1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006, 2007
7 Free Software Foundation, Inc.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
25 - structure the opcode space into opcode+flag.
26 - merge with glibc's regex.[ch].
27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
33 /* AIX requires this to be the first thing in the file. */
34 #if defined _AIX && !defined REGEX_MALLOC
42 #if defined STDC_HEADERS && !defined emacs
45 /* We need this for `regex.h', and perhaps for the Emacs include files. */
46 # include <sys/types.h>
49 /* Whether to use ISO C Amendment 1 wide char functions.
50 Those should not be used for Emacs since it uses its own. */
52 #define WIDE_CHAR_SUPPORT 1
54 #define WIDE_CHAR_SUPPORT \
55 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
58 /* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
61 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
67 /* We have to keep the namespace clean. */
68 # define regfree(preg) __regfree (preg)
69 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71 # define regerror(err_code, preg, errbuf, errbuf_size) \
72 __regerror(err_code, preg, errbuf, errbuf_size)
73 # define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77 # define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79 # define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81 # define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83 # define re_set_syntax(syntax) __re_set_syntax (syntax)
84 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
88 /* Make sure we call libc's function even if the user overrides them. */
89 # define btowc __btowc
90 # define iswctype __iswctype
91 # define wctype __wctype
93 # define WEAK_ALIAS(a,b) weak_alias (a, b)
95 /* We are also using some library internals. */
96 # include <locale/localeinfo.h>
97 # include <locale/elem-hash.h>
98 # include <langinfo.h>
100 # define WEAK_ALIAS(a,b)
103 /* This is for other GNU distributions with internationalized messages. */
104 #if HAVE_LIBINTL_H || defined _LIBC
105 # include <libintl.h>
107 # define gettext(msgid) (msgid)
111 /* This define is so xgettext can find the internationalizable
113 # define gettext_noop(String) String
116 /* The `emacs' switch turns on certain matching commands
117 that make sense only in Emacs. */
123 /* Make syntax table lookup grant data in gl_state. */
124 # define SYNTAX_ENTRY_VIA_PROPERTY
127 # include "charset.h"
128 # include "category.h"
133 # define malloc xmalloc
137 # define realloc xrealloc
143 /* Converts the pointer to the char to BEG-based offset from the start. */
144 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
145 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
147 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
148 # define RE_STRING_CHAR(p, s) \
149 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
150 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
151 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
153 /* Set C a (possibly multibyte) character before P. P points into a
154 string which is the virtual concatenation of STR1 (which ends at
155 END1) or STR2 (which ends at END2). */
156 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
160 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
161 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
162 re_char *d0 = dtemp; \
163 PREV_CHAR_BOUNDARY (d0, dlimit); \
164 c = STRING_CHAR (d0, dtemp - d0); \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
171 #else /* not emacs */
173 /* If we are not linking with Emacs proper,
174 we can't use the relocating allocator
175 even if config.h says that we can. */
178 # if defined STDC_HEADERS || defined _LIBC
185 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
192 val
= (void *) malloc (size
);
195 write (2, "virtual memory exhausted\n", 25);
202 xrealloc (block
, size
)
207 /* We must call malloc explicitly when BLOCK is 0, since some
208 reallocs don't do this. */
210 val
= (void *) malloc (size
);
212 val
= (void *) realloc (block
, size
);
215 write (2, "virtual memory exhausted\n", 25);
224 # define malloc xmalloc
228 # define realloc xrealloc
230 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
231 If nothing else has been done, use the method below. */
232 # ifdef INHIBIT_STRING_HEADER
233 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
234 # if !defined bzero && !defined bcopy
235 # undef INHIBIT_STRING_HEADER
240 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
241 This is used in most programs--a few other programs avoid this
242 by defining INHIBIT_STRING_HEADER. */
243 # ifndef INHIBIT_STRING_HEADER
244 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
248 # define bzero(s, n) (memset (s, '\0', n), (s))
250 # define bzero(s, n) __bzero (s, n)
254 # include <strings.h>
256 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
259 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
264 /* Define the syntax stuff for \<, \>, etc. */
266 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
267 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
269 # ifdef SWITCH_ENUM_BUG
270 # define SWITCH_ENUM_CAST(x) ((int)(x))
272 # define SWITCH_ENUM_CAST(x) (x)
275 /* Dummy macros for non-Emacs environments. */
276 # define BASE_LEADING_CODE_P(c) (0)
277 # define CHAR_CHARSET(c) 0
278 # define CHARSET_LEADING_CODE_BASE(c) 0
279 # define MAX_MULTIBYTE_LENGTH 1
280 # define RE_MULTIBYTE_P(x) 0
281 # define WORD_BOUNDARY_P(c1, c2) (0)
282 # define CHAR_HEAD_P(p) (1)
283 # define SINGLE_BYTE_CHAR_P(c) (1)
284 # define SAME_CHARSET_P(c1, c2) (1)
285 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
286 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
287 # define STRING_CHAR(p, s) (*(p))
288 # define RE_STRING_CHAR STRING_CHAR
289 # define CHAR_STRING(c, s) (*(s) = (c), 1)
290 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
291 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
292 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
293 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
294 # define MAKE_CHAR(charset, c1, c2) (c1)
295 #endif /* not emacs */
298 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
299 # define RE_TRANSLATE_P(TBL) (TBL)
302 /* Get the interface, including the syntax bits. */
305 /* isalpha etc. are used for the character classes. */
310 /* 1 if C is an ASCII character. */
311 # define IS_REAL_ASCII(c) ((c) < 0200)
313 /* 1 if C is a unibyte character. */
314 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
316 /* The Emacs definitions should not be directly affected by locales. */
318 /* In Emacs, these are only used for single-byte characters. */
319 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
320 # define ISCNTRL(c) ((c) < ' ')
321 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
322 || ((c) >= 'a' && (c) <= 'f') \
323 || ((c) >= 'A' && (c) <= 'F'))
325 /* This is only used for single-byte characters. */
326 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
328 /* The rest must handle multibyte characters. */
330 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
331 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
334 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
335 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
338 # define ISALNUM(c) (IS_REAL_ASCII (c) \
339 ? (((c) >= 'a' && (c) <= 'z') \
340 || ((c) >= 'A' && (c) <= 'Z') \
341 || ((c) >= '0' && (c) <= '9')) \
342 : SYNTAX (c) == Sword)
344 # define ISALPHA(c) (IS_REAL_ASCII (c) \
345 ? (((c) >= 'a' && (c) <= 'z') \
346 || ((c) >= 'A' && (c) <= 'Z')) \
347 : SYNTAX (c) == Sword)
349 # define ISLOWER(c) (LOWERCASEP (c))
351 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
352 ? ((c) > ' ' && (c) < 0177 \
353 && !(((c) >= 'a' && (c) <= 'z') \
354 || ((c) >= 'A' && (c) <= 'Z') \
355 || ((c) >= '0' && (c) <= '9'))) \
356 : SYNTAX (c) != Sword)
358 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
360 # define ISUPPER(c) (UPPERCASEP (c))
362 # define ISWORD(c) (SYNTAX (c) == Sword)
364 #else /* not emacs */
366 /* Jim Meyering writes:
368 "... Some ctype macros are valid only for character codes that
369 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
370 using /bin/cc or gcc but without giving an ansi option). So, all
371 ctype uses should be through macros like ISPRINT... If
372 STDC_HEADERS is defined, then autoconf has verified that the ctype
373 macros don't need to be guarded with references to isascii. ...
374 Defining isascii to 1 should let any compiler worth its salt
375 eliminate the && through constant folding."
376 Solaris defines some of these symbols so we must undefine them first. */
379 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
380 # define ISASCII(c) 1
382 # define ISASCII(c) isascii(c)
385 /* 1 if C is an ASCII character. */
386 # define IS_REAL_ASCII(c) ((c) < 0200)
388 /* This distinction is not meaningful, except in Emacs. */
389 # define ISUNIBYTE(c) 1
392 # define ISBLANK(c) (ISASCII (c) && isblank (c))
394 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
397 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
399 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
403 # define ISPRINT(c) (ISASCII (c) && isprint (c))
404 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
405 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
406 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
407 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
408 # define ISLOWER(c) (ISASCII (c) && islower (c))
409 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
410 # define ISSPACE(c) (ISASCII (c) && isspace (c))
411 # define ISUPPER(c) (ISASCII (c) && isupper (c))
412 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
414 # define ISWORD(c) ISALPHA(c)
417 # define TOLOWER(c) _tolower(c)
419 # define TOLOWER(c) tolower(c)
422 /* How many characters in the character set. */
423 # define CHAR_SET_SIZE 256
427 extern char *re_syntax_table
;
429 # else /* not SYNTAX_TABLE */
431 static char re_syntax_table
[CHAR_SET_SIZE
];
442 bzero (re_syntax_table
, sizeof re_syntax_table
);
444 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
446 re_syntax_table
[c
] = Sword
;
448 re_syntax_table
['_'] = Ssymbol
;
453 # endif /* not SYNTAX_TABLE */
455 # define SYNTAX(c) re_syntax_table[(c)]
457 #endif /* not emacs */
460 # define NULL (void *)0
463 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
464 since ours (we hope) works properly with all combinations of
465 machines, compilers, `char' and `unsigned char' argument types.
466 (Per Bothner suggested the basic approach.) */
467 #undef SIGN_EXTEND_CHAR
469 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
470 #else /* not __STDC__ */
471 /* As in Harbison and Steele. */
472 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
475 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
476 use `alloca' instead of `malloc'. This is because using malloc in
477 re_search* or re_match* could cause memory leaks when C-g is used in
478 Emacs; also, malloc is slower and causes storage fragmentation. On
479 the other hand, malloc is more portable, and easier to debug.
481 Because we sometimes use alloca, some routines have to be macros,
482 not functions -- `alloca'-allocated space disappears at the end of the
483 function it is called in. */
487 # define REGEX_ALLOCATE malloc
488 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE free
491 #else /* not REGEX_MALLOC */
493 /* Emacs already defines alloca, sometimes. */
496 /* Make alloca work the best possible way. */
498 # define alloca __builtin_alloca
499 # else /* not __GNUC__ */
502 # endif /* HAVE_ALLOCA_H */
503 # endif /* not __GNUC__ */
505 # endif /* not alloca */
507 # define REGEX_ALLOCATE alloca
509 /* Assumes a `char *destination' variable. */
510 # define REGEX_REALLOCATE(source, osize, nsize) \
511 (destination = (char *) alloca (nsize), \
512 memcpy (destination, source, osize))
514 /* No need to do anything to free, after alloca. */
515 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
517 #endif /* not REGEX_MALLOC */
519 /* Define how to allocate the failure stack. */
521 #if defined REL_ALLOC && defined REGEX_MALLOC
523 # define REGEX_ALLOCATE_STACK(size) \
524 r_alloc (&failure_stack_ptr, (size))
525 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
526 r_re_alloc (&failure_stack_ptr, (nsize))
527 # define REGEX_FREE_STACK(ptr) \
528 r_alloc_free (&failure_stack_ptr)
530 #else /* not using relocating allocator */
534 # define REGEX_ALLOCATE_STACK malloc
535 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
536 # define REGEX_FREE_STACK free
538 # else /* not REGEX_MALLOC */
540 # define REGEX_ALLOCATE_STACK alloca
542 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
543 REGEX_REALLOCATE (source, osize, nsize)
544 /* No need to explicitly free anything. */
545 # define REGEX_FREE_STACK(arg) ((void)0)
547 # endif /* not REGEX_MALLOC */
548 #endif /* not using relocating allocator */
551 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
552 `string1' or just past its end. This works if PTR is NULL, which is
554 #define FIRST_STRING_P(ptr) \
555 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
557 /* (Re)Allocate N items of type T using malloc, or fail. */
558 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
559 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
560 #define RETALLOC_IF(addr, n, t) \
561 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
562 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
564 #define BYTEWIDTH 8 /* In bits. */
566 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
570 #define MAX(a, b) ((a) > (b) ? (a) : (b))
571 #define MIN(a, b) ((a) < (b) ? (a) : (b))
573 /* Type of source-pattern and string chars. */
574 typedef const unsigned char re_char
;
576 typedef char boolean
;
580 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
581 re_char
*string1
, int size1
,
582 re_char
*string2
, int size2
,
584 struct re_registers
*regs
,
587 /* These are the command codes that appear in compiled regular
588 expressions. Some opcodes are followed by argument bytes. A
589 command code can specify any interpretation whatsoever for its
590 arguments. Zero bytes may appear in the compiled regular expression. */
596 /* Succeed right away--no more backtracking. */
599 /* Followed by one byte giving n, then by n literal bytes. */
602 /* Matches any (more or less) character. */
605 /* Matches any one char belonging to specified set. First
606 following byte is number of bitmap bytes. Then come bytes
607 for a bitmap saying which chars are in. Bits in each byte
608 are ordered low-bit-first. A character is in the set if its
609 bit is 1. A character too large to have a bit in the map is
610 automatically not in the set.
612 If the length byte has the 0x80 bit set, then that stuff
613 is followed by a range table:
614 2 bytes of flags for character sets (low 8 bits, high 8 bits)
615 See RANGE_TABLE_WORK_BITS below.
616 2 bytes, the number of pairs that follow (upto 32767)
617 pairs, each 2 multibyte characters,
618 each multibyte character represented as 3 bytes. */
621 /* Same parameters as charset, but match any character that is
622 not one of those specified. */
625 /* Start remembering the text that is matched, for storing in a
626 register. Followed by one byte with the register number, in
627 the range 0 to one less than the pattern buffer's re_nsub
631 /* Stop remembering the text that is matched and store it in a
632 memory register. Followed by one byte with the register
633 number, in the range 0 to one less than `re_nsub' in the
637 /* Match a duplicate of something remembered. Followed by one
638 byte containing the register number. */
641 /* Fail unless at beginning of line. */
644 /* Fail unless at end of line. */
647 /* Succeeds if at beginning of buffer (if emacs) or at beginning
648 of string to be matched (if not). */
651 /* Analogously, for end of buffer/string. */
654 /* Followed by two byte relative address to which to jump. */
657 /* Followed by two-byte relative address of place to resume at
658 in case of failure. */
661 /* Like on_failure_jump, but pushes a placeholder instead of the
662 current string position when executed. */
663 on_failure_keep_string_jump
,
665 /* Just like `on_failure_jump', except that it checks that we
666 don't get stuck in an infinite loop (matching an empty string
668 on_failure_jump_loop
,
670 /* Just like `on_failure_jump_loop', except that it checks for
671 a different kind of loop (the kind that shows up with non-greedy
672 operators). This operation has to be immediately preceded
674 on_failure_jump_nastyloop
,
676 /* A smart `on_failure_jump' used for greedy * and + operators.
677 It analyses the loop before which it is put and if the
678 loop does not require backtracking, it changes itself to
679 `on_failure_keep_string_jump' and short-circuits the loop,
680 else it just defaults to changing itself into `on_failure_jump'.
681 It assumes that it is pointing to just past a `jump'. */
682 on_failure_jump_smart
,
684 /* Followed by two-byte relative address and two-byte number n.
685 After matching N times, jump to the address upon failure.
686 Does not work if N starts at 0: use on_failure_jump_loop
690 /* Followed by two-byte relative address, and two-byte number n.
691 Jump to the address N times, then fail. */
694 /* Set the following two-byte relative address to the
695 subsequent two-byte number. The address *includes* the two
699 wordbeg
, /* Succeeds if at word beginning. */
700 wordend
, /* Succeeds if at word end. */
702 wordbound
, /* Succeeds if at a word boundary. */
703 notwordbound
, /* Succeeds if not at a word boundary. */
705 symbeg
, /* Succeeds if at symbol beginning. */
706 symend
, /* Succeeds if at symbol end. */
708 /* Matches any character whose syntax is specified. Followed by
709 a byte which contains a syntax code, e.g., Sword. */
712 /* Matches any character whose syntax is not that specified. */
716 ,before_dot
, /* Succeeds if before point. */
717 at_dot
, /* Succeeds if at point. */
718 after_dot
, /* Succeeds if after point. */
720 /* Matches any character whose category-set contains the specified
721 category. The operator is followed by a byte which contains a
722 category code (mnemonic ASCII character). */
725 /* Matches any character whose category-set does not contain the
726 specified category. The operator is followed by a byte which
727 contains the category code (mnemonic ASCII character). */
732 /* Common operations on the compiled pattern. */
734 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
736 #define STORE_NUMBER(destination, number) \
738 (destination)[0] = (number) & 0377; \
739 (destination)[1] = (number) >> 8; \
742 /* Same as STORE_NUMBER, except increment DESTINATION to
743 the byte after where the number is stored. Therefore, DESTINATION
744 must be an lvalue. */
746 #define STORE_NUMBER_AND_INCR(destination, number) \
748 STORE_NUMBER (destination, number); \
749 (destination) += 2; \
752 /* Put into DESTINATION a number stored in two contiguous bytes starting
755 #define EXTRACT_NUMBER(destination, source) \
757 (destination) = *(source) & 0377; \
758 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
762 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
764 extract_number (dest
, source
)
768 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
769 *dest
= *source
& 0377;
773 # ifndef EXTRACT_MACROS /* To debug the macros. */
774 # undef EXTRACT_NUMBER
775 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
776 # endif /* not EXTRACT_MACROS */
780 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
781 SOURCE must be an lvalue. */
783 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
785 EXTRACT_NUMBER (destination, source); \
790 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
793 extract_number_and_incr (destination
, source
)
797 extract_number (destination
, *source
);
801 # ifndef EXTRACT_MACROS
802 # undef EXTRACT_NUMBER_AND_INCR
803 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
804 extract_number_and_incr (&dest, &src)
805 # endif /* not EXTRACT_MACROS */
809 /* Store a multibyte character in three contiguous bytes starting
810 DESTINATION, and increment DESTINATION to the byte after where the
811 character is stored. Therefore, DESTINATION must be an lvalue. */
813 #define STORE_CHARACTER_AND_INCR(destination, character) \
815 (destination)[0] = (character) & 0377; \
816 (destination)[1] = ((character) >> 8) & 0377; \
817 (destination)[2] = (character) >> 16; \
818 (destination) += 3; \
821 /* Put into DESTINATION a character stored in three contiguous bytes
822 starting at SOURCE. */
824 #define EXTRACT_CHARACTER(destination, source) \
826 (destination) = ((source)[0] \
827 | ((source)[1] << 8) \
828 | ((source)[2] << 16)); \
832 /* Macros for charset. */
834 /* Size of bitmap of charset P in bytes. P is a start of charset,
835 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
836 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
838 /* Nonzero if charset P has range table. */
839 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
841 /* Return the address of range table of charset P. But not the start
842 of table itself, but the before where the number of ranges is
843 stored. `2 +' means to skip re_opcode_t and size of bitmap,
844 and the 2 bytes of flags at the start of the range table. */
845 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
847 /* Extract the bit flags that start a range table. */
848 #define CHARSET_RANGE_TABLE_BITS(p) \
849 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
850 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
852 /* Test if C is listed in the bitmap of charset P. */
853 #define CHARSET_LOOKUP_BITMAP(p, c) \
854 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
855 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
857 /* Return the address of end of RANGE_TABLE. COUNT is number of
858 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
859 is start of range and end of range. `* 3' is size of each start
861 #define CHARSET_RANGE_TABLE_END(range_table, count) \
862 ((range_table) + (count) * 2 * 3)
864 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
865 COUNT is number of ranges in RANGE_TABLE. */
866 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
869 re_wchar_t range_start, range_end; \
871 re_char *range_table_end \
872 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
874 for (p = (range_table); p < range_table_end; p += 2 * 3) \
876 EXTRACT_CHARACTER (range_start, p); \
877 EXTRACT_CHARACTER (range_end, p + 3); \
879 if (range_start <= (c) && (c) <= range_end) \
888 /* Test if C is in range table of CHARSET. The flag NOT is negated if
889 C is listed in it. */
890 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
893 /* Number of ranges in range table. */ \
895 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
897 EXTRACT_NUMBER_AND_INCR (count, range_table); \
898 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
902 /* If DEBUG is defined, Regex prints many voluminous messages about what
903 it is doing (if the variable `debug' is nonzero). If linked with the
904 main program in `iregex.c', you can enter patterns and strings
905 interactively. And if linked with the main program in `main.c' and
906 the other test files, you can run the already-written tests. */
910 /* We use standard I/O for debugging. */
913 /* It is useful to test things that ``must'' be true when debugging. */
916 static int debug
= -100000;
918 # define DEBUG_STATEMENT(e) e
919 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
920 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
921 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
922 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
923 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
924 if (debug > 0) print_partial_compiled_pattern (s, e)
925 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
926 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
929 /* Print the fastmap in human-readable form. */
932 print_fastmap (fastmap
)
935 unsigned was_a_range
= 0;
938 while (i
< (1 << BYTEWIDTH
))
944 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
960 /* Print a compiled pattern string in human-readable form, starting at
961 the START pointer into it and ending just before the pointer END. */
964 print_partial_compiled_pattern (start
, end
)
974 fprintf (stderr
, "(null)\n");
978 /* Loop over pattern commands. */
981 fprintf (stderr
, "%d:\t", p
- start
);
983 switch ((re_opcode_t
) *p
++)
986 fprintf (stderr
, "/no_op");
990 fprintf (stderr
, "/succeed");
995 fprintf (stderr
, "/exactn/%d", mcnt
);
998 fprintf (stderr
, "/%c", *p
++);
1004 fprintf (stderr
, "/start_memory/%d", *p
++);
1008 fprintf (stderr
, "/stop_memory/%d", *p
++);
1012 fprintf (stderr
, "/duplicate/%d", *p
++);
1016 fprintf (stderr
, "/anychar");
1022 register int c
, last
= -100;
1023 register int in_range
= 0;
1024 int length
= CHARSET_BITMAP_SIZE (p
- 1);
1025 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
1027 fprintf (stderr
, "/charset [%s",
1028 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
1031 fprintf (stderr
, " !extends past end of pattern! ");
1033 for (c
= 0; c
< 256; c
++)
1035 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
1037 /* Are we starting a range? */
1038 if (last
+ 1 == c
&& ! in_range
)
1040 fprintf (stderr
, "-");
1043 /* Have we broken a range? */
1044 else if (last
+ 1 != c
&& in_range
)
1046 fprintf (stderr
, "%c", last
);
1051 fprintf (stderr
, "%c", c
);
1057 fprintf (stderr
, "%c", last
);
1059 fprintf (stderr
, "]");
1063 if (has_range_table
)
1066 fprintf (stderr
, "has-range-table");
1068 /* ??? Should print the range table; for now, just skip it. */
1069 p
+= 2; /* skip range table bits */
1070 EXTRACT_NUMBER_AND_INCR (count
, p
);
1071 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1077 fprintf (stderr
, "/begline");
1081 fprintf (stderr
, "/endline");
1084 case on_failure_jump
:
1085 extract_number_and_incr (&mcnt
, &p
);
1086 fprintf (stderr
, "/on_failure_jump to %d", p
+ mcnt
- start
);
1089 case on_failure_keep_string_jump
:
1090 extract_number_and_incr (&mcnt
, &p
);
1091 fprintf (stderr
, "/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1094 case on_failure_jump_nastyloop
:
1095 extract_number_and_incr (&mcnt
, &p
);
1096 fprintf (stderr
, "/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1099 case on_failure_jump_loop
:
1100 extract_number_and_incr (&mcnt
, &p
);
1101 fprintf (stderr
, "/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1104 case on_failure_jump_smart
:
1105 extract_number_and_incr (&mcnt
, &p
);
1106 fprintf (stderr
, "/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1110 extract_number_and_incr (&mcnt
, &p
);
1111 fprintf (stderr
, "/jump to %d", p
+ mcnt
- start
);
1115 extract_number_and_incr (&mcnt
, &p
);
1116 extract_number_and_incr (&mcnt2
, &p
);
1117 fprintf (stderr
, "/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1121 extract_number_and_incr (&mcnt
, &p
);
1122 extract_number_and_incr (&mcnt2
, &p
);
1123 fprintf (stderr
, "/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1127 extract_number_and_incr (&mcnt
, &p
);
1128 extract_number_and_incr (&mcnt2
, &p
);
1129 fprintf (stderr
, "/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1133 fprintf (stderr
, "/wordbound");
1137 fprintf (stderr
, "/notwordbound");
1141 fprintf (stderr
, "/wordbeg");
1145 fprintf (stderr
, "/wordend");
1149 fprintf (stderr
, "/symbeg");
1153 fprintf (stderr
, "/symend");
1157 fprintf (stderr
, "/syntaxspec");
1159 fprintf (stderr
, "/%d", mcnt
);
1163 fprintf (stderr
, "/notsyntaxspec");
1165 fprintf (stderr
, "/%d", mcnt
);
1170 fprintf (stderr
, "/before_dot");
1174 fprintf (stderr
, "/at_dot");
1178 fprintf (stderr
, "/after_dot");
1182 fprintf (stderr
, "/categoryspec");
1184 fprintf (stderr
, "/%d", mcnt
);
1187 case notcategoryspec
:
1188 fprintf (stderr
, "/notcategoryspec");
1190 fprintf (stderr
, "/%d", mcnt
);
1195 fprintf (stderr
, "/begbuf");
1199 fprintf (stderr
, "/endbuf");
1203 fprintf (stderr
, "?%d", *(p
-1));
1206 fprintf (stderr
, "\n");
1209 fprintf (stderr
, "%d:\tend of pattern.\n", p
- start
);
1214 print_compiled_pattern (bufp
)
1215 struct re_pattern_buffer
*bufp
;
1217 re_char
*buffer
= bufp
->buffer
;
1219 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1220 printf ("%ld bytes used/%ld bytes allocated.\n",
1221 bufp
->used
, bufp
->allocated
);
1223 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1225 printf ("fastmap: ");
1226 print_fastmap (bufp
->fastmap
);
1229 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1230 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1231 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1232 printf ("no_sub: %d\t", bufp
->no_sub
);
1233 printf ("not_bol: %d\t", bufp
->not_bol
);
1234 printf ("not_eol: %d\t", bufp
->not_eol
);
1235 printf ("syntax: %lx\n", bufp
->syntax
);
1237 /* Perhaps we should print the translate table? */
1242 print_double_string (where
, string1
, size1
, string2
, size2
)
1255 if (FIRST_STRING_P (where
))
1257 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1258 putchar (string1
[this_char
]);
1263 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1264 putchar (string2
[this_char
]);
1268 #else /* not DEBUG */
1273 # define DEBUG_STATEMENT(e)
1274 # define DEBUG_PRINT1(x)
1275 # define DEBUG_PRINT2(x1, x2)
1276 # define DEBUG_PRINT3(x1, x2, x3)
1277 # define DEBUG_PRINT4(x1, x2, x3, x4)
1278 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1279 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1281 #endif /* not DEBUG */
1283 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1284 also be assigned to arbitrarily: each pattern buffer stores its own
1285 syntax, so it can be changed between regex compilations. */
1286 /* This has no initializer because initialized variables in Emacs
1287 become read-only after dumping. */
1288 reg_syntax_t re_syntax_options
;
1291 /* Specify the precise syntax of regexps for compilation. This provides
1292 for compatibility for various utilities which historically have
1293 different, incompatible syntaxes.
1295 The argument SYNTAX is a bit mask comprised of the various bits
1296 defined in regex.h. We return the old syntax. */
1299 re_set_syntax (syntax
)
1300 reg_syntax_t syntax
;
1302 reg_syntax_t ret
= re_syntax_options
;
1304 re_syntax_options
= syntax
;
1307 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1309 /* Regexp to use to replace spaces, or NULL meaning don't. */
1310 static re_char
*whitespace_regexp
;
1313 re_set_whitespace_regexp (regexp
)
1316 whitespace_regexp
= (re_char
*) regexp
;
1318 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1320 /* This table gives an error message for each of the error codes listed
1321 in regex.h. Obviously the order here has to be same as there.
1322 POSIX doesn't require that we do anything for REG_NOERROR,
1323 but why not be nice? */
1325 static const char *re_error_msgid
[] =
1327 gettext_noop ("Success"), /* REG_NOERROR */
1328 gettext_noop ("No match"), /* REG_NOMATCH */
1329 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1330 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1331 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1332 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1333 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1334 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1335 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1336 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1337 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1338 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1339 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1340 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1341 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1342 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1343 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1344 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1347 /* Avoiding alloca during matching, to placate r_alloc. */
1349 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1350 searching and matching functions should not call alloca. On some
1351 systems, alloca is implemented in terms of malloc, and if we're
1352 using the relocating allocator routines, then malloc could cause a
1353 relocation, which might (if the strings being searched are in the
1354 ralloc heap) shift the data out from underneath the regexp
1357 Here's another reason to avoid allocation: Emacs
1358 processes input from X in a signal handler; processing X input may
1359 call malloc; if input arrives while a matching routine is calling
1360 malloc, then we're scrod. But Emacs can't just block input while
1361 calling matching routines; then we don't notice interrupts when
1362 they come in. So, Emacs blocks input around all regexp calls
1363 except the matching calls, which it leaves unprotected, in the
1364 faith that they will not malloc. */
1366 /* Normally, this is fine. */
1367 #define MATCH_MAY_ALLOCATE
1369 /* The match routines may not allocate if (1) they would do it with malloc
1370 and (2) it's not safe for them to use malloc.
1371 Note that if REL_ALLOC is defined, matching would not use malloc for the
1372 failure stack, but we would still use it for the register vectors;
1373 so REL_ALLOC should not affect this. */
1374 #if defined REGEX_MALLOC && defined emacs
1375 # undef MATCH_MAY_ALLOCATE
1379 /* Failure stack declarations and macros; both re_compile_fastmap and
1380 re_match_2 use a failure stack. These have to be macros because of
1381 REGEX_ALLOCATE_STACK. */
1384 /* Approximate number of failure points for which to initially allocate space
1385 when matching. If this number is exceeded, we allocate more
1386 space, so it is not a hard limit. */
1387 #ifndef INIT_FAILURE_ALLOC
1388 # define INIT_FAILURE_ALLOC 20
1391 /* Roughly the maximum number of failure points on the stack. Would be
1392 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1393 This is a variable only so users of regex can assign to it; we never
1394 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1395 before using it, so it should probably be a byte-count instead. */
1396 # if defined MATCH_MAY_ALLOCATE
1397 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1398 whose default stack limit is 2mb. In order for a larger
1399 value to work reliably, you have to try to make it accord
1400 with the process stack limit. */
1401 size_t re_max_failures
= 40000;
1403 size_t re_max_failures
= 4000;
1406 union fail_stack_elt
1409 /* This should be the biggest `int' that's no bigger than a pointer. */
1413 typedef union fail_stack_elt fail_stack_elt_t
;
1417 fail_stack_elt_t
*stack
;
1419 size_t avail
; /* Offset of next open position. */
1420 size_t frame
; /* Offset of the cur constructed frame. */
1423 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1424 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1427 /* Define macros to initialize and free the failure stack.
1428 Do `return -2' if the alloc fails. */
1430 #ifdef MATCH_MAY_ALLOCATE
1431 # define INIT_FAIL_STACK() \
1433 fail_stack.stack = (fail_stack_elt_t *) \
1434 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1435 * sizeof (fail_stack_elt_t)); \
1437 if (fail_stack.stack == NULL) \
1440 fail_stack.size = INIT_FAILURE_ALLOC; \
1441 fail_stack.avail = 0; \
1442 fail_stack.frame = 0; \
1445 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1447 # define INIT_FAIL_STACK() \
1449 fail_stack.avail = 0; \
1450 fail_stack.frame = 0; \
1453 # define RESET_FAIL_STACK() ((void)0)
1457 /* Double the size of FAIL_STACK, up to a limit
1458 which allows approximately `re_max_failures' items.
1460 Return 1 if succeeds, and 0 if either ran out of memory
1461 allocating space for it or it was already too large.
1463 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1465 /* Factor to increase the failure stack size by
1466 when we increase it.
1467 This used to be 2, but 2 was too wasteful
1468 because the old discarded stacks added up to as much space
1469 were as ultimate, maximum-size stack. */
1470 #define FAIL_STACK_GROWTH_FACTOR 4
1472 #define GROW_FAIL_STACK(fail_stack) \
1473 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1474 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1476 : ((fail_stack).stack \
1477 = (fail_stack_elt_t *) \
1478 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1479 (fail_stack).size * sizeof (fail_stack_elt_t), \
1480 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1481 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1482 * FAIL_STACK_GROWTH_FACTOR))), \
1484 (fail_stack).stack == NULL \
1486 : ((fail_stack).size \
1487 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1488 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1489 * FAIL_STACK_GROWTH_FACTOR)) \
1490 / sizeof (fail_stack_elt_t)), \
1494 /* Push a pointer value onto the failure stack.
1495 Assumes the variable `fail_stack'. Probably should only
1496 be called from within `PUSH_FAILURE_POINT'. */
1497 #define PUSH_FAILURE_POINTER(item) \
1498 fail_stack.stack[fail_stack.avail++].pointer = (item)
1500 /* This pushes an integer-valued item onto the failure stack.
1501 Assumes the variable `fail_stack'. Probably should only
1502 be called from within `PUSH_FAILURE_POINT'. */
1503 #define PUSH_FAILURE_INT(item) \
1504 fail_stack.stack[fail_stack.avail++].integer = (item)
1506 /* Push a fail_stack_elt_t value onto the failure stack.
1507 Assumes the variable `fail_stack'. Probably should only
1508 be called from within `PUSH_FAILURE_POINT'. */
1509 #define PUSH_FAILURE_ELT(item) \
1510 fail_stack.stack[fail_stack.avail++] = (item)
1512 /* These three POP... operations complement the three PUSH... operations.
1513 All assume that `fail_stack' is nonempty. */
1514 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1515 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1516 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1518 /* Individual items aside from the registers. */
1519 #define NUM_NONREG_ITEMS 3
1521 /* Used to examine the stack (to detect infinite loops). */
1522 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1523 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1524 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1525 #define TOP_FAILURE_HANDLE() fail_stack.frame
1528 #define ENSURE_FAIL_STACK(space) \
1529 while (REMAINING_AVAIL_SLOTS <= space) { \
1530 if (!GROW_FAIL_STACK (fail_stack)) \
1532 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1533 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1536 /* Push register NUM onto the stack. */
1537 #define PUSH_FAILURE_REG(num) \
1539 char *destination; \
1540 ENSURE_FAIL_STACK(3); \
1541 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1542 num, regstart[num], regend[num]); \
1543 PUSH_FAILURE_POINTER (regstart[num]); \
1544 PUSH_FAILURE_POINTER (regend[num]); \
1545 PUSH_FAILURE_INT (num); \
1548 /* Change the counter's value to VAL, but make sure that it will
1549 be reset when backtracking. */
1550 #define PUSH_NUMBER(ptr,val) \
1552 char *destination; \
1554 ENSURE_FAIL_STACK(3); \
1555 EXTRACT_NUMBER (c, ptr); \
1556 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1557 PUSH_FAILURE_INT (c); \
1558 PUSH_FAILURE_POINTER (ptr); \
1559 PUSH_FAILURE_INT (-1); \
1560 STORE_NUMBER (ptr, val); \
1563 /* Pop a saved register off the stack. */
1564 #define POP_FAILURE_REG_OR_COUNT() \
1566 int reg = POP_FAILURE_INT (); \
1569 /* It's a counter. */ \
1570 /* Here, we discard `const', making re_match non-reentrant. */ \
1571 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1572 reg = POP_FAILURE_INT (); \
1573 STORE_NUMBER (ptr, reg); \
1574 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1578 regend[reg] = POP_FAILURE_POINTER (); \
1579 regstart[reg] = POP_FAILURE_POINTER (); \
1580 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1581 reg, regstart[reg], regend[reg]); \
1585 /* Check that we are not stuck in an infinite loop. */
1586 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1588 int failure = TOP_FAILURE_HANDLE (); \
1589 /* Check for infinite matching loops */ \
1590 while (failure > 0 \
1591 && (FAILURE_STR (failure) == string_place \
1592 || FAILURE_STR (failure) == NULL)) \
1594 assert (FAILURE_PAT (failure) >= bufp->buffer \
1595 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1596 if (FAILURE_PAT (failure) == pat_cur) \
1601 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1602 failure = NEXT_FAILURE_HANDLE(failure); \
1604 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1607 /* Push the information about the state we will need
1608 if we ever fail back to it.
1610 Requires variables fail_stack, regstart, regend and
1611 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1614 Does `return FAILURE_CODE' if runs out of memory. */
1616 #define PUSH_FAILURE_POINT(pattern, string_place) \
1618 char *destination; \
1619 /* Must be int, so when we don't save any registers, the arithmetic \
1620 of 0 + -1 isn't done as unsigned. */ \
1622 DEBUG_STATEMENT (nfailure_points_pushed++); \
1623 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1624 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1625 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1627 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1629 DEBUG_PRINT1 ("\n"); \
1631 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1632 PUSH_FAILURE_INT (fail_stack.frame); \
1634 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1635 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1636 DEBUG_PRINT1 ("'\n"); \
1637 PUSH_FAILURE_POINTER (string_place); \
1639 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1640 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1641 PUSH_FAILURE_POINTER (pattern); \
1643 /* Close the frame by moving the frame pointer past it. */ \
1644 fail_stack.frame = fail_stack.avail; \
1647 /* Estimate the size of data pushed by a typical failure stack entry.
1648 An estimate is all we need, because all we use this for
1649 is to choose a limit for how big to make the failure stack. */
1650 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1651 #define TYPICAL_FAILURE_SIZE 20
1653 /* How many items can still be added to the stack without overflowing it. */
1654 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1657 /* Pops what PUSH_FAIL_STACK pushes.
1659 We restore into the parameters, all of which should be lvalues:
1660 STR -- the saved data position.
1661 PAT -- the saved pattern position.
1662 REGSTART, REGEND -- arrays of string positions.
1664 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1665 `pend', `string1', `size1', `string2', and `size2'. */
1667 #define POP_FAILURE_POINT(str, pat) \
1669 assert (!FAIL_STACK_EMPTY ()); \
1671 /* Remove failure points and point to how many regs pushed. */ \
1672 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1673 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1674 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1676 /* Pop the saved registers. */ \
1677 while (fail_stack.frame < fail_stack.avail) \
1678 POP_FAILURE_REG_OR_COUNT (); \
1680 pat = POP_FAILURE_POINTER (); \
1681 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1682 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1684 /* If the saved string location is NULL, it came from an \
1685 on_failure_keep_string_jump opcode, and we want to throw away the \
1686 saved NULL, thus retaining our current position in the string. */ \
1687 str = POP_FAILURE_POINTER (); \
1688 DEBUG_PRINT2 (" Popping string %p: `", str); \
1689 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1690 DEBUG_PRINT1 ("'\n"); \
1692 fail_stack.frame = POP_FAILURE_INT (); \
1693 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1695 assert (fail_stack.avail >= 0); \
1696 assert (fail_stack.frame <= fail_stack.avail); \
1698 DEBUG_STATEMENT (nfailure_points_popped++); \
1699 } while (0) /* POP_FAILURE_POINT */
1703 /* Registers are set to a sentinel when they haven't yet matched. */
1704 #define REG_UNSET(e) ((e) == NULL)
1706 /* Subroutine declarations and macros for regex_compile. */
1708 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1709 reg_syntax_t syntax
,
1710 struct re_pattern_buffer
*bufp
));
1711 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1712 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1713 int arg1
, int arg2
));
1714 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1715 int arg
, unsigned char *end
));
1716 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1717 int arg1
, int arg2
, unsigned char *end
));
1718 static boolean at_begline_loc_p
_RE_ARGS ((re_char
*pattern
,
1720 reg_syntax_t syntax
));
1721 static boolean at_endline_loc_p
_RE_ARGS ((re_char
*p
,
1723 reg_syntax_t syntax
));
1724 static re_char
*skip_one_char
_RE_ARGS ((re_char
*p
));
1725 static int analyse_first
_RE_ARGS ((re_char
*p
, re_char
*pend
,
1726 char *fastmap
, const int multibyte
));
1728 /* Fetch the next character in the uncompiled pattern, with no
1730 #define PATFETCH(c) \
1733 if (p == pend) return REG_EEND; \
1734 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1739 /* If `translate' is non-null, return translate[D], else just D. We
1740 cast the subscript to translate because some data is declared as
1741 `char *', to avoid warnings when a string constant is passed. But
1742 when we use a character as a subscript we must make it unsigned. */
1744 # define TRANSLATE(d) \
1745 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1749 /* Macros for outputting the compiled pattern into `buffer'. */
1751 /* If the buffer isn't allocated when it comes in, use this. */
1752 #define INIT_BUF_SIZE 32
1754 /* Make sure we have at least N more bytes of space in buffer. */
1755 #define GET_BUFFER_SPACE(n) \
1756 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1759 /* Make sure we have one more byte of buffer space and then add C to it. */
1760 #define BUF_PUSH(c) \
1762 GET_BUFFER_SPACE (1); \
1763 *b++ = (unsigned char) (c); \
1767 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1768 #define BUF_PUSH_2(c1, c2) \
1770 GET_BUFFER_SPACE (2); \
1771 *b++ = (unsigned char) (c1); \
1772 *b++ = (unsigned char) (c2); \
1776 /* As with BUF_PUSH_2, except for three bytes. */
1777 #define BUF_PUSH_3(c1, c2, c3) \
1779 GET_BUFFER_SPACE (3); \
1780 *b++ = (unsigned char) (c1); \
1781 *b++ = (unsigned char) (c2); \
1782 *b++ = (unsigned char) (c3); \
1786 /* Store a jump with opcode OP at LOC to location TO. We store a
1787 relative address offset by the three bytes the jump itself occupies. */
1788 #define STORE_JUMP(op, loc, to) \
1789 store_op1 (op, loc, (to) - (loc) - 3)
1791 /* Likewise, for a two-argument jump. */
1792 #define STORE_JUMP2(op, loc, to, arg) \
1793 store_op2 (op, loc, (to) - (loc) - 3, arg)
1795 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1796 #define INSERT_JUMP(op, loc, to) \
1797 insert_op1 (op, loc, (to) - (loc) - 3, b)
1799 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1800 #define INSERT_JUMP2(op, loc, to, arg) \
1801 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1804 /* This is not an arbitrary limit: the arguments which represent offsets
1805 into the pattern are two bytes long. So if 2^15 bytes turns out to
1806 be too small, many things would have to change. */
1807 # define MAX_BUF_SIZE (1L << 15)
1809 #if 0 /* This is when we thought it could be 2^16 bytes. */
1810 /* Any other compiler which, like MSC, has allocation limit below 2^16
1811 bytes will have to use approach similar to what was done below for
1812 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1813 reallocating to 0 bytes. Such thing is not going to work too well.
1814 You have been warned!! */
1815 #if defined _MSC_VER && !defined WIN32
1816 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1817 # define MAX_BUF_SIZE 65500L
1819 # define MAX_BUF_SIZE (1L << 16)
1823 /* Extend the buffer by twice its current size via realloc and
1824 reset the pointers that pointed into the old block to point to the
1825 correct places in the new one. If extending the buffer results in it
1826 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1827 #if __BOUNDED_POINTERS__
1828 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1829 # define MOVE_BUFFER_POINTER(P) \
1830 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1831 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1834 SET_HIGH_BOUND (b); \
1835 SET_HIGH_BOUND (begalt); \
1836 if (fixup_alt_jump) \
1837 SET_HIGH_BOUND (fixup_alt_jump); \
1839 SET_HIGH_BOUND (laststart); \
1840 if (pending_exact) \
1841 SET_HIGH_BOUND (pending_exact); \
1844 # define MOVE_BUFFER_POINTER(P) (P) += incr
1845 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1847 #define EXTEND_BUFFER() \
1849 re_char *old_buffer = bufp->buffer; \
1850 if (bufp->allocated == MAX_BUF_SIZE) \
1852 bufp->allocated <<= 1; \
1853 if (bufp->allocated > MAX_BUF_SIZE) \
1854 bufp->allocated = MAX_BUF_SIZE; \
1855 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1856 if (bufp->buffer == NULL) \
1857 return REG_ESPACE; \
1858 /* If the buffer moved, move all the pointers into it. */ \
1859 if (old_buffer != bufp->buffer) \
1861 int incr = bufp->buffer - old_buffer; \
1862 MOVE_BUFFER_POINTER (b); \
1863 MOVE_BUFFER_POINTER (begalt); \
1864 if (fixup_alt_jump) \
1865 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1867 MOVE_BUFFER_POINTER (laststart); \
1868 if (pending_exact) \
1869 MOVE_BUFFER_POINTER (pending_exact); \
1871 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1875 /* Since we have one byte reserved for the register number argument to
1876 {start,stop}_memory, the maximum number of groups we can report
1877 things about is what fits in that byte. */
1878 #define MAX_REGNUM 255
1880 /* But patterns can have more than `MAX_REGNUM' registers. We just
1881 ignore the excess. */
1882 typedef int regnum_t
;
1885 /* Macros for the compile stack. */
1887 /* Since offsets can go either forwards or backwards, this type needs to
1888 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1889 /* int may be not enough when sizeof(int) == 2. */
1890 typedef long pattern_offset_t
;
1894 pattern_offset_t begalt_offset
;
1895 pattern_offset_t fixup_alt_jump
;
1896 pattern_offset_t laststart_offset
;
1898 } compile_stack_elt_t
;
1903 compile_stack_elt_t
*stack
;
1905 unsigned avail
; /* Offset of next open position. */
1906 } compile_stack_type
;
1909 #define INIT_COMPILE_STACK_SIZE 32
1911 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1912 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1914 /* The next available element. */
1915 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1917 /* Explicit quit checking is only used on NTemacs and whenever we
1918 use polling to process input events. */
1919 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1920 extern int immediate_quit
;
1921 # define IMMEDIATE_QUIT_CHECK \
1923 if (immediate_quit) QUIT; \
1926 # define IMMEDIATE_QUIT_CHECK ((void)0)
1929 /* Structure to manage work area for range table. */
1930 struct range_table_work_area
1932 int *table
; /* actual work area. */
1933 int allocated
; /* allocated size for work area in bytes. */
1934 int used
; /* actually used size in words. */
1935 int bits
; /* flag to record character classes */
1938 /* Make sure that WORK_AREA can hold more N multibyte characters.
1939 This is used only in set_image_of_range and set_image_of_range_1.
1940 It expects WORK_AREA to be a pointer.
1941 If it can't get the space, it returns from the surrounding function. */
1943 #define EXTEND_RANGE_TABLE(work_area, n) \
1945 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1947 extend_range_table_work_area (work_area); \
1948 if ((work_area)->table == 0) \
1949 return (REG_ESPACE); \
1953 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1954 (work_area).bits |= (bit)
1956 /* Bits used to implement the multibyte-part of the various character classes
1957 such as [:alnum:] in a charset's range table. */
1958 #define BIT_WORD 0x1
1959 #define BIT_LOWER 0x2
1960 #define BIT_PUNCT 0x4
1961 #define BIT_SPACE 0x8
1962 #define BIT_UPPER 0x10
1963 #define BIT_MULTIBYTE 0x20
1965 /* Set a range START..END to WORK_AREA.
1966 The range is passed through TRANSLATE, so START and END
1967 should be untranslated. */
1968 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1971 tem = set_image_of_range (&work_area, start, end, translate); \
1973 FREE_STACK_RETURN (tem); \
1976 /* Free allocated memory for WORK_AREA. */
1977 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1979 if ((work_area).table) \
1980 free ((work_area).table); \
1983 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1984 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1985 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1986 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1989 /* Set the bit for character C in a list. */
1990 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1993 /* Get the next unsigned number in the uncompiled pattern. */
1994 #define GET_UNSIGNED_NUMBER(num) \
1997 FREE_STACK_RETURN (REG_EBRACE); \
2001 while ('0' <= c && c <= '9') \
2007 num = num * 10 + c - '0'; \
2008 if (num / 10 != prev) \
2009 FREE_STACK_RETURN (REG_BADBR); \
2011 FREE_STACK_RETURN (REG_EBRACE); \
2017 #if ! WIDE_CHAR_SUPPORT
2019 /* Map a string to the char class it names (if any). */
2024 const char *string
= str
;
2025 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
2026 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
2027 else if (STREQ (string
, "word")) return RECC_WORD
;
2028 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
2029 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
2030 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
2031 else if (STREQ (string
, "lower")) return RECC_LOWER
;
2032 else if (STREQ (string
, "print")) return RECC_PRINT
;
2033 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2034 else if (STREQ (string
, "space")) return RECC_SPACE
;
2035 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2036 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2037 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2038 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2039 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2040 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2041 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2045 /* True if CH is in the char class CC. */
2047 re_iswctype (ch
, cc
)
2053 case RECC_ALNUM
: return ISALNUM (ch
);
2054 case RECC_ALPHA
: return ISALPHA (ch
);
2055 case RECC_BLANK
: return ISBLANK (ch
);
2056 case RECC_CNTRL
: return ISCNTRL (ch
);
2057 case RECC_DIGIT
: return ISDIGIT (ch
);
2058 case RECC_GRAPH
: return ISGRAPH (ch
);
2059 case RECC_LOWER
: return ISLOWER (ch
);
2060 case RECC_PRINT
: return ISPRINT (ch
);
2061 case RECC_PUNCT
: return ISPUNCT (ch
);
2062 case RECC_SPACE
: return ISSPACE (ch
);
2063 case RECC_UPPER
: return ISUPPER (ch
);
2064 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2065 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2066 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2067 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2068 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2069 case RECC_WORD
: return ISWORD (ch
);
2070 case RECC_ERROR
: return false;
2076 /* Return a bit-pattern to use in the range-table bits to match multibyte
2077 chars of class CC. */
2079 re_wctype_to_bit (cc
)
2084 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2085 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2086 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2087 case RECC_LOWER
: return BIT_LOWER
;
2088 case RECC_UPPER
: return BIT_UPPER
;
2089 case RECC_PUNCT
: return BIT_PUNCT
;
2090 case RECC_SPACE
: return BIT_SPACE
;
2091 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2092 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2099 /* Filling in the work area of a range. */
2101 /* Actually extend the space in WORK_AREA. */
2104 extend_range_table_work_area (work_area
)
2105 struct range_table_work_area
*work_area
;
2107 work_area
->allocated
+= 16 * sizeof (int);
2108 if (work_area
->table
)
2110 = (int *) realloc (work_area
->table
, work_area
->allocated
);
2113 = (int *) malloc (work_area
->allocated
);
2118 /* Carefully find the ranges of codes that are equivalent
2119 under case conversion to the range start..end when passed through
2120 TRANSLATE. Handle the case where non-letters can come in between
2121 two upper-case letters (which happens in Latin-1).
2122 Also handle the case of groups of more than 2 case-equivalent chars.
2124 The basic method is to look at consecutive characters and see
2125 if they can form a run that can be handled as one.
2127 Returns -1 if successful, REG_ESPACE if ran out of space. */
2130 set_image_of_range_1 (work_area
, start
, end
, translate
)
2131 RE_TRANSLATE_TYPE translate
;
2132 struct range_table_work_area
*work_area
;
2133 re_wchar_t start
, end
;
2135 /* `one_case' indicates a character, or a run of characters,
2136 each of which is an isolate (no case-equivalents).
2137 This includes all ASCII non-letters.
2139 `two_case' indicates a character, or a run of characters,
2140 each of which has two case-equivalent forms.
2141 This includes all ASCII letters.
2143 `strange' indicates a character that has more than one
2146 enum case_type
{one_case
, two_case
, strange
};
2148 /* Describe the run that is in progress,
2149 which the next character can try to extend.
2150 If run_type is strange, that means there really is no run.
2151 If run_type is one_case, then run_start...run_end is the run.
2152 If run_type is two_case, then the run is run_start...run_end,
2153 and the case-equivalents end at run_eqv_end. */
2155 enum case_type run_type
= strange
;
2156 int run_start
, run_end
, run_eqv_end
;
2158 Lisp_Object eqv_table
;
2160 if (!RE_TRANSLATE_P (translate
))
2162 EXTEND_RANGE_TABLE (work_area
, 2);
2163 work_area
->table
[work_area
->used
++] = (start
);
2164 work_area
->table
[work_area
->used
++] = (end
);
2168 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2170 for (; start
<= end
; start
++)
2172 enum case_type this_type
;
2173 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2174 int minchar
, maxchar
;
2176 /* Classify this character */
2178 this_type
= one_case
;
2179 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2180 this_type
= two_case
;
2182 this_type
= strange
;
2185 minchar
= start
, maxchar
= eqv
;
2187 minchar
= eqv
, maxchar
= start
;
2189 /* Can this character extend the run in progress? */
2190 if (this_type
== strange
|| this_type
!= run_type
2191 || !(minchar
== run_end
+ 1
2192 && (run_type
== two_case
2193 ? maxchar
== run_eqv_end
+ 1 : 1)))
2196 Record each of its equivalent ranges. */
2197 if (run_type
== one_case
)
2199 EXTEND_RANGE_TABLE (work_area
, 2);
2200 work_area
->table
[work_area
->used
++] = run_start
;
2201 work_area
->table
[work_area
->used
++] = run_end
;
2203 else if (run_type
== two_case
)
2205 EXTEND_RANGE_TABLE (work_area
, 4);
2206 work_area
->table
[work_area
->used
++] = run_start
;
2207 work_area
->table
[work_area
->used
++] = run_end
;
2208 work_area
->table
[work_area
->used
++]
2209 = RE_TRANSLATE (eqv_table
, run_start
);
2210 work_area
->table
[work_area
->used
++]
2211 = RE_TRANSLATE (eqv_table
, run_end
);
2216 if (this_type
== strange
)
2218 /* For a strange character, add each of its equivalents, one
2219 by one. Don't start a range. */
2222 EXTEND_RANGE_TABLE (work_area
, 2);
2223 work_area
->table
[work_area
->used
++] = eqv
;
2224 work_area
->table
[work_area
->used
++] = eqv
;
2225 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2227 while (eqv
!= start
);
2230 /* Add this char to the run, or start a new run. */
2231 else if (run_type
== strange
)
2233 /* Initialize a new range. */
2234 run_type
= this_type
;
2237 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2241 /* Extend a running range. */
2243 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2247 /* If a run is still in progress at the end, finish it now
2248 by recording its equivalent ranges. */
2249 if (run_type
== one_case
)
2251 EXTEND_RANGE_TABLE (work_area
, 2);
2252 work_area
->table
[work_area
->used
++] = run_start
;
2253 work_area
->table
[work_area
->used
++] = run_end
;
2255 else if (run_type
== two_case
)
2257 EXTEND_RANGE_TABLE (work_area
, 4);
2258 work_area
->table
[work_area
->used
++] = run_start
;
2259 work_area
->table
[work_area
->used
++] = run_end
;
2260 work_area
->table
[work_area
->used
++]
2261 = RE_TRANSLATE (eqv_table
, run_start
);
2262 work_area
->table
[work_area
->used
++]
2263 = RE_TRANSLATE (eqv_table
, run_end
);
2271 /* Record the the image of the range start..end when passed through
2272 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2273 and is not even necessarily contiguous.
2274 Normally we approximate it with the smallest contiguous range that contains
2275 all the chars we need. However, for Latin-1 we go to extra effort
2278 This function is not called for ASCII ranges.
2280 Returns -1 if successful, REG_ESPACE if ran out of space. */
2283 set_image_of_range (work_area
, start
, end
, translate
)
2284 RE_TRANSLATE_TYPE translate
;
2285 struct range_table_work_area
*work_area
;
2286 re_wchar_t start
, end
;
2288 re_wchar_t cmin
, cmax
;
2291 /* For Latin-1 ranges, use set_image_of_range_1
2292 to get proper handling of ranges that include letters and nonletters.
2293 For a range that includes the whole of Latin-1, this is not necessary.
2294 For other character sets, we don't bother to get this right. */
2295 if (RE_TRANSLATE_P (translate
) && start
< 04400
2296 && !(start
< 04200 && end
>= 04377))
2303 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2313 EXTEND_RANGE_TABLE (work_area
, 2);
2314 work_area
->table
[work_area
->used
++] = (start
);
2315 work_area
->table
[work_area
->used
++] = (end
);
2317 cmin
= -1, cmax
= -1;
2319 if (RE_TRANSLATE_P (translate
))
2323 for (ch
= start
; ch
<= end
; ch
++)
2325 re_wchar_t c
= TRANSLATE (ch
);
2326 if (! (start
<= c
&& c
<= end
))
2332 cmin
= MIN (cmin
, c
);
2333 cmax
= MAX (cmax
, c
);
2340 EXTEND_RANGE_TABLE (work_area
, 2);
2341 work_area
->table
[work_area
->used
++] = (cmin
);
2342 work_area
->table
[work_area
->used
++] = (cmax
);
2349 #ifndef MATCH_MAY_ALLOCATE
2351 /* If we cannot allocate large objects within re_match_2_internal,
2352 we make the fail stack and register vectors global.
2353 The fail stack, we grow to the maximum size when a regexp
2355 The register vectors, we adjust in size each time we
2356 compile a regexp, according to the number of registers it needs. */
2358 static fail_stack_type fail_stack
;
2360 /* Size with which the following vectors are currently allocated.
2361 That is so we can make them bigger as needed,
2362 but never make them smaller. */
2363 static int regs_allocated_size
;
2365 static re_char
** regstart
, ** regend
;
2366 static re_char
**best_regstart
, **best_regend
;
2368 /* Make the register vectors big enough for NUM_REGS registers,
2369 but don't make them smaller. */
2372 regex_grow_registers (num_regs
)
2375 if (num_regs
> regs_allocated_size
)
2377 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2378 RETALLOC_IF (regend
, num_regs
, re_char
*);
2379 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2380 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2382 regs_allocated_size
= num_regs
;
2386 #endif /* not MATCH_MAY_ALLOCATE */
2388 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2392 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2393 Returns one of error codes defined in `regex.h', or zero for success.
2395 Assumes the `allocated' (and perhaps `buffer') and `translate'
2396 fields are set in BUFP on entry.
2398 If it succeeds, results are put in BUFP (if it returns an error, the
2399 contents of BUFP are undefined):
2400 `buffer' is the compiled pattern;
2401 `syntax' is set to SYNTAX;
2402 `used' is set to the length of the compiled pattern;
2403 `fastmap_accurate' is zero;
2404 `re_nsub' is the number of subexpressions in PATTERN;
2405 `not_bol' and `not_eol' are zero;
2407 The `fastmap' field is neither examined nor set. */
2409 /* Insert the `jump' from the end of last alternative to "here".
2410 The space for the jump has already been allocated. */
2411 #define FIXUP_ALT_JUMP() \
2413 if (fixup_alt_jump) \
2414 STORE_JUMP (jump, fixup_alt_jump, b); \
2418 /* Return, freeing storage we allocated. */
2419 #define FREE_STACK_RETURN(value) \
2421 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2422 free (compile_stack.stack); \
2426 static reg_errcode_t
2427 regex_compile (pattern
, size
, syntax
, bufp
)
2430 reg_syntax_t syntax
;
2431 struct re_pattern_buffer
*bufp
;
2433 /* We fetch characters from PATTERN here. */
2434 register re_wchar_t c
, c1
;
2436 /* A random temporary spot in PATTERN. */
2439 /* Points to the end of the buffer, where we should append. */
2440 register unsigned char *b
;
2442 /* Keeps track of unclosed groups. */
2443 compile_stack_type compile_stack
;
2445 /* Points to the current (ending) position in the pattern. */
2447 /* `const' makes AIX compiler fail. */
2448 unsigned char *p
= pattern
;
2450 re_char
*p
= pattern
;
2452 re_char
*pend
= pattern
+ size
;
2454 /* How to translate the characters in the pattern. */
2455 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2457 /* Address of the count-byte of the most recently inserted `exactn'
2458 command. This makes it possible to tell if a new exact-match
2459 character can be added to that command or if the character requires
2460 a new `exactn' command. */
2461 unsigned char *pending_exact
= 0;
2463 /* Address of start of the most recently finished expression.
2464 This tells, e.g., postfix * where to find the start of its
2465 operand. Reset at the beginning of groups and alternatives. */
2466 unsigned char *laststart
= 0;
2468 /* Address of beginning of regexp, or inside of last group. */
2469 unsigned char *begalt
;
2471 /* Place in the uncompiled pattern (i.e., the {) to
2472 which to go back if the interval is invalid. */
2473 re_char
*beg_interval
;
2475 /* Address of the place where a forward jump should go to the end of
2476 the containing expression. Each alternative of an `or' -- except the
2477 last -- ends with a forward jump of this sort. */
2478 unsigned char *fixup_alt_jump
= 0;
2480 /* Work area for range table of charset. */
2481 struct range_table_work_area range_table_work
;
2483 /* If the object matched can contain multibyte characters. */
2484 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2486 /* Nonzero if we have pushed down into a subpattern. */
2487 int in_subpattern
= 0;
2489 /* These hold the values of p, pattern, and pend from the main
2490 pattern when we have pushed into a subpattern. */
2492 re_char
*main_pattern
;
2497 DEBUG_PRINT1 ("\nCompiling pattern: ");
2500 unsigned debug_count
;
2502 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2503 putchar (pattern
[debug_count
]);
2508 /* Initialize the compile stack. */
2509 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2510 if (compile_stack
.stack
== NULL
)
2513 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2514 compile_stack
.avail
= 0;
2516 range_table_work
.table
= 0;
2517 range_table_work
.allocated
= 0;
2519 /* Initialize the pattern buffer. */
2520 bufp
->syntax
= syntax
;
2521 bufp
->fastmap_accurate
= 0;
2522 bufp
->not_bol
= bufp
->not_eol
= 0;
2523 bufp
->used_syntax
= 0;
2525 /* Set `used' to zero, so that if we return an error, the pattern
2526 printer (for debugging) will think there's no pattern. We reset it
2530 /* Always count groups, whether or not bufp->no_sub is set. */
2533 #if !defined emacs && !defined SYNTAX_TABLE
2534 /* Initialize the syntax table. */
2535 init_syntax_once ();
2538 if (bufp
->allocated
== 0)
2541 { /* If zero allocated, but buffer is non-null, try to realloc
2542 enough space. This loses if buffer's address is bogus, but
2543 that is the user's responsibility. */
2544 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2547 { /* Caller did not allocate a buffer. Do it for them. */
2548 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2550 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2552 bufp
->allocated
= INIT_BUF_SIZE
;
2555 begalt
= b
= bufp
->buffer
;
2557 /* Loop through the uncompiled pattern until we're at the end. */
2562 /* If this is the end of an included regexp,
2563 pop back to the main regexp and try again. */
2567 pattern
= main_pattern
;
2572 /* If this is the end of the main regexp, we are done. */
2584 /* If there's no special whitespace regexp, treat
2585 spaces normally. And don't try to do this recursively. */
2586 if (!whitespace_regexp
|| in_subpattern
)
2589 /* Peek past following spaces. */
2596 /* If the spaces are followed by a repetition op,
2597 treat them normally. */
2599 && (*p1
== '*' || *p1
== '+' || *p1
== '?'
2600 || (*p1
== '\\' && p1
+ 1 != pend
&& p1
[1] == '{')))
2603 /* Replace the spaces with the whitespace regexp. */
2607 main_pattern
= pattern
;
2608 p
= pattern
= whitespace_regexp
;
2609 pend
= p
+ strlen (p
);
2615 if ( /* If at start of pattern, it's an operator. */
2617 /* If context independent, it's an operator. */
2618 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2619 /* Otherwise, depends on what's come before. */
2620 || at_begline_loc_p (pattern
, p
, syntax
))
2621 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2630 if ( /* If at end of pattern, it's an operator. */
2632 /* If context independent, it's an operator. */
2633 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2634 /* Otherwise, depends on what's next. */
2635 || at_endline_loc_p (p
, pend
, syntax
))
2636 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2645 if ((syntax
& RE_BK_PLUS_QM
)
2646 || (syntax
& RE_LIMITED_OPS
))
2650 /* If there is no previous pattern... */
2653 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2654 FREE_STACK_RETURN (REG_BADRPT
);
2655 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2660 /* 1 means zero (many) matches is allowed. */
2661 boolean zero_times_ok
= 0, many_times_ok
= 0;
2664 /* If there is a sequence of repetition chars, collapse it
2665 down to just one (the right one). We can't combine
2666 interval operators with these because of, e.g., `a{2}*',
2667 which should only match an even number of `a's. */
2671 if ((syntax
& RE_FRUGAL
)
2672 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2676 zero_times_ok
|= c
!= '+';
2677 many_times_ok
|= c
!= '?';
2683 || (!(syntax
& RE_BK_PLUS_QM
)
2684 && (*p
== '+' || *p
== '?')))
2686 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2689 FREE_STACK_RETURN (REG_EESCAPE
);
2690 if (p
[1] == '+' || p
[1] == '?')
2691 PATFETCH (c
); /* Gobble up the backslash. */
2697 /* If we get here, we found another repeat character. */
2701 /* Star, etc. applied to an empty pattern is equivalent
2702 to an empty pattern. */
2703 if (!laststart
|| laststart
== b
)
2706 /* Now we know whether or not zero matches is allowed
2707 and also whether or not two or more matches is allowed. */
2712 boolean simple
= skip_one_char (laststart
) == b
;
2713 unsigned int startoffset
= 0;
2715 /* Check if the loop can match the empty string. */
2716 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2717 ? on_failure_jump
: on_failure_jump_loop
;
2718 assert (skip_one_char (laststart
) <= b
);
2720 if (!zero_times_ok
&& simple
)
2721 { /* Since simple * loops can be made faster by using
2722 on_failure_keep_string_jump, we turn simple P+
2723 into PP* if P is simple. */
2724 unsigned char *p1
, *p2
;
2725 startoffset
= b
- laststart
;
2726 GET_BUFFER_SPACE (startoffset
);
2727 p1
= b
; p2
= laststart
;
2733 GET_BUFFER_SPACE (6);
2736 STORE_JUMP (ofj
, b
, b
+ 6);
2738 /* Simple * loops can use on_failure_keep_string_jump
2739 depending on what follows. But since we don't know
2740 that yet, we leave the decision up to
2741 on_failure_jump_smart. */
2742 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2743 laststart
+ startoffset
, b
+ 6);
2745 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2750 /* A simple ? pattern. */
2751 assert (zero_times_ok
);
2752 GET_BUFFER_SPACE (3);
2753 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2757 else /* not greedy */
2758 { /* I wish the greedy and non-greedy cases could be merged. */
2760 GET_BUFFER_SPACE (7); /* We might use less. */
2763 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2765 /* The non-greedy multiple match looks like
2766 a repeat..until: we only need a conditional jump
2767 at the end of the loop. */
2768 if (emptyp
) BUF_PUSH (no_op
);
2769 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2770 : on_failure_jump
, b
, laststart
);
2774 /* The repeat...until naturally matches one or more.
2775 To also match zero times, we need to first jump to
2776 the end of the loop (its conditional jump). */
2777 INSERT_JUMP (jump
, laststart
, b
);
2783 /* non-greedy a?? */
2784 INSERT_JUMP (jump
, laststart
, b
+ 3);
2786 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2803 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2805 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2807 /* Ensure that we have enough space to push a charset: the
2808 opcode, the length count, and the bitset; 34 bytes in all. */
2809 GET_BUFFER_SPACE (34);
2813 /* We test `*p == '^' twice, instead of using an if
2814 statement, so we only need one BUF_PUSH. */
2815 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2819 /* Remember the first position in the bracket expression. */
2822 /* Push the number of bytes in the bitmap. */
2823 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2825 /* Clear the whole map. */
2826 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2828 /* charset_not matches newline according to a syntax bit. */
2829 if ((re_opcode_t
) b
[-2] == charset_not
2830 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2831 SET_LIST_BIT ('\n');
2833 /* Read in characters and ranges, setting map bits. */
2836 boolean escaped_char
= false;
2837 const unsigned char *p2
= p
;
2839 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2841 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2842 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2843 So the translation is done later in a loop. Example:
2844 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2847 /* \ might escape characters inside [...] and [^...]. */
2848 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2850 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2853 escaped_char
= true;
2857 /* Could be the end of the bracket expression. If it's
2858 not (i.e., when the bracket expression is `[]' so
2859 far), the ']' character bit gets set way below. */
2860 if (c
== ']' && p2
!= p1
)
2864 /* What should we do for the character which is
2865 greater than 0x7F, but not BASE_LEADING_CODE_P?
2868 /* See if we're at the beginning of a possible character
2871 if (!escaped_char
&&
2872 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2874 /* Leave room for the null. */
2875 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2876 const unsigned char *class_beg
;
2882 /* If pattern is `[[:'. */
2883 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2888 if ((c
== ':' && *p
== ']') || p
== pend
)
2890 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2893 /* This is in any case an invalid class name. */
2898 /* If isn't a word bracketed by `[:' and `:]':
2899 undo the ending character, the letters, and
2900 leave the leading `:' and `[' (but set bits for
2902 if (c
== ':' && *p
== ']')
2907 cc
= re_wctype (str
);
2910 FREE_STACK_RETURN (REG_ECTYPE
);
2912 /* Throw away the ] at the end of the character
2916 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2918 /* Most character classes in a multibyte match
2919 just set a flag. Exceptions are is_blank,
2920 is_digit, is_cntrl, and is_xdigit, since
2921 they can only match ASCII characters. We
2922 don't need to handle them for multibyte.
2923 They are distinguished by a negative wctype. */
2926 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work
,
2927 re_wctype_to_bit (cc
));
2929 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2931 int translated
= TRANSLATE (ch
);
2932 if (translated
< (1 << BYTEWIDTH
)
2933 && re_iswctype (btowc (ch
), cc
))
2934 SET_LIST_BIT (translated
);
2937 /* In most cases the matching rule for char classes
2938 only uses the syntax table for multibyte chars,
2939 so that the content of the syntax-table it is not
2940 hardcoded in the range_table. SPACE and WORD are
2941 the two exceptions. */
2942 if ((1 << cc
) & ((1 << RECC_SPACE
) | (1 << RECC_WORD
)))
2943 bufp
->used_syntax
= 1;
2945 /* Repeat the loop. */
2950 /* Go back to right after the "[:". */
2954 /* Because the `:' may starts the range, we
2955 can't simply set bit and repeat the loop.
2956 Instead, just set it to C and handle below. */
2961 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2964 /* Discard the `-'. */
2967 /* Fetch the character which ends the range. */
2970 if (SINGLE_BYTE_CHAR_P (c
))
2972 if (! SINGLE_BYTE_CHAR_P (c1
))
2974 /* Handle a range starting with a
2975 character of less than 256, and ending
2976 with a character of not less than 256.
2977 Split that into two ranges, the low one
2978 ending at 0377, and the high one
2979 starting at the smallest character in
2980 the charset of C1 and ending at C1. */
2981 int charset
= CHAR_CHARSET (c1
);
2982 re_wchar_t c2
= MAKE_CHAR (charset
, 0, 0);
2984 SET_RANGE_TABLE_WORK_AREA (range_table_work
,
2989 else if (!SAME_CHARSET_P (c
, c1
))
2990 FREE_STACK_RETURN (REG_ERANGEX
);
2993 /* Range from C to C. */
2996 /* Set the range ... */
2997 if (SINGLE_BYTE_CHAR_P (c
))
2998 /* ... into bitmap. */
3000 re_wchar_t this_char
;
3001 re_wchar_t range_start
= c
, range_end
= c1
;
3003 /* If the start is after the end, the range is empty. */
3004 if (range_start
> range_end
)
3006 if (syntax
& RE_NO_EMPTY_RANGES
)
3007 FREE_STACK_RETURN (REG_ERANGE
);
3008 /* Else, repeat the loop. */
3012 for (this_char
= range_start
; this_char
<= range_end
;
3015 int translated
= TRANSLATE (this_char
);
3016 if (translated
< (1 << BYTEWIDTH
))
3017 SET_LIST_BIT (translated
);
3019 SET_RANGE_TABLE_WORK_AREA
3020 (range_table_work
, translated
, translated
);
3025 /* ... into range table. */
3026 SET_RANGE_TABLE_WORK_AREA (range_table_work
, c
, c1
);
3029 /* Discard any (non)matching list bytes that are all 0 at the
3030 end of the map. Decrease the map-length byte too. */
3031 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3035 /* Build real range table from work area. */
3036 if (RANGE_TABLE_WORK_USED (range_table_work
)
3037 || RANGE_TABLE_WORK_BITS (range_table_work
))
3040 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
3042 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3043 bytes for flags, two for COUNT, and three bytes for
3045 GET_BUFFER_SPACE (4 + used
* 3);
3047 /* Indicate the existence of range table. */
3048 laststart
[1] |= 0x80;
3050 /* Store the character class flag bits into the range table.
3051 If not in emacs, these flag bits are always 0. */
3052 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
3053 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
3055 STORE_NUMBER_AND_INCR (b
, used
/ 2);
3056 for (i
= 0; i
< used
; i
++)
3057 STORE_CHARACTER_AND_INCR
3058 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
3065 if (syntax
& RE_NO_BK_PARENS
)
3072 if (syntax
& RE_NO_BK_PARENS
)
3079 if (syntax
& RE_NEWLINE_ALT
)
3086 if (syntax
& RE_NO_BK_VBAR
)
3093 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3094 goto handle_interval
;
3100 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3102 /* Do not translate the character after the \, so that we can
3103 distinguish, e.g., \B from \b, even if we normally would
3104 translate, e.g., B to b. */
3110 if (syntax
& RE_NO_BK_PARENS
)
3111 goto normal_backslash
;
3116 regnum_t regnum
= 0;
3119 /* Look for a special (?...) construct */
3120 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3122 PATFETCH (c
); /* Gobble up the '?'. */
3128 case ':': shy
= 1; break;
3130 /* An explicitly specified regnum must start
3133 FREE_STACK_RETURN (REG_BADPAT
);
3134 case '1': case '2': case '3': case '4':
3135 case '5': case '6': case '7': case '8': case '9':
3136 regnum
= 10*regnum
+ (c
- '0'); break;
3138 /* Only (?:...) is supported right now. */
3139 FREE_STACK_RETURN (REG_BADPAT
);
3146 regnum
= ++bufp
->re_nsub
;
3148 { /* It's actually not shy, but explicitly numbered. */
3150 if (regnum
> bufp
->re_nsub
)
3151 bufp
->re_nsub
= regnum
;
3152 else if (regnum
> bufp
->re_nsub
3153 /* Ideally, we'd want to check that the specified
3154 group can't have matched (i.e. all subgroups
3155 using the same regnum are in other branches of
3156 OR patterns), but we don't currently keep track
3157 of enough info to do that easily. */
3158 || group_in_compile_stack (compile_stack
, regnum
))
3159 FREE_STACK_RETURN (REG_BADPAT
);
3162 /* It's really shy. */
3163 regnum
= - bufp
->re_nsub
;
3165 if (COMPILE_STACK_FULL
)
3167 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3168 compile_stack_elt_t
);
3169 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3171 compile_stack
.size
<<= 1;
3174 /* These are the values to restore when we hit end of this
3175 group. They are all relative offsets, so that if the
3176 whole pattern moves because of realloc, they will still
3178 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3179 COMPILE_STACK_TOP
.fixup_alt_jump
3180 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3181 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3182 COMPILE_STACK_TOP
.regnum
= regnum
;
3184 /* Do not push a start_memory for groups beyond the last one
3185 we can represent in the compiled pattern. */
3186 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3187 BUF_PUSH_2 (start_memory
, regnum
);
3189 compile_stack
.avail
++;
3194 /* If we've reached MAX_REGNUM groups, then this open
3195 won't actually generate any code, so we'll have to
3196 clear pending_exact explicitly. */
3202 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3204 if (COMPILE_STACK_EMPTY
)
3206 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3207 goto normal_backslash
;
3209 FREE_STACK_RETURN (REG_ERPAREN
);
3215 /* See similar code for backslashed left paren above. */
3216 if (COMPILE_STACK_EMPTY
)
3218 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3221 FREE_STACK_RETURN (REG_ERPAREN
);
3224 /* Since we just checked for an empty stack above, this
3225 ``can't happen''. */
3226 assert (compile_stack
.avail
!= 0);
3228 /* We don't just want to restore into `regnum', because
3229 later groups should continue to be numbered higher,
3230 as in `(ab)c(de)' -- the second group is #2. */
3233 compile_stack
.avail
--;
3234 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3236 = COMPILE_STACK_TOP
.fixup_alt_jump
3237 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3239 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3240 regnum
= COMPILE_STACK_TOP
.regnum
;
3241 /* If we've reached MAX_REGNUM groups, then this open
3242 won't actually generate any code, so we'll have to
3243 clear pending_exact explicitly. */
3246 /* We're at the end of the group, so now we know how many
3247 groups were inside this one. */
3248 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3249 BUF_PUSH_2 (stop_memory
, regnum
);
3254 case '|': /* `\|'. */
3255 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3256 goto normal_backslash
;
3258 if (syntax
& RE_LIMITED_OPS
)
3261 /* Insert before the previous alternative a jump which
3262 jumps to this alternative if the former fails. */
3263 GET_BUFFER_SPACE (3);
3264 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3268 /* The alternative before this one has a jump after it
3269 which gets executed if it gets matched. Adjust that
3270 jump so it will jump to this alternative's analogous
3271 jump (put in below, which in turn will jump to the next
3272 (if any) alternative's such jump, etc.). The last such
3273 jump jumps to the correct final destination. A picture:
3279 If we are at `b', then fixup_alt_jump right now points to a
3280 three-byte space after `a'. We'll put in the jump, set
3281 fixup_alt_jump to right after `b', and leave behind three
3282 bytes which we'll fill in when we get to after `c'. */
3286 /* Mark and leave space for a jump after this alternative,
3287 to be filled in later either by next alternative or
3288 when know we're at the end of a series of alternatives. */
3290 GET_BUFFER_SPACE (3);
3299 /* If \{ is a literal. */
3300 if (!(syntax
& RE_INTERVALS
)
3301 /* If we're at `\{' and it's not the open-interval
3303 || (syntax
& RE_NO_BK_BRACES
))
3304 goto normal_backslash
;
3308 /* If got here, then the syntax allows intervals. */
3310 /* At least (most) this many matches must be made. */
3311 int lower_bound
= 0, upper_bound
= -1;
3315 GET_UNSIGNED_NUMBER (lower_bound
);
3318 GET_UNSIGNED_NUMBER (upper_bound
);
3320 /* Interval such as `{1}' => match exactly once. */
3321 upper_bound
= lower_bound
;
3323 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3324 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3325 FREE_STACK_RETURN (REG_BADBR
);
3327 if (!(syntax
& RE_NO_BK_BRACES
))
3330 FREE_STACK_RETURN (REG_BADBR
);
3332 FREE_STACK_RETURN (REG_EESCAPE
);
3337 FREE_STACK_RETURN (REG_BADBR
);
3339 /* We just parsed a valid interval. */
3341 /* If it's invalid to have no preceding re. */
3344 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3345 FREE_STACK_RETURN (REG_BADRPT
);
3346 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3349 goto unfetch_interval
;
3352 if (upper_bound
== 0)
3353 /* If the upper bound is zero, just drop the sub pattern
3356 else if (lower_bound
== 1 && upper_bound
== 1)
3357 /* Just match it once: nothing to do here. */
3360 /* Otherwise, we have a nontrivial interval. When
3361 we're all done, the pattern will look like:
3362 set_number_at <jump count> <upper bound>
3363 set_number_at <succeed_n count> <lower bound>
3364 succeed_n <after jump addr> <succeed_n count>
3366 jump_n <succeed_n addr> <jump count>
3367 (The upper bound and `jump_n' are omitted if
3368 `upper_bound' is 1, though.) */
3370 { /* If the upper bound is > 1, we need to insert
3371 more at the end of the loop. */
3372 unsigned int nbytes
= (upper_bound
< 0 ? 3
3373 : upper_bound
> 1 ? 5 : 0);
3374 unsigned int startoffset
= 0;
3376 GET_BUFFER_SPACE (20); /* We might use less. */
3378 if (lower_bound
== 0)
3380 /* A succeed_n that starts with 0 is really a
3381 a simple on_failure_jump_loop. */
3382 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3388 /* Initialize lower bound of the `succeed_n', even
3389 though it will be set during matching by its
3390 attendant `set_number_at' (inserted next),
3391 because `re_compile_fastmap' needs to know.
3392 Jump to the `jump_n' we might insert below. */
3393 INSERT_JUMP2 (succeed_n
, laststart
,
3398 /* Code to initialize the lower bound. Insert
3399 before the `succeed_n'. The `5' is the last two
3400 bytes of this `set_number_at', plus 3 bytes of
3401 the following `succeed_n'. */
3402 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3407 if (upper_bound
< 0)
3409 /* A negative upper bound stands for infinity,
3410 in which case it degenerates to a plain jump. */
3411 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3414 else if (upper_bound
> 1)
3415 { /* More than one repetition is allowed, so
3416 append a backward jump to the `succeed_n'
3417 that starts this interval.
3419 When we've reached this during matching,
3420 we'll have matched the interval once, so
3421 jump back only `upper_bound - 1' times. */
3422 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3426 /* The location we want to set is the second
3427 parameter of the `jump_n'; that is `b-2' as
3428 an absolute address. `laststart' will be
3429 the `set_number_at' we're about to insert;
3430 `laststart+3' the number to set, the source
3431 for the relative address. But we are
3432 inserting into the middle of the pattern --
3433 so everything is getting moved up by 5.
3434 Conclusion: (b - 2) - (laststart + 3) + 5,
3435 i.e., b - laststart.
3437 We insert this at the beginning of the loop
3438 so that if we fail during matching, we'll
3439 reinitialize the bounds. */
3440 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3441 upper_bound
- 1, b
);
3446 beg_interval
= NULL
;
3451 /* If an invalid interval, match the characters as literals. */
3452 assert (beg_interval
);
3454 beg_interval
= NULL
;
3456 /* normal_char and normal_backslash need `c'. */
3459 if (!(syntax
& RE_NO_BK_BRACES
))
3461 assert (p
> pattern
&& p
[-1] == '\\');
3462 goto normal_backslash
;
3468 /* There is no way to specify the before_dot and after_dot
3469 operators. rms says this is ok. --karl */
3477 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3483 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3489 BUF_PUSH_2 (categoryspec
, c
);
3495 BUF_PUSH_2 (notcategoryspec
, c
);
3501 if (syntax
& RE_NO_GNU_OPS
)
3504 BUF_PUSH_2 (syntaxspec
, Sword
);
3509 if (syntax
& RE_NO_GNU_OPS
)
3512 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3517 if (syntax
& RE_NO_GNU_OPS
)
3523 if (syntax
& RE_NO_GNU_OPS
)
3529 if (syntax
& RE_NO_GNU_OPS
)
3538 FREE_STACK_RETURN (REG_BADPAT
);
3542 if (syntax
& RE_NO_GNU_OPS
)
3544 BUF_PUSH (wordbound
);
3548 if (syntax
& RE_NO_GNU_OPS
)
3550 BUF_PUSH (notwordbound
);
3554 if (syntax
& RE_NO_GNU_OPS
)
3560 if (syntax
& RE_NO_GNU_OPS
)
3565 case '1': case '2': case '3': case '4': case '5':
3566 case '6': case '7': case '8': case '9':
3570 if (syntax
& RE_NO_BK_REFS
)
3571 goto normal_backslash
;
3575 if (reg
> bufp
->re_nsub
|| reg
< 1
3576 /* Can't back reference to a subexp before its end. */
3577 || group_in_compile_stack (compile_stack
, reg
))
3578 FREE_STACK_RETURN (REG_ESUBREG
);
3581 BUF_PUSH_2 (duplicate
, reg
);
3588 if (syntax
& RE_BK_PLUS_QM
)
3591 goto normal_backslash
;
3595 /* You might think it would be useful for \ to mean
3596 not to translate; but if we don't translate it
3597 it will never match anything. */
3604 /* Expects the character in `c'. */
3606 /* If no exactn currently being built. */
3609 /* If last exactn not at current position. */
3610 || pending_exact
+ *pending_exact
+ 1 != b
3612 /* We have only one byte following the exactn for the count. */
3613 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3615 /* If followed by a repetition operator. */
3616 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3617 || ((syntax
& RE_BK_PLUS_QM
)
3618 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3619 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3620 || ((syntax
& RE_INTERVALS
)
3621 && ((syntax
& RE_NO_BK_BRACES
)
3622 ? p
!= pend
&& *p
== '{'
3623 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3625 /* Start building a new exactn. */
3629 BUF_PUSH_2 (exactn
, 0);
3630 pending_exact
= b
- 1;
3633 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3639 len
= CHAR_STRING (c
, b
);
3643 (*pending_exact
) += len
;
3648 } /* while p != pend */
3651 /* Through the pattern now. */
3655 if (!COMPILE_STACK_EMPTY
)
3656 FREE_STACK_RETURN (REG_EPAREN
);
3658 /* If we don't want backtracking, force success
3659 the first time we reach the end of the compiled pattern. */
3660 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3663 /* We have succeeded; set the length of the buffer. */
3664 bufp
->used
= b
- bufp
->buffer
;
3669 re_compile_fastmap (bufp
);
3670 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3671 print_compiled_pattern (bufp
);
3676 #ifndef MATCH_MAY_ALLOCATE
3677 /* Initialize the failure stack to the largest possible stack. This
3678 isn't necessary unless we're trying to avoid calling alloca in
3679 the search and match routines. */
3681 int num_regs
= bufp
->re_nsub
+ 1;
3683 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3685 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3687 if (! fail_stack
.stack
)
3689 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3690 * sizeof (fail_stack_elt_t
));
3693 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3695 * sizeof (fail_stack_elt_t
)));
3698 regex_grow_registers (num_regs
);
3700 #endif /* not MATCH_MAY_ALLOCATE */
3702 FREE_STACK_RETURN (REG_NOERROR
);
3703 } /* regex_compile */
3705 /* Subroutines for `regex_compile'. */
3707 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3710 store_op1 (op
, loc
, arg
)
3715 *loc
= (unsigned char) op
;
3716 STORE_NUMBER (loc
+ 1, arg
);
3720 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3723 store_op2 (op
, loc
, arg1
, arg2
)
3728 *loc
= (unsigned char) op
;
3729 STORE_NUMBER (loc
+ 1, arg1
);
3730 STORE_NUMBER (loc
+ 3, arg2
);
3734 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3735 for OP followed by two-byte integer parameter ARG. */
3738 insert_op1 (op
, loc
, arg
, end
)
3744 register unsigned char *pfrom
= end
;
3745 register unsigned char *pto
= end
+ 3;
3747 while (pfrom
!= loc
)
3750 store_op1 (op
, loc
, arg
);
3754 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3757 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3763 register unsigned char *pfrom
= end
;
3764 register unsigned char *pto
= end
+ 5;
3766 while (pfrom
!= loc
)
3769 store_op2 (op
, loc
, arg1
, arg2
);
3773 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3774 after an alternative or a begin-subexpression. We assume there is at
3775 least one character before the ^. */
3778 at_begline_loc_p (pattern
, p
, syntax
)
3779 re_char
*pattern
, *p
;
3780 reg_syntax_t syntax
;
3782 re_char
*prev
= p
- 2;
3783 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3786 /* After a subexpression? */
3787 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3788 /* After an alternative? */
3789 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3790 /* After a shy subexpression? */
3791 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3792 && prev
[-1] == '?' && prev
[-2] == '('
3793 && (syntax
& RE_NO_BK_PARENS
3794 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3798 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3799 at least one character after the $, i.e., `P < PEND'. */
3802 at_endline_loc_p (p
, pend
, syntax
)
3804 reg_syntax_t syntax
;
3807 boolean next_backslash
= *next
== '\\';
3808 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3811 /* Before a subexpression? */
3812 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3813 : next_backslash
&& next_next
&& *next_next
== ')')
3814 /* Before an alternative? */
3815 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3816 : next_backslash
&& next_next
&& *next_next
== '|');
3820 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3821 false if it's not. */
3824 group_in_compile_stack (compile_stack
, regnum
)
3825 compile_stack_type compile_stack
;
3830 for (this_element
= compile_stack
.avail
- 1;
3833 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3840 If fastmap is non-NULL, go through the pattern and fill fastmap
3841 with all the possible leading chars. If fastmap is NULL, don't
3842 bother filling it up (obviously) and only return whether the
3843 pattern could potentially match the empty string.
3845 Return 1 if p..pend might match the empty string.
3846 Return 0 if p..pend matches at least one char.
3847 Return -1 if fastmap was not updated accurately. */
3850 analyse_first (p
, pend
, fastmap
, multibyte
)
3853 const int multibyte
;
3858 /* If all elements for base leading-codes in fastmap is set, this
3859 flag is set true. */
3860 boolean match_any_multibyte_characters
= false;
3864 /* The loop below works as follows:
3865 - It has a working-list kept in the PATTERN_STACK and which basically
3866 starts by only containing a pointer to the first operation.
3867 - If the opcode we're looking at is a match against some set of
3868 chars, then we add those chars to the fastmap and go on to the
3869 next work element from the worklist (done via `break').
3870 - If the opcode is a control operator on the other hand, we either
3871 ignore it (if it's meaningless at this point, such as `start_memory')
3872 or execute it (if it's a jump). If the jump has several destinations
3873 (i.e. `on_failure_jump'), then we push the other destination onto the
3875 We guarantee termination by ignoring backward jumps (more or less),
3876 so that `p' is monotonically increasing. More to the point, we
3877 never set `p' (or push) anything `<= p1'. */
3881 /* `p1' is used as a marker of how far back a `on_failure_jump'
3882 can go without being ignored. It is normally equal to `p'
3883 (which prevents any backward `on_failure_jump') except right
3884 after a plain `jump', to allow patterns such as:
3887 10: on_failure_jump 3
3888 as used for the *? operator. */
3891 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3898 /* If the first character has to match a backreference, that means
3899 that the group was empty (since it already matched). Since this
3900 is the only case that interests us here, we can assume that the
3901 backreference must match the empty string. */
3906 /* Following are the cases which match a character. These end
3912 int c
= RE_STRING_CHAR (p
+ 1, pend
- p
);
3913 /* When fast-scanning, the fastmap can be indexed either with
3914 a char (smaller than 256) or with the first byte of
3915 a char's byte sequence. So we have to conservatively add
3916 both to the table. */
3917 if (SINGLE_BYTE_CHAR_P (c
))
3925 /* We could put all the chars except for \n (and maybe \0)
3926 but we don't bother since it is generally not worth it. */
3927 if (!fastmap
) break;
3932 /* Chars beyond end of bitmap are possible matches.
3933 All the single-byte codes can occur in multibyte buffers.
3934 So any that are not listed in the charset
3935 are possible matches, even in multibyte buffers. */
3936 if (!fastmap
) break;
3937 /* We don't need to mark LEADING_CODE_8_BIT_CONTROL specially
3938 because it will automatically be set when needed by virtue of
3939 being larger than the highest char of its charset (0xbf) but
3940 smaller than (1<<BYTEWIDTH). */
3941 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3942 j
< (1 << BYTEWIDTH
); j
++)
3946 if (!fastmap
) break;
3947 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3948 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3950 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3954 if (j
>= 0x80 && j
< 0xa0)
3955 fastmap
[LEADING_CODE_8_BIT_CONTROL
] = 1;
3959 if ((not && multibyte
)
3960 /* Any character set can possibly contain a character
3961 which doesn't match the specified set of characters. */
3962 || (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3963 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3964 /* If we can match a character class, we can match
3965 any character set. */
3967 set_fastmap_for_multibyte_characters
:
3968 if (match_any_multibyte_characters
== false)
3970 for (j
= 0x80; j
< 0xA0; j
++) /* XXX */
3971 if (BASE_LEADING_CODE_P (j
))
3973 match_any_multibyte_characters
= true;
3977 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3978 && match_any_multibyte_characters
== false)
3980 /* Set fastmap[I] 1 where I is a base leading code of each
3981 multibyte character in the range table. */
3984 /* Make P points the range table. `+ 2' is to skip flag
3985 bits for a character class. */
3986 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3988 /* Extract the number of ranges in range table into COUNT. */
3989 EXTRACT_NUMBER_AND_INCR (count
, p
);
3990 for (; count
> 0; count
--, p
+= 2 * 3) /* XXX */
3992 /* Extract the start of each range. */
3993 EXTRACT_CHARACTER (c
, p
);
3994 j
= CHAR_CHARSET (c
);
3995 fastmap
[CHARSET_LEADING_CODE_BASE (j
)] = 1;
4002 if (!fastmap
) break;
4004 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
4006 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4007 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
4011 /* This match depends on text properties. These end with
4012 aborting optimizations. */
4016 case notcategoryspec
:
4017 if (!fastmap
) break;
4018 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
4020 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4021 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
4025 /* Any character set can possibly contain a character
4026 whose category is K (or not). */
4027 goto set_fastmap_for_multibyte_characters
;
4030 /* All cases after this match the empty string. These end with
4052 EXTRACT_NUMBER_AND_INCR (j
, p
);
4054 /* Backward jumps can only go back to code that we've already
4055 visited. `re_compile' should make sure this is true. */
4058 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4060 case on_failure_jump
:
4061 case on_failure_keep_string_jump
:
4062 case on_failure_jump_loop
:
4063 case on_failure_jump_nastyloop
:
4064 case on_failure_jump_smart
:
4070 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4071 to jump back to "just after here". */
4074 case on_failure_jump
:
4075 case on_failure_keep_string_jump
:
4076 case on_failure_jump_nastyloop
:
4077 case on_failure_jump_loop
:
4078 case on_failure_jump_smart
:
4079 EXTRACT_NUMBER_AND_INCR (j
, p
);
4081 ; /* Backward jump to be ignored. */
4083 { /* We have to look down both arms.
4084 We first go down the "straight" path so as to minimize
4085 stack usage when going through alternatives. */
4086 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
4094 /* This code simply does not properly handle forward jump_n. */
4095 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
4097 /* jump_n can either jump or fall through. The (backward) jump
4098 case has already been handled, so we only need to look at the
4099 fallthrough case. */
4103 /* If N == 0, it should be an on_failure_jump_loop instead. */
4104 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
4106 /* We only care about one iteration of the loop, so we don't
4107 need to consider the case where this behaves like an
4124 abort (); /* We have listed all the cases. */
4127 /* Getting here means we have found the possible starting
4128 characters for one path of the pattern -- and that the empty
4129 string does not match. We need not follow this path further. */
4133 /* We reached the end without matching anything. */
4136 } /* analyse_first */
4138 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4139 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4140 characters can start a string that matches the pattern. This fastmap
4141 is used by re_search to skip quickly over impossible starting points.
4143 Character codes above (1 << BYTEWIDTH) are not represented in the
4144 fastmap, but the leading codes are represented. Thus, the fastmap
4145 indicates which character sets could start a match.
4147 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4148 area as BUFP->fastmap.
4150 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4153 Returns 0 if we succeed, -2 if an internal error. */
4156 re_compile_fastmap (bufp
)
4157 struct re_pattern_buffer
*bufp
;
4159 char *fastmap
= bufp
->fastmap
;
4162 assert (fastmap
&& bufp
->buffer
);
4164 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4165 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4167 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4168 fastmap
, RE_MULTIBYTE_P (bufp
));
4169 bufp
->can_be_null
= (analysis
!= 0);
4171 } /* re_compile_fastmap */
4173 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4174 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4175 this memory for recording register information. STARTS and ENDS
4176 must be allocated using the malloc library routine, and must each
4177 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4179 If NUM_REGS == 0, then subsequent matches should allocate their own
4182 Unless this function is called, the first search or match using
4183 PATTERN_BUFFER will allocate its own register data, without
4184 freeing the old data. */
4187 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4188 struct re_pattern_buffer
*bufp
;
4189 struct re_registers
*regs
;
4191 regoff_t
*starts
, *ends
;
4195 bufp
->regs_allocated
= REGS_REALLOCATE
;
4196 regs
->num_regs
= num_regs
;
4197 regs
->start
= starts
;
4202 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4204 regs
->start
= regs
->end
= (regoff_t
*) 0;
4207 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4209 /* Searching routines. */
4211 /* Like re_search_2, below, but only one string is specified, and
4212 doesn't let you say where to stop matching. */
4215 re_search (bufp
, string
, size
, startpos
, range
, regs
)
4216 struct re_pattern_buffer
*bufp
;
4218 int size
, startpos
, range
;
4219 struct re_registers
*regs
;
4221 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4224 WEAK_ALIAS (__re_search
, re_search
)
4226 /* Head address of virtual concatenation of string. */
4227 #define HEAD_ADDR_VSTRING(P) \
4228 (((P) >= size1 ? string2 : string1))
4230 /* End address of virtual concatenation of string. */
4231 #define STOP_ADDR_VSTRING(P) \
4232 (((P) >= size1 ? string2 + size2 : string1 + size1))
4234 /* Address of POS in the concatenation of virtual string. */
4235 #define POS_ADDR_VSTRING(POS) \
4236 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4238 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4239 virtual concatenation of STRING1 and STRING2, starting first at index
4240 STARTPOS, then at STARTPOS + 1, and so on.
4242 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4244 RANGE is how far to scan while trying to match. RANGE = 0 means try
4245 only at STARTPOS; in general, the last start tried is STARTPOS +
4248 In REGS, return the indices of the virtual concatenation of STRING1
4249 and STRING2 that matched the entire BUFP->buffer and its contained
4252 Do not consider matching one past the index STOP in the virtual
4253 concatenation of STRING1 and STRING2.
4255 We return either the position in the strings at which the match was
4256 found, -1 if no match, or -2 if error (such as failure
4260 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
4261 struct re_pattern_buffer
*bufp
;
4262 const char *str1
, *str2
;
4266 struct re_registers
*regs
;
4270 re_char
*string1
= (re_char
*) str1
;
4271 re_char
*string2
= (re_char
*) str2
;
4272 register char *fastmap
= bufp
->fastmap
;
4273 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4274 int total_size
= size1
+ size2
;
4275 int endpos
= startpos
+ range
;
4276 boolean anchored_start
;
4278 /* Nonzero if we have to concern multibyte character. */
4279 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4281 /* Check for out-of-range STARTPOS. */
4282 if (startpos
< 0 || startpos
> total_size
)
4285 /* Fix up RANGE if it might eventually take us outside
4286 the virtual concatenation of STRING1 and STRING2.
4287 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4289 range
= 0 - startpos
;
4290 else if (endpos
> total_size
)
4291 range
= total_size
- startpos
;
4293 /* If the search isn't to be a backwards one, don't waste time in a
4294 search for a pattern anchored at beginning of buffer. */
4295 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4304 /* In a forward search for something that starts with \=.
4305 don't keep searching past point. */
4306 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4308 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4314 /* Update the fastmap now if not correct already. */
4315 if (fastmap
&& !bufp
->fastmap_accurate
)
4316 re_compile_fastmap (bufp
);
4318 /* See whether the pattern is anchored. */
4319 anchored_start
= (bufp
->buffer
[0] == begline
);
4322 gl_state
.object
= re_match_object
;
4324 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4326 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4330 /* Loop through the string, looking for a place to start matching. */
4333 /* If the pattern is anchored,
4334 skip quickly past places we cannot match.
4335 We don't bother to treat startpos == 0 specially
4336 because that case doesn't repeat. */
4337 if (anchored_start
&& startpos
> 0)
4339 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4340 : string2
[startpos
- size1
- 1])
4345 /* If a fastmap is supplied, skip quickly over characters that
4346 cannot be the start of a match. If the pattern can match the
4347 null string, however, we don't need to skip characters; we want
4348 the first null string. */
4349 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4351 register re_char
*d
;
4352 register re_wchar_t buf_ch
;
4354 d
= POS_ADDR_VSTRING (startpos
);
4356 if (range
> 0) /* Searching forwards. */
4358 register int lim
= 0;
4361 if (startpos
< size1
&& startpos
+ range
>= size1
)
4362 lim
= range
- (size1
- startpos
);
4364 /* Written out as an if-else to avoid testing `translate'
4366 if (RE_TRANSLATE_P (translate
))
4373 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
4376 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4381 range
-= buf_charlen
;
4386 /* Convert *d to integer to shut up GCC's
4387 whining about comparison that is always
4392 && !fastmap
[RE_TRANSLATE (translate
, di
)])
4402 re_char
*d_start
= d
;
4403 while (range
> lim
&& !fastmap
[*d
])
4409 if (multibyte
&& range
> lim
)
4411 /* Check that we are at the beginning of a char. */
4413 AT_CHAR_BOUNDARY_P (at_boundary
, d
, d_start
);
4417 { /* We have matched an internal byte of a char
4418 rather than the leading byte, so it's a false
4419 positive: we should keep scanning. */
4428 startpos
+= irange
- range
;
4430 else /* Searching backwards. */
4432 int room
= (startpos
>= size1
4433 ? size2
+ size1
- startpos
4434 : size1
- startpos
);
4435 buf_ch
= RE_STRING_CHAR (d
, room
);
4436 buf_ch
= TRANSLATE (buf_ch
);
4438 if (! (buf_ch
>= 0400
4439 || fastmap
[buf_ch
]))
4444 /* If can't match the null string, and that's all we have left, fail. */
4445 if (range
>= 0 && startpos
== total_size
&& fastmap
4446 && !bufp
->can_be_null
)
4449 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4450 startpos
, regs
, stop
);
4463 /* Update STARTPOS to the next character boundary. */
4466 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4467 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4468 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
4486 /* Update STARTPOS to the previous character boundary. */
4489 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4491 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4493 /* Find the head of multibyte form. */
4494 PREV_CHAR_BOUNDARY (p
, phead
);
4495 range
+= p0
- 1 - p
;
4499 startpos
-= p0
- 1 - p
;
4505 WEAK_ALIAS (__re_search_2
, re_search_2
)
4507 /* Declarations and macros for re_match_2. */
4509 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4511 RE_TRANSLATE_TYPE translate
,
4512 const int multibyte
));
4514 /* This converts PTR, a pointer into one of the search strings `string1'
4515 and `string2' into an offset from the beginning of that string. */
4516 #define POINTER_TO_OFFSET(ptr) \
4517 (FIRST_STRING_P (ptr) \
4518 ? ((regoff_t) ((ptr) - string1)) \
4519 : ((regoff_t) ((ptr) - string2 + size1)))
4521 /* Call before fetching a character with *d. This switches over to
4522 string2 if necessary.
4523 Check re_match_2_internal for a discussion of why end_match_2 might
4524 not be within string2 (but be equal to end_match_1 instead). */
4525 #define PREFETCH() \
4528 /* End of string2 => fail. */ \
4529 if (dend == end_match_2) \
4531 /* End of string1 => advance to string2. */ \
4533 dend = end_match_2; \
4536 /* Call before fetching a char with *d if you already checked other limits.
4537 This is meant for use in lookahead operations like wordend, etc..
4538 where we might need to look at parts of the string that might be
4539 outside of the LIMITs (i.e past `stop'). */
4540 #define PREFETCH_NOLIMIT() \
4544 dend = end_match_2; \
4547 /* Test if at very beginning or at very end of the virtual concatenation
4548 of `string1' and `string2'. If only one string, it's `string2'. */
4549 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4550 #define AT_STRINGS_END(d) ((d) == end2)
4553 /* Test if D points to a character which is word-constituent. We have
4554 two special cases to check for: if past the end of string1, look at
4555 the first character in string2; and if before the beginning of
4556 string2, look at the last character in string1. */
4557 #define WORDCHAR_P(d) \
4558 (SYNTAX ((d) == end1 ? *string2 \
4559 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4562 /* Disabled due to a compiler bug -- see comment at case wordbound */
4564 /* The comment at case wordbound is following one, but we don't use
4565 AT_WORD_BOUNDARY anymore to support multibyte form.
4567 The DEC Alpha C compiler 3.x generates incorrect code for the
4568 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4569 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4570 macro and introducing temporary variables works around the bug. */
4573 /* Test if the character before D and the one at D differ with respect
4574 to being word-constituent. */
4575 #define AT_WORD_BOUNDARY(d) \
4576 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4577 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4580 /* Free everything we malloc. */
4581 #ifdef MATCH_MAY_ALLOCATE
4582 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4583 # define FREE_VARIABLES() \
4585 REGEX_FREE_STACK (fail_stack.stack); \
4586 FREE_VAR (regstart); \
4587 FREE_VAR (regend); \
4588 FREE_VAR (best_regstart); \
4589 FREE_VAR (best_regend); \
4592 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4593 #endif /* not MATCH_MAY_ALLOCATE */
4596 /* Optimization routines. */
4598 /* If the operation is a match against one or more chars,
4599 return a pointer to the next operation, else return NULL. */
4604 switch (SWITCH_ENUM_CAST (*p
++))
4615 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4618 p
= CHARSET_RANGE_TABLE (p
- 1);
4619 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4620 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4623 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4630 case notcategoryspec
:
4642 /* Jump over non-matching operations. */
4644 skip_noops (p
, pend
)
4650 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4659 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4670 /* Non-zero if "p1 matches something" implies "p2 fails". */
4672 mutually_exclusive_p (bufp
, p1
, p2
)
4673 struct re_pattern_buffer
*bufp
;
4677 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4678 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4680 assert (p1
>= bufp
->buffer
&& p1
< pend
4681 && p2
>= bufp
->buffer
&& p2
<= pend
);
4683 /* Skip over open/close-group commands.
4684 If what follows this loop is a ...+ construct,
4685 look at what begins its body, since we will have to
4686 match at least one of that. */
4687 p2
= skip_noops (p2
, pend
);
4688 /* The same skip can be done for p1, except that this function
4689 is only used in the case where p1 is a simple match operator. */
4690 /* p1 = skip_noops (p1, pend); */
4692 assert (p1
>= bufp
->buffer
&& p1
< pend
4693 && p2
>= bufp
->buffer
&& p2
<= pend
);
4695 op2
= p2
== pend
? succeed
: *p2
;
4697 switch (SWITCH_ENUM_CAST (op2
))
4701 /* If we're at the end of the pattern, we can change. */
4702 if (skip_one_char (p1
))
4704 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4712 register re_wchar_t c
4713 = (re_opcode_t
) *p2
== endline
? '\n'
4714 : RE_STRING_CHAR (p2
+ 2, pend
- p2
- 2);
4716 if ((re_opcode_t
) *p1
== exactn
)
4718 if (c
!= RE_STRING_CHAR (p1
+ 2, pend
- p1
- 2))
4720 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4725 else if ((re_opcode_t
) *p1
== charset
4726 || (re_opcode_t
) *p1
== charset_not
)
4728 int not = (re_opcode_t
) *p1
== charset_not
;
4730 /* Test if C is listed in charset (or charset_not)
4732 if (SINGLE_BYTE_CHAR_P (c
))
4734 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4735 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4738 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4739 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4741 /* `not' is equal to 1 if c would match, which means
4742 that we can't change to pop_failure_jump. */
4745 DEBUG_PRINT1 (" No match => fast loop.\n");
4749 else if ((re_opcode_t
) *p1
== anychar
4752 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4760 if ((re_opcode_t
) *p1
== exactn
)
4761 /* Reuse the code above. */
4762 return mutually_exclusive_p (bufp
, p2
, p1
);
4764 /* It is hard to list up all the character in charset
4765 P2 if it includes multibyte character. Give up in
4767 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4769 /* Now, we are sure that P2 has no range table.
4770 So, for the size of bitmap in P2, `p2[1]' is
4771 enough. But P1 may have range table, so the
4772 size of bitmap table of P1 is extracted by
4773 using macro `CHARSET_BITMAP_SIZE'.
4775 Since we know that all the character listed in
4776 P2 is ASCII, it is enough to test only bitmap
4779 if ((re_opcode_t
) *p1
== charset
)
4782 /* We win if the charset inside the loop
4783 has no overlap with the one after the loop. */
4786 && idx
< CHARSET_BITMAP_SIZE (p1
));
4788 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4792 || idx
== CHARSET_BITMAP_SIZE (p1
))
4794 DEBUG_PRINT1 (" No match => fast loop.\n");
4798 else if ((re_opcode_t
) *p1
== charset_not
)
4801 /* We win if the charset_not inside the loop lists
4802 every character listed in the charset after. */
4803 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4804 if (! (p2
[2 + idx
] == 0
4805 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4806 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4811 DEBUG_PRINT1 (" No match => fast loop.\n");
4820 switch (SWITCH_ENUM_CAST (*p1
))
4824 /* Reuse the code above. */
4825 return mutually_exclusive_p (bufp
, p2
, p1
);
4827 /* When we have two charset_not, it's very unlikely that
4828 they don't overlap. The union of the two sets of excluded
4829 chars should cover all possible chars, which, as a matter of
4830 fact, is virtually impossible in multibyte buffers. */
4836 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
4838 return ((re_opcode_t
) *p1
== syntaxspec
4839 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4841 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
4844 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
4846 return ((re_opcode_t
) *p1
== notsyntaxspec
4847 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4849 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
4852 return (((re_opcode_t
) *p1
== notsyntaxspec
4853 || (re_opcode_t
) *p1
== syntaxspec
)
4858 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4859 case notcategoryspec
:
4860 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4872 /* Matching routines. */
4874 #ifndef emacs /* Emacs never uses this. */
4875 /* re_match is like re_match_2 except it takes only a single string. */
4878 re_match (bufp
, string
, size
, pos
, regs
)
4879 struct re_pattern_buffer
*bufp
;
4882 struct re_registers
*regs
;
4884 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
4888 WEAK_ALIAS (__re_match
, re_match
)
4889 #endif /* not emacs */
4892 /* In Emacs, this is the string or buffer in which we
4893 are matching. It is used for looking up syntax properties. */
4894 Lisp_Object re_match_object
;
4897 /* re_match_2 matches the compiled pattern in BUFP against the
4898 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4899 and SIZE2, respectively). We start matching at POS, and stop
4902 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4903 store offsets for the substring each group matched in REGS. See the
4904 documentation for exactly how many groups we fill.
4906 We return -1 if no match, -2 if an internal error (such as the
4907 failure stack overflowing). Otherwise, we return the length of the
4908 matched substring. */
4911 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4912 struct re_pattern_buffer
*bufp
;
4913 const char *string1
, *string2
;
4916 struct re_registers
*regs
;
4923 gl_state
.object
= re_match_object
;
4924 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4925 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4928 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4929 (re_char
*) string2
, size2
,
4933 WEAK_ALIAS (__re_match_2
, re_match_2
)
4935 /* This is a separate function so that we can force an alloca cleanup
4938 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4939 struct re_pattern_buffer
*bufp
;
4940 re_char
*string1
, *string2
;
4943 struct re_registers
*regs
;
4946 /* General temporaries. */
4951 /* Just past the end of the corresponding string. */
4952 re_char
*end1
, *end2
;
4954 /* Pointers into string1 and string2, just past the last characters in
4955 each to consider matching. */
4956 re_char
*end_match_1
, *end_match_2
;
4958 /* Where we are in the data, and the end of the current string. */
4961 /* Used sometimes to remember where we were before starting matching
4962 an operator so that we can go back in case of failure. This "atomic"
4963 behavior of matching opcodes is indispensable to the correctness
4964 of the on_failure_keep_string_jump optimization. */
4967 /* Where we are in the pattern, and the end of the pattern. */
4968 re_char
*p
= bufp
->buffer
;
4969 re_char
*pend
= p
+ bufp
->used
;
4971 /* We use this to map every character in the string. */
4972 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4974 /* Nonzero if we have to concern multibyte character. */
4975 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4977 /* Failure point stack. Each place that can handle a failure further
4978 down the line pushes a failure point on this stack. It consists of
4979 regstart, and regend for all registers corresponding to
4980 the subexpressions we're currently inside, plus the number of such
4981 registers, and, finally, two char *'s. The first char * is where
4982 to resume scanning the pattern; the second one is where to resume
4983 scanning the strings. */
4984 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4985 fail_stack_type fail_stack
;
4988 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4991 #if defined REL_ALLOC && defined REGEX_MALLOC
4992 /* This holds the pointer to the failure stack, when
4993 it is allocated relocatably. */
4994 fail_stack_elt_t
*failure_stack_ptr
;
4997 /* We fill all the registers internally, independent of what we
4998 return, for use in backreferences. The number here includes
4999 an element for register zero. */
5000 size_t num_regs
= bufp
->re_nsub
+ 1;
5002 /* Information on the contents of registers. These are pointers into
5003 the input strings; they record just what was matched (on this
5004 attempt) by a subexpression part of the pattern, that is, the
5005 regnum-th regstart pointer points to where in the pattern we began
5006 matching and the regnum-th regend points to right after where we
5007 stopped matching the regnum-th subexpression. (The zeroth register
5008 keeps track of what the whole pattern matches.) */
5009 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5010 re_char
**regstart
, **regend
;
5013 /* The following record the register info as found in the above
5014 variables when we find a match better than any we've seen before.
5015 This happens as we backtrack through the failure points, which in
5016 turn happens only if we have not yet matched the entire string. */
5017 unsigned best_regs_set
= false;
5018 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5019 re_char
**best_regstart
, **best_regend
;
5022 /* Logically, this is `best_regend[0]'. But we don't want to have to
5023 allocate space for that if we're not allocating space for anything
5024 else (see below). Also, we never need info about register 0 for
5025 any of the other register vectors, and it seems rather a kludge to
5026 treat `best_regend' differently than the rest. So we keep track of
5027 the end of the best match so far in a separate variable. We
5028 initialize this to NULL so that when we backtrack the first time
5029 and need to test it, it's not garbage. */
5030 re_char
*match_end
= NULL
;
5033 /* Counts the total number of registers pushed. */
5034 unsigned num_regs_pushed
= 0;
5037 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5041 #ifdef MATCH_MAY_ALLOCATE
5042 /* Do not bother to initialize all the register variables if there are
5043 no groups in the pattern, as it takes a fair amount of time. If
5044 there are groups, we include space for register 0 (the whole
5045 pattern), even though we never use it, since it simplifies the
5046 array indexing. We should fix this. */
5049 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5050 regend
= REGEX_TALLOC (num_regs
, re_char
*);
5051 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5052 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
5054 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
5062 /* We must initialize all our variables to NULL, so that
5063 `FREE_VARIABLES' doesn't try to free them. */
5064 regstart
= regend
= best_regstart
= best_regend
= NULL
;
5066 #endif /* MATCH_MAY_ALLOCATE */
5068 /* The starting position is bogus. */
5069 if (pos
< 0 || pos
> size1
+ size2
)
5075 /* Initialize subexpression text positions to -1 to mark ones that no
5076 start_memory/stop_memory has been seen for. Also initialize the
5077 register information struct. */
5078 for (reg
= 1; reg
< num_regs
; reg
++)
5079 regstart
[reg
] = regend
[reg
] = NULL
;
5081 /* We move `string1' into `string2' if the latter's empty -- but not if
5082 `string1' is null. */
5083 if (size2
== 0 && string1
!= NULL
)
5090 end1
= string1
+ size1
;
5091 end2
= string2
+ size2
;
5093 /* `p' scans through the pattern as `d' scans through the data.
5094 `dend' is the end of the input string that `d' points within. `d'
5095 is advanced into the following input string whenever necessary, but
5096 this happens before fetching; therefore, at the beginning of the
5097 loop, `d' can be pointing at the end of a string, but it cannot
5101 /* Only match within string2. */
5102 d
= string2
+ pos
- size1
;
5103 dend
= end_match_2
= string2
+ stop
- size1
;
5104 end_match_1
= end1
; /* Just to give it a value. */
5110 /* Only match within string1. */
5111 end_match_1
= string1
+ stop
;
5113 When we reach end_match_1, PREFETCH normally switches to string2.
5114 But in the present case, this means that just doing a PREFETCH
5115 makes us jump from `stop' to `gap' within the string.
5116 What we really want here is for the search to stop as
5117 soon as we hit end_match_1. That's why we set end_match_2
5118 to end_match_1 (since PREFETCH fails as soon as we hit
5120 end_match_2
= end_match_1
;
5123 { /* It's important to use this code when stop == size so that
5124 moving `d' from end1 to string2 will not prevent the d == dend
5125 check from catching the end of string. */
5127 end_match_2
= string2
+ stop
- size1
;
5133 DEBUG_PRINT1 ("The compiled pattern is: ");
5134 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5135 DEBUG_PRINT1 ("The string to match is: `");
5136 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5137 DEBUG_PRINT1 ("'\n");
5139 /* This loops over pattern commands. It exits by returning from the
5140 function if the match is complete, or it drops through if the match
5141 fails at this starting point in the input data. */
5144 DEBUG_PRINT2 ("\n%p: ", p
);
5147 { /* End of pattern means we might have succeeded. */
5148 DEBUG_PRINT1 ("end of pattern ... ");
5150 /* If we haven't matched the entire string, and we want the
5151 longest match, try backtracking. */
5152 if (d
!= end_match_2
)
5154 /* 1 if this match ends in the same string (string1 or string2)
5155 as the best previous match. */
5156 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5157 == FIRST_STRING_P (d
));
5158 /* 1 if this match is the best seen so far. */
5159 boolean best_match_p
;
5161 /* AIX compiler got confused when this was combined
5162 with the previous declaration. */
5164 best_match_p
= d
> match_end
;
5166 best_match_p
= !FIRST_STRING_P (d
);
5168 DEBUG_PRINT1 ("backtracking.\n");
5170 if (!FAIL_STACK_EMPTY ())
5171 { /* More failure points to try. */
5173 /* If exceeds best match so far, save it. */
5174 if (!best_regs_set
|| best_match_p
)
5176 best_regs_set
= true;
5179 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5181 for (reg
= 1; reg
< num_regs
; reg
++)
5183 best_regstart
[reg
] = regstart
[reg
];
5184 best_regend
[reg
] = regend
[reg
];
5190 /* If no failure points, don't restore garbage. And if
5191 last match is real best match, don't restore second
5193 else if (best_regs_set
&& !best_match_p
)
5196 /* Restore best match. It may happen that `dend ==
5197 end_match_1' while the restored d is in string2.
5198 For example, the pattern `x.*y.*z' against the
5199 strings `x-' and `y-z-', if the two strings are
5200 not consecutive in memory. */
5201 DEBUG_PRINT1 ("Restoring best registers.\n");
5204 dend
= ((d
>= string1
&& d
<= end1
)
5205 ? end_match_1
: end_match_2
);
5207 for (reg
= 1; reg
< num_regs
; reg
++)
5209 regstart
[reg
] = best_regstart
[reg
];
5210 regend
[reg
] = best_regend
[reg
];
5213 } /* d != end_match_2 */
5216 DEBUG_PRINT1 ("Accepting match.\n");
5218 /* If caller wants register contents data back, do it. */
5219 if (regs
&& !bufp
->no_sub
)
5221 /* Have the register data arrays been allocated? */
5222 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5223 { /* No. So allocate them with malloc. We need one
5224 extra element beyond `num_regs' for the `-1' marker
5226 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5227 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5228 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5229 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5234 bufp
->regs_allocated
= REGS_REALLOCATE
;
5236 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5237 { /* Yes. If we need more elements than were already
5238 allocated, reallocate them. If we need fewer, just
5240 if (regs
->num_regs
< num_regs
+ 1)
5242 regs
->num_regs
= num_regs
+ 1;
5243 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5244 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5245 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5254 /* These braces fend off a "empty body in an else-statement"
5255 warning under GCC when assert expands to nothing. */
5256 assert (bufp
->regs_allocated
== REGS_FIXED
);
5259 /* Convert the pointer data in `regstart' and `regend' to
5260 indices. Register zero has to be set differently,
5261 since we haven't kept track of any info for it. */
5262 if (regs
->num_regs
> 0)
5264 regs
->start
[0] = pos
;
5265 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5268 /* Go through the first `min (num_regs, regs->num_regs)'
5269 registers, since that is all we initialized. */
5270 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5272 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5273 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5277 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
5279 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
5283 /* If the regs structure we return has more elements than
5284 were in the pattern, set the extra elements to -1. If
5285 we (re)allocated the registers, this is the case,
5286 because we always allocate enough to have at least one
5288 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5289 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5290 } /* regs && !bufp->no_sub */
5292 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5293 nfailure_points_pushed
, nfailure_points_popped
,
5294 nfailure_points_pushed
- nfailure_points_popped
);
5295 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5297 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
5299 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5305 /* Otherwise match next pattern command. */
5306 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
5308 /* Ignore these. Used to ignore the n of succeed_n's which
5309 currently have n == 0. */
5311 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5315 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5318 /* Match the next n pattern characters exactly. The following
5319 byte in the pattern defines n, and the n bytes after that
5320 are the characters to match. */
5323 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5325 /* Remember the start point to rollback upon failure. */
5328 /* This is written out as an if-else so we don't waste time
5329 testing `translate' inside the loop. */
5330 if (RE_TRANSLATE_P (translate
))
5335 int pat_charlen
, buf_charlen
;
5336 unsigned int pat_ch
, buf_ch
;
5339 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
5340 buf_ch
= STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5342 if (RE_TRANSLATE (translate
, buf_ch
)
5351 mcnt
-= pat_charlen
;
5357 /* Avoid compiler whining about comparison being
5363 if (RE_TRANSLATE (translate
, di
) != *p
++)
5388 /* Match any character except possibly a newline or a null. */
5394 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5397 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5398 buf_ch
= TRANSLATE (buf_ch
);
5400 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5402 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5403 && buf_ch
== '\000'))
5406 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5415 register unsigned int c
;
5416 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5419 /* Start of actual range_table, or end of bitmap if there is no
5421 re_char
*range_table
;
5423 /* Nonzero if there is a range table. */
5424 int range_table_exists
;
5426 /* Number of ranges of range table. This is not included
5427 in the initial byte-length of the command. */
5430 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5432 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5434 if (range_table_exists
)
5436 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5437 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5441 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5442 c
= TRANSLATE (c
); /* The character to match. */
5444 if (SINGLE_BYTE_CHAR_P (c
))
5445 { /* Lookup bitmap. */
5446 /* Cast to `unsigned' instead of `unsigned char' in
5447 case the bit list is a full 32 bytes long. */
5448 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5449 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5453 else if (range_table_exists
)
5455 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5457 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5458 | (class_bits
& BIT_MULTIBYTE
)
5459 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5460 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5461 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5462 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5465 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5469 if (range_table_exists
)
5470 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5472 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5474 if (!not) goto fail
;
5481 /* The beginning of a group is represented by start_memory.
5482 The argument is the register number. The text
5483 matched within the group is recorded (in the internal
5484 registers data structure) under the register number. */
5486 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5488 /* In case we need to undo this operation (via backtracking). */
5489 PUSH_FAILURE_REG ((unsigned int)*p
);
5492 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5493 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5495 /* Move past the register number and inner group count. */
5500 /* The stop_memory opcode represents the end of a group. Its
5501 argument is the same as start_memory's: the register number. */
5503 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5505 assert (!REG_UNSET (regstart
[*p
]));
5506 /* Strictly speaking, there should be code such as:
5508 assert (REG_UNSET (regend[*p]));
5509 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5511 But the only info to be pushed is regend[*p] and it is known to
5512 be UNSET, so there really isn't anything to push.
5513 Not pushing anything, on the other hand deprives us from the
5514 guarantee that regend[*p] is UNSET since undoing this operation
5515 will not reset its value properly. This is not important since
5516 the value will only be read on the next start_memory or at
5517 the very end and both events can only happen if this stop_memory
5521 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5523 /* Move past the register number and the inner group count. */
5528 /* \<digit> has been turned into a `duplicate' command which is
5529 followed by the numeric value of <digit> as the register number. */
5532 register re_char
*d2
, *dend2
;
5533 int regno
= *p
++; /* Get which register to match against. */
5534 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5536 /* Can't back reference a group which we've never matched. */
5537 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5540 /* Where in input to try to start matching. */
5541 d2
= regstart
[regno
];
5543 /* Remember the start point to rollback upon failure. */
5546 /* Where to stop matching; if both the place to start and
5547 the place to stop matching are in the same string, then
5548 set to the place to stop, otherwise, for now have to use
5549 the end of the first string. */
5551 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5552 == FIRST_STRING_P (regend
[regno
]))
5553 ? regend
[regno
] : end_match_1
);
5556 /* If necessary, advance to next segment in register
5560 if (dend2
== end_match_2
) break;
5561 if (dend2
== regend
[regno
]) break;
5563 /* End of string1 => advance to string2. */
5565 dend2
= regend
[regno
];
5567 /* At end of register contents => success */
5568 if (d2
== dend2
) break;
5570 /* If necessary, advance to next segment in data. */
5573 /* How many characters left in this segment to match. */
5576 /* Want how many consecutive characters we can match in
5577 one shot, so, if necessary, adjust the count. */
5578 if (mcnt
> dend2
- d2
)
5581 /* Compare that many; failure if mismatch, else move
5583 if (RE_TRANSLATE_P (translate
)
5584 ? bcmp_translate (d
, d2
, mcnt
, translate
, multibyte
)
5585 : memcmp (d
, d2
, mcnt
))
5590 d
+= mcnt
, d2
+= mcnt
;
5596 /* begline matches the empty string at the beginning of the string
5597 (unless `not_bol' is set in `bufp'), and after newlines. */
5599 DEBUG_PRINT1 ("EXECUTING begline.\n");
5601 if (AT_STRINGS_BEG (d
))
5603 if (!bufp
->not_bol
) break;
5608 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5612 /* In all other cases, we fail. */
5616 /* endline is the dual of begline. */
5618 DEBUG_PRINT1 ("EXECUTING endline.\n");
5620 if (AT_STRINGS_END (d
))
5622 if (!bufp
->not_eol
) break;
5626 PREFETCH_NOLIMIT ();
5633 /* Match at the very beginning of the data. */
5635 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5636 if (AT_STRINGS_BEG (d
))
5641 /* Match at the very end of the data. */
5643 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5644 if (AT_STRINGS_END (d
))
5649 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5650 pushes NULL as the value for the string on the stack. Then
5651 `POP_FAILURE_POINT' will keep the current value for the
5652 string, instead of restoring it. To see why, consider
5653 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5654 then the . fails against the \n. But the next thing we want
5655 to do is match the \n against the \n; if we restored the
5656 string value, we would be back at the foo.
5658 Because this is used only in specific cases, we don't need to
5659 check all the things that `on_failure_jump' does, to make
5660 sure the right things get saved on the stack. Hence we don't
5661 share its code. The only reason to push anything on the
5662 stack at all is that otherwise we would have to change
5663 `anychar's code to do something besides goto fail in this
5664 case; that seems worse than this. */
5665 case on_failure_keep_string_jump
:
5666 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5667 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5670 PUSH_FAILURE_POINT (p
- 3, NULL
);
5673 /* A nasty loop is introduced by the non-greedy *? and +?.
5674 With such loops, the stack only ever contains one failure point
5675 at a time, so that a plain on_failure_jump_loop kind of
5676 cycle detection cannot work. Worse yet, such a detection
5677 can not only fail to detect a cycle, but it can also wrongly
5678 detect a cycle (between different instantiations of the same
5680 So the method used for those nasty loops is a little different:
5681 We use a special cycle-detection-stack-frame which is pushed
5682 when the on_failure_jump_nastyloop failure-point is *popped*.
5683 This special frame thus marks the beginning of one iteration
5684 through the loop and we can hence easily check right here
5685 whether something matched between the beginning and the end of
5687 case on_failure_jump_nastyloop
:
5688 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5689 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5692 assert ((re_opcode_t
)p
[-4] == no_op
);
5695 CHECK_INFINITE_LOOP (p
- 4, d
);
5697 /* If there's a cycle, just continue without pushing
5698 this failure point. The failure point is the "try again"
5699 option, which shouldn't be tried.
5700 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5701 PUSH_FAILURE_POINT (p
- 3, d
);
5705 /* Simple loop detecting on_failure_jump: just check on the
5706 failure stack if the same spot was already hit earlier. */
5707 case on_failure_jump_loop
:
5709 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5710 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5714 CHECK_INFINITE_LOOP (p
- 3, d
);
5716 /* If there's a cycle, get out of the loop, as if the matching
5717 had failed. We used to just `goto fail' here, but that was
5718 aborting the search a bit too early: we want to keep the
5719 empty-loop-match and keep matching after the loop.
5720 We want (x?)*y\1z to match both xxyz and xxyxz. */
5723 PUSH_FAILURE_POINT (p
- 3, d
);
5728 /* Uses of on_failure_jump:
5730 Each alternative starts with an on_failure_jump that points
5731 to the beginning of the next alternative. Each alternative
5732 except the last ends with a jump that in effect jumps past
5733 the rest of the alternatives. (They really jump to the
5734 ending jump of the following alternative, because tensioning
5735 these jumps is a hassle.)
5737 Repeats start with an on_failure_jump that points past both
5738 the repetition text and either the following jump or
5739 pop_failure_jump back to this on_failure_jump. */
5740 case on_failure_jump
:
5741 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5742 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5745 PUSH_FAILURE_POINT (p
-3, d
);
5748 /* This operation is used for greedy *.
5749 Compare the beginning of the repeat with what in the
5750 pattern follows its end. If we can establish that there
5751 is nothing that they would both match, i.e., that we
5752 would have to backtrack because of (as in, e.g., `a*a')
5753 then we can use a non-backtracking loop based on
5754 on_failure_keep_string_jump instead of on_failure_jump. */
5755 case on_failure_jump_smart
:
5756 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5757 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5760 re_char
*p1
= p
; /* Next operation. */
5761 /* Here, we discard `const', making re_match non-reentrant. */
5762 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5763 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5765 p
-= 3; /* Reset so that we will re-execute the
5766 instruction once it's been changed. */
5768 EXTRACT_NUMBER (mcnt
, p2
- 2);
5770 /* Ensure this is a indeed the trivial kind of loop
5771 we are expecting. */
5772 assert (skip_one_char (p1
) == p2
- 3);
5773 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5774 DEBUG_STATEMENT (debug
+= 2);
5775 if (mutually_exclusive_p (bufp
, p1
, p2
))
5777 /* Use a fast `on_failure_keep_string_jump' loop. */
5778 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5779 *p3
= (unsigned char) on_failure_keep_string_jump
;
5780 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5784 /* Default to a safe `on_failure_jump' loop. */
5785 DEBUG_PRINT1 (" smart default => slow loop.\n");
5786 *p3
= (unsigned char) on_failure_jump
;
5788 DEBUG_STATEMENT (debug
-= 2);
5792 /* Unconditionally jump (without popping any failure points). */
5795 IMMEDIATE_QUIT_CHECK
;
5796 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5797 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5798 p
+= mcnt
; /* Do the jump. */
5799 DEBUG_PRINT2 ("(to %p).\n", p
);
5803 /* Have to succeed matching what follows at least n times.
5804 After that, handle like `on_failure_jump'. */
5806 /* Signedness doesn't matter since we only compare MCNT to 0. */
5807 EXTRACT_NUMBER (mcnt
, p
+ 2);
5808 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5810 /* Originally, mcnt is how many times we HAVE to succeed. */
5813 /* Here, we discard `const', making re_match non-reentrant. */
5814 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5817 PUSH_NUMBER (p2
, mcnt
);
5820 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5825 /* Signedness doesn't matter since we only compare MCNT to 0. */
5826 EXTRACT_NUMBER (mcnt
, p
+ 2);
5827 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5829 /* Originally, this is how many times we CAN jump. */
5832 /* Here, we discard `const', making re_match non-reentrant. */
5833 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5835 PUSH_NUMBER (p2
, mcnt
);
5836 goto unconditional_jump
;
5838 /* If don't have to jump any more, skip over the rest of command. */
5845 unsigned char *p2
; /* Location of the counter. */
5846 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5848 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5849 /* Here, we discard `const', making re_match non-reentrant. */
5850 p2
= (unsigned char*) p
+ mcnt
;
5851 /* Signedness doesn't matter since we only copy MCNT's bits . */
5852 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5853 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
5854 PUSH_NUMBER (p2
, mcnt
);
5860 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5861 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5863 /* We SUCCEED (or FAIL) in one of the following cases: */
5865 /* Case 1: D is at the beginning or the end of string. */
5866 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5870 /* C1 is the character before D, S1 is the syntax of C1, C2
5871 is the character at D, and S2 is the syntax of C2. */
5875 int offset
= PTR_TO_OFFSET (d
- 1);
5876 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5877 UPDATE_SYNTAX_TABLE (charpos
);
5879 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5882 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5884 PREFETCH_NOLIMIT ();
5885 c2
= RE_STRING_CHAR (d
, dend
- d
);
5888 if (/* Case 2: Only one of S1 and S2 is Sword. */
5889 ((s1
== Sword
) != (s2
== Sword
))
5890 /* Case 3: Both of S1 and S2 are Sword, and macro
5891 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5892 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5901 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5903 /* We FAIL in one of the following cases: */
5905 /* Case 1: D is at the end of string. */
5906 if (AT_STRINGS_END (d
))
5910 /* C1 is the character before D, S1 is the syntax of C1, C2
5911 is the character at D, and S2 is the syntax of C2. */
5915 int offset
= PTR_TO_OFFSET (d
);
5916 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5917 UPDATE_SYNTAX_TABLE (charpos
);
5920 c2
= RE_STRING_CHAR (d
, dend
- d
);
5923 /* Case 2: S2 is not Sword. */
5927 /* Case 3: D is not at the beginning of string ... */
5928 if (!AT_STRINGS_BEG (d
))
5930 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5932 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5936 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5938 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5945 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5947 /* We FAIL in one of the following cases: */
5949 /* Case 1: D is at the beginning of string. */
5950 if (AT_STRINGS_BEG (d
))
5954 /* C1 is the character before D, S1 is the syntax of C1, C2
5955 is the character at D, and S2 is the syntax of C2. */
5959 int offset
= PTR_TO_OFFSET (d
) - 1;
5960 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5961 UPDATE_SYNTAX_TABLE (charpos
);
5963 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5966 /* Case 2: S1 is not Sword. */
5970 /* Case 3: D is not at the end of string ... */
5971 if (!AT_STRINGS_END (d
))
5973 PREFETCH_NOLIMIT ();
5974 c2
= RE_STRING_CHAR (d
, dend
- d
);
5976 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5980 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5982 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5989 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5991 /* We FAIL in one of the following cases: */
5993 /* Case 1: D is at the end of string. */
5994 if (AT_STRINGS_END (d
))
5998 /* C1 is the character before D, S1 is the syntax of C1, C2
5999 is the character at D, and S2 is the syntax of C2. */
6003 int offset
= PTR_TO_OFFSET (d
);
6004 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6005 UPDATE_SYNTAX_TABLE (charpos
);
6008 c2
= RE_STRING_CHAR (d
, dend
- d
);
6011 /* Case 2: S2 is neither Sword nor Ssymbol. */
6012 if (s2
!= Sword
&& s2
!= Ssymbol
)
6015 /* Case 3: D is not at the beginning of string ... */
6016 if (!AT_STRINGS_BEG (d
))
6018 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6020 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6024 /* ... and S1 is Sword or Ssymbol. */
6025 if (s1
== Sword
|| s1
== Ssymbol
)
6032 DEBUG_PRINT1 ("EXECUTING symend.\n");
6034 /* We FAIL in one of the following cases: */
6036 /* Case 1: D is at the beginning of string. */
6037 if (AT_STRINGS_BEG (d
))
6041 /* C1 is the character before D, S1 is the syntax of C1, C2
6042 is the character at D, and S2 is the syntax of C2. */
6046 int offset
= PTR_TO_OFFSET (d
) - 1;
6047 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6048 UPDATE_SYNTAX_TABLE (charpos
);
6050 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6053 /* Case 2: S1 is neither Ssymbol nor Sword. */
6054 if (s1
!= Sword
&& s1
!= Ssymbol
)
6057 /* Case 3: D is not at the end of string ... */
6058 if (!AT_STRINGS_END (d
))
6060 PREFETCH_NOLIMIT ();
6061 c2
= RE_STRING_CHAR (d
, dend
- d
);
6063 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6067 /* ... and S2 is Sword or Ssymbol. */
6068 if (s2
== Sword
|| s2
== Ssymbol
)
6076 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
6078 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
6082 int offset
= PTR_TO_OFFSET (d
);
6083 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6084 UPDATE_SYNTAX_TABLE (pos1
);
6091 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
6093 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
6101 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6102 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
6107 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6108 if (PTR_BYTE_POS (d
) != PT_BYTE
)
6113 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6114 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
6119 case notcategoryspec
:
6120 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
6122 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
6128 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
6130 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
6141 continue; /* Successfully executed one pattern command; keep going. */
6144 /* We goto here if a matching operation fails. */
6146 IMMEDIATE_QUIT_CHECK
;
6147 if (!FAIL_STACK_EMPTY ())
6150 /* A restart point is known. Restore to that state. */
6151 DEBUG_PRINT1 ("\nFAIL:\n");
6152 POP_FAILURE_POINT (str
, pat
);
6153 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
6155 case on_failure_keep_string_jump
:
6156 assert (str
== NULL
);
6157 goto continue_failure_jump
;
6159 case on_failure_jump_nastyloop
:
6160 assert ((re_opcode_t
)pat
[-2] == no_op
);
6161 PUSH_FAILURE_POINT (pat
- 2, str
);
6164 case on_failure_jump_loop
:
6165 case on_failure_jump
:
6168 continue_failure_jump
:
6169 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6174 /* A special frame used for nastyloops. */
6181 assert (p
>= bufp
->buffer
&& p
<= pend
);
6183 if (d
>= string1
&& d
<= end1
)
6187 break; /* Matching at this starting point really fails. */
6191 goto restore_best_regs
;
6195 return -1; /* Failure to match. */
6198 /* Subroutine definitions for re_match_2. */
6200 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6201 bytes; nonzero otherwise. */
6204 bcmp_translate (s1
, s2
, len
, translate
, multibyte
)
6207 RE_TRANSLATE_TYPE translate
;
6208 const int multibyte
;
6210 register re_char
*p1
= s1
, *p2
= s2
;
6211 re_char
*p1_end
= s1
+ len
;
6212 re_char
*p2_end
= s2
+ len
;
6214 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6215 different lengths, but relying on a single `len' would break this. -sm */
6216 while (p1
< p1_end
&& p2
< p2_end
)
6218 int p1_charlen
, p2_charlen
;
6219 re_wchar_t p1_ch
, p2_ch
;
6221 p1_ch
= RE_STRING_CHAR_AND_LENGTH (p1
, p1_end
- p1
, p1_charlen
);
6222 p2_ch
= RE_STRING_CHAR_AND_LENGTH (p2
, p2_end
- p2
, p2_charlen
);
6224 if (RE_TRANSLATE (translate
, p1_ch
)
6225 != RE_TRANSLATE (translate
, p2_ch
))
6228 p1
+= p1_charlen
, p2
+= p2_charlen
;
6231 if (p1
!= p1_end
|| p2
!= p2_end
)
6237 /* Entry points for GNU code. */
6239 /* re_compile_pattern is the GNU regular expression compiler: it
6240 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6241 Returns 0 if the pattern was valid, otherwise an error string.
6243 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6244 are set in BUFP on entry.
6246 We call regex_compile to do the actual compilation. */
6249 re_compile_pattern (pattern
, length
, bufp
)
6250 const char *pattern
;
6252 struct re_pattern_buffer
*bufp
;
6257 gl_state
.current_syntax_table
= current_buffer
->syntax_table
;
6260 /* GNU code is written to assume at least RE_NREGS registers will be set
6261 (and at least one extra will be -1). */
6262 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6264 /* And GNU code determines whether or not to get register information
6265 by passing null for the REGS argument to re_match, etc., not by
6269 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6273 return gettext (re_error_msgid
[(int) ret
]);
6275 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6277 /* Entry points compatible with 4.2 BSD regex library. We don't define
6278 them unless specifically requested. */
6280 #if defined _REGEX_RE_COMP || defined _LIBC
6282 /* BSD has one and only one pattern buffer. */
6283 static struct re_pattern_buffer re_comp_buf
;
6287 /* Make these definitions weak in libc, so POSIX programs can redefine
6288 these names if they don't use our functions, and still use
6289 regcomp/regexec below without link errors. */
6299 if (!re_comp_buf
.buffer
)
6300 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6301 return (char *) gettext ("No previous regular expression");
6305 if (!re_comp_buf
.buffer
)
6307 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
6308 if (re_comp_buf
.buffer
== NULL
)
6309 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6310 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6311 re_comp_buf
.allocated
= 200;
6313 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6314 if (re_comp_buf
.fastmap
== NULL
)
6315 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6316 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6319 /* Since `re_exec' always passes NULL for the `regs' argument, we
6320 don't need to initialize the pattern buffer fields which affect it. */
6322 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6327 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6328 return (char *) gettext (re_error_msgid
[(int) ret
]);
6339 const int len
= strlen (s
);
6341 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
6343 #endif /* _REGEX_RE_COMP */
6345 /* POSIX.2 functions. Don't define these for Emacs. */
6349 /* regcomp takes a regular expression as a string and compiles it.
6351 PREG is a regex_t *. We do not expect any fields to be initialized,
6352 since POSIX says we shouldn't. Thus, we set
6354 `buffer' to the compiled pattern;
6355 `used' to the length of the compiled pattern;
6356 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6357 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6358 RE_SYNTAX_POSIX_BASIC;
6359 `fastmap' to an allocated space for the fastmap;
6360 `fastmap_accurate' to zero;
6361 `re_nsub' to the number of subexpressions in PATTERN.
6363 PATTERN is the address of the pattern string.
6365 CFLAGS is a series of bits which affect compilation.
6367 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6368 use POSIX basic syntax.
6370 If REG_NEWLINE is set, then . and [^...] don't match newline.
6371 Also, regexec will try a match beginning after every newline.
6373 If REG_ICASE is set, then we considers upper- and lowercase
6374 versions of letters to be equivalent when matching.
6376 If REG_NOSUB is set, then when PREG is passed to regexec, that
6377 routine will report only success or failure, and nothing about the
6380 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6381 the return codes and their meanings.) */
6384 regcomp (preg
, pattern
, cflags
)
6385 regex_t
*__restrict preg
;
6386 const char *__restrict pattern
;
6391 = (cflags
& REG_EXTENDED
) ?
6392 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6394 /* regex_compile will allocate the space for the compiled pattern. */
6396 preg
->allocated
= 0;
6399 /* Try to allocate space for the fastmap. */
6400 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6402 if (cflags
& REG_ICASE
)
6407 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
6408 * sizeof (*(RE_TRANSLATE_TYPE
)0));
6409 if (preg
->translate
== NULL
)
6410 return (int) REG_ESPACE
;
6412 /* Map uppercase characters to corresponding lowercase ones. */
6413 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6414 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6417 preg
->translate
= NULL
;
6419 /* If REG_NEWLINE is set, newlines are treated differently. */
6420 if (cflags
& REG_NEWLINE
)
6421 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6422 syntax
&= ~RE_DOT_NEWLINE
;
6423 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6426 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6428 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6430 /* POSIX says a null character in the pattern terminates it, so we
6431 can use strlen here in compiling the pattern. */
6432 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6434 /* POSIX doesn't distinguish between an unmatched open-group and an
6435 unmatched close-group: both are REG_EPAREN. */
6436 if (ret
== REG_ERPAREN
)
6439 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6440 { /* Compute the fastmap now, since regexec cannot modify the pattern
6442 re_compile_fastmap (preg
);
6443 if (preg
->can_be_null
)
6444 { /* The fastmap can't be used anyway. */
6445 free (preg
->fastmap
);
6446 preg
->fastmap
= NULL
;
6451 WEAK_ALIAS (__regcomp
, regcomp
)
6454 /* regexec searches for a given pattern, specified by PREG, in the
6457 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6458 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6459 least NMATCH elements, and we set them to the offsets of the
6460 corresponding matched substrings.
6462 EFLAGS specifies `execution flags' which affect matching: if
6463 REG_NOTBOL is set, then ^ does not match at the beginning of the
6464 string; if REG_NOTEOL is set, then $ does not match at the end.
6466 We return 0 if we find a match and REG_NOMATCH if not. */
6469 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
6470 const regex_t
*__restrict preg
;
6471 const char *__restrict string
;
6473 regmatch_t pmatch
[__restrict_arr
];
6477 struct re_registers regs
;
6478 regex_t private_preg
;
6479 int len
= strlen (string
);
6480 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6482 private_preg
= *preg
;
6484 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6485 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6487 /* The user has told us exactly how many registers to return
6488 information about, via `nmatch'. We have to pass that on to the
6489 matching routines. */
6490 private_preg
.regs_allocated
= REGS_FIXED
;
6494 regs
.num_regs
= nmatch
;
6495 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6496 if (regs
.start
== NULL
)
6497 return (int) REG_NOMATCH
;
6498 regs
.end
= regs
.start
+ nmatch
;
6501 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6502 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6503 was a little bit longer but still only matching the real part.
6504 This works because the `endline' will check for a '\n' and will find a
6505 '\0', correctly deciding that this is not the end of a line.
6506 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6507 a convenient '\0' there. For all we know, the string could be preceded
6508 by '\n' which would throw things off. */
6510 /* Perform the searching operation. */
6511 ret
= re_search (&private_preg
, string
, len
,
6512 /* start: */ 0, /* range: */ len
,
6513 want_reg_info
? ®s
: (struct re_registers
*) 0);
6515 /* Copy the register information to the POSIX structure. */
6522 for (r
= 0; r
< nmatch
; r
++)
6524 pmatch
[r
].rm_so
= regs
.start
[r
];
6525 pmatch
[r
].rm_eo
= regs
.end
[r
];
6529 /* If we needed the temporary register info, free the space now. */
6533 /* We want zero return to mean success, unlike `re_search'. */
6534 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
6536 WEAK_ALIAS (__regexec
, regexec
)
6539 /* Returns a message corresponding to an error code, ERR_CODE, returned
6540 from either regcomp or regexec. We don't use PREG here.
6542 ERR_CODE was previously called ERRCODE, but that name causes an
6543 error with msvc8 compiler. */
6546 regerror (err_code
, preg
, errbuf
, errbuf_size
)
6548 const regex_t
*preg
;
6556 || err_code
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6557 /* Only error codes returned by the rest of the code should be passed
6558 to this routine. If we are given anything else, or if other regex
6559 code generates an invalid error code, then the program has a bug.
6560 Dump core so we can fix it. */
6563 msg
= gettext (re_error_msgid
[err_code
]);
6565 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6567 if (errbuf_size
!= 0)
6569 if (msg_size
> errbuf_size
)
6571 strncpy (errbuf
, msg
, errbuf_size
- 1);
6572 errbuf
[errbuf_size
- 1] = 0;
6575 strcpy (errbuf
, msg
);
6580 WEAK_ALIAS (__regerror
, regerror
)
6583 /* Free dynamically allocated space used by PREG. */
6589 if (preg
->buffer
!= NULL
)
6590 free (preg
->buffer
);
6591 preg
->buffer
= NULL
;
6593 preg
->allocated
= 0;
6596 if (preg
->fastmap
!= NULL
)
6597 free (preg
->fastmap
);
6598 preg
->fastmap
= NULL
;
6599 preg
->fastmap_accurate
= 0;
6601 if (preg
->translate
!= NULL
)
6602 free (preg
->translate
);
6603 preg
->translate
= NULL
;
6605 WEAK_ALIAS (__regfree
, regfree
)
6607 #endif /* not emacs */
6609 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6610 (do not change this comment) */