* custom.texi (Init Examples): Add example of changing load-path.
[emacs.git] / src / floatfns.c
blob15077efae6cb18d4dcad8d6fdebfbecf29db7cc0
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2 Copyright (C) 1988, 1993, 1994, 1999, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5 Author: Wolfgang Rupprecht
6 (according to ack.texi)
8 This file is part of GNU Emacs.
10 GNU Emacs is free software: you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation, either version 3 of the License, or
13 (at your option) any later version.
15 GNU Emacs is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
24 /* ANSI C requires only these float functions:
25 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
26 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
28 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
29 Define HAVE_CBRT if you have cbrt.
30 Define HAVE_RINT if you have a working rint.
31 If you don't define these, then the appropriate routines will be simulated.
33 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
34 (This should happen automatically.)
36 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
37 This has no effect if HAVE_MATHERR is defined.
39 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
40 (What systems actually do this? Please let us know.)
42 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
43 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
44 range checking will happen before calling the float routines. This has
45 no effect if HAVE_MATHERR is defined (since matherr will be called when
46 a domain error occurs.)
49 #include <config.h>
50 #include <signal.h>
51 #include "lisp.h"
52 #include "syssignal.h"
54 #if STDC_HEADERS
55 #include <float.h>
56 #endif
58 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
59 #ifndef IEEE_FLOATING_POINT
60 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
61 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
62 #define IEEE_FLOATING_POINT 1
63 #else
64 #define IEEE_FLOATING_POINT 0
65 #endif
66 #endif
68 #include <math.h>
70 /* This declaration is omitted on some systems, like Ultrix. */
71 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
72 extern double logb ();
73 #endif /* not HPUX and HAVE_LOGB and no logb macro */
75 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
76 /* If those are defined, then this is probably a `matherr' machine. */
77 # ifndef HAVE_MATHERR
78 # define HAVE_MATHERR
79 # endif
80 #endif
82 #ifdef NO_MATHERR
83 #undef HAVE_MATHERR
84 #endif
86 #ifdef HAVE_MATHERR
87 # ifdef FLOAT_CHECK_ERRNO
88 # undef FLOAT_CHECK_ERRNO
89 # endif
90 # ifdef FLOAT_CHECK_DOMAIN
91 # undef FLOAT_CHECK_DOMAIN
92 # endif
93 #endif
95 #ifndef NO_FLOAT_CHECK_ERRNO
96 #define FLOAT_CHECK_ERRNO
97 #endif
99 #ifdef FLOAT_CHECK_ERRNO
100 # include <errno.h>
102 #ifndef USE_CRT_DLL
103 extern int errno;
104 #endif
105 #endif
107 #ifdef FLOAT_CATCH_SIGILL
108 static SIGTYPE float_error ();
109 #endif
111 /* Nonzero while executing in floating point.
112 This tells float_error what to do. */
114 static int in_float;
116 /* If an argument is out of range for a mathematical function,
117 here is the actual argument value to use in the error message.
118 These variables are used only across the floating point library call
119 so there is no need to staticpro them. */
121 static Lisp_Object float_error_arg, float_error_arg2;
123 static char *float_error_fn_name;
125 /* Evaluate the floating point expression D, recording NUM
126 as the original argument for error messages.
127 D is normally an assignment expression.
128 Handle errors which may result in signals or may set errno.
130 Note that float_error may be declared to return void, so you can't
131 just cast the zero after the colon to (SIGTYPE) to make the types
132 check properly. */
134 #ifdef FLOAT_CHECK_ERRNO
135 #define IN_FLOAT(d, name, num) \
136 do { \
137 float_error_arg = num; \
138 float_error_fn_name = name; \
139 in_float = 1; errno = 0; (d); in_float = 0; \
140 switch (errno) { \
141 case 0: break; \
142 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
143 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
144 default: arith_error (float_error_fn_name, float_error_arg); \
146 } while (0)
147 #define IN_FLOAT2(d, name, num, num2) \
148 do { \
149 float_error_arg = num; \
150 float_error_arg2 = num2; \
151 float_error_fn_name = name; \
152 in_float = 1; errno = 0; (d); in_float = 0; \
153 switch (errno) { \
154 case 0: break; \
155 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
156 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
157 default: arith_error (float_error_fn_name, float_error_arg); \
159 } while (0)
160 #else
161 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
162 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
163 #endif
165 /* Convert float to Lisp_Int if it fits, else signal a range error
166 using the given arguments. */
167 #define FLOAT_TO_INT(x, i, name, num) \
168 do \
170 if (FIXNUM_OVERFLOW_P (x)) \
171 range_error (name, num); \
172 XSETINT (i, (EMACS_INT)(x)); \
174 while (0)
175 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
176 do \
178 if (FIXNUM_OVERFLOW_P (x)) \
179 range_error2 (name, num1, num2); \
180 XSETINT (i, (EMACS_INT)(x)); \
182 while (0)
184 #define arith_error(op,arg) \
185 xsignal2 (Qarith_error, build_string ((op)), (arg))
186 #define range_error(op,arg) \
187 xsignal2 (Qrange_error, build_string ((op)), (arg))
188 #define range_error2(op,a1,a2) \
189 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
190 #define domain_error(op,arg) \
191 xsignal2 (Qdomain_error, build_string ((op)), (arg))
192 #define domain_error2(op,a1,a2) \
193 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
195 /* Extract a Lisp number as a `double', or signal an error. */
197 double
198 extract_float (num)
199 Lisp_Object num;
201 CHECK_NUMBER_OR_FLOAT (num);
203 if (FLOATP (num))
204 return XFLOAT_DATA (num);
205 return (double) XINT (num);
208 /* Trig functions. */
210 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
211 doc: /* Return the inverse cosine of ARG. */)
212 (arg)
213 register Lisp_Object arg;
215 double d = extract_float (arg);
216 #ifdef FLOAT_CHECK_DOMAIN
217 if (d > 1.0 || d < -1.0)
218 domain_error ("acos", arg);
219 #endif
220 IN_FLOAT (d = acos (d), "acos", arg);
221 return make_float (d);
224 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
225 doc: /* Return the inverse sine of ARG. */)
226 (arg)
227 register Lisp_Object arg;
229 double d = extract_float (arg);
230 #ifdef FLOAT_CHECK_DOMAIN
231 if (d > 1.0 || d < -1.0)
232 domain_error ("asin", arg);
233 #endif
234 IN_FLOAT (d = asin (d), "asin", arg);
235 return make_float (d);
238 DEFUN ("atan", Fatan, Satan, 1, 2, 0,
239 doc: /* Return the inverse tangent of the arguments.
240 If only one argument Y is given, return the inverse tangent of Y.
241 If two arguments Y and X are given, return the inverse tangent of Y
242 divided by X, i.e. the angle in radians between the vector (X, Y)
243 and the x-axis. */)
244 (y, x)
245 register Lisp_Object y, x;
247 double d = extract_float (y);
249 if (NILP (x))
250 IN_FLOAT (d = atan (d), "atan", y);
251 else
253 double d2 = extract_float (x);
255 IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x);
257 return make_float (d);
260 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
261 doc: /* Return the cosine of ARG. */)
262 (arg)
263 register Lisp_Object arg;
265 double d = extract_float (arg);
266 IN_FLOAT (d = cos (d), "cos", arg);
267 return make_float (d);
270 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
271 doc: /* Return the sine of ARG. */)
272 (arg)
273 register Lisp_Object arg;
275 double d = extract_float (arg);
276 IN_FLOAT (d = sin (d), "sin", arg);
277 return make_float (d);
280 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
281 doc: /* Return the tangent of ARG. */)
282 (arg)
283 register Lisp_Object arg;
285 double d = extract_float (arg);
286 double c = cos (d);
287 #ifdef FLOAT_CHECK_DOMAIN
288 if (c == 0.0)
289 domain_error ("tan", arg);
290 #endif
291 IN_FLOAT (d = sin (d) / c, "tan", arg);
292 return make_float (d);
295 #if 0 /* Leave these out unless we find there's a reason for them. */
297 DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
298 doc: /* Return the bessel function j0 of ARG. */)
299 (arg)
300 register Lisp_Object arg;
302 double d = extract_float (arg);
303 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
304 return make_float (d);
307 DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
308 doc: /* Return the bessel function j1 of ARG. */)
309 (arg)
310 register Lisp_Object arg;
312 double d = extract_float (arg);
313 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
314 return make_float (d);
317 DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
318 doc: /* Return the order N bessel function output jn of ARG.
319 The first arg (the order) is truncated to an integer. */)
320 (n, arg)
321 register Lisp_Object n, arg;
323 int i1 = extract_float (n);
324 double f2 = extract_float (arg);
326 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
327 return make_float (f2);
330 DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
331 doc: /* Return the bessel function y0 of ARG. */)
332 (arg)
333 register Lisp_Object arg;
335 double d = extract_float (arg);
336 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
337 return make_float (d);
340 DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
341 doc: /* Return the bessel function y1 of ARG. */)
342 (arg)
343 register Lisp_Object arg;
345 double d = extract_float (arg);
346 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
347 return make_float (d);
350 DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
351 doc: /* Return the order N bessel function output yn of ARG.
352 The first arg (the order) is truncated to an integer. */)
353 (n, arg)
354 register Lisp_Object n, arg;
356 int i1 = extract_float (n);
357 double f2 = extract_float (arg);
359 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
360 return make_float (f2);
363 #endif
365 #if 0 /* Leave these out unless we see they are worth having. */
367 DEFUN ("erf", Ferf, Serf, 1, 1, 0,
368 doc: /* Return the mathematical error function of ARG. */)
369 (arg)
370 register Lisp_Object arg;
372 double d = extract_float (arg);
373 IN_FLOAT (d = erf (d), "erf", arg);
374 return make_float (d);
377 DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
378 doc: /* Return the complementary error function of ARG. */)
379 (arg)
380 register Lisp_Object arg;
382 double d = extract_float (arg);
383 IN_FLOAT (d = erfc (d), "erfc", arg);
384 return make_float (d);
387 DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
388 doc: /* Return the log gamma of ARG. */)
389 (arg)
390 register Lisp_Object arg;
392 double d = extract_float (arg);
393 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
394 return make_float (d);
397 DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
398 doc: /* Return the cube root of ARG. */)
399 (arg)
400 register Lisp_Object arg;
402 double d = extract_float (arg);
403 #ifdef HAVE_CBRT
404 IN_FLOAT (d = cbrt (d), "cube-root", arg);
405 #else
406 if (d >= 0.0)
407 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
408 else
409 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
410 #endif
411 return make_float (d);
414 #endif
416 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
417 doc: /* Return the exponential base e of ARG. */)
418 (arg)
419 register Lisp_Object arg;
421 double d = extract_float (arg);
422 #ifdef FLOAT_CHECK_DOMAIN
423 if (d > 709.7827) /* Assume IEEE doubles here */
424 range_error ("exp", arg);
425 else if (d < -709.0)
426 return make_float (0.0);
427 else
428 #endif
429 IN_FLOAT (d = exp (d), "exp", arg);
430 return make_float (d);
433 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
434 doc: /* Return the exponential ARG1 ** ARG2. */)
435 (arg1, arg2)
436 register Lisp_Object arg1, arg2;
438 double f1, f2, f3;
440 CHECK_NUMBER_OR_FLOAT (arg1);
441 CHECK_NUMBER_OR_FLOAT (arg2);
442 if (INTEGERP (arg1) /* common lisp spec */
443 && INTEGERP (arg2) /* don't promote, if both are ints, and */
444 && 0 <= XINT (arg2)) /* we are sure the result is not fractional */
445 { /* this can be improved by pre-calculating */
446 EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
447 Lisp_Object val;
449 x = XINT (arg1);
450 y = XINT (arg2);
451 acc = 1;
453 if (y < 0)
455 if (x == 1)
456 acc = 1;
457 else if (x == -1)
458 acc = (y & 1) ? -1 : 1;
459 else
460 acc = 0;
462 else
464 while (y > 0)
466 if (y & 1)
467 acc *= x;
468 x *= x;
469 y = (unsigned)y >> 1;
472 XSETINT (val, acc);
473 return val;
475 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
476 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
477 /* Really should check for overflow, too */
478 if (f1 == 0.0 && f2 == 0.0)
479 f1 = 1.0;
480 #ifdef FLOAT_CHECK_DOMAIN
481 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
482 domain_error2 ("expt", arg1, arg2);
483 #endif
484 IN_FLOAT2 (f3 = pow (f1, f2), "expt", arg1, arg2);
485 /* Check for overflow in the result. */
486 if (f1 != 0.0 && f3 == 0.0)
487 range_error ("expt", arg1);
488 return make_float (f3);
491 DEFUN ("log", Flog, Slog, 1, 2, 0,
492 doc: /* Return the natural logarithm of ARG.
493 If the optional argument BASE is given, return log ARG using that base. */)
494 (arg, base)
495 register Lisp_Object arg, base;
497 double d = extract_float (arg);
499 #ifdef FLOAT_CHECK_DOMAIN
500 if (d <= 0.0)
501 domain_error2 ("log", arg, base);
502 #endif
503 if (NILP (base))
504 IN_FLOAT (d = log (d), "log", arg);
505 else
507 double b = extract_float (base);
509 #ifdef FLOAT_CHECK_DOMAIN
510 if (b <= 0.0 || b == 1.0)
511 domain_error2 ("log", arg, base);
512 #endif
513 if (b == 10.0)
514 IN_FLOAT2 (d = log10 (d), "log", arg, base);
515 else
516 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
518 return make_float (d);
521 DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
522 doc: /* Return the logarithm base 10 of ARG. */)
523 (arg)
524 register Lisp_Object arg;
526 double d = extract_float (arg);
527 #ifdef FLOAT_CHECK_DOMAIN
528 if (d <= 0.0)
529 domain_error ("log10", arg);
530 #endif
531 IN_FLOAT (d = log10 (d), "log10", arg);
532 return make_float (d);
535 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
536 doc: /* Return the square root of ARG. */)
537 (arg)
538 register Lisp_Object arg;
540 double d = extract_float (arg);
541 #ifdef FLOAT_CHECK_DOMAIN
542 if (d < 0.0)
543 domain_error ("sqrt", arg);
544 #endif
545 IN_FLOAT (d = sqrt (d), "sqrt", arg);
546 return make_float (d);
549 #if 0 /* Not clearly worth adding. */
551 DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
552 doc: /* Return the inverse hyperbolic cosine of ARG. */)
553 (arg)
554 register Lisp_Object arg;
556 double d = extract_float (arg);
557 #ifdef FLOAT_CHECK_DOMAIN
558 if (d < 1.0)
559 domain_error ("acosh", arg);
560 #endif
561 #ifdef HAVE_INVERSE_HYPERBOLIC
562 IN_FLOAT (d = acosh (d), "acosh", arg);
563 #else
564 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
565 #endif
566 return make_float (d);
569 DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
570 doc: /* Return the inverse hyperbolic sine of ARG. */)
571 (arg)
572 register Lisp_Object arg;
574 double d = extract_float (arg);
575 #ifdef HAVE_INVERSE_HYPERBOLIC
576 IN_FLOAT (d = asinh (d), "asinh", arg);
577 #else
578 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
579 #endif
580 return make_float (d);
583 DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
584 doc: /* Return the inverse hyperbolic tangent of ARG. */)
585 (arg)
586 register Lisp_Object arg;
588 double d = extract_float (arg);
589 #ifdef FLOAT_CHECK_DOMAIN
590 if (d >= 1.0 || d <= -1.0)
591 domain_error ("atanh", arg);
592 #endif
593 #ifdef HAVE_INVERSE_HYPERBOLIC
594 IN_FLOAT (d = atanh (d), "atanh", arg);
595 #else
596 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
597 #endif
598 return make_float (d);
601 DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
602 doc: /* Return the hyperbolic cosine of ARG. */)
603 (arg)
604 register Lisp_Object arg;
606 double d = extract_float (arg);
607 #ifdef FLOAT_CHECK_DOMAIN
608 if (d > 710.0 || d < -710.0)
609 range_error ("cosh", arg);
610 #endif
611 IN_FLOAT (d = cosh (d), "cosh", arg);
612 return make_float (d);
615 DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
616 doc: /* Return the hyperbolic sine of ARG. */)
617 (arg)
618 register Lisp_Object arg;
620 double d = extract_float (arg);
621 #ifdef FLOAT_CHECK_DOMAIN
622 if (d > 710.0 || d < -710.0)
623 range_error ("sinh", arg);
624 #endif
625 IN_FLOAT (d = sinh (d), "sinh", arg);
626 return make_float (d);
629 DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
630 doc: /* Return the hyperbolic tangent of ARG. */)
631 (arg)
632 register Lisp_Object arg;
634 double d = extract_float (arg);
635 IN_FLOAT (d = tanh (d), "tanh", arg);
636 return make_float (d);
638 #endif
640 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
641 doc: /* Return the absolute value of ARG. */)
642 (arg)
643 register Lisp_Object arg;
645 CHECK_NUMBER_OR_FLOAT (arg);
647 if (FLOATP (arg))
648 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
649 else if (XINT (arg) < 0)
650 XSETINT (arg, - XINT (arg));
652 return arg;
655 DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
656 doc: /* Return the floating point number equal to ARG. */)
657 (arg)
658 register Lisp_Object arg;
660 CHECK_NUMBER_OR_FLOAT (arg);
662 if (INTEGERP (arg))
663 return make_float ((double) XINT (arg));
664 else /* give 'em the same float back */
665 return arg;
668 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
669 doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
670 This is the same as the exponent of a float. */)
671 (arg)
672 Lisp_Object arg;
674 Lisp_Object val;
675 EMACS_INT value;
676 double f = extract_float (arg);
678 if (f == 0.0)
679 value = MOST_NEGATIVE_FIXNUM;
680 else
682 #ifdef HAVE_LOGB
683 IN_FLOAT (value = logb (f), "logb", arg);
684 #else
685 #ifdef HAVE_FREXP
686 int ivalue;
687 IN_FLOAT (frexp (f, &ivalue), "logb", arg);
688 value = ivalue - 1;
689 #else
690 int i;
691 double d;
692 if (f < 0.0)
693 f = -f;
694 value = -1;
695 while (f < 0.5)
697 for (i = 1, d = 0.5; d * d >= f; i += i)
698 d *= d;
699 f /= d;
700 value -= i;
702 while (f >= 1.0)
704 for (i = 1, d = 2.0; d * d <= f; i += i)
705 d *= d;
706 f /= d;
707 value += i;
709 #endif
710 #endif
712 XSETINT (val, value);
713 return val;
717 /* the rounding functions */
719 static Lisp_Object
720 rounding_driver (arg, divisor, double_round, int_round2, name)
721 register Lisp_Object arg, divisor;
722 double (*double_round) ();
723 EMACS_INT (*int_round2) ();
724 char *name;
726 CHECK_NUMBER_OR_FLOAT (arg);
728 if (! NILP (divisor))
730 EMACS_INT i1, i2;
732 CHECK_NUMBER_OR_FLOAT (divisor);
734 if (FLOATP (arg) || FLOATP (divisor))
736 double f1, f2;
738 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
739 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
740 if (! IEEE_FLOATING_POINT && f2 == 0)
741 xsignal0 (Qarith_error);
743 IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
744 FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
745 return arg;
748 i1 = XINT (arg);
749 i2 = XINT (divisor);
751 if (i2 == 0)
752 xsignal0 (Qarith_error);
754 XSETINT (arg, (*int_round2) (i1, i2));
755 return arg;
758 if (FLOATP (arg))
760 double d;
762 IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
763 FLOAT_TO_INT (d, arg, name, arg);
766 return arg;
769 /* With C's /, the result is implementation-defined if either operand
770 is negative, so take care with negative operands in the following
771 integer functions. */
773 static EMACS_INT
774 ceiling2 (i1, i2)
775 EMACS_INT i1, i2;
777 return (i2 < 0
778 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
779 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
782 static EMACS_INT
783 floor2 (i1, i2)
784 EMACS_INT i1, i2;
786 return (i2 < 0
787 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
788 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
791 static EMACS_INT
792 truncate2 (i1, i2)
793 EMACS_INT i1, i2;
795 return (i2 < 0
796 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
797 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
800 static EMACS_INT
801 round2 (i1, i2)
802 EMACS_INT i1, i2;
804 /* The C language's division operator gives us one remainder R, but
805 we want the remainder R1 on the other side of 0 if R1 is closer
806 to 0 than R is; because we want to round to even, we also want R1
807 if R and R1 are the same distance from 0 and if C's quotient is
808 odd. */
809 EMACS_INT q = i1 / i2;
810 EMACS_INT r = i1 % i2;
811 EMACS_INT abs_r = r < 0 ? -r : r;
812 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
813 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
816 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
817 if `rint' exists but does not work right. */
818 #ifdef HAVE_RINT
819 #define emacs_rint rint
820 #else
821 static double
822 emacs_rint (d)
823 double d;
825 return floor (d + 0.5);
827 #endif
829 static double
830 double_identity (d)
831 double d;
833 return d;
836 DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
837 doc: /* Return the smallest integer no less than ARG.
838 This rounds the value towards +inf.
839 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
840 (arg, divisor)
841 Lisp_Object arg, divisor;
843 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
846 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
847 doc: /* Return the largest integer no greater than ARG.
848 This rounds the value towards -inf.
849 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
850 (arg, divisor)
851 Lisp_Object arg, divisor;
853 return rounding_driver (arg, divisor, floor, floor2, "floor");
856 DEFUN ("round", Fround, Sround, 1, 2, 0,
857 doc: /* Return the nearest integer to ARG.
858 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
860 Rounding a value equidistant between two integers may choose the
861 integer closer to zero, or it may prefer an even integer, depending on
862 your machine. For example, \(round 2.5\) can return 3 on some
863 systems, but 2 on others. */)
864 (arg, divisor)
865 Lisp_Object arg, divisor;
867 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
870 DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
871 doc: /* Truncate a floating point number to an int.
872 Rounds ARG toward zero.
873 With optional DIVISOR, truncate ARG/DIVISOR. */)
874 (arg, divisor)
875 Lisp_Object arg, divisor;
877 return rounding_driver (arg, divisor, double_identity, truncate2,
878 "truncate");
882 Lisp_Object
883 fmod_float (x, y)
884 register Lisp_Object x, y;
886 double f1, f2;
888 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
889 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
891 if (! IEEE_FLOATING_POINT && f2 == 0)
892 xsignal0 (Qarith_error);
894 /* If the "remainder" comes out with the wrong sign, fix it. */
895 IN_FLOAT2 ((f1 = fmod (f1, f2),
896 f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
897 "mod", x, y);
898 return make_float (f1);
901 /* It's not clear these are worth adding. */
903 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
904 doc: /* Return the smallest integer no less than ARG, as a float.
905 \(Round toward +inf.\) */)
906 (arg)
907 register Lisp_Object arg;
909 double d = extract_float (arg);
910 IN_FLOAT (d = ceil (d), "fceiling", arg);
911 return make_float (d);
914 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
915 doc: /* Return the largest integer no greater than ARG, as a float.
916 \(Round towards -inf.\) */)
917 (arg)
918 register Lisp_Object arg;
920 double d = extract_float (arg);
921 IN_FLOAT (d = floor (d), "ffloor", arg);
922 return make_float (d);
925 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
926 doc: /* Return the nearest integer to ARG, as a float. */)
927 (arg)
928 register Lisp_Object arg;
930 double d = extract_float (arg);
931 IN_FLOAT (d = emacs_rint (d), "fround", arg);
932 return make_float (d);
935 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
936 doc: /* Truncate a floating point number to an integral float value.
937 Rounds the value toward zero. */)
938 (arg)
939 register Lisp_Object arg;
941 double d = extract_float (arg);
942 if (d >= 0.0)
943 IN_FLOAT (d = floor (d), "ftruncate", arg);
944 else
945 IN_FLOAT (d = ceil (d), "ftruncate", arg);
946 return make_float (d);
949 #ifdef FLOAT_CATCH_SIGILL
950 static SIGTYPE
951 float_error (signo)
952 int signo;
954 if (! in_float)
955 fatal_error_signal (signo);
957 #ifdef BSD_SYSTEM
958 sigsetmask (SIGEMPTYMASK);
959 #else
960 /* Must reestablish handler each time it is called. */
961 signal (SIGILL, float_error);
962 #endif /* BSD_SYSTEM */
964 SIGNAL_THREAD_CHECK (signo);
965 in_float = 0;
967 xsignal1 (Qarith_error, float_error_arg);
970 /* Another idea was to replace the library function `infnan'
971 where SIGILL is signaled. */
973 #endif /* FLOAT_CATCH_SIGILL */
975 #ifdef HAVE_MATHERR
977 matherr (x)
978 struct exception *x;
980 Lisp_Object args;
981 if (! in_float)
982 /* Not called from emacs-lisp float routines; do the default thing. */
983 return 0;
984 if (!strcmp (x->name, "pow"))
985 x->name = "expt";
987 args
988 = Fcons (build_string (x->name),
989 Fcons (make_float (x->arg1),
990 ((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
991 ? Fcons (make_float (x->arg2), Qnil)
992 : Qnil)));
993 switch (x->type)
995 case DOMAIN: xsignal (Qdomain_error, args); break;
996 case SING: xsignal (Qsingularity_error, args); break;
997 case OVERFLOW: xsignal (Qoverflow_error, args); break;
998 case UNDERFLOW: xsignal (Qunderflow_error, args); break;
999 default: xsignal (Qarith_error, args); break;
1001 return (1); /* don't set errno or print a message */
1003 #endif /* HAVE_MATHERR */
1005 void
1006 init_floatfns ()
1008 #ifdef FLOAT_CATCH_SIGILL
1009 signal (SIGILL, float_error);
1010 #endif
1011 in_float = 0;
1014 void
1015 syms_of_floatfns ()
1017 defsubr (&Sacos);
1018 defsubr (&Sasin);
1019 defsubr (&Satan);
1020 defsubr (&Scos);
1021 defsubr (&Ssin);
1022 defsubr (&Stan);
1023 #if 0
1024 defsubr (&Sacosh);
1025 defsubr (&Sasinh);
1026 defsubr (&Satanh);
1027 defsubr (&Scosh);
1028 defsubr (&Ssinh);
1029 defsubr (&Stanh);
1030 defsubr (&Sbessel_y0);
1031 defsubr (&Sbessel_y1);
1032 defsubr (&Sbessel_yn);
1033 defsubr (&Sbessel_j0);
1034 defsubr (&Sbessel_j1);
1035 defsubr (&Sbessel_jn);
1036 defsubr (&Serf);
1037 defsubr (&Serfc);
1038 defsubr (&Slog_gamma);
1039 defsubr (&Scube_root);
1040 #endif
1041 defsubr (&Sfceiling);
1042 defsubr (&Sffloor);
1043 defsubr (&Sfround);
1044 defsubr (&Sftruncate);
1045 defsubr (&Sexp);
1046 defsubr (&Sexpt);
1047 defsubr (&Slog);
1048 defsubr (&Slog10);
1049 defsubr (&Ssqrt);
1051 defsubr (&Sabs);
1052 defsubr (&Sfloat);
1053 defsubr (&Slogb);
1054 defsubr (&Sceiling);
1055 defsubr (&Sfloor);
1056 defsubr (&Sround);
1057 defsubr (&Struncate);
1060 /* arch-tag: be05bf9d-049e-4e31-91b9-e6153d483ae7
1061 (do not change this comment) */