Initial revision
[emacs.git] / src / regex.c
blob66b84c9dfc20828efcf6dd04781b13aa2e696929
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006, 2007
7 Free Software Foundation, Inc.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
22 USA. */
24 /* TODO:
25 - structure the opcode space into opcode+flag.
26 - merge with glibc's regex.[ch].
27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
33 /* AIX requires this to be the first thing in the file. */
34 #if defined _AIX && !defined REGEX_MALLOC
35 #pragma alloca
36 #endif
38 #ifdef HAVE_CONFIG_H
39 # include <config.h>
40 #endif
42 #if defined STDC_HEADERS && !defined emacs
43 # include <stddef.h>
44 #else
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
47 #endif
49 /* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
51 #if defined _LIBC
52 #define WIDE_CHAR_SUPPORT 1
53 #else
54 #define WIDE_CHAR_SUPPORT \
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
56 #endif
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
60 #if WIDE_CHAR_SUPPORT
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62 # include <wchar.h>
63 # include <wctype.h>
64 #endif
66 #ifdef _LIBC
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 /* Make sure we call libc's function even if the user overrides them. */
89 # define btowc __btowc
90 # define iswctype __iswctype
91 # define wctype __wctype
93 # define WEAK_ALIAS(a,b) weak_alias (a, b)
95 /* We are also using some library internals. */
96 # include <locale/localeinfo.h>
97 # include <locale/elem-hash.h>
98 # include <langinfo.h>
99 #else
100 # define WEAK_ALIAS(a,b)
101 #endif
103 /* This is for other GNU distributions with internationalized messages. */
104 #if HAVE_LIBINTL_H || defined _LIBC
105 # include <libintl.h>
106 #else
107 # define gettext(msgid) (msgid)
108 #endif
110 #ifndef gettext_noop
111 /* This define is so xgettext can find the internationalizable
112 strings. */
113 # define gettext_noop(String) String
114 #endif
116 /* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
118 #ifdef emacs
120 # include "lisp.h"
121 # include "buffer.h"
123 /* Make syntax table lookup grant data in gl_state. */
124 # define SYNTAX_ENTRY_VIA_PROPERTY
126 # include "syntax.h"
127 # include "charset.h"
128 # include "category.h"
130 # ifdef malloc
131 # undef malloc
132 # endif
133 # define malloc xmalloc
134 # ifdef realloc
135 # undef realloc
136 # endif
137 # define realloc xrealloc
138 # ifdef free
139 # undef free
140 # endif
141 # define free xfree
143 /* Converts the pointer to the char to BEG-based offset from the start. */
144 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
145 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
147 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
148 # define RE_STRING_CHAR(p, s) \
149 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
150 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
151 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
153 /* Set C a (possibly multibyte) character before P. P points into a
154 string which is the virtual concatenation of STR1 (which ends at
155 END1) or STR2 (which ends at END2). */
156 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
157 do { \
158 if (multibyte) \
160 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
161 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
162 re_char *d0 = dtemp; \
163 PREV_CHAR_BOUNDARY (d0, dlimit); \
164 c = STRING_CHAR (d0, dtemp - d0); \
166 else \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
168 } while (0)
171 #else /* not emacs */
173 /* If we are not linking with Emacs proper,
174 we can't use the relocating allocator
175 even if config.h says that we can. */
176 # undef REL_ALLOC
178 # if defined STDC_HEADERS || defined _LIBC
179 # include <stdlib.h>
180 # else
181 char *malloc ();
182 char *realloc ();
183 # endif
185 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
187 void *
188 xmalloc (size)
189 size_t size;
191 register void *val;
192 val = (void *) malloc (size);
193 if (!val && size)
195 write (2, "virtual memory exhausted\n", 25);
196 exit (1);
198 return val;
201 void *
202 xrealloc (block, size)
203 void *block;
204 size_t size;
206 register void *val;
207 /* We must call malloc explicitly when BLOCK is 0, since some
208 reallocs don't do this. */
209 if (! block)
210 val = (void *) malloc (size);
211 else
212 val = (void *) realloc (block, size);
213 if (!val && size)
215 write (2, "virtual memory exhausted\n", 25);
216 exit (1);
218 return val;
221 # ifdef malloc
222 # undef malloc
223 # endif
224 # define malloc xmalloc
225 # ifdef realloc
226 # undef realloc
227 # endif
228 # define realloc xrealloc
230 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
231 If nothing else has been done, use the method below. */
232 # ifdef INHIBIT_STRING_HEADER
233 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
234 # if !defined bzero && !defined bcopy
235 # undef INHIBIT_STRING_HEADER
236 # endif
237 # endif
238 # endif
240 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
241 This is used in most programs--a few other programs avoid this
242 by defining INHIBIT_STRING_HEADER. */
243 # ifndef INHIBIT_STRING_HEADER
244 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
245 # include <string.h>
246 # ifndef bzero
247 # ifndef _LIBC
248 # define bzero(s, n) (memset (s, '\0', n), (s))
249 # else
250 # define bzero(s, n) __bzero (s, n)
251 # endif
252 # endif
253 # else
254 # include <strings.h>
255 # ifndef memcmp
256 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
257 # endif
258 # ifndef memcpy
259 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
260 # endif
261 # endif
262 # endif
264 /* Define the syntax stuff for \<, \>, etc. */
266 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
267 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
269 # ifdef SWITCH_ENUM_BUG
270 # define SWITCH_ENUM_CAST(x) ((int)(x))
271 # else
272 # define SWITCH_ENUM_CAST(x) (x)
273 # endif
275 /* Dummy macros for non-Emacs environments. */
276 # define BASE_LEADING_CODE_P(c) (0)
277 # define CHAR_CHARSET(c) 0
278 # define CHARSET_LEADING_CODE_BASE(c) 0
279 # define MAX_MULTIBYTE_LENGTH 1
280 # define RE_MULTIBYTE_P(x) 0
281 # define WORD_BOUNDARY_P(c1, c2) (0)
282 # define CHAR_HEAD_P(p) (1)
283 # define SINGLE_BYTE_CHAR_P(c) (1)
284 # define SAME_CHARSET_P(c1, c2) (1)
285 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
286 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
287 # define STRING_CHAR(p, s) (*(p))
288 # define RE_STRING_CHAR STRING_CHAR
289 # define CHAR_STRING(c, s) (*(s) = (c), 1)
290 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
291 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
292 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
293 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
294 # define MAKE_CHAR(charset, c1, c2) (c1)
295 #endif /* not emacs */
297 #ifndef RE_TRANSLATE
298 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
299 # define RE_TRANSLATE_P(TBL) (TBL)
300 #endif
302 /* Get the interface, including the syntax bits. */
303 #include "regex.h"
305 /* isalpha etc. are used for the character classes. */
306 #include <ctype.h>
308 #ifdef emacs
310 /* 1 if C is an ASCII character. */
311 # define IS_REAL_ASCII(c) ((c) < 0200)
313 /* 1 if C is a unibyte character. */
314 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
316 /* The Emacs definitions should not be directly affected by locales. */
318 /* In Emacs, these are only used for single-byte characters. */
319 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
320 # define ISCNTRL(c) ((c) < ' ')
321 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
322 || ((c) >= 'a' && (c) <= 'f') \
323 || ((c) >= 'A' && (c) <= 'F'))
325 /* This is only used for single-byte characters. */
326 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
328 /* The rest must handle multibyte characters. */
330 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
331 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
332 : 1)
334 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
335 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
336 : 1)
338 # define ISALNUM(c) (IS_REAL_ASCII (c) \
339 ? (((c) >= 'a' && (c) <= 'z') \
340 || ((c) >= 'A' && (c) <= 'Z') \
341 || ((c) >= '0' && (c) <= '9')) \
342 : SYNTAX (c) == Sword)
344 # define ISALPHA(c) (IS_REAL_ASCII (c) \
345 ? (((c) >= 'a' && (c) <= 'z') \
346 || ((c) >= 'A' && (c) <= 'Z')) \
347 : SYNTAX (c) == Sword)
349 # define ISLOWER(c) (LOWERCASEP (c))
351 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
352 ? ((c) > ' ' && (c) < 0177 \
353 && !(((c) >= 'a' && (c) <= 'z') \
354 || ((c) >= 'A' && (c) <= 'Z') \
355 || ((c) >= '0' && (c) <= '9'))) \
356 : SYNTAX (c) != Sword)
358 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
360 # define ISUPPER(c) (UPPERCASEP (c))
362 # define ISWORD(c) (SYNTAX (c) == Sword)
364 #else /* not emacs */
366 /* Jim Meyering writes:
368 "... Some ctype macros are valid only for character codes that
369 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
370 using /bin/cc or gcc but without giving an ansi option). So, all
371 ctype uses should be through macros like ISPRINT... If
372 STDC_HEADERS is defined, then autoconf has verified that the ctype
373 macros don't need to be guarded with references to isascii. ...
374 Defining isascii to 1 should let any compiler worth its salt
375 eliminate the && through constant folding."
376 Solaris defines some of these symbols so we must undefine them first. */
378 # undef ISASCII
379 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
380 # define ISASCII(c) 1
381 # else
382 # define ISASCII(c) isascii(c)
383 # endif
385 /* 1 if C is an ASCII character. */
386 # define IS_REAL_ASCII(c) ((c) < 0200)
388 /* This distinction is not meaningful, except in Emacs. */
389 # define ISUNIBYTE(c) 1
391 # ifdef isblank
392 # define ISBLANK(c) (ISASCII (c) && isblank (c))
393 # else
394 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
395 # endif
396 # ifdef isgraph
397 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
398 # else
399 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
400 # endif
402 # undef ISPRINT
403 # define ISPRINT(c) (ISASCII (c) && isprint (c))
404 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
405 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
406 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
407 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
408 # define ISLOWER(c) (ISASCII (c) && islower (c))
409 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
410 # define ISSPACE(c) (ISASCII (c) && isspace (c))
411 # define ISUPPER(c) (ISASCII (c) && isupper (c))
412 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
414 # define ISWORD(c) ISALPHA(c)
416 # ifdef _tolower
417 # define TOLOWER(c) _tolower(c)
418 # else
419 # define TOLOWER(c) tolower(c)
420 # endif
422 /* How many characters in the character set. */
423 # define CHAR_SET_SIZE 256
425 # ifdef SYNTAX_TABLE
427 extern char *re_syntax_table;
429 # else /* not SYNTAX_TABLE */
431 static char re_syntax_table[CHAR_SET_SIZE];
433 static void
434 init_syntax_once ()
436 register int c;
437 static int done = 0;
439 if (done)
440 return;
442 bzero (re_syntax_table, sizeof re_syntax_table);
444 for (c = 0; c < CHAR_SET_SIZE; ++c)
445 if (ISALNUM (c))
446 re_syntax_table[c] = Sword;
448 re_syntax_table['_'] = Ssymbol;
450 done = 1;
453 # endif /* not SYNTAX_TABLE */
455 # define SYNTAX(c) re_syntax_table[(c)]
457 #endif /* not emacs */
459 #ifndef NULL
460 # define NULL (void *)0
461 #endif
463 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
464 since ours (we hope) works properly with all combinations of
465 machines, compilers, `char' and `unsigned char' argument types.
466 (Per Bothner suggested the basic approach.) */
467 #undef SIGN_EXTEND_CHAR
468 #if __STDC__
469 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
470 #else /* not __STDC__ */
471 /* As in Harbison and Steele. */
472 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
473 #endif
475 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
476 use `alloca' instead of `malloc'. This is because using malloc in
477 re_search* or re_match* could cause memory leaks when C-g is used in
478 Emacs; also, malloc is slower and causes storage fragmentation. On
479 the other hand, malloc is more portable, and easier to debug.
481 Because we sometimes use alloca, some routines have to be macros,
482 not functions -- `alloca'-allocated space disappears at the end of the
483 function it is called in. */
485 #ifdef REGEX_MALLOC
487 # define REGEX_ALLOCATE malloc
488 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE free
491 #else /* not REGEX_MALLOC */
493 /* Emacs already defines alloca, sometimes. */
494 # ifndef alloca
496 /* Make alloca work the best possible way. */
497 # ifdef __GNUC__
498 # define alloca __builtin_alloca
499 # else /* not __GNUC__ */
500 # if HAVE_ALLOCA_H
501 # include <alloca.h>
502 # endif /* HAVE_ALLOCA_H */
503 # endif /* not __GNUC__ */
505 # endif /* not alloca */
507 # define REGEX_ALLOCATE alloca
509 /* Assumes a `char *destination' variable. */
510 # define REGEX_REALLOCATE(source, osize, nsize) \
511 (destination = (char *) alloca (nsize), \
512 memcpy (destination, source, osize))
514 /* No need to do anything to free, after alloca. */
515 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
517 #endif /* not REGEX_MALLOC */
519 /* Define how to allocate the failure stack. */
521 #if defined REL_ALLOC && defined REGEX_MALLOC
523 # define REGEX_ALLOCATE_STACK(size) \
524 r_alloc (&failure_stack_ptr, (size))
525 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
526 r_re_alloc (&failure_stack_ptr, (nsize))
527 # define REGEX_FREE_STACK(ptr) \
528 r_alloc_free (&failure_stack_ptr)
530 #else /* not using relocating allocator */
532 # ifdef REGEX_MALLOC
534 # define REGEX_ALLOCATE_STACK malloc
535 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
536 # define REGEX_FREE_STACK free
538 # else /* not REGEX_MALLOC */
540 # define REGEX_ALLOCATE_STACK alloca
542 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
543 REGEX_REALLOCATE (source, osize, nsize)
544 /* No need to explicitly free anything. */
545 # define REGEX_FREE_STACK(arg) ((void)0)
547 # endif /* not REGEX_MALLOC */
548 #endif /* not using relocating allocator */
551 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
552 `string1' or just past its end. This works if PTR is NULL, which is
553 a good thing. */
554 #define FIRST_STRING_P(ptr) \
555 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
557 /* (Re)Allocate N items of type T using malloc, or fail. */
558 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
559 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
560 #define RETALLOC_IF(addr, n, t) \
561 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
562 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
564 #define BYTEWIDTH 8 /* In bits. */
566 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
568 #undef MAX
569 #undef MIN
570 #define MAX(a, b) ((a) > (b) ? (a) : (b))
571 #define MIN(a, b) ((a) < (b) ? (a) : (b))
573 /* Type of source-pattern and string chars. */
574 typedef const unsigned char re_char;
576 typedef char boolean;
577 #define false 0
578 #define true 1
580 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
581 re_char *string1, int size1,
582 re_char *string2, int size2,
583 int pos,
584 struct re_registers *regs,
585 int stop));
587 /* These are the command codes that appear in compiled regular
588 expressions. Some opcodes are followed by argument bytes. A
589 command code can specify any interpretation whatsoever for its
590 arguments. Zero bytes may appear in the compiled regular expression. */
592 typedef enum
594 no_op = 0,
596 /* Succeed right away--no more backtracking. */
597 succeed,
599 /* Followed by one byte giving n, then by n literal bytes. */
600 exactn,
602 /* Matches any (more or less) character. */
603 anychar,
605 /* Matches any one char belonging to specified set. First
606 following byte is number of bitmap bytes. Then come bytes
607 for a bitmap saying which chars are in. Bits in each byte
608 are ordered low-bit-first. A character is in the set if its
609 bit is 1. A character too large to have a bit in the map is
610 automatically not in the set.
612 If the length byte has the 0x80 bit set, then that stuff
613 is followed by a range table:
614 2 bytes of flags for character sets (low 8 bits, high 8 bits)
615 See RANGE_TABLE_WORK_BITS below.
616 2 bytes, the number of pairs that follow (upto 32767)
617 pairs, each 2 multibyte characters,
618 each multibyte character represented as 3 bytes. */
619 charset,
621 /* Same parameters as charset, but match any character that is
622 not one of those specified. */
623 charset_not,
625 /* Start remembering the text that is matched, for storing in a
626 register. Followed by one byte with the register number, in
627 the range 0 to one less than the pattern buffer's re_nsub
628 field. */
629 start_memory,
631 /* Stop remembering the text that is matched and store it in a
632 memory register. Followed by one byte with the register
633 number, in the range 0 to one less than `re_nsub' in the
634 pattern buffer. */
635 stop_memory,
637 /* Match a duplicate of something remembered. Followed by one
638 byte containing the register number. */
639 duplicate,
641 /* Fail unless at beginning of line. */
642 begline,
644 /* Fail unless at end of line. */
645 endline,
647 /* Succeeds if at beginning of buffer (if emacs) or at beginning
648 of string to be matched (if not). */
649 begbuf,
651 /* Analogously, for end of buffer/string. */
652 endbuf,
654 /* Followed by two byte relative address to which to jump. */
655 jump,
657 /* Followed by two-byte relative address of place to resume at
658 in case of failure. */
659 on_failure_jump,
661 /* Like on_failure_jump, but pushes a placeholder instead of the
662 current string position when executed. */
663 on_failure_keep_string_jump,
665 /* Just like `on_failure_jump', except that it checks that we
666 don't get stuck in an infinite loop (matching an empty string
667 indefinitely). */
668 on_failure_jump_loop,
670 /* Just like `on_failure_jump_loop', except that it checks for
671 a different kind of loop (the kind that shows up with non-greedy
672 operators). This operation has to be immediately preceded
673 by a `no_op'. */
674 on_failure_jump_nastyloop,
676 /* A smart `on_failure_jump' used for greedy * and + operators.
677 It analyses the loop before which it is put and if the
678 loop does not require backtracking, it changes itself to
679 `on_failure_keep_string_jump' and short-circuits the loop,
680 else it just defaults to changing itself into `on_failure_jump'.
681 It assumes that it is pointing to just past a `jump'. */
682 on_failure_jump_smart,
684 /* Followed by two-byte relative address and two-byte number n.
685 After matching N times, jump to the address upon failure.
686 Does not work if N starts at 0: use on_failure_jump_loop
687 instead. */
688 succeed_n,
690 /* Followed by two-byte relative address, and two-byte number n.
691 Jump to the address N times, then fail. */
692 jump_n,
694 /* Set the following two-byte relative address to the
695 subsequent two-byte number. The address *includes* the two
696 bytes of number. */
697 set_number_at,
699 wordbeg, /* Succeeds if at word beginning. */
700 wordend, /* Succeeds if at word end. */
702 wordbound, /* Succeeds if at a word boundary. */
703 notwordbound, /* Succeeds if not at a word boundary. */
705 symbeg, /* Succeeds if at symbol beginning. */
706 symend, /* Succeeds if at symbol end. */
708 /* Matches any character whose syntax is specified. Followed by
709 a byte which contains a syntax code, e.g., Sword. */
710 syntaxspec,
712 /* Matches any character whose syntax is not that specified. */
713 notsyntaxspec
715 #ifdef emacs
716 ,before_dot, /* Succeeds if before point. */
717 at_dot, /* Succeeds if at point. */
718 after_dot, /* Succeeds if after point. */
720 /* Matches any character whose category-set contains the specified
721 category. The operator is followed by a byte which contains a
722 category code (mnemonic ASCII character). */
723 categoryspec,
725 /* Matches any character whose category-set does not contain the
726 specified category. The operator is followed by a byte which
727 contains the category code (mnemonic ASCII character). */
728 notcategoryspec
729 #endif /* emacs */
730 } re_opcode_t;
732 /* Common operations on the compiled pattern. */
734 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
736 #define STORE_NUMBER(destination, number) \
737 do { \
738 (destination)[0] = (number) & 0377; \
739 (destination)[1] = (number) >> 8; \
740 } while (0)
742 /* Same as STORE_NUMBER, except increment DESTINATION to
743 the byte after where the number is stored. Therefore, DESTINATION
744 must be an lvalue. */
746 #define STORE_NUMBER_AND_INCR(destination, number) \
747 do { \
748 STORE_NUMBER (destination, number); \
749 (destination) += 2; \
750 } while (0)
752 /* Put into DESTINATION a number stored in two contiguous bytes starting
753 at SOURCE. */
755 #define EXTRACT_NUMBER(destination, source) \
756 do { \
757 (destination) = *(source) & 0377; \
758 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
759 } while (0)
761 #ifdef DEBUG
762 static void extract_number _RE_ARGS ((int *dest, re_char *source));
763 static void
764 extract_number (dest, source)
765 int *dest;
766 re_char *source;
768 int temp = SIGN_EXTEND_CHAR (*(source + 1));
769 *dest = *source & 0377;
770 *dest += temp << 8;
773 # ifndef EXTRACT_MACROS /* To debug the macros. */
774 # undef EXTRACT_NUMBER
775 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
776 # endif /* not EXTRACT_MACROS */
778 #endif /* DEBUG */
780 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
781 SOURCE must be an lvalue. */
783 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
784 do { \
785 EXTRACT_NUMBER (destination, source); \
786 (source) += 2; \
787 } while (0)
789 #ifdef DEBUG
790 static void extract_number_and_incr _RE_ARGS ((int *destination,
791 re_char **source));
792 static void
793 extract_number_and_incr (destination, source)
794 int *destination;
795 re_char **source;
797 extract_number (destination, *source);
798 *source += 2;
801 # ifndef EXTRACT_MACROS
802 # undef EXTRACT_NUMBER_AND_INCR
803 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
804 extract_number_and_incr (&dest, &src)
805 # endif /* not EXTRACT_MACROS */
807 #endif /* DEBUG */
809 /* Store a multibyte character in three contiguous bytes starting
810 DESTINATION, and increment DESTINATION to the byte after where the
811 character is stored. Therefore, DESTINATION must be an lvalue. */
813 #define STORE_CHARACTER_AND_INCR(destination, character) \
814 do { \
815 (destination)[0] = (character) & 0377; \
816 (destination)[1] = ((character) >> 8) & 0377; \
817 (destination)[2] = (character) >> 16; \
818 (destination) += 3; \
819 } while (0)
821 /* Put into DESTINATION a character stored in three contiguous bytes
822 starting at SOURCE. */
824 #define EXTRACT_CHARACTER(destination, source) \
825 do { \
826 (destination) = ((source)[0] \
827 | ((source)[1] << 8) \
828 | ((source)[2] << 16)); \
829 } while (0)
832 /* Macros for charset. */
834 /* Size of bitmap of charset P in bytes. P is a start of charset,
835 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
836 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
838 /* Nonzero if charset P has range table. */
839 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
841 /* Return the address of range table of charset P. But not the start
842 of table itself, but the before where the number of ranges is
843 stored. `2 +' means to skip re_opcode_t and size of bitmap,
844 and the 2 bytes of flags at the start of the range table. */
845 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
847 /* Extract the bit flags that start a range table. */
848 #define CHARSET_RANGE_TABLE_BITS(p) \
849 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
850 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
852 /* Test if C is listed in the bitmap of charset P. */
853 #define CHARSET_LOOKUP_BITMAP(p, c) \
854 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
855 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
857 /* Return the address of end of RANGE_TABLE. COUNT is number of
858 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
859 is start of range and end of range. `* 3' is size of each start
860 and end. */
861 #define CHARSET_RANGE_TABLE_END(range_table, count) \
862 ((range_table) + (count) * 2 * 3)
864 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
865 COUNT is number of ranges in RANGE_TABLE. */
866 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
867 do \
869 re_wchar_t range_start, range_end; \
870 re_char *p; \
871 re_char *range_table_end \
872 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
874 for (p = (range_table); p < range_table_end; p += 2 * 3) \
876 EXTRACT_CHARACTER (range_start, p); \
877 EXTRACT_CHARACTER (range_end, p + 3); \
879 if (range_start <= (c) && (c) <= range_end) \
881 (not) = !(not); \
882 break; \
886 while (0)
888 /* Test if C is in range table of CHARSET. The flag NOT is negated if
889 C is listed in it. */
890 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
891 do \
893 /* Number of ranges in range table. */ \
894 int count; \
895 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
897 EXTRACT_NUMBER_AND_INCR (count, range_table); \
898 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
900 while (0)
902 /* If DEBUG is defined, Regex prints many voluminous messages about what
903 it is doing (if the variable `debug' is nonzero). If linked with the
904 main program in `iregex.c', you can enter patterns and strings
905 interactively. And if linked with the main program in `main.c' and
906 the other test files, you can run the already-written tests. */
908 #ifdef DEBUG
910 /* We use standard I/O for debugging. */
911 # include <stdio.h>
913 /* It is useful to test things that ``must'' be true when debugging. */
914 # include <assert.h>
916 static int debug = -100000;
918 # define DEBUG_STATEMENT(e) e
919 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
920 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
921 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
922 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
923 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
924 if (debug > 0) print_partial_compiled_pattern (s, e)
925 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
926 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
929 /* Print the fastmap in human-readable form. */
931 void
932 print_fastmap (fastmap)
933 char *fastmap;
935 unsigned was_a_range = 0;
936 unsigned i = 0;
938 while (i < (1 << BYTEWIDTH))
940 if (fastmap[i++])
942 was_a_range = 0;
943 putchar (i - 1);
944 while (i < (1 << BYTEWIDTH) && fastmap[i])
946 was_a_range = 1;
947 i++;
949 if (was_a_range)
951 printf ("-");
952 putchar (i - 1);
956 putchar ('\n');
960 /* Print a compiled pattern string in human-readable form, starting at
961 the START pointer into it and ending just before the pointer END. */
963 void
964 print_partial_compiled_pattern (start, end)
965 re_char *start;
966 re_char *end;
968 int mcnt, mcnt2;
969 re_char *p = start;
970 re_char *pend = end;
972 if (start == NULL)
974 fprintf (stderr, "(null)\n");
975 return;
978 /* Loop over pattern commands. */
979 while (p < pend)
981 fprintf (stderr, "%d:\t", p - start);
983 switch ((re_opcode_t) *p++)
985 case no_op:
986 fprintf (stderr, "/no_op");
987 break;
989 case succeed:
990 fprintf (stderr, "/succeed");
991 break;
993 case exactn:
994 mcnt = *p++;
995 fprintf (stderr, "/exactn/%d", mcnt);
998 fprintf (stderr, "/%c", *p++);
1000 while (--mcnt);
1001 break;
1003 case start_memory:
1004 fprintf (stderr, "/start_memory/%d", *p++);
1005 break;
1007 case stop_memory:
1008 fprintf (stderr, "/stop_memory/%d", *p++);
1009 break;
1011 case duplicate:
1012 fprintf (stderr, "/duplicate/%d", *p++);
1013 break;
1015 case anychar:
1016 fprintf (stderr, "/anychar");
1017 break;
1019 case charset:
1020 case charset_not:
1022 register int c, last = -100;
1023 register int in_range = 0;
1024 int length = CHARSET_BITMAP_SIZE (p - 1);
1025 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
1027 fprintf (stderr, "/charset [%s",
1028 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
1030 if (p + *p >= pend)
1031 fprintf (stderr, " !extends past end of pattern! ");
1033 for (c = 0; c < 256; c++)
1034 if (c / 8 < length
1035 && (p[1 + (c/8)] & (1 << (c % 8))))
1037 /* Are we starting a range? */
1038 if (last + 1 == c && ! in_range)
1040 fprintf (stderr, "-");
1041 in_range = 1;
1043 /* Have we broken a range? */
1044 else if (last + 1 != c && in_range)
1046 fprintf (stderr, "%c", last);
1047 in_range = 0;
1050 if (! in_range)
1051 fprintf (stderr, "%c", c);
1053 last = c;
1056 if (in_range)
1057 fprintf (stderr, "%c", last);
1059 fprintf (stderr, "]");
1061 p += 1 + length;
1063 if (has_range_table)
1065 int count;
1066 fprintf (stderr, "has-range-table");
1068 /* ??? Should print the range table; for now, just skip it. */
1069 p += 2; /* skip range table bits */
1070 EXTRACT_NUMBER_AND_INCR (count, p);
1071 p = CHARSET_RANGE_TABLE_END (p, count);
1074 break;
1076 case begline:
1077 fprintf (stderr, "/begline");
1078 break;
1080 case endline:
1081 fprintf (stderr, "/endline");
1082 break;
1084 case on_failure_jump:
1085 extract_number_and_incr (&mcnt, &p);
1086 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1087 break;
1089 case on_failure_keep_string_jump:
1090 extract_number_and_incr (&mcnt, &p);
1091 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1092 break;
1094 case on_failure_jump_nastyloop:
1095 extract_number_and_incr (&mcnt, &p);
1096 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1097 break;
1099 case on_failure_jump_loop:
1100 extract_number_and_incr (&mcnt, &p);
1101 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1102 break;
1104 case on_failure_jump_smart:
1105 extract_number_and_incr (&mcnt, &p);
1106 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1107 break;
1109 case jump:
1110 extract_number_and_incr (&mcnt, &p);
1111 fprintf (stderr, "/jump to %d", p + mcnt - start);
1112 break;
1114 case succeed_n:
1115 extract_number_and_incr (&mcnt, &p);
1116 extract_number_and_incr (&mcnt2, &p);
1117 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1118 break;
1120 case jump_n:
1121 extract_number_and_incr (&mcnt, &p);
1122 extract_number_and_incr (&mcnt2, &p);
1123 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1124 break;
1126 case set_number_at:
1127 extract_number_and_incr (&mcnt, &p);
1128 extract_number_and_incr (&mcnt2, &p);
1129 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1130 break;
1132 case wordbound:
1133 fprintf (stderr, "/wordbound");
1134 break;
1136 case notwordbound:
1137 fprintf (stderr, "/notwordbound");
1138 break;
1140 case wordbeg:
1141 fprintf (stderr, "/wordbeg");
1142 break;
1144 case wordend:
1145 fprintf (stderr, "/wordend");
1146 break;
1148 case symbeg:
1149 fprintf (stderr, "/symbeg");
1150 break;
1152 case symend:
1153 fprintf (stderr, "/symend");
1154 break;
1156 case syntaxspec:
1157 fprintf (stderr, "/syntaxspec");
1158 mcnt = *p++;
1159 fprintf (stderr, "/%d", mcnt);
1160 break;
1162 case notsyntaxspec:
1163 fprintf (stderr, "/notsyntaxspec");
1164 mcnt = *p++;
1165 fprintf (stderr, "/%d", mcnt);
1166 break;
1168 # ifdef emacs
1169 case before_dot:
1170 fprintf (stderr, "/before_dot");
1171 break;
1173 case at_dot:
1174 fprintf (stderr, "/at_dot");
1175 break;
1177 case after_dot:
1178 fprintf (stderr, "/after_dot");
1179 break;
1181 case categoryspec:
1182 fprintf (stderr, "/categoryspec");
1183 mcnt = *p++;
1184 fprintf (stderr, "/%d", mcnt);
1185 break;
1187 case notcategoryspec:
1188 fprintf (stderr, "/notcategoryspec");
1189 mcnt = *p++;
1190 fprintf (stderr, "/%d", mcnt);
1191 break;
1192 # endif /* emacs */
1194 case begbuf:
1195 fprintf (stderr, "/begbuf");
1196 break;
1198 case endbuf:
1199 fprintf (stderr, "/endbuf");
1200 break;
1202 default:
1203 fprintf (stderr, "?%d", *(p-1));
1206 fprintf (stderr, "\n");
1209 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1213 void
1214 print_compiled_pattern (bufp)
1215 struct re_pattern_buffer *bufp;
1217 re_char *buffer = bufp->buffer;
1219 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1220 printf ("%ld bytes used/%ld bytes allocated.\n",
1221 bufp->used, bufp->allocated);
1223 if (bufp->fastmap_accurate && bufp->fastmap)
1225 printf ("fastmap: ");
1226 print_fastmap (bufp->fastmap);
1229 printf ("re_nsub: %d\t", bufp->re_nsub);
1230 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1231 printf ("can_be_null: %d\t", bufp->can_be_null);
1232 printf ("no_sub: %d\t", bufp->no_sub);
1233 printf ("not_bol: %d\t", bufp->not_bol);
1234 printf ("not_eol: %d\t", bufp->not_eol);
1235 printf ("syntax: %lx\n", bufp->syntax);
1236 fflush (stdout);
1237 /* Perhaps we should print the translate table? */
1241 void
1242 print_double_string (where, string1, size1, string2, size2)
1243 re_char *where;
1244 re_char *string1;
1245 re_char *string2;
1246 int size1;
1247 int size2;
1249 int this_char;
1251 if (where == NULL)
1252 printf ("(null)");
1253 else
1255 if (FIRST_STRING_P (where))
1257 for (this_char = where - string1; this_char < size1; this_char++)
1258 putchar (string1[this_char]);
1260 where = string2;
1263 for (this_char = where - string2; this_char < size2; this_char++)
1264 putchar (string2[this_char]);
1268 #else /* not DEBUG */
1270 # undef assert
1271 # define assert(e)
1273 # define DEBUG_STATEMENT(e)
1274 # define DEBUG_PRINT1(x)
1275 # define DEBUG_PRINT2(x1, x2)
1276 # define DEBUG_PRINT3(x1, x2, x3)
1277 # define DEBUG_PRINT4(x1, x2, x3, x4)
1278 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1279 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1281 #endif /* not DEBUG */
1283 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1284 also be assigned to arbitrarily: each pattern buffer stores its own
1285 syntax, so it can be changed between regex compilations. */
1286 /* This has no initializer because initialized variables in Emacs
1287 become read-only after dumping. */
1288 reg_syntax_t re_syntax_options;
1291 /* Specify the precise syntax of regexps for compilation. This provides
1292 for compatibility for various utilities which historically have
1293 different, incompatible syntaxes.
1295 The argument SYNTAX is a bit mask comprised of the various bits
1296 defined in regex.h. We return the old syntax. */
1298 reg_syntax_t
1299 re_set_syntax (syntax)
1300 reg_syntax_t syntax;
1302 reg_syntax_t ret = re_syntax_options;
1304 re_syntax_options = syntax;
1305 return ret;
1307 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1309 /* Regexp to use to replace spaces, or NULL meaning don't. */
1310 static re_char *whitespace_regexp;
1312 void
1313 re_set_whitespace_regexp (regexp)
1314 const char *regexp;
1316 whitespace_regexp = (re_char *) regexp;
1318 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1320 /* This table gives an error message for each of the error codes listed
1321 in regex.h. Obviously the order here has to be same as there.
1322 POSIX doesn't require that we do anything for REG_NOERROR,
1323 but why not be nice? */
1325 static const char *re_error_msgid[] =
1327 gettext_noop ("Success"), /* REG_NOERROR */
1328 gettext_noop ("No match"), /* REG_NOMATCH */
1329 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1330 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1331 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1332 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1333 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1334 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1335 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1336 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1337 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1338 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1339 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1340 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1341 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1342 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1343 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1344 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1347 /* Avoiding alloca during matching, to placate r_alloc. */
1349 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1350 searching and matching functions should not call alloca. On some
1351 systems, alloca is implemented in terms of malloc, and if we're
1352 using the relocating allocator routines, then malloc could cause a
1353 relocation, which might (if the strings being searched are in the
1354 ralloc heap) shift the data out from underneath the regexp
1355 routines.
1357 Here's another reason to avoid allocation: Emacs
1358 processes input from X in a signal handler; processing X input may
1359 call malloc; if input arrives while a matching routine is calling
1360 malloc, then we're scrod. But Emacs can't just block input while
1361 calling matching routines; then we don't notice interrupts when
1362 they come in. So, Emacs blocks input around all regexp calls
1363 except the matching calls, which it leaves unprotected, in the
1364 faith that they will not malloc. */
1366 /* Normally, this is fine. */
1367 #define MATCH_MAY_ALLOCATE
1369 /* When using GNU C, we are not REALLY using the C alloca, no matter
1370 what config.h may say. So don't take precautions for it. */
1371 #ifdef __GNUC__
1372 # undef C_ALLOCA
1373 #endif
1375 /* The match routines may not allocate if (1) they would do it with malloc
1376 and (2) it's not safe for them to use malloc.
1377 Note that if REL_ALLOC is defined, matching would not use malloc for the
1378 failure stack, but we would still use it for the register vectors;
1379 so REL_ALLOC should not affect this. */
1380 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1381 # undef MATCH_MAY_ALLOCATE
1382 #endif
1385 /* Failure stack declarations and macros; both re_compile_fastmap and
1386 re_match_2 use a failure stack. These have to be macros because of
1387 REGEX_ALLOCATE_STACK. */
1390 /* Approximate number of failure points for which to initially allocate space
1391 when matching. If this number is exceeded, we allocate more
1392 space, so it is not a hard limit. */
1393 #ifndef INIT_FAILURE_ALLOC
1394 # define INIT_FAILURE_ALLOC 20
1395 #endif
1397 /* Roughly the maximum number of failure points on the stack. Would be
1398 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1399 This is a variable only so users of regex can assign to it; we never
1400 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1401 before using it, so it should probably be a byte-count instead. */
1402 # if defined MATCH_MAY_ALLOCATE
1403 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1404 whose default stack limit is 2mb. In order for a larger
1405 value to work reliably, you have to try to make it accord
1406 with the process stack limit. */
1407 size_t re_max_failures = 40000;
1408 # else
1409 size_t re_max_failures = 4000;
1410 # endif
1412 union fail_stack_elt
1414 re_char *pointer;
1415 /* This should be the biggest `int' that's no bigger than a pointer. */
1416 long integer;
1419 typedef union fail_stack_elt fail_stack_elt_t;
1421 typedef struct
1423 fail_stack_elt_t *stack;
1424 size_t size;
1425 size_t avail; /* Offset of next open position. */
1426 size_t frame; /* Offset of the cur constructed frame. */
1427 } fail_stack_type;
1429 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1430 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1433 /* Define macros to initialize and free the failure stack.
1434 Do `return -2' if the alloc fails. */
1436 #ifdef MATCH_MAY_ALLOCATE
1437 # define INIT_FAIL_STACK() \
1438 do { \
1439 fail_stack.stack = (fail_stack_elt_t *) \
1440 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1441 * sizeof (fail_stack_elt_t)); \
1443 if (fail_stack.stack == NULL) \
1444 return -2; \
1446 fail_stack.size = INIT_FAILURE_ALLOC; \
1447 fail_stack.avail = 0; \
1448 fail_stack.frame = 0; \
1449 } while (0)
1451 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1452 #else
1453 # define INIT_FAIL_STACK() \
1454 do { \
1455 fail_stack.avail = 0; \
1456 fail_stack.frame = 0; \
1457 } while (0)
1459 # define RESET_FAIL_STACK() ((void)0)
1460 #endif
1463 /* Double the size of FAIL_STACK, up to a limit
1464 which allows approximately `re_max_failures' items.
1466 Return 1 if succeeds, and 0 if either ran out of memory
1467 allocating space for it or it was already too large.
1469 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1471 /* Factor to increase the failure stack size by
1472 when we increase it.
1473 This used to be 2, but 2 was too wasteful
1474 because the old discarded stacks added up to as much space
1475 were as ultimate, maximum-size stack. */
1476 #define FAIL_STACK_GROWTH_FACTOR 4
1478 #define GROW_FAIL_STACK(fail_stack) \
1479 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1480 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1481 ? 0 \
1482 : ((fail_stack).stack \
1483 = (fail_stack_elt_t *) \
1484 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1485 (fail_stack).size * sizeof (fail_stack_elt_t), \
1486 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1487 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1488 * FAIL_STACK_GROWTH_FACTOR))), \
1490 (fail_stack).stack == NULL \
1491 ? 0 \
1492 : ((fail_stack).size \
1493 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1494 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1495 * FAIL_STACK_GROWTH_FACTOR)) \
1496 / sizeof (fail_stack_elt_t)), \
1497 1)))
1500 /* Push a pointer value onto the failure stack.
1501 Assumes the variable `fail_stack'. Probably should only
1502 be called from within `PUSH_FAILURE_POINT'. */
1503 #define PUSH_FAILURE_POINTER(item) \
1504 fail_stack.stack[fail_stack.avail++].pointer = (item)
1506 /* This pushes an integer-valued item onto the failure stack.
1507 Assumes the variable `fail_stack'. Probably should only
1508 be called from within `PUSH_FAILURE_POINT'. */
1509 #define PUSH_FAILURE_INT(item) \
1510 fail_stack.stack[fail_stack.avail++].integer = (item)
1512 /* Push a fail_stack_elt_t value onto the failure stack.
1513 Assumes the variable `fail_stack'. Probably should only
1514 be called from within `PUSH_FAILURE_POINT'. */
1515 #define PUSH_FAILURE_ELT(item) \
1516 fail_stack.stack[fail_stack.avail++] = (item)
1518 /* These three POP... operations complement the three PUSH... operations.
1519 All assume that `fail_stack' is nonempty. */
1520 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1521 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1522 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1524 /* Individual items aside from the registers. */
1525 #define NUM_NONREG_ITEMS 3
1527 /* Used to examine the stack (to detect infinite loops). */
1528 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1529 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1530 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1531 #define TOP_FAILURE_HANDLE() fail_stack.frame
1534 #define ENSURE_FAIL_STACK(space) \
1535 while (REMAINING_AVAIL_SLOTS <= space) { \
1536 if (!GROW_FAIL_STACK (fail_stack)) \
1537 return -2; \
1538 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1539 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1542 /* Push register NUM onto the stack. */
1543 #define PUSH_FAILURE_REG(num) \
1544 do { \
1545 char *destination; \
1546 ENSURE_FAIL_STACK(3); \
1547 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1548 num, regstart[num], regend[num]); \
1549 PUSH_FAILURE_POINTER (regstart[num]); \
1550 PUSH_FAILURE_POINTER (regend[num]); \
1551 PUSH_FAILURE_INT (num); \
1552 } while (0)
1554 /* Change the counter's value to VAL, but make sure that it will
1555 be reset when backtracking. */
1556 #define PUSH_NUMBER(ptr,val) \
1557 do { \
1558 char *destination; \
1559 int c; \
1560 ENSURE_FAIL_STACK(3); \
1561 EXTRACT_NUMBER (c, ptr); \
1562 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1563 PUSH_FAILURE_INT (c); \
1564 PUSH_FAILURE_POINTER (ptr); \
1565 PUSH_FAILURE_INT (-1); \
1566 STORE_NUMBER (ptr, val); \
1567 } while (0)
1569 /* Pop a saved register off the stack. */
1570 #define POP_FAILURE_REG_OR_COUNT() \
1571 do { \
1572 int reg = POP_FAILURE_INT (); \
1573 if (reg == -1) \
1575 /* It's a counter. */ \
1576 /* Here, we discard `const', making re_match non-reentrant. */ \
1577 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1578 reg = POP_FAILURE_INT (); \
1579 STORE_NUMBER (ptr, reg); \
1580 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1582 else \
1584 regend[reg] = POP_FAILURE_POINTER (); \
1585 regstart[reg] = POP_FAILURE_POINTER (); \
1586 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1587 reg, regstart[reg], regend[reg]); \
1589 } while (0)
1591 /* Check that we are not stuck in an infinite loop. */
1592 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1593 do { \
1594 int failure = TOP_FAILURE_HANDLE (); \
1595 /* Check for infinite matching loops */ \
1596 while (failure > 0 \
1597 && (FAILURE_STR (failure) == string_place \
1598 || FAILURE_STR (failure) == NULL)) \
1600 assert (FAILURE_PAT (failure) >= bufp->buffer \
1601 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1602 if (FAILURE_PAT (failure) == pat_cur) \
1604 cycle = 1; \
1605 break; \
1607 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1608 failure = NEXT_FAILURE_HANDLE(failure); \
1610 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1611 } while (0)
1613 /* Push the information about the state we will need
1614 if we ever fail back to it.
1616 Requires variables fail_stack, regstart, regend and
1617 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1618 declared.
1620 Does `return FAILURE_CODE' if runs out of memory. */
1622 #define PUSH_FAILURE_POINT(pattern, string_place) \
1623 do { \
1624 char *destination; \
1625 /* Must be int, so when we don't save any registers, the arithmetic \
1626 of 0 + -1 isn't done as unsigned. */ \
1628 DEBUG_STATEMENT (nfailure_points_pushed++); \
1629 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1630 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1631 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1633 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1635 DEBUG_PRINT1 ("\n"); \
1637 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1638 PUSH_FAILURE_INT (fail_stack.frame); \
1640 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1641 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1642 DEBUG_PRINT1 ("'\n"); \
1643 PUSH_FAILURE_POINTER (string_place); \
1645 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1646 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1647 PUSH_FAILURE_POINTER (pattern); \
1649 /* Close the frame by moving the frame pointer past it. */ \
1650 fail_stack.frame = fail_stack.avail; \
1651 } while (0)
1653 /* Estimate the size of data pushed by a typical failure stack entry.
1654 An estimate is all we need, because all we use this for
1655 is to choose a limit for how big to make the failure stack. */
1656 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1657 #define TYPICAL_FAILURE_SIZE 20
1659 /* How many items can still be added to the stack without overflowing it. */
1660 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1663 /* Pops what PUSH_FAIL_STACK pushes.
1665 We restore into the parameters, all of which should be lvalues:
1666 STR -- the saved data position.
1667 PAT -- the saved pattern position.
1668 REGSTART, REGEND -- arrays of string positions.
1670 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1671 `pend', `string1', `size1', `string2', and `size2'. */
1673 #define POP_FAILURE_POINT(str, pat) \
1674 do { \
1675 assert (!FAIL_STACK_EMPTY ()); \
1677 /* Remove failure points and point to how many regs pushed. */ \
1678 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1679 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1680 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1682 /* Pop the saved registers. */ \
1683 while (fail_stack.frame < fail_stack.avail) \
1684 POP_FAILURE_REG_OR_COUNT (); \
1686 pat = POP_FAILURE_POINTER (); \
1687 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1688 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1690 /* If the saved string location is NULL, it came from an \
1691 on_failure_keep_string_jump opcode, and we want to throw away the \
1692 saved NULL, thus retaining our current position in the string. */ \
1693 str = POP_FAILURE_POINTER (); \
1694 DEBUG_PRINT2 (" Popping string %p: `", str); \
1695 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1696 DEBUG_PRINT1 ("'\n"); \
1698 fail_stack.frame = POP_FAILURE_INT (); \
1699 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1701 assert (fail_stack.avail >= 0); \
1702 assert (fail_stack.frame <= fail_stack.avail); \
1704 DEBUG_STATEMENT (nfailure_points_popped++); \
1705 } while (0) /* POP_FAILURE_POINT */
1709 /* Registers are set to a sentinel when they haven't yet matched. */
1710 #define REG_UNSET(e) ((e) == NULL)
1712 /* Subroutine declarations and macros for regex_compile. */
1714 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1715 reg_syntax_t syntax,
1716 struct re_pattern_buffer *bufp));
1717 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1718 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1719 int arg1, int arg2));
1720 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1721 int arg, unsigned char *end));
1722 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1723 int arg1, int arg2, unsigned char *end));
1724 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1725 re_char *p,
1726 reg_syntax_t syntax));
1727 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1728 re_char *pend,
1729 reg_syntax_t syntax));
1730 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1731 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1732 char *fastmap, const int multibyte));
1734 /* Fetch the next character in the uncompiled pattern, with no
1735 translation. */
1736 #define PATFETCH(c) \
1737 do { \
1738 int len; \
1739 if (p == pend) return REG_EEND; \
1740 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1741 p += len; \
1742 } while (0)
1745 /* If `translate' is non-null, return translate[D], else just D. We
1746 cast the subscript to translate because some data is declared as
1747 `char *', to avoid warnings when a string constant is passed. But
1748 when we use a character as a subscript we must make it unsigned. */
1749 #ifndef TRANSLATE
1750 # define TRANSLATE(d) \
1751 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1752 #endif
1755 /* Macros for outputting the compiled pattern into `buffer'. */
1757 /* If the buffer isn't allocated when it comes in, use this. */
1758 #define INIT_BUF_SIZE 32
1760 /* Make sure we have at least N more bytes of space in buffer. */
1761 #define GET_BUFFER_SPACE(n) \
1762 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1763 EXTEND_BUFFER ()
1765 /* Make sure we have one more byte of buffer space and then add C to it. */
1766 #define BUF_PUSH(c) \
1767 do { \
1768 GET_BUFFER_SPACE (1); \
1769 *b++ = (unsigned char) (c); \
1770 } while (0)
1773 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1774 #define BUF_PUSH_2(c1, c2) \
1775 do { \
1776 GET_BUFFER_SPACE (2); \
1777 *b++ = (unsigned char) (c1); \
1778 *b++ = (unsigned char) (c2); \
1779 } while (0)
1782 /* As with BUF_PUSH_2, except for three bytes. */
1783 #define BUF_PUSH_3(c1, c2, c3) \
1784 do { \
1785 GET_BUFFER_SPACE (3); \
1786 *b++ = (unsigned char) (c1); \
1787 *b++ = (unsigned char) (c2); \
1788 *b++ = (unsigned char) (c3); \
1789 } while (0)
1792 /* Store a jump with opcode OP at LOC to location TO. We store a
1793 relative address offset by the three bytes the jump itself occupies. */
1794 #define STORE_JUMP(op, loc, to) \
1795 store_op1 (op, loc, (to) - (loc) - 3)
1797 /* Likewise, for a two-argument jump. */
1798 #define STORE_JUMP2(op, loc, to, arg) \
1799 store_op2 (op, loc, (to) - (loc) - 3, arg)
1801 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1802 #define INSERT_JUMP(op, loc, to) \
1803 insert_op1 (op, loc, (to) - (loc) - 3, b)
1805 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1806 #define INSERT_JUMP2(op, loc, to, arg) \
1807 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1810 /* This is not an arbitrary limit: the arguments which represent offsets
1811 into the pattern are two bytes long. So if 2^15 bytes turns out to
1812 be too small, many things would have to change. */
1813 # define MAX_BUF_SIZE (1L << 15)
1815 #if 0 /* This is when we thought it could be 2^16 bytes. */
1816 /* Any other compiler which, like MSC, has allocation limit below 2^16
1817 bytes will have to use approach similar to what was done below for
1818 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1819 reallocating to 0 bytes. Such thing is not going to work too well.
1820 You have been warned!! */
1821 #if defined _MSC_VER && !defined WIN32
1822 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1823 # define MAX_BUF_SIZE 65500L
1824 #else
1825 # define MAX_BUF_SIZE (1L << 16)
1826 #endif
1827 #endif /* 0 */
1829 /* Extend the buffer by twice its current size via realloc and
1830 reset the pointers that pointed into the old block to point to the
1831 correct places in the new one. If extending the buffer results in it
1832 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1833 #if __BOUNDED_POINTERS__
1834 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1835 # define MOVE_BUFFER_POINTER(P) \
1836 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1837 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1838 else \
1840 SET_HIGH_BOUND (b); \
1841 SET_HIGH_BOUND (begalt); \
1842 if (fixup_alt_jump) \
1843 SET_HIGH_BOUND (fixup_alt_jump); \
1844 if (laststart) \
1845 SET_HIGH_BOUND (laststart); \
1846 if (pending_exact) \
1847 SET_HIGH_BOUND (pending_exact); \
1849 #else
1850 # define MOVE_BUFFER_POINTER(P) (P) += incr
1851 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1852 #endif
1853 #define EXTEND_BUFFER() \
1854 do { \
1855 re_char *old_buffer = bufp->buffer; \
1856 if (bufp->allocated == MAX_BUF_SIZE) \
1857 return REG_ESIZE; \
1858 bufp->allocated <<= 1; \
1859 if (bufp->allocated > MAX_BUF_SIZE) \
1860 bufp->allocated = MAX_BUF_SIZE; \
1861 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1862 if (bufp->buffer == NULL) \
1863 return REG_ESPACE; \
1864 /* If the buffer moved, move all the pointers into it. */ \
1865 if (old_buffer != bufp->buffer) \
1867 int incr = bufp->buffer - old_buffer; \
1868 MOVE_BUFFER_POINTER (b); \
1869 MOVE_BUFFER_POINTER (begalt); \
1870 if (fixup_alt_jump) \
1871 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1872 if (laststart) \
1873 MOVE_BUFFER_POINTER (laststart); \
1874 if (pending_exact) \
1875 MOVE_BUFFER_POINTER (pending_exact); \
1877 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1878 } while (0)
1881 /* Since we have one byte reserved for the register number argument to
1882 {start,stop}_memory, the maximum number of groups we can report
1883 things about is what fits in that byte. */
1884 #define MAX_REGNUM 255
1886 /* But patterns can have more than `MAX_REGNUM' registers. We just
1887 ignore the excess. */
1888 typedef int regnum_t;
1891 /* Macros for the compile stack. */
1893 /* Since offsets can go either forwards or backwards, this type needs to
1894 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1895 /* int may be not enough when sizeof(int) == 2. */
1896 typedef long pattern_offset_t;
1898 typedef struct
1900 pattern_offset_t begalt_offset;
1901 pattern_offset_t fixup_alt_jump;
1902 pattern_offset_t laststart_offset;
1903 regnum_t regnum;
1904 } compile_stack_elt_t;
1907 typedef struct
1909 compile_stack_elt_t *stack;
1910 unsigned size;
1911 unsigned avail; /* Offset of next open position. */
1912 } compile_stack_type;
1915 #define INIT_COMPILE_STACK_SIZE 32
1917 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1918 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1920 /* The next available element. */
1921 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1923 /* Explicit quit checking is only used on NTemacs and whenever we
1924 use polling to process input events. */
1925 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1926 extern int immediate_quit;
1927 # define IMMEDIATE_QUIT_CHECK \
1928 do { \
1929 if (immediate_quit) QUIT; \
1930 } while (0)
1931 #else
1932 # define IMMEDIATE_QUIT_CHECK ((void)0)
1933 #endif
1935 /* Structure to manage work area for range table. */
1936 struct range_table_work_area
1938 int *table; /* actual work area. */
1939 int allocated; /* allocated size for work area in bytes. */
1940 int used; /* actually used size in words. */
1941 int bits; /* flag to record character classes */
1944 /* Make sure that WORK_AREA can hold more N multibyte characters.
1945 This is used only in set_image_of_range and set_image_of_range_1.
1946 It expects WORK_AREA to be a pointer.
1947 If it can't get the space, it returns from the surrounding function. */
1949 #define EXTEND_RANGE_TABLE(work_area, n) \
1950 do { \
1951 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1953 extend_range_table_work_area (work_area); \
1954 if ((work_area)->table == 0) \
1955 return (REG_ESPACE); \
1957 } while (0)
1959 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1960 (work_area).bits |= (bit)
1962 /* Bits used to implement the multibyte-part of the various character classes
1963 such as [:alnum:] in a charset's range table. */
1964 #define BIT_WORD 0x1
1965 #define BIT_LOWER 0x2
1966 #define BIT_PUNCT 0x4
1967 #define BIT_SPACE 0x8
1968 #define BIT_UPPER 0x10
1969 #define BIT_MULTIBYTE 0x20
1971 /* Set a range START..END to WORK_AREA.
1972 The range is passed through TRANSLATE, so START and END
1973 should be untranslated. */
1974 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1975 do { \
1976 int tem; \
1977 tem = set_image_of_range (&work_area, start, end, translate); \
1978 if (tem > 0) \
1979 FREE_STACK_RETURN (tem); \
1980 } while (0)
1982 /* Free allocated memory for WORK_AREA. */
1983 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1984 do { \
1985 if ((work_area).table) \
1986 free ((work_area).table); \
1987 } while (0)
1989 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1990 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1991 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1992 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1995 /* Set the bit for character C in a list. */
1996 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1999 /* Get the next unsigned number in the uncompiled pattern. */
2000 #define GET_UNSIGNED_NUMBER(num) \
2001 do { \
2002 if (p == pend) \
2003 FREE_STACK_RETURN (REG_EBRACE); \
2004 else \
2006 PATFETCH (c); \
2007 while ('0' <= c && c <= '9') \
2009 int prev; \
2010 if (num < 0) \
2011 num = 0; \
2012 prev = num; \
2013 num = num * 10 + c - '0'; \
2014 if (num / 10 != prev) \
2015 FREE_STACK_RETURN (REG_BADBR); \
2016 if (p == pend) \
2017 FREE_STACK_RETURN (REG_EBRACE); \
2018 PATFETCH (c); \
2021 } while (0)
2023 #if ! WIDE_CHAR_SUPPORT
2025 /* Map a string to the char class it names (if any). */
2026 re_wctype_t
2027 re_wctype (str)
2028 re_char *str;
2030 const char *string = str;
2031 if (STREQ (string, "alnum")) return RECC_ALNUM;
2032 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2033 else if (STREQ (string, "word")) return RECC_WORD;
2034 else if (STREQ (string, "ascii")) return RECC_ASCII;
2035 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2036 else if (STREQ (string, "graph")) return RECC_GRAPH;
2037 else if (STREQ (string, "lower")) return RECC_LOWER;
2038 else if (STREQ (string, "print")) return RECC_PRINT;
2039 else if (STREQ (string, "punct")) return RECC_PUNCT;
2040 else if (STREQ (string, "space")) return RECC_SPACE;
2041 else if (STREQ (string, "upper")) return RECC_UPPER;
2042 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2043 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2044 else if (STREQ (string, "digit")) return RECC_DIGIT;
2045 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2046 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2047 else if (STREQ (string, "blank")) return RECC_BLANK;
2048 else return 0;
2051 /* True if CH is in the char class CC. */
2052 boolean
2053 re_iswctype (ch, cc)
2054 int ch;
2055 re_wctype_t cc;
2057 switch (cc)
2059 case RECC_ALNUM: return ISALNUM (ch);
2060 case RECC_ALPHA: return ISALPHA (ch);
2061 case RECC_BLANK: return ISBLANK (ch);
2062 case RECC_CNTRL: return ISCNTRL (ch);
2063 case RECC_DIGIT: return ISDIGIT (ch);
2064 case RECC_GRAPH: return ISGRAPH (ch);
2065 case RECC_LOWER: return ISLOWER (ch);
2066 case RECC_PRINT: return ISPRINT (ch);
2067 case RECC_PUNCT: return ISPUNCT (ch);
2068 case RECC_SPACE: return ISSPACE (ch);
2069 case RECC_UPPER: return ISUPPER (ch);
2070 case RECC_XDIGIT: return ISXDIGIT (ch);
2071 case RECC_ASCII: return IS_REAL_ASCII (ch);
2072 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2073 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2074 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2075 case RECC_WORD: return ISWORD (ch);
2076 case RECC_ERROR: return false;
2077 default:
2078 abort();
2082 /* Return a bit-pattern to use in the range-table bits to match multibyte
2083 chars of class CC. */
2084 static int
2085 re_wctype_to_bit (cc)
2086 re_wctype_t cc;
2088 switch (cc)
2090 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2091 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2092 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2093 case RECC_LOWER: return BIT_LOWER;
2094 case RECC_UPPER: return BIT_UPPER;
2095 case RECC_PUNCT: return BIT_PUNCT;
2096 case RECC_SPACE: return BIT_SPACE;
2097 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2098 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2099 default:
2100 abort();
2103 #endif
2105 /* Filling in the work area of a range. */
2107 /* Actually extend the space in WORK_AREA. */
2109 static void
2110 extend_range_table_work_area (work_area)
2111 struct range_table_work_area *work_area;
2113 work_area->allocated += 16 * sizeof (int);
2114 if (work_area->table)
2115 work_area->table
2116 = (int *) realloc (work_area->table, work_area->allocated);
2117 else
2118 work_area->table
2119 = (int *) malloc (work_area->allocated);
2122 #ifdef emacs
2124 /* Carefully find the ranges of codes that are equivalent
2125 under case conversion to the range start..end when passed through
2126 TRANSLATE. Handle the case where non-letters can come in between
2127 two upper-case letters (which happens in Latin-1).
2128 Also handle the case of groups of more than 2 case-equivalent chars.
2130 The basic method is to look at consecutive characters and see
2131 if they can form a run that can be handled as one.
2133 Returns -1 if successful, REG_ESPACE if ran out of space. */
2135 static int
2136 set_image_of_range_1 (work_area, start, end, translate)
2137 RE_TRANSLATE_TYPE translate;
2138 struct range_table_work_area *work_area;
2139 re_wchar_t start, end;
2141 /* `one_case' indicates a character, or a run of characters,
2142 each of which is an isolate (no case-equivalents).
2143 This includes all ASCII non-letters.
2145 `two_case' indicates a character, or a run of characters,
2146 each of which has two case-equivalent forms.
2147 This includes all ASCII letters.
2149 `strange' indicates a character that has more than one
2150 case-equivalent. */
2152 enum case_type {one_case, two_case, strange};
2154 /* Describe the run that is in progress,
2155 which the next character can try to extend.
2156 If run_type is strange, that means there really is no run.
2157 If run_type is one_case, then run_start...run_end is the run.
2158 If run_type is two_case, then the run is run_start...run_end,
2159 and the case-equivalents end at run_eqv_end. */
2161 enum case_type run_type = strange;
2162 int run_start, run_end, run_eqv_end;
2164 Lisp_Object eqv_table;
2166 if (!RE_TRANSLATE_P (translate))
2168 EXTEND_RANGE_TABLE (work_area, 2);
2169 work_area->table[work_area->used++] = (start);
2170 work_area->table[work_area->used++] = (end);
2171 return -1;
2174 eqv_table = XCHAR_TABLE (translate)->extras[2];
2176 for (; start <= end; start++)
2178 enum case_type this_type;
2179 int eqv = RE_TRANSLATE (eqv_table, start);
2180 int minchar, maxchar;
2182 /* Classify this character */
2183 if (eqv == start)
2184 this_type = one_case;
2185 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2186 this_type = two_case;
2187 else
2188 this_type = strange;
2190 if (start < eqv)
2191 minchar = start, maxchar = eqv;
2192 else
2193 minchar = eqv, maxchar = start;
2195 /* Can this character extend the run in progress? */
2196 if (this_type == strange || this_type != run_type
2197 || !(minchar == run_end + 1
2198 && (run_type == two_case
2199 ? maxchar == run_eqv_end + 1 : 1)))
2201 /* No, end the run.
2202 Record each of its equivalent ranges. */
2203 if (run_type == one_case)
2205 EXTEND_RANGE_TABLE (work_area, 2);
2206 work_area->table[work_area->used++] = run_start;
2207 work_area->table[work_area->used++] = run_end;
2209 else if (run_type == two_case)
2211 EXTEND_RANGE_TABLE (work_area, 4);
2212 work_area->table[work_area->used++] = run_start;
2213 work_area->table[work_area->used++] = run_end;
2214 work_area->table[work_area->used++]
2215 = RE_TRANSLATE (eqv_table, run_start);
2216 work_area->table[work_area->used++]
2217 = RE_TRANSLATE (eqv_table, run_end);
2219 run_type = strange;
2222 if (this_type == strange)
2224 /* For a strange character, add each of its equivalents, one
2225 by one. Don't start a range. */
2228 EXTEND_RANGE_TABLE (work_area, 2);
2229 work_area->table[work_area->used++] = eqv;
2230 work_area->table[work_area->used++] = eqv;
2231 eqv = RE_TRANSLATE (eqv_table, eqv);
2233 while (eqv != start);
2236 /* Add this char to the run, or start a new run. */
2237 else if (run_type == strange)
2239 /* Initialize a new range. */
2240 run_type = this_type;
2241 run_start = start;
2242 run_end = start;
2243 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2245 else
2247 /* Extend a running range. */
2248 run_end = minchar;
2249 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2253 /* If a run is still in progress at the end, finish it now
2254 by recording its equivalent ranges. */
2255 if (run_type == one_case)
2257 EXTEND_RANGE_TABLE (work_area, 2);
2258 work_area->table[work_area->used++] = run_start;
2259 work_area->table[work_area->used++] = run_end;
2261 else if (run_type == two_case)
2263 EXTEND_RANGE_TABLE (work_area, 4);
2264 work_area->table[work_area->used++] = run_start;
2265 work_area->table[work_area->used++] = run_end;
2266 work_area->table[work_area->used++]
2267 = RE_TRANSLATE (eqv_table, run_start);
2268 work_area->table[work_area->used++]
2269 = RE_TRANSLATE (eqv_table, run_end);
2272 return -1;
2275 #endif /* emacs */
2277 /* Record the the image of the range start..end when passed through
2278 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2279 and is not even necessarily contiguous.
2280 Normally we approximate it with the smallest contiguous range that contains
2281 all the chars we need. However, for Latin-1 we go to extra effort
2282 to do a better job.
2284 This function is not called for ASCII ranges.
2286 Returns -1 if successful, REG_ESPACE if ran out of space. */
2288 static int
2289 set_image_of_range (work_area, start, end, translate)
2290 RE_TRANSLATE_TYPE translate;
2291 struct range_table_work_area *work_area;
2292 re_wchar_t start, end;
2294 re_wchar_t cmin, cmax;
2296 #ifdef emacs
2297 /* For Latin-1 ranges, use set_image_of_range_1
2298 to get proper handling of ranges that include letters and nonletters.
2299 For a range that includes the whole of Latin-1, this is not necessary.
2300 For other character sets, we don't bother to get this right. */
2301 if (RE_TRANSLATE_P (translate) && start < 04400
2302 && !(start < 04200 && end >= 04377))
2304 int newend;
2305 int tem;
2306 newend = end;
2307 if (newend > 04377)
2308 newend = 04377;
2309 tem = set_image_of_range_1 (work_area, start, newend, translate);
2310 if (tem > 0)
2311 return tem;
2313 start = 04400;
2314 if (end < 04400)
2315 return -1;
2317 #endif
2319 EXTEND_RANGE_TABLE (work_area, 2);
2320 work_area->table[work_area->used++] = (start);
2321 work_area->table[work_area->used++] = (end);
2323 cmin = -1, cmax = -1;
2325 if (RE_TRANSLATE_P (translate))
2327 int ch;
2329 for (ch = start; ch <= end; ch++)
2331 re_wchar_t c = TRANSLATE (ch);
2332 if (! (start <= c && c <= end))
2334 if (cmin == -1)
2335 cmin = c, cmax = c;
2336 else
2338 cmin = MIN (cmin, c);
2339 cmax = MAX (cmax, c);
2344 if (cmin != -1)
2346 EXTEND_RANGE_TABLE (work_area, 2);
2347 work_area->table[work_area->used++] = (cmin);
2348 work_area->table[work_area->used++] = (cmax);
2352 return -1;
2355 #ifndef MATCH_MAY_ALLOCATE
2357 /* If we cannot allocate large objects within re_match_2_internal,
2358 we make the fail stack and register vectors global.
2359 The fail stack, we grow to the maximum size when a regexp
2360 is compiled.
2361 The register vectors, we adjust in size each time we
2362 compile a regexp, according to the number of registers it needs. */
2364 static fail_stack_type fail_stack;
2366 /* Size with which the following vectors are currently allocated.
2367 That is so we can make them bigger as needed,
2368 but never make them smaller. */
2369 static int regs_allocated_size;
2371 static re_char ** regstart, ** regend;
2372 static re_char **best_regstart, **best_regend;
2374 /* Make the register vectors big enough for NUM_REGS registers,
2375 but don't make them smaller. */
2377 static
2378 regex_grow_registers (num_regs)
2379 int num_regs;
2381 if (num_regs > regs_allocated_size)
2383 RETALLOC_IF (regstart, num_regs, re_char *);
2384 RETALLOC_IF (regend, num_regs, re_char *);
2385 RETALLOC_IF (best_regstart, num_regs, re_char *);
2386 RETALLOC_IF (best_regend, num_regs, re_char *);
2388 regs_allocated_size = num_regs;
2392 #endif /* not MATCH_MAY_ALLOCATE */
2394 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2395 compile_stack,
2396 regnum_t regnum));
2398 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2399 Returns one of error codes defined in `regex.h', or zero for success.
2401 Assumes the `allocated' (and perhaps `buffer') and `translate'
2402 fields are set in BUFP on entry.
2404 If it succeeds, results are put in BUFP (if it returns an error, the
2405 contents of BUFP are undefined):
2406 `buffer' is the compiled pattern;
2407 `syntax' is set to SYNTAX;
2408 `used' is set to the length of the compiled pattern;
2409 `fastmap_accurate' is zero;
2410 `re_nsub' is the number of subexpressions in PATTERN;
2411 `not_bol' and `not_eol' are zero;
2413 The `fastmap' field is neither examined nor set. */
2415 /* Insert the `jump' from the end of last alternative to "here".
2416 The space for the jump has already been allocated. */
2417 #define FIXUP_ALT_JUMP() \
2418 do { \
2419 if (fixup_alt_jump) \
2420 STORE_JUMP (jump, fixup_alt_jump, b); \
2421 } while (0)
2424 /* Return, freeing storage we allocated. */
2425 #define FREE_STACK_RETURN(value) \
2426 do { \
2427 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2428 free (compile_stack.stack); \
2429 return value; \
2430 } while (0)
2432 static reg_errcode_t
2433 regex_compile (pattern, size, syntax, bufp)
2434 re_char *pattern;
2435 size_t size;
2436 reg_syntax_t syntax;
2437 struct re_pattern_buffer *bufp;
2439 /* We fetch characters from PATTERN here. */
2440 register re_wchar_t c, c1;
2442 /* A random temporary spot in PATTERN. */
2443 re_char *p1;
2445 /* Points to the end of the buffer, where we should append. */
2446 register unsigned char *b;
2448 /* Keeps track of unclosed groups. */
2449 compile_stack_type compile_stack;
2451 /* Points to the current (ending) position in the pattern. */
2452 #ifdef AIX
2453 /* `const' makes AIX compiler fail. */
2454 unsigned char *p = pattern;
2455 #else
2456 re_char *p = pattern;
2457 #endif
2458 re_char *pend = pattern + size;
2460 /* How to translate the characters in the pattern. */
2461 RE_TRANSLATE_TYPE translate = bufp->translate;
2463 /* Address of the count-byte of the most recently inserted `exactn'
2464 command. This makes it possible to tell if a new exact-match
2465 character can be added to that command or if the character requires
2466 a new `exactn' command. */
2467 unsigned char *pending_exact = 0;
2469 /* Address of start of the most recently finished expression.
2470 This tells, e.g., postfix * where to find the start of its
2471 operand. Reset at the beginning of groups and alternatives. */
2472 unsigned char *laststart = 0;
2474 /* Address of beginning of regexp, or inside of last group. */
2475 unsigned char *begalt;
2477 /* Place in the uncompiled pattern (i.e., the {) to
2478 which to go back if the interval is invalid. */
2479 re_char *beg_interval;
2481 /* Address of the place where a forward jump should go to the end of
2482 the containing expression. Each alternative of an `or' -- except the
2483 last -- ends with a forward jump of this sort. */
2484 unsigned char *fixup_alt_jump = 0;
2486 /* Work area for range table of charset. */
2487 struct range_table_work_area range_table_work;
2489 /* If the object matched can contain multibyte characters. */
2490 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2492 /* Nonzero if we have pushed down into a subpattern. */
2493 int in_subpattern = 0;
2495 /* These hold the values of p, pattern, and pend from the main
2496 pattern when we have pushed into a subpattern. */
2497 re_char *main_p;
2498 re_char *main_pattern;
2499 re_char *main_pend;
2501 #ifdef DEBUG
2502 debug++;
2503 DEBUG_PRINT1 ("\nCompiling pattern: ");
2504 if (debug > 0)
2506 unsigned debug_count;
2508 for (debug_count = 0; debug_count < size; debug_count++)
2509 putchar (pattern[debug_count]);
2510 putchar ('\n');
2512 #endif /* DEBUG */
2514 /* Initialize the compile stack. */
2515 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2516 if (compile_stack.stack == NULL)
2517 return REG_ESPACE;
2519 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2520 compile_stack.avail = 0;
2522 range_table_work.table = 0;
2523 range_table_work.allocated = 0;
2525 /* Initialize the pattern buffer. */
2526 bufp->syntax = syntax;
2527 bufp->fastmap_accurate = 0;
2528 bufp->not_bol = bufp->not_eol = 0;
2529 bufp->used_syntax = 0;
2531 /* Set `used' to zero, so that if we return an error, the pattern
2532 printer (for debugging) will think there's no pattern. We reset it
2533 at the end. */
2534 bufp->used = 0;
2536 /* Always count groups, whether or not bufp->no_sub is set. */
2537 bufp->re_nsub = 0;
2539 #if !defined emacs && !defined SYNTAX_TABLE
2540 /* Initialize the syntax table. */
2541 init_syntax_once ();
2542 #endif
2544 if (bufp->allocated == 0)
2546 if (bufp->buffer)
2547 { /* If zero allocated, but buffer is non-null, try to realloc
2548 enough space. This loses if buffer's address is bogus, but
2549 that is the user's responsibility. */
2550 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2552 else
2553 { /* Caller did not allocate a buffer. Do it for them. */
2554 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2556 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2558 bufp->allocated = INIT_BUF_SIZE;
2561 begalt = b = bufp->buffer;
2563 /* Loop through the uncompiled pattern until we're at the end. */
2564 while (1)
2566 if (p == pend)
2568 /* If this is the end of an included regexp,
2569 pop back to the main regexp and try again. */
2570 if (in_subpattern)
2572 in_subpattern = 0;
2573 pattern = main_pattern;
2574 p = main_p;
2575 pend = main_pend;
2576 continue;
2578 /* If this is the end of the main regexp, we are done. */
2579 break;
2582 PATFETCH (c);
2584 switch (c)
2586 case ' ':
2588 re_char *p1 = p;
2590 /* If there's no special whitespace regexp, treat
2591 spaces normally. And don't try to do this recursively. */
2592 if (!whitespace_regexp || in_subpattern)
2593 goto normal_char;
2595 /* Peek past following spaces. */
2596 while (p1 != pend)
2598 if (*p1 != ' ')
2599 break;
2600 p1++;
2602 /* If the spaces are followed by a repetition op,
2603 treat them normally. */
2604 if (p1 != pend
2605 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2606 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2607 goto normal_char;
2609 /* Replace the spaces with the whitespace regexp. */
2610 in_subpattern = 1;
2611 main_p = p1;
2612 main_pend = pend;
2613 main_pattern = pattern;
2614 p = pattern = whitespace_regexp;
2615 pend = p + strlen (p);
2616 break;
2619 case '^':
2621 if ( /* If at start of pattern, it's an operator. */
2622 p == pattern + 1
2623 /* If context independent, it's an operator. */
2624 || syntax & RE_CONTEXT_INDEP_ANCHORS
2625 /* Otherwise, depends on what's come before. */
2626 || at_begline_loc_p (pattern, p, syntax))
2627 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2628 else
2629 goto normal_char;
2631 break;
2634 case '$':
2636 if ( /* If at end of pattern, it's an operator. */
2637 p == pend
2638 /* If context independent, it's an operator. */
2639 || syntax & RE_CONTEXT_INDEP_ANCHORS
2640 /* Otherwise, depends on what's next. */
2641 || at_endline_loc_p (p, pend, syntax))
2642 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2643 else
2644 goto normal_char;
2646 break;
2649 case '+':
2650 case '?':
2651 if ((syntax & RE_BK_PLUS_QM)
2652 || (syntax & RE_LIMITED_OPS))
2653 goto normal_char;
2654 handle_plus:
2655 case '*':
2656 /* If there is no previous pattern... */
2657 if (!laststart)
2659 if (syntax & RE_CONTEXT_INVALID_OPS)
2660 FREE_STACK_RETURN (REG_BADRPT);
2661 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2662 goto normal_char;
2666 /* 1 means zero (many) matches is allowed. */
2667 boolean zero_times_ok = 0, many_times_ok = 0;
2668 boolean greedy = 1;
2670 /* If there is a sequence of repetition chars, collapse it
2671 down to just one (the right one). We can't combine
2672 interval operators with these because of, e.g., `a{2}*',
2673 which should only match an even number of `a's. */
2675 for (;;)
2677 if ((syntax & RE_FRUGAL)
2678 && c == '?' && (zero_times_ok || many_times_ok))
2679 greedy = 0;
2680 else
2682 zero_times_ok |= c != '+';
2683 many_times_ok |= c != '?';
2686 if (p == pend)
2687 break;
2688 else if (*p == '*'
2689 || (!(syntax & RE_BK_PLUS_QM)
2690 && (*p == '+' || *p == '?')))
2692 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2694 if (p+1 == pend)
2695 FREE_STACK_RETURN (REG_EESCAPE);
2696 if (p[1] == '+' || p[1] == '?')
2697 PATFETCH (c); /* Gobble up the backslash. */
2698 else
2699 break;
2701 else
2702 break;
2703 /* If we get here, we found another repeat character. */
2704 PATFETCH (c);
2707 /* Star, etc. applied to an empty pattern is equivalent
2708 to an empty pattern. */
2709 if (!laststart || laststart == b)
2710 break;
2712 /* Now we know whether or not zero matches is allowed
2713 and also whether or not two or more matches is allowed. */
2714 if (greedy)
2716 if (many_times_ok)
2718 boolean simple = skip_one_char (laststart) == b;
2719 unsigned int startoffset = 0;
2720 re_opcode_t ofj =
2721 /* Check if the loop can match the empty string. */
2722 (simple || !analyse_first (laststart, b, NULL, 0))
2723 ? on_failure_jump : on_failure_jump_loop;
2724 assert (skip_one_char (laststart) <= b);
2726 if (!zero_times_ok && simple)
2727 { /* Since simple * loops can be made faster by using
2728 on_failure_keep_string_jump, we turn simple P+
2729 into PP* if P is simple. */
2730 unsigned char *p1, *p2;
2731 startoffset = b - laststart;
2732 GET_BUFFER_SPACE (startoffset);
2733 p1 = b; p2 = laststart;
2734 while (p2 < p1)
2735 *b++ = *p2++;
2736 zero_times_ok = 1;
2739 GET_BUFFER_SPACE (6);
2740 if (!zero_times_ok)
2741 /* A + loop. */
2742 STORE_JUMP (ofj, b, b + 6);
2743 else
2744 /* Simple * loops can use on_failure_keep_string_jump
2745 depending on what follows. But since we don't know
2746 that yet, we leave the decision up to
2747 on_failure_jump_smart. */
2748 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2749 laststart + startoffset, b + 6);
2750 b += 3;
2751 STORE_JUMP (jump, b, laststart + startoffset);
2752 b += 3;
2754 else
2756 /* A simple ? pattern. */
2757 assert (zero_times_ok);
2758 GET_BUFFER_SPACE (3);
2759 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2760 b += 3;
2763 else /* not greedy */
2764 { /* I wish the greedy and non-greedy cases could be merged. */
2766 GET_BUFFER_SPACE (7); /* We might use less. */
2767 if (many_times_ok)
2769 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2771 /* The non-greedy multiple match looks like
2772 a repeat..until: we only need a conditional jump
2773 at the end of the loop. */
2774 if (emptyp) BUF_PUSH (no_op);
2775 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2776 : on_failure_jump, b, laststart);
2777 b += 3;
2778 if (zero_times_ok)
2780 /* The repeat...until naturally matches one or more.
2781 To also match zero times, we need to first jump to
2782 the end of the loop (its conditional jump). */
2783 INSERT_JUMP (jump, laststart, b);
2784 b += 3;
2787 else
2789 /* non-greedy a?? */
2790 INSERT_JUMP (jump, laststart, b + 3);
2791 b += 3;
2792 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2793 b += 3;
2797 pending_exact = 0;
2798 break;
2801 case '.':
2802 laststart = b;
2803 BUF_PUSH (anychar);
2804 break;
2807 case '[':
2809 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2811 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2813 /* Ensure that we have enough space to push a charset: the
2814 opcode, the length count, and the bitset; 34 bytes in all. */
2815 GET_BUFFER_SPACE (34);
2817 laststart = b;
2819 /* We test `*p == '^' twice, instead of using an if
2820 statement, so we only need one BUF_PUSH. */
2821 BUF_PUSH (*p == '^' ? charset_not : charset);
2822 if (*p == '^')
2823 p++;
2825 /* Remember the first position in the bracket expression. */
2826 p1 = p;
2828 /* Push the number of bytes in the bitmap. */
2829 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2831 /* Clear the whole map. */
2832 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2834 /* charset_not matches newline according to a syntax bit. */
2835 if ((re_opcode_t) b[-2] == charset_not
2836 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2837 SET_LIST_BIT ('\n');
2839 /* Read in characters and ranges, setting map bits. */
2840 for (;;)
2842 boolean escaped_char = false;
2843 const unsigned char *p2 = p;
2845 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2847 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2848 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2849 So the translation is done later in a loop. Example:
2850 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2851 PATFETCH (c);
2853 /* \ might escape characters inside [...] and [^...]. */
2854 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2856 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2858 PATFETCH (c);
2859 escaped_char = true;
2861 else
2863 /* Could be the end of the bracket expression. If it's
2864 not (i.e., when the bracket expression is `[]' so
2865 far), the ']' character bit gets set way below. */
2866 if (c == ']' && p2 != p1)
2867 break;
2870 /* What should we do for the character which is
2871 greater than 0x7F, but not BASE_LEADING_CODE_P?
2872 XXX */
2874 /* See if we're at the beginning of a possible character
2875 class. */
2877 if (!escaped_char &&
2878 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2880 /* Leave room for the null. */
2881 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2882 const unsigned char *class_beg;
2884 PATFETCH (c);
2885 c1 = 0;
2886 class_beg = p;
2888 /* If pattern is `[[:'. */
2889 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2891 for (;;)
2893 PATFETCH (c);
2894 if ((c == ':' && *p == ']') || p == pend)
2895 break;
2896 if (c1 < CHAR_CLASS_MAX_LENGTH)
2897 str[c1++] = c;
2898 else
2899 /* This is in any case an invalid class name. */
2900 str[0] = '\0';
2902 str[c1] = '\0';
2904 /* If isn't a word bracketed by `[:' and `:]':
2905 undo the ending character, the letters, and
2906 leave the leading `:' and `[' (but set bits for
2907 them). */
2908 if (c == ':' && *p == ']')
2910 re_wchar_t ch;
2911 re_wctype_t cc;
2913 cc = re_wctype (str);
2915 if (cc == 0)
2916 FREE_STACK_RETURN (REG_ECTYPE);
2918 /* Throw away the ] at the end of the character
2919 class. */
2920 PATFETCH (c);
2922 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2924 /* Most character classes in a multibyte match
2925 just set a flag. Exceptions are is_blank,
2926 is_digit, is_cntrl, and is_xdigit, since
2927 they can only match ASCII characters. We
2928 don't need to handle them for multibyte.
2929 They are distinguished by a negative wctype. */
2931 if (multibyte)
2932 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2933 re_wctype_to_bit (cc));
2935 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2937 int translated = TRANSLATE (ch);
2938 if (translated < (1 << BYTEWIDTH)
2939 && re_iswctype (btowc (ch), cc))
2940 SET_LIST_BIT (translated);
2943 /* In most cases the matching rule for char classes
2944 only uses the syntax table for multibyte chars,
2945 so that the content of the syntax-table it is not
2946 hardcoded in the range_table. SPACE and WORD are
2947 the two exceptions. */
2948 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2949 bufp->used_syntax = 1;
2951 /* Repeat the loop. */
2952 continue;
2954 else
2956 /* Go back to right after the "[:". */
2957 p = class_beg;
2958 SET_LIST_BIT ('[');
2960 /* Because the `:' may starts the range, we
2961 can't simply set bit and repeat the loop.
2962 Instead, just set it to C and handle below. */
2963 c = ':';
2967 if (p < pend && p[0] == '-' && p[1] != ']')
2970 /* Discard the `-'. */
2971 PATFETCH (c1);
2973 /* Fetch the character which ends the range. */
2974 PATFETCH (c1);
2976 if (SINGLE_BYTE_CHAR_P (c))
2978 if (! SINGLE_BYTE_CHAR_P (c1))
2980 /* Handle a range starting with a
2981 character of less than 256, and ending
2982 with a character of not less than 256.
2983 Split that into two ranges, the low one
2984 ending at 0377, and the high one
2985 starting at the smallest character in
2986 the charset of C1 and ending at C1. */
2987 int charset = CHAR_CHARSET (c1);
2988 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2990 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2991 c2, c1);
2992 c1 = 0377;
2995 else if (!SAME_CHARSET_P (c, c1))
2996 FREE_STACK_RETURN (REG_ERANGEX);
2998 else
2999 /* Range from C to C. */
3000 c1 = c;
3002 /* Set the range ... */
3003 if (SINGLE_BYTE_CHAR_P (c))
3004 /* ... into bitmap. */
3006 re_wchar_t this_char;
3007 re_wchar_t range_start = c, range_end = c1;
3009 /* If the start is after the end, the range is empty. */
3010 if (range_start > range_end)
3012 if (syntax & RE_NO_EMPTY_RANGES)
3013 FREE_STACK_RETURN (REG_ERANGE);
3014 /* Else, repeat the loop. */
3016 else
3018 for (this_char = range_start; this_char <= range_end;
3019 this_char++)
3021 int translated = TRANSLATE (this_char);
3022 if (translated < (1 << BYTEWIDTH))
3023 SET_LIST_BIT (translated);
3024 else
3025 SET_RANGE_TABLE_WORK_AREA
3026 (range_table_work, translated, translated);
3030 else
3031 /* ... into range table. */
3032 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
3035 /* Discard any (non)matching list bytes that are all 0 at the
3036 end of the map. Decrease the map-length byte too. */
3037 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3038 b[-1]--;
3039 b += b[-1];
3041 /* Build real range table from work area. */
3042 if (RANGE_TABLE_WORK_USED (range_table_work)
3043 || RANGE_TABLE_WORK_BITS (range_table_work))
3045 int i;
3046 int used = RANGE_TABLE_WORK_USED (range_table_work);
3048 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3049 bytes for flags, two for COUNT, and three bytes for
3050 each character. */
3051 GET_BUFFER_SPACE (4 + used * 3);
3053 /* Indicate the existence of range table. */
3054 laststart[1] |= 0x80;
3056 /* Store the character class flag bits into the range table.
3057 If not in emacs, these flag bits are always 0. */
3058 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3059 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3061 STORE_NUMBER_AND_INCR (b, used / 2);
3062 for (i = 0; i < used; i++)
3063 STORE_CHARACTER_AND_INCR
3064 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3067 break;
3070 case '(':
3071 if (syntax & RE_NO_BK_PARENS)
3072 goto handle_open;
3073 else
3074 goto normal_char;
3077 case ')':
3078 if (syntax & RE_NO_BK_PARENS)
3079 goto handle_close;
3080 else
3081 goto normal_char;
3084 case '\n':
3085 if (syntax & RE_NEWLINE_ALT)
3086 goto handle_alt;
3087 else
3088 goto normal_char;
3091 case '|':
3092 if (syntax & RE_NO_BK_VBAR)
3093 goto handle_alt;
3094 else
3095 goto normal_char;
3098 case '{':
3099 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3100 goto handle_interval;
3101 else
3102 goto normal_char;
3105 case '\\':
3106 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3108 /* Do not translate the character after the \, so that we can
3109 distinguish, e.g., \B from \b, even if we normally would
3110 translate, e.g., B to b. */
3111 PATFETCH (c);
3113 switch (c)
3115 case '(':
3116 if (syntax & RE_NO_BK_PARENS)
3117 goto normal_backslash;
3119 handle_open:
3121 int shy = 0;
3122 regnum_t regnum = 0;
3123 if (p+1 < pend)
3125 /* Look for a special (?...) construct */
3126 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3128 PATFETCH (c); /* Gobble up the '?'. */
3129 while (!shy)
3131 PATFETCH (c);
3132 switch (c)
3134 case ':': shy = 1; break;
3135 case '0':
3136 /* An explicitly specified regnum must start
3137 with non-0. */
3138 if (regnum == 0)
3139 FREE_STACK_RETURN (REG_BADPAT);
3140 case '1': case '2': case '3': case '4':
3141 case '5': case '6': case '7': case '8': case '9':
3142 regnum = 10*regnum + (c - '0'); break;
3143 default:
3144 /* Only (?:...) is supported right now. */
3145 FREE_STACK_RETURN (REG_BADPAT);
3151 if (!shy)
3152 regnum = ++bufp->re_nsub;
3153 else if (regnum)
3154 { /* It's actually not shy, but explicitly numbered. */
3155 shy = 0;
3156 if (regnum > bufp->re_nsub)
3157 bufp->re_nsub = regnum;
3158 else if (regnum > bufp->re_nsub
3159 /* Ideally, we'd want to check that the specified
3160 group can't have matched (i.e. all subgroups
3161 using the same regnum are in other branches of
3162 OR patterns), but we don't currently keep track
3163 of enough info to do that easily. */
3164 || group_in_compile_stack (compile_stack, regnum))
3165 FREE_STACK_RETURN (REG_BADPAT);
3167 else
3168 /* It's really shy. */
3169 regnum = - bufp->re_nsub;
3171 if (COMPILE_STACK_FULL)
3173 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3174 compile_stack_elt_t);
3175 if (compile_stack.stack == NULL) return REG_ESPACE;
3177 compile_stack.size <<= 1;
3180 /* These are the values to restore when we hit end of this
3181 group. They are all relative offsets, so that if the
3182 whole pattern moves because of realloc, they will still
3183 be valid. */
3184 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3185 COMPILE_STACK_TOP.fixup_alt_jump
3186 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3187 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3188 COMPILE_STACK_TOP.regnum = regnum;
3190 /* Do not push a start_memory for groups beyond the last one
3191 we can represent in the compiled pattern. */
3192 if (regnum <= MAX_REGNUM && regnum > 0)
3193 BUF_PUSH_2 (start_memory, regnum);
3195 compile_stack.avail++;
3197 fixup_alt_jump = 0;
3198 laststart = 0;
3199 begalt = b;
3200 /* If we've reached MAX_REGNUM groups, then this open
3201 won't actually generate any code, so we'll have to
3202 clear pending_exact explicitly. */
3203 pending_exact = 0;
3204 break;
3207 case ')':
3208 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3210 if (COMPILE_STACK_EMPTY)
3212 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3213 goto normal_backslash;
3214 else
3215 FREE_STACK_RETURN (REG_ERPAREN);
3218 handle_close:
3219 FIXUP_ALT_JUMP ();
3221 /* See similar code for backslashed left paren above. */
3222 if (COMPILE_STACK_EMPTY)
3224 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3225 goto normal_char;
3226 else
3227 FREE_STACK_RETURN (REG_ERPAREN);
3230 /* Since we just checked for an empty stack above, this
3231 ``can't happen''. */
3232 assert (compile_stack.avail != 0);
3234 /* We don't just want to restore into `regnum', because
3235 later groups should continue to be numbered higher,
3236 as in `(ab)c(de)' -- the second group is #2. */
3237 regnum_t regnum;
3239 compile_stack.avail--;
3240 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3241 fixup_alt_jump
3242 = COMPILE_STACK_TOP.fixup_alt_jump
3243 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3244 : 0;
3245 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3246 regnum = COMPILE_STACK_TOP.regnum;
3247 /* If we've reached MAX_REGNUM groups, then this open
3248 won't actually generate any code, so we'll have to
3249 clear pending_exact explicitly. */
3250 pending_exact = 0;
3252 /* We're at the end of the group, so now we know how many
3253 groups were inside this one. */
3254 if (regnum <= MAX_REGNUM && regnum > 0)
3255 BUF_PUSH_2 (stop_memory, regnum);
3257 break;
3260 case '|': /* `\|'. */
3261 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3262 goto normal_backslash;
3263 handle_alt:
3264 if (syntax & RE_LIMITED_OPS)
3265 goto normal_char;
3267 /* Insert before the previous alternative a jump which
3268 jumps to this alternative if the former fails. */
3269 GET_BUFFER_SPACE (3);
3270 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3271 pending_exact = 0;
3272 b += 3;
3274 /* The alternative before this one has a jump after it
3275 which gets executed if it gets matched. Adjust that
3276 jump so it will jump to this alternative's analogous
3277 jump (put in below, which in turn will jump to the next
3278 (if any) alternative's such jump, etc.). The last such
3279 jump jumps to the correct final destination. A picture:
3280 _____ _____
3281 | | | |
3282 | v | v
3283 a | b | c
3285 If we are at `b', then fixup_alt_jump right now points to a
3286 three-byte space after `a'. We'll put in the jump, set
3287 fixup_alt_jump to right after `b', and leave behind three
3288 bytes which we'll fill in when we get to after `c'. */
3290 FIXUP_ALT_JUMP ();
3292 /* Mark and leave space for a jump after this alternative,
3293 to be filled in later either by next alternative or
3294 when know we're at the end of a series of alternatives. */
3295 fixup_alt_jump = b;
3296 GET_BUFFER_SPACE (3);
3297 b += 3;
3299 laststart = 0;
3300 begalt = b;
3301 break;
3304 case '{':
3305 /* If \{ is a literal. */
3306 if (!(syntax & RE_INTERVALS)
3307 /* If we're at `\{' and it's not the open-interval
3308 operator. */
3309 || (syntax & RE_NO_BK_BRACES))
3310 goto normal_backslash;
3312 handle_interval:
3314 /* If got here, then the syntax allows intervals. */
3316 /* At least (most) this many matches must be made. */
3317 int lower_bound = 0, upper_bound = -1;
3319 beg_interval = p;
3321 GET_UNSIGNED_NUMBER (lower_bound);
3323 if (c == ',')
3324 GET_UNSIGNED_NUMBER (upper_bound);
3325 else
3326 /* Interval such as `{1}' => match exactly once. */
3327 upper_bound = lower_bound;
3329 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3330 || (upper_bound >= 0 && lower_bound > upper_bound))
3331 FREE_STACK_RETURN (REG_BADBR);
3333 if (!(syntax & RE_NO_BK_BRACES))
3335 if (c != '\\')
3336 FREE_STACK_RETURN (REG_BADBR);
3337 if (p == pend)
3338 FREE_STACK_RETURN (REG_EESCAPE);
3339 PATFETCH (c);
3342 if (c != '}')
3343 FREE_STACK_RETURN (REG_BADBR);
3345 /* We just parsed a valid interval. */
3347 /* If it's invalid to have no preceding re. */
3348 if (!laststart)
3350 if (syntax & RE_CONTEXT_INVALID_OPS)
3351 FREE_STACK_RETURN (REG_BADRPT);
3352 else if (syntax & RE_CONTEXT_INDEP_OPS)
3353 laststart = b;
3354 else
3355 goto unfetch_interval;
3358 if (upper_bound == 0)
3359 /* If the upper bound is zero, just drop the sub pattern
3360 altogether. */
3361 b = laststart;
3362 else if (lower_bound == 1 && upper_bound == 1)
3363 /* Just match it once: nothing to do here. */
3366 /* Otherwise, we have a nontrivial interval. When
3367 we're all done, the pattern will look like:
3368 set_number_at <jump count> <upper bound>
3369 set_number_at <succeed_n count> <lower bound>
3370 succeed_n <after jump addr> <succeed_n count>
3371 <body of loop>
3372 jump_n <succeed_n addr> <jump count>
3373 (The upper bound and `jump_n' are omitted if
3374 `upper_bound' is 1, though.) */
3375 else
3376 { /* If the upper bound is > 1, we need to insert
3377 more at the end of the loop. */
3378 unsigned int nbytes = (upper_bound < 0 ? 3
3379 : upper_bound > 1 ? 5 : 0);
3380 unsigned int startoffset = 0;
3382 GET_BUFFER_SPACE (20); /* We might use less. */
3384 if (lower_bound == 0)
3386 /* A succeed_n that starts with 0 is really a
3387 a simple on_failure_jump_loop. */
3388 INSERT_JUMP (on_failure_jump_loop, laststart,
3389 b + 3 + nbytes);
3390 b += 3;
3392 else
3394 /* Initialize lower bound of the `succeed_n', even
3395 though it will be set during matching by its
3396 attendant `set_number_at' (inserted next),
3397 because `re_compile_fastmap' needs to know.
3398 Jump to the `jump_n' we might insert below. */
3399 INSERT_JUMP2 (succeed_n, laststart,
3400 b + 5 + nbytes,
3401 lower_bound);
3402 b += 5;
3404 /* Code to initialize the lower bound. Insert
3405 before the `succeed_n'. The `5' is the last two
3406 bytes of this `set_number_at', plus 3 bytes of
3407 the following `succeed_n'. */
3408 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3409 b += 5;
3410 startoffset += 5;
3413 if (upper_bound < 0)
3415 /* A negative upper bound stands for infinity,
3416 in which case it degenerates to a plain jump. */
3417 STORE_JUMP (jump, b, laststart + startoffset);
3418 b += 3;
3420 else if (upper_bound > 1)
3421 { /* More than one repetition is allowed, so
3422 append a backward jump to the `succeed_n'
3423 that starts this interval.
3425 When we've reached this during matching,
3426 we'll have matched the interval once, so
3427 jump back only `upper_bound - 1' times. */
3428 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3429 upper_bound - 1);
3430 b += 5;
3432 /* The location we want to set is the second
3433 parameter of the `jump_n'; that is `b-2' as
3434 an absolute address. `laststart' will be
3435 the `set_number_at' we're about to insert;
3436 `laststart+3' the number to set, the source
3437 for the relative address. But we are
3438 inserting into the middle of the pattern --
3439 so everything is getting moved up by 5.
3440 Conclusion: (b - 2) - (laststart + 3) + 5,
3441 i.e., b - laststart.
3443 We insert this at the beginning of the loop
3444 so that if we fail during matching, we'll
3445 reinitialize the bounds. */
3446 insert_op2 (set_number_at, laststart, b - laststart,
3447 upper_bound - 1, b);
3448 b += 5;
3451 pending_exact = 0;
3452 beg_interval = NULL;
3454 break;
3456 unfetch_interval:
3457 /* If an invalid interval, match the characters as literals. */
3458 assert (beg_interval);
3459 p = beg_interval;
3460 beg_interval = NULL;
3462 /* normal_char and normal_backslash need `c'. */
3463 c = '{';
3465 if (!(syntax & RE_NO_BK_BRACES))
3467 assert (p > pattern && p[-1] == '\\');
3468 goto normal_backslash;
3470 else
3471 goto normal_char;
3473 #ifdef emacs
3474 /* There is no way to specify the before_dot and after_dot
3475 operators. rms says this is ok. --karl */
3476 case '=':
3477 BUF_PUSH (at_dot);
3478 break;
3480 case 's':
3481 laststart = b;
3482 PATFETCH (c);
3483 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3484 break;
3486 case 'S':
3487 laststart = b;
3488 PATFETCH (c);
3489 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3490 break;
3492 case 'c':
3493 laststart = b;
3494 PATFETCH (c);
3495 BUF_PUSH_2 (categoryspec, c);
3496 break;
3498 case 'C':
3499 laststart = b;
3500 PATFETCH (c);
3501 BUF_PUSH_2 (notcategoryspec, c);
3502 break;
3503 #endif /* emacs */
3506 case 'w':
3507 if (syntax & RE_NO_GNU_OPS)
3508 goto normal_char;
3509 laststart = b;
3510 BUF_PUSH_2 (syntaxspec, Sword);
3511 break;
3514 case 'W':
3515 if (syntax & RE_NO_GNU_OPS)
3516 goto normal_char;
3517 laststart = b;
3518 BUF_PUSH_2 (notsyntaxspec, Sword);
3519 break;
3522 case '<':
3523 if (syntax & RE_NO_GNU_OPS)
3524 goto normal_char;
3525 BUF_PUSH (wordbeg);
3526 break;
3528 case '>':
3529 if (syntax & RE_NO_GNU_OPS)
3530 goto normal_char;
3531 BUF_PUSH (wordend);
3532 break;
3534 case '_':
3535 if (syntax & RE_NO_GNU_OPS)
3536 goto normal_char;
3537 laststart = b;
3538 PATFETCH (c);
3539 if (c == '<')
3540 BUF_PUSH (symbeg);
3541 else if (c == '>')
3542 BUF_PUSH (symend);
3543 else
3544 FREE_STACK_RETURN (REG_BADPAT);
3545 break;
3547 case 'b':
3548 if (syntax & RE_NO_GNU_OPS)
3549 goto normal_char;
3550 BUF_PUSH (wordbound);
3551 break;
3553 case 'B':
3554 if (syntax & RE_NO_GNU_OPS)
3555 goto normal_char;
3556 BUF_PUSH (notwordbound);
3557 break;
3559 case '`':
3560 if (syntax & RE_NO_GNU_OPS)
3561 goto normal_char;
3562 BUF_PUSH (begbuf);
3563 break;
3565 case '\'':
3566 if (syntax & RE_NO_GNU_OPS)
3567 goto normal_char;
3568 BUF_PUSH (endbuf);
3569 break;
3571 case '1': case '2': case '3': case '4': case '5':
3572 case '6': case '7': case '8': case '9':
3574 regnum_t reg;
3576 if (syntax & RE_NO_BK_REFS)
3577 goto normal_backslash;
3579 reg = c - '0';
3581 if (reg > bufp->re_nsub || reg < 1
3582 /* Can't back reference to a subexp before its end. */
3583 || group_in_compile_stack (compile_stack, reg))
3584 FREE_STACK_RETURN (REG_ESUBREG);
3586 laststart = b;
3587 BUF_PUSH_2 (duplicate, reg);
3589 break;
3592 case '+':
3593 case '?':
3594 if (syntax & RE_BK_PLUS_QM)
3595 goto handle_plus;
3596 else
3597 goto normal_backslash;
3599 default:
3600 normal_backslash:
3601 /* You might think it would be useful for \ to mean
3602 not to translate; but if we don't translate it
3603 it will never match anything. */
3604 goto normal_char;
3606 break;
3609 default:
3610 /* Expects the character in `c'. */
3611 normal_char:
3612 /* If no exactn currently being built. */
3613 if (!pending_exact
3615 /* If last exactn not at current position. */
3616 || pending_exact + *pending_exact + 1 != b
3618 /* We have only one byte following the exactn for the count. */
3619 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3621 /* If followed by a repetition operator. */
3622 || (p != pend && (*p == '*' || *p == '^'))
3623 || ((syntax & RE_BK_PLUS_QM)
3624 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3625 : p != pend && (*p == '+' || *p == '?'))
3626 || ((syntax & RE_INTERVALS)
3627 && ((syntax & RE_NO_BK_BRACES)
3628 ? p != pend && *p == '{'
3629 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3631 /* Start building a new exactn. */
3633 laststart = b;
3635 BUF_PUSH_2 (exactn, 0);
3636 pending_exact = b - 1;
3639 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3641 int len;
3643 c = TRANSLATE (c);
3644 if (multibyte)
3645 len = CHAR_STRING (c, b);
3646 else
3647 *b = c, len = 1;
3648 b += len;
3649 (*pending_exact) += len;
3652 break;
3653 } /* switch (c) */
3654 } /* while p != pend */
3657 /* Through the pattern now. */
3659 FIXUP_ALT_JUMP ();
3661 if (!COMPILE_STACK_EMPTY)
3662 FREE_STACK_RETURN (REG_EPAREN);
3664 /* If we don't want backtracking, force success
3665 the first time we reach the end of the compiled pattern. */
3666 if (syntax & RE_NO_POSIX_BACKTRACKING)
3667 BUF_PUSH (succeed);
3669 /* We have succeeded; set the length of the buffer. */
3670 bufp->used = b - bufp->buffer;
3672 #ifdef DEBUG
3673 if (debug > 0)
3675 re_compile_fastmap (bufp);
3676 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3677 print_compiled_pattern (bufp);
3679 debug--;
3680 #endif /* DEBUG */
3682 #ifndef MATCH_MAY_ALLOCATE
3683 /* Initialize the failure stack to the largest possible stack. This
3684 isn't necessary unless we're trying to avoid calling alloca in
3685 the search and match routines. */
3687 int num_regs = bufp->re_nsub + 1;
3689 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3691 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3693 if (! fail_stack.stack)
3694 fail_stack.stack
3695 = (fail_stack_elt_t *) malloc (fail_stack.size
3696 * sizeof (fail_stack_elt_t));
3697 else
3698 fail_stack.stack
3699 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3700 (fail_stack.size
3701 * sizeof (fail_stack_elt_t)));
3704 regex_grow_registers (num_regs);
3706 #endif /* not MATCH_MAY_ALLOCATE */
3708 FREE_STACK_RETURN (REG_NOERROR);
3709 } /* regex_compile */
3711 /* Subroutines for `regex_compile'. */
3713 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3715 static void
3716 store_op1 (op, loc, arg)
3717 re_opcode_t op;
3718 unsigned char *loc;
3719 int arg;
3721 *loc = (unsigned char) op;
3722 STORE_NUMBER (loc + 1, arg);
3726 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3728 static void
3729 store_op2 (op, loc, arg1, arg2)
3730 re_opcode_t op;
3731 unsigned char *loc;
3732 int arg1, arg2;
3734 *loc = (unsigned char) op;
3735 STORE_NUMBER (loc + 1, arg1);
3736 STORE_NUMBER (loc + 3, arg2);
3740 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3741 for OP followed by two-byte integer parameter ARG. */
3743 static void
3744 insert_op1 (op, loc, arg, end)
3745 re_opcode_t op;
3746 unsigned char *loc;
3747 int arg;
3748 unsigned char *end;
3750 register unsigned char *pfrom = end;
3751 register unsigned char *pto = end + 3;
3753 while (pfrom != loc)
3754 *--pto = *--pfrom;
3756 store_op1 (op, loc, arg);
3760 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3762 static void
3763 insert_op2 (op, loc, arg1, arg2, end)
3764 re_opcode_t op;
3765 unsigned char *loc;
3766 int arg1, arg2;
3767 unsigned char *end;
3769 register unsigned char *pfrom = end;
3770 register unsigned char *pto = end + 5;
3772 while (pfrom != loc)
3773 *--pto = *--pfrom;
3775 store_op2 (op, loc, arg1, arg2);
3779 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3780 after an alternative or a begin-subexpression. We assume there is at
3781 least one character before the ^. */
3783 static boolean
3784 at_begline_loc_p (pattern, p, syntax)
3785 re_char *pattern, *p;
3786 reg_syntax_t syntax;
3788 re_char *prev = p - 2;
3789 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3791 return
3792 /* After a subexpression? */
3793 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3794 /* After an alternative? */
3795 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3796 /* After a shy subexpression? */
3797 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3798 && prev[-1] == '?' && prev[-2] == '('
3799 && (syntax & RE_NO_BK_PARENS
3800 || (prev - 3 >= pattern && prev[-3] == '\\')));
3804 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3805 at least one character after the $, i.e., `P < PEND'. */
3807 static boolean
3808 at_endline_loc_p (p, pend, syntax)
3809 re_char *p, *pend;
3810 reg_syntax_t syntax;
3812 re_char *next = p;
3813 boolean next_backslash = *next == '\\';
3814 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3816 return
3817 /* Before a subexpression? */
3818 (syntax & RE_NO_BK_PARENS ? *next == ')'
3819 : next_backslash && next_next && *next_next == ')')
3820 /* Before an alternative? */
3821 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3822 : next_backslash && next_next && *next_next == '|');
3826 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3827 false if it's not. */
3829 static boolean
3830 group_in_compile_stack (compile_stack, regnum)
3831 compile_stack_type compile_stack;
3832 regnum_t regnum;
3834 int this_element;
3836 for (this_element = compile_stack.avail - 1;
3837 this_element >= 0;
3838 this_element--)
3839 if (compile_stack.stack[this_element].regnum == regnum)
3840 return true;
3842 return false;
3845 /* analyse_first.
3846 If fastmap is non-NULL, go through the pattern and fill fastmap
3847 with all the possible leading chars. If fastmap is NULL, don't
3848 bother filling it up (obviously) and only return whether the
3849 pattern could potentially match the empty string.
3851 Return 1 if p..pend might match the empty string.
3852 Return 0 if p..pend matches at least one char.
3853 Return -1 if fastmap was not updated accurately. */
3855 static int
3856 analyse_first (p, pend, fastmap, multibyte)
3857 re_char *p, *pend;
3858 char *fastmap;
3859 const int multibyte;
3861 int j, k;
3862 boolean not;
3864 /* If all elements for base leading-codes in fastmap is set, this
3865 flag is set true. */
3866 boolean match_any_multibyte_characters = false;
3868 assert (p);
3870 /* The loop below works as follows:
3871 - It has a working-list kept in the PATTERN_STACK and which basically
3872 starts by only containing a pointer to the first operation.
3873 - If the opcode we're looking at is a match against some set of
3874 chars, then we add those chars to the fastmap and go on to the
3875 next work element from the worklist (done via `break').
3876 - If the opcode is a control operator on the other hand, we either
3877 ignore it (if it's meaningless at this point, such as `start_memory')
3878 or execute it (if it's a jump). If the jump has several destinations
3879 (i.e. `on_failure_jump'), then we push the other destination onto the
3880 worklist.
3881 We guarantee termination by ignoring backward jumps (more or less),
3882 so that `p' is monotonically increasing. More to the point, we
3883 never set `p' (or push) anything `<= p1'. */
3885 while (p < pend)
3887 /* `p1' is used as a marker of how far back a `on_failure_jump'
3888 can go without being ignored. It is normally equal to `p'
3889 (which prevents any backward `on_failure_jump') except right
3890 after a plain `jump', to allow patterns such as:
3891 0: jump 10
3892 3..9: <body>
3893 10: on_failure_jump 3
3894 as used for the *? operator. */
3895 re_char *p1 = p;
3897 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3899 case succeed:
3900 return 1;
3901 continue;
3903 case duplicate:
3904 /* If the first character has to match a backreference, that means
3905 that the group was empty (since it already matched). Since this
3906 is the only case that interests us here, we can assume that the
3907 backreference must match the empty string. */
3908 p++;
3909 continue;
3912 /* Following are the cases which match a character. These end
3913 with `break'. */
3915 case exactn:
3916 if (fastmap)
3918 int c = RE_STRING_CHAR (p + 1, pend - p);
3919 /* When fast-scanning, the fastmap can be indexed either with
3920 a char (smaller than 256) or with the first byte of
3921 a char's byte sequence. So we have to conservatively add
3922 both to the table. */
3923 if (SINGLE_BYTE_CHAR_P (c))
3924 fastmap[c] = 1;
3925 fastmap[p[1]] = 1;
3927 break;
3930 case anychar:
3931 /* We could put all the chars except for \n (and maybe \0)
3932 but we don't bother since it is generally not worth it. */
3933 if (!fastmap) break;
3934 return -1;
3937 case charset_not:
3938 /* Chars beyond end of bitmap are possible matches.
3939 All the single-byte codes can occur in multibyte buffers.
3940 So any that are not listed in the charset
3941 are possible matches, even in multibyte buffers. */
3942 if (!fastmap) break;
3943 /* We don't need to mark LEADING_CODE_8_BIT_CONTROL specially
3944 because it will automatically be set when needed by virtue of
3945 being larger than the highest char of its charset (0xbf) but
3946 smaller than (1<<BYTEWIDTH). */
3947 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3948 j < (1 << BYTEWIDTH); j++)
3949 fastmap[j] = 1;
3950 /* Fallthrough */
3951 case charset:
3952 if (!fastmap) break;
3953 not = (re_opcode_t) *(p - 1) == charset_not;
3954 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3955 j >= 0; j--)
3956 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3958 fastmap[j] = 1;
3959 #ifdef emacs
3960 if (j >= 0x80 && j < 0xa0)
3961 fastmap[LEADING_CODE_8_BIT_CONTROL] = 1;
3962 #endif
3965 if ((not && multibyte)
3966 /* Any character set can possibly contain a character
3967 which doesn't match the specified set of characters. */
3968 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3969 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3970 /* If we can match a character class, we can match
3971 any character set. */
3973 set_fastmap_for_multibyte_characters:
3974 if (match_any_multibyte_characters == false)
3976 for (j = 0x80; j < 0xA0; j++) /* XXX */
3977 if (BASE_LEADING_CODE_P (j))
3978 fastmap[j] = 1;
3979 match_any_multibyte_characters = true;
3983 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3984 && match_any_multibyte_characters == false)
3986 /* Set fastmap[I] 1 where I is a base leading code of each
3987 multibyte character in the range table. */
3988 int c, count;
3990 /* Make P points the range table. `+ 2' is to skip flag
3991 bits for a character class. */
3992 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3994 /* Extract the number of ranges in range table into COUNT. */
3995 EXTRACT_NUMBER_AND_INCR (count, p);
3996 for (; count > 0; count--, p += 2 * 3) /* XXX */
3998 /* Extract the start of each range. */
3999 EXTRACT_CHARACTER (c, p);
4000 j = CHAR_CHARSET (c);
4001 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
4004 break;
4006 case syntaxspec:
4007 case notsyntaxspec:
4008 if (!fastmap) break;
4009 #ifndef emacs
4010 not = (re_opcode_t)p[-1] == notsyntaxspec;
4011 k = *p++;
4012 for (j = 0; j < (1 << BYTEWIDTH); j++)
4013 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
4014 fastmap[j] = 1;
4015 break;
4016 #else /* emacs */
4017 /* This match depends on text properties. These end with
4018 aborting optimizations. */
4019 return -1;
4021 case categoryspec:
4022 case notcategoryspec:
4023 if (!fastmap) break;
4024 not = (re_opcode_t)p[-1] == notcategoryspec;
4025 k = *p++;
4026 for (j = 0; j < (1 << BYTEWIDTH); j++)
4027 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
4028 fastmap[j] = 1;
4030 if (multibyte)
4031 /* Any character set can possibly contain a character
4032 whose category is K (or not). */
4033 goto set_fastmap_for_multibyte_characters;
4034 break;
4036 /* All cases after this match the empty string. These end with
4037 `continue'. */
4039 case before_dot:
4040 case at_dot:
4041 case after_dot:
4042 #endif /* !emacs */
4043 case no_op:
4044 case begline:
4045 case endline:
4046 case begbuf:
4047 case endbuf:
4048 case wordbound:
4049 case notwordbound:
4050 case wordbeg:
4051 case wordend:
4052 case symbeg:
4053 case symend:
4054 continue;
4057 case jump:
4058 EXTRACT_NUMBER_AND_INCR (j, p);
4059 if (j < 0)
4060 /* Backward jumps can only go back to code that we've already
4061 visited. `re_compile' should make sure this is true. */
4062 break;
4063 p += j;
4064 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4066 case on_failure_jump:
4067 case on_failure_keep_string_jump:
4068 case on_failure_jump_loop:
4069 case on_failure_jump_nastyloop:
4070 case on_failure_jump_smart:
4071 p++;
4072 break;
4073 default:
4074 continue;
4076 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4077 to jump back to "just after here". */
4078 /* Fallthrough */
4080 case on_failure_jump:
4081 case on_failure_keep_string_jump:
4082 case on_failure_jump_nastyloop:
4083 case on_failure_jump_loop:
4084 case on_failure_jump_smart:
4085 EXTRACT_NUMBER_AND_INCR (j, p);
4086 if (p + j <= p1)
4087 ; /* Backward jump to be ignored. */
4088 else
4089 { /* We have to look down both arms.
4090 We first go down the "straight" path so as to minimize
4091 stack usage when going through alternatives. */
4092 int r = analyse_first (p, pend, fastmap, multibyte);
4093 if (r) return r;
4094 p += j;
4096 continue;
4099 case jump_n:
4100 /* This code simply does not properly handle forward jump_n. */
4101 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4102 p += 4;
4103 /* jump_n can either jump or fall through. The (backward) jump
4104 case has already been handled, so we only need to look at the
4105 fallthrough case. */
4106 continue;
4108 case succeed_n:
4109 /* If N == 0, it should be an on_failure_jump_loop instead. */
4110 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4111 p += 4;
4112 /* We only care about one iteration of the loop, so we don't
4113 need to consider the case where this behaves like an
4114 on_failure_jump. */
4115 continue;
4118 case set_number_at:
4119 p += 4;
4120 continue;
4123 case start_memory:
4124 case stop_memory:
4125 p += 1;
4126 continue;
4129 default:
4130 abort (); /* We have listed all the cases. */
4131 } /* switch *p++ */
4133 /* Getting here means we have found the possible starting
4134 characters for one path of the pattern -- and that the empty
4135 string does not match. We need not follow this path further. */
4136 return 0;
4137 } /* while p */
4139 /* We reached the end without matching anything. */
4140 return 1;
4142 } /* analyse_first */
4144 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4145 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4146 characters can start a string that matches the pattern. This fastmap
4147 is used by re_search to skip quickly over impossible starting points.
4149 Character codes above (1 << BYTEWIDTH) are not represented in the
4150 fastmap, but the leading codes are represented. Thus, the fastmap
4151 indicates which character sets could start a match.
4153 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4154 area as BUFP->fastmap.
4156 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4157 the pattern buffer.
4159 Returns 0 if we succeed, -2 if an internal error. */
4162 re_compile_fastmap (bufp)
4163 struct re_pattern_buffer *bufp;
4165 char *fastmap = bufp->fastmap;
4166 int analysis;
4168 assert (fastmap && bufp->buffer);
4170 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4171 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4173 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4174 fastmap, RE_MULTIBYTE_P (bufp));
4175 bufp->can_be_null = (analysis != 0);
4176 return 0;
4177 } /* re_compile_fastmap */
4179 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4180 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4181 this memory for recording register information. STARTS and ENDS
4182 must be allocated using the malloc library routine, and must each
4183 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4185 If NUM_REGS == 0, then subsequent matches should allocate their own
4186 register data.
4188 Unless this function is called, the first search or match using
4189 PATTERN_BUFFER will allocate its own register data, without
4190 freeing the old data. */
4192 void
4193 re_set_registers (bufp, regs, num_regs, starts, ends)
4194 struct re_pattern_buffer *bufp;
4195 struct re_registers *regs;
4196 unsigned num_regs;
4197 regoff_t *starts, *ends;
4199 if (num_regs)
4201 bufp->regs_allocated = REGS_REALLOCATE;
4202 regs->num_regs = num_regs;
4203 regs->start = starts;
4204 regs->end = ends;
4206 else
4208 bufp->regs_allocated = REGS_UNALLOCATED;
4209 regs->num_regs = 0;
4210 regs->start = regs->end = (regoff_t *) 0;
4213 WEAK_ALIAS (__re_set_registers, re_set_registers)
4215 /* Searching routines. */
4217 /* Like re_search_2, below, but only one string is specified, and
4218 doesn't let you say where to stop matching. */
4221 re_search (bufp, string, size, startpos, range, regs)
4222 struct re_pattern_buffer *bufp;
4223 const char *string;
4224 int size, startpos, range;
4225 struct re_registers *regs;
4227 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4228 regs, size);
4230 WEAK_ALIAS (__re_search, re_search)
4232 /* Head address of virtual concatenation of string. */
4233 #define HEAD_ADDR_VSTRING(P) \
4234 (((P) >= size1 ? string2 : string1))
4236 /* End address of virtual concatenation of string. */
4237 #define STOP_ADDR_VSTRING(P) \
4238 (((P) >= size1 ? string2 + size2 : string1 + size1))
4240 /* Address of POS in the concatenation of virtual string. */
4241 #define POS_ADDR_VSTRING(POS) \
4242 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4244 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4245 virtual concatenation of STRING1 and STRING2, starting first at index
4246 STARTPOS, then at STARTPOS + 1, and so on.
4248 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4250 RANGE is how far to scan while trying to match. RANGE = 0 means try
4251 only at STARTPOS; in general, the last start tried is STARTPOS +
4252 RANGE.
4254 In REGS, return the indices of the virtual concatenation of STRING1
4255 and STRING2 that matched the entire BUFP->buffer and its contained
4256 subexpressions.
4258 Do not consider matching one past the index STOP in the virtual
4259 concatenation of STRING1 and STRING2.
4261 We return either the position in the strings at which the match was
4262 found, -1 if no match, or -2 if error (such as failure
4263 stack overflow). */
4266 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4267 struct re_pattern_buffer *bufp;
4268 const char *str1, *str2;
4269 int size1, size2;
4270 int startpos;
4271 int range;
4272 struct re_registers *regs;
4273 int stop;
4275 int val;
4276 re_char *string1 = (re_char*) str1;
4277 re_char *string2 = (re_char*) str2;
4278 register char *fastmap = bufp->fastmap;
4279 register RE_TRANSLATE_TYPE translate = bufp->translate;
4280 int total_size = size1 + size2;
4281 int endpos = startpos + range;
4282 boolean anchored_start;
4284 /* Nonzero if we have to concern multibyte character. */
4285 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4287 /* Check for out-of-range STARTPOS. */
4288 if (startpos < 0 || startpos > total_size)
4289 return -1;
4291 /* Fix up RANGE if it might eventually take us outside
4292 the virtual concatenation of STRING1 and STRING2.
4293 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4294 if (endpos < 0)
4295 range = 0 - startpos;
4296 else if (endpos > total_size)
4297 range = total_size - startpos;
4299 /* If the search isn't to be a backwards one, don't waste time in a
4300 search for a pattern anchored at beginning of buffer. */
4301 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4303 if (startpos > 0)
4304 return -1;
4305 else
4306 range = 0;
4309 #ifdef emacs
4310 /* In a forward search for something that starts with \=.
4311 don't keep searching past point. */
4312 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4314 range = PT_BYTE - BEGV_BYTE - startpos;
4315 if (range < 0)
4316 return -1;
4318 #endif /* emacs */
4320 /* Update the fastmap now if not correct already. */
4321 if (fastmap && !bufp->fastmap_accurate)
4322 re_compile_fastmap (bufp);
4324 /* See whether the pattern is anchored. */
4325 anchored_start = (bufp->buffer[0] == begline);
4327 #ifdef emacs
4328 gl_state.object = re_match_object;
4330 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4332 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4334 #endif
4336 /* Loop through the string, looking for a place to start matching. */
4337 for (;;)
4339 /* If the pattern is anchored,
4340 skip quickly past places we cannot match.
4341 We don't bother to treat startpos == 0 specially
4342 because that case doesn't repeat. */
4343 if (anchored_start && startpos > 0)
4345 if (! ((startpos <= size1 ? string1[startpos - 1]
4346 : string2[startpos - size1 - 1])
4347 == '\n'))
4348 goto advance;
4351 /* If a fastmap is supplied, skip quickly over characters that
4352 cannot be the start of a match. If the pattern can match the
4353 null string, however, we don't need to skip characters; we want
4354 the first null string. */
4355 if (fastmap && startpos < total_size && !bufp->can_be_null)
4357 register re_char *d;
4358 register re_wchar_t buf_ch;
4360 d = POS_ADDR_VSTRING (startpos);
4362 if (range > 0) /* Searching forwards. */
4364 register int lim = 0;
4365 int irange = range;
4367 if (startpos < size1 && startpos + range >= size1)
4368 lim = range - (size1 - startpos);
4370 /* Written out as an if-else to avoid testing `translate'
4371 inside the loop. */
4372 if (RE_TRANSLATE_P (translate))
4374 if (multibyte)
4375 while (range > lim)
4377 int buf_charlen;
4379 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4380 buf_charlen);
4382 buf_ch = RE_TRANSLATE (translate, buf_ch);
4383 if (buf_ch >= 0400
4384 || fastmap[buf_ch])
4385 break;
4387 range -= buf_charlen;
4388 d += buf_charlen;
4390 else
4392 /* Convert *d to integer to shut up GCC's
4393 whining about comparison that is always
4394 true. */
4395 int di = *d;
4397 while (range > lim
4398 && !fastmap[RE_TRANSLATE (translate, di)])
4400 di = *(++d);
4401 range--;
4405 else
4408 re_char *d_start = d;
4409 while (range > lim && !fastmap[*d])
4411 d++;
4412 range--;
4414 #ifdef emacs
4415 if (multibyte && range > lim)
4417 /* Check that we are at the beginning of a char. */
4418 int at_boundary;
4419 AT_CHAR_BOUNDARY_P (at_boundary, d, d_start);
4420 if (at_boundary)
4421 break;
4422 else
4423 { /* We have matched an internal byte of a char
4424 rather than the leading byte, so it's a false
4425 positive: we should keep scanning. */
4426 d++; range--;
4429 else
4430 #endif
4431 break;
4432 } while (1);
4434 startpos += irange - range;
4436 else /* Searching backwards. */
4438 int room = (startpos >= size1
4439 ? size2 + size1 - startpos
4440 : size1 - startpos);
4441 buf_ch = RE_STRING_CHAR (d, room);
4442 buf_ch = TRANSLATE (buf_ch);
4444 if (! (buf_ch >= 0400
4445 || fastmap[buf_ch]))
4446 goto advance;
4450 /* If can't match the null string, and that's all we have left, fail. */
4451 if (range >= 0 && startpos == total_size && fastmap
4452 && !bufp->can_be_null)
4453 return -1;
4455 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4456 startpos, regs, stop);
4457 #ifndef REGEX_MALLOC
4458 # ifdef C_ALLOCA
4459 alloca (0);
4460 # endif
4461 #endif
4463 if (val >= 0)
4464 return startpos;
4466 if (val == -2)
4467 return -2;
4469 advance:
4470 if (!range)
4471 break;
4472 else if (range > 0)
4474 /* Update STARTPOS to the next character boundary. */
4475 if (multibyte)
4477 re_char *p = POS_ADDR_VSTRING (startpos);
4478 re_char *pend = STOP_ADDR_VSTRING (startpos);
4479 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4481 range -= len;
4482 if (range < 0)
4483 break;
4484 startpos += len;
4486 else
4488 range--;
4489 startpos++;
4492 else
4494 range++;
4495 startpos--;
4497 /* Update STARTPOS to the previous character boundary. */
4498 if (multibyte)
4500 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4501 re_char *p0 = p;
4502 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4504 /* Find the head of multibyte form. */
4505 PREV_CHAR_BOUNDARY (p, phead);
4506 range += p0 - 1 - p;
4507 if (range > 0)
4508 break;
4510 startpos -= p0 - 1 - p;
4514 return -1;
4515 } /* re_search_2 */
4516 WEAK_ALIAS (__re_search_2, re_search_2)
4518 /* Declarations and macros for re_match_2. */
4520 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4521 register int len,
4522 RE_TRANSLATE_TYPE translate,
4523 const int multibyte));
4525 /* This converts PTR, a pointer into one of the search strings `string1'
4526 and `string2' into an offset from the beginning of that string. */
4527 #define POINTER_TO_OFFSET(ptr) \
4528 (FIRST_STRING_P (ptr) \
4529 ? ((regoff_t) ((ptr) - string1)) \
4530 : ((regoff_t) ((ptr) - string2 + size1)))
4532 /* Call before fetching a character with *d. This switches over to
4533 string2 if necessary.
4534 Check re_match_2_internal for a discussion of why end_match_2 might
4535 not be within string2 (but be equal to end_match_1 instead). */
4536 #define PREFETCH() \
4537 while (d == dend) \
4539 /* End of string2 => fail. */ \
4540 if (dend == end_match_2) \
4541 goto fail; \
4542 /* End of string1 => advance to string2. */ \
4543 d = string2; \
4544 dend = end_match_2; \
4547 /* Call before fetching a char with *d if you already checked other limits.
4548 This is meant for use in lookahead operations like wordend, etc..
4549 where we might need to look at parts of the string that might be
4550 outside of the LIMITs (i.e past `stop'). */
4551 #define PREFETCH_NOLIMIT() \
4552 if (d == end1) \
4554 d = string2; \
4555 dend = end_match_2; \
4558 /* Test if at very beginning or at very end of the virtual concatenation
4559 of `string1' and `string2'. If only one string, it's `string2'. */
4560 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4561 #define AT_STRINGS_END(d) ((d) == end2)
4564 /* Test if D points to a character which is word-constituent. We have
4565 two special cases to check for: if past the end of string1, look at
4566 the first character in string2; and if before the beginning of
4567 string2, look at the last character in string1. */
4568 #define WORDCHAR_P(d) \
4569 (SYNTAX ((d) == end1 ? *string2 \
4570 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4571 == Sword)
4573 /* Disabled due to a compiler bug -- see comment at case wordbound */
4575 /* The comment at case wordbound is following one, but we don't use
4576 AT_WORD_BOUNDARY anymore to support multibyte form.
4578 The DEC Alpha C compiler 3.x generates incorrect code for the
4579 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4580 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4581 macro and introducing temporary variables works around the bug. */
4583 #if 0
4584 /* Test if the character before D and the one at D differ with respect
4585 to being word-constituent. */
4586 #define AT_WORD_BOUNDARY(d) \
4587 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4588 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4589 #endif
4591 /* Free everything we malloc. */
4592 #ifdef MATCH_MAY_ALLOCATE
4593 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4594 # define FREE_VARIABLES() \
4595 do { \
4596 REGEX_FREE_STACK (fail_stack.stack); \
4597 FREE_VAR (regstart); \
4598 FREE_VAR (regend); \
4599 FREE_VAR (best_regstart); \
4600 FREE_VAR (best_regend); \
4601 } while (0)
4602 #else
4603 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4604 #endif /* not MATCH_MAY_ALLOCATE */
4607 /* Optimization routines. */
4609 /* If the operation is a match against one or more chars,
4610 return a pointer to the next operation, else return NULL. */
4611 static re_char *
4612 skip_one_char (p)
4613 re_char *p;
4615 switch (SWITCH_ENUM_CAST (*p++))
4617 case anychar:
4618 break;
4620 case exactn:
4621 p += *p + 1;
4622 break;
4624 case charset_not:
4625 case charset:
4626 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4628 int mcnt;
4629 p = CHARSET_RANGE_TABLE (p - 1);
4630 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4631 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4633 else
4634 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4635 break;
4637 case syntaxspec:
4638 case notsyntaxspec:
4639 #ifdef emacs
4640 case categoryspec:
4641 case notcategoryspec:
4642 #endif /* emacs */
4643 p++;
4644 break;
4646 default:
4647 p = NULL;
4649 return p;
4653 /* Jump over non-matching operations. */
4654 static re_char *
4655 skip_noops (p, pend)
4656 re_char *p, *pend;
4658 int mcnt;
4659 while (p < pend)
4661 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4663 case start_memory:
4664 case stop_memory:
4665 p += 2; break;
4666 case no_op:
4667 p += 1; break;
4668 case jump:
4669 p += 1;
4670 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4671 p += mcnt;
4672 break;
4673 default:
4674 return p;
4677 assert (p == pend);
4678 return p;
4681 /* Non-zero if "p1 matches something" implies "p2 fails". */
4682 static int
4683 mutually_exclusive_p (bufp, p1, p2)
4684 struct re_pattern_buffer *bufp;
4685 re_char *p1, *p2;
4687 re_opcode_t op2;
4688 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4689 unsigned char *pend = bufp->buffer + bufp->used;
4691 assert (p1 >= bufp->buffer && p1 < pend
4692 && p2 >= bufp->buffer && p2 <= pend);
4694 /* Skip over open/close-group commands.
4695 If what follows this loop is a ...+ construct,
4696 look at what begins its body, since we will have to
4697 match at least one of that. */
4698 p2 = skip_noops (p2, pend);
4699 /* The same skip can be done for p1, except that this function
4700 is only used in the case where p1 is a simple match operator. */
4701 /* p1 = skip_noops (p1, pend); */
4703 assert (p1 >= bufp->buffer && p1 < pend
4704 && p2 >= bufp->buffer && p2 <= pend);
4706 op2 = p2 == pend ? succeed : *p2;
4708 switch (SWITCH_ENUM_CAST (op2))
4710 case succeed:
4711 case endbuf:
4712 /* If we're at the end of the pattern, we can change. */
4713 if (skip_one_char (p1))
4715 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4716 return 1;
4718 break;
4720 case endline:
4721 case exactn:
4723 register re_wchar_t c
4724 = (re_opcode_t) *p2 == endline ? '\n'
4725 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4727 if ((re_opcode_t) *p1 == exactn)
4729 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4731 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4732 return 1;
4736 else if ((re_opcode_t) *p1 == charset
4737 || (re_opcode_t) *p1 == charset_not)
4739 int not = (re_opcode_t) *p1 == charset_not;
4741 /* Test if C is listed in charset (or charset_not)
4742 at `p1'. */
4743 if (SINGLE_BYTE_CHAR_P (c))
4745 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4746 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4747 not = !not;
4749 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4750 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4752 /* `not' is equal to 1 if c would match, which means
4753 that we can't change to pop_failure_jump. */
4754 if (!not)
4756 DEBUG_PRINT1 (" No match => fast loop.\n");
4757 return 1;
4760 else if ((re_opcode_t) *p1 == anychar
4761 && c == '\n')
4763 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4764 return 1;
4767 break;
4769 case charset:
4771 if ((re_opcode_t) *p1 == exactn)
4772 /* Reuse the code above. */
4773 return mutually_exclusive_p (bufp, p2, p1);
4775 /* It is hard to list up all the character in charset
4776 P2 if it includes multibyte character. Give up in
4777 such case. */
4778 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4780 /* Now, we are sure that P2 has no range table.
4781 So, for the size of bitmap in P2, `p2[1]' is
4782 enough. But P1 may have range table, so the
4783 size of bitmap table of P1 is extracted by
4784 using macro `CHARSET_BITMAP_SIZE'.
4786 Since we know that all the character listed in
4787 P2 is ASCII, it is enough to test only bitmap
4788 table of P1. */
4790 if ((re_opcode_t) *p1 == charset)
4792 int idx;
4793 /* We win if the charset inside the loop
4794 has no overlap with the one after the loop. */
4795 for (idx = 0;
4796 (idx < (int) p2[1]
4797 && idx < CHARSET_BITMAP_SIZE (p1));
4798 idx++)
4799 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4800 break;
4802 if (idx == p2[1]
4803 || idx == CHARSET_BITMAP_SIZE (p1))
4805 DEBUG_PRINT1 (" No match => fast loop.\n");
4806 return 1;
4809 else if ((re_opcode_t) *p1 == charset_not)
4811 int idx;
4812 /* We win if the charset_not inside the loop lists
4813 every character listed in the charset after. */
4814 for (idx = 0; idx < (int) p2[1]; idx++)
4815 if (! (p2[2 + idx] == 0
4816 || (idx < CHARSET_BITMAP_SIZE (p1)
4817 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4818 break;
4820 if (idx == p2[1])
4822 DEBUG_PRINT1 (" No match => fast loop.\n");
4823 return 1;
4828 break;
4830 case charset_not:
4831 switch (SWITCH_ENUM_CAST (*p1))
4833 case exactn:
4834 case charset:
4835 /* Reuse the code above. */
4836 return mutually_exclusive_p (bufp, p2, p1);
4837 case charset_not:
4838 /* When we have two charset_not, it's very unlikely that
4839 they don't overlap. The union of the two sets of excluded
4840 chars should cover all possible chars, which, as a matter of
4841 fact, is virtually impossible in multibyte buffers. */
4842 break;
4844 break;
4846 case wordend:
4847 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4848 case symend:
4849 return ((re_opcode_t) *p1 == syntaxspec
4850 && (p1[1] == Ssymbol || p1[1] == Sword));
4851 case notsyntaxspec:
4852 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4854 case wordbeg:
4855 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4856 case symbeg:
4857 return ((re_opcode_t) *p1 == notsyntaxspec
4858 && (p1[1] == Ssymbol || p1[1] == Sword));
4859 case syntaxspec:
4860 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4862 case wordbound:
4863 return (((re_opcode_t) *p1 == notsyntaxspec
4864 || (re_opcode_t) *p1 == syntaxspec)
4865 && p1[1] == Sword);
4867 #ifdef emacs
4868 case categoryspec:
4869 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4870 case notcategoryspec:
4871 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4872 #endif /* emacs */
4874 default:
4878 /* Safe default. */
4879 return 0;
4883 /* Matching routines. */
4885 #ifndef emacs /* Emacs never uses this. */
4886 /* re_match is like re_match_2 except it takes only a single string. */
4889 re_match (bufp, string, size, pos, regs)
4890 struct re_pattern_buffer *bufp;
4891 const char *string;
4892 int size, pos;
4893 struct re_registers *regs;
4895 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4896 pos, regs, size);
4897 # if defined C_ALLOCA && !defined REGEX_MALLOC
4898 alloca (0);
4899 # endif
4900 return result;
4902 WEAK_ALIAS (__re_match, re_match)
4903 #endif /* not emacs */
4905 #ifdef emacs
4906 /* In Emacs, this is the string or buffer in which we
4907 are matching. It is used for looking up syntax properties. */
4908 Lisp_Object re_match_object;
4909 #endif
4911 /* re_match_2 matches the compiled pattern in BUFP against the
4912 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4913 and SIZE2, respectively). We start matching at POS, and stop
4914 matching at STOP.
4916 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4917 store offsets for the substring each group matched in REGS. See the
4918 documentation for exactly how many groups we fill.
4920 We return -1 if no match, -2 if an internal error (such as the
4921 failure stack overflowing). Otherwise, we return the length of the
4922 matched substring. */
4925 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4926 struct re_pattern_buffer *bufp;
4927 const char *string1, *string2;
4928 int size1, size2;
4929 int pos;
4930 struct re_registers *regs;
4931 int stop;
4933 int result;
4935 #ifdef emacs
4936 int charpos;
4937 gl_state.object = re_match_object;
4938 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4939 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4940 #endif
4942 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4943 (re_char*) string2, size2,
4944 pos, regs, stop);
4945 #if defined C_ALLOCA && !defined REGEX_MALLOC
4946 alloca (0);
4947 #endif
4948 return result;
4950 WEAK_ALIAS (__re_match_2, re_match_2)
4952 /* This is a separate function so that we can force an alloca cleanup
4953 afterwards. */
4954 static int
4955 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4956 struct re_pattern_buffer *bufp;
4957 re_char *string1, *string2;
4958 int size1, size2;
4959 int pos;
4960 struct re_registers *regs;
4961 int stop;
4963 /* General temporaries. */
4964 int mcnt;
4965 size_t reg;
4966 boolean not;
4968 /* Just past the end of the corresponding string. */
4969 re_char *end1, *end2;
4971 /* Pointers into string1 and string2, just past the last characters in
4972 each to consider matching. */
4973 re_char *end_match_1, *end_match_2;
4975 /* Where we are in the data, and the end of the current string. */
4976 re_char *d, *dend;
4978 /* Used sometimes to remember where we were before starting matching
4979 an operator so that we can go back in case of failure. This "atomic"
4980 behavior of matching opcodes is indispensable to the correctness
4981 of the on_failure_keep_string_jump optimization. */
4982 re_char *dfail;
4984 /* Where we are in the pattern, and the end of the pattern. */
4985 re_char *p = bufp->buffer;
4986 re_char *pend = p + bufp->used;
4988 /* We use this to map every character in the string. */
4989 RE_TRANSLATE_TYPE translate = bufp->translate;
4991 /* Nonzero if we have to concern multibyte character. */
4992 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4994 /* Failure point stack. Each place that can handle a failure further
4995 down the line pushes a failure point on this stack. It consists of
4996 regstart, and regend for all registers corresponding to
4997 the subexpressions we're currently inside, plus the number of such
4998 registers, and, finally, two char *'s. The first char * is where
4999 to resume scanning the pattern; the second one is where to resume
5000 scanning the strings. */
5001 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5002 fail_stack_type fail_stack;
5003 #endif
5004 #ifdef DEBUG
5005 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5006 #endif
5008 #if defined REL_ALLOC && defined REGEX_MALLOC
5009 /* This holds the pointer to the failure stack, when
5010 it is allocated relocatably. */
5011 fail_stack_elt_t *failure_stack_ptr;
5012 #endif
5014 /* We fill all the registers internally, independent of what we
5015 return, for use in backreferences. The number here includes
5016 an element for register zero. */
5017 size_t num_regs = bufp->re_nsub + 1;
5019 /* Information on the contents of registers. These are pointers into
5020 the input strings; they record just what was matched (on this
5021 attempt) by a subexpression part of the pattern, that is, the
5022 regnum-th regstart pointer points to where in the pattern we began
5023 matching and the regnum-th regend points to right after where we
5024 stopped matching the regnum-th subexpression. (The zeroth register
5025 keeps track of what the whole pattern matches.) */
5026 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5027 re_char **regstart, **regend;
5028 #endif
5030 /* The following record the register info as found in the above
5031 variables when we find a match better than any we've seen before.
5032 This happens as we backtrack through the failure points, which in
5033 turn happens only if we have not yet matched the entire string. */
5034 unsigned best_regs_set = false;
5035 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5036 re_char **best_regstart, **best_regend;
5037 #endif
5039 /* Logically, this is `best_regend[0]'. But we don't want to have to
5040 allocate space for that if we're not allocating space for anything
5041 else (see below). Also, we never need info about register 0 for
5042 any of the other register vectors, and it seems rather a kludge to
5043 treat `best_regend' differently than the rest. So we keep track of
5044 the end of the best match so far in a separate variable. We
5045 initialize this to NULL so that when we backtrack the first time
5046 and need to test it, it's not garbage. */
5047 re_char *match_end = NULL;
5049 #ifdef DEBUG
5050 /* Counts the total number of registers pushed. */
5051 unsigned num_regs_pushed = 0;
5052 #endif
5054 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5056 INIT_FAIL_STACK ();
5058 #ifdef MATCH_MAY_ALLOCATE
5059 /* Do not bother to initialize all the register variables if there are
5060 no groups in the pattern, as it takes a fair amount of time. If
5061 there are groups, we include space for register 0 (the whole
5062 pattern), even though we never use it, since it simplifies the
5063 array indexing. We should fix this. */
5064 if (bufp->re_nsub)
5066 regstart = REGEX_TALLOC (num_regs, re_char *);
5067 regend = REGEX_TALLOC (num_regs, re_char *);
5068 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5069 best_regend = REGEX_TALLOC (num_regs, re_char *);
5071 if (!(regstart && regend && best_regstart && best_regend))
5073 FREE_VARIABLES ();
5074 return -2;
5077 else
5079 /* We must initialize all our variables to NULL, so that
5080 `FREE_VARIABLES' doesn't try to free them. */
5081 regstart = regend = best_regstart = best_regend = NULL;
5083 #endif /* MATCH_MAY_ALLOCATE */
5085 /* The starting position is bogus. */
5086 if (pos < 0 || pos > size1 + size2)
5088 FREE_VARIABLES ();
5089 return -1;
5092 /* Initialize subexpression text positions to -1 to mark ones that no
5093 start_memory/stop_memory has been seen for. Also initialize the
5094 register information struct. */
5095 for (reg = 1; reg < num_regs; reg++)
5096 regstart[reg] = regend[reg] = NULL;
5098 /* We move `string1' into `string2' if the latter's empty -- but not if
5099 `string1' is null. */
5100 if (size2 == 0 && string1 != NULL)
5102 string2 = string1;
5103 size2 = size1;
5104 string1 = 0;
5105 size1 = 0;
5107 end1 = string1 + size1;
5108 end2 = string2 + size2;
5110 /* `p' scans through the pattern as `d' scans through the data.
5111 `dend' is the end of the input string that `d' points within. `d'
5112 is advanced into the following input string whenever necessary, but
5113 this happens before fetching; therefore, at the beginning of the
5114 loop, `d' can be pointing at the end of a string, but it cannot
5115 equal `string2'. */
5116 if (pos >= size1)
5118 /* Only match within string2. */
5119 d = string2 + pos - size1;
5120 dend = end_match_2 = string2 + stop - size1;
5121 end_match_1 = end1; /* Just to give it a value. */
5123 else
5125 if (stop < size1)
5127 /* Only match within string1. */
5128 end_match_1 = string1 + stop;
5129 /* BEWARE!
5130 When we reach end_match_1, PREFETCH normally switches to string2.
5131 But in the present case, this means that just doing a PREFETCH
5132 makes us jump from `stop' to `gap' within the string.
5133 What we really want here is for the search to stop as
5134 soon as we hit end_match_1. That's why we set end_match_2
5135 to end_match_1 (since PREFETCH fails as soon as we hit
5136 end_match_2). */
5137 end_match_2 = end_match_1;
5139 else
5140 { /* It's important to use this code when stop == size so that
5141 moving `d' from end1 to string2 will not prevent the d == dend
5142 check from catching the end of string. */
5143 end_match_1 = end1;
5144 end_match_2 = string2 + stop - size1;
5146 d = string1 + pos;
5147 dend = end_match_1;
5150 DEBUG_PRINT1 ("The compiled pattern is: ");
5151 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5152 DEBUG_PRINT1 ("The string to match is: `");
5153 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5154 DEBUG_PRINT1 ("'\n");
5156 /* This loops over pattern commands. It exits by returning from the
5157 function if the match is complete, or it drops through if the match
5158 fails at this starting point in the input data. */
5159 for (;;)
5161 DEBUG_PRINT2 ("\n%p: ", p);
5163 if (p == pend)
5164 { /* End of pattern means we might have succeeded. */
5165 DEBUG_PRINT1 ("end of pattern ... ");
5167 /* If we haven't matched the entire string, and we want the
5168 longest match, try backtracking. */
5169 if (d != end_match_2)
5171 /* 1 if this match ends in the same string (string1 or string2)
5172 as the best previous match. */
5173 boolean same_str_p = (FIRST_STRING_P (match_end)
5174 == FIRST_STRING_P (d));
5175 /* 1 if this match is the best seen so far. */
5176 boolean best_match_p;
5178 /* AIX compiler got confused when this was combined
5179 with the previous declaration. */
5180 if (same_str_p)
5181 best_match_p = d > match_end;
5182 else
5183 best_match_p = !FIRST_STRING_P (d);
5185 DEBUG_PRINT1 ("backtracking.\n");
5187 if (!FAIL_STACK_EMPTY ())
5188 { /* More failure points to try. */
5190 /* If exceeds best match so far, save it. */
5191 if (!best_regs_set || best_match_p)
5193 best_regs_set = true;
5194 match_end = d;
5196 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5198 for (reg = 1; reg < num_regs; reg++)
5200 best_regstart[reg] = regstart[reg];
5201 best_regend[reg] = regend[reg];
5204 goto fail;
5207 /* If no failure points, don't restore garbage. And if
5208 last match is real best match, don't restore second
5209 best one. */
5210 else if (best_regs_set && !best_match_p)
5212 restore_best_regs:
5213 /* Restore best match. It may happen that `dend ==
5214 end_match_1' while the restored d is in string2.
5215 For example, the pattern `x.*y.*z' against the
5216 strings `x-' and `y-z-', if the two strings are
5217 not consecutive in memory. */
5218 DEBUG_PRINT1 ("Restoring best registers.\n");
5220 d = match_end;
5221 dend = ((d >= string1 && d <= end1)
5222 ? end_match_1 : end_match_2);
5224 for (reg = 1; reg < num_regs; reg++)
5226 regstart[reg] = best_regstart[reg];
5227 regend[reg] = best_regend[reg];
5230 } /* d != end_match_2 */
5232 succeed_label:
5233 DEBUG_PRINT1 ("Accepting match.\n");
5235 /* If caller wants register contents data back, do it. */
5236 if (regs && !bufp->no_sub)
5238 /* Have the register data arrays been allocated? */
5239 if (bufp->regs_allocated == REGS_UNALLOCATED)
5240 { /* No. So allocate them with malloc. We need one
5241 extra element beyond `num_regs' for the `-1' marker
5242 GNU code uses. */
5243 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5244 regs->start = TALLOC (regs->num_regs, regoff_t);
5245 regs->end = TALLOC (regs->num_regs, regoff_t);
5246 if (regs->start == NULL || regs->end == NULL)
5248 FREE_VARIABLES ();
5249 return -2;
5251 bufp->regs_allocated = REGS_REALLOCATE;
5253 else if (bufp->regs_allocated == REGS_REALLOCATE)
5254 { /* Yes. If we need more elements than were already
5255 allocated, reallocate them. If we need fewer, just
5256 leave it alone. */
5257 if (regs->num_regs < num_regs + 1)
5259 regs->num_regs = num_regs + 1;
5260 RETALLOC (regs->start, regs->num_regs, regoff_t);
5261 RETALLOC (regs->end, regs->num_regs, regoff_t);
5262 if (regs->start == NULL || regs->end == NULL)
5264 FREE_VARIABLES ();
5265 return -2;
5269 else
5271 /* These braces fend off a "empty body in an else-statement"
5272 warning under GCC when assert expands to nothing. */
5273 assert (bufp->regs_allocated == REGS_FIXED);
5276 /* Convert the pointer data in `regstart' and `regend' to
5277 indices. Register zero has to be set differently,
5278 since we haven't kept track of any info for it. */
5279 if (regs->num_regs > 0)
5281 regs->start[0] = pos;
5282 regs->end[0] = POINTER_TO_OFFSET (d);
5285 /* Go through the first `min (num_regs, regs->num_regs)'
5286 registers, since that is all we initialized. */
5287 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5289 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5290 regs->start[reg] = regs->end[reg] = -1;
5291 else
5293 regs->start[reg]
5294 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5295 regs->end[reg]
5296 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5300 /* If the regs structure we return has more elements than
5301 were in the pattern, set the extra elements to -1. If
5302 we (re)allocated the registers, this is the case,
5303 because we always allocate enough to have at least one
5304 -1 at the end. */
5305 for (reg = num_regs; reg < regs->num_regs; reg++)
5306 regs->start[reg] = regs->end[reg] = -1;
5307 } /* regs && !bufp->no_sub */
5309 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5310 nfailure_points_pushed, nfailure_points_popped,
5311 nfailure_points_pushed - nfailure_points_popped);
5312 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5314 mcnt = POINTER_TO_OFFSET (d) - pos;
5316 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5318 FREE_VARIABLES ();
5319 return mcnt;
5322 /* Otherwise match next pattern command. */
5323 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5325 /* Ignore these. Used to ignore the n of succeed_n's which
5326 currently have n == 0. */
5327 case no_op:
5328 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5329 break;
5331 case succeed:
5332 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5333 goto succeed_label;
5335 /* Match the next n pattern characters exactly. The following
5336 byte in the pattern defines n, and the n bytes after that
5337 are the characters to match. */
5338 case exactn:
5339 mcnt = *p++;
5340 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5342 /* Remember the start point to rollback upon failure. */
5343 dfail = d;
5345 /* This is written out as an if-else so we don't waste time
5346 testing `translate' inside the loop. */
5347 if (RE_TRANSLATE_P (translate))
5349 if (multibyte)
5352 int pat_charlen, buf_charlen;
5353 unsigned int pat_ch, buf_ch;
5355 PREFETCH ();
5356 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5357 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5359 if (RE_TRANSLATE (translate, buf_ch)
5360 != pat_ch)
5362 d = dfail;
5363 goto fail;
5366 p += pat_charlen;
5367 d += buf_charlen;
5368 mcnt -= pat_charlen;
5370 while (mcnt > 0);
5371 else
5374 /* Avoid compiler whining about comparison being
5375 always true. */
5376 int di;
5378 PREFETCH ();
5379 di = *d;
5380 if (RE_TRANSLATE (translate, di) != *p++)
5382 d = dfail;
5383 goto fail;
5385 d++;
5387 while (--mcnt);
5389 else
5393 PREFETCH ();
5394 if (*d++ != *p++)
5396 d = dfail;
5397 goto fail;
5400 while (--mcnt);
5402 break;
5405 /* Match any character except possibly a newline or a null. */
5406 case anychar:
5408 int buf_charlen;
5409 re_wchar_t buf_ch;
5411 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5413 PREFETCH ();
5414 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5415 buf_ch = TRANSLATE (buf_ch);
5417 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5418 && buf_ch == '\n')
5419 || ((bufp->syntax & RE_DOT_NOT_NULL)
5420 && buf_ch == '\000'))
5421 goto fail;
5423 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5424 d += buf_charlen;
5426 break;
5429 case charset:
5430 case charset_not:
5432 register unsigned int c;
5433 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5434 int len;
5436 /* Start of actual range_table, or end of bitmap if there is no
5437 range table. */
5438 re_char *range_table;
5440 /* Nonzero if there is a range table. */
5441 int range_table_exists;
5443 /* Number of ranges of range table. This is not included
5444 in the initial byte-length of the command. */
5445 int count = 0;
5447 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5449 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5451 if (range_table_exists)
5453 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5454 EXTRACT_NUMBER_AND_INCR (count, range_table);
5457 PREFETCH ();
5458 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5459 c = TRANSLATE (c); /* The character to match. */
5461 if (SINGLE_BYTE_CHAR_P (c))
5462 { /* Lookup bitmap. */
5463 /* Cast to `unsigned' instead of `unsigned char' in
5464 case the bit list is a full 32 bytes long. */
5465 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5466 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5467 not = !not;
5469 #ifdef emacs
5470 else if (range_table_exists)
5472 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5474 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5475 | (class_bits & BIT_MULTIBYTE)
5476 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5477 | (class_bits & BIT_SPACE && ISSPACE (c))
5478 | (class_bits & BIT_UPPER && ISUPPER (c))
5479 | (class_bits & BIT_WORD && ISWORD (c)))
5480 not = !not;
5481 else
5482 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5484 #endif /* emacs */
5486 if (range_table_exists)
5487 p = CHARSET_RANGE_TABLE_END (range_table, count);
5488 else
5489 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5491 if (!not) goto fail;
5493 d += len;
5494 break;
5498 /* The beginning of a group is represented by start_memory.
5499 The argument is the register number. The text
5500 matched within the group is recorded (in the internal
5501 registers data structure) under the register number. */
5502 case start_memory:
5503 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5505 /* In case we need to undo this operation (via backtracking). */
5506 PUSH_FAILURE_REG ((unsigned int)*p);
5508 regstart[*p] = d;
5509 regend[*p] = NULL; /* probably unnecessary. -sm */
5510 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5512 /* Move past the register number and inner group count. */
5513 p += 1;
5514 break;
5517 /* The stop_memory opcode represents the end of a group. Its
5518 argument is the same as start_memory's: the register number. */
5519 case stop_memory:
5520 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5522 assert (!REG_UNSET (regstart[*p]));
5523 /* Strictly speaking, there should be code such as:
5525 assert (REG_UNSET (regend[*p]));
5526 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5528 But the only info to be pushed is regend[*p] and it is known to
5529 be UNSET, so there really isn't anything to push.
5530 Not pushing anything, on the other hand deprives us from the
5531 guarantee that regend[*p] is UNSET since undoing this operation
5532 will not reset its value properly. This is not important since
5533 the value will only be read on the next start_memory or at
5534 the very end and both events can only happen if this stop_memory
5535 is *not* undone. */
5537 regend[*p] = d;
5538 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5540 /* Move past the register number and the inner group count. */
5541 p += 1;
5542 break;
5545 /* \<digit> has been turned into a `duplicate' command which is
5546 followed by the numeric value of <digit> as the register number. */
5547 case duplicate:
5549 register re_char *d2, *dend2;
5550 int regno = *p++; /* Get which register to match against. */
5551 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5553 /* Can't back reference a group which we've never matched. */
5554 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5555 goto fail;
5557 /* Where in input to try to start matching. */
5558 d2 = regstart[regno];
5560 /* Remember the start point to rollback upon failure. */
5561 dfail = d;
5563 /* Where to stop matching; if both the place to start and
5564 the place to stop matching are in the same string, then
5565 set to the place to stop, otherwise, for now have to use
5566 the end of the first string. */
5568 dend2 = ((FIRST_STRING_P (regstart[regno])
5569 == FIRST_STRING_P (regend[regno]))
5570 ? regend[regno] : end_match_1);
5571 for (;;)
5573 /* If necessary, advance to next segment in register
5574 contents. */
5575 while (d2 == dend2)
5577 if (dend2 == end_match_2) break;
5578 if (dend2 == regend[regno]) break;
5580 /* End of string1 => advance to string2. */
5581 d2 = string2;
5582 dend2 = regend[regno];
5584 /* At end of register contents => success */
5585 if (d2 == dend2) break;
5587 /* If necessary, advance to next segment in data. */
5588 PREFETCH ();
5590 /* How many characters left in this segment to match. */
5591 mcnt = dend - d;
5593 /* Want how many consecutive characters we can match in
5594 one shot, so, if necessary, adjust the count. */
5595 if (mcnt > dend2 - d2)
5596 mcnt = dend2 - d2;
5598 /* Compare that many; failure if mismatch, else move
5599 past them. */
5600 if (RE_TRANSLATE_P (translate)
5601 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5602 : memcmp (d, d2, mcnt))
5604 d = dfail;
5605 goto fail;
5607 d += mcnt, d2 += mcnt;
5610 break;
5613 /* begline matches the empty string at the beginning of the string
5614 (unless `not_bol' is set in `bufp'), and after newlines. */
5615 case begline:
5616 DEBUG_PRINT1 ("EXECUTING begline.\n");
5618 if (AT_STRINGS_BEG (d))
5620 if (!bufp->not_bol) break;
5622 else
5624 unsigned char c;
5625 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5626 if (c == '\n')
5627 break;
5629 /* In all other cases, we fail. */
5630 goto fail;
5633 /* endline is the dual of begline. */
5634 case endline:
5635 DEBUG_PRINT1 ("EXECUTING endline.\n");
5637 if (AT_STRINGS_END (d))
5639 if (!bufp->not_eol) break;
5641 else
5643 PREFETCH_NOLIMIT ();
5644 if (*d == '\n')
5645 break;
5647 goto fail;
5650 /* Match at the very beginning of the data. */
5651 case begbuf:
5652 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5653 if (AT_STRINGS_BEG (d))
5654 break;
5655 goto fail;
5658 /* Match at the very end of the data. */
5659 case endbuf:
5660 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5661 if (AT_STRINGS_END (d))
5662 break;
5663 goto fail;
5666 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5667 pushes NULL as the value for the string on the stack. Then
5668 `POP_FAILURE_POINT' will keep the current value for the
5669 string, instead of restoring it. To see why, consider
5670 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5671 then the . fails against the \n. But the next thing we want
5672 to do is match the \n against the \n; if we restored the
5673 string value, we would be back at the foo.
5675 Because this is used only in specific cases, we don't need to
5676 check all the things that `on_failure_jump' does, to make
5677 sure the right things get saved on the stack. Hence we don't
5678 share its code. The only reason to push anything on the
5679 stack at all is that otherwise we would have to change
5680 `anychar's code to do something besides goto fail in this
5681 case; that seems worse than this. */
5682 case on_failure_keep_string_jump:
5683 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5684 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5685 mcnt, p + mcnt);
5687 PUSH_FAILURE_POINT (p - 3, NULL);
5688 break;
5690 /* A nasty loop is introduced by the non-greedy *? and +?.
5691 With such loops, the stack only ever contains one failure point
5692 at a time, so that a plain on_failure_jump_loop kind of
5693 cycle detection cannot work. Worse yet, such a detection
5694 can not only fail to detect a cycle, but it can also wrongly
5695 detect a cycle (between different instantiations of the same
5696 loop).
5697 So the method used for those nasty loops is a little different:
5698 We use a special cycle-detection-stack-frame which is pushed
5699 when the on_failure_jump_nastyloop failure-point is *popped*.
5700 This special frame thus marks the beginning of one iteration
5701 through the loop and we can hence easily check right here
5702 whether something matched between the beginning and the end of
5703 the loop. */
5704 case on_failure_jump_nastyloop:
5705 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5706 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5707 mcnt, p + mcnt);
5709 assert ((re_opcode_t)p[-4] == no_op);
5711 int cycle = 0;
5712 CHECK_INFINITE_LOOP (p - 4, d);
5713 if (!cycle)
5714 /* If there's a cycle, just continue without pushing
5715 this failure point. The failure point is the "try again"
5716 option, which shouldn't be tried.
5717 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5718 PUSH_FAILURE_POINT (p - 3, d);
5720 break;
5722 /* Simple loop detecting on_failure_jump: just check on the
5723 failure stack if the same spot was already hit earlier. */
5724 case on_failure_jump_loop:
5725 on_failure:
5726 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5727 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5728 mcnt, p + mcnt);
5730 int cycle = 0;
5731 CHECK_INFINITE_LOOP (p - 3, d);
5732 if (cycle)
5733 /* If there's a cycle, get out of the loop, as if the matching
5734 had failed. We used to just `goto fail' here, but that was
5735 aborting the search a bit too early: we want to keep the
5736 empty-loop-match and keep matching after the loop.
5737 We want (x?)*y\1z to match both xxyz and xxyxz. */
5738 p += mcnt;
5739 else
5740 PUSH_FAILURE_POINT (p - 3, d);
5742 break;
5745 /* Uses of on_failure_jump:
5747 Each alternative starts with an on_failure_jump that points
5748 to the beginning of the next alternative. Each alternative
5749 except the last ends with a jump that in effect jumps past
5750 the rest of the alternatives. (They really jump to the
5751 ending jump of the following alternative, because tensioning
5752 these jumps is a hassle.)
5754 Repeats start with an on_failure_jump that points past both
5755 the repetition text and either the following jump or
5756 pop_failure_jump back to this on_failure_jump. */
5757 case on_failure_jump:
5758 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5759 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5760 mcnt, p + mcnt);
5762 PUSH_FAILURE_POINT (p -3, d);
5763 break;
5765 /* This operation is used for greedy *.
5766 Compare the beginning of the repeat with what in the
5767 pattern follows its end. If we can establish that there
5768 is nothing that they would both match, i.e., that we
5769 would have to backtrack because of (as in, e.g., `a*a')
5770 then we can use a non-backtracking loop based on
5771 on_failure_keep_string_jump instead of on_failure_jump. */
5772 case on_failure_jump_smart:
5773 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5774 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5775 mcnt, p + mcnt);
5777 re_char *p1 = p; /* Next operation. */
5778 /* Here, we discard `const', making re_match non-reentrant. */
5779 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5780 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5782 p -= 3; /* Reset so that we will re-execute the
5783 instruction once it's been changed. */
5785 EXTRACT_NUMBER (mcnt, p2 - 2);
5787 /* Ensure this is a indeed the trivial kind of loop
5788 we are expecting. */
5789 assert (skip_one_char (p1) == p2 - 3);
5790 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5791 DEBUG_STATEMENT (debug += 2);
5792 if (mutually_exclusive_p (bufp, p1, p2))
5794 /* Use a fast `on_failure_keep_string_jump' loop. */
5795 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5796 *p3 = (unsigned char) on_failure_keep_string_jump;
5797 STORE_NUMBER (p2 - 2, mcnt + 3);
5799 else
5801 /* Default to a safe `on_failure_jump' loop. */
5802 DEBUG_PRINT1 (" smart default => slow loop.\n");
5803 *p3 = (unsigned char) on_failure_jump;
5805 DEBUG_STATEMENT (debug -= 2);
5807 break;
5809 /* Unconditionally jump (without popping any failure points). */
5810 case jump:
5811 unconditional_jump:
5812 IMMEDIATE_QUIT_CHECK;
5813 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5814 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5815 p += mcnt; /* Do the jump. */
5816 DEBUG_PRINT2 ("(to %p).\n", p);
5817 break;
5820 /* Have to succeed matching what follows at least n times.
5821 After that, handle like `on_failure_jump'. */
5822 case succeed_n:
5823 /* Signedness doesn't matter since we only compare MCNT to 0. */
5824 EXTRACT_NUMBER (mcnt, p + 2);
5825 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5827 /* Originally, mcnt is how many times we HAVE to succeed. */
5828 if (mcnt != 0)
5830 /* Here, we discard `const', making re_match non-reentrant. */
5831 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5832 mcnt--;
5833 p += 4;
5834 PUSH_NUMBER (p2, mcnt);
5836 else
5837 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5838 goto on_failure;
5839 break;
5841 case jump_n:
5842 /* Signedness doesn't matter since we only compare MCNT to 0. */
5843 EXTRACT_NUMBER (mcnt, p + 2);
5844 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5846 /* Originally, this is how many times we CAN jump. */
5847 if (mcnt != 0)
5849 /* Here, we discard `const', making re_match non-reentrant. */
5850 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5851 mcnt--;
5852 PUSH_NUMBER (p2, mcnt);
5853 goto unconditional_jump;
5855 /* If don't have to jump any more, skip over the rest of command. */
5856 else
5857 p += 4;
5858 break;
5860 case set_number_at:
5862 unsigned char *p2; /* Location of the counter. */
5863 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5865 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5866 /* Here, we discard `const', making re_match non-reentrant. */
5867 p2 = (unsigned char*) p + mcnt;
5868 /* Signedness doesn't matter since we only copy MCNT's bits . */
5869 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5870 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5871 PUSH_NUMBER (p2, mcnt);
5872 break;
5875 case wordbound:
5876 case notwordbound:
5877 not = (re_opcode_t) *(p - 1) == notwordbound;
5878 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5880 /* We SUCCEED (or FAIL) in one of the following cases: */
5882 /* Case 1: D is at the beginning or the end of string. */
5883 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5884 not = !not;
5885 else
5887 /* C1 is the character before D, S1 is the syntax of C1, C2
5888 is the character at D, and S2 is the syntax of C2. */
5889 re_wchar_t c1, c2;
5890 int s1, s2;
5891 #ifdef emacs
5892 int offset = PTR_TO_OFFSET (d - 1);
5893 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5894 UPDATE_SYNTAX_TABLE (charpos);
5895 #endif
5896 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5897 s1 = SYNTAX (c1);
5898 #ifdef emacs
5899 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5900 #endif
5901 PREFETCH_NOLIMIT ();
5902 c2 = RE_STRING_CHAR (d, dend - d);
5903 s2 = SYNTAX (c2);
5905 if (/* Case 2: Only one of S1 and S2 is Sword. */
5906 ((s1 == Sword) != (s2 == Sword))
5907 /* Case 3: Both of S1 and S2 are Sword, and macro
5908 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5909 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5910 not = !not;
5912 if (not)
5913 break;
5914 else
5915 goto fail;
5917 case wordbeg:
5918 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5920 /* We FAIL in one of the following cases: */
5922 /* Case 1: D is at the end of string. */
5923 if (AT_STRINGS_END (d))
5924 goto fail;
5925 else
5927 /* C1 is the character before D, S1 is the syntax of C1, C2
5928 is the character at D, and S2 is the syntax of C2. */
5929 re_wchar_t c1, c2;
5930 int s1, s2;
5931 #ifdef emacs
5932 int offset = PTR_TO_OFFSET (d);
5933 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5934 UPDATE_SYNTAX_TABLE (charpos);
5935 #endif
5936 PREFETCH ();
5937 c2 = RE_STRING_CHAR (d, dend - d);
5938 s2 = SYNTAX (c2);
5940 /* Case 2: S2 is not Sword. */
5941 if (s2 != Sword)
5942 goto fail;
5944 /* Case 3: D is not at the beginning of string ... */
5945 if (!AT_STRINGS_BEG (d))
5947 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5948 #ifdef emacs
5949 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5950 #endif
5951 s1 = SYNTAX (c1);
5953 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5954 returns 0. */
5955 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5956 goto fail;
5959 break;
5961 case wordend:
5962 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5964 /* We FAIL in one of the following cases: */
5966 /* Case 1: D is at the beginning of string. */
5967 if (AT_STRINGS_BEG (d))
5968 goto fail;
5969 else
5971 /* C1 is the character before D, S1 is the syntax of C1, C2
5972 is the character at D, and S2 is the syntax of C2. */
5973 re_wchar_t c1, c2;
5974 int s1, s2;
5975 #ifdef emacs
5976 int offset = PTR_TO_OFFSET (d) - 1;
5977 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5978 UPDATE_SYNTAX_TABLE (charpos);
5979 #endif
5980 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5981 s1 = SYNTAX (c1);
5983 /* Case 2: S1 is not Sword. */
5984 if (s1 != Sword)
5985 goto fail;
5987 /* Case 3: D is not at the end of string ... */
5988 if (!AT_STRINGS_END (d))
5990 PREFETCH_NOLIMIT ();
5991 c2 = RE_STRING_CHAR (d, dend - d);
5992 #ifdef emacs
5993 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5994 #endif
5995 s2 = SYNTAX (c2);
5997 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5998 returns 0. */
5999 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6000 goto fail;
6003 break;
6005 case symbeg:
6006 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6008 /* We FAIL in one of the following cases: */
6010 /* Case 1: D is at the end of string. */
6011 if (AT_STRINGS_END (d))
6012 goto fail;
6013 else
6015 /* C1 is the character before D, S1 is the syntax of C1, C2
6016 is the character at D, and S2 is the syntax of C2. */
6017 re_wchar_t c1, c2;
6018 int s1, s2;
6019 #ifdef emacs
6020 int offset = PTR_TO_OFFSET (d);
6021 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6022 UPDATE_SYNTAX_TABLE (charpos);
6023 #endif
6024 PREFETCH ();
6025 c2 = RE_STRING_CHAR (d, dend - d);
6026 s2 = SYNTAX (c2);
6028 /* Case 2: S2 is neither Sword nor Ssymbol. */
6029 if (s2 != Sword && s2 != Ssymbol)
6030 goto fail;
6032 /* Case 3: D is not at the beginning of string ... */
6033 if (!AT_STRINGS_BEG (d))
6035 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6036 #ifdef emacs
6037 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6038 #endif
6039 s1 = SYNTAX (c1);
6041 /* ... and S1 is Sword or Ssymbol. */
6042 if (s1 == Sword || s1 == Ssymbol)
6043 goto fail;
6046 break;
6048 case symend:
6049 DEBUG_PRINT1 ("EXECUTING symend.\n");
6051 /* We FAIL in one of the following cases: */
6053 /* Case 1: D is at the beginning of string. */
6054 if (AT_STRINGS_BEG (d))
6055 goto fail;
6056 else
6058 /* C1 is the character before D, S1 is the syntax of C1, C2
6059 is the character at D, and S2 is the syntax of C2. */
6060 re_wchar_t c1, c2;
6061 int s1, s2;
6062 #ifdef emacs
6063 int offset = PTR_TO_OFFSET (d) - 1;
6064 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6065 UPDATE_SYNTAX_TABLE (charpos);
6066 #endif
6067 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6068 s1 = SYNTAX (c1);
6070 /* Case 2: S1 is neither Ssymbol nor Sword. */
6071 if (s1 != Sword && s1 != Ssymbol)
6072 goto fail;
6074 /* Case 3: D is not at the end of string ... */
6075 if (!AT_STRINGS_END (d))
6077 PREFETCH_NOLIMIT ();
6078 c2 = RE_STRING_CHAR (d, dend - d);
6079 #ifdef emacs
6080 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6081 #endif
6082 s2 = SYNTAX (c2);
6084 /* ... and S2 is Sword or Ssymbol. */
6085 if (s2 == Sword || s2 == Ssymbol)
6086 goto fail;
6089 break;
6091 case syntaxspec:
6092 case notsyntaxspec:
6093 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6094 mcnt = *p++;
6095 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6096 PREFETCH ();
6097 #ifdef emacs
6099 int offset = PTR_TO_OFFSET (d);
6100 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6101 UPDATE_SYNTAX_TABLE (pos1);
6103 #endif
6105 int len;
6106 re_wchar_t c;
6108 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6110 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6111 goto fail;
6112 d += len;
6114 break;
6116 #ifdef emacs
6117 case before_dot:
6118 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6119 if (PTR_BYTE_POS (d) >= PT_BYTE)
6120 goto fail;
6121 break;
6123 case at_dot:
6124 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6125 if (PTR_BYTE_POS (d) != PT_BYTE)
6126 goto fail;
6127 break;
6129 case after_dot:
6130 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6131 if (PTR_BYTE_POS (d) <= PT_BYTE)
6132 goto fail;
6133 break;
6135 case categoryspec:
6136 case notcategoryspec:
6137 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6138 mcnt = *p++;
6139 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6140 PREFETCH ();
6142 int len;
6143 re_wchar_t c;
6145 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6147 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6148 goto fail;
6149 d += len;
6151 break;
6153 #endif /* emacs */
6155 default:
6156 abort ();
6158 continue; /* Successfully executed one pattern command; keep going. */
6161 /* We goto here if a matching operation fails. */
6162 fail:
6163 IMMEDIATE_QUIT_CHECK;
6164 if (!FAIL_STACK_EMPTY ())
6166 re_char *str, *pat;
6167 /* A restart point is known. Restore to that state. */
6168 DEBUG_PRINT1 ("\nFAIL:\n");
6169 POP_FAILURE_POINT (str, pat);
6170 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6172 case on_failure_keep_string_jump:
6173 assert (str == NULL);
6174 goto continue_failure_jump;
6176 case on_failure_jump_nastyloop:
6177 assert ((re_opcode_t)pat[-2] == no_op);
6178 PUSH_FAILURE_POINT (pat - 2, str);
6179 /* Fallthrough */
6181 case on_failure_jump_loop:
6182 case on_failure_jump:
6183 case succeed_n:
6184 d = str;
6185 continue_failure_jump:
6186 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6187 p = pat + mcnt;
6188 break;
6190 case no_op:
6191 /* A special frame used for nastyloops. */
6192 goto fail;
6194 default:
6195 abort();
6198 assert (p >= bufp->buffer && p <= pend);
6200 if (d >= string1 && d <= end1)
6201 dend = end_match_1;
6203 else
6204 break; /* Matching at this starting point really fails. */
6205 } /* for (;;) */
6207 if (best_regs_set)
6208 goto restore_best_regs;
6210 FREE_VARIABLES ();
6212 return -1; /* Failure to match. */
6213 } /* re_match_2 */
6215 /* Subroutine definitions for re_match_2. */
6217 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6218 bytes; nonzero otherwise. */
6220 static int
6221 bcmp_translate (s1, s2, len, translate, multibyte)
6222 re_char *s1, *s2;
6223 register int len;
6224 RE_TRANSLATE_TYPE translate;
6225 const int multibyte;
6227 register re_char *p1 = s1, *p2 = s2;
6228 re_char *p1_end = s1 + len;
6229 re_char *p2_end = s2 + len;
6231 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6232 different lengths, but relying on a single `len' would break this. -sm */
6233 while (p1 < p1_end && p2 < p2_end)
6235 int p1_charlen, p2_charlen;
6236 re_wchar_t p1_ch, p2_ch;
6238 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6239 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6241 if (RE_TRANSLATE (translate, p1_ch)
6242 != RE_TRANSLATE (translate, p2_ch))
6243 return 1;
6245 p1 += p1_charlen, p2 += p2_charlen;
6248 if (p1 != p1_end || p2 != p2_end)
6249 return 1;
6251 return 0;
6254 /* Entry points for GNU code. */
6256 /* re_compile_pattern is the GNU regular expression compiler: it
6257 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6258 Returns 0 if the pattern was valid, otherwise an error string.
6260 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6261 are set in BUFP on entry.
6263 We call regex_compile to do the actual compilation. */
6265 const char *
6266 re_compile_pattern (pattern, length, bufp)
6267 const char *pattern;
6268 size_t length;
6269 struct re_pattern_buffer *bufp;
6271 reg_errcode_t ret;
6273 #ifdef emacs
6274 gl_state.current_syntax_table = current_buffer->syntax_table;
6275 #endif
6277 /* GNU code is written to assume at least RE_NREGS registers will be set
6278 (and at least one extra will be -1). */
6279 bufp->regs_allocated = REGS_UNALLOCATED;
6281 /* And GNU code determines whether or not to get register information
6282 by passing null for the REGS argument to re_match, etc., not by
6283 setting no_sub. */
6284 bufp->no_sub = 0;
6286 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6288 if (!ret)
6289 return NULL;
6290 return gettext (re_error_msgid[(int) ret]);
6292 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6294 /* Entry points compatible with 4.2 BSD regex library. We don't define
6295 them unless specifically requested. */
6297 #if defined _REGEX_RE_COMP || defined _LIBC
6299 /* BSD has one and only one pattern buffer. */
6300 static struct re_pattern_buffer re_comp_buf;
6302 char *
6303 # ifdef _LIBC
6304 /* Make these definitions weak in libc, so POSIX programs can redefine
6305 these names if they don't use our functions, and still use
6306 regcomp/regexec below without link errors. */
6307 weak_function
6308 # endif
6309 re_comp (s)
6310 const char *s;
6312 reg_errcode_t ret;
6314 if (!s)
6316 if (!re_comp_buf.buffer)
6317 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6318 return (char *) gettext ("No previous regular expression");
6319 return 0;
6322 if (!re_comp_buf.buffer)
6324 re_comp_buf.buffer = (unsigned char *) malloc (200);
6325 if (re_comp_buf.buffer == NULL)
6326 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6327 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6328 re_comp_buf.allocated = 200;
6330 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6331 if (re_comp_buf.fastmap == NULL)
6332 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6333 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6336 /* Since `re_exec' always passes NULL for the `regs' argument, we
6337 don't need to initialize the pattern buffer fields which affect it. */
6339 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6341 if (!ret)
6342 return NULL;
6344 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6345 return (char *) gettext (re_error_msgid[(int) ret]);
6350 # ifdef _LIBC
6351 weak_function
6352 # endif
6353 re_exec (s)
6354 const char *s;
6356 const int len = strlen (s);
6357 return
6358 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6360 #endif /* _REGEX_RE_COMP */
6362 /* POSIX.2 functions. Don't define these for Emacs. */
6364 #ifndef emacs
6366 /* regcomp takes a regular expression as a string and compiles it.
6368 PREG is a regex_t *. We do not expect any fields to be initialized,
6369 since POSIX says we shouldn't. Thus, we set
6371 `buffer' to the compiled pattern;
6372 `used' to the length of the compiled pattern;
6373 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6374 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6375 RE_SYNTAX_POSIX_BASIC;
6376 `fastmap' to an allocated space for the fastmap;
6377 `fastmap_accurate' to zero;
6378 `re_nsub' to the number of subexpressions in PATTERN.
6380 PATTERN is the address of the pattern string.
6382 CFLAGS is a series of bits which affect compilation.
6384 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6385 use POSIX basic syntax.
6387 If REG_NEWLINE is set, then . and [^...] don't match newline.
6388 Also, regexec will try a match beginning after every newline.
6390 If REG_ICASE is set, then we considers upper- and lowercase
6391 versions of letters to be equivalent when matching.
6393 If REG_NOSUB is set, then when PREG is passed to regexec, that
6394 routine will report only success or failure, and nothing about the
6395 registers.
6397 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6398 the return codes and their meanings.) */
6401 regcomp (preg, pattern, cflags)
6402 regex_t *__restrict preg;
6403 const char *__restrict pattern;
6404 int cflags;
6406 reg_errcode_t ret;
6407 reg_syntax_t syntax
6408 = (cflags & REG_EXTENDED) ?
6409 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6411 /* regex_compile will allocate the space for the compiled pattern. */
6412 preg->buffer = 0;
6413 preg->allocated = 0;
6414 preg->used = 0;
6416 /* Try to allocate space for the fastmap. */
6417 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6419 if (cflags & REG_ICASE)
6421 unsigned i;
6423 preg->translate
6424 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6425 * sizeof (*(RE_TRANSLATE_TYPE)0));
6426 if (preg->translate == NULL)
6427 return (int) REG_ESPACE;
6429 /* Map uppercase characters to corresponding lowercase ones. */
6430 for (i = 0; i < CHAR_SET_SIZE; i++)
6431 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6433 else
6434 preg->translate = NULL;
6436 /* If REG_NEWLINE is set, newlines are treated differently. */
6437 if (cflags & REG_NEWLINE)
6438 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6439 syntax &= ~RE_DOT_NEWLINE;
6440 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6442 else
6443 syntax |= RE_NO_NEWLINE_ANCHOR;
6445 preg->no_sub = !!(cflags & REG_NOSUB);
6447 /* POSIX says a null character in the pattern terminates it, so we
6448 can use strlen here in compiling the pattern. */
6449 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6451 /* POSIX doesn't distinguish between an unmatched open-group and an
6452 unmatched close-group: both are REG_EPAREN. */
6453 if (ret == REG_ERPAREN)
6454 ret = REG_EPAREN;
6456 if (ret == REG_NOERROR && preg->fastmap)
6457 { /* Compute the fastmap now, since regexec cannot modify the pattern
6458 buffer. */
6459 re_compile_fastmap (preg);
6460 if (preg->can_be_null)
6461 { /* The fastmap can't be used anyway. */
6462 free (preg->fastmap);
6463 preg->fastmap = NULL;
6466 return (int) ret;
6468 WEAK_ALIAS (__regcomp, regcomp)
6471 /* regexec searches for a given pattern, specified by PREG, in the
6472 string STRING.
6474 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6475 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6476 least NMATCH elements, and we set them to the offsets of the
6477 corresponding matched substrings.
6479 EFLAGS specifies `execution flags' which affect matching: if
6480 REG_NOTBOL is set, then ^ does not match at the beginning of the
6481 string; if REG_NOTEOL is set, then $ does not match at the end.
6483 We return 0 if we find a match and REG_NOMATCH if not. */
6486 regexec (preg, string, nmatch, pmatch, eflags)
6487 const regex_t *__restrict preg;
6488 const char *__restrict string;
6489 size_t nmatch;
6490 regmatch_t pmatch[__restrict_arr];
6491 int eflags;
6493 int ret;
6494 struct re_registers regs;
6495 regex_t private_preg;
6496 int len = strlen (string);
6497 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6499 private_preg = *preg;
6501 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6502 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6504 /* The user has told us exactly how many registers to return
6505 information about, via `nmatch'. We have to pass that on to the
6506 matching routines. */
6507 private_preg.regs_allocated = REGS_FIXED;
6509 if (want_reg_info)
6511 regs.num_regs = nmatch;
6512 regs.start = TALLOC (nmatch * 2, regoff_t);
6513 if (regs.start == NULL)
6514 return (int) REG_NOMATCH;
6515 regs.end = regs.start + nmatch;
6518 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6519 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6520 was a little bit longer but still only matching the real part.
6521 This works because the `endline' will check for a '\n' and will find a
6522 '\0', correctly deciding that this is not the end of a line.
6523 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6524 a convenient '\0' there. For all we know, the string could be preceded
6525 by '\n' which would throw things off. */
6527 /* Perform the searching operation. */
6528 ret = re_search (&private_preg, string, len,
6529 /* start: */ 0, /* range: */ len,
6530 want_reg_info ? &regs : (struct re_registers *) 0);
6532 /* Copy the register information to the POSIX structure. */
6533 if (want_reg_info)
6535 if (ret >= 0)
6537 unsigned r;
6539 for (r = 0; r < nmatch; r++)
6541 pmatch[r].rm_so = regs.start[r];
6542 pmatch[r].rm_eo = regs.end[r];
6546 /* If we needed the temporary register info, free the space now. */
6547 free (regs.start);
6550 /* We want zero return to mean success, unlike `re_search'. */
6551 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6553 WEAK_ALIAS (__regexec, regexec)
6556 /* Returns a message corresponding to an error code, ERR_CODE, returned
6557 from either regcomp or regexec. We don't use PREG here.
6559 ERR_CODE was previously called ERRCODE, but that name causes an
6560 error with msvc8 compiler. */
6562 size_t
6563 regerror (err_code, preg, errbuf, errbuf_size)
6564 int err_code;
6565 const regex_t *preg;
6566 char *errbuf;
6567 size_t errbuf_size;
6569 const char *msg;
6570 size_t msg_size;
6572 if (err_code < 0
6573 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6574 /* Only error codes returned by the rest of the code should be passed
6575 to this routine. If we are given anything else, or if other regex
6576 code generates an invalid error code, then the program has a bug.
6577 Dump core so we can fix it. */
6578 abort ();
6580 msg = gettext (re_error_msgid[err_code]);
6582 msg_size = strlen (msg) + 1; /* Includes the null. */
6584 if (errbuf_size != 0)
6586 if (msg_size > errbuf_size)
6588 strncpy (errbuf, msg, errbuf_size - 1);
6589 errbuf[errbuf_size - 1] = 0;
6591 else
6592 strcpy (errbuf, msg);
6595 return msg_size;
6597 WEAK_ALIAS (__regerror, regerror)
6600 /* Free dynamically allocated space used by PREG. */
6602 void
6603 regfree (preg)
6604 regex_t *preg;
6606 if (preg->buffer != NULL)
6607 free (preg->buffer);
6608 preg->buffer = NULL;
6610 preg->allocated = 0;
6611 preg->used = 0;
6613 if (preg->fastmap != NULL)
6614 free (preg->fastmap);
6615 preg->fastmap = NULL;
6616 preg->fastmap_accurate = 0;
6618 if (preg->translate != NULL)
6619 free (preg->translate);
6620 preg->translate = NULL;
6622 WEAK_ALIAS (__regfree, regfree)
6624 #endif /* not emacs */
6626 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6627 (do not change this comment) */