
35989 @r{ a@: a a @: @: 1 @:apart@:(a)}
35990 @r{ a@: a b @:old, new @: 38 @:subst@:(a,old,new)}
35991 @r{ a@: a c @:v @: 38 @:collect@:(a,v)}
35992 @r{ a@: a d @:v @: 4,38 @:deriv@:(a,v)}
35993 @r{ a@: H a d @:v @: 4,38 @:tderiv@:(a,v)}
35994 @r{ a@: a e @: @: @:esimplify@:(a)}
35995 @r{ a@: a f @: @: 1 @:factor@:(a)}
35996 @r{ a@: H a f @: @: 1 @:factors@:(a)}
35997 @r{ a b@: a g @: @: 2 @:pgcd@:(a,b)}
35998 @r{ a@: a i @:v @: 38 @:integ@:(a,v)}
35999 @r{ a@: a m @:pats @: 38 @:match@:(a,pats)}
36000 @r{ a@: I a m @:pats @: 38 @:matchnot@:(a,pats)}
36001 @r{ data x@: a p @: @: 28 @:polint@:(data,x)}
36002 @r{ data x@: H a p @: @: 28 @:ratint@:(data,x)}
36003 @r{ a@: a n @: @: 1 @:nrat@:(a)}
36004 @r{ a@: a r @:rules @:4,8,38 @:rewrite@:(a,rules,n)}
36005 @r{ a@: a s @: @: @:simplify@:(a)}
36006 @r{ a@: a t @:v, n @: 31,39 @:taylor@:(a,v,n)}
36007 @r{ a@: a v @: @: 7,8 @:calc-alg-evaluate@:}
36008 @r{ a@: a x @: @: 4,8 @:expand@:(a)}
36011 @r{ data@: a F @:model, vars @: 48 @:fit@:(m,iv,pv,data)}
36012 @r{ data@: I a F @:model, vars @: 48 @:xfit@:(m,iv,pv,data)}
36013 @r{ data@: H a F @:model, vars @: 48 @:efit@:(m,iv,pv,data)}
36014 @r{ a@: a I @:v, l, h @: 38 @:ninteg@:(a,v,l,h)}
36015 @r{ a b@: a M @:op @: 22 @:mapeq@:(op,a,b)}
36016 @r{ a b@: I a M @:op @: 22 @:mapeqr@:(op,a,b)}
36017 @r{ a b@: H a M @:op @: 22 @:mapeqp@:(op,a,b)}
36018 @r{ a g@: a N @:v @: 38 @:minimize@:(a,v,g)}
36019 @r{ a g@: H a N @:v @: 38 @:wminimize@:(a,v,g)}
36020 @r{ a@: a P @:v @: 38 @:roots@:(a,v)}
36021 @r{ a g@: a R @:v @: 38 @:root@:(a,v,g)}
36022 @r{ a g@: H a R @:v @: 38 @:wroot@:(a,v,g)}
36023 @r{ a@: a S @:v @: 38 @:solve@:(a,v)}
36024 @r{ a@: I a S @:v @: 38 @:finv@:(a,v)}
36025 @r{ a@: H a S @:v @: 38 @:fsolve@:(a,v)}
36026 @r{ a@: I H a S @:v @: 38 @:ffinv@:(a,v)}
36027 @r{ a@: a T @:i, l, h @: 6,38 @:table@:(a,i,l,h)}
36028 @r{ a g@: a X @:v @: 38 @:maximize@:(a,v,g)}
36029 @r{ a g@: H a X @:v @: 38 @:wmaximize@:(a,v,g)}
36032 @r{ a b@: b a @: @: 9 @:and@:(a,b,w)}
36033 @r{ a@: b c @: @: 9 @:clip@:(a,w)}
36034 @r{ a b@: b d @: @: 9 @:diff@:(a,b,w)}
36035 @r{ a@: b l @: @: 10 @:lsh@:(a,n,w)}
36036 @r{ a n@: H b l @: @: 9 @:lsh@:(a,n,w)}
36037 @r{ a@: b n @: @: 9 @:not@:(a,w)}
36038 @r{ a b@: b o @: @: 9 @:or@:(a,b,w)}
36039 @r{ v@: b p @: @: 1 @:vpack@:(v)}
36040 @r{ a@: b r @: @: 10 @:rsh@:(a,n,w)}
36041 @r{ a n@: H b r @: @: 9 @:rsh@:(a,n,w)}
36042 @r{ a@: b t @: @: 10 @:rot@:(a,n,w)}
36043 @r{ a n@: H b t @: @: 9 @:rot@:(a,n,w)}
36044 @r{ a@: b u @: @: 1 @:vunpack@:(a)}
36045 @r{ @: b w @:w @: 9,50 @:calc-word-size@:}
36046 @r{ a b@: b x @: @: 9 @:xor@:(a,b,w)}
36049 @r{c s l p@: b D @: @: @:ddb@:(c,s,l,p)}
36050 @r{ r n p@: b F @: @: @:fv@:(r,n,p)}
36051 @r{ r n p@: I b F @: @: @:fvb@:(r,n,p)}
36052 @r{ r n p@: H b F @: @: @:fvl@:(r,n,p)}
36053 @r{ v@: b I @: @: 19 @:irr@:(v)}
36054 @r{ v@: I b I @: @: 19 @:irrb@:(v)}
36055 @r{ a@: b L @: @: 10 @:ash@:(a,n,w)}
36056 @r{ a n@: H b L @: @: 9 @:ash@:(a,n,w)}
36057 @r{ r n a@: b M @: @: @:pmt@:(r,n,a)}
36058 @r{ r n a@: I b M @: @: @:pmtb@:(r,n,a)}
36059 @r{ r n a@: H b M @: @: @:pmtl@:(r,n,a)}
36060 @r{ r v@: b N @: @: 19 @:npv@:(r,v)}
36061 @r{ r v@: I b N @: @: 19 @:npvb@:(r,v)}
36062 @r{ r n p@: b P @: @: @:pv@:(r,n,p)}
36063 @r{ r n p@: I b P @: @: @:pvb@:(r,n,p)}
36064 @r{ r n p@: H b P @: @: @:pvl@:(r,n,p)}
36065 @r{ a@: b R @: @: 10 @:rash@:(a,n,w)}
36066 @r{ a n@: H b R @: @: 9 @:rash@:(a,n,w)}
36067 @r{ c s l@: b S @: @: @:sln@:(c,s,l)}
36068 @r{ n p a@: b T @: @: @:rate@:(n,p,a)}
36069 @r{ n p a@: I b T @: @: @:rateb@:(n,p,a)}
36070 @r{ n p a@: H b T @: @: @:ratel@:(n,p,a)}
36071 @r{c s l p@: b Y @: @: @:syd@:(c,s,l,p)}
36073 @r{ r p a@: b # @: @: @:nper@:(r,p,a)}
36074 @r{ r p a@: I b # @: @: @:nperb@:(r,p,a)}
36075 @r{ r p a@: H b # @: @: @:nperl@:(r,p,a)}
36076 @r{ a b@: b % @: @: @:relch@:(a,b)}
36079 @r{ a@: c c @: @: 5 @:pclean@:(a,p)}
36080 @r{ a@: c 0-9 @: @: @:pclean@:(a,p)}
36081 @r{ a@: H c c @: @: 5 @:clean@:(a,p)}
36082 @r{ a@: H c 0-9 @: @: @:clean@:(a,p)}
36083 @r{ a@: c d @: @: 1 @:deg@:(a)}
36084 @r{ a@: c f @: @: 1 @:pfloat@:(a)}
36085 @r{ a@: H c f @: @: 1 @:float@:(a)}
36086 @r{ a@: c h @: @: 1 @:hms@:(a)}
36087 @r{ a@: c p @: @: @:polar@:(a)}
36088 @r{ a@: I c p @: @: @:rect@:(a)}
36089 @r{ a@: c r @: @: 1 @:rad@:(a)}
36092 @r{ a@: c F @: @: 5 @:pfrac@:(a,p)}
36093 @r{ a@: H c F @: @: 5 @:frac@:(a,p)}
36096 @r{ a@: c % @: @: @:percent@:(a*100)}
36099 @r{ @: d . @:char @: 50 @:calc-point-char@:}
36100 @r{ @: d , @:char @: 50 @:calc-group-char@:}
36101 @r{ @: d < @: @: 13,50 @:calc-left-justify@:}
36102 @r{ @: d = @: @: 13,50 @:calc-center-justify@:}
36103 @r{ @: d > @: @: 13,50 @:calc-right-justify@:}
36104 @r{ @: d @{ @:label @: 50 @:calc-left-label@:}
36105 @r{ @: d @} @:label @: 50 @:calc-right-label@:}
36106 @r{ @: d [ @: @: 4 @:calc-truncate-up@:}
36107 @r{ @: d ] @: @: 4 @:calc-truncate-down@:}
36108 @r{ @: d " @: @: 12,50 @:calc-display-strings@:}
36109 @r{ @: d @summarykey{SPC} @: @: @:calc-refresh@:}
36110 @r{ @: d @summarykey{RET} @: @: 1 @:calc-refresh-top@:}
36113 @r{ @: d 0 @: @: 50 @:calc-decimal-radix@:}
36114 @r{ @: d 2 @: @: 50 @:calc-binary-radix@:}
36115 @r{ @: d 6 @: @: 50 @:calc-hex-radix@:}
36116 @r{ @: d 8 @: @: 50 @:calc-octal-radix@:}
36119 @r{ @: d b @: @:12,13,50 @:calc-line-breaking@:}
36120 @r{ @: d c @: @: 50 @:calc-complex-notation@:}
36121 @r{ @: d d @:format @: 50 @:calc-date-notation@:}
36122 @r{ @: d e @: @: 5,50 @:calc-eng-notation@:}
36123 @r{ @: d f @:num @: 31,50 @:calc-fix-notation@:}
36124 @r{ @: d g @: @:12,13,50 @:calc-group-digits@:}
36125 @r{ @: d h @:format @: 50 @:calc-hms-notation@:}
36126 @r{ @: d i @: @: 50 @:calc-i-notation@:}
36127 @r{ @: d j @: @: 50 @:calc-j-notation@:}
36128 @r{ @: d l @: @: 12,50 @:calc-line-numbering@:}
36129 @r{ @: d n @: @: 5,50 @:calc-normal-notation@:}
36130 @r{ @: d o @:format @: 50 @:calc-over-notation@:}
36131 @r{ @: d p @: @: 12,50 @:calc-show-plain@:}
36132 @r{ @: d r @:radix @: 31,50 @:calc-radix@:}
36133 @r{ @: d s @: @: 5,50 @:calc-sci-notation@:}
36134 @r{ @: d t @: @: 27 @:calc-truncate-stack@:}
36135 @r{ @: d w @: @: 12,13 @:calc-auto-why@:}
36136 @r{ @: d z @: @: 12,50 @:calc-leading-zeros@:}
36139 @r{ @: d B @: @: 50 @:calc-big-language@:}
36140 @r{ @: d C @: @: 50 @:calc-c-language@:}
36141 @r{ @: d E @: @: 50 @:calc-eqn-language@:}
36142 @r{ @: d F @: @: 50 @:calc-fortran-language@:}
36143 @r{ @: d M @: @: 50 @:calc-mathematica-language@:}
36144 @r{ @: d N @: @: 50 @:calc-normal-language@:}
36145 @r{ @: d O @: @: 50 @:calc-flat-language@:}
36146 @r{ @: d P @: @: 50 @:calc-pascal-language@:}
36147 @r{ @: d T @: @: 50 @:calc-tex-language@:}
36148 @r{ @: d L @: @: 50 @:calc-latex-language@:}
36149 @r{ @: d U @: @: 50 @:calc-unformatted-language@:}
36150 @r{ @: d W @: @: 50 @:calc-maple-language@:}
36153 @r{ a@: f [ @: @: 4 @:decr@:(a,n)}
36154 @r{ a@: f ] @: @: 4 @:incr@:(a,n)}
36157 @r{ a b@: f b @: @: 2 @:beta@:(a,b)}
36158 @r{ a@: f e @: @: 1 @:erf@:(a)}
36159 @r{ a@: I f e @: @: 1 @:erfc@:(a)}
36160 @r{ a@: f g @: @: 1 @:gamma@:(a)}
36161 @r{ a b@: f h @: @: 2 @:hypot@:(a,b)}
36162 @r{ a@: f i @: @: 1 @:im@:(a)}
36163 @r{ n a@: f j @: @: 2 @:besJ@:(n,a)}
36164 @r{ a b@: f n @: @: 2 @:min@:(a,b)}
36165 @r{ a@: f r @: @: 1 @:re@:(a)}
36166 @r{ a@: f s @: @: 1 @:sign@:(a)}
36167 @r{ a b@: f x @: @: 2 @:max@:(a,b)}
36168 @r{ n a@: f y @: @: 2 @:besY@:(n,a)}
36171 @r{ a@: f A @: @: 1 @:abssqr@:(a)}
36172 @r{ x a b@: f B @: @: @:betaI@:(x,a,b)}
36173 @r{ x a b@: H f B @: @: @:betaB@:(x,a,b)}
36174 @r{ a@: f E @: @: 1 @:expm1@:(a)}
36175 @r{ a x@: f G @: @: 2 @:gammaP@:(a,x)}
36176 @r{ a x@: I f G @: @: 2 @:gammaQ@:(a,x)}
36177 @r{ a x@: H f G @: @: 2 @:gammag@:(a,x)}
36178 @r{ a x@: I H f G @: @: 2 @:gammaG@:(a,x)}
36179 @r{ a b@: f I @: @: 2 @:ilog@:(a,b)}
36180 @r{ a b@: I f I @: @: 2 @:alog@:(a,b) b^a}
36181 @r{ a@: f L @: @: 1 @:lnp1@:(a)}
36182 @r{ a@: f M @: @: 1 @:mant@:(a)}
36183 @r{ a@: f Q @: @: 1 @:isqrt@:(a)}
36184 @r{ a@: I f Q @: @: 1 @:sqr@:(a) a^2}
36185 @r{ a n@: f S @: @: 2 @:scf@:(a,n)}
36186 @r{ y x@: f T @: @: @:arctan2@:(y,x)}
36187 @r{ a@: f X @: @: 1 @:xpon@:(a)}
36190 @r{ x y@: g a @: @: 28,40 @:calc-graph-add@:}
36191 @r{ @: g b @: @: 12 @:calc-graph-border@:}
36192 @r{ @: g c @: @: @:calc-graph-clear@:}
36193 @r{ @: g d @: @: 41 @:calc-graph-delete@:}
36194 @r{ x y@: g f @: @: 28,40 @:calc-graph-fast@:}
36195 @r{ @: g g @: @: 12 @:calc-graph-grid@:}
36196 @r{ @: g h @:title @: @:calc-graph-header@:}
36197 @r{ @: g j @: @: 4 @:calc-graph-juggle@:}
36198 @r{ @: g k @: @: 12 @:calc-graph-key@:}
36199 @r{ @: g l @: @: 12 @:calc-graph-log-x@:}
36200 @r{ @: g n @:name @: @:calc-graph-name@:}
36201 @r{ @: g p @: @: 42 @:calc-graph-plot@:}
36202 @r{ @: g q @: @: @:calc-graph-quit@:}
36203 @r{ @: g r @:range @: @:calc-graph-range-x@:}
36204 @r{ @: g s @: @: 12,13 @:calc-graph-line-style@:}
36205 @r{ @: g t @:title @: @:calc-graph-title-x@:}
36206 @r{ @: g v @: @: @:calc-graph-view-commands@:}
36207 @r{ @: g x @:display @: @:calc-graph-display@:}
36208 @r{ @: g z @: @: 12 @:calc-graph-zero-x@:}
36211 @r{ x y z@: g A @: @: 28,40 @:calc-graph-add-3d@:}
36212 @r{ @: g C @:command @: @:calc-graph-command@:}
36213 @r{ @: g D @:device @: 43,44 @:calc-graph-device@:}
36214 @r{ x y z@: g F @: @: 28,40 @:calc-graph-fast-3d@:}
36215 @r{ @: g H @: @: 12 @:calc-graph-hide@:}
36216 @r{ @: g K @: @: @:calc-graph-kill@:}
36217 @r{ @: g L @: @: 12 @:calc-graph-log-y@:}
36218 @r{ @: g N @:number @: 43,51 @:calc-graph-num-points@:}
36219 @r{ @: g O @:filename @: 43,44 @:calc-graph-output@:}
36220 @r{ @: g P @: @: 42 @:calc-graph-print@:}
36221 @r{ @: g R @:range @: @:calc-graph-range-y@:}
36222 @r{ @: g S @: @: 12,13 @:calc-graph-point-style@:}
36223 @r{ @: g T @:title @: @:calc-graph-title-y@:}
36224 @r{ @: g V @: @: @:calc-graph-view-trail@:}
36225 @r{ @: g X @:format @: @:calc-graph-geometry@:}
36226 @r{ @: g Z @: @: 12 @:calc-graph-zero-y@:}
36229 @r{ @: g C-l @: @: 12 @:calc-graph-log-z@:}
36230 @r{ @: g C-r @:range @: @:calc-graph-range-z@:}
36231 @r{ @: g C-t @:title @: @:calc-graph-title-z@:}
36234 @r{ @: h b @: @: @:calc-describe-bindings@:}
36235 @r{ @: h c @:key @: @:calc-describe-key-briefly@:}
36236 @r{ @: h f @:function @: @:calc-describe-function@:}
36237 @r{ @: h h @: @: @:calc-full-help@:}
36238 @r{ @: h i @: @: @:calc-info@:}
36239 @r{ @: h k @:key @: @:calc-describe-key@:}
36240 @r{ @: h n @: @: @:calc-view-news@:}
36241 @r{ @: h s @: @: @:calc-info-summary@:}
36242 @r{ @: h t @: @: @:calc-tutorial@:}
36243 @r{ @: h v @:var @: @:calc-describe-variable@:}
36246 @r{ @: j 1-9 @: @: @:calc-select-part@:}
36247 @r{ @: j @summarykey{RET} @: @: 27 @:calc-copy-selection@:}
36248 @r{ @: j @summarykey{DEL} @: @: 27 @:calc-del-selection@:}
36249 @r{ @: j ' @:formula @: 27 @:calc-enter-selection@:}
36250 @r{ @: j ` @:editing @: 27,30 @:calc-edit-selection@:}
36251 @r{ @: j " @: @: 7,27 @:calc-sel-expand-formula@:}
36254 @r{ @: j + @:formula @: 27 @:calc-sel-add-both-sides@:}
36255 @r{ @: j - @:formula @: 27 @:calc-sel-sub-both-sides@:}
36256 @r{ @: j * @:formula @: 27 @:calc-sel-mul-both-sides@:}
36257 @r{ @: j / @:formula @: 27 @:calc-sel-div-both-sides@:}
36258 @r{ @: j & @: @: 27 @:calc-sel-invert@:}
36261 @r{ @: j a @: @: 27 @:calc-select-additional@:}
36262 @r{ @: j b @: @: 12 @:calc-break-selections@:}
36263 @r{ @: j c @: @: @:calc-clear-selections@:}
36264 @r{ @: j d @: @: 12,50 @:calc-show-selections@:}
36265 @r{ @: j e @: @: 12 @:calc-enable-selections@:}
36266 @r{ @: j l @: @: 4,27 @:calc-select-less@:}
36267 @r{ @: j m @: @: 4,27 @:calc-select-more@:}
36268 @r{ @: j n @: @: 4 @:calc-select-next@:}
36269 @r{ @: j o @: @: 4,27 @:calc-select-once@:}
36270 @r{ @: j p @: @: 4 @:calc-select-previous@:}
36271 @r{ @: j r @:rules @:4,8,27 @:calc-rewrite-selection@:}
36272 @r{ @: j s @: @: 4,27 @:calc-select-here@:}
36273 @r{ @: j u @: @: 27 @:calc-unselect@:}
36274 @r{ @: j v @: @: 7,27 @:calc-sel-evaluate@:}
36277 @r{ @: j C @: @: 27 @:calc-sel-commute@:}
36278 @r{ @: j D @: @: 4,27 @:calc-sel-distribute@:}
36279 @r{ @: j E @: @: 27 @:calc-sel-jump-equals@:}
36280 @r{ @: j I @: @: 27 @:calc-sel-isolate@:}
36281 @r{ @: H j I @: @: 27 @:calc-sel-isolate@: (full)}
36282 @r{ @: j L @: @: 4,27 @:calc-commute-left@:}
36283 @r{ @: j M @: @: 27 @:calc-sel-merge@:}
36284 @r{ @: j N @: @: 27 @:calc-sel-negate@:}
36285 @r{ @: j O @: @: 4,27 @:calc-select-once-maybe@:}
36286 @r{ @: j R @: @: 4,27 @:calc-commute-right@:}
36287 @r{ @: j S @: @: 4,27 @:calc-select-here-maybe@:}
36288 @r{ @: j U @: @: 27 @:calc-sel-unpack@:}
36291 @r{ @: k a @: @: @:calc-random-again@:}
36292 @r{ n@: k b @: @: 1 @:bern@:(n)}
36293 @r{ n x@: H k b @: @: 2 @:bern@:(n,x)}
36294 @r{ n m@: k c @: @: 2 @:choose@:(n,m)}
36295 @r{ n m@: H k c @: @: 2 @:perm@:(n,m)}
36296 @r{ n@: k d @: @: 1 @:dfact@:(n) n!!}
36297 @r{ n@: k e @: @: 1 @:euler@:(n)}
36298 @r{ n x@: H k e @: @: 2 @:euler@:(n,x)}
36299 @r{ n@: k f @: @: 4 @:prfac@:(n)}
36300 @r{ n m@: k g @: @: 2 @:gcd@:(n,m)}
36301 @r{ m n@: k h @: @: 14 @:shuffle@:(n,m)}
36302 @r{ n m@: k l @: @: 2 @:lcm@:(n,m)}
36303 @r{ n@: k m @: @: 1 @:moebius@:(n)}
36304 @r{ n@: k n @: @: 4 @:nextprime@:(n)}
36305 @r{ n@: I k n @: @: 4 @:prevprime@:(n)}
36306 @r{ n@: k p @: @: 4,28 @:calc-prime-test@:}
36307 @r{ m@: k r @: @: 14 @:random@:(m)}
36308 @r{ n m@: k s @: @: 2 @:stir1@:(n,m)}
36309 @r{ n m@: H k s @: @: 2 @:stir2@:(n,m)}
36310 @r{ n@: k t @: @: 1 @:totient@:(n)}
36313 @r{ n p x@: k B @: @: @:utpb@:(x,n,p)}
36314 @r{ n p x@: I k B @: @: @:ltpb@:(x,n,p)}
36315 @r{ v x@: k C @: @: @:utpc@:(x,v)}
36316 @r{ v x@: I k C @: @: @:ltpc@:(x,v)}
36317 @r{ n m@: k E @: @: @:egcd@:(n,m)}
36318 @r{v1 v2 x@: k F @: @: @:utpf@:(x,v1,v2)}
36319 @r{v1 v2 x@: I k F @: @: @:ltpf@:(x,v1,v2)}
36320 @r{ m s x@: k N @: @: @:utpn@:(x,m,s)}
36321 @r{ m s x@: I k N @: @: @:ltpn@:(x,m,s)}
36322 @r{ m x@: k P @: @: @:utpp@:(x,m)}
36323 @r{ m x@: I k P @: @: @:ltpp@:(x,m)}
36324 @r{ v x@: k T @: @: @:utpt@:(x,v)}
36325 @r{ v x@: I k T @: @: @:ltpt@:(x,v)}
36328 @r{ a b@: l + @: @: @:lupadd@:(a,b)}
36329 @r{ a b@: H l + @: @: @:lufadd@:(a,b)}
36330 @r{ a b@: l - @: @: @:lupsub@:(a,b)}
36331 @r{ a b@: H l - @: @: @:lufsub@:(a,b)}
36332 @r{ a b@: l * @: @: @:lupmul@:(a,b)}
36333 @r{ a b@: H l * @: @: @:lufmul@:(a,b)}
36334 @r{ a b@: l / @: @: @:lupdiv@:(a,b)}
36335 @r{ a b@: H l / @: @: @:lufdiv@:(a,b)}
36336 @r{ a@: l d @: @: @:dbpower@:(a)}
36337 @r{ a b@: O l d @: @: @:dbpower@:(a,b)}
36338 @r{ a@: H l d @: @: @:dbfield@:(a)}
36339 @r{ a b@: O H l d @: @: @:dbfield@:(a,b)}
36340 @r{ a@: l n @: @: @:nppower@:(a)}
36341 @r{ a b@: O l n @: @: @:nppower@:(a,b)}
36342 @r{ a@: H l n @: @: @:npfield@:(a)}
36343 @r{ a b@: O H l n @: @: @:npfield@:(a,b)}
36344 @r{ a@: l q @: @: @:lupquant@:(a)}
36345 @r{ a b@: O l q @: @: @:lupquant@:(a,b)}
36346 @r{ a@: H l q @: @: @:lufquant@:(a)}
36347 @r{ a b@: O H l q @: @: @:lufquant@:(a,b)}
36348 @r{ a@: l s @: @: @:spn@:(a)}
36349 @r{ a@: l m @: @: @:midi@:(a)}
36350 @r{ a@: l f @: @: @:freq@:(a)}
36353 @r{ @: m a @: @: 12,13 @:calc-algebraic-mode@:}
36354 @r{ @: m d @: @: @:calc-degrees-mode@:}
36355 @r{ @: m e @: @: @:calc-embedded-preserve-modes@:}
36356 @r{ @: m f @: @: 12 @:calc-frac-mode@:}
36357 @r{ @: m g @: @: 52 @:calc-get-modes@:}
36358 @r{ @: m h @: @: @:calc-hms-mode@:}
36359 @r{ @: m i @: @: 12,13 @:calc-infinite-mode@:}
36360 @r{ @: m m @: @: @:calc-save-modes@:}
36361 @r{ @: m p @: @: 12 @:calc-polar-mode@:}
36362 @r{ @: m r @: @: @:calc-radians-mode@:}
36363 @r{ @: m s @: @: 12 @:calc-symbolic-mode@:}
36364 @r{ @: m t @: @: 12 @:calc-total-algebraic-mode@:}
36365 @r{ @: m v @: @: 12,13 @:calc-matrix-mode@:}
36366 @r{ @: m w @: @: 13 @:calc-working@:}
36367 @r{ @: m x @: @: @:calc-always-load-extensions@:}
36370 @r{ @: m A @: @: 12 @:calc-alg-simplify-mode@:}
36371 @r{ @: m B @: @: 12 @:calc-bin-simplify-mode@:}
36372 @r{ @: m C @: @: 12 @:calc-auto-recompute@:}
36373 @r{ @: m D @: @: @:calc-default-simplify-mode@:}
36374 @r{ @: m E @: @: 12 @:calc-ext-simplify-mode@:}
36375 @r{ @: m F @:filename @: 13 @:calc-settings-file-name@:}
36376 @r{ @: m N @: @: 12 @:calc-num-simplify-mode@:}
36377 @r{ @: m O @: @: 12 @:calc-no-simplify-mode@:}
36378 @r{ @: m R @: @: 12,13 @:calc-mode-record-mode@:}
36379 @r{ @: m S @: @: 12 @:calc-shift-prefix@:}
36380 @r{ @: m U @: @: 12 @:calc-units-simplify-mode@:}
36383 @r{ @: r s @:register @: 27 @:calc-copy-to-register@:}
36384 @r{ @: r i @:register @: @:calc-insert-register@:}
36387 @r{ @: s c @:var1, var2 @: 29 @:calc-copy-variable@:}
36388 @r{ @: s d @:var, decl @: @:calc-declare-variable@:}
36389 @r{ @: s e @:var, editing @: 29,30 @:calc-edit-variable@:}
36390 @r{ @: s i @:buffer @: @:calc-insert-variables@:}
36391 @r{ @: s k @:const, var @: 29 @:calc-copy-special-constant@:}
36392 @r{ a b@: s l @:var @: 29 @:@:a (letting var=b)}
36393 @r{ a ...@: s m @:op, var @: 22,29 @:calc-store-map@:}
36394 @r{ @: s n @:var @: 29,47 @:calc-store-neg@: (v/-1)}
36395 @r{ @: s p @:var @: 29 @:calc-permanent-variable@:}
36396 @r{ @: s r @:var @: 29 @:@:v (recalled value)}
36397 @r{ @: r 0-9 @: @: @:calc-recall-quick@:}
36398 @r{ a@: s s @:var @: 28,29 @:calc-store@:}
36399 @r{ a@: s 0-9 @: @: @:calc-store-quick@:}
36400 @r{ a@: s t @:var @: 29 @:calc-store-into@:}
36401 @r{ a@: t 0-9 @: @: @:calc-store-into-quick@:}
36402 @r{ @: s u @:var @: 29 @:calc-unstore@:}
36403 @r{ a@: s x @:var @: 29 @:calc-store-exchange@:}
36406 @r{ @: s A @:editing @: 30 @:calc-edit-AlgSimpRules@:}
36407 @r{ @: s D @:editing @: 30 @:calc-edit-Decls@:}
36408 @r{ @: s E @:editing @: 30 @:calc-edit-EvalRules@:}
36409 @r{ @: s F @:editing @: 30 @:calc-edit-FitRules@:}
36410 @r{ @: s G @:editing @: 30 @:calc-edit-GenCount@:}
36411 @r{ @: s H @:editing @: 30 @:calc-edit-Holidays@:}
36412 @r{ @: s I @:editing @: 30 @:calc-edit-IntegLimit@:}
36413 @r{ @: s L @:editing @: 30 @:calc-edit-LineStyles@:}
36414 @r{ @: s P @:editing @: 30 @:calc-edit-PointStyles@:}
36415 @r{ @: s R @:editing @: 30 @:calc-edit-PlotRejects@:}
36416 @r{ @: s T @:editing @: 30 @:calc-edit-TimeZone@:}
36417 @r{ @: s U @:editing @: 30 @:calc-edit-Units@:}
36418 @r{ @: s X @:editing @: 30 @:calc-edit-ExtSimpRules@:}
36421 @r{ a@: s + @:var @: 29,47 @:calc-store-plus@: (v+a)}
36422 @r{ a@: s - @:var @: 29,47 @:calc-store-minus@: (v-a)}
36423 @r{ a@: s * @:var @: 29,47 @:calc-store-times@: (v*a)}
36424 @r{ a@: s / @:var @: 29,47 @:calc-store-div@: (v/a)}
36425 @r{ a@: s ^ @:var @: 29,47 @:calc-store-power@: (v^a)}
36426 @r{ a@: s | @:var @: 29,47 @:calc-store-concat@: (v|a)}
36427 @r{ @: s & @:var @: 29,47 @:calc-store-inv@: (v^-1)}
36428 @r{ @: s [ @:var @: 29,47 @:calc-store-decr@: (v-1)}
36429 @r{ @: s ] @:var @: 29,47 @:calc-store-incr@: (v-(-1))}
36430 @r{ a b@: s : @: @: 2 @:assign@:(a,b) a @tfn{:=} b}
36431 @r{ a@: s = @: @: 1 @:evalto@:(a,b) a @tfn{=>}}
36434 @r{ @: t [ @: @: 4 @:calc-trail-first@:}
36435 @r{ @: t ] @: @: 4 @:calc-trail-last@:}
36436 @r{ @: t < @: @: 4 @:calc-trail-scroll-left@:}
36437 @r{ @: t > @: @: 4 @:calc-trail-scroll-right@:}
36438 @r{ @: t . @: @: 12 @:calc-full-trail-vectors@:}
36441 @r{ @: t b @: @: 4 @:calc-trail-backward@:}
36442 @r{ @: t d @: @: 12,50 @:calc-trail-display@:}
36443 @r{ @: t f @: @: 4 @:calc-trail-forward@:}
36444 @r{ @: t h @: @: @:calc-trail-here@:}
36445 @r{ @: t i @: @: @:calc-trail-in@:}
36446 @r{ @: t k @: @: 4 @:calc-trail-kill@:}
36447 @r{ @: t m @:string @: @:calc-trail-marker@:}
36448 @r{ @: t n @: @: 4 @:calc-trail-next@:}
36449 @r{ @: t o @: @: @:calc-trail-out@:}
36450 @r{ @: t p @: @: 4 @:calc-trail-previous@:}
36451 @r{ @: t r @:string @: @:calc-trail-isearch-backward@:}
36452 @r{ @: t s @:string @: @:calc-trail-isearch-forward@:}
36453 @r{ @: t y @: @: 4 @:calc-trail-yank@:}
36456 @r{ d@: t C @:oz, nz @: @:tzconv@:(d,oz,nz)}
36457 @r{d oz nz@: t C @:$ @: @:tzconv@:(d,oz,nz)}
36458 @r{ d@: t D @: @: 15 @:date@:(d)}
36459 @r{ d@: t I @: @: 4 @:incmonth@:(d,n)}
36460 @r{ d@: t J @: @: 16 @:julian@:(d,z)}
36461 @r{ d@: t M @: @: 17 @:newmonth@:(d,n)}
36462 @r{ @: t N @: @: 16 @:now@:(z)}
36463 @r{ d@: t P @:1 @: 31 @:year@:(d)}
36464 @r{ d@: t P @:2 @: 31 @:month@:(d)}
36465 @r{ d@: t P @:3 @: 31 @:day@:(d)}
36466 @r{ d@: t P @:4 @: 31 @:hour@:(d)}
36467 @r{ d@: t P @:5 @: 31 @:minute@:(d)}
36468 @r{ d@: t P @:6 @: 31 @:second@:(d)}
36469 @r{ d@: t P @:7 @: 31 @:weekday@:(d)}
36470 @r{ d@: t P @:8 @: 31 @:yearday@:(d)}
36471 @r{ d@: t P @:9 @: 31 @:time@:(d)}
36472 @r{ d@: t U @: @: 16 @:unixtime@:(d,z)}
36473 @r{ d@: t W @: @: 17 @:newweek@:(d,w)}
36474 @r{ d@: t Y @: @: 17 @:newyear@:(d,n)}
36477 @r{ a b@: t + @: @: 2 @:badd@:(a,b)}
36478 @r{ a b@: t - @: @: 2 @:bsub@:(a,b)}
36481 @r{ @: u a @: @: 12 @:calc-autorange-units@:}
36482 @r{ a@: u b @: @: @:calc-base-units@:}
36483 @r{ a@: u c @:units @: 18 @:calc-convert-units@:}
36484 @r{ defn@: u d @:unit, descr @: @:calc-define-unit@:}
36485 @r{ @: u e @: @: @:calc-explain-units@:}
36486 @r{ @: u g @:unit @: @:calc-get-unit-definition@:}
36487 @r{ @: u p @: @: @:calc-permanent-units@:}
36488 @r{ a@: u r @: @: @:calc-remove-units@:}
36489 @r{ a@: u s @: @: @:usimplify@:(a)}
36490 @r{ a@: u t @:units @: 18 @:calc-convert-temperature@:}
36491 @r{ @: u u @:unit @: @:calc-undefine-unit@:}
36492 @r{ @: u v @: @: @:calc-enter-units-table@:}
36493 @r{ a@: u x @: @: @:calc-extract-units@:}
36494 @r{ a@: u 0-9 @: @: @:calc-quick-units@:}
36497 @r{ v1 v2@: u C @: @: 20 @:vcov@:(v1,v2)}
36498 @r{ v1 v2@: I u C @: @: 20 @:vpcov@:(v1,v2)}
36499 @r{ v1 v2@: H u C @: @: 20 @:vcorr@:(v1,v2)}
36500 @r{ v@: u G @: @: 19 @:vgmean@:(v)}
36501 @r{ a b@: H u G @: @: 2 @:agmean@:(a,b)}
36502 @r{ v@: u M @: @: 19 @:vmean@:(v)}
36503 @r{ v@: I u M @: @: 19 @:vmeane@:(v)}
36504 @r{ v@: H u M @: @: 19 @:vmedian@:(v)}
36505 @r{ v@: I H u M @: @: 19 @:vhmean@:(v)}
36506 @r{ v@: u N @: @: 19 @:vmin@:(v)}
36507 @r{ v@: u S @: @: 19 @:vsdev@:(v)}
36508 @r{ v@: I u S @: @: 19 @:vpsdev@:(v)}
36509 @r{ v@: H u S @: @: 19 @:vvar@:(v)}
36510 @r{ v@: I H u S @: @: 19 @:vpvar@:(v)}
36511 @r{ @: u V @: @: @:calc-view-units-table@:}
36512 @r{ v@: u X @: @: 19 @:vmax@:(v)}
36515 @r{ v@: u + @: @: 19 @:vsum@:(v)}
36516 @r{ v@: u * @: @: 19 @:vprod@:(v)}
36517 @r{ v@: u # @: @: 19 @:vcount@:(v)}
36520 @r{ @: V ( @: @: 50 @:calc-vector-parens@:}
36521 @r{ @: V @{ @: @: 50 @:calc-vector-braces@:}
36522 @r{ @: V [ @: @: 50 @:calc-vector-brackets@:}
36523 @r{ @: V ] @:ROCP @: 50 @:calc-matrix-brackets@:}
36524 @r{ @: V , @: @: 50 @:calc-vector-commas@:}
36525 @r{ @: V < @: @: 50 @:calc-matrix-left-justify@:}
36526 @r{ @: V = @: @: 50 @:calc-matrix-center-justify@:}
36527 @r{ @: V > @: @: 50 @:calc-matrix-right-justify@:}
36528 @r{ @: V / @: @: 12,50 @:calc-break-vectors@:}
36529 @r{ @: V . @: @: 12,50 @:calc-full-vectors@:}
36532 @r{ s t@: V ^ @: @: 2 @:vint@:(s,t)}
36533 @r{ s t@: V - @: @: 2 @:vdiff@:(s,t)}
36534 @r{ s@: V ~ @: @: 1 @:vcompl@:(s)}
36535 @r{ s@: V # @: @: 1 @:vcard@:(s)}
36536 @r{ s@: V : @: @: 1 @:vspan@:(s)}
36537 @r{ s@: V + @: @: 1 @:rdup@:(s)}
36540 @r{ m@: V & @: @: 1 @:inv@:(m) 1/m}
36543 @r{ v@: v a @:n @: @:arrange@:(v,n)}
36544 @r{ a@: v b @:n @: @:cvec@:(a,n)}
36545 @r{ v@: v c @:n >0 @: 21,31 @:mcol@:(v,n)}
36546 @r{ v@: v c @:n <0 @: 31 @:mrcol@:(v,-n)}
36547 @r{ m@: v c @:0 @: 31 @:getdiag@:(m)}
36548 @r{ v@: v d @: @: 25 @:diag@:(v,n)}
36549 @r{ v m@: v e @: @: 2 @:vexp@:(v,m)}
36550 @r{ v m f@: H v e @: @: 2 @:vexp@:(v,m,f)}
36551 @r{ v a@: v f @: @: 26 @:find@:(v,a,n)}
36552 @r{ v@: v h @: @: 1 @:head@:(v)}
36553 @r{ v@: I v h @: @: 1 @:tail@:(v)}
36554 @r{ v@: H v h @: @: 1 @:rhead@:(v)}
36555 @r{ v@: I H v h @: @: 1 @:rtail@:(v)}
36556 @r{ @: v i @:n @: 31 @:idn@:(1,n)}
36557 @r{ @: v i @:0 @: 31 @:idn@:(1)}
36558 @r{ h t@: v k @: @: 2 @:cons@:(h,t)}
36559 @r{ h t@: H v k @: @: 2 @:rcons@:(h,t)}
36560 @r{ v@: v l @: @: 1 @:vlen@:(v)}
36561 @r{ v@: H v l @: @: 1 @:mdims@:(v)}
36562 @r{ v m@: v m @: @: 2 @:vmask@:(v,m)}
36563 @r{ v@: v n @: @: 1 @:rnorm@:(v)}
36564 @r{ a b c@: v p @: @: 24 @:calc-pack@:}
36565 @r{ v@: v r @:n >0 @: 21,31 @:mrow@:(v,n)}
36566 @r{ v@: v r @:n <0 @: 31 @:mrrow@:(v,-n)}
36567 @r{ m@: v r @:0 @: 31 @:getdiag@:(m)}
36568 @r{ v i j@: v s @: @: @:subvec@:(v,i,j)}
36569 @r{ v i j@: I v s @: @: @:rsubvec@:(v,i,j)}
36570 @r{ m@: v t @: @: 1 @:trn@:(m)}
36571 @r{ v@: v u @: @: 24 @:calc-unpack@:}
36572 @r{ v@: v v @: @: 1 @:rev@:(v)}
36573 @r{ @: v x @:n @: 31 @:index@:(n)}
36574 @r{ n s i@: C-u v x @: @: @:index@:(n,s,i)}
36577 @r{ v@: V A @:op @: 22 @:apply@:(op,v)}
36578 @r{ v1 v2@: V C @: @: 2 @:cross@:(v1,v2)}
36579 @r{ m@: V D @: @: 1 @:det@:(m)}
36580 @r{ s@: V E @: @: 1 @:venum@:(s)}
36581 @r{ s@: V F @: @: 1 @:vfloor@:(s)}
36582 @r{ v@: V G @: @: @:grade@:(v)}
36583 @r{ v@: I V G @: @: @:rgrade@:(v)}
36584 @r{ v@: V H @:n @: 31 @:histogram@:(v,n)}
36585 @r{ v w@: H V H @:n @: 31 @:histogram@:(v,w,n)}
36586 @r{ v1 v2@: V I @:mop aop @: 22 @:inner@:(mop,aop,v1,v2)}
36587 @r{ m@: V J @: @: 1 @:ctrn@:(m)}
36588 @r{ m1 m2@: V K @: @: @:kron@:(m1,m2)}
36589 @r{ m@: V L @: @: 1 @:lud@:(m)}
36590 @r{ v@: V M @:op @: 22,23 @:map@:(op,v)}
36591 @r{ v@: V N @: @: 1 @:cnorm@:(v)}
36592 @r{ v1 v2@: V O @:op @: 22 @:outer@:(op,v1,v2)}
36593 @r{ v@: V R @:op @: 22,23 @:reduce@:(op,v)}
36594 @r{ v@: I V R @:op @: 22,23 @:rreduce@:(op,v)}
36595 @r{ a n@: H V R @:op @: 22 @:nest@:(op,a,n)}
36596 @r{ a@: I H V R @:op @: 22 @:fixp@:(op,a)}
36597 @r{ v@: V S @: @: @:sort@:(v)}
36598 @r{ v@: I V S @: @: @:rsort@:(v)}
36599 @r{ m@: V T @: @: 1 @:tr@:(m)}
36600 @r{ v@: V U @:op @: 22 @:accum@:(op,v)}
36601 @r{ v@: I V U @:op @: 22 @:raccum@:(op,v)}
36602 @r{ a n@: H V U @:op @: 22 @:anest@:(op,a,n)}
36603 @r{ a@: I H V U @:op @: 22 @:afixp@:(op,a)}
36604 @r{ s t@: V V @: @: 2 @:vunion@:(s,t)}
36605 @r{ s t@: V X @: @: 2 @:vxor@:(s,t)}
36608 @r{ @: Y @: @: @:@:user commands}
36611 @r{ @: z @: @: @:@:user commands}
36614 @r{ c@: Z [ @: @: 45 @:calc-kbd-if@:}
36615 @r{ c@: Z | @: @: 45 @:calc-kbd-else-if@:}
36616 @r{ @: Z : @: @: @:calc-kbd-else@:}
36617 @r{ @: Z ] @: @: @:calc-kbd-end-if@:}
36620 @r{ @: Z @{ @: @: 4 @:calc-kbd-loop@:}
36621 @r{ c@: Z / @: @: 45 @:calc-kbd-break@:}
36622 @r{ @: Z @} @: @: @:calc-kbd-end-loop@:}
36623 @r{ n@: Z < @: @: @:calc-kbd-repeat@:}
36624 @r{ @: Z > @: @: @:calc-kbd-end-repeat@:}
36625 @r{ n m@: Z ( @: @: @:calc-kbd-for@:}
36626 @r{ s@: Z ) @: @: @:calc-kbd-end-for@:}
36629 @r{ @: Z C-g @: @: @:@:cancel if/loop command}
36632 @r{ @: Z ` @: @: @:calc-kbd-push@:}
36633 @r{ @: Z ' @: @: @:calc-kbd-pop@:}
36634 @r{ @: Z # @: @: @:calc-kbd-query@:}
36637 @r{ comp@: Z C @:func, args @: 50 @:calc-user-define-composition@:}
36638 @r{ @: Z D @:key, command @: @:calc-user-define@:}
36639 @r{ @: Z E @:key, editing @: 30 @:calc-user-define-edit@:}
36640 @r{ defn@: Z F @:k, c, f, a, n@: 28 @:calc-user-define-formula@:}
36641 @r{ @: Z G @:key @: @:calc-get-user-defn@:}
36642 @r{ @: Z I @: @: @:calc-user-define-invocation@:}
36643 @r{ @: Z K @:key, command @: @:calc-user-define-kbd-macro@:}
36644 @r{ @: Z P @:key @: @:calc-user-define-permanent@:}
36645 @r{ @: Z S @: @: 30 @:calc-edit-user-syntax@:}
36646 @r{ @: Z T @: @: 12 @:calc-timing@:}
36647 @r{ @: Z U @:key @: @:calc-user-undefine@:}
36657 Positive prefix arguments apply to @expr{n} stack entries.
36658 Negative prefix arguments apply to the @expr{-n}th stack entry.
36659 A prefix of zero applies to the entire stack. (For @key{LFD} and
36660 @kbd{M-@key{DEL}}, the meaning of the sign is reversed.)
36664 Positive prefix arguments apply to @expr{n} stack entries.
36665 Negative prefix arguments apply to the top stack entry
36666 and the next @expr{-n} stack entries.
36670 Positive prefix arguments rotate top @expr{n} stack entries by one.
36671 Negative prefix arguments rotate the entire stack by @expr{-n}.
36672 A prefix of zero reverses the entire stack.
36676 Prefix argument specifies a repeat count or distance.
36680 Positive prefix arguments specify a precision @expr{p}.
36681 Negative prefix arguments reduce the current precision by @expr{-p}.
36685 A prefix argument is interpreted as an additional step-size parameter.
36686 A plain @kbd{C-u} prefix means to prompt for the step size.
36690 A prefix argument specifies simplification level and depth.
36691 1=Basic simplifications, 2=Algebraic simplifications, 3=Extended simplifications
36695 A negative prefix operates only on the top level of the input formula.
36699 Positive prefix arguments specify a word size of @expr{w} bits, unsigned.
36700 Negative prefix arguments specify a word size of @expr{w} bits, signed.
36704 Prefix arguments specify the shift amount @expr{n}. The @expr{w} argument
36705 cannot be specified in the keyboard version of this command.
36709 From the keyboard, @expr{d} is omitted and defaults to zero.
36713 Mode is toggled; a positive prefix always sets the mode, and a negative
36714 prefix always clears the mode.
36718 Some prefix argument values provide special variations of the mode.
36722 A prefix argument, if any, is used for @expr{m} instead of taking
36723 @expr{m} from the stack. @expr{M} may take any of these values:
36725 {@advance@tableindent10pt
36729 Random integer in the interval @expr{[0 .. m)}.
36731 Random floating-point number in the interval @expr{[0 .. m)}.
36733 Gaussian with mean 1 and standard deviation 0.
36735 Gaussian with specified mean and standard deviation.
36737 Random integer or floating-point number in that interval.
36739 Random element from the vector.
36747 A prefix argument from 1 to 6 specifies number of date components
36748 to remove from the stack. @xref{Date Conversions}.
36752 A prefix argument specifies a time zone; @kbd{C-u} says to take the
36753 time zone number or name from the top of the stack. @xref{Time Zones}.
36757 A prefix argument specifies a day number (0--6, 0--31, or 0--366).
36761 If the input has no units, you will be prompted for both the old and
36766 With a prefix argument, collect that many stack entries to form the
36767 input data set. Each entry may be a single value or a vector of values.
36771 With a prefix argument of 1, take a single
36772 @texline @var{n}@math{\times2}
36773 @infoline @mathit{@var{N}x2}
36774 matrix from the stack instead of two separate data vectors.
36778 The row or column number @expr{n} may be given as a numeric prefix
36779 argument instead. A plain @kbd{C-u} prefix says to take @expr{n}
36780 from the top of the stack. If @expr{n} is a vector or interval,
36781 a subvector/submatrix of the input is created.
36785 The @expr{op} prompt can be answered with the key sequence for the
36786 desired function, or with @kbd{x} or @kbd{z} followed by a function name,
36787 or with @kbd{$} to take a formula from the top of the stack, or with
36788 @kbd{'} and a typed formula. In the last two cases, the formula may
36789 be a nameless function like @samp{<#1+#2>} or @samp{<x, y : x+y>}, or it
36790 may include @kbd{$}, @kbd{$$}, etc. (where @kbd{$} will correspond to the
36791 last argument of the created function), or otherwise you will be
36792 prompted for an argument list. The number of vectors popped from the
36793 stack by @kbd{V M} depends on the number of arguments of the function.
36797 One of the mapping direction keys @kbd{_} (horizontal, i.e., map
36798 by rows or reduce across), @kbd{:} (vertical, i.e., map by columns or
36799 reduce down), or @kbd{=} (map or reduce by rows) may be used before
36800 entering @expr{op}; these modify the function name by adding the letter
36801 @code{r} for ``rows,'' @code{c} for ``columns,'' @code{a} for ``across,''
36802 or @code{d} for ``down.''
36806 The prefix argument specifies a packing mode. A nonnegative mode
36807 is the number of items (for @kbd{v p}) or the number of levels
36808 (for @kbd{v u}). A negative mode is as described below. With no
36809 prefix argument, the mode is taken from the top of the stack and
36810 may be an integer or a vector of integers.
36812 {@advance@tableindent-20pt
36816 (@var{2}) Rectangular complex number.
36818 (@var{2}) Polar complex number.
36820 (@var{3}) HMS form.
36822 (@var{2}) Error form.
36824 (@var{2}) Modulo form.
36826 (@var{2}) Closed interval.
36828 (@var{2}) Closed .. open interval.
36830 (@var{2}) Open .. closed interval.
36832 (@var{2}) Open interval.
36834 (@var{2}) Fraction.
36836 (@var{2}) Float with integer mantissa.
36838 (@var{2}) Float with mantissa in @expr{[1 .. 10)}.
36840 (@var{1}) Date form (using date numbers).
36842 (@var{3}) Date form (using year, month, day).
36844 (@var{6}) Date form (using year, month, day, hour, minute, second).
36852 A prefix argument specifies the size @expr{n} of the matrix. With no
36853 prefix argument, @expr{n} is omitted and the size is inferred from
36858 The prefix argument specifies the starting position @expr{n} (default 1).
36862 Cursor position within stack buffer affects this command.
36866 Arguments are not actually removed from the stack by this command.
36870 Variable name may be a single digit or a full name.
36874 Editing occurs in a separate buffer. Press @kbd{C-c C-c} (or
36875 @key{LFD}, or in some cases @key{RET}) to finish the edit, or kill the
36876 buffer with @kbd{C-x k} to cancel the edit. The @key{LFD} key prevents evaluation
36877 of the result of the edit.
36881 The number prompted for can also be provided as a prefix argument.
36885 Press this key a second time to cancel the prefix.
36889 With a negative prefix, deactivate all formulas. With a positive
36890 prefix, deactivate and then reactivate from scratch.
36894 Default is to scan for nearest formula delimiter symbols. With a
36895 prefix of zero, formula is delimited by mark and point. With a
36896 non-zero prefix, formula is delimited by scanning forward or
36897 backward by that many lines.
36901 Parse the region between point and mark as a vector. A nonzero prefix
36902 parses @var{n} lines before or after point as a vector. A zero prefix
36903 parses the current line as a vector. A @kbd{C-u} prefix parses the
36904 region between point and mark as a single formula.
36908 Parse the rectangle defined by point and mark as a matrix. A positive
36909 prefix @var{n} divides the rectangle into columns of width @var{n}.
36910 A zero or @kbd{C-u} prefix parses each line as one formula. A negative
36911 prefix suppresses special treatment of bracketed portions of a line.
36915 A numeric prefix causes the current language mode to be ignored.
36919 Responding to a prompt with a blank line answers that and all
36920 later prompts by popping additional stack entries.
36924 Answer for @expr{v} may also be of the form @expr{v = v_0} or
36929 With a positive prefix argument, stack contains many @expr{y}'s and one
36930 common @expr{x}. With a zero prefix, stack contains a vector of
36931 @expr{y}s and a common @expr{x}. With a negative prefix, stack
36932 contains many @expr{[x,y]} vectors. (For 3D plots, substitute
36933 @expr{z} for @expr{y} and @expr{x,y} for @expr{x}.)
36937 With any prefix argument, all curves in the graph are deleted.
36941 With a positive prefix, refines an existing plot with more data points.
36942 With a negative prefix, forces recomputation of the plot data.
36946 With any prefix argument, set the default value instead of the
36947 value for this graph.
36951 With a negative prefix argument, set the value for the printer.
36955 Condition is considered ``true'' if it is a nonzero real or complex
36956 number, or a formula whose value is known to be nonzero; it is ``false''
36961 Several formulas separated by commas are pushed as multiple stack
36962 entries. Trailing @kbd{)}, @kbd{]}, @kbd{@}}, @kbd{>}, and @kbd{"}
36963 delimiters may be omitted. The notation @kbd{$$$} refers to the value
36964 in stack level three, and causes the formula to replace the top three
36965 stack levels. The notation @kbd{$3} refers to stack level three without
36966 causing that value to be removed from the stack. Use @key{LFD} in place
36967 of @key{RET} to prevent evaluation; use @kbd{M-=} in place of @key{RET}
36968 to evaluate variables.
36972 The variable is replaced by the formula shown on the right. The
36973 Inverse flag reverses the order of the operands, e.g., @kbd{I s - x}
36975 @texline @math{x \coloneq a-x}.
36976 @infoline @expr{x := a-x}.
36980 Press @kbd{?} repeatedly to see how to choose a model. Answer the
36981 variables prompt with @expr{iv} or @expr{iv;pv} to specify
36982 independent and parameter variables. A positive prefix argument
36983 takes @mathit{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
36984 and a vector from the stack.
36988 With a plain @kbd{C-u} prefix, replace the current region of the
36989 destination buffer with the yanked text instead of inserting.
36993 All stack entries are reformatted; the @kbd{H} prefix inhibits this.
36994 The @kbd{I} prefix sets the mode temporarily, redraws the top stack
36995 entry, then restores the original setting of the mode.
36999 A negative prefix sets the default 3D resolution instead of the
37000 default 2D resolution.
37004 This grabs a vector of the form [@var{prec}, @var{wsize}, @var{ssize},
37005 @var{radix}, @var{flfmt}, @var{ang}, @var{frac}, @var{symb}, @var{polar},
37006 @var{matrix}, @var{simp}, @var{inf}]. A prefix argument from 1 to 12
37007 grabs the @var{n}th mode value only.
37011 (Space is provided below for you to keep your own written notes.)
37019 @node Key Index, Command Index, Summary, Top
37020 @unnumbered Index of Key Sequences
37024 @node Command Index, Function Index, Key Index, Top
37025 @unnumbered Index of Calculator Commands
37027 Since all Calculator commands begin with the prefix @samp{calc-}, the
37028 @kbd{x} key has been provided as a variant of @kbd{M-x} which automatically
37029 types @samp{calc-} for you. Thus, @kbd{x last-args} is short for
37030 @kbd{M-x calc-last-args}.
37034 @node Function Index, Concept Index, Command Index, Top
37035 @unnumbered Index of Algebraic Functions
37037 This is a list of built-in functions and operators usable in algebraic
37038 expressions. Their full Lisp names are derived by adding the prefix
37039 @samp{calcFunc-}, as in @code{calcFunc-sqrt}.
37041 All functions except those noted with ``*'' have corresponding
37042 Calc keystrokes and can also be found in the Calc Summary.
37047 @node Concept Index, Variable Index, Function Index, Top
37048 @unnumbered Concept Index
37052 @node Variable Index, Lisp Function Index, Concept Index, Top
37053 @unnumbered Index of Variables
37055 The variables in this list that do not contain dashes are accessible
37056 as Calc variables. Add a @samp{var-} prefix to get the name of the
37057 corresponding Lisp variable.
37059 The remaining variables are Lisp variables suitable for @code{setq}ing
37060 in your Calc init file or @file{.emacs} file.
37064 @node Lisp Function Index, , Variable Index, Top
37065 @unnumbered Index of Lisp Math Functions
37067 The following functions are meant to be used with @code{defmath}, not
37068 @code{defun} definitions. For names that do not start with @samp{calc-},
37069 the corresponding full Lisp name is derived by adding a prefix of