Remove unused variable EMACS_HEAPSIZE from src/Makefile.in.
[emacs.git] / src / alloc.c
blobbb47a24d905855c62e115d5308d7d069c0e2e57b
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2014 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
54 #endif
56 #ifdef MSDOS
57 #include "dosfns.h" /* For dos_memory_info. */
58 #endif
60 #if (defined ENABLE_CHECKING \
61 && defined HAVE_VALGRIND_VALGRIND_H \
62 && !defined USE_VALGRIND)
63 # define USE_VALGRIND 1
64 #endif
66 #if USE_VALGRIND
67 #include <valgrind/valgrind.h>
68 #include <valgrind/memcheck.h>
69 static bool valgrind_p;
70 #endif
72 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
73 Doable only if GC_MARK_STACK. */
74 #if ! GC_MARK_STACK
75 # undef GC_CHECK_MARKED_OBJECTS
76 #endif
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
80 marked objects. */
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
85 #endif
87 #include <unistd.h>
88 #include <fcntl.h>
90 #ifdef USE_GTK
91 # include "gtkutil.h"
92 #endif
93 #ifdef WINDOWSNT
94 #include "w32.h"
95 #include "w32heap.h" /* for sbrk */
96 #endif
98 #ifdef DOUG_LEA_MALLOC
100 #include <malloc.h>
102 /* Specify maximum number of areas to mmap. It would be nice to use a
103 value that explicitly means "no limit". */
105 #define MMAP_MAX_AREAS 100000000
107 #endif /* not DOUG_LEA_MALLOC */
109 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
110 to a struct Lisp_String. */
112 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
113 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
114 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
116 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
117 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
118 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
120 /* Default value of gc_cons_threshold (see below). */
122 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
124 /* Global variables. */
125 struct emacs_globals globals;
127 /* Number of bytes of consing done since the last gc. */
129 EMACS_INT consing_since_gc;
131 /* Similar minimum, computed from Vgc_cons_percentage. */
133 EMACS_INT gc_relative_threshold;
135 /* Minimum number of bytes of consing since GC before next GC,
136 when memory is full. */
138 EMACS_INT memory_full_cons_threshold;
140 /* True during GC. */
142 bool gc_in_progress;
144 /* True means abort if try to GC.
145 This is for code which is written on the assumption that
146 no GC will happen, so as to verify that assumption. */
148 bool abort_on_gc;
150 /* Number of live and free conses etc. */
152 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
153 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
154 static EMACS_INT total_free_floats, total_floats;
156 /* Points to memory space allocated as "spare", to be freed if we run
157 out of memory. We keep one large block, four cons-blocks, and
158 two string blocks. */
160 static char *spare_memory[7];
162 /* Amount of spare memory to keep in large reserve block, or to see
163 whether this much is available when malloc fails on a larger request. */
165 #define SPARE_MEMORY (1 << 14)
167 /* Initialize it to a nonzero value to force it into data space
168 (rather than bss space). That way unexec will remap it into text
169 space (pure), on some systems. We have not implemented the
170 remapping on more recent systems because this is less important
171 nowadays than in the days of small memories and timesharing. */
173 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
174 #define PUREBEG (char *) pure
176 /* Pointer to the pure area, and its size. */
178 static char *purebeg;
179 static ptrdiff_t pure_size;
181 /* Number of bytes of pure storage used before pure storage overflowed.
182 If this is non-zero, this implies that an overflow occurred. */
184 static ptrdiff_t pure_bytes_used_before_overflow;
186 /* True if P points into pure space. */
188 #define PURE_POINTER_P(P) \
189 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
191 /* Index in pure at which next pure Lisp object will be allocated.. */
193 static ptrdiff_t pure_bytes_used_lisp;
195 /* Number of bytes allocated for non-Lisp objects in pure storage. */
197 static ptrdiff_t pure_bytes_used_non_lisp;
199 /* If nonzero, this is a warning delivered by malloc and not yet
200 displayed. */
202 const char *pending_malloc_warning;
204 #if 0 /* Normally, pointer sanity only on request... */
205 #ifdef ENABLE_CHECKING
206 #define SUSPICIOUS_OBJECT_CHECKING 1
207 #endif
208 #endif
210 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
211 bug is unresolved. */
212 #define SUSPICIOUS_OBJECT_CHECKING 1
214 #ifdef SUSPICIOUS_OBJECT_CHECKING
215 struct suspicious_free_record
217 void *suspicious_object;
218 void *backtrace[128];
220 static void *suspicious_objects[32];
221 static int suspicious_object_index;
222 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
223 static int suspicious_free_history_index;
224 /* Find the first currently-monitored suspicious pointer in range
225 [begin,end) or NULL if no such pointer exists. */
226 static void *find_suspicious_object_in_range (void *begin, void *end);
227 static void detect_suspicious_free (void *ptr);
228 #else
229 # define find_suspicious_object_in_range(begin, end) NULL
230 # define detect_suspicious_free(ptr) (void)
231 #endif
233 /* Maximum amount of C stack to save when a GC happens. */
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
239 /* Buffer in which we save a copy of the C stack at each GC. */
241 #if MAX_SAVE_STACK > 0
242 static char *stack_copy;
243 static ptrdiff_t stack_copy_size;
245 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
246 avoiding any address sanitization. */
248 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
249 no_sanitize_memcpy (void *dest, void const *src, size_t size)
251 if (! ADDRESS_SANITIZER)
252 return memcpy (dest, src, size);
253 else
255 size_t i;
256 char *d = dest;
257 char const *s = src;
258 for (i = 0; i < size; i++)
259 d[i] = s[i];
260 return dest;
264 #endif /* MAX_SAVE_STACK > 0 */
266 static Lisp_Object Qconses;
267 static Lisp_Object Qsymbols;
268 static Lisp_Object Qmiscs;
269 static Lisp_Object Qstrings;
270 static Lisp_Object Qvectors;
271 static Lisp_Object Qfloats;
272 static Lisp_Object Qintervals;
273 static Lisp_Object Qbuffers;
274 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
275 static Lisp_Object Qgc_cons_threshold;
276 Lisp_Object Qautomatic_gc;
277 Lisp_Object Qchar_table_extra_slots;
279 /* Hook run after GC has finished. */
281 static Lisp_Object Qpost_gc_hook;
283 static void mark_terminals (void);
284 static void gc_sweep (void);
285 static Lisp_Object make_pure_vector (ptrdiff_t);
286 static void mark_buffer (struct buffer *);
288 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
289 static void refill_memory_reserve (void);
290 #endif
291 static void compact_small_strings (void);
292 static void free_large_strings (void);
293 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
295 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
296 what memory allocated via lisp_malloc and lisp_align_malloc is intended
297 for what purpose. This enumeration specifies the type of memory. */
299 enum mem_type
301 MEM_TYPE_NON_LISP,
302 MEM_TYPE_BUFFER,
303 MEM_TYPE_CONS,
304 MEM_TYPE_STRING,
305 MEM_TYPE_MISC,
306 MEM_TYPE_SYMBOL,
307 MEM_TYPE_FLOAT,
308 /* Since all non-bool pseudovectors are small enough to be
309 allocated from vector blocks, this memory type denotes
310 large regular vectors and large bool pseudovectors. */
311 MEM_TYPE_VECTORLIKE,
312 /* Special type to denote vector blocks. */
313 MEM_TYPE_VECTOR_BLOCK,
314 /* Special type to denote reserved memory. */
315 MEM_TYPE_SPARE
318 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
320 /* A unique object in pure space used to make some Lisp objects
321 on free lists recognizable in O(1). */
323 static Lisp_Object Vdead;
324 #define DEADP(x) EQ (x, Vdead)
326 #ifdef GC_MALLOC_CHECK
328 enum mem_type allocated_mem_type;
330 #endif /* GC_MALLOC_CHECK */
332 /* A node in the red-black tree describing allocated memory containing
333 Lisp data. Each such block is recorded with its start and end
334 address when it is allocated, and removed from the tree when it
335 is freed.
337 A red-black tree is a balanced binary tree with the following
338 properties:
340 1. Every node is either red or black.
341 2. Every leaf is black.
342 3. If a node is red, then both of its children are black.
343 4. Every simple path from a node to a descendant leaf contains
344 the same number of black nodes.
345 5. The root is always black.
347 When nodes are inserted into the tree, or deleted from the tree,
348 the tree is "fixed" so that these properties are always true.
350 A red-black tree with N internal nodes has height at most 2
351 log(N+1). Searches, insertions and deletions are done in O(log N).
352 Please see a text book about data structures for a detailed
353 description of red-black trees. Any book worth its salt should
354 describe them. */
356 struct mem_node
358 /* Children of this node. These pointers are never NULL. When there
359 is no child, the value is MEM_NIL, which points to a dummy node. */
360 struct mem_node *left, *right;
362 /* The parent of this node. In the root node, this is NULL. */
363 struct mem_node *parent;
365 /* Start and end of allocated region. */
366 void *start, *end;
368 /* Node color. */
369 enum {MEM_BLACK, MEM_RED} color;
371 /* Memory type. */
372 enum mem_type type;
375 /* Base address of stack. Set in main. */
377 Lisp_Object *stack_base;
379 /* Root of the tree describing allocated Lisp memory. */
381 static struct mem_node *mem_root;
383 /* Lowest and highest known address in the heap. */
385 static void *min_heap_address, *max_heap_address;
387 /* Sentinel node of the tree. */
389 static struct mem_node mem_z;
390 #define MEM_NIL &mem_z
392 static struct mem_node *mem_insert (void *, void *, enum mem_type);
393 static void mem_insert_fixup (struct mem_node *);
394 static void mem_rotate_left (struct mem_node *);
395 static void mem_rotate_right (struct mem_node *);
396 static void mem_delete (struct mem_node *);
397 static void mem_delete_fixup (struct mem_node *);
398 static struct mem_node *mem_find (void *);
400 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
402 #ifndef DEADP
403 # define DEADP(x) 0
404 #endif
406 /* Recording what needs to be marked for gc. */
408 struct gcpro *gcprolist;
410 /* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
413 enum { NSTATICS = 2048 };
414 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
416 /* Index of next unused slot in staticvec. */
418 static int staticidx;
420 static void *pure_alloc (size_t, int);
422 /* Return X rounded to the next multiple of Y. Arguments should not
423 have side effects, as they are evaluated more than once. Assume X
424 + Y - 1 does not overflow. Tune for Y being a power of 2. */
426 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
427 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
428 : ((x) + (y) - 1) & ~ ((y) - 1))
430 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
432 static void *
433 ALIGN (void *ptr, int alignment)
435 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
438 static void
439 XFLOAT_INIT (Lisp_Object f, double n)
441 XFLOAT (f)->u.data = n;
444 static bool
445 pointers_fit_in_lispobj_p (void)
447 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
450 static bool
451 mmap_lisp_allowed_p (void)
453 /* If we can't store all memory addresses in our lisp objects, it's
454 risky to let the heap use mmap and give us addresses from all
455 over our address space. We also can't use mmap for lisp objects
456 if we might dump: unexec doesn't preserve the contents of mmaped
457 regions. */
458 return pointers_fit_in_lispobj_p () && !might_dump;
462 /************************************************************************
463 Malloc
464 ************************************************************************/
466 /* Function malloc calls this if it finds we are near exhausting storage. */
468 void
469 malloc_warning (const char *str)
471 pending_malloc_warning = str;
475 /* Display an already-pending malloc warning. */
477 void
478 display_malloc_warning (void)
480 call3 (intern ("display-warning"),
481 intern ("alloc"),
482 build_string (pending_malloc_warning),
483 intern ("emergency"));
484 pending_malloc_warning = 0;
487 /* Called if we can't allocate relocatable space for a buffer. */
489 void
490 buffer_memory_full (ptrdiff_t nbytes)
492 /* If buffers use the relocating allocator, no need to free
493 spare_memory, because we may have plenty of malloc space left
494 that we could get, and if we don't, the malloc that fails will
495 itself cause spare_memory to be freed. If buffers don't use the
496 relocating allocator, treat this like any other failing
497 malloc. */
499 #ifndef REL_ALLOC
500 memory_full (nbytes);
501 #else
502 /* This used to call error, but if we've run out of memory, we could
503 get infinite recursion trying to build the string. */
504 xsignal (Qnil, Vmemory_signal_data);
505 #endif
508 /* A common multiple of the positive integers A and B. Ideally this
509 would be the least common multiple, but there's no way to do that
510 as a constant expression in C, so do the best that we can easily do. */
511 #define COMMON_MULTIPLE(a, b) \
512 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
514 #ifndef XMALLOC_OVERRUN_CHECK
515 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
516 #else
518 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
519 around each block.
521 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
522 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
523 block size in little-endian order. The trailer consists of
524 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
526 The header is used to detect whether this block has been allocated
527 through these functions, as some low-level libc functions may
528 bypass the malloc hooks. */
530 #define XMALLOC_OVERRUN_CHECK_SIZE 16
531 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
532 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
534 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
535 hold a size_t value and (2) the header size is a multiple of the
536 alignment that Emacs needs for C types and for USE_LSB_TAG. */
537 #define XMALLOC_BASE_ALIGNMENT \
538 alignof (union { long double d; intmax_t i; void *p; })
540 #if USE_LSB_TAG
541 # define XMALLOC_HEADER_ALIGNMENT \
542 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
543 #else
544 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
545 #endif
546 #define XMALLOC_OVERRUN_SIZE_SIZE \
547 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
548 + XMALLOC_HEADER_ALIGNMENT - 1) \
549 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
550 - XMALLOC_OVERRUN_CHECK_SIZE)
552 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
553 { '\x9a', '\x9b', '\xae', '\xaf',
554 '\xbf', '\xbe', '\xce', '\xcf',
555 '\xea', '\xeb', '\xec', '\xed',
556 '\xdf', '\xde', '\x9c', '\x9d' };
558 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
559 { '\xaa', '\xab', '\xac', '\xad',
560 '\xba', '\xbb', '\xbc', '\xbd',
561 '\xca', '\xcb', '\xcc', '\xcd',
562 '\xda', '\xdb', '\xdc', '\xdd' };
564 /* Insert and extract the block size in the header. */
566 static void
567 xmalloc_put_size (unsigned char *ptr, size_t size)
569 int i;
570 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
572 *--ptr = size & ((1 << CHAR_BIT) - 1);
573 size >>= CHAR_BIT;
577 static size_t
578 xmalloc_get_size (unsigned char *ptr)
580 size_t size = 0;
581 int i;
582 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
583 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
585 size <<= CHAR_BIT;
586 size += *ptr++;
588 return size;
592 /* Like malloc, but wraps allocated block with header and trailer. */
594 static void *
595 overrun_check_malloc (size_t size)
597 register unsigned char *val;
598 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
599 emacs_abort ();
601 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
602 if (val)
604 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
605 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
606 xmalloc_put_size (val, size);
607 memcpy (val + size, xmalloc_overrun_check_trailer,
608 XMALLOC_OVERRUN_CHECK_SIZE);
610 return val;
614 /* Like realloc, but checks old block for overrun, and wraps new block
615 with header and trailer. */
617 static void *
618 overrun_check_realloc (void *block, size_t size)
620 register unsigned char *val = (unsigned char *) block;
621 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
622 emacs_abort ();
624 if (val
625 && memcmp (xmalloc_overrun_check_header,
626 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
627 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
629 size_t osize = xmalloc_get_size (val);
630 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
631 XMALLOC_OVERRUN_CHECK_SIZE))
632 emacs_abort ();
633 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
634 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
635 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
638 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
640 if (val)
642 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
643 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
644 xmalloc_put_size (val, size);
645 memcpy (val + size, xmalloc_overrun_check_trailer,
646 XMALLOC_OVERRUN_CHECK_SIZE);
648 return val;
651 /* Like free, but checks block for overrun. */
653 static void
654 overrun_check_free (void *block)
656 unsigned char *val = (unsigned char *) block;
658 if (val
659 && memcmp (xmalloc_overrun_check_header,
660 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
661 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
663 size_t osize = xmalloc_get_size (val);
664 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
665 XMALLOC_OVERRUN_CHECK_SIZE))
666 emacs_abort ();
667 #ifdef XMALLOC_CLEAR_FREE_MEMORY
668 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
669 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
670 #else
671 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
672 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
673 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
674 #endif
677 free (val);
680 #undef malloc
681 #undef realloc
682 #undef free
683 #define malloc overrun_check_malloc
684 #define realloc overrun_check_realloc
685 #define free overrun_check_free
686 #endif
688 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
689 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
690 If that variable is set, block input while in one of Emacs's memory
691 allocation functions. There should be no need for this debugging
692 option, since signal handlers do not allocate memory, but Emacs
693 formerly allocated memory in signal handlers and this compile-time
694 option remains as a way to help debug the issue should it rear its
695 ugly head again. */
696 #ifdef XMALLOC_BLOCK_INPUT_CHECK
697 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
698 static void
699 malloc_block_input (void)
701 if (block_input_in_memory_allocators)
702 block_input ();
704 static void
705 malloc_unblock_input (void)
707 if (block_input_in_memory_allocators)
708 unblock_input ();
710 # define MALLOC_BLOCK_INPUT malloc_block_input ()
711 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
712 #else
713 # define MALLOC_BLOCK_INPUT ((void) 0)
714 # define MALLOC_UNBLOCK_INPUT ((void) 0)
715 #endif
717 #define MALLOC_PROBE(size) \
718 do { \
719 if (profiler_memory_running) \
720 malloc_probe (size); \
721 } while (0)
724 /* Like malloc but check for no memory and block interrupt input.. */
726 void *
727 xmalloc (size_t size)
729 void *val;
731 MALLOC_BLOCK_INPUT;
732 val = malloc (size);
733 MALLOC_UNBLOCK_INPUT;
735 if (!val && size)
736 memory_full (size);
737 MALLOC_PROBE (size);
738 return val;
741 /* Like the above, but zeroes out the memory just allocated. */
743 void *
744 xzalloc (size_t size)
746 void *val;
748 MALLOC_BLOCK_INPUT;
749 val = malloc (size);
750 MALLOC_UNBLOCK_INPUT;
752 if (!val && size)
753 memory_full (size);
754 memset (val, 0, size);
755 MALLOC_PROBE (size);
756 return val;
759 /* Like realloc but check for no memory and block interrupt input.. */
761 void *
762 xrealloc (void *block, size_t size)
764 void *val;
766 MALLOC_BLOCK_INPUT;
767 /* We must call malloc explicitly when BLOCK is 0, since some
768 reallocs don't do this. */
769 if (! block)
770 val = malloc (size);
771 else
772 val = realloc (block, size);
773 MALLOC_UNBLOCK_INPUT;
775 if (!val && size)
776 memory_full (size);
777 MALLOC_PROBE (size);
778 return val;
782 /* Like free but block interrupt input. */
784 void
785 xfree (void *block)
787 if (!block)
788 return;
789 MALLOC_BLOCK_INPUT;
790 free (block);
791 MALLOC_UNBLOCK_INPUT;
792 /* We don't call refill_memory_reserve here
793 because in practice the call in r_alloc_free seems to suffice. */
797 /* Other parts of Emacs pass large int values to allocator functions
798 expecting ptrdiff_t. This is portable in practice, but check it to
799 be safe. */
800 verify (INT_MAX <= PTRDIFF_MAX);
803 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
804 Signal an error on memory exhaustion, and block interrupt input. */
806 void *
807 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
809 eassert (0 <= nitems && 0 < item_size);
810 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
811 memory_full (SIZE_MAX);
812 return xmalloc (nitems * item_size);
816 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
817 Signal an error on memory exhaustion, and block interrupt input. */
819 void *
820 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
822 eassert (0 <= nitems && 0 < item_size);
823 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
824 memory_full (SIZE_MAX);
825 return xrealloc (pa, nitems * item_size);
829 /* Grow PA, which points to an array of *NITEMS items, and return the
830 location of the reallocated array, updating *NITEMS to reflect its
831 new size. The new array will contain at least NITEMS_INCR_MIN more
832 items, but will not contain more than NITEMS_MAX items total.
833 ITEM_SIZE is the size of each item, in bytes.
835 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
836 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
837 infinity.
839 If PA is null, then allocate a new array instead of reallocating
840 the old one.
842 Block interrupt input as needed. If memory exhaustion occurs, set
843 *NITEMS to zero if PA is null, and signal an error (i.e., do not
844 return).
846 Thus, to grow an array A without saving its old contents, do
847 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
848 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
849 and signals an error, and later this code is reexecuted and
850 attempts to free A. */
852 void *
853 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
854 ptrdiff_t nitems_max, ptrdiff_t item_size)
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
863 ptrdiff_t n = *nitems;
864 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
865 ptrdiff_t half_again = n >> 1;
866 ptrdiff_t incr_estimate = max (tiny_max, half_again);
868 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
869 NITEMS_MAX, and what the C language can represent safely. */
870 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
871 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
872 ? nitems_max : C_language_max);
873 ptrdiff_t nitems_incr_max = n_max - n;
874 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
876 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
877 if (! pa)
878 *nitems = 0;
879 if (nitems_incr_max < incr)
880 memory_full (SIZE_MAX);
881 n += incr;
882 pa = xrealloc (pa, n * item_size);
883 *nitems = n;
884 return pa;
888 /* Like strdup, but uses xmalloc. */
890 char *
891 xstrdup (const char *s)
893 ptrdiff_t size;
894 eassert (s);
895 size = strlen (s) + 1;
896 return memcpy (xmalloc (size), s, size);
899 /* Like above, but duplicates Lisp string to C string. */
901 char *
902 xlispstrdup (Lisp_Object string)
904 ptrdiff_t size = SBYTES (string) + 1;
905 return memcpy (xmalloc (size), SSDATA (string), size);
908 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
909 pointed to. If STRING is null, assign it without copying anything.
910 Allocate before freeing, to avoid a dangling pointer if allocation
911 fails. */
913 void
914 dupstring (char **ptr, char const *string)
916 char *old = *ptr;
917 *ptr = string ? xstrdup (string) : 0;
918 xfree (old);
922 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
923 argument is a const pointer. */
925 void
926 xputenv (char const *string)
928 if (putenv ((char *) string) != 0)
929 memory_full (0);
932 /* Return a newly allocated memory block of SIZE bytes, remembering
933 to free it when unwinding. */
934 void *
935 record_xmalloc (size_t size)
937 void *p = xmalloc (size);
938 record_unwind_protect_ptr (xfree, p);
939 return p;
943 /* Like malloc but used for allocating Lisp data. NBYTES is the
944 number of bytes to allocate, TYPE describes the intended use of the
945 allocated memory block (for strings, for conses, ...). */
947 #if ! USE_LSB_TAG
948 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
949 #endif
951 static void *
952 lisp_malloc (size_t nbytes, enum mem_type type)
954 register void *val;
956 MALLOC_BLOCK_INPUT;
958 #ifdef GC_MALLOC_CHECK
959 allocated_mem_type = type;
960 #endif
962 val = malloc (nbytes);
964 #if ! USE_LSB_TAG
965 /* If the memory just allocated cannot be addressed thru a Lisp
966 object's pointer, and it needs to be,
967 that's equivalent to running out of memory. */
968 if (val && type != MEM_TYPE_NON_LISP)
970 Lisp_Object tem;
971 XSETCONS (tem, (char *) val + nbytes - 1);
972 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
974 lisp_malloc_loser = val;
975 free (val);
976 val = 0;
979 #endif
981 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
982 if (val && type != MEM_TYPE_NON_LISP)
983 mem_insert (val, (char *) val + nbytes, type);
984 #endif
986 MALLOC_UNBLOCK_INPUT;
987 if (!val && nbytes)
988 memory_full (nbytes);
989 MALLOC_PROBE (nbytes);
990 return val;
993 /* Free BLOCK. This must be called to free memory allocated with a
994 call to lisp_malloc. */
996 static void
997 lisp_free (void *block)
999 MALLOC_BLOCK_INPUT;
1000 free (block);
1001 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1002 mem_delete (mem_find (block));
1003 #endif
1004 MALLOC_UNBLOCK_INPUT;
1007 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1009 /* The entry point is lisp_align_malloc which returns blocks of at most
1010 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1012 /* Use aligned_alloc if it or a simple substitute is available.
1013 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1014 clang 3.3 anyway. */
1016 #if ! ADDRESS_SANITIZER
1017 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1018 # define USE_ALIGNED_ALLOC 1
1019 /* Defined in gmalloc.c. */
1020 void *aligned_alloc (size_t, size_t);
1021 # elif defined HYBRID_MALLOC
1022 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1023 # define USE_ALIGNED_ALLOC 1
1024 # define aligned_alloc hybrid_aligned_alloc
1025 /* Defined in gmalloc.c. */
1026 void *aligned_alloc (size_t, size_t);
1027 # endif
1028 # elif defined HAVE_ALIGNED_ALLOC
1029 # define USE_ALIGNED_ALLOC 1
1030 # elif defined HAVE_POSIX_MEMALIGN
1031 # define USE_ALIGNED_ALLOC 1
1032 static void *
1033 aligned_alloc (size_t alignment, size_t size)
1035 void *p;
1036 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1038 # endif
1039 #endif
1041 /* BLOCK_ALIGN has to be a power of 2. */
1042 #define BLOCK_ALIGN (1 << 10)
1044 /* Padding to leave at the end of a malloc'd block. This is to give
1045 malloc a chance to minimize the amount of memory wasted to alignment.
1046 It should be tuned to the particular malloc library used.
1047 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1048 aligned_alloc on the other hand would ideally prefer a value of 4
1049 because otherwise, there's 1020 bytes wasted between each ablocks.
1050 In Emacs, testing shows that those 1020 can most of the time be
1051 efficiently used by malloc to place other objects, so a value of 0 can
1052 still preferable unless you have a lot of aligned blocks and virtually
1053 nothing else. */
1054 #define BLOCK_PADDING 0
1055 #define BLOCK_BYTES \
1056 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1058 /* Internal data structures and constants. */
1060 #define ABLOCKS_SIZE 16
1062 /* An aligned block of memory. */
1063 struct ablock
1065 union
1067 char payload[BLOCK_BYTES];
1068 struct ablock *next_free;
1069 } x;
1070 /* `abase' is the aligned base of the ablocks. */
1071 /* It is overloaded to hold the virtual `busy' field that counts
1072 the number of used ablock in the parent ablocks.
1073 The first ablock has the `busy' field, the others have the `abase'
1074 field. To tell the difference, we assume that pointers will have
1075 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1076 is used to tell whether the real base of the parent ablocks is `abase'
1077 (if not, the word before the first ablock holds a pointer to the
1078 real base). */
1079 struct ablocks *abase;
1080 /* The padding of all but the last ablock is unused. The padding of
1081 the last ablock in an ablocks is not allocated. */
1082 #if BLOCK_PADDING
1083 char padding[BLOCK_PADDING];
1084 #endif
1087 /* A bunch of consecutive aligned blocks. */
1088 struct ablocks
1090 struct ablock blocks[ABLOCKS_SIZE];
1093 /* Size of the block requested from malloc or aligned_alloc. */
1094 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1096 #define ABLOCK_ABASE(block) \
1097 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1098 ? (struct ablocks *)(block) \
1099 : (block)->abase)
1101 /* Virtual `busy' field. */
1102 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1104 /* Pointer to the (not necessarily aligned) malloc block. */
1105 #ifdef USE_ALIGNED_ALLOC
1106 #define ABLOCKS_BASE(abase) (abase)
1107 #else
1108 #define ABLOCKS_BASE(abase) \
1109 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1110 #endif
1112 /* The list of free ablock. */
1113 static struct ablock *free_ablock;
1115 /* Allocate an aligned block of nbytes.
1116 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1117 smaller or equal to BLOCK_BYTES. */
1118 static void *
1119 lisp_align_malloc (size_t nbytes, enum mem_type type)
1121 void *base, *val;
1122 struct ablocks *abase;
1124 eassert (nbytes <= BLOCK_BYTES);
1126 MALLOC_BLOCK_INPUT;
1128 #ifdef GC_MALLOC_CHECK
1129 allocated_mem_type = type;
1130 #endif
1132 if (!free_ablock)
1134 int i;
1135 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1137 #ifdef DOUG_LEA_MALLOC
1138 if (!mmap_lisp_allowed_p ())
1139 mallopt (M_MMAP_MAX, 0);
1140 #endif
1142 #ifdef USE_ALIGNED_ALLOC
1143 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1144 #else
1145 base = malloc (ABLOCKS_BYTES);
1146 abase = ALIGN (base, BLOCK_ALIGN);
1147 #endif
1149 if (base == 0)
1151 MALLOC_UNBLOCK_INPUT;
1152 memory_full (ABLOCKS_BYTES);
1155 aligned = (base == abase);
1156 if (!aligned)
1157 ((void **) abase)[-1] = base;
1159 #ifdef DOUG_LEA_MALLOC
1160 if (!mmap_lisp_allowed_p ())
1161 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1162 #endif
1164 #if ! USE_LSB_TAG
1165 /* If the memory just allocated cannot be addressed thru a Lisp
1166 object's pointer, and it needs to be, that's equivalent to
1167 running out of memory. */
1168 if (type != MEM_TYPE_NON_LISP)
1170 Lisp_Object tem;
1171 char *end = (char *) base + ABLOCKS_BYTES - 1;
1172 XSETCONS (tem, end);
1173 if ((char *) XCONS (tem) != end)
1175 lisp_malloc_loser = base;
1176 free (base);
1177 MALLOC_UNBLOCK_INPUT;
1178 memory_full (SIZE_MAX);
1181 #endif
1183 /* Initialize the blocks and put them on the free list.
1184 If `base' was not properly aligned, we can't use the last block. */
1185 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1187 abase->blocks[i].abase = abase;
1188 abase->blocks[i].x.next_free = free_ablock;
1189 free_ablock = &abase->blocks[i];
1191 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1193 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1194 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1195 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1196 eassert (ABLOCKS_BASE (abase) == base);
1197 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1200 abase = ABLOCK_ABASE (free_ablock);
1201 ABLOCKS_BUSY (abase)
1202 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1203 val = free_ablock;
1204 free_ablock = free_ablock->x.next_free;
1206 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1207 if (type != MEM_TYPE_NON_LISP)
1208 mem_insert (val, (char *) val + nbytes, type);
1209 #endif
1211 MALLOC_UNBLOCK_INPUT;
1213 MALLOC_PROBE (nbytes);
1215 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1216 return val;
1219 static void
1220 lisp_align_free (void *block)
1222 struct ablock *ablock = block;
1223 struct ablocks *abase = ABLOCK_ABASE (ablock);
1225 MALLOC_BLOCK_INPUT;
1226 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1227 mem_delete (mem_find (block));
1228 #endif
1229 /* Put on free list. */
1230 ablock->x.next_free = free_ablock;
1231 free_ablock = ablock;
1232 /* Update busy count. */
1233 ABLOCKS_BUSY (abase)
1234 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1236 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1237 { /* All the blocks are free. */
1238 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1239 struct ablock **tem = &free_ablock;
1240 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1242 while (*tem)
1244 if (*tem >= (struct ablock *) abase && *tem < atop)
1246 i++;
1247 *tem = (*tem)->x.next_free;
1249 else
1250 tem = &(*tem)->x.next_free;
1252 eassert ((aligned & 1) == aligned);
1253 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1254 #ifdef USE_POSIX_MEMALIGN
1255 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1256 #endif
1257 free (ABLOCKS_BASE (abase));
1259 MALLOC_UNBLOCK_INPUT;
1263 /***********************************************************************
1264 Interval Allocation
1265 ***********************************************************************/
1267 /* Number of intervals allocated in an interval_block structure.
1268 The 1020 is 1024 minus malloc overhead. */
1270 #define INTERVAL_BLOCK_SIZE \
1271 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1273 /* Intervals are allocated in chunks in the form of an interval_block
1274 structure. */
1276 struct interval_block
1278 /* Place `intervals' first, to preserve alignment. */
1279 struct interval intervals[INTERVAL_BLOCK_SIZE];
1280 struct interval_block *next;
1283 /* Current interval block. Its `next' pointer points to older
1284 blocks. */
1286 static struct interval_block *interval_block;
1288 /* Index in interval_block above of the next unused interval
1289 structure. */
1291 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1293 /* Number of free and live intervals. */
1295 static EMACS_INT total_free_intervals, total_intervals;
1297 /* List of free intervals. */
1299 static INTERVAL interval_free_list;
1301 /* Return a new interval. */
1303 INTERVAL
1304 make_interval (void)
1306 INTERVAL val;
1308 MALLOC_BLOCK_INPUT;
1310 if (interval_free_list)
1312 val = interval_free_list;
1313 interval_free_list = INTERVAL_PARENT (interval_free_list);
1315 else
1317 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1319 struct interval_block *newi
1320 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1322 newi->next = interval_block;
1323 interval_block = newi;
1324 interval_block_index = 0;
1325 total_free_intervals += INTERVAL_BLOCK_SIZE;
1327 val = &interval_block->intervals[interval_block_index++];
1330 MALLOC_UNBLOCK_INPUT;
1332 consing_since_gc += sizeof (struct interval);
1333 intervals_consed++;
1334 total_free_intervals--;
1335 RESET_INTERVAL (val);
1336 val->gcmarkbit = 0;
1337 return val;
1341 /* Mark Lisp objects in interval I. */
1343 static void
1344 mark_interval (register INTERVAL i, Lisp_Object dummy)
1346 /* Intervals should never be shared. So, if extra internal checking is
1347 enabled, GC aborts if it seems to have visited an interval twice. */
1348 eassert (!i->gcmarkbit);
1349 i->gcmarkbit = 1;
1350 mark_object (i->plist);
1353 /* Mark the interval tree rooted in I. */
1355 #define MARK_INTERVAL_TREE(i) \
1356 do { \
1357 if (i && !i->gcmarkbit) \
1358 traverse_intervals_noorder (i, mark_interval, Qnil); \
1359 } while (0)
1361 /***********************************************************************
1362 String Allocation
1363 ***********************************************************************/
1365 /* Lisp_Strings are allocated in string_block structures. When a new
1366 string_block is allocated, all the Lisp_Strings it contains are
1367 added to a free-list string_free_list. When a new Lisp_String is
1368 needed, it is taken from that list. During the sweep phase of GC,
1369 string_blocks that are entirely free are freed, except two which
1370 we keep.
1372 String data is allocated from sblock structures. Strings larger
1373 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1374 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1376 Sblocks consist internally of sdata structures, one for each
1377 Lisp_String. The sdata structure points to the Lisp_String it
1378 belongs to. The Lisp_String points back to the `u.data' member of
1379 its sdata structure.
1381 When a Lisp_String is freed during GC, it is put back on
1382 string_free_list, and its `data' member and its sdata's `string'
1383 pointer is set to null. The size of the string is recorded in the
1384 `n.nbytes' member of the sdata. So, sdata structures that are no
1385 longer used, can be easily recognized, and it's easy to compact the
1386 sblocks of small strings which we do in compact_small_strings. */
1388 /* Size in bytes of an sblock structure used for small strings. This
1389 is 8192 minus malloc overhead. */
1391 #define SBLOCK_SIZE 8188
1393 /* Strings larger than this are considered large strings. String data
1394 for large strings is allocated from individual sblocks. */
1396 #define LARGE_STRING_BYTES 1024
1398 /* The SDATA typedef is a struct or union describing string memory
1399 sub-allocated from an sblock. This is where the contents of Lisp
1400 strings are stored. */
1402 struct sdata
1404 /* Back-pointer to the string this sdata belongs to. If null, this
1405 structure is free, and NBYTES (in this structure or in the union below)
1406 contains the string's byte size (the same value that STRING_BYTES
1407 would return if STRING were non-null). If non-null, STRING_BYTES
1408 (STRING) is the size of the data, and DATA contains the string's
1409 contents. */
1410 struct Lisp_String *string;
1412 #ifdef GC_CHECK_STRING_BYTES
1413 ptrdiff_t nbytes;
1414 #endif
1416 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1419 #ifdef GC_CHECK_STRING_BYTES
1421 typedef struct sdata sdata;
1422 #define SDATA_NBYTES(S) (S)->nbytes
1423 #define SDATA_DATA(S) (S)->data
1425 #else
1427 typedef union
1429 struct Lisp_String *string;
1431 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1432 which has a flexible array member. However, if implemented by
1433 giving this union a member of type 'struct sdata', the union
1434 could not be the last (flexible) member of 'struct sblock',
1435 because C99 prohibits a flexible array member from having a type
1436 that is itself a flexible array. So, comment this member out here,
1437 but remember that the option's there when using this union. */
1438 #if 0
1439 struct sdata u;
1440 #endif
1442 /* When STRING is null. */
1443 struct
1445 struct Lisp_String *string;
1446 ptrdiff_t nbytes;
1447 } n;
1448 } sdata;
1450 #define SDATA_NBYTES(S) (S)->n.nbytes
1451 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1453 #endif /* not GC_CHECK_STRING_BYTES */
1455 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1457 /* Structure describing a block of memory which is sub-allocated to
1458 obtain string data memory for strings. Blocks for small strings
1459 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1460 as large as needed. */
1462 struct sblock
1464 /* Next in list. */
1465 struct sblock *next;
1467 /* Pointer to the next free sdata block. This points past the end
1468 of the sblock if there isn't any space left in this block. */
1469 sdata *next_free;
1471 /* String data. */
1472 sdata data[FLEXIBLE_ARRAY_MEMBER];
1475 /* Number of Lisp strings in a string_block structure. The 1020 is
1476 1024 minus malloc overhead. */
1478 #define STRING_BLOCK_SIZE \
1479 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1481 /* Structure describing a block from which Lisp_String structures
1482 are allocated. */
1484 struct string_block
1486 /* Place `strings' first, to preserve alignment. */
1487 struct Lisp_String strings[STRING_BLOCK_SIZE];
1488 struct string_block *next;
1491 /* Head and tail of the list of sblock structures holding Lisp string
1492 data. We always allocate from current_sblock. The NEXT pointers
1493 in the sblock structures go from oldest_sblock to current_sblock. */
1495 static struct sblock *oldest_sblock, *current_sblock;
1497 /* List of sblocks for large strings. */
1499 static struct sblock *large_sblocks;
1501 /* List of string_block structures. */
1503 static struct string_block *string_blocks;
1505 /* Free-list of Lisp_Strings. */
1507 static struct Lisp_String *string_free_list;
1509 /* Number of live and free Lisp_Strings. */
1511 static EMACS_INT total_strings, total_free_strings;
1513 /* Number of bytes used by live strings. */
1515 static EMACS_INT total_string_bytes;
1517 /* Given a pointer to a Lisp_String S which is on the free-list
1518 string_free_list, return a pointer to its successor in the
1519 free-list. */
1521 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1523 /* Return a pointer to the sdata structure belonging to Lisp string S.
1524 S must be live, i.e. S->data must not be null. S->data is actually
1525 a pointer to the `u.data' member of its sdata structure; the
1526 structure starts at a constant offset in front of that. */
1528 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1531 #ifdef GC_CHECK_STRING_OVERRUN
1533 /* We check for overrun in string data blocks by appending a small
1534 "cookie" after each allocated string data block, and check for the
1535 presence of this cookie during GC. */
1537 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1538 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1539 { '\xde', '\xad', '\xbe', '\xef' };
1541 #else
1542 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1543 #endif
1545 /* Value is the size of an sdata structure large enough to hold NBYTES
1546 bytes of string data. The value returned includes a terminating
1547 NUL byte, the size of the sdata structure, and padding. */
1549 #ifdef GC_CHECK_STRING_BYTES
1551 #define SDATA_SIZE(NBYTES) \
1552 ((SDATA_DATA_OFFSET \
1553 + (NBYTES) + 1 \
1554 + sizeof (ptrdiff_t) - 1) \
1555 & ~(sizeof (ptrdiff_t) - 1))
1557 #else /* not GC_CHECK_STRING_BYTES */
1559 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1560 less than the size of that member. The 'max' is not needed when
1561 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1562 alignment code reserves enough space. */
1564 #define SDATA_SIZE(NBYTES) \
1565 ((SDATA_DATA_OFFSET \
1566 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1567 ? NBYTES \
1568 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1569 + 1 \
1570 + sizeof (ptrdiff_t) - 1) \
1571 & ~(sizeof (ptrdiff_t) - 1))
1573 #endif /* not GC_CHECK_STRING_BYTES */
1575 /* Extra bytes to allocate for each string. */
1577 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1579 /* Exact bound on the number of bytes in a string, not counting the
1580 terminating null. A string cannot contain more bytes than
1581 STRING_BYTES_BOUND, nor can it be so long that the size_t
1582 arithmetic in allocate_string_data would overflow while it is
1583 calculating a value to be passed to malloc. */
1584 static ptrdiff_t const STRING_BYTES_MAX =
1585 min (STRING_BYTES_BOUND,
1586 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1587 - GC_STRING_EXTRA
1588 - offsetof (struct sblock, data)
1589 - SDATA_DATA_OFFSET)
1590 & ~(sizeof (EMACS_INT) - 1)));
1592 /* Initialize string allocation. Called from init_alloc_once. */
1594 static void
1595 init_strings (void)
1597 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1598 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1602 #ifdef GC_CHECK_STRING_BYTES
1604 static int check_string_bytes_count;
1606 /* Like STRING_BYTES, but with debugging check. Can be
1607 called during GC, so pay attention to the mark bit. */
1609 ptrdiff_t
1610 string_bytes (struct Lisp_String *s)
1612 ptrdiff_t nbytes =
1613 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1615 if (!PURE_POINTER_P (s)
1616 && s->data
1617 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1618 emacs_abort ();
1619 return nbytes;
1622 /* Check validity of Lisp strings' string_bytes member in B. */
1624 static void
1625 check_sblock (struct sblock *b)
1627 sdata *from, *end, *from_end;
1629 end = b->next_free;
1631 for (from = b->data; from < end; from = from_end)
1633 /* Compute the next FROM here because copying below may
1634 overwrite data we need to compute it. */
1635 ptrdiff_t nbytes;
1637 /* Check that the string size recorded in the string is the
1638 same as the one recorded in the sdata structure. */
1639 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1640 : SDATA_NBYTES (from));
1641 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1646 /* Check validity of Lisp strings' string_bytes member. ALL_P
1647 means check all strings, otherwise check only most
1648 recently allocated strings. Used for hunting a bug. */
1650 static void
1651 check_string_bytes (bool all_p)
1653 if (all_p)
1655 struct sblock *b;
1657 for (b = large_sblocks; b; b = b->next)
1659 struct Lisp_String *s = b->data[0].string;
1660 if (s)
1661 string_bytes (s);
1664 for (b = oldest_sblock; b; b = b->next)
1665 check_sblock (b);
1667 else if (current_sblock)
1668 check_sblock (current_sblock);
1671 #else /* not GC_CHECK_STRING_BYTES */
1673 #define check_string_bytes(all) ((void) 0)
1675 #endif /* GC_CHECK_STRING_BYTES */
1677 #ifdef GC_CHECK_STRING_FREE_LIST
1679 /* Walk through the string free list looking for bogus next pointers.
1680 This may catch buffer overrun from a previous string. */
1682 static void
1683 check_string_free_list (void)
1685 struct Lisp_String *s;
1687 /* Pop a Lisp_String off the free-list. */
1688 s = string_free_list;
1689 while (s != NULL)
1691 if ((uintptr_t) s < 1024)
1692 emacs_abort ();
1693 s = NEXT_FREE_LISP_STRING (s);
1696 #else
1697 #define check_string_free_list()
1698 #endif
1700 /* Return a new Lisp_String. */
1702 static struct Lisp_String *
1703 allocate_string (void)
1705 struct Lisp_String *s;
1707 MALLOC_BLOCK_INPUT;
1709 /* If the free-list is empty, allocate a new string_block, and
1710 add all the Lisp_Strings in it to the free-list. */
1711 if (string_free_list == NULL)
1713 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1714 int i;
1716 b->next = string_blocks;
1717 string_blocks = b;
1719 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1721 s = b->strings + i;
1722 /* Every string on a free list should have NULL data pointer. */
1723 s->data = NULL;
1724 NEXT_FREE_LISP_STRING (s) = string_free_list;
1725 string_free_list = s;
1728 total_free_strings += STRING_BLOCK_SIZE;
1731 check_string_free_list ();
1733 /* Pop a Lisp_String off the free-list. */
1734 s = string_free_list;
1735 string_free_list = NEXT_FREE_LISP_STRING (s);
1737 MALLOC_UNBLOCK_INPUT;
1739 --total_free_strings;
1740 ++total_strings;
1741 ++strings_consed;
1742 consing_since_gc += sizeof *s;
1744 #ifdef GC_CHECK_STRING_BYTES
1745 if (!noninteractive)
1747 if (++check_string_bytes_count == 200)
1749 check_string_bytes_count = 0;
1750 check_string_bytes (1);
1752 else
1753 check_string_bytes (0);
1755 #endif /* GC_CHECK_STRING_BYTES */
1757 return s;
1761 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1762 plus a NUL byte at the end. Allocate an sdata structure for S, and
1763 set S->data to its `u.data' member. Store a NUL byte at the end of
1764 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1765 S->data if it was initially non-null. */
1767 void
1768 allocate_string_data (struct Lisp_String *s,
1769 EMACS_INT nchars, EMACS_INT nbytes)
1771 sdata *data, *old_data;
1772 struct sblock *b;
1773 ptrdiff_t needed, old_nbytes;
1775 if (STRING_BYTES_MAX < nbytes)
1776 string_overflow ();
1778 /* Determine the number of bytes needed to store NBYTES bytes
1779 of string data. */
1780 needed = SDATA_SIZE (nbytes);
1781 if (s->data)
1783 old_data = SDATA_OF_STRING (s);
1784 old_nbytes = STRING_BYTES (s);
1786 else
1787 old_data = NULL;
1789 MALLOC_BLOCK_INPUT;
1791 if (nbytes > LARGE_STRING_BYTES)
1793 size_t size = offsetof (struct sblock, data) + needed;
1795 #ifdef DOUG_LEA_MALLOC
1796 if (!mmap_lisp_allowed_p ())
1797 mallopt (M_MMAP_MAX, 0);
1798 #endif
1800 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1802 #ifdef DOUG_LEA_MALLOC
1803 if (!mmap_lisp_allowed_p ())
1804 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1805 #endif
1807 b->next_free = b->data;
1808 b->data[0].string = NULL;
1809 b->next = large_sblocks;
1810 large_sblocks = b;
1812 else if (current_sblock == NULL
1813 || (((char *) current_sblock + SBLOCK_SIZE
1814 - (char *) current_sblock->next_free)
1815 < (needed + GC_STRING_EXTRA)))
1817 /* Not enough room in the current sblock. */
1818 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1819 b->next_free = b->data;
1820 b->data[0].string = NULL;
1821 b->next = NULL;
1823 if (current_sblock)
1824 current_sblock->next = b;
1825 else
1826 oldest_sblock = b;
1827 current_sblock = b;
1829 else
1830 b = current_sblock;
1832 data = b->next_free;
1833 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1835 MALLOC_UNBLOCK_INPUT;
1837 data->string = s;
1838 s->data = SDATA_DATA (data);
1839 #ifdef GC_CHECK_STRING_BYTES
1840 SDATA_NBYTES (data) = nbytes;
1841 #endif
1842 s->size = nchars;
1843 s->size_byte = nbytes;
1844 s->data[nbytes] = '\0';
1845 #ifdef GC_CHECK_STRING_OVERRUN
1846 memcpy ((char *) data + needed, string_overrun_cookie,
1847 GC_STRING_OVERRUN_COOKIE_SIZE);
1848 #endif
1850 /* Note that Faset may call to this function when S has already data
1851 assigned. In this case, mark data as free by setting it's string
1852 back-pointer to null, and record the size of the data in it. */
1853 if (old_data)
1855 SDATA_NBYTES (old_data) = old_nbytes;
1856 old_data->string = NULL;
1859 consing_since_gc += needed;
1863 /* Sweep and compact strings. */
1865 NO_INLINE /* For better stack traces */
1866 static void
1867 sweep_strings (void)
1869 struct string_block *b, *next;
1870 struct string_block *live_blocks = NULL;
1872 string_free_list = NULL;
1873 total_strings = total_free_strings = 0;
1874 total_string_bytes = 0;
1876 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1877 for (b = string_blocks; b; b = next)
1879 int i, nfree = 0;
1880 struct Lisp_String *free_list_before = string_free_list;
1882 next = b->next;
1884 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1886 struct Lisp_String *s = b->strings + i;
1888 if (s->data)
1890 /* String was not on free-list before. */
1891 if (STRING_MARKED_P (s))
1893 /* String is live; unmark it and its intervals. */
1894 UNMARK_STRING (s);
1896 /* Do not use string_(set|get)_intervals here. */
1897 s->intervals = balance_intervals (s->intervals);
1899 ++total_strings;
1900 total_string_bytes += STRING_BYTES (s);
1902 else
1904 /* String is dead. Put it on the free-list. */
1905 sdata *data = SDATA_OF_STRING (s);
1907 /* Save the size of S in its sdata so that we know
1908 how large that is. Reset the sdata's string
1909 back-pointer so that we know it's free. */
1910 #ifdef GC_CHECK_STRING_BYTES
1911 if (string_bytes (s) != SDATA_NBYTES (data))
1912 emacs_abort ();
1913 #else
1914 data->n.nbytes = STRING_BYTES (s);
1915 #endif
1916 data->string = NULL;
1918 /* Reset the strings's `data' member so that we
1919 know it's free. */
1920 s->data = NULL;
1922 /* Put the string on the free-list. */
1923 NEXT_FREE_LISP_STRING (s) = string_free_list;
1924 string_free_list = s;
1925 ++nfree;
1928 else
1930 /* S was on the free-list before. Put it there again. */
1931 NEXT_FREE_LISP_STRING (s) = string_free_list;
1932 string_free_list = s;
1933 ++nfree;
1937 /* Free blocks that contain free Lisp_Strings only, except
1938 the first two of them. */
1939 if (nfree == STRING_BLOCK_SIZE
1940 && total_free_strings > STRING_BLOCK_SIZE)
1942 lisp_free (b);
1943 string_free_list = free_list_before;
1945 else
1947 total_free_strings += nfree;
1948 b->next = live_blocks;
1949 live_blocks = b;
1953 check_string_free_list ();
1955 string_blocks = live_blocks;
1956 free_large_strings ();
1957 compact_small_strings ();
1959 check_string_free_list ();
1963 /* Free dead large strings. */
1965 static void
1966 free_large_strings (void)
1968 struct sblock *b, *next;
1969 struct sblock *live_blocks = NULL;
1971 for (b = large_sblocks; b; b = next)
1973 next = b->next;
1975 if (b->data[0].string == NULL)
1976 lisp_free (b);
1977 else
1979 b->next = live_blocks;
1980 live_blocks = b;
1984 large_sblocks = live_blocks;
1988 /* Compact data of small strings. Free sblocks that don't contain
1989 data of live strings after compaction. */
1991 static void
1992 compact_small_strings (void)
1994 struct sblock *b, *tb, *next;
1995 sdata *from, *to, *end, *tb_end;
1996 sdata *to_end, *from_end;
1998 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1999 to, and TB_END is the end of TB. */
2000 tb = oldest_sblock;
2001 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2002 to = tb->data;
2004 /* Step through the blocks from the oldest to the youngest. We
2005 expect that old blocks will stabilize over time, so that less
2006 copying will happen this way. */
2007 for (b = oldest_sblock; b; b = b->next)
2009 end = b->next_free;
2010 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2012 for (from = b->data; from < end; from = from_end)
2014 /* Compute the next FROM here because copying below may
2015 overwrite data we need to compute it. */
2016 ptrdiff_t nbytes;
2017 struct Lisp_String *s = from->string;
2019 #ifdef GC_CHECK_STRING_BYTES
2020 /* Check that the string size recorded in the string is the
2021 same as the one recorded in the sdata structure. */
2022 if (s && string_bytes (s) != SDATA_NBYTES (from))
2023 emacs_abort ();
2024 #endif /* GC_CHECK_STRING_BYTES */
2026 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2027 eassert (nbytes <= LARGE_STRING_BYTES);
2029 nbytes = SDATA_SIZE (nbytes);
2030 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2032 #ifdef GC_CHECK_STRING_OVERRUN
2033 if (memcmp (string_overrun_cookie,
2034 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2035 GC_STRING_OVERRUN_COOKIE_SIZE))
2036 emacs_abort ();
2037 #endif
2039 /* Non-NULL S means it's alive. Copy its data. */
2040 if (s)
2042 /* If TB is full, proceed with the next sblock. */
2043 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2044 if (to_end > tb_end)
2046 tb->next_free = to;
2047 tb = tb->next;
2048 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2049 to = tb->data;
2050 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2053 /* Copy, and update the string's `data' pointer. */
2054 if (from != to)
2056 eassert (tb != b || to < from);
2057 memmove (to, from, nbytes + GC_STRING_EXTRA);
2058 to->string->data = SDATA_DATA (to);
2061 /* Advance past the sdata we copied to. */
2062 to = to_end;
2067 /* The rest of the sblocks following TB don't contain live data, so
2068 we can free them. */
2069 for (b = tb->next; b; b = next)
2071 next = b->next;
2072 lisp_free (b);
2075 tb->next_free = to;
2076 tb->next = NULL;
2077 current_sblock = tb;
2080 void
2081 string_overflow (void)
2083 error ("Maximum string size exceeded");
2086 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2087 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2088 LENGTH must be an integer.
2089 INIT must be an integer that represents a character. */)
2090 (Lisp_Object length, Lisp_Object init)
2092 register Lisp_Object val;
2093 int c;
2094 EMACS_INT nbytes;
2096 CHECK_NATNUM (length);
2097 CHECK_CHARACTER (init);
2099 c = XFASTINT (init);
2100 if (ASCII_CHAR_P (c))
2102 nbytes = XINT (length);
2103 val = make_uninit_string (nbytes);
2104 memset (SDATA (val), c, nbytes);
2105 SDATA (val)[nbytes] = 0;
2107 else
2109 unsigned char str[MAX_MULTIBYTE_LENGTH];
2110 ptrdiff_t len = CHAR_STRING (c, str);
2111 EMACS_INT string_len = XINT (length);
2112 unsigned char *p, *beg, *end;
2114 if (string_len > STRING_BYTES_MAX / len)
2115 string_overflow ();
2116 nbytes = len * string_len;
2117 val = make_uninit_multibyte_string (string_len, nbytes);
2118 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2120 /* First time we just copy `str' to the data of `val'. */
2121 if (p == beg)
2122 memcpy (p, str, len);
2123 else
2125 /* Next time we copy largest possible chunk from
2126 initialized to uninitialized part of `val'. */
2127 len = min (p - beg, end - p);
2128 memcpy (p, beg, len);
2131 *p = 0;
2134 return val;
2137 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2138 Return A. */
2140 Lisp_Object
2141 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2143 EMACS_INT nbits = bool_vector_size (a);
2144 if (0 < nbits)
2146 unsigned char *data = bool_vector_uchar_data (a);
2147 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2148 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2149 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2150 memset (data, pattern, nbytes - 1);
2151 data[nbytes - 1] = pattern & last_mask;
2153 return a;
2156 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2158 Lisp_Object
2159 make_uninit_bool_vector (EMACS_INT nbits)
2161 Lisp_Object val;
2162 EMACS_INT words = bool_vector_words (nbits);
2163 EMACS_INT word_bytes = words * sizeof (bits_word);
2164 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2165 + word_size - 1)
2166 / word_size);
2167 struct Lisp_Bool_Vector *p
2168 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2169 XSETVECTOR (val, p);
2170 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2171 p->size = nbits;
2173 /* Clear padding at the end. */
2174 if (words)
2175 p->data[words - 1] = 0;
2177 return val;
2180 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2181 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2182 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2183 (Lisp_Object length, Lisp_Object init)
2185 Lisp_Object val;
2187 CHECK_NATNUM (length);
2188 val = make_uninit_bool_vector (XFASTINT (length));
2189 return bool_vector_fill (val, init);
2192 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2193 doc: /* Return a new bool-vector with specified arguments as elements.
2194 Any number of arguments, even zero arguments, are allowed.
2195 usage: (bool-vector &rest OBJECTS) */)
2196 (ptrdiff_t nargs, Lisp_Object *args)
2198 ptrdiff_t i;
2199 Lisp_Object vector;
2201 vector = make_uninit_bool_vector (nargs);
2202 for (i = 0; i < nargs; i++)
2203 bool_vector_set (vector, i, !NILP (args[i]));
2205 return vector;
2208 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2209 of characters from the contents. This string may be unibyte or
2210 multibyte, depending on the contents. */
2212 Lisp_Object
2213 make_string (const char *contents, ptrdiff_t nbytes)
2215 register Lisp_Object val;
2216 ptrdiff_t nchars, multibyte_nbytes;
2218 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2219 &nchars, &multibyte_nbytes);
2220 if (nbytes == nchars || nbytes != multibyte_nbytes)
2221 /* CONTENTS contains no multibyte sequences or contains an invalid
2222 multibyte sequence. We must make unibyte string. */
2223 val = make_unibyte_string (contents, nbytes);
2224 else
2225 val = make_multibyte_string (contents, nchars, nbytes);
2226 return val;
2230 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2232 Lisp_Object
2233 make_unibyte_string (const char *contents, ptrdiff_t length)
2235 register Lisp_Object val;
2236 val = make_uninit_string (length);
2237 memcpy (SDATA (val), contents, length);
2238 return val;
2242 /* Make a multibyte string from NCHARS characters occupying NBYTES
2243 bytes at CONTENTS. */
2245 Lisp_Object
2246 make_multibyte_string (const char *contents,
2247 ptrdiff_t nchars, ptrdiff_t nbytes)
2249 register Lisp_Object val;
2250 val = make_uninit_multibyte_string (nchars, nbytes);
2251 memcpy (SDATA (val), contents, nbytes);
2252 return val;
2256 /* Make a string from NCHARS characters occupying NBYTES bytes at
2257 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2259 Lisp_Object
2260 make_string_from_bytes (const char *contents,
2261 ptrdiff_t nchars, ptrdiff_t nbytes)
2263 register Lisp_Object val;
2264 val = make_uninit_multibyte_string (nchars, nbytes);
2265 memcpy (SDATA (val), contents, nbytes);
2266 if (SBYTES (val) == SCHARS (val))
2267 STRING_SET_UNIBYTE (val);
2268 return val;
2272 /* Make a string from NCHARS characters occupying NBYTES bytes at
2273 CONTENTS. The argument MULTIBYTE controls whether to label the
2274 string as multibyte. If NCHARS is negative, it counts the number of
2275 characters by itself. */
2277 Lisp_Object
2278 make_specified_string (const char *contents,
2279 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2281 Lisp_Object val;
2283 if (nchars < 0)
2285 if (multibyte)
2286 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2287 nbytes);
2288 else
2289 nchars = nbytes;
2291 val = make_uninit_multibyte_string (nchars, nbytes);
2292 memcpy (SDATA (val), contents, nbytes);
2293 if (!multibyte)
2294 STRING_SET_UNIBYTE (val);
2295 return val;
2299 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2300 occupying LENGTH bytes. */
2302 Lisp_Object
2303 make_uninit_string (EMACS_INT length)
2305 Lisp_Object val;
2307 if (!length)
2308 return empty_unibyte_string;
2309 val = make_uninit_multibyte_string (length, length);
2310 STRING_SET_UNIBYTE (val);
2311 return val;
2315 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2316 which occupy NBYTES bytes. */
2318 Lisp_Object
2319 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2321 Lisp_Object string;
2322 struct Lisp_String *s;
2324 if (nchars < 0)
2325 emacs_abort ();
2326 if (!nbytes)
2327 return empty_multibyte_string;
2329 s = allocate_string ();
2330 s->intervals = NULL;
2331 allocate_string_data (s, nchars, nbytes);
2332 XSETSTRING (string, s);
2333 string_chars_consed += nbytes;
2334 return string;
2337 /* Print arguments to BUF according to a FORMAT, then return
2338 a Lisp_String initialized with the data from BUF. */
2340 Lisp_Object
2341 make_formatted_string (char *buf, const char *format, ...)
2343 va_list ap;
2344 int length;
2346 va_start (ap, format);
2347 length = vsprintf (buf, format, ap);
2348 va_end (ap);
2349 return make_string (buf, length);
2353 /***********************************************************************
2354 Float Allocation
2355 ***********************************************************************/
2357 /* We store float cells inside of float_blocks, allocating a new
2358 float_block with malloc whenever necessary. Float cells reclaimed
2359 by GC are put on a free list to be reallocated before allocating
2360 any new float cells from the latest float_block. */
2362 #define FLOAT_BLOCK_SIZE \
2363 (((BLOCK_BYTES - sizeof (struct float_block *) \
2364 /* The compiler might add padding at the end. */ \
2365 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2366 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2368 #define GETMARKBIT(block,n) \
2369 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2370 >> ((n) % BITS_PER_BITS_WORD)) \
2371 & 1)
2373 #define SETMARKBIT(block,n) \
2374 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2375 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2377 #define UNSETMARKBIT(block,n) \
2378 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2379 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2381 #define FLOAT_BLOCK(fptr) \
2382 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2384 #define FLOAT_INDEX(fptr) \
2385 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2387 struct float_block
2389 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2390 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2391 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2392 struct float_block *next;
2395 #define FLOAT_MARKED_P(fptr) \
2396 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2398 #define FLOAT_MARK(fptr) \
2399 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2401 #define FLOAT_UNMARK(fptr) \
2402 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2404 /* Current float_block. */
2406 static struct float_block *float_block;
2408 /* Index of first unused Lisp_Float in the current float_block. */
2410 static int float_block_index = FLOAT_BLOCK_SIZE;
2412 /* Free-list of Lisp_Floats. */
2414 static struct Lisp_Float *float_free_list;
2416 /* Return a new float object with value FLOAT_VALUE. */
2418 Lisp_Object
2419 make_float (double float_value)
2421 register Lisp_Object val;
2423 MALLOC_BLOCK_INPUT;
2425 if (float_free_list)
2427 /* We use the data field for chaining the free list
2428 so that we won't use the same field that has the mark bit. */
2429 XSETFLOAT (val, float_free_list);
2430 float_free_list = float_free_list->u.chain;
2432 else
2434 if (float_block_index == FLOAT_BLOCK_SIZE)
2436 struct float_block *new
2437 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2438 new->next = float_block;
2439 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2440 float_block = new;
2441 float_block_index = 0;
2442 total_free_floats += FLOAT_BLOCK_SIZE;
2444 XSETFLOAT (val, &float_block->floats[float_block_index]);
2445 float_block_index++;
2448 MALLOC_UNBLOCK_INPUT;
2450 XFLOAT_INIT (val, float_value);
2451 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2452 consing_since_gc += sizeof (struct Lisp_Float);
2453 floats_consed++;
2454 total_free_floats--;
2455 return val;
2460 /***********************************************************************
2461 Cons Allocation
2462 ***********************************************************************/
2464 /* We store cons cells inside of cons_blocks, allocating a new
2465 cons_block with malloc whenever necessary. Cons cells reclaimed by
2466 GC are put on a free list to be reallocated before allocating
2467 any new cons cells from the latest cons_block. */
2469 #define CONS_BLOCK_SIZE \
2470 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2471 /* The compiler might add padding at the end. */ \
2472 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2473 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2475 #define CONS_BLOCK(fptr) \
2476 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2478 #define CONS_INDEX(fptr) \
2479 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2481 struct cons_block
2483 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2484 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2485 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2486 struct cons_block *next;
2489 #define CONS_MARKED_P(fptr) \
2490 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2492 #define CONS_MARK(fptr) \
2493 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2495 #define CONS_UNMARK(fptr) \
2496 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2498 /* Current cons_block. */
2500 static struct cons_block *cons_block;
2502 /* Index of first unused Lisp_Cons in the current block. */
2504 static int cons_block_index = CONS_BLOCK_SIZE;
2506 /* Free-list of Lisp_Cons structures. */
2508 static struct Lisp_Cons *cons_free_list;
2510 /* Explicitly free a cons cell by putting it on the free-list. */
2512 void
2513 free_cons (struct Lisp_Cons *ptr)
2515 ptr->u.chain = cons_free_list;
2516 #if GC_MARK_STACK
2517 ptr->car = Vdead;
2518 #endif
2519 cons_free_list = ptr;
2520 consing_since_gc -= sizeof *ptr;
2521 total_free_conses++;
2524 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2525 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2526 (Lisp_Object car, Lisp_Object cdr)
2528 register Lisp_Object val;
2530 MALLOC_BLOCK_INPUT;
2532 if (cons_free_list)
2534 /* We use the cdr for chaining the free list
2535 so that we won't use the same field that has the mark bit. */
2536 XSETCONS (val, cons_free_list);
2537 cons_free_list = cons_free_list->u.chain;
2539 else
2541 if (cons_block_index == CONS_BLOCK_SIZE)
2543 struct cons_block *new
2544 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2545 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2546 new->next = cons_block;
2547 cons_block = new;
2548 cons_block_index = 0;
2549 total_free_conses += CONS_BLOCK_SIZE;
2551 XSETCONS (val, &cons_block->conses[cons_block_index]);
2552 cons_block_index++;
2555 MALLOC_UNBLOCK_INPUT;
2557 XSETCAR (val, car);
2558 XSETCDR (val, cdr);
2559 eassert (!CONS_MARKED_P (XCONS (val)));
2560 consing_since_gc += sizeof (struct Lisp_Cons);
2561 total_free_conses--;
2562 cons_cells_consed++;
2563 return val;
2566 #ifdef GC_CHECK_CONS_LIST
2567 /* Get an error now if there's any junk in the cons free list. */
2568 void
2569 check_cons_list (void)
2571 struct Lisp_Cons *tail = cons_free_list;
2573 while (tail)
2574 tail = tail->u.chain;
2576 #endif
2578 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2580 Lisp_Object
2581 list1 (Lisp_Object arg1)
2583 return Fcons (arg1, Qnil);
2586 Lisp_Object
2587 list2 (Lisp_Object arg1, Lisp_Object arg2)
2589 return Fcons (arg1, Fcons (arg2, Qnil));
2593 Lisp_Object
2594 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2596 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2600 Lisp_Object
2601 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2603 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2607 Lisp_Object
2608 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2610 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2611 Fcons (arg5, Qnil)))));
2614 /* Make a list of COUNT Lisp_Objects, where ARG is the
2615 first one. Allocate conses from pure space if TYPE
2616 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2618 Lisp_Object
2619 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2621 va_list ap;
2622 ptrdiff_t i;
2623 Lisp_Object val, *objp;
2625 /* Change to SAFE_ALLOCA if you hit this eassert. */
2626 eassert (count <= MAX_ALLOCA / word_size);
2628 objp = alloca (count * word_size);
2629 objp[0] = arg;
2630 va_start (ap, arg);
2631 for (i = 1; i < count; i++)
2632 objp[i] = va_arg (ap, Lisp_Object);
2633 va_end (ap);
2635 for (val = Qnil, i = count - 1; i >= 0; i--)
2637 if (type == CONSTYPE_PURE)
2638 val = pure_cons (objp[i], val);
2639 else if (type == CONSTYPE_HEAP)
2640 val = Fcons (objp[i], val);
2641 else
2642 emacs_abort ();
2644 return val;
2647 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2648 doc: /* Return a newly created list with specified arguments as elements.
2649 Any number of arguments, even zero arguments, are allowed.
2650 usage: (list &rest OBJECTS) */)
2651 (ptrdiff_t nargs, Lisp_Object *args)
2653 register Lisp_Object val;
2654 val = Qnil;
2656 while (nargs > 0)
2658 nargs--;
2659 val = Fcons (args[nargs], val);
2661 return val;
2665 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2666 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2667 (register Lisp_Object length, Lisp_Object init)
2669 register Lisp_Object val;
2670 register EMACS_INT size;
2672 CHECK_NATNUM (length);
2673 size = XFASTINT (length);
2675 val = Qnil;
2676 while (size > 0)
2678 val = Fcons (init, val);
2679 --size;
2681 if (size > 0)
2683 val = Fcons (init, val);
2684 --size;
2686 if (size > 0)
2688 val = Fcons (init, val);
2689 --size;
2691 if (size > 0)
2693 val = Fcons (init, val);
2694 --size;
2696 if (size > 0)
2698 val = Fcons (init, val);
2699 --size;
2705 QUIT;
2708 return val;
2713 /***********************************************************************
2714 Vector Allocation
2715 ***********************************************************************/
2717 /* Sometimes a vector's contents are merely a pointer internally used
2718 in vector allocation code. On the rare platforms where a null
2719 pointer cannot be tagged, represent it with a Lisp 0.
2720 Usually you don't want to touch this. */
2722 static struct Lisp_Vector *
2723 next_vector (struct Lisp_Vector *v)
2725 return XUNTAG (v->contents[0], 0);
2728 static void
2729 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2731 v->contents[0] = make_lisp_ptr (p, 0);
2734 /* This value is balanced well enough to avoid too much internal overhead
2735 for the most common cases; it's not required to be a power of two, but
2736 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2738 #define VECTOR_BLOCK_SIZE 4096
2740 enum
2742 /* Alignment of struct Lisp_Vector objects. */
2743 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2744 USE_LSB_TAG ? GCALIGNMENT : 1),
2746 /* Vector size requests are a multiple of this. */
2747 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2750 /* Verify assumptions described above. */
2751 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2752 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2754 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2755 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2756 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2757 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2759 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2761 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2763 /* Size of the minimal vector allocated from block. */
2765 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2767 /* Size of the largest vector allocated from block. */
2769 #define VBLOCK_BYTES_MAX \
2770 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2772 /* We maintain one free list for each possible block-allocated
2773 vector size, and this is the number of free lists we have. */
2775 #define VECTOR_MAX_FREE_LIST_INDEX \
2776 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2778 /* Common shortcut to advance vector pointer over a block data. */
2780 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2782 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2784 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2786 /* Common shortcut to setup vector on a free list. */
2788 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2789 do { \
2790 (tmp) = ((nbytes - header_size) / word_size); \
2791 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2792 eassert ((nbytes) % roundup_size == 0); \
2793 (tmp) = VINDEX (nbytes); \
2794 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2795 set_next_vector (v, vector_free_lists[tmp]); \
2796 vector_free_lists[tmp] = (v); \
2797 total_free_vector_slots += (nbytes) / word_size; \
2798 } while (0)
2800 /* This internal type is used to maintain the list of large vectors
2801 which are allocated at their own, e.g. outside of vector blocks.
2803 struct large_vector itself cannot contain a struct Lisp_Vector, as
2804 the latter contains a flexible array member and C99 does not allow
2805 such structs to be nested. Instead, each struct large_vector
2806 object LV is followed by a struct Lisp_Vector, which is at offset
2807 large_vector_offset from LV, and whose address is therefore
2808 large_vector_vec (&LV). */
2810 struct large_vector
2812 struct large_vector *next;
2815 enum
2817 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2820 static struct Lisp_Vector *
2821 large_vector_vec (struct large_vector *p)
2823 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2826 /* This internal type is used to maintain an underlying storage
2827 for small vectors. */
2829 struct vector_block
2831 char data[VECTOR_BLOCK_BYTES];
2832 struct vector_block *next;
2835 /* Chain of vector blocks. */
2837 static struct vector_block *vector_blocks;
2839 /* Vector free lists, where NTH item points to a chain of free
2840 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2842 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2844 /* Singly-linked list of large vectors. */
2846 static struct large_vector *large_vectors;
2848 /* The only vector with 0 slots, allocated from pure space. */
2850 Lisp_Object zero_vector;
2852 /* Number of live vectors. */
2854 static EMACS_INT total_vectors;
2856 /* Total size of live and free vectors, in Lisp_Object units. */
2858 static EMACS_INT total_vector_slots, total_free_vector_slots;
2860 /* Get a new vector block. */
2862 static struct vector_block *
2863 allocate_vector_block (void)
2865 struct vector_block *block = xmalloc (sizeof *block);
2867 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2868 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2869 MEM_TYPE_VECTOR_BLOCK);
2870 #endif
2872 block->next = vector_blocks;
2873 vector_blocks = block;
2874 return block;
2877 /* Called once to initialize vector allocation. */
2879 static void
2880 init_vectors (void)
2882 zero_vector = make_pure_vector (0);
2885 /* Allocate vector from a vector block. */
2887 static struct Lisp_Vector *
2888 allocate_vector_from_block (size_t nbytes)
2890 struct Lisp_Vector *vector;
2891 struct vector_block *block;
2892 size_t index, restbytes;
2894 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2895 eassert (nbytes % roundup_size == 0);
2897 /* First, try to allocate from a free list
2898 containing vectors of the requested size. */
2899 index = VINDEX (nbytes);
2900 if (vector_free_lists[index])
2902 vector = vector_free_lists[index];
2903 vector_free_lists[index] = next_vector (vector);
2904 total_free_vector_slots -= nbytes / word_size;
2905 return vector;
2908 /* Next, check free lists containing larger vectors. Since
2909 we will split the result, we should have remaining space
2910 large enough to use for one-slot vector at least. */
2911 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2912 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2913 if (vector_free_lists[index])
2915 /* This vector is larger than requested. */
2916 vector = vector_free_lists[index];
2917 vector_free_lists[index] = next_vector (vector);
2918 total_free_vector_slots -= nbytes / word_size;
2920 /* Excess bytes are used for the smaller vector,
2921 which should be set on an appropriate free list. */
2922 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2923 eassert (restbytes % roundup_size == 0);
2924 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2925 return vector;
2928 /* Finally, need a new vector block. */
2929 block = allocate_vector_block ();
2931 /* New vector will be at the beginning of this block. */
2932 vector = (struct Lisp_Vector *) block->data;
2934 /* If the rest of space from this block is large enough
2935 for one-slot vector at least, set up it on a free list. */
2936 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2937 if (restbytes >= VBLOCK_BYTES_MIN)
2939 eassert (restbytes % roundup_size == 0);
2940 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2942 return vector;
2945 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2947 #define VECTOR_IN_BLOCK(vector, block) \
2948 ((char *) (vector) <= (block)->data \
2949 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2951 /* Return the memory footprint of V in bytes. */
2953 static ptrdiff_t
2954 vector_nbytes (struct Lisp_Vector *v)
2956 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2957 ptrdiff_t nwords;
2959 if (size & PSEUDOVECTOR_FLAG)
2961 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2963 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2964 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2965 * sizeof (bits_word));
2966 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2967 verify (header_size <= bool_header_size);
2968 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2970 else
2971 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2972 + ((size & PSEUDOVECTOR_REST_MASK)
2973 >> PSEUDOVECTOR_SIZE_BITS));
2975 else
2976 nwords = size;
2977 return vroundup (header_size + word_size * nwords);
2980 /* Release extra resources still in use by VECTOR, which may be any
2981 vector-like object. For now, this is used just to free data in
2982 font objects. */
2984 static void
2985 cleanup_vector (struct Lisp_Vector *vector)
2987 detect_suspicious_free (vector);
2988 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2989 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2990 == FONT_OBJECT_MAX))
2992 struct font_driver *drv = ((struct font *) vector)->driver;
2994 /* The font driver might sometimes be NULL, e.g. if Emacs was
2995 interrupted before it had time to set it up. */
2996 if (drv)
2998 /* Attempt to catch subtle bugs like Bug#16140. */
2999 eassert (valid_font_driver (drv));
3000 drv->close ((struct font *) vector);
3005 /* Reclaim space used by unmarked vectors. */
3007 NO_INLINE /* For better stack traces */
3008 static void
3009 sweep_vectors (void)
3011 struct vector_block *block, **bprev = &vector_blocks;
3012 struct large_vector *lv, **lvprev = &large_vectors;
3013 struct Lisp_Vector *vector, *next;
3015 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3016 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3018 /* Looking through vector blocks. */
3020 for (block = vector_blocks; block; block = *bprev)
3022 bool free_this_block = 0;
3023 ptrdiff_t nbytes;
3025 for (vector = (struct Lisp_Vector *) block->data;
3026 VECTOR_IN_BLOCK (vector, block); vector = next)
3028 if (VECTOR_MARKED_P (vector))
3030 VECTOR_UNMARK (vector);
3031 total_vectors++;
3032 nbytes = vector_nbytes (vector);
3033 total_vector_slots += nbytes / word_size;
3034 next = ADVANCE (vector, nbytes);
3036 else
3038 ptrdiff_t total_bytes;
3040 cleanup_vector (vector);
3041 nbytes = vector_nbytes (vector);
3042 total_bytes = nbytes;
3043 next = ADVANCE (vector, nbytes);
3045 /* While NEXT is not marked, try to coalesce with VECTOR,
3046 thus making VECTOR of the largest possible size. */
3048 while (VECTOR_IN_BLOCK (next, block))
3050 if (VECTOR_MARKED_P (next))
3051 break;
3052 cleanup_vector (next);
3053 nbytes = vector_nbytes (next);
3054 total_bytes += nbytes;
3055 next = ADVANCE (next, nbytes);
3058 eassert (total_bytes % roundup_size == 0);
3060 if (vector == (struct Lisp_Vector *) block->data
3061 && !VECTOR_IN_BLOCK (next, block))
3062 /* This block should be freed because all of its
3063 space was coalesced into the only free vector. */
3064 free_this_block = 1;
3065 else
3067 size_t tmp;
3068 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3073 if (free_this_block)
3075 *bprev = block->next;
3076 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3077 mem_delete (mem_find (block->data));
3078 #endif
3079 xfree (block);
3081 else
3082 bprev = &block->next;
3085 /* Sweep large vectors. */
3087 for (lv = large_vectors; lv; lv = *lvprev)
3089 vector = large_vector_vec (lv);
3090 if (VECTOR_MARKED_P (vector))
3092 VECTOR_UNMARK (vector);
3093 total_vectors++;
3094 if (vector->header.size & PSEUDOVECTOR_FLAG)
3096 /* All non-bool pseudovectors are small enough to be allocated
3097 from vector blocks. This code should be redesigned if some
3098 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3099 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3100 total_vector_slots += vector_nbytes (vector) / word_size;
3102 else
3103 total_vector_slots
3104 += header_size / word_size + vector->header.size;
3105 lvprev = &lv->next;
3107 else
3109 *lvprev = lv->next;
3110 lisp_free (lv);
3115 /* Value is a pointer to a newly allocated Lisp_Vector structure
3116 with room for LEN Lisp_Objects. */
3118 static struct Lisp_Vector *
3119 allocate_vectorlike (ptrdiff_t len)
3121 struct Lisp_Vector *p;
3123 MALLOC_BLOCK_INPUT;
3125 if (len == 0)
3126 p = XVECTOR (zero_vector);
3127 else
3129 size_t nbytes = header_size + len * word_size;
3131 #ifdef DOUG_LEA_MALLOC
3132 if (!mmap_lisp_allowed_p ())
3133 mallopt (M_MMAP_MAX, 0);
3134 #endif
3136 if (nbytes <= VBLOCK_BYTES_MAX)
3137 p = allocate_vector_from_block (vroundup (nbytes));
3138 else
3140 struct large_vector *lv
3141 = lisp_malloc ((large_vector_offset + header_size
3142 + len * word_size),
3143 MEM_TYPE_VECTORLIKE);
3144 lv->next = large_vectors;
3145 large_vectors = lv;
3146 p = large_vector_vec (lv);
3149 #ifdef DOUG_LEA_MALLOC
3150 if (!mmap_lisp_allowed_p ())
3151 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3152 #endif
3154 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3155 emacs_abort ();
3157 consing_since_gc += nbytes;
3158 vector_cells_consed += len;
3161 MALLOC_UNBLOCK_INPUT;
3163 return p;
3167 /* Allocate a vector with LEN slots. */
3169 struct Lisp_Vector *
3170 allocate_vector (EMACS_INT len)
3172 struct Lisp_Vector *v;
3173 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3175 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3176 memory_full (SIZE_MAX);
3177 v = allocate_vectorlike (len);
3178 v->header.size = len;
3179 return v;
3183 /* Allocate other vector-like structures. */
3185 struct Lisp_Vector *
3186 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3188 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3189 int i;
3191 /* Catch bogus values. */
3192 eassert (tag <= PVEC_FONT);
3193 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3194 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3196 /* Only the first lisplen slots will be traced normally by the GC. */
3197 for (i = 0; i < lisplen; ++i)
3198 v->contents[i] = Qnil;
3200 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3201 return v;
3204 struct buffer *
3205 allocate_buffer (void)
3207 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3209 BUFFER_PVEC_INIT (b);
3210 /* Put B on the chain of all buffers including killed ones. */
3211 b->next = all_buffers;
3212 all_buffers = b;
3213 /* Note that the rest fields of B are not initialized. */
3214 return b;
3217 struct Lisp_Hash_Table *
3218 allocate_hash_table (void)
3220 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3223 struct window *
3224 allocate_window (void)
3226 struct window *w;
3228 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3229 /* Users assumes that non-Lisp data is zeroed. */
3230 memset (&w->current_matrix, 0,
3231 sizeof (*w) - offsetof (struct window, current_matrix));
3232 return w;
3235 struct terminal *
3236 allocate_terminal (void)
3238 struct terminal *t;
3240 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3241 /* Users assumes that non-Lisp data is zeroed. */
3242 memset (&t->next_terminal, 0,
3243 sizeof (*t) - offsetof (struct terminal, next_terminal));
3244 return t;
3247 struct frame *
3248 allocate_frame (void)
3250 struct frame *f;
3252 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3253 /* Users assumes that non-Lisp data is zeroed. */
3254 memset (&f->face_cache, 0,
3255 sizeof (*f) - offsetof (struct frame, face_cache));
3256 return f;
3259 struct Lisp_Process *
3260 allocate_process (void)
3262 struct Lisp_Process *p;
3264 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3265 /* Users assumes that non-Lisp data is zeroed. */
3266 memset (&p->pid, 0,
3267 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3268 return p;
3271 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3272 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3273 See also the function `vector'. */)
3274 (register Lisp_Object length, Lisp_Object init)
3276 Lisp_Object vector;
3277 register ptrdiff_t sizei;
3278 register ptrdiff_t i;
3279 register struct Lisp_Vector *p;
3281 CHECK_NATNUM (length);
3283 p = allocate_vector (XFASTINT (length));
3284 sizei = XFASTINT (length);
3285 for (i = 0; i < sizei; i++)
3286 p->contents[i] = init;
3288 XSETVECTOR (vector, p);
3289 return vector;
3293 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3294 doc: /* Return a newly created vector with specified arguments as elements.
3295 Any number of arguments, even zero arguments, are allowed.
3296 usage: (vector &rest OBJECTS) */)
3297 (ptrdiff_t nargs, Lisp_Object *args)
3299 ptrdiff_t i;
3300 register Lisp_Object val = make_uninit_vector (nargs);
3301 register struct Lisp_Vector *p = XVECTOR (val);
3303 for (i = 0; i < nargs; i++)
3304 p->contents[i] = args[i];
3305 return val;
3308 void
3309 make_byte_code (struct Lisp_Vector *v)
3311 /* Don't allow the global zero_vector to become a byte code object. */
3312 eassert (0 < v->header.size);
3314 if (v->header.size > 1 && STRINGP (v->contents[1])
3315 && STRING_MULTIBYTE (v->contents[1]))
3316 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3317 earlier because they produced a raw 8-bit string for byte-code
3318 and now such a byte-code string is loaded as multibyte while
3319 raw 8-bit characters converted to multibyte form. Thus, now we
3320 must convert them back to the original unibyte form. */
3321 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3322 XSETPVECTYPE (v, PVEC_COMPILED);
3325 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3326 doc: /* Create a byte-code object with specified arguments as elements.
3327 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3328 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3329 and (optional) INTERACTIVE-SPEC.
3330 The first four arguments are required; at most six have any
3331 significance.
3332 The ARGLIST can be either like the one of `lambda', in which case the arguments
3333 will be dynamically bound before executing the byte code, or it can be an
3334 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3335 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3336 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3337 argument to catch the left-over arguments. If such an integer is used, the
3338 arguments will not be dynamically bound but will be instead pushed on the
3339 stack before executing the byte-code.
3340 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3341 (ptrdiff_t nargs, Lisp_Object *args)
3343 ptrdiff_t i;
3344 register Lisp_Object val = make_uninit_vector (nargs);
3345 register struct Lisp_Vector *p = XVECTOR (val);
3347 /* We used to purecopy everything here, if purify-flag was set. This worked
3348 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3349 dangerous, since make-byte-code is used during execution to build
3350 closures, so any closure built during the preload phase would end up
3351 copied into pure space, including its free variables, which is sometimes
3352 just wasteful and other times plainly wrong (e.g. those free vars may want
3353 to be setcar'd). */
3355 for (i = 0; i < nargs; i++)
3356 p->contents[i] = args[i];
3357 make_byte_code (p);
3358 XSETCOMPILED (val, p);
3359 return val;
3364 /***********************************************************************
3365 Symbol Allocation
3366 ***********************************************************************/
3368 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3369 of the required alignment if LSB tags are used. */
3371 union aligned_Lisp_Symbol
3373 struct Lisp_Symbol s;
3374 #if USE_LSB_TAG
3375 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3376 & -GCALIGNMENT];
3377 #endif
3380 /* Each symbol_block is just under 1020 bytes long, since malloc
3381 really allocates in units of powers of two and uses 4 bytes for its
3382 own overhead. */
3384 #define SYMBOL_BLOCK_SIZE \
3385 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3387 struct symbol_block
3389 /* Place `symbols' first, to preserve alignment. */
3390 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3391 struct symbol_block *next;
3394 /* Current symbol block and index of first unused Lisp_Symbol
3395 structure in it. */
3397 static struct symbol_block *symbol_block;
3398 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3399 /* Pointer to the first symbol_block that contains pinned symbols.
3400 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3401 10K of which are pinned (and all but 250 of them are interned in obarray),
3402 whereas a "typical session" has in the order of 30K symbols.
3403 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3404 than 30K to find the 10K symbols we need to mark. */
3405 static struct symbol_block *symbol_block_pinned;
3407 /* List of free symbols. */
3409 static struct Lisp_Symbol *symbol_free_list;
3411 static void
3412 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3414 XSYMBOL (sym)->name = name;
3417 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3418 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3419 Its value is void, and its function definition and property list are nil. */)
3420 (Lisp_Object name)
3422 register Lisp_Object val;
3423 register struct Lisp_Symbol *p;
3425 CHECK_STRING (name);
3427 MALLOC_BLOCK_INPUT;
3429 if (symbol_free_list)
3431 XSETSYMBOL (val, symbol_free_list);
3432 symbol_free_list = symbol_free_list->next;
3434 else
3436 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3438 struct symbol_block *new
3439 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3440 new->next = symbol_block;
3441 symbol_block = new;
3442 symbol_block_index = 0;
3443 total_free_symbols += SYMBOL_BLOCK_SIZE;
3445 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3446 symbol_block_index++;
3449 MALLOC_UNBLOCK_INPUT;
3451 p = XSYMBOL (val);
3452 set_symbol_name (val, name);
3453 set_symbol_plist (val, Qnil);
3454 p->redirect = SYMBOL_PLAINVAL;
3455 SET_SYMBOL_VAL (p, Qunbound);
3456 set_symbol_function (val, Qnil);
3457 set_symbol_next (val, NULL);
3458 p->gcmarkbit = false;
3459 p->interned = SYMBOL_UNINTERNED;
3460 p->constant = 0;
3461 p->declared_special = false;
3462 p->pinned = false;
3463 consing_since_gc += sizeof (struct Lisp_Symbol);
3464 symbols_consed++;
3465 total_free_symbols--;
3466 return val;
3471 /***********************************************************************
3472 Marker (Misc) Allocation
3473 ***********************************************************************/
3475 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3476 the required alignment when LSB tags are used. */
3478 union aligned_Lisp_Misc
3480 union Lisp_Misc m;
3481 #if USE_LSB_TAG
3482 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3483 & -GCALIGNMENT];
3484 #endif
3487 /* Allocation of markers and other objects that share that structure.
3488 Works like allocation of conses. */
3490 #define MARKER_BLOCK_SIZE \
3491 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3493 struct marker_block
3495 /* Place `markers' first, to preserve alignment. */
3496 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3497 struct marker_block *next;
3500 static struct marker_block *marker_block;
3501 static int marker_block_index = MARKER_BLOCK_SIZE;
3503 static union Lisp_Misc *marker_free_list;
3505 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3507 static Lisp_Object
3508 allocate_misc (enum Lisp_Misc_Type type)
3510 Lisp_Object val;
3512 MALLOC_BLOCK_INPUT;
3514 if (marker_free_list)
3516 XSETMISC (val, marker_free_list);
3517 marker_free_list = marker_free_list->u_free.chain;
3519 else
3521 if (marker_block_index == MARKER_BLOCK_SIZE)
3523 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3524 new->next = marker_block;
3525 marker_block = new;
3526 marker_block_index = 0;
3527 total_free_markers += MARKER_BLOCK_SIZE;
3529 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3530 marker_block_index++;
3533 MALLOC_UNBLOCK_INPUT;
3535 --total_free_markers;
3536 consing_since_gc += sizeof (union Lisp_Misc);
3537 misc_objects_consed++;
3538 XMISCANY (val)->type = type;
3539 XMISCANY (val)->gcmarkbit = 0;
3540 return val;
3543 /* Free a Lisp_Misc object. */
3545 void
3546 free_misc (Lisp_Object misc)
3548 XMISCANY (misc)->type = Lisp_Misc_Free;
3549 XMISC (misc)->u_free.chain = marker_free_list;
3550 marker_free_list = XMISC (misc);
3551 consing_since_gc -= sizeof (union Lisp_Misc);
3552 total_free_markers++;
3555 /* Verify properties of Lisp_Save_Value's representation
3556 that are assumed here and elsewhere. */
3558 verify (SAVE_UNUSED == 0);
3559 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3560 >> SAVE_SLOT_BITS)
3561 == 0);
3563 /* Return Lisp_Save_Value objects for the various combinations
3564 that callers need. */
3566 Lisp_Object
3567 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3569 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3570 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3571 p->save_type = SAVE_TYPE_INT_INT_INT;
3572 p->data[0].integer = a;
3573 p->data[1].integer = b;
3574 p->data[2].integer = c;
3575 return val;
3578 Lisp_Object
3579 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3580 Lisp_Object d)
3582 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3583 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3584 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3585 p->data[0].object = a;
3586 p->data[1].object = b;
3587 p->data[2].object = c;
3588 p->data[3].object = d;
3589 return val;
3592 Lisp_Object
3593 make_save_ptr (void *a)
3595 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3596 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3597 p->save_type = SAVE_POINTER;
3598 p->data[0].pointer = a;
3599 return val;
3602 Lisp_Object
3603 make_save_ptr_int (void *a, ptrdiff_t b)
3605 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3606 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3607 p->save_type = SAVE_TYPE_PTR_INT;
3608 p->data[0].pointer = a;
3609 p->data[1].integer = b;
3610 return val;
3613 Lisp_Object
3614 make_save_int_obj (ptrdiff_t a, Lisp_Object b)
3616 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3617 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3618 p->save_type = SAVE_TYPE_INT_OBJ;
3619 p->data[0].integer = a;
3620 p->data[1].object = b;
3621 return val;
3624 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3625 Lisp_Object
3626 make_save_ptr_ptr (void *a, void *b)
3628 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3629 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3630 p->save_type = SAVE_TYPE_PTR_PTR;
3631 p->data[0].pointer = a;
3632 p->data[1].pointer = b;
3633 return val;
3635 #endif
3637 Lisp_Object
3638 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3640 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3641 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3642 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3643 p->data[0].funcpointer = a;
3644 p->data[1].pointer = b;
3645 p->data[2].object = c;
3646 return val;
3649 /* Return a Lisp_Save_Value object that represents an array A
3650 of N Lisp objects. */
3652 Lisp_Object
3653 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3655 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3656 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3657 p->save_type = SAVE_TYPE_MEMORY;
3658 p->data[0].pointer = a;
3659 p->data[1].integer = n;
3660 return val;
3663 /* Free a Lisp_Save_Value object. Do not use this function
3664 if SAVE contains pointer other than returned by xmalloc. */
3666 void
3667 free_save_value (Lisp_Object save)
3669 xfree (XSAVE_POINTER (save, 0));
3670 free_misc (save);
3673 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3675 Lisp_Object
3676 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3678 register Lisp_Object overlay;
3680 overlay = allocate_misc (Lisp_Misc_Overlay);
3681 OVERLAY_START (overlay) = start;
3682 OVERLAY_END (overlay) = end;
3683 set_overlay_plist (overlay, plist);
3684 XOVERLAY (overlay)->next = NULL;
3685 return overlay;
3688 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3689 doc: /* Return a newly allocated marker which does not point at any place. */)
3690 (void)
3692 register Lisp_Object val;
3693 register struct Lisp_Marker *p;
3695 val = allocate_misc (Lisp_Misc_Marker);
3696 p = XMARKER (val);
3697 p->buffer = 0;
3698 p->bytepos = 0;
3699 p->charpos = 0;
3700 p->next = NULL;
3701 p->insertion_type = 0;
3702 p->need_adjustment = 0;
3703 return val;
3706 /* Return a newly allocated marker which points into BUF
3707 at character position CHARPOS and byte position BYTEPOS. */
3709 Lisp_Object
3710 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3712 Lisp_Object obj;
3713 struct Lisp_Marker *m;
3715 /* No dead buffers here. */
3716 eassert (BUFFER_LIVE_P (buf));
3718 /* Every character is at least one byte. */
3719 eassert (charpos <= bytepos);
3721 obj = allocate_misc (Lisp_Misc_Marker);
3722 m = XMARKER (obj);
3723 m->buffer = buf;
3724 m->charpos = charpos;
3725 m->bytepos = bytepos;
3726 m->insertion_type = 0;
3727 m->need_adjustment = 0;
3728 m->next = BUF_MARKERS (buf);
3729 BUF_MARKERS (buf) = m;
3730 return obj;
3733 /* Put MARKER back on the free list after using it temporarily. */
3735 void
3736 free_marker (Lisp_Object marker)
3738 unchain_marker (XMARKER (marker));
3739 free_misc (marker);
3743 /* Return a newly created vector or string with specified arguments as
3744 elements. If all the arguments are characters that can fit
3745 in a string of events, make a string; otherwise, make a vector.
3747 Any number of arguments, even zero arguments, are allowed. */
3749 Lisp_Object
3750 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3752 ptrdiff_t i;
3754 for (i = 0; i < nargs; i++)
3755 /* The things that fit in a string
3756 are characters that are in 0...127,
3757 after discarding the meta bit and all the bits above it. */
3758 if (!INTEGERP (args[i])
3759 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3760 return Fvector (nargs, args);
3762 /* Since the loop exited, we know that all the things in it are
3763 characters, so we can make a string. */
3765 Lisp_Object result;
3767 result = Fmake_string (make_number (nargs), make_number (0));
3768 for (i = 0; i < nargs; i++)
3770 SSET (result, i, XINT (args[i]));
3771 /* Move the meta bit to the right place for a string char. */
3772 if (XINT (args[i]) & CHAR_META)
3773 SSET (result, i, SREF (result, i) | 0x80);
3776 return result;
3782 /************************************************************************
3783 Memory Full Handling
3784 ************************************************************************/
3787 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3788 there may have been size_t overflow so that malloc was never
3789 called, or perhaps malloc was invoked successfully but the
3790 resulting pointer had problems fitting into a tagged EMACS_INT. In
3791 either case this counts as memory being full even though malloc did
3792 not fail. */
3794 void
3795 memory_full (size_t nbytes)
3797 /* Do not go into hysterics merely because a large request failed. */
3798 bool enough_free_memory = 0;
3799 if (SPARE_MEMORY < nbytes)
3801 void *p;
3803 MALLOC_BLOCK_INPUT;
3804 p = malloc (SPARE_MEMORY);
3805 if (p)
3807 free (p);
3808 enough_free_memory = 1;
3810 MALLOC_UNBLOCK_INPUT;
3813 if (! enough_free_memory)
3815 int i;
3817 Vmemory_full = Qt;
3819 memory_full_cons_threshold = sizeof (struct cons_block);
3821 /* The first time we get here, free the spare memory. */
3822 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3823 if (spare_memory[i])
3825 if (i == 0)
3826 free (spare_memory[i]);
3827 else if (i >= 1 && i <= 4)
3828 lisp_align_free (spare_memory[i]);
3829 else
3830 lisp_free (spare_memory[i]);
3831 spare_memory[i] = 0;
3835 /* This used to call error, but if we've run out of memory, we could
3836 get infinite recursion trying to build the string. */
3837 xsignal (Qnil, Vmemory_signal_data);
3840 /* If we released our reserve (due to running out of memory),
3841 and we have a fair amount free once again,
3842 try to set aside another reserve in case we run out once more.
3844 This is called when a relocatable block is freed in ralloc.c,
3845 and also directly from this file, in case we're not using ralloc.c. */
3847 void
3848 refill_memory_reserve (void)
3850 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3851 if (spare_memory[0] == 0)
3852 spare_memory[0] = malloc (SPARE_MEMORY);
3853 if (spare_memory[1] == 0)
3854 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3855 MEM_TYPE_SPARE);
3856 if (spare_memory[2] == 0)
3857 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3858 MEM_TYPE_SPARE);
3859 if (spare_memory[3] == 0)
3860 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3861 MEM_TYPE_SPARE);
3862 if (spare_memory[4] == 0)
3863 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3864 MEM_TYPE_SPARE);
3865 if (spare_memory[5] == 0)
3866 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3867 MEM_TYPE_SPARE);
3868 if (spare_memory[6] == 0)
3869 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3870 MEM_TYPE_SPARE);
3871 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3872 Vmemory_full = Qnil;
3873 #endif
3876 /************************************************************************
3877 C Stack Marking
3878 ************************************************************************/
3880 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3882 /* Conservative C stack marking requires a method to identify possibly
3883 live Lisp objects given a pointer value. We do this by keeping
3884 track of blocks of Lisp data that are allocated in a red-black tree
3885 (see also the comment of mem_node which is the type of nodes in
3886 that tree). Function lisp_malloc adds information for an allocated
3887 block to the red-black tree with calls to mem_insert, and function
3888 lisp_free removes it with mem_delete. Functions live_string_p etc
3889 call mem_find to lookup information about a given pointer in the
3890 tree, and use that to determine if the pointer points to a Lisp
3891 object or not. */
3893 /* Initialize this part of alloc.c. */
3895 static void
3896 mem_init (void)
3898 mem_z.left = mem_z.right = MEM_NIL;
3899 mem_z.parent = NULL;
3900 mem_z.color = MEM_BLACK;
3901 mem_z.start = mem_z.end = NULL;
3902 mem_root = MEM_NIL;
3906 /* Value is a pointer to the mem_node containing START. Value is
3907 MEM_NIL if there is no node in the tree containing START. */
3909 static struct mem_node *
3910 mem_find (void *start)
3912 struct mem_node *p;
3914 if (start < min_heap_address || start > max_heap_address)
3915 return MEM_NIL;
3917 /* Make the search always successful to speed up the loop below. */
3918 mem_z.start = start;
3919 mem_z.end = (char *) start + 1;
3921 p = mem_root;
3922 while (start < p->start || start >= p->end)
3923 p = start < p->start ? p->left : p->right;
3924 return p;
3928 /* Insert a new node into the tree for a block of memory with start
3929 address START, end address END, and type TYPE. Value is a
3930 pointer to the node that was inserted. */
3932 static struct mem_node *
3933 mem_insert (void *start, void *end, enum mem_type type)
3935 struct mem_node *c, *parent, *x;
3937 if (min_heap_address == NULL || start < min_heap_address)
3938 min_heap_address = start;
3939 if (max_heap_address == NULL || end > max_heap_address)
3940 max_heap_address = end;
3942 /* See where in the tree a node for START belongs. In this
3943 particular application, it shouldn't happen that a node is already
3944 present. For debugging purposes, let's check that. */
3945 c = mem_root;
3946 parent = NULL;
3948 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3950 while (c != MEM_NIL)
3952 if (start >= c->start && start < c->end)
3953 emacs_abort ();
3954 parent = c;
3955 c = start < c->start ? c->left : c->right;
3958 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3960 while (c != MEM_NIL)
3962 parent = c;
3963 c = start < c->start ? c->left : c->right;
3966 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3968 /* Create a new node. */
3969 #ifdef GC_MALLOC_CHECK
3970 x = malloc (sizeof *x);
3971 if (x == NULL)
3972 emacs_abort ();
3973 #else
3974 x = xmalloc (sizeof *x);
3975 #endif
3976 x->start = start;
3977 x->end = end;
3978 x->type = type;
3979 x->parent = parent;
3980 x->left = x->right = MEM_NIL;
3981 x->color = MEM_RED;
3983 /* Insert it as child of PARENT or install it as root. */
3984 if (parent)
3986 if (start < parent->start)
3987 parent->left = x;
3988 else
3989 parent->right = x;
3991 else
3992 mem_root = x;
3994 /* Re-establish red-black tree properties. */
3995 mem_insert_fixup (x);
3997 return x;
4001 /* Re-establish the red-black properties of the tree, and thereby
4002 balance the tree, after node X has been inserted; X is always red. */
4004 static void
4005 mem_insert_fixup (struct mem_node *x)
4007 while (x != mem_root && x->parent->color == MEM_RED)
4009 /* X is red and its parent is red. This is a violation of
4010 red-black tree property #3. */
4012 if (x->parent == x->parent->parent->left)
4014 /* We're on the left side of our grandparent, and Y is our
4015 "uncle". */
4016 struct mem_node *y = x->parent->parent->right;
4018 if (y->color == MEM_RED)
4020 /* Uncle and parent are red but should be black because
4021 X is red. Change the colors accordingly and proceed
4022 with the grandparent. */
4023 x->parent->color = MEM_BLACK;
4024 y->color = MEM_BLACK;
4025 x->parent->parent->color = MEM_RED;
4026 x = x->parent->parent;
4028 else
4030 /* Parent and uncle have different colors; parent is
4031 red, uncle is black. */
4032 if (x == x->parent->right)
4034 x = x->parent;
4035 mem_rotate_left (x);
4038 x->parent->color = MEM_BLACK;
4039 x->parent->parent->color = MEM_RED;
4040 mem_rotate_right (x->parent->parent);
4043 else
4045 /* This is the symmetrical case of above. */
4046 struct mem_node *y = x->parent->parent->left;
4048 if (y->color == MEM_RED)
4050 x->parent->color = MEM_BLACK;
4051 y->color = MEM_BLACK;
4052 x->parent->parent->color = MEM_RED;
4053 x = x->parent->parent;
4055 else
4057 if (x == x->parent->left)
4059 x = x->parent;
4060 mem_rotate_right (x);
4063 x->parent->color = MEM_BLACK;
4064 x->parent->parent->color = MEM_RED;
4065 mem_rotate_left (x->parent->parent);
4070 /* The root may have been changed to red due to the algorithm. Set
4071 it to black so that property #5 is satisfied. */
4072 mem_root->color = MEM_BLACK;
4076 /* (x) (y)
4077 / \ / \
4078 a (y) ===> (x) c
4079 / \ / \
4080 b c a b */
4082 static void
4083 mem_rotate_left (struct mem_node *x)
4085 struct mem_node *y;
4087 /* Turn y's left sub-tree into x's right sub-tree. */
4088 y = x->right;
4089 x->right = y->left;
4090 if (y->left != MEM_NIL)
4091 y->left->parent = x;
4093 /* Y's parent was x's parent. */
4094 if (y != MEM_NIL)
4095 y->parent = x->parent;
4097 /* Get the parent to point to y instead of x. */
4098 if (x->parent)
4100 if (x == x->parent->left)
4101 x->parent->left = y;
4102 else
4103 x->parent->right = y;
4105 else
4106 mem_root = y;
4108 /* Put x on y's left. */
4109 y->left = x;
4110 if (x != MEM_NIL)
4111 x->parent = y;
4115 /* (x) (Y)
4116 / \ / \
4117 (y) c ===> a (x)
4118 / \ / \
4119 a b b c */
4121 static void
4122 mem_rotate_right (struct mem_node *x)
4124 struct mem_node *y = x->left;
4126 x->left = y->right;
4127 if (y->right != MEM_NIL)
4128 y->right->parent = x;
4130 if (y != MEM_NIL)
4131 y->parent = x->parent;
4132 if (x->parent)
4134 if (x == x->parent->right)
4135 x->parent->right = y;
4136 else
4137 x->parent->left = y;
4139 else
4140 mem_root = y;
4142 y->right = x;
4143 if (x != MEM_NIL)
4144 x->parent = y;
4148 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4150 static void
4151 mem_delete (struct mem_node *z)
4153 struct mem_node *x, *y;
4155 if (!z || z == MEM_NIL)
4156 return;
4158 if (z->left == MEM_NIL || z->right == MEM_NIL)
4159 y = z;
4160 else
4162 y = z->right;
4163 while (y->left != MEM_NIL)
4164 y = y->left;
4167 if (y->left != MEM_NIL)
4168 x = y->left;
4169 else
4170 x = y->right;
4172 x->parent = y->parent;
4173 if (y->parent)
4175 if (y == y->parent->left)
4176 y->parent->left = x;
4177 else
4178 y->parent->right = x;
4180 else
4181 mem_root = x;
4183 if (y != z)
4185 z->start = y->start;
4186 z->end = y->end;
4187 z->type = y->type;
4190 if (y->color == MEM_BLACK)
4191 mem_delete_fixup (x);
4193 #ifdef GC_MALLOC_CHECK
4194 free (y);
4195 #else
4196 xfree (y);
4197 #endif
4201 /* Re-establish the red-black properties of the tree, after a
4202 deletion. */
4204 static void
4205 mem_delete_fixup (struct mem_node *x)
4207 while (x != mem_root && x->color == MEM_BLACK)
4209 if (x == x->parent->left)
4211 struct mem_node *w = x->parent->right;
4213 if (w->color == MEM_RED)
4215 w->color = MEM_BLACK;
4216 x->parent->color = MEM_RED;
4217 mem_rotate_left (x->parent);
4218 w = x->parent->right;
4221 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4223 w->color = MEM_RED;
4224 x = x->parent;
4226 else
4228 if (w->right->color == MEM_BLACK)
4230 w->left->color = MEM_BLACK;
4231 w->color = MEM_RED;
4232 mem_rotate_right (w);
4233 w = x->parent->right;
4235 w->color = x->parent->color;
4236 x->parent->color = MEM_BLACK;
4237 w->right->color = MEM_BLACK;
4238 mem_rotate_left (x->parent);
4239 x = mem_root;
4242 else
4244 struct mem_node *w = x->parent->left;
4246 if (w->color == MEM_RED)
4248 w->color = MEM_BLACK;
4249 x->parent->color = MEM_RED;
4250 mem_rotate_right (x->parent);
4251 w = x->parent->left;
4254 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4256 w->color = MEM_RED;
4257 x = x->parent;
4259 else
4261 if (w->left->color == MEM_BLACK)
4263 w->right->color = MEM_BLACK;
4264 w->color = MEM_RED;
4265 mem_rotate_left (w);
4266 w = x->parent->left;
4269 w->color = x->parent->color;
4270 x->parent->color = MEM_BLACK;
4271 w->left->color = MEM_BLACK;
4272 mem_rotate_right (x->parent);
4273 x = mem_root;
4278 x->color = MEM_BLACK;
4282 /* Value is non-zero if P is a pointer to a live Lisp string on
4283 the heap. M is a pointer to the mem_block for P. */
4285 static bool
4286 live_string_p (struct mem_node *m, void *p)
4288 if (m->type == MEM_TYPE_STRING)
4290 struct string_block *b = m->start;
4291 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4293 /* P must point to the start of a Lisp_String structure, and it
4294 must not be on the free-list. */
4295 return (offset >= 0
4296 && offset % sizeof b->strings[0] == 0
4297 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4298 && ((struct Lisp_String *) p)->data != NULL);
4300 else
4301 return 0;
4305 /* Value is non-zero if P is a pointer to a live Lisp cons on
4306 the heap. M is a pointer to the mem_block for P. */
4308 static bool
4309 live_cons_p (struct mem_node *m, void *p)
4311 if (m->type == MEM_TYPE_CONS)
4313 struct cons_block *b = m->start;
4314 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4316 /* P must point to the start of a Lisp_Cons, not be
4317 one of the unused cells in the current cons block,
4318 and not be on the free-list. */
4319 return (offset >= 0
4320 && offset % sizeof b->conses[0] == 0
4321 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4322 && (b != cons_block
4323 || offset / sizeof b->conses[0] < cons_block_index)
4324 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4326 else
4327 return 0;
4331 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4332 the heap. M is a pointer to the mem_block for P. */
4334 static bool
4335 live_symbol_p (struct mem_node *m, void *p)
4337 if (m->type == MEM_TYPE_SYMBOL)
4339 struct symbol_block *b = m->start;
4340 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4342 /* P must point to the start of a Lisp_Symbol, not be
4343 one of the unused cells in the current symbol block,
4344 and not be on the free-list. */
4345 return (offset >= 0
4346 && offset % sizeof b->symbols[0] == 0
4347 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4348 && (b != symbol_block
4349 || offset / sizeof b->symbols[0] < symbol_block_index)
4350 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4352 else
4353 return 0;
4357 /* Value is non-zero if P is a pointer to a live Lisp float on
4358 the heap. M is a pointer to the mem_block for P. */
4360 static bool
4361 live_float_p (struct mem_node *m, void *p)
4363 if (m->type == MEM_TYPE_FLOAT)
4365 struct float_block *b = m->start;
4366 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4368 /* P must point to the start of a Lisp_Float and not be
4369 one of the unused cells in the current float block. */
4370 return (offset >= 0
4371 && offset % sizeof b->floats[0] == 0
4372 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4373 && (b != float_block
4374 || offset / sizeof b->floats[0] < float_block_index));
4376 else
4377 return 0;
4381 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4382 the heap. M is a pointer to the mem_block for P. */
4384 static bool
4385 live_misc_p (struct mem_node *m, void *p)
4387 if (m->type == MEM_TYPE_MISC)
4389 struct marker_block *b = m->start;
4390 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4392 /* P must point to the start of a Lisp_Misc, not be
4393 one of the unused cells in the current misc block,
4394 and not be on the free-list. */
4395 return (offset >= 0
4396 && offset % sizeof b->markers[0] == 0
4397 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4398 && (b != marker_block
4399 || offset / sizeof b->markers[0] < marker_block_index)
4400 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4402 else
4403 return 0;
4407 /* Value is non-zero if P is a pointer to a live vector-like object.
4408 M is a pointer to the mem_block for P. */
4410 static bool
4411 live_vector_p (struct mem_node *m, void *p)
4413 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4415 /* This memory node corresponds to a vector block. */
4416 struct vector_block *block = m->start;
4417 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4419 /* P is in the block's allocation range. Scan the block
4420 up to P and see whether P points to the start of some
4421 vector which is not on a free list. FIXME: check whether
4422 some allocation patterns (probably a lot of short vectors)
4423 may cause a substantial overhead of this loop. */
4424 while (VECTOR_IN_BLOCK (vector, block)
4425 && vector <= (struct Lisp_Vector *) p)
4427 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4428 return 1;
4429 else
4430 vector = ADVANCE (vector, vector_nbytes (vector));
4433 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4434 /* This memory node corresponds to a large vector. */
4435 return 1;
4436 return 0;
4440 /* Value is non-zero if P is a pointer to a live buffer. M is a
4441 pointer to the mem_block for P. */
4443 static bool
4444 live_buffer_p (struct mem_node *m, void *p)
4446 /* P must point to the start of the block, and the buffer
4447 must not have been killed. */
4448 return (m->type == MEM_TYPE_BUFFER
4449 && p == m->start
4450 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4453 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4455 #if GC_MARK_STACK
4457 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4459 /* Currently not used, but may be called from gdb. */
4461 void dump_zombies (void) EXTERNALLY_VISIBLE;
4463 /* Array of objects that are kept alive because the C stack contains
4464 a pattern that looks like a reference to them. */
4466 #define MAX_ZOMBIES 10
4467 static Lisp_Object zombies[MAX_ZOMBIES];
4469 /* Number of zombie objects. */
4471 static EMACS_INT nzombies;
4473 /* Number of garbage collections. */
4475 static EMACS_INT ngcs;
4477 /* Average percentage of zombies per collection. */
4479 static double avg_zombies;
4481 /* Max. number of live and zombie objects. */
4483 static EMACS_INT max_live, max_zombies;
4485 /* Average number of live objects per GC. */
4487 static double avg_live;
4489 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4490 doc: /* Show information about live and zombie objects. */)
4491 (void)
4493 Lisp_Object args[8], zombie_list = Qnil;
4494 EMACS_INT i;
4495 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4496 zombie_list = Fcons (zombies[i], zombie_list);
4497 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4498 args[1] = make_number (ngcs);
4499 args[2] = make_float (avg_live);
4500 args[3] = make_float (avg_zombies);
4501 args[4] = make_float (avg_zombies / avg_live / 100);
4502 args[5] = make_number (max_live);
4503 args[6] = make_number (max_zombies);
4504 args[7] = zombie_list;
4505 return Fmessage (8, args);
4508 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4511 /* Mark OBJ if we can prove it's a Lisp_Object. */
4513 static void
4514 mark_maybe_object (Lisp_Object obj)
4516 void *po;
4517 struct mem_node *m;
4519 #if USE_VALGRIND
4520 if (valgrind_p)
4521 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4522 #endif
4524 if (INTEGERP (obj))
4525 return;
4527 po = (void *) XPNTR (obj);
4528 m = mem_find (po);
4530 if (m != MEM_NIL)
4532 bool mark_p = 0;
4534 switch (XTYPE (obj))
4536 case Lisp_String:
4537 mark_p = (live_string_p (m, po)
4538 && !STRING_MARKED_P ((struct Lisp_String *) po));
4539 break;
4541 case Lisp_Cons:
4542 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4543 break;
4545 case Lisp_Symbol:
4546 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4547 break;
4549 case Lisp_Float:
4550 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4551 break;
4553 case Lisp_Vectorlike:
4554 /* Note: can't check BUFFERP before we know it's a
4555 buffer because checking that dereferences the pointer
4556 PO which might point anywhere. */
4557 if (live_vector_p (m, po))
4558 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4559 else if (live_buffer_p (m, po))
4560 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4561 break;
4563 case Lisp_Misc:
4564 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4565 break;
4567 default:
4568 break;
4571 if (mark_p)
4573 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4574 if (nzombies < MAX_ZOMBIES)
4575 zombies[nzombies] = obj;
4576 ++nzombies;
4577 #endif
4578 mark_object (obj);
4583 /* Return true if P can point to Lisp data, and false otherwise.
4584 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4585 Otherwise, assume that Lisp data is aligned on even addresses. */
4587 static bool
4588 maybe_lisp_pointer (void *p)
4590 return !((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2));
4593 /* If P points to Lisp data, mark that as live if it isn't already
4594 marked. */
4596 static void
4597 mark_maybe_pointer (void *p)
4599 struct mem_node *m;
4601 #if USE_VALGRIND
4602 if (valgrind_p)
4603 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4604 #endif
4606 if (!maybe_lisp_pointer (p))
4607 return;
4609 m = mem_find (p);
4610 if (m != MEM_NIL)
4612 Lisp_Object obj = Qnil;
4614 switch (m->type)
4616 case MEM_TYPE_NON_LISP:
4617 case MEM_TYPE_SPARE:
4618 /* Nothing to do; not a pointer to Lisp memory. */
4619 break;
4621 case MEM_TYPE_BUFFER:
4622 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4623 XSETVECTOR (obj, p);
4624 break;
4626 case MEM_TYPE_CONS:
4627 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4628 XSETCONS (obj, p);
4629 break;
4631 case MEM_TYPE_STRING:
4632 if (live_string_p (m, p)
4633 && !STRING_MARKED_P ((struct Lisp_String *) p))
4634 XSETSTRING (obj, p);
4635 break;
4637 case MEM_TYPE_MISC:
4638 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4639 XSETMISC (obj, p);
4640 break;
4642 case MEM_TYPE_SYMBOL:
4643 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4644 XSETSYMBOL (obj, p);
4645 break;
4647 case MEM_TYPE_FLOAT:
4648 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4649 XSETFLOAT (obj, p);
4650 break;
4652 case MEM_TYPE_VECTORLIKE:
4653 case MEM_TYPE_VECTOR_BLOCK:
4654 if (live_vector_p (m, p))
4656 Lisp_Object tem;
4657 XSETVECTOR (tem, p);
4658 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4659 obj = tem;
4661 break;
4663 default:
4664 emacs_abort ();
4667 if (!NILP (obj))
4668 mark_object (obj);
4673 /* Alignment of pointer values. Use alignof, as it sometimes returns
4674 a smaller alignment than GCC's __alignof__ and mark_memory might
4675 miss objects if __alignof__ were used. */
4676 #define GC_POINTER_ALIGNMENT alignof (void *)
4678 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4679 not suffice, which is the typical case. A host where a Lisp_Object is
4680 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4681 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4682 suffice to widen it to to a Lisp_Object and check it that way. */
4683 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4684 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4685 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4686 nor mark_maybe_object can follow the pointers. This should not occur on
4687 any practical porting target. */
4688 # error "MSB type bits straddle pointer-word boundaries"
4689 # endif
4690 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4691 pointer words that hold pointers ORed with type bits. */
4692 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4693 #else
4694 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4695 words that hold unmodified pointers. */
4696 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4697 #endif
4699 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4700 or END+OFFSET..START. */
4702 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4703 mark_memory (void *start, void *end)
4705 void **pp;
4706 int i;
4708 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4709 nzombies = 0;
4710 #endif
4712 /* Make START the pointer to the start of the memory region,
4713 if it isn't already. */
4714 if (end < start)
4716 void *tem = start;
4717 start = end;
4718 end = tem;
4721 /* Mark Lisp data pointed to. This is necessary because, in some
4722 situations, the C compiler optimizes Lisp objects away, so that
4723 only a pointer to them remains. Example:
4725 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4728 Lisp_Object obj = build_string ("test");
4729 struct Lisp_String *s = XSTRING (obj);
4730 Fgarbage_collect ();
4731 fprintf (stderr, "test `%s'\n", s->data);
4732 return Qnil;
4735 Here, `obj' isn't really used, and the compiler optimizes it
4736 away. The only reference to the life string is through the
4737 pointer `s'. */
4739 for (pp = start; (void *) pp < end; pp++)
4740 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4742 void *p = *(void **) ((char *) pp + i);
4743 mark_maybe_pointer (p);
4744 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4745 mark_maybe_object (XIL ((intptr_t) p));
4749 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4751 static bool setjmp_tested_p;
4752 static int longjmps_done;
4754 #define SETJMP_WILL_LIKELY_WORK "\
4756 Emacs garbage collector has been changed to use conservative stack\n\
4757 marking. Emacs has determined that the method it uses to do the\n\
4758 marking will likely work on your system, but this isn't sure.\n\
4760 If you are a system-programmer, or can get the help of a local wizard\n\
4761 who is, please take a look at the function mark_stack in alloc.c, and\n\
4762 verify that the methods used are appropriate for your system.\n\
4764 Please mail the result to <emacs-devel@gnu.org>.\n\
4767 #define SETJMP_WILL_NOT_WORK "\
4769 Emacs garbage collector has been changed to use conservative stack\n\
4770 marking. Emacs has determined that the default method it uses to do the\n\
4771 marking will not work on your system. We will need a system-dependent\n\
4772 solution for your system.\n\
4774 Please take a look at the function mark_stack in alloc.c, and\n\
4775 try to find a way to make it work on your system.\n\
4777 Note that you may get false negatives, depending on the compiler.\n\
4778 In particular, you need to use -O with GCC for this test.\n\
4780 Please mail the result to <emacs-devel@gnu.org>.\n\
4784 /* Perform a quick check if it looks like setjmp saves registers in a
4785 jmp_buf. Print a message to stderr saying so. When this test
4786 succeeds, this is _not_ a proof that setjmp is sufficient for
4787 conservative stack marking. Only the sources or a disassembly
4788 can prove that. */
4790 static void
4791 test_setjmp (void)
4793 char buf[10];
4794 register int x;
4795 sys_jmp_buf jbuf;
4797 /* Arrange for X to be put in a register. */
4798 sprintf (buf, "1");
4799 x = strlen (buf);
4800 x = 2 * x - 1;
4802 sys_setjmp (jbuf);
4803 if (longjmps_done == 1)
4805 /* Came here after the longjmp at the end of the function.
4807 If x == 1, the longjmp has restored the register to its
4808 value before the setjmp, and we can hope that setjmp
4809 saves all such registers in the jmp_buf, although that
4810 isn't sure.
4812 For other values of X, either something really strange is
4813 taking place, or the setjmp just didn't save the register. */
4815 if (x == 1)
4816 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4817 else
4819 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4820 exit (1);
4824 ++longjmps_done;
4825 x = 2;
4826 if (longjmps_done == 1)
4827 sys_longjmp (jbuf, 1);
4830 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4833 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4835 /* Abort if anything GCPRO'd doesn't survive the GC. */
4837 static void
4838 check_gcpros (void)
4840 struct gcpro *p;
4841 ptrdiff_t i;
4843 for (p = gcprolist; p; p = p->next)
4844 for (i = 0; i < p->nvars; ++i)
4845 if (!survives_gc_p (p->var[i]))
4846 /* FIXME: It's not necessarily a bug. It might just be that the
4847 GCPRO is unnecessary or should release the object sooner. */
4848 emacs_abort ();
4851 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4853 void
4854 dump_zombies (void)
4856 int i;
4858 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4859 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4861 fprintf (stderr, " %d = ", i);
4862 debug_print (zombies[i]);
4866 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4869 /* Mark live Lisp objects on the C stack.
4871 There are several system-dependent problems to consider when
4872 porting this to new architectures:
4874 Processor Registers
4876 We have to mark Lisp objects in CPU registers that can hold local
4877 variables or are used to pass parameters.
4879 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4880 something that either saves relevant registers on the stack, or
4881 calls mark_maybe_object passing it each register's contents.
4883 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4884 implementation assumes that calling setjmp saves registers we need
4885 to see in a jmp_buf which itself lies on the stack. This doesn't
4886 have to be true! It must be verified for each system, possibly
4887 by taking a look at the source code of setjmp.
4889 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4890 can use it as a machine independent method to store all registers
4891 to the stack. In this case the macros described in the previous
4892 two paragraphs are not used.
4894 Stack Layout
4896 Architectures differ in the way their processor stack is organized.
4897 For example, the stack might look like this
4899 +----------------+
4900 | Lisp_Object | size = 4
4901 +----------------+
4902 | something else | size = 2
4903 +----------------+
4904 | Lisp_Object | size = 4
4905 +----------------+
4906 | ... |
4908 In such a case, not every Lisp_Object will be aligned equally. To
4909 find all Lisp_Object on the stack it won't be sufficient to walk
4910 the stack in steps of 4 bytes. Instead, two passes will be
4911 necessary, one starting at the start of the stack, and a second
4912 pass starting at the start of the stack + 2. Likewise, if the
4913 minimal alignment of Lisp_Objects on the stack is 1, four passes
4914 would be necessary, each one starting with one byte more offset
4915 from the stack start. */
4917 static void
4918 mark_stack (void *end)
4921 /* This assumes that the stack is a contiguous region in memory. If
4922 that's not the case, something has to be done here to iterate
4923 over the stack segments. */
4924 mark_memory (stack_base, end);
4926 /* Allow for marking a secondary stack, like the register stack on the
4927 ia64. */
4928 #ifdef GC_MARK_SECONDARY_STACK
4929 GC_MARK_SECONDARY_STACK ();
4930 #endif
4932 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4933 check_gcpros ();
4934 #endif
4937 #else /* GC_MARK_STACK == 0 */
4939 #define mark_maybe_object(obj) emacs_abort ()
4941 #endif /* GC_MARK_STACK != 0 */
4944 /* Determine whether it is safe to access memory at address P. */
4945 static int
4946 valid_pointer_p (void *p)
4948 #ifdef WINDOWSNT
4949 return w32_valid_pointer_p (p, 16);
4950 #else
4951 int fd[2];
4953 /* Obviously, we cannot just access it (we would SEGV trying), so we
4954 trick the o/s to tell us whether p is a valid pointer.
4955 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4956 not validate p in that case. */
4958 if (emacs_pipe (fd) == 0)
4960 bool valid = emacs_write (fd[1], p, 16) == 16;
4961 emacs_close (fd[1]);
4962 emacs_close (fd[0]);
4963 return valid;
4966 return -1;
4967 #endif
4970 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4971 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4972 cannot validate OBJ. This function can be quite slow, so its primary
4973 use is the manual debugging. The only exception is print_object, where
4974 we use it to check whether the memory referenced by the pointer of
4975 Lisp_Save_Value object contains valid objects. */
4978 valid_lisp_object_p (Lisp_Object obj)
4980 void *p;
4981 #if GC_MARK_STACK
4982 struct mem_node *m;
4983 #endif
4985 if (INTEGERP (obj))
4986 return 1;
4988 p = (void *) XPNTR (obj);
4989 if (PURE_POINTER_P (p))
4990 return 1;
4992 if (p == &buffer_defaults || p == &buffer_local_symbols)
4993 return 2;
4995 #if !GC_MARK_STACK
4996 return valid_pointer_p (p);
4997 #else
4999 m = mem_find (p);
5001 if (m == MEM_NIL)
5003 int valid = valid_pointer_p (p);
5004 if (valid <= 0)
5005 return valid;
5007 if (SUBRP (obj))
5008 return 1;
5010 return 0;
5013 switch (m->type)
5015 case MEM_TYPE_NON_LISP:
5016 case MEM_TYPE_SPARE:
5017 return 0;
5019 case MEM_TYPE_BUFFER:
5020 return live_buffer_p (m, p) ? 1 : 2;
5022 case MEM_TYPE_CONS:
5023 return live_cons_p (m, p);
5025 case MEM_TYPE_STRING:
5026 return live_string_p (m, p);
5028 case MEM_TYPE_MISC:
5029 return live_misc_p (m, p);
5031 case MEM_TYPE_SYMBOL:
5032 return live_symbol_p (m, p);
5034 case MEM_TYPE_FLOAT:
5035 return live_float_p (m, p);
5037 case MEM_TYPE_VECTORLIKE:
5038 case MEM_TYPE_VECTOR_BLOCK:
5039 return live_vector_p (m, p);
5041 default:
5042 break;
5045 return 0;
5046 #endif
5049 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
5050 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
5051 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
5052 This function is slow and should be used for debugging purposes. */
5055 relocatable_string_data_p (const char *str)
5057 if (PURE_POINTER_P (str))
5058 return 0;
5059 #if GC_MARK_STACK
5060 if (str)
5062 struct sdata *sdata
5063 = (struct sdata *) (str - offsetof (struct sdata, data));
5065 if (valid_pointer_p (sdata)
5066 && valid_pointer_p (sdata->string)
5067 && maybe_lisp_pointer (sdata->string))
5068 return (valid_lisp_object_p
5069 (make_lisp_ptr (sdata->string, Lisp_String))
5070 && (const char *) sdata->string->data == str);
5072 return 0;
5073 #endif /* GC_MARK_STACK */
5074 return -1;
5077 /***********************************************************************
5078 Pure Storage Management
5079 ***********************************************************************/
5081 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5082 pointer to it. TYPE is the Lisp type for which the memory is
5083 allocated. TYPE < 0 means it's not used for a Lisp object. */
5085 static void *
5086 pure_alloc (size_t size, int type)
5088 void *result;
5089 #if USE_LSB_TAG
5090 size_t alignment = GCALIGNMENT;
5091 #else
5092 size_t alignment = alignof (EMACS_INT);
5094 /* Give Lisp_Floats an extra alignment. */
5095 if (type == Lisp_Float)
5096 alignment = alignof (struct Lisp_Float);
5097 #endif
5099 again:
5100 if (type >= 0)
5102 /* Allocate space for a Lisp object from the beginning of the free
5103 space with taking account of alignment. */
5104 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5105 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5107 else
5109 /* Allocate space for a non-Lisp object from the end of the free
5110 space. */
5111 pure_bytes_used_non_lisp += size;
5112 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5114 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5116 if (pure_bytes_used <= pure_size)
5117 return result;
5119 /* Don't allocate a large amount here,
5120 because it might get mmap'd and then its address
5121 might not be usable. */
5122 purebeg = xmalloc (10000);
5123 pure_size = 10000;
5124 pure_bytes_used_before_overflow += pure_bytes_used - size;
5125 pure_bytes_used = 0;
5126 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5127 goto again;
5131 /* Print a warning if PURESIZE is too small. */
5133 void
5134 check_pure_size (void)
5136 if (pure_bytes_used_before_overflow)
5137 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5138 " bytes needed)"),
5139 pure_bytes_used + pure_bytes_used_before_overflow);
5143 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5144 the non-Lisp data pool of the pure storage, and return its start
5145 address. Return NULL if not found. */
5147 static char *
5148 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5150 int i;
5151 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5152 const unsigned char *p;
5153 char *non_lisp_beg;
5155 if (pure_bytes_used_non_lisp <= nbytes)
5156 return NULL;
5158 /* Set up the Boyer-Moore table. */
5159 skip = nbytes + 1;
5160 for (i = 0; i < 256; i++)
5161 bm_skip[i] = skip;
5163 p = (const unsigned char *) data;
5164 while (--skip > 0)
5165 bm_skip[*p++] = skip;
5167 last_char_skip = bm_skip['\0'];
5169 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5170 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5172 /* See the comments in the function `boyer_moore' (search.c) for the
5173 use of `infinity'. */
5174 infinity = pure_bytes_used_non_lisp + 1;
5175 bm_skip['\0'] = infinity;
5177 p = (const unsigned char *) non_lisp_beg + nbytes;
5178 start = 0;
5181 /* Check the last character (== '\0'). */
5184 start += bm_skip[*(p + start)];
5186 while (start <= start_max);
5188 if (start < infinity)
5189 /* Couldn't find the last character. */
5190 return NULL;
5192 /* No less than `infinity' means we could find the last
5193 character at `p[start - infinity]'. */
5194 start -= infinity;
5196 /* Check the remaining characters. */
5197 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5198 /* Found. */
5199 return non_lisp_beg + start;
5201 start += last_char_skip;
5203 while (start <= start_max);
5205 return NULL;
5209 /* Return a string allocated in pure space. DATA is a buffer holding
5210 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5211 means make the result string multibyte.
5213 Must get an error if pure storage is full, since if it cannot hold
5214 a large string it may be able to hold conses that point to that
5215 string; then the string is not protected from gc. */
5217 Lisp_Object
5218 make_pure_string (const char *data,
5219 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5221 Lisp_Object string;
5222 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5223 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5224 if (s->data == NULL)
5226 s->data = pure_alloc (nbytes + 1, -1);
5227 memcpy (s->data, data, nbytes);
5228 s->data[nbytes] = '\0';
5230 s->size = nchars;
5231 s->size_byte = multibyte ? nbytes : -1;
5232 s->intervals = NULL;
5233 XSETSTRING (string, s);
5234 return string;
5237 /* Return a string allocated in pure space. Do not
5238 allocate the string data, just point to DATA. */
5240 Lisp_Object
5241 make_pure_c_string (const char *data, ptrdiff_t nchars)
5243 Lisp_Object string;
5244 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5245 s->size = nchars;
5246 s->size_byte = -1;
5247 s->data = (unsigned char *) data;
5248 s->intervals = NULL;
5249 XSETSTRING (string, s);
5250 return string;
5253 static Lisp_Object purecopy (Lisp_Object obj);
5255 /* Return a cons allocated from pure space. Give it pure copies
5256 of CAR as car and CDR as cdr. */
5258 Lisp_Object
5259 pure_cons (Lisp_Object car, Lisp_Object cdr)
5261 Lisp_Object new;
5262 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5263 XSETCONS (new, p);
5264 XSETCAR (new, purecopy (car));
5265 XSETCDR (new, purecopy (cdr));
5266 return new;
5270 /* Value is a float object with value NUM allocated from pure space. */
5272 static Lisp_Object
5273 make_pure_float (double num)
5275 Lisp_Object new;
5276 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5277 XSETFLOAT (new, p);
5278 XFLOAT_INIT (new, num);
5279 return new;
5283 /* Return a vector with room for LEN Lisp_Objects allocated from
5284 pure space. */
5286 static Lisp_Object
5287 make_pure_vector (ptrdiff_t len)
5289 Lisp_Object new;
5290 size_t size = header_size + len * word_size;
5291 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5292 XSETVECTOR (new, p);
5293 XVECTOR (new)->header.size = len;
5294 return new;
5298 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5299 doc: /* Make a copy of object OBJ in pure storage.
5300 Recursively copies contents of vectors and cons cells.
5301 Does not copy symbols. Copies strings without text properties. */)
5302 (register Lisp_Object obj)
5304 if (NILP (Vpurify_flag))
5305 return obj;
5306 else if (MARKERP (obj) || OVERLAYP (obj)
5307 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5308 /* Can't purify those. */
5309 return obj;
5310 else
5311 return purecopy (obj);
5314 static Lisp_Object
5315 purecopy (Lisp_Object obj)
5317 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5318 return obj; /* Already pure. */
5320 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5322 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5323 if (!NILP (tmp))
5324 return tmp;
5327 if (CONSP (obj))
5328 obj = pure_cons (XCAR (obj), XCDR (obj));
5329 else if (FLOATP (obj))
5330 obj = make_pure_float (XFLOAT_DATA (obj));
5331 else if (STRINGP (obj))
5332 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5333 SBYTES (obj),
5334 STRING_MULTIBYTE (obj));
5335 else if (COMPILEDP (obj) || VECTORP (obj))
5337 register struct Lisp_Vector *vec;
5338 register ptrdiff_t i;
5339 ptrdiff_t size;
5341 size = ASIZE (obj);
5342 if (size & PSEUDOVECTOR_FLAG)
5343 size &= PSEUDOVECTOR_SIZE_MASK;
5344 vec = XVECTOR (make_pure_vector (size));
5345 for (i = 0; i < size; i++)
5346 vec->contents[i] = purecopy (AREF (obj, i));
5347 if (COMPILEDP (obj))
5349 XSETPVECTYPE (vec, PVEC_COMPILED);
5350 XSETCOMPILED (obj, vec);
5352 else
5353 XSETVECTOR (obj, vec);
5355 else if (SYMBOLP (obj))
5357 if (!XSYMBOL (obj)->pinned)
5358 { /* We can't purify them, but they appear in many pure objects.
5359 Mark them as `pinned' so we know to mark them at every GC cycle. */
5360 XSYMBOL (obj)->pinned = true;
5361 symbol_block_pinned = symbol_block;
5363 return obj;
5365 else
5367 Lisp_Object args[2];
5368 args[0] = build_pure_c_string ("Don't know how to purify: %S");
5369 args[1] = obj;
5370 Fsignal (Qerror, (Fcons (Fformat (2, args), Qnil)));
5373 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5374 Fputhash (obj, obj, Vpurify_flag);
5376 return obj;
5381 /***********************************************************************
5382 Protection from GC
5383 ***********************************************************************/
5385 /* Put an entry in staticvec, pointing at the variable with address
5386 VARADDRESS. */
5388 void
5389 staticpro (Lisp_Object *varaddress)
5391 if (staticidx >= NSTATICS)
5392 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5393 staticvec[staticidx++] = varaddress;
5397 /***********************************************************************
5398 Protection from GC
5399 ***********************************************************************/
5401 /* Temporarily prevent garbage collection. */
5403 ptrdiff_t
5404 inhibit_garbage_collection (void)
5406 ptrdiff_t count = SPECPDL_INDEX ();
5408 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5409 return count;
5412 /* Used to avoid possible overflows when
5413 converting from C to Lisp integers. */
5415 static Lisp_Object
5416 bounded_number (EMACS_INT number)
5418 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5421 /* Calculate total bytes of live objects. */
5423 static size_t
5424 total_bytes_of_live_objects (void)
5426 size_t tot = 0;
5427 tot += total_conses * sizeof (struct Lisp_Cons);
5428 tot += total_symbols * sizeof (struct Lisp_Symbol);
5429 tot += total_markers * sizeof (union Lisp_Misc);
5430 tot += total_string_bytes;
5431 tot += total_vector_slots * word_size;
5432 tot += total_floats * sizeof (struct Lisp_Float);
5433 tot += total_intervals * sizeof (struct interval);
5434 tot += total_strings * sizeof (struct Lisp_String);
5435 return tot;
5438 #ifdef HAVE_WINDOW_SYSTEM
5440 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5442 #if !defined (HAVE_NTGUI)
5444 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5445 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5447 static Lisp_Object
5448 compact_font_cache_entry (Lisp_Object entry)
5450 Lisp_Object tail, *prev = &entry;
5452 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5454 bool drop = 0;
5455 Lisp_Object obj = XCAR (tail);
5457 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5458 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5459 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5460 && VECTORP (XCDR (obj)))
5462 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5464 /* If font-spec is not marked, most likely all font-entities
5465 are not marked too. But we must be sure that nothing is
5466 marked within OBJ before we really drop it. */
5467 for (i = 0; i < size; i++)
5468 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5469 break;
5471 if (i == size)
5472 drop = 1;
5474 if (drop)
5475 *prev = XCDR (tail);
5476 else
5477 prev = xcdr_addr (tail);
5479 return entry;
5482 #endif /* not HAVE_NTGUI */
5484 /* Compact font caches on all terminals and mark
5485 everything which is still here after compaction. */
5487 static void
5488 compact_font_caches (void)
5490 struct terminal *t;
5492 for (t = terminal_list; t; t = t->next_terminal)
5494 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5495 #if !defined (HAVE_NTGUI)
5496 if (CONSP (cache))
5498 Lisp_Object entry;
5500 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5501 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5503 #endif /* not HAVE_NTGUI */
5504 mark_object (cache);
5508 #else /* not HAVE_WINDOW_SYSTEM */
5510 #define compact_font_caches() (void)(0)
5512 #endif /* HAVE_WINDOW_SYSTEM */
5514 /* Remove (MARKER . DATA) entries with unmarked MARKER
5515 from buffer undo LIST and return changed list. */
5517 static Lisp_Object
5518 compact_undo_list (Lisp_Object list)
5520 Lisp_Object tail, *prev = &list;
5522 for (tail = list; CONSP (tail); tail = XCDR (tail))
5524 if (CONSP (XCAR (tail))
5525 && MARKERP (XCAR (XCAR (tail)))
5526 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5527 *prev = XCDR (tail);
5528 else
5529 prev = xcdr_addr (tail);
5531 return list;
5534 static void
5535 mark_pinned_symbols (void)
5537 struct symbol_block *sblk;
5538 int lim = (symbol_block_pinned == symbol_block
5539 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5541 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5543 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5544 for (; sym < end; ++sym)
5545 if (sym->s.pinned)
5546 mark_object (make_lisp_ptr (&sym->s, Lisp_Symbol));
5548 lim = SYMBOL_BLOCK_SIZE;
5552 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5553 separate function so that we could limit mark_stack in searching
5554 the stack frames below this function, thus avoiding the rare cases
5555 where mark_stack finds values that look like live Lisp objects on
5556 portions of stack that couldn't possibly contain such live objects.
5557 For more details of this, see the discussion at
5558 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5559 static Lisp_Object
5560 garbage_collect_1 (void *end)
5562 struct buffer *nextb;
5563 char stack_top_variable;
5564 ptrdiff_t i;
5565 bool message_p;
5566 ptrdiff_t count = SPECPDL_INDEX ();
5567 struct timespec start;
5568 Lisp_Object retval = Qnil;
5569 size_t tot_before = 0;
5571 if (abort_on_gc)
5572 emacs_abort ();
5574 /* Can't GC if pure storage overflowed because we can't determine
5575 if something is a pure object or not. */
5576 if (pure_bytes_used_before_overflow)
5577 return Qnil;
5579 /* Record this function, so it appears on the profiler's backtraces. */
5580 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5582 check_cons_list ();
5584 /* Don't keep undo information around forever.
5585 Do this early on, so it is no problem if the user quits. */
5586 FOR_EACH_BUFFER (nextb)
5587 compact_buffer (nextb);
5589 if (profiler_memory_running)
5590 tot_before = total_bytes_of_live_objects ();
5592 start = current_timespec ();
5594 /* In case user calls debug_print during GC,
5595 don't let that cause a recursive GC. */
5596 consing_since_gc = 0;
5598 /* Save what's currently displayed in the echo area. */
5599 message_p = push_message ();
5600 record_unwind_protect_void (pop_message_unwind);
5602 /* Save a copy of the contents of the stack, for debugging. */
5603 #if MAX_SAVE_STACK > 0
5604 if (NILP (Vpurify_flag))
5606 char *stack;
5607 ptrdiff_t stack_size;
5608 if (&stack_top_variable < stack_bottom)
5610 stack = &stack_top_variable;
5611 stack_size = stack_bottom - &stack_top_variable;
5613 else
5615 stack = stack_bottom;
5616 stack_size = &stack_top_variable - stack_bottom;
5618 if (stack_size <= MAX_SAVE_STACK)
5620 if (stack_copy_size < stack_size)
5622 stack_copy = xrealloc (stack_copy, stack_size);
5623 stack_copy_size = stack_size;
5625 no_sanitize_memcpy (stack_copy, stack, stack_size);
5628 #endif /* MAX_SAVE_STACK > 0 */
5630 if (garbage_collection_messages)
5631 message1_nolog ("Garbage collecting...");
5633 block_input ();
5635 shrink_regexp_cache ();
5637 gc_in_progress = 1;
5639 /* Mark all the special slots that serve as the roots of accessibility. */
5641 mark_buffer (&buffer_defaults);
5642 mark_buffer (&buffer_local_symbols);
5644 for (i = 0; i < staticidx; i++)
5645 mark_object (*staticvec[i]);
5647 mark_pinned_symbols ();
5648 mark_specpdl ();
5649 mark_terminals ();
5650 mark_kboards ();
5652 #ifdef USE_GTK
5653 xg_mark_data ();
5654 #endif
5656 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5657 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5658 mark_stack (end);
5659 #else
5661 register struct gcpro *tail;
5662 for (tail = gcprolist; tail; tail = tail->next)
5663 for (i = 0; i < tail->nvars; i++)
5664 mark_object (tail->var[i]);
5666 mark_byte_stack ();
5667 #endif
5669 struct handler *handler;
5670 for (handler = handlerlist; handler; handler = handler->next)
5672 mark_object (handler->tag_or_ch);
5673 mark_object (handler->val);
5676 #ifdef HAVE_WINDOW_SYSTEM
5677 mark_fringe_data ();
5678 #endif
5680 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5681 mark_stack (end);
5682 #endif
5684 /* Everything is now marked, except for the data in font caches
5685 and undo lists. They're compacted by removing an items which
5686 aren't reachable otherwise. */
5688 compact_font_caches ();
5690 FOR_EACH_BUFFER (nextb)
5692 if (!EQ (BVAR (nextb, undo_list), Qt))
5693 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5694 /* Now that we have stripped the elements that need not be
5695 in the undo_list any more, we can finally mark the list. */
5696 mark_object (BVAR (nextb, undo_list));
5699 gc_sweep ();
5701 /* Clear the mark bits that we set in certain root slots. */
5703 unmark_byte_stack ();
5704 VECTOR_UNMARK (&buffer_defaults);
5705 VECTOR_UNMARK (&buffer_local_symbols);
5707 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5708 dump_zombies ();
5709 #endif
5711 check_cons_list ();
5713 gc_in_progress = 0;
5715 unblock_input ();
5717 consing_since_gc = 0;
5718 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5719 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5721 gc_relative_threshold = 0;
5722 if (FLOATP (Vgc_cons_percentage))
5723 { /* Set gc_cons_combined_threshold. */
5724 double tot = total_bytes_of_live_objects ();
5726 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5727 if (0 < tot)
5729 if (tot < TYPE_MAXIMUM (EMACS_INT))
5730 gc_relative_threshold = tot;
5731 else
5732 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5736 if (garbage_collection_messages)
5738 if (message_p || minibuf_level > 0)
5739 restore_message ();
5740 else
5741 message1_nolog ("Garbage collecting...done");
5744 unbind_to (count, Qnil);
5746 Lisp_Object total[11];
5747 int total_size = 10;
5749 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5750 bounded_number (total_conses),
5751 bounded_number (total_free_conses));
5753 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5754 bounded_number (total_symbols),
5755 bounded_number (total_free_symbols));
5757 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5758 bounded_number (total_markers),
5759 bounded_number (total_free_markers));
5761 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5762 bounded_number (total_strings),
5763 bounded_number (total_free_strings));
5765 total[4] = list3 (Qstring_bytes, make_number (1),
5766 bounded_number (total_string_bytes));
5768 total[5] = list3 (Qvectors,
5769 make_number (header_size + sizeof (Lisp_Object)),
5770 bounded_number (total_vectors));
5772 total[6] = list4 (Qvector_slots, make_number (word_size),
5773 bounded_number (total_vector_slots),
5774 bounded_number (total_free_vector_slots));
5776 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5777 bounded_number (total_floats),
5778 bounded_number (total_free_floats));
5780 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5781 bounded_number (total_intervals),
5782 bounded_number (total_free_intervals));
5784 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5785 bounded_number (total_buffers));
5787 #ifdef DOUG_LEA_MALLOC
5788 total_size++;
5789 total[10] = list4 (Qheap, make_number (1024),
5790 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5791 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5792 #endif
5793 retval = Flist (total_size, total);
5796 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5798 /* Compute average percentage of zombies. */
5799 double nlive
5800 = (total_conses + total_symbols + total_markers + total_strings
5801 + total_vectors + total_floats + total_intervals + total_buffers);
5803 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5804 max_live = max (nlive, max_live);
5805 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5806 max_zombies = max (nzombies, max_zombies);
5807 ++ngcs;
5809 #endif
5811 if (!NILP (Vpost_gc_hook))
5813 ptrdiff_t gc_count = inhibit_garbage_collection ();
5814 safe_run_hooks (Qpost_gc_hook);
5815 unbind_to (gc_count, Qnil);
5818 /* Accumulate statistics. */
5819 if (FLOATP (Vgc_elapsed))
5821 struct timespec since_start = timespec_sub (current_timespec (), start);
5822 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5823 + timespectod (since_start));
5826 gcs_done++;
5828 /* Collect profiling data. */
5829 if (profiler_memory_running)
5831 size_t swept = 0;
5832 size_t tot_after = total_bytes_of_live_objects ();
5833 if (tot_before > tot_after)
5834 swept = tot_before - tot_after;
5835 malloc_probe (swept);
5838 return retval;
5841 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5842 doc: /* Reclaim storage for Lisp objects no longer needed.
5843 Garbage collection happens automatically if you cons more than
5844 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5845 `garbage-collect' normally returns a list with info on amount of space in use,
5846 where each entry has the form (NAME SIZE USED FREE), where:
5847 - NAME is a symbol describing the kind of objects this entry represents,
5848 - SIZE is the number of bytes used by each one,
5849 - USED is the number of those objects that were found live in the heap,
5850 - FREE is the number of those objects that are not live but that Emacs
5851 keeps around for future allocations (maybe because it does not know how
5852 to return them to the OS).
5853 However, if there was overflow in pure space, `garbage-collect'
5854 returns nil, because real GC can't be done.
5855 See Info node `(elisp)Garbage Collection'. */)
5856 (void)
5858 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5859 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5860 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5861 void *end;
5863 #ifdef HAVE___BUILTIN_UNWIND_INIT
5864 /* Force callee-saved registers and register windows onto the stack.
5865 This is the preferred method if available, obviating the need for
5866 machine dependent methods. */
5867 __builtin_unwind_init ();
5868 end = &end;
5869 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5870 #ifndef GC_SAVE_REGISTERS_ON_STACK
5871 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5872 union aligned_jmpbuf {
5873 Lisp_Object o;
5874 sys_jmp_buf j;
5875 } j;
5876 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5877 #endif
5878 /* This trick flushes the register windows so that all the state of
5879 the process is contained in the stack. */
5880 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5881 needed on ia64 too. See mach_dep.c, where it also says inline
5882 assembler doesn't work with relevant proprietary compilers. */
5883 #ifdef __sparc__
5884 #if defined (__sparc64__) && defined (__FreeBSD__)
5885 /* FreeBSD does not have a ta 3 handler. */
5886 asm ("flushw");
5887 #else
5888 asm ("ta 3");
5889 #endif
5890 #endif
5892 /* Save registers that we need to see on the stack. We need to see
5893 registers used to hold register variables and registers used to
5894 pass parameters. */
5895 #ifdef GC_SAVE_REGISTERS_ON_STACK
5896 GC_SAVE_REGISTERS_ON_STACK (end);
5897 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5899 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5900 setjmp will definitely work, test it
5901 and print a message with the result
5902 of the test. */
5903 if (!setjmp_tested_p)
5905 setjmp_tested_p = 1;
5906 test_setjmp ();
5908 #endif /* GC_SETJMP_WORKS */
5910 sys_setjmp (j.j);
5911 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5912 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5913 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5914 return garbage_collect_1 (end);
5915 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5916 /* Old GCPROs-based method without stack marking. */
5917 return garbage_collect_1 (NULL);
5918 #else
5919 emacs_abort ();
5920 #endif /* GC_MARK_STACK */
5923 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5924 only interesting objects referenced from glyphs are strings. */
5926 static void
5927 mark_glyph_matrix (struct glyph_matrix *matrix)
5929 struct glyph_row *row = matrix->rows;
5930 struct glyph_row *end = row + matrix->nrows;
5932 for (; row < end; ++row)
5933 if (row->enabled_p)
5935 int area;
5936 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5938 struct glyph *glyph = row->glyphs[area];
5939 struct glyph *end_glyph = glyph + row->used[area];
5941 for (; glyph < end_glyph; ++glyph)
5942 if (STRINGP (glyph->object)
5943 && !STRING_MARKED_P (XSTRING (glyph->object)))
5944 mark_object (glyph->object);
5949 /* Mark reference to a Lisp_Object.
5950 If the object referred to has not been seen yet, recursively mark
5951 all the references contained in it. */
5953 #define LAST_MARKED_SIZE 500
5954 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5955 static int last_marked_index;
5957 /* For debugging--call abort when we cdr down this many
5958 links of a list, in mark_object. In debugging,
5959 the call to abort will hit a breakpoint.
5960 Normally this is zero and the check never goes off. */
5961 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5963 static void
5964 mark_vectorlike (struct Lisp_Vector *ptr)
5966 ptrdiff_t size = ptr->header.size;
5967 ptrdiff_t i;
5969 eassert (!VECTOR_MARKED_P (ptr));
5970 VECTOR_MARK (ptr); /* Else mark it. */
5971 if (size & PSEUDOVECTOR_FLAG)
5972 size &= PSEUDOVECTOR_SIZE_MASK;
5974 /* Note that this size is not the memory-footprint size, but only
5975 the number of Lisp_Object fields that we should trace.
5976 The distinction is used e.g. by Lisp_Process which places extra
5977 non-Lisp_Object fields at the end of the structure... */
5978 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5979 mark_object (ptr->contents[i]);
5982 /* Like mark_vectorlike but optimized for char-tables (and
5983 sub-char-tables) assuming that the contents are mostly integers or
5984 symbols. */
5986 static void
5987 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5989 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5990 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5991 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5993 eassert (!VECTOR_MARKED_P (ptr));
5994 VECTOR_MARK (ptr);
5995 for (i = idx; i < size; i++)
5997 Lisp_Object val = ptr->contents[i];
5999 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6000 continue;
6001 if (SUB_CHAR_TABLE_P (val))
6003 if (! VECTOR_MARKED_P (XVECTOR (val)))
6004 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6006 else
6007 mark_object (val);
6011 NO_INLINE /* To reduce stack depth in mark_object. */
6012 static Lisp_Object
6013 mark_compiled (struct Lisp_Vector *ptr)
6015 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6017 VECTOR_MARK (ptr);
6018 for (i = 0; i < size; i++)
6019 if (i != COMPILED_CONSTANTS)
6020 mark_object (ptr->contents[i]);
6021 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6024 /* Mark the chain of overlays starting at PTR. */
6026 static void
6027 mark_overlay (struct Lisp_Overlay *ptr)
6029 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6031 ptr->gcmarkbit = 1;
6032 mark_object (ptr->start);
6033 mark_object (ptr->end);
6034 mark_object (ptr->plist);
6038 /* Mark Lisp_Objects and special pointers in BUFFER. */
6040 static void
6041 mark_buffer (struct buffer *buffer)
6043 /* This is handled much like other pseudovectors... */
6044 mark_vectorlike ((struct Lisp_Vector *) buffer);
6046 /* ...but there are some buffer-specific things. */
6048 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6050 /* For now, we just don't mark the undo_list. It's done later in
6051 a special way just before the sweep phase, and after stripping
6052 some of its elements that are not needed any more. */
6054 mark_overlay (buffer->overlays_before);
6055 mark_overlay (buffer->overlays_after);
6057 /* If this is an indirect buffer, mark its base buffer. */
6058 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6059 mark_buffer (buffer->base_buffer);
6062 /* Mark Lisp faces in the face cache C. */
6064 NO_INLINE /* To reduce stack depth in mark_object. */
6065 static void
6066 mark_face_cache (struct face_cache *c)
6068 if (c)
6070 int i, j;
6071 for (i = 0; i < c->used; ++i)
6073 struct face *face = FACE_FROM_ID (c->f, i);
6075 if (face)
6077 if (face->font && !VECTOR_MARKED_P (face->font))
6078 mark_vectorlike ((struct Lisp_Vector *) face->font);
6080 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6081 mark_object (face->lface[j]);
6087 NO_INLINE /* To reduce stack depth in mark_object. */
6088 static void
6089 mark_localized_symbol (struct Lisp_Symbol *ptr)
6091 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6092 Lisp_Object where = blv->where;
6093 /* If the value is set up for a killed buffer or deleted
6094 frame, restore its global binding. If the value is
6095 forwarded to a C variable, either it's not a Lisp_Object
6096 var, or it's staticpro'd already. */
6097 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6098 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6099 swap_in_global_binding (ptr);
6100 mark_object (blv->where);
6101 mark_object (blv->valcell);
6102 mark_object (blv->defcell);
6105 NO_INLINE /* To reduce stack depth in mark_object. */
6106 static void
6107 mark_save_value (struct Lisp_Save_Value *ptr)
6109 /* If `save_type' is zero, `data[0].pointer' is the address
6110 of a memory area containing `data[1].integer' potential
6111 Lisp_Objects. */
6112 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6114 Lisp_Object *p = ptr->data[0].pointer;
6115 ptrdiff_t nelt;
6116 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6117 mark_maybe_object (*p);
6119 else
6121 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6122 int i;
6123 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6124 if (save_type (ptr, i) == SAVE_OBJECT)
6125 mark_object (ptr->data[i].object);
6129 /* Remove killed buffers or items whose car is a killed buffer from
6130 LIST, and mark other items. Return changed LIST, which is marked. */
6132 static Lisp_Object
6133 mark_discard_killed_buffers (Lisp_Object list)
6135 Lisp_Object tail, *prev = &list;
6137 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6138 tail = XCDR (tail))
6140 Lisp_Object tem = XCAR (tail);
6141 if (CONSP (tem))
6142 tem = XCAR (tem);
6143 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6144 *prev = XCDR (tail);
6145 else
6147 CONS_MARK (XCONS (tail));
6148 mark_object (XCAR (tail));
6149 prev = xcdr_addr (tail);
6152 mark_object (tail);
6153 return list;
6156 /* Determine type of generic Lisp_Object and mark it accordingly.
6158 This function implements a straightforward depth-first marking
6159 algorithm and so the recursion depth may be very high (a few
6160 tens of thousands is not uncommon). To minimize stack usage,
6161 a few cold paths are moved out to NO_INLINE functions above.
6162 In general, inlining them doesn't help you to gain more speed. */
6164 void
6165 mark_object (Lisp_Object arg)
6167 register Lisp_Object obj = arg;
6168 #ifdef GC_CHECK_MARKED_OBJECTS
6169 void *po;
6170 struct mem_node *m;
6171 #endif
6172 ptrdiff_t cdr_count = 0;
6174 loop:
6176 if (PURE_POINTER_P (XPNTR (obj)))
6177 return;
6179 last_marked[last_marked_index++] = obj;
6180 if (last_marked_index == LAST_MARKED_SIZE)
6181 last_marked_index = 0;
6183 /* Perform some sanity checks on the objects marked here. Abort if
6184 we encounter an object we know is bogus. This increases GC time
6185 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6186 #ifdef GC_CHECK_MARKED_OBJECTS
6188 po = (void *) XPNTR (obj);
6190 /* Check that the object pointed to by PO is known to be a Lisp
6191 structure allocated from the heap. */
6192 #define CHECK_ALLOCATED() \
6193 do { \
6194 m = mem_find (po); \
6195 if (m == MEM_NIL) \
6196 emacs_abort (); \
6197 } while (0)
6199 /* Check that the object pointed to by PO is live, using predicate
6200 function LIVEP. */
6201 #define CHECK_LIVE(LIVEP) \
6202 do { \
6203 if (!LIVEP (m, po)) \
6204 emacs_abort (); \
6205 } while (0)
6207 /* Check both of the above conditions. */
6208 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6209 do { \
6210 CHECK_ALLOCATED (); \
6211 CHECK_LIVE (LIVEP); \
6212 } while (0) \
6214 #else /* not GC_CHECK_MARKED_OBJECTS */
6216 #define CHECK_LIVE(LIVEP) (void) 0
6217 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
6219 #endif /* not GC_CHECK_MARKED_OBJECTS */
6221 switch (XTYPE (obj))
6223 case Lisp_String:
6225 register struct Lisp_String *ptr = XSTRING (obj);
6226 if (STRING_MARKED_P (ptr))
6227 break;
6228 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6229 MARK_STRING (ptr);
6230 MARK_INTERVAL_TREE (ptr->intervals);
6231 #ifdef GC_CHECK_STRING_BYTES
6232 /* Check that the string size recorded in the string is the
6233 same as the one recorded in the sdata structure. */
6234 string_bytes (ptr);
6235 #endif /* GC_CHECK_STRING_BYTES */
6237 break;
6239 case Lisp_Vectorlike:
6241 register struct Lisp_Vector *ptr = XVECTOR (obj);
6242 register ptrdiff_t pvectype;
6244 if (VECTOR_MARKED_P (ptr))
6245 break;
6247 #ifdef GC_CHECK_MARKED_OBJECTS
6248 m = mem_find (po);
6249 if (m == MEM_NIL && !SUBRP (obj))
6250 emacs_abort ();
6251 #endif /* GC_CHECK_MARKED_OBJECTS */
6253 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6254 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6255 >> PSEUDOVECTOR_AREA_BITS);
6256 else
6257 pvectype = PVEC_NORMAL_VECTOR;
6259 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6260 CHECK_LIVE (live_vector_p);
6262 switch (pvectype)
6264 case PVEC_BUFFER:
6265 #ifdef GC_CHECK_MARKED_OBJECTS
6267 struct buffer *b;
6268 FOR_EACH_BUFFER (b)
6269 if (b == po)
6270 break;
6271 if (b == NULL)
6272 emacs_abort ();
6274 #endif /* GC_CHECK_MARKED_OBJECTS */
6275 mark_buffer ((struct buffer *) ptr);
6276 break;
6278 case PVEC_COMPILED:
6279 /* Although we could treat this just like a vector, mark_compiled
6280 returns the COMPILED_CONSTANTS element, which is marked at the
6281 next iteration of goto-loop here. This is done to avoid a few
6282 recursive calls to mark_object. */
6283 obj = mark_compiled (ptr);
6284 if (!NILP (obj))
6285 goto loop;
6286 break;
6288 case PVEC_FRAME:
6290 struct frame *f = (struct frame *) ptr;
6292 mark_vectorlike (ptr);
6293 mark_face_cache (f->face_cache);
6294 #ifdef HAVE_WINDOW_SYSTEM
6295 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6297 struct font *font = FRAME_FONT (f);
6299 if (font && !VECTOR_MARKED_P (font))
6300 mark_vectorlike ((struct Lisp_Vector *) font);
6302 #endif
6304 break;
6306 case PVEC_WINDOW:
6308 struct window *w = (struct window *) ptr;
6310 mark_vectorlike (ptr);
6312 /* Mark glyph matrices, if any. Marking window
6313 matrices is sufficient because frame matrices
6314 use the same glyph memory. */
6315 if (w->current_matrix)
6317 mark_glyph_matrix (w->current_matrix);
6318 mark_glyph_matrix (w->desired_matrix);
6321 /* Filter out killed buffers from both buffer lists
6322 in attempt to help GC to reclaim killed buffers faster.
6323 We can do it elsewhere for live windows, but this is the
6324 best place to do it for dead windows. */
6325 wset_prev_buffers
6326 (w, mark_discard_killed_buffers (w->prev_buffers));
6327 wset_next_buffers
6328 (w, mark_discard_killed_buffers (w->next_buffers));
6330 break;
6332 case PVEC_HASH_TABLE:
6334 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6336 mark_vectorlike (ptr);
6337 mark_object (h->test.name);
6338 mark_object (h->test.user_hash_function);
6339 mark_object (h->test.user_cmp_function);
6340 /* If hash table is not weak, mark all keys and values.
6341 For weak tables, mark only the vector. */
6342 if (NILP (h->weak))
6343 mark_object (h->key_and_value);
6344 else
6345 VECTOR_MARK (XVECTOR (h->key_and_value));
6347 break;
6349 case PVEC_CHAR_TABLE:
6350 case PVEC_SUB_CHAR_TABLE:
6351 mark_char_table (ptr, (enum pvec_type) pvectype);
6352 break;
6354 case PVEC_BOOL_VECTOR:
6355 /* No Lisp_Objects to mark in a bool vector. */
6356 VECTOR_MARK (ptr);
6357 break;
6359 case PVEC_SUBR:
6360 break;
6362 case PVEC_FREE:
6363 emacs_abort ();
6365 default:
6366 mark_vectorlike (ptr);
6369 break;
6371 case Lisp_Symbol:
6373 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6374 nextsym:
6375 if (ptr->gcmarkbit)
6376 break;
6377 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6378 ptr->gcmarkbit = 1;
6379 /* Attempt to catch bogus objects. */
6380 eassert (valid_lisp_object_p (ptr->function) >= 1);
6381 mark_object (ptr->function);
6382 mark_object (ptr->plist);
6383 switch (ptr->redirect)
6385 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6386 case SYMBOL_VARALIAS:
6388 Lisp_Object tem;
6389 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6390 mark_object (tem);
6391 break;
6393 case SYMBOL_LOCALIZED:
6394 mark_localized_symbol (ptr);
6395 break;
6396 case SYMBOL_FORWARDED:
6397 /* If the value is forwarded to a buffer or keyboard field,
6398 these are marked when we see the corresponding object.
6399 And if it's forwarded to a C variable, either it's not
6400 a Lisp_Object var, or it's staticpro'd already. */
6401 break;
6402 default: emacs_abort ();
6404 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6405 MARK_STRING (XSTRING (ptr->name));
6406 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6407 /* Inner loop to mark next symbol in this bucket, if any. */
6408 ptr = ptr->next;
6409 if (ptr)
6410 goto nextsym;
6412 break;
6414 case Lisp_Misc:
6415 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6417 if (XMISCANY (obj)->gcmarkbit)
6418 break;
6420 switch (XMISCTYPE (obj))
6422 case Lisp_Misc_Marker:
6423 /* DO NOT mark thru the marker's chain.
6424 The buffer's markers chain does not preserve markers from gc;
6425 instead, markers are removed from the chain when freed by gc. */
6426 XMISCANY (obj)->gcmarkbit = 1;
6427 break;
6429 case Lisp_Misc_Save_Value:
6430 XMISCANY (obj)->gcmarkbit = 1;
6431 mark_save_value (XSAVE_VALUE (obj));
6432 break;
6434 case Lisp_Misc_Overlay:
6435 mark_overlay (XOVERLAY (obj));
6436 break;
6438 default:
6439 emacs_abort ();
6441 break;
6443 case Lisp_Cons:
6445 register struct Lisp_Cons *ptr = XCONS (obj);
6446 if (CONS_MARKED_P (ptr))
6447 break;
6448 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6449 CONS_MARK (ptr);
6450 /* If the cdr is nil, avoid recursion for the car. */
6451 if (EQ (ptr->u.cdr, Qnil))
6453 obj = ptr->car;
6454 cdr_count = 0;
6455 goto loop;
6457 mark_object (ptr->car);
6458 obj = ptr->u.cdr;
6459 cdr_count++;
6460 if (cdr_count == mark_object_loop_halt)
6461 emacs_abort ();
6462 goto loop;
6465 case Lisp_Float:
6466 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6467 FLOAT_MARK (XFLOAT (obj));
6468 break;
6470 case_Lisp_Int:
6471 break;
6473 default:
6474 emacs_abort ();
6477 #undef CHECK_LIVE
6478 #undef CHECK_ALLOCATED
6479 #undef CHECK_ALLOCATED_AND_LIVE
6481 /* Mark the Lisp pointers in the terminal objects.
6482 Called by Fgarbage_collect. */
6484 static void
6485 mark_terminals (void)
6487 struct terminal *t;
6488 for (t = terminal_list; t; t = t->next_terminal)
6490 eassert (t->name != NULL);
6491 #ifdef HAVE_WINDOW_SYSTEM
6492 /* If a terminal object is reachable from a stacpro'ed object,
6493 it might have been marked already. Make sure the image cache
6494 gets marked. */
6495 mark_image_cache (t->image_cache);
6496 #endif /* HAVE_WINDOW_SYSTEM */
6497 if (!VECTOR_MARKED_P (t))
6498 mark_vectorlike ((struct Lisp_Vector *)t);
6504 /* Value is non-zero if OBJ will survive the current GC because it's
6505 either marked or does not need to be marked to survive. */
6507 bool
6508 survives_gc_p (Lisp_Object obj)
6510 bool survives_p;
6512 switch (XTYPE (obj))
6514 case_Lisp_Int:
6515 survives_p = 1;
6516 break;
6518 case Lisp_Symbol:
6519 survives_p = XSYMBOL (obj)->gcmarkbit;
6520 break;
6522 case Lisp_Misc:
6523 survives_p = XMISCANY (obj)->gcmarkbit;
6524 break;
6526 case Lisp_String:
6527 survives_p = STRING_MARKED_P (XSTRING (obj));
6528 break;
6530 case Lisp_Vectorlike:
6531 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6532 break;
6534 case Lisp_Cons:
6535 survives_p = CONS_MARKED_P (XCONS (obj));
6536 break;
6538 case Lisp_Float:
6539 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6540 break;
6542 default:
6543 emacs_abort ();
6546 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6552 NO_INLINE /* For better stack traces */
6553 static void
6554 sweep_conses (void)
6556 struct cons_block *cblk;
6557 struct cons_block **cprev = &cons_block;
6558 int lim = cons_block_index;
6559 EMACS_INT num_free = 0, num_used = 0;
6561 cons_free_list = 0;
6563 for (cblk = cons_block; cblk; cblk = *cprev)
6565 int i = 0;
6566 int this_free = 0;
6567 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6569 /* Scan the mark bits an int at a time. */
6570 for (i = 0; i < ilim; i++)
6572 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6574 /* Fast path - all cons cells for this int are marked. */
6575 cblk->gcmarkbits[i] = 0;
6576 num_used += BITS_PER_BITS_WORD;
6578 else
6580 /* Some cons cells for this int are not marked.
6581 Find which ones, and free them. */
6582 int start, pos, stop;
6584 start = i * BITS_PER_BITS_WORD;
6585 stop = lim - start;
6586 if (stop > BITS_PER_BITS_WORD)
6587 stop = BITS_PER_BITS_WORD;
6588 stop += start;
6590 for (pos = start; pos < stop; pos++)
6592 if (!CONS_MARKED_P (&cblk->conses[pos]))
6594 this_free++;
6595 cblk->conses[pos].u.chain = cons_free_list;
6596 cons_free_list = &cblk->conses[pos];
6597 #if GC_MARK_STACK
6598 cons_free_list->car = Vdead;
6599 #endif
6601 else
6603 num_used++;
6604 CONS_UNMARK (&cblk->conses[pos]);
6610 lim = CONS_BLOCK_SIZE;
6611 /* If this block contains only free conses and we have already
6612 seen more than two blocks worth of free conses then deallocate
6613 this block. */
6614 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6616 *cprev = cblk->next;
6617 /* Unhook from the free list. */
6618 cons_free_list = cblk->conses[0].u.chain;
6619 lisp_align_free (cblk);
6621 else
6623 num_free += this_free;
6624 cprev = &cblk->next;
6627 total_conses = num_used;
6628 total_free_conses = num_free;
6631 NO_INLINE /* For better stack traces */
6632 static void
6633 sweep_floats (void)
6635 register struct float_block *fblk;
6636 struct float_block **fprev = &float_block;
6637 register int lim = float_block_index;
6638 EMACS_INT num_free = 0, num_used = 0;
6640 float_free_list = 0;
6642 for (fblk = float_block; fblk; fblk = *fprev)
6644 register int i;
6645 int this_free = 0;
6646 for (i = 0; i < lim; i++)
6647 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6649 this_free++;
6650 fblk->floats[i].u.chain = float_free_list;
6651 float_free_list = &fblk->floats[i];
6653 else
6655 num_used++;
6656 FLOAT_UNMARK (&fblk->floats[i]);
6658 lim = FLOAT_BLOCK_SIZE;
6659 /* If this block contains only free floats and we have already
6660 seen more than two blocks worth of free floats then deallocate
6661 this block. */
6662 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6664 *fprev = fblk->next;
6665 /* Unhook from the free list. */
6666 float_free_list = fblk->floats[0].u.chain;
6667 lisp_align_free (fblk);
6669 else
6671 num_free += this_free;
6672 fprev = &fblk->next;
6675 total_floats = num_used;
6676 total_free_floats = num_free;
6679 NO_INLINE /* For better stack traces */
6680 static void
6681 sweep_intervals (void)
6683 register struct interval_block *iblk;
6684 struct interval_block **iprev = &interval_block;
6685 register int lim = interval_block_index;
6686 EMACS_INT num_free = 0, num_used = 0;
6688 interval_free_list = 0;
6690 for (iblk = interval_block; iblk; iblk = *iprev)
6692 register int i;
6693 int this_free = 0;
6695 for (i = 0; i < lim; i++)
6697 if (!iblk->intervals[i].gcmarkbit)
6699 set_interval_parent (&iblk->intervals[i], interval_free_list);
6700 interval_free_list = &iblk->intervals[i];
6701 this_free++;
6703 else
6705 num_used++;
6706 iblk->intervals[i].gcmarkbit = 0;
6709 lim = INTERVAL_BLOCK_SIZE;
6710 /* If this block contains only free intervals and we have already
6711 seen more than two blocks worth of free intervals then
6712 deallocate this block. */
6713 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6715 *iprev = iblk->next;
6716 /* Unhook from the free list. */
6717 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6718 lisp_free (iblk);
6720 else
6722 num_free += this_free;
6723 iprev = &iblk->next;
6726 total_intervals = num_used;
6727 total_free_intervals = num_free;
6730 NO_INLINE /* For better stack traces */
6731 static void
6732 sweep_symbols (void)
6734 register struct symbol_block *sblk;
6735 struct symbol_block **sprev = &symbol_block;
6736 register int lim = symbol_block_index;
6737 EMACS_INT num_free = 0, num_used = 0;
6739 symbol_free_list = NULL;
6741 for (sblk = symbol_block; sblk; sblk = *sprev)
6743 int this_free = 0;
6744 union aligned_Lisp_Symbol *sym = sblk->symbols;
6745 union aligned_Lisp_Symbol *end = sym + lim;
6747 for (; sym < end; ++sym)
6749 if (!sym->s.gcmarkbit)
6751 if (sym->s.redirect == SYMBOL_LOCALIZED)
6752 xfree (SYMBOL_BLV (&sym->s));
6753 sym->s.next = symbol_free_list;
6754 symbol_free_list = &sym->s;
6755 #if GC_MARK_STACK
6756 symbol_free_list->function = Vdead;
6757 #endif
6758 ++this_free;
6760 else
6762 ++num_used;
6763 sym->s.gcmarkbit = 0;
6764 /* Attempt to catch bogus objects. */
6765 eassert (valid_lisp_object_p (sym->s.function) >= 1);
6769 lim = SYMBOL_BLOCK_SIZE;
6770 /* If this block contains only free symbols and we have already
6771 seen more than two blocks worth of free symbols then deallocate
6772 this block. */
6773 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6775 *sprev = sblk->next;
6776 /* Unhook from the free list. */
6777 symbol_free_list = sblk->symbols[0].s.next;
6778 lisp_free (sblk);
6780 else
6782 num_free += this_free;
6783 sprev = &sblk->next;
6786 total_symbols = num_used;
6787 total_free_symbols = num_free;
6790 NO_INLINE /* For better stack traces */
6791 static void
6792 sweep_misc (void)
6794 register struct marker_block *mblk;
6795 struct marker_block **mprev = &marker_block;
6796 register int lim = marker_block_index;
6797 EMACS_INT num_free = 0, num_used = 0;
6799 /* Put all unmarked misc's on free list. For a marker, first
6800 unchain it from the buffer it points into. */
6802 marker_free_list = 0;
6804 for (mblk = marker_block; mblk; mblk = *mprev)
6806 register int i;
6807 int this_free = 0;
6809 for (i = 0; i < lim; i++)
6811 if (!mblk->markers[i].m.u_any.gcmarkbit)
6813 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6814 unchain_marker (&mblk->markers[i].m.u_marker);
6815 /* Set the type of the freed object to Lisp_Misc_Free.
6816 We could leave the type alone, since nobody checks it,
6817 but this might catch bugs faster. */
6818 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6819 mblk->markers[i].m.u_free.chain = marker_free_list;
6820 marker_free_list = &mblk->markers[i].m;
6821 this_free++;
6823 else
6825 num_used++;
6826 mblk->markers[i].m.u_any.gcmarkbit = 0;
6829 lim = MARKER_BLOCK_SIZE;
6830 /* If this block contains only free markers and we have already
6831 seen more than two blocks worth of free markers then deallocate
6832 this block. */
6833 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6835 *mprev = mblk->next;
6836 /* Unhook from the free list. */
6837 marker_free_list = mblk->markers[0].m.u_free.chain;
6838 lisp_free (mblk);
6840 else
6842 num_free += this_free;
6843 mprev = &mblk->next;
6847 total_markers = num_used;
6848 total_free_markers = num_free;
6851 NO_INLINE /* For better stack traces */
6852 static void
6853 sweep_buffers (void)
6855 register struct buffer *buffer, **bprev = &all_buffers;
6857 total_buffers = 0;
6858 for (buffer = all_buffers; buffer; buffer = *bprev)
6859 if (!VECTOR_MARKED_P (buffer))
6861 *bprev = buffer->next;
6862 lisp_free (buffer);
6864 else
6866 VECTOR_UNMARK (buffer);
6867 /* Do not use buffer_(set|get)_intervals here. */
6868 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6869 total_buffers++;
6870 bprev = &buffer->next;
6874 /* Sweep: find all structures not marked, and free them. */
6875 static void
6876 gc_sweep (void)
6878 /* Remove or mark entries in weak hash tables.
6879 This must be done before any object is unmarked. */
6880 sweep_weak_hash_tables ();
6882 sweep_strings ();
6883 check_string_bytes (!noninteractive);
6884 sweep_conses ();
6885 sweep_floats ();
6886 sweep_intervals ();
6887 sweep_symbols ();
6888 sweep_misc ();
6889 sweep_buffers ();
6890 sweep_vectors ();
6891 check_string_bytes (!noninteractive);
6894 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6895 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6896 All values are in Kbytes. If there is no swap space,
6897 last two values are zero. If the system is not supported
6898 or memory information can't be obtained, return nil. */)
6899 (void)
6901 #if defined HAVE_LINUX_SYSINFO
6902 struct sysinfo si;
6903 uintmax_t units;
6905 if (sysinfo (&si))
6906 return Qnil;
6907 #ifdef LINUX_SYSINFO_UNIT
6908 units = si.mem_unit;
6909 #else
6910 units = 1;
6911 #endif
6912 return list4i ((uintmax_t) si.totalram * units / 1024,
6913 (uintmax_t) si.freeram * units / 1024,
6914 (uintmax_t) si.totalswap * units / 1024,
6915 (uintmax_t) si.freeswap * units / 1024);
6916 #elif defined WINDOWSNT
6917 unsigned long long totalram, freeram, totalswap, freeswap;
6919 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6920 return list4i ((uintmax_t) totalram / 1024,
6921 (uintmax_t) freeram / 1024,
6922 (uintmax_t) totalswap / 1024,
6923 (uintmax_t) freeswap / 1024);
6924 else
6925 return Qnil;
6926 #elif defined MSDOS
6927 unsigned long totalram, freeram, totalswap, freeswap;
6929 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6930 return list4i ((uintmax_t) totalram / 1024,
6931 (uintmax_t) freeram / 1024,
6932 (uintmax_t) totalswap / 1024,
6933 (uintmax_t) freeswap / 1024);
6934 else
6935 return Qnil;
6936 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6937 /* FIXME: add more systems. */
6938 return Qnil;
6939 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6942 /* Debugging aids. */
6944 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6945 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6946 This may be helpful in debugging Emacs's memory usage.
6947 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6948 (void)
6950 Lisp_Object end;
6952 #ifdef HAVE_NS
6953 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6954 XSETINT (end, 0);
6955 #else
6956 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6957 #endif
6959 return end;
6962 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6963 doc: /* Return a list of counters that measure how much consing there has been.
6964 Each of these counters increments for a certain kind of object.
6965 The counters wrap around from the largest positive integer to zero.
6966 Garbage collection does not decrease them.
6967 The elements of the value are as follows:
6968 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6969 All are in units of 1 = one object consed
6970 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6971 objects consed.
6972 MISCS include overlays, markers, and some internal types.
6973 Frames, windows, buffers, and subprocesses count as vectors
6974 (but the contents of a buffer's text do not count here). */)
6975 (void)
6977 return listn (CONSTYPE_HEAP, 8,
6978 bounded_number (cons_cells_consed),
6979 bounded_number (floats_consed),
6980 bounded_number (vector_cells_consed),
6981 bounded_number (symbols_consed),
6982 bounded_number (string_chars_consed),
6983 bounded_number (misc_objects_consed),
6984 bounded_number (intervals_consed),
6985 bounded_number (strings_consed));
6988 /* Find at most FIND_MAX symbols which have OBJ as their value or
6989 function. This is used in gdbinit's `xwhichsymbols' command. */
6991 Lisp_Object
6992 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6994 struct symbol_block *sblk;
6995 ptrdiff_t gc_count = inhibit_garbage_collection ();
6996 Lisp_Object found = Qnil;
6998 if (! DEADP (obj))
7000 for (sblk = symbol_block; sblk; sblk = sblk->next)
7002 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7003 int bn;
7005 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7007 struct Lisp_Symbol *sym = &aligned_sym->s;
7008 Lisp_Object val;
7009 Lisp_Object tem;
7011 if (sblk == symbol_block && bn >= symbol_block_index)
7012 break;
7014 XSETSYMBOL (tem, sym);
7015 val = find_symbol_value (tem);
7016 if (EQ (val, obj)
7017 || EQ (sym->function, obj)
7018 || (!NILP (sym->function)
7019 && COMPILEDP (sym->function)
7020 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7021 || (!NILP (val)
7022 && COMPILEDP (val)
7023 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
7025 found = Fcons (tem, found);
7026 if (--find_max == 0)
7027 goto out;
7033 out:
7034 unbind_to (gc_count, Qnil);
7035 return found;
7038 #ifdef SUSPICIOUS_OBJECT_CHECKING
7040 static void *
7041 find_suspicious_object_in_range (void *begin, void *end)
7043 char *begin_a = begin;
7044 char *end_a = end;
7045 int i;
7047 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7049 char *suspicious_object = suspicious_objects[i];
7050 if (begin_a <= suspicious_object && suspicious_object < end_a)
7051 return suspicious_object;
7054 return NULL;
7057 static void
7058 note_suspicious_free (void* ptr)
7060 struct suspicious_free_record* rec;
7062 rec = &suspicious_free_history[suspicious_free_history_index++];
7063 if (suspicious_free_history_index ==
7064 ARRAYELTS (suspicious_free_history))
7066 suspicious_free_history_index = 0;
7069 memset (rec, 0, sizeof (*rec));
7070 rec->suspicious_object = ptr;
7071 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7074 static void
7075 detect_suspicious_free (void* ptr)
7077 int i;
7079 eassert (ptr != NULL);
7081 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7082 if (suspicious_objects[i] == ptr)
7084 note_suspicious_free (ptr);
7085 suspicious_objects[i] = NULL;
7089 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7091 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7092 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7093 If Emacs is compiled with suspicous object checking, capture
7094 a stack trace when OBJ is freed in order to help track down
7095 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7096 (Lisp_Object obj)
7098 #ifdef SUSPICIOUS_OBJECT_CHECKING
7099 /* Right now, we care only about vectors. */
7100 if (VECTORLIKEP (obj))
7102 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7103 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7104 suspicious_object_index = 0;
7106 #endif
7107 return obj;
7110 #ifdef ENABLE_CHECKING
7112 bool suppress_checking;
7114 void
7115 die (const char *msg, const char *file, int line)
7117 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7118 file, line, msg);
7119 terminate_due_to_signal (SIGABRT, INT_MAX);
7121 #endif
7123 /* Initialization. */
7125 void
7126 init_alloc_once (void)
7128 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
7129 purebeg = PUREBEG;
7130 pure_size = PURESIZE;
7132 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7133 mem_init ();
7134 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7135 #endif
7137 #ifdef DOUG_LEA_MALLOC
7138 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7139 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7140 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7141 #endif
7142 init_strings ();
7143 init_vectors ();
7145 refill_memory_reserve ();
7146 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7149 void
7150 init_alloc (void)
7152 gcprolist = 0;
7153 byte_stack_list = 0;
7154 #if GC_MARK_STACK
7155 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7156 setjmp_tested_p = longjmps_done = 0;
7157 #endif
7158 #endif
7159 Vgc_elapsed = make_float (0.0);
7160 gcs_done = 0;
7162 #if USE_VALGRIND
7163 valgrind_p = RUNNING_ON_VALGRIND != 0;
7164 #endif
7167 void
7168 syms_of_alloc (void)
7170 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7171 doc: /* Number of bytes of consing between garbage collections.
7172 Garbage collection can happen automatically once this many bytes have been
7173 allocated since the last garbage collection. All data types count.
7175 Garbage collection happens automatically only when `eval' is called.
7177 By binding this temporarily to a large number, you can effectively
7178 prevent garbage collection during a part of the program.
7179 See also `gc-cons-percentage'. */);
7181 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7182 doc: /* Portion of the heap used for allocation.
7183 Garbage collection can happen automatically once this portion of the heap
7184 has been allocated since the last garbage collection.
7185 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7186 Vgc_cons_percentage = make_float (0.1);
7188 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7189 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7191 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7192 doc: /* Number of cons cells that have been consed so far. */);
7194 DEFVAR_INT ("floats-consed", floats_consed,
7195 doc: /* Number of floats that have been consed so far. */);
7197 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7198 doc: /* Number of vector cells that have been consed so far. */);
7200 DEFVAR_INT ("symbols-consed", symbols_consed,
7201 doc: /* Number of symbols that have been consed so far. */);
7203 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7204 doc: /* Number of string characters that have been consed so far. */);
7206 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7207 doc: /* Number of miscellaneous objects that have been consed so far.
7208 These include markers and overlays, plus certain objects not visible
7209 to users. */);
7211 DEFVAR_INT ("intervals-consed", intervals_consed,
7212 doc: /* Number of intervals that have been consed so far. */);
7214 DEFVAR_INT ("strings-consed", strings_consed,
7215 doc: /* Number of strings that have been consed so far. */);
7217 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7218 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7219 This means that certain objects should be allocated in shared (pure) space.
7220 It can also be set to a hash-table, in which case this table is used to
7221 do hash-consing of the objects allocated to pure space. */);
7223 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7224 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7225 garbage_collection_messages = 0;
7227 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7228 doc: /* Hook run after garbage collection has finished. */);
7229 Vpost_gc_hook = Qnil;
7230 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7232 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7233 doc: /* Precomputed `signal' argument for memory-full error. */);
7234 /* We build this in advance because if we wait until we need it, we might
7235 not be able to allocate the memory to hold it. */
7236 Vmemory_signal_data
7237 = listn (CONSTYPE_PURE, 2, Qerror,
7238 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7240 DEFVAR_LISP ("memory-full", Vmemory_full,
7241 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7242 Vmemory_full = Qnil;
7244 DEFSYM (Qconses, "conses");
7245 DEFSYM (Qsymbols, "symbols");
7246 DEFSYM (Qmiscs, "miscs");
7247 DEFSYM (Qstrings, "strings");
7248 DEFSYM (Qvectors, "vectors");
7249 DEFSYM (Qfloats, "floats");
7250 DEFSYM (Qintervals, "intervals");
7251 DEFSYM (Qbuffers, "buffers");
7252 DEFSYM (Qstring_bytes, "string-bytes");
7253 DEFSYM (Qvector_slots, "vector-slots");
7254 DEFSYM (Qheap, "heap");
7255 DEFSYM (Qautomatic_gc, "Automatic GC");
7257 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7258 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7260 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7261 doc: /* Accumulated time elapsed in garbage collections.
7262 The time is in seconds as a floating point value. */);
7263 DEFVAR_INT ("gcs-done", gcs_done,
7264 doc: /* Accumulated number of garbage collections done. */);
7266 defsubr (&Scons);
7267 defsubr (&Slist);
7268 defsubr (&Svector);
7269 defsubr (&Sbool_vector);
7270 defsubr (&Smake_byte_code);
7271 defsubr (&Smake_list);
7272 defsubr (&Smake_vector);
7273 defsubr (&Smake_string);
7274 defsubr (&Smake_bool_vector);
7275 defsubr (&Smake_symbol);
7276 defsubr (&Smake_marker);
7277 defsubr (&Spurecopy);
7278 defsubr (&Sgarbage_collect);
7279 defsubr (&Smemory_limit);
7280 defsubr (&Smemory_info);
7281 defsubr (&Smemory_use_counts);
7282 defsubr (&Ssuspicious_object);
7284 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7285 defsubr (&Sgc_status);
7286 #endif
7289 /* When compiled with GCC, GDB might say "No enum type named
7290 pvec_type" if we don't have at least one symbol with that type, and
7291 then xbacktrace could fail. Similarly for the other enums and
7292 their values. Some non-GCC compilers don't like these constructs. */
7293 #ifdef __GNUC__
7294 union
7296 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7297 enum char_table_specials char_table_specials;
7298 enum char_bits char_bits;
7299 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7300 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7301 enum Lisp_Bits Lisp_Bits;
7302 enum Lisp_Compiled Lisp_Compiled;
7303 enum maxargs maxargs;
7304 enum MAX_ALLOCA MAX_ALLOCA;
7305 enum More_Lisp_Bits More_Lisp_Bits;
7306 enum pvec_type pvec_type;
7307 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7308 #endif /* __GNUC__ */