; * lisp/ldefs-boot.el: Update.
[emacs.git] / src / alloc.c
blob1a72941cc92e5b92bfb34d7c363b5cf4a04cacb0
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2019 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <errno.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <signal.h> /* For SIGABRT, SIGDANGER. */
29 #ifdef HAVE_PTHREAD
30 #include <pthread.h>
31 #endif
33 #include "lisp.h"
34 #include "dispextern.h"
35 #include "intervals.h"
36 #include "puresize.h"
37 #include "sheap.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <flexmember.h>
51 #include <verify.h>
52 #include <execinfo.h> /* For backtrace. */
54 #ifdef HAVE_LINUX_SYSINFO
55 #include <sys/sysinfo.h>
56 #endif
58 #ifdef MSDOS
59 #include "dosfns.h" /* For dos_memory_info. */
60 #endif
62 #ifdef HAVE_MALLOC_H
63 # include <malloc.h>
64 #endif
66 #if (defined ENABLE_CHECKING \
67 && defined HAVE_VALGRIND_VALGRIND_H \
68 && !defined USE_VALGRIND)
69 # define USE_VALGRIND 1
70 #endif
72 #if USE_VALGRIND
73 #include <valgrind/valgrind.h>
74 #include <valgrind/memcheck.h>
75 static bool valgrind_p;
76 #endif
78 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
79 We turn that on by default when ENABLE_CHECKING is defined;
80 define GC_CHECK_MARKED_OBJECTS to zero to disable. */
82 #if defined ENABLE_CHECKING && !defined GC_CHECK_MARKED_OBJECTS
83 # define GC_CHECK_MARKED_OBJECTS 1
84 #endif
86 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
87 memory. Can do this only if using gmalloc.c and if not checking
88 marked objects. */
90 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
91 || defined HYBRID_MALLOC || GC_CHECK_MARKED_OBJECTS)
92 #undef GC_MALLOC_CHECK
93 #endif
95 #include <unistd.h>
96 #include <fcntl.h>
98 #ifdef USE_GTK
99 # include "gtkutil.h"
100 #endif
101 #ifdef WINDOWSNT
102 #include "w32.h"
103 #include "w32heap.h" /* for sbrk */
104 #endif
106 #ifdef GNU_LINUX
107 /* The address where the heap starts. */
108 void *
109 my_heap_start (void)
111 static void *start;
112 if (! start)
113 start = sbrk (0);
114 return start;
116 #endif
118 #ifdef DOUG_LEA_MALLOC
120 /* Specify maximum number of areas to mmap. It would be nice to use a
121 value that explicitly means "no limit". */
123 #define MMAP_MAX_AREAS 100000000
125 /* A pointer to the memory allocated that copies that static data
126 inside glibc's malloc. */
127 static void *malloc_state_ptr;
129 /* Restore the dumped malloc state. Because malloc can be invoked
130 even before main (e.g. by the dynamic linker), the dumped malloc
131 state must be restored as early as possible using this special hook. */
132 static void
133 malloc_initialize_hook (void)
135 static bool malloc_using_checking;
137 if (! initialized)
139 #ifdef GNU_LINUX
140 my_heap_start ();
141 #endif
142 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
144 else
146 if (!malloc_using_checking)
148 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
149 ignored if the heap to be restored was constructed without
150 malloc checking. Can't use unsetenv, since that calls malloc. */
151 char **p = environ;
152 if (p)
153 for (; *p; p++)
154 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
157 *p = p[1];
158 while (*++p);
160 break;
164 if (malloc_set_state (malloc_state_ptr) != 0)
165 emacs_abort ();
166 # ifndef XMALLOC_OVERRUN_CHECK
167 alloc_unexec_post ();
168 # endif
172 /* Declare the malloc initialization hook, which runs before 'main' starts.
173 EXTERNALLY_VISIBLE works around Bug#22522. */
174 # ifndef __MALLOC_HOOK_VOLATILE
175 # define __MALLOC_HOOK_VOLATILE
176 # endif
177 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
178 = malloc_initialize_hook;
180 #endif
182 #if defined DOUG_LEA_MALLOC || !defined CANNOT_DUMP
184 /* Allocator-related actions to do just before and after unexec. */
186 void
187 alloc_unexec_pre (void)
189 # ifdef DOUG_LEA_MALLOC
190 malloc_state_ptr = malloc_get_state ();
191 if (!malloc_state_ptr)
192 fatal ("malloc_get_state: %s", strerror (errno));
193 # endif
194 # ifdef HYBRID_MALLOC
195 bss_sbrk_did_unexec = true;
196 # endif
199 void
200 alloc_unexec_post (void)
202 # ifdef DOUG_LEA_MALLOC
203 free (malloc_state_ptr);
204 # endif
205 # ifdef HYBRID_MALLOC
206 bss_sbrk_did_unexec = false;
207 # endif
209 #endif
211 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
212 to a struct Lisp_String. */
214 #define MARK_STRING(S) ((S)->u.s.size |= ARRAY_MARK_FLAG)
215 #define UNMARK_STRING(S) ((S)->u.s.size &= ~ARRAY_MARK_FLAG)
216 #define STRING_MARKED_P(S) (((S)->u.s.size & ARRAY_MARK_FLAG) != 0)
218 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
219 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
220 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
222 /* Default value of gc_cons_threshold (see below). */
224 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
226 /* Global variables. */
227 struct emacs_globals globals;
229 /* Number of bytes of consing done since the last gc. */
231 EMACS_INT consing_since_gc;
233 /* Similar minimum, computed from Vgc_cons_percentage. */
235 EMACS_INT gc_relative_threshold;
237 /* Minimum number of bytes of consing since GC before next GC,
238 when memory is full. */
240 EMACS_INT memory_full_cons_threshold;
242 /* True during GC. */
244 bool gc_in_progress;
246 /* Number of live and free conses etc. */
248 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
249 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
250 static EMACS_INT total_free_floats, total_floats;
252 /* Points to memory space allocated as "spare", to be freed if we run
253 out of memory. We keep one large block, four cons-blocks, and
254 two string blocks. */
256 static char *spare_memory[7];
258 /* Amount of spare memory to keep in large reserve block, or to see
259 whether this much is available when malloc fails on a larger request. */
261 #define SPARE_MEMORY (1 << 14)
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
269 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
272 /* Pointer to the pure area, and its size. */
274 static char *purebeg;
275 static ptrdiff_t pure_size;
277 /* Number of bytes of pure storage used before pure storage overflowed.
278 If this is non-zero, this implies that an overflow occurred. */
280 static ptrdiff_t pure_bytes_used_before_overflow;
282 /* Index in pure at which next pure Lisp object will be allocated.. */
284 static ptrdiff_t pure_bytes_used_lisp;
286 /* Number of bytes allocated for non-Lisp objects in pure storage. */
288 static ptrdiff_t pure_bytes_used_non_lisp;
290 /* If nonzero, this is a warning delivered by malloc and not yet
291 displayed. */
293 const char *pending_malloc_warning;
295 #if 0 /* Normally, pointer sanity only on request... */
296 #ifdef ENABLE_CHECKING
297 #define SUSPICIOUS_OBJECT_CHECKING 1
298 #endif
299 #endif
301 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
302 bug is unresolved. */
303 #define SUSPICIOUS_OBJECT_CHECKING 1
305 #ifdef SUSPICIOUS_OBJECT_CHECKING
306 struct suspicious_free_record
308 void *suspicious_object;
309 void *backtrace[128];
311 static void *suspicious_objects[32];
312 static int suspicious_object_index;
313 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
314 static int suspicious_free_history_index;
315 /* Find the first currently-monitored suspicious pointer in range
316 [begin,end) or NULL if no such pointer exists. */
317 static void *find_suspicious_object_in_range (void *begin, void *end);
318 static void detect_suspicious_free (void *ptr);
319 #else
320 # define find_suspicious_object_in_range(begin, end) NULL
321 # define detect_suspicious_free(ptr) (void)
322 #endif
324 /* Maximum amount of C stack to save when a GC happens. */
326 #ifndef MAX_SAVE_STACK
327 #define MAX_SAVE_STACK 16000
328 #endif
330 /* Buffer in which we save a copy of the C stack at each GC. */
332 #if MAX_SAVE_STACK > 0
333 static char *stack_copy;
334 static ptrdiff_t stack_copy_size;
336 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
337 avoiding any address sanitization. */
339 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
340 no_sanitize_memcpy (void *dest, void const *src, size_t size)
342 if (! ADDRESS_SANITIZER)
343 return memcpy (dest, src, size);
344 else
346 size_t i;
347 char *d = dest;
348 char const *s = src;
349 for (i = 0; i < size; i++)
350 d[i] = s[i];
351 return dest;
355 #endif /* MAX_SAVE_STACK > 0 */
357 static void mark_terminals (void);
358 static void gc_sweep (void);
359 static Lisp_Object make_pure_vector (ptrdiff_t);
360 static void mark_buffer (struct buffer *);
362 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
363 static void refill_memory_reserve (void);
364 #endif
365 static void compact_small_strings (void);
366 static void free_large_strings (void);
367 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
369 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
370 what memory allocated via lisp_malloc and lisp_align_malloc is intended
371 for what purpose. This enumeration specifies the type of memory. */
373 enum mem_type
375 MEM_TYPE_NON_LISP,
376 MEM_TYPE_BUFFER,
377 MEM_TYPE_CONS,
378 MEM_TYPE_STRING,
379 MEM_TYPE_MISC,
380 MEM_TYPE_SYMBOL,
381 MEM_TYPE_FLOAT,
382 /* Since all non-bool pseudovectors are small enough to be
383 allocated from vector blocks, this memory type denotes
384 large regular vectors and large bool pseudovectors. */
385 MEM_TYPE_VECTORLIKE,
386 /* Special type to denote vector blocks. */
387 MEM_TYPE_VECTOR_BLOCK,
388 /* Special type to denote reserved memory. */
389 MEM_TYPE_SPARE
392 /* A unique object in pure space used to make some Lisp objects
393 on free lists recognizable in O(1). */
395 static Lisp_Object Vdead;
396 #define DEADP(x) EQ (x, Vdead)
398 #ifdef GC_MALLOC_CHECK
400 enum mem_type allocated_mem_type;
402 #endif /* GC_MALLOC_CHECK */
404 /* A node in the red-black tree describing allocated memory containing
405 Lisp data. Each such block is recorded with its start and end
406 address when it is allocated, and removed from the tree when it
407 is freed.
409 A red-black tree is a balanced binary tree with the following
410 properties:
412 1. Every node is either red or black.
413 2. Every leaf is black.
414 3. If a node is red, then both of its children are black.
415 4. Every simple path from a node to a descendant leaf contains
416 the same number of black nodes.
417 5. The root is always black.
419 When nodes are inserted into the tree, or deleted from the tree,
420 the tree is "fixed" so that these properties are always true.
422 A red-black tree with N internal nodes has height at most 2
423 log(N+1). Searches, insertions and deletions are done in O(log N).
424 Please see a text book about data structures for a detailed
425 description of red-black trees. Any book worth its salt should
426 describe them. */
428 struct mem_node
430 /* Children of this node. These pointers are never NULL. When there
431 is no child, the value is MEM_NIL, which points to a dummy node. */
432 struct mem_node *left, *right;
434 /* The parent of this node. In the root node, this is NULL. */
435 struct mem_node *parent;
437 /* Start and end of allocated region. */
438 void *start, *end;
440 /* Node color. */
441 enum {MEM_BLACK, MEM_RED} color;
443 /* Memory type. */
444 enum mem_type type;
447 /* Root of the tree describing allocated Lisp memory. */
449 static struct mem_node *mem_root;
451 /* Lowest and highest known address in the heap. */
453 static void *min_heap_address, *max_heap_address;
455 /* Sentinel node of the tree. */
457 static struct mem_node mem_z;
458 #define MEM_NIL &mem_z
460 static struct mem_node *mem_insert (void *, void *, enum mem_type);
461 static void mem_insert_fixup (struct mem_node *);
462 static void mem_rotate_left (struct mem_node *);
463 static void mem_rotate_right (struct mem_node *);
464 static void mem_delete (struct mem_node *);
465 static void mem_delete_fixup (struct mem_node *);
466 static struct mem_node *mem_find (void *);
468 #ifndef DEADP
469 # define DEADP(x) 0
470 #endif
472 /* Addresses of staticpro'd variables. Initialize it to a nonzero
473 value; otherwise some compilers put it into BSS. */
475 enum { NSTATICS = 2048 };
476 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
478 /* Index of next unused slot in staticvec. */
480 static int staticidx;
482 static void *pure_alloc (size_t, int);
484 /* True if N is a power of 2. N should be positive. */
486 #define POWER_OF_2(n) (((n) & ((n) - 1)) == 0)
488 /* Return X rounded to the next multiple of Y. Y should be positive,
489 and Y - 1 + X should not overflow. Arguments should not have side
490 effects, as they are evaluated more than once. Tune for Y being a
491 power of 2. */
493 #define ROUNDUP(x, y) (POWER_OF_2 (y) \
494 ? ((y) - 1 + (x)) & ~ ((y) - 1) \
495 : ((y) - 1 + (x)) - ((y) - 1 + (x)) % (y))
497 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
499 static void *
500 pointer_align (void *ptr, int alignment)
502 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
505 /* Extract the pointer hidden within A, if A is not a symbol.
506 If A is a symbol, extract the hidden pointer's offset from lispsym,
507 converted to void *. */
509 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
510 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
512 /* Extract the pointer hidden within A. */
514 #define macro_XPNTR(a) \
515 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
516 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
518 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
519 functions, as functions are cleaner and can be used in debuggers.
520 Also, define them as macros if being compiled with GCC without
521 optimization, for performance in that case. The macro_* names are
522 private to this section of code. */
524 static ATTRIBUTE_UNUSED void *
525 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
527 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
529 static ATTRIBUTE_UNUSED void *
530 XPNTR (Lisp_Object a)
532 return macro_XPNTR (a);
535 #if DEFINE_KEY_OPS_AS_MACROS
536 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
537 # define XPNTR(a) macro_XPNTR (a)
538 #endif
540 static void
541 XFLOAT_INIT (Lisp_Object f, double n)
543 XFLOAT (f)->u.data = n;
546 #ifdef DOUG_LEA_MALLOC
547 static bool
548 pointers_fit_in_lispobj_p (void)
550 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
553 static bool
554 mmap_lisp_allowed_p (void)
556 /* If we can't store all memory addresses in our lisp objects, it's
557 risky to let the heap use mmap and give us addresses from all
558 over our address space. We also can't use mmap for lisp objects
559 if we might dump: unexec doesn't preserve the contents of mmapped
560 regions. */
561 return pointers_fit_in_lispobj_p () && !might_dump;
563 #endif
565 /* Head of a circularly-linked list of extant finalizers. */
566 static struct Lisp_Finalizer finalizers;
568 /* Head of a circularly-linked list of finalizers that must be invoked
569 because we deemed them unreachable. This list must be global, and
570 not a local inside garbage_collect_1, in case we GC again while
571 running finalizers. */
572 static struct Lisp_Finalizer doomed_finalizers;
575 /************************************************************************
576 Malloc
577 ************************************************************************/
579 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
581 /* Function malloc calls this if it finds we are near exhausting storage. */
583 void
584 malloc_warning (const char *str)
586 pending_malloc_warning = str;
589 #endif
591 /* Display an already-pending malloc warning. */
593 void
594 display_malloc_warning (void)
596 call3 (intern ("display-warning"),
597 intern ("alloc"),
598 build_string (pending_malloc_warning),
599 intern ("emergency"));
600 pending_malloc_warning = 0;
603 /* Called if we can't allocate relocatable space for a buffer. */
605 void
606 buffer_memory_full (ptrdiff_t nbytes)
608 /* If buffers use the relocating allocator, no need to free
609 spare_memory, because we may have plenty of malloc space left
610 that we could get, and if we don't, the malloc that fails will
611 itself cause spare_memory to be freed. If buffers don't use the
612 relocating allocator, treat this like any other failing
613 malloc. */
615 #ifndef REL_ALLOC
616 memory_full (nbytes);
617 #else
618 /* This used to call error, but if we've run out of memory, we could
619 get infinite recursion trying to build the string. */
620 xsignal (Qnil, Vmemory_signal_data);
621 #endif
624 /* A common multiple of the positive integers A and B. Ideally this
625 would be the least common multiple, but there's no way to do that
626 as a constant expression in C, so do the best that we can easily do. */
627 #define COMMON_MULTIPLE(a, b) \
628 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
630 #ifndef XMALLOC_OVERRUN_CHECK
631 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
632 #else
634 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
635 around each block.
637 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
638 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
639 block size in little-endian order. The trailer consists of
640 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
642 The header is used to detect whether this block has been allocated
643 through these functions, as some low-level libc functions may
644 bypass the malloc hooks. */
646 #define XMALLOC_OVERRUN_CHECK_SIZE 16
647 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
648 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
650 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
652 #define XMALLOC_HEADER_ALIGNMENT \
653 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
655 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
656 hold a size_t value and (2) the header size is a multiple of the
657 alignment that Emacs needs for C types and for USE_LSB_TAG. */
658 #define XMALLOC_OVERRUN_SIZE_SIZE \
659 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
660 + XMALLOC_HEADER_ALIGNMENT - 1) \
661 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
662 - XMALLOC_OVERRUN_CHECK_SIZE)
664 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
665 { '\x9a', '\x9b', '\xae', '\xaf',
666 '\xbf', '\xbe', '\xce', '\xcf',
667 '\xea', '\xeb', '\xec', '\xed',
668 '\xdf', '\xde', '\x9c', '\x9d' };
670 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
671 { '\xaa', '\xab', '\xac', '\xad',
672 '\xba', '\xbb', '\xbc', '\xbd',
673 '\xca', '\xcb', '\xcc', '\xcd',
674 '\xda', '\xdb', '\xdc', '\xdd' };
676 /* Insert and extract the block size in the header. */
678 static void
679 xmalloc_put_size (unsigned char *ptr, size_t size)
681 int i;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
684 *--ptr = size & ((1 << CHAR_BIT) - 1);
685 size >>= CHAR_BIT;
689 static size_t
690 xmalloc_get_size (unsigned char *ptr)
692 size_t size = 0;
693 int i;
694 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
695 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
697 size <<= CHAR_BIT;
698 size += *ptr++;
700 return size;
704 /* Like malloc, but wraps allocated block with header and trailer. */
706 static void *
707 overrun_check_malloc (size_t size)
709 register unsigned char *val;
710 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
711 emacs_abort ();
713 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
714 if (val)
716 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
717 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
718 xmalloc_put_size (val, size);
719 memcpy (val + size, xmalloc_overrun_check_trailer,
720 XMALLOC_OVERRUN_CHECK_SIZE);
722 return val;
726 /* Like realloc, but checks old block for overrun, and wraps new block
727 with header and trailer. */
729 static void *
730 overrun_check_realloc (void *block, size_t size)
732 register unsigned char *val = (unsigned char *) block;
733 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
734 emacs_abort ();
736 if (val
737 && memcmp (xmalloc_overrun_check_header,
738 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
739 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
741 size_t osize = xmalloc_get_size (val);
742 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
743 XMALLOC_OVERRUN_CHECK_SIZE))
744 emacs_abort ();
745 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
746 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
747 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
750 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
752 if (val)
754 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
755 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
756 xmalloc_put_size (val, size);
757 memcpy (val + size, xmalloc_overrun_check_trailer,
758 XMALLOC_OVERRUN_CHECK_SIZE);
760 return val;
763 /* Like free, but checks block for overrun. */
765 static void
766 overrun_check_free (void *block)
768 unsigned char *val = (unsigned char *) block;
770 if (val
771 && memcmp (xmalloc_overrun_check_header,
772 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
773 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
775 size_t osize = xmalloc_get_size (val);
776 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
777 XMALLOC_OVERRUN_CHECK_SIZE))
778 emacs_abort ();
779 #ifdef XMALLOC_CLEAR_FREE_MEMORY
780 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
781 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
782 #else
783 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
784 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
785 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
786 #endif
789 free (val);
792 #undef malloc
793 #undef realloc
794 #undef free
795 #define malloc overrun_check_malloc
796 #define realloc overrun_check_realloc
797 #define free overrun_check_free
798 #endif
800 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
801 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
802 If that variable is set, block input while in one of Emacs's memory
803 allocation functions. There should be no need for this debugging
804 option, since signal handlers do not allocate memory, but Emacs
805 formerly allocated memory in signal handlers and this compile-time
806 option remains as a way to help debug the issue should it rear its
807 ugly head again. */
808 #ifdef XMALLOC_BLOCK_INPUT_CHECK
809 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
810 static void
811 malloc_block_input (void)
813 if (block_input_in_memory_allocators)
814 block_input ();
816 static void
817 malloc_unblock_input (void)
819 if (block_input_in_memory_allocators)
820 unblock_input ();
822 # define MALLOC_BLOCK_INPUT malloc_block_input ()
823 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
824 #else
825 # define MALLOC_BLOCK_INPUT ((void) 0)
826 # define MALLOC_UNBLOCK_INPUT ((void) 0)
827 #endif
829 #define MALLOC_PROBE(size) \
830 do { \
831 if (profiler_memory_running) \
832 malloc_probe (size); \
833 } while (0)
835 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
836 static void *lrealloc (void *, size_t);
838 /* Like malloc but check for no memory and block interrupt input. */
840 void *
841 xmalloc (size_t size)
843 void *val;
845 MALLOC_BLOCK_INPUT;
846 val = lmalloc (size);
847 MALLOC_UNBLOCK_INPUT;
849 if (!val && size)
850 memory_full (size);
851 MALLOC_PROBE (size);
852 return val;
855 /* Like the above, but zeroes out the memory just allocated. */
857 void *
858 xzalloc (size_t size)
860 void *val;
862 MALLOC_BLOCK_INPUT;
863 val = lmalloc (size);
864 MALLOC_UNBLOCK_INPUT;
866 if (!val && size)
867 memory_full (size);
868 memset (val, 0, size);
869 MALLOC_PROBE (size);
870 return val;
873 /* Like realloc but check for no memory and block interrupt input.. */
875 void *
876 xrealloc (void *block, size_t size)
878 void *val;
880 MALLOC_BLOCK_INPUT;
881 /* We must call malloc explicitly when BLOCK is 0, since some
882 reallocs don't do this. */
883 if (! block)
884 val = lmalloc (size);
885 else
886 val = lrealloc (block, size);
887 MALLOC_UNBLOCK_INPUT;
889 if (!val && size)
890 memory_full (size);
891 MALLOC_PROBE (size);
892 return val;
896 /* Like free but block interrupt input. */
898 void
899 xfree (void *block)
901 if (!block)
902 return;
903 MALLOC_BLOCK_INPUT;
904 free (block);
905 MALLOC_UNBLOCK_INPUT;
906 /* We don't call refill_memory_reserve here
907 because in practice the call in r_alloc_free seems to suffice. */
911 /* Other parts of Emacs pass large int values to allocator functions
912 expecting ptrdiff_t. This is portable in practice, but check it to
913 be safe. */
914 verify (INT_MAX <= PTRDIFF_MAX);
917 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
918 Signal an error on memory exhaustion, and block interrupt input. */
920 void *
921 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
923 eassert (0 <= nitems && 0 < item_size);
924 ptrdiff_t nbytes;
925 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
926 memory_full (SIZE_MAX);
927 return xmalloc (nbytes);
931 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
932 Signal an error on memory exhaustion, and block interrupt input. */
934 void *
935 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
937 eassert (0 <= nitems && 0 < item_size);
938 ptrdiff_t nbytes;
939 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
940 memory_full (SIZE_MAX);
941 return xrealloc (pa, nbytes);
945 /* Grow PA, which points to an array of *NITEMS items, and return the
946 location of the reallocated array, updating *NITEMS to reflect its
947 new size. The new array will contain at least NITEMS_INCR_MIN more
948 items, but will not contain more than NITEMS_MAX items total.
949 ITEM_SIZE is the size of each item, in bytes.
951 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
952 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
953 infinity.
955 If PA is null, then allocate a new array instead of reallocating
956 the old one.
958 Block interrupt input as needed. If memory exhaustion occurs, set
959 *NITEMS to zero if PA is null, and signal an error (i.e., do not
960 return).
962 Thus, to grow an array A without saving its old contents, do
963 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
964 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
965 and signals an error, and later this code is reexecuted and
966 attempts to free A. */
968 void *
969 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
970 ptrdiff_t nitems_max, ptrdiff_t item_size)
972 ptrdiff_t n0 = *nitems;
973 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
975 /* The approximate size to use for initial small allocation
976 requests. This is the largest "small" request for the GNU C
977 library malloc. */
978 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
980 /* If the array is tiny, grow it to about (but no greater than)
981 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
982 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
983 NITEMS_MAX, and what the C language can represent safely. */
985 ptrdiff_t n, nbytes;
986 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
987 n = PTRDIFF_MAX;
988 if (0 <= nitems_max && nitems_max < n)
989 n = nitems_max;
991 ptrdiff_t adjusted_nbytes
992 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
993 ? min (PTRDIFF_MAX, SIZE_MAX)
994 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
995 if (adjusted_nbytes)
997 n = adjusted_nbytes / item_size;
998 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
1001 if (! pa)
1002 *nitems = 0;
1003 if (n - n0 < nitems_incr_min
1004 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
1005 || (0 <= nitems_max && nitems_max < n)
1006 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
1007 memory_full (SIZE_MAX);
1008 pa = xrealloc (pa, nbytes);
1009 *nitems = n;
1010 return pa;
1014 /* Like strdup, but uses xmalloc. */
1016 char *
1017 xstrdup (const char *s)
1019 ptrdiff_t size;
1020 eassert (s);
1021 size = strlen (s) + 1;
1022 return memcpy (xmalloc (size), s, size);
1025 /* Like above, but duplicates Lisp string to C string. */
1027 char *
1028 xlispstrdup (Lisp_Object string)
1030 ptrdiff_t size = SBYTES (string) + 1;
1031 return memcpy (xmalloc (size), SSDATA (string), size);
1034 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1035 pointed to. If STRING is null, assign it without copying anything.
1036 Allocate before freeing, to avoid a dangling pointer if allocation
1037 fails. */
1039 void
1040 dupstring (char **ptr, char const *string)
1042 char *old = *ptr;
1043 *ptr = string ? xstrdup (string) : 0;
1044 xfree (old);
1048 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1049 argument is a const pointer. */
1051 void
1052 xputenv (char const *string)
1054 if (putenv ((char *) string) != 0)
1055 memory_full (0);
1058 /* Return a newly allocated memory block of SIZE bytes, remembering
1059 to free it when unwinding. */
1060 void *
1061 record_xmalloc (size_t size)
1063 void *p = xmalloc (size);
1064 record_unwind_protect_ptr (xfree, p);
1065 return p;
1069 /* Like malloc but used for allocating Lisp data. NBYTES is the
1070 number of bytes to allocate, TYPE describes the intended use of the
1071 allocated memory block (for strings, for conses, ...). */
1073 #if ! USE_LSB_TAG
1074 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1075 #endif
1077 static void *
1078 lisp_malloc (size_t nbytes, enum mem_type type)
1080 register void *val;
1082 MALLOC_BLOCK_INPUT;
1084 #ifdef GC_MALLOC_CHECK
1085 allocated_mem_type = type;
1086 #endif
1088 val = lmalloc (nbytes);
1090 #if ! USE_LSB_TAG
1091 /* If the memory just allocated cannot be addressed thru a Lisp
1092 object's pointer, and it needs to be,
1093 that's equivalent to running out of memory. */
1094 if (val && type != MEM_TYPE_NON_LISP)
1096 Lisp_Object tem;
1097 XSETCONS (tem, (char *) val + nbytes - 1);
1098 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1100 lisp_malloc_loser = val;
1101 free (val);
1102 val = 0;
1105 #endif
1107 #ifndef GC_MALLOC_CHECK
1108 if (val && type != MEM_TYPE_NON_LISP)
1109 mem_insert (val, (char *) val + nbytes, type);
1110 #endif
1112 MALLOC_UNBLOCK_INPUT;
1113 if (!val && nbytes)
1114 memory_full (nbytes);
1115 MALLOC_PROBE (nbytes);
1116 return val;
1119 /* Free BLOCK. This must be called to free memory allocated with a
1120 call to lisp_malloc. */
1122 static void
1123 lisp_free (void *block)
1125 MALLOC_BLOCK_INPUT;
1126 free (block);
1127 #ifndef GC_MALLOC_CHECK
1128 mem_delete (mem_find (block));
1129 #endif
1130 MALLOC_UNBLOCK_INPUT;
1133 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1135 /* The entry point is lisp_align_malloc which returns blocks of at most
1136 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1138 /* Byte alignment of storage blocks. */
1139 #define BLOCK_ALIGN (1 << 10)
1140 verify (POWER_OF_2 (BLOCK_ALIGN));
1142 /* Use aligned_alloc if it or a simple substitute is available.
1143 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1144 clang 3.3 anyway. Aligned allocation is incompatible with
1145 unexmacosx.c, so don't use it on Darwin. */
1147 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1148 # if (defined HAVE_ALIGNED_ALLOC \
1149 || (defined HYBRID_MALLOC \
1150 ? defined HAVE_POSIX_MEMALIGN \
1151 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1152 # define USE_ALIGNED_ALLOC 1
1153 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1154 # define USE_ALIGNED_ALLOC 1
1155 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1156 static void *
1157 aligned_alloc (size_t alignment, size_t size)
1159 /* POSIX says the alignment must be a power-of-2 multiple of sizeof (void *).
1160 Verify this for all arguments this function is given. */
1161 verify (BLOCK_ALIGN % sizeof (void *) == 0
1162 && POWER_OF_2 (BLOCK_ALIGN / sizeof (void *)));
1163 verify (GCALIGNMENT % sizeof (void *) == 0
1164 && POWER_OF_2 (GCALIGNMENT / sizeof (void *)));
1165 eassert (alignment == BLOCK_ALIGN || alignment == GCALIGNMENT);
1167 void *p;
1168 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1170 # endif
1171 #endif
1173 /* Padding to leave at the end of a malloc'd block. This is to give
1174 malloc a chance to minimize the amount of memory wasted to alignment.
1175 It should be tuned to the particular malloc library used.
1176 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1177 aligned_alloc on the other hand would ideally prefer a value of 4
1178 because otherwise, there's 1020 bytes wasted between each ablocks.
1179 In Emacs, testing shows that those 1020 can most of the time be
1180 efficiently used by malloc to place other objects, so a value of 0 can
1181 still preferable unless you have a lot of aligned blocks and virtually
1182 nothing else. */
1183 #define BLOCK_PADDING 0
1184 #define BLOCK_BYTES \
1185 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1187 /* Internal data structures and constants. */
1189 #define ABLOCKS_SIZE 16
1191 /* An aligned block of memory. */
1192 struct ablock
1194 union
1196 char payload[BLOCK_BYTES];
1197 struct ablock *next_free;
1198 } x;
1200 /* ABASE is the aligned base of the ablocks. It is overloaded to
1201 hold a virtual "busy" field that counts twice the number of used
1202 ablock values in the parent ablocks, plus one if the real base of
1203 the parent ablocks is ABASE (if the "busy" field is even, the
1204 word before the first ablock holds a pointer to the real base).
1205 The first ablock has a "busy" ABASE, and the others have an
1206 ordinary pointer ABASE. To tell the difference, the code assumes
1207 that pointers, when cast to uintptr_t, are at least 2 *
1208 ABLOCKS_SIZE + 1. */
1209 struct ablocks *abase;
1211 /* The padding of all but the last ablock is unused. The padding of
1212 the last ablock in an ablocks is not allocated. */
1213 #if BLOCK_PADDING
1214 char padding[BLOCK_PADDING];
1215 #endif
1218 /* A bunch of consecutive aligned blocks. */
1219 struct ablocks
1221 struct ablock blocks[ABLOCKS_SIZE];
1224 /* Size of the block requested from malloc or aligned_alloc. */
1225 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1227 #define ABLOCK_ABASE(block) \
1228 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1229 ? (struct ablocks *) (block) \
1230 : (block)->abase)
1232 /* Virtual `busy' field. */
1233 #define ABLOCKS_BUSY(a_base) ((a_base)->blocks[0].abase)
1235 /* Pointer to the (not necessarily aligned) malloc block. */
1236 #ifdef USE_ALIGNED_ALLOC
1237 #define ABLOCKS_BASE(abase) (abase)
1238 #else
1239 #define ABLOCKS_BASE(abase) \
1240 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **) (abase))[-1])
1241 #endif
1243 /* The list of free ablock. */
1244 static struct ablock *free_ablock;
1246 /* Allocate an aligned block of nbytes.
1247 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1248 smaller or equal to BLOCK_BYTES. */
1249 static void *
1250 lisp_align_malloc (size_t nbytes, enum mem_type type)
1252 void *base, *val;
1253 struct ablocks *abase;
1255 eassert (nbytes <= BLOCK_BYTES);
1257 MALLOC_BLOCK_INPUT;
1259 #ifdef GC_MALLOC_CHECK
1260 allocated_mem_type = type;
1261 #endif
1263 if (!free_ablock)
1265 int i;
1266 bool aligned;
1268 #ifdef DOUG_LEA_MALLOC
1269 if (!mmap_lisp_allowed_p ())
1270 mallopt (M_MMAP_MAX, 0);
1271 #endif
1273 #ifdef USE_ALIGNED_ALLOC
1274 verify (ABLOCKS_BYTES % BLOCK_ALIGN == 0);
1275 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1276 #else
1277 base = malloc (ABLOCKS_BYTES);
1278 abase = pointer_align (base, BLOCK_ALIGN);
1279 #endif
1281 if (base == 0)
1283 MALLOC_UNBLOCK_INPUT;
1284 memory_full (ABLOCKS_BYTES);
1287 aligned = (base == abase);
1288 if (!aligned)
1289 ((void **) abase)[-1] = base;
1291 #ifdef DOUG_LEA_MALLOC
1292 if (!mmap_lisp_allowed_p ())
1293 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1294 #endif
1296 #if ! USE_LSB_TAG
1297 /* If the memory just allocated cannot be addressed thru a Lisp
1298 object's pointer, and it needs to be, that's equivalent to
1299 running out of memory. */
1300 if (type != MEM_TYPE_NON_LISP)
1302 Lisp_Object tem;
1303 char *end = (char *) base + ABLOCKS_BYTES - 1;
1304 XSETCONS (tem, end);
1305 if ((char *) XCONS (tem) != end)
1307 lisp_malloc_loser = base;
1308 free (base);
1309 MALLOC_UNBLOCK_INPUT;
1310 memory_full (SIZE_MAX);
1313 #endif
1315 /* Initialize the blocks and put them on the free list.
1316 If `base' was not properly aligned, we can't use the last block. */
1317 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1319 abase->blocks[i].abase = abase;
1320 abase->blocks[i].x.next_free = free_ablock;
1321 free_ablock = &abase->blocks[i];
1323 intptr_t ialigned = aligned;
1324 ABLOCKS_BUSY (abase) = (struct ablocks *) ialigned;
1326 eassert ((uintptr_t) abase % BLOCK_ALIGN == 0);
1327 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1328 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1329 eassert (ABLOCKS_BASE (abase) == base);
1330 eassert ((intptr_t) ABLOCKS_BUSY (abase) == aligned);
1333 abase = ABLOCK_ABASE (free_ablock);
1334 ABLOCKS_BUSY (abase)
1335 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1336 val = free_ablock;
1337 free_ablock = free_ablock->x.next_free;
1339 #ifndef GC_MALLOC_CHECK
1340 if (type != MEM_TYPE_NON_LISP)
1341 mem_insert (val, (char *) val + nbytes, type);
1342 #endif
1344 MALLOC_UNBLOCK_INPUT;
1346 MALLOC_PROBE (nbytes);
1348 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1349 return val;
1352 static void
1353 lisp_align_free (void *block)
1355 struct ablock *ablock = block;
1356 struct ablocks *abase = ABLOCK_ABASE (ablock);
1358 MALLOC_BLOCK_INPUT;
1359 #ifndef GC_MALLOC_CHECK
1360 mem_delete (mem_find (block));
1361 #endif
1362 /* Put on free list. */
1363 ablock->x.next_free = free_ablock;
1364 free_ablock = ablock;
1365 /* Update busy count. */
1366 intptr_t busy = (intptr_t) ABLOCKS_BUSY (abase) - 2;
1367 eassume (0 <= busy && busy <= 2 * ABLOCKS_SIZE - 1);
1368 ABLOCKS_BUSY (abase) = (struct ablocks *) busy;
1370 if (busy < 2)
1371 { /* All the blocks are free. */
1372 int i = 0;
1373 bool aligned = busy;
1374 struct ablock **tem = &free_ablock;
1375 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1377 while (*tem)
1379 if (*tem >= (struct ablock *) abase && *tem < atop)
1381 i++;
1382 *tem = (*tem)->x.next_free;
1384 else
1385 tem = &(*tem)->x.next_free;
1387 eassert ((aligned & 1) == aligned);
1388 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1389 #ifdef USE_POSIX_MEMALIGN
1390 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1391 #endif
1392 free (ABLOCKS_BASE (abase));
1394 MALLOC_UNBLOCK_INPUT;
1397 #if !defined __GNUC__ && !defined __alignof__
1398 # define __alignof__(type) alignof (type)
1399 #endif
1401 /* True if malloc (N) is known to return a multiple of GCALIGNMENT
1402 whenever N is also a multiple. In practice this is true if
1403 __alignof__ (max_align_t) is a multiple as well, assuming
1404 GCALIGNMENT is 8; other values of GCALIGNMENT have not been looked
1405 into. Use __alignof__ if available, as otherwise
1406 MALLOC_IS_GC_ALIGNED would be false on GCC x86 even though the
1407 alignment is OK there.
1409 This is a macro, not an enum constant, for portability to HP-UX
1410 10.20 cc and AIX 3.2.5 xlc. */
1411 #define MALLOC_IS_GC_ALIGNED \
1412 (GCALIGNMENT == 8 && __alignof__ (max_align_t) % GCALIGNMENT == 0)
1414 /* True if a malloc-returned pointer P is suitably aligned for SIZE,
1415 where Lisp alignment may be needed if SIZE is Lisp-aligned. */
1417 static bool
1418 laligned (void *p, size_t size)
1420 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1421 || size % GCALIGNMENT != 0);
1424 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1425 sure the result is too, if necessary by reallocating (typically
1426 with larger and larger sizes) until the allocator returns a
1427 Lisp-aligned pointer. Code that needs to allocate C heap memory
1428 for a Lisp object should use one of these functions to obtain a
1429 pointer P; that way, if T is an enum Lisp_Type value and L ==
1430 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1432 On typical modern platforms these functions' loops do not iterate.
1433 On now-rare (and perhaps nonexistent) platforms, the loops in
1434 theory could repeat forever. If an infinite loop is possible on a
1435 platform, a build would surely loop and the builder can then send
1436 us a bug report. Adding a counter to try to detect any such loop
1437 would complicate the code (and possibly introduce bugs, in code
1438 that's never really exercised) for little benefit. */
1440 static void *
1441 lmalloc (size_t size)
1443 #if USE_ALIGNED_ALLOC
1444 if (! MALLOC_IS_GC_ALIGNED && size % GCALIGNMENT == 0)
1445 return aligned_alloc (GCALIGNMENT, size);
1446 #endif
1448 while (true)
1450 void *p = malloc (size);
1451 if (laligned (p, size))
1452 return p;
1453 free (p);
1454 size_t bigger = size + GCALIGNMENT;
1455 if (size < bigger)
1456 size = bigger;
1460 static void *
1461 lrealloc (void *p, size_t size)
1463 while (true)
1465 p = realloc (p, size);
1466 if (laligned (p, size))
1467 return p;
1468 size_t bigger = size + GCALIGNMENT;
1469 if (size < bigger)
1470 size = bigger;
1475 /***********************************************************************
1476 Interval Allocation
1477 ***********************************************************************/
1479 /* Number of intervals allocated in an interval_block structure.
1480 The 1020 is 1024 minus malloc overhead. */
1482 #define INTERVAL_BLOCK_SIZE \
1483 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1485 /* Intervals are allocated in chunks in the form of an interval_block
1486 structure. */
1488 struct interval_block
1490 /* Place `intervals' first, to preserve alignment. */
1491 struct interval intervals[INTERVAL_BLOCK_SIZE];
1492 struct interval_block *next;
1495 /* Current interval block. Its `next' pointer points to older
1496 blocks. */
1498 static struct interval_block *interval_block;
1500 /* Index in interval_block above of the next unused interval
1501 structure. */
1503 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1505 /* Number of free and live intervals. */
1507 static EMACS_INT total_free_intervals, total_intervals;
1509 /* List of free intervals. */
1511 static INTERVAL interval_free_list;
1513 /* Return a new interval. */
1515 INTERVAL
1516 make_interval (void)
1518 INTERVAL val;
1520 MALLOC_BLOCK_INPUT;
1522 if (interval_free_list)
1524 val = interval_free_list;
1525 interval_free_list = INTERVAL_PARENT (interval_free_list);
1527 else
1529 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1531 struct interval_block *newi
1532 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1534 newi->next = interval_block;
1535 interval_block = newi;
1536 interval_block_index = 0;
1537 total_free_intervals += INTERVAL_BLOCK_SIZE;
1539 val = &interval_block->intervals[interval_block_index++];
1542 MALLOC_UNBLOCK_INPUT;
1544 consing_since_gc += sizeof (struct interval);
1545 intervals_consed++;
1546 total_free_intervals--;
1547 RESET_INTERVAL (val);
1548 val->gcmarkbit = 0;
1549 return val;
1553 /* Mark Lisp objects in interval I. */
1555 static void
1556 mark_interval (INTERVAL i, void *dummy)
1558 /* Intervals should never be shared. So, if extra internal checking is
1559 enabled, GC aborts if it seems to have visited an interval twice. */
1560 eassert (!i->gcmarkbit);
1561 i->gcmarkbit = 1;
1562 mark_object (i->plist);
1565 /* Mark the interval tree rooted in I. */
1567 #define MARK_INTERVAL_TREE(i) \
1568 do { \
1569 if (i && !i->gcmarkbit) \
1570 traverse_intervals_noorder (i, mark_interval, NULL); \
1571 } while (0)
1573 /***********************************************************************
1574 String Allocation
1575 ***********************************************************************/
1577 /* Lisp_Strings are allocated in string_block structures. When a new
1578 string_block is allocated, all the Lisp_Strings it contains are
1579 added to a free-list string_free_list. When a new Lisp_String is
1580 needed, it is taken from that list. During the sweep phase of GC,
1581 string_blocks that are entirely free are freed, except two which
1582 we keep.
1584 String data is allocated from sblock structures. Strings larger
1585 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1586 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1588 Sblocks consist internally of sdata structures, one for each
1589 Lisp_String. The sdata structure points to the Lisp_String it
1590 belongs to. The Lisp_String points back to the `u.data' member of
1591 its sdata structure.
1593 When a Lisp_String is freed during GC, it is put back on
1594 string_free_list, and its `data' member and its sdata's `string'
1595 pointer is set to null. The size of the string is recorded in the
1596 `n.nbytes' member of the sdata. So, sdata structures that are no
1597 longer used, can be easily recognized, and it's easy to compact the
1598 sblocks of small strings which we do in compact_small_strings. */
1600 /* Size in bytes of an sblock structure used for small strings. This
1601 is 8192 minus malloc overhead. */
1603 #define SBLOCK_SIZE 8188
1605 /* Strings larger than this are considered large strings. String data
1606 for large strings is allocated from individual sblocks. */
1608 #define LARGE_STRING_BYTES 1024
1610 /* The layout of a nonnull string. */
1612 struct sdata
1614 /* Back-pointer to the string this sdata belongs to. If null, this
1615 structure is free, and NBYTES (in this structure or in the union below)
1616 contains the string's byte size (the same value that STRING_BYTES
1617 would return if STRING were non-null). If non-null, STRING_BYTES
1618 (STRING) is the size of the data, and DATA contains the string's
1619 contents. */
1620 struct Lisp_String *string;
1622 #ifdef GC_CHECK_STRING_BYTES
1623 ptrdiff_t nbytes;
1624 #endif
1626 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1629 /* A union describing string memory sub-allocated from an sblock.
1630 This is where the contents of Lisp strings are stored. */
1632 typedef union
1634 struct Lisp_String *string;
1636 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1637 which has a flexible array member. However, if implemented by
1638 giving this union a member of type 'struct sdata', the union
1639 could not be the last (flexible) member of 'struct sblock',
1640 because C99 prohibits a flexible array member from having a type
1641 that is itself a flexible array. So, comment this member out here,
1642 but remember that the option's there when using this union. */
1643 #if 0
1644 struct sdata u;
1645 #endif
1647 /* When STRING is null. */
1648 struct
1650 struct Lisp_String *string;
1651 ptrdiff_t nbytes;
1652 } n;
1653 } sdata;
1655 #define SDATA_NBYTES(S) (S)->n.nbytes
1656 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1658 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1660 /* Structure describing a block of memory which is sub-allocated to
1661 obtain string data memory for strings. Blocks for small strings
1662 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1663 as large as needed. */
1665 struct sblock
1667 /* Next in list. */
1668 struct sblock *next;
1670 /* Pointer to the next free sdata block. This points past the end
1671 of the sblock if there isn't any space left in this block. */
1672 sdata *next_free;
1674 /* String data. */
1675 sdata data[FLEXIBLE_ARRAY_MEMBER];
1678 /* Number of Lisp strings in a string_block structure. The 1020 is
1679 1024 minus malloc overhead. */
1681 #define STRING_BLOCK_SIZE \
1682 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1684 /* Structure describing a block from which Lisp_String structures
1685 are allocated. */
1687 struct string_block
1689 /* Place `strings' first, to preserve alignment. */
1690 struct Lisp_String strings[STRING_BLOCK_SIZE];
1691 struct string_block *next;
1694 /* Head and tail of the list of sblock structures holding Lisp string
1695 data. We always allocate from current_sblock. The NEXT pointers
1696 in the sblock structures go from oldest_sblock to current_sblock. */
1698 static struct sblock *oldest_sblock, *current_sblock;
1700 /* List of sblocks for large strings. */
1702 static struct sblock *large_sblocks;
1704 /* List of string_block structures. */
1706 static struct string_block *string_blocks;
1708 /* Free-list of Lisp_Strings. */
1710 static struct Lisp_String *string_free_list;
1712 /* Number of live and free Lisp_Strings. */
1714 static EMACS_INT total_strings, total_free_strings;
1716 /* Number of bytes used by live strings. */
1718 static EMACS_INT total_string_bytes;
1720 /* Given a pointer to a Lisp_String S which is on the free-list
1721 string_free_list, return a pointer to its successor in the
1722 free-list. */
1724 #define NEXT_FREE_LISP_STRING(S) ((S)->u.next)
1726 /* Return a pointer to the sdata structure belonging to Lisp string S.
1727 S must be live, i.e. S->data must not be null. S->data is actually
1728 a pointer to the `u.data' member of its sdata structure; the
1729 structure starts at a constant offset in front of that. */
1731 #define SDATA_OF_STRING(S) ((sdata *) ((S)->u.s.data - SDATA_DATA_OFFSET))
1734 #ifdef GC_CHECK_STRING_OVERRUN
1736 /* We check for overrun in string data blocks by appending a small
1737 "cookie" after each allocated string data block, and check for the
1738 presence of this cookie during GC. */
1740 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1741 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1742 { '\xde', '\xad', '\xbe', '\xef' };
1744 #else
1745 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1746 #endif
1748 /* Return the size of an sdata structure large enough to hold N bytes
1749 of string data. This counts the sdata structure, the N bytes, a
1750 terminating NUL byte, and alignment padding. */
1752 static ptrdiff_t
1753 sdata_size (ptrdiff_t n)
1755 /* Reserve space for the nbytes union member even when N + 1 is less
1756 than the size of that member. */
1757 ptrdiff_t unaligned_size = max (SDATA_DATA_OFFSET + n + 1,
1758 sizeof (sdata));
1759 int sdata_align = max (FLEXALIGNOF (struct sdata), alignof (sdata));
1760 return (unaligned_size + sdata_align - 1) & ~(sdata_align - 1);
1763 /* Extra bytes to allocate for each string. */
1765 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1767 /* Exact bound on the number of bytes in a string, not counting the
1768 terminating null. A string cannot contain more bytes than
1769 STRING_BYTES_BOUND, nor can it be so long that the size_t
1770 arithmetic in allocate_string_data would overflow while it is
1771 calculating a value to be passed to malloc. */
1772 static ptrdiff_t const STRING_BYTES_MAX =
1773 min (STRING_BYTES_BOUND,
1774 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1775 - GC_STRING_EXTRA
1776 - offsetof (struct sblock, data)
1777 - SDATA_DATA_OFFSET)
1778 & ~(sizeof (EMACS_INT) - 1)));
1780 /* Initialize string allocation. Called from init_alloc_once. */
1782 static void
1783 init_strings (void)
1785 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1786 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1790 #ifdef GC_CHECK_STRING_BYTES
1792 static int check_string_bytes_count;
1794 /* Like STRING_BYTES, but with debugging check. Can be
1795 called during GC, so pay attention to the mark bit. */
1797 ptrdiff_t
1798 string_bytes (struct Lisp_String *s)
1800 ptrdiff_t nbytes =
1801 (s->u.s.size_byte < 0 ? s->u.s.size & ~ARRAY_MARK_FLAG : s->u.s.size_byte);
1803 if (!PURE_P (s) && s->u.s.data
1804 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1805 emacs_abort ();
1806 return nbytes;
1809 /* Check validity of Lisp strings' string_bytes member in B. */
1811 static void
1812 check_sblock (struct sblock *b)
1814 sdata *end = b->next_free;
1816 for (sdata *from = b->data; from < end; )
1818 ptrdiff_t nbytes = sdata_size (from->string
1819 ? string_bytes (from->string)
1820 : SDATA_NBYTES (from));
1821 from = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1826 /* Check validity of Lisp strings' string_bytes member. ALL_P
1827 means check all strings, otherwise check only most
1828 recently allocated strings. Used for hunting a bug. */
1830 static void
1831 check_string_bytes (bool all_p)
1833 if (all_p)
1835 struct sblock *b;
1837 for (b = large_sblocks; b; b = b->next)
1839 struct Lisp_String *s = b->data[0].string;
1840 if (s)
1841 string_bytes (s);
1844 for (b = oldest_sblock; b; b = b->next)
1845 check_sblock (b);
1847 else if (current_sblock)
1848 check_sblock (current_sblock);
1851 #else /* not GC_CHECK_STRING_BYTES */
1853 #define check_string_bytes(all) ((void) 0)
1855 #endif /* GC_CHECK_STRING_BYTES */
1857 #ifdef GC_CHECK_STRING_FREE_LIST
1859 /* Walk through the string free list looking for bogus next pointers.
1860 This may catch buffer overrun from a previous string. */
1862 static void
1863 check_string_free_list (void)
1865 struct Lisp_String *s;
1867 /* Pop a Lisp_String off the free-list. */
1868 s = string_free_list;
1869 while (s != NULL)
1871 if ((uintptr_t) s < 1024)
1872 emacs_abort ();
1873 s = NEXT_FREE_LISP_STRING (s);
1876 #else
1877 #define check_string_free_list()
1878 #endif
1880 /* Return a new Lisp_String. */
1882 static struct Lisp_String *
1883 allocate_string (void)
1885 struct Lisp_String *s;
1887 MALLOC_BLOCK_INPUT;
1889 /* If the free-list is empty, allocate a new string_block, and
1890 add all the Lisp_Strings in it to the free-list. */
1891 if (string_free_list == NULL)
1893 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1894 int i;
1896 b->next = string_blocks;
1897 string_blocks = b;
1899 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1901 s = b->strings + i;
1902 /* Every string on a free list should have NULL data pointer. */
1903 s->u.s.data = NULL;
1904 NEXT_FREE_LISP_STRING (s) = string_free_list;
1905 string_free_list = s;
1908 total_free_strings += STRING_BLOCK_SIZE;
1911 check_string_free_list ();
1913 /* Pop a Lisp_String off the free-list. */
1914 s = string_free_list;
1915 string_free_list = NEXT_FREE_LISP_STRING (s);
1917 MALLOC_UNBLOCK_INPUT;
1919 --total_free_strings;
1920 ++total_strings;
1921 ++strings_consed;
1922 consing_since_gc += sizeof *s;
1924 #ifdef GC_CHECK_STRING_BYTES
1925 if (!noninteractive)
1927 if (++check_string_bytes_count == 200)
1929 check_string_bytes_count = 0;
1930 check_string_bytes (1);
1932 else
1933 check_string_bytes (0);
1935 #endif /* GC_CHECK_STRING_BYTES */
1937 return s;
1941 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1942 plus a NUL byte at the end. Allocate an sdata structure DATA for
1943 S, and set S->u.s.data to SDATA->u.data. Store a NUL byte at the
1944 end of S->u.s.data. Set S->u.s.size to NCHARS and S->u.s.size_byte
1945 to NBYTES. Free S->u.s.data if it was initially non-null. */
1947 void
1948 allocate_string_data (struct Lisp_String *s,
1949 EMACS_INT nchars, EMACS_INT nbytes)
1951 sdata *data, *old_data;
1952 struct sblock *b;
1953 ptrdiff_t old_nbytes;
1955 if (STRING_BYTES_MAX < nbytes)
1956 string_overflow ();
1958 /* Determine the number of bytes needed to store NBYTES bytes
1959 of string data. */
1960 ptrdiff_t needed = sdata_size (nbytes);
1961 if (s->u.s.data)
1963 old_data = SDATA_OF_STRING (s);
1964 old_nbytes = STRING_BYTES (s);
1966 else
1967 old_data = NULL;
1969 MALLOC_BLOCK_INPUT;
1971 if (nbytes > LARGE_STRING_BYTES)
1973 size_t size = FLEXSIZEOF (struct sblock, data, needed);
1975 #ifdef DOUG_LEA_MALLOC
1976 if (!mmap_lisp_allowed_p ())
1977 mallopt (M_MMAP_MAX, 0);
1978 #endif
1980 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1982 #ifdef DOUG_LEA_MALLOC
1983 if (!mmap_lisp_allowed_p ())
1984 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1985 #endif
1987 data = b->data;
1988 b->next = large_sblocks;
1989 b->next_free = data;
1990 large_sblocks = b;
1992 else if (current_sblock == NULL
1993 || (((char *) current_sblock + SBLOCK_SIZE
1994 - (char *) current_sblock->next_free)
1995 < (needed + GC_STRING_EXTRA)))
1997 /* Not enough room in the current sblock. */
1998 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1999 data = b->data;
2000 b->next = NULL;
2001 b->next_free = data;
2003 if (current_sblock)
2004 current_sblock->next = b;
2005 else
2006 oldest_sblock = b;
2007 current_sblock = b;
2009 else
2011 b = current_sblock;
2012 data = b->next_free;
2015 data->string = s;
2016 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2018 MALLOC_UNBLOCK_INPUT;
2020 s->u.s.data = SDATA_DATA (data);
2021 #ifdef GC_CHECK_STRING_BYTES
2022 SDATA_NBYTES (data) = nbytes;
2023 #endif
2024 s->u.s.size = nchars;
2025 s->u.s.size_byte = nbytes;
2026 s->u.s.data[nbytes] = '\0';
2027 #ifdef GC_CHECK_STRING_OVERRUN
2028 memcpy ((char *) data + needed, string_overrun_cookie,
2029 GC_STRING_OVERRUN_COOKIE_SIZE);
2030 #endif
2032 /* Note that Faset may call to this function when S has already data
2033 assigned. In this case, mark data as free by setting it's string
2034 back-pointer to null, and record the size of the data in it. */
2035 if (old_data)
2037 SDATA_NBYTES (old_data) = old_nbytes;
2038 old_data->string = NULL;
2041 consing_since_gc += needed;
2045 /* Sweep and compact strings. */
2047 NO_INLINE /* For better stack traces */
2048 static void
2049 sweep_strings (void)
2051 struct string_block *b, *next;
2052 struct string_block *live_blocks = NULL;
2054 string_free_list = NULL;
2055 total_strings = total_free_strings = 0;
2056 total_string_bytes = 0;
2058 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2059 for (b = string_blocks; b; b = next)
2061 int i, nfree = 0;
2062 struct Lisp_String *free_list_before = string_free_list;
2064 next = b->next;
2066 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2068 struct Lisp_String *s = b->strings + i;
2070 if (s->u.s.data)
2072 /* String was not on free-list before. */
2073 if (STRING_MARKED_P (s))
2075 /* String is live; unmark it and its intervals. */
2076 UNMARK_STRING (s);
2078 /* Do not use string_(set|get)_intervals here. */
2079 s->u.s.intervals = balance_intervals (s->u.s.intervals);
2081 ++total_strings;
2082 total_string_bytes += STRING_BYTES (s);
2084 else
2086 /* String is dead. Put it on the free-list. */
2087 sdata *data = SDATA_OF_STRING (s);
2089 /* Save the size of S in its sdata so that we know
2090 how large that is. Reset the sdata's string
2091 back-pointer so that we know it's free. */
2092 #ifdef GC_CHECK_STRING_BYTES
2093 if (string_bytes (s) != SDATA_NBYTES (data))
2094 emacs_abort ();
2095 #else
2096 data->n.nbytes = STRING_BYTES (s);
2097 #endif
2098 data->string = NULL;
2100 /* Reset the strings's `data' member so that we
2101 know it's free. */
2102 s->u.s.data = NULL;
2104 /* Put the string on the free-list. */
2105 NEXT_FREE_LISP_STRING (s) = string_free_list;
2106 string_free_list = s;
2107 ++nfree;
2110 else
2112 /* S was on the free-list before. Put it there again. */
2113 NEXT_FREE_LISP_STRING (s) = string_free_list;
2114 string_free_list = s;
2115 ++nfree;
2119 /* Free blocks that contain free Lisp_Strings only, except
2120 the first two of them. */
2121 if (nfree == STRING_BLOCK_SIZE
2122 && total_free_strings > STRING_BLOCK_SIZE)
2124 lisp_free (b);
2125 string_free_list = free_list_before;
2127 else
2129 total_free_strings += nfree;
2130 b->next = live_blocks;
2131 live_blocks = b;
2135 check_string_free_list ();
2137 string_blocks = live_blocks;
2138 free_large_strings ();
2139 compact_small_strings ();
2141 check_string_free_list ();
2145 /* Free dead large strings. */
2147 static void
2148 free_large_strings (void)
2150 struct sblock *b, *next;
2151 struct sblock *live_blocks = NULL;
2153 for (b = large_sblocks; b; b = next)
2155 next = b->next;
2157 if (b->data[0].string == NULL)
2158 lisp_free (b);
2159 else
2161 b->next = live_blocks;
2162 live_blocks = b;
2166 large_sblocks = live_blocks;
2170 /* Compact data of small strings. Free sblocks that don't contain
2171 data of live strings after compaction. */
2173 static void
2174 compact_small_strings (void)
2176 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2177 to, and TB_END is the end of TB. */
2178 struct sblock *tb = oldest_sblock;
2179 if (tb)
2181 sdata *tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2182 sdata *to = tb->data;
2184 /* Step through the blocks from the oldest to the youngest. We
2185 expect that old blocks will stabilize over time, so that less
2186 copying will happen this way. */
2187 struct sblock *b = tb;
2190 sdata *end = b->next_free;
2191 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2193 for (sdata *from = b->data; from < end; )
2195 /* Compute the next FROM here because copying below may
2196 overwrite data we need to compute it. */
2197 ptrdiff_t nbytes;
2198 struct Lisp_String *s = from->string;
2200 #ifdef GC_CHECK_STRING_BYTES
2201 /* Check that the string size recorded in the string is the
2202 same as the one recorded in the sdata structure. */
2203 if (s && string_bytes (s) != SDATA_NBYTES (from))
2204 emacs_abort ();
2205 #endif /* GC_CHECK_STRING_BYTES */
2207 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2208 eassert (nbytes <= LARGE_STRING_BYTES);
2210 nbytes = sdata_size (nbytes);
2211 sdata *from_end = (sdata *) ((char *) from
2212 + nbytes + GC_STRING_EXTRA);
2214 #ifdef GC_CHECK_STRING_OVERRUN
2215 if (memcmp (string_overrun_cookie,
2216 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2217 GC_STRING_OVERRUN_COOKIE_SIZE))
2218 emacs_abort ();
2219 #endif
2221 /* Non-NULL S means it's alive. Copy its data. */
2222 if (s)
2224 /* If TB is full, proceed with the next sblock. */
2225 sdata *to_end = (sdata *) ((char *) to
2226 + nbytes + GC_STRING_EXTRA);
2227 if (to_end > tb_end)
2229 tb->next_free = to;
2230 tb = tb->next;
2231 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2232 to = tb->data;
2233 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2236 /* Copy, and update the string's `data' pointer. */
2237 if (from != to)
2239 eassert (tb != b || to < from);
2240 memmove (to, from, nbytes + GC_STRING_EXTRA);
2241 to->string->u.s.data = SDATA_DATA (to);
2244 /* Advance past the sdata we copied to. */
2245 to = to_end;
2247 from = from_end;
2249 b = b->next;
2251 while (b);
2253 /* The rest of the sblocks following TB don't contain live data, so
2254 we can free them. */
2255 for (b = tb->next; b; )
2257 struct sblock *next = b->next;
2258 lisp_free (b);
2259 b = next;
2262 tb->next_free = to;
2263 tb->next = NULL;
2266 current_sblock = tb;
2269 void
2270 string_overflow (void)
2272 error ("Maximum string size exceeded");
2275 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2276 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2277 LENGTH must be an integer.
2278 INIT must be an integer that represents a character. */)
2279 (Lisp_Object length, Lisp_Object init)
2281 register Lisp_Object val;
2282 int c;
2283 EMACS_INT nbytes;
2285 CHECK_NATNUM (length);
2286 CHECK_CHARACTER (init);
2288 c = XFASTINT (init);
2289 if (ASCII_CHAR_P (c))
2291 nbytes = XINT (length);
2292 val = make_uninit_string (nbytes);
2293 if (nbytes)
2295 memset (SDATA (val), c, nbytes);
2296 SDATA (val)[nbytes] = 0;
2299 else
2301 unsigned char str[MAX_MULTIBYTE_LENGTH];
2302 ptrdiff_t len = CHAR_STRING (c, str);
2303 EMACS_INT string_len = XINT (length);
2304 unsigned char *p, *beg, *end;
2306 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2307 string_overflow ();
2308 val = make_uninit_multibyte_string (string_len, nbytes);
2309 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2311 /* First time we just copy `str' to the data of `val'. */
2312 if (p == beg)
2313 memcpy (p, str, len);
2314 else
2316 /* Next time we copy largest possible chunk from
2317 initialized to uninitialized part of `val'. */
2318 len = min (p - beg, end - p);
2319 memcpy (p, beg, len);
2322 if (nbytes)
2323 *p = 0;
2326 return val;
2329 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2330 Return A. */
2332 Lisp_Object
2333 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2335 EMACS_INT nbits = bool_vector_size (a);
2336 if (0 < nbits)
2338 unsigned char *data = bool_vector_uchar_data (a);
2339 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2340 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2341 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2342 memset (data, pattern, nbytes - 1);
2343 data[nbytes - 1] = pattern & last_mask;
2345 return a;
2348 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2350 Lisp_Object
2351 make_uninit_bool_vector (EMACS_INT nbits)
2353 Lisp_Object val;
2354 EMACS_INT words = bool_vector_words (nbits);
2355 EMACS_INT word_bytes = words * sizeof (bits_word);
2356 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2357 + word_size - 1)
2358 / word_size);
2359 struct Lisp_Bool_Vector *p
2360 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2361 XSETVECTOR (val, p);
2362 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2363 p->size = nbits;
2365 /* Clear padding at the end. */
2366 if (words)
2367 p->data[words - 1] = 0;
2369 return val;
2372 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2373 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2374 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2375 (Lisp_Object length, Lisp_Object init)
2377 Lisp_Object val;
2379 CHECK_NATNUM (length);
2380 val = make_uninit_bool_vector (XFASTINT (length));
2381 return bool_vector_fill (val, init);
2384 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2385 doc: /* Return a new bool-vector with specified arguments as elements.
2386 Allows any number of arguments, including zero.
2387 usage: (bool-vector &rest OBJECTS) */)
2388 (ptrdiff_t nargs, Lisp_Object *args)
2390 ptrdiff_t i;
2391 Lisp_Object vector;
2393 vector = make_uninit_bool_vector (nargs);
2394 for (i = 0; i < nargs; i++)
2395 bool_vector_set (vector, i, !NILP (args[i]));
2397 return vector;
2400 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2401 of characters from the contents. This string may be unibyte or
2402 multibyte, depending on the contents. */
2404 Lisp_Object
2405 make_string (const char *contents, ptrdiff_t nbytes)
2407 register Lisp_Object val;
2408 ptrdiff_t nchars, multibyte_nbytes;
2410 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2411 &nchars, &multibyte_nbytes);
2412 if (nbytes == nchars || nbytes != multibyte_nbytes)
2413 /* CONTENTS contains no multibyte sequences or contains an invalid
2414 multibyte sequence. We must make unibyte string. */
2415 val = make_unibyte_string (contents, nbytes);
2416 else
2417 val = make_multibyte_string (contents, nchars, nbytes);
2418 return val;
2421 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2423 Lisp_Object
2424 make_unibyte_string (const char *contents, ptrdiff_t length)
2426 register Lisp_Object val;
2427 val = make_uninit_string (length);
2428 memcpy (SDATA (val), contents, length);
2429 return val;
2433 /* Make a multibyte string from NCHARS characters occupying NBYTES
2434 bytes at CONTENTS. */
2436 Lisp_Object
2437 make_multibyte_string (const char *contents,
2438 ptrdiff_t nchars, ptrdiff_t nbytes)
2440 register Lisp_Object val;
2441 val = make_uninit_multibyte_string (nchars, nbytes);
2442 memcpy (SDATA (val), contents, nbytes);
2443 return val;
2447 /* Make a string from NCHARS characters occupying NBYTES bytes at
2448 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2450 Lisp_Object
2451 make_string_from_bytes (const char *contents,
2452 ptrdiff_t nchars, ptrdiff_t nbytes)
2454 register Lisp_Object val;
2455 val = make_uninit_multibyte_string (nchars, nbytes);
2456 memcpy (SDATA (val), contents, nbytes);
2457 if (SBYTES (val) == SCHARS (val))
2458 STRING_SET_UNIBYTE (val);
2459 return val;
2463 /* Make a string from NCHARS characters occupying NBYTES bytes at
2464 CONTENTS. The argument MULTIBYTE controls whether to label the
2465 string as multibyte. If NCHARS is negative, it counts the number of
2466 characters by itself. */
2468 Lisp_Object
2469 make_specified_string (const char *contents,
2470 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2472 Lisp_Object val;
2474 if (nchars < 0)
2476 if (multibyte)
2477 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2478 nbytes);
2479 else
2480 nchars = nbytes;
2482 val = make_uninit_multibyte_string (nchars, nbytes);
2483 memcpy (SDATA (val), contents, nbytes);
2484 if (!multibyte)
2485 STRING_SET_UNIBYTE (val);
2486 return val;
2490 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2491 occupying LENGTH bytes. */
2493 Lisp_Object
2494 make_uninit_string (EMACS_INT length)
2496 Lisp_Object val;
2498 if (!length)
2499 return empty_unibyte_string;
2500 val = make_uninit_multibyte_string (length, length);
2501 STRING_SET_UNIBYTE (val);
2502 return val;
2506 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2507 which occupy NBYTES bytes. */
2509 Lisp_Object
2510 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2512 Lisp_Object string;
2513 struct Lisp_String *s;
2515 if (nchars < 0)
2516 emacs_abort ();
2517 if (!nbytes)
2518 return empty_multibyte_string;
2520 s = allocate_string ();
2521 s->u.s.intervals = NULL;
2522 allocate_string_data (s, nchars, nbytes);
2523 XSETSTRING (string, s);
2524 string_chars_consed += nbytes;
2525 return string;
2528 /* Print arguments to BUF according to a FORMAT, then return
2529 a Lisp_String initialized with the data from BUF. */
2531 Lisp_Object
2532 make_formatted_string (char *buf, const char *format, ...)
2534 va_list ap;
2535 int length;
2537 va_start (ap, format);
2538 length = vsprintf (buf, format, ap);
2539 va_end (ap);
2540 return make_string (buf, length);
2544 /***********************************************************************
2545 Float Allocation
2546 ***********************************************************************/
2548 /* We store float cells inside of float_blocks, allocating a new
2549 float_block with malloc whenever necessary. Float cells reclaimed
2550 by GC are put on a free list to be reallocated before allocating
2551 any new float cells from the latest float_block. */
2553 #define FLOAT_BLOCK_SIZE \
2554 (((BLOCK_BYTES - sizeof (struct float_block *) \
2555 /* The compiler might add padding at the end. */ \
2556 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2557 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2559 #define GETMARKBIT(block,n) \
2560 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2561 >> ((n) % BITS_PER_BITS_WORD)) \
2562 & 1)
2564 #define SETMARKBIT(block,n) \
2565 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2566 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2568 #define UNSETMARKBIT(block,n) \
2569 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2570 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2572 #define FLOAT_BLOCK(fptr) \
2573 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2575 #define FLOAT_INDEX(fptr) \
2576 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2578 struct float_block
2580 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2581 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2582 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2583 struct float_block *next;
2586 #define FLOAT_MARKED_P(fptr) \
2587 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2589 #define FLOAT_MARK(fptr) \
2590 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2592 #define FLOAT_UNMARK(fptr) \
2593 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2595 /* Current float_block. */
2597 static struct float_block *float_block;
2599 /* Index of first unused Lisp_Float in the current float_block. */
2601 static int float_block_index = FLOAT_BLOCK_SIZE;
2603 /* Free-list of Lisp_Floats. */
2605 static struct Lisp_Float *float_free_list;
2607 /* Return a new float object with value FLOAT_VALUE. */
2609 Lisp_Object
2610 make_float (double float_value)
2612 register Lisp_Object val;
2614 MALLOC_BLOCK_INPUT;
2616 if (float_free_list)
2618 XSETFLOAT (val, float_free_list);
2619 float_free_list = float_free_list->u.chain;
2621 else
2623 if (float_block_index == FLOAT_BLOCK_SIZE)
2625 struct float_block *new
2626 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2627 new->next = float_block;
2628 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2629 float_block = new;
2630 float_block_index = 0;
2631 total_free_floats += FLOAT_BLOCK_SIZE;
2633 XSETFLOAT (val, &float_block->floats[float_block_index]);
2634 float_block_index++;
2637 MALLOC_UNBLOCK_INPUT;
2639 XFLOAT_INIT (val, float_value);
2640 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2641 consing_since_gc += sizeof (struct Lisp_Float);
2642 floats_consed++;
2643 total_free_floats--;
2644 return val;
2649 /***********************************************************************
2650 Cons Allocation
2651 ***********************************************************************/
2653 /* We store cons cells inside of cons_blocks, allocating a new
2654 cons_block with malloc whenever necessary. Cons cells reclaimed by
2655 GC are put on a free list to be reallocated before allocating
2656 any new cons cells from the latest cons_block. */
2658 #define CONS_BLOCK_SIZE \
2659 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2660 /* The compiler might add padding at the end. */ \
2661 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2662 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2664 #define CONS_BLOCK(fptr) \
2665 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2667 #define CONS_INDEX(fptr) \
2668 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2670 struct cons_block
2672 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2673 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2674 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2675 struct cons_block *next;
2678 #define CONS_MARKED_P(fptr) \
2679 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2681 #define CONS_MARK(fptr) \
2682 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2684 #define CONS_UNMARK(fptr) \
2685 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2687 /* Current cons_block. */
2689 static struct cons_block *cons_block;
2691 /* Index of first unused Lisp_Cons in the current block. */
2693 static int cons_block_index = CONS_BLOCK_SIZE;
2695 /* Free-list of Lisp_Cons structures. */
2697 static struct Lisp_Cons *cons_free_list;
2699 /* Explicitly free a cons cell by putting it on the free-list. */
2701 void
2702 free_cons (struct Lisp_Cons *ptr)
2704 ptr->u.s.u.chain = cons_free_list;
2705 ptr->u.s.car = Vdead;
2706 cons_free_list = ptr;
2707 consing_since_gc -= sizeof *ptr;
2708 total_free_conses++;
2711 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2712 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2713 (Lisp_Object car, Lisp_Object cdr)
2715 register Lisp_Object val;
2717 MALLOC_BLOCK_INPUT;
2719 if (cons_free_list)
2721 XSETCONS (val, cons_free_list);
2722 cons_free_list = cons_free_list->u.s.u.chain;
2724 else
2726 if (cons_block_index == CONS_BLOCK_SIZE)
2728 struct cons_block *new
2729 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2730 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2731 new->next = cons_block;
2732 cons_block = new;
2733 cons_block_index = 0;
2734 total_free_conses += CONS_BLOCK_SIZE;
2736 XSETCONS (val, &cons_block->conses[cons_block_index]);
2737 cons_block_index++;
2740 MALLOC_UNBLOCK_INPUT;
2742 XSETCAR (val, car);
2743 XSETCDR (val, cdr);
2744 eassert (!CONS_MARKED_P (XCONS (val)));
2745 consing_since_gc += sizeof (struct Lisp_Cons);
2746 total_free_conses--;
2747 cons_cells_consed++;
2748 return val;
2751 #ifdef GC_CHECK_CONS_LIST
2752 /* Get an error now if there's any junk in the cons free list. */
2753 void
2754 check_cons_list (void)
2756 struct Lisp_Cons *tail = cons_free_list;
2758 while (tail)
2759 tail = tail->u.s.u.chain;
2761 #endif
2763 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2765 Lisp_Object
2766 list1 (Lisp_Object arg1)
2768 return Fcons (arg1, Qnil);
2771 Lisp_Object
2772 list2 (Lisp_Object arg1, Lisp_Object arg2)
2774 return Fcons (arg1, Fcons (arg2, Qnil));
2778 Lisp_Object
2779 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2781 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2785 Lisp_Object
2786 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2788 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2792 Lisp_Object
2793 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2795 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2796 Fcons (arg5, Qnil)))));
2799 /* Make a list of COUNT Lisp_Objects, where ARG is the
2800 first one. Allocate conses from pure space if TYPE
2801 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2803 Lisp_Object
2804 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2806 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2807 switch (type)
2809 case CONSTYPE_PURE: cons = pure_cons; break;
2810 case CONSTYPE_HEAP: cons = Fcons; break;
2811 default: emacs_abort ();
2814 eassume (0 < count);
2815 Lisp_Object val = cons (arg, Qnil);
2816 Lisp_Object tail = val;
2818 va_list ap;
2819 va_start (ap, arg);
2820 for (ptrdiff_t i = 1; i < count; i++)
2822 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2823 XSETCDR (tail, elem);
2824 tail = elem;
2826 va_end (ap);
2828 return val;
2831 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2832 doc: /* Return a newly created list with specified arguments as elements.
2833 Allows any number of arguments, including zero.
2834 usage: (list &rest OBJECTS) */)
2835 (ptrdiff_t nargs, Lisp_Object *args)
2837 register Lisp_Object val;
2838 val = Qnil;
2840 while (nargs > 0)
2842 nargs--;
2843 val = Fcons (args[nargs], val);
2845 return val;
2849 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2850 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2851 (Lisp_Object length, Lisp_Object init)
2853 Lisp_Object val = Qnil;
2854 CHECK_NATNUM (length);
2856 for (EMACS_INT size = XFASTINT (length); 0 < size; size--)
2858 val = Fcons (init, val);
2859 rarely_quit (size);
2862 return val;
2867 /***********************************************************************
2868 Vector Allocation
2869 ***********************************************************************/
2871 /* Sometimes a vector's contents are merely a pointer internally used
2872 in vector allocation code. On the rare platforms where a null
2873 pointer cannot be tagged, represent it with a Lisp 0.
2874 Usually you don't want to touch this. */
2876 static struct Lisp_Vector *
2877 next_vector (struct Lisp_Vector *v)
2879 return XUNTAG (v->contents[0], Lisp_Int0);
2882 static void
2883 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2885 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2888 /* This value is balanced well enough to avoid too much internal overhead
2889 for the most common cases; it's not required to be a power of two, but
2890 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2892 #define VECTOR_BLOCK_SIZE 4096
2894 /* Alignment of struct Lisp_Vector objects. Because pseudovectors
2895 can contain any C type, align at least as strictly as
2896 max_align_t. On x86 and x86-64 this can waste up to 8 bytes
2897 for typical vectors, since alignof (max_align_t) is 16 but
2898 typical vectors need only an alignment of 8. However, it is
2899 not worth the hassle to avoid wasting those bytes. */
2900 enum {vector_alignment = COMMON_MULTIPLE (alignof (max_align_t), GCALIGNMENT)};
2902 /* Vector size requests are a multiple of this. */
2903 enum { roundup_size = COMMON_MULTIPLE (vector_alignment, word_size) };
2905 /* Verify assumptions described above. */
2906 verify (VECTOR_BLOCK_SIZE % roundup_size == 0);
2907 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2909 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2910 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2911 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2912 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2914 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2916 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2918 /* Size of the minimal vector allocated from block. */
2920 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2922 /* Size of the largest vector allocated from block. */
2924 #define VBLOCK_BYTES_MAX \
2925 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2927 /* We maintain one free list for each possible block-allocated
2928 vector size, and this is the number of free lists we have. */
2930 #define VECTOR_MAX_FREE_LIST_INDEX \
2931 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2933 /* Common shortcut to advance vector pointer over a block data. */
2935 static struct Lisp_Vector *
2936 ADVANCE (struct Lisp_Vector *v, ptrdiff_t nbytes)
2938 void *vv = v;
2939 char *cv = vv;
2940 void *p = cv + nbytes;
2941 return p;
2944 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2946 static ptrdiff_t
2947 VINDEX (ptrdiff_t nbytes)
2949 eassume (VBLOCK_BYTES_MIN <= nbytes);
2950 return (nbytes - VBLOCK_BYTES_MIN) / roundup_size;
2953 /* This internal type is used to maintain the list of large vectors
2954 which are allocated at their own, e.g. outside of vector blocks.
2956 struct large_vector itself cannot contain a struct Lisp_Vector, as
2957 the latter contains a flexible array member and C99 does not allow
2958 such structs to be nested. Instead, each struct large_vector
2959 object LV is followed by a struct Lisp_Vector, which is at offset
2960 large_vector_offset from LV, and whose address is therefore
2961 large_vector_vec (&LV). */
2963 struct large_vector
2965 struct large_vector *next;
2968 enum
2970 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2973 static struct Lisp_Vector *
2974 large_vector_vec (struct large_vector *p)
2976 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2979 /* This internal type is used to maintain an underlying storage
2980 for small vectors. */
2982 struct vector_block
2984 char data[VECTOR_BLOCK_BYTES];
2985 struct vector_block *next;
2988 /* Chain of vector blocks. */
2990 static struct vector_block *vector_blocks;
2992 /* Vector free lists, where NTH item points to a chain of free
2993 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2995 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2997 /* Singly-linked list of large vectors. */
2999 static struct large_vector *large_vectors;
3001 /* The only vector with 0 slots, allocated from pure space. */
3003 Lisp_Object zero_vector;
3005 /* Number of live vectors. */
3007 static EMACS_INT total_vectors;
3009 /* Total size of live and free vectors, in Lisp_Object units. */
3011 static EMACS_INT total_vector_slots, total_free_vector_slots;
3013 /* Common shortcut to setup vector on a free list. */
3015 static void
3016 setup_on_free_list (struct Lisp_Vector *v, ptrdiff_t nbytes)
3018 eassume (header_size <= nbytes);
3019 ptrdiff_t nwords = (nbytes - header_size) / word_size;
3020 XSETPVECTYPESIZE (v, PVEC_FREE, 0, nwords);
3021 eassert (nbytes % roundup_size == 0);
3022 ptrdiff_t vindex = VINDEX (nbytes);
3023 eassert (vindex < VECTOR_MAX_FREE_LIST_INDEX);
3024 set_next_vector (v, vector_free_lists[vindex]);
3025 vector_free_lists[vindex] = v;
3026 total_free_vector_slots += nbytes / word_size;
3029 /* Get a new vector block. */
3031 static struct vector_block *
3032 allocate_vector_block (void)
3034 struct vector_block *block = xmalloc (sizeof *block);
3036 #ifndef GC_MALLOC_CHECK
3037 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3038 MEM_TYPE_VECTOR_BLOCK);
3039 #endif
3041 block->next = vector_blocks;
3042 vector_blocks = block;
3043 return block;
3046 /* Called once to initialize vector allocation. */
3048 static void
3049 init_vectors (void)
3051 zero_vector = make_pure_vector (0);
3054 /* Allocate vector from a vector block. */
3056 static struct Lisp_Vector *
3057 allocate_vector_from_block (size_t nbytes)
3059 struct Lisp_Vector *vector;
3060 struct vector_block *block;
3061 size_t index, restbytes;
3063 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3064 eassert (nbytes % roundup_size == 0);
3066 /* First, try to allocate from a free list
3067 containing vectors of the requested size. */
3068 index = VINDEX (nbytes);
3069 if (vector_free_lists[index])
3071 vector = vector_free_lists[index];
3072 vector_free_lists[index] = next_vector (vector);
3073 total_free_vector_slots -= nbytes / word_size;
3074 return vector;
3077 /* Next, check free lists containing larger vectors. Since
3078 we will split the result, we should have remaining space
3079 large enough to use for one-slot vector at least. */
3080 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3081 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3082 if (vector_free_lists[index])
3084 /* This vector is larger than requested. */
3085 vector = vector_free_lists[index];
3086 vector_free_lists[index] = next_vector (vector);
3087 total_free_vector_slots -= nbytes / word_size;
3089 /* Excess bytes are used for the smaller vector,
3090 which should be set on an appropriate free list. */
3091 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3092 eassert (restbytes % roundup_size == 0);
3093 setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
3094 return vector;
3097 /* Finally, need a new vector block. */
3098 block = allocate_vector_block ();
3100 /* New vector will be at the beginning of this block. */
3101 vector = (struct Lisp_Vector *) block->data;
3103 /* If the rest of space from this block is large enough
3104 for one-slot vector at least, set up it on a free list. */
3105 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3106 if (restbytes >= VBLOCK_BYTES_MIN)
3108 eassert (restbytes % roundup_size == 0);
3109 setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
3111 return vector;
3114 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3116 #define VECTOR_IN_BLOCK(vector, block) \
3117 ((char *) (vector) <= (block)->data \
3118 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3120 /* Return the memory footprint of V in bytes. */
3122 static ptrdiff_t
3123 vector_nbytes (struct Lisp_Vector *v)
3125 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3126 ptrdiff_t nwords;
3128 if (size & PSEUDOVECTOR_FLAG)
3130 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3132 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3133 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3134 * sizeof (bits_word));
3135 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3136 verify (header_size <= bool_header_size);
3137 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3139 else
3140 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3141 + ((size & PSEUDOVECTOR_REST_MASK)
3142 >> PSEUDOVECTOR_SIZE_BITS));
3144 else
3145 nwords = size;
3146 return vroundup (header_size + word_size * nwords);
3149 /* Release extra resources still in use by VECTOR, which may be any
3150 vector-like object. */
3152 static void
3153 cleanup_vector (struct Lisp_Vector *vector)
3155 detect_suspicious_free (vector);
3156 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3157 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3158 == FONT_OBJECT_MAX))
3160 struct font_driver const *drv = ((struct font *) vector)->driver;
3162 /* The font driver might sometimes be NULL, e.g. if Emacs was
3163 interrupted before it had time to set it up. */
3164 if (drv)
3166 /* Attempt to catch subtle bugs like Bug#16140. */
3167 eassert (valid_font_driver (drv));
3168 drv->close ((struct font *) vector);
3172 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_THREAD))
3173 finalize_one_thread ((struct thread_state *) vector);
3174 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_MUTEX))
3175 finalize_one_mutex ((struct Lisp_Mutex *) vector);
3176 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_CONDVAR))
3177 finalize_one_condvar ((struct Lisp_CondVar *) vector);
3180 /* Reclaim space used by unmarked vectors. */
3182 NO_INLINE /* For better stack traces */
3183 static void
3184 sweep_vectors (void)
3186 struct vector_block *block, **bprev = &vector_blocks;
3187 struct large_vector *lv, **lvprev = &large_vectors;
3188 struct Lisp_Vector *vector, *next;
3190 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3191 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3193 /* Looking through vector blocks. */
3195 for (block = vector_blocks; block; block = *bprev)
3197 bool free_this_block = 0;
3198 ptrdiff_t nbytes;
3200 for (vector = (struct Lisp_Vector *) block->data;
3201 VECTOR_IN_BLOCK (vector, block); vector = next)
3203 if (VECTOR_MARKED_P (vector))
3205 VECTOR_UNMARK (vector);
3206 total_vectors++;
3207 nbytes = vector_nbytes (vector);
3208 total_vector_slots += nbytes / word_size;
3209 next = ADVANCE (vector, nbytes);
3211 else
3213 ptrdiff_t total_bytes;
3215 cleanup_vector (vector);
3216 nbytes = vector_nbytes (vector);
3217 total_bytes = nbytes;
3218 next = ADVANCE (vector, nbytes);
3220 /* While NEXT is not marked, try to coalesce with VECTOR,
3221 thus making VECTOR of the largest possible size. */
3223 while (VECTOR_IN_BLOCK (next, block))
3225 if (VECTOR_MARKED_P (next))
3226 break;
3227 cleanup_vector (next);
3228 nbytes = vector_nbytes (next);
3229 total_bytes += nbytes;
3230 next = ADVANCE (next, nbytes);
3233 eassert (total_bytes % roundup_size == 0);
3235 if (vector == (struct Lisp_Vector *) block->data
3236 && !VECTOR_IN_BLOCK (next, block))
3237 /* This block should be freed because all of its
3238 space was coalesced into the only free vector. */
3239 free_this_block = 1;
3240 else
3241 setup_on_free_list (vector, total_bytes);
3245 if (free_this_block)
3247 *bprev = block->next;
3248 #ifndef GC_MALLOC_CHECK
3249 mem_delete (mem_find (block->data));
3250 #endif
3251 xfree (block);
3253 else
3254 bprev = &block->next;
3257 /* Sweep large vectors. */
3259 for (lv = large_vectors; lv; lv = *lvprev)
3261 vector = large_vector_vec (lv);
3262 if (VECTOR_MARKED_P (vector))
3264 VECTOR_UNMARK (vector);
3265 total_vectors++;
3266 if (vector->header.size & PSEUDOVECTOR_FLAG)
3267 total_vector_slots += vector_nbytes (vector) / word_size;
3268 else
3269 total_vector_slots
3270 += header_size / word_size + vector->header.size;
3271 lvprev = &lv->next;
3273 else
3275 *lvprev = lv->next;
3276 lisp_free (lv);
3281 /* Value is a pointer to a newly allocated Lisp_Vector structure
3282 with room for LEN Lisp_Objects. */
3284 static struct Lisp_Vector *
3285 allocate_vectorlike (ptrdiff_t len)
3287 struct Lisp_Vector *p;
3289 MALLOC_BLOCK_INPUT;
3291 if (len == 0)
3292 p = XVECTOR (zero_vector);
3293 else
3295 size_t nbytes = header_size + len * word_size;
3297 #ifdef DOUG_LEA_MALLOC
3298 if (!mmap_lisp_allowed_p ())
3299 mallopt (M_MMAP_MAX, 0);
3300 #endif
3302 if (nbytes <= VBLOCK_BYTES_MAX)
3303 p = allocate_vector_from_block (vroundup (nbytes));
3304 else
3306 struct large_vector *lv
3307 = lisp_malloc ((large_vector_offset + header_size
3308 + len * word_size),
3309 MEM_TYPE_VECTORLIKE);
3310 lv->next = large_vectors;
3311 large_vectors = lv;
3312 p = large_vector_vec (lv);
3315 #ifdef DOUG_LEA_MALLOC
3316 if (!mmap_lisp_allowed_p ())
3317 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3318 #endif
3320 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3321 emacs_abort ();
3323 consing_since_gc += nbytes;
3324 vector_cells_consed += len;
3327 MALLOC_UNBLOCK_INPUT;
3329 return p;
3333 /* Allocate a vector with LEN slots. */
3335 struct Lisp_Vector *
3336 allocate_vector (EMACS_INT len)
3338 struct Lisp_Vector *v;
3339 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3341 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3342 memory_full (SIZE_MAX);
3343 v = allocate_vectorlike (len);
3344 if (len)
3345 v->header.size = len;
3346 return v;
3350 /* Allocate other vector-like structures. */
3352 struct Lisp_Vector *
3353 allocate_pseudovector (int memlen, int lisplen,
3354 int zerolen, enum pvec_type tag)
3356 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3358 /* Catch bogus values. */
3359 eassert (0 <= tag && tag <= PVEC_FONT);
3360 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3361 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3362 eassert (lisplen <= PSEUDOVECTOR_SIZE_MASK);
3364 /* Only the first LISPLEN slots will be traced normally by the GC. */
3365 memclear (v->contents, zerolen * word_size);
3366 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3367 return v;
3370 struct buffer *
3371 allocate_buffer (void)
3373 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3375 BUFFER_PVEC_INIT (b);
3376 /* Put B on the chain of all buffers including killed ones. */
3377 b->next = all_buffers;
3378 all_buffers = b;
3379 /* Note that the rest fields of B are not initialized. */
3380 return b;
3384 /* Allocate a record with COUNT slots. COUNT must be positive, and
3385 includes the type slot. */
3387 static struct Lisp_Vector *
3388 allocate_record (EMACS_INT count)
3390 if (count > PSEUDOVECTOR_SIZE_MASK)
3391 error ("Attempt to allocate a record of %"pI"d slots; max is %d",
3392 count, PSEUDOVECTOR_SIZE_MASK);
3393 struct Lisp_Vector *p = allocate_vectorlike (count);
3394 p->header.size = count;
3395 XSETPVECTYPE (p, PVEC_RECORD);
3396 return p;
3400 DEFUN ("make-record", Fmake_record, Smake_record, 3, 3, 0,
3401 doc: /* Create a new record.
3402 TYPE is its type as returned by `type-of'; it should be either a
3403 symbol or a type descriptor. SLOTS is the number of non-type slots,
3404 each initialized to INIT. */)
3405 (Lisp_Object type, Lisp_Object slots, Lisp_Object init)
3407 CHECK_NATNUM (slots);
3408 EMACS_INT size = XFASTINT (slots) + 1;
3409 struct Lisp_Vector *p = allocate_record (size);
3410 p->contents[0] = type;
3411 for (ptrdiff_t i = 1; i < size; i++)
3412 p->contents[i] = init;
3413 return make_lisp_ptr (p, Lisp_Vectorlike);
3417 DEFUN ("record", Frecord, Srecord, 1, MANY, 0,
3418 doc: /* Create a new record.
3419 TYPE is its type as returned by `type-of'; it should be either a
3420 symbol or a type descriptor. SLOTS is used to initialize the record
3421 slots with shallow copies of the arguments.
3422 usage: (record TYPE &rest SLOTS) */)
3423 (ptrdiff_t nargs, Lisp_Object *args)
3425 struct Lisp_Vector *p = allocate_record (nargs);
3426 memcpy (p->contents, args, nargs * sizeof *args);
3427 return make_lisp_ptr (p, Lisp_Vectorlike);
3431 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3432 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3433 See also the function `vector'. */)
3434 (Lisp_Object length, Lisp_Object init)
3436 CHECK_NATNUM (length);
3437 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3438 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3439 p->contents[i] = init;
3440 return make_lisp_ptr (p, Lisp_Vectorlike);
3443 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3444 doc: /* Return a newly created vector with specified arguments as elements.
3445 Allows any number of arguments, including zero.
3446 usage: (vector &rest OBJECTS) */)
3447 (ptrdiff_t nargs, Lisp_Object *args)
3449 Lisp_Object val = make_uninit_vector (nargs);
3450 struct Lisp_Vector *p = XVECTOR (val);
3451 memcpy (p->contents, args, nargs * sizeof *args);
3452 return val;
3455 void
3456 make_byte_code (struct Lisp_Vector *v)
3458 /* Don't allow the global zero_vector to become a byte code object. */
3459 eassert (0 < v->header.size);
3461 if (v->header.size > 1 && STRINGP (v->contents[1])
3462 && STRING_MULTIBYTE (v->contents[1]))
3463 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3464 earlier because they produced a raw 8-bit string for byte-code
3465 and now such a byte-code string is loaded as multibyte while
3466 raw 8-bit characters converted to multibyte form. Thus, now we
3467 must convert them back to the original unibyte form. */
3468 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3469 XSETPVECTYPE (v, PVEC_COMPILED);
3472 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3473 doc: /* Create a byte-code object with specified arguments as elements.
3474 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3475 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3476 and (optional) INTERACTIVE-SPEC.
3477 The first four arguments are required; at most six have any
3478 significance.
3479 The ARGLIST can be either like the one of `lambda', in which case the arguments
3480 will be dynamically bound before executing the byte code, or it can be an
3481 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3482 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3483 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3484 argument to catch the left-over arguments. If such an integer is used, the
3485 arguments will not be dynamically bound but will be instead pushed on the
3486 stack before executing the byte-code.
3487 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3488 (ptrdiff_t nargs, Lisp_Object *args)
3490 Lisp_Object val = make_uninit_vector (nargs);
3491 struct Lisp_Vector *p = XVECTOR (val);
3493 /* We used to purecopy everything here, if purify-flag was set. This worked
3494 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3495 dangerous, since make-byte-code is used during execution to build
3496 closures, so any closure built during the preload phase would end up
3497 copied into pure space, including its free variables, which is sometimes
3498 just wasteful and other times plainly wrong (e.g. those free vars may want
3499 to be setcar'd). */
3501 memcpy (p->contents, args, nargs * sizeof *args);
3502 make_byte_code (p);
3503 XSETCOMPILED (val, p);
3504 return val;
3509 /***********************************************************************
3510 Symbol Allocation
3511 ***********************************************************************/
3513 /* Each symbol_block is just under 1020 bytes long, since malloc
3514 really allocates in units of powers of two and uses 4 bytes for its
3515 own overhead. */
3517 #define SYMBOL_BLOCK_SIZE \
3518 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3520 struct symbol_block
3522 /* Place `symbols' first, to preserve alignment. */
3523 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3524 struct symbol_block *next;
3527 /* Current symbol block and index of first unused Lisp_Symbol
3528 structure in it. */
3530 static struct symbol_block *symbol_block;
3531 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3532 /* Pointer to the first symbol_block that contains pinned symbols.
3533 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3534 10K of which are pinned (and all but 250 of them are interned in obarray),
3535 whereas a "typical session" has in the order of 30K symbols.
3536 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3537 than 30K to find the 10K symbols we need to mark. */
3538 static struct symbol_block *symbol_block_pinned;
3540 /* List of free symbols. */
3542 static struct Lisp_Symbol *symbol_free_list;
3544 static void
3545 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3547 XSYMBOL (sym)->u.s.name = name;
3550 void
3551 init_symbol (Lisp_Object val, Lisp_Object name)
3553 struct Lisp_Symbol *p = XSYMBOL (val);
3554 set_symbol_name (val, name);
3555 set_symbol_plist (val, Qnil);
3556 p->u.s.redirect = SYMBOL_PLAINVAL;
3557 SET_SYMBOL_VAL (p, Qunbound);
3558 set_symbol_function (val, Qnil);
3559 set_symbol_next (val, NULL);
3560 p->u.s.gcmarkbit = false;
3561 p->u.s.interned = SYMBOL_UNINTERNED;
3562 p->u.s.trapped_write = SYMBOL_UNTRAPPED_WRITE;
3563 p->u.s.declared_special = false;
3564 p->u.s.pinned = false;
3567 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3568 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3569 Its value is void, and its function definition and property list are nil. */)
3570 (Lisp_Object name)
3572 Lisp_Object val;
3574 CHECK_STRING (name);
3576 MALLOC_BLOCK_INPUT;
3578 if (symbol_free_list)
3580 XSETSYMBOL (val, symbol_free_list);
3581 symbol_free_list = symbol_free_list->u.s.next;
3583 else
3585 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3587 struct symbol_block *new
3588 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3589 new->next = symbol_block;
3590 symbol_block = new;
3591 symbol_block_index = 0;
3592 total_free_symbols += SYMBOL_BLOCK_SIZE;
3594 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3595 symbol_block_index++;
3598 MALLOC_UNBLOCK_INPUT;
3600 init_symbol (val, name);
3601 consing_since_gc += sizeof (struct Lisp_Symbol);
3602 symbols_consed++;
3603 total_free_symbols--;
3604 return val;
3609 /***********************************************************************
3610 Marker (Misc) Allocation
3611 ***********************************************************************/
3613 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3614 the required alignment. */
3616 union aligned_Lisp_Misc
3618 union Lisp_Misc m;
3619 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3620 & -GCALIGNMENT];
3623 /* Allocation of markers and other objects that share that structure.
3624 Works like allocation of conses. */
3626 #define MARKER_BLOCK_SIZE \
3627 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3629 struct marker_block
3631 /* Place `markers' first, to preserve alignment. */
3632 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3633 struct marker_block *next;
3636 static struct marker_block *marker_block;
3637 static int marker_block_index = MARKER_BLOCK_SIZE;
3639 static union Lisp_Misc *marker_free_list;
3641 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3643 static Lisp_Object
3644 allocate_misc (enum Lisp_Misc_Type type)
3646 Lisp_Object val;
3648 MALLOC_BLOCK_INPUT;
3650 if (marker_free_list)
3652 XSETMISC (val, marker_free_list);
3653 marker_free_list = marker_free_list->u_free.chain;
3655 else
3657 if (marker_block_index == MARKER_BLOCK_SIZE)
3659 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3660 new->next = marker_block;
3661 marker_block = new;
3662 marker_block_index = 0;
3663 total_free_markers += MARKER_BLOCK_SIZE;
3665 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3666 marker_block_index++;
3669 MALLOC_UNBLOCK_INPUT;
3671 --total_free_markers;
3672 consing_since_gc += sizeof (union Lisp_Misc);
3673 misc_objects_consed++;
3674 XMISCANY (val)->type = type;
3675 XMISCANY (val)->gcmarkbit = 0;
3676 return val;
3679 /* Free a Lisp_Misc object. */
3681 void
3682 free_misc (Lisp_Object misc)
3684 XMISCANY (misc)->type = Lisp_Misc_Free;
3685 XMISC (misc)->u_free.chain = marker_free_list;
3686 marker_free_list = XMISC (misc);
3687 consing_since_gc -= sizeof (union Lisp_Misc);
3688 total_free_markers++;
3691 /* Verify properties of Lisp_Save_Value's representation
3692 that are assumed here and elsewhere. */
3694 verify (SAVE_UNUSED == 0);
3695 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3696 >> SAVE_SLOT_BITS)
3697 == 0);
3699 /* Return Lisp_Save_Value objects for the various combinations
3700 that callers need. */
3702 Lisp_Object
3703 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3705 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3706 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3707 p->save_type = SAVE_TYPE_INT_INT_INT;
3708 p->data[0].integer = a;
3709 p->data[1].integer = b;
3710 p->data[2].integer = c;
3711 return val;
3714 Lisp_Object
3715 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3716 Lisp_Object d)
3718 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3719 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3720 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3721 p->data[0].object = a;
3722 p->data[1].object = b;
3723 p->data[2].object = c;
3724 p->data[3].object = d;
3725 return val;
3728 Lisp_Object
3729 make_save_ptr (void *a)
3731 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3732 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3733 p->save_type = SAVE_POINTER;
3734 p->data[0].pointer = a;
3735 return val;
3738 Lisp_Object
3739 make_save_ptr_int (void *a, ptrdiff_t b)
3741 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3742 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3743 p->save_type = SAVE_TYPE_PTR_INT;
3744 p->data[0].pointer = a;
3745 p->data[1].integer = b;
3746 return val;
3749 Lisp_Object
3750 make_save_ptr_ptr (void *a, void *b)
3752 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3753 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3754 p->save_type = SAVE_TYPE_PTR_PTR;
3755 p->data[0].pointer = a;
3756 p->data[1].pointer = b;
3757 return val;
3760 Lisp_Object
3761 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3763 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3764 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3765 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3766 p->data[0].funcpointer = a;
3767 p->data[1].pointer = b;
3768 p->data[2].object = c;
3769 return val;
3772 /* Return a Lisp_Save_Value object that represents an array A
3773 of N Lisp objects. */
3775 Lisp_Object
3776 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3778 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3779 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3780 p->save_type = SAVE_TYPE_MEMORY;
3781 p->data[0].pointer = a;
3782 p->data[1].integer = n;
3783 return val;
3786 /* Free a Lisp_Save_Value object. Do not use this function
3787 if SAVE contains pointer other than returned by xmalloc. */
3789 void
3790 free_save_value (Lisp_Object save)
3792 xfree (XSAVE_POINTER (save, 0));
3793 free_misc (save);
3796 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3798 Lisp_Object
3799 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3801 register Lisp_Object overlay;
3803 overlay = allocate_misc (Lisp_Misc_Overlay);
3804 OVERLAY_START (overlay) = start;
3805 OVERLAY_END (overlay) = end;
3806 set_overlay_plist (overlay, plist);
3807 XOVERLAY (overlay)->next = NULL;
3808 return overlay;
3811 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3812 doc: /* Return a newly allocated marker which does not point at any place. */)
3813 (void)
3815 register Lisp_Object val;
3816 register struct Lisp_Marker *p;
3818 val = allocate_misc (Lisp_Misc_Marker);
3819 p = XMARKER (val);
3820 p->buffer = 0;
3821 p->bytepos = 0;
3822 p->charpos = 0;
3823 p->next = NULL;
3824 p->insertion_type = 0;
3825 p->need_adjustment = 0;
3826 return val;
3829 /* Return a newly allocated marker which points into BUF
3830 at character position CHARPOS and byte position BYTEPOS. */
3832 Lisp_Object
3833 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3835 Lisp_Object obj;
3836 struct Lisp_Marker *m;
3838 /* No dead buffers here. */
3839 eassert (BUFFER_LIVE_P (buf));
3841 /* Every character is at least one byte. */
3842 eassert (charpos <= bytepos);
3844 obj = allocate_misc (Lisp_Misc_Marker);
3845 m = XMARKER (obj);
3846 m->buffer = buf;
3847 m->charpos = charpos;
3848 m->bytepos = bytepos;
3849 m->insertion_type = 0;
3850 m->need_adjustment = 0;
3851 m->next = BUF_MARKERS (buf);
3852 BUF_MARKERS (buf) = m;
3853 return obj;
3857 /* Return a newly created vector or string with specified arguments as
3858 elements. If all the arguments are characters that can fit
3859 in a string of events, make a string; otherwise, make a vector.
3861 Allows any number of arguments, including zero. */
3863 Lisp_Object
3864 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3866 ptrdiff_t i;
3868 for (i = 0; i < nargs; i++)
3869 /* The things that fit in a string
3870 are characters that are in 0...127,
3871 after discarding the meta bit and all the bits above it. */
3872 if (!INTEGERP (args[i])
3873 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3874 return Fvector (nargs, args);
3876 /* Since the loop exited, we know that all the things in it are
3877 characters, so we can make a string. */
3879 Lisp_Object result;
3881 result = Fmake_string (make_number (nargs), make_number (0));
3882 for (i = 0; i < nargs; i++)
3884 SSET (result, i, XINT (args[i]));
3885 /* Move the meta bit to the right place for a string char. */
3886 if (XINT (args[i]) & CHAR_META)
3887 SSET (result, i, SREF (result, i) | 0x80);
3890 return result;
3894 #ifdef HAVE_MODULES
3895 /* Create a new module user ptr object. */
3896 Lisp_Object
3897 make_user_ptr (void (*finalizer) (void *), void *p)
3899 Lisp_Object obj;
3900 struct Lisp_User_Ptr *uptr;
3902 obj = allocate_misc (Lisp_Misc_User_Ptr);
3903 uptr = XUSER_PTR (obj);
3904 uptr->finalizer = finalizer;
3905 uptr->p = p;
3906 return obj;
3908 #endif
3910 static void
3911 init_finalizer_list (struct Lisp_Finalizer *head)
3913 head->prev = head->next = head;
3916 /* Insert FINALIZER before ELEMENT. */
3918 static void
3919 finalizer_insert (struct Lisp_Finalizer *element,
3920 struct Lisp_Finalizer *finalizer)
3922 eassert (finalizer->prev == NULL);
3923 eassert (finalizer->next == NULL);
3924 finalizer->next = element;
3925 finalizer->prev = element->prev;
3926 finalizer->prev->next = finalizer;
3927 element->prev = finalizer;
3930 static void
3931 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3933 if (finalizer->prev != NULL)
3935 eassert (finalizer->next != NULL);
3936 finalizer->prev->next = finalizer->next;
3937 finalizer->next->prev = finalizer->prev;
3938 finalizer->prev = finalizer->next = NULL;
3942 static void
3943 mark_finalizer_list (struct Lisp_Finalizer *head)
3945 for (struct Lisp_Finalizer *finalizer = head->next;
3946 finalizer != head;
3947 finalizer = finalizer->next)
3949 finalizer->base.gcmarkbit = true;
3950 mark_object (finalizer->function);
3954 /* Move doomed finalizers to list DEST from list SRC. A doomed
3955 finalizer is one that is not GC-reachable and whose
3956 finalizer->function is non-nil. */
3958 static void
3959 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3960 struct Lisp_Finalizer *src)
3962 struct Lisp_Finalizer *finalizer = src->next;
3963 while (finalizer != src)
3965 struct Lisp_Finalizer *next = finalizer->next;
3966 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3968 unchain_finalizer (finalizer);
3969 finalizer_insert (dest, finalizer);
3972 finalizer = next;
3976 static Lisp_Object
3977 run_finalizer_handler (Lisp_Object args)
3979 add_to_log ("finalizer failed: %S", args);
3980 return Qnil;
3983 static void
3984 run_finalizer_function (Lisp_Object function)
3986 ptrdiff_t count = SPECPDL_INDEX ();
3988 specbind (Qinhibit_quit, Qt);
3989 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3990 unbind_to (count, Qnil);
3993 static void
3994 run_finalizers (struct Lisp_Finalizer *finalizers)
3996 struct Lisp_Finalizer *finalizer;
3997 Lisp_Object function;
3999 while (finalizers->next != finalizers)
4001 finalizer = finalizers->next;
4002 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
4003 unchain_finalizer (finalizer);
4004 function = finalizer->function;
4005 if (!NILP (function))
4007 finalizer->function = Qnil;
4008 run_finalizer_function (function);
4013 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4014 doc: /* Make a finalizer that will run FUNCTION.
4015 FUNCTION will be called after garbage collection when the returned
4016 finalizer object becomes unreachable. If the finalizer object is
4017 reachable only through references from finalizer objects, it does not
4018 count as reachable for the purpose of deciding whether to run
4019 FUNCTION. FUNCTION will be run once per finalizer object. */)
4020 (Lisp_Object function)
4022 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4023 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4024 finalizer->function = function;
4025 finalizer->prev = finalizer->next = NULL;
4026 finalizer_insert (&finalizers, finalizer);
4027 return val;
4031 /************************************************************************
4032 Memory Full Handling
4033 ************************************************************************/
4036 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4037 there may have been size_t overflow so that malloc was never
4038 called, or perhaps malloc was invoked successfully but the
4039 resulting pointer had problems fitting into a tagged EMACS_INT. In
4040 either case this counts as memory being full even though malloc did
4041 not fail. */
4043 void
4044 memory_full (size_t nbytes)
4046 /* Do not go into hysterics merely because a large request failed. */
4047 bool enough_free_memory = 0;
4048 if (SPARE_MEMORY < nbytes)
4050 void *p;
4052 MALLOC_BLOCK_INPUT;
4053 p = malloc (SPARE_MEMORY);
4054 if (p)
4056 free (p);
4057 enough_free_memory = 1;
4059 MALLOC_UNBLOCK_INPUT;
4062 if (! enough_free_memory)
4064 int i;
4066 Vmemory_full = Qt;
4068 memory_full_cons_threshold = sizeof (struct cons_block);
4070 /* The first time we get here, free the spare memory. */
4071 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4072 if (spare_memory[i])
4074 if (i == 0)
4075 free (spare_memory[i]);
4076 else if (i >= 1 && i <= 4)
4077 lisp_align_free (spare_memory[i]);
4078 else
4079 lisp_free (spare_memory[i]);
4080 spare_memory[i] = 0;
4084 /* This used to call error, but if we've run out of memory, we could
4085 get infinite recursion trying to build the string. */
4086 xsignal (Qnil, Vmemory_signal_data);
4089 /* If we released our reserve (due to running out of memory),
4090 and we have a fair amount free once again,
4091 try to set aside another reserve in case we run out once more.
4093 This is called when a relocatable block is freed in ralloc.c,
4094 and also directly from this file, in case we're not using ralloc.c. */
4096 void
4097 refill_memory_reserve (void)
4099 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4100 if (spare_memory[0] == 0)
4101 spare_memory[0] = malloc (SPARE_MEMORY);
4102 if (spare_memory[1] == 0)
4103 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4104 MEM_TYPE_SPARE);
4105 if (spare_memory[2] == 0)
4106 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4107 MEM_TYPE_SPARE);
4108 if (spare_memory[3] == 0)
4109 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4110 MEM_TYPE_SPARE);
4111 if (spare_memory[4] == 0)
4112 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4113 MEM_TYPE_SPARE);
4114 if (spare_memory[5] == 0)
4115 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4116 MEM_TYPE_SPARE);
4117 if (spare_memory[6] == 0)
4118 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4119 MEM_TYPE_SPARE);
4120 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4121 Vmemory_full = Qnil;
4122 #endif
4125 /************************************************************************
4126 C Stack Marking
4127 ************************************************************************/
4129 /* Conservative C stack marking requires a method to identify possibly
4130 live Lisp objects given a pointer value. We do this by keeping
4131 track of blocks of Lisp data that are allocated in a red-black tree
4132 (see also the comment of mem_node which is the type of nodes in
4133 that tree). Function lisp_malloc adds information for an allocated
4134 block to the red-black tree with calls to mem_insert, and function
4135 lisp_free removes it with mem_delete. Functions live_string_p etc
4136 call mem_find to lookup information about a given pointer in the
4137 tree, and use that to determine if the pointer points into a Lisp
4138 object or not. */
4140 /* Initialize this part of alloc.c. */
4142 static void
4143 mem_init (void)
4145 mem_z.left = mem_z.right = MEM_NIL;
4146 mem_z.parent = NULL;
4147 mem_z.color = MEM_BLACK;
4148 mem_z.start = mem_z.end = NULL;
4149 mem_root = MEM_NIL;
4153 /* Value is a pointer to the mem_node containing START. Value is
4154 MEM_NIL if there is no node in the tree containing START. */
4156 static struct mem_node *
4157 mem_find (void *start)
4159 struct mem_node *p;
4161 if (start < min_heap_address || start > max_heap_address)
4162 return MEM_NIL;
4164 /* Make the search always successful to speed up the loop below. */
4165 mem_z.start = start;
4166 mem_z.end = (char *) start + 1;
4168 p = mem_root;
4169 while (start < p->start || start >= p->end)
4170 p = start < p->start ? p->left : p->right;
4171 return p;
4175 /* Insert a new node into the tree for a block of memory with start
4176 address START, end address END, and type TYPE. Value is a
4177 pointer to the node that was inserted. */
4179 static struct mem_node *
4180 mem_insert (void *start, void *end, enum mem_type type)
4182 struct mem_node *c, *parent, *x;
4184 if (min_heap_address == NULL || start < min_heap_address)
4185 min_heap_address = start;
4186 if (max_heap_address == NULL || end > max_heap_address)
4187 max_heap_address = end;
4189 /* See where in the tree a node for START belongs. In this
4190 particular application, it shouldn't happen that a node is already
4191 present. For debugging purposes, let's check that. */
4192 c = mem_root;
4193 parent = NULL;
4195 while (c != MEM_NIL)
4197 parent = c;
4198 c = start < c->start ? c->left : c->right;
4201 /* Create a new node. */
4202 #ifdef GC_MALLOC_CHECK
4203 x = malloc (sizeof *x);
4204 if (x == NULL)
4205 emacs_abort ();
4206 #else
4207 x = xmalloc (sizeof *x);
4208 #endif
4209 x->start = start;
4210 x->end = end;
4211 x->type = type;
4212 x->parent = parent;
4213 x->left = x->right = MEM_NIL;
4214 x->color = MEM_RED;
4216 /* Insert it as child of PARENT or install it as root. */
4217 if (parent)
4219 if (start < parent->start)
4220 parent->left = x;
4221 else
4222 parent->right = x;
4224 else
4225 mem_root = x;
4227 /* Re-establish red-black tree properties. */
4228 mem_insert_fixup (x);
4230 return x;
4234 /* Re-establish the red-black properties of the tree, and thereby
4235 balance the tree, after node X has been inserted; X is always red. */
4237 static void
4238 mem_insert_fixup (struct mem_node *x)
4240 while (x != mem_root && x->parent->color == MEM_RED)
4242 /* X is red and its parent is red. This is a violation of
4243 red-black tree property #3. */
4245 if (x->parent == x->parent->parent->left)
4247 /* We're on the left side of our grandparent, and Y is our
4248 "uncle". */
4249 struct mem_node *y = x->parent->parent->right;
4251 if (y->color == MEM_RED)
4253 /* Uncle and parent are red but should be black because
4254 X is red. Change the colors accordingly and proceed
4255 with the grandparent. */
4256 x->parent->color = MEM_BLACK;
4257 y->color = MEM_BLACK;
4258 x->parent->parent->color = MEM_RED;
4259 x = x->parent->parent;
4261 else
4263 /* Parent and uncle have different colors; parent is
4264 red, uncle is black. */
4265 if (x == x->parent->right)
4267 x = x->parent;
4268 mem_rotate_left (x);
4271 x->parent->color = MEM_BLACK;
4272 x->parent->parent->color = MEM_RED;
4273 mem_rotate_right (x->parent->parent);
4276 else
4278 /* This is the symmetrical case of above. */
4279 struct mem_node *y = x->parent->parent->left;
4281 if (y->color == MEM_RED)
4283 x->parent->color = MEM_BLACK;
4284 y->color = MEM_BLACK;
4285 x->parent->parent->color = MEM_RED;
4286 x = x->parent->parent;
4288 else
4290 if (x == x->parent->left)
4292 x = x->parent;
4293 mem_rotate_right (x);
4296 x->parent->color = MEM_BLACK;
4297 x->parent->parent->color = MEM_RED;
4298 mem_rotate_left (x->parent->parent);
4303 /* The root may have been changed to red due to the algorithm. Set
4304 it to black so that property #5 is satisfied. */
4305 mem_root->color = MEM_BLACK;
4309 /* (x) (y)
4310 / \ / \
4311 a (y) ===> (x) c
4312 / \ / \
4313 b c a b */
4315 static void
4316 mem_rotate_left (struct mem_node *x)
4318 struct mem_node *y;
4320 /* Turn y's left sub-tree into x's right sub-tree. */
4321 y = x->right;
4322 x->right = y->left;
4323 if (y->left != MEM_NIL)
4324 y->left->parent = x;
4326 /* Y's parent was x's parent. */
4327 if (y != MEM_NIL)
4328 y->parent = x->parent;
4330 /* Get the parent to point to y instead of x. */
4331 if (x->parent)
4333 if (x == x->parent->left)
4334 x->parent->left = y;
4335 else
4336 x->parent->right = y;
4338 else
4339 mem_root = y;
4341 /* Put x on y's left. */
4342 y->left = x;
4343 if (x != MEM_NIL)
4344 x->parent = y;
4348 /* (x) (Y)
4349 / \ / \
4350 (y) c ===> a (x)
4351 / \ / \
4352 a b b c */
4354 static void
4355 mem_rotate_right (struct mem_node *x)
4357 struct mem_node *y = x->left;
4359 x->left = y->right;
4360 if (y->right != MEM_NIL)
4361 y->right->parent = x;
4363 if (y != MEM_NIL)
4364 y->parent = x->parent;
4365 if (x->parent)
4367 if (x == x->parent->right)
4368 x->parent->right = y;
4369 else
4370 x->parent->left = y;
4372 else
4373 mem_root = y;
4375 y->right = x;
4376 if (x != MEM_NIL)
4377 x->parent = y;
4381 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4383 static void
4384 mem_delete (struct mem_node *z)
4386 struct mem_node *x, *y;
4388 if (!z || z == MEM_NIL)
4389 return;
4391 if (z->left == MEM_NIL || z->right == MEM_NIL)
4392 y = z;
4393 else
4395 y = z->right;
4396 while (y->left != MEM_NIL)
4397 y = y->left;
4400 if (y->left != MEM_NIL)
4401 x = y->left;
4402 else
4403 x = y->right;
4405 x->parent = y->parent;
4406 if (y->parent)
4408 if (y == y->parent->left)
4409 y->parent->left = x;
4410 else
4411 y->parent->right = x;
4413 else
4414 mem_root = x;
4416 if (y != z)
4418 z->start = y->start;
4419 z->end = y->end;
4420 z->type = y->type;
4423 if (y->color == MEM_BLACK)
4424 mem_delete_fixup (x);
4426 #ifdef GC_MALLOC_CHECK
4427 free (y);
4428 #else
4429 xfree (y);
4430 #endif
4434 /* Re-establish the red-black properties of the tree, after a
4435 deletion. */
4437 static void
4438 mem_delete_fixup (struct mem_node *x)
4440 while (x != mem_root && x->color == MEM_BLACK)
4442 if (x == x->parent->left)
4444 struct mem_node *w = x->parent->right;
4446 if (w->color == MEM_RED)
4448 w->color = MEM_BLACK;
4449 x->parent->color = MEM_RED;
4450 mem_rotate_left (x->parent);
4451 w = x->parent->right;
4454 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4456 w->color = MEM_RED;
4457 x = x->parent;
4459 else
4461 if (w->right->color == MEM_BLACK)
4463 w->left->color = MEM_BLACK;
4464 w->color = MEM_RED;
4465 mem_rotate_right (w);
4466 w = x->parent->right;
4468 w->color = x->parent->color;
4469 x->parent->color = MEM_BLACK;
4470 w->right->color = MEM_BLACK;
4471 mem_rotate_left (x->parent);
4472 x = mem_root;
4475 else
4477 struct mem_node *w = x->parent->left;
4479 if (w->color == MEM_RED)
4481 w->color = MEM_BLACK;
4482 x->parent->color = MEM_RED;
4483 mem_rotate_right (x->parent);
4484 w = x->parent->left;
4487 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4489 w->color = MEM_RED;
4490 x = x->parent;
4492 else
4494 if (w->left->color == MEM_BLACK)
4496 w->right->color = MEM_BLACK;
4497 w->color = MEM_RED;
4498 mem_rotate_left (w);
4499 w = x->parent->left;
4502 w->color = x->parent->color;
4503 x->parent->color = MEM_BLACK;
4504 w->left->color = MEM_BLACK;
4505 mem_rotate_right (x->parent);
4506 x = mem_root;
4511 x->color = MEM_BLACK;
4515 /* If P is a pointer into a live Lisp string object on the heap,
4516 return the object. Otherwise, return nil. M is a pointer to the
4517 mem_block for P.
4519 This and other *_holding functions look for a pointer anywhere into
4520 the object, not merely for a pointer to the start of the object,
4521 because some compilers sometimes optimize away the latter. See
4522 Bug#28213. */
4524 static Lisp_Object
4525 live_string_holding (struct mem_node *m, void *p)
4527 if (m->type == MEM_TYPE_STRING)
4529 struct string_block *b = m->start;
4530 char *cp = p;
4531 ptrdiff_t offset = cp - (char *) &b->strings[0];
4533 /* P must point into a Lisp_String structure, and it
4534 must not be on the free-list. */
4535 if (0 <= offset && offset < STRING_BLOCK_SIZE * sizeof b->strings[0])
4537 struct Lisp_String *s = p = cp -= offset % sizeof b->strings[0];
4538 if (s->u.s.data)
4539 return make_lisp_ptr (s, Lisp_String);
4542 return Qnil;
4545 static bool
4546 live_string_p (struct mem_node *m, void *p)
4548 return !NILP (live_string_holding (m, p));
4551 /* If P is a pointer into a live Lisp cons object on the heap, return
4552 the object. Otherwise, return nil. M is a pointer to the
4553 mem_block for P. */
4555 static Lisp_Object
4556 live_cons_holding (struct mem_node *m, void *p)
4558 if (m->type == MEM_TYPE_CONS)
4560 struct cons_block *b = m->start;
4561 char *cp = p;
4562 ptrdiff_t offset = cp - (char *) &b->conses[0];
4564 /* P must point into a Lisp_Cons, not be
4565 one of the unused cells in the current cons block,
4566 and not be on the free-list. */
4567 if (0 <= offset && offset < CONS_BLOCK_SIZE * sizeof b->conses[0]
4568 && (b != cons_block
4569 || offset / sizeof b->conses[0] < cons_block_index))
4571 struct Lisp_Cons *s = p = cp -= offset % sizeof b->conses[0];
4572 if (!EQ (s->u.s.car, Vdead))
4573 return make_lisp_ptr (s, Lisp_Cons);
4576 return Qnil;
4579 static bool
4580 live_cons_p (struct mem_node *m, void *p)
4582 return !NILP (live_cons_holding (m, p));
4586 /* If P is a pointer into a live Lisp symbol object on the heap,
4587 return the object. Otherwise, return nil. M is a pointer to the
4588 mem_block for P. */
4590 static Lisp_Object
4591 live_symbol_holding (struct mem_node *m, void *p)
4593 if (m->type == MEM_TYPE_SYMBOL)
4595 struct symbol_block *b = m->start;
4596 char *cp = p;
4597 ptrdiff_t offset = cp - (char *) &b->symbols[0];
4599 /* P must point into the Lisp_Symbol, not be
4600 one of the unused cells in the current symbol block,
4601 and not be on the free-list. */
4602 if (0 <= offset && offset < SYMBOL_BLOCK_SIZE * sizeof b->symbols[0]
4603 && (b != symbol_block
4604 || offset / sizeof b->symbols[0] < symbol_block_index))
4606 struct Lisp_Symbol *s = p = cp -= offset % sizeof b->symbols[0];
4607 if (!EQ (s->u.s.function, Vdead))
4608 return make_lisp_symbol (s);
4611 return Qnil;
4614 static bool
4615 live_symbol_p (struct mem_node *m, void *p)
4617 return !NILP (live_symbol_holding (m, p));
4621 /* Return true if P is a pointer to a live Lisp float on
4622 the heap. M is a pointer to the mem_block for P. */
4624 static bool
4625 live_float_p (struct mem_node *m, void *p)
4627 if (m->type == MEM_TYPE_FLOAT)
4629 struct float_block *b = m->start;
4630 char *cp = p;
4631 ptrdiff_t offset = cp - (char *) &b->floats[0];
4633 /* P must point to the start of a Lisp_Float and not be
4634 one of the unused cells in the current float block. */
4635 return (offset >= 0
4636 && offset % sizeof b->floats[0] == 0
4637 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4638 && (b != float_block
4639 || offset / sizeof b->floats[0] < float_block_index));
4641 else
4642 return 0;
4646 /* If P is a pointer to a live Lisp Misc on the heap, return the object.
4647 Otherwise, return nil. M is a pointer to the mem_block for P. */
4649 static Lisp_Object
4650 live_misc_holding (struct mem_node *m, void *p)
4652 if (m->type == MEM_TYPE_MISC)
4654 struct marker_block *b = m->start;
4655 char *cp = p;
4656 ptrdiff_t offset = cp - (char *) &b->markers[0];
4658 /* P must point into a Lisp_Misc, not be
4659 one of the unused cells in the current misc block,
4660 and not be on the free-list. */
4661 if (0 <= offset && offset < MARKER_BLOCK_SIZE * sizeof b->markers[0]
4662 && (b != marker_block
4663 || offset / sizeof b->markers[0] < marker_block_index))
4665 union Lisp_Misc *s = p = cp -= offset % sizeof b->markers[0];
4666 if (s->u_any.type != Lisp_Misc_Free)
4667 return make_lisp_ptr (s, Lisp_Misc);
4670 return Qnil;
4673 static bool
4674 live_misc_p (struct mem_node *m, void *p)
4676 return !NILP (live_misc_holding (m, p));
4679 /* If P is a pointer to a live vector-like object, return the object.
4680 Otherwise, return nil.
4681 M is a pointer to the mem_block for P. */
4683 static Lisp_Object
4684 live_vector_holding (struct mem_node *m, void *p)
4686 struct Lisp_Vector *vp = p;
4688 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4690 /* This memory node corresponds to a vector block. */
4691 struct vector_block *block = m->start;
4692 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4694 /* P is in the block's allocation range. Scan the block
4695 up to P and see whether P points to the start of some
4696 vector which is not on a free list. FIXME: check whether
4697 some allocation patterns (probably a lot of short vectors)
4698 may cause a substantial overhead of this loop. */
4699 while (VECTOR_IN_BLOCK (vector, block) && vector <= vp)
4701 struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
4702 if (vp < next && !PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4703 return make_lisp_ptr (vector, Lisp_Vectorlike);
4704 vector = next;
4707 else if (m->type == MEM_TYPE_VECTORLIKE)
4709 /* This memory node corresponds to a large vector. */
4710 struct Lisp_Vector *vector = large_vector_vec (m->start);
4711 struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
4712 if (vector <= vp && vp < next)
4713 return make_lisp_ptr (vector, Lisp_Vectorlike);
4715 return Qnil;
4718 static bool
4719 live_vector_p (struct mem_node *m, void *p)
4721 return !NILP (live_vector_holding (m, p));
4724 /* If P is a pointer into a live buffer, return the buffer.
4725 Otherwise, return nil. M is a pointer to the mem_block for P. */
4727 static Lisp_Object
4728 live_buffer_holding (struct mem_node *m, void *p)
4730 /* P must point into the block, and the buffer
4731 must not have been killed. */
4732 if (m->type == MEM_TYPE_BUFFER)
4734 struct buffer *b = m->start;
4735 char *cb = m->start;
4736 char *cp = p;
4737 ptrdiff_t offset = cp - cb;
4738 if (0 <= offset && offset < sizeof *b && !NILP (b->name_))
4740 Lisp_Object obj;
4741 XSETBUFFER (obj, b);
4742 return obj;
4745 return Qnil;
4748 static bool
4749 live_buffer_p (struct mem_node *m, void *p)
4751 return !NILP (live_buffer_holding (m, p));
4754 /* Mark OBJ if we can prove it's a Lisp_Object. */
4756 static void
4757 mark_maybe_object (Lisp_Object obj)
4759 #if USE_VALGRIND
4760 if (valgrind_p)
4761 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4762 #endif
4764 if (INTEGERP (obj))
4765 return;
4767 void *po = XPNTR (obj);
4768 struct mem_node *m = mem_find (po);
4770 if (m != MEM_NIL)
4772 bool mark_p = false;
4774 switch (XTYPE (obj))
4776 case Lisp_String:
4777 mark_p = EQ (obj, live_string_holding (m, po));
4778 break;
4780 case Lisp_Cons:
4781 mark_p = EQ (obj, live_cons_holding (m, po));
4782 break;
4784 case Lisp_Symbol:
4785 mark_p = EQ (obj, live_symbol_holding (m, po));
4786 break;
4788 case Lisp_Float:
4789 mark_p = live_float_p (m, po);
4790 break;
4792 case Lisp_Vectorlike:
4793 mark_p = (EQ (obj, live_vector_holding (m, po))
4794 || EQ (obj, live_buffer_holding (m, po)));
4795 break;
4797 case Lisp_Misc:
4798 mark_p = EQ (obj, live_misc_holding (m, po));
4799 break;
4801 default:
4802 break;
4805 if (mark_p)
4806 mark_object (obj);
4810 /* Return true if P can point to Lisp data, and false otherwise.
4811 Symbols are implemented via offsets not pointers, but the offsets
4812 are also multiples of GCALIGNMENT. */
4814 static bool
4815 maybe_lisp_pointer (void *p)
4817 return (uintptr_t) p % GCALIGNMENT == 0;
4820 #ifndef HAVE_MODULES
4821 enum { HAVE_MODULES = false };
4822 #endif
4824 /* If P points to Lisp data, mark that as live if it isn't already
4825 marked. */
4827 static void
4828 mark_maybe_pointer (void *p)
4830 struct mem_node *m;
4832 #if USE_VALGRIND
4833 if (valgrind_p)
4834 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4835 #endif
4837 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4839 if (!maybe_lisp_pointer (p))
4840 return;
4842 else
4844 /* For the wide-int case, also mark emacs_value tagged pointers,
4845 which can be generated by emacs-module.c's value_to_lisp. */
4846 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4849 m = mem_find (p);
4850 if (m != MEM_NIL)
4852 Lisp_Object obj = Qnil;
4854 switch (m->type)
4856 case MEM_TYPE_NON_LISP:
4857 case MEM_TYPE_SPARE:
4858 /* Nothing to do; not a pointer to Lisp memory. */
4859 break;
4861 case MEM_TYPE_BUFFER:
4862 obj = live_buffer_holding (m, p);
4863 break;
4865 case MEM_TYPE_CONS:
4866 obj = live_cons_holding (m, p);
4867 break;
4869 case MEM_TYPE_STRING:
4870 obj = live_string_holding (m, p);
4871 break;
4873 case MEM_TYPE_MISC:
4874 obj = live_misc_holding (m, p);
4875 break;
4877 case MEM_TYPE_SYMBOL:
4878 obj = live_symbol_holding (m, p);
4879 break;
4881 case MEM_TYPE_FLOAT:
4882 if (live_float_p (m, p))
4883 obj = make_lisp_ptr (p, Lisp_Float);
4884 break;
4886 case MEM_TYPE_VECTORLIKE:
4887 case MEM_TYPE_VECTOR_BLOCK:
4888 obj = live_vector_holding (m, p);
4889 break;
4891 default:
4892 emacs_abort ();
4895 if (!NILP (obj))
4896 mark_object (obj);
4901 /* Alignment of pointer values. Use alignof, as it sometimes returns
4902 a smaller alignment than GCC's __alignof__ and mark_memory might
4903 miss objects if __alignof__ were used. */
4904 #define GC_POINTER_ALIGNMENT alignof (void *)
4906 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4907 or END+OFFSET..START. */
4909 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4910 mark_memory (void *start, void *end)
4912 char *pp;
4914 /* Make START the pointer to the start of the memory region,
4915 if it isn't already. */
4916 if (end < start)
4918 void *tem = start;
4919 start = end;
4920 end = tem;
4923 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4925 /* Mark Lisp data pointed to. This is necessary because, in some
4926 situations, the C compiler optimizes Lisp objects away, so that
4927 only a pointer to them remains. Example:
4929 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4932 Lisp_Object obj = build_string ("test");
4933 struct Lisp_String *s = XSTRING (obj);
4934 Fgarbage_collect ();
4935 fprintf (stderr, "test '%s'\n", s->u.s.data);
4936 return Qnil;
4939 Here, `obj' isn't really used, and the compiler optimizes it
4940 away. The only reference to the life string is through the
4941 pointer `s'. */
4943 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4945 mark_maybe_pointer (*(void **) pp);
4947 verify (alignof (Lisp_Object) % GC_POINTER_ALIGNMENT == 0);
4948 if (alignof (Lisp_Object) == GC_POINTER_ALIGNMENT
4949 || (uintptr_t) pp % alignof (Lisp_Object) == 0)
4950 mark_maybe_object (*(Lisp_Object *) pp);
4954 #ifndef HAVE___BUILTIN_UNWIND_INIT
4956 # ifdef GC_SETJMP_WORKS
4957 static void
4958 test_setjmp (void)
4961 # else
4963 static bool setjmp_tested_p;
4964 static int longjmps_done;
4966 # define SETJMP_WILL_LIKELY_WORK "\
4968 Emacs garbage collector has been changed to use conservative stack\n\
4969 marking. Emacs has determined that the method it uses to do the\n\
4970 marking will likely work on your system, but this isn't sure.\n\
4972 If you are a system-programmer, or can get the help of a local wizard\n\
4973 who is, please take a look at the function mark_stack in alloc.c, and\n\
4974 verify that the methods used are appropriate for your system.\n\
4976 Please mail the result to <emacs-devel@gnu.org>.\n\
4979 # define SETJMP_WILL_NOT_WORK "\
4981 Emacs garbage collector has been changed to use conservative stack\n\
4982 marking. Emacs has determined that the default method it uses to do the\n\
4983 marking will not work on your system. We will need a system-dependent\n\
4984 solution for your system.\n\
4986 Please take a look at the function mark_stack in alloc.c, and\n\
4987 try to find a way to make it work on your system.\n\
4989 Note that you may get false negatives, depending on the compiler.\n\
4990 In particular, you need to use -O with GCC for this test.\n\
4992 Please mail the result to <emacs-devel@gnu.org>.\n\
4996 /* Perform a quick check if it looks like setjmp saves registers in a
4997 jmp_buf. Print a message to stderr saying so. When this test
4998 succeeds, this is _not_ a proof that setjmp is sufficient for
4999 conservative stack marking. Only the sources or a disassembly
5000 can prove that. */
5002 static void
5003 test_setjmp (void)
5005 if (setjmp_tested_p)
5006 return;
5007 setjmp_tested_p = true;
5008 char buf[10];
5009 register int x;
5010 sys_jmp_buf jbuf;
5012 /* Arrange for X to be put in a register. */
5013 sprintf (buf, "1");
5014 x = strlen (buf);
5015 x = 2 * x - 1;
5017 sys_setjmp (jbuf);
5018 if (longjmps_done == 1)
5020 /* Came here after the longjmp at the end of the function.
5022 If x == 1, the longjmp has restored the register to its
5023 value before the setjmp, and we can hope that setjmp
5024 saves all such registers in the jmp_buf, although that
5025 isn't sure.
5027 For other values of X, either something really strange is
5028 taking place, or the setjmp just didn't save the register. */
5030 if (x == 1)
5031 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
5032 else
5034 fprintf (stderr, SETJMP_WILL_NOT_WORK);
5035 exit (1);
5039 ++longjmps_done;
5040 x = 2;
5041 if (longjmps_done == 1)
5042 sys_longjmp (jbuf, 1);
5044 # endif /* ! GC_SETJMP_WORKS */
5045 #endif /* ! HAVE___BUILTIN_UNWIND_INIT */
5047 /* The type of an object near the stack top, whose address can be used
5048 as a stack scan limit. */
5049 typedef union
5051 /* Align the stack top properly. Even if !HAVE___BUILTIN_UNWIND_INIT,
5052 jmp_buf may not be aligned enough on darwin-ppc64. */
5053 max_align_t o;
5054 #ifndef HAVE___BUILTIN_UNWIND_INIT
5055 sys_jmp_buf j;
5056 char c;
5057 #endif
5058 } stacktop_sentry;
5060 /* Force callee-saved registers and register windows onto the stack.
5061 Use the platform-defined __builtin_unwind_init if available,
5062 obviating the need for machine dependent methods. */
5063 #ifndef HAVE___BUILTIN_UNWIND_INIT
5064 # ifdef __sparc__
5065 /* This trick flushes the register windows so that all the state of
5066 the process is contained in the stack.
5067 FreeBSD does not have a ta 3 handler, so handle it specially.
5068 FIXME: Code in the Boehm GC suggests flushing (with 'flushrs') is
5069 needed on ia64 too. See mach_dep.c, where it also says inline
5070 assembler doesn't work with relevant proprietary compilers. */
5071 # if defined __sparc64__ && defined __FreeBSD__
5072 # define __builtin_unwind_init() asm ("flushw")
5073 # else
5074 # define __builtin_unwind_init() asm ("ta 3")
5075 # endif
5076 # else
5077 # define __builtin_unwind_init() ((void) 0)
5078 # endif
5079 #endif
5081 /* Yield an address close enough to the top of the stack that the
5082 garbage collector need not scan above it. Callers should be
5083 declared NO_INLINE. */
5084 #ifdef HAVE___BUILTIN_FRAME_ADDRESS
5085 # define NEAR_STACK_TOP(addr) ((void) (addr), __builtin_frame_address (0))
5086 #else
5087 # define NEAR_STACK_TOP(addr) (addr)
5088 #endif
5090 /* Set *P to the address of the top of the stack. This must be a
5091 macro, not a function, so that it is executed in the caller's
5092 environment. It is not inside a do-while so that its storage
5093 survives the macro. Callers should be declared NO_INLINE. */
5094 #ifdef HAVE___BUILTIN_UNWIND_INIT
5095 # define SET_STACK_TOP_ADDRESS(p) \
5096 stacktop_sentry sentry; \
5097 __builtin_unwind_init (); \
5098 *(p) = NEAR_STACK_TOP (&sentry)
5099 #else
5100 # define SET_STACK_TOP_ADDRESS(p) \
5101 stacktop_sentry sentry; \
5102 __builtin_unwind_init (); \
5103 test_setjmp (); \
5104 sys_setjmp (sentry.j); \
5105 *(p) = NEAR_STACK_TOP (&sentry + (stack_bottom < &sentry.c))
5106 #endif
5108 /* Mark live Lisp objects on the C stack.
5110 There are several system-dependent problems to consider when
5111 porting this to new architectures:
5113 Processor Registers
5115 We have to mark Lisp objects in CPU registers that can hold local
5116 variables or are used to pass parameters.
5118 This code assumes that calling setjmp saves registers we need
5119 to see in a jmp_buf which itself lies on the stack. This doesn't
5120 have to be true! It must be verified for each system, possibly
5121 by taking a look at the source code of setjmp.
5123 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5124 can use it as a machine independent method to store all registers
5125 to the stack. In this case the macros described in the previous
5126 two paragraphs are not used.
5128 Stack Layout
5130 Architectures differ in the way their processor stack is organized.
5131 For example, the stack might look like this
5133 +----------------+
5134 | Lisp_Object | size = 4
5135 +----------------+
5136 | something else | size = 2
5137 +----------------+
5138 | Lisp_Object | size = 4
5139 +----------------+
5140 | ... |
5142 In such a case, not every Lisp_Object will be aligned equally. To
5143 find all Lisp_Object on the stack it won't be sufficient to walk
5144 the stack in steps of 4 bytes. Instead, two passes will be
5145 necessary, one starting at the start of the stack, and a second
5146 pass starting at the start of the stack + 2. Likewise, if the
5147 minimal alignment of Lisp_Objects on the stack is 1, four passes
5148 would be necessary, each one starting with one byte more offset
5149 from the stack start. */
5151 void
5152 mark_stack (char *bottom, char *end)
5154 /* This assumes that the stack is a contiguous region in memory. If
5155 that's not the case, something has to be done here to iterate
5156 over the stack segments. */
5157 mark_memory (bottom, end);
5159 /* Allow for marking a secondary stack, like the register stack on the
5160 ia64. */
5161 #ifdef GC_MARK_SECONDARY_STACK
5162 GC_MARK_SECONDARY_STACK ();
5163 #endif
5166 /* This is a trampoline function that flushes registers to the stack,
5167 and then calls FUNC. ARG is passed through to FUNC verbatim.
5169 This function must be called whenever Emacs is about to release the
5170 global interpreter lock. This lets the garbage collector easily
5171 find roots in registers on threads that are not actively running
5172 Lisp.
5174 It is invalid to run any Lisp code or to allocate any GC memory
5175 from FUNC. */
5177 NO_INLINE void
5178 flush_stack_call_func (void (*func) (void *arg), void *arg)
5180 void *end;
5181 struct thread_state *self = current_thread;
5182 SET_STACK_TOP_ADDRESS (&end);
5183 self->stack_top = end;
5184 func (arg);
5185 eassert (current_thread == self);
5188 static bool
5189 c_symbol_p (struct Lisp_Symbol *sym)
5191 char *lispsym_ptr = (char *) lispsym;
5192 char *sym_ptr = (char *) sym;
5193 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5194 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5197 /* Determine whether it is safe to access memory at address P. */
5198 static int
5199 valid_pointer_p (void *p)
5201 #ifdef WINDOWSNT
5202 return w32_valid_pointer_p (p, 16);
5203 #else
5205 if (ADDRESS_SANITIZER)
5206 return p ? -1 : 0;
5208 int fd[2];
5210 /* Obviously, we cannot just access it (we would SEGV trying), so we
5211 trick the o/s to tell us whether p is a valid pointer.
5212 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5213 not validate p in that case. */
5215 if (emacs_pipe (fd) == 0)
5217 bool valid = emacs_write (fd[1], p, 16) == 16;
5218 emacs_close (fd[1]);
5219 emacs_close (fd[0]);
5220 return valid;
5223 return -1;
5224 #endif
5227 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5228 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5229 cannot validate OBJ. This function can be quite slow, so its primary
5230 use is the manual debugging. The only exception is print_object, where
5231 we use it to check whether the memory referenced by the pointer of
5232 Lisp_Save_Value object contains valid objects. */
5235 valid_lisp_object_p (Lisp_Object obj)
5237 if (INTEGERP (obj))
5238 return 1;
5240 void *p = XPNTR (obj);
5241 if (PURE_P (p))
5242 return 1;
5244 if (SYMBOLP (obj) && c_symbol_p (p))
5245 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5247 if (p == &buffer_defaults || p == &buffer_local_symbols)
5248 return 2;
5250 struct mem_node *m = mem_find (p);
5252 if (m == MEM_NIL)
5254 int valid = valid_pointer_p (p);
5255 if (valid <= 0)
5256 return valid;
5258 if (SUBRP (obj))
5259 return 1;
5261 return 0;
5264 switch (m->type)
5266 case MEM_TYPE_NON_LISP:
5267 case MEM_TYPE_SPARE:
5268 return 0;
5270 case MEM_TYPE_BUFFER:
5271 return live_buffer_p (m, p) ? 1 : 2;
5273 case MEM_TYPE_CONS:
5274 return live_cons_p (m, p);
5276 case MEM_TYPE_STRING:
5277 return live_string_p (m, p);
5279 case MEM_TYPE_MISC:
5280 return live_misc_p (m, p);
5282 case MEM_TYPE_SYMBOL:
5283 return live_symbol_p (m, p);
5285 case MEM_TYPE_FLOAT:
5286 return live_float_p (m, p);
5288 case MEM_TYPE_VECTORLIKE:
5289 case MEM_TYPE_VECTOR_BLOCK:
5290 return live_vector_p (m, p);
5292 default:
5293 break;
5296 return 0;
5299 /***********************************************************************
5300 Pure Storage Management
5301 ***********************************************************************/
5303 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5304 pointer to it. TYPE is the Lisp type for which the memory is
5305 allocated. TYPE < 0 means it's not used for a Lisp object. */
5307 static void *
5308 pure_alloc (size_t size, int type)
5310 void *result;
5312 again:
5313 if (type >= 0)
5315 /* Allocate space for a Lisp object from the beginning of the free
5316 space with taking account of alignment. */
5317 result = pointer_align (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5318 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5320 else
5322 /* Allocate space for a non-Lisp object from the end of the free
5323 space. */
5324 pure_bytes_used_non_lisp += size;
5325 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5327 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5329 if (pure_bytes_used <= pure_size)
5330 return result;
5332 /* Don't allocate a large amount here,
5333 because it might get mmap'd and then its address
5334 might not be usable. */
5335 purebeg = xmalloc (10000);
5336 pure_size = 10000;
5337 pure_bytes_used_before_overflow += pure_bytes_used - size;
5338 pure_bytes_used = 0;
5339 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5340 goto again;
5344 #ifndef CANNOT_DUMP
5346 /* Print a warning if PURESIZE is too small. */
5348 void
5349 check_pure_size (void)
5351 if (pure_bytes_used_before_overflow)
5352 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5353 " bytes needed)"),
5354 pure_bytes_used + pure_bytes_used_before_overflow);
5356 #endif
5359 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5360 the non-Lisp data pool of the pure storage, and return its start
5361 address. Return NULL if not found. */
5363 static char *
5364 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5366 int i;
5367 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5368 const unsigned char *p;
5369 char *non_lisp_beg;
5371 if (pure_bytes_used_non_lisp <= nbytes)
5372 return NULL;
5374 /* Set up the Boyer-Moore table. */
5375 skip = nbytes + 1;
5376 for (i = 0; i < 256; i++)
5377 bm_skip[i] = skip;
5379 p = (const unsigned char *) data;
5380 while (--skip > 0)
5381 bm_skip[*p++] = skip;
5383 last_char_skip = bm_skip['\0'];
5385 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5386 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5388 /* See the comments in the function `boyer_moore' (search.c) for the
5389 use of `infinity'. */
5390 infinity = pure_bytes_used_non_lisp + 1;
5391 bm_skip['\0'] = infinity;
5393 p = (const unsigned char *) non_lisp_beg + nbytes;
5394 start = 0;
5397 /* Check the last character (== '\0'). */
5400 start += bm_skip[*(p + start)];
5402 while (start <= start_max);
5404 if (start < infinity)
5405 /* Couldn't find the last character. */
5406 return NULL;
5408 /* No less than `infinity' means we could find the last
5409 character at `p[start - infinity]'. */
5410 start -= infinity;
5412 /* Check the remaining characters. */
5413 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5414 /* Found. */
5415 return non_lisp_beg + start;
5417 start += last_char_skip;
5419 while (start <= start_max);
5421 return NULL;
5425 /* Return a string allocated in pure space. DATA is a buffer holding
5426 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5427 means make the result string multibyte.
5429 Must get an error if pure storage is full, since if it cannot hold
5430 a large string it may be able to hold conses that point to that
5431 string; then the string is not protected from gc. */
5433 Lisp_Object
5434 make_pure_string (const char *data,
5435 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5437 Lisp_Object string;
5438 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5439 s->u.s.data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5440 if (s->u.s.data == NULL)
5442 s->u.s.data = pure_alloc (nbytes + 1, -1);
5443 memcpy (s->u.s.data, data, nbytes);
5444 s->u.s.data[nbytes] = '\0';
5446 s->u.s.size = nchars;
5447 s->u.s.size_byte = multibyte ? nbytes : -1;
5448 s->u.s.intervals = NULL;
5449 XSETSTRING (string, s);
5450 return string;
5453 /* Return a string allocated in pure space. Do not
5454 allocate the string data, just point to DATA. */
5456 Lisp_Object
5457 make_pure_c_string (const char *data, ptrdiff_t nchars)
5459 Lisp_Object string;
5460 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5461 s->u.s.size = nchars;
5462 s->u.s.size_byte = -1;
5463 s->u.s.data = (unsigned char *) data;
5464 s->u.s.intervals = NULL;
5465 XSETSTRING (string, s);
5466 return string;
5469 static Lisp_Object purecopy (Lisp_Object obj);
5471 /* Return a cons allocated from pure space. Give it pure copies
5472 of CAR as car and CDR as cdr. */
5474 Lisp_Object
5475 pure_cons (Lisp_Object car, Lisp_Object cdr)
5477 Lisp_Object new;
5478 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5479 XSETCONS (new, p);
5480 XSETCAR (new, purecopy (car));
5481 XSETCDR (new, purecopy (cdr));
5482 return new;
5486 /* Value is a float object with value NUM allocated from pure space. */
5488 static Lisp_Object
5489 make_pure_float (double num)
5491 Lisp_Object new;
5492 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5493 XSETFLOAT (new, p);
5494 XFLOAT_INIT (new, num);
5495 return new;
5499 /* Return a vector with room for LEN Lisp_Objects allocated from
5500 pure space. */
5502 static Lisp_Object
5503 make_pure_vector (ptrdiff_t len)
5505 Lisp_Object new;
5506 size_t size = header_size + len * word_size;
5507 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5508 XSETVECTOR (new, p);
5509 XVECTOR (new)->header.size = len;
5510 return new;
5513 /* Copy all contents and parameters of TABLE to a new table allocated
5514 from pure space, return the purified table. */
5515 static struct Lisp_Hash_Table *
5516 purecopy_hash_table (struct Lisp_Hash_Table *table)
5518 eassert (NILP (table->weak));
5519 eassert (table->pure);
5521 struct Lisp_Hash_Table *pure = pure_alloc (sizeof *pure, Lisp_Vectorlike);
5522 struct hash_table_test pure_test = table->test;
5524 /* Purecopy the hash table test. */
5525 pure_test.name = purecopy (table->test.name);
5526 pure_test.user_hash_function = purecopy (table->test.user_hash_function);
5527 pure_test.user_cmp_function = purecopy (table->test.user_cmp_function);
5529 pure->header = table->header;
5530 pure->weak = purecopy (Qnil);
5531 pure->hash = purecopy (table->hash);
5532 pure->next = purecopy (table->next);
5533 pure->index = purecopy (table->index);
5534 pure->count = table->count;
5535 pure->next_free = table->next_free;
5536 pure->pure = table->pure;
5537 pure->rehash_threshold = table->rehash_threshold;
5538 pure->rehash_size = table->rehash_size;
5539 pure->key_and_value = purecopy (table->key_and_value);
5540 pure->test = pure_test;
5542 return pure;
5545 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5546 doc: /* Make a copy of object OBJ in pure storage.
5547 Recursively copies contents of vectors and cons cells.
5548 Does not copy symbols. Copies strings without text properties. */)
5549 (register Lisp_Object obj)
5551 if (NILP (Vpurify_flag))
5552 return obj;
5553 else if (MARKERP (obj) || OVERLAYP (obj) || SYMBOLP (obj))
5554 /* Can't purify those. */
5555 return obj;
5556 else
5557 return purecopy (obj);
5560 /* Pinned objects are marked before every GC cycle. */
5561 static struct pinned_object
5563 Lisp_Object object;
5564 struct pinned_object *next;
5565 } *pinned_objects;
5567 static Lisp_Object
5568 purecopy (Lisp_Object obj)
5570 if (INTEGERP (obj)
5571 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5572 || SUBRP (obj))
5573 return obj; /* Already pure. */
5575 if (STRINGP (obj) && XSTRING (obj)->u.s.intervals)
5576 message_with_string ("Dropping text-properties while making string `%s' pure",
5577 obj, true);
5579 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5581 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5582 if (!NILP (tmp))
5583 return tmp;
5586 if (CONSP (obj))
5587 obj = pure_cons (XCAR (obj), XCDR (obj));
5588 else if (FLOATP (obj))
5589 obj = make_pure_float (XFLOAT_DATA (obj));
5590 else if (STRINGP (obj))
5591 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5592 SBYTES (obj),
5593 STRING_MULTIBYTE (obj));
5594 else if (HASH_TABLE_P (obj))
5596 struct Lisp_Hash_Table *table = XHASH_TABLE (obj);
5597 /* Do not purify hash tables which haven't been defined with
5598 :purecopy as non-nil or are weak - they aren't guaranteed to
5599 not change. */
5600 if (!NILP (table->weak) || !table->pure)
5602 /* Instead, add the hash table to the list of pinned objects,
5603 so that it will be marked during GC. */
5604 struct pinned_object *o = xmalloc (sizeof *o);
5605 o->object = obj;
5606 o->next = pinned_objects;
5607 pinned_objects = o;
5608 return obj; /* Don't hash cons it. */
5611 struct Lisp_Hash_Table *h = purecopy_hash_table (table);
5612 XSET_HASH_TABLE (obj, h);
5614 else if (COMPILEDP (obj) || VECTORP (obj) || RECORDP (obj))
5616 struct Lisp_Vector *objp = XVECTOR (obj);
5617 ptrdiff_t nbytes = vector_nbytes (objp);
5618 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5619 register ptrdiff_t i;
5620 ptrdiff_t size = ASIZE (obj);
5621 if (size & PSEUDOVECTOR_FLAG)
5622 size &= PSEUDOVECTOR_SIZE_MASK;
5623 memcpy (vec, objp, nbytes);
5624 for (i = 0; i < size; i++)
5625 vec->contents[i] = purecopy (vec->contents[i]);
5626 XSETVECTOR (obj, vec);
5628 else if (SYMBOLP (obj))
5630 if (!XSYMBOL (obj)->u.s.pinned && !c_symbol_p (XSYMBOL (obj)))
5631 { /* We can't purify them, but they appear in many pure objects.
5632 Mark them as `pinned' so we know to mark them at every GC cycle. */
5633 XSYMBOL (obj)->u.s.pinned = true;
5634 symbol_block_pinned = symbol_block;
5636 /* Don't hash-cons it. */
5637 return obj;
5639 else
5641 AUTO_STRING (fmt, "Don't know how to purify: %S");
5642 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5645 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5646 Fputhash (obj, obj, Vpurify_flag);
5648 return obj;
5653 /***********************************************************************
5654 Protection from GC
5655 ***********************************************************************/
5657 /* Put an entry in staticvec, pointing at the variable with address
5658 VARADDRESS. */
5660 void
5661 staticpro (Lisp_Object *varaddress)
5663 if (staticidx >= NSTATICS)
5664 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5665 staticvec[staticidx++] = varaddress;
5669 /***********************************************************************
5670 Protection from GC
5671 ***********************************************************************/
5673 /* Temporarily prevent garbage collection. */
5675 ptrdiff_t
5676 inhibit_garbage_collection (void)
5678 ptrdiff_t count = SPECPDL_INDEX ();
5680 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5681 return count;
5684 /* Used to avoid possible overflows when
5685 converting from C to Lisp integers. */
5687 static Lisp_Object
5688 bounded_number (EMACS_INT number)
5690 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5693 /* Calculate total bytes of live objects. */
5695 static size_t
5696 total_bytes_of_live_objects (void)
5698 size_t tot = 0;
5699 tot += total_conses * sizeof (struct Lisp_Cons);
5700 tot += total_symbols * sizeof (struct Lisp_Symbol);
5701 tot += total_markers * sizeof (union Lisp_Misc);
5702 tot += total_string_bytes;
5703 tot += total_vector_slots * word_size;
5704 tot += total_floats * sizeof (struct Lisp_Float);
5705 tot += total_intervals * sizeof (struct interval);
5706 tot += total_strings * sizeof (struct Lisp_String);
5707 return tot;
5710 #ifdef HAVE_WINDOW_SYSTEM
5712 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5713 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5715 static Lisp_Object
5716 compact_font_cache_entry (Lisp_Object entry)
5718 Lisp_Object tail, *prev = &entry;
5720 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5722 bool drop = 0;
5723 Lisp_Object obj = XCAR (tail);
5725 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5726 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5727 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5728 /* Don't use VECTORP here, as that calls ASIZE, which could
5729 hit assertion violation during GC. */
5730 && (VECTORLIKEP (XCDR (obj))
5731 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5733 ptrdiff_t i, size = gc_asize (XCDR (obj));
5734 Lisp_Object obj_cdr = XCDR (obj);
5736 /* If font-spec is not marked, most likely all font-entities
5737 are not marked too. But we must be sure that nothing is
5738 marked within OBJ before we really drop it. */
5739 for (i = 0; i < size; i++)
5741 Lisp_Object objlist;
5743 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5744 break;
5746 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5747 for (; CONSP (objlist); objlist = XCDR (objlist))
5749 Lisp_Object val = XCAR (objlist);
5750 struct font *font = GC_XFONT_OBJECT (val);
5752 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5753 && VECTOR_MARKED_P(font))
5754 break;
5756 if (CONSP (objlist))
5758 /* Found a marked font, bail out. */
5759 break;
5763 if (i == size)
5765 /* No marked fonts were found, so this entire font
5766 entity can be dropped. */
5767 drop = 1;
5770 if (drop)
5771 *prev = XCDR (tail);
5772 else
5773 prev = xcdr_addr (tail);
5775 return entry;
5778 /* Compact font caches on all terminals and mark
5779 everything which is still here after compaction. */
5781 static void
5782 compact_font_caches (void)
5784 struct terminal *t;
5786 for (t = terminal_list; t; t = t->next_terminal)
5788 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5789 /* Inhibit compacting the caches if the user so wishes. Some of
5790 the users don't mind a larger memory footprint, but do mind
5791 slower redisplay. */
5792 if (!inhibit_compacting_font_caches
5793 && CONSP (cache))
5795 Lisp_Object entry;
5797 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5798 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5800 mark_object (cache);
5804 #else /* not HAVE_WINDOW_SYSTEM */
5806 #define compact_font_caches() (void)(0)
5808 #endif /* HAVE_WINDOW_SYSTEM */
5810 /* Remove (MARKER . DATA) entries with unmarked MARKER
5811 from buffer undo LIST and return changed list. */
5813 static Lisp_Object
5814 compact_undo_list (Lisp_Object list)
5816 Lisp_Object tail, *prev = &list;
5818 for (tail = list; CONSP (tail); tail = XCDR (tail))
5820 if (CONSP (XCAR (tail))
5821 && MARKERP (XCAR (XCAR (tail)))
5822 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5823 *prev = XCDR (tail);
5824 else
5825 prev = xcdr_addr (tail);
5827 return list;
5830 static void
5831 mark_pinned_objects (void)
5833 for (struct pinned_object *pobj = pinned_objects; pobj; pobj = pobj->next)
5834 mark_object (pobj->object);
5837 static void
5838 mark_pinned_symbols (void)
5840 struct symbol_block *sblk;
5841 int lim = (symbol_block_pinned == symbol_block
5842 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5844 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5846 struct Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5847 for (; sym < end; ++sym)
5848 if (sym->u.s.pinned)
5849 mark_object (make_lisp_symbol (sym));
5851 lim = SYMBOL_BLOCK_SIZE;
5855 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5856 separate function so that we could limit mark_stack in searching
5857 the stack frames below this function, thus avoiding the rare cases
5858 where mark_stack finds values that look like live Lisp objects on
5859 portions of stack that couldn't possibly contain such live objects.
5860 For more details of this, see the discussion at
5861 https://lists.gnu.org/r/emacs-devel/2014-05/msg00270.html. */
5862 static Lisp_Object
5863 garbage_collect_1 (void *end)
5865 struct buffer *nextb;
5866 char stack_top_variable;
5867 ptrdiff_t i;
5868 bool message_p;
5869 ptrdiff_t count = SPECPDL_INDEX ();
5870 struct timespec start;
5871 Lisp_Object retval = Qnil;
5872 size_t tot_before = 0;
5874 /* Can't GC if pure storage overflowed because we can't determine
5875 if something is a pure object or not. */
5876 if (pure_bytes_used_before_overflow)
5877 return Qnil;
5879 /* Record this function, so it appears on the profiler's backtraces. */
5880 record_in_backtrace (QAutomatic_GC, 0, 0);
5882 check_cons_list ();
5884 /* Don't keep undo information around forever.
5885 Do this early on, so it is no problem if the user quits. */
5886 FOR_EACH_BUFFER (nextb)
5887 compact_buffer (nextb);
5889 if (profiler_memory_running)
5890 tot_before = total_bytes_of_live_objects ();
5892 start = current_timespec ();
5894 /* In case user calls debug_print during GC,
5895 don't let that cause a recursive GC. */
5896 consing_since_gc = 0;
5898 /* Save what's currently displayed in the echo area. Don't do that
5899 if we are GC'ing because we've run out of memory, since
5900 push_message will cons, and we might have no memory for that. */
5901 if (NILP (Vmemory_full))
5903 message_p = push_message ();
5904 record_unwind_protect_void (pop_message_unwind);
5906 else
5907 message_p = false;
5909 /* Save a copy of the contents of the stack, for debugging. */
5910 #if MAX_SAVE_STACK > 0
5911 if (NILP (Vpurify_flag))
5913 char *stack;
5914 ptrdiff_t stack_size;
5915 if (&stack_top_variable < stack_bottom)
5917 stack = &stack_top_variable;
5918 stack_size = stack_bottom - &stack_top_variable;
5920 else
5922 stack = stack_bottom;
5923 stack_size = &stack_top_variable - stack_bottom;
5925 if (stack_size <= MAX_SAVE_STACK)
5927 if (stack_copy_size < stack_size)
5929 stack_copy = xrealloc (stack_copy, stack_size);
5930 stack_copy_size = stack_size;
5932 no_sanitize_memcpy (stack_copy, stack, stack_size);
5935 #endif /* MAX_SAVE_STACK > 0 */
5937 if (garbage_collection_messages)
5938 message1_nolog ("Garbage collecting...");
5940 block_input ();
5942 shrink_regexp_cache ();
5944 gc_in_progress = 1;
5946 /* Mark all the special slots that serve as the roots of accessibility. */
5948 mark_buffer (&buffer_defaults);
5949 mark_buffer (&buffer_local_symbols);
5951 for (i = 0; i < ARRAYELTS (lispsym); i++)
5952 mark_object (builtin_lisp_symbol (i));
5954 for (i = 0; i < staticidx; i++)
5955 mark_object (*staticvec[i]);
5957 mark_pinned_objects ();
5958 mark_pinned_symbols ();
5959 mark_terminals ();
5960 mark_kboards ();
5961 mark_threads ();
5963 #ifdef USE_GTK
5964 xg_mark_data ();
5965 #endif
5967 #ifdef HAVE_WINDOW_SYSTEM
5968 mark_fringe_data ();
5969 #endif
5971 #ifdef HAVE_MODULES
5972 mark_modules ();
5973 #endif
5975 /* Everything is now marked, except for the data in font caches,
5976 undo lists, and finalizers. The first two are compacted by
5977 removing an items which aren't reachable otherwise. */
5979 compact_font_caches ();
5981 FOR_EACH_BUFFER (nextb)
5983 if (!EQ (BVAR (nextb, undo_list), Qt))
5984 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5985 /* Now that we have stripped the elements that need not be
5986 in the undo_list any more, we can finally mark the list. */
5987 mark_object (BVAR (nextb, undo_list));
5990 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5991 to doomed_finalizers so we can run their associated functions
5992 after GC. It's important to scan finalizers at this stage so
5993 that we can be sure that unmarked finalizers are really
5994 unreachable except for references from their associated functions
5995 and from other finalizers. */
5997 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5998 mark_finalizer_list (&doomed_finalizers);
6000 gc_sweep ();
6002 /* Clear the mark bits that we set in certain root slots. */
6003 VECTOR_UNMARK (&buffer_defaults);
6004 VECTOR_UNMARK (&buffer_local_symbols);
6006 unmark_main_thread ();
6008 check_cons_list ();
6010 gc_in_progress = 0;
6012 unblock_input ();
6014 consing_since_gc = 0;
6015 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
6016 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
6018 gc_relative_threshold = 0;
6019 if (FLOATP (Vgc_cons_percentage))
6020 { /* Set gc_cons_combined_threshold. */
6021 double tot = total_bytes_of_live_objects ();
6023 tot *= XFLOAT_DATA (Vgc_cons_percentage);
6024 if (0 < tot)
6026 if (tot < TYPE_MAXIMUM (EMACS_INT))
6027 gc_relative_threshold = tot;
6028 else
6029 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
6033 if (garbage_collection_messages && NILP (Vmemory_full))
6035 if (message_p || minibuf_level > 0)
6036 restore_message ();
6037 else
6038 message1_nolog ("Garbage collecting...done");
6041 unbind_to (count, Qnil);
6043 Lisp_Object total[] = {
6044 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
6045 bounded_number (total_conses),
6046 bounded_number (total_free_conses)),
6047 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
6048 bounded_number (total_symbols),
6049 bounded_number (total_free_symbols)),
6050 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
6051 bounded_number (total_markers),
6052 bounded_number (total_free_markers)),
6053 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
6054 bounded_number (total_strings),
6055 bounded_number (total_free_strings)),
6056 list3 (Qstring_bytes, make_number (1),
6057 bounded_number (total_string_bytes)),
6058 list3 (Qvectors,
6059 make_number (header_size + sizeof (Lisp_Object)),
6060 bounded_number (total_vectors)),
6061 list4 (Qvector_slots, make_number (word_size),
6062 bounded_number (total_vector_slots),
6063 bounded_number (total_free_vector_slots)),
6064 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
6065 bounded_number (total_floats),
6066 bounded_number (total_free_floats)),
6067 list4 (Qintervals, make_number (sizeof (struct interval)),
6068 bounded_number (total_intervals),
6069 bounded_number (total_free_intervals)),
6070 list3 (Qbuffers, make_number (sizeof (struct buffer)),
6071 bounded_number (total_buffers)),
6073 #ifdef DOUG_LEA_MALLOC
6074 list4 (Qheap, make_number (1024),
6075 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
6076 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
6077 #endif
6079 retval = CALLMANY (Flist, total);
6081 /* GC is complete: now we can run our finalizer callbacks. */
6082 run_finalizers (&doomed_finalizers);
6084 if (!NILP (Vpost_gc_hook))
6086 ptrdiff_t gc_count = inhibit_garbage_collection ();
6087 safe_run_hooks (Qpost_gc_hook);
6088 unbind_to (gc_count, Qnil);
6091 /* Accumulate statistics. */
6092 if (FLOATP (Vgc_elapsed))
6094 struct timespec since_start = timespec_sub (current_timespec (), start);
6095 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
6096 + timespectod (since_start));
6099 gcs_done++;
6101 /* Collect profiling data. */
6102 if (profiler_memory_running)
6104 size_t swept = 0;
6105 size_t tot_after = total_bytes_of_live_objects ();
6106 if (tot_before > tot_after)
6107 swept = tot_before - tot_after;
6108 malloc_probe (swept);
6111 return retval;
6114 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
6115 doc: /* Reclaim storage for Lisp objects no longer needed.
6116 Garbage collection happens automatically if you cons more than
6117 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
6118 `garbage-collect' normally returns a list with info on amount of space in use,
6119 where each entry has the form (NAME SIZE USED FREE), where:
6120 - NAME is a symbol describing the kind of objects this entry represents,
6121 - SIZE is the number of bytes used by each one,
6122 - USED is the number of those objects that were found live in the heap,
6123 - FREE is the number of those objects that are not live but that Emacs
6124 keeps around for future allocations (maybe because it does not know how
6125 to return them to the OS).
6126 However, if there was overflow in pure space, `garbage-collect'
6127 returns nil, because real GC can't be done.
6128 See Info node `(elisp)Garbage Collection'. */
6129 attributes: noinline)
6130 (void)
6132 void *end;
6133 SET_STACK_TOP_ADDRESS (&end);
6134 return garbage_collect_1 (end);
6137 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
6138 only interesting objects referenced from glyphs are strings. */
6140 static void
6141 mark_glyph_matrix (struct glyph_matrix *matrix)
6143 struct glyph_row *row = matrix->rows;
6144 struct glyph_row *end = row + matrix->nrows;
6146 for (; row < end; ++row)
6147 if (row->enabled_p)
6149 int area;
6150 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
6152 struct glyph *glyph = row->glyphs[area];
6153 struct glyph *end_glyph = glyph + row->used[area];
6155 for (; glyph < end_glyph; ++glyph)
6156 if (STRINGP (glyph->object)
6157 && !STRING_MARKED_P (XSTRING (glyph->object)))
6158 mark_object (glyph->object);
6163 /* Mark reference to a Lisp_Object.
6164 If the object referred to has not been seen yet, recursively mark
6165 all the references contained in it. */
6167 #define LAST_MARKED_SIZE 500
6168 Lisp_Object last_marked[LAST_MARKED_SIZE] EXTERNALLY_VISIBLE;
6169 static int last_marked_index;
6171 /* For debugging--call abort when we cdr down this many
6172 links of a list, in mark_object. In debugging,
6173 the call to abort will hit a breakpoint.
6174 Normally this is zero and the check never goes off. */
6175 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6177 static void
6178 mark_vectorlike (struct Lisp_Vector *ptr)
6180 ptrdiff_t size = ptr->header.size;
6181 ptrdiff_t i;
6183 eassert (!VECTOR_MARKED_P (ptr));
6184 VECTOR_MARK (ptr); /* Else mark it. */
6185 if (size & PSEUDOVECTOR_FLAG)
6186 size &= PSEUDOVECTOR_SIZE_MASK;
6188 /* Note that this size is not the memory-footprint size, but only
6189 the number of Lisp_Object fields that we should trace.
6190 The distinction is used e.g. by Lisp_Process which places extra
6191 non-Lisp_Object fields at the end of the structure... */
6192 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6193 mark_object (ptr->contents[i]);
6196 /* Like mark_vectorlike but optimized for char-tables (and
6197 sub-char-tables) assuming that the contents are mostly integers or
6198 symbols. */
6200 static void
6201 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6203 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6204 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6205 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6207 eassert (!VECTOR_MARKED_P (ptr));
6208 VECTOR_MARK (ptr);
6209 for (i = idx; i < size; i++)
6211 Lisp_Object val = ptr->contents[i];
6213 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->u.s.gcmarkbit))
6214 continue;
6215 if (SUB_CHAR_TABLE_P (val))
6217 if (! VECTOR_MARKED_P (XVECTOR (val)))
6218 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6220 else
6221 mark_object (val);
6225 NO_INLINE /* To reduce stack depth in mark_object. */
6226 static Lisp_Object
6227 mark_compiled (struct Lisp_Vector *ptr)
6229 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6231 VECTOR_MARK (ptr);
6232 for (i = 0; i < size; i++)
6233 if (i != COMPILED_CONSTANTS)
6234 mark_object (ptr->contents[i]);
6235 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6238 /* Mark the chain of overlays starting at PTR. */
6240 static void
6241 mark_overlay (struct Lisp_Overlay *ptr)
6243 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6245 ptr->gcmarkbit = 1;
6246 /* These two are always markers and can be marked fast. */
6247 XMARKER (ptr->start)->gcmarkbit = 1;
6248 XMARKER (ptr->end)->gcmarkbit = 1;
6249 mark_object (ptr->plist);
6253 /* Mark Lisp_Objects and special pointers in BUFFER. */
6255 static void
6256 mark_buffer (struct buffer *buffer)
6258 /* This is handled much like other pseudovectors... */
6259 mark_vectorlike ((struct Lisp_Vector *) buffer);
6261 /* ...but there are some buffer-specific things. */
6263 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6265 /* For now, we just don't mark the undo_list. It's done later in
6266 a special way just before the sweep phase, and after stripping
6267 some of its elements that are not needed any more. */
6269 mark_overlay (buffer->overlays_before);
6270 mark_overlay (buffer->overlays_after);
6272 /* If this is an indirect buffer, mark its base buffer. */
6273 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6274 mark_buffer (buffer->base_buffer);
6277 /* Mark Lisp faces in the face cache C. */
6279 NO_INLINE /* To reduce stack depth in mark_object. */
6280 static void
6281 mark_face_cache (struct face_cache *c)
6283 if (c)
6285 int i, j;
6286 for (i = 0; i < c->used; ++i)
6288 struct face *face = FACE_FROM_ID_OR_NULL (c->f, i);
6290 if (face)
6292 if (face->font && !VECTOR_MARKED_P (face->font))
6293 mark_vectorlike ((struct Lisp_Vector *) face->font);
6295 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6296 mark_object (face->lface[j]);
6302 NO_INLINE /* To reduce stack depth in mark_object. */
6303 static void
6304 mark_localized_symbol (struct Lisp_Symbol *ptr)
6306 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6307 Lisp_Object where = blv->where;
6308 /* If the value is set up for a killed buffer restore its global binding. */
6309 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where))))
6310 swap_in_global_binding (ptr);
6311 mark_object (blv->where);
6312 mark_object (blv->valcell);
6313 mark_object (blv->defcell);
6316 NO_INLINE /* To reduce stack depth in mark_object. */
6317 static void
6318 mark_save_value (struct Lisp_Save_Value *ptr)
6320 /* If `save_type' is zero, `data[0].pointer' is the address
6321 of a memory area containing `data[1].integer' potential
6322 Lisp_Objects. */
6323 if (ptr->save_type == SAVE_TYPE_MEMORY)
6325 Lisp_Object *p = ptr->data[0].pointer;
6326 ptrdiff_t nelt;
6327 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6328 mark_maybe_object (*p);
6330 else
6332 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6333 int i;
6334 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6335 if (save_type (ptr, i) == SAVE_OBJECT)
6336 mark_object (ptr->data[i].object);
6340 /* Remove killed buffers or items whose car is a killed buffer from
6341 LIST, and mark other items. Return changed LIST, which is marked. */
6343 static Lisp_Object
6344 mark_discard_killed_buffers (Lisp_Object list)
6346 Lisp_Object tail, *prev = &list;
6348 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6349 tail = XCDR (tail))
6351 Lisp_Object tem = XCAR (tail);
6352 if (CONSP (tem))
6353 tem = XCAR (tem);
6354 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6355 *prev = XCDR (tail);
6356 else
6358 CONS_MARK (XCONS (tail));
6359 mark_object (XCAR (tail));
6360 prev = xcdr_addr (tail);
6363 mark_object (tail);
6364 return list;
6367 /* Determine type of generic Lisp_Object and mark it accordingly.
6369 This function implements a straightforward depth-first marking
6370 algorithm and so the recursion depth may be very high (a few
6371 tens of thousands is not uncommon). To minimize stack usage,
6372 a few cold paths are moved out to NO_INLINE functions above.
6373 In general, inlining them doesn't help you to gain more speed. */
6375 void
6376 mark_object (Lisp_Object arg)
6378 register Lisp_Object obj;
6379 void *po;
6380 #if GC_CHECK_MARKED_OBJECTS
6381 struct mem_node *m;
6382 #endif
6383 ptrdiff_t cdr_count = 0;
6385 obj = arg;
6386 loop:
6388 po = XPNTR (obj);
6389 if (PURE_P (po))
6390 return;
6392 last_marked[last_marked_index++] = obj;
6393 if (last_marked_index == LAST_MARKED_SIZE)
6394 last_marked_index = 0;
6396 /* Perform some sanity checks on the objects marked here. Abort if
6397 we encounter an object we know is bogus. This increases GC time
6398 by ~80%. */
6399 #if GC_CHECK_MARKED_OBJECTS
6401 /* Check that the object pointed to by PO is known to be a Lisp
6402 structure allocated from the heap. */
6403 #define CHECK_ALLOCATED() \
6404 do { \
6405 m = mem_find (po); \
6406 if (m == MEM_NIL) \
6407 emacs_abort (); \
6408 } while (0)
6410 /* Check that the object pointed to by PO is live, using predicate
6411 function LIVEP. */
6412 #define CHECK_LIVE(LIVEP) \
6413 do { \
6414 if (!LIVEP (m, po)) \
6415 emacs_abort (); \
6416 } while (0)
6418 /* Check both of the above conditions, for non-symbols. */
6419 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6420 do { \
6421 CHECK_ALLOCATED (); \
6422 CHECK_LIVE (LIVEP); \
6423 } while (0) \
6425 /* Check both of the above conditions, for symbols. */
6426 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6427 do { \
6428 if (!c_symbol_p (ptr)) \
6430 CHECK_ALLOCATED (); \
6431 CHECK_LIVE (live_symbol_p); \
6433 } while (0) \
6435 #else /* not GC_CHECK_MARKED_OBJECTS */
6437 #define CHECK_LIVE(LIVEP) ((void) 0)
6438 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6439 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6441 #endif /* not GC_CHECK_MARKED_OBJECTS */
6443 switch (XTYPE (obj))
6445 case Lisp_String:
6447 register struct Lisp_String *ptr = XSTRING (obj);
6448 if (STRING_MARKED_P (ptr))
6449 break;
6450 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6451 MARK_STRING (ptr);
6452 MARK_INTERVAL_TREE (ptr->u.s.intervals);
6453 #ifdef GC_CHECK_STRING_BYTES
6454 /* Check that the string size recorded in the string is the
6455 same as the one recorded in the sdata structure. */
6456 string_bytes (ptr);
6457 #endif /* GC_CHECK_STRING_BYTES */
6459 break;
6461 case Lisp_Vectorlike:
6463 register struct Lisp_Vector *ptr = XVECTOR (obj);
6465 if (VECTOR_MARKED_P (ptr))
6466 break;
6468 #if GC_CHECK_MARKED_OBJECTS
6469 m = mem_find (po);
6470 if (m == MEM_NIL && !SUBRP (obj) && !main_thread_p (po))
6471 emacs_abort ();
6472 #endif /* GC_CHECK_MARKED_OBJECTS */
6474 enum pvec_type pvectype
6475 = PSEUDOVECTOR_TYPE (ptr);
6477 if (pvectype != PVEC_SUBR
6478 && pvectype != PVEC_BUFFER
6479 && !main_thread_p (po))
6480 CHECK_LIVE (live_vector_p);
6482 switch (pvectype)
6484 case PVEC_BUFFER:
6485 #if GC_CHECK_MARKED_OBJECTS
6487 struct buffer *b;
6488 FOR_EACH_BUFFER (b)
6489 if (b == po)
6490 break;
6491 if (b == NULL)
6492 emacs_abort ();
6494 #endif /* GC_CHECK_MARKED_OBJECTS */
6495 mark_buffer ((struct buffer *) ptr);
6496 break;
6498 case PVEC_COMPILED:
6499 /* Although we could treat this just like a vector, mark_compiled
6500 returns the COMPILED_CONSTANTS element, which is marked at the
6501 next iteration of goto-loop here. This is done to avoid a few
6502 recursive calls to mark_object. */
6503 obj = mark_compiled (ptr);
6504 if (!NILP (obj))
6505 goto loop;
6506 break;
6508 case PVEC_FRAME:
6510 struct frame *f = (struct frame *) ptr;
6512 mark_vectorlike (ptr);
6513 mark_face_cache (f->face_cache);
6514 #ifdef HAVE_WINDOW_SYSTEM
6515 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6517 struct font *font = FRAME_FONT (f);
6519 if (font && !VECTOR_MARKED_P (font))
6520 mark_vectorlike ((struct Lisp_Vector *) font);
6522 #endif
6524 break;
6526 case PVEC_WINDOW:
6528 struct window *w = (struct window *) ptr;
6530 mark_vectorlike (ptr);
6532 /* Mark glyph matrices, if any. Marking window
6533 matrices is sufficient because frame matrices
6534 use the same glyph memory. */
6535 if (w->current_matrix)
6537 mark_glyph_matrix (w->current_matrix);
6538 mark_glyph_matrix (w->desired_matrix);
6541 /* Filter out killed buffers from both buffer lists
6542 in attempt to help GC to reclaim killed buffers faster.
6543 We can do it elsewhere for live windows, but this is the
6544 best place to do it for dead windows. */
6545 wset_prev_buffers
6546 (w, mark_discard_killed_buffers (w->prev_buffers));
6547 wset_next_buffers
6548 (w, mark_discard_killed_buffers (w->next_buffers));
6550 break;
6552 case PVEC_HASH_TABLE:
6554 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6556 mark_vectorlike (ptr);
6557 mark_object (h->test.name);
6558 mark_object (h->test.user_hash_function);
6559 mark_object (h->test.user_cmp_function);
6560 /* If hash table is not weak, mark all keys and values.
6561 For weak tables, mark only the vector. */
6562 if (NILP (h->weak))
6563 mark_object (h->key_and_value);
6564 else
6565 VECTOR_MARK (XVECTOR (h->key_and_value));
6567 break;
6569 case PVEC_CHAR_TABLE:
6570 case PVEC_SUB_CHAR_TABLE:
6571 mark_char_table (ptr, (enum pvec_type) pvectype);
6572 break;
6574 case PVEC_BOOL_VECTOR:
6575 /* No Lisp_Objects to mark in a bool vector. */
6576 VECTOR_MARK (ptr);
6577 break;
6579 case PVEC_SUBR:
6580 break;
6582 case PVEC_FREE:
6583 emacs_abort ();
6585 default:
6586 mark_vectorlike (ptr);
6589 break;
6591 case Lisp_Symbol:
6593 struct Lisp_Symbol *ptr = XSYMBOL (obj);
6594 nextsym:
6595 if (ptr->u.s.gcmarkbit)
6596 break;
6597 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6598 ptr->u.s.gcmarkbit = 1;
6599 /* Attempt to catch bogus objects. */
6600 eassert (valid_lisp_object_p (ptr->u.s.function));
6601 mark_object (ptr->u.s.function);
6602 mark_object (ptr->u.s.plist);
6603 switch (ptr->u.s.redirect)
6605 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6606 case SYMBOL_VARALIAS:
6608 Lisp_Object tem;
6609 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6610 mark_object (tem);
6611 break;
6613 case SYMBOL_LOCALIZED:
6614 mark_localized_symbol (ptr);
6615 break;
6616 case SYMBOL_FORWARDED:
6617 /* If the value is forwarded to a buffer or keyboard field,
6618 these are marked when we see the corresponding object.
6619 And if it's forwarded to a C variable, either it's not
6620 a Lisp_Object var, or it's staticpro'd already. */
6621 break;
6622 default: emacs_abort ();
6624 if (!PURE_P (XSTRING (ptr->u.s.name)))
6625 MARK_STRING (XSTRING (ptr->u.s.name));
6626 MARK_INTERVAL_TREE (string_intervals (ptr->u.s.name));
6627 /* Inner loop to mark next symbol in this bucket, if any. */
6628 po = ptr = ptr->u.s.next;
6629 if (ptr)
6630 goto nextsym;
6632 break;
6634 case Lisp_Misc:
6635 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6637 if (XMISCANY (obj)->gcmarkbit)
6638 break;
6640 switch (XMISCTYPE (obj))
6642 case Lisp_Misc_Marker:
6643 /* DO NOT mark thru the marker's chain.
6644 The buffer's markers chain does not preserve markers from gc;
6645 instead, markers are removed from the chain when freed by gc. */
6646 XMISCANY (obj)->gcmarkbit = 1;
6647 break;
6649 case Lisp_Misc_Save_Value:
6650 XMISCANY (obj)->gcmarkbit = 1;
6651 mark_save_value (XSAVE_VALUE (obj));
6652 break;
6654 case Lisp_Misc_Overlay:
6655 mark_overlay (XOVERLAY (obj));
6656 break;
6658 case Lisp_Misc_Finalizer:
6659 XMISCANY (obj)->gcmarkbit = true;
6660 mark_object (XFINALIZER (obj)->function);
6661 break;
6663 #ifdef HAVE_MODULES
6664 case Lisp_Misc_User_Ptr:
6665 XMISCANY (obj)->gcmarkbit = true;
6666 break;
6667 #endif
6669 default:
6670 emacs_abort ();
6672 break;
6674 case Lisp_Cons:
6676 register struct Lisp_Cons *ptr = XCONS (obj);
6677 if (CONS_MARKED_P (ptr))
6678 break;
6679 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6680 CONS_MARK (ptr);
6681 /* If the cdr is nil, avoid recursion for the car. */
6682 if (EQ (ptr->u.s.u.cdr, Qnil))
6684 obj = ptr->u.s.car;
6685 cdr_count = 0;
6686 goto loop;
6688 mark_object (ptr->u.s.car);
6689 obj = ptr->u.s.u.cdr;
6690 cdr_count++;
6691 if (cdr_count == mark_object_loop_halt)
6692 emacs_abort ();
6693 goto loop;
6696 case Lisp_Float:
6697 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6698 FLOAT_MARK (XFLOAT (obj));
6699 break;
6701 case_Lisp_Int:
6702 break;
6704 default:
6705 emacs_abort ();
6708 #undef CHECK_LIVE
6709 #undef CHECK_ALLOCATED
6710 #undef CHECK_ALLOCATED_AND_LIVE
6712 /* Mark the Lisp pointers in the terminal objects.
6713 Called by Fgarbage_collect. */
6715 static void
6716 mark_terminals (void)
6718 struct terminal *t;
6719 for (t = terminal_list; t; t = t->next_terminal)
6721 eassert (t->name != NULL);
6722 #ifdef HAVE_WINDOW_SYSTEM
6723 /* If a terminal object is reachable from a stacpro'ed object,
6724 it might have been marked already. Make sure the image cache
6725 gets marked. */
6726 mark_image_cache (t->image_cache);
6727 #endif /* HAVE_WINDOW_SYSTEM */
6728 if (!VECTOR_MARKED_P (t))
6729 mark_vectorlike ((struct Lisp_Vector *)t);
6735 /* Value is non-zero if OBJ will survive the current GC because it's
6736 either marked or does not need to be marked to survive. */
6738 bool
6739 survives_gc_p (Lisp_Object obj)
6741 bool survives_p;
6743 switch (XTYPE (obj))
6745 case_Lisp_Int:
6746 survives_p = 1;
6747 break;
6749 case Lisp_Symbol:
6750 survives_p = XSYMBOL (obj)->u.s.gcmarkbit;
6751 break;
6753 case Lisp_Misc:
6754 survives_p = XMISCANY (obj)->gcmarkbit;
6755 break;
6757 case Lisp_String:
6758 survives_p = STRING_MARKED_P (XSTRING (obj));
6759 break;
6761 case Lisp_Vectorlike:
6762 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6763 break;
6765 case Lisp_Cons:
6766 survives_p = CONS_MARKED_P (XCONS (obj));
6767 break;
6769 case Lisp_Float:
6770 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6771 break;
6773 default:
6774 emacs_abort ();
6777 return survives_p || PURE_P (XPNTR (obj));
6783 NO_INLINE /* For better stack traces */
6784 static void
6785 sweep_conses (void)
6787 struct cons_block *cblk;
6788 struct cons_block **cprev = &cons_block;
6789 int lim = cons_block_index;
6790 EMACS_INT num_free = 0, num_used = 0;
6792 cons_free_list = 0;
6794 for (cblk = cons_block; cblk; cblk = *cprev)
6796 int i = 0;
6797 int this_free = 0;
6798 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6800 /* Scan the mark bits an int at a time. */
6801 for (i = 0; i < ilim; i++)
6803 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6805 /* Fast path - all cons cells for this int are marked. */
6806 cblk->gcmarkbits[i] = 0;
6807 num_used += BITS_PER_BITS_WORD;
6809 else
6811 /* Some cons cells for this int are not marked.
6812 Find which ones, and free them. */
6813 int start, pos, stop;
6815 start = i * BITS_PER_BITS_WORD;
6816 stop = lim - start;
6817 if (stop > BITS_PER_BITS_WORD)
6818 stop = BITS_PER_BITS_WORD;
6819 stop += start;
6821 for (pos = start; pos < stop; pos++)
6823 if (!CONS_MARKED_P (&cblk->conses[pos]))
6825 this_free++;
6826 cblk->conses[pos].u.s.u.chain = cons_free_list;
6827 cons_free_list = &cblk->conses[pos];
6828 cons_free_list->u.s.car = Vdead;
6830 else
6832 num_used++;
6833 CONS_UNMARK (&cblk->conses[pos]);
6839 lim = CONS_BLOCK_SIZE;
6840 /* If this block contains only free conses and we have already
6841 seen more than two blocks worth of free conses then deallocate
6842 this block. */
6843 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6845 *cprev = cblk->next;
6846 /* Unhook from the free list. */
6847 cons_free_list = cblk->conses[0].u.s.u.chain;
6848 lisp_align_free (cblk);
6850 else
6852 num_free += this_free;
6853 cprev = &cblk->next;
6856 total_conses = num_used;
6857 total_free_conses = num_free;
6860 NO_INLINE /* For better stack traces */
6861 static void
6862 sweep_floats (void)
6864 register struct float_block *fblk;
6865 struct float_block **fprev = &float_block;
6866 register int lim = float_block_index;
6867 EMACS_INT num_free = 0, num_used = 0;
6869 float_free_list = 0;
6871 for (fblk = float_block; fblk; fblk = *fprev)
6873 register int i;
6874 int this_free = 0;
6875 for (i = 0; i < lim; i++)
6876 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6878 this_free++;
6879 fblk->floats[i].u.chain = float_free_list;
6880 float_free_list = &fblk->floats[i];
6882 else
6884 num_used++;
6885 FLOAT_UNMARK (&fblk->floats[i]);
6887 lim = FLOAT_BLOCK_SIZE;
6888 /* If this block contains only free floats and we have already
6889 seen more than two blocks worth of free floats then deallocate
6890 this block. */
6891 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6893 *fprev = fblk->next;
6894 /* Unhook from the free list. */
6895 float_free_list = fblk->floats[0].u.chain;
6896 lisp_align_free (fblk);
6898 else
6900 num_free += this_free;
6901 fprev = &fblk->next;
6904 total_floats = num_used;
6905 total_free_floats = num_free;
6908 NO_INLINE /* For better stack traces */
6909 static void
6910 sweep_intervals (void)
6912 register struct interval_block *iblk;
6913 struct interval_block **iprev = &interval_block;
6914 register int lim = interval_block_index;
6915 EMACS_INT num_free = 0, num_used = 0;
6917 interval_free_list = 0;
6919 for (iblk = interval_block; iblk; iblk = *iprev)
6921 register int i;
6922 int this_free = 0;
6924 for (i = 0; i < lim; i++)
6926 if (!iblk->intervals[i].gcmarkbit)
6928 set_interval_parent (&iblk->intervals[i], interval_free_list);
6929 interval_free_list = &iblk->intervals[i];
6930 this_free++;
6932 else
6934 num_used++;
6935 iblk->intervals[i].gcmarkbit = 0;
6938 lim = INTERVAL_BLOCK_SIZE;
6939 /* If this block contains only free intervals and we have already
6940 seen more than two blocks worth of free intervals then
6941 deallocate this block. */
6942 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6944 *iprev = iblk->next;
6945 /* Unhook from the free list. */
6946 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6947 lisp_free (iblk);
6949 else
6951 num_free += this_free;
6952 iprev = &iblk->next;
6955 total_intervals = num_used;
6956 total_free_intervals = num_free;
6959 NO_INLINE /* For better stack traces */
6960 static void
6961 sweep_symbols (void)
6963 struct symbol_block *sblk;
6964 struct symbol_block **sprev = &symbol_block;
6965 int lim = symbol_block_index;
6966 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6968 symbol_free_list = NULL;
6970 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6971 lispsym[i].u.s.gcmarkbit = 0;
6973 for (sblk = symbol_block; sblk; sblk = *sprev)
6975 int this_free = 0;
6976 struct Lisp_Symbol *sym = sblk->symbols;
6977 struct Lisp_Symbol *end = sym + lim;
6979 for (; sym < end; ++sym)
6981 if (!sym->u.s.gcmarkbit)
6983 if (sym->u.s.redirect == SYMBOL_LOCALIZED)
6985 xfree (SYMBOL_BLV (sym));
6986 /* At every GC we sweep all symbol_blocks and rebuild the
6987 symbol_free_list, so those symbols which stayed unused
6988 between the two will be re-swept.
6989 So we have to make sure we don't re-free this blv next
6990 time we sweep this symbol_block (bug#29066). */
6991 sym->u.s.redirect = SYMBOL_PLAINVAL;
6993 sym->u.s.next = symbol_free_list;
6994 symbol_free_list = sym;
6995 symbol_free_list->u.s.function = Vdead;
6996 ++this_free;
6998 else
7000 ++num_used;
7001 sym->u.s.gcmarkbit = 0;
7002 /* Attempt to catch bogus objects. */
7003 eassert (valid_lisp_object_p (sym->u.s.function));
7007 lim = SYMBOL_BLOCK_SIZE;
7008 /* If this block contains only free symbols and we have already
7009 seen more than two blocks worth of free symbols then deallocate
7010 this block. */
7011 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
7013 *sprev = sblk->next;
7014 /* Unhook from the free list. */
7015 symbol_free_list = sblk->symbols[0].u.s.next;
7016 lisp_free (sblk);
7018 else
7020 num_free += this_free;
7021 sprev = &sblk->next;
7024 total_symbols = num_used;
7025 total_free_symbols = num_free;
7028 NO_INLINE /* For better stack traces. */
7029 static void
7030 sweep_misc (void)
7032 register struct marker_block *mblk;
7033 struct marker_block **mprev = &marker_block;
7034 register int lim = marker_block_index;
7035 EMACS_INT num_free = 0, num_used = 0;
7037 /* Put all unmarked misc's on free list. For a marker, first
7038 unchain it from the buffer it points into. */
7040 marker_free_list = 0;
7042 for (mblk = marker_block; mblk; mblk = *mprev)
7044 register int i;
7045 int this_free = 0;
7047 for (i = 0; i < lim; i++)
7049 if (!mblk->markers[i].m.u_any.gcmarkbit)
7051 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
7052 unchain_marker (&mblk->markers[i].m.u_marker);
7053 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
7054 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
7055 #ifdef HAVE_MODULES
7056 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
7058 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
7059 if (uptr->finalizer)
7060 uptr->finalizer (uptr->p);
7062 #endif
7063 /* Set the type of the freed object to Lisp_Misc_Free.
7064 We could leave the type alone, since nobody checks it,
7065 but this might catch bugs faster. */
7066 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
7067 mblk->markers[i].m.u_free.chain = marker_free_list;
7068 marker_free_list = &mblk->markers[i].m;
7069 this_free++;
7071 else
7073 num_used++;
7074 mblk->markers[i].m.u_any.gcmarkbit = 0;
7077 lim = MARKER_BLOCK_SIZE;
7078 /* If this block contains only free markers and we have already
7079 seen more than two blocks worth of free markers then deallocate
7080 this block. */
7081 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
7083 *mprev = mblk->next;
7084 /* Unhook from the free list. */
7085 marker_free_list = mblk->markers[0].m.u_free.chain;
7086 lisp_free (mblk);
7088 else
7090 num_free += this_free;
7091 mprev = &mblk->next;
7095 total_markers = num_used;
7096 total_free_markers = num_free;
7099 NO_INLINE /* For better stack traces */
7100 static void
7101 sweep_buffers (void)
7103 register struct buffer *buffer, **bprev = &all_buffers;
7105 total_buffers = 0;
7106 for (buffer = all_buffers; buffer; buffer = *bprev)
7107 if (!VECTOR_MARKED_P (buffer))
7109 *bprev = buffer->next;
7110 lisp_free (buffer);
7112 else
7114 VECTOR_UNMARK (buffer);
7115 /* Do not use buffer_(set|get)_intervals here. */
7116 buffer->text->intervals = balance_intervals (buffer->text->intervals);
7117 total_buffers++;
7118 bprev = &buffer->next;
7122 /* Sweep: find all structures not marked, and free them. */
7123 static void
7124 gc_sweep (void)
7126 /* Remove or mark entries in weak hash tables.
7127 This must be done before any object is unmarked. */
7128 sweep_weak_hash_tables ();
7130 sweep_strings ();
7131 check_string_bytes (!noninteractive);
7132 sweep_conses ();
7133 sweep_floats ();
7134 sweep_intervals ();
7135 sweep_symbols ();
7136 sweep_misc ();
7137 sweep_buffers ();
7138 sweep_vectors ();
7139 check_string_bytes (!noninteractive);
7142 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
7143 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
7144 All values are in Kbytes. If there is no swap space,
7145 last two values are zero. If the system is not supported
7146 or memory information can't be obtained, return nil. */)
7147 (void)
7149 #if defined HAVE_LINUX_SYSINFO
7150 struct sysinfo si;
7151 uintmax_t units;
7153 if (sysinfo (&si))
7154 return Qnil;
7155 #ifdef LINUX_SYSINFO_UNIT
7156 units = si.mem_unit;
7157 #else
7158 units = 1;
7159 #endif
7160 return list4i ((uintmax_t) si.totalram * units / 1024,
7161 (uintmax_t) si.freeram * units / 1024,
7162 (uintmax_t) si.totalswap * units / 1024,
7163 (uintmax_t) si.freeswap * units / 1024);
7164 #elif defined WINDOWSNT
7165 unsigned long long totalram, freeram, totalswap, freeswap;
7167 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7168 return list4i ((uintmax_t) totalram / 1024,
7169 (uintmax_t) freeram / 1024,
7170 (uintmax_t) totalswap / 1024,
7171 (uintmax_t) freeswap / 1024);
7172 else
7173 return Qnil;
7174 #elif defined MSDOS
7175 unsigned long totalram, freeram, totalswap, freeswap;
7177 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7178 return list4i ((uintmax_t) totalram / 1024,
7179 (uintmax_t) freeram / 1024,
7180 (uintmax_t) totalswap / 1024,
7181 (uintmax_t) freeswap / 1024);
7182 else
7183 return Qnil;
7184 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7185 /* FIXME: add more systems. */
7186 return Qnil;
7187 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7190 /* Debugging aids. */
7192 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7193 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7194 This may be helpful in debugging Emacs's memory usage.
7195 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7196 (void)
7198 Lisp_Object end;
7200 #if defined HAVE_NS || defined __APPLE__ || !HAVE_SBRK
7201 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7202 XSETINT (end, 0);
7203 #else
7204 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7205 #endif
7207 return end;
7210 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7211 doc: /* Return a list of counters that measure how much consing there has been.
7212 Each of these counters increments for a certain kind of object.
7213 The counters wrap around from the largest positive integer to zero.
7214 Garbage collection does not decrease them.
7215 The elements of the value are as follows:
7216 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7217 All are in units of 1 = one object consed
7218 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7219 objects consed.
7220 MISCS include overlays, markers, and some internal types.
7221 Frames, windows, buffers, and subprocesses count as vectors
7222 (but the contents of a buffer's text do not count here). */)
7223 (void)
7225 return listn (CONSTYPE_HEAP, 8,
7226 bounded_number (cons_cells_consed),
7227 bounded_number (floats_consed),
7228 bounded_number (vector_cells_consed),
7229 bounded_number (symbols_consed),
7230 bounded_number (string_chars_consed),
7231 bounded_number (misc_objects_consed),
7232 bounded_number (intervals_consed),
7233 bounded_number (strings_consed));
7236 static bool
7237 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7239 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7240 Lisp_Object val = find_symbol_value (symbol);
7241 return (EQ (val, obj)
7242 || EQ (sym->u.s.function, obj)
7243 || (!NILP (sym->u.s.function)
7244 && COMPILEDP (sym->u.s.function)
7245 && EQ (AREF (sym->u.s.function, COMPILED_BYTECODE), obj))
7246 || (!NILP (val)
7247 && COMPILEDP (val)
7248 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7251 /* Find at most FIND_MAX symbols which have OBJ as their value or
7252 function. This is used in gdbinit's `xwhichsymbols' command. */
7254 Lisp_Object
7255 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7257 struct symbol_block *sblk;
7258 ptrdiff_t gc_count = inhibit_garbage_collection ();
7259 Lisp_Object found = Qnil;
7261 if (! DEADP (obj))
7263 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7265 Lisp_Object sym = builtin_lisp_symbol (i);
7266 if (symbol_uses_obj (sym, obj))
7268 found = Fcons (sym, found);
7269 if (--find_max == 0)
7270 goto out;
7274 for (sblk = symbol_block; sblk; sblk = sblk->next)
7276 struct Lisp_Symbol *asym = sblk->symbols;
7277 int bn;
7279 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, asym++)
7281 if (sblk == symbol_block && bn >= symbol_block_index)
7282 break;
7284 Lisp_Object sym = make_lisp_symbol (asym);
7285 if (symbol_uses_obj (sym, obj))
7287 found = Fcons (sym, found);
7288 if (--find_max == 0)
7289 goto out;
7295 out:
7296 unbind_to (gc_count, Qnil);
7297 return found;
7300 #ifdef SUSPICIOUS_OBJECT_CHECKING
7302 static void *
7303 find_suspicious_object_in_range (void *begin, void *end)
7305 char *begin_a = begin;
7306 char *end_a = end;
7307 int i;
7309 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7311 char *suspicious_object = suspicious_objects[i];
7312 if (begin_a <= suspicious_object && suspicious_object < end_a)
7313 return suspicious_object;
7316 return NULL;
7319 static void
7320 note_suspicious_free (void *ptr)
7322 struct suspicious_free_record *rec;
7324 rec = &suspicious_free_history[suspicious_free_history_index++];
7325 if (suspicious_free_history_index ==
7326 ARRAYELTS (suspicious_free_history))
7328 suspicious_free_history_index = 0;
7331 memset (rec, 0, sizeof (*rec));
7332 rec->suspicious_object = ptr;
7333 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7336 static void
7337 detect_suspicious_free (void *ptr)
7339 int i;
7341 eassert (ptr != NULL);
7343 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7344 if (suspicious_objects[i] == ptr)
7346 note_suspicious_free (ptr);
7347 suspicious_objects[i] = NULL;
7351 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7353 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7354 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7355 If Emacs is compiled with suspicious object checking, capture
7356 a stack trace when OBJ is freed in order to help track down
7357 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7358 (Lisp_Object obj)
7360 #ifdef SUSPICIOUS_OBJECT_CHECKING
7361 /* Right now, we care only about vectors. */
7362 if (VECTORLIKEP (obj))
7364 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7365 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7366 suspicious_object_index = 0;
7368 #endif
7369 return obj;
7372 #ifdef ENABLE_CHECKING
7374 bool suppress_checking;
7376 void
7377 die (const char *msg, const char *file, int line)
7379 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7380 file, line, msg);
7381 terminate_due_to_signal (SIGABRT, INT_MAX);
7384 #endif /* ENABLE_CHECKING */
7386 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7388 /* Stress alloca with inconveniently sized requests and check
7389 whether all allocated areas may be used for Lisp_Object. */
7391 NO_INLINE static void
7392 verify_alloca (void)
7394 int i;
7395 enum { ALLOCA_CHECK_MAX = 256 };
7396 /* Start from size of the smallest Lisp object. */
7397 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7399 void *ptr = alloca (i);
7400 make_lisp_ptr (ptr, Lisp_Cons);
7404 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7406 #define verify_alloca() ((void) 0)
7408 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7410 /* Initialization. */
7412 void
7413 init_alloc_once (void)
7415 /* Even though Qt's contents are not set up, its address is known. */
7416 Vpurify_flag = Qt;
7418 purebeg = PUREBEG;
7419 pure_size = PURESIZE;
7421 verify_alloca ();
7422 init_finalizer_list (&finalizers);
7423 init_finalizer_list (&doomed_finalizers);
7425 mem_init ();
7426 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7428 #ifdef DOUG_LEA_MALLOC
7429 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7430 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7431 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7432 #endif
7433 init_strings ();
7434 init_vectors ();
7436 refill_memory_reserve ();
7437 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7440 void
7441 init_alloc (void)
7443 Vgc_elapsed = make_float (0.0);
7444 gcs_done = 0;
7446 #if USE_VALGRIND
7447 valgrind_p = RUNNING_ON_VALGRIND != 0;
7448 #endif
7451 void
7452 syms_of_alloc (void)
7454 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7455 doc: /* Number of bytes of consing between garbage collections.
7456 Garbage collection can happen automatically once this many bytes have been
7457 allocated since the last garbage collection. All data types count.
7459 Garbage collection happens automatically only when `eval' is called.
7461 By binding this temporarily to a large number, you can effectively
7462 prevent garbage collection during a part of the program.
7463 See also `gc-cons-percentage'. */);
7465 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7466 doc: /* Portion of the heap used for allocation.
7467 Garbage collection can happen automatically once this portion of the heap
7468 has been allocated since the last garbage collection.
7469 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7470 Vgc_cons_percentage = make_float (0.1);
7472 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7473 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7475 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7476 doc: /* Number of cons cells that have been consed so far. */);
7478 DEFVAR_INT ("floats-consed", floats_consed,
7479 doc: /* Number of floats that have been consed so far. */);
7481 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7482 doc: /* Number of vector cells that have been consed so far. */);
7484 DEFVAR_INT ("symbols-consed", symbols_consed,
7485 doc: /* Number of symbols that have been consed so far. */);
7486 symbols_consed += ARRAYELTS (lispsym);
7488 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7489 doc: /* Number of string characters that have been consed so far. */);
7491 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7492 doc: /* Number of miscellaneous objects that have been consed so far.
7493 These include markers and overlays, plus certain objects not visible
7494 to users. */);
7496 DEFVAR_INT ("intervals-consed", intervals_consed,
7497 doc: /* Number of intervals that have been consed so far. */);
7499 DEFVAR_INT ("strings-consed", strings_consed,
7500 doc: /* Number of strings that have been consed so far. */);
7502 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7503 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7504 This means that certain objects should be allocated in shared (pure) space.
7505 It can also be set to a hash-table, in which case this table is used to
7506 do hash-consing of the objects allocated to pure space. */);
7508 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7509 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7510 garbage_collection_messages = 0;
7512 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7513 doc: /* Hook run after garbage collection has finished. */);
7514 Vpost_gc_hook = Qnil;
7515 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7517 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7518 doc: /* Precomputed `signal' argument for memory-full error. */);
7519 /* We build this in advance because if we wait until we need it, we might
7520 not be able to allocate the memory to hold it. */
7521 Vmemory_signal_data
7522 = listn (CONSTYPE_PURE, 2, Qerror,
7523 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7525 DEFVAR_LISP ("memory-full", Vmemory_full,
7526 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7527 Vmemory_full = Qnil;
7529 DEFSYM (Qconses, "conses");
7530 DEFSYM (Qsymbols, "symbols");
7531 DEFSYM (Qmiscs, "miscs");
7532 DEFSYM (Qstrings, "strings");
7533 DEFSYM (Qvectors, "vectors");
7534 DEFSYM (Qfloats, "floats");
7535 DEFSYM (Qintervals, "intervals");
7536 DEFSYM (Qbuffers, "buffers");
7537 DEFSYM (Qstring_bytes, "string-bytes");
7538 DEFSYM (Qvector_slots, "vector-slots");
7539 DEFSYM (Qheap, "heap");
7540 DEFSYM (QAutomatic_GC, "Automatic GC");
7542 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7543 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7545 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7546 doc: /* Accumulated time elapsed in garbage collections.
7547 The time is in seconds as a floating point value. */);
7548 DEFVAR_INT ("gcs-done", gcs_done,
7549 doc: /* Accumulated number of garbage collections done. */);
7551 defsubr (&Scons);
7552 defsubr (&Slist);
7553 defsubr (&Svector);
7554 defsubr (&Srecord);
7555 defsubr (&Sbool_vector);
7556 defsubr (&Smake_byte_code);
7557 defsubr (&Smake_list);
7558 defsubr (&Smake_vector);
7559 defsubr (&Smake_record);
7560 defsubr (&Smake_string);
7561 defsubr (&Smake_bool_vector);
7562 defsubr (&Smake_symbol);
7563 defsubr (&Smake_marker);
7564 defsubr (&Smake_finalizer);
7565 defsubr (&Spurecopy);
7566 defsubr (&Sgarbage_collect);
7567 defsubr (&Smemory_limit);
7568 defsubr (&Smemory_info);
7569 defsubr (&Smemory_use_counts);
7570 defsubr (&Ssuspicious_object);
7573 /* When compiled with GCC, GDB might say "No enum type named
7574 pvec_type" if we don't have at least one symbol with that type, and
7575 then xbacktrace could fail. Similarly for the other enums and
7576 their values. Some non-GCC compilers don't like these constructs. */
7577 #ifdef __GNUC__
7578 union
7580 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7581 enum char_table_specials char_table_specials;
7582 enum char_bits char_bits;
7583 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7584 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7585 enum Lisp_Bits Lisp_Bits;
7586 enum Lisp_Compiled Lisp_Compiled;
7587 enum maxargs maxargs;
7588 enum MAX_ALLOCA MAX_ALLOCA;
7589 enum More_Lisp_Bits More_Lisp_Bits;
7590 enum pvec_type pvec_type;
7591 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7592 #endif /* __GNUC__ */