Spelling fixes.
[emacs.git] / lib / sha1.c
blob778389affc5992de971e75f0c62ee11d07937ff9
1 /* sha1.c - Functions to compute SHA1 message digest of files or
2 memory blocks according to the NIST specification FIPS-180-1.
4 Copyright (C) 2000-2001, 2003-2006, 2008-2013 Free Software Foundation, Inc.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, see <http://www.gnu.org/licenses/>. */
19 /* Written by Scott G. Miller
20 Credits:
21 Robert Klep <robert@ilse.nl> -- Expansion function fix
24 #include <config.h>
26 #include "sha1.h"
28 #include <stdalign.h>
29 #include <stdint.h>
30 #include <stdlib.h>
31 #include <string.h>
33 #if USE_UNLOCKED_IO
34 # include "unlocked-io.h"
35 #endif
37 #ifdef WORDS_BIGENDIAN
38 # define SWAP(n) (n)
39 #else
40 # define SWAP(n) \
41 (((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
42 #endif
44 #define BLOCKSIZE 32768
45 #if BLOCKSIZE % 64 != 0
46 # error "invalid BLOCKSIZE"
47 #endif
49 /* This array contains the bytes used to pad the buffer to the next
50 64-byte boundary. (RFC 1321, 3.1: Step 1) */
51 static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
54 /* Take a pointer to a 160 bit block of data (five 32 bit ints) and
55 initialize it to the start constants of the SHA1 algorithm. This
56 must be called before using hash in the call to sha1_hash. */
57 void
58 sha1_init_ctx (struct sha1_ctx *ctx)
60 ctx->A = 0x67452301;
61 ctx->B = 0xefcdab89;
62 ctx->C = 0x98badcfe;
63 ctx->D = 0x10325476;
64 ctx->E = 0xc3d2e1f0;
66 ctx->total[0] = ctx->total[1] = 0;
67 ctx->buflen = 0;
70 /* Copy the 4 byte value from v into the memory location pointed to by *cp,
71 If your architecture allows unaligned access this is equivalent to
72 * (uint32_t *) cp = v */
73 static void
74 set_uint32 (char *cp, uint32_t v)
76 memcpy (cp, &v, sizeof v);
79 /* Put result from CTX in first 20 bytes following RESBUF. The result
80 must be in little endian byte order. */
81 void *
82 sha1_read_ctx (const struct sha1_ctx *ctx, void *resbuf)
84 char *r = resbuf;
85 set_uint32 (r + 0 * sizeof ctx->A, SWAP (ctx->A));
86 set_uint32 (r + 1 * sizeof ctx->B, SWAP (ctx->B));
87 set_uint32 (r + 2 * sizeof ctx->C, SWAP (ctx->C));
88 set_uint32 (r + 3 * sizeof ctx->D, SWAP (ctx->D));
89 set_uint32 (r + 4 * sizeof ctx->E, SWAP (ctx->E));
91 return resbuf;
94 /* Process the remaining bytes in the internal buffer and the usual
95 prolog according to the standard and write the result to RESBUF. */
96 void *
97 sha1_finish_ctx (struct sha1_ctx *ctx, void *resbuf)
99 /* Take yet unprocessed bytes into account. */
100 uint32_t bytes = ctx->buflen;
101 size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
103 /* Now count remaining bytes. */
104 ctx->total[0] += bytes;
105 if (ctx->total[0] < bytes)
106 ++ctx->total[1];
108 /* Put the 64-bit file length in *bits* at the end of the buffer. */
109 ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
110 ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
112 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
114 /* Process last bytes. */
115 sha1_process_block (ctx->buffer, size * 4, ctx);
117 return sha1_read_ctx (ctx, resbuf);
120 /* Compute SHA1 message digest for bytes read from STREAM. The
121 resulting message digest number will be written into the 16 bytes
122 beginning at RESBLOCK. */
124 sha1_stream (FILE *stream, void *resblock)
126 struct sha1_ctx ctx;
127 size_t sum;
129 char *buffer = malloc (BLOCKSIZE + 72);
130 if (!buffer)
131 return 1;
133 /* Initialize the computation context. */
134 sha1_init_ctx (&ctx);
136 /* Iterate over full file contents. */
137 while (1)
139 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
140 computation function processes the whole buffer so that with the
141 next round of the loop another block can be read. */
142 size_t n;
143 sum = 0;
145 /* Read block. Take care for partial reads. */
146 while (1)
148 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
150 sum += n;
152 if (sum == BLOCKSIZE)
153 break;
155 if (n == 0)
157 /* Check for the error flag IFF N == 0, so that we don't
158 exit the loop after a partial read due to e.g., EAGAIN
159 or EWOULDBLOCK. */
160 if (ferror (stream))
162 free (buffer);
163 return 1;
165 goto process_partial_block;
168 /* We've read at least one byte, so ignore errors. But always
169 check for EOF, since feof may be true even though N > 0.
170 Otherwise, we could end up calling fread after EOF. */
171 if (feof (stream))
172 goto process_partial_block;
175 /* Process buffer with BLOCKSIZE bytes. Note that
176 BLOCKSIZE % 64 == 0
178 sha1_process_block (buffer, BLOCKSIZE, &ctx);
181 process_partial_block:;
183 /* Process any remaining bytes. */
184 if (sum > 0)
185 sha1_process_bytes (buffer, sum, &ctx);
187 /* Construct result in desired memory. */
188 sha1_finish_ctx (&ctx, resblock);
189 free (buffer);
190 return 0;
193 /* Compute SHA1 message digest for LEN bytes beginning at BUFFER. The
194 result is always in little endian byte order, so that a byte-wise
195 output yields to the wanted ASCII representation of the message
196 digest. */
197 void *
198 sha1_buffer (const char *buffer, size_t len, void *resblock)
200 struct sha1_ctx ctx;
202 /* Initialize the computation context. */
203 sha1_init_ctx (&ctx);
205 /* Process whole buffer but last len % 64 bytes. */
206 sha1_process_bytes (buffer, len, &ctx);
208 /* Put result in desired memory area. */
209 return sha1_finish_ctx (&ctx, resblock);
212 void
213 sha1_process_bytes (const void *buffer, size_t len, struct sha1_ctx *ctx)
215 /* When we already have some bits in our internal buffer concatenate
216 both inputs first. */
217 if (ctx->buflen != 0)
219 size_t left_over = ctx->buflen;
220 size_t add = 128 - left_over > len ? len : 128 - left_over;
222 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
223 ctx->buflen += add;
225 if (ctx->buflen > 64)
227 sha1_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
229 ctx->buflen &= 63;
230 /* The regions in the following copy operation cannot overlap. */
231 memcpy (ctx->buffer,
232 &((char *) ctx->buffer)[(left_over + add) & ~63],
233 ctx->buflen);
236 buffer = (const char *) buffer + add;
237 len -= add;
240 /* Process available complete blocks. */
241 if (len >= 64)
243 #if !_STRING_ARCH_unaligned
244 # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (uint32_t) != 0)
245 if (UNALIGNED_P (buffer))
246 while (len > 64)
248 sha1_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
249 buffer = (const char *) buffer + 64;
250 len -= 64;
252 else
253 #endif
255 sha1_process_block (buffer, len & ~63, ctx);
256 buffer = (const char *) buffer + (len & ~63);
257 len &= 63;
261 /* Move remaining bytes in internal buffer. */
262 if (len > 0)
264 size_t left_over = ctx->buflen;
266 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
267 left_over += len;
268 if (left_over >= 64)
270 sha1_process_block (ctx->buffer, 64, ctx);
271 left_over -= 64;
272 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
274 ctx->buflen = left_over;
278 /* --- Code below is the primary difference between md5.c and sha1.c --- */
280 /* SHA1 round constants */
281 #define K1 0x5a827999
282 #define K2 0x6ed9eba1
283 #define K3 0x8f1bbcdc
284 #define K4 0xca62c1d6
286 /* Round functions. Note that F2 is the same as F4. */
287 #define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
288 #define F2(B,C,D) (B ^ C ^ D)
289 #define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
290 #define F4(B,C,D) (B ^ C ^ D)
292 /* Process LEN bytes of BUFFER, accumulating context into CTX.
293 It is assumed that LEN % 64 == 0.
294 Most of this code comes from GnuPG's cipher/sha1.c. */
296 void
297 sha1_process_block (const void *buffer, size_t len, struct sha1_ctx *ctx)
299 const uint32_t *words = buffer;
300 size_t nwords = len / sizeof (uint32_t);
301 const uint32_t *endp = words + nwords;
302 uint32_t x[16];
303 uint32_t a = ctx->A;
304 uint32_t b = ctx->B;
305 uint32_t c = ctx->C;
306 uint32_t d = ctx->D;
307 uint32_t e = ctx->E;
308 uint32_t lolen = len;
310 /* First increment the byte count. RFC 1321 specifies the possible
311 length of the file up to 2^64 bits. Here we only compute the
312 number of bytes. Do a double word increment. */
313 ctx->total[0] += lolen;
314 ctx->total[1] += (len >> 31 >> 1) + (ctx->total[0] < lolen);
316 #define rol(x, n) (((x) << (n)) | ((uint32_t) (x) >> (32 - (n))))
318 #define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
319 ^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
320 , (x[I&0x0f] = rol(tm, 1)) )
322 #define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
323 + F( B, C, D ) \
324 + K \
325 + M; \
326 B = rol( B, 30 ); \
327 } while(0)
329 while (words < endp)
331 uint32_t tm;
332 int t;
333 for (t = 0; t < 16; t++)
335 x[t] = SWAP (*words);
336 words++;
339 R( a, b, c, d, e, F1, K1, x[ 0] );
340 R( e, a, b, c, d, F1, K1, x[ 1] );
341 R( d, e, a, b, c, F1, K1, x[ 2] );
342 R( c, d, e, a, b, F1, K1, x[ 3] );
343 R( b, c, d, e, a, F1, K1, x[ 4] );
344 R( a, b, c, d, e, F1, K1, x[ 5] );
345 R( e, a, b, c, d, F1, K1, x[ 6] );
346 R( d, e, a, b, c, F1, K1, x[ 7] );
347 R( c, d, e, a, b, F1, K1, x[ 8] );
348 R( b, c, d, e, a, F1, K1, x[ 9] );
349 R( a, b, c, d, e, F1, K1, x[10] );
350 R( e, a, b, c, d, F1, K1, x[11] );
351 R( d, e, a, b, c, F1, K1, x[12] );
352 R( c, d, e, a, b, F1, K1, x[13] );
353 R( b, c, d, e, a, F1, K1, x[14] );
354 R( a, b, c, d, e, F1, K1, x[15] );
355 R( e, a, b, c, d, F1, K1, M(16) );
356 R( d, e, a, b, c, F1, K1, M(17) );
357 R( c, d, e, a, b, F1, K1, M(18) );
358 R( b, c, d, e, a, F1, K1, M(19) );
359 R( a, b, c, d, e, F2, K2, M(20) );
360 R( e, a, b, c, d, F2, K2, M(21) );
361 R( d, e, a, b, c, F2, K2, M(22) );
362 R( c, d, e, a, b, F2, K2, M(23) );
363 R( b, c, d, e, a, F2, K2, M(24) );
364 R( a, b, c, d, e, F2, K2, M(25) );
365 R( e, a, b, c, d, F2, K2, M(26) );
366 R( d, e, a, b, c, F2, K2, M(27) );
367 R( c, d, e, a, b, F2, K2, M(28) );
368 R( b, c, d, e, a, F2, K2, M(29) );
369 R( a, b, c, d, e, F2, K2, M(30) );
370 R( e, a, b, c, d, F2, K2, M(31) );
371 R( d, e, a, b, c, F2, K2, M(32) );
372 R( c, d, e, a, b, F2, K2, M(33) );
373 R( b, c, d, e, a, F2, K2, M(34) );
374 R( a, b, c, d, e, F2, K2, M(35) );
375 R( e, a, b, c, d, F2, K2, M(36) );
376 R( d, e, a, b, c, F2, K2, M(37) );
377 R( c, d, e, a, b, F2, K2, M(38) );
378 R( b, c, d, e, a, F2, K2, M(39) );
379 R( a, b, c, d, e, F3, K3, M(40) );
380 R( e, a, b, c, d, F3, K3, M(41) );
381 R( d, e, a, b, c, F3, K3, M(42) );
382 R( c, d, e, a, b, F3, K3, M(43) );
383 R( b, c, d, e, a, F3, K3, M(44) );
384 R( a, b, c, d, e, F3, K3, M(45) );
385 R( e, a, b, c, d, F3, K3, M(46) );
386 R( d, e, a, b, c, F3, K3, M(47) );
387 R( c, d, e, a, b, F3, K3, M(48) );
388 R( b, c, d, e, a, F3, K3, M(49) );
389 R( a, b, c, d, e, F3, K3, M(50) );
390 R( e, a, b, c, d, F3, K3, M(51) );
391 R( d, e, a, b, c, F3, K3, M(52) );
392 R( c, d, e, a, b, F3, K3, M(53) );
393 R( b, c, d, e, a, F3, K3, M(54) );
394 R( a, b, c, d, e, F3, K3, M(55) );
395 R( e, a, b, c, d, F3, K3, M(56) );
396 R( d, e, a, b, c, F3, K3, M(57) );
397 R( c, d, e, a, b, F3, K3, M(58) );
398 R( b, c, d, e, a, F3, K3, M(59) );
399 R( a, b, c, d, e, F4, K4, M(60) );
400 R( e, a, b, c, d, F4, K4, M(61) );
401 R( d, e, a, b, c, F4, K4, M(62) );
402 R( c, d, e, a, b, F4, K4, M(63) );
403 R( b, c, d, e, a, F4, K4, M(64) );
404 R( a, b, c, d, e, F4, K4, M(65) );
405 R( e, a, b, c, d, F4, K4, M(66) );
406 R( d, e, a, b, c, F4, K4, M(67) );
407 R( c, d, e, a, b, F4, K4, M(68) );
408 R( b, c, d, e, a, F4, K4, M(69) );
409 R( a, b, c, d, e, F4, K4, M(70) );
410 R( e, a, b, c, d, F4, K4, M(71) );
411 R( d, e, a, b, c, F4, K4, M(72) );
412 R( c, d, e, a, b, F4, K4, M(73) );
413 R( b, c, d, e, a, F4, K4, M(74) );
414 R( a, b, c, d, e, F4, K4, M(75) );
415 R( e, a, b, c, d, F4, K4, M(76) );
416 R( d, e, a, b, c, F4, K4, M(77) );
417 R( c, d, e, a, b, F4, K4, M(78) );
418 R( b, c, d, e, a, F4, K4, M(79) );
420 a = ctx->A += a;
421 b = ctx->B += b;
422 c = ctx->C += c;
423 d = ctx->D += d;
424 e = ctx->E += e;