1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2 Copyright (C) 1988, 1993, 1994, 1999, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
23 /* ANSI C requires only these float functions:
24 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
25 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
27 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
28 Define HAVE_CBRT if you have cbrt.
29 Define HAVE_RINT if you have a working rint.
30 If you don't define these, then the appropriate routines will be simulated.
32 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
33 (This should happen automatically.)
35 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
36 This has no effect if HAVE_MATHERR is defined.
38 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
39 (What systems actually do this? Please let us know.)
41 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
42 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
43 range checking will happen before calling the float routines. This has
44 no effect if HAVE_MATHERR is defined (since matherr will be called when
45 a domain error occurs.)
51 #include "syssignal.h"
57 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
58 #ifndef IEEE_FLOATING_POINT
59 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
60 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
61 #define IEEE_FLOATING_POINT 1
63 #define IEEE_FLOATING_POINT 0
67 /* Work around a problem that happens because math.h on hpux 7
68 defines two static variables--which, in Emacs, are not really static,
69 because `static' is defined as nothing. The problem is that they are
70 defined both here and in lread.c.
71 These macros prevent the name conflict. */
72 #if defined (HPUX) && !defined (HPUX8)
73 #define _MAXLDBL floatfns_maxldbl
74 #define _NMAXLDBL floatfns_nmaxldbl
79 /* This declaration is omitted on some systems, like Ultrix. */
80 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
81 extern double logb ();
82 #endif /* not HPUX and HAVE_LOGB and no logb macro */
84 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
85 /* If those are defined, then this is probably a `matherr' machine. */
96 # ifdef FLOAT_CHECK_ERRNO
97 # undef FLOAT_CHECK_ERRNO
99 # ifdef FLOAT_CHECK_DOMAIN
100 # undef FLOAT_CHECK_DOMAIN
104 #ifndef NO_FLOAT_CHECK_ERRNO
105 #define FLOAT_CHECK_ERRNO
108 #ifdef FLOAT_CHECK_ERRNO
116 /* Avoid traps on VMS from sinh and cosh.
117 All the other functions set errno instead. */
122 #define cosh(x) ((exp(x)+exp(-x))*0.5)
123 #define sinh(x) ((exp(x)-exp(-x))*0.5)
126 #ifdef FLOAT_CATCH_SIGILL
127 static SIGTYPE
float_error ();
130 /* Nonzero while executing in floating point.
131 This tells float_error what to do. */
135 /* If an argument is out of range for a mathematical function,
136 here is the actual argument value to use in the error message.
137 These variables are used only across the floating point library call
138 so there is no need to staticpro them. */
140 static Lisp_Object float_error_arg
, float_error_arg2
;
142 static char *float_error_fn_name
;
144 /* Evaluate the floating point expression D, recording NUM
145 as the original argument for error messages.
146 D is normally an assignment expression.
147 Handle errors which may result in signals or may set errno.
149 Note that float_error may be declared to return void, so you can't
150 just cast the zero after the colon to (SIGTYPE) to make the types
153 #ifdef FLOAT_CHECK_ERRNO
154 #define IN_FLOAT(d, name, num) \
156 float_error_arg = num; \
157 float_error_fn_name = name; \
158 in_float = 1; errno = 0; (d); in_float = 0; \
161 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
162 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
163 default: arith_error (float_error_fn_name, float_error_arg); \
166 #define IN_FLOAT2(d, name, num, num2) \
168 float_error_arg = num; \
169 float_error_arg2 = num2; \
170 float_error_fn_name = name; \
171 in_float = 1; errno = 0; (d); in_float = 0; \
174 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
175 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
176 default: arith_error (float_error_fn_name, float_error_arg); \
180 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
181 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
184 /* Convert float to Lisp_Int if it fits, else signal a range error
185 using the given arguments. */
186 #define FLOAT_TO_INT(x, i, name, num) \
189 if (FIXNUM_OVERFLOW_P (x)) \
190 range_error (name, num); \
191 XSETINT (i, (EMACS_INT)(x)); \
194 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
197 if (FIXNUM_OVERFLOW_P (x)) \
198 range_error2 (name, num1, num2); \
199 XSETINT (i, (EMACS_INT)(x)); \
203 #define arith_error(op,arg) \
204 xsignal2 (Qarith_error, build_string ((op)), (arg))
205 #define range_error(op,arg) \
206 xsignal2 (Qrange_error, build_string ((op)), (arg))
207 #define range_error2(op,a1,a2) \
208 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
209 #define domain_error(op,arg) \
210 xsignal2 (Qdomain_error, build_string ((op)), (arg))
211 #define domain_error2(op,a1,a2) \
212 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
214 /* Extract a Lisp number as a `double', or signal an error. */
220 CHECK_NUMBER_OR_FLOAT (num
);
223 return XFLOAT_DATA (num
);
224 return (double) XINT (num
);
227 /* Trig functions. */
229 DEFUN ("acos", Facos
, Sacos
, 1, 1, 0,
230 doc
: /* Return the inverse cosine of ARG. */)
232 register Lisp_Object arg
;
234 double d
= extract_float (arg
);
235 #ifdef FLOAT_CHECK_DOMAIN
236 if (d
> 1.0 || d
< -1.0)
237 domain_error ("acos", arg
);
239 IN_FLOAT (d
= acos (d
), "acos", arg
);
240 return make_float (d
);
243 DEFUN ("asin", Fasin
, Sasin
, 1, 1, 0,
244 doc
: /* Return the inverse sine of ARG. */)
246 register Lisp_Object arg
;
248 double d
= extract_float (arg
);
249 #ifdef FLOAT_CHECK_DOMAIN
250 if (d
> 1.0 || d
< -1.0)
251 domain_error ("asin", arg
);
253 IN_FLOAT (d
= asin (d
), "asin", arg
);
254 return make_float (d
);
257 DEFUN ("atan", Fatan
, Satan
, 1, 2, 0,
258 doc
: /* Return the inverse tangent of the arguments.
259 If only one argument Y is given, return the inverse tangent of Y.
260 If two arguments Y and X are given, return the inverse tangent of Y
261 divided by X, i.e. the angle in radians between the vector (X, Y)
264 register Lisp_Object y
, x
;
266 double d
= extract_float (y
);
269 IN_FLOAT (d
= atan (d
), "atan", y
);
272 double d2
= extract_float (x
);
274 IN_FLOAT2 (d
= atan2 (d
, d2
), "atan", y
, x
);
276 return make_float (d
);
279 DEFUN ("cos", Fcos
, Scos
, 1, 1, 0,
280 doc
: /* Return the cosine of ARG. */)
282 register Lisp_Object arg
;
284 double d
= extract_float (arg
);
285 IN_FLOAT (d
= cos (d
), "cos", arg
);
286 return make_float (d
);
289 DEFUN ("sin", Fsin
, Ssin
, 1, 1, 0,
290 doc
: /* Return the sine of ARG. */)
292 register Lisp_Object arg
;
294 double d
= extract_float (arg
);
295 IN_FLOAT (d
= sin (d
), "sin", arg
);
296 return make_float (d
);
299 DEFUN ("tan", Ftan
, Stan
, 1, 1, 0,
300 doc
: /* Return the tangent of ARG. */)
302 register Lisp_Object arg
;
304 double d
= extract_float (arg
);
306 #ifdef FLOAT_CHECK_DOMAIN
308 domain_error ("tan", arg
);
310 IN_FLOAT (d
= sin (d
) / c
, "tan", arg
);
311 return make_float (d
);
314 #if 0 /* Leave these out unless we find there's a reason for them. */
316 DEFUN ("bessel-j0", Fbessel_j0
, Sbessel_j0
, 1, 1, 0,
317 doc
: /* Return the bessel function j0 of ARG. */)
319 register Lisp_Object arg
;
321 double d
= extract_float (arg
);
322 IN_FLOAT (d
= j0 (d
), "bessel-j0", arg
);
323 return make_float (d
);
326 DEFUN ("bessel-j1", Fbessel_j1
, Sbessel_j1
, 1, 1, 0,
327 doc
: /* Return the bessel function j1 of ARG. */)
329 register Lisp_Object arg
;
331 double d
= extract_float (arg
);
332 IN_FLOAT (d
= j1 (d
), "bessel-j1", arg
);
333 return make_float (d
);
336 DEFUN ("bessel-jn", Fbessel_jn
, Sbessel_jn
, 2, 2, 0,
337 doc
: /* Return the order N bessel function output jn of ARG.
338 The first arg (the order) is truncated to an integer. */)
340 register Lisp_Object n
, arg
;
342 int i1
= extract_float (n
);
343 double f2
= extract_float (arg
);
345 IN_FLOAT (f2
= jn (i1
, f2
), "bessel-jn", n
);
346 return make_float (f2
);
349 DEFUN ("bessel-y0", Fbessel_y0
, Sbessel_y0
, 1, 1, 0,
350 doc
: /* Return the bessel function y0 of ARG. */)
352 register Lisp_Object arg
;
354 double d
= extract_float (arg
);
355 IN_FLOAT (d
= y0 (d
), "bessel-y0", arg
);
356 return make_float (d
);
359 DEFUN ("bessel-y1", Fbessel_y1
, Sbessel_y1
, 1, 1, 0,
360 doc
: /* Return the bessel function y1 of ARG. */)
362 register Lisp_Object arg
;
364 double d
= extract_float (arg
);
365 IN_FLOAT (d
= y1 (d
), "bessel-y0", arg
);
366 return make_float (d
);
369 DEFUN ("bessel-yn", Fbessel_yn
, Sbessel_yn
, 2, 2, 0,
370 doc
: /* Return the order N bessel function output yn of ARG.
371 The first arg (the order) is truncated to an integer. */)
373 register Lisp_Object n
, arg
;
375 int i1
= extract_float (n
);
376 double f2
= extract_float (arg
);
378 IN_FLOAT (f2
= yn (i1
, f2
), "bessel-yn", n
);
379 return make_float (f2
);
384 #if 0 /* Leave these out unless we see they are worth having. */
386 DEFUN ("erf", Ferf
, Serf
, 1, 1, 0,
387 doc
: /* Return the mathematical error function of ARG. */)
389 register Lisp_Object arg
;
391 double d
= extract_float (arg
);
392 IN_FLOAT (d
= erf (d
), "erf", arg
);
393 return make_float (d
);
396 DEFUN ("erfc", Ferfc
, Serfc
, 1, 1, 0,
397 doc
: /* Return the complementary error function of ARG. */)
399 register Lisp_Object arg
;
401 double d
= extract_float (arg
);
402 IN_FLOAT (d
= erfc (d
), "erfc", arg
);
403 return make_float (d
);
406 DEFUN ("log-gamma", Flog_gamma
, Slog_gamma
, 1, 1, 0,
407 doc
: /* Return the log gamma of ARG. */)
409 register Lisp_Object arg
;
411 double d
= extract_float (arg
);
412 IN_FLOAT (d
= lgamma (d
), "log-gamma", arg
);
413 return make_float (d
);
416 DEFUN ("cube-root", Fcube_root
, Scube_root
, 1, 1, 0,
417 doc
: /* Return the cube root of ARG. */)
419 register Lisp_Object arg
;
421 double d
= extract_float (arg
);
423 IN_FLOAT (d
= cbrt (d
), "cube-root", arg
);
426 IN_FLOAT (d
= pow (d
, 1.0/3.0), "cube-root", arg
);
428 IN_FLOAT (d
= -pow (-d
, 1.0/3.0), "cube-root", arg
);
430 return make_float (d
);
435 DEFUN ("exp", Fexp
, Sexp
, 1, 1, 0,
436 doc
: /* Return the exponential base e of ARG. */)
438 register Lisp_Object arg
;
440 double d
= extract_float (arg
);
441 #ifdef FLOAT_CHECK_DOMAIN
442 if (d
> 709.7827) /* Assume IEEE doubles here */
443 range_error ("exp", arg
);
445 return make_float (0.0);
448 IN_FLOAT (d
= exp (d
), "exp", arg
);
449 return make_float (d
);
452 DEFUN ("expt", Fexpt
, Sexpt
, 2, 2, 0,
453 doc
: /* Return the exponential ARG1 ** ARG2. */)
455 register Lisp_Object arg1
, arg2
;
459 CHECK_NUMBER_OR_FLOAT (arg1
);
460 CHECK_NUMBER_OR_FLOAT (arg2
);
461 if (INTEGERP (arg1
) /* common lisp spec */
462 && INTEGERP (arg2
) /* don't promote, if both are ints, and */
463 && 0 <= XINT (arg2
)) /* we are sure the result is not fractional */
464 { /* this can be improved by pre-calculating */
465 EMACS_INT acc
, x
, y
; /* some binary powers of x then accumulating */
477 acc
= (y
& 1) ? -1 : 1;
488 y
= (unsigned)y
>> 1;
494 f1
= FLOATP (arg1
) ? XFLOAT_DATA (arg1
) : XINT (arg1
);
495 f2
= FLOATP (arg2
) ? XFLOAT_DATA (arg2
) : XINT (arg2
);
496 /* Really should check for overflow, too */
497 if (f1
== 0.0 && f2
== 0.0)
499 #ifdef FLOAT_CHECK_DOMAIN
500 else if ((f1
== 0.0 && f2
< 0.0) || (f1
< 0 && f2
!= floor(f2
)))
501 domain_error2 ("expt", arg1
, arg2
);
503 IN_FLOAT2 (f3
= pow (f1
, f2
), "expt", arg1
, arg2
);
504 /* Check for overflow in the result. */
505 if (f1
!= 0.0 && f3
== 0.0)
506 range_error ("expt", arg1
);
507 return make_float (f3
);
510 DEFUN ("log", Flog
, Slog
, 1, 2, 0,
511 doc
: /* Return the natural logarithm of ARG.
512 If the optional argument BASE is given, return log ARG using that base. */)
514 register Lisp_Object arg
, base
;
516 double d
= extract_float (arg
);
518 #ifdef FLOAT_CHECK_DOMAIN
520 domain_error2 ("log", arg
, base
);
523 IN_FLOAT (d
= log (d
), "log", arg
);
526 double b
= extract_float (base
);
528 #ifdef FLOAT_CHECK_DOMAIN
529 if (b
<= 0.0 || b
== 1.0)
530 domain_error2 ("log", arg
, base
);
533 IN_FLOAT2 (d
= log10 (d
), "log", arg
, base
);
535 IN_FLOAT2 (d
= log (d
) / log (b
), "log", arg
, base
);
537 return make_float (d
);
540 DEFUN ("log10", Flog10
, Slog10
, 1, 1, 0,
541 doc
: /* Return the logarithm base 10 of ARG. */)
543 register Lisp_Object arg
;
545 double d
= extract_float (arg
);
546 #ifdef FLOAT_CHECK_DOMAIN
548 domain_error ("log10", arg
);
550 IN_FLOAT (d
= log10 (d
), "log10", arg
);
551 return make_float (d
);
554 DEFUN ("sqrt", Fsqrt
, Ssqrt
, 1, 1, 0,
555 doc
: /* Return the square root of ARG. */)
557 register Lisp_Object arg
;
559 double d
= extract_float (arg
);
560 #ifdef FLOAT_CHECK_DOMAIN
562 domain_error ("sqrt", arg
);
564 IN_FLOAT (d
= sqrt (d
), "sqrt", arg
);
565 return make_float (d
);
568 #if 0 /* Not clearly worth adding. */
570 DEFUN ("acosh", Facosh
, Sacosh
, 1, 1, 0,
571 doc
: /* Return the inverse hyperbolic cosine of ARG. */)
573 register Lisp_Object arg
;
575 double d
= extract_float (arg
);
576 #ifdef FLOAT_CHECK_DOMAIN
578 domain_error ("acosh", arg
);
580 #ifdef HAVE_INVERSE_HYPERBOLIC
581 IN_FLOAT (d
= acosh (d
), "acosh", arg
);
583 IN_FLOAT (d
= log (d
+ sqrt (d
*d
- 1.0)), "acosh", arg
);
585 return make_float (d
);
588 DEFUN ("asinh", Fasinh
, Sasinh
, 1, 1, 0,
589 doc
: /* Return the inverse hyperbolic sine of ARG. */)
591 register Lisp_Object arg
;
593 double d
= extract_float (arg
);
594 #ifdef HAVE_INVERSE_HYPERBOLIC
595 IN_FLOAT (d
= asinh (d
), "asinh", arg
);
597 IN_FLOAT (d
= log (d
+ sqrt (d
*d
+ 1.0)), "asinh", arg
);
599 return make_float (d
);
602 DEFUN ("atanh", Fatanh
, Satanh
, 1, 1, 0,
603 doc
: /* Return the inverse hyperbolic tangent of ARG. */)
605 register Lisp_Object arg
;
607 double d
= extract_float (arg
);
608 #ifdef FLOAT_CHECK_DOMAIN
609 if (d
>= 1.0 || d
<= -1.0)
610 domain_error ("atanh", arg
);
612 #ifdef HAVE_INVERSE_HYPERBOLIC
613 IN_FLOAT (d
= atanh (d
), "atanh", arg
);
615 IN_FLOAT (d
= 0.5 * log ((1.0 + d
) / (1.0 - d
)), "atanh", arg
);
617 return make_float (d
);
620 DEFUN ("cosh", Fcosh
, Scosh
, 1, 1, 0,
621 doc
: /* Return the hyperbolic cosine of ARG. */)
623 register Lisp_Object arg
;
625 double d
= extract_float (arg
);
626 #ifdef FLOAT_CHECK_DOMAIN
627 if (d
> 710.0 || d
< -710.0)
628 range_error ("cosh", arg
);
630 IN_FLOAT (d
= cosh (d
), "cosh", arg
);
631 return make_float (d
);
634 DEFUN ("sinh", Fsinh
, Ssinh
, 1, 1, 0,
635 doc
: /* Return the hyperbolic sine of ARG. */)
637 register Lisp_Object arg
;
639 double d
= extract_float (arg
);
640 #ifdef FLOAT_CHECK_DOMAIN
641 if (d
> 710.0 || d
< -710.0)
642 range_error ("sinh", arg
);
644 IN_FLOAT (d
= sinh (d
), "sinh", arg
);
645 return make_float (d
);
648 DEFUN ("tanh", Ftanh
, Stanh
, 1, 1, 0,
649 doc
: /* Return the hyperbolic tangent of ARG. */)
651 register Lisp_Object arg
;
653 double d
= extract_float (arg
);
654 IN_FLOAT (d
= tanh (d
), "tanh", arg
);
655 return make_float (d
);
659 DEFUN ("abs", Fabs
, Sabs
, 1, 1, 0,
660 doc
: /* Return the absolute value of ARG. */)
662 register Lisp_Object arg
;
664 CHECK_NUMBER_OR_FLOAT (arg
);
667 IN_FLOAT (arg
= make_float (fabs (XFLOAT_DATA (arg
))), "abs", arg
);
668 else if (XINT (arg
) < 0)
669 XSETINT (arg
, - XINT (arg
));
674 DEFUN ("float", Ffloat
, Sfloat
, 1, 1, 0,
675 doc
: /* Return the floating point number equal to ARG. */)
677 register Lisp_Object arg
;
679 CHECK_NUMBER_OR_FLOAT (arg
);
682 return make_float ((double) XINT (arg
));
683 else /* give 'em the same float back */
687 DEFUN ("logb", Flogb
, Slogb
, 1, 1, 0,
688 doc
: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
689 This is the same as the exponent of a float. */)
695 double f
= extract_float (arg
);
698 value
= MOST_NEGATIVE_FIXNUM
;
702 IN_FLOAT (value
= logb (f
), "logb", arg
);
706 IN_FLOAT (frexp (f
, &ivalue
), "logb", arg
);
716 for (i
= 1, d
= 0.5; d
* d
>= f
; i
+= i
)
723 for (i
= 1, d
= 2.0; d
* d
<= f
; i
+= i
)
731 XSETINT (val
, value
);
736 /* the rounding functions */
739 rounding_driver (arg
, divisor
, double_round
, int_round2
, name
)
740 register Lisp_Object arg
, divisor
;
741 double (*double_round
) ();
742 EMACS_INT (*int_round2
) ();
745 CHECK_NUMBER_OR_FLOAT (arg
);
747 if (! NILP (divisor
))
751 CHECK_NUMBER_OR_FLOAT (divisor
);
753 if (FLOATP (arg
) || FLOATP (divisor
))
757 f1
= FLOATP (arg
) ? XFLOAT_DATA (arg
) : XINT (arg
);
758 f2
= (FLOATP (divisor
) ? XFLOAT_DATA (divisor
) : XINT (divisor
));
759 if (! IEEE_FLOATING_POINT
&& f2
== 0)
760 xsignal0 (Qarith_error
);
762 IN_FLOAT2 (f1
= (*double_round
) (f1
/ f2
), name
, arg
, divisor
);
763 FLOAT_TO_INT2 (f1
, arg
, name
, arg
, divisor
);
771 xsignal0 (Qarith_error
);
773 XSETINT (arg
, (*int_round2
) (i1
, i2
));
781 IN_FLOAT (d
= (*double_round
) (XFLOAT_DATA (arg
)), name
, arg
);
782 FLOAT_TO_INT (d
, arg
, name
, arg
);
788 /* With C's /, the result is implementation-defined if either operand
789 is negative, so take care with negative operands in the following
790 integer functions. */
797 ? (i1
< 0 ? ((-1 - i1
) / -i2
) + 1 : - (i1
/ -i2
))
798 : (i1
<= 0 ? - (-i1
/ i2
) : ((i1
- 1) / i2
) + 1));
806 ? (i1
<= 0 ? -i1
/ -i2
: -1 - ((i1
- 1) / -i2
))
807 : (i1
< 0 ? -1 - ((-1 - i1
) / i2
) : i1
/ i2
));
815 ? (i1
< 0 ? -i1
/ -i2
: - (i1
/ -i2
))
816 : (i1
< 0 ? - (-i1
/ i2
) : i1
/ i2
));
823 /* The C language's division operator gives us one remainder R, but
824 we want the remainder R1 on the other side of 0 if R1 is closer
825 to 0 than R is; because we want to round to even, we also want R1
826 if R and R1 are the same distance from 0 and if C's quotient is
828 EMACS_INT q
= i1
/ i2
;
829 EMACS_INT r
= i1
% i2
;
830 EMACS_INT abs_r
= r
< 0 ? -r
: r
;
831 EMACS_INT abs_r1
= (i2
< 0 ? -i2
: i2
) - abs_r
;
832 return q
+ (abs_r
+ (q
& 1) <= abs_r1
? 0 : (i2
^ r
) < 0 ? -1 : 1);
835 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
836 if `rint' exists but does not work right. */
838 #define emacs_rint rint
844 return floor (d
+ 0.5);
855 DEFUN ("ceiling", Fceiling
, Sceiling
, 1, 2, 0,
856 doc
: /* Return the smallest integer no less than ARG.
857 This rounds the value towards +inf.
858 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
860 Lisp_Object arg
, divisor
;
862 return rounding_driver (arg
, divisor
, ceil
, ceiling2
, "ceiling");
865 DEFUN ("floor", Ffloor
, Sfloor
, 1, 2, 0,
866 doc
: /* Return the largest integer no greater than ARG.
867 This rounds the value towards -inf.
868 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
870 Lisp_Object arg
, divisor
;
872 return rounding_driver (arg
, divisor
, floor
, floor2
, "floor");
875 DEFUN ("round", Fround
, Sround
, 1, 2, 0,
876 doc
: /* Return the nearest integer to ARG.
877 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
879 Rounding a value equidistant between two integers may choose the
880 integer closer to zero, or it may prefer an even integer, depending on
881 your machine. For example, \(round 2.5\) can return 3 on some
882 systems, but 2 on others. */)
884 Lisp_Object arg
, divisor
;
886 return rounding_driver (arg
, divisor
, emacs_rint
, round2
, "round");
889 DEFUN ("truncate", Ftruncate
, Struncate
, 1, 2, 0,
890 doc
: /* Truncate a floating point number to an int.
891 Rounds ARG toward zero.
892 With optional DIVISOR, truncate ARG/DIVISOR. */)
894 Lisp_Object arg
, divisor
;
896 return rounding_driver (arg
, divisor
, double_identity
, truncate2
,
903 register Lisp_Object x
, y
;
907 f1
= FLOATP (x
) ? XFLOAT_DATA (x
) : XINT (x
);
908 f2
= FLOATP (y
) ? XFLOAT_DATA (y
) : XINT (y
);
910 if (! IEEE_FLOATING_POINT
&& f2
== 0)
911 xsignal0 (Qarith_error
);
913 /* If the "remainder" comes out with the wrong sign, fix it. */
914 IN_FLOAT2 ((f1
= fmod (f1
, f2
),
915 f1
= (f2
< 0 ? f1
> 0 : f1
< 0) ? f1
+ f2
: f1
),
917 return make_float (f1
);
920 /* It's not clear these are worth adding. */
922 DEFUN ("fceiling", Ffceiling
, Sfceiling
, 1, 1, 0,
923 doc
: /* Return the smallest integer no less than ARG, as a float.
924 \(Round toward +inf.\) */)
926 register Lisp_Object arg
;
928 double d
= extract_float (arg
);
929 IN_FLOAT (d
= ceil (d
), "fceiling", arg
);
930 return make_float (d
);
933 DEFUN ("ffloor", Fffloor
, Sffloor
, 1, 1, 0,
934 doc
: /* Return the largest integer no greater than ARG, as a float.
935 \(Round towards -inf.\) */)
937 register Lisp_Object arg
;
939 double d
= extract_float (arg
);
940 IN_FLOAT (d
= floor (d
), "ffloor", arg
);
941 return make_float (d
);
944 DEFUN ("fround", Ffround
, Sfround
, 1, 1, 0,
945 doc
: /* Return the nearest integer to ARG, as a float. */)
947 register Lisp_Object arg
;
949 double d
= extract_float (arg
);
950 IN_FLOAT (d
= emacs_rint (d
), "fround", arg
);
951 return make_float (d
);
954 DEFUN ("ftruncate", Fftruncate
, Sftruncate
, 1, 1, 0,
955 doc
: /* Truncate a floating point number to an integral float value.
956 Rounds the value toward zero. */)
958 register Lisp_Object arg
;
960 double d
= extract_float (arg
);
962 IN_FLOAT (d
= floor (d
), "ftruncate", arg
);
964 IN_FLOAT (d
= ceil (d
), "ftruncate", arg
);
965 return make_float (d
);
968 #ifdef FLOAT_CATCH_SIGILL
974 fatal_error_signal (signo
);
979 #else /* not BSD4_1 */
980 sigsetmask (SIGEMPTYMASK
);
981 #endif /* not BSD4_1 */
983 /* Must reestablish handler each time it is called. */
984 signal (SIGILL
, float_error
);
985 #endif /* BSD_SYSTEM */
987 SIGNAL_THREAD_CHECK (signo
);
990 xsignal1 (Qarith_error
, float_error_arg
);
993 /* Another idea was to replace the library function `infnan'
994 where SIGILL is signaled. */
996 #endif /* FLOAT_CATCH_SIGILL */
1001 struct exception
*x
;
1005 /* Not called from emacs-lisp float routines; do the default thing. */
1007 if (!strcmp (x
->name
, "pow"))
1011 = Fcons (build_string (x
->name
),
1012 Fcons (make_float (x
->arg1
),
1013 ((!strcmp (x
->name
, "log") || !strcmp (x
->name
, "pow"))
1014 ? Fcons (make_float (x
->arg2
), Qnil
)
1018 case DOMAIN
: xsignal (Qdomain_error
, args
); break;
1019 case SING
: xsignal (Qsingularity_error
, args
); break;
1020 case OVERFLOW
: xsignal (Qoverflow_error
, args
); break;
1021 case UNDERFLOW
: xsignal (Qunderflow_error
, args
); break;
1022 default: xsignal (Qarith_error
, args
); break;
1024 return (1); /* don't set errno or print a message */
1026 #endif /* HAVE_MATHERR */
1031 #ifdef FLOAT_CATCH_SIGILL
1032 signal (SIGILL
, float_error
);
1053 defsubr (&Sbessel_y0
);
1054 defsubr (&Sbessel_y1
);
1055 defsubr (&Sbessel_yn
);
1056 defsubr (&Sbessel_j0
);
1057 defsubr (&Sbessel_j1
);
1058 defsubr (&Sbessel_jn
);
1061 defsubr (&Slog_gamma
);
1062 defsubr (&Scube_root
);
1064 defsubr (&Sfceiling
);
1067 defsubr (&Sftruncate
);
1077 defsubr (&Sceiling
);
1080 defsubr (&Struncate
);
1083 /* arch-tag: be05bf9d-049e-4e31-91b9-e6153d483ae7
1084 (do not change this comment) */