Fix a bug introduced by recent changes
[emacs.git] / src / alloc.c
blob2704b680263797f5f82530cbafa4235710417703
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
34 #include <signal.h>
36 #ifdef HAVE_GTK_AND_PTHREAD
37 #include <pthread.h>
38 #endif
40 /* This file is part of the core Lisp implementation, and thus must
41 deal with the real data structures. If the Lisp implementation is
42 replaced, this file likely will not be used. */
44 #undef HIDE_LISP_IMPLEMENTATION
45 #include "lisp.h"
46 #include "process.h"
47 #include "intervals.h"
48 #include "puresize.h"
49 #include "buffer.h"
50 #include "window.h"
51 #include "keyboard.h"
52 #include "frame.h"
53 #include "blockinput.h"
54 #include "character.h"
55 #include "syssignal.h"
56 #include "termhooks.h" /* For struct terminal. */
57 #include <setjmp.h>
59 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
60 memory. Can do this only if using gmalloc.c. */
62 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
63 #undef GC_MALLOC_CHECK
64 #endif
66 #ifdef HAVE_UNISTD_H
67 #include <unistd.h>
68 #else
69 extern POINTER_TYPE *sbrk ();
70 #endif
72 #ifdef HAVE_FCNTL_H
73 #define INCLUDED_FCNTL
74 #include <fcntl.h>
75 #endif
76 #ifndef O_WRONLY
77 #define O_WRONLY 1
78 #endif
80 #ifdef WINDOWSNT
81 #include <fcntl.h>
82 #include "w32.h"
83 #endif
85 #ifdef DOUG_LEA_MALLOC
87 #include <malloc.h>
88 /* malloc.h #defines this as size_t, at least in glibc2. */
89 #ifndef __malloc_size_t
90 #define __malloc_size_t int
91 #endif
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
96 #define MMAP_MAX_AREAS 100000000
98 #else /* not DOUG_LEA_MALLOC */
100 /* The following come from gmalloc.c. */
102 #define __malloc_size_t size_t
103 extern __malloc_size_t _bytes_used;
104 extern __malloc_size_t __malloc_extra_blocks;
106 #endif /* not DOUG_LEA_MALLOC */
108 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
110 /* When GTK uses the file chooser dialog, different backends can be loaded
111 dynamically. One such a backend is the Gnome VFS backend that gets loaded
112 if you run Gnome. That backend creates several threads and also allocates
113 memory with malloc.
115 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
116 functions below are called from malloc, there is a chance that one
117 of these threads preempts the Emacs main thread and the hook variables
118 end up in an inconsistent state. So we have a mutex to prevent that (note
119 that the backend handles concurrent access to malloc within its own threads
120 but Emacs code running in the main thread is not included in that control).
122 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
123 happens in one of the backend threads we will have two threads that tries
124 to run Emacs code at once, and the code is not prepared for that.
125 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
127 static pthread_mutex_t alloc_mutex;
129 #define BLOCK_INPUT_ALLOC \
130 do \
132 if (pthread_equal (pthread_self (), main_thread)) \
133 BLOCK_INPUT; \
134 pthread_mutex_lock (&alloc_mutex); \
136 while (0)
137 #define UNBLOCK_INPUT_ALLOC \
138 do \
140 pthread_mutex_unlock (&alloc_mutex); \
141 if (pthread_equal (pthread_self (), main_thread)) \
142 UNBLOCK_INPUT; \
144 while (0)
146 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
148 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
149 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
151 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
153 /* Value of _bytes_used, when spare_memory was freed. */
155 static __malloc_size_t bytes_used_when_full;
157 static __malloc_size_t bytes_used_when_reconsidered;
159 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
160 to a struct Lisp_String. */
162 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
163 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
164 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
166 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
167 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
168 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
170 /* Value is the number of bytes/chars of S, a pointer to a struct
171 Lisp_String. This must be used instead of STRING_BYTES (S) or
172 S->size during GC, because S->size contains the mark bit for
173 strings. */
175 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
176 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
178 /* Number of bytes of consing done since the last gc. */
180 int consing_since_gc;
182 /* Count the amount of consing of various sorts of space. */
184 EMACS_INT cons_cells_consed;
185 EMACS_INT floats_consed;
186 EMACS_INT vector_cells_consed;
187 EMACS_INT symbols_consed;
188 EMACS_INT string_chars_consed;
189 EMACS_INT misc_objects_consed;
190 EMACS_INT intervals_consed;
191 EMACS_INT strings_consed;
193 /* Minimum number of bytes of consing since GC before next GC. */
195 EMACS_INT gc_cons_threshold;
197 /* Similar minimum, computed from Vgc_cons_percentage. */
199 EMACS_INT gc_relative_threshold;
201 static Lisp_Object impl_Vgc_cons_percentage;
203 /* Minimum number of bytes of consing since GC before next GC,
204 when memory is full. */
206 EMACS_INT memory_full_cons_threshold;
208 /* Nonzero during GC. */
210 int gc_in_progress;
212 /* Nonzero means abort if try to GC.
213 This is for code which is written on the assumption that
214 no GC will happen, so as to verify that assumption. */
216 int abort_on_gc;
218 /* Nonzero means display messages at beginning and end of GC. */
220 int garbage_collection_messages;
222 #ifndef VIRT_ADDR_VARIES
223 extern
224 #endif /* VIRT_ADDR_VARIES */
225 int malloc_sbrk_used;
227 #ifndef VIRT_ADDR_VARIES
228 extern
229 #endif /* VIRT_ADDR_VARIES */
230 int malloc_sbrk_unused;
232 /* Number of live and free conses etc. */
234 static int total_conses, total_markers, total_symbols, total_vector_size;
235 static int total_free_conses, total_free_markers, total_free_symbols;
236 static int total_free_floats, total_floats;
238 /* Points to memory space allocated as "spare", to be freed if we run
239 out of memory. We keep one large block, four cons-blocks, and
240 two string blocks. */
242 static char *spare_memory[7];
244 /* Amount of spare memory to keep in large reserve block. */
246 #define SPARE_MEMORY (1 << 14)
248 /* Number of extra blocks malloc should get when it needs more core. */
250 static int malloc_hysteresis;
252 /* Non-nil means defun should do purecopy on the function definition. */
254 Lisp_Object impl_Vpurify_flag;
256 /* Non-nil means we are handling a memory-full error. */
258 Lisp_Object impl_Vmemory_full;
260 /* Initialize it to a nonzero value to force it into data space
261 (rather than bss space). That way unexec will remap it into text
262 space (pure), on some systems. We have not implemented the
263 remapping on more recent systems because this is less important
264 nowadays than in the days of small memories and timesharing. */
266 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
267 #define PUREBEG (char *) pure
269 /* Pointer to the pure area, and its size. */
271 static char *purebeg;
272 static size_t pure_size;
274 /* Number of bytes of pure storage used before pure storage overflowed.
275 If this is non-zero, this implies that an overflow occurred. */
277 static size_t pure_bytes_used_before_overflow;
279 /* Value is non-zero if P points into pure space. */
281 #define PURE_POINTER_P(P) \
282 (((PNTR_COMPARISON_TYPE) (P) \
283 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
284 && ((PNTR_COMPARISON_TYPE) (P) \
285 >= (PNTR_COMPARISON_TYPE) purebeg))
287 /* Total number of bytes allocated in pure storage. */
289 EMACS_INT pure_bytes_used;
291 /* Index in pure at which next pure Lisp object will be allocated.. */
293 static EMACS_INT pure_bytes_used_lisp;
295 /* Number of bytes allocated for non-Lisp objects in pure storage. */
297 static EMACS_INT pure_bytes_used_non_lisp;
299 /* If nonzero, this is a warning delivered by malloc and not yet
300 displayed. */
302 char *pending_malloc_warning;
304 /* Pre-computed signal argument for use when memory is exhausted. */
306 Lisp_Object impl_Vmemory_signal_data;
308 /* Maximum amount of C stack to save when a GC happens. */
310 #ifndef MAX_SAVE_STACK
311 #define MAX_SAVE_STACK 16000
312 #endif
314 /* Buffer in which we save a copy of the C stack at each GC. */
316 static char *stack_copy;
317 static int stack_copy_size;
319 /* Non-zero means ignore malloc warnings. Set during initialization.
320 Currently not used. */
322 static int ignore_warnings;
324 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
326 /* Hook run after GC has finished. */
328 Lisp_Object impl_Vpost_gc_hook, Qpost_gc_hook;
330 Lisp_Object impl_Vgc_elapsed; /* accumulated elapsed time in GC */
331 EMACS_INT gcs_done; /* accumulated GCs */
333 static void mark_buffer P_ ((Lisp_Object));
334 static void mark_terminals P_ ((void));
335 extern void mark_kboards P_ ((void));
336 extern void mark_ttys P_ ((void));
337 extern void mark_threads P_ ((void));
338 static void gc_sweep P_ ((void));
339 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
340 static void mark_face_cache P_ ((struct face_cache *));
342 #ifdef HAVE_WINDOW_SYSTEM
343 extern void mark_fringe_data P_ ((void));
344 #endif /* HAVE_WINDOW_SYSTEM */
346 static struct Lisp_String *allocate_string P_ ((void));
347 static void compact_small_strings P_ ((void));
348 static void free_large_strings P_ ((void));
349 static void sweep_strings P_ ((void));
351 extern int message_enable_multibyte;
353 /* When scanning the C stack for live Lisp objects, Emacs keeps track
354 of what memory allocated via lisp_malloc is intended for what
355 purpose. This enumeration specifies the type of memory. */
357 enum mem_type
359 MEM_TYPE_NON_LISP,
360 MEM_TYPE_BUFFER,
361 MEM_TYPE_CONS,
362 MEM_TYPE_STRING,
363 MEM_TYPE_MISC,
364 MEM_TYPE_SYMBOL,
365 MEM_TYPE_FLOAT,
366 /* We used to keep separate mem_types for subtypes of vectors such as
367 process, hash_table, frame, terminal, and window, but we never made
368 use of the distinction, so it only caused source-code complexity
369 and runtime slowdown. Minor but pointless. */
370 MEM_TYPE_VECTORLIKE
373 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
374 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
375 void refill_memory_reserve ();
378 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
380 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
381 #include <stdio.h> /* For fprintf. */
382 #endif
384 /* A unique object in pure space used to make some Lisp objects
385 on free lists recognizable in O(1). */
387 static Lisp_Object Vdead;
389 #ifdef GC_MALLOC_CHECK
391 enum mem_type allocated_mem_type;
392 static int dont_register_blocks;
394 #endif /* GC_MALLOC_CHECK */
396 /* A node in the red-black tree describing allocated memory containing
397 Lisp data. Each such block is recorded with its start and end
398 address when it is allocated, and removed from the tree when it
399 is freed.
401 A red-black tree is a balanced binary tree with the following
402 properties:
404 1. Every node is either red or black.
405 2. Every leaf is black.
406 3. If a node is red, then both of its children are black.
407 4. Every simple path from a node to a descendant leaf contains
408 the same number of black nodes.
409 5. The root is always black.
411 When nodes are inserted into the tree, or deleted from the tree,
412 the tree is "fixed" so that these properties are always true.
414 A red-black tree with N internal nodes has height at most 2
415 log(N+1). Searches, insertions and deletions are done in O(log N).
416 Please see a text book about data structures for a detailed
417 description of red-black trees. Any book worth its salt should
418 describe them. */
420 struct mem_node
422 /* Children of this node. These pointers are never NULL. When there
423 is no child, the value is MEM_NIL, which points to a dummy node. */
424 struct mem_node *left, *right;
426 /* The parent of this node. In the root node, this is NULL. */
427 struct mem_node *parent;
429 /* Start and end of allocated region. */
430 void *start, *end;
432 /* Node color. */
433 enum {MEM_BLACK, MEM_RED} color;
435 /* Memory type. */
436 enum mem_type type;
439 /* Root of the tree describing allocated Lisp memory. */
441 static struct mem_node *mem_root;
443 /* Lowest and highest known address in the heap. */
445 static void *min_heap_address, *max_heap_address;
447 /* Sentinel node of the tree. */
449 static struct mem_node mem_z;
450 #define MEM_NIL &mem_z
452 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
453 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
454 static void lisp_free P_ ((POINTER_TYPE *));
455 static int live_vector_p P_ ((struct mem_node *, void *));
456 static int live_buffer_p P_ ((struct mem_node *, void *));
457 static int live_string_p P_ ((struct mem_node *, void *));
458 static int live_cons_p P_ ((struct mem_node *, void *));
459 static int live_symbol_p P_ ((struct mem_node *, void *));
460 static int live_float_p P_ ((struct mem_node *, void *));
461 static int live_misc_p P_ ((struct mem_node *, void *));
462 static void mark_maybe_object P_ ((Lisp_Object));
463 static void mark_memory P_ ((void *, void *, int));
464 static void mem_init P_ ((void));
465 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
466 static void mem_insert_fixup P_ ((struct mem_node *));
467 static void mem_rotate_left P_ ((struct mem_node *));
468 static void mem_rotate_right P_ ((struct mem_node *));
469 static void mem_delete P_ ((struct mem_node *));
470 static void mem_delete_fixup P_ ((struct mem_node *));
471 static INLINE struct mem_node *mem_find P_ ((void *));
474 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
475 static void check_gcpros P_ ((void));
476 #endif
478 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
480 /* Addresses of staticpro'd variables. Initialize it to a nonzero
481 value; otherwise some compilers put it into BSS. */
483 #define NSTATICS 0x640
484 static Lisp_Object placeholder;
485 static Lisp_Object *staticvec[NSTATICS] = {&placeholder};
487 /* Index of next unused slot in staticvec. */
489 static int staticidx = 0;
491 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
494 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
495 ALIGNMENT must be a power of 2. */
497 #define ALIGN(ptr, ALIGNMENT) \
498 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
499 & ~((ALIGNMENT) - 1)))
503 /************************************************************************
504 Malloc
505 ************************************************************************/
507 /* Function malloc calls this if it finds we are near exhausting storage. */
509 void
510 malloc_warning (str)
511 char *str;
513 pending_malloc_warning = str;
517 /* Display an already-pending malloc warning. */
519 void
520 display_malloc_warning ()
522 call3 (intern ("display-warning"),
523 intern ("alloc"),
524 build_string (pending_malloc_warning),
525 intern ("emergency"));
526 pending_malloc_warning = 0;
530 #ifdef DOUG_LEA_MALLOC
531 # define BYTES_USED (mallinfo ().uordblks)
532 #else
533 # define BYTES_USED _bytes_used
534 #endif
536 /* Called if we can't allocate relocatable space for a buffer. */
538 void
539 buffer_memory_full ()
541 /* If buffers use the relocating allocator, no need to free
542 spare_memory, because we may have plenty of malloc space left
543 that we could get, and if we don't, the malloc that fails will
544 itself cause spare_memory to be freed. If buffers don't use the
545 relocating allocator, treat this like any other failing
546 malloc. */
548 #ifndef REL_ALLOC
549 memory_full ();
550 #endif
552 /* This used to call error, but if we've run out of memory, we could
553 get infinite recursion trying to build the string. */
554 xsignal (Qnil, Vmemory_signal_data);
558 #ifdef XMALLOC_OVERRUN_CHECK
560 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
561 and a 16 byte trailer around each block.
563 The header consists of 12 fixed bytes + a 4 byte integer contaning the
564 original block size, while the trailer consists of 16 fixed bytes.
566 The header is used to detect whether this block has been allocated
567 through these functions -- as it seems that some low-level libc
568 functions may bypass the malloc hooks.
572 #define XMALLOC_OVERRUN_CHECK_SIZE 16
574 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
575 { 0x9a, 0x9b, 0xae, 0xaf,
576 0xbf, 0xbe, 0xce, 0xcf,
577 0xea, 0xeb, 0xec, 0xed };
579 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
580 { 0xaa, 0xab, 0xac, 0xad,
581 0xba, 0xbb, 0xbc, 0xbd,
582 0xca, 0xcb, 0xcc, 0xcd,
583 0xda, 0xdb, 0xdc, 0xdd };
585 /* Macros to insert and extract the block size in the header. */
587 #define XMALLOC_PUT_SIZE(ptr, size) \
588 (ptr[-1] = (size & 0xff), \
589 ptr[-2] = ((size >> 8) & 0xff), \
590 ptr[-3] = ((size >> 16) & 0xff), \
591 ptr[-4] = ((size >> 24) & 0xff))
593 #define XMALLOC_GET_SIZE(ptr) \
594 (size_t)((unsigned)(ptr[-1]) | \
595 ((unsigned)(ptr[-2]) << 8) | \
596 ((unsigned)(ptr[-3]) << 16) | \
597 ((unsigned)(ptr[-4]) << 24))
600 /* The call depth in overrun_check functions. For example, this might happen:
601 xmalloc()
602 overrun_check_malloc()
603 -> malloc -> (via hook)_-> emacs_blocked_malloc
604 -> overrun_check_malloc
605 call malloc (hooks are NULL, so real malloc is called).
606 malloc returns 10000.
607 add overhead, return 10016.
608 <- (back in overrun_check_malloc)
609 add overhead again, return 10032
610 xmalloc returns 10032.
612 (time passes).
614 xfree(10032)
615 overrun_check_free(10032)
616 decrease overhed
617 free(10016) <- crash, because 10000 is the original pointer. */
619 static int check_depth;
621 /* Like malloc, but wraps allocated block with header and trailer. */
623 POINTER_TYPE *
624 overrun_check_malloc (size)
625 size_t size;
627 register unsigned char *val;
628 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
630 val = (unsigned char *) malloc (size + overhead);
631 if (val && check_depth == 1)
633 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
634 val += XMALLOC_OVERRUN_CHECK_SIZE;
635 XMALLOC_PUT_SIZE(val, size);
636 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
638 --check_depth;
639 return (POINTER_TYPE *)val;
643 /* Like realloc, but checks old block for overrun, and wraps new block
644 with header and trailer. */
646 POINTER_TYPE *
647 overrun_check_realloc (block, size)
648 POINTER_TYPE *block;
649 size_t size;
651 register unsigned char *val = (unsigned char *)block;
652 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
654 if (val
655 && check_depth == 1
656 && bcmp (xmalloc_overrun_check_header,
657 val - XMALLOC_OVERRUN_CHECK_SIZE,
658 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
660 size_t osize = XMALLOC_GET_SIZE (val);
661 if (bcmp (xmalloc_overrun_check_trailer,
662 val + osize,
663 XMALLOC_OVERRUN_CHECK_SIZE))
664 abort ();
665 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
666 val -= XMALLOC_OVERRUN_CHECK_SIZE;
667 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
670 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
672 if (val && check_depth == 1)
674 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
675 val += XMALLOC_OVERRUN_CHECK_SIZE;
676 XMALLOC_PUT_SIZE(val, size);
677 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
679 --check_depth;
680 return (POINTER_TYPE *)val;
683 /* Like free, but checks block for overrun. */
685 void
686 overrun_check_free (block)
687 POINTER_TYPE *block;
689 unsigned char *val = (unsigned char *)block;
691 ++check_depth;
692 if (val
693 && check_depth == 1
694 && bcmp (xmalloc_overrun_check_header,
695 val - XMALLOC_OVERRUN_CHECK_SIZE,
696 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
698 size_t osize = XMALLOC_GET_SIZE (val);
699 if (bcmp (xmalloc_overrun_check_trailer,
700 val + osize,
701 XMALLOC_OVERRUN_CHECK_SIZE))
702 abort ();
703 #ifdef XMALLOC_CLEAR_FREE_MEMORY
704 val -= XMALLOC_OVERRUN_CHECK_SIZE;
705 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
706 #else
707 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
708 val -= XMALLOC_OVERRUN_CHECK_SIZE;
709 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
710 #endif
713 free (val);
714 --check_depth;
717 #undef malloc
718 #undef realloc
719 #undef free
720 #define malloc overrun_check_malloc
721 #define realloc overrun_check_realloc
722 #define free overrun_check_free
723 #endif
725 #ifdef SYNC_INPUT
726 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
727 there's no need to block input around malloc. */
728 #define MALLOC_BLOCK_INPUT ((void)0)
729 #define MALLOC_UNBLOCK_INPUT ((void)0)
730 #else
731 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
732 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
733 #endif
735 /* Like malloc but check for no memory and block interrupt input.. */
737 POINTER_TYPE *
738 xmalloc (size)
739 size_t size;
741 register POINTER_TYPE *val;
743 MALLOC_BLOCK_INPUT;
744 val = (POINTER_TYPE *) malloc (size);
745 MALLOC_UNBLOCK_INPUT;
747 if (!val && size)
748 memory_full ();
749 return val;
753 /* Like realloc but check for no memory and block interrupt input.. */
755 POINTER_TYPE *
756 xrealloc (block, size)
757 POINTER_TYPE *block;
758 size_t size;
760 register POINTER_TYPE *val;
762 MALLOC_BLOCK_INPUT;
763 /* We must call malloc explicitly when BLOCK is 0, since some
764 reallocs don't do this. */
765 if (! block)
766 val = (POINTER_TYPE *) malloc (size);
767 else
768 val = (POINTER_TYPE *) realloc (block, size);
769 MALLOC_UNBLOCK_INPUT;
771 if (!val && size) memory_full ();
772 return val;
776 /* Like free but block interrupt input. */
778 void
779 xfree (block)
780 POINTER_TYPE *block;
782 if (!block)
783 return;
784 MALLOC_BLOCK_INPUT;
785 free (block);
786 MALLOC_UNBLOCK_INPUT;
787 /* We don't call refill_memory_reserve here
788 because that duplicates doing so in emacs_blocked_free
789 and the criterion should go there. */
793 /* Like strdup, but uses xmalloc. */
795 char *
796 xstrdup (s)
797 const char *s;
799 size_t len = strlen (s) + 1;
800 char *p = (char *) xmalloc (len);
801 bcopy (s, p, len);
802 return p;
806 /* Unwind for SAFE_ALLOCA */
808 Lisp_Object
809 safe_alloca_unwind (arg)
810 Lisp_Object arg;
812 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
814 p->dogc = 0;
815 xfree (p->pointer);
816 p->pointer = 0;
817 free_misc (arg);
818 return Qnil;
822 /* Like malloc but used for allocating Lisp data. NBYTES is the
823 number of bytes to allocate, TYPE describes the intended use of the
824 allcated memory block (for strings, for conses, ...). */
826 #ifndef USE_LSB_TAG
827 static void *lisp_malloc_loser;
828 #endif
830 static POINTER_TYPE *
831 lisp_malloc (nbytes, type)
832 size_t nbytes;
833 enum mem_type type;
835 register void *val;
837 MALLOC_BLOCK_INPUT;
839 #ifdef GC_MALLOC_CHECK
840 allocated_mem_type = type;
841 #endif
843 val = (void *) malloc (nbytes);
845 #ifndef USE_LSB_TAG
846 /* If the memory just allocated cannot be addressed thru a Lisp
847 object's pointer, and it needs to be,
848 that's equivalent to running out of memory. */
849 if (val && type != MEM_TYPE_NON_LISP)
851 Lisp_Object tem;
852 XSETCONS (tem, (char *) val + nbytes - 1);
853 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
855 lisp_malloc_loser = val;
856 free (val);
857 val = 0;
860 #endif
862 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
863 if (val && type != MEM_TYPE_NON_LISP)
864 mem_insert (val, (char *) val + nbytes, type);
865 #endif
867 MALLOC_UNBLOCK_INPUT;
868 if (!val && nbytes)
869 memory_full ();
870 return val;
873 /* Free BLOCK. This must be called to free memory allocated with a
874 call to lisp_malloc. */
876 static void
877 lisp_free (block)
878 POINTER_TYPE *block;
880 MALLOC_BLOCK_INPUT;
881 free (block);
882 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
883 mem_delete (mem_find (block));
884 #endif
885 MALLOC_UNBLOCK_INPUT;
888 /* Allocation of aligned blocks of memory to store Lisp data. */
889 /* The entry point is lisp_align_malloc which returns blocks of at most */
890 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
892 /* Use posix_memalloc if the system has it and we're using the system's
893 malloc (because our gmalloc.c routines don't have posix_memalign although
894 its memalloc could be used). */
895 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
896 #define USE_POSIX_MEMALIGN 1
897 #endif
899 /* BLOCK_ALIGN has to be a power of 2. */
900 #define BLOCK_ALIGN (1 << 10)
902 /* Padding to leave at the end of a malloc'd block. This is to give
903 malloc a chance to minimize the amount of memory wasted to alignment.
904 It should be tuned to the particular malloc library used.
905 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
906 posix_memalign on the other hand would ideally prefer a value of 4
907 because otherwise, there's 1020 bytes wasted between each ablocks.
908 In Emacs, testing shows that those 1020 can most of the time be
909 efficiently used by malloc to place other objects, so a value of 0 can
910 still preferable unless you have a lot of aligned blocks and virtually
911 nothing else. */
912 #define BLOCK_PADDING 0
913 #define BLOCK_BYTES \
914 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
916 /* Internal data structures and constants. */
918 #define ABLOCKS_SIZE 16
920 /* An aligned block of memory. */
921 struct ablock
923 union
925 char payload[BLOCK_BYTES];
926 struct ablock *next_free;
927 } x;
928 /* `abase' is the aligned base of the ablocks. */
929 /* It is overloaded to hold the virtual `busy' field that counts
930 the number of used ablock in the parent ablocks.
931 The first ablock has the `busy' field, the others have the `abase'
932 field. To tell the difference, we assume that pointers will have
933 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
934 is used to tell whether the real base of the parent ablocks is `abase'
935 (if not, the word before the first ablock holds a pointer to the
936 real base). */
937 struct ablocks *abase;
938 /* The padding of all but the last ablock is unused. The padding of
939 the last ablock in an ablocks is not allocated. */
940 #if BLOCK_PADDING
941 char padding[BLOCK_PADDING];
942 #endif
945 /* A bunch of consecutive aligned blocks. */
946 struct ablocks
948 struct ablock blocks[ABLOCKS_SIZE];
951 /* Size of the block requested from malloc or memalign. */
952 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
954 #define ABLOCK_ABASE(block) \
955 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
956 ? (struct ablocks *)(block) \
957 : (block)->abase)
959 /* Virtual `busy' field. */
960 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
962 /* Pointer to the (not necessarily aligned) malloc block. */
963 #ifdef USE_POSIX_MEMALIGN
964 #define ABLOCKS_BASE(abase) (abase)
965 #else
966 #define ABLOCKS_BASE(abase) \
967 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
968 #endif
970 /* The list of free ablock. */
971 static struct ablock *free_ablock;
973 /* Allocate an aligned block of nbytes.
974 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
975 smaller or equal to BLOCK_BYTES. */
976 static POINTER_TYPE *
977 lisp_align_malloc (nbytes, type)
978 size_t nbytes;
979 enum mem_type type;
981 void *base, *val;
982 struct ablocks *abase;
984 eassert (nbytes <= BLOCK_BYTES);
986 MALLOC_BLOCK_INPUT;
988 #ifdef GC_MALLOC_CHECK
989 allocated_mem_type = type;
990 #endif
992 if (!free_ablock)
994 int i;
995 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
997 #ifdef DOUG_LEA_MALLOC
998 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
999 because mapped region contents are not preserved in
1000 a dumped Emacs. */
1001 mallopt (M_MMAP_MAX, 0);
1002 #endif
1004 #ifdef USE_POSIX_MEMALIGN
1006 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1007 if (err)
1008 base = NULL;
1009 abase = base;
1011 #else
1012 base = malloc (ABLOCKS_BYTES);
1013 abase = ALIGN (base, BLOCK_ALIGN);
1014 #endif
1016 if (base == 0)
1018 MALLOC_UNBLOCK_INPUT;
1019 memory_full ();
1022 aligned = (base == abase);
1023 if (!aligned)
1024 ((void**)abase)[-1] = base;
1026 #ifdef DOUG_LEA_MALLOC
1027 /* Back to a reasonable maximum of mmap'ed areas. */
1028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1029 #endif
1031 #ifndef USE_LSB_TAG
1032 /* If the memory just allocated cannot be addressed thru a Lisp
1033 object's pointer, and it needs to be, that's equivalent to
1034 running out of memory. */
1035 if (type != MEM_TYPE_NON_LISP)
1037 Lisp_Object tem;
1038 char *end = (char *) base + ABLOCKS_BYTES - 1;
1039 XSETCONS (tem, end);
1040 if ((char *) XCONS (tem) != end)
1042 lisp_malloc_loser = base;
1043 free (base);
1044 MALLOC_UNBLOCK_INPUT;
1045 memory_full ();
1048 #endif
1050 /* Initialize the blocks and put them on the free list.
1051 Is `base' was not properly aligned, we can't use the last block. */
1052 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1054 abase->blocks[i].abase = abase;
1055 abase->blocks[i].x.next_free = free_ablock;
1056 free_ablock = &abase->blocks[i];
1058 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1060 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1061 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1062 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1063 eassert (ABLOCKS_BASE (abase) == base);
1064 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1067 abase = ABLOCK_ABASE (free_ablock);
1068 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1069 val = free_ablock;
1070 free_ablock = free_ablock->x.next_free;
1072 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1073 if (val && type != MEM_TYPE_NON_LISP)
1074 mem_insert (val, (char *) val + nbytes, type);
1075 #endif
1077 MALLOC_UNBLOCK_INPUT;
1078 if (!val && nbytes)
1079 memory_full ();
1081 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1082 return val;
1085 static void
1086 lisp_align_free (block)
1087 POINTER_TYPE *block;
1089 struct ablock *ablock = block;
1090 struct ablocks *abase = ABLOCK_ABASE (ablock);
1092 MALLOC_BLOCK_INPUT;
1093 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1094 mem_delete (mem_find (block));
1095 #endif
1096 /* Put on free list. */
1097 ablock->x.next_free = free_ablock;
1098 free_ablock = ablock;
1099 /* Update busy count. */
1100 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1102 if (2 > (long) ABLOCKS_BUSY (abase))
1103 { /* All the blocks are free. */
1104 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1105 struct ablock **tem = &free_ablock;
1106 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1108 while (*tem)
1110 if (*tem >= (struct ablock *) abase && *tem < atop)
1112 i++;
1113 *tem = (*tem)->x.next_free;
1115 else
1116 tem = &(*tem)->x.next_free;
1118 eassert ((aligned & 1) == aligned);
1119 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1120 #ifdef USE_POSIX_MEMALIGN
1121 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1122 #endif
1123 free (ABLOCKS_BASE (abase));
1125 MALLOC_UNBLOCK_INPUT;
1128 /* Return a new buffer structure allocated from the heap with
1129 a call to lisp_malloc. */
1131 struct buffer *
1132 allocate_buffer ()
1134 struct buffer *b
1135 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1136 MEM_TYPE_BUFFER);
1137 b->size = sizeof (struct buffer) / sizeof (EMACS_INT);
1138 XSETPVECTYPE (b, PVEC_BUFFER);
1139 return b;
1143 #ifndef SYSTEM_MALLOC
1145 /* Arranging to disable input signals while we're in malloc.
1147 This only works with GNU malloc. To help out systems which can't
1148 use GNU malloc, all the calls to malloc, realloc, and free
1149 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1150 pair; unfortunately, we have no idea what C library functions
1151 might call malloc, so we can't really protect them unless you're
1152 using GNU malloc. Fortunately, most of the major operating systems
1153 can use GNU malloc. */
1155 #ifndef SYNC_INPUT
1156 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1157 there's no need to block input around malloc. */
1159 #ifndef DOUG_LEA_MALLOC
1160 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1161 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1162 extern void (*__free_hook) P_ ((void *, const void *));
1163 /* Else declared in malloc.h, perhaps with an extra arg. */
1164 #endif /* DOUG_LEA_MALLOC */
1165 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1166 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1167 static void (*old_free_hook) P_ ((void*, const void*));
1169 /* This function is used as the hook for free to call. */
1171 static void
1172 emacs_blocked_free (ptr, ptr2)
1173 void *ptr;
1174 const void *ptr2;
1176 BLOCK_INPUT_ALLOC;
1178 #ifdef GC_MALLOC_CHECK
1179 if (ptr)
1181 struct mem_node *m;
1183 m = mem_find (ptr);
1184 if (m == MEM_NIL || m->start != ptr)
1186 fprintf (stderr,
1187 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1188 abort ();
1190 else
1192 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1193 mem_delete (m);
1196 #endif /* GC_MALLOC_CHECK */
1198 __free_hook = old_free_hook;
1199 free (ptr);
1201 /* If we released our reserve (due to running out of memory),
1202 and we have a fair amount free once again,
1203 try to set aside another reserve in case we run out once more. */
1204 if (! NILP (Vmemory_full)
1205 /* Verify there is enough space that even with the malloc
1206 hysteresis this call won't run out again.
1207 The code here is correct as long as SPARE_MEMORY
1208 is substantially larger than the block size malloc uses. */
1209 && (bytes_used_when_full
1210 > ((bytes_used_when_reconsidered = BYTES_USED)
1211 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1212 refill_memory_reserve ();
1214 __free_hook = emacs_blocked_free;
1215 UNBLOCK_INPUT_ALLOC;
1219 /* This function is the malloc hook that Emacs uses. */
1221 static void *
1222 emacs_blocked_malloc (size, ptr)
1223 size_t size;
1224 const void *ptr;
1226 void *value;
1228 BLOCK_INPUT_ALLOC;
1229 __malloc_hook = old_malloc_hook;
1230 #ifdef DOUG_LEA_MALLOC
1231 /* Segfaults on my system. --lorentey */
1232 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1233 #else
1234 __malloc_extra_blocks = malloc_hysteresis;
1235 #endif
1237 value = (void *) malloc (size);
1239 #ifdef GC_MALLOC_CHECK
1241 struct mem_node *m = mem_find (value);
1242 if (m != MEM_NIL)
1244 fprintf (stderr, "Malloc returned %p which is already in use\n",
1245 value);
1246 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1247 m->start, m->end, (char *) m->end - (char *) m->start,
1248 m->type);
1249 abort ();
1252 if (!dont_register_blocks)
1254 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1255 allocated_mem_type = MEM_TYPE_NON_LISP;
1258 #endif /* GC_MALLOC_CHECK */
1260 __malloc_hook = emacs_blocked_malloc;
1261 UNBLOCK_INPUT_ALLOC;
1263 /* fprintf (stderr, "%p malloc\n", value); */
1264 return value;
1268 /* This function is the realloc hook that Emacs uses. */
1270 static void *
1271 emacs_blocked_realloc (ptr, size, ptr2)
1272 void *ptr;
1273 size_t size;
1274 const void *ptr2;
1276 void *value;
1278 BLOCK_INPUT_ALLOC;
1279 __realloc_hook = old_realloc_hook;
1281 #ifdef GC_MALLOC_CHECK
1282 if (ptr)
1284 struct mem_node *m = mem_find (ptr);
1285 if (m == MEM_NIL || m->start != ptr)
1287 fprintf (stderr,
1288 "Realloc of %p which wasn't allocated with malloc\n",
1289 ptr);
1290 abort ();
1293 mem_delete (m);
1296 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1298 /* Prevent malloc from registering blocks. */
1299 dont_register_blocks = 1;
1300 #endif /* GC_MALLOC_CHECK */
1302 value = (void *) realloc (ptr, size);
1304 #ifdef GC_MALLOC_CHECK
1305 dont_register_blocks = 0;
1308 struct mem_node *m = mem_find (value);
1309 if (m != MEM_NIL)
1311 fprintf (stderr, "Realloc returns memory that is already in use\n");
1312 abort ();
1315 /* Can't handle zero size regions in the red-black tree. */
1316 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1319 /* fprintf (stderr, "%p <- realloc\n", value); */
1320 #endif /* GC_MALLOC_CHECK */
1322 __realloc_hook = emacs_blocked_realloc;
1323 UNBLOCK_INPUT_ALLOC;
1325 return value;
1329 #ifdef HAVE_GTK_AND_PTHREAD
1330 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1331 normal malloc. Some thread implementations need this as they call
1332 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1333 calls malloc because it is the first call, and we have an endless loop. */
1335 void
1336 reset_malloc_hooks ()
1338 __free_hook = old_free_hook;
1339 __malloc_hook = old_malloc_hook;
1340 __realloc_hook = old_realloc_hook;
1342 #endif /* HAVE_GTK_AND_PTHREAD */
1345 /* Called from main to set up malloc to use our hooks. */
1347 void
1348 uninterrupt_malloc ()
1350 #ifdef HAVE_GTK_AND_PTHREAD
1351 #ifdef DOUG_LEA_MALLOC
1352 pthread_mutexattr_t attr;
1354 /* GLIBC has a faster way to do this, but lets keep it portable.
1355 This is according to the Single UNIX Specification. */
1356 pthread_mutexattr_init (&attr);
1357 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1358 pthread_mutex_init (&alloc_mutex, &attr);
1359 #else /* !DOUG_LEA_MALLOC */
1360 /* Some systems such as Solaris 2.6 doesn't have a recursive mutex,
1361 and the bundled gmalloc.c doesn't require it. */
1362 pthread_mutex_init (&alloc_mutex, NULL);
1363 #endif /* !DOUG_LEA_MALLOC */
1364 #endif /* HAVE_GTK_AND_PTHREAD */
1366 if (__free_hook != emacs_blocked_free)
1367 old_free_hook = __free_hook;
1368 __free_hook = emacs_blocked_free;
1370 if (__malloc_hook != emacs_blocked_malloc)
1371 old_malloc_hook = __malloc_hook;
1372 __malloc_hook = emacs_blocked_malloc;
1374 if (__realloc_hook != emacs_blocked_realloc)
1375 old_realloc_hook = __realloc_hook;
1376 __realloc_hook = emacs_blocked_realloc;
1379 #endif /* not SYNC_INPUT */
1380 #endif /* not SYSTEM_MALLOC */
1384 /***********************************************************************
1385 Interval Allocation
1386 ***********************************************************************/
1388 /* Number of intervals allocated in an interval_block structure.
1389 The 1020 is 1024 minus malloc overhead. */
1391 #define INTERVAL_BLOCK_SIZE \
1392 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1394 /* Intervals are allocated in chunks in form of an interval_block
1395 structure. */
1397 struct interval_block
1399 /* Place `intervals' first, to preserve alignment. */
1400 struct interval intervals[INTERVAL_BLOCK_SIZE];
1401 struct interval_block *next;
1404 /* Current interval block. Its `next' pointer points to older
1405 blocks. */
1407 static struct interval_block *interval_block;
1409 /* Index in interval_block above of the next unused interval
1410 structure. */
1412 static int interval_block_index;
1414 /* Number of free and live intervals. */
1416 static int total_free_intervals, total_intervals;
1418 /* List of free intervals. */
1420 INTERVAL interval_free_list;
1422 /* Total number of interval blocks now in use. */
1424 static int n_interval_blocks;
1427 /* Initialize interval allocation. */
1429 static void
1430 init_intervals ()
1432 interval_block = NULL;
1433 interval_block_index = INTERVAL_BLOCK_SIZE;
1434 interval_free_list = 0;
1435 n_interval_blocks = 0;
1439 /* Return a new interval. */
1441 INTERVAL
1442 make_interval ()
1444 INTERVAL val;
1446 /* eassert (!handling_signal); */
1448 MALLOC_BLOCK_INPUT;
1450 if (interval_free_list)
1452 val = interval_free_list;
1453 interval_free_list = INTERVAL_PARENT (interval_free_list);
1455 else
1457 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1459 register struct interval_block *newi;
1461 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1462 MEM_TYPE_NON_LISP);
1464 newi->next = interval_block;
1465 interval_block = newi;
1466 interval_block_index = 0;
1467 n_interval_blocks++;
1469 val = &interval_block->intervals[interval_block_index++];
1472 MALLOC_UNBLOCK_INPUT;
1474 consing_since_gc += sizeof (struct interval);
1475 intervals_consed++;
1476 RESET_INTERVAL (val);
1477 val->gcmarkbit = 0;
1478 return val;
1482 /* Mark Lisp objects in interval I. */
1484 static void
1485 mark_interval (i, dummy)
1486 register INTERVAL i;
1487 Lisp_Object dummy;
1489 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1490 i->gcmarkbit = 1;
1491 mark_object (i->plist);
1495 /* Mark the interval tree rooted in TREE. Don't call this directly;
1496 use the macro MARK_INTERVAL_TREE instead. */
1498 static void
1499 mark_interval_tree (tree)
1500 register INTERVAL tree;
1502 /* No need to test if this tree has been marked already; this
1503 function is always called through the MARK_INTERVAL_TREE macro,
1504 which takes care of that. */
1506 traverse_intervals_noorder (tree, mark_interval, Qnil);
1510 /* Mark the interval tree rooted in I. */
1512 #define MARK_INTERVAL_TREE(i) \
1513 do { \
1514 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1515 mark_interval_tree (i); \
1516 } while (0)
1519 #define UNMARK_BALANCE_INTERVALS(i) \
1520 do { \
1521 if (! NULL_INTERVAL_P (i)) \
1522 (i) = balance_intervals (i); \
1523 } while (0)
1526 /* Number support. If USE_LISP_UNION_TYPE is in effect, we
1527 can't create number objects in macros. */
1528 #ifndef make_number
1529 Lisp_Object
1530 make_number (n)
1531 EMACS_INT n;
1533 Lisp_Object obj;
1534 obj.s.val = n;
1535 obj.s.type = Lisp_Int;
1536 return obj;
1538 #endif
1540 /***********************************************************************
1541 String Allocation
1542 ***********************************************************************/
1544 /* Lisp_Strings are allocated in string_block structures. When a new
1545 string_block is allocated, all the Lisp_Strings it contains are
1546 added to a free-list string_free_list. When a new Lisp_String is
1547 needed, it is taken from that list. During the sweep phase of GC,
1548 string_blocks that are entirely free are freed, except two which
1549 we keep.
1551 String data is allocated from sblock structures. Strings larger
1552 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1553 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1555 Sblocks consist internally of sdata structures, one for each
1556 Lisp_String. The sdata structure points to the Lisp_String it
1557 belongs to. The Lisp_String points back to the `u.data' member of
1558 its sdata structure.
1560 When a Lisp_String is freed during GC, it is put back on
1561 string_free_list, and its `data' member and its sdata's `string'
1562 pointer is set to null. The size of the string is recorded in the
1563 `u.nbytes' member of the sdata. So, sdata structures that are no
1564 longer used, can be easily recognized, and it's easy to compact the
1565 sblocks of small strings which we do in compact_small_strings. */
1567 /* Size in bytes of an sblock structure used for small strings. This
1568 is 8192 minus malloc overhead. */
1570 #define SBLOCK_SIZE 8188
1572 /* Strings larger than this are considered large strings. String data
1573 for large strings is allocated from individual sblocks. */
1575 #define LARGE_STRING_BYTES 1024
1577 /* Structure describing string memory sub-allocated from an sblock.
1578 This is where the contents of Lisp strings are stored. */
1580 struct sdata
1582 /* Back-pointer to the string this sdata belongs to. If null, this
1583 structure is free, and the NBYTES member of the union below
1584 contains the string's byte size (the same value that STRING_BYTES
1585 would return if STRING were non-null). If non-null, STRING_BYTES
1586 (STRING) is the size of the data, and DATA contains the string's
1587 contents. */
1588 struct Lisp_String *string;
1590 #ifdef GC_CHECK_STRING_BYTES
1592 EMACS_INT nbytes;
1593 unsigned char data[1];
1595 #define SDATA_NBYTES(S) (S)->nbytes
1596 #define SDATA_DATA(S) (S)->data
1598 #else /* not GC_CHECK_STRING_BYTES */
1600 union
1602 /* When STRING in non-null. */
1603 unsigned char data[1];
1605 /* When STRING is null. */
1606 EMACS_INT nbytes;
1607 } u;
1610 #define SDATA_NBYTES(S) (S)->u.nbytes
1611 #define SDATA_DATA(S) (S)->u.data
1613 #endif /* not GC_CHECK_STRING_BYTES */
1617 /* Structure describing a block of memory which is sub-allocated to
1618 obtain string data memory for strings. Blocks for small strings
1619 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1620 as large as needed. */
1622 struct sblock
1624 /* Next in list. */
1625 struct sblock *next;
1627 /* Pointer to the next free sdata block. This points past the end
1628 of the sblock if there isn't any space left in this block. */
1629 struct sdata *next_free;
1631 /* Start of data. */
1632 struct sdata first_data;
1635 /* Number of Lisp strings in a string_block structure. The 1020 is
1636 1024 minus malloc overhead. */
1638 #define STRING_BLOCK_SIZE \
1639 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1641 /* Structure describing a block from which Lisp_String structures
1642 are allocated. */
1644 struct string_block
1646 /* Place `strings' first, to preserve alignment. */
1647 struct Lisp_String strings[STRING_BLOCK_SIZE];
1648 struct string_block *next;
1651 /* Head and tail of the list of sblock structures holding Lisp string
1652 data. We always allocate from current_sblock. The NEXT pointers
1653 in the sblock structures go from oldest_sblock to current_sblock. */
1655 static struct sblock *oldest_sblock, *current_sblock;
1657 /* List of sblocks for large strings. */
1659 static struct sblock *large_sblocks;
1661 /* List of string_block structures, and how many there are. */
1663 static struct string_block *string_blocks;
1664 static int n_string_blocks;
1666 /* Free-list of Lisp_Strings. */
1668 static struct Lisp_String *string_free_list;
1670 /* Number of live and free Lisp_Strings. */
1672 static int total_strings, total_free_strings;
1674 /* Number of bytes used by live strings. */
1676 static int total_string_size;
1678 /* Given a pointer to a Lisp_String S which is on the free-list
1679 string_free_list, return a pointer to its successor in the
1680 free-list. */
1682 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1684 /* Return a pointer to the sdata structure belonging to Lisp string S.
1685 S must be live, i.e. S->data must not be null. S->data is actually
1686 a pointer to the `u.data' member of its sdata structure; the
1687 structure starts at a constant offset in front of that. */
1689 #ifdef GC_CHECK_STRING_BYTES
1691 #define SDATA_OF_STRING(S) \
1692 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1693 - sizeof (EMACS_INT)))
1695 #else /* not GC_CHECK_STRING_BYTES */
1697 #define SDATA_OF_STRING(S) \
1698 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1700 #endif /* not GC_CHECK_STRING_BYTES */
1703 #ifdef GC_CHECK_STRING_OVERRUN
1705 /* We check for overrun in string data blocks by appending a small
1706 "cookie" after each allocated string data block, and check for the
1707 presence of this cookie during GC. */
1709 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1710 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1711 { 0xde, 0xad, 0xbe, 0xef };
1713 #else
1714 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1715 #endif
1717 /* Value is the size of an sdata structure large enough to hold NBYTES
1718 bytes of string data. The value returned includes a terminating
1719 NUL byte, the size of the sdata structure, and padding. */
1721 #ifdef GC_CHECK_STRING_BYTES
1723 #define SDATA_SIZE(NBYTES) \
1724 ((sizeof (struct Lisp_String *) \
1725 + (NBYTES) + 1 \
1726 + sizeof (EMACS_INT) \
1727 + sizeof (EMACS_INT) - 1) \
1728 & ~(sizeof (EMACS_INT) - 1))
1730 #else /* not GC_CHECK_STRING_BYTES */
1732 #define SDATA_SIZE(NBYTES) \
1733 ((sizeof (struct Lisp_String *) \
1734 + (NBYTES) + 1 \
1735 + sizeof (EMACS_INT) - 1) \
1736 & ~(sizeof (EMACS_INT) - 1))
1738 #endif /* not GC_CHECK_STRING_BYTES */
1740 /* Extra bytes to allocate for each string. */
1742 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1744 /* Initialize string allocation. Called from init_alloc_once. */
1746 static void
1747 init_strings ()
1749 total_strings = total_free_strings = total_string_size = 0;
1750 oldest_sblock = current_sblock = large_sblocks = NULL;
1751 string_blocks = NULL;
1752 n_string_blocks = 0;
1753 string_free_list = NULL;
1754 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1755 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1759 #ifdef GC_CHECK_STRING_BYTES
1761 static int check_string_bytes_count;
1763 static void check_string_bytes P_ ((int));
1764 static void check_sblock P_ ((struct sblock *));
1766 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1769 /* Like GC_STRING_BYTES, but with debugging check. */
1772 string_bytes (s)
1773 struct Lisp_String *s;
1775 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1776 if (!PURE_POINTER_P (s)
1777 && s->data
1778 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1779 abort ();
1780 return nbytes;
1783 /* Check validity of Lisp strings' string_bytes member in B. */
1785 static void
1786 check_sblock (b)
1787 struct sblock *b;
1789 struct sdata *from, *end, *from_end;
1791 end = b->next_free;
1793 for (from = &b->first_data; from < end; from = from_end)
1795 /* Compute the next FROM here because copying below may
1796 overwrite data we need to compute it. */
1797 int nbytes;
1799 /* Check that the string size recorded in the string is the
1800 same as the one recorded in the sdata structure. */
1801 if (from->string)
1802 CHECK_STRING_BYTES (from->string);
1804 if (from->string)
1805 nbytes = GC_STRING_BYTES (from->string);
1806 else
1807 nbytes = SDATA_NBYTES (from);
1809 nbytes = SDATA_SIZE (nbytes);
1810 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1815 /* Check validity of Lisp strings' string_bytes member. ALL_P
1816 non-zero means check all strings, otherwise check only most
1817 recently allocated strings. Used for hunting a bug. */
1819 static void
1820 check_string_bytes (all_p)
1821 int all_p;
1823 if (all_p)
1825 struct sblock *b;
1827 for (b = large_sblocks; b; b = b->next)
1829 struct Lisp_String *s = b->first_data.string;
1830 if (s)
1831 CHECK_STRING_BYTES (s);
1834 for (b = oldest_sblock; b; b = b->next)
1835 check_sblock (b);
1837 else
1838 check_sblock (current_sblock);
1841 #endif /* GC_CHECK_STRING_BYTES */
1843 #ifdef GC_CHECK_STRING_FREE_LIST
1845 /* Walk through the string free list looking for bogus next pointers.
1846 This may catch buffer overrun from a previous string. */
1848 static void
1849 check_string_free_list ()
1851 struct Lisp_String *s;
1853 /* Pop a Lisp_String off the free-list. */
1854 s = string_free_list;
1855 while (s != NULL)
1857 if ((unsigned)s < 1024)
1858 abort();
1859 s = NEXT_FREE_LISP_STRING (s);
1862 #else
1863 #define check_string_free_list()
1864 #endif
1866 /* Return a new Lisp_String. */
1868 static struct Lisp_String *
1869 allocate_string ()
1871 struct Lisp_String *s;
1873 /* eassert (!handling_signal); */
1875 MALLOC_BLOCK_INPUT;
1877 /* If the free-list is empty, allocate a new string_block, and
1878 add all the Lisp_Strings in it to the free-list. */
1879 if (string_free_list == NULL)
1881 struct string_block *b;
1882 int i;
1884 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1885 bzero (b, sizeof *b);
1886 b->next = string_blocks;
1887 string_blocks = b;
1888 ++n_string_blocks;
1890 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1892 s = b->strings + i;
1893 NEXT_FREE_LISP_STRING (s) = string_free_list;
1894 string_free_list = s;
1897 total_free_strings += STRING_BLOCK_SIZE;
1900 check_string_free_list ();
1902 /* Pop a Lisp_String off the free-list. */
1903 s = string_free_list;
1904 string_free_list = NEXT_FREE_LISP_STRING (s);
1906 MALLOC_UNBLOCK_INPUT;
1908 /* Probably not strictly necessary, but play it safe. */
1909 bzero (s, sizeof *s);
1911 --total_free_strings;
1912 ++total_strings;
1913 ++strings_consed;
1914 consing_since_gc += sizeof *s;
1916 #ifdef GC_CHECK_STRING_BYTES
1917 if (!noninteractive)
1919 if (++check_string_bytes_count == 200)
1921 check_string_bytes_count = 0;
1922 check_string_bytes (1);
1924 else
1925 check_string_bytes (0);
1927 #endif /* GC_CHECK_STRING_BYTES */
1929 return s;
1933 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1934 plus a NUL byte at the end. Allocate an sdata structure for S, and
1935 set S->data to its `u.data' member. Store a NUL byte at the end of
1936 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1937 S->data if it was initially non-null. */
1939 void
1940 allocate_string_data (s, nchars, nbytes)
1941 struct Lisp_String *s;
1942 int nchars, nbytes;
1944 struct sdata *data, *old_data;
1945 struct sblock *b;
1946 int needed, old_nbytes;
1948 /* Determine the number of bytes needed to store NBYTES bytes
1949 of string data. */
1950 needed = SDATA_SIZE (nbytes);
1951 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1952 old_nbytes = GC_STRING_BYTES (s);
1954 MALLOC_BLOCK_INPUT;
1956 if (nbytes > LARGE_STRING_BYTES)
1958 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1960 #ifdef DOUG_LEA_MALLOC
1961 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1962 because mapped region contents are not preserved in
1963 a dumped Emacs.
1965 In case you think of allowing it in a dumped Emacs at the
1966 cost of not being able to re-dump, there's another reason:
1967 mmap'ed data typically have an address towards the top of the
1968 address space, which won't fit into an EMACS_INT (at least on
1969 32-bit systems with the current tagging scheme). --fx */
1970 mallopt (M_MMAP_MAX, 0);
1971 #endif
1973 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1975 #ifdef DOUG_LEA_MALLOC
1976 /* Back to a reasonable maximum of mmap'ed areas. */
1977 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1978 #endif
1980 b->next_free = &b->first_data;
1981 b->first_data.string = NULL;
1982 b->next = large_sblocks;
1983 large_sblocks = b;
1985 else if (current_sblock == NULL
1986 || (((char *) current_sblock + SBLOCK_SIZE
1987 - (char *) current_sblock->next_free)
1988 < (needed + GC_STRING_EXTRA)))
1990 /* Not enough room in the current sblock. */
1991 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1992 b->next_free = &b->first_data;
1993 b->first_data.string = NULL;
1994 b->next = NULL;
1996 if (current_sblock)
1997 current_sblock->next = b;
1998 else
1999 oldest_sblock = b;
2000 current_sblock = b;
2002 else
2003 b = current_sblock;
2005 data = b->next_free;
2006 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2008 MALLOC_UNBLOCK_INPUT;
2010 data->string = s;
2011 s->data = SDATA_DATA (data);
2012 #ifdef GC_CHECK_STRING_BYTES
2013 SDATA_NBYTES (data) = nbytes;
2014 #endif
2015 s->size = nchars;
2016 s->size_byte = nbytes;
2017 s->data[nbytes] = '\0';
2018 #ifdef GC_CHECK_STRING_OVERRUN
2019 bcopy (string_overrun_cookie, (char *) data + needed,
2020 GC_STRING_OVERRUN_COOKIE_SIZE);
2021 #endif
2023 /* If S had already data assigned, mark that as free by setting its
2024 string back-pointer to null, and recording the size of the data
2025 in it. */
2026 if (old_data)
2028 SDATA_NBYTES (old_data) = old_nbytes;
2029 old_data->string = NULL;
2032 consing_since_gc += needed;
2036 /* Sweep and compact strings. */
2038 static void
2039 sweep_strings ()
2041 struct string_block *b, *next;
2042 struct string_block *live_blocks = NULL;
2044 string_free_list = NULL;
2045 total_strings = total_free_strings = 0;
2046 total_string_size = 0;
2048 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2049 for (b = string_blocks; b; b = next)
2051 int i, nfree = 0;
2052 struct Lisp_String *free_list_before = string_free_list;
2054 next = b->next;
2056 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2058 struct Lisp_String *s = b->strings + i;
2060 if (s->data)
2062 /* String was not on free-list before. */
2063 if (STRING_MARKED_P (s))
2065 /* String is live; unmark it and its intervals. */
2066 UNMARK_STRING (s);
2068 if (!NULL_INTERVAL_P (s->intervals))
2069 UNMARK_BALANCE_INTERVALS (s->intervals);
2071 ++total_strings;
2072 total_string_size += STRING_BYTES (s);
2074 else
2076 /* String is dead. Put it on the free-list. */
2077 struct sdata *data = SDATA_OF_STRING (s);
2079 /* Save the size of S in its sdata so that we know
2080 how large that is. Reset the sdata's string
2081 back-pointer so that we know it's free. */
2082 #ifdef GC_CHECK_STRING_BYTES
2083 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2084 abort ();
2085 #else
2086 data->u.nbytes = GC_STRING_BYTES (s);
2087 #endif
2088 data->string = NULL;
2090 /* Reset the strings's `data' member so that we
2091 know it's free. */
2092 s->data = NULL;
2094 /* Put the string on the free-list. */
2095 NEXT_FREE_LISP_STRING (s) = string_free_list;
2096 string_free_list = s;
2097 ++nfree;
2100 else
2102 /* S was on the free-list before. Put it there again. */
2103 NEXT_FREE_LISP_STRING (s) = string_free_list;
2104 string_free_list = s;
2105 ++nfree;
2109 /* Free blocks that contain free Lisp_Strings only, except
2110 the first two of them. */
2111 if (nfree == STRING_BLOCK_SIZE
2112 && total_free_strings > STRING_BLOCK_SIZE)
2114 lisp_free (b);
2115 --n_string_blocks;
2116 string_free_list = free_list_before;
2118 else
2120 total_free_strings += nfree;
2121 b->next = live_blocks;
2122 live_blocks = b;
2126 check_string_free_list ();
2128 string_blocks = live_blocks;
2129 free_large_strings ();
2130 compact_small_strings ();
2132 check_string_free_list ();
2136 /* Free dead large strings. */
2138 static void
2139 free_large_strings ()
2141 struct sblock *b, *next;
2142 struct sblock *live_blocks = NULL;
2144 for (b = large_sblocks; b; b = next)
2146 next = b->next;
2148 if (b->first_data.string == NULL)
2149 lisp_free (b);
2150 else
2152 b->next = live_blocks;
2153 live_blocks = b;
2157 large_sblocks = live_blocks;
2161 /* Compact data of small strings. Free sblocks that don't contain
2162 data of live strings after compaction. */
2164 static void
2165 compact_small_strings ()
2167 struct sblock *b, *tb, *next;
2168 struct sdata *from, *to, *end, *tb_end;
2169 struct sdata *to_end, *from_end;
2171 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2172 to, and TB_END is the end of TB. */
2173 tb = oldest_sblock;
2174 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2175 to = &tb->first_data;
2177 /* Step through the blocks from the oldest to the youngest. We
2178 expect that old blocks will stabilize over time, so that less
2179 copying will happen this way. */
2180 for (b = oldest_sblock; b; b = b->next)
2182 end = b->next_free;
2183 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2185 for (from = &b->first_data; from < end; from = from_end)
2187 /* Compute the next FROM here because copying below may
2188 overwrite data we need to compute it. */
2189 int nbytes;
2191 #ifdef GC_CHECK_STRING_BYTES
2192 /* Check that the string size recorded in the string is the
2193 same as the one recorded in the sdata structure. */
2194 if (from->string
2195 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2196 abort ();
2197 #endif /* GC_CHECK_STRING_BYTES */
2199 if (from->string)
2200 nbytes = GC_STRING_BYTES (from->string);
2201 else
2202 nbytes = SDATA_NBYTES (from);
2204 if (nbytes > LARGE_STRING_BYTES)
2205 abort ();
2207 nbytes = SDATA_SIZE (nbytes);
2208 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2210 #ifdef GC_CHECK_STRING_OVERRUN
2211 if (bcmp (string_overrun_cookie,
2212 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2213 GC_STRING_OVERRUN_COOKIE_SIZE))
2214 abort ();
2215 #endif
2217 /* FROM->string non-null means it's alive. Copy its data. */
2218 if (from->string)
2220 /* If TB is full, proceed with the next sblock. */
2221 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2222 if (to_end > tb_end)
2224 tb->next_free = to;
2225 tb = tb->next;
2226 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2227 to = &tb->first_data;
2228 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2231 /* Copy, and update the string's `data' pointer. */
2232 if (from != to)
2234 xassert (tb != b || to <= from);
2235 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2236 to->string->data = SDATA_DATA (to);
2239 /* Advance past the sdata we copied to. */
2240 to = to_end;
2245 /* The rest of the sblocks following TB don't contain live data, so
2246 we can free them. */
2247 for (b = tb->next; b; b = next)
2249 next = b->next;
2250 lisp_free (b);
2253 tb->next_free = to;
2254 tb->next = NULL;
2255 current_sblock = tb;
2259 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2260 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2261 LENGTH must be an integer.
2262 INIT must be an integer that represents a character. */)
2263 (length, init)
2264 Lisp_Object length, init;
2266 register Lisp_Object val;
2267 register unsigned char *p, *end;
2268 int c, nbytes;
2270 CHECK_NATNUM (length);
2271 CHECK_NUMBER (init);
2273 c = XINT (init);
2274 if (ASCII_CHAR_P (c))
2276 nbytes = XINT (length);
2277 val = make_uninit_string (nbytes);
2278 p = SDATA (val);
2279 end = p + SCHARS (val);
2280 while (p != end)
2281 *p++ = c;
2283 else
2285 unsigned char str[MAX_MULTIBYTE_LENGTH];
2286 int len = CHAR_STRING (c, str);
2288 nbytes = len * XINT (length);
2289 val = make_uninit_multibyte_string (XINT (length), nbytes);
2290 p = SDATA (val);
2291 end = p + nbytes;
2292 while (p != end)
2294 bcopy (str, p, len);
2295 p += len;
2299 *p = 0;
2300 return val;
2304 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2305 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2306 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2307 (length, init)
2308 Lisp_Object length, init;
2310 register Lisp_Object val;
2311 struct Lisp_Bool_Vector *p;
2312 int real_init, i;
2313 int length_in_chars, length_in_elts, bits_per_value;
2315 CHECK_NATNUM (length);
2317 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2319 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2320 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2321 / BOOL_VECTOR_BITS_PER_CHAR);
2323 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2324 slot `size' of the struct Lisp_Bool_Vector. */
2325 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2327 /* Get rid of any bits that would cause confusion. */
2328 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2329 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2330 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2332 p = XBOOL_VECTOR (val);
2333 p->size = XFASTINT (length);
2335 real_init = (NILP (init) ? 0 : -1);
2336 for (i = 0; i < length_in_chars ; i++)
2337 p->data[i] = real_init;
2339 /* Clear the extraneous bits in the last byte. */
2340 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2341 p->data[length_in_chars - 1]
2342 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2344 return val;
2348 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2349 of characters from the contents. This string may be unibyte or
2350 multibyte, depending on the contents. */
2352 Lisp_Object
2353 make_string (contents, nbytes)
2354 const char *contents;
2355 int nbytes;
2357 register Lisp_Object val;
2358 int nchars, multibyte_nbytes;
2360 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2361 if (nbytes == nchars || nbytes != multibyte_nbytes)
2362 /* CONTENTS contains no multibyte sequences or contains an invalid
2363 multibyte sequence. We must make unibyte string. */
2364 val = make_unibyte_string (contents, nbytes);
2365 else
2366 val = make_multibyte_string (contents, nchars, nbytes);
2367 return val;
2371 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2373 Lisp_Object
2374 make_unibyte_string (contents, length)
2375 const char *contents;
2376 int length;
2378 register Lisp_Object val;
2379 val = make_uninit_string (length);
2380 bcopy (contents, SDATA (val), length);
2381 STRING_SET_UNIBYTE (val);
2382 return val;
2386 /* Make a multibyte string from NCHARS characters occupying NBYTES
2387 bytes at CONTENTS. */
2389 Lisp_Object
2390 make_multibyte_string (contents, nchars, nbytes)
2391 const char *contents;
2392 int nchars, nbytes;
2394 register Lisp_Object val;
2395 val = make_uninit_multibyte_string (nchars, nbytes);
2396 bcopy (contents, SDATA (val), nbytes);
2397 return val;
2401 /* Make a string from NCHARS characters occupying NBYTES bytes at
2402 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2404 Lisp_Object
2405 make_string_from_bytes (contents, nchars, nbytes)
2406 const char *contents;
2407 int nchars, nbytes;
2409 register Lisp_Object val;
2410 val = make_uninit_multibyte_string (nchars, nbytes);
2411 bcopy (contents, SDATA (val), nbytes);
2412 if (SBYTES (val) == SCHARS (val))
2413 STRING_SET_UNIBYTE (val);
2414 return val;
2418 /* Make a string from NCHARS characters occupying NBYTES bytes at
2419 CONTENTS. The argument MULTIBYTE controls whether to label the
2420 string as multibyte. If NCHARS is negative, it counts the number of
2421 characters by itself. */
2423 Lisp_Object
2424 make_specified_string (contents, nchars, nbytes, multibyte)
2425 const char *contents;
2426 int nchars, nbytes;
2427 int multibyte;
2429 register Lisp_Object val;
2431 if (nchars < 0)
2433 if (multibyte)
2434 nchars = multibyte_chars_in_text (contents, nbytes);
2435 else
2436 nchars = nbytes;
2438 val = make_uninit_multibyte_string (nchars, nbytes);
2439 bcopy (contents, SDATA (val), nbytes);
2440 if (!multibyte)
2441 STRING_SET_UNIBYTE (val);
2442 return val;
2446 /* Make a string from the data at STR, treating it as multibyte if the
2447 data warrants. */
2449 Lisp_Object
2450 build_string (str)
2451 const char *str;
2453 return make_string (str, strlen (str));
2457 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2458 occupying LENGTH bytes. */
2460 Lisp_Object
2461 make_uninit_string (length)
2462 int length;
2464 Lisp_Object val;
2466 if (!length)
2467 return empty_unibyte_string;
2468 val = make_uninit_multibyte_string (length, length);
2469 STRING_SET_UNIBYTE (val);
2470 return val;
2474 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2475 which occupy NBYTES bytes. */
2477 Lisp_Object
2478 make_uninit_multibyte_string (nchars, nbytes)
2479 int nchars, nbytes;
2481 Lisp_Object string;
2482 struct Lisp_String *s;
2484 if (nchars < 0)
2485 abort ();
2486 if (!nbytes)
2487 return empty_multibyte_string;
2489 s = allocate_string ();
2490 allocate_string_data (s, nchars, nbytes);
2491 XSETSTRING (string, s);
2492 string_chars_consed += nbytes;
2493 return string;
2498 /***********************************************************************
2499 Float Allocation
2500 ***********************************************************************/
2502 /* We store float cells inside of float_blocks, allocating a new
2503 float_block with malloc whenever necessary. Float cells reclaimed
2504 by GC are put on a free list to be reallocated before allocating
2505 any new float cells from the latest float_block. */
2507 #define FLOAT_BLOCK_SIZE \
2508 (((BLOCK_BYTES - sizeof (struct float_block *) \
2509 /* The compiler might add padding at the end. */ \
2510 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2511 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2513 #define GETMARKBIT(block,n) \
2514 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2515 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2516 & 1)
2518 #define SETMARKBIT(block,n) \
2519 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2520 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2522 #define UNSETMARKBIT(block,n) \
2523 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2524 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2526 #define FLOAT_BLOCK(fptr) \
2527 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2529 #define FLOAT_INDEX(fptr) \
2530 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2532 struct float_block
2534 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2535 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2536 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2537 struct float_block *next;
2540 #define FLOAT_MARKED_P(fptr) \
2541 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2543 #define FLOAT_MARK(fptr) \
2544 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2546 #define FLOAT_UNMARK(fptr) \
2547 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2549 /* Current float_block. */
2551 struct float_block *float_block;
2553 /* Index of first unused Lisp_Float in the current float_block. */
2555 int float_block_index;
2557 /* Total number of float blocks now in use. */
2559 int n_float_blocks;
2561 /* Free-list of Lisp_Floats. */
2563 struct Lisp_Float *float_free_list;
2566 /* Initialize float allocation. */
2568 static void
2569 init_float ()
2571 float_block = NULL;
2572 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2573 float_free_list = 0;
2574 n_float_blocks = 0;
2578 /* Explicitly free a float cell by putting it on the free-list. */
2580 static void
2581 free_float (ptr)
2582 struct Lisp_Float *ptr;
2584 ptr->u.chain = float_free_list;
2585 float_free_list = ptr;
2589 /* Return a new float object with value FLOAT_VALUE. */
2591 Lisp_Object
2592 make_float (float_value)
2593 double float_value;
2595 register Lisp_Object val;
2597 /* eassert (!handling_signal); */
2599 MALLOC_BLOCK_INPUT;
2601 if (float_free_list)
2603 /* We use the data field for chaining the free list
2604 so that we won't use the same field that has the mark bit. */
2605 XSETFLOAT (val, float_free_list);
2606 float_free_list = float_free_list->u.chain;
2608 else
2610 if (float_block_index == FLOAT_BLOCK_SIZE)
2612 register struct float_block *new;
2614 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2615 MEM_TYPE_FLOAT);
2616 new->next = float_block;
2617 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2618 float_block = new;
2619 float_block_index = 0;
2620 n_float_blocks++;
2622 XSETFLOAT (val, &float_block->floats[float_block_index]);
2623 float_block_index++;
2626 MALLOC_UNBLOCK_INPUT;
2628 XFLOAT_INIT (val, float_value);
2629 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2630 consing_since_gc += sizeof (struct Lisp_Float);
2631 floats_consed++;
2632 return val;
2637 /***********************************************************************
2638 Cons Allocation
2639 ***********************************************************************/
2641 /* We store cons cells inside of cons_blocks, allocating a new
2642 cons_block with malloc whenever necessary. Cons cells reclaimed by
2643 GC are put on a free list to be reallocated before allocating
2644 any new cons cells from the latest cons_block. */
2646 #define CONS_BLOCK_SIZE \
2647 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2648 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2650 #define CONS_BLOCK(fptr) \
2651 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2653 #define CONS_INDEX(fptr) \
2654 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2656 struct cons_block
2658 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2659 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2660 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2661 struct cons_block *next;
2664 #define CONS_MARKED_P(fptr) \
2665 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2667 #define CONS_MARK(fptr) \
2668 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2670 #define CONS_UNMARK(fptr) \
2671 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2673 /* Current cons_block. */
2675 struct cons_block *cons_block;
2677 /* Index of first unused Lisp_Cons in the current block. */
2679 int cons_block_index;
2681 /* Free-list of Lisp_Cons structures. */
2683 struct Lisp_Cons *cons_free_list;
2685 /* Total number of cons blocks now in use. */
2687 static int n_cons_blocks;
2690 /* Initialize cons allocation. */
2692 static void
2693 init_cons ()
2695 cons_block = NULL;
2696 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2697 cons_free_list = 0;
2698 n_cons_blocks = 0;
2702 /* Explicitly free a cons cell by putting it on the free-list. */
2704 void
2705 free_cons (ptr)
2706 struct Lisp_Cons *ptr;
2708 ptr->u.chain = cons_free_list;
2709 #if GC_MARK_STACK
2710 ptr->car = Vdead;
2711 #endif
2712 cons_free_list = ptr;
2715 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2716 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2717 (car, cdr)
2718 Lisp_Object car, cdr;
2720 register Lisp_Object val;
2722 /* eassert (!handling_signal); */
2724 MALLOC_BLOCK_INPUT;
2726 if (cons_free_list)
2728 /* We use the cdr for chaining the free list
2729 so that we won't use the same field that has the mark bit. */
2730 XSETCONS (val, cons_free_list);
2731 cons_free_list = cons_free_list->u.chain;
2733 else
2735 if (cons_block_index == CONS_BLOCK_SIZE)
2737 register struct cons_block *new;
2738 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2739 MEM_TYPE_CONS);
2740 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2741 new->next = cons_block;
2742 cons_block = new;
2743 cons_block_index = 0;
2744 n_cons_blocks++;
2746 XSETCONS (val, &cons_block->conses[cons_block_index]);
2747 cons_block_index++;
2750 MALLOC_UNBLOCK_INPUT;
2752 XSETCAR (val, car);
2753 XSETCDR (val, cdr);
2754 eassert (!CONS_MARKED_P (XCONS (val)));
2755 consing_since_gc += sizeof (struct Lisp_Cons);
2756 cons_cells_consed++;
2757 return val;
2760 /* Get an error now if there's any junk in the cons free list. */
2761 void
2762 check_cons_list ()
2764 #ifdef GC_CHECK_CONS_LIST
2765 struct Lisp_Cons *tail = cons_free_list;
2767 while (tail)
2768 tail = tail->u.chain;
2769 #endif
2772 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2774 Lisp_Object
2775 list1 (arg1)
2776 Lisp_Object arg1;
2778 return Fcons (arg1, Qnil);
2781 Lisp_Object
2782 list2 (arg1, arg2)
2783 Lisp_Object arg1, arg2;
2785 return Fcons (arg1, Fcons (arg2, Qnil));
2789 Lisp_Object
2790 list3 (arg1, arg2, arg3)
2791 Lisp_Object arg1, arg2, arg3;
2793 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2797 Lisp_Object
2798 list4 (arg1, arg2, arg3, arg4)
2799 Lisp_Object arg1, arg2, arg3, arg4;
2801 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2805 Lisp_Object
2806 list5 (arg1, arg2, arg3, arg4, arg5)
2807 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2809 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2810 Fcons (arg5, Qnil)))));
2814 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2815 doc: /* Return a newly created list with specified arguments as elements.
2816 Any number of arguments, even zero arguments, are allowed.
2817 usage: (list &rest OBJECTS) */)
2818 (nargs, args)
2819 int nargs;
2820 register Lisp_Object *args;
2822 register Lisp_Object val;
2823 val = Qnil;
2825 while (nargs > 0)
2827 nargs--;
2828 val = Fcons (args[nargs], val);
2830 return val;
2834 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2835 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2836 (length, init)
2837 register Lisp_Object length, init;
2839 register Lisp_Object val;
2840 register int size;
2842 CHECK_NATNUM (length);
2843 size = XFASTINT (length);
2845 val = Qnil;
2846 while (size > 0)
2848 val = Fcons (init, val);
2849 --size;
2851 if (size > 0)
2853 val = Fcons (init, val);
2854 --size;
2856 if (size > 0)
2858 val = Fcons (init, val);
2859 --size;
2861 if (size > 0)
2863 val = Fcons (init, val);
2864 --size;
2866 if (size > 0)
2868 val = Fcons (init, val);
2869 --size;
2875 QUIT;
2878 return val;
2883 /***********************************************************************
2884 Vector Allocation
2885 ***********************************************************************/
2887 /* Singly-linked list of all vectors. */
2889 static struct Lisp_Vector *all_vectors;
2891 /* Total number of vector-like objects now in use. */
2893 static int n_vectors;
2896 /* Value is a pointer to a newly allocated Lisp_Vector structure
2897 with room for LEN Lisp_Objects. */
2899 static struct Lisp_Vector *
2900 allocate_vectorlike (len)
2901 EMACS_INT len;
2903 struct Lisp_Vector *p;
2904 size_t nbytes;
2906 MALLOC_BLOCK_INPUT;
2908 #ifdef DOUG_LEA_MALLOC
2909 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2910 because mapped region contents are not preserved in
2911 a dumped Emacs. */
2912 mallopt (M_MMAP_MAX, 0);
2913 #endif
2915 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2916 /* eassert (!handling_signal); */
2918 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2919 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2921 #ifdef DOUG_LEA_MALLOC
2922 /* Back to a reasonable maximum of mmap'ed areas. */
2923 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2924 #endif
2926 consing_since_gc += nbytes;
2927 vector_cells_consed += len;
2929 p->next = all_vectors;
2930 all_vectors = p;
2932 MALLOC_UNBLOCK_INPUT;
2934 ++n_vectors;
2935 return p;
2939 /* Allocate a vector with NSLOTS slots. */
2941 struct Lisp_Vector *
2942 allocate_vector (nslots)
2943 EMACS_INT nslots;
2945 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2946 v->size = nslots;
2947 return v;
2951 /* Allocate other vector-like structures. */
2953 struct Lisp_Vector *
2954 allocate_pseudovector (memlen, lisplen, tag)
2955 int memlen, lisplen;
2956 EMACS_INT tag;
2958 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2959 EMACS_INT i;
2961 /* Only the first lisplen slots will be traced normally by the GC. */
2962 v->size = lisplen;
2963 for (i = 0; i < lisplen; ++i)
2964 v->contents[i] = Qnil;
2966 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2967 return v;
2970 struct Lisp_Hash_Table *
2971 allocate_hash_table (void)
2973 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2977 struct window *
2978 allocate_window ()
2980 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
2984 struct terminal *
2985 allocate_terminal ()
2987 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
2988 next_terminal, PVEC_TERMINAL);
2989 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
2990 bzero (&(t->next_terminal),
2991 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
2993 return t;
2996 struct frame *
2997 allocate_frame ()
2999 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3000 face_cache, PVEC_FRAME);
3001 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3002 bzero (&(f->face_cache),
3003 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3004 return f;
3008 struct Lisp_Process *
3009 allocate_process ()
3011 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3015 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3016 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3017 See also the function `vector'. */)
3018 (length, init)
3019 register Lisp_Object length, init;
3021 Lisp_Object vector;
3022 register EMACS_INT sizei;
3023 register int index;
3024 register struct Lisp_Vector *p;
3026 CHECK_NATNUM (length);
3027 sizei = XFASTINT (length);
3029 p = allocate_vector (sizei);
3030 for (index = 0; index < sizei; index++)
3031 p->contents[index] = init;
3033 XSETVECTOR (vector, p);
3034 return vector;
3038 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3039 doc: /* Return a newly created vector with specified arguments as elements.
3040 Any number of arguments, even zero arguments, are allowed.
3041 usage: (vector &rest OBJECTS) */)
3042 (nargs, args)
3043 register int nargs;
3044 Lisp_Object *args;
3046 register Lisp_Object len, val;
3047 register int index;
3048 register struct Lisp_Vector *p;
3050 XSETFASTINT (len, nargs);
3051 val = Fmake_vector (len, Qnil);
3052 p = XVECTOR (val);
3053 for (index = 0; index < nargs; index++)
3054 p->contents[index] = args[index];
3055 return val;
3059 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3060 doc: /* Create a byte-code object with specified arguments as elements.
3061 The arguments should be the arglist, bytecode-string, constant vector,
3062 stack size, (optional) doc string, and (optional) interactive spec.
3063 The first four arguments are required; at most six have any
3064 significance.
3065 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3066 (nargs, args)
3067 register int nargs;
3068 Lisp_Object *args;
3070 register Lisp_Object len, val;
3071 register int index;
3072 register struct Lisp_Vector *p;
3074 XSETFASTINT (len, nargs);
3075 if (!NILP (Vpurify_flag))
3076 val = make_pure_vector ((EMACS_INT) nargs);
3077 else
3078 val = Fmake_vector (len, Qnil);
3080 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3081 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3082 earlier because they produced a raw 8-bit string for byte-code
3083 and now such a byte-code string is loaded as multibyte while
3084 raw 8-bit characters converted to multibyte form. Thus, now we
3085 must convert them back to the original unibyte form. */
3086 args[1] = Fstring_as_unibyte (args[1]);
3088 p = XVECTOR (val);
3089 for (index = 0; index < nargs; index++)
3091 if (!NILP (Vpurify_flag))
3092 args[index] = Fpurecopy (args[index]);
3093 p->contents[index] = args[index];
3095 XSETPVECTYPE (p, PVEC_COMPILED);
3096 XSETCOMPILED (val, p);
3097 return val;
3102 /***********************************************************************
3103 Symbol Allocation
3104 ***********************************************************************/
3106 /* Each symbol_block is just under 1020 bytes long, since malloc
3107 really allocates in units of powers of two and uses 4 bytes for its
3108 own overhead. */
3110 #define SYMBOL_BLOCK_SIZE \
3111 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3113 struct symbol_block
3115 /* Place `symbols' first, to preserve alignment. */
3116 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3117 struct symbol_block *next;
3120 /* Current symbol block and index of first unused Lisp_Symbol
3121 structure in it. */
3123 static struct symbol_block *symbol_block;
3124 static int symbol_block_index;
3126 /* List of free symbols. */
3128 static struct Lisp_Symbol *symbol_free_list;
3130 /* Total number of symbol blocks now in use. */
3132 static int n_symbol_blocks;
3135 /* Initialize symbol allocation. */
3137 static void
3138 init_symbol ()
3140 symbol_block = NULL;
3141 symbol_block_index = SYMBOL_BLOCK_SIZE;
3142 symbol_free_list = 0;
3143 n_symbol_blocks = 0;
3147 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3148 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3149 Its value and function definition are void, and its property list is nil. */)
3150 (name)
3151 Lisp_Object name;
3153 register Lisp_Object val;
3154 register struct Lisp_Symbol *p;
3156 CHECK_STRING (name);
3158 /* eassert (!handling_signal); */
3160 MALLOC_BLOCK_INPUT;
3162 if (symbol_free_list)
3164 XSETSYMBOL (val, symbol_free_list);
3165 symbol_free_list = symbol_free_list->next;
3167 else
3169 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3171 struct symbol_block *new;
3172 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3173 MEM_TYPE_SYMBOL);
3174 new->next = symbol_block;
3175 symbol_block = new;
3176 symbol_block_index = 0;
3177 n_symbol_blocks++;
3179 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3180 symbol_block_index++;
3183 MALLOC_UNBLOCK_INPUT;
3185 p = XSYMBOL (val);
3186 p->xname = name;
3187 p->plist = Qnil;
3188 p->value = Qunbound;
3189 p->function = Qunbound;
3190 p->next = NULL;
3191 p->gcmarkbit = 0;
3192 p->interned = SYMBOL_UNINTERNED;
3193 p->constant = 0;
3194 p->indirect_variable = 0;
3195 consing_since_gc += sizeof (struct Lisp_Symbol);
3196 symbols_consed++;
3197 return val;
3202 /***********************************************************************
3203 Marker (Misc) Allocation
3204 ***********************************************************************/
3206 /* Allocation of markers and other objects that share that structure.
3207 Works like allocation of conses. */
3209 #define MARKER_BLOCK_SIZE \
3210 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3212 struct marker_block
3214 /* Place `markers' first, to preserve alignment. */
3215 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3216 struct marker_block *next;
3219 static struct marker_block *marker_block;
3220 static int marker_block_index;
3222 static union Lisp_Misc *marker_free_list;
3224 /* Total number of marker blocks now in use. */
3226 static int n_marker_blocks;
3228 static void
3229 init_marker ()
3231 marker_block = NULL;
3232 marker_block_index = MARKER_BLOCK_SIZE;
3233 marker_free_list = 0;
3234 n_marker_blocks = 0;
3237 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3239 Lisp_Object
3240 allocate_misc ()
3242 Lisp_Object val;
3244 /* eassert (!handling_signal); */
3246 MALLOC_BLOCK_INPUT;
3248 if (marker_free_list)
3250 XSETMISC (val, marker_free_list);
3251 marker_free_list = marker_free_list->u_free.chain;
3253 else
3255 if (marker_block_index == MARKER_BLOCK_SIZE)
3257 struct marker_block *new;
3258 new = (struct marker_block *) lisp_malloc (sizeof *new,
3259 MEM_TYPE_MISC);
3260 new->next = marker_block;
3261 marker_block = new;
3262 marker_block_index = 0;
3263 n_marker_blocks++;
3264 total_free_markers += MARKER_BLOCK_SIZE;
3266 XSETMISC (val, &marker_block->markers[marker_block_index]);
3267 marker_block_index++;
3270 MALLOC_UNBLOCK_INPUT;
3272 --total_free_markers;
3273 consing_since_gc += sizeof (union Lisp_Misc);
3274 misc_objects_consed++;
3275 XMISCANY (val)->gcmarkbit = 0;
3276 return val;
3279 /* Free a Lisp_Misc object */
3281 void
3282 free_misc (misc)
3283 Lisp_Object misc;
3285 XMISCTYPE (misc) = Lisp_Misc_Free;
3286 XMISC (misc)->u_free.chain = marker_free_list;
3287 marker_free_list = XMISC (misc);
3289 total_free_markers++;
3292 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3293 INTEGER. This is used to package C values to call record_unwind_protect.
3294 The unwind function can get the C values back using XSAVE_VALUE. */
3296 Lisp_Object
3297 make_save_value (pointer, integer)
3298 void *pointer;
3299 int integer;
3301 register Lisp_Object val;
3302 register struct Lisp_Save_Value *p;
3304 val = allocate_misc ();
3305 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3306 p = XSAVE_VALUE (val);
3307 p->pointer = pointer;
3308 p->integer = integer;
3309 p->dogc = 0;
3310 return val;
3313 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3314 doc: /* Return a newly allocated marker which does not point at any place. */)
3317 register Lisp_Object val;
3318 register struct Lisp_Marker *p;
3320 val = allocate_misc ();
3321 XMISCTYPE (val) = Lisp_Misc_Marker;
3322 p = XMARKER (val);
3323 p->buffer = 0;
3324 p->bytepos = 0;
3325 p->charpos = 0;
3326 p->next = NULL;
3327 p->insertion_type = 0;
3328 return val;
3331 /* Put MARKER back on the free list after using it temporarily. */
3333 void
3334 free_marker (marker)
3335 Lisp_Object marker;
3337 unchain_marker (XMARKER (marker));
3338 free_misc (marker);
3342 /* Return a newly created vector or string with specified arguments as
3343 elements. If all the arguments are characters that can fit
3344 in a string of events, make a string; otherwise, make a vector.
3346 Any number of arguments, even zero arguments, are allowed. */
3348 Lisp_Object
3349 make_event_array (nargs, args)
3350 register int nargs;
3351 Lisp_Object *args;
3353 int i;
3355 for (i = 0; i < nargs; i++)
3356 /* The things that fit in a string
3357 are characters that are in 0...127,
3358 after discarding the meta bit and all the bits above it. */
3359 if (!INTEGERP (args[i])
3360 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3361 return Fvector (nargs, args);
3363 /* Since the loop exited, we know that all the things in it are
3364 characters, so we can make a string. */
3366 Lisp_Object result;
3368 result = Fmake_string (make_number (nargs), make_number (0));
3369 for (i = 0; i < nargs; i++)
3371 SSET (result, i, XINT (args[i]));
3372 /* Move the meta bit to the right place for a string char. */
3373 if (XINT (args[i]) & CHAR_META)
3374 SSET (result, i, SREF (result, i) | 0x80);
3377 return result;
3383 /************************************************************************
3384 Memory Full Handling
3385 ************************************************************************/
3388 /* Called if malloc returns zero. */
3390 void
3391 memory_full ()
3393 int i;
3395 Vmemory_full = Qt;
3397 memory_full_cons_threshold = sizeof (struct cons_block);
3399 /* The first time we get here, free the spare memory. */
3400 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3401 if (spare_memory[i])
3403 if (i == 0)
3404 free (spare_memory[i]);
3405 else if (i >= 1 && i <= 4)
3406 lisp_align_free (spare_memory[i]);
3407 else
3408 lisp_free (spare_memory[i]);
3409 spare_memory[i] = 0;
3412 /* Record the space now used. When it decreases substantially,
3413 we can refill the memory reserve. */
3414 #ifndef SYSTEM_MALLOC
3415 bytes_used_when_full = BYTES_USED;
3416 #endif
3418 /* This used to call error, but if we've run out of memory, we could
3419 get infinite recursion trying to build the string. */
3420 xsignal (Qnil, Vmemory_signal_data);
3423 /* If we released our reserve (due to running out of memory),
3424 and we have a fair amount free once again,
3425 try to set aside another reserve in case we run out once more.
3427 This is called when a relocatable block is freed in ralloc.c,
3428 and also directly from this file, in case we're not using ralloc.c. */
3430 void
3431 refill_memory_reserve ()
3433 #ifndef SYSTEM_MALLOC
3434 if (spare_memory[0] == 0)
3435 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3436 if (spare_memory[1] == 0)
3437 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3438 MEM_TYPE_CONS);
3439 if (spare_memory[2] == 0)
3440 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3441 MEM_TYPE_CONS);
3442 if (spare_memory[3] == 0)
3443 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3444 MEM_TYPE_CONS);
3445 if (spare_memory[4] == 0)
3446 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3447 MEM_TYPE_CONS);
3448 if (spare_memory[5] == 0)
3449 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3450 MEM_TYPE_STRING);
3451 if (spare_memory[6] == 0)
3452 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3453 MEM_TYPE_STRING);
3454 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3455 Vmemory_full = Qnil;
3456 #endif
3459 /************************************************************************
3460 C Stack Marking
3461 ************************************************************************/
3463 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3465 /* Conservative C stack marking requires a method to identify possibly
3466 live Lisp objects given a pointer value. We do this by keeping
3467 track of blocks of Lisp data that are allocated in a red-black tree
3468 (see also the comment of mem_node which is the type of nodes in
3469 that tree). Function lisp_malloc adds information for an allocated
3470 block to the red-black tree with calls to mem_insert, and function
3471 lisp_free removes it with mem_delete. Functions live_string_p etc
3472 call mem_find to lookup information about a given pointer in the
3473 tree, and use that to determine if the pointer points to a Lisp
3474 object or not. */
3476 /* Initialize this part of alloc.c. */
3478 static void
3479 mem_init ()
3481 mem_z.left = mem_z.right = MEM_NIL;
3482 mem_z.parent = NULL;
3483 mem_z.color = MEM_BLACK;
3484 mem_z.start = mem_z.end = NULL;
3485 mem_root = MEM_NIL;
3489 /* Value is a pointer to the mem_node containing START. Value is
3490 MEM_NIL if there is no node in the tree containing START. */
3492 static INLINE struct mem_node *
3493 mem_find (start)
3494 void *start;
3496 struct mem_node *p;
3498 if (start < min_heap_address || start > max_heap_address)
3499 return MEM_NIL;
3501 /* Make the search always successful to speed up the loop below. */
3502 mem_z.start = start;
3503 mem_z.end = (char *) start + 1;
3505 p = mem_root;
3506 while (start < p->start || start >= p->end)
3507 p = start < p->start ? p->left : p->right;
3508 return p;
3512 /* Insert a new node into the tree for a block of memory with start
3513 address START, end address END, and type TYPE. Value is a
3514 pointer to the node that was inserted. */
3516 static struct mem_node *
3517 mem_insert (start, end, type)
3518 void *start, *end;
3519 enum mem_type type;
3521 struct mem_node *c, *parent, *x;
3523 if (min_heap_address == NULL || start < min_heap_address)
3524 min_heap_address = start;
3525 if (max_heap_address == NULL || end > max_heap_address)
3526 max_heap_address = end;
3528 /* See where in the tree a node for START belongs. In this
3529 particular application, it shouldn't happen that a node is already
3530 present. For debugging purposes, let's check that. */
3531 c = mem_root;
3532 parent = NULL;
3534 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3536 while (c != MEM_NIL)
3538 if (start >= c->start && start < c->end)
3539 abort ();
3540 parent = c;
3541 c = start < c->start ? c->left : c->right;
3544 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3546 while (c != MEM_NIL)
3548 parent = c;
3549 c = start < c->start ? c->left : c->right;
3552 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3554 /* Create a new node. */
3555 #ifdef GC_MALLOC_CHECK
3556 x = (struct mem_node *) _malloc_internal (sizeof *x);
3557 if (x == NULL)
3558 abort ();
3559 #else
3560 x = (struct mem_node *) xmalloc (sizeof *x);
3561 #endif
3562 x->start = start;
3563 x->end = end;
3564 x->type = type;
3565 x->parent = parent;
3566 x->left = x->right = MEM_NIL;
3567 x->color = MEM_RED;
3569 /* Insert it as child of PARENT or install it as root. */
3570 if (parent)
3572 if (start < parent->start)
3573 parent->left = x;
3574 else
3575 parent->right = x;
3577 else
3578 mem_root = x;
3580 /* Re-establish red-black tree properties. */
3581 mem_insert_fixup (x);
3583 return x;
3587 /* Re-establish the red-black properties of the tree, and thereby
3588 balance the tree, after node X has been inserted; X is always red. */
3590 static void
3591 mem_insert_fixup (x)
3592 struct mem_node *x;
3594 while (x != mem_root && x->parent->color == MEM_RED)
3596 /* X is red and its parent is red. This is a violation of
3597 red-black tree property #3. */
3599 if (x->parent == x->parent->parent->left)
3601 /* We're on the left side of our grandparent, and Y is our
3602 "uncle". */
3603 struct mem_node *y = x->parent->parent->right;
3605 if (y->color == MEM_RED)
3607 /* Uncle and parent are red but should be black because
3608 X is red. Change the colors accordingly and proceed
3609 with the grandparent. */
3610 x->parent->color = MEM_BLACK;
3611 y->color = MEM_BLACK;
3612 x->parent->parent->color = MEM_RED;
3613 x = x->parent->parent;
3615 else
3617 /* Parent and uncle have different colors; parent is
3618 red, uncle is black. */
3619 if (x == x->parent->right)
3621 x = x->parent;
3622 mem_rotate_left (x);
3625 x->parent->color = MEM_BLACK;
3626 x->parent->parent->color = MEM_RED;
3627 mem_rotate_right (x->parent->parent);
3630 else
3632 /* This is the symmetrical case of above. */
3633 struct mem_node *y = x->parent->parent->left;
3635 if (y->color == MEM_RED)
3637 x->parent->color = MEM_BLACK;
3638 y->color = MEM_BLACK;
3639 x->parent->parent->color = MEM_RED;
3640 x = x->parent->parent;
3642 else
3644 if (x == x->parent->left)
3646 x = x->parent;
3647 mem_rotate_right (x);
3650 x->parent->color = MEM_BLACK;
3651 x->parent->parent->color = MEM_RED;
3652 mem_rotate_left (x->parent->parent);
3657 /* The root may have been changed to red due to the algorithm. Set
3658 it to black so that property #5 is satisfied. */
3659 mem_root->color = MEM_BLACK;
3663 /* (x) (y)
3664 / \ / \
3665 a (y) ===> (x) c
3666 / \ / \
3667 b c a b */
3669 static void
3670 mem_rotate_left (x)
3671 struct mem_node *x;
3673 struct mem_node *y;
3675 /* Turn y's left sub-tree into x's right sub-tree. */
3676 y = x->right;
3677 x->right = y->left;
3678 if (y->left != MEM_NIL)
3679 y->left->parent = x;
3681 /* Y's parent was x's parent. */
3682 if (y != MEM_NIL)
3683 y->parent = x->parent;
3685 /* Get the parent to point to y instead of x. */
3686 if (x->parent)
3688 if (x == x->parent->left)
3689 x->parent->left = y;
3690 else
3691 x->parent->right = y;
3693 else
3694 mem_root = y;
3696 /* Put x on y's left. */
3697 y->left = x;
3698 if (x != MEM_NIL)
3699 x->parent = y;
3703 /* (x) (Y)
3704 / \ / \
3705 (y) c ===> a (x)
3706 / \ / \
3707 a b b c */
3709 static void
3710 mem_rotate_right (x)
3711 struct mem_node *x;
3713 struct mem_node *y = x->left;
3715 x->left = y->right;
3716 if (y->right != MEM_NIL)
3717 y->right->parent = x;
3719 if (y != MEM_NIL)
3720 y->parent = x->parent;
3721 if (x->parent)
3723 if (x == x->parent->right)
3724 x->parent->right = y;
3725 else
3726 x->parent->left = y;
3728 else
3729 mem_root = y;
3731 y->right = x;
3732 if (x != MEM_NIL)
3733 x->parent = y;
3737 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3739 static void
3740 mem_delete (z)
3741 struct mem_node *z;
3743 struct mem_node *x, *y;
3745 if (!z || z == MEM_NIL)
3746 return;
3748 if (z->left == MEM_NIL || z->right == MEM_NIL)
3749 y = z;
3750 else
3752 y = z->right;
3753 while (y->left != MEM_NIL)
3754 y = y->left;
3757 if (y->left != MEM_NIL)
3758 x = y->left;
3759 else
3760 x = y->right;
3762 x->parent = y->parent;
3763 if (y->parent)
3765 if (y == y->parent->left)
3766 y->parent->left = x;
3767 else
3768 y->parent->right = x;
3770 else
3771 mem_root = x;
3773 if (y != z)
3775 z->start = y->start;
3776 z->end = y->end;
3777 z->type = y->type;
3780 if (y->color == MEM_BLACK)
3781 mem_delete_fixup (x);
3783 #ifdef GC_MALLOC_CHECK
3784 _free_internal (y);
3785 #else
3786 xfree (y);
3787 #endif
3791 /* Re-establish the red-black properties of the tree, after a
3792 deletion. */
3794 static void
3795 mem_delete_fixup (x)
3796 struct mem_node *x;
3798 while (x != mem_root && x->color == MEM_BLACK)
3800 if (x == x->parent->left)
3802 struct mem_node *w = x->parent->right;
3804 if (w->color == MEM_RED)
3806 w->color = MEM_BLACK;
3807 x->parent->color = MEM_RED;
3808 mem_rotate_left (x->parent);
3809 w = x->parent->right;
3812 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3814 w->color = MEM_RED;
3815 x = x->parent;
3817 else
3819 if (w->right->color == MEM_BLACK)
3821 w->left->color = MEM_BLACK;
3822 w->color = MEM_RED;
3823 mem_rotate_right (w);
3824 w = x->parent->right;
3826 w->color = x->parent->color;
3827 x->parent->color = MEM_BLACK;
3828 w->right->color = MEM_BLACK;
3829 mem_rotate_left (x->parent);
3830 x = mem_root;
3833 else
3835 struct mem_node *w = x->parent->left;
3837 if (w->color == MEM_RED)
3839 w->color = MEM_BLACK;
3840 x->parent->color = MEM_RED;
3841 mem_rotate_right (x->parent);
3842 w = x->parent->left;
3845 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3847 w->color = MEM_RED;
3848 x = x->parent;
3850 else
3852 if (w->left->color == MEM_BLACK)
3854 w->right->color = MEM_BLACK;
3855 w->color = MEM_RED;
3856 mem_rotate_left (w);
3857 w = x->parent->left;
3860 w->color = x->parent->color;
3861 x->parent->color = MEM_BLACK;
3862 w->left->color = MEM_BLACK;
3863 mem_rotate_right (x->parent);
3864 x = mem_root;
3869 x->color = MEM_BLACK;
3873 /* Value is non-zero if P is a pointer to a live Lisp string on
3874 the heap. M is a pointer to the mem_block for P. */
3876 static INLINE int
3877 live_string_p (m, p)
3878 struct mem_node *m;
3879 void *p;
3881 if (m->type == MEM_TYPE_STRING)
3883 struct string_block *b = (struct string_block *) m->start;
3884 int offset = (char *) p - (char *) &b->strings[0];
3886 /* P must point to the start of a Lisp_String structure, and it
3887 must not be on the free-list. */
3888 return (offset >= 0
3889 && offset % sizeof b->strings[0] == 0
3890 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3891 && ((struct Lisp_String *) p)->data != NULL);
3893 else
3894 return 0;
3898 /* Value is non-zero if P is a pointer to a live Lisp cons on
3899 the heap. M is a pointer to the mem_block for P. */
3901 static INLINE int
3902 live_cons_p (m, p)
3903 struct mem_node *m;
3904 void *p;
3906 if (m->type == MEM_TYPE_CONS)
3908 struct cons_block *b = (struct cons_block *) m->start;
3909 int offset = (char *) p - (char *) &b->conses[0];
3911 /* P must point to the start of a Lisp_Cons, not be
3912 one of the unused cells in the current cons block,
3913 and not be on the free-list. */
3914 return (offset >= 0
3915 && offset % sizeof b->conses[0] == 0
3916 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3917 && (b != cons_block
3918 || offset / sizeof b->conses[0] < cons_block_index)
3919 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3921 else
3922 return 0;
3926 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3927 the heap. M is a pointer to the mem_block for P. */
3929 static INLINE int
3930 live_symbol_p (m, p)
3931 struct mem_node *m;
3932 void *p;
3934 if (m->type == MEM_TYPE_SYMBOL)
3936 struct symbol_block *b = (struct symbol_block *) m->start;
3937 int offset = (char *) p - (char *) &b->symbols[0];
3939 /* P must point to the start of a Lisp_Symbol, not be
3940 one of the unused cells in the current symbol block,
3941 and not be on the free-list. */
3942 return (offset >= 0
3943 && offset % sizeof b->symbols[0] == 0
3944 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3945 && (b != symbol_block
3946 || offset / sizeof b->symbols[0] < symbol_block_index)
3947 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3949 else
3950 return 0;
3954 /* Value is non-zero if P is a pointer to a live Lisp float on
3955 the heap. M is a pointer to the mem_block for P. */
3957 static INLINE int
3958 live_float_p (m, p)
3959 struct mem_node *m;
3960 void *p;
3962 if (m->type == MEM_TYPE_FLOAT)
3964 struct float_block *b = (struct float_block *) m->start;
3965 int offset = (char *) p - (char *) &b->floats[0];
3967 /* P must point to the start of a Lisp_Float and not be
3968 one of the unused cells in the current float block. */
3969 return (offset >= 0
3970 && offset % sizeof b->floats[0] == 0
3971 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3972 && (b != float_block
3973 || offset / sizeof b->floats[0] < float_block_index));
3975 else
3976 return 0;
3980 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3981 the heap. M is a pointer to the mem_block for P. */
3983 static INLINE int
3984 live_misc_p (m, p)
3985 struct mem_node *m;
3986 void *p;
3988 if (m->type == MEM_TYPE_MISC)
3990 struct marker_block *b = (struct marker_block *) m->start;
3991 int offset = (char *) p - (char *) &b->markers[0];
3993 /* P must point to the start of a Lisp_Misc, not be
3994 one of the unused cells in the current misc block,
3995 and not be on the free-list. */
3996 return (offset >= 0
3997 && offset % sizeof b->markers[0] == 0
3998 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3999 && (b != marker_block
4000 || offset / sizeof b->markers[0] < marker_block_index)
4001 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4003 else
4004 return 0;
4008 /* Value is non-zero if P is a pointer to a live vector-like object.
4009 M is a pointer to the mem_block for P. */
4011 static INLINE int
4012 live_vector_p (m, p)
4013 struct mem_node *m;
4014 void *p;
4016 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4020 /* Value is non-zero if P is a pointer to a live buffer. M is a
4021 pointer to the mem_block for P. */
4023 static INLINE int
4024 live_buffer_p (m, p)
4025 struct mem_node *m;
4026 void *p;
4028 /* P must point to the start of the block, and the buffer
4029 must not have been killed. */
4030 return (m->type == MEM_TYPE_BUFFER
4031 && p == m->start
4032 && !NILP (BUF_NAME (((struct buffer *) p))));
4035 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4037 #if GC_MARK_STACK
4039 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4041 /* Array of objects that are kept alive because the C stack contains
4042 a pattern that looks like a reference to them . */
4044 #define MAX_ZOMBIES 10
4045 static Lisp_Object zombies[MAX_ZOMBIES];
4047 /* Number of zombie objects. */
4049 static int nzombies;
4051 /* Number of garbage collections. */
4053 static int ngcs;
4055 /* Average percentage of zombies per collection. */
4057 static double avg_zombies;
4059 /* Max. number of live and zombie objects. */
4061 static int max_live, max_zombies;
4063 /* Average number of live objects per GC. */
4065 static double avg_live;
4067 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4068 doc: /* Show information about live and zombie objects. */)
4071 Lisp_Object args[8], zombie_list = Qnil;
4072 int i;
4073 for (i = 0; i < nzombies; i++)
4074 zombie_list = Fcons (zombies[i], zombie_list);
4075 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4076 args[1] = make_number (ngcs);
4077 args[2] = make_float (avg_live);
4078 args[3] = make_float (avg_zombies);
4079 args[4] = make_float (avg_zombies / avg_live / 100);
4080 args[5] = make_number (max_live);
4081 args[6] = make_number (max_zombies);
4082 args[7] = zombie_list;
4083 return Fmessage (8, args);
4086 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4089 /* Mark OBJ if we can prove it's a Lisp_Object. */
4091 static INLINE void
4092 mark_maybe_object (obj)
4093 Lisp_Object obj;
4095 void *po = (void *) XPNTR (obj);
4096 struct mem_node *m = mem_find (po);
4098 if (m != MEM_NIL)
4100 int mark_p = 0;
4102 switch (XTYPE (obj))
4104 case Lisp_String:
4105 mark_p = (live_string_p (m, po)
4106 && !STRING_MARKED_P ((struct Lisp_String *) po));
4107 break;
4109 case Lisp_Cons:
4110 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4111 break;
4113 case Lisp_Symbol:
4114 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4115 break;
4117 case Lisp_Float:
4118 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4119 break;
4121 case Lisp_Vectorlike:
4122 /* Note: can't check BUFFERP before we know it's a
4123 buffer because checking that dereferences the pointer
4124 PO which might point anywhere. */
4125 if (live_vector_p (m, po))
4126 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4127 else if (live_buffer_p (m, po))
4128 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4129 break;
4131 case Lisp_Misc:
4132 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4133 break;
4135 default:
4136 break;
4139 if (mark_p)
4141 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4142 if (nzombies < MAX_ZOMBIES)
4143 zombies[nzombies] = obj;
4144 ++nzombies;
4145 #endif
4146 mark_object (obj);
4152 /* If P points to Lisp data, mark that as live if it isn't already
4153 marked. */
4155 static INLINE void
4156 mark_maybe_pointer (p)
4157 void *p;
4159 struct mem_node *m;
4161 /* Quickly rule out some values which can't point to Lisp data. */
4162 if ((EMACS_INT) p %
4163 #ifdef USE_LSB_TAG
4164 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4165 #else
4166 2 /* We assume that Lisp data is aligned on even addresses. */
4167 #endif
4169 return;
4171 m = mem_find (p);
4172 if (m != MEM_NIL)
4174 Lisp_Object obj = Qnil;
4176 switch (m->type)
4178 case MEM_TYPE_NON_LISP:
4179 /* Nothing to do; not a pointer to Lisp memory. */
4180 break;
4182 case MEM_TYPE_BUFFER:
4183 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4184 XSETVECTOR (obj, p);
4185 break;
4187 case MEM_TYPE_CONS:
4188 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4189 XSETCONS (obj, p);
4190 break;
4192 case MEM_TYPE_STRING:
4193 if (live_string_p (m, p)
4194 && !STRING_MARKED_P ((struct Lisp_String *) p))
4195 XSETSTRING (obj, p);
4196 break;
4198 case MEM_TYPE_MISC:
4199 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4200 XSETMISC (obj, p);
4201 break;
4203 case MEM_TYPE_SYMBOL:
4204 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4205 XSETSYMBOL (obj, p);
4206 break;
4208 case MEM_TYPE_FLOAT:
4209 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4210 XSETFLOAT (obj, p);
4211 break;
4213 case MEM_TYPE_VECTORLIKE:
4214 if (live_vector_p (m, p))
4216 Lisp_Object tem;
4217 XSETVECTOR (tem, p);
4218 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4219 obj = tem;
4221 break;
4223 default:
4224 abort ();
4227 if (!NILP (obj))
4228 mark_object (obj);
4233 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4234 or END+OFFSET..START. */
4236 static void
4237 mark_memory (start, end, offset)
4238 void *start, *end;
4239 int offset;
4241 Lisp_Object *p;
4242 void **pp;
4244 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4245 nzombies = 0;
4246 #endif
4248 /* Make START the pointer to the start of the memory region,
4249 if it isn't already. */
4250 if (end < start)
4252 void *tem = start;
4253 start = end;
4254 end = tem;
4257 /* Mark Lisp_Objects. */
4258 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4259 mark_maybe_object (*p);
4261 /* Mark Lisp data pointed to. This is necessary because, in some
4262 situations, the C compiler optimizes Lisp objects away, so that
4263 only a pointer to them remains. Example:
4265 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4268 Lisp_Object obj = build_string ("test");
4269 struct Lisp_String *s = XSTRING (obj);
4270 Fgarbage_collect ();
4271 fprintf (stderr, "test `%s'\n", s->data);
4272 return Qnil;
4275 Here, `obj' isn't really used, and the compiler optimizes it
4276 away. The only reference to the life string is through the
4277 pointer `s'. */
4279 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4280 mark_maybe_pointer (*pp);
4283 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4284 the GCC system configuration. In gcc 3.2, the only systems for
4285 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4286 by others?) and ns32k-pc532-min. */
4288 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4290 static int setjmp_tested_p, longjmps_done;
4292 #define SETJMP_WILL_LIKELY_WORK "\
4294 Emacs garbage collector has been changed to use conservative stack\n\
4295 marking. Emacs has determined that the method it uses to do the\n\
4296 marking will likely work on your system, but this isn't sure.\n\
4298 If you are a system-programmer, or can get the help of a local wizard\n\
4299 who is, please take a look at the function mark_stack in alloc.c, and\n\
4300 verify that the methods used are appropriate for your system.\n\
4302 Please mail the result to <emacs-devel@gnu.org>.\n\
4305 #define SETJMP_WILL_NOT_WORK "\
4307 Emacs garbage collector has been changed to use conservative stack\n\
4308 marking. Emacs has determined that the default method it uses to do the\n\
4309 marking will not work on your system. We will need a system-dependent\n\
4310 solution for your system.\n\
4312 Please take a look at the function mark_stack in alloc.c, and\n\
4313 try to find a way to make it work on your system.\n\
4315 Note that you may get false negatives, depending on the compiler.\n\
4316 In particular, you need to use -O with GCC for this test.\n\
4318 Please mail the result to <emacs-devel@gnu.org>.\n\
4322 /* Perform a quick check if it looks like setjmp saves registers in a
4323 jmp_buf. Print a message to stderr saying so. When this test
4324 succeeds, this is _not_ a proof that setjmp is sufficient for
4325 conservative stack marking. Only the sources or a disassembly
4326 can prove that. */
4328 static void
4329 test_setjmp ()
4331 char buf[10];
4332 register int x;
4333 jmp_buf jbuf;
4334 int result = 0;
4336 /* Arrange for X to be put in a register. */
4337 sprintf (buf, "1");
4338 x = strlen (buf);
4339 x = 2 * x - 1;
4341 setjmp (jbuf);
4342 if (longjmps_done == 1)
4344 /* Came here after the longjmp at the end of the function.
4346 If x == 1, the longjmp has restored the register to its
4347 value before the setjmp, and we can hope that setjmp
4348 saves all such registers in the jmp_buf, although that
4349 isn't sure.
4351 For other values of X, either something really strange is
4352 taking place, or the setjmp just didn't save the register. */
4354 if (x == 1)
4355 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4356 else
4358 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4359 exit (1);
4363 ++longjmps_done;
4364 x = 2;
4365 if (longjmps_done == 1)
4366 longjmp (jbuf, 1);
4369 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4372 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4374 /* Abort if anything GCPRO'd doesn't survive the GC. */
4376 static void
4377 check_gcpros ()
4379 struct gcpro *p;
4380 int i;
4382 for (p = gcprolist; p; p = p->next)
4383 for (i = 0; i < p->nvars; ++i)
4384 if (!survives_gc_p (p->var[i]))
4385 /* FIXME: It's not necessarily a bug. It might just be that the
4386 GCPRO is unnecessary or should release the object sooner. */
4387 abort ();
4390 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4392 static void
4393 dump_zombies ()
4395 int i;
4397 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4398 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4400 fprintf (stderr, " %d = ", i);
4401 debug_print (zombies[i]);
4405 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4408 /* Mark live Lisp objects on the C stack.
4410 There are several system-dependent problems to consider when
4411 porting this to new architectures:
4413 Processor Registers
4415 We have to mark Lisp objects in CPU registers that can hold local
4416 variables or are used to pass parameters.
4418 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4419 something that either saves relevant registers on the stack, or
4420 calls mark_maybe_object passing it each register's contents.
4422 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4423 implementation assumes that calling setjmp saves registers we need
4424 to see in a jmp_buf which itself lies on the stack. This doesn't
4425 have to be true! It must be verified for each system, possibly
4426 by taking a look at the source code of setjmp.
4428 Stack Layout
4430 Architectures differ in the way their processor stack is organized.
4431 For example, the stack might look like this
4433 +----------------+
4434 | Lisp_Object | size = 4
4435 +----------------+
4436 | something else | size = 2
4437 +----------------+
4438 | Lisp_Object | size = 4
4439 +----------------+
4440 | ... |
4442 In such a case, not every Lisp_Object will be aligned equally. To
4443 find all Lisp_Object on the stack it won't be sufficient to walk
4444 the stack in steps of 4 bytes. Instead, two passes will be
4445 necessary, one starting at the start of the stack, and a second
4446 pass starting at the start of the stack + 2. Likewise, if the
4447 minimal alignment of Lisp_Objects on the stack is 1, four passes
4448 would be necessary, each one starting with one byte more offset
4449 from the stack start.
4451 The current code assumes by default that Lisp_Objects are aligned
4452 equally on the stack. */
4454 void
4455 mark_stack (bottom, end)
4456 char *bottom;
4457 char *end;
4459 int i;
4461 /* This assumes that the stack is a contiguous region in memory. If
4462 that's not the case, something has to be done here to iterate
4463 over the stack segments. */
4464 #ifndef GC_LISP_OBJECT_ALIGNMENT
4465 #ifdef __GNUC__
4466 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4467 #else
4468 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4469 #endif
4470 #endif
4471 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4472 mark_memory (bottom, end, i);
4473 /* Allow for marking a secondary stack, like the register stack on the
4474 ia64. */
4475 #ifdef GC_MARK_SECONDARY_STACK
4476 GC_MARK_SECONDARY_STACK ();
4477 #endif
4479 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4480 check_gcpros ();
4481 #endif
4484 #endif /* GC_MARK_STACK != 0 */
4486 void
4487 flush_stack_call_func (func, arg)
4488 void (*func) P_ ((char *end, void *arg));
4489 void *arg;
4491 #if GC_MARK_STACK
4492 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4493 union aligned_jmpbuf {
4494 Lisp_Object o;
4495 jmp_buf j;
4496 } j;
4497 volatile int stack_grows_down_p = (char *) &j > (char *) current_thread->stack_bottom;
4498 void *end;
4500 /* This trick flushes the register windows so that all the state of
4501 the process is contained in the stack. */
4502 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4503 needed on ia64 too. See mach_dep.c, where it also says inline
4504 assembler doesn't work with relevant proprietary compilers. */
4505 #ifdef __sparc__
4506 #if defined (__sparc64__) && defined (__FreeBSD__)
4507 /* FreeBSD does not have a ta 3 handler. */
4508 asm ("flushw");
4509 #else
4510 asm ("ta 3");
4511 #endif
4512 #endif
4514 /* Save registers that we need to see on the stack. We need to see
4515 registers used to hold register variables and registers used to
4516 pass parameters. */
4517 #ifdef GC_SAVE_REGISTERS_ON_STACK
4518 GC_SAVE_REGISTERS_ON_STACK (end);
4519 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4521 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4522 setjmp will definitely work, test it
4523 and print a message with the result
4524 of the test. */
4525 if (!setjmp_tested_p)
4527 setjmp_tested_p = 1;
4528 test_setjmp ();
4530 #endif /* GC_SETJMP_WORKS */
4532 setjmp (j.j);
4533 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4534 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4535 #endif /* GC_MARK_STACK != 0 */
4537 (*func) (end, arg);
4541 /* Determine whether it is safe to access memory at address P. */
4542 static int
4543 valid_pointer_p (p)
4544 void *p;
4546 #ifdef WINDOWSNT
4547 return w32_valid_pointer_p (p, 16);
4548 #else
4549 int fd;
4551 /* Obviously, we cannot just access it (we would SEGV trying), so we
4552 trick the o/s to tell us whether p is a valid pointer.
4553 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4554 not validate p in that case. */
4556 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4558 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4559 emacs_close (fd);
4560 unlink ("__Valid__Lisp__Object__");
4561 return valid;
4564 return -1;
4565 #endif
4568 /* Return 1 if OBJ is a valid lisp object.
4569 Return 0 if OBJ is NOT a valid lisp object.
4570 Return -1 if we cannot validate OBJ.
4571 This function can be quite slow,
4572 so it should only be used in code for manual debugging. */
4575 valid_lisp_object_p (obj)
4576 Lisp_Object obj;
4578 void *p;
4579 #if GC_MARK_STACK
4580 struct mem_node *m;
4581 #endif
4583 if (INTEGERP (obj))
4584 return 1;
4586 p = (void *) XPNTR (obj);
4587 if (PURE_POINTER_P (p))
4588 return 1;
4590 #if !GC_MARK_STACK
4591 return valid_pointer_p (p);
4592 #else
4594 m = mem_find (p);
4596 if (m == MEM_NIL)
4598 int valid = valid_pointer_p (p);
4599 if (valid <= 0)
4600 return valid;
4602 if (SUBRP (obj))
4603 return 1;
4605 return 0;
4608 switch (m->type)
4610 case MEM_TYPE_NON_LISP:
4611 return 0;
4613 case MEM_TYPE_BUFFER:
4614 return live_buffer_p (m, p);
4616 case MEM_TYPE_CONS:
4617 return live_cons_p (m, p);
4619 case MEM_TYPE_STRING:
4620 return live_string_p (m, p);
4622 case MEM_TYPE_MISC:
4623 return live_misc_p (m, p);
4625 case MEM_TYPE_SYMBOL:
4626 return live_symbol_p (m, p);
4628 case MEM_TYPE_FLOAT:
4629 return live_float_p (m, p);
4631 case MEM_TYPE_VECTORLIKE:
4632 return live_vector_p (m, p);
4634 default:
4635 break;
4638 return 0;
4639 #endif
4645 /***********************************************************************
4646 Pure Storage Management
4647 ***********************************************************************/
4649 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4650 pointer to it. TYPE is the Lisp type for which the memory is
4651 allocated. TYPE < 0 means it's not used for a Lisp object. */
4653 static POINTER_TYPE *
4654 pure_alloc (size, type)
4655 size_t size;
4656 int type;
4658 POINTER_TYPE *result;
4659 #ifdef USE_LSB_TAG
4660 size_t alignment = (1 << GCTYPEBITS);
4661 #else
4662 size_t alignment = sizeof (EMACS_INT);
4664 /* Give Lisp_Floats an extra alignment. */
4665 if (type == Lisp_Float)
4667 #if defined __GNUC__ && __GNUC__ >= 2
4668 alignment = __alignof (struct Lisp_Float);
4669 #else
4670 alignment = sizeof (struct Lisp_Float);
4671 #endif
4673 #endif
4675 again:
4676 if (type >= 0)
4678 /* Allocate space for a Lisp object from the beginning of the free
4679 space with taking account of alignment. */
4680 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4681 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4683 else
4685 /* Allocate space for a non-Lisp object from the end of the free
4686 space. */
4687 pure_bytes_used_non_lisp += size;
4688 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4690 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4692 if (pure_bytes_used <= pure_size)
4693 return result;
4695 /* Don't allocate a large amount here,
4696 because it might get mmap'd and then its address
4697 might not be usable. */
4698 purebeg = (char *) xmalloc (10000);
4699 pure_size = 10000;
4700 pure_bytes_used_before_overflow += pure_bytes_used - size;
4701 pure_bytes_used = 0;
4702 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4703 goto again;
4707 /* Print a warning if PURESIZE is too small. */
4709 void
4710 check_pure_size ()
4712 if (pure_bytes_used_before_overflow)
4713 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4714 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4718 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4719 the non-Lisp data pool of the pure storage, and return its start
4720 address. Return NULL if not found. */
4722 static char *
4723 find_string_data_in_pure (data, nbytes)
4724 const char *data;
4725 int nbytes;
4727 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4728 const unsigned char *p;
4729 char *non_lisp_beg;
4731 if (pure_bytes_used_non_lisp < nbytes + 1)
4732 return NULL;
4734 /* Set up the Boyer-Moore table. */
4735 skip = nbytes + 1;
4736 for (i = 0; i < 256; i++)
4737 bm_skip[i] = skip;
4739 p = (const unsigned char *) data;
4740 while (--skip > 0)
4741 bm_skip[*p++] = skip;
4743 last_char_skip = bm_skip['\0'];
4745 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4746 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4748 /* See the comments in the function `boyer_moore' (search.c) for the
4749 use of `infinity'. */
4750 infinity = pure_bytes_used_non_lisp + 1;
4751 bm_skip['\0'] = infinity;
4753 p = (const unsigned char *) non_lisp_beg + nbytes;
4754 start = 0;
4757 /* Check the last character (== '\0'). */
4760 start += bm_skip[*(p + start)];
4762 while (start <= start_max);
4764 if (start < infinity)
4765 /* Couldn't find the last character. */
4766 return NULL;
4768 /* No less than `infinity' means we could find the last
4769 character at `p[start - infinity]'. */
4770 start -= infinity;
4772 /* Check the remaining characters. */
4773 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4774 /* Found. */
4775 return non_lisp_beg + start;
4777 start += last_char_skip;
4779 while (start <= start_max);
4781 return NULL;
4785 /* Return a string allocated in pure space. DATA is a buffer holding
4786 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4787 non-zero means make the result string multibyte.
4789 Must get an error if pure storage is full, since if it cannot hold
4790 a large string it may be able to hold conses that point to that
4791 string; then the string is not protected from gc. */
4793 Lisp_Object
4794 make_pure_string (data, nchars, nbytes, multibyte)
4795 const char *data;
4796 int nchars, nbytes;
4797 int multibyte;
4799 Lisp_Object string;
4800 struct Lisp_String *s;
4802 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4803 s->data = find_string_data_in_pure (data, nbytes);
4804 if (s->data == NULL)
4806 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4807 bcopy (data, s->data, nbytes);
4808 s->data[nbytes] = '\0';
4810 s->size = nchars;
4811 s->size_byte = multibyte ? nbytes : -1;
4812 s->intervals = NULL_INTERVAL;
4813 XSETSTRING (string, s);
4814 return string;
4817 /* Return a string a string allocated in pure space. Do not allocate
4818 the string data, just point to DATA. */
4820 Lisp_Object
4821 make_pure_c_string (const char *data)
4823 Lisp_Object string;
4824 struct Lisp_String *s;
4825 int nchars = strlen (data);
4827 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4828 s->size = nchars;
4829 s->size_byte = -1;
4830 s->data = (unsigned char *) data;
4831 s->intervals = NULL_INTERVAL;
4832 XSETSTRING (string, s);
4833 return string;
4836 /* Return a cons allocated from pure space. Give it pure copies
4837 of CAR as car and CDR as cdr. */
4839 Lisp_Object
4840 pure_cons (car, cdr)
4841 Lisp_Object car, cdr;
4843 register Lisp_Object new;
4844 struct Lisp_Cons *p;
4846 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4847 XSETCONS (new, p);
4848 XSETCAR (new, Fpurecopy (car));
4849 XSETCDR (new, Fpurecopy (cdr));
4850 return new;
4854 /* Value is a float object with value NUM allocated from pure space. */
4856 static Lisp_Object
4857 make_pure_float (num)
4858 double num;
4860 register Lisp_Object new;
4861 struct Lisp_Float *p;
4863 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4864 XSETFLOAT (new, p);
4865 XFLOAT_INIT (new, num);
4866 return new;
4870 /* Return a vector with room for LEN Lisp_Objects allocated from
4871 pure space. */
4873 Lisp_Object
4874 make_pure_vector (len)
4875 EMACS_INT len;
4877 Lisp_Object new;
4878 struct Lisp_Vector *p;
4879 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4881 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4882 XSETVECTOR (new, p);
4883 XVECTOR (new)->size = len;
4884 return new;
4888 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4889 doc: /* Make a copy of object OBJ in pure storage.
4890 Recursively copies contents of vectors and cons cells.
4891 Does not copy symbols. Copies strings without text properties. */)
4892 (obj)
4893 register Lisp_Object obj;
4895 if (NILP (Vpurify_flag))
4896 return obj;
4898 if (PURE_POINTER_P (XPNTR (obj)))
4899 return obj;
4901 if (CONSP (obj))
4902 return pure_cons (XCAR (obj), XCDR (obj));
4903 else if (FLOATP (obj))
4904 return make_pure_float (XFLOAT_DATA (obj));
4905 else if (STRINGP (obj))
4906 return make_pure_string (SDATA (obj), SCHARS (obj),
4907 SBYTES (obj),
4908 STRING_MULTIBYTE (obj));
4909 else if (COMPILEDP (obj) || VECTORP (obj))
4911 register struct Lisp_Vector *vec;
4912 register int i;
4913 EMACS_INT size;
4915 size = XVECTOR (obj)->size;
4916 if (size & PSEUDOVECTOR_FLAG)
4917 size &= PSEUDOVECTOR_SIZE_MASK;
4918 vec = XVECTOR (make_pure_vector (size));
4919 for (i = 0; i < size; i++)
4920 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4921 if (COMPILEDP (obj))
4923 XSETPVECTYPE (vec, PVEC_COMPILED);
4924 XSETCOMPILED (obj, vec);
4926 else
4927 XSETVECTOR (obj, vec);
4928 return obj;
4930 else if (MARKERP (obj))
4931 error ("Attempt to copy a marker to pure storage");
4933 return obj;
4938 /***********************************************************************
4939 Protection from GC
4940 ***********************************************************************/
4942 /* Put an entry in staticvec, pointing at the variable with address
4943 VARADDRESS. */
4945 void
4946 staticpro (varaddress)
4947 Lisp_Object *varaddress;
4949 staticvec[staticidx++] = varaddress;
4950 if (staticidx >= NSTATICS)
4951 abort ();
4955 /***********************************************************************
4956 Protection from GC
4957 ***********************************************************************/
4959 /* Temporarily prevent garbage collection. */
4962 inhibit_garbage_collection ()
4964 int count = SPECPDL_INDEX ();
4965 int nbits = min (VALBITS, BITS_PER_INT);
4967 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4968 return count;
4972 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4973 doc: /* Reclaim storage for Lisp objects no longer needed.
4974 Garbage collection happens automatically if you cons more than
4975 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4976 `garbage-collect' normally returns a list with info on amount of space in use:
4977 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4978 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4979 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4980 (USED-STRINGS . FREE-STRINGS))
4981 However, if there was overflow in pure space, `garbage-collect'
4982 returns nil, because real GC can't be done. */)
4985 register struct specbinding *bind;
4986 char stack_top_variable;
4987 register int i;
4988 int message_p;
4989 Lisp_Object total[8];
4990 int count = SPECPDL_INDEX ();
4991 EMACS_TIME t1, t2, t3;
4993 if (abort_on_gc)
4994 abort ();
4996 /* Can't GC if pure storage overflowed because we can't determine
4997 if something is a pure object or not. */
4998 if (pure_bytes_used_before_overflow)
4999 return Qnil;
5001 CHECK_CONS_LIST ();
5003 /* Don't keep undo information around forever.
5004 Do this early on, so it is no problem if the user quits. */
5006 register struct buffer *nextb = all_buffers;
5008 while (nextb)
5010 /* If a buffer's undo list is Qt, that means that undo is
5011 turned off in that buffer. Calling truncate_undo_list on
5012 Qt tends to return NULL, which effectively turns undo back on.
5013 So don't call truncate_undo_list if undo_list is Qt. */
5014 if (! NILP (BUF_NAME (nextb)) && ! EQ (BUF_UNDO_LIST (nextb), Qt))
5015 truncate_undo_list (nextb);
5017 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5018 if (nextb->base_buffer == 0 && !NILP (BUF_NAME (nextb))
5019 && ! nextb->text->inhibit_shrinking)
5021 /* If a buffer's gap size is more than 10% of the buffer
5022 size, or larger than 2000 bytes, then shrink it
5023 accordingly. Keep a minimum size of 20 bytes. */
5024 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5026 if (nextb->text->gap_size > size)
5028 struct buffer *save_current = current_buffer;
5029 current_buffer = nextb;
5030 make_gap (-(nextb->text->gap_size - size));
5031 current_buffer = save_current;
5035 nextb = nextb->next;
5039 EMACS_GET_TIME (t1);
5041 /* In case user calls debug_print during GC,
5042 don't let that cause a recursive GC. */
5043 consing_since_gc = 0;
5045 /* Save what's currently displayed in the echo area. */
5046 message_p = push_message ();
5047 record_unwind_protect (pop_message_unwind, Qnil);
5049 /* Save a copy of the contents of the stack, for debugging. */
5050 #if MAX_SAVE_STACK > 0
5051 if (NILP (Vpurify_flag))
5053 i = &stack_top_variable - /*FIXME*/current_thread->stack_bottom;
5054 if (i < 0) i = -i;
5055 if (i < MAX_SAVE_STACK)
5057 if (stack_copy == 0)
5058 stack_copy = (char *) xmalloc (stack_copy_size = i);
5059 else if (stack_copy_size < i)
5060 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5061 if (stack_copy)
5063 if ((EMACS_INT) (&stack_top_variable - /*FIXME*/current_thread->stack_bottom) > 0)
5064 bcopy (/*FIXME*/current_thread->stack_bottom, stack_copy, i);
5065 else
5066 bcopy (&stack_top_variable, stack_copy, i);
5070 #endif /* MAX_SAVE_STACK > 0 */
5072 if (garbage_collection_messages)
5073 message1_nolog ("Garbage collecting...");
5075 BLOCK_INPUT;
5077 shrink_regexp_cache ();
5079 gc_in_progress = 1;
5081 /* clear_marks (); */
5083 /* Mark all the special slots that serve as the roots of accessibility. */
5085 for (i = 0; i < staticidx; i++)
5086 mark_object (*staticvec[i]);
5088 mark_threads ();
5089 mark_terminals ();
5090 mark_kboards ();
5091 mark_ttys ();
5093 #ifdef USE_GTK
5095 extern void xg_mark_data ();
5096 xg_mark_data ();
5098 #endif
5100 #ifdef HAVE_WINDOW_SYSTEM
5101 mark_fringe_data ();
5102 #endif
5104 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5105 FIXME;
5106 mark_stack ();
5107 #endif
5109 /* Everything is now marked, except for the things that require special
5110 finalization, i.e. the undo_list.
5111 Look thru every buffer's undo list
5112 for elements that update markers that were not marked,
5113 and delete them. */
5115 register struct buffer *nextb = all_buffers;
5117 while (nextb)
5119 /* If a buffer's undo list is Qt, that means that undo is
5120 turned off in that buffer. Calling truncate_undo_list on
5121 Qt tends to return NULL, which effectively turns undo back on.
5122 So don't call truncate_undo_list if undo_list is Qt. */
5123 if (! EQ (BUF_UNDO_LIST (nextb), Qt))
5125 Lisp_Object tail, prev;
5126 tail = BUF_UNDO_LIST (nextb);
5127 prev = Qnil;
5128 while (CONSP (tail))
5130 if (CONSP (XCAR (tail))
5131 && MARKERP (XCAR (XCAR (tail)))
5132 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5134 if (NILP (prev))
5135 BUF_UNDO_LIST (nextb) = tail = XCDR (tail);
5136 else
5138 tail = XCDR (tail);
5139 XSETCDR (prev, tail);
5142 else
5144 prev = tail;
5145 tail = XCDR (tail);
5149 /* Now that we have stripped the elements that need not be in the
5150 undo_list any more, we can finally mark the list. */
5151 mark_object (BUF_UNDO_LIST (nextb));
5153 nextb = nextb->next;
5157 gc_sweep ();
5159 /* Clear the mark bits that we set in certain root slots. */
5161 unmark_threads ();
5162 VECTOR_UNMARK (&buffer_defaults);
5163 VECTOR_UNMARK (&buffer_local_symbols);
5165 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5166 dump_zombies ();
5167 #endif
5169 UNBLOCK_INPUT;
5171 CHECK_CONS_LIST ();
5173 /* clear_marks (); */
5174 gc_in_progress = 0;
5176 consing_since_gc = 0;
5177 if (gc_cons_threshold < 10000)
5178 gc_cons_threshold = 10000;
5180 if (FLOATP (Vgc_cons_percentage))
5181 { /* Set gc_cons_combined_threshold. */
5182 EMACS_INT total = 0;
5184 total += total_conses * sizeof (struct Lisp_Cons);
5185 total += total_symbols * sizeof (struct Lisp_Symbol);
5186 total += total_markers * sizeof (union Lisp_Misc);
5187 total += total_string_size;
5188 total += total_vector_size * sizeof (Lisp_Object);
5189 total += total_floats * sizeof (struct Lisp_Float);
5190 total += total_intervals * sizeof (struct interval);
5191 total += total_strings * sizeof (struct Lisp_String);
5193 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5195 else
5196 gc_relative_threshold = 0;
5198 if (garbage_collection_messages)
5200 if (message_p || minibuf_level > 0)
5201 restore_message ();
5202 else
5203 message1_nolog ("Garbage collecting...done");
5206 unbind_to (count, Qnil);
5208 total[0] = Fcons (make_number (total_conses),
5209 make_number (total_free_conses));
5210 total[1] = Fcons (make_number (total_symbols),
5211 make_number (total_free_symbols));
5212 total[2] = Fcons (make_number (total_markers),
5213 make_number (total_free_markers));
5214 total[3] = make_number (total_string_size);
5215 total[4] = make_number (total_vector_size);
5216 total[5] = Fcons (make_number (total_floats),
5217 make_number (total_free_floats));
5218 total[6] = Fcons (make_number (total_intervals),
5219 make_number (total_free_intervals));
5220 total[7] = Fcons (make_number (total_strings),
5221 make_number (total_free_strings));
5223 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5225 /* Compute average percentage of zombies. */
5226 double nlive = 0;
5228 for (i = 0; i < 7; ++i)
5229 if (CONSP (total[i]))
5230 nlive += XFASTINT (XCAR (total[i]));
5232 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5233 max_live = max (nlive, max_live);
5234 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5235 max_zombies = max (nzombies, max_zombies);
5236 ++ngcs;
5238 #endif
5240 if (!NILP (Vpost_gc_hook))
5242 int count = inhibit_garbage_collection ();
5243 safe_run_hooks (Qpost_gc_hook);
5244 unbind_to (count, Qnil);
5247 /* Accumulate statistics. */
5248 EMACS_GET_TIME (t2);
5249 EMACS_SUB_TIME (t3, t2, t1);
5250 if (FLOATP (Vgc_elapsed))
5251 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5252 EMACS_SECS (t3) +
5253 EMACS_USECS (t3) * 1.0e-6);
5254 gcs_done++;
5256 return Flist (sizeof total / sizeof *total, total);
5260 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5261 only interesting objects referenced from glyphs are strings. */
5263 static void
5264 mark_glyph_matrix (matrix)
5265 struct glyph_matrix *matrix;
5267 struct glyph_row *row = matrix->rows;
5268 struct glyph_row *end = row + matrix->nrows;
5270 for (; row < end; ++row)
5271 if (row->enabled_p)
5273 int area;
5274 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5276 struct glyph *glyph = row->glyphs[area];
5277 struct glyph *end_glyph = glyph + row->used[area];
5279 for (; glyph < end_glyph; ++glyph)
5280 if (STRINGP (glyph->object)
5281 && !STRING_MARKED_P (XSTRING (glyph->object)))
5282 mark_object (glyph->object);
5288 /* Mark Lisp faces in the face cache C. */
5290 static void
5291 mark_face_cache (c)
5292 struct face_cache *c;
5294 if (c)
5296 int i, j;
5297 for (i = 0; i < c->used; ++i)
5299 struct face *face = FACE_FROM_ID (c->f, i);
5301 if (face)
5303 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5304 mark_object (face->lface[j]);
5312 /* Mark reference to a Lisp_Object.
5313 If the object referred to has not been seen yet, recursively mark
5314 all the references contained in it. */
5316 #define LAST_MARKED_SIZE 500
5317 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5318 int last_marked_index;
5320 /* For debugging--call abort when we cdr down this many
5321 links of a list, in mark_object. In debugging,
5322 the call to abort will hit a breakpoint.
5323 Normally this is zero and the check never goes off. */
5324 static int mark_object_loop_halt;
5326 static void
5327 mark_vectorlike (ptr)
5328 struct Lisp_Vector *ptr;
5330 register EMACS_INT size = ptr->size;
5331 register int i;
5333 eassert (!VECTOR_MARKED_P (ptr));
5334 VECTOR_MARK (ptr); /* Else mark it */
5335 if (size & PSEUDOVECTOR_FLAG)
5336 size &= PSEUDOVECTOR_SIZE_MASK;
5338 /* Note that this size is not the memory-footprint size, but only
5339 the number of Lisp_Object fields that we should trace.
5340 The distinction is used e.g. by Lisp_Process which places extra
5341 non-Lisp_Object fields at the end of the structure. */
5342 for (i = 0; i < size; i++) /* and then mark its elements */
5343 mark_object (ptr->contents[i]);
5346 /* Like mark_vectorlike but optimized for char-tables (and
5347 sub-char-tables) assuming that the contents are mostly integers or
5348 symbols. */
5350 static void
5351 mark_char_table (ptr)
5352 struct Lisp_Vector *ptr;
5354 register EMACS_INT size = ptr->size & PSEUDOVECTOR_SIZE_MASK;
5355 register int i;
5357 eassert (!VECTOR_MARKED_P (ptr));
5358 VECTOR_MARK (ptr);
5359 for (i = 0; i < size; i++)
5361 Lisp_Object val = ptr->contents[i];
5363 if (INTEGERP (val) || SYMBOLP (val) && XSYMBOL (val)->gcmarkbit)
5364 continue;
5365 if (SUB_CHAR_TABLE_P (val))
5367 if (! VECTOR_MARKED_P (XVECTOR (val)))
5368 mark_char_table (XVECTOR (val));
5370 else
5371 mark_object (val);
5375 void
5376 mark_object (arg)
5377 Lisp_Object arg;
5379 register Lisp_Object obj = arg;
5380 #ifdef GC_CHECK_MARKED_OBJECTS
5381 void *po;
5382 struct mem_node *m;
5383 #endif
5384 int cdr_count = 0;
5386 loop:
5388 if (PURE_POINTER_P (XPNTR (obj)))
5389 return;
5391 last_marked[last_marked_index++] = obj;
5392 if (last_marked_index == LAST_MARKED_SIZE)
5393 last_marked_index = 0;
5395 /* Perform some sanity checks on the objects marked here. Abort if
5396 we encounter an object we know is bogus. This increases GC time
5397 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5398 #ifdef GC_CHECK_MARKED_OBJECTS
5400 po = (void *) XPNTR (obj);
5402 /* Check that the object pointed to by PO is known to be a Lisp
5403 structure allocated from the heap. */
5404 #define CHECK_ALLOCATED() \
5405 do { \
5406 m = mem_find (po); \
5407 if (m == MEM_NIL) \
5408 abort (); \
5409 } while (0)
5411 /* Check that the object pointed to by PO is live, using predicate
5412 function LIVEP. */
5413 #define CHECK_LIVE(LIVEP) \
5414 do { \
5415 if (!LIVEP (m, po)) \
5416 abort (); \
5417 } while (0)
5419 /* Check both of the above conditions. */
5420 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5421 do { \
5422 CHECK_ALLOCATED (); \
5423 CHECK_LIVE (LIVEP); \
5424 } while (0) \
5426 #else /* not GC_CHECK_MARKED_OBJECTS */
5428 #define CHECK_ALLOCATED() (void) 0
5429 #define CHECK_LIVE(LIVEP) (void) 0
5430 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5432 #endif /* not GC_CHECK_MARKED_OBJECTS */
5434 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5436 case Lisp_String:
5438 register struct Lisp_String *ptr = XSTRING (obj);
5439 if (STRING_MARKED_P (ptr))
5440 break;
5441 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5442 MARK_INTERVAL_TREE (ptr->intervals);
5443 MARK_STRING (ptr);
5444 #ifdef GC_CHECK_STRING_BYTES
5445 /* Check that the string size recorded in the string is the
5446 same as the one recorded in the sdata structure. */
5447 CHECK_STRING_BYTES (ptr);
5448 #endif /* GC_CHECK_STRING_BYTES */
5450 break;
5452 case Lisp_Vectorlike:
5453 if (VECTOR_MARKED_P (XVECTOR (obj)))
5454 break;
5455 #ifdef GC_CHECK_MARKED_OBJECTS
5456 m = mem_find (po);
5457 if (m == MEM_NIL && !SUBRP (obj)
5458 && po != &buffer_defaults
5459 && po != &buffer_local_symbols)
5460 abort ();
5461 #endif /* GC_CHECK_MARKED_OBJECTS */
5463 if (BUFFERP (obj))
5465 #ifdef GC_CHECK_MARKED_OBJECTS
5466 if (po != &buffer_defaults && po != &buffer_local_symbols)
5468 struct buffer *b;
5469 for (b = all_buffers; b && b != po; b = b->next)
5471 if (b == NULL)
5472 abort ();
5474 #endif /* GC_CHECK_MARKED_OBJECTS */
5475 mark_buffer (obj);
5477 else if (SUBRP (obj))
5478 break;
5479 else if (COMPILEDP (obj))
5480 /* We could treat this just like a vector, but it is better to
5481 save the COMPILED_CONSTANTS element for last and avoid
5482 recursion there. */
5484 register struct Lisp_Vector *ptr = XVECTOR (obj);
5485 register EMACS_INT size = ptr->size;
5486 register int i;
5488 CHECK_LIVE (live_vector_p);
5489 VECTOR_MARK (ptr); /* Else mark it */
5490 size &= PSEUDOVECTOR_SIZE_MASK;
5491 for (i = 0; i < size; i++) /* and then mark its elements */
5493 if (i != COMPILED_CONSTANTS)
5494 mark_object (ptr->contents[i]);
5496 obj = ptr->contents[COMPILED_CONSTANTS];
5497 goto loop;
5499 else if (FRAMEP (obj))
5501 register struct frame *ptr = XFRAME (obj);
5502 mark_vectorlike (XVECTOR (obj));
5503 mark_face_cache (ptr->face_cache);
5505 else if (WINDOWP (obj))
5507 register struct Lisp_Vector *ptr = XVECTOR (obj);
5508 struct window *w = XWINDOW (obj);
5509 mark_vectorlike (ptr);
5510 /* Mark glyphs for leaf windows. Marking window matrices is
5511 sufficient because frame matrices use the same glyph
5512 memory. */
5513 if (NILP (w->hchild)
5514 && NILP (w->vchild)
5515 && w->current_matrix)
5517 mark_glyph_matrix (w->current_matrix);
5518 mark_glyph_matrix (w->desired_matrix);
5521 else if (HASH_TABLE_P (obj))
5523 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5524 mark_vectorlike ((struct Lisp_Vector *)h);
5525 /* If hash table is not weak, mark all keys and values.
5526 For weak tables, mark only the vector. */
5527 if (NILP (h->weak))
5528 mark_object (h->key_and_value);
5529 else
5530 VECTOR_MARK (XVECTOR (h->key_and_value));
5532 else if (CHAR_TABLE_P (obj))
5533 mark_char_table (XVECTOR (obj));
5534 else
5535 mark_vectorlike (XVECTOR (obj));
5536 break;
5538 case Lisp_Symbol:
5540 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5541 struct Lisp_Symbol *ptrx;
5543 if (ptr->gcmarkbit)
5544 break;
5545 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5546 ptr->gcmarkbit = 1;
5547 mark_object (ptr->value);
5548 mark_object (ptr->function);
5549 mark_object (ptr->plist);
5551 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5552 MARK_STRING (XSTRING (ptr->xname));
5553 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5555 /* Note that we do not mark the obarray of the symbol.
5556 It is safe not to do so because nothing accesses that
5557 slot except to check whether it is nil. */
5558 ptr = ptr->next;
5559 if (ptr)
5561 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5562 XSETSYMBOL (obj, ptrx);
5563 goto loop;
5566 break;
5568 case Lisp_Misc:
5569 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5570 if (XMISCANY (obj)->gcmarkbit)
5571 break;
5572 XMISCANY (obj)->gcmarkbit = 1;
5574 switch (XMISCTYPE (obj))
5576 case Lisp_Misc_Buffer_Local_Value:
5578 register struct Lisp_Buffer_Local_Value *ptr
5579 = XBUFFER_LOCAL_VALUE (obj);
5580 mark_object (ptr->thread_data);
5581 mark_object (ptr->realvalue);
5582 goto loop;
5585 case Lisp_Misc_Marker:
5586 /* DO NOT mark thru the marker's chain.
5587 The buffer's markers chain does not preserve markers from gc;
5588 instead, markers are removed from the chain when freed by gc. */
5589 break;
5591 case Lisp_Misc_Intfwd:
5592 case Lisp_Misc_Boolfwd:
5593 case Lisp_Misc_Objfwd:
5594 case Lisp_Misc_Buffer_Objfwd:
5595 case Lisp_Misc_Kboard_Objfwd:
5596 /* Don't bother with Lisp_Buffer_Objfwd,
5597 since all markable slots in current buffer marked anyway. */
5598 /* Don't need to do Lisp_Objfwd, since the places they point
5599 are protected with staticpro. */
5600 break;
5602 case Lisp_Misc_Save_Value:
5603 #if GC_MARK_STACK
5605 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5606 /* If DOGC is set, POINTER is the address of a memory
5607 area containing INTEGER potential Lisp_Objects. */
5608 if (ptr->dogc)
5610 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5611 int nelt;
5612 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5613 mark_maybe_object (*p);
5616 #endif
5617 break;
5619 case Lisp_Misc_Overlay:
5621 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5622 mark_object (ptr->start);
5623 mark_object (ptr->end);
5624 mark_object (ptr->plist);
5625 if (ptr->next)
5627 XSETMISC (obj, ptr->next);
5628 goto loop;
5631 break;
5633 case Lisp_Misc_ThreadLocal:
5635 struct Lisp_ThreadLocal *ptr = XTHREADLOCAL (obj);
5636 mark_object (ptr->global);
5637 mark_object (ptr->thread_alist);
5639 break;
5641 default:
5642 abort ();
5644 break;
5646 case Lisp_Cons:
5648 register struct Lisp_Cons *ptr = XCONS (obj);
5649 if (CONS_MARKED_P (ptr))
5650 break;
5651 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5652 CONS_MARK (ptr);
5653 /* If the cdr is nil, avoid recursion for the car. */
5654 if (EQ (ptr->u.cdr, Qnil))
5656 obj = ptr->car;
5657 cdr_count = 0;
5658 goto loop;
5660 mark_object (ptr->car);
5661 obj = ptr->u.cdr;
5662 cdr_count++;
5663 if (cdr_count == mark_object_loop_halt)
5664 abort ();
5665 goto loop;
5668 case Lisp_Float:
5669 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5670 FLOAT_MARK (XFLOAT (obj));
5671 break;
5673 case_Lisp_Int:
5674 break;
5676 default:
5677 abort ();
5680 #undef CHECK_LIVE
5681 #undef CHECK_ALLOCATED
5682 #undef CHECK_ALLOCATED_AND_LIVE
5685 /* Mark the pointers in a buffer structure. */
5687 static void
5688 mark_buffer (buf)
5689 Lisp_Object buf;
5691 register struct buffer *buffer = XBUFFER (buf);
5692 register Lisp_Object *ptr, tmp;
5693 Lisp_Object base_buffer;
5695 eassert (!VECTOR_MARKED_P (buffer));
5696 VECTOR_MARK (buffer);
5698 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5700 /* For now, we just don't mark the undo_list. It's done later in
5701 a special way just before the sweep phase, and after stripping
5702 some of its elements that are not needed any more. */
5704 if (buffer->overlays_before)
5706 XSETMISC (tmp, buffer->overlays_before);
5707 mark_object (tmp);
5709 if (buffer->overlays_after)
5711 XSETMISC (tmp, buffer->overlays_after);
5712 mark_object (tmp);
5715 /* buffer-local Lisp variables start at `undo_list',
5716 tho only the ones from `name' on are GC'd normally. */
5717 for (ptr = &buffer->name_;
5718 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5719 ptr++)
5720 mark_object (*ptr);
5722 /* If this is an indirect buffer, mark its base buffer. */
5723 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5725 XSETBUFFER (base_buffer, buffer->base_buffer);
5726 mark_buffer (base_buffer);
5730 /* Mark the Lisp pointers in the terminal objects.
5731 Called by the Fgarbage_collector. */
5733 static void
5734 mark_terminals (void)
5736 struct terminal *t;
5737 for (t = terminal_list; t; t = t->next_terminal)
5739 eassert (t->name != NULL);
5740 if (!VECTOR_MARKED_P (t))
5742 #ifdef HAVE_WINDOW_SYSTEM
5743 mark_image_cache (t->image_cache);
5744 #endif /* HAVE_WINDOW_SYSTEM */
5745 mark_vectorlike ((struct Lisp_Vector *)t);
5752 /* Value is non-zero if OBJ will survive the current GC because it's
5753 either marked or does not need to be marked to survive. */
5756 survives_gc_p (obj)
5757 Lisp_Object obj;
5759 int survives_p;
5761 switch (XTYPE (obj))
5763 case_Lisp_Int:
5764 survives_p = 1;
5765 break;
5767 case Lisp_Symbol:
5768 survives_p = XSYMBOL (obj)->gcmarkbit;
5769 break;
5771 case Lisp_Misc:
5772 survives_p = XMISCANY (obj)->gcmarkbit;
5773 break;
5775 case Lisp_String:
5776 survives_p = STRING_MARKED_P (XSTRING (obj));
5777 break;
5779 case Lisp_Vectorlike:
5780 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5781 break;
5783 case Lisp_Cons:
5784 survives_p = CONS_MARKED_P (XCONS (obj));
5785 break;
5787 case Lisp_Float:
5788 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5789 break;
5791 default:
5792 abort ();
5795 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5800 /* Sweep: find all structures not marked, and free them. */
5802 static void
5803 gc_sweep ()
5805 /* Remove or mark entries in weak hash tables.
5806 This must be done before any object is unmarked. */
5807 sweep_weak_hash_tables ();
5809 sweep_strings ();
5810 #ifdef GC_CHECK_STRING_BYTES
5811 if (!noninteractive)
5812 check_string_bytes (1);
5813 #endif
5815 /* Put all unmarked conses on free list */
5817 register struct cons_block *cblk;
5818 struct cons_block **cprev = &cons_block;
5819 register int lim = cons_block_index;
5820 register int num_free = 0, num_used = 0;
5822 cons_free_list = 0;
5824 for (cblk = cons_block; cblk; cblk = *cprev)
5826 register int i = 0;
5827 int this_free = 0;
5828 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5830 /* Scan the mark bits an int at a time. */
5831 for (i = 0; i <= ilim; i++)
5833 if (cblk->gcmarkbits[i] == -1)
5835 /* Fast path - all cons cells for this int are marked. */
5836 cblk->gcmarkbits[i] = 0;
5837 num_used += BITS_PER_INT;
5839 else
5841 /* Some cons cells for this int are not marked.
5842 Find which ones, and free them. */
5843 int start, pos, stop;
5845 start = i * BITS_PER_INT;
5846 stop = lim - start;
5847 if (stop > BITS_PER_INT)
5848 stop = BITS_PER_INT;
5849 stop += start;
5851 for (pos = start; pos < stop; pos++)
5853 if (!CONS_MARKED_P (&cblk->conses[pos]))
5855 this_free++;
5856 cblk->conses[pos].u.chain = cons_free_list;
5857 cons_free_list = &cblk->conses[pos];
5858 #if GC_MARK_STACK
5859 cons_free_list->car = Vdead;
5860 #endif
5862 else
5864 num_used++;
5865 CONS_UNMARK (&cblk->conses[pos]);
5871 lim = CONS_BLOCK_SIZE;
5872 /* If this block contains only free conses and we have already
5873 seen more than two blocks worth of free conses then deallocate
5874 this block. */
5875 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5877 *cprev = cblk->next;
5878 /* Unhook from the free list. */
5879 cons_free_list = cblk->conses[0].u.chain;
5880 lisp_align_free (cblk);
5881 n_cons_blocks--;
5883 else
5885 num_free += this_free;
5886 cprev = &cblk->next;
5889 total_conses = num_used;
5890 total_free_conses = num_free;
5893 /* Put all unmarked floats on free list */
5895 register struct float_block *fblk;
5896 struct float_block **fprev = &float_block;
5897 register int lim = float_block_index;
5898 register int num_free = 0, num_used = 0;
5900 float_free_list = 0;
5902 for (fblk = float_block; fblk; fblk = *fprev)
5904 register int i;
5905 int this_free = 0;
5906 for (i = 0; i < lim; i++)
5907 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5909 this_free++;
5910 fblk->floats[i].u.chain = float_free_list;
5911 float_free_list = &fblk->floats[i];
5913 else
5915 num_used++;
5916 FLOAT_UNMARK (&fblk->floats[i]);
5918 lim = FLOAT_BLOCK_SIZE;
5919 /* If this block contains only free floats and we have already
5920 seen more than two blocks worth of free floats then deallocate
5921 this block. */
5922 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5924 *fprev = fblk->next;
5925 /* Unhook from the free list. */
5926 float_free_list = fblk->floats[0].u.chain;
5927 lisp_align_free (fblk);
5928 n_float_blocks--;
5930 else
5932 num_free += this_free;
5933 fprev = &fblk->next;
5936 total_floats = num_used;
5937 total_free_floats = num_free;
5940 /* Put all unmarked intervals on free list */
5942 register struct interval_block *iblk;
5943 struct interval_block **iprev = &interval_block;
5944 register int lim = interval_block_index;
5945 register int num_free = 0, num_used = 0;
5947 interval_free_list = 0;
5949 for (iblk = interval_block; iblk; iblk = *iprev)
5951 register int i;
5952 int this_free = 0;
5954 for (i = 0; i < lim; i++)
5956 if (!iblk->intervals[i].gcmarkbit)
5958 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5959 interval_free_list = &iblk->intervals[i];
5960 this_free++;
5962 else
5964 num_used++;
5965 iblk->intervals[i].gcmarkbit = 0;
5968 lim = INTERVAL_BLOCK_SIZE;
5969 /* If this block contains only free intervals and we have already
5970 seen more than two blocks worth of free intervals then
5971 deallocate this block. */
5972 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5974 *iprev = iblk->next;
5975 /* Unhook from the free list. */
5976 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5977 lisp_free (iblk);
5978 n_interval_blocks--;
5980 else
5982 num_free += this_free;
5983 iprev = &iblk->next;
5986 total_intervals = num_used;
5987 total_free_intervals = num_free;
5990 /* Put all unmarked symbols on free list */
5992 register struct symbol_block *sblk;
5993 struct symbol_block **sprev = &symbol_block;
5994 register int lim = symbol_block_index;
5995 register int num_free = 0, num_used = 0;
5997 symbol_free_list = NULL;
5999 for (sblk = symbol_block; sblk; sblk = *sprev)
6001 int this_free = 0;
6002 struct Lisp_Symbol *sym = sblk->symbols;
6003 struct Lisp_Symbol *end = sym + lim;
6005 for (; sym < end; ++sym)
6007 /* Check if the symbol was created during loadup. In such a case
6008 it might be pointed to by pure bytecode which we don't trace,
6009 so we conservatively assume that it is live. */
6010 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6012 if (!sym->gcmarkbit && !pure_p)
6014 sym->next = symbol_free_list;
6015 symbol_free_list = sym;
6016 #if GC_MARK_STACK
6017 symbol_free_list->function = Vdead;
6018 #endif
6019 ++this_free;
6021 else
6023 ++num_used;
6024 if (!pure_p)
6025 UNMARK_STRING (XSTRING (sym->xname));
6026 sym->gcmarkbit = 0;
6030 lim = SYMBOL_BLOCK_SIZE;
6031 /* If this block contains only free symbols and we have already
6032 seen more than two blocks worth of free symbols then deallocate
6033 this block. */
6034 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6036 *sprev = sblk->next;
6037 /* Unhook from the free list. */
6038 symbol_free_list = sblk->symbols[0].next;
6039 lisp_free (sblk);
6040 n_symbol_blocks--;
6042 else
6044 num_free += this_free;
6045 sprev = &sblk->next;
6048 total_symbols = num_used;
6049 total_free_symbols = num_free;
6052 /* Put all unmarked misc's on free list.
6053 For a marker, first unchain it from the buffer it points into. */
6055 register struct marker_block *mblk;
6056 struct marker_block **mprev = &marker_block;
6057 register int lim = marker_block_index;
6058 register int num_free = 0, num_used = 0;
6060 marker_free_list = 0;
6062 for (mblk = marker_block; mblk; mblk = *mprev)
6064 register int i;
6065 int this_free = 0;
6067 for (i = 0; i < lim; i++)
6069 if (!mblk->markers[i].u_any.gcmarkbit)
6071 if (mblk->markers[i].u_any.type == Lisp_Misc_Marker)
6072 unchain_marker (&mblk->markers[i].u_marker);
6073 /* Set the type of the freed object to Lisp_Misc_Free.
6074 We could leave the type alone, since nobody checks it,
6075 but this might catch bugs faster. */
6076 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6077 mblk->markers[i].u_free.chain = marker_free_list;
6078 marker_free_list = &mblk->markers[i];
6079 this_free++;
6081 else
6083 num_used++;
6084 mblk->markers[i].u_any.gcmarkbit = 0;
6087 lim = MARKER_BLOCK_SIZE;
6088 /* If this block contains only free markers and we have already
6089 seen more than two blocks worth of free markers then deallocate
6090 this block. */
6091 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6093 *mprev = mblk->next;
6094 /* Unhook from the free list. */
6095 marker_free_list = mblk->markers[0].u_free.chain;
6096 lisp_free (mblk);
6097 n_marker_blocks--;
6099 else
6101 num_free += this_free;
6102 mprev = &mblk->next;
6106 total_markers = num_used;
6107 total_free_markers = num_free;
6110 /* Free all unmarked buffers */
6112 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6114 while (buffer)
6115 if (!VECTOR_MARKED_P (buffer))
6117 if (prev)
6118 prev->next = buffer->next;
6119 else
6120 all_buffers = buffer->next;
6121 next = buffer->next;
6122 lisp_free (buffer);
6123 buffer = next;
6125 else
6127 VECTOR_UNMARK (buffer);
6128 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6129 prev = buffer, buffer = buffer->next;
6133 /* Free all unmarked vectors */
6135 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6136 total_vector_size = 0;
6138 while (vector)
6139 if (!VECTOR_MARKED_P (vector))
6141 if (prev)
6142 prev->next = vector->next;
6143 else
6144 all_vectors = vector->next;
6145 next = vector->next;
6146 lisp_free (vector);
6147 n_vectors--;
6148 vector = next;
6151 else
6153 VECTOR_UNMARK (vector);
6154 if (vector->size & PSEUDOVECTOR_FLAG)
6155 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6156 else
6157 total_vector_size += vector->size;
6158 prev = vector, vector = vector->next;
6162 #ifdef GC_CHECK_STRING_BYTES
6163 if (!noninteractive)
6164 check_string_bytes (1);
6165 #endif
6171 /* Debugging aids. */
6173 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6174 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6175 This may be helpful in debugging Emacs's memory usage.
6176 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6179 Lisp_Object end;
6181 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6183 return end;
6186 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6187 doc: /* Return a list of counters that measure how much consing there has been.
6188 Each of these counters increments for a certain kind of object.
6189 The counters wrap around from the largest positive integer to zero.
6190 Garbage collection does not decrease them.
6191 The elements of the value are as follows:
6192 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6193 All are in units of 1 = one object consed
6194 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6195 objects consed.
6196 MISCS include overlays, markers, and some internal types.
6197 Frames, windows, buffers, and subprocesses count as vectors
6198 (but the contents of a buffer's text do not count here). */)
6201 Lisp_Object consed[8];
6203 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6204 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6205 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6206 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6207 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6208 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6209 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6210 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6212 return Flist (8, consed);
6215 int suppress_checking;
6217 void
6218 die (msg, file, line)
6219 const char *msg;
6220 const char *file;
6221 int line;
6223 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6224 file, line, msg);
6225 abort ();
6228 /* Initialization */
6230 void
6231 init_alloc_once ()
6233 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6234 purebeg = PUREBEG;
6235 pure_size = PURESIZE;
6236 pure_bytes_used = 0;
6237 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6238 pure_bytes_used_before_overflow = 0;
6240 /* Initialize the list of free aligned blocks. */
6241 free_ablock = NULL;
6243 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6244 mem_init ();
6245 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6246 #endif
6248 all_vectors = 0;
6249 ignore_warnings = 1;
6250 #ifdef DOUG_LEA_MALLOC
6251 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6252 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6253 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6254 #endif
6255 init_strings ();
6256 init_cons ();
6257 init_symbol ();
6258 init_marker ();
6259 init_float ();
6260 init_intervals ();
6261 init_weak_hash_tables ();
6263 #ifdef REL_ALLOC
6264 malloc_hysteresis = 32;
6265 #else
6266 malloc_hysteresis = 0;
6267 #endif
6269 refill_memory_reserve ();
6271 ignore_warnings = 0;
6272 gcprolist = 0;
6273 byte_stack_list = 0;
6274 staticidx = 0;
6275 consing_since_gc = 0;
6276 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6277 gc_relative_threshold = 0;
6279 #ifdef VIRT_ADDR_VARIES
6280 malloc_sbrk_unused = 1<<22; /* A large number */
6281 malloc_sbrk_used = 100000; /* as reasonable as any number */
6282 #endif /* VIRT_ADDR_VARIES */
6285 void
6286 init_alloc ()
6288 gcprolist = 0;
6289 byte_stack_list = 0;
6290 #if GC_MARK_STACK
6291 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6292 setjmp_tested_p = longjmps_done = 0;
6293 #endif
6294 #endif
6295 Vgc_elapsed = make_float (0.0);
6296 gcs_done = 0;
6299 void
6300 syms_of_alloc ()
6302 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6303 doc: /* *Number of bytes of consing between garbage collections.
6304 Garbage collection can happen automatically once this many bytes have been
6305 allocated since the last garbage collection. All data types count.
6307 Garbage collection happens automatically only when `eval' is called.
6309 By binding this temporarily to a large number, you can effectively
6310 prevent garbage collection during a part of the program.
6311 See also `gc-cons-percentage'. */);
6313 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6314 doc: /* *Portion of the heap used for allocation.
6315 Garbage collection can happen automatically once this portion of the heap
6316 has been allocated since the last garbage collection.
6317 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6318 Vgc_cons_percentage = make_float (0.1);
6320 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6321 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6323 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6324 doc: /* Number of cons cells that have been consed so far. */);
6326 DEFVAR_INT ("floats-consed", &floats_consed,
6327 doc: /* Number of floats that have been consed so far. */);
6329 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6330 doc: /* Number of vector cells that have been consed so far. */);
6332 DEFVAR_INT ("symbols-consed", &symbols_consed,
6333 doc: /* Number of symbols that have been consed so far. */);
6335 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6336 doc: /* Number of string characters that have been consed so far. */);
6338 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6339 doc: /* Number of miscellaneous objects that have been consed so far. */);
6341 DEFVAR_INT ("intervals-consed", &intervals_consed,
6342 doc: /* Number of intervals that have been consed so far. */);
6344 DEFVAR_INT ("strings-consed", &strings_consed,
6345 doc: /* Number of strings that have been consed so far. */);
6347 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6348 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6349 This means that certain objects should be allocated in shared (pure) space. */);
6351 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6352 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6353 garbage_collection_messages = 0;
6355 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6356 doc: /* Hook run after garbage collection has finished. */);
6357 Vpost_gc_hook = Qnil;
6358 Qpost_gc_hook = intern_c_string ("post-gc-hook");
6359 staticpro (&Qpost_gc_hook);
6361 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6362 doc: /* Precomputed `signal' argument for memory-full error. */);
6363 /* We build this in advance because if we wait until we need it, we might
6364 not be able to allocate the memory to hold it. */
6365 Vmemory_signal_data
6366 = pure_cons (Qerror,
6367 pure_cons (make_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6369 DEFVAR_LISP ("memory-full", &Vmemory_full,
6370 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6371 Vmemory_full = Qnil;
6373 staticpro (&Qgc_cons_threshold);
6374 Qgc_cons_threshold = intern_c_string ("gc-cons-threshold");
6376 staticpro (&Qchar_table_extra_slots);
6377 Qchar_table_extra_slots = intern_c_string ("char-table-extra-slots");
6379 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6380 doc: /* Accumulated time elapsed in garbage collections.
6381 The time is in seconds as a floating point value. */);
6382 DEFVAR_INT ("gcs-done", &gcs_done,
6383 doc: /* Accumulated number of garbage collections done. */);
6385 defsubr (&Scons);
6386 defsubr (&Slist);
6387 defsubr (&Svector);
6388 defsubr (&Smake_byte_code);
6389 defsubr (&Smake_list);
6390 defsubr (&Smake_vector);
6391 defsubr (&Smake_string);
6392 defsubr (&Smake_bool_vector);
6393 defsubr (&Smake_symbol);
6394 defsubr (&Smake_marker);
6395 defsubr (&Spurecopy);
6396 defsubr (&Sgarbage_collect);
6397 defsubr (&Smemory_limit);
6398 defsubr (&Smemory_use_counts);
6400 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6401 defsubr (&Sgc_status);
6402 #endif
6405 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6406 (do not change this comment) */