* net/tramp-compat.el (tramp-compat-user-error): Move it ...
[emacs.git] / src / fns.c
blobde90fd731fbe86cef6c127603e14fd88addcdbed
1 /* Random utility Lisp functions.
3 Copyright (C) 1985-1987, 1993-1995, 1997-2013 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 #include <config.h>
22 #include <unistd.h>
23 #include <time.h>
25 #include <intprops.h>
27 #include "lisp.h"
28 #include "commands.h"
29 #include "character.h"
30 #include "coding.h"
31 #include "buffer.h"
32 #include "keyboard.h"
33 #include "keymap.h"
34 #include "intervals.h"
35 #include "frame.h"
36 #include "window.h"
37 #include "blockinput.h"
38 #ifdef HAVE_MENUS
39 #if defined (HAVE_X_WINDOWS)
40 #include "xterm.h"
41 #endif
42 #endif /* HAVE_MENUS */
44 Lisp_Object Qstring_lessp;
45 static Lisp_Object Qprovide, Qrequire;
46 static Lisp_Object Qyes_or_no_p_history;
47 Lisp_Object Qcursor_in_echo_area;
48 static Lisp_Object Qwidget_type;
49 static Lisp_Object Qcodeset, Qdays, Qmonths, Qpaper;
51 static Lisp_Object Qmd5, Qsha1, Qsha224, Qsha256, Qsha384, Qsha512;
53 static bool internal_equal (Lisp_Object, Lisp_Object, int, bool);
55 DEFUN ("identity", Fidentity, Sidentity, 1, 1, 0,
56 doc: /* Return the argument unchanged. */)
57 (Lisp_Object arg)
59 return arg;
62 DEFUN ("random", Frandom, Srandom, 0, 1, 0,
63 doc: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 With a string argument, set the seed based on the string's contents.
70 Other values of LIMIT are ignored.
72 See Info node `(elisp)Random Numbers' for more details. */)
73 (Lisp_Object limit)
75 EMACS_INT val;
77 if (EQ (limit, Qt))
78 init_random ();
79 else if (STRINGP (limit))
80 seed_random (SSDATA (limit), SBYTES (limit));
82 val = get_random ();
83 if (NATNUMP (limit) && XFASTINT (limit) != 0)
84 val %= XFASTINT (limit);
85 return make_number (val);
88 /* Heuristic on how many iterations of a tight loop can be safely done
89 before it's time to do a QUIT. This must be a power of 2. */
90 enum { QUIT_COUNT_HEURISTIC = 1 << 16 };
92 /* Random data-structure functions. */
94 static void
95 CHECK_LIST_END (Lisp_Object x, Lisp_Object y)
97 CHECK_TYPE (NILP (x), Qlistp, y);
100 DEFUN ("length", Flength, Slength, 1, 1, 0,
101 doc: /* Return the length of vector, list or string SEQUENCE.
102 A byte-code function object is also allowed.
103 If the string contains multibyte characters, this is not necessarily
104 the number of bytes in the string; it is the number of characters.
105 To get the number of bytes, use `string-bytes'. */)
106 (register Lisp_Object sequence)
108 register Lisp_Object val;
110 if (STRINGP (sequence))
111 XSETFASTINT (val, SCHARS (sequence));
112 else if (VECTORP (sequence))
113 XSETFASTINT (val, ASIZE (sequence));
114 else if (CHAR_TABLE_P (sequence))
115 XSETFASTINT (val, MAX_CHAR);
116 else if (BOOL_VECTOR_P (sequence))
117 XSETFASTINT (val, XBOOL_VECTOR (sequence)->size);
118 else if (COMPILEDP (sequence))
119 XSETFASTINT (val, ASIZE (sequence) & PSEUDOVECTOR_SIZE_MASK);
120 else if (CONSP (sequence))
122 EMACS_INT i = 0;
126 ++i;
127 if ((i & (QUIT_COUNT_HEURISTIC - 1)) == 0)
129 if (MOST_POSITIVE_FIXNUM < i)
130 error ("List too long");
131 QUIT;
133 sequence = XCDR (sequence);
135 while (CONSP (sequence));
137 CHECK_LIST_END (sequence, sequence);
139 val = make_number (i);
141 else if (NILP (sequence))
142 XSETFASTINT (val, 0);
143 else
144 wrong_type_argument (Qsequencep, sequence);
146 return val;
149 DEFUN ("safe-length", Fsafe_length, Ssafe_length, 1, 1, 0,
150 doc: /* Return the length of a list, but avoid error or infinite loop.
151 This function never gets an error. If LIST is not really a list,
152 it returns 0. If LIST is circular, it returns a finite value
153 which is at least the number of distinct elements. */)
154 (Lisp_Object list)
156 Lisp_Object tail, halftail;
157 double hilen = 0;
158 uintmax_t lolen = 1;
160 if (! CONSP (list))
161 return make_number (0);
163 /* halftail is used to detect circular lists. */
164 for (tail = halftail = list; ; )
166 tail = XCDR (tail);
167 if (! CONSP (tail))
168 break;
169 if (EQ (tail, halftail))
170 break;
171 lolen++;
172 if ((lolen & 1) == 0)
174 halftail = XCDR (halftail);
175 if ((lolen & (QUIT_COUNT_HEURISTIC - 1)) == 0)
177 QUIT;
178 if (lolen == 0)
179 hilen += UINTMAX_MAX + 1.0;
184 /* If the length does not fit into a fixnum, return a float.
185 On all known practical machines this returns an upper bound on
186 the true length. */
187 return hilen ? make_float (hilen + lolen) : make_fixnum_or_float (lolen);
190 DEFUN ("string-bytes", Fstring_bytes, Sstring_bytes, 1, 1, 0,
191 doc: /* Return the number of bytes in STRING.
192 If STRING is multibyte, this may be greater than the length of STRING. */)
193 (Lisp_Object string)
195 CHECK_STRING (string);
196 return make_number (SBYTES (string));
199 DEFUN ("string-equal", Fstring_equal, Sstring_equal, 2, 2, 0,
200 doc: /* Return t if two strings have identical contents.
201 Case is significant, but text properties are ignored.
202 Symbols are also allowed; their print names are used instead. */)
203 (register Lisp_Object s1, Lisp_Object s2)
205 if (SYMBOLP (s1))
206 s1 = SYMBOL_NAME (s1);
207 if (SYMBOLP (s2))
208 s2 = SYMBOL_NAME (s2);
209 CHECK_STRING (s1);
210 CHECK_STRING (s2);
212 if (SCHARS (s1) != SCHARS (s2)
213 || SBYTES (s1) != SBYTES (s2)
214 || memcmp (SDATA (s1), SDATA (s2), SBYTES (s1)))
215 return Qnil;
216 return Qt;
219 DEFUN ("compare-strings", Fcompare_strings, Scompare_strings, 6, 7, 0,
220 doc: /* Compare the contents of two strings, converting to multibyte if needed.
221 The arguments START1, END1, START2, and END2, if non-nil, are
222 positions specifying which parts of STR1 or STR2 to compare. In
223 string STR1, compare the part between START1 (inclusive) and END1
224 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
225 the string; if END1 is nil, it defaults to the length of the string.
226 Likewise, in string STR2, compare the part between START2 and END2.
228 The strings are compared by the numeric values of their characters.
229 For instance, STR1 is "less than" STR2 if its first differing
230 character has a smaller numeric value. If IGNORE-CASE is non-nil,
231 characters are converted to lower-case before comparing them. Unibyte
232 strings are converted to multibyte for comparison.
234 The value is t if the strings (or specified portions) match.
235 If string STR1 is less, the value is a negative number N;
236 - 1 - N is the number of characters that match at the beginning.
237 If string STR1 is greater, the value is a positive number N;
238 N - 1 is the number of characters that match at the beginning. */)
239 (Lisp_Object str1, Lisp_Object start1, Lisp_Object end1, Lisp_Object str2, Lisp_Object start2, Lisp_Object end2, Lisp_Object ignore_case)
241 register ptrdiff_t end1_char, end2_char;
242 register ptrdiff_t i1, i1_byte, i2, i2_byte;
244 CHECK_STRING (str1);
245 CHECK_STRING (str2);
246 if (NILP (start1))
247 start1 = make_number (0);
248 if (NILP (start2))
249 start2 = make_number (0);
250 CHECK_NATNUM (start1);
251 CHECK_NATNUM (start2);
252 if (! NILP (end1))
253 CHECK_NATNUM (end1);
254 if (! NILP (end2))
255 CHECK_NATNUM (end2);
257 end1_char = SCHARS (str1);
258 if (! NILP (end1) && end1_char > XINT (end1))
259 end1_char = XINT (end1);
260 if (end1_char < XINT (start1))
261 args_out_of_range (str1, start1);
263 end2_char = SCHARS (str2);
264 if (! NILP (end2) && end2_char > XINT (end2))
265 end2_char = XINT (end2);
266 if (end2_char < XINT (start2))
267 args_out_of_range (str2, start2);
269 i1 = XINT (start1);
270 i2 = XINT (start2);
272 i1_byte = string_char_to_byte (str1, i1);
273 i2_byte = string_char_to_byte (str2, i2);
275 while (i1 < end1_char && i2 < end2_char)
277 /* When we find a mismatch, we must compare the
278 characters, not just the bytes. */
279 int c1, c2;
281 if (STRING_MULTIBYTE (str1))
282 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1, str1, i1, i1_byte);
283 else
285 c1 = SREF (str1, i1++);
286 MAKE_CHAR_MULTIBYTE (c1);
289 if (STRING_MULTIBYTE (str2))
290 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2, str2, i2, i2_byte);
291 else
293 c2 = SREF (str2, i2++);
294 MAKE_CHAR_MULTIBYTE (c2);
297 if (c1 == c2)
298 continue;
300 if (! NILP (ignore_case))
302 Lisp_Object tem;
304 tem = Fupcase (make_number (c1));
305 c1 = XINT (tem);
306 tem = Fupcase (make_number (c2));
307 c2 = XINT (tem);
310 if (c1 == c2)
311 continue;
313 /* Note that I1 has already been incremented
314 past the character that we are comparing;
315 hence we don't add or subtract 1 here. */
316 if (c1 < c2)
317 return make_number (- i1 + XINT (start1));
318 else
319 return make_number (i1 - XINT (start1));
322 if (i1 < end1_char)
323 return make_number (i1 - XINT (start1) + 1);
324 if (i2 < end2_char)
325 return make_number (- i1 + XINT (start1) - 1);
327 return Qt;
330 DEFUN ("string-lessp", Fstring_lessp, Sstring_lessp, 2, 2, 0,
331 doc: /* Return t if first arg string is less than second in lexicographic order.
332 Case is significant.
333 Symbols are also allowed; their print names are used instead. */)
334 (register Lisp_Object s1, Lisp_Object s2)
336 register ptrdiff_t end;
337 register ptrdiff_t i1, i1_byte, i2, i2_byte;
339 if (SYMBOLP (s1))
340 s1 = SYMBOL_NAME (s1);
341 if (SYMBOLP (s2))
342 s2 = SYMBOL_NAME (s2);
343 CHECK_STRING (s1);
344 CHECK_STRING (s2);
346 i1 = i1_byte = i2 = i2_byte = 0;
348 end = SCHARS (s1);
349 if (end > SCHARS (s2))
350 end = SCHARS (s2);
352 while (i1 < end)
354 /* When we find a mismatch, we must compare the
355 characters, not just the bytes. */
356 int c1, c2;
358 FETCH_STRING_CHAR_ADVANCE (c1, s1, i1, i1_byte);
359 FETCH_STRING_CHAR_ADVANCE (c2, s2, i2, i2_byte);
361 if (c1 != c2)
362 return c1 < c2 ? Qt : Qnil;
364 return i1 < SCHARS (s2) ? Qt : Qnil;
367 static Lisp_Object concat (ptrdiff_t nargs, Lisp_Object *args,
368 enum Lisp_Type target_type, bool last_special);
370 /* ARGSUSED */
371 Lisp_Object
372 concat2 (Lisp_Object s1, Lisp_Object s2)
374 Lisp_Object args[2];
375 args[0] = s1;
376 args[1] = s2;
377 return concat (2, args, Lisp_String, 0);
380 /* ARGSUSED */
381 Lisp_Object
382 concat3 (Lisp_Object s1, Lisp_Object s2, Lisp_Object s3)
384 Lisp_Object args[3];
385 args[0] = s1;
386 args[1] = s2;
387 args[2] = s3;
388 return concat (3, args, Lisp_String, 0);
391 DEFUN ("append", Fappend, Sappend, 0, MANY, 0,
392 doc: /* Concatenate all the arguments and make the result a list.
393 The result is a list whose elements are the elements of all the arguments.
394 Each argument may be a list, vector or string.
395 The last argument is not copied, just used as the tail of the new list.
396 usage: (append &rest SEQUENCES) */)
397 (ptrdiff_t nargs, Lisp_Object *args)
399 return concat (nargs, args, Lisp_Cons, 1);
402 DEFUN ("concat", Fconcat, Sconcat, 0, MANY, 0,
403 doc: /* Concatenate all the arguments and make the result a string.
404 The result is a string whose elements are the elements of all the arguments.
405 Each argument may be a string or a list or vector of characters (integers).
406 usage: (concat &rest SEQUENCES) */)
407 (ptrdiff_t nargs, Lisp_Object *args)
409 return concat (nargs, args, Lisp_String, 0);
412 DEFUN ("vconcat", Fvconcat, Svconcat, 0, MANY, 0,
413 doc: /* Concatenate all the arguments and make the result a vector.
414 The result is a vector whose elements are the elements of all the arguments.
415 Each argument may be a list, vector or string.
416 usage: (vconcat &rest SEQUENCES) */)
417 (ptrdiff_t nargs, Lisp_Object *args)
419 return concat (nargs, args, Lisp_Vectorlike, 0);
423 DEFUN ("copy-sequence", Fcopy_sequence, Scopy_sequence, 1, 1, 0,
424 doc: /* Return a copy of a list, vector, string or char-table.
425 The elements of a list or vector are not copied; they are shared
426 with the original. */)
427 (Lisp_Object arg)
429 if (NILP (arg)) return arg;
431 if (CHAR_TABLE_P (arg))
433 return copy_char_table (arg);
436 if (BOOL_VECTOR_P (arg))
438 Lisp_Object val;
439 ptrdiff_t size_in_chars
440 = ((XBOOL_VECTOR (arg)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
441 / BOOL_VECTOR_BITS_PER_CHAR);
443 val = Fmake_bool_vector (Flength (arg), Qnil);
444 memcpy (XBOOL_VECTOR (val)->data, XBOOL_VECTOR (arg)->data,
445 size_in_chars);
446 return val;
449 if (!CONSP (arg) && !VECTORP (arg) && !STRINGP (arg))
450 wrong_type_argument (Qsequencep, arg);
452 return concat (1, &arg, XTYPE (arg), 0);
455 /* This structure holds information of an argument of `concat' that is
456 a string and has text properties to be copied. */
457 struct textprop_rec
459 ptrdiff_t argnum; /* refer to ARGS (arguments of `concat') */
460 ptrdiff_t from; /* refer to ARGS[argnum] (argument string) */
461 ptrdiff_t to; /* refer to VAL (the target string) */
464 static Lisp_Object
465 concat (ptrdiff_t nargs, Lisp_Object *args,
466 enum Lisp_Type target_type, bool last_special)
468 Lisp_Object val;
469 Lisp_Object tail;
470 Lisp_Object this;
471 ptrdiff_t toindex;
472 ptrdiff_t toindex_byte = 0;
473 EMACS_INT result_len;
474 EMACS_INT result_len_byte;
475 ptrdiff_t argnum;
476 Lisp_Object last_tail;
477 Lisp_Object prev;
478 bool some_multibyte;
479 /* When we make a multibyte string, we can't copy text properties
480 while concatenating each string because the length of resulting
481 string can't be decided until we finish the whole concatenation.
482 So, we record strings that have text properties to be copied
483 here, and copy the text properties after the concatenation. */
484 struct textprop_rec *textprops = NULL;
485 /* Number of elements in textprops. */
486 ptrdiff_t num_textprops = 0;
487 USE_SAFE_ALLOCA;
489 tail = Qnil;
491 /* In append, the last arg isn't treated like the others */
492 if (last_special && nargs > 0)
494 nargs--;
495 last_tail = args[nargs];
497 else
498 last_tail = Qnil;
500 /* Check each argument. */
501 for (argnum = 0; argnum < nargs; argnum++)
503 this = args[argnum];
504 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
505 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
506 wrong_type_argument (Qsequencep, this);
509 /* Compute total length in chars of arguments in RESULT_LEN.
510 If desired output is a string, also compute length in bytes
511 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
512 whether the result should be a multibyte string. */
513 result_len_byte = 0;
514 result_len = 0;
515 some_multibyte = 0;
516 for (argnum = 0; argnum < nargs; argnum++)
518 EMACS_INT len;
519 this = args[argnum];
520 len = XFASTINT (Flength (this));
521 if (target_type == Lisp_String)
523 /* We must count the number of bytes needed in the string
524 as well as the number of characters. */
525 ptrdiff_t i;
526 Lisp_Object ch;
527 int c;
528 ptrdiff_t this_len_byte;
530 if (VECTORP (this) || COMPILEDP (this))
531 for (i = 0; i < len; i++)
533 ch = AREF (this, i);
534 CHECK_CHARACTER (ch);
535 c = XFASTINT (ch);
536 this_len_byte = CHAR_BYTES (c);
537 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
538 string_overflow ();
539 result_len_byte += this_len_byte;
540 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
541 some_multibyte = 1;
543 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size > 0)
544 wrong_type_argument (Qintegerp, Faref (this, make_number (0)));
545 else if (CONSP (this))
546 for (; CONSP (this); this = XCDR (this))
548 ch = XCAR (this);
549 CHECK_CHARACTER (ch);
550 c = XFASTINT (ch);
551 this_len_byte = CHAR_BYTES (c);
552 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
553 string_overflow ();
554 result_len_byte += this_len_byte;
555 if (! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
556 some_multibyte = 1;
558 else if (STRINGP (this))
560 if (STRING_MULTIBYTE (this))
562 some_multibyte = 1;
563 this_len_byte = SBYTES (this);
565 else
566 this_len_byte = count_size_as_multibyte (SDATA (this),
567 SCHARS (this));
568 if (STRING_BYTES_BOUND - result_len_byte < this_len_byte)
569 string_overflow ();
570 result_len_byte += this_len_byte;
574 result_len += len;
575 if (MOST_POSITIVE_FIXNUM < result_len)
576 memory_full (SIZE_MAX);
579 if (! some_multibyte)
580 result_len_byte = result_len;
582 /* Create the output object. */
583 if (target_type == Lisp_Cons)
584 val = Fmake_list (make_number (result_len), Qnil);
585 else if (target_type == Lisp_Vectorlike)
586 val = Fmake_vector (make_number (result_len), Qnil);
587 else if (some_multibyte)
588 val = make_uninit_multibyte_string (result_len, result_len_byte);
589 else
590 val = make_uninit_string (result_len);
592 /* In `append', if all but last arg are nil, return last arg. */
593 if (target_type == Lisp_Cons && EQ (val, Qnil))
594 return last_tail;
596 /* Copy the contents of the args into the result. */
597 if (CONSP (val))
598 tail = val, toindex = -1; /* -1 in toindex is flag we are making a list */
599 else
600 toindex = 0, toindex_byte = 0;
602 prev = Qnil;
603 if (STRINGP (val))
604 SAFE_NALLOCA (textprops, 1, nargs);
606 for (argnum = 0; argnum < nargs; argnum++)
608 Lisp_Object thislen;
609 ptrdiff_t thisleni = 0;
610 register ptrdiff_t thisindex = 0;
611 register ptrdiff_t thisindex_byte = 0;
613 this = args[argnum];
614 if (!CONSP (this))
615 thislen = Flength (this), thisleni = XINT (thislen);
617 /* Between strings of the same kind, copy fast. */
618 if (STRINGP (this) && STRINGP (val)
619 && STRING_MULTIBYTE (this) == some_multibyte)
621 ptrdiff_t thislen_byte = SBYTES (this);
623 memcpy (SDATA (val) + toindex_byte, SDATA (this), SBYTES (this));
624 if (string_intervals (this))
626 textprops[num_textprops].argnum = argnum;
627 textprops[num_textprops].from = 0;
628 textprops[num_textprops++].to = toindex;
630 toindex_byte += thislen_byte;
631 toindex += thisleni;
633 /* Copy a single-byte string to a multibyte string. */
634 else if (STRINGP (this) && STRINGP (val))
636 if (string_intervals (this))
638 textprops[num_textprops].argnum = argnum;
639 textprops[num_textprops].from = 0;
640 textprops[num_textprops++].to = toindex;
642 toindex_byte += copy_text (SDATA (this),
643 SDATA (val) + toindex_byte,
644 SCHARS (this), 0, 1);
645 toindex += thisleni;
647 else
648 /* Copy element by element. */
649 while (1)
651 register Lisp_Object elt;
653 /* Fetch next element of `this' arg into `elt', or break if
654 `this' is exhausted. */
655 if (NILP (this)) break;
656 if (CONSP (this))
657 elt = XCAR (this), this = XCDR (this);
658 else if (thisindex >= thisleni)
659 break;
660 else if (STRINGP (this))
662 int c;
663 if (STRING_MULTIBYTE (this))
664 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c, this,
665 thisindex,
666 thisindex_byte);
667 else
669 c = SREF (this, thisindex); thisindex++;
670 if (some_multibyte && !ASCII_CHAR_P (c))
671 c = BYTE8_TO_CHAR (c);
673 XSETFASTINT (elt, c);
675 else if (BOOL_VECTOR_P (this))
677 int byte;
678 byte = XBOOL_VECTOR (this)->data[thisindex / BOOL_VECTOR_BITS_PER_CHAR];
679 if (byte & (1 << (thisindex % BOOL_VECTOR_BITS_PER_CHAR)))
680 elt = Qt;
681 else
682 elt = Qnil;
683 thisindex++;
685 else
687 elt = AREF (this, thisindex);
688 thisindex++;
691 /* Store this element into the result. */
692 if (toindex < 0)
694 XSETCAR (tail, elt);
695 prev = tail;
696 tail = XCDR (tail);
698 else if (VECTORP (val))
700 ASET (val, toindex, elt);
701 toindex++;
703 else
705 int c;
706 CHECK_CHARACTER (elt);
707 c = XFASTINT (elt);
708 if (some_multibyte)
709 toindex_byte += CHAR_STRING (c, SDATA (val) + toindex_byte);
710 else
711 SSET (val, toindex_byte++, c);
712 toindex++;
716 if (!NILP (prev))
717 XSETCDR (prev, last_tail);
719 if (num_textprops > 0)
721 Lisp_Object props;
722 ptrdiff_t last_to_end = -1;
724 for (argnum = 0; argnum < num_textprops; argnum++)
726 this = args[textprops[argnum].argnum];
727 props = text_property_list (this,
728 make_number (0),
729 make_number (SCHARS (this)),
730 Qnil);
731 /* If successive arguments have properties, be sure that the
732 value of `composition' property be the copy. */
733 if (last_to_end == textprops[argnum].to)
734 make_composition_value_copy (props);
735 add_text_properties_from_list (val, props,
736 make_number (textprops[argnum].to));
737 last_to_end = textprops[argnum].to + SCHARS (this);
741 SAFE_FREE ();
742 return val;
745 static Lisp_Object string_char_byte_cache_string;
746 static ptrdiff_t string_char_byte_cache_charpos;
747 static ptrdiff_t string_char_byte_cache_bytepos;
749 void
750 clear_string_char_byte_cache (void)
752 string_char_byte_cache_string = Qnil;
755 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
757 ptrdiff_t
758 string_char_to_byte (Lisp_Object string, ptrdiff_t char_index)
760 ptrdiff_t i_byte;
761 ptrdiff_t best_below, best_below_byte;
762 ptrdiff_t best_above, best_above_byte;
764 best_below = best_below_byte = 0;
765 best_above = SCHARS (string);
766 best_above_byte = SBYTES (string);
767 if (best_above == best_above_byte)
768 return char_index;
770 if (EQ (string, string_char_byte_cache_string))
772 if (string_char_byte_cache_charpos < char_index)
774 best_below = string_char_byte_cache_charpos;
775 best_below_byte = string_char_byte_cache_bytepos;
777 else
779 best_above = string_char_byte_cache_charpos;
780 best_above_byte = string_char_byte_cache_bytepos;
784 if (char_index - best_below < best_above - char_index)
786 unsigned char *p = SDATA (string) + best_below_byte;
788 while (best_below < char_index)
790 p += BYTES_BY_CHAR_HEAD (*p);
791 best_below++;
793 i_byte = p - SDATA (string);
795 else
797 unsigned char *p = SDATA (string) + best_above_byte;
799 while (best_above > char_index)
801 p--;
802 while (!CHAR_HEAD_P (*p)) p--;
803 best_above--;
805 i_byte = p - SDATA (string);
808 string_char_byte_cache_bytepos = i_byte;
809 string_char_byte_cache_charpos = char_index;
810 string_char_byte_cache_string = string;
812 return i_byte;
815 /* Return the character index corresponding to BYTE_INDEX in STRING. */
817 ptrdiff_t
818 string_byte_to_char (Lisp_Object string, ptrdiff_t byte_index)
820 ptrdiff_t i, i_byte;
821 ptrdiff_t best_below, best_below_byte;
822 ptrdiff_t best_above, best_above_byte;
824 best_below = best_below_byte = 0;
825 best_above = SCHARS (string);
826 best_above_byte = SBYTES (string);
827 if (best_above == best_above_byte)
828 return byte_index;
830 if (EQ (string, string_char_byte_cache_string))
832 if (string_char_byte_cache_bytepos < byte_index)
834 best_below = string_char_byte_cache_charpos;
835 best_below_byte = string_char_byte_cache_bytepos;
837 else
839 best_above = string_char_byte_cache_charpos;
840 best_above_byte = string_char_byte_cache_bytepos;
844 if (byte_index - best_below_byte < best_above_byte - byte_index)
846 unsigned char *p = SDATA (string) + best_below_byte;
847 unsigned char *pend = SDATA (string) + byte_index;
849 while (p < pend)
851 p += BYTES_BY_CHAR_HEAD (*p);
852 best_below++;
854 i = best_below;
855 i_byte = p - SDATA (string);
857 else
859 unsigned char *p = SDATA (string) + best_above_byte;
860 unsigned char *pbeg = SDATA (string) + byte_index;
862 while (p > pbeg)
864 p--;
865 while (!CHAR_HEAD_P (*p)) p--;
866 best_above--;
868 i = best_above;
869 i_byte = p - SDATA (string);
872 string_char_byte_cache_bytepos = i_byte;
873 string_char_byte_cache_charpos = i;
874 string_char_byte_cache_string = string;
876 return i;
879 /* Convert STRING to a multibyte string. */
881 static Lisp_Object
882 string_make_multibyte (Lisp_Object string)
884 unsigned char *buf;
885 ptrdiff_t nbytes;
886 Lisp_Object ret;
887 USE_SAFE_ALLOCA;
889 if (STRING_MULTIBYTE (string))
890 return string;
892 nbytes = count_size_as_multibyte (SDATA (string),
893 SCHARS (string));
894 /* If all the chars are ASCII, they won't need any more bytes
895 once converted. In that case, we can return STRING itself. */
896 if (nbytes == SBYTES (string))
897 return string;
899 buf = SAFE_ALLOCA (nbytes);
900 copy_text (SDATA (string), buf, SBYTES (string),
901 0, 1);
903 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
904 SAFE_FREE ();
906 return ret;
910 /* Convert STRING (if unibyte) to a multibyte string without changing
911 the number of characters. Characters 0200 trough 0237 are
912 converted to eight-bit characters. */
914 Lisp_Object
915 string_to_multibyte (Lisp_Object string)
917 unsigned char *buf;
918 ptrdiff_t nbytes;
919 Lisp_Object ret;
920 USE_SAFE_ALLOCA;
922 if (STRING_MULTIBYTE (string))
923 return string;
925 nbytes = count_size_as_multibyte (SDATA (string), SBYTES (string));
926 /* If all the chars are ASCII, they won't need any more bytes once
927 converted. */
928 if (nbytes == SBYTES (string))
929 return make_multibyte_string (SSDATA (string), nbytes, nbytes);
931 buf = SAFE_ALLOCA (nbytes);
932 memcpy (buf, SDATA (string), SBYTES (string));
933 str_to_multibyte (buf, nbytes, SBYTES (string));
935 ret = make_multibyte_string ((char *) buf, SCHARS (string), nbytes);
936 SAFE_FREE ();
938 return ret;
942 /* Convert STRING to a single-byte string. */
944 Lisp_Object
945 string_make_unibyte (Lisp_Object string)
947 ptrdiff_t nchars;
948 unsigned char *buf;
949 Lisp_Object ret;
950 USE_SAFE_ALLOCA;
952 if (! STRING_MULTIBYTE (string))
953 return string;
955 nchars = SCHARS (string);
957 buf = SAFE_ALLOCA (nchars);
958 copy_text (SDATA (string), buf, SBYTES (string),
959 1, 0);
961 ret = make_unibyte_string ((char *) buf, nchars);
962 SAFE_FREE ();
964 return ret;
967 DEFUN ("string-make-multibyte", Fstring_make_multibyte, Sstring_make_multibyte,
968 1, 1, 0,
969 doc: /* Return the multibyte equivalent of STRING.
970 If STRING is unibyte and contains non-ASCII characters, the function
971 `unibyte-char-to-multibyte' is used to convert each unibyte character
972 to a multibyte character. In this case, the returned string is a
973 newly created string with no text properties. If STRING is multibyte
974 or entirely ASCII, it is returned unchanged. In particular, when
975 STRING is unibyte and entirely ASCII, the returned string is unibyte.
976 \(When the characters are all ASCII, Emacs primitives will treat the
977 string the same way whether it is unibyte or multibyte.) */)
978 (Lisp_Object string)
980 CHECK_STRING (string);
982 return string_make_multibyte (string);
985 DEFUN ("string-make-unibyte", Fstring_make_unibyte, Sstring_make_unibyte,
986 1, 1, 0,
987 doc: /* Return the unibyte equivalent of STRING.
988 Multibyte character codes are converted to unibyte according to
989 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
990 If the lookup in the translation table fails, this function takes just
991 the low 8 bits of each character. */)
992 (Lisp_Object string)
994 CHECK_STRING (string);
996 return string_make_unibyte (string);
999 DEFUN ("string-as-unibyte", Fstring_as_unibyte, Sstring_as_unibyte,
1000 1, 1, 0,
1001 doc: /* Return a unibyte string with the same individual bytes as STRING.
1002 If STRING is unibyte, the result is STRING itself.
1003 Otherwise it is a newly created string, with no text properties.
1004 If STRING is multibyte and contains a character of charset
1005 `eight-bit', it is converted to the corresponding single byte. */)
1006 (Lisp_Object string)
1008 CHECK_STRING (string);
1010 if (STRING_MULTIBYTE (string))
1012 ptrdiff_t bytes = SBYTES (string);
1013 unsigned char *str = xmalloc (bytes);
1015 memcpy (str, SDATA (string), bytes);
1016 bytes = str_as_unibyte (str, bytes);
1017 string = make_unibyte_string ((char *) str, bytes);
1018 xfree (str);
1020 return string;
1023 DEFUN ("string-as-multibyte", Fstring_as_multibyte, Sstring_as_multibyte,
1024 1, 1, 0,
1025 doc: /* Return a multibyte string with the same individual bytes as STRING.
1026 If STRING is multibyte, the result is STRING itself.
1027 Otherwise it is a newly created string, with no text properties.
1029 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1030 part of a correct utf-8 sequence), it is converted to the corresponding
1031 multibyte character of charset `eight-bit'.
1032 See also `string-to-multibyte'.
1034 Beware, this often doesn't really do what you think it does.
1035 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1036 If you're not sure, whether to use `string-as-multibyte' or
1037 `string-to-multibyte', use `string-to-multibyte'. */)
1038 (Lisp_Object string)
1040 CHECK_STRING (string);
1042 if (! STRING_MULTIBYTE (string))
1044 Lisp_Object new_string;
1045 ptrdiff_t nchars, nbytes;
1047 parse_str_as_multibyte (SDATA (string),
1048 SBYTES (string),
1049 &nchars, &nbytes);
1050 new_string = make_uninit_multibyte_string (nchars, nbytes);
1051 memcpy (SDATA (new_string), SDATA (string), SBYTES (string));
1052 if (nbytes != SBYTES (string))
1053 str_as_multibyte (SDATA (new_string), nbytes,
1054 SBYTES (string), NULL);
1055 string = new_string;
1056 set_string_intervals (string, NULL);
1058 return string;
1061 DEFUN ("string-to-multibyte", Fstring_to_multibyte, Sstring_to_multibyte,
1062 1, 1, 0,
1063 doc: /* Return a multibyte string with the same individual chars as STRING.
1064 If STRING is multibyte, the result is STRING itself.
1065 Otherwise it is a newly created string, with no text properties.
1067 If STRING is unibyte and contains an 8-bit byte, it is converted to
1068 the corresponding multibyte character of charset `eight-bit'.
1070 This differs from `string-as-multibyte' by converting each byte of a correct
1071 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1072 correct sequence. */)
1073 (Lisp_Object string)
1075 CHECK_STRING (string);
1077 return string_to_multibyte (string);
1080 DEFUN ("string-to-unibyte", Fstring_to_unibyte, Sstring_to_unibyte,
1081 1, 1, 0,
1082 doc: /* Return a unibyte string with the same individual chars as STRING.
1083 If STRING is unibyte, the result is STRING itself.
1084 Otherwise it is a newly created string, with no text properties,
1085 where each `eight-bit' character is converted to the corresponding byte.
1086 If STRING contains a non-ASCII, non-`eight-bit' character,
1087 an error is signaled. */)
1088 (Lisp_Object string)
1090 CHECK_STRING (string);
1092 if (STRING_MULTIBYTE (string))
1094 ptrdiff_t chars = SCHARS (string);
1095 unsigned char *str = xmalloc (chars);
1096 ptrdiff_t converted = str_to_unibyte (SDATA (string), str, chars);
1098 if (converted < chars)
1099 error ("Can't convert the %"pD"dth character to unibyte", converted);
1100 string = make_unibyte_string ((char *) str, chars);
1101 xfree (str);
1103 return string;
1107 DEFUN ("copy-alist", Fcopy_alist, Scopy_alist, 1, 1, 0,
1108 doc: /* Return a copy of ALIST.
1109 This is an alist which represents the same mapping from objects to objects,
1110 but does not share the alist structure with ALIST.
1111 The objects mapped (cars and cdrs of elements of the alist)
1112 are shared, however.
1113 Elements of ALIST that are not conses are also shared. */)
1114 (Lisp_Object alist)
1116 register Lisp_Object tem;
1118 CHECK_LIST (alist);
1119 if (NILP (alist))
1120 return alist;
1121 alist = concat (1, &alist, Lisp_Cons, 0);
1122 for (tem = alist; CONSP (tem); tem = XCDR (tem))
1124 register Lisp_Object car;
1125 car = XCAR (tem);
1127 if (CONSP (car))
1128 XSETCAR (tem, Fcons (XCAR (car), XCDR (car)));
1130 return alist;
1133 DEFUN ("substring", Fsubstring, Ssubstring, 2, 3, 0,
1134 doc: /* Return a new string whose contents are a substring of STRING.
1135 The returned string consists of the characters between index FROM
1136 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1137 zero-indexed: 0 means the first character of STRING. Negative values
1138 are counted from the end of STRING. If TO is nil, the substring runs
1139 to the end of STRING.
1141 The STRING argument may also be a vector. In that case, the return
1142 value is a new vector that contains the elements between index FROM
1143 \(inclusive) and index TO (exclusive) of that vector argument. */)
1144 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1146 Lisp_Object res;
1147 ptrdiff_t size;
1148 EMACS_INT from_char, to_char;
1150 CHECK_VECTOR_OR_STRING (string);
1151 CHECK_NUMBER (from);
1153 if (STRINGP (string))
1154 size = SCHARS (string);
1155 else
1156 size = ASIZE (string);
1158 if (NILP (to))
1159 to_char = size;
1160 else
1162 CHECK_NUMBER (to);
1164 to_char = XINT (to);
1165 if (to_char < 0)
1166 to_char += size;
1169 from_char = XINT (from);
1170 if (from_char < 0)
1171 from_char += size;
1172 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1173 args_out_of_range_3 (string, make_number (from_char),
1174 make_number (to_char));
1176 if (STRINGP (string))
1178 ptrdiff_t to_byte =
1179 (NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char));
1180 ptrdiff_t from_byte = string_char_to_byte (string, from_char);
1181 res = make_specified_string (SSDATA (string) + from_byte,
1182 to_char - from_char, to_byte - from_byte,
1183 STRING_MULTIBYTE (string));
1184 copy_text_properties (make_number (from_char), make_number (to_char),
1185 string, make_number (0), res, Qnil);
1187 else
1188 res = Fvector (to_char - from_char, aref_addr (string, from_char));
1190 return res;
1194 DEFUN ("substring-no-properties", Fsubstring_no_properties, Ssubstring_no_properties, 1, 3, 0,
1195 doc: /* Return a substring of STRING, without text properties.
1196 It starts at index FROM and ends before TO.
1197 TO may be nil or omitted; then the substring runs to the end of STRING.
1198 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1199 If FROM or TO is negative, it counts from the end.
1201 With one argument, just copy STRING without its properties. */)
1202 (Lisp_Object string, register Lisp_Object from, Lisp_Object to)
1204 ptrdiff_t size;
1205 EMACS_INT from_char, to_char;
1206 ptrdiff_t from_byte, to_byte;
1208 CHECK_STRING (string);
1210 size = SCHARS (string);
1212 if (NILP (from))
1213 from_char = 0;
1214 else
1216 CHECK_NUMBER (from);
1217 from_char = XINT (from);
1218 if (from_char < 0)
1219 from_char += size;
1222 if (NILP (to))
1223 to_char = size;
1224 else
1226 CHECK_NUMBER (to);
1227 to_char = XINT (to);
1228 if (to_char < 0)
1229 to_char += size;
1232 if (!(0 <= from_char && from_char <= to_char && to_char <= size))
1233 args_out_of_range_3 (string, make_number (from_char),
1234 make_number (to_char));
1236 from_byte = NILP (from) ? 0 : string_char_to_byte (string, from_char);
1237 to_byte =
1238 NILP (to) ? SBYTES (string) : string_char_to_byte (string, to_char);
1239 return make_specified_string (SSDATA (string) + from_byte,
1240 to_char - from_char, to_byte - from_byte,
1241 STRING_MULTIBYTE (string));
1244 /* Extract a substring of STRING, giving start and end positions
1245 both in characters and in bytes. */
1247 Lisp_Object
1248 substring_both (Lisp_Object string, ptrdiff_t from, ptrdiff_t from_byte,
1249 ptrdiff_t to, ptrdiff_t to_byte)
1251 Lisp_Object res;
1252 ptrdiff_t size;
1254 CHECK_VECTOR_OR_STRING (string);
1256 size = STRINGP (string) ? SCHARS (string) : ASIZE (string);
1258 if (!(0 <= from && from <= to && to <= size))
1259 args_out_of_range_3 (string, make_number (from), make_number (to));
1261 if (STRINGP (string))
1263 res = make_specified_string (SSDATA (string) + from_byte,
1264 to - from, to_byte - from_byte,
1265 STRING_MULTIBYTE (string));
1266 copy_text_properties (make_number (from), make_number (to),
1267 string, make_number (0), res, Qnil);
1269 else
1270 res = Fvector (to - from, aref_addr (string, from));
1272 return res;
1275 DEFUN ("nthcdr", Fnthcdr, Snthcdr, 2, 2, 0,
1276 doc: /* Take cdr N times on LIST, return the result. */)
1277 (Lisp_Object n, Lisp_Object list)
1279 EMACS_INT i, num;
1280 CHECK_NUMBER (n);
1281 num = XINT (n);
1282 for (i = 0; i < num && !NILP (list); i++)
1284 QUIT;
1285 CHECK_LIST_CONS (list, list);
1286 list = XCDR (list);
1288 return list;
1291 DEFUN ("nth", Fnth, Snth, 2, 2, 0,
1292 doc: /* Return the Nth element of LIST.
1293 N counts from zero. If LIST is not that long, nil is returned. */)
1294 (Lisp_Object n, Lisp_Object list)
1296 return Fcar (Fnthcdr (n, list));
1299 DEFUN ("elt", Felt, Selt, 2, 2, 0,
1300 doc: /* Return element of SEQUENCE at index N. */)
1301 (register Lisp_Object sequence, Lisp_Object n)
1303 CHECK_NUMBER (n);
1304 if (CONSP (sequence) || NILP (sequence))
1305 return Fcar (Fnthcdr (n, sequence));
1307 /* Faref signals a "not array" error, so check here. */
1308 CHECK_ARRAY (sequence, Qsequencep);
1309 return Faref (sequence, n);
1312 DEFUN ("member", Fmember, Smember, 2, 2, 0,
1313 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1314 The value is actually the tail of LIST whose car is ELT. */)
1315 (register Lisp_Object elt, Lisp_Object list)
1317 register Lisp_Object tail;
1318 for (tail = list; CONSP (tail); tail = XCDR (tail))
1320 register Lisp_Object tem;
1321 CHECK_LIST_CONS (tail, list);
1322 tem = XCAR (tail);
1323 if (! NILP (Fequal (elt, tem)))
1324 return tail;
1325 QUIT;
1327 return Qnil;
1330 DEFUN ("memq", Fmemq, Smemq, 2, 2, 0,
1331 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1332 The value is actually the tail of LIST whose car is ELT. */)
1333 (register Lisp_Object elt, Lisp_Object list)
1335 while (1)
1337 if (!CONSP (list) || EQ (XCAR (list), elt))
1338 break;
1340 list = XCDR (list);
1341 if (!CONSP (list) || EQ (XCAR (list), elt))
1342 break;
1344 list = XCDR (list);
1345 if (!CONSP (list) || EQ (XCAR (list), elt))
1346 break;
1348 list = XCDR (list);
1349 QUIT;
1352 CHECK_LIST (list);
1353 return list;
1356 DEFUN ("memql", Fmemql, Smemql, 2, 2, 0,
1357 doc: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1358 The value is actually the tail of LIST whose car is ELT. */)
1359 (register Lisp_Object elt, Lisp_Object list)
1361 register Lisp_Object tail;
1363 if (!FLOATP (elt))
1364 return Fmemq (elt, list);
1366 for (tail = list; CONSP (tail); tail = XCDR (tail))
1368 register Lisp_Object tem;
1369 CHECK_LIST_CONS (tail, list);
1370 tem = XCAR (tail);
1371 if (FLOATP (tem) && internal_equal (elt, tem, 0, 0))
1372 return tail;
1373 QUIT;
1375 return Qnil;
1378 DEFUN ("assq", Fassq, Sassq, 2, 2, 0,
1379 doc: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1380 The value is actually the first element of LIST whose car is KEY.
1381 Elements of LIST that are not conses are ignored. */)
1382 (Lisp_Object key, Lisp_Object list)
1384 while (1)
1386 if (!CONSP (list)
1387 || (CONSP (XCAR (list))
1388 && EQ (XCAR (XCAR (list)), key)))
1389 break;
1391 list = XCDR (list);
1392 if (!CONSP (list)
1393 || (CONSP (XCAR (list))
1394 && EQ (XCAR (XCAR (list)), key)))
1395 break;
1397 list = XCDR (list);
1398 if (!CONSP (list)
1399 || (CONSP (XCAR (list))
1400 && EQ (XCAR (XCAR (list)), key)))
1401 break;
1403 list = XCDR (list);
1404 QUIT;
1407 return CAR (list);
1410 /* Like Fassq but never report an error and do not allow quits.
1411 Use only on lists known never to be circular. */
1413 Lisp_Object
1414 assq_no_quit (Lisp_Object key, Lisp_Object list)
1416 while (CONSP (list)
1417 && (!CONSP (XCAR (list))
1418 || !EQ (XCAR (XCAR (list)), key)))
1419 list = XCDR (list);
1421 return CAR_SAFE (list);
1424 DEFUN ("assoc", Fassoc, Sassoc, 2, 2, 0,
1425 doc: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1426 The value is actually the first element of LIST whose car equals KEY. */)
1427 (Lisp_Object key, Lisp_Object list)
1429 Lisp_Object car;
1431 while (1)
1433 if (!CONSP (list)
1434 || (CONSP (XCAR (list))
1435 && (car = XCAR (XCAR (list)),
1436 EQ (car, key) || !NILP (Fequal (car, key)))))
1437 break;
1439 list = XCDR (list);
1440 if (!CONSP (list)
1441 || (CONSP (XCAR (list))
1442 && (car = XCAR (XCAR (list)),
1443 EQ (car, key) || !NILP (Fequal (car, key)))))
1444 break;
1446 list = XCDR (list);
1447 if (!CONSP (list)
1448 || (CONSP (XCAR (list))
1449 && (car = XCAR (XCAR (list)),
1450 EQ (car, key) || !NILP (Fequal (car, key)))))
1451 break;
1453 list = XCDR (list);
1454 QUIT;
1457 return CAR (list);
1460 /* Like Fassoc but never report an error and do not allow quits.
1461 Use only on lists known never to be circular. */
1463 Lisp_Object
1464 assoc_no_quit (Lisp_Object key, Lisp_Object list)
1466 while (CONSP (list)
1467 && (!CONSP (XCAR (list))
1468 || (!EQ (XCAR (XCAR (list)), key)
1469 && NILP (Fequal (XCAR (XCAR (list)), key)))))
1470 list = XCDR (list);
1472 return CONSP (list) ? XCAR (list) : Qnil;
1475 DEFUN ("rassq", Frassq, Srassq, 2, 2, 0,
1476 doc: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1477 The value is actually the first element of LIST whose cdr is KEY. */)
1478 (register Lisp_Object key, Lisp_Object list)
1480 while (1)
1482 if (!CONSP (list)
1483 || (CONSP (XCAR (list))
1484 && EQ (XCDR (XCAR (list)), key)))
1485 break;
1487 list = XCDR (list);
1488 if (!CONSP (list)
1489 || (CONSP (XCAR (list))
1490 && EQ (XCDR (XCAR (list)), key)))
1491 break;
1493 list = XCDR (list);
1494 if (!CONSP (list)
1495 || (CONSP (XCAR (list))
1496 && EQ (XCDR (XCAR (list)), key)))
1497 break;
1499 list = XCDR (list);
1500 QUIT;
1503 return CAR (list);
1506 DEFUN ("rassoc", Frassoc, Srassoc, 2, 2, 0,
1507 doc: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1508 The value is actually the first element of LIST whose cdr equals KEY. */)
1509 (Lisp_Object key, Lisp_Object list)
1511 Lisp_Object cdr;
1513 while (1)
1515 if (!CONSP (list)
1516 || (CONSP (XCAR (list))
1517 && (cdr = XCDR (XCAR (list)),
1518 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1519 break;
1521 list = XCDR (list);
1522 if (!CONSP (list)
1523 || (CONSP (XCAR (list))
1524 && (cdr = XCDR (XCAR (list)),
1525 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1526 break;
1528 list = XCDR (list);
1529 if (!CONSP (list)
1530 || (CONSP (XCAR (list))
1531 && (cdr = XCDR (XCAR (list)),
1532 EQ (cdr, key) || !NILP (Fequal (cdr, key)))))
1533 break;
1535 list = XCDR (list);
1536 QUIT;
1539 return CAR (list);
1542 DEFUN ("delq", Fdelq, Sdelq, 2, 2, 0,
1543 doc: /* Delete members of LIST which are `eq' to ELT, and return the result.
1544 More precisely, this function skips any members `eq' to ELT at the
1545 front of LIST, then removes members `eq' to ELT from the remaining
1546 sublist by modifying its list structure, then returns the resulting
1547 list.
1549 Write `(setq foo (delq element foo))' to be sure of correctly changing
1550 the value of a list `foo'. */)
1551 (register Lisp_Object elt, Lisp_Object list)
1553 register Lisp_Object tail, prev;
1554 register Lisp_Object tem;
1556 tail = list;
1557 prev = Qnil;
1558 while (CONSP (tail))
1560 CHECK_LIST_CONS (tail, list);
1561 tem = XCAR (tail);
1562 if (EQ (elt, tem))
1564 if (NILP (prev))
1565 list = XCDR (tail);
1566 else
1567 Fsetcdr (prev, XCDR (tail));
1569 else
1570 prev = tail;
1571 tail = XCDR (tail);
1572 QUIT;
1574 return list;
1577 DEFUN ("delete", Fdelete, Sdelete, 2, 2, 0,
1578 doc: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1579 SEQ must be a sequence (i.e. a list, a vector, or a string).
1580 The return value is a sequence of the same type.
1582 If SEQ is a list, this behaves like `delq', except that it compares
1583 with `equal' instead of `eq'. In particular, it may remove elements
1584 by altering the list structure.
1586 If SEQ is not a list, deletion is never performed destructively;
1587 instead this function creates and returns a new vector or string.
1589 Write `(setq foo (delete element foo))' to be sure of correctly
1590 changing the value of a sequence `foo'. */)
1591 (Lisp_Object elt, Lisp_Object seq)
1593 if (VECTORP (seq))
1595 ptrdiff_t i, n;
1597 for (i = n = 0; i < ASIZE (seq); ++i)
1598 if (NILP (Fequal (AREF (seq, i), elt)))
1599 ++n;
1601 if (n != ASIZE (seq))
1603 struct Lisp_Vector *p = allocate_vector (n);
1605 for (i = n = 0; i < ASIZE (seq); ++i)
1606 if (NILP (Fequal (AREF (seq, i), elt)))
1607 p->contents[n++] = AREF (seq, i);
1609 XSETVECTOR (seq, p);
1612 else if (STRINGP (seq))
1614 ptrdiff_t i, ibyte, nchars, nbytes, cbytes;
1615 int c;
1617 for (i = nchars = nbytes = ibyte = 0;
1618 i < SCHARS (seq);
1619 ++i, ibyte += cbytes)
1621 if (STRING_MULTIBYTE (seq))
1623 c = STRING_CHAR (SDATA (seq) + ibyte);
1624 cbytes = CHAR_BYTES (c);
1626 else
1628 c = SREF (seq, i);
1629 cbytes = 1;
1632 if (!INTEGERP (elt) || c != XINT (elt))
1634 ++nchars;
1635 nbytes += cbytes;
1639 if (nchars != SCHARS (seq))
1641 Lisp_Object tem;
1643 tem = make_uninit_multibyte_string (nchars, nbytes);
1644 if (!STRING_MULTIBYTE (seq))
1645 STRING_SET_UNIBYTE (tem);
1647 for (i = nchars = nbytes = ibyte = 0;
1648 i < SCHARS (seq);
1649 ++i, ibyte += cbytes)
1651 if (STRING_MULTIBYTE (seq))
1653 c = STRING_CHAR (SDATA (seq) + ibyte);
1654 cbytes = CHAR_BYTES (c);
1656 else
1658 c = SREF (seq, i);
1659 cbytes = 1;
1662 if (!INTEGERP (elt) || c != XINT (elt))
1664 unsigned char *from = SDATA (seq) + ibyte;
1665 unsigned char *to = SDATA (tem) + nbytes;
1666 ptrdiff_t n;
1668 ++nchars;
1669 nbytes += cbytes;
1671 for (n = cbytes; n--; )
1672 *to++ = *from++;
1676 seq = tem;
1679 else
1681 Lisp_Object tail, prev;
1683 for (tail = seq, prev = Qnil; CONSP (tail); tail = XCDR (tail))
1685 CHECK_LIST_CONS (tail, seq);
1687 if (!NILP (Fequal (elt, XCAR (tail))))
1689 if (NILP (prev))
1690 seq = XCDR (tail);
1691 else
1692 Fsetcdr (prev, XCDR (tail));
1694 else
1695 prev = tail;
1696 QUIT;
1700 return seq;
1703 DEFUN ("nreverse", Fnreverse, Snreverse, 1, 1, 0,
1704 doc: /* Reverse LIST by modifying cdr pointers.
1705 Return the reversed list. Expects a properly nil-terminated list. */)
1706 (Lisp_Object list)
1708 register Lisp_Object prev, tail, next;
1710 if (NILP (list)) return list;
1711 prev = Qnil;
1712 tail = list;
1713 while (!NILP (tail))
1715 QUIT;
1716 CHECK_LIST_CONS (tail, tail);
1717 next = XCDR (tail);
1718 Fsetcdr (tail, prev);
1719 prev = tail;
1720 tail = next;
1722 return prev;
1725 DEFUN ("reverse", Freverse, Sreverse, 1, 1, 0,
1726 doc: /* Reverse LIST, copying. Return the reversed list.
1727 See also the function `nreverse', which is used more often. */)
1728 (Lisp_Object list)
1730 Lisp_Object new;
1732 for (new = Qnil; CONSP (list); list = XCDR (list))
1734 QUIT;
1735 new = Fcons (XCAR (list), new);
1737 CHECK_LIST_END (list, list);
1738 return new;
1741 DEFUN ("sort", Fsort, Ssort, 2, 2, 0,
1742 doc: /* Sort LIST, stably, comparing elements using PREDICATE.
1743 Returns the sorted list. LIST is modified by side effects.
1744 PREDICATE is called with two elements of LIST, and should return non-nil
1745 if the first element should sort before the second. */)
1746 (Lisp_Object list, Lisp_Object predicate)
1748 Lisp_Object front, back;
1749 register Lisp_Object len, tem;
1750 struct gcpro gcpro1, gcpro2;
1751 EMACS_INT length;
1753 front = list;
1754 len = Flength (list);
1755 length = XINT (len);
1756 if (length < 2)
1757 return list;
1759 XSETINT (len, (length / 2) - 1);
1760 tem = Fnthcdr (len, list);
1761 back = Fcdr (tem);
1762 Fsetcdr (tem, Qnil);
1764 GCPRO2 (front, back);
1765 front = Fsort (front, predicate);
1766 back = Fsort (back, predicate);
1767 UNGCPRO;
1768 return merge (front, back, predicate);
1771 Lisp_Object
1772 merge (Lisp_Object org_l1, Lisp_Object org_l2, Lisp_Object pred)
1774 Lisp_Object value;
1775 register Lisp_Object tail;
1776 Lisp_Object tem;
1777 register Lisp_Object l1, l2;
1778 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
1780 l1 = org_l1;
1781 l2 = org_l2;
1782 tail = Qnil;
1783 value = Qnil;
1785 /* It is sufficient to protect org_l1 and org_l2.
1786 When l1 and l2 are updated, we copy the new values
1787 back into the org_ vars. */
1788 GCPRO4 (org_l1, org_l2, pred, value);
1790 while (1)
1792 if (NILP (l1))
1794 UNGCPRO;
1795 if (NILP (tail))
1796 return l2;
1797 Fsetcdr (tail, l2);
1798 return value;
1800 if (NILP (l2))
1802 UNGCPRO;
1803 if (NILP (tail))
1804 return l1;
1805 Fsetcdr (tail, l1);
1806 return value;
1808 tem = call2 (pred, Fcar (l2), Fcar (l1));
1809 if (NILP (tem))
1811 tem = l1;
1812 l1 = Fcdr (l1);
1813 org_l1 = l1;
1815 else
1817 tem = l2;
1818 l2 = Fcdr (l2);
1819 org_l2 = l2;
1821 if (NILP (tail))
1822 value = tem;
1823 else
1824 Fsetcdr (tail, tem);
1825 tail = tem;
1830 /* This does not check for quits. That is safe since it must terminate. */
1832 DEFUN ("plist-get", Fplist_get, Splist_get, 2, 2, 0,
1833 doc: /* Extract a value from a property list.
1834 PLIST is a property list, which is a list of the form
1835 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1836 corresponding to the given PROP, or nil if PROP is not one of the
1837 properties on the list. This function never signals an error. */)
1838 (Lisp_Object plist, Lisp_Object prop)
1840 Lisp_Object tail, halftail;
1842 /* halftail is used to detect circular lists. */
1843 tail = halftail = plist;
1844 while (CONSP (tail) && CONSP (XCDR (tail)))
1846 if (EQ (prop, XCAR (tail)))
1847 return XCAR (XCDR (tail));
1849 tail = XCDR (XCDR (tail));
1850 halftail = XCDR (halftail);
1851 if (EQ (tail, halftail))
1852 break;
1855 return Qnil;
1858 DEFUN ("get", Fget, Sget, 2, 2, 0,
1859 doc: /* Return the value of SYMBOL's PROPNAME property.
1860 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1861 (Lisp_Object symbol, Lisp_Object propname)
1863 CHECK_SYMBOL (symbol);
1864 return Fplist_get (XSYMBOL (symbol)->plist, propname);
1867 DEFUN ("plist-put", Fplist_put, Splist_put, 3, 3, 0,
1868 doc: /* Change value in PLIST of PROP to VAL.
1869 PLIST is a property list, which is a list of the form
1870 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1871 If PROP is already a property on the list, its value is set to VAL,
1872 otherwise the new PROP VAL pair is added. The new plist is returned;
1873 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1874 The PLIST is modified by side effects. */)
1875 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1877 register Lisp_Object tail, prev;
1878 Lisp_Object newcell;
1879 prev = Qnil;
1880 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1881 tail = XCDR (XCDR (tail)))
1883 if (EQ (prop, XCAR (tail)))
1885 Fsetcar (XCDR (tail), val);
1886 return plist;
1889 prev = tail;
1890 QUIT;
1892 newcell = Fcons (prop, Fcons (val, NILP (prev) ? plist : XCDR (XCDR (prev))));
1893 if (NILP (prev))
1894 return newcell;
1895 else
1896 Fsetcdr (XCDR (prev), newcell);
1897 return plist;
1900 DEFUN ("put", Fput, Sput, 3, 3, 0,
1901 doc: /* Store SYMBOL's PROPNAME property with value VALUE.
1902 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1903 (Lisp_Object symbol, Lisp_Object propname, Lisp_Object value)
1905 CHECK_SYMBOL (symbol);
1906 set_symbol_plist
1907 (symbol, Fplist_put (XSYMBOL (symbol)->plist, propname, value));
1908 return value;
1911 DEFUN ("lax-plist-get", Flax_plist_get, Slax_plist_get, 2, 2, 0,
1912 doc: /* Extract a value from a property list, comparing with `equal'.
1913 PLIST is a property list, which is a list of the form
1914 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1915 corresponding to the given PROP, or nil if PROP is not
1916 one of the properties on the list. */)
1917 (Lisp_Object plist, Lisp_Object prop)
1919 Lisp_Object tail;
1921 for (tail = plist;
1922 CONSP (tail) && CONSP (XCDR (tail));
1923 tail = XCDR (XCDR (tail)))
1925 if (! NILP (Fequal (prop, XCAR (tail))))
1926 return XCAR (XCDR (tail));
1928 QUIT;
1931 CHECK_LIST_END (tail, prop);
1933 return Qnil;
1936 DEFUN ("lax-plist-put", Flax_plist_put, Slax_plist_put, 3, 3, 0,
1937 doc: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1938 PLIST is a property list, which is a list of the form
1939 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1940 If PROP is already a property on the list, its value is set to VAL,
1941 otherwise the new PROP VAL pair is added. The new plist is returned;
1942 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1943 The PLIST is modified by side effects. */)
1944 (Lisp_Object plist, register Lisp_Object prop, Lisp_Object val)
1946 register Lisp_Object tail, prev;
1947 Lisp_Object newcell;
1948 prev = Qnil;
1949 for (tail = plist; CONSP (tail) && CONSP (XCDR (tail));
1950 tail = XCDR (XCDR (tail)))
1952 if (! NILP (Fequal (prop, XCAR (tail))))
1954 Fsetcar (XCDR (tail), val);
1955 return plist;
1958 prev = tail;
1959 QUIT;
1961 newcell = list2 (prop, val);
1962 if (NILP (prev))
1963 return newcell;
1964 else
1965 Fsetcdr (XCDR (prev), newcell);
1966 return plist;
1969 DEFUN ("eql", Feql, Seql, 2, 2, 0,
1970 doc: /* Return t if the two args are the same Lisp object.
1971 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1972 (Lisp_Object obj1, Lisp_Object obj2)
1974 if (FLOATP (obj1))
1975 return internal_equal (obj1, obj2, 0, 0) ? Qt : Qnil;
1976 else
1977 return EQ (obj1, obj2) ? Qt : Qnil;
1980 DEFUN ("equal", Fequal, Sequal, 2, 2, 0,
1981 doc: /* Return t if two Lisp objects have similar structure and contents.
1982 They must have the same data type.
1983 Conses are compared by comparing the cars and the cdrs.
1984 Vectors and strings are compared element by element.
1985 Numbers are compared by value, but integers cannot equal floats.
1986 (Use `=' if you want integers and floats to be able to be equal.)
1987 Symbols must match exactly. */)
1988 (register Lisp_Object o1, Lisp_Object o2)
1990 return internal_equal (o1, o2, 0, 0) ? Qt : Qnil;
1993 DEFUN ("equal-including-properties", Fequal_including_properties, Sequal_including_properties, 2, 2, 0,
1994 doc: /* Return t if two Lisp objects have similar structure and contents.
1995 This is like `equal' except that it compares the text properties
1996 of strings. (`equal' ignores text properties.) */)
1997 (register Lisp_Object o1, Lisp_Object o2)
1999 return internal_equal (o1, o2, 0, 1) ? Qt : Qnil;
2002 /* DEPTH is current depth of recursion. Signal an error if it
2003 gets too deep.
2004 PROPS means compare string text properties too. */
2006 static bool
2007 internal_equal (Lisp_Object o1, Lisp_Object o2, int depth, bool props)
2009 if (depth > 200)
2010 error ("Stack overflow in equal");
2012 tail_recurse:
2013 QUIT;
2014 if (EQ (o1, o2))
2015 return 1;
2016 if (XTYPE (o1) != XTYPE (o2))
2017 return 0;
2019 switch (XTYPE (o1))
2021 case Lisp_Float:
2023 double d1, d2;
2025 d1 = extract_float (o1);
2026 d2 = extract_float (o2);
2027 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2028 though they are not =. */
2029 return d1 == d2 || (d1 != d1 && d2 != d2);
2032 case Lisp_Cons:
2033 if (!internal_equal (XCAR (o1), XCAR (o2), depth + 1, props))
2034 return 0;
2035 o1 = XCDR (o1);
2036 o2 = XCDR (o2);
2037 goto tail_recurse;
2039 case Lisp_Misc:
2040 if (XMISCTYPE (o1) != XMISCTYPE (o2))
2041 return 0;
2042 if (OVERLAYP (o1))
2044 if (!internal_equal (OVERLAY_START (o1), OVERLAY_START (o2),
2045 depth + 1, props)
2046 || !internal_equal (OVERLAY_END (o1), OVERLAY_END (o2),
2047 depth + 1, props))
2048 return 0;
2049 o1 = XOVERLAY (o1)->plist;
2050 o2 = XOVERLAY (o2)->plist;
2051 goto tail_recurse;
2053 if (MARKERP (o1))
2055 return (XMARKER (o1)->buffer == XMARKER (o2)->buffer
2056 && (XMARKER (o1)->buffer == 0
2057 || XMARKER (o1)->bytepos == XMARKER (o2)->bytepos));
2059 break;
2061 case Lisp_Vectorlike:
2063 register int i;
2064 ptrdiff_t size = ASIZE (o1);
2065 /* Pseudovectors have the type encoded in the size field, so this test
2066 actually checks that the objects have the same type as well as the
2067 same size. */
2068 if (ASIZE (o2) != size)
2069 return 0;
2070 /* Boolvectors are compared much like strings. */
2071 if (BOOL_VECTOR_P (o1))
2073 if (XBOOL_VECTOR (o1)->size != XBOOL_VECTOR (o2)->size)
2074 return 0;
2075 if (memcmp (XBOOL_VECTOR (o1)->data, XBOOL_VECTOR (o2)->data,
2076 ((XBOOL_VECTOR (o1)->size
2077 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2078 / BOOL_VECTOR_BITS_PER_CHAR)))
2079 return 0;
2080 return 1;
2082 if (WINDOW_CONFIGURATIONP (o1))
2083 return compare_window_configurations (o1, o2, 0);
2085 /* Aside from them, only true vectors, char-tables, compiled
2086 functions, and fonts (font-spec, font-entity, font-object)
2087 are sensible to compare, so eliminate the others now. */
2088 if (size & PSEUDOVECTOR_FLAG)
2090 if (((size & PVEC_TYPE_MASK) >> PSEUDOVECTOR_AREA_BITS)
2091 < PVEC_COMPILED)
2092 return 0;
2093 size &= PSEUDOVECTOR_SIZE_MASK;
2095 for (i = 0; i < size; i++)
2097 Lisp_Object v1, v2;
2098 v1 = AREF (o1, i);
2099 v2 = AREF (o2, i);
2100 if (!internal_equal (v1, v2, depth + 1, props))
2101 return 0;
2103 return 1;
2105 break;
2107 case Lisp_String:
2108 if (SCHARS (o1) != SCHARS (o2))
2109 return 0;
2110 if (SBYTES (o1) != SBYTES (o2))
2111 return 0;
2112 if (memcmp (SDATA (o1), SDATA (o2), SBYTES (o1)))
2113 return 0;
2114 if (props && !compare_string_intervals (o1, o2))
2115 return 0;
2116 return 1;
2118 default:
2119 break;
2122 return 0;
2126 DEFUN ("fillarray", Ffillarray, Sfillarray, 2, 2, 0,
2127 doc: /* Store each element of ARRAY with ITEM.
2128 ARRAY is a vector, string, char-table, or bool-vector. */)
2129 (Lisp_Object array, Lisp_Object item)
2131 register ptrdiff_t size, idx;
2133 if (VECTORP (array))
2134 for (idx = 0, size = ASIZE (array); idx < size; idx++)
2135 ASET (array, idx, item);
2136 else if (CHAR_TABLE_P (array))
2138 int i;
2140 for (i = 0; i < (1 << CHARTAB_SIZE_BITS_0); i++)
2141 set_char_table_contents (array, i, item);
2142 set_char_table_defalt (array, item);
2144 else if (STRINGP (array))
2146 register unsigned char *p = SDATA (array);
2147 int charval;
2148 CHECK_CHARACTER (item);
2149 charval = XFASTINT (item);
2150 size = SCHARS (array);
2151 if (STRING_MULTIBYTE (array))
2153 unsigned char str[MAX_MULTIBYTE_LENGTH];
2154 int len = CHAR_STRING (charval, str);
2155 ptrdiff_t size_byte = SBYTES (array);
2157 if (INT_MULTIPLY_OVERFLOW (SCHARS (array), len)
2158 || SCHARS (array) * len != size_byte)
2159 error ("Attempt to change byte length of a string");
2160 for (idx = 0; idx < size_byte; idx++)
2161 *p++ = str[idx % len];
2163 else
2164 for (idx = 0; idx < size; idx++)
2165 p[idx] = charval;
2167 else if (BOOL_VECTOR_P (array))
2169 register unsigned char *p = XBOOL_VECTOR (array)->data;
2170 size =
2171 ((XBOOL_VECTOR (array)->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2172 / BOOL_VECTOR_BITS_PER_CHAR);
2174 if (size)
2176 memset (p, ! NILP (item) ? -1 : 0, size);
2178 /* Clear any extraneous bits in the last byte. */
2179 p[size - 1] &= (1 << (size % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2182 else
2183 wrong_type_argument (Qarrayp, array);
2184 return array;
2187 DEFUN ("clear-string", Fclear_string, Sclear_string,
2188 1, 1, 0,
2189 doc: /* Clear the contents of STRING.
2190 This makes STRING unibyte and may change its length. */)
2191 (Lisp_Object string)
2193 ptrdiff_t len;
2194 CHECK_STRING (string);
2195 len = SBYTES (string);
2196 memset (SDATA (string), 0, len);
2197 STRING_SET_CHARS (string, len);
2198 STRING_SET_UNIBYTE (string);
2199 return Qnil;
2202 /* ARGSUSED */
2203 Lisp_Object
2204 nconc2 (Lisp_Object s1, Lisp_Object s2)
2206 Lisp_Object args[2];
2207 args[0] = s1;
2208 args[1] = s2;
2209 return Fnconc (2, args);
2212 DEFUN ("nconc", Fnconc, Snconc, 0, MANY, 0,
2213 doc: /* Concatenate any number of lists by altering them.
2214 Only the last argument is not altered, and need not be a list.
2215 usage: (nconc &rest LISTS) */)
2216 (ptrdiff_t nargs, Lisp_Object *args)
2218 ptrdiff_t argnum;
2219 register Lisp_Object tail, tem, val;
2221 val = tail = Qnil;
2223 for (argnum = 0; argnum < nargs; argnum++)
2225 tem = args[argnum];
2226 if (NILP (tem)) continue;
2228 if (NILP (val))
2229 val = tem;
2231 if (argnum + 1 == nargs) break;
2233 CHECK_LIST_CONS (tem, tem);
2235 while (CONSP (tem))
2237 tail = tem;
2238 tem = XCDR (tail);
2239 QUIT;
2242 tem = args[argnum + 1];
2243 Fsetcdr (tail, tem);
2244 if (NILP (tem))
2245 args[argnum + 1] = tail;
2248 return val;
2251 /* This is the guts of all mapping functions.
2252 Apply FN to each element of SEQ, one by one,
2253 storing the results into elements of VALS, a C vector of Lisp_Objects.
2254 LENI is the length of VALS, which should also be the length of SEQ. */
2256 static void
2257 mapcar1 (EMACS_INT leni, Lisp_Object *vals, Lisp_Object fn, Lisp_Object seq)
2259 register Lisp_Object tail;
2260 Lisp_Object dummy;
2261 register EMACS_INT i;
2262 struct gcpro gcpro1, gcpro2, gcpro3;
2264 if (vals)
2266 /* Don't let vals contain any garbage when GC happens. */
2267 for (i = 0; i < leni; i++)
2268 vals[i] = Qnil;
2270 GCPRO3 (dummy, fn, seq);
2271 gcpro1.var = vals;
2272 gcpro1.nvars = leni;
2274 else
2275 GCPRO2 (fn, seq);
2276 /* We need not explicitly protect `tail' because it is used only on lists, and
2277 1) lists are not relocated and 2) the list is marked via `seq' so will not
2278 be freed */
2280 if (VECTORP (seq) || COMPILEDP (seq))
2282 for (i = 0; i < leni; i++)
2284 dummy = call1 (fn, AREF (seq, i));
2285 if (vals)
2286 vals[i] = dummy;
2289 else if (BOOL_VECTOR_P (seq))
2291 for (i = 0; i < leni; i++)
2293 unsigned char byte;
2294 byte = XBOOL_VECTOR (seq)->data[i / BOOL_VECTOR_BITS_PER_CHAR];
2295 dummy = (byte & (1 << (i % BOOL_VECTOR_BITS_PER_CHAR))) ? Qt : Qnil;
2296 dummy = call1 (fn, dummy);
2297 if (vals)
2298 vals[i] = dummy;
2301 else if (STRINGP (seq))
2303 ptrdiff_t i_byte;
2305 for (i = 0, i_byte = 0; i < leni;)
2307 int c;
2308 ptrdiff_t i_before = i;
2310 FETCH_STRING_CHAR_ADVANCE (c, seq, i, i_byte);
2311 XSETFASTINT (dummy, c);
2312 dummy = call1 (fn, dummy);
2313 if (vals)
2314 vals[i_before] = dummy;
2317 else /* Must be a list, since Flength did not get an error */
2319 tail = seq;
2320 for (i = 0; i < leni && CONSP (tail); i++)
2322 dummy = call1 (fn, XCAR (tail));
2323 if (vals)
2324 vals[i] = dummy;
2325 tail = XCDR (tail);
2329 UNGCPRO;
2332 DEFUN ("mapconcat", Fmapconcat, Smapconcat, 3, 3, 0,
2333 doc: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2334 In between each pair of results, stick in SEPARATOR. Thus, " " as
2335 SEPARATOR results in spaces between the values returned by FUNCTION.
2336 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2337 (Lisp_Object function, Lisp_Object sequence, Lisp_Object separator)
2339 Lisp_Object len;
2340 register EMACS_INT leni;
2341 EMACS_INT nargs;
2342 ptrdiff_t i;
2343 register Lisp_Object *args;
2344 struct gcpro gcpro1;
2345 Lisp_Object ret;
2346 USE_SAFE_ALLOCA;
2348 len = Flength (sequence);
2349 if (CHAR_TABLE_P (sequence))
2350 wrong_type_argument (Qlistp, sequence);
2351 leni = XINT (len);
2352 nargs = leni + leni - 1;
2353 if (nargs < 0) return empty_unibyte_string;
2355 SAFE_ALLOCA_LISP (args, nargs);
2357 GCPRO1 (separator);
2358 mapcar1 (leni, args, function, sequence);
2359 UNGCPRO;
2361 for (i = leni - 1; i > 0; i--)
2362 args[i + i] = args[i];
2364 for (i = 1; i < nargs; i += 2)
2365 args[i] = separator;
2367 ret = Fconcat (nargs, args);
2368 SAFE_FREE ();
2370 return ret;
2373 DEFUN ("mapcar", Fmapcar, Smapcar, 2, 2, 0,
2374 doc: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2375 The result is a list just as long as SEQUENCE.
2376 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2377 (Lisp_Object function, Lisp_Object sequence)
2379 register Lisp_Object len;
2380 register EMACS_INT leni;
2381 register Lisp_Object *args;
2382 Lisp_Object ret;
2383 USE_SAFE_ALLOCA;
2385 len = Flength (sequence);
2386 if (CHAR_TABLE_P (sequence))
2387 wrong_type_argument (Qlistp, sequence);
2388 leni = XFASTINT (len);
2390 SAFE_ALLOCA_LISP (args, leni);
2392 mapcar1 (leni, args, function, sequence);
2394 ret = Flist (leni, args);
2395 SAFE_FREE ();
2397 return ret;
2400 DEFUN ("mapc", Fmapc, Smapc, 2, 2, 0,
2401 doc: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2402 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2403 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2404 (Lisp_Object function, Lisp_Object sequence)
2406 register EMACS_INT leni;
2408 leni = XFASTINT (Flength (sequence));
2409 if (CHAR_TABLE_P (sequence))
2410 wrong_type_argument (Qlistp, sequence);
2411 mapcar1 (leni, 0, function, sequence);
2413 return sequence;
2416 /* This is how C code calls `yes-or-no-p' and allows the user
2417 to redefined it.
2419 Anything that calls this function must protect from GC! */
2421 Lisp_Object
2422 do_yes_or_no_p (Lisp_Object prompt)
2424 return call1 (intern ("yes-or-no-p"), prompt);
2427 /* Anything that calls this function must protect from GC! */
2429 DEFUN ("yes-or-no-p", Fyes_or_no_p, Syes_or_no_p, 1, 1, 0,
2430 doc: /* Ask user a yes-or-no question. Return t if answer is yes.
2431 PROMPT is the string to display to ask the question. It should end in
2432 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2434 The user must confirm the answer with RET, and can edit it until it
2435 has been confirmed.
2437 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2438 is nil, and `use-dialog-box' is non-nil. */)
2439 (Lisp_Object prompt)
2441 register Lisp_Object ans;
2442 Lisp_Object args[2];
2443 struct gcpro gcpro1;
2445 CHECK_STRING (prompt);
2447 #ifdef HAVE_MENUS
2448 if ((NILP (last_nonmenu_event) || CONSP (last_nonmenu_event))
2449 && use_dialog_box
2450 && window_system_available (SELECTED_FRAME ()))
2452 Lisp_Object pane, menu, obj;
2453 redisplay_preserve_echo_area (4);
2454 pane = list2 (Fcons (build_string ("Yes"), Qt),
2455 Fcons (build_string ("No"), Qnil));
2456 GCPRO1 (pane);
2457 menu = Fcons (prompt, pane);
2458 obj = Fx_popup_dialog (Qt, menu, Qnil);
2459 UNGCPRO;
2460 return obj;
2462 #endif /* HAVE_MENUS */
2464 args[0] = prompt;
2465 args[1] = build_string ("(yes or no) ");
2466 prompt = Fconcat (2, args);
2468 GCPRO1 (prompt);
2470 while (1)
2472 ans = Fdowncase (Fread_from_minibuffer (prompt, Qnil, Qnil, Qnil,
2473 Qyes_or_no_p_history, Qnil,
2474 Qnil));
2475 if (SCHARS (ans) == 3 && !strcmp (SSDATA (ans), "yes"))
2477 UNGCPRO;
2478 return Qt;
2480 if (SCHARS (ans) == 2 && !strcmp (SSDATA (ans), "no"))
2482 UNGCPRO;
2483 return Qnil;
2486 Fding (Qnil);
2487 Fdiscard_input ();
2488 message1 ("Please answer yes or no.");
2489 Fsleep_for (make_number (2), Qnil);
2493 DEFUN ("load-average", Fload_average, Sload_average, 0, 1, 0,
2494 doc: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2496 Each of the three load averages is multiplied by 100, then converted
2497 to integer.
2499 When USE-FLOATS is non-nil, floats will be used instead of integers.
2500 These floats are not multiplied by 100.
2502 If the 5-minute or 15-minute load averages are not available, return a
2503 shortened list, containing only those averages which are available.
2505 An error is thrown if the load average can't be obtained. In some
2506 cases making it work would require Emacs being installed setuid or
2507 setgid so that it can read kernel information, and that usually isn't
2508 advisable. */)
2509 (Lisp_Object use_floats)
2511 double load_ave[3];
2512 int loads = getloadavg (load_ave, 3);
2513 Lisp_Object ret = Qnil;
2515 if (loads < 0)
2516 error ("load-average not implemented for this operating system");
2518 while (loads-- > 0)
2520 Lisp_Object load = (NILP (use_floats)
2521 ? make_number (100.0 * load_ave[loads])
2522 : make_float (load_ave[loads]));
2523 ret = Fcons (load, ret);
2526 return ret;
2529 static Lisp_Object Qsubfeatures;
2531 DEFUN ("featurep", Ffeaturep, Sfeaturep, 1, 2, 0,
2532 doc: /* Return t if FEATURE is present in this Emacs.
2534 Use this to conditionalize execution of lisp code based on the
2535 presence or absence of Emacs or environment extensions.
2536 Use `provide' to declare that a feature is available. This function
2537 looks at the value of the variable `features'. The optional argument
2538 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2539 (Lisp_Object feature, Lisp_Object subfeature)
2541 register Lisp_Object tem;
2542 CHECK_SYMBOL (feature);
2543 tem = Fmemq (feature, Vfeatures);
2544 if (!NILP (tem) && !NILP (subfeature))
2545 tem = Fmember (subfeature, Fget (feature, Qsubfeatures));
2546 return (NILP (tem)) ? Qnil : Qt;
2549 static Lisp_Object Qfuncall;
2551 DEFUN ("provide", Fprovide, Sprovide, 1, 2, 0,
2552 doc: /* Announce that FEATURE is a feature of the current Emacs.
2553 The optional argument SUBFEATURES should be a list of symbols listing
2554 particular subfeatures supported in this version of FEATURE. */)
2555 (Lisp_Object feature, Lisp_Object subfeatures)
2557 register Lisp_Object tem;
2558 CHECK_SYMBOL (feature);
2559 CHECK_LIST (subfeatures);
2560 if (!NILP (Vautoload_queue))
2561 Vautoload_queue = Fcons (Fcons (make_number (0), Vfeatures),
2562 Vautoload_queue);
2563 tem = Fmemq (feature, Vfeatures);
2564 if (NILP (tem))
2565 Vfeatures = Fcons (feature, Vfeatures);
2566 if (!NILP (subfeatures))
2567 Fput (feature, Qsubfeatures, subfeatures);
2568 LOADHIST_ATTACH (Fcons (Qprovide, feature));
2570 /* Run any load-hooks for this file. */
2571 tem = Fassq (feature, Vafter_load_alist);
2572 if (CONSP (tem))
2573 Fmapc (Qfuncall, XCDR (tem));
2575 return feature;
2578 /* `require' and its subroutines. */
2580 /* List of features currently being require'd, innermost first. */
2582 static Lisp_Object require_nesting_list;
2584 static void
2585 require_unwind (Lisp_Object old_value)
2587 require_nesting_list = old_value;
2590 DEFUN ("require", Frequire, Srequire, 1, 3, 0,
2591 doc: /* If feature FEATURE is not loaded, load it from FILENAME.
2592 If FEATURE is not a member of the list `features', then the feature
2593 is not loaded; so load the file FILENAME.
2594 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2595 and `load' will try to load this name appended with the suffix `.elc' or
2596 `.el', in that order. The name without appended suffix will not be used.
2597 See `get-load-suffixes' for the complete list of suffixes.
2598 If the optional third argument NOERROR is non-nil,
2599 then return nil if the file is not found instead of signaling an error.
2600 Normally the return value is FEATURE.
2601 The normal messages at start and end of loading FILENAME are suppressed. */)
2602 (Lisp_Object feature, Lisp_Object filename, Lisp_Object noerror)
2604 Lisp_Object tem;
2605 struct gcpro gcpro1, gcpro2;
2606 bool from_file = load_in_progress;
2608 CHECK_SYMBOL (feature);
2610 /* Record the presence of `require' in this file
2611 even if the feature specified is already loaded.
2612 But not more than once in any file,
2613 and not when we aren't loading or reading from a file. */
2614 if (!from_file)
2615 for (tem = Vcurrent_load_list; CONSP (tem); tem = XCDR (tem))
2616 if (NILP (XCDR (tem)) && STRINGP (XCAR (tem)))
2617 from_file = 1;
2619 if (from_file)
2621 tem = Fcons (Qrequire, feature);
2622 if (NILP (Fmember (tem, Vcurrent_load_list)))
2623 LOADHIST_ATTACH (tem);
2625 tem = Fmemq (feature, Vfeatures);
2627 if (NILP (tem))
2629 ptrdiff_t count = SPECPDL_INDEX ();
2630 int nesting = 0;
2632 /* This is to make sure that loadup.el gives a clear picture
2633 of what files are preloaded and when. */
2634 if (! NILP (Vpurify_flag))
2635 error ("(require %s) while preparing to dump",
2636 SDATA (SYMBOL_NAME (feature)));
2638 /* A certain amount of recursive `require' is legitimate,
2639 but if we require the same feature recursively 3 times,
2640 signal an error. */
2641 tem = require_nesting_list;
2642 while (! NILP (tem))
2644 if (! NILP (Fequal (feature, XCAR (tem))))
2645 nesting++;
2646 tem = XCDR (tem);
2648 if (nesting > 3)
2649 error ("Recursive `require' for feature `%s'",
2650 SDATA (SYMBOL_NAME (feature)));
2652 /* Update the list for any nested `require's that occur. */
2653 record_unwind_protect (require_unwind, require_nesting_list);
2654 require_nesting_list = Fcons (feature, require_nesting_list);
2656 /* Value saved here is to be restored into Vautoload_queue */
2657 record_unwind_protect (un_autoload, Vautoload_queue);
2658 Vautoload_queue = Qt;
2660 /* Load the file. */
2661 GCPRO2 (feature, filename);
2662 tem = Fload (NILP (filename) ? Fsymbol_name (feature) : filename,
2663 noerror, Qt, Qnil, (NILP (filename) ? Qt : Qnil));
2664 UNGCPRO;
2666 /* If load failed entirely, return nil. */
2667 if (NILP (tem))
2668 return unbind_to (count, Qnil);
2670 tem = Fmemq (feature, Vfeatures);
2671 if (NILP (tem))
2672 error ("Required feature `%s' was not provided",
2673 SDATA (SYMBOL_NAME (feature)));
2675 /* Once loading finishes, don't undo it. */
2676 Vautoload_queue = Qt;
2677 feature = unbind_to (count, feature);
2680 return feature;
2683 /* Primitives for work of the "widget" library.
2684 In an ideal world, this section would not have been necessary.
2685 However, lisp function calls being as slow as they are, it turns
2686 out that some functions in the widget library (wid-edit.el) are the
2687 bottleneck of Widget operation. Here is their translation to C,
2688 for the sole reason of efficiency. */
2690 DEFUN ("plist-member", Fplist_member, Splist_member, 2, 2, 0,
2691 doc: /* Return non-nil if PLIST has the property PROP.
2692 PLIST is a property list, which is a list of the form
2693 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2694 Unlike `plist-get', this allows you to distinguish between a missing
2695 property and a property with the value nil.
2696 The value is actually the tail of PLIST whose car is PROP. */)
2697 (Lisp_Object plist, Lisp_Object prop)
2699 while (CONSP (plist) && !EQ (XCAR (plist), prop))
2701 QUIT;
2702 plist = XCDR (plist);
2703 plist = CDR (plist);
2705 return plist;
2708 DEFUN ("widget-put", Fwidget_put, Swidget_put, 3, 3, 0,
2709 doc: /* In WIDGET, set PROPERTY to VALUE.
2710 The value can later be retrieved with `widget-get'. */)
2711 (Lisp_Object widget, Lisp_Object property, Lisp_Object value)
2713 CHECK_CONS (widget);
2714 XSETCDR (widget, Fplist_put (XCDR (widget), property, value));
2715 return value;
2718 DEFUN ("widget-get", Fwidget_get, Swidget_get, 2, 2, 0,
2719 doc: /* In WIDGET, get the value of PROPERTY.
2720 The value could either be specified when the widget was created, or
2721 later with `widget-put'. */)
2722 (Lisp_Object widget, Lisp_Object property)
2724 Lisp_Object tmp;
2726 while (1)
2728 if (NILP (widget))
2729 return Qnil;
2730 CHECK_CONS (widget);
2731 tmp = Fplist_member (XCDR (widget), property);
2732 if (CONSP (tmp))
2734 tmp = XCDR (tmp);
2735 return CAR (tmp);
2737 tmp = XCAR (widget);
2738 if (NILP (tmp))
2739 return Qnil;
2740 widget = Fget (tmp, Qwidget_type);
2744 DEFUN ("widget-apply", Fwidget_apply, Swidget_apply, 2, MANY, 0,
2745 doc: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2746 ARGS are passed as extra arguments to the function.
2747 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2748 (ptrdiff_t nargs, Lisp_Object *args)
2750 /* This function can GC. */
2751 Lisp_Object newargs[3];
2752 struct gcpro gcpro1, gcpro2;
2753 Lisp_Object result;
2755 newargs[0] = Fwidget_get (args[0], args[1]);
2756 newargs[1] = args[0];
2757 newargs[2] = Flist (nargs - 2, args + 2);
2758 GCPRO2 (newargs[0], newargs[2]);
2759 result = Fapply (3, newargs);
2760 UNGCPRO;
2761 return result;
2764 #ifdef HAVE_LANGINFO_CODESET
2765 #include <langinfo.h>
2766 #endif
2768 DEFUN ("locale-info", Flocale_info, Slocale_info, 1, 1, 0,
2769 doc: /* Access locale data ITEM for the current C locale, if available.
2770 ITEM should be one of the following:
2772 `codeset', returning the character set as a string (locale item CODESET);
2774 `days', returning a 7-element vector of day names (locale items DAY_n);
2776 `months', returning a 12-element vector of month names (locale items MON_n);
2778 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2779 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2781 If the system can't provide such information through a call to
2782 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2784 See also Info node `(libc)Locales'.
2786 The data read from the system are decoded using `locale-coding-system'. */)
2787 (Lisp_Object item)
2789 char *str = NULL;
2790 #ifdef HAVE_LANGINFO_CODESET
2791 Lisp_Object val;
2792 if (EQ (item, Qcodeset))
2794 str = nl_langinfo (CODESET);
2795 return build_string (str);
2797 #ifdef DAY_1
2798 else if (EQ (item, Qdays)) /* e.g. for calendar-day-name-array */
2800 Lisp_Object v = Fmake_vector (make_number (7), Qnil);
2801 const int days[7] = {DAY_1, DAY_2, DAY_3, DAY_4, DAY_5, DAY_6, DAY_7};
2802 int i;
2803 struct gcpro gcpro1;
2804 GCPRO1 (v);
2805 synchronize_system_time_locale ();
2806 for (i = 0; i < 7; i++)
2808 str = nl_langinfo (days[i]);
2809 val = build_unibyte_string (str);
2810 /* Fixme: Is this coding system necessarily right, even if
2811 it is consistent with CODESET? If not, what to do? */
2812 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2813 0));
2815 UNGCPRO;
2816 return v;
2818 #endif /* DAY_1 */
2819 #ifdef MON_1
2820 else if (EQ (item, Qmonths)) /* e.g. for calendar-month-name-array */
2822 Lisp_Object v = Fmake_vector (make_number (12), Qnil);
2823 const int months[12] = {MON_1, MON_2, MON_3, MON_4, MON_5, MON_6, MON_7,
2824 MON_8, MON_9, MON_10, MON_11, MON_12};
2825 int i;
2826 struct gcpro gcpro1;
2827 GCPRO1 (v);
2828 synchronize_system_time_locale ();
2829 for (i = 0; i < 12; i++)
2831 str = nl_langinfo (months[i]);
2832 val = build_unibyte_string (str);
2833 ASET (v, i, code_convert_string_norecord (val, Vlocale_coding_system,
2834 0));
2836 UNGCPRO;
2837 return v;
2839 #endif /* MON_1 */
2840 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2841 but is in the locale files. This could be used by ps-print. */
2842 #ifdef PAPER_WIDTH
2843 else if (EQ (item, Qpaper))
2844 return list2i (nl_langinfo (PAPER_WIDTH), nl_langinfo (PAPER_HEIGHT));
2845 #endif /* PAPER_WIDTH */
2846 #endif /* HAVE_LANGINFO_CODESET*/
2847 return Qnil;
2850 /* base64 encode/decode functions (RFC 2045).
2851 Based on code from GNU recode. */
2853 #define MIME_LINE_LENGTH 76
2855 #define IS_ASCII(Character) \
2856 ((Character) < 128)
2857 #define IS_BASE64(Character) \
2858 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2859 #define IS_BASE64_IGNORABLE(Character) \
2860 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2861 || (Character) == '\f' || (Character) == '\r')
2863 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2864 character or return retval if there are no characters left to
2865 process. */
2866 #define READ_QUADRUPLET_BYTE(retval) \
2867 do \
2869 if (i == length) \
2871 if (nchars_return) \
2872 *nchars_return = nchars; \
2873 return (retval); \
2875 c = from[i++]; \
2877 while (IS_BASE64_IGNORABLE (c))
2879 /* Table of characters coding the 64 values. */
2880 static const char base64_value_to_char[64] =
2882 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2883 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2884 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2885 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2886 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2887 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2888 '8', '9', '+', '/' /* 60-63 */
2891 /* Table of base64 values for first 128 characters. */
2892 static const short base64_char_to_value[128] =
2894 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2895 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2896 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2897 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2898 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2899 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2900 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2901 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2902 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2903 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2904 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2905 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2906 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2909 /* The following diagram shows the logical steps by which three octets
2910 get transformed into four base64 characters.
2912 .--------. .--------. .--------.
2913 |aaaaaabb| |bbbbcccc| |ccdddddd|
2914 `--------' `--------' `--------'
2915 6 2 4 4 2 6
2916 .--------+--------+--------+--------.
2917 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2918 `--------+--------+--------+--------'
2920 .--------+--------+--------+--------.
2921 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2922 `--------+--------+--------+--------'
2924 The octets are divided into 6 bit chunks, which are then encoded into
2925 base64 characters. */
2928 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2929 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2930 ptrdiff_t *);
2932 DEFUN ("base64-encode-region", Fbase64_encode_region, Sbase64_encode_region,
2933 2, 3, "r",
2934 doc: /* Base64-encode the region between BEG and END.
2935 Return the length of the encoded text.
2936 Optional third argument NO-LINE-BREAK means do not break long lines
2937 into shorter lines. */)
2938 (Lisp_Object beg, Lisp_Object end, Lisp_Object no_line_break)
2940 char *encoded;
2941 ptrdiff_t allength, length;
2942 ptrdiff_t ibeg, iend, encoded_length;
2943 ptrdiff_t old_pos = PT;
2944 USE_SAFE_ALLOCA;
2946 validate_region (&beg, &end);
2948 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
2949 iend = CHAR_TO_BYTE (XFASTINT (end));
2950 move_gap_both (XFASTINT (beg), ibeg);
2952 /* We need to allocate enough room for encoding the text.
2953 We need 33 1/3% more space, plus a newline every 76
2954 characters, and then we round up. */
2955 length = iend - ibeg;
2956 allength = length + length/3 + 1;
2957 allength += allength / MIME_LINE_LENGTH + 1 + 6;
2959 encoded = SAFE_ALLOCA (allength);
2960 encoded_length = base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg),
2961 encoded, length, NILP (no_line_break),
2962 !NILP (BVAR (current_buffer, enable_multibyte_characters)));
2963 if (encoded_length > allength)
2964 emacs_abort ();
2966 if (encoded_length < 0)
2968 /* The encoding wasn't possible. */
2969 SAFE_FREE ();
2970 error ("Multibyte character in data for base64 encoding");
2973 /* Now we have encoded the region, so we insert the new contents
2974 and delete the old. (Insert first in order to preserve markers.) */
2975 SET_PT_BOTH (XFASTINT (beg), ibeg);
2976 insert (encoded, encoded_length);
2977 SAFE_FREE ();
2978 del_range_byte (ibeg + encoded_length, iend + encoded_length, 1);
2980 /* If point was outside of the region, restore it exactly; else just
2981 move to the beginning of the region. */
2982 if (old_pos >= XFASTINT (end))
2983 old_pos += encoded_length - (XFASTINT (end) - XFASTINT (beg));
2984 else if (old_pos > XFASTINT (beg))
2985 old_pos = XFASTINT (beg);
2986 SET_PT (old_pos);
2988 /* We return the length of the encoded text. */
2989 return make_number (encoded_length);
2992 DEFUN ("base64-encode-string", Fbase64_encode_string, Sbase64_encode_string,
2993 1, 2, 0,
2994 doc: /* Base64-encode STRING and return the result.
2995 Optional second argument NO-LINE-BREAK means do not break long lines
2996 into shorter lines. */)
2997 (Lisp_Object string, Lisp_Object no_line_break)
2999 ptrdiff_t allength, length, encoded_length;
3000 char *encoded;
3001 Lisp_Object encoded_string;
3002 USE_SAFE_ALLOCA;
3004 CHECK_STRING (string);
3006 /* We need to allocate enough room for encoding the text.
3007 We need 33 1/3% more space, plus a newline every 76
3008 characters, and then we round up. */
3009 length = SBYTES (string);
3010 allength = length + length/3 + 1;
3011 allength += allength / MIME_LINE_LENGTH + 1 + 6;
3013 /* We need to allocate enough room for decoding the text. */
3014 encoded = SAFE_ALLOCA (allength);
3016 encoded_length = base64_encode_1 (SSDATA (string),
3017 encoded, length, NILP (no_line_break),
3018 STRING_MULTIBYTE (string));
3019 if (encoded_length > allength)
3020 emacs_abort ();
3022 if (encoded_length < 0)
3024 /* The encoding wasn't possible. */
3025 SAFE_FREE ();
3026 error ("Multibyte character in data for base64 encoding");
3029 encoded_string = make_unibyte_string (encoded, encoded_length);
3030 SAFE_FREE ();
3032 return encoded_string;
3035 static ptrdiff_t
3036 base64_encode_1 (const char *from, char *to, ptrdiff_t length,
3037 bool line_break, bool multibyte)
3039 int counter = 0;
3040 ptrdiff_t i = 0;
3041 char *e = to;
3042 int c;
3043 unsigned int value;
3044 int bytes;
3046 while (i < length)
3048 if (multibyte)
3050 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3051 if (CHAR_BYTE8_P (c))
3052 c = CHAR_TO_BYTE8 (c);
3053 else if (c >= 256)
3054 return -1;
3055 i += bytes;
3057 else
3058 c = from[i++];
3060 /* Wrap line every 76 characters. */
3062 if (line_break)
3064 if (counter < MIME_LINE_LENGTH / 4)
3065 counter++;
3066 else
3068 *e++ = '\n';
3069 counter = 1;
3073 /* Process first byte of a triplet. */
3075 *e++ = base64_value_to_char[0x3f & c >> 2];
3076 value = (0x03 & c) << 4;
3078 /* Process second byte of a triplet. */
3080 if (i == length)
3082 *e++ = base64_value_to_char[value];
3083 *e++ = '=';
3084 *e++ = '=';
3085 break;
3088 if (multibyte)
3090 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3091 if (CHAR_BYTE8_P (c))
3092 c = CHAR_TO_BYTE8 (c);
3093 else if (c >= 256)
3094 return -1;
3095 i += bytes;
3097 else
3098 c = from[i++];
3100 *e++ = base64_value_to_char[value | (0x0f & c >> 4)];
3101 value = (0x0f & c) << 2;
3103 /* Process third byte of a triplet. */
3105 if (i == length)
3107 *e++ = base64_value_to_char[value];
3108 *e++ = '=';
3109 break;
3112 if (multibyte)
3114 c = STRING_CHAR_AND_LENGTH ((unsigned char *) from + i, bytes);
3115 if (CHAR_BYTE8_P (c))
3116 c = CHAR_TO_BYTE8 (c);
3117 else if (c >= 256)
3118 return -1;
3119 i += bytes;
3121 else
3122 c = from[i++];
3124 *e++ = base64_value_to_char[value | (0x03 & c >> 6)];
3125 *e++ = base64_value_to_char[0x3f & c];
3128 return e - to;
3132 DEFUN ("base64-decode-region", Fbase64_decode_region, Sbase64_decode_region,
3133 2, 2, "r",
3134 doc: /* Base64-decode the region between BEG and END.
3135 Return the length of the decoded text.
3136 If the region can't be decoded, signal an error and don't modify the buffer. */)
3137 (Lisp_Object beg, Lisp_Object end)
3139 ptrdiff_t ibeg, iend, length, allength;
3140 char *decoded;
3141 ptrdiff_t old_pos = PT;
3142 ptrdiff_t decoded_length;
3143 ptrdiff_t inserted_chars;
3144 bool multibyte = !NILP (BVAR (current_buffer, enable_multibyte_characters));
3145 USE_SAFE_ALLOCA;
3147 validate_region (&beg, &end);
3149 ibeg = CHAR_TO_BYTE (XFASTINT (beg));
3150 iend = CHAR_TO_BYTE (XFASTINT (end));
3152 length = iend - ibeg;
3154 /* We need to allocate enough room for decoding the text. If we are
3155 working on a multibyte buffer, each decoded code may occupy at
3156 most two bytes. */
3157 allength = multibyte ? length * 2 : length;
3158 decoded = SAFE_ALLOCA (allength);
3160 move_gap_both (XFASTINT (beg), ibeg);
3161 decoded_length = base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg),
3162 decoded, length,
3163 multibyte, &inserted_chars);
3164 if (decoded_length > allength)
3165 emacs_abort ();
3167 if (decoded_length < 0)
3169 /* The decoding wasn't possible. */
3170 SAFE_FREE ();
3171 error ("Invalid base64 data");
3174 /* Now we have decoded the region, so we insert the new contents
3175 and delete the old. (Insert first in order to preserve markers.) */
3176 TEMP_SET_PT_BOTH (XFASTINT (beg), ibeg);
3177 insert_1_both (decoded, inserted_chars, decoded_length, 0, 1, 0);
3178 SAFE_FREE ();
3180 /* Delete the original text. */
3181 del_range_both (PT, PT_BYTE, XFASTINT (end) + inserted_chars,
3182 iend + decoded_length, 1);
3184 /* If point was outside of the region, restore it exactly; else just
3185 move to the beginning of the region. */
3186 if (old_pos >= XFASTINT (end))
3187 old_pos += inserted_chars - (XFASTINT (end) - XFASTINT (beg));
3188 else if (old_pos > XFASTINT (beg))
3189 old_pos = XFASTINT (beg);
3190 SET_PT (old_pos > ZV ? ZV : old_pos);
3192 return make_number (inserted_chars);
3195 DEFUN ("base64-decode-string", Fbase64_decode_string, Sbase64_decode_string,
3196 1, 1, 0,
3197 doc: /* Base64-decode STRING and return the result. */)
3198 (Lisp_Object string)
3200 char *decoded;
3201 ptrdiff_t length, decoded_length;
3202 Lisp_Object decoded_string;
3203 USE_SAFE_ALLOCA;
3205 CHECK_STRING (string);
3207 length = SBYTES (string);
3208 /* We need to allocate enough room for decoding the text. */
3209 decoded = SAFE_ALLOCA (length);
3211 /* The decoded result should be unibyte. */
3212 decoded_length = base64_decode_1 (SSDATA (string), decoded, length,
3213 0, NULL);
3214 if (decoded_length > length)
3215 emacs_abort ();
3216 else if (decoded_length >= 0)
3217 decoded_string = make_unibyte_string (decoded, decoded_length);
3218 else
3219 decoded_string = Qnil;
3221 SAFE_FREE ();
3222 if (!STRINGP (decoded_string))
3223 error ("Invalid base64 data");
3225 return decoded_string;
3228 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3229 MULTIBYTE, the decoded result should be in multibyte
3230 form. If NCHARS_RETURN is not NULL, store the number of produced
3231 characters in *NCHARS_RETURN. */
3233 static ptrdiff_t
3234 base64_decode_1 (const char *from, char *to, ptrdiff_t length,
3235 bool multibyte, ptrdiff_t *nchars_return)
3237 ptrdiff_t i = 0; /* Used inside READ_QUADRUPLET_BYTE */
3238 char *e = to;
3239 unsigned char c;
3240 unsigned long value;
3241 ptrdiff_t nchars = 0;
3243 while (1)
3245 /* Process first byte of a quadruplet. */
3247 READ_QUADRUPLET_BYTE (e-to);
3249 if (!IS_BASE64 (c))
3250 return -1;
3251 value = base64_char_to_value[c] << 18;
3253 /* Process second byte of a quadruplet. */
3255 READ_QUADRUPLET_BYTE (-1);
3257 if (!IS_BASE64 (c))
3258 return -1;
3259 value |= base64_char_to_value[c] << 12;
3261 c = (unsigned char) (value >> 16);
3262 if (multibyte && c >= 128)
3263 e += BYTE8_STRING (c, e);
3264 else
3265 *e++ = c;
3266 nchars++;
3268 /* Process third byte of a quadruplet. */
3270 READ_QUADRUPLET_BYTE (-1);
3272 if (c == '=')
3274 READ_QUADRUPLET_BYTE (-1);
3276 if (c != '=')
3277 return -1;
3278 continue;
3281 if (!IS_BASE64 (c))
3282 return -1;
3283 value |= base64_char_to_value[c] << 6;
3285 c = (unsigned char) (0xff & value >> 8);
3286 if (multibyte && c >= 128)
3287 e += BYTE8_STRING (c, e);
3288 else
3289 *e++ = c;
3290 nchars++;
3292 /* Process fourth byte of a quadruplet. */
3294 READ_QUADRUPLET_BYTE (-1);
3296 if (c == '=')
3297 continue;
3299 if (!IS_BASE64 (c))
3300 return -1;
3301 value |= base64_char_to_value[c];
3303 c = (unsigned char) (0xff & value);
3304 if (multibyte && c >= 128)
3305 e += BYTE8_STRING (c, e);
3306 else
3307 *e++ = c;
3308 nchars++;
3314 /***********************************************************************
3315 ***** *****
3316 ***** Hash Tables *****
3317 ***** *****
3318 ***********************************************************************/
3320 /* Implemented by gerd@gnu.org. This hash table implementation was
3321 inspired by CMUCL hash tables. */
3323 /* Ideas:
3325 1. For small tables, association lists are probably faster than
3326 hash tables because they have lower overhead.
3328 For uses of hash tables where the O(1) behavior of table
3329 operations is not a requirement, it might therefore be a good idea
3330 not to hash. Instead, we could just do a linear search in the
3331 key_and_value vector of the hash table. This could be done
3332 if a `:linear-search t' argument is given to make-hash-table. */
3335 /* The list of all weak hash tables. Don't staticpro this one. */
3337 static struct Lisp_Hash_Table *weak_hash_tables;
3339 /* Various symbols. */
3341 static Lisp_Object Qhash_table_p;
3342 static Lisp_Object Qkey, Qvalue, Qeql;
3343 Lisp_Object Qeq, Qequal;
3344 Lisp_Object QCtest, QCsize, QCrehash_size, QCrehash_threshold, QCweakness;
3345 static Lisp_Object Qhash_table_test, Qkey_or_value, Qkey_and_value;
3348 /***********************************************************************
3349 Utilities
3350 ***********************************************************************/
3352 static void
3353 CHECK_HASH_TABLE (Lisp_Object x)
3355 CHECK_TYPE (HASH_TABLE_P (x), Qhash_table_p, x);
3358 static void
3359 set_hash_key_and_value (struct Lisp_Hash_Table *h, Lisp_Object key_and_value)
3361 h->key_and_value = key_and_value;
3363 static void
3364 set_hash_next (struct Lisp_Hash_Table *h, Lisp_Object next)
3366 h->next = next;
3368 static void
3369 set_hash_next_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3371 gc_aset (h->next, idx, val);
3373 static void
3374 set_hash_hash (struct Lisp_Hash_Table *h, Lisp_Object hash)
3376 h->hash = hash;
3378 static void
3379 set_hash_hash_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3381 gc_aset (h->hash, idx, val);
3383 static void
3384 set_hash_index (struct Lisp_Hash_Table *h, Lisp_Object index)
3386 h->index = index;
3388 static void
3389 set_hash_index_slot (struct Lisp_Hash_Table *h, ptrdiff_t idx, Lisp_Object val)
3391 gc_aset (h->index, idx, val);
3394 /* If OBJ is a Lisp hash table, return a pointer to its struct
3395 Lisp_Hash_Table. Otherwise, signal an error. */
3397 static struct Lisp_Hash_Table *
3398 check_hash_table (Lisp_Object obj)
3400 CHECK_HASH_TABLE (obj);
3401 return XHASH_TABLE (obj);
3405 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3406 number. A number is "almost" a prime number if it is not divisible
3407 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3409 EMACS_INT
3410 next_almost_prime (EMACS_INT n)
3412 verify (NEXT_ALMOST_PRIME_LIMIT == 11);
3413 for (n |= 1; ; n += 2)
3414 if (n % 3 != 0 && n % 5 != 0 && n % 7 != 0)
3415 return n;
3419 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3420 which USED[I] is non-zero. If found at index I in ARGS, set
3421 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3422 0. This function is used to extract a keyword/argument pair from
3423 a DEFUN parameter list. */
3425 static ptrdiff_t
3426 get_key_arg (Lisp_Object key, ptrdiff_t nargs, Lisp_Object *args, char *used)
3428 ptrdiff_t i;
3430 for (i = 1; i < nargs; i++)
3431 if (!used[i - 1] && EQ (args[i - 1], key))
3433 used[i - 1] = 1;
3434 used[i] = 1;
3435 return i;
3438 return 0;
3442 /* Return a Lisp vector which has the same contents as VEC but has
3443 at least INCR_MIN more entries, where INCR_MIN is positive.
3444 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3445 than NITEMS_MAX. Entries in the resulting
3446 vector that are not copied from VEC are set to nil. */
3448 Lisp_Object
3449 larger_vector (Lisp_Object vec, ptrdiff_t incr_min, ptrdiff_t nitems_max)
3451 struct Lisp_Vector *v;
3452 ptrdiff_t i, incr, incr_max, old_size, new_size;
3453 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / sizeof *v->contents;
3454 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
3455 ? nitems_max : C_language_max);
3456 eassert (VECTORP (vec));
3457 eassert (0 < incr_min && -1 <= nitems_max);
3458 old_size = ASIZE (vec);
3459 incr_max = n_max - old_size;
3460 incr = max (incr_min, min (old_size >> 1, incr_max));
3461 if (incr_max < incr)
3462 memory_full (SIZE_MAX);
3463 new_size = old_size + incr;
3464 v = allocate_vector (new_size);
3465 memcpy (v->contents, XVECTOR (vec)->contents, old_size * sizeof *v->contents);
3466 for (i = old_size; i < new_size; ++i)
3467 v->contents[i] = Qnil;
3468 XSETVECTOR (vec, v);
3469 return vec;
3473 /***********************************************************************
3474 Low-level Functions
3475 ***********************************************************************/
3477 static struct hash_table_test hashtest_eq;
3478 struct hash_table_test hashtest_eql, hashtest_equal;
3480 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3481 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3482 KEY2 are the same. */
3484 static bool
3485 cmpfn_eql (struct hash_table_test *ht,
3486 Lisp_Object key1,
3487 Lisp_Object key2)
3489 return (FLOATP (key1)
3490 && FLOATP (key2)
3491 && XFLOAT_DATA (key1) == XFLOAT_DATA (key2));
3495 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3496 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3497 KEY2 are the same. */
3499 static bool
3500 cmpfn_equal (struct hash_table_test *ht,
3501 Lisp_Object key1,
3502 Lisp_Object key2)
3504 return !NILP (Fequal (key1, key2));
3508 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3509 HASH2 in hash table H using H->user_cmp_function. Value is true
3510 if KEY1 and KEY2 are the same. */
3512 static bool
3513 cmpfn_user_defined (struct hash_table_test *ht,
3514 Lisp_Object key1,
3515 Lisp_Object key2)
3517 Lisp_Object args[3];
3519 args[0] = ht->user_cmp_function;
3520 args[1] = key1;
3521 args[2] = key2;
3522 return !NILP (Ffuncall (3, args));
3526 /* Value is a hash code for KEY for use in hash table H which uses
3527 `eq' to compare keys. The hash code returned is guaranteed to fit
3528 in a Lisp integer. */
3530 static EMACS_UINT
3531 hashfn_eq (struct hash_table_test *ht, Lisp_Object key)
3533 EMACS_UINT hash = XHASH (key) ^ XTYPE (key);
3534 return hash;
3537 /* Value is a hash code for KEY for use in hash table H which uses
3538 `eql' to compare keys. The hash code returned is guaranteed to fit
3539 in a Lisp integer. */
3541 static EMACS_UINT
3542 hashfn_eql (struct hash_table_test *ht, Lisp_Object key)
3544 EMACS_UINT hash;
3545 if (FLOATP (key))
3546 hash = sxhash (key, 0);
3547 else
3548 hash = XHASH (key) ^ XTYPE (key);
3549 return hash;
3552 /* Value is a hash code for KEY for use in hash table H which uses
3553 `equal' to compare keys. The hash code returned is guaranteed to fit
3554 in a Lisp integer. */
3556 static EMACS_UINT
3557 hashfn_equal (struct hash_table_test *ht, Lisp_Object key)
3559 EMACS_UINT hash = sxhash (key, 0);
3560 return hash;
3563 /* Value is a hash code for KEY for use in hash table H which uses as
3564 user-defined function to compare keys. The hash code returned is
3565 guaranteed to fit in a Lisp integer. */
3567 static EMACS_UINT
3568 hashfn_user_defined (struct hash_table_test *ht, Lisp_Object key)
3570 Lisp_Object args[2], hash;
3572 args[0] = ht->user_hash_function;
3573 args[1] = key;
3574 hash = Ffuncall (2, args);
3575 if (!INTEGERP (hash))
3576 signal_error ("Invalid hash code returned from user-supplied hash function", hash);
3577 return XUINT (hash);
3580 /* An upper bound on the size of a hash table index. It must fit in
3581 ptrdiff_t and be a valid Emacs fixnum. */
3582 #define INDEX_SIZE_BOUND \
3583 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3585 /* Create and initialize a new hash table.
3587 TEST specifies the test the hash table will use to compare keys.
3588 It must be either one of the predefined tests `eq', `eql' or
3589 `equal' or a symbol denoting a user-defined test named TEST with
3590 test and hash functions USER_TEST and USER_HASH.
3592 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3594 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3595 new size when it becomes full is computed by adding REHASH_SIZE to
3596 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3597 table's new size is computed by multiplying its old size with
3598 REHASH_SIZE.
3600 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3601 be resized when the ratio of (number of entries in the table) /
3602 (table size) is >= REHASH_THRESHOLD.
3604 WEAK specifies the weakness of the table. If non-nil, it must be
3605 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3607 Lisp_Object
3608 make_hash_table (struct hash_table_test test,
3609 Lisp_Object size, Lisp_Object rehash_size,
3610 Lisp_Object rehash_threshold, Lisp_Object weak)
3612 struct Lisp_Hash_Table *h;
3613 Lisp_Object table;
3614 EMACS_INT index_size, sz;
3615 ptrdiff_t i;
3616 double index_float;
3618 /* Preconditions. */
3619 eassert (SYMBOLP (test.name));
3620 eassert (INTEGERP (size) && XINT (size) >= 0);
3621 eassert ((INTEGERP (rehash_size) && XINT (rehash_size) > 0)
3622 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size)));
3623 eassert (FLOATP (rehash_threshold)
3624 && 0 < XFLOAT_DATA (rehash_threshold)
3625 && XFLOAT_DATA (rehash_threshold) <= 1.0);
3627 if (XFASTINT (size) == 0)
3628 size = make_number (1);
3630 sz = XFASTINT (size);
3631 index_float = sz / XFLOAT_DATA (rehash_threshold);
3632 index_size = (index_float < INDEX_SIZE_BOUND + 1
3633 ? next_almost_prime (index_float)
3634 : INDEX_SIZE_BOUND + 1);
3635 if (INDEX_SIZE_BOUND < max (index_size, 2 * sz))
3636 error ("Hash table too large");
3638 /* Allocate a table and initialize it. */
3639 h = allocate_hash_table ();
3641 /* Initialize hash table slots. */
3642 h->test = test;
3643 h->weak = weak;
3644 h->rehash_threshold = rehash_threshold;
3645 h->rehash_size = rehash_size;
3646 h->count = 0;
3647 h->key_and_value = Fmake_vector (make_number (2 * sz), Qnil);
3648 h->hash = Fmake_vector (size, Qnil);
3649 h->next = Fmake_vector (size, Qnil);
3650 h->index = Fmake_vector (make_number (index_size), Qnil);
3652 /* Set up the free list. */
3653 for (i = 0; i < sz - 1; ++i)
3654 set_hash_next_slot (h, i, make_number (i + 1));
3655 h->next_free = make_number (0);
3657 XSET_HASH_TABLE (table, h);
3658 eassert (HASH_TABLE_P (table));
3659 eassert (XHASH_TABLE (table) == h);
3661 /* Maybe add this hash table to the list of all weak hash tables. */
3662 if (NILP (h->weak))
3663 h->next_weak = NULL;
3664 else
3666 h->next_weak = weak_hash_tables;
3667 weak_hash_tables = h;
3670 return table;
3674 /* Return a copy of hash table H1. Keys and values are not copied,
3675 only the table itself is. */
3677 static Lisp_Object
3678 copy_hash_table (struct Lisp_Hash_Table *h1)
3680 Lisp_Object table;
3681 struct Lisp_Hash_Table *h2;
3683 h2 = allocate_hash_table ();
3684 *h2 = *h1;
3685 h2->key_and_value = Fcopy_sequence (h1->key_and_value);
3686 h2->hash = Fcopy_sequence (h1->hash);
3687 h2->next = Fcopy_sequence (h1->next);
3688 h2->index = Fcopy_sequence (h1->index);
3689 XSET_HASH_TABLE (table, h2);
3691 /* Maybe add this hash table to the list of all weak hash tables. */
3692 if (!NILP (h2->weak))
3694 h2->next_weak = weak_hash_tables;
3695 weak_hash_tables = h2;
3698 return table;
3702 /* Resize hash table H if it's too full. If H cannot be resized
3703 because it's already too large, throw an error. */
3705 static void
3706 maybe_resize_hash_table (struct Lisp_Hash_Table *h)
3708 if (NILP (h->next_free))
3710 ptrdiff_t old_size = HASH_TABLE_SIZE (h);
3711 EMACS_INT new_size, index_size, nsize;
3712 ptrdiff_t i;
3713 double index_float;
3715 if (INTEGERP (h->rehash_size))
3716 new_size = old_size + XFASTINT (h->rehash_size);
3717 else
3719 double float_new_size = old_size * XFLOAT_DATA (h->rehash_size);
3720 if (float_new_size < INDEX_SIZE_BOUND + 1)
3722 new_size = float_new_size;
3723 if (new_size <= old_size)
3724 new_size = old_size + 1;
3726 else
3727 new_size = INDEX_SIZE_BOUND + 1;
3729 index_float = new_size / XFLOAT_DATA (h->rehash_threshold);
3730 index_size = (index_float < INDEX_SIZE_BOUND + 1
3731 ? next_almost_prime (index_float)
3732 : INDEX_SIZE_BOUND + 1);
3733 nsize = max (index_size, 2 * new_size);
3734 if (INDEX_SIZE_BOUND < nsize)
3735 error ("Hash table too large to resize");
3737 #ifdef ENABLE_CHECKING
3738 if (HASH_TABLE_P (Vpurify_flag)
3739 && XHASH_TABLE (Vpurify_flag) == h)
3741 Lisp_Object args[2];
3742 args[0] = build_string ("Growing hash table to: %d");
3743 args[1] = make_number (new_size);
3744 Fmessage (2, args);
3746 #endif
3748 set_hash_key_and_value (h, larger_vector (h->key_and_value,
3749 2 * (new_size - old_size), -1));
3750 set_hash_next (h, larger_vector (h->next, new_size - old_size, -1));
3751 set_hash_hash (h, larger_vector (h->hash, new_size - old_size, -1));
3752 set_hash_index (h, Fmake_vector (make_number (index_size), Qnil));
3754 /* Update the free list. Do it so that new entries are added at
3755 the end of the free list. This makes some operations like
3756 maphash faster. */
3757 for (i = old_size; i < new_size - 1; ++i)
3758 set_hash_next_slot (h, i, make_number (i + 1));
3760 if (!NILP (h->next_free))
3762 Lisp_Object last, next;
3764 last = h->next_free;
3765 while (next = HASH_NEXT (h, XFASTINT (last)),
3766 !NILP (next))
3767 last = next;
3769 set_hash_next_slot (h, XFASTINT (last), make_number (old_size));
3771 else
3772 XSETFASTINT (h->next_free, old_size);
3774 /* Rehash. */
3775 for (i = 0; i < old_size; ++i)
3776 if (!NILP (HASH_HASH (h, i)))
3778 EMACS_UINT hash_code = XUINT (HASH_HASH (h, i));
3779 ptrdiff_t start_of_bucket = hash_code % ASIZE (h->index);
3780 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3781 set_hash_index_slot (h, start_of_bucket, make_number (i));
3787 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3788 the hash code of KEY. Value is the index of the entry in H
3789 matching KEY, or -1 if not found. */
3791 ptrdiff_t
3792 hash_lookup (struct Lisp_Hash_Table *h, Lisp_Object key, EMACS_UINT *hash)
3794 EMACS_UINT hash_code;
3795 ptrdiff_t start_of_bucket;
3796 Lisp_Object idx;
3798 hash_code = h->test.hashfn (&h->test, key);
3799 eassert ((hash_code & ~INTMASK) == 0);
3800 if (hash)
3801 *hash = hash_code;
3803 start_of_bucket = hash_code % ASIZE (h->index);
3804 idx = HASH_INDEX (h, start_of_bucket);
3806 /* We need not gcpro idx since it's either an integer or nil. */
3807 while (!NILP (idx))
3809 ptrdiff_t i = XFASTINT (idx);
3810 if (EQ (key, HASH_KEY (h, i))
3811 || (h->test.cmpfn
3812 && hash_code == XUINT (HASH_HASH (h, i))
3813 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3814 break;
3815 idx = HASH_NEXT (h, i);
3818 return NILP (idx) ? -1 : XFASTINT (idx);
3822 /* Put an entry into hash table H that associates KEY with VALUE.
3823 HASH is a previously computed hash code of KEY.
3824 Value is the index of the entry in H matching KEY. */
3826 ptrdiff_t
3827 hash_put (struct Lisp_Hash_Table *h, Lisp_Object key, Lisp_Object value,
3828 EMACS_UINT hash)
3830 ptrdiff_t start_of_bucket, i;
3832 eassert ((hash & ~INTMASK) == 0);
3834 /* Increment count after resizing because resizing may fail. */
3835 maybe_resize_hash_table (h);
3836 h->count++;
3838 /* Store key/value in the key_and_value vector. */
3839 i = XFASTINT (h->next_free);
3840 h->next_free = HASH_NEXT (h, i);
3841 set_hash_key_slot (h, i, key);
3842 set_hash_value_slot (h, i, value);
3844 /* Remember its hash code. */
3845 set_hash_hash_slot (h, i, make_number (hash));
3847 /* Add new entry to its collision chain. */
3848 start_of_bucket = hash % ASIZE (h->index);
3849 set_hash_next_slot (h, i, HASH_INDEX (h, start_of_bucket));
3850 set_hash_index_slot (h, start_of_bucket, make_number (i));
3851 return i;
3855 /* Remove the entry matching KEY from hash table H, if there is one. */
3857 static void
3858 hash_remove_from_table (struct Lisp_Hash_Table *h, Lisp_Object key)
3860 EMACS_UINT hash_code;
3861 ptrdiff_t start_of_bucket;
3862 Lisp_Object idx, prev;
3864 hash_code = h->test.hashfn (&h->test, key);
3865 eassert ((hash_code & ~INTMASK) == 0);
3866 start_of_bucket = hash_code % ASIZE (h->index);
3867 idx = HASH_INDEX (h, start_of_bucket);
3868 prev = Qnil;
3870 /* We need not gcpro idx, prev since they're either integers or nil. */
3871 while (!NILP (idx))
3873 ptrdiff_t i = XFASTINT (idx);
3875 if (EQ (key, HASH_KEY (h, i))
3876 || (h->test.cmpfn
3877 && hash_code == XUINT (HASH_HASH (h, i))
3878 && h->test.cmpfn (&h->test, key, HASH_KEY (h, i))))
3880 /* Take entry out of collision chain. */
3881 if (NILP (prev))
3882 set_hash_index_slot (h, start_of_bucket, HASH_NEXT (h, i));
3883 else
3884 set_hash_next_slot (h, XFASTINT (prev), HASH_NEXT (h, i));
3886 /* Clear slots in key_and_value and add the slots to
3887 the free list. */
3888 set_hash_key_slot (h, i, Qnil);
3889 set_hash_value_slot (h, i, Qnil);
3890 set_hash_hash_slot (h, i, Qnil);
3891 set_hash_next_slot (h, i, h->next_free);
3892 h->next_free = make_number (i);
3893 h->count--;
3894 eassert (h->count >= 0);
3895 break;
3897 else
3899 prev = idx;
3900 idx = HASH_NEXT (h, i);
3906 /* Clear hash table H. */
3908 static void
3909 hash_clear (struct Lisp_Hash_Table *h)
3911 if (h->count > 0)
3913 ptrdiff_t i, size = HASH_TABLE_SIZE (h);
3915 for (i = 0; i < size; ++i)
3917 set_hash_next_slot (h, i, i < size - 1 ? make_number (i + 1) : Qnil);
3918 set_hash_key_slot (h, i, Qnil);
3919 set_hash_value_slot (h, i, Qnil);
3920 set_hash_hash_slot (h, i, Qnil);
3923 for (i = 0; i < ASIZE (h->index); ++i)
3924 ASET (h->index, i, Qnil);
3926 h->next_free = make_number (0);
3927 h->count = 0;
3933 /************************************************************************
3934 Weak Hash Tables
3935 ************************************************************************/
3937 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3938 entries from the table that don't survive the current GC.
3939 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3940 true if anything was marked. */
3942 static bool
3943 sweep_weak_table (struct Lisp_Hash_Table *h, bool remove_entries_p)
3945 ptrdiff_t bucket, n;
3946 bool marked;
3948 n = ASIZE (h->index) & ~ARRAY_MARK_FLAG;
3949 marked = 0;
3951 for (bucket = 0; bucket < n; ++bucket)
3953 Lisp_Object idx, next, prev;
3955 /* Follow collision chain, removing entries that
3956 don't survive this garbage collection. */
3957 prev = Qnil;
3958 for (idx = HASH_INDEX (h, bucket); !NILP (idx); idx = next)
3960 ptrdiff_t i = XFASTINT (idx);
3961 bool key_known_to_survive_p = survives_gc_p (HASH_KEY (h, i));
3962 bool value_known_to_survive_p = survives_gc_p (HASH_VALUE (h, i));
3963 bool remove_p;
3965 if (EQ (h->weak, Qkey))
3966 remove_p = !key_known_to_survive_p;
3967 else if (EQ (h->weak, Qvalue))
3968 remove_p = !value_known_to_survive_p;
3969 else if (EQ (h->weak, Qkey_or_value))
3970 remove_p = !(key_known_to_survive_p || value_known_to_survive_p);
3971 else if (EQ (h->weak, Qkey_and_value))
3972 remove_p = !(key_known_to_survive_p && value_known_to_survive_p);
3973 else
3974 emacs_abort ();
3976 next = HASH_NEXT (h, i);
3978 if (remove_entries_p)
3980 if (remove_p)
3982 /* Take out of collision chain. */
3983 if (NILP (prev))
3984 set_hash_index_slot (h, bucket, next);
3985 else
3986 set_hash_next_slot (h, XFASTINT (prev), next);
3988 /* Add to free list. */
3989 set_hash_next_slot (h, i, h->next_free);
3990 h->next_free = idx;
3992 /* Clear key, value, and hash. */
3993 set_hash_key_slot (h, i, Qnil);
3994 set_hash_value_slot (h, i, Qnil);
3995 set_hash_hash_slot (h, i, Qnil);
3997 h->count--;
3999 else
4001 prev = idx;
4004 else
4006 if (!remove_p)
4008 /* Make sure key and value survive. */
4009 if (!key_known_to_survive_p)
4011 mark_object (HASH_KEY (h, i));
4012 marked = 1;
4015 if (!value_known_to_survive_p)
4017 mark_object (HASH_VALUE (h, i));
4018 marked = 1;
4025 return marked;
4028 /* Remove elements from weak hash tables that don't survive the
4029 current garbage collection. Remove weak tables that don't survive
4030 from Vweak_hash_tables. Called from gc_sweep. */
4032 void
4033 sweep_weak_hash_tables (void)
4035 struct Lisp_Hash_Table *h, *used, *next;
4036 bool marked;
4038 /* Mark all keys and values that are in use. Keep on marking until
4039 there is no more change. This is necessary for cases like
4040 value-weak table A containing an entry X -> Y, where Y is used in a
4041 key-weak table B, Z -> Y. If B comes after A in the list of weak
4042 tables, X -> Y might be removed from A, although when looking at B
4043 one finds that it shouldn't. */
4046 marked = 0;
4047 for (h = weak_hash_tables; h; h = h->next_weak)
4049 if (h->header.size & ARRAY_MARK_FLAG)
4050 marked |= sweep_weak_table (h, 0);
4053 while (marked);
4055 /* Remove tables and entries that aren't used. */
4056 for (h = weak_hash_tables, used = NULL; h; h = next)
4058 next = h->next_weak;
4060 if (h->header.size & ARRAY_MARK_FLAG)
4062 /* TABLE is marked as used. Sweep its contents. */
4063 if (h->count > 0)
4064 sweep_weak_table (h, 1);
4066 /* Add table to the list of used weak hash tables. */
4067 h->next_weak = used;
4068 used = h;
4072 weak_hash_tables = used;
4077 /***********************************************************************
4078 Hash Code Computation
4079 ***********************************************************************/
4081 /* Maximum depth up to which to dive into Lisp structures. */
4083 #define SXHASH_MAX_DEPTH 3
4085 /* Maximum length up to which to take list and vector elements into
4086 account. */
4088 #define SXHASH_MAX_LEN 7
4090 /* Return a hash for string PTR which has length LEN. The hash value
4091 can be any EMACS_UINT value. */
4093 EMACS_UINT
4094 hash_string (char const *ptr, ptrdiff_t len)
4096 char const *p = ptr;
4097 char const *end = p + len;
4098 unsigned char c;
4099 EMACS_UINT hash = 0;
4101 while (p != end)
4103 c = *p++;
4104 hash = sxhash_combine (hash, c);
4107 return hash;
4110 /* Return a hash for string PTR which has length LEN. The hash
4111 code returned is guaranteed to fit in a Lisp integer. */
4113 static EMACS_UINT
4114 sxhash_string (char const *ptr, ptrdiff_t len)
4116 EMACS_UINT hash = hash_string (ptr, len);
4117 return SXHASH_REDUCE (hash);
4120 /* Return a hash for the floating point value VAL. */
4122 static EMACS_UINT
4123 sxhash_float (double val)
4125 EMACS_UINT hash = 0;
4126 enum {
4127 WORDS_PER_DOUBLE = (sizeof val / sizeof hash
4128 + (sizeof val % sizeof hash != 0))
4130 union {
4131 double val;
4132 EMACS_UINT word[WORDS_PER_DOUBLE];
4133 } u;
4134 int i;
4135 u.val = val;
4136 memset (&u.val + 1, 0, sizeof u - sizeof u.val);
4137 for (i = 0; i < WORDS_PER_DOUBLE; i++)
4138 hash = sxhash_combine (hash, u.word[i]);
4139 return SXHASH_REDUCE (hash);
4142 /* Return a hash for list LIST. DEPTH is the current depth in the
4143 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4145 static EMACS_UINT
4146 sxhash_list (Lisp_Object list, int depth)
4148 EMACS_UINT hash = 0;
4149 int i;
4151 if (depth < SXHASH_MAX_DEPTH)
4152 for (i = 0;
4153 CONSP (list) && i < SXHASH_MAX_LEN;
4154 list = XCDR (list), ++i)
4156 EMACS_UINT hash2 = sxhash (XCAR (list), depth + 1);
4157 hash = sxhash_combine (hash, hash2);
4160 if (!NILP (list))
4162 EMACS_UINT hash2 = sxhash (list, depth + 1);
4163 hash = sxhash_combine (hash, hash2);
4166 return SXHASH_REDUCE (hash);
4170 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4171 the Lisp structure. */
4173 static EMACS_UINT
4174 sxhash_vector (Lisp_Object vec, int depth)
4176 EMACS_UINT hash = ASIZE (vec);
4177 int i, n;
4179 n = min (SXHASH_MAX_LEN, ASIZE (vec));
4180 for (i = 0; i < n; ++i)
4182 EMACS_UINT hash2 = sxhash (AREF (vec, i), depth + 1);
4183 hash = sxhash_combine (hash, hash2);
4186 return SXHASH_REDUCE (hash);
4189 /* Return a hash for bool-vector VECTOR. */
4191 static EMACS_UINT
4192 sxhash_bool_vector (Lisp_Object vec)
4194 EMACS_UINT hash = XBOOL_VECTOR (vec)->size;
4195 int i, n;
4197 n = min (SXHASH_MAX_LEN, XBOOL_VECTOR (vec)->header.size);
4198 for (i = 0; i < n; ++i)
4199 hash = sxhash_combine (hash, XBOOL_VECTOR (vec)->data[i]);
4201 return SXHASH_REDUCE (hash);
4205 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4206 structure. Value is an unsigned integer clipped to INTMASK. */
4208 EMACS_UINT
4209 sxhash (Lisp_Object obj, int depth)
4211 EMACS_UINT hash;
4213 if (depth > SXHASH_MAX_DEPTH)
4214 return 0;
4216 switch (XTYPE (obj))
4218 case_Lisp_Int:
4219 hash = XUINT (obj);
4220 break;
4222 case Lisp_Misc:
4223 hash = XHASH (obj);
4224 break;
4226 case Lisp_Symbol:
4227 obj = SYMBOL_NAME (obj);
4228 /* Fall through. */
4230 case Lisp_String:
4231 hash = sxhash_string (SSDATA (obj), SBYTES (obj));
4232 break;
4234 /* This can be everything from a vector to an overlay. */
4235 case Lisp_Vectorlike:
4236 if (VECTORP (obj))
4237 /* According to the CL HyperSpec, two arrays are equal only if
4238 they are `eq', except for strings and bit-vectors. In
4239 Emacs, this works differently. We have to compare element
4240 by element. */
4241 hash = sxhash_vector (obj, depth);
4242 else if (BOOL_VECTOR_P (obj))
4243 hash = sxhash_bool_vector (obj);
4244 else
4245 /* Others are `equal' if they are `eq', so let's take their
4246 address as hash. */
4247 hash = XHASH (obj);
4248 break;
4250 case Lisp_Cons:
4251 hash = sxhash_list (obj, depth);
4252 break;
4254 case Lisp_Float:
4255 hash = sxhash_float (XFLOAT_DATA (obj));
4256 break;
4258 default:
4259 emacs_abort ();
4262 return hash;
4267 /***********************************************************************
4268 Lisp Interface
4269 ***********************************************************************/
4272 DEFUN ("sxhash", Fsxhash, Ssxhash, 1, 1, 0,
4273 doc: /* Compute a hash code for OBJ and return it as integer. */)
4274 (Lisp_Object obj)
4276 EMACS_UINT hash = sxhash (obj, 0);
4277 return make_number (hash);
4281 DEFUN ("make-hash-table", Fmake_hash_table, Smake_hash_table, 0, MANY, 0,
4282 doc: /* Create and return a new hash table.
4284 Arguments are specified as keyword/argument pairs. The following
4285 arguments are defined:
4287 :test TEST -- TEST must be a symbol that specifies how to compare
4288 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4289 `equal'. User-supplied test and hash functions can be specified via
4290 `define-hash-table-test'.
4292 :size SIZE -- A hint as to how many elements will be put in the table.
4293 Default is 65.
4295 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4296 fills up. If REHASH-SIZE is an integer, increase the size by that
4297 amount. If it is a float, it must be > 1.0, and the new size is the
4298 old size multiplied by that factor. Default is 1.5.
4300 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4301 Resize the hash table when the ratio (number of entries / table size)
4302 is greater than or equal to THRESHOLD. Default is 0.8.
4304 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4305 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4306 returned is a weak table. Key/value pairs are removed from a weak
4307 hash table when there are no non-weak references pointing to their
4308 key, value, one of key or value, or both key and value, depending on
4309 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4310 is nil.
4312 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4313 (ptrdiff_t nargs, Lisp_Object *args)
4315 Lisp_Object test, size, rehash_size, rehash_threshold, weak;
4316 struct hash_table_test testdesc;
4317 char *used;
4318 ptrdiff_t i;
4320 /* The vector `used' is used to keep track of arguments that
4321 have been consumed. */
4322 used = alloca (nargs * sizeof *used);
4323 memset (used, 0, nargs * sizeof *used);
4325 /* See if there's a `:test TEST' among the arguments. */
4326 i = get_key_arg (QCtest, nargs, args, used);
4327 test = i ? args[i] : Qeql;
4328 if (EQ (test, Qeq))
4329 testdesc = hashtest_eq;
4330 else if (EQ (test, Qeql))
4331 testdesc = hashtest_eql;
4332 else if (EQ (test, Qequal))
4333 testdesc = hashtest_equal;
4334 else
4336 /* See if it is a user-defined test. */
4337 Lisp_Object prop;
4339 prop = Fget (test, Qhash_table_test);
4340 if (!CONSP (prop) || !CONSP (XCDR (prop)))
4341 signal_error ("Invalid hash table test", test);
4342 testdesc.name = test;
4343 testdesc.user_cmp_function = XCAR (prop);
4344 testdesc.user_hash_function = XCAR (XCDR (prop));
4345 testdesc.hashfn = hashfn_user_defined;
4346 testdesc.cmpfn = cmpfn_user_defined;
4349 /* See if there's a `:size SIZE' argument. */
4350 i = get_key_arg (QCsize, nargs, args, used);
4351 size = i ? args[i] : Qnil;
4352 if (NILP (size))
4353 size = make_number (DEFAULT_HASH_SIZE);
4354 else if (!INTEGERP (size) || XINT (size) < 0)
4355 signal_error ("Invalid hash table size", size);
4357 /* Look for `:rehash-size SIZE'. */
4358 i = get_key_arg (QCrehash_size, nargs, args, used);
4359 rehash_size = i ? args[i] : make_float (DEFAULT_REHASH_SIZE);
4360 if (! ((INTEGERP (rehash_size) && 0 < XINT (rehash_size))
4361 || (FLOATP (rehash_size) && 1 < XFLOAT_DATA (rehash_size))))
4362 signal_error ("Invalid hash table rehash size", rehash_size);
4364 /* Look for `:rehash-threshold THRESHOLD'. */
4365 i = get_key_arg (QCrehash_threshold, nargs, args, used);
4366 rehash_threshold = i ? args[i] : make_float (DEFAULT_REHASH_THRESHOLD);
4367 if (! (FLOATP (rehash_threshold)
4368 && 0 < XFLOAT_DATA (rehash_threshold)
4369 && XFLOAT_DATA (rehash_threshold) <= 1))
4370 signal_error ("Invalid hash table rehash threshold", rehash_threshold);
4372 /* Look for `:weakness WEAK'. */
4373 i = get_key_arg (QCweakness, nargs, args, used);
4374 weak = i ? args[i] : Qnil;
4375 if (EQ (weak, Qt))
4376 weak = Qkey_and_value;
4377 if (!NILP (weak)
4378 && !EQ (weak, Qkey)
4379 && !EQ (weak, Qvalue)
4380 && !EQ (weak, Qkey_or_value)
4381 && !EQ (weak, Qkey_and_value))
4382 signal_error ("Invalid hash table weakness", weak);
4384 /* Now, all args should have been used up, or there's a problem. */
4385 for (i = 0; i < nargs; ++i)
4386 if (!used[i])
4387 signal_error ("Invalid argument list", args[i]);
4389 return make_hash_table (testdesc, size, rehash_size, rehash_threshold, weak);
4393 DEFUN ("copy-hash-table", Fcopy_hash_table, Scopy_hash_table, 1, 1, 0,
4394 doc: /* Return a copy of hash table TABLE. */)
4395 (Lisp_Object table)
4397 return copy_hash_table (check_hash_table (table));
4401 DEFUN ("hash-table-count", Fhash_table_count, Shash_table_count, 1, 1, 0,
4402 doc: /* Return the number of elements in TABLE. */)
4403 (Lisp_Object table)
4405 return make_number (check_hash_table (table)->count);
4409 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size,
4410 Shash_table_rehash_size, 1, 1, 0,
4411 doc: /* Return the current rehash size of TABLE. */)
4412 (Lisp_Object table)
4414 return check_hash_table (table)->rehash_size;
4418 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold,
4419 Shash_table_rehash_threshold, 1, 1, 0,
4420 doc: /* Return the current rehash threshold of TABLE. */)
4421 (Lisp_Object table)
4423 return check_hash_table (table)->rehash_threshold;
4427 DEFUN ("hash-table-size", Fhash_table_size, Shash_table_size, 1, 1, 0,
4428 doc: /* Return the size of TABLE.
4429 The size can be used as an argument to `make-hash-table' to create
4430 a hash table than can hold as many elements as TABLE holds
4431 without need for resizing. */)
4432 (Lisp_Object table)
4434 struct Lisp_Hash_Table *h = check_hash_table (table);
4435 return make_number (HASH_TABLE_SIZE (h));
4439 DEFUN ("hash-table-test", Fhash_table_test, Shash_table_test, 1, 1, 0,
4440 doc: /* Return the test TABLE uses. */)
4441 (Lisp_Object table)
4443 return check_hash_table (table)->test.name;
4447 DEFUN ("hash-table-weakness", Fhash_table_weakness, Shash_table_weakness,
4448 1, 1, 0,
4449 doc: /* Return the weakness of TABLE. */)
4450 (Lisp_Object table)
4452 return check_hash_table (table)->weak;
4456 DEFUN ("hash-table-p", Fhash_table_p, Shash_table_p, 1, 1, 0,
4457 doc: /* Return t if OBJ is a Lisp hash table object. */)
4458 (Lisp_Object obj)
4460 return HASH_TABLE_P (obj) ? Qt : Qnil;
4464 DEFUN ("clrhash", Fclrhash, Sclrhash, 1, 1, 0,
4465 doc: /* Clear hash table TABLE and return it. */)
4466 (Lisp_Object table)
4468 hash_clear (check_hash_table (table));
4469 /* Be compatible with XEmacs. */
4470 return table;
4474 DEFUN ("gethash", Fgethash, Sgethash, 2, 3, 0,
4475 doc: /* Look up KEY in TABLE and return its associated value.
4476 If KEY is not found, return DFLT which defaults to nil. */)
4477 (Lisp_Object key, Lisp_Object table, Lisp_Object dflt)
4479 struct Lisp_Hash_Table *h = check_hash_table (table);
4480 ptrdiff_t i = hash_lookup (h, key, NULL);
4481 return i >= 0 ? HASH_VALUE (h, i) : dflt;
4485 DEFUN ("puthash", Fputhash, Sputhash, 3, 3, 0,
4486 doc: /* Associate KEY with VALUE in hash table TABLE.
4487 If KEY is already present in table, replace its current value with
4488 VALUE. In any case, return VALUE. */)
4489 (Lisp_Object key, Lisp_Object value, Lisp_Object table)
4491 struct Lisp_Hash_Table *h = check_hash_table (table);
4492 ptrdiff_t i;
4493 EMACS_UINT hash;
4495 i = hash_lookup (h, key, &hash);
4496 if (i >= 0)
4497 set_hash_value_slot (h, i, value);
4498 else
4499 hash_put (h, key, value, hash);
4501 return value;
4505 DEFUN ("remhash", Fremhash, Sremhash, 2, 2, 0,
4506 doc: /* Remove KEY from TABLE. */)
4507 (Lisp_Object key, Lisp_Object table)
4509 struct Lisp_Hash_Table *h = check_hash_table (table);
4510 hash_remove_from_table (h, key);
4511 return Qnil;
4515 DEFUN ("maphash", Fmaphash, Smaphash, 2, 2, 0,
4516 doc: /* Call FUNCTION for all entries in hash table TABLE.
4517 FUNCTION is called with two arguments, KEY and VALUE. */)
4518 (Lisp_Object function, Lisp_Object table)
4520 struct Lisp_Hash_Table *h = check_hash_table (table);
4521 Lisp_Object args[3];
4522 ptrdiff_t i;
4524 for (i = 0; i < HASH_TABLE_SIZE (h); ++i)
4525 if (!NILP (HASH_HASH (h, i)))
4527 args[0] = function;
4528 args[1] = HASH_KEY (h, i);
4529 args[2] = HASH_VALUE (h, i);
4530 Ffuncall (3, args);
4533 return Qnil;
4537 DEFUN ("define-hash-table-test", Fdefine_hash_table_test,
4538 Sdefine_hash_table_test, 3, 3, 0,
4539 doc: /* Define a new hash table test with name NAME, a symbol.
4541 In hash tables created with NAME specified as test, use TEST to
4542 compare keys, and HASH for computing hash codes of keys.
4544 TEST must be a function taking two arguments and returning non-nil if
4545 both arguments are the same. HASH must be a function taking one
4546 argument and return an integer that is the hash code of the argument.
4547 Hash code computation should use the whole value range of integers,
4548 including negative integers. */)
4549 (Lisp_Object name, Lisp_Object test, Lisp_Object hash)
4551 return Fput (name, Qhash_table_test, list2 (test, hash));
4556 /************************************************************************
4557 MD5, SHA-1, and SHA-2
4558 ************************************************************************/
4560 #include "md5.h"
4561 #include "sha1.h"
4562 #include "sha256.h"
4563 #include "sha512.h"
4565 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4567 static Lisp_Object
4568 secure_hash (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror, Lisp_Object binary)
4570 int i;
4571 ptrdiff_t size;
4572 EMACS_INT start_char = 0, end_char = 0;
4573 ptrdiff_t start_byte, end_byte;
4574 register EMACS_INT b, e;
4575 register struct buffer *bp;
4576 EMACS_INT temp;
4577 int digest_size;
4578 void *(*hash_func) (const char *, size_t, void *);
4579 Lisp_Object digest;
4581 CHECK_SYMBOL (algorithm);
4583 if (STRINGP (object))
4585 if (NILP (coding_system))
4587 /* Decide the coding-system to encode the data with. */
4589 if (STRING_MULTIBYTE (object))
4590 /* use default, we can't guess correct value */
4591 coding_system = preferred_coding_system ();
4592 else
4593 coding_system = Qraw_text;
4596 if (NILP (Fcoding_system_p (coding_system)))
4598 /* Invalid coding system. */
4600 if (!NILP (noerror))
4601 coding_system = Qraw_text;
4602 else
4603 xsignal1 (Qcoding_system_error, coding_system);
4606 if (STRING_MULTIBYTE (object))
4607 object = code_convert_string (object, coding_system, Qnil, 1, 0, 1);
4609 size = SCHARS (object);
4611 if (!NILP (start))
4613 CHECK_NUMBER (start);
4615 start_char = XINT (start);
4617 if (start_char < 0)
4618 start_char += size;
4621 if (NILP (end))
4622 end_char = size;
4623 else
4625 CHECK_NUMBER (end);
4627 end_char = XINT (end);
4629 if (end_char < 0)
4630 end_char += size;
4633 if (!(0 <= start_char && start_char <= end_char && end_char <= size))
4634 args_out_of_range_3 (object, make_number (start_char),
4635 make_number (end_char));
4637 start_byte = NILP (start) ? 0 : string_char_to_byte (object, start_char);
4638 end_byte =
4639 NILP (end) ? SBYTES (object) : string_char_to_byte (object, end_char);
4641 else
4643 struct buffer *prev = current_buffer;
4645 record_unwind_current_buffer ();
4647 CHECK_BUFFER (object);
4649 bp = XBUFFER (object);
4650 set_buffer_internal (bp);
4652 if (NILP (start))
4653 b = BEGV;
4654 else
4656 CHECK_NUMBER_COERCE_MARKER (start);
4657 b = XINT (start);
4660 if (NILP (end))
4661 e = ZV;
4662 else
4664 CHECK_NUMBER_COERCE_MARKER (end);
4665 e = XINT (end);
4668 if (b > e)
4669 temp = b, b = e, e = temp;
4671 if (!(BEGV <= b && e <= ZV))
4672 args_out_of_range (start, end);
4674 if (NILP (coding_system))
4676 /* Decide the coding-system to encode the data with.
4677 See fileio.c:Fwrite-region */
4679 if (!NILP (Vcoding_system_for_write))
4680 coding_system = Vcoding_system_for_write;
4681 else
4683 bool force_raw_text = 0;
4685 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4686 if (NILP (coding_system)
4687 || NILP (Flocal_variable_p (Qbuffer_file_coding_system, Qnil)))
4689 coding_system = Qnil;
4690 if (NILP (BVAR (current_buffer, enable_multibyte_characters)))
4691 force_raw_text = 1;
4694 if (NILP (coding_system) && !NILP (Fbuffer_file_name (object)))
4696 /* Check file-coding-system-alist. */
4697 Lisp_Object args[4], val;
4699 args[0] = Qwrite_region; args[1] = start; args[2] = end;
4700 args[3] = Fbuffer_file_name (object);
4701 val = Ffind_operation_coding_system (4, args);
4702 if (CONSP (val) && !NILP (XCDR (val)))
4703 coding_system = XCDR (val);
4706 if (NILP (coding_system)
4707 && !NILP (BVAR (XBUFFER (object), buffer_file_coding_system)))
4709 /* If we still have not decided a coding system, use the
4710 default value of buffer-file-coding-system. */
4711 coding_system = BVAR (XBUFFER (object), buffer_file_coding_system);
4714 if (!force_raw_text
4715 && !NILP (Ffboundp (Vselect_safe_coding_system_function)))
4716 /* Confirm that VAL can surely encode the current region. */
4717 coding_system = call4 (Vselect_safe_coding_system_function,
4718 make_number (b), make_number (e),
4719 coding_system, Qnil);
4721 if (force_raw_text)
4722 coding_system = Qraw_text;
4725 if (NILP (Fcoding_system_p (coding_system)))
4727 /* Invalid coding system. */
4729 if (!NILP (noerror))
4730 coding_system = Qraw_text;
4731 else
4732 xsignal1 (Qcoding_system_error, coding_system);
4736 object = make_buffer_string (b, e, 0);
4737 set_buffer_internal (prev);
4738 /* Discard the unwind protect for recovering the current
4739 buffer. */
4740 specpdl_ptr--;
4742 if (STRING_MULTIBYTE (object))
4743 object = code_convert_string (object, coding_system, Qnil, 1, 0, 0);
4744 start_byte = 0;
4745 end_byte = SBYTES (object);
4748 if (EQ (algorithm, Qmd5))
4750 digest_size = MD5_DIGEST_SIZE;
4751 hash_func = md5_buffer;
4753 else if (EQ (algorithm, Qsha1))
4755 digest_size = SHA1_DIGEST_SIZE;
4756 hash_func = sha1_buffer;
4758 else if (EQ (algorithm, Qsha224))
4760 digest_size = SHA224_DIGEST_SIZE;
4761 hash_func = sha224_buffer;
4763 else if (EQ (algorithm, Qsha256))
4765 digest_size = SHA256_DIGEST_SIZE;
4766 hash_func = sha256_buffer;
4768 else if (EQ (algorithm, Qsha384))
4770 digest_size = SHA384_DIGEST_SIZE;
4771 hash_func = sha384_buffer;
4773 else if (EQ (algorithm, Qsha512))
4775 digest_size = SHA512_DIGEST_SIZE;
4776 hash_func = sha512_buffer;
4778 else
4779 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm)));
4781 /* allocate 2 x digest_size so that it can be re-used to hold the
4782 hexified value */
4783 digest = make_uninit_string (digest_size * 2);
4785 hash_func (SSDATA (object) + start_byte,
4786 end_byte - start_byte,
4787 SSDATA (digest));
4789 if (NILP (binary))
4791 unsigned char *p = SDATA (digest);
4792 for (i = digest_size - 1; i >= 0; i--)
4794 static char const hexdigit[16] = "0123456789abcdef";
4795 int p_i = p[i];
4796 p[2 * i] = hexdigit[p_i >> 4];
4797 p[2 * i + 1] = hexdigit[p_i & 0xf];
4799 return digest;
4801 else
4802 return make_unibyte_string (SSDATA (digest), digest_size);
4805 DEFUN ("md5", Fmd5, Smd5, 1, 5, 0,
4806 doc: /* Return MD5 message digest of OBJECT, a buffer or string.
4808 A message digest is a cryptographic checksum of a document, and the
4809 algorithm to calculate it is defined in RFC 1321.
4811 The two optional arguments START and END are character positions
4812 specifying for which part of OBJECT the message digest should be
4813 computed. If nil or omitted, the digest is computed for the whole
4814 OBJECT.
4816 The MD5 message digest is computed from the result of encoding the
4817 text in a coding system, not directly from the internal Emacs form of
4818 the text. The optional fourth argument CODING-SYSTEM specifies which
4819 coding system to encode the text with. It should be the same coding
4820 system that you used or will use when actually writing the text into a
4821 file.
4823 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4824 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4825 system would be chosen by default for writing this text into a file.
4827 If OBJECT is a string, the most preferred coding system (see the
4828 command `prefer-coding-system') is used.
4830 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4831 guesswork fails. Normally, an error is signaled in such case. */)
4832 (Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object coding_system, Lisp_Object noerror)
4834 return secure_hash (Qmd5, object, start, end, coding_system, noerror, Qnil);
4837 DEFUN ("secure-hash", Fsecure_hash, Ssecure_hash, 2, 5, 0,
4838 doc: /* Return the secure hash of OBJECT, a buffer or string.
4839 ALGORITHM is a symbol specifying the hash to use:
4840 md5, sha1, sha224, sha256, sha384 or sha512.
4842 The two optional arguments START and END are positions specifying for
4843 which part of OBJECT to compute the hash. If nil or omitted, uses the
4844 whole OBJECT.
4846 If BINARY is non-nil, returns a string in binary form. */)
4847 (Lisp_Object algorithm, Lisp_Object object, Lisp_Object start, Lisp_Object end, Lisp_Object binary)
4849 return secure_hash (algorithm, object, start, end, Qnil, Qnil, binary);
4852 void
4853 syms_of_fns (void)
4855 DEFSYM (Qmd5, "md5");
4856 DEFSYM (Qsha1, "sha1");
4857 DEFSYM (Qsha224, "sha224");
4858 DEFSYM (Qsha256, "sha256");
4859 DEFSYM (Qsha384, "sha384");
4860 DEFSYM (Qsha512, "sha512");
4862 /* Hash table stuff. */
4863 DEFSYM (Qhash_table_p, "hash-table-p");
4864 DEFSYM (Qeq, "eq");
4865 DEFSYM (Qeql, "eql");
4866 DEFSYM (Qequal, "equal");
4867 DEFSYM (QCtest, ":test");
4868 DEFSYM (QCsize, ":size");
4869 DEFSYM (QCrehash_size, ":rehash-size");
4870 DEFSYM (QCrehash_threshold, ":rehash-threshold");
4871 DEFSYM (QCweakness, ":weakness");
4872 DEFSYM (Qkey, "key");
4873 DEFSYM (Qvalue, "value");
4874 DEFSYM (Qhash_table_test, "hash-table-test");
4875 DEFSYM (Qkey_or_value, "key-or-value");
4876 DEFSYM (Qkey_and_value, "key-and-value");
4878 defsubr (&Ssxhash);
4879 defsubr (&Smake_hash_table);
4880 defsubr (&Scopy_hash_table);
4881 defsubr (&Shash_table_count);
4882 defsubr (&Shash_table_rehash_size);
4883 defsubr (&Shash_table_rehash_threshold);
4884 defsubr (&Shash_table_size);
4885 defsubr (&Shash_table_test);
4886 defsubr (&Shash_table_weakness);
4887 defsubr (&Shash_table_p);
4888 defsubr (&Sclrhash);
4889 defsubr (&Sgethash);
4890 defsubr (&Sputhash);
4891 defsubr (&Sremhash);
4892 defsubr (&Smaphash);
4893 defsubr (&Sdefine_hash_table_test);
4895 DEFSYM (Qstring_lessp, "string-lessp");
4896 DEFSYM (Qprovide, "provide");
4897 DEFSYM (Qrequire, "require");
4898 DEFSYM (Qyes_or_no_p_history, "yes-or-no-p-history");
4899 DEFSYM (Qcursor_in_echo_area, "cursor-in-echo-area");
4900 DEFSYM (Qwidget_type, "widget-type");
4902 staticpro (&string_char_byte_cache_string);
4903 string_char_byte_cache_string = Qnil;
4905 require_nesting_list = Qnil;
4906 staticpro (&require_nesting_list);
4908 Fset (Qyes_or_no_p_history, Qnil);
4910 DEFVAR_LISP ("features", Vfeatures,
4911 doc: /* A list of symbols which are the features of the executing Emacs.
4912 Used by `featurep' and `require', and altered by `provide'. */);
4913 Vfeatures = list1 (intern_c_string ("emacs"));
4914 DEFSYM (Qsubfeatures, "subfeatures");
4915 DEFSYM (Qfuncall, "funcall");
4917 #ifdef HAVE_LANGINFO_CODESET
4918 DEFSYM (Qcodeset, "codeset");
4919 DEFSYM (Qdays, "days");
4920 DEFSYM (Qmonths, "months");
4921 DEFSYM (Qpaper, "paper");
4922 #endif /* HAVE_LANGINFO_CODESET */
4924 DEFVAR_BOOL ("use-dialog-box", use_dialog_box,
4925 doc: /* Non-nil means mouse commands use dialog boxes to ask questions.
4926 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4927 invoked by mouse clicks and mouse menu items.
4929 On some platforms, file selection dialogs are also enabled if this is
4930 non-nil. */);
4931 use_dialog_box = 1;
4933 DEFVAR_BOOL ("use-file-dialog", use_file_dialog,
4934 doc: /* Non-nil means mouse commands use a file dialog to ask for files.
4935 This applies to commands from menus and tool bar buttons even when
4936 they are initiated from the keyboard. If `use-dialog-box' is nil,
4937 that disables the use of a file dialog, regardless of the value of
4938 this variable. */);
4939 use_file_dialog = 1;
4941 defsubr (&Sidentity);
4942 defsubr (&Srandom);
4943 defsubr (&Slength);
4944 defsubr (&Ssafe_length);
4945 defsubr (&Sstring_bytes);
4946 defsubr (&Sstring_equal);
4947 defsubr (&Scompare_strings);
4948 defsubr (&Sstring_lessp);
4949 defsubr (&Sappend);
4950 defsubr (&Sconcat);
4951 defsubr (&Svconcat);
4952 defsubr (&Scopy_sequence);
4953 defsubr (&Sstring_make_multibyte);
4954 defsubr (&Sstring_make_unibyte);
4955 defsubr (&Sstring_as_multibyte);
4956 defsubr (&Sstring_as_unibyte);
4957 defsubr (&Sstring_to_multibyte);
4958 defsubr (&Sstring_to_unibyte);
4959 defsubr (&Scopy_alist);
4960 defsubr (&Ssubstring);
4961 defsubr (&Ssubstring_no_properties);
4962 defsubr (&Snthcdr);
4963 defsubr (&Snth);
4964 defsubr (&Selt);
4965 defsubr (&Smember);
4966 defsubr (&Smemq);
4967 defsubr (&Smemql);
4968 defsubr (&Sassq);
4969 defsubr (&Sassoc);
4970 defsubr (&Srassq);
4971 defsubr (&Srassoc);
4972 defsubr (&Sdelq);
4973 defsubr (&Sdelete);
4974 defsubr (&Snreverse);
4975 defsubr (&Sreverse);
4976 defsubr (&Ssort);
4977 defsubr (&Splist_get);
4978 defsubr (&Sget);
4979 defsubr (&Splist_put);
4980 defsubr (&Sput);
4981 defsubr (&Slax_plist_get);
4982 defsubr (&Slax_plist_put);
4983 defsubr (&Seql);
4984 defsubr (&Sequal);
4985 defsubr (&Sequal_including_properties);
4986 defsubr (&Sfillarray);
4987 defsubr (&Sclear_string);
4988 defsubr (&Snconc);
4989 defsubr (&Smapcar);
4990 defsubr (&Smapc);
4991 defsubr (&Smapconcat);
4992 defsubr (&Syes_or_no_p);
4993 defsubr (&Sload_average);
4994 defsubr (&Sfeaturep);
4995 defsubr (&Srequire);
4996 defsubr (&Sprovide);
4997 defsubr (&Splist_member);
4998 defsubr (&Swidget_put);
4999 defsubr (&Swidget_get);
5000 defsubr (&Swidget_apply);
5001 defsubr (&Sbase64_encode_region);
5002 defsubr (&Sbase64_decode_region);
5003 defsubr (&Sbase64_encode_string);
5004 defsubr (&Sbase64_decode_string);
5005 defsubr (&Smd5);
5006 defsubr (&Ssecure_hash);
5007 defsubr (&Slocale_info);
5009 hashtest_eq.name = Qeq;
5010 hashtest_eq.user_hash_function = Qnil;
5011 hashtest_eq.user_cmp_function = Qnil;
5012 hashtest_eq.cmpfn = 0;
5013 hashtest_eq.hashfn = hashfn_eq;
5015 hashtest_eql.name = Qeql;
5016 hashtest_eql.user_hash_function = Qnil;
5017 hashtest_eql.user_cmp_function = Qnil;
5018 hashtest_eql.cmpfn = cmpfn_eql;
5019 hashtest_eql.hashfn = hashfn_eql;
5021 hashtest_equal.name = Qequal;
5022 hashtest_equal.user_hash_function = Qnil;
5023 hashtest_equal.user_cmp_function = Qnil;
5024 hashtest_equal.cmpfn = cmpfn_equal;
5025 hashtest_equal.hashfn = hashfn_equal;