1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
23 - (x?)*y\1z should match both xxxxyxz and xxxyz.
25 - structure the opcode space into opcode+flag.
26 - merge with glibc's regex.[ch].
27 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
28 need to modify the compiled regexp so that re_match can be reentrant.
29 - get rid of on_failure_jump_smart by doing the optimization in re_comp
30 rather than at run-time, so that re_match can be reentrant.
33 /* AIX requires this to be the first thing in the file. */
34 #if defined _AIX && !defined REGEX_MALLOC
45 #if defined STDC_HEADERS && !defined emacs
48 /* We need this for `regex.h', and perhaps for the Emacs include files. */
49 # include <sys/types.h>
52 /* Whether to use ISO C Amendment 1 wide char functions.
53 Those should not be used for Emacs since it uses its own. */
55 #define WIDE_CHAR_SUPPORT 1
57 #define WIDE_CHAR_SUPPORT \
58 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
61 /* For platform which support the ISO C amendement 1 functionality we
62 support user defined character classes. */
64 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
70 /* We have to keep the namespace clean. */
71 # define regfree(preg) __regfree (preg)
72 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
73 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
74 # define regerror(errcode, preg, errbuf, errbuf_size) \
75 __regerror(errcode, preg, errbuf, errbuf_size)
76 # define re_set_registers(bu, re, nu, st, en) \
77 __re_set_registers (bu, re, nu, st, en)
78 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
79 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
80 # define re_match(bufp, string, size, pos, regs) \
81 __re_match (bufp, string, size, pos, regs)
82 # define re_search(bufp, string, size, startpos, range, regs) \
83 __re_search (bufp, string, size, startpos, range, regs)
84 # define re_compile_pattern(pattern, length, bufp) \
85 __re_compile_pattern (pattern, length, bufp)
86 # define re_set_syntax(syntax) __re_set_syntax (syntax)
87 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
88 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
89 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
91 /* Make sure we call libc's function even if the user overrides them. */
92 # define btowc __btowc
93 # define iswctype __iswctype
94 # define wctype __wctype
96 # define WEAK_ALIAS(a,b) weak_alias (a, b)
98 /* We are also using some library internals. */
99 # include <locale/localeinfo.h>
100 # include <locale/elem-hash.h>
101 # include <langinfo.h>
103 # define WEAK_ALIAS(a,b)
106 /* This is for other GNU distributions with internationalized messages. */
107 #if HAVE_LIBINTL_H || defined _LIBC
108 # include <libintl.h>
110 # define gettext(msgid) (msgid)
114 /* This define is so xgettext can find the internationalizable
116 # define gettext_noop(String) String
119 /* The `emacs' switch turns on certain matching commands
120 that make sense only in Emacs. */
126 /* Make syntax table lookup grant data in gl_state. */
127 # define SYNTAX_ENTRY_VIA_PROPERTY
130 # include "charset.h"
131 # include "category.h"
136 # define malloc xmalloc
140 # define realloc xrealloc
146 /* Converts the pointer to the char to BEG-based offset from the start. */
147 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
148 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
150 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
151 # define RE_STRING_CHAR(p, s) \
152 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
153 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
154 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
156 /* Set C a (possibly multibyte) character before P. P points into a
157 string which is the virtual concatenation of STR1 (which ends at
158 END1) or STR2 (which ends at END2). */
159 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
163 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
164 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
165 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
166 c = STRING_CHAR (dtemp, (p) - dtemp); \
169 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
173 #else /* not emacs */
175 /* If we are not linking with Emacs proper,
176 we can't use the relocating allocator
177 even if config.h says that we can. */
180 # if defined STDC_HEADERS || defined _LIBC
187 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
188 If nothing else has been done, use the method below. */
189 # ifdef INHIBIT_STRING_HEADER
190 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
191 # if !defined bzero && !defined bcopy
192 # undef INHIBIT_STRING_HEADER
197 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
198 This is used in most programs--a few other programs avoid this
199 by defining INHIBIT_STRING_HEADER. */
200 # ifndef INHIBIT_STRING_HEADER
201 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
205 # define bzero(s, n) (memset (s, '\0', n), (s))
207 # define bzero(s, n) __bzero (s, n)
211 # include <strings.h>
213 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
216 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
221 /* Define the syntax stuff for \<, \>, etc. */
223 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
224 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1 };
226 # ifdef SWITCH_ENUM_BUG
227 # define SWITCH_ENUM_CAST(x) ((int)(x))
229 # define SWITCH_ENUM_CAST(x) (x)
232 /* Dummy macros for non-Emacs environments. */
233 # define BASE_LEADING_CODE_P(c) (0)
234 # define CHAR_CHARSET(c) 0
235 # define CHARSET_LEADING_CODE_BASE(c) 0
236 # define MAX_MULTIBYTE_LENGTH 1
237 # define RE_MULTIBYTE_P(x) 0
238 # define WORD_BOUNDARY_P(c1, c2) (0)
239 # define CHAR_HEAD_P(p) (1)
240 # define SINGLE_BYTE_CHAR_P(c) (1)
241 # define SAME_CHARSET_P(c1, c2) (1)
242 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
243 # define STRING_CHAR(p, s) (*(p))
244 # define RE_STRING_CHAR STRING_CHAR
245 # define CHAR_STRING(c, s) (*(s) = (c), 1)
246 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
247 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
248 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
249 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
250 # define MAKE_CHAR(charset, c1, c2) (c1)
251 #endif /* not emacs */
254 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
255 # define RE_TRANSLATE_P(TBL) (TBL)
258 /* Get the interface, including the syntax bits. */
261 /* isalpha etc. are used for the character classes. */
266 /* 1 if C is an ASCII character. */
267 # define IS_REAL_ASCII(c) ((c) < 0200)
269 /* 1 if C is a unibyte character. */
270 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
272 /* The Emacs definitions should not be directly affected by locales. */
274 /* In Emacs, these are only used for single-byte characters. */
275 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
276 # define ISCNTRL(c) ((c) < ' ')
277 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
278 || ((c) >= 'a' && (c) <= 'f') \
279 || ((c) >= 'A' && (c) <= 'F'))
281 /* This is only used for single-byte characters. */
282 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
284 /* The rest must handle multibyte characters. */
286 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
287 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
290 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
291 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
294 # define ISALNUM(c) (IS_REAL_ASCII (c) \
295 ? (((c) >= 'a' && (c) <= 'z') \
296 || ((c) >= 'A' && (c) <= 'Z') \
297 || ((c) >= '0' && (c) <= '9')) \
298 : SYNTAX (c) == Sword)
300 # define ISALPHA(c) (IS_REAL_ASCII (c) \
301 ? (((c) >= 'a' && (c) <= 'z') \
302 || ((c) >= 'A' && (c) <= 'Z')) \
303 : SYNTAX (c) == Sword)
305 # define ISLOWER(c) (LOWERCASEP (c))
307 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
308 ? ((c) > ' ' && (c) < 0177 \
309 && !(((c) >= 'a' && (c) <= 'z') \
310 || ((c) >= 'A' && (c) <= 'Z') \
311 || ((c) >= '0' && (c) <= '9'))) \
312 : SYNTAX (c) != Sword)
314 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
316 # define ISUPPER(c) (UPPERCASEP (c))
318 # define ISWORD(c) (SYNTAX (c) == Sword)
320 #else /* not emacs */
322 /* Jim Meyering writes:
324 "... Some ctype macros are valid only for character codes that
325 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
326 using /bin/cc or gcc but without giving an ansi option). So, all
327 ctype uses should be through macros like ISPRINT... If
328 STDC_HEADERS is defined, then autoconf has verified that the ctype
329 macros don't need to be guarded with references to isascii. ...
330 Defining isascii to 1 should let any compiler worth its salt
331 eliminate the && through constant folding."
332 Solaris defines some of these symbols so we must undefine them first. */
335 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
336 # define ISASCII(c) 1
338 # define ISASCII(c) isascii(c)
341 /* 1 if C is an ASCII character. */
342 # define IS_REAL_ASCII(c) ((c) < 0200)
344 /* This distinction is not meaningful, except in Emacs. */
345 # define ISUNIBYTE(c) 1
348 # define ISBLANK(c) (ISASCII (c) && isblank (c))
350 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
353 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
355 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
359 # define ISPRINT(c) (ISASCII (c) && isprint (c))
360 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
361 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
362 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
363 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
364 # define ISLOWER(c) (ISASCII (c) && islower (c))
365 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
366 # define ISSPACE(c) (ISASCII (c) && isspace (c))
367 # define ISUPPER(c) (ISASCII (c) && isupper (c))
368 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
370 # define ISWORD(c) ISALPHA(c)
373 # define TOLOWER(c) _tolower(c)
375 # define TOLOWER(c) tolower(c)
378 /* How many characters in the character set. */
379 # define CHAR_SET_SIZE 256
383 extern char *re_syntax_table
;
385 # else /* not SYNTAX_TABLE */
387 static char re_syntax_table
[CHAR_SET_SIZE
];
398 bzero (re_syntax_table
, sizeof re_syntax_table
);
400 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
402 re_syntax_table
[c
] = Sword
;
404 re_syntax_table
['_'] = Sword
;
409 # endif /* not SYNTAX_TABLE */
411 # define SYNTAX(c) re_syntax_table[(c)]
413 #endif /* not emacs */
416 # define NULL (void *)0
419 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
420 since ours (we hope) works properly with all combinations of
421 machines, compilers, `char' and `unsigned char' argument types.
422 (Per Bothner suggested the basic approach.) */
423 #undef SIGN_EXTEND_CHAR
425 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
426 #else /* not __STDC__ */
427 /* As in Harbison and Steele. */
428 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
431 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
432 use `alloca' instead of `malloc'. This is because using malloc in
433 re_search* or re_match* could cause memory leaks when C-g is used in
434 Emacs; also, malloc is slower and causes storage fragmentation. On
435 the other hand, malloc is more portable, and easier to debug.
437 Because we sometimes use alloca, some routines have to be macros,
438 not functions -- `alloca'-allocated space disappears at the end of the
439 function it is called in. */
443 # define REGEX_ALLOCATE malloc
444 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
445 # define REGEX_FREE free
447 #else /* not REGEX_MALLOC */
449 /* Emacs already defines alloca, sometimes. */
452 /* Make alloca work the best possible way. */
454 # define alloca __builtin_alloca
455 # else /* not __GNUC__ */
458 # endif /* HAVE_ALLOCA_H */
459 # endif /* not __GNUC__ */
461 # endif /* not alloca */
463 # define REGEX_ALLOCATE alloca
465 /* Assumes a `char *destination' variable. */
466 # define REGEX_REALLOCATE(source, osize, nsize) \
467 (destination = (char *) alloca (nsize), \
468 memcpy (destination, source, osize))
470 /* No need to do anything to free, after alloca. */
471 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
473 #endif /* not REGEX_MALLOC */
475 /* Define how to allocate the failure stack. */
477 #if defined REL_ALLOC && defined REGEX_MALLOC
479 # define REGEX_ALLOCATE_STACK(size) \
480 r_alloc (&failure_stack_ptr, (size))
481 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
482 r_re_alloc (&failure_stack_ptr, (nsize))
483 # define REGEX_FREE_STACK(ptr) \
484 r_alloc_free (&failure_stack_ptr)
486 #else /* not using relocating allocator */
490 # define REGEX_ALLOCATE_STACK malloc
491 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
492 # define REGEX_FREE_STACK free
494 # else /* not REGEX_MALLOC */
496 # define REGEX_ALLOCATE_STACK alloca
498 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
499 REGEX_REALLOCATE (source, osize, nsize)
500 /* No need to explicitly free anything. */
501 # define REGEX_FREE_STACK(arg) ((void)0)
503 # endif /* not REGEX_MALLOC */
504 #endif /* not using relocating allocator */
507 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
508 `string1' or just past its end. This works if PTR is NULL, which is
510 #define FIRST_STRING_P(ptr) \
511 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
513 /* (Re)Allocate N items of type T using malloc, or fail. */
514 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
515 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
516 #define RETALLOC_IF(addr, n, t) \
517 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
518 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
520 #define BYTEWIDTH 8 /* In bits. */
522 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
526 #define MAX(a, b) ((a) > (b) ? (a) : (b))
527 #define MIN(a, b) ((a) < (b) ? (a) : (b))
529 /* Type of source-pattern and string chars. */
530 typedef const unsigned char re_char
;
532 typedef char boolean
;
536 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
537 re_char
*string1
, int size1
,
538 re_char
*string2
, int size2
,
540 struct re_registers
*regs
,
543 /* These are the command codes that appear in compiled regular
544 expressions. Some opcodes are followed by argument bytes. A
545 command code can specify any interpretation whatsoever for its
546 arguments. Zero bytes may appear in the compiled regular expression. */
552 /* Succeed right away--no more backtracking. */
555 /* Followed by one byte giving n, then by n literal bytes. */
558 /* Matches any (more or less) character. */
561 /* Matches any one char belonging to specified set. First
562 following byte is number of bitmap bytes. Then come bytes
563 for a bitmap saying which chars are in. Bits in each byte
564 are ordered low-bit-first. A character is in the set if its
565 bit is 1. A character too large to have a bit in the map is
566 automatically not in the set.
568 If the length byte has the 0x80 bit set, then that stuff
569 is followed by a range table:
570 2 bytes of flags for character sets (low 8 bits, high 8 bits)
571 See RANGE_TABLE_WORK_BITS below.
572 2 bytes, the number of pairs that follow (upto 32767)
573 pairs, each 2 multibyte characters,
574 each multibyte character represented as 3 bytes. */
577 /* Same parameters as charset, but match any character that is
578 not one of those specified. */
581 /* Start remembering the text that is matched, for storing in a
582 register. Followed by one byte with the register number, in
583 the range 0 to one less than the pattern buffer's re_nsub
587 /* Stop remembering the text that is matched and store it in a
588 memory register. Followed by one byte with the register
589 number, in the range 0 to one less than `re_nsub' in the
593 /* Match a duplicate of something remembered. Followed by one
594 byte containing the register number. */
597 /* Fail unless at beginning of line. */
600 /* Fail unless at end of line. */
603 /* Succeeds if at beginning of buffer (if emacs) or at beginning
604 of string to be matched (if not). */
607 /* Analogously, for end of buffer/string. */
610 /* Followed by two byte relative address to which to jump. */
613 /* Followed by two-byte relative address of place to resume at
614 in case of failure. */
617 /* Like on_failure_jump, but pushes a placeholder instead of the
618 current string position when executed. */
619 on_failure_keep_string_jump
,
621 /* Just like `on_failure_jump', except that it checks that we
622 don't get stuck in an infinite loop (matching an empty string
624 on_failure_jump_loop
,
626 /* Just like `on_failure_jump_loop', except that it checks for
627 a different kind of loop (the kind that shows up with non-greedy
628 operators). This operation has to be immediately preceded
630 on_failure_jump_nastyloop
,
632 /* A smart `on_failure_jump' used for greedy * and + operators.
633 It analyses the loop before which it is put and if the
634 loop does not require backtracking, it changes itself to
635 `on_failure_keep_string_jump' and short-circuits the loop,
636 else it just defaults to changing itself into `on_failure_jump'.
637 It assumes that it is pointing to just past a `jump'. */
638 on_failure_jump_smart
,
640 /* Followed by two-byte relative address and two-byte number n.
641 After matching N times, jump to the address upon failure.
642 Does not work if N starts at 0: use on_failure_jump_loop
646 /* Followed by two-byte relative address, and two-byte number n.
647 Jump to the address N times, then fail. */
650 /* Set the following two-byte relative address to the
651 subsequent two-byte number. The address *includes* the two
655 wordbeg
, /* Succeeds if at word beginning. */
656 wordend
, /* Succeeds if at word end. */
658 wordbound
, /* Succeeds if at a word boundary. */
659 notwordbound
, /* Succeeds if not at a word boundary. */
661 /* Matches any character whose syntax is specified. Followed by
662 a byte which contains a syntax code, e.g., Sword. */
665 /* Matches any character whose syntax is not that specified. */
669 ,before_dot
, /* Succeeds if before point. */
670 at_dot
, /* Succeeds if at point. */
671 after_dot
, /* Succeeds if after point. */
673 /* Matches any character whose category-set contains the specified
674 category. The operator is followed by a byte which contains a
675 category code (mnemonic ASCII character). */
678 /* Matches any character whose category-set does not contain the
679 specified category. The operator is followed by a byte which
680 contains the category code (mnemonic ASCII character). */
685 /* Common operations on the compiled pattern. */
687 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
689 #define STORE_NUMBER(destination, number) \
691 (destination)[0] = (number) & 0377; \
692 (destination)[1] = (number) >> 8; \
695 /* Same as STORE_NUMBER, except increment DESTINATION to
696 the byte after where the number is stored. Therefore, DESTINATION
697 must be an lvalue. */
699 #define STORE_NUMBER_AND_INCR(destination, number) \
701 STORE_NUMBER (destination, number); \
702 (destination) += 2; \
705 /* Put into DESTINATION a number stored in two contiguous bytes starting
708 #define EXTRACT_NUMBER(destination, source) \
710 (destination) = *(source) & 0377; \
711 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
715 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
717 extract_number (dest
, source
)
721 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
722 *dest
= *source
& 0377;
726 # ifndef EXTRACT_MACROS /* To debug the macros. */
727 # undef EXTRACT_NUMBER
728 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
729 # endif /* not EXTRACT_MACROS */
733 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
734 SOURCE must be an lvalue. */
736 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
738 EXTRACT_NUMBER (destination, source); \
743 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
746 extract_number_and_incr (destination
, source
)
750 extract_number (destination
, *source
);
754 # ifndef EXTRACT_MACROS
755 # undef EXTRACT_NUMBER_AND_INCR
756 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
757 extract_number_and_incr (&dest, &src)
758 # endif /* not EXTRACT_MACROS */
762 /* Store a multibyte character in three contiguous bytes starting
763 DESTINATION, and increment DESTINATION to the byte after where the
764 character is stored. Therefore, DESTINATION must be an lvalue. */
766 #define STORE_CHARACTER_AND_INCR(destination, character) \
768 (destination)[0] = (character) & 0377; \
769 (destination)[1] = ((character) >> 8) & 0377; \
770 (destination)[2] = (character) >> 16; \
771 (destination) += 3; \
774 /* Put into DESTINATION a character stored in three contiguous bytes
775 starting at SOURCE. */
777 #define EXTRACT_CHARACTER(destination, source) \
779 (destination) = ((source)[0] \
780 | ((source)[1] << 8) \
781 | ((source)[2] << 16)); \
785 /* Macros for charset. */
787 /* Size of bitmap of charset P in bytes. P is a start of charset,
788 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
789 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
791 /* Nonzero if charset P has range table. */
792 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
794 /* Return the address of range table of charset P. But not the start
795 of table itself, but the before where the number of ranges is
796 stored. `2 +' means to skip re_opcode_t and size of bitmap,
797 and the 2 bytes of flags at the start of the range table. */
798 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
800 /* Extract the bit flags that start a range table. */
801 #define CHARSET_RANGE_TABLE_BITS(p) \
802 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
803 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
805 /* Test if C is listed in the bitmap of charset P. */
806 #define CHARSET_LOOKUP_BITMAP(p, c) \
807 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
808 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
810 /* Return the address of end of RANGE_TABLE. COUNT is number of
811 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
812 is start of range and end of range. `* 3' is size of each start
814 #define CHARSET_RANGE_TABLE_END(range_table, count) \
815 ((range_table) + (count) * 2 * 3)
817 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
818 COUNT is number of ranges in RANGE_TABLE. */
819 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
822 re_wchar_t range_start, range_end; \
824 re_char *range_table_end \
825 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
827 for (p = (range_table); p < range_table_end; p += 2 * 3) \
829 EXTRACT_CHARACTER (range_start, p); \
830 EXTRACT_CHARACTER (range_end, p + 3); \
832 if (range_start <= (c) && (c) <= range_end) \
841 /* Test if C is in range table of CHARSET. The flag NOT is negated if
842 C is listed in it. */
843 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
846 /* Number of ranges in range table. */ \
848 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
850 EXTRACT_NUMBER_AND_INCR (count, range_table); \
851 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
855 /* If DEBUG is defined, Regex prints many voluminous messages about what
856 it is doing (if the variable `debug' is nonzero). If linked with the
857 main program in `iregex.c', you can enter patterns and strings
858 interactively. And if linked with the main program in `main.c' and
859 the other test files, you can run the already-written tests. */
863 /* We use standard I/O for debugging. */
866 /* It is useful to test things that ``must'' be true when debugging. */
869 static int debug
= -100000;
871 # define DEBUG_STATEMENT(e) e
872 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
873 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
874 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
875 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
876 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
877 if (debug > 0) print_partial_compiled_pattern (s, e)
878 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
879 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
882 /* Print the fastmap in human-readable form. */
885 print_fastmap (fastmap
)
888 unsigned was_a_range
= 0;
891 while (i
< (1 << BYTEWIDTH
))
897 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
913 /* Print a compiled pattern string in human-readable form, starting at
914 the START pointer into it and ending just before the pointer END. */
917 print_partial_compiled_pattern (start
, end
)
931 /* Loop over pattern commands. */
934 printf ("%d:\t", p
- start
);
936 switch ((re_opcode_t
) *p
++)
948 printf ("/exactn/%d", mcnt
);
958 printf ("/start_memory/%d", *p
++);
962 printf ("/stop_memory/%d", *p
++);
966 printf ("/duplicate/%d", *p
++);
976 register int c
, last
= -100;
977 register int in_range
= 0;
978 int length
= CHARSET_BITMAP_SIZE (p
- 1);
979 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
981 printf ("/charset [%s",
982 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
984 assert (p
+ *p
< pend
);
986 for (c
= 0; c
< 256; c
++)
988 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
990 /* Are we starting a range? */
991 if (last
+ 1 == c
&& ! in_range
)
996 /* Have we broken a range? */
997 else if (last
+ 1 != c
&& in_range
)
1016 if (has_range_table
)
1019 printf ("has-range-table");
1021 /* ??? Should print the range table; for now, just skip it. */
1022 p
+= 2; /* skip range table bits */
1023 EXTRACT_NUMBER_AND_INCR (count
, p
);
1024 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1030 printf ("/begline");
1034 printf ("/endline");
1037 case on_failure_jump
:
1038 extract_number_and_incr (&mcnt
, &p
);
1039 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
1042 case on_failure_keep_string_jump
:
1043 extract_number_and_incr (&mcnt
, &p
);
1044 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1047 case on_failure_jump_nastyloop
:
1048 extract_number_and_incr (&mcnt
, &p
);
1049 printf ("/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1052 case on_failure_jump_loop
:
1053 extract_number_and_incr (&mcnt
, &p
);
1054 printf ("/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1057 case on_failure_jump_smart
:
1058 extract_number_and_incr (&mcnt
, &p
);
1059 printf ("/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1063 extract_number_and_incr (&mcnt
, &p
);
1064 printf ("/jump to %d", p
+ mcnt
- start
);
1068 extract_number_and_incr (&mcnt
, &p
);
1069 extract_number_and_incr (&mcnt2
, &p
);
1070 printf ("/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1074 extract_number_and_incr (&mcnt
, &p
);
1075 extract_number_and_incr (&mcnt2
, &p
);
1076 printf ("/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1080 extract_number_and_incr (&mcnt
, &p
);
1081 extract_number_and_incr (&mcnt2
, &p
);
1082 printf ("/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1086 printf ("/wordbound");
1090 printf ("/notwordbound");
1094 printf ("/wordbeg");
1098 printf ("/wordend");
1101 printf ("/syntaxspec");
1103 printf ("/%d", mcnt
);
1107 printf ("/notsyntaxspec");
1109 printf ("/%d", mcnt
);
1114 printf ("/before_dot");
1122 printf ("/after_dot");
1126 printf ("/categoryspec");
1128 printf ("/%d", mcnt
);
1131 case notcategoryspec
:
1132 printf ("/notcategoryspec");
1134 printf ("/%d", mcnt
);
1147 printf ("?%d", *(p
-1));
1153 printf ("%d:\tend of pattern.\n", p
- start
);
1158 print_compiled_pattern (bufp
)
1159 struct re_pattern_buffer
*bufp
;
1161 re_char
*buffer
= bufp
->buffer
;
1163 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1164 printf ("%ld bytes used/%ld bytes allocated.\n",
1165 bufp
->used
, bufp
->allocated
);
1167 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1169 printf ("fastmap: ");
1170 print_fastmap (bufp
->fastmap
);
1173 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1174 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1175 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1176 printf ("no_sub: %d\t", bufp
->no_sub
);
1177 printf ("not_bol: %d\t", bufp
->not_bol
);
1178 printf ("not_eol: %d\t", bufp
->not_eol
);
1179 printf ("syntax: %lx\n", bufp
->syntax
);
1181 /* Perhaps we should print the translate table? */
1186 print_double_string (where
, string1
, size1
, string2
, size2
)
1199 if (FIRST_STRING_P (where
))
1201 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1202 putchar (string1
[this_char
]);
1207 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1208 putchar (string2
[this_char
]);
1212 #else /* not DEBUG */
1217 # define DEBUG_STATEMENT(e)
1218 # define DEBUG_PRINT1(x)
1219 # define DEBUG_PRINT2(x1, x2)
1220 # define DEBUG_PRINT3(x1, x2, x3)
1221 # define DEBUG_PRINT4(x1, x2, x3, x4)
1222 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1223 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1225 #endif /* not DEBUG */
1227 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1228 also be assigned to arbitrarily: each pattern buffer stores its own
1229 syntax, so it can be changed between regex compilations. */
1230 /* This has no initializer because initialized variables in Emacs
1231 become read-only after dumping. */
1232 reg_syntax_t re_syntax_options
;
1235 /* Specify the precise syntax of regexps for compilation. This provides
1236 for compatibility for various utilities which historically have
1237 different, incompatible syntaxes.
1239 The argument SYNTAX is a bit mask comprised of the various bits
1240 defined in regex.h. We return the old syntax. */
1243 re_set_syntax (syntax
)
1244 reg_syntax_t syntax
;
1246 reg_syntax_t ret
= re_syntax_options
;
1248 re_syntax_options
= syntax
;
1251 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1253 /* This table gives an error message for each of the error codes listed
1254 in regex.h. Obviously the order here has to be same as there.
1255 POSIX doesn't require that we do anything for REG_NOERROR,
1256 but why not be nice? */
1258 static const char *re_error_msgid
[] =
1260 gettext_noop ("Success"), /* REG_NOERROR */
1261 gettext_noop ("No match"), /* REG_NOMATCH */
1262 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1263 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1264 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1265 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1266 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1267 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1268 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1269 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1270 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1271 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1272 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1273 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1274 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1275 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1276 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1279 /* Avoiding alloca during matching, to placate r_alloc. */
1281 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1282 searching and matching functions should not call alloca. On some
1283 systems, alloca is implemented in terms of malloc, and if we're
1284 using the relocating allocator routines, then malloc could cause a
1285 relocation, which might (if the strings being searched are in the
1286 ralloc heap) shift the data out from underneath the regexp
1289 Here's another reason to avoid allocation: Emacs
1290 processes input from X in a signal handler; processing X input may
1291 call malloc; if input arrives while a matching routine is calling
1292 malloc, then we're scrod. But Emacs can't just block input while
1293 calling matching routines; then we don't notice interrupts when
1294 they come in. So, Emacs blocks input around all regexp calls
1295 except the matching calls, which it leaves unprotected, in the
1296 faith that they will not malloc. */
1298 /* Normally, this is fine. */
1299 #define MATCH_MAY_ALLOCATE
1301 /* When using GNU C, we are not REALLY using the C alloca, no matter
1302 what config.h may say. So don't take precautions for it. */
1307 /* The match routines may not allocate if (1) they would do it with malloc
1308 and (2) it's not safe for them to use malloc.
1309 Note that if REL_ALLOC is defined, matching would not use malloc for the
1310 failure stack, but we would still use it for the register vectors;
1311 so REL_ALLOC should not affect this. */
1312 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1313 # undef MATCH_MAY_ALLOCATE
1317 /* Failure stack declarations and macros; both re_compile_fastmap and
1318 re_match_2 use a failure stack. These have to be macros because of
1319 REGEX_ALLOCATE_STACK. */
1322 /* Approximate number of failure points for which to initially allocate space
1323 when matching. If this number is exceeded, we allocate more
1324 space, so it is not a hard limit. */
1325 #ifndef INIT_FAILURE_ALLOC
1326 # define INIT_FAILURE_ALLOC 20
1329 /* Roughly the maximum number of failure points on the stack. Would be
1330 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1331 This is a variable only so users of regex can assign to it; we never
1332 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1333 before using it, so it should probably be a byte-count instead. */
1334 # if defined MATCH_MAY_ALLOCATE
1335 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1336 whose default stack limit is 2mb. In order for a larger
1337 value to work reliably, you have to try to make it accord
1338 with the process stack limit. */
1339 size_t re_max_failures
= 40000;
1341 size_t re_max_failures
= 4000;
1344 union fail_stack_elt
1347 /* This should be the biggest `int' that's no bigger than a pointer. */
1351 typedef union fail_stack_elt fail_stack_elt_t
;
1355 fail_stack_elt_t
*stack
;
1357 size_t avail
; /* Offset of next open position. */
1358 size_t frame
; /* Offset of the cur constructed frame. */
1361 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1362 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1365 /* Define macros to initialize and free the failure stack.
1366 Do `return -2' if the alloc fails. */
1368 #ifdef MATCH_MAY_ALLOCATE
1369 # define INIT_FAIL_STACK() \
1371 fail_stack.stack = (fail_stack_elt_t *) \
1372 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1373 * sizeof (fail_stack_elt_t)); \
1375 if (fail_stack.stack == NULL) \
1378 fail_stack.size = INIT_FAILURE_ALLOC; \
1379 fail_stack.avail = 0; \
1380 fail_stack.frame = 0; \
1383 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1385 # define INIT_FAIL_STACK() \
1387 fail_stack.avail = 0; \
1388 fail_stack.frame = 0; \
1391 # define RESET_FAIL_STACK() ((void)0)
1395 /* Double the size of FAIL_STACK, up to a limit
1396 which allows approximately `re_max_failures' items.
1398 Return 1 if succeeds, and 0 if either ran out of memory
1399 allocating space for it or it was already too large.
1401 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1403 /* Factor to increase the failure stack size by
1404 when we increase it.
1405 This used to be 2, but 2 was too wasteful
1406 because the old discarded stacks added up to as much space
1407 were as ultimate, maximum-size stack. */
1408 #define FAIL_STACK_GROWTH_FACTOR 4
1410 #define GROW_FAIL_STACK(fail_stack) \
1411 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1412 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1414 : ((fail_stack).stack \
1415 = (fail_stack_elt_t *) \
1416 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1417 (fail_stack).size * sizeof (fail_stack_elt_t), \
1418 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1419 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1420 * FAIL_STACK_GROWTH_FACTOR))), \
1422 (fail_stack).stack == NULL \
1424 : ((fail_stack).size \
1425 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1426 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1427 * FAIL_STACK_GROWTH_FACTOR)) \
1428 / sizeof (fail_stack_elt_t)), \
1432 /* Push a pointer value onto the failure stack.
1433 Assumes the variable `fail_stack'. Probably should only
1434 be called from within `PUSH_FAILURE_POINT'. */
1435 #define PUSH_FAILURE_POINTER(item) \
1436 fail_stack.stack[fail_stack.avail++].pointer = (item)
1438 /* This pushes an integer-valued item onto the failure stack.
1439 Assumes the variable `fail_stack'. Probably should only
1440 be called from within `PUSH_FAILURE_POINT'. */
1441 #define PUSH_FAILURE_INT(item) \
1442 fail_stack.stack[fail_stack.avail++].integer = (item)
1444 /* Push a fail_stack_elt_t value onto the failure stack.
1445 Assumes the variable `fail_stack'. Probably should only
1446 be called from within `PUSH_FAILURE_POINT'. */
1447 #define PUSH_FAILURE_ELT(item) \
1448 fail_stack.stack[fail_stack.avail++] = (item)
1450 /* These three POP... operations complement the three PUSH... operations.
1451 All assume that `fail_stack' is nonempty. */
1452 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1453 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1454 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1456 /* Individual items aside from the registers. */
1457 #define NUM_NONREG_ITEMS 3
1459 /* Used to examine the stack (to detect infinite loops). */
1460 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1461 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1462 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1463 #define TOP_FAILURE_HANDLE() fail_stack.frame
1466 #define ENSURE_FAIL_STACK(space) \
1467 while (REMAINING_AVAIL_SLOTS <= space) { \
1468 if (!GROW_FAIL_STACK (fail_stack)) \
1470 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1471 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1474 /* Push register NUM onto the stack. */
1475 #define PUSH_FAILURE_REG(num) \
1477 char *destination; \
1478 ENSURE_FAIL_STACK(3); \
1479 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1480 num, regstart[num], regend[num]); \
1481 PUSH_FAILURE_POINTER (regstart[num]); \
1482 PUSH_FAILURE_POINTER (regend[num]); \
1483 PUSH_FAILURE_INT (num); \
1486 /* Change the counter's value to VAL, but make sure that it will
1487 be reset when backtracking. */
1488 #define PUSH_NUMBER(ptr,val) \
1490 char *destination; \
1492 ENSURE_FAIL_STACK(3); \
1493 EXTRACT_NUMBER (c, ptr); \
1494 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1495 PUSH_FAILURE_INT (c); \
1496 PUSH_FAILURE_POINTER (ptr); \
1497 PUSH_FAILURE_INT (-1); \
1498 STORE_NUMBER (ptr, val); \
1501 /* Pop a saved register off the stack. */
1502 #define POP_FAILURE_REG_OR_COUNT() \
1504 int reg = POP_FAILURE_INT (); \
1507 /* It's a counter. */ \
1508 /* Here, we discard `const', making re_match non-reentrant. */ \
1509 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1510 reg = POP_FAILURE_INT (); \
1511 STORE_NUMBER (ptr, reg); \
1512 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1516 regend[reg] = POP_FAILURE_POINTER (); \
1517 regstart[reg] = POP_FAILURE_POINTER (); \
1518 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1519 reg, regstart[reg], regend[reg]); \
1523 /* Discard a saved register off the stack. */
1524 #define DISCARD_FAILURE_REG_OR_COUNT() \
1526 int reg = POP_FAILURE_INT (); \
1529 /* It's a counter. */ \
1530 POP_FAILURE_POINTER (); \
1531 reg = POP_FAILURE_INT (); \
1532 DEBUG_PRINT3 (" Discard counter %p = %d\n", ptr, reg); \
1536 POP_FAILURE_POINTER (); \
1537 POP_FAILURE_POINTER (); \
1538 DEBUG_PRINT4 (" Discard reg %d (spanning %p -> %p)\n", \
1539 reg, regstart[reg], regend[reg]); \
1543 /* Check that we are not stuck in an infinite loop. */
1544 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1546 int failure = TOP_FAILURE_HANDLE (); \
1547 /* Check for infinite matching loops */ \
1548 while (failure > 0 \
1549 && (FAILURE_STR (failure) == string_place \
1550 || FAILURE_STR (failure) == NULL)) \
1552 assert (FAILURE_PAT (failure) >= bufp->buffer \
1553 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1554 if (FAILURE_PAT (failure) == pat_cur) \
1556 while (fail_stack.frame < fail_stack.avail) \
1557 DISCARD_FAILURE_REG_OR_COUNT (); \
1560 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1561 failure = NEXT_FAILURE_HANDLE(failure); \
1563 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1566 /* Push the information about the state we will need
1567 if we ever fail back to it.
1569 Requires variables fail_stack, regstart, regend and
1570 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1573 Does `return FAILURE_CODE' if runs out of memory. */
1575 #define PUSH_FAILURE_POINT(pattern, string_place) \
1577 char *destination; \
1578 /* Must be int, so when we don't save any registers, the arithmetic \
1579 of 0 + -1 isn't done as unsigned. */ \
1581 DEBUG_STATEMENT (nfailure_points_pushed++); \
1582 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1583 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1584 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1586 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1588 DEBUG_PRINT1 ("\n"); \
1590 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1591 PUSH_FAILURE_INT (fail_stack.frame); \
1593 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1594 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1595 DEBUG_PRINT1 ("'\n"); \
1596 PUSH_FAILURE_POINTER (string_place); \
1598 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1599 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1600 PUSH_FAILURE_POINTER (pattern); \
1602 /* Close the frame by moving the frame pointer past it. */ \
1603 fail_stack.frame = fail_stack.avail; \
1606 /* Estimate the size of data pushed by a typical failure stack entry.
1607 An estimate is all we need, because all we use this for
1608 is to choose a limit for how big to make the failure stack. */
1609 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1610 #define TYPICAL_FAILURE_SIZE 20
1612 /* How many items can still be added to the stack without overflowing it. */
1613 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1616 /* Pops what PUSH_FAIL_STACK pushes.
1618 We restore into the parameters, all of which should be lvalues:
1619 STR -- the saved data position.
1620 PAT -- the saved pattern position.
1621 REGSTART, REGEND -- arrays of string positions.
1623 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1624 `pend', `string1', `size1', `string2', and `size2'. */
1626 #define POP_FAILURE_POINT(str, pat) \
1628 assert (!FAIL_STACK_EMPTY ()); \
1630 /* Remove failure points and point to how many regs pushed. */ \
1631 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1632 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1633 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1635 /* Pop the saved registers. */ \
1636 while (fail_stack.frame < fail_stack.avail) \
1637 POP_FAILURE_REG_OR_COUNT (); \
1639 pat = POP_FAILURE_POINTER (); \
1640 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1641 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1643 /* If the saved string location is NULL, it came from an \
1644 on_failure_keep_string_jump opcode, and we want to throw away the \
1645 saved NULL, thus retaining our current position in the string. */ \
1646 str = POP_FAILURE_POINTER (); \
1647 DEBUG_PRINT2 (" Popping string %p: `", str); \
1648 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1649 DEBUG_PRINT1 ("'\n"); \
1651 fail_stack.frame = POP_FAILURE_INT (); \
1652 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1654 assert (fail_stack.avail >= 0); \
1655 assert (fail_stack.frame <= fail_stack.avail); \
1657 DEBUG_STATEMENT (nfailure_points_popped++); \
1658 } while (0) /* POP_FAILURE_POINT */
1662 /* Registers are set to a sentinel when they haven't yet matched. */
1663 #define REG_UNSET(e) ((e) == NULL)
1665 /* Subroutine declarations and macros for regex_compile. */
1667 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1668 reg_syntax_t syntax
,
1669 struct re_pattern_buffer
*bufp
));
1670 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1671 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1672 int arg1
, int arg2
));
1673 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1674 int arg
, unsigned char *end
));
1675 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1676 int arg1
, int arg2
, unsigned char *end
));
1677 static boolean at_begline_loc_p
_RE_ARGS ((re_char
*pattern
,
1679 reg_syntax_t syntax
));
1680 static boolean at_endline_loc_p
_RE_ARGS ((re_char
*p
,
1682 reg_syntax_t syntax
));
1683 static re_char
*skip_one_char
_RE_ARGS ((re_char
*p
));
1684 static int analyse_first
_RE_ARGS ((re_char
*p
, re_char
*pend
,
1685 char *fastmap
, const int multibyte
));
1687 /* Fetch the next character in the uncompiled pattern, with no
1689 #define PATFETCH(c) \
1692 if (p == pend) return REG_EEND; \
1693 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1698 /* If `translate' is non-null, return translate[D], else just D. We
1699 cast the subscript to translate because some data is declared as
1700 `char *', to avoid warnings when a string constant is passed. But
1701 when we use a character as a subscript we must make it unsigned. */
1703 # define TRANSLATE(d) \
1704 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1708 /* Macros for outputting the compiled pattern into `buffer'. */
1710 /* If the buffer isn't allocated when it comes in, use this. */
1711 #define INIT_BUF_SIZE 32
1713 /* Make sure we have at least N more bytes of space in buffer. */
1714 #define GET_BUFFER_SPACE(n) \
1715 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1718 /* Make sure we have one more byte of buffer space and then add C to it. */
1719 #define BUF_PUSH(c) \
1721 GET_BUFFER_SPACE (1); \
1722 *b++ = (unsigned char) (c); \
1726 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1727 #define BUF_PUSH_2(c1, c2) \
1729 GET_BUFFER_SPACE (2); \
1730 *b++ = (unsigned char) (c1); \
1731 *b++ = (unsigned char) (c2); \
1735 /* As with BUF_PUSH_2, except for three bytes. */
1736 #define BUF_PUSH_3(c1, c2, c3) \
1738 GET_BUFFER_SPACE (3); \
1739 *b++ = (unsigned char) (c1); \
1740 *b++ = (unsigned char) (c2); \
1741 *b++ = (unsigned char) (c3); \
1745 /* Store a jump with opcode OP at LOC to location TO. We store a
1746 relative address offset by the three bytes the jump itself occupies. */
1747 #define STORE_JUMP(op, loc, to) \
1748 store_op1 (op, loc, (to) - (loc) - 3)
1750 /* Likewise, for a two-argument jump. */
1751 #define STORE_JUMP2(op, loc, to, arg) \
1752 store_op2 (op, loc, (to) - (loc) - 3, arg)
1754 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1755 #define INSERT_JUMP(op, loc, to) \
1756 insert_op1 (op, loc, (to) - (loc) - 3, b)
1758 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1759 #define INSERT_JUMP2(op, loc, to, arg) \
1760 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1763 /* This is not an arbitrary limit: the arguments which represent offsets
1764 into the pattern are two bytes long. So if 2^16 bytes turns out to
1765 be too small, many things would have to change. */
1766 /* Any other compiler which, like MSC, has allocation limit below 2^16
1767 bytes will have to use approach similar to what was done below for
1768 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1769 reallocating to 0 bytes. Such thing is not going to work too well.
1770 You have been warned!! */
1771 #if defined _MSC_VER && !defined WIN32
1772 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1773 # define MAX_BUF_SIZE 65500L
1775 # define MAX_BUF_SIZE (1L << 16)
1778 /* Extend the buffer by twice its current size via realloc and
1779 reset the pointers that pointed into the old block to point to the
1780 correct places in the new one. If extending the buffer results in it
1781 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1782 #if __BOUNDED_POINTERS__
1783 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1784 # define MOVE_BUFFER_POINTER(P) \
1785 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1786 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1789 SET_HIGH_BOUND (b); \
1790 SET_HIGH_BOUND (begalt); \
1791 if (fixup_alt_jump) \
1792 SET_HIGH_BOUND (fixup_alt_jump); \
1794 SET_HIGH_BOUND (laststart); \
1795 if (pending_exact) \
1796 SET_HIGH_BOUND (pending_exact); \
1799 # define MOVE_BUFFER_POINTER(P) (P) += incr
1800 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1802 #define EXTEND_BUFFER() \
1804 re_char *old_buffer = bufp->buffer; \
1805 if (bufp->allocated == MAX_BUF_SIZE) \
1807 bufp->allocated <<= 1; \
1808 if (bufp->allocated > MAX_BUF_SIZE) \
1809 bufp->allocated = MAX_BUF_SIZE; \
1810 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1811 if (bufp->buffer == NULL) \
1812 return REG_ESPACE; \
1813 /* If the buffer moved, move all the pointers into it. */ \
1814 if (old_buffer != bufp->buffer) \
1816 int incr = bufp->buffer - old_buffer; \
1817 MOVE_BUFFER_POINTER (b); \
1818 MOVE_BUFFER_POINTER (begalt); \
1819 if (fixup_alt_jump) \
1820 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1822 MOVE_BUFFER_POINTER (laststart); \
1823 if (pending_exact) \
1824 MOVE_BUFFER_POINTER (pending_exact); \
1826 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1830 /* Since we have one byte reserved for the register number argument to
1831 {start,stop}_memory, the maximum number of groups we can report
1832 things about is what fits in that byte. */
1833 #define MAX_REGNUM 255
1835 /* But patterns can have more than `MAX_REGNUM' registers. We just
1836 ignore the excess. */
1837 typedef unsigned regnum_t
;
1840 /* Macros for the compile stack. */
1842 /* Since offsets can go either forwards or backwards, this type needs to
1843 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1844 /* int may be not enough when sizeof(int) == 2. */
1845 typedef long pattern_offset_t
;
1849 pattern_offset_t begalt_offset
;
1850 pattern_offset_t fixup_alt_jump
;
1851 pattern_offset_t laststart_offset
;
1853 } compile_stack_elt_t
;
1858 compile_stack_elt_t
*stack
;
1860 unsigned avail
; /* Offset of next open position. */
1861 } compile_stack_type
;
1864 #define INIT_COMPILE_STACK_SIZE 32
1866 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1867 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1869 /* The next available element. */
1870 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1873 /* Structure to manage work area for range table. */
1874 struct range_table_work_area
1876 int *table
; /* actual work area. */
1877 int allocated
; /* allocated size for work area in bytes. */
1878 int used
; /* actually used size in words. */
1879 int bits
; /* flag to record character classes */
1882 /* Make sure that WORK_AREA can hold more N multibyte characters. */
1883 #define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \
1885 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1887 (work_area).allocated += 16 * sizeof (int); \
1888 if ((work_area).table) \
1890 = (int *) realloc ((work_area).table, (work_area).allocated); \
1893 = (int *) malloc ((work_area).allocated); \
1894 if ((work_area).table == 0) \
1895 FREE_STACK_RETURN (REG_ESPACE); \
1899 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1900 (work_area).bits |= (bit)
1902 /* Bits used to implement the multibyte-part of the various character classes
1903 such as [:alnum:] in a charset's range table. */
1904 #define BIT_WORD 0x1
1905 #define BIT_LOWER 0x2
1906 #define BIT_PUNCT 0x4
1907 #define BIT_SPACE 0x8
1908 #define BIT_UPPER 0x10
1909 #define BIT_MULTIBYTE 0x20
1911 /* Set a range START..END to WORK_AREA.
1912 The range is passed through TRANSLATE, so START and END
1913 should be untranslated. */
1914 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1916 EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \
1917 set_image_of_range (&work_area, start, end, translate); \
1920 /* Free allocated memory for WORK_AREA. */
1921 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1923 if ((work_area).table) \
1924 free ((work_area).table); \
1927 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1928 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1929 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1930 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1933 /* Set the bit for character C in a list. */
1934 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1937 /* Get the next unsigned number in the uncompiled pattern. */
1938 #define GET_UNSIGNED_NUMBER(num) \
1939 do { if (p != pend) \
1943 FREE_STACK_RETURN (REG_BADBR); \
1944 while ('0' <= c && c <= '9') \
1950 num = num * 10 + c - '0'; \
1951 if (num / 10 != prev) \
1952 FREE_STACK_RETURN (REG_BADBR); \
1958 FREE_STACK_RETURN (REG_BADBR); \
1962 #if WIDE_CHAR_SUPPORT
1963 /* The GNU C library provides support for user-defined character classes
1964 and the functions from ISO C amendement 1. */
1965 # ifdef CHARCLASS_NAME_MAX
1966 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1968 /* This shouldn't happen but some implementation might still have this
1969 problem. Use a reasonable default value. */
1970 # define CHAR_CLASS_MAX_LENGTH 256
1972 typedef wctype_t re_wctype_t
;
1973 typedef wchar_t re_wchar_t
;
1974 # define re_wctype wctype
1975 # define re_iswctype iswctype
1976 # define re_wctype_to_bit(cc) 0
1978 # define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1981 /* Character classes. */
1982 typedef enum { RECC_ERROR
= 0,
1983 RECC_ALNUM
, RECC_ALPHA
, RECC_WORD
,
1984 RECC_GRAPH
, RECC_PRINT
,
1985 RECC_LOWER
, RECC_UPPER
,
1986 RECC_PUNCT
, RECC_CNTRL
,
1987 RECC_DIGIT
, RECC_XDIGIT
,
1988 RECC_BLANK
, RECC_SPACE
,
1989 RECC_MULTIBYTE
, RECC_NONASCII
,
1990 RECC_ASCII
, RECC_UNIBYTE
1993 typedef int re_wchar_t
;
1995 /* Map a string to the char class it names (if any). */
2000 const char *string
= str
;
2001 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
2002 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
2003 else if (STREQ (string
, "word")) return RECC_WORD
;
2004 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
2005 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
2006 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
2007 else if (STREQ (string
, "lower")) return RECC_LOWER
;
2008 else if (STREQ (string
, "print")) return RECC_PRINT
;
2009 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2010 else if (STREQ (string
, "space")) return RECC_SPACE
;
2011 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2012 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2013 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2014 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2015 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2016 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2017 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2021 /* True iff CH is in the char class CC. */
2023 re_iswctype (ch
, cc
)
2029 case RECC_ALNUM
: return ISALNUM (ch
);
2030 case RECC_ALPHA
: return ISALPHA (ch
);
2031 case RECC_BLANK
: return ISBLANK (ch
);
2032 case RECC_CNTRL
: return ISCNTRL (ch
);
2033 case RECC_DIGIT
: return ISDIGIT (ch
);
2034 case RECC_GRAPH
: return ISGRAPH (ch
);
2035 case RECC_LOWER
: return ISLOWER (ch
);
2036 case RECC_PRINT
: return ISPRINT (ch
);
2037 case RECC_PUNCT
: return ISPUNCT (ch
);
2038 case RECC_SPACE
: return ISSPACE (ch
);
2039 case RECC_UPPER
: return ISUPPER (ch
);
2040 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2041 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2042 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2043 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2044 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2045 case RECC_WORD
: return ISWORD (ch
);
2046 case RECC_ERROR
: return false;
2052 /* Return a bit-pattern to use in the range-table bits to match multibyte
2053 chars of class CC. */
2055 re_wctype_to_bit (cc
)
2060 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2061 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2062 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2063 case RECC_LOWER
: return BIT_LOWER
;
2064 case RECC_UPPER
: return BIT_UPPER
;
2065 case RECC_PUNCT
: return BIT_PUNCT
;
2066 case RECC_SPACE
: return BIT_SPACE
;
2067 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2068 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2077 /* We need to find the image of the range start..end when passed through
2078 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2079 and is not even necessarily contiguous.
2080 We approximate it with the smallest contiguous range that contains
2081 all the chars we need. */
2083 set_image_of_range (work_area
, start
, end
, translate
)
2084 RE_TRANSLATE_TYPE translate
;
2085 struct range_table_work_area
*work_area
;
2086 re_wchar_t start
, end
;
2088 re_wchar_t cmin
= TRANSLATE (start
), cmax
= TRANSLATE (end
);
2089 if (RE_TRANSLATE_P (translate
))
2090 for (; start
<= end
; start
++)
2092 re_wchar_t c
= TRANSLATE (start
);
2093 cmin
= MIN (cmin
, c
);
2094 cmax
= MAX (cmax
, c
);
2096 work_area
->table
[work_area
->used
++] = (cmin
);
2097 work_area
->table
[work_area
->used
++] = (cmax
);
2100 /* Explicit quit checking is only used on NTemacs. */
2101 #if defined WINDOWSNT && defined emacs && defined QUIT
2102 extern int immediate_quit
;
2103 # define IMMEDIATE_QUIT_CHECK \
2105 if (immediate_quit) QUIT; \
2108 # define IMMEDIATE_QUIT_CHECK ((void)0)
2111 #ifndef MATCH_MAY_ALLOCATE
2113 /* If we cannot allocate large objects within re_match_2_internal,
2114 we make the fail stack and register vectors global.
2115 The fail stack, we grow to the maximum size when a regexp
2117 The register vectors, we adjust in size each time we
2118 compile a regexp, according to the number of registers it needs. */
2120 static fail_stack_type fail_stack
;
2122 /* Size with which the following vectors are currently allocated.
2123 That is so we can make them bigger as needed,
2124 but never make them smaller. */
2125 static int regs_allocated_size
;
2127 static re_char
** regstart
, ** regend
;
2128 static re_char
**best_regstart
, **best_regend
;
2130 /* Make the register vectors big enough for NUM_REGS registers,
2131 but don't make them smaller. */
2134 regex_grow_registers (num_regs
)
2137 if (num_regs
> regs_allocated_size
)
2139 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2140 RETALLOC_IF (regend
, num_regs
, re_char
*);
2141 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2142 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2144 regs_allocated_size
= num_regs
;
2148 #endif /* not MATCH_MAY_ALLOCATE */
2150 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2154 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2155 Returns one of error codes defined in `regex.h', or zero for success.
2157 Assumes the `allocated' (and perhaps `buffer') and `translate'
2158 fields are set in BUFP on entry.
2160 If it succeeds, results are put in BUFP (if it returns an error, the
2161 contents of BUFP are undefined):
2162 `buffer' is the compiled pattern;
2163 `syntax' is set to SYNTAX;
2164 `used' is set to the length of the compiled pattern;
2165 `fastmap_accurate' is zero;
2166 `re_nsub' is the number of subexpressions in PATTERN;
2167 `not_bol' and `not_eol' are zero;
2169 The `fastmap' field is neither examined nor set. */
2171 /* Insert the `jump' from the end of last alternative to "here".
2172 The space for the jump has already been allocated. */
2173 #define FIXUP_ALT_JUMP() \
2175 if (fixup_alt_jump) \
2176 STORE_JUMP (jump, fixup_alt_jump, b); \
2180 /* Return, freeing storage we allocated. */
2181 #define FREE_STACK_RETURN(value) \
2183 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2184 free (compile_stack.stack); \
2188 static reg_errcode_t
2189 regex_compile (pattern
, size
, syntax
, bufp
)
2192 reg_syntax_t syntax
;
2193 struct re_pattern_buffer
*bufp
;
2195 /* We fetch characters from PATTERN here. */
2196 register re_wchar_t c
, c1
;
2198 /* A random temporary spot in PATTERN. */
2201 /* Points to the end of the buffer, where we should append. */
2202 register unsigned char *b
;
2204 /* Keeps track of unclosed groups. */
2205 compile_stack_type compile_stack
;
2207 /* Points to the current (ending) position in the pattern. */
2209 /* `const' makes AIX compiler fail. */
2210 unsigned char *p
= pattern
;
2212 re_char
*p
= pattern
;
2214 re_char
*pend
= pattern
+ size
;
2216 /* How to translate the characters in the pattern. */
2217 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2219 /* Address of the count-byte of the most recently inserted `exactn'
2220 command. This makes it possible to tell if a new exact-match
2221 character can be added to that command or if the character requires
2222 a new `exactn' command. */
2223 unsigned char *pending_exact
= 0;
2225 /* Address of start of the most recently finished expression.
2226 This tells, e.g., postfix * where to find the start of its
2227 operand. Reset at the beginning of groups and alternatives. */
2228 unsigned char *laststart
= 0;
2230 /* Address of beginning of regexp, or inside of last group. */
2231 unsigned char *begalt
;
2233 /* Place in the uncompiled pattern (i.e., the {) to
2234 which to go back if the interval is invalid. */
2235 re_char
*beg_interval
;
2237 /* Address of the place where a forward jump should go to the end of
2238 the containing expression. Each alternative of an `or' -- except the
2239 last -- ends with a forward jump of this sort. */
2240 unsigned char *fixup_alt_jump
= 0;
2242 /* Counts open-groups as they are encountered. Remembered for the
2243 matching close-group on the compile stack, so the same register
2244 number is put in the stop_memory as the start_memory. */
2245 regnum_t regnum
= 0;
2247 /* Work area for range table of charset. */
2248 struct range_table_work_area range_table_work
;
2250 /* If the object matched can contain multibyte characters. */
2251 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2255 DEBUG_PRINT1 ("\nCompiling pattern: ");
2258 unsigned debug_count
;
2260 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2261 putchar (pattern
[debug_count
]);
2266 /* Initialize the compile stack. */
2267 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2268 if (compile_stack
.stack
== NULL
)
2271 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2272 compile_stack
.avail
= 0;
2274 range_table_work
.table
= 0;
2275 range_table_work
.allocated
= 0;
2277 /* Initialize the pattern buffer. */
2278 bufp
->syntax
= syntax
;
2279 bufp
->fastmap_accurate
= 0;
2280 bufp
->not_bol
= bufp
->not_eol
= 0;
2282 /* Set `used' to zero, so that if we return an error, the pattern
2283 printer (for debugging) will think there's no pattern. We reset it
2287 /* Always count groups, whether or not bufp->no_sub is set. */
2290 #if !defined emacs && !defined SYNTAX_TABLE
2291 /* Initialize the syntax table. */
2292 init_syntax_once ();
2295 if (bufp
->allocated
== 0)
2298 { /* If zero allocated, but buffer is non-null, try to realloc
2299 enough space. This loses if buffer's address is bogus, but
2300 that is the user's responsibility. */
2301 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2304 { /* Caller did not allocate a buffer. Do it for them. */
2305 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2307 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2309 bufp
->allocated
= INIT_BUF_SIZE
;
2312 begalt
= b
= bufp
->buffer
;
2314 /* Loop through the uncompiled pattern until we're at the end. */
2323 if ( /* If at start of pattern, it's an operator. */
2325 /* If context independent, it's an operator. */
2326 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2327 /* Otherwise, depends on what's come before. */
2328 || at_begline_loc_p (pattern
, p
, syntax
))
2329 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2338 if ( /* If at end of pattern, it's an operator. */
2340 /* If context independent, it's an operator. */
2341 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2342 /* Otherwise, depends on what's next. */
2343 || at_endline_loc_p (p
, pend
, syntax
))
2344 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2353 if ((syntax
& RE_BK_PLUS_QM
)
2354 || (syntax
& RE_LIMITED_OPS
))
2358 /* If there is no previous pattern... */
2361 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2362 FREE_STACK_RETURN (REG_BADRPT
);
2363 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2368 /* 1 means zero (many) matches is allowed. */
2369 boolean zero_times_ok
= 0, many_times_ok
= 0;
2372 /* If there is a sequence of repetition chars, collapse it
2373 down to just one (the right one). We can't combine
2374 interval operators with these because of, e.g., `a{2}*',
2375 which should only match an even number of `a's. */
2379 if ((syntax
& RE_FRUGAL
)
2380 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2384 zero_times_ok
|= c
!= '+';
2385 many_times_ok
|= c
!= '?';
2391 || (!(syntax
& RE_BK_PLUS_QM
)
2392 && (*p
== '+' || *p
== '?')))
2394 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2397 FREE_STACK_RETURN (REG_EESCAPE
);
2398 if (p
[1] == '+' || p
[1] == '?')
2399 PATFETCH (c
); /* Gobble up the backslash. */
2405 /* If we get here, we found another repeat character. */
2409 /* Star, etc. applied to an empty pattern is equivalent
2410 to an empty pattern. */
2411 if (!laststart
|| laststart
== b
)
2414 /* Now we know whether or not zero matches is allowed
2415 and also whether or not two or more matches is allowed. */
2420 boolean simple
= skip_one_char (laststart
) == b
;
2421 unsigned int startoffset
= 0;
2423 /* Check if the loop can match the empty string. */
2424 (simple
|| !analyse_first (laststart
, b
, NULL
, 0)) ?
2425 on_failure_jump
: on_failure_jump_loop
;
2426 assert (skip_one_char (laststart
) <= b
);
2428 if (!zero_times_ok
&& simple
)
2429 { /* Since simple * loops can be made faster by using
2430 on_failure_keep_string_jump, we turn simple P+
2431 into PP* if P is simple. */
2432 unsigned char *p1
, *p2
;
2433 startoffset
= b
- laststart
;
2434 GET_BUFFER_SPACE (startoffset
);
2435 p1
= b
; p2
= laststart
;
2441 GET_BUFFER_SPACE (6);
2444 STORE_JUMP (ofj
, b
, b
+ 6);
2446 /* Simple * loops can use on_failure_keep_string_jump
2447 depending on what follows. But since we don't know
2448 that yet, we leave the decision up to
2449 on_failure_jump_smart. */
2450 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2451 laststart
+ startoffset
, b
+ 6);
2453 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2458 /* A simple ? pattern. */
2459 assert (zero_times_ok
);
2460 GET_BUFFER_SPACE (3);
2461 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2465 else /* not greedy */
2466 { /* I wish the greedy and non-greedy cases could be merged. */
2468 GET_BUFFER_SPACE (7); /* We might use less. */
2471 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2473 /* The non-greedy multiple match looks like a repeat..until:
2474 we only need a conditional jump at the end of the loop */
2475 if (emptyp
) BUF_PUSH (no_op
);
2476 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2477 : on_failure_jump
, b
, laststart
);
2481 /* The repeat...until naturally matches one or more.
2482 To also match zero times, we need to first jump to
2483 the end of the loop (its conditional jump). */
2484 INSERT_JUMP (jump
, laststart
, b
);
2490 /* non-greedy a?? */
2491 INSERT_JUMP (jump
, laststart
, b
+ 3);
2493 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2510 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2512 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2514 /* Ensure that we have enough space to push a charset: the
2515 opcode, the length count, and the bitset; 34 bytes in all. */
2516 GET_BUFFER_SPACE (34);
2520 /* We test `*p == '^' twice, instead of using an if
2521 statement, so we only need one BUF_PUSH. */
2522 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2526 /* Remember the first position in the bracket expression. */
2529 /* Push the number of bytes in the bitmap. */
2530 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2532 /* Clear the whole map. */
2533 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2535 /* charset_not matches newline according to a syntax bit. */
2536 if ((re_opcode_t
) b
[-2] == charset_not
2537 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2538 SET_LIST_BIT ('\n');
2540 /* Read in characters and ranges, setting map bits. */
2543 boolean escaped_char
= false;
2544 const unsigned char *p2
= p
;
2546 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2548 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2549 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2550 So the translation is done later in a loop. Example:
2551 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2554 /* \ might escape characters inside [...] and [^...]. */
2555 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2557 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2560 escaped_char
= true;
2564 /* Could be the end of the bracket expression. If it's
2565 not (i.e., when the bracket expression is `[]' so
2566 far), the ']' character bit gets set way below. */
2567 if (c
== ']' && p2
!= p1
)
2571 /* What should we do for the character which is
2572 greater than 0x7F, but not BASE_LEADING_CODE_P?
2575 /* See if we're at the beginning of a possible character
2578 if (!escaped_char
&&
2579 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2581 /* Leave room for the null. */
2582 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2583 const unsigned char *class_beg
;
2589 /* If pattern is `[[:'. */
2590 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2595 if ((c
== ':' && *p
== ']') || p
== pend
)
2597 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2600 /* This is in any case an invalid class name. */
2605 /* If isn't a word bracketed by `[:' and `:]':
2606 undo the ending character, the letters, and
2607 leave the leading `:' and `[' (but set bits for
2609 if (c
== ':' && *p
== ']')
2614 cc
= re_wctype (str
);
2617 FREE_STACK_RETURN (REG_ECTYPE
);
2619 /* Throw away the ] at the end of the character
2623 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2625 /* Most character classes in a multibyte match
2626 just set a flag. Exceptions are is_blank,
2627 is_digit, is_cntrl, and is_xdigit, since
2628 they can only match ASCII characters. We
2629 don't need to handle them for multibyte.
2630 They are distinguished by a negative wctype. */
2633 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work
,
2634 re_wctype_to_bit (cc
));
2636 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2638 int translated
= TRANSLATE (ch
);
2639 if (re_iswctype (btowc (ch
), cc
))
2640 SET_LIST_BIT (translated
);
2643 /* Repeat the loop. */
2648 /* Go back to right after the "[:". */
2652 /* Because the `:' may starts the range, we
2653 can't simply set bit and repeat the loop.
2654 Instead, just set it to C and handle below. */
2659 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2662 /* Discard the `-'. */
2665 /* Fetch the character which ends the range. */
2668 if (SINGLE_BYTE_CHAR_P (c
))
2670 if (! SINGLE_BYTE_CHAR_P (c1
))
2672 /* Handle a range starting with a
2673 character of less than 256, and ending
2674 with a character of not less than 256.
2675 Split that into two ranges, the low one
2676 ending at 0377, and the high one
2677 starting at the smallest character in
2678 the charset of C1 and ending at C1. */
2679 int charset
= CHAR_CHARSET (c1
);
2680 re_wchar_t c2
= MAKE_CHAR (charset
, 0, 0);
2682 SET_RANGE_TABLE_WORK_AREA (range_table_work
,
2687 else if (!SAME_CHARSET_P (c
, c1
))
2688 FREE_STACK_RETURN (REG_ERANGE
);
2691 /* Range from C to C. */
2694 /* Set the range ... */
2695 if (SINGLE_BYTE_CHAR_P (c
))
2696 /* ... into bitmap. */
2698 re_wchar_t this_char
;
2699 re_wchar_t range_start
= c
, range_end
= c1
;
2701 /* If the start is after the end, the range is empty. */
2702 if (range_start
> range_end
)
2704 if (syntax
& RE_NO_EMPTY_RANGES
)
2705 FREE_STACK_RETURN (REG_ERANGE
);
2706 /* Else, repeat the loop. */
2710 for (this_char
= range_start
; this_char
<= range_end
;
2712 SET_LIST_BIT (TRANSLATE (this_char
));
2716 /* ... into range table. */
2717 SET_RANGE_TABLE_WORK_AREA (range_table_work
, c
, c1
);
2720 /* Discard any (non)matching list bytes that are all 0 at the
2721 end of the map. Decrease the map-length byte too. */
2722 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2726 /* Build real range table from work area. */
2727 if (RANGE_TABLE_WORK_USED (range_table_work
)
2728 || RANGE_TABLE_WORK_BITS (range_table_work
))
2731 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
2733 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2734 bytes for flags, two for COUNT, and three bytes for
2736 GET_BUFFER_SPACE (4 + used
* 3);
2738 /* Indicate the existence of range table. */
2739 laststart
[1] |= 0x80;
2741 /* Store the character class flag bits into the range table.
2742 If not in emacs, these flag bits are always 0. */
2743 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
2744 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
2746 STORE_NUMBER_AND_INCR (b
, used
/ 2);
2747 for (i
= 0; i
< used
; i
++)
2748 STORE_CHARACTER_AND_INCR
2749 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
2756 if (syntax
& RE_NO_BK_PARENS
)
2763 if (syntax
& RE_NO_BK_PARENS
)
2770 if (syntax
& RE_NEWLINE_ALT
)
2777 if (syntax
& RE_NO_BK_VBAR
)
2784 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2785 goto handle_interval
;
2791 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2793 /* Do not translate the character after the \, so that we can
2794 distinguish, e.g., \B from \b, even if we normally would
2795 translate, e.g., B to b. */
2801 if (syntax
& RE_NO_BK_PARENS
)
2802 goto normal_backslash
;
2809 /* Look for a special (?...) construct */
2810 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
2812 PATFETCH (c
); /* Gobble up the '?'. */
2816 case ':': shy
= 1; break;
2818 /* Only (?:...) is supported right now. */
2819 FREE_STACK_RETURN (REG_BADPAT
);
2830 if (COMPILE_STACK_FULL
)
2832 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2833 compile_stack_elt_t
);
2834 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2836 compile_stack
.size
<<= 1;
2839 /* These are the values to restore when we hit end of this
2840 group. They are all relative offsets, so that if the
2841 whole pattern moves because of realloc, they will still
2843 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2844 COMPILE_STACK_TOP
.fixup_alt_jump
2845 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2846 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2847 COMPILE_STACK_TOP
.regnum
= shy
? -regnum
: regnum
;
2850 start_memory for groups beyond the last one we can
2851 represent in the compiled pattern. */
2852 if (regnum
<= MAX_REGNUM
&& !shy
)
2853 BUF_PUSH_2 (start_memory
, regnum
);
2855 compile_stack
.avail
++;
2860 /* If we've reached MAX_REGNUM groups, then this open
2861 won't actually generate any code, so we'll have to
2862 clear pending_exact explicitly. */
2868 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2870 if (COMPILE_STACK_EMPTY
)
2872 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2873 goto normal_backslash
;
2875 FREE_STACK_RETURN (REG_ERPAREN
);
2881 /* See similar code for backslashed left paren above. */
2882 if (COMPILE_STACK_EMPTY
)
2884 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2887 FREE_STACK_RETURN (REG_ERPAREN
);
2890 /* Since we just checked for an empty stack above, this
2891 ``can't happen''. */
2892 assert (compile_stack
.avail
!= 0);
2894 /* We don't just want to restore into `regnum', because
2895 later groups should continue to be numbered higher,
2896 as in `(ab)c(de)' -- the second group is #2. */
2897 regnum_t this_group_regnum
;
2899 compile_stack
.avail
--;
2900 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2902 = COMPILE_STACK_TOP
.fixup_alt_jump
2903 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2905 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2906 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2907 /* If we've reached MAX_REGNUM groups, then this open
2908 won't actually generate any code, so we'll have to
2909 clear pending_exact explicitly. */
2912 /* We're at the end of the group, so now we know how many
2913 groups were inside this one. */
2914 if (this_group_regnum
<= MAX_REGNUM
&& this_group_regnum
> 0)
2915 BUF_PUSH_2 (stop_memory
, this_group_regnum
);
2920 case '|': /* `\|'. */
2921 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2922 goto normal_backslash
;
2924 if (syntax
& RE_LIMITED_OPS
)
2927 /* Insert before the previous alternative a jump which
2928 jumps to this alternative if the former fails. */
2929 GET_BUFFER_SPACE (3);
2930 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2934 /* The alternative before this one has a jump after it
2935 which gets executed if it gets matched. Adjust that
2936 jump so it will jump to this alternative's analogous
2937 jump (put in below, which in turn will jump to the next
2938 (if any) alternative's such jump, etc.). The last such
2939 jump jumps to the correct final destination. A picture:
2945 If we are at `b', then fixup_alt_jump right now points to a
2946 three-byte space after `a'. We'll put in the jump, set
2947 fixup_alt_jump to right after `b', and leave behind three
2948 bytes which we'll fill in when we get to after `c'. */
2952 /* Mark and leave space for a jump after this alternative,
2953 to be filled in later either by next alternative or
2954 when know we're at the end of a series of alternatives. */
2956 GET_BUFFER_SPACE (3);
2965 /* If \{ is a literal. */
2966 if (!(syntax
& RE_INTERVALS
)
2967 /* If we're at `\{' and it's not the open-interval
2969 || (syntax
& RE_NO_BK_BRACES
))
2970 goto normal_backslash
;
2974 /* If got here, then the syntax allows intervals. */
2976 /* At least (most) this many matches must be made. */
2977 int lower_bound
= 0, upper_bound
= -1;
2982 FREE_STACK_RETURN (REG_EBRACE
);
2984 GET_UNSIGNED_NUMBER (lower_bound
);
2987 GET_UNSIGNED_NUMBER (upper_bound
);
2989 /* Interval such as `{1}' => match exactly once. */
2990 upper_bound
= lower_bound
;
2992 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2993 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
2994 FREE_STACK_RETURN (REG_BADBR
);
2996 if (!(syntax
& RE_NO_BK_BRACES
))
2999 FREE_STACK_RETURN (REG_BADBR
);
3005 FREE_STACK_RETURN (REG_BADBR
);
3007 /* We just parsed a valid interval. */
3009 /* If it's invalid to have no preceding re. */
3012 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3013 FREE_STACK_RETURN (REG_BADRPT
);
3014 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3017 goto unfetch_interval
;
3020 if (upper_bound
== 0)
3021 /* If the upper bound is zero, just drop the sub pattern
3024 else if (lower_bound
== 1 && upper_bound
== 1)
3025 /* Just match it once: nothing to do here. */
3028 /* Otherwise, we have a nontrivial interval. When
3029 we're all done, the pattern will look like:
3030 set_number_at <jump count> <upper bound>
3031 set_number_at <succeed_n count> <lower bound>
3032 succeed_n <after jump addr> <succeed_n count>
3034 jump_n <succeed_n addr> <jump count>
3035 (The upper bound and `jump_n' are omitted if
3036 `upper_bound' is 1, though.) */
3038 { /* If the upper bound is > 1, we need to insert
3039 more at the end of the loop. */
3040 unsigned int nbytes
= (upper_bound
< 0 ? 3
3041 : upper_bound
> 1 ? 5 : 0);
3042 unsigned int startoffset
= 0;
3044 GET_BUFFER_SPACE (20); /* We might use less. */
3046 if (lower_bound
== 0)
3048 /* A succeed_n that starts with 0 is really a
3049 a simple on_failure_jump_loop. */
3050 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3056 /* Initialize lower bound of the `succeed_n', even
3057 though it will be set during matching by its
3058 attendant `set_number_at' (inserted next),
3059 because `re_compile_fastmap' needs to know.
3060 Jump to the `jump_n' we might insert below. */
3061 INSERT_JUMP2 (succeed_n
, laststart
,
3066 /* Code to initialize the lower bound. Insert
3067 before the `succeed_n'. The `5' is the last two
3068 bytes of this `set_number_at', plus 3 bytes of
3069 the following `succeed_n'. */
3070 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3075 if (upper_bound
< 0)
3077 /* A negative upper bound stands for infinity,
3078 in which case it degenerates to a plain jump. */
3079 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3082 else if (upper_bound
> 1)
3083 { /* More than one repetition is allowed, so
3084 append a backward jump to the `succeed_n'
3085 that starts this interval.
3087 When we've reached this during matching,
3088 we'll have matched the interval once, so
3089 jump back only `upper_bound - 1' times. */
3090 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3094 /* The location we want to set is the second
3095 parameter of the `jump_n'; that is `b-2' as
3096 an absolute address. `laststart' will be
3097 the `set_number_at' we're about to insert;
3098 `laststart+3' the number to set, the source
3099 for the relative address. But we are
3100 inserting into the middle of the pattern --
3101 so everything is getting moved up by 5.
3102 Conclusion: (b - 2) - (laststart + 3) + 5,
3103 i.e., b - laststart.
3105 We insert this at the beginning of the loop
3106 so that if we fail during matching, we'll
3107 reinitialize the bounds. */
3108 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3109 upper_bound
- 1, b
);
3114 beg_interval
= NULL
;
3119 /* If an invalid interval, match the characters as literals. */
3120 assert (beg_interval
);
3122 beg_interval
= NULL
;
3124 /* normal_char and normal_backslash need `c'. */
3127 if (!(syntax
& RE_NO_BK_BRACES
))
3129 assert (p
> pattern
&& p
[-1] == '\\');
3130 goto normal_backslash
;
3136 /* There is no way to specify the before_dot and after_dot
3137 operators. rms says this is ok. --karl */
3145 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3151 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3157 BUF_PUSH_2 (categoryspec
, c
);
3163 BUF_PUSH_2 (notcategoryspec
, c
);
3169 if (syntax
& RE_NO_GNU_OPS
)
3172 BUF_PUSH_2 (syntaxspec
, Sword
);
3177 if (syntax
& RE_NO_GNU_OPS
)
3180 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3185 if (syntax
& RE_NO_GNU_OPS
)
3191 if (syntax
& RE_NO_GNU_OPS
)
3197 if (syntax
& RE_NO_GNU_OPS
)
3199 BUF_PUSH (wordbound
);
3203 if (syntax
& RE_NO_GNU_OPS
)
3205 BUF_PUSH (notwordbound
);
3209 if (syntax
& RE_NO_GNU_OPS
)
3215 if (syntax
& RE_NO_GNU_OPS
)
3220 case '1': case '2': case '3': case '4': case '5':
3221 case '6': case '7': case '8': case '9':
3225 if (syntax
& RE_NO_BK_REFS
)
3226 goto normal_backslash
;
3230 /* Can't back reference to a subexpression before its end. */
3231 if (reg
> regnum
|| group_in_compile_stack (compile_stack
, reg
))
3232 FREE_STACK_RETURN (REG_ESUBREG
);
3235 BUF_PUSH_2 (duplicate
, reg
);
3242 if (syntax
& RE_BK_PLUS_QM
)
3245 goto normal_backslash
;
3249 /* You might think it would be useful for \ to mean
3250 not to translate; but if we don't translate it
3251 it will never match anything. */
3258 /* Expects the character in `c'. */
3260 /* If no exactn currently being built. */
3263 /* If last exactn not at current position. */
3264 || pending_exact
+ *pending_exact
+ 1 != b
3266 /* We have only one byte following the exactn for the count. */
3267 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3269 /* If followed by a repetition operator. */
3270 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3271 || ((syntax
& RE_BK_PLUS_QM
)
3272 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3273 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3274 || ((syntax
& RE_INTERVALS
)
3275 && ((syntax
& RE_NO_BK_BRACES
)
3276 ? p
!= pend
&& *p
== '{'
3277 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3279 /* Start building a new exactn. */
3283 BUF_PUSH_2 (exactn
, 0);
3284 pending_exact
= b
- 1;
3287 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3293 len
= CHAR_STRING (c
, b
);
3297 (*pending_exact
) += len
;
3302 } /* while p != pend */
3305 /* Through the pattern now. */
3309 if (!COMPILE_STACK_EMPTY
)
3310 FREE_STACK_RETURN (REG_EPAREN
);
3312 /* If we don't want backtracking, force success
3313 the first time we reach the end of the compiled pattern. */
3314 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3317 free (compile_stack
.stack
);
3319 /* We have succeeded; set the length of the buffer. */
3320 bufp
->used
= b
- bufp
->buffer
;
3325 re_compile_fastmap (bufp
);
3326 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3327 print_compiled_pattern (bufp
);
3332 #ifndef MATCH_MAY_ALLOCATE
3333 /* Initialize the failure stack to the largest possible stack. This
3334 isn't necessary unless we're trying to avoid calling alloca in
3335 the search and match routines. */
3337 int num_regs
= bufp
->re_nsub
+ 1;
3339 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3341 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3343 if (! fail_stack
.stack
)
3345 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3346 * sizeof (fail_stack_elt_t
));
3349 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3351 * sizeof (fail_stack_elt_t
)));
3354 regex_grow_registers (num_regs
);
3356 #endif /* not MATCH_MAY_ALLOCATE */
3359 } /* regex_compile */
3361 /* Subroutines for `regex_compile'. */
3363 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3366 store_op1 (op
, loc
, arg
)
3371 *loc
= (unsigned char) op
;
3372 STORE_NUMBER (loc
+ 1, arg
);
3376 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3379 store_op2 (op
, loc
, arg1
, arg2
)
3384 *loc
= (unsigned char) op
;
3385 STORE_NUMBER (loc
+ 1, arg1
);
3386 STORE_NUMBER (loc
+ 3, arg2
);
3390 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3391 for OP followed by two-byte integer parameter ARG. */
3394 insert_op1 (op
, loc
, arg
, end
)
3400 register unsigned char *pfrom
= end
;
3401 register unsigned char *pto
= end
+ 3;
3403 while (pfrom
!= loc
)
3406 store_op1 (op
, loc
, arg
);
3410 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3413 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3419 register unsigned char *pfrom
= end
;
3420 register unsigned char *pto
= end
+ 5;
3422 while (pfrom
!= loc
)
3425 store_op2 (op
, loc
, arg1
, arg2
);
3429 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3430 after an alternative or a begin-subexpression. We assume there is at
3431 least one character before the ^. */
3434 at_begline_loc_p (pattern
, p
, syntax
)
3435 re_char
*pattern
, *p
;
3436 reg_syntax_t syntax
;
3438 re_char
*prev
= p
- 2;
3439 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3442 /* After a subexpression? */
3443 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3444 /* After an alternative? */
3445 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3446 /* After a shy subexpression? */
3447 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3448 && prev
[-1] == '?' && prev
[-2] == '('
3449 && (syntax
& RE_NO_BK_PARENS
3450 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3454 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3455 at least one character after the $, i.e., `P < PEND'. */
3458 at_endline_loc_p (p
, pend
, syntax
)
3460 reg_syntax_t syntax
;
3463 boolean next_backslash
= *next
== '\\';
3464 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3467 /* Before a subexpression? */
3468 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3469 : next_backslash
&& next_next
&& *next_next
== ')')
3470 /* Before an alternative? */
3471 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3472 : next_backslash
&& next_next
&& *next_next
== '|');
3476 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3477 false if it's not. */
3480 group_in_compile_stack (compile_stack
, regnum
)
3481 compile_stack_type compile_stack
;
3486 for (this_element
= compile_stack
.avail
- 1;
3489 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3496 If fastmap is non-NULL, go through the pattern and fill fastmap
3497 with all the possible leading chars. If fastmap is NULL, don't
3498 bother filling it up (obviously) and only return whether the
3499 pattern could potentially match the empty string.
3501 Return 1 if p..pend might match the empty string.
3502 Return 0 if p..pend matches at least one char.
3503 Return -1 if fastmap was not updated accurately. */
3506 analyse_first (p
, pend
, fastmap
, multibyte
)
3509 const int multibyte
;
3514 /* If all elements for base leading-codes in fastmap is set, this
3515 flag is set true. */
3516 boolean match_any_multibyte_characters
= false;
3520 /* The loop below works as follows:
3521 - It has a working-list kept in the PATTERN_STACK and which basically
3522 starts by only containing a pointer to the first operation.
3523 - If the opcode we're looking at is a match against some set of
3524 chars, then we add those chars to the fastmap and go on to the
3525 next work element from the worklist (done via `break').
3526 - If the opcode is a control operator on the other hand, we either
3527 ignore it (if it's meaningless at this point, such as `start_memory')
3528 or execute it (if it's a jump). If the jump has several destinations
3529 (i.e. `on_failure_jump'), then we push the other destination onto the
3531 We guarantee termination by ignoring backward jumps (more or less),
3532 so that `p' is monotonically increasing. More to the point, we
3533 never set `p' (or push) anything `<= p1'. */
3537 /* `p1' is used as a marker of how far back a `on_failure_jump'
3538 can go without being ignored. It is normally equal to `p'
3539 (which prevents any backward `on_failure_jump') except right
3540 after a plain `jump', to allow patterns such as:
3543 10: on_failure_jump 3
3544 as used for the *? operator. */
3547 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3554 /* If the first character has to match a backreference, that means
3555 that the group was empty (since it already matched). Since this
3556 is the only case that interests us here, we can assume that the
3557 backreference must match the empty string. */
3562 /* Following are the cases which match a character. These end
3568 int c
= RE_STRING_CHAR (p
+ 1, pend
- p
);
3570 if (SINGLE_BYTE_CHAR_P (c
))
3579 /* We could put all the chars except for \n (and maybe \0)
3580 but we don't bother since it is generally not worth it. */
3581 if (!fastmap
) break;
3586 /* Chars beyond end of bitmap are possible matches.
3587 All the single-byte codes can occur in multibyte buffers.
3588 So any that are not listed in the charset
3589 are possible matches, even in multibyte buffers. */
3590 if (!fastmap
) break;
3591 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3592 j
< (1 << BYTEWIDTH
); j
++)
3596 if (!fastmap
) break;
3597 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3598 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3600 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3603 if ((not && multibyte
)
3604 /* Any character set can possibly contain a character
3605 which doesn't match the specified set of characters. */
3606 || (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3607 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3608 /* If we can match a character class, we can match
3609 any character set. */
3611 set_fastmap_for_multibyte_characters
:
3612 if (match_any_multibyte_characters
== false)
3614 for (j
= 0x80; j
< 0xA0; j
++) /* XXX */
3615 if (BASE_LEADING_CODE_P (j
))
3617 match_any_multibyte_characters
= true;
3621 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3622 && match_any_multibyte_characters
== false)
3624 /* Set fastmap[I] 1 where I is a base leading code of each
3625 multibyte character in the range table. */
3628 /* Make P points the range table. `+ 2' is to skip flag
3629 bits for a character class. */
3630 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3632 /* Extract the number of ranges in range table into COUNT. */
3633 EXTRACT_NUMBER_AND_INCR (count
, p
);
3634 for (; count
> 0; count
--, p
+= 2 * 3) /* XXX */
3636 /* Extract the start of each range. */
3637 EXTRACT_CHARACTER (c
, p
);
3638 j
= CHAR_CHARSET (c
);
3639 fastmap
[CHARSET_LEADING_CODE_BASE (j
)] = 1;
3646 if (!fastmap
) break;
3648 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
3650 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3651 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
3655 /* This match depends on text properties. These end with
3656 aborting optimizations. */
3660 case notcategoryspec
:
3661 if (!fastmap
) break;
3662 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
3664 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3665 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
3669 /* Any character set can possibly contain a character
3670 whose category is K (or not). */
3671 goto set_fastmap_for_multibyte_characters
;
3674 /* All cases after this match the empty string. These end with
3694 EXTRACT_NUMBER_AND_INCR (j
, p
);
3696 /* Backward jumps can only go back to code that we've already
3697 visited. `re_compile' should make sure this is true. */
3700 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
3702 case on_failure_jump
:
3703 case on_failure_keep_string_jump
:
3704 case on_failure_jump_loop
:
3705 case on_failure_jump_nastyloop
:
3706 case on_failure_jump_smart
:
3712 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3713 to jump back to "just after here". */
3716 case on_failure_jump
:
3717 case on_failure_keep_string_jump
:
3718 case on_failure_jump_nastyloop
:
3719 case on_failure_jump_loop
:
3720 case on_failure_jump_smart
:
3721 EXTRACT_NUMBER_AND_INCR (j
, p
);
3723 ; /* Backward jump to be ignored. */
3725 { /* We have to look down both arms.
3726 We first go down the "straight" path so as to minimize
3727 stack usage when going through alternatives. */
3728 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
3736 /* This code simply does not properly handle forward jump_n. */
3737 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
3739 /* jump_n can either jump or fall through. The (backward) jump
3740 case has already been handled, so we only need to look at the
3741 fallthrough case. */
3745 /* If N == 0, it should be an on_failure_jump_loop instead. */
3746 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
3748 /* We only care about one iteration of the loop, so we don't
3749 need to consider the case where this behaves like an
3766 abort (); /* We have listed all the cases. */
3769 /* Getting here means we have found the possible starting
3770 characters for one path of the pattern -- and that the empty
3771 string does not match. We need not follow this path further. */
3775 /* We reached the end without matching anything. */
3778 } /* analyse_first */
3780 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3781 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3782 characters can start a string that matches the pattern. This fastmap
3783 is used by re_search to skip quickly over impossible starting points.
3785 Character codes above (1 << BYTEWIDTH) are not represented in the
3786 fastmap, but the leading codes are represented. Thus, the fastmap
3787 indicates which character sets could start a match.
3789 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3790 area as BUFP->fastmap.
3792 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3795 Returns 0 if we succeed, -2 if an internal error. */
3798 re_compile_fastmap (bufp
)
3799 struct re_pattern_buffer
*bufp
;
3801 char *fastmap
= bufp
->fastmap
;
3804 assert (fastmap
&& bufp
->buffer
);
3806 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
3807 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
3809 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
3810 fastmap
, RE_MULTIBYTE_P (bufp
));
3811 bufp
->can_be_null
= (analysis
!= 0);
3813 } /* re_compile_fastmap */
3815 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
3816 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3817 this memory for recording register information. STARTS and ENDS
3818 must be allocated using the malloc library routine, and must each
3819 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3821 If NUM_REGS == 0, then subsequent matches should allocate their own
3824 Unless this function is called, the first search or match using
3825 PATTERN_BUFFER will allocate its own register data, without
3826 freeing the old data. */
3829 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3830 struct re_pattern_buffer
*bufp
;
3831 struct re_registers
*regs
;
3833 regoff_t
*starts
, *ends
;
3837 bufp
->regs_allocated
= REGS_REALLOCATE
;
3838 regs
->num_regs
= num_regs
;
3839 regs
->start
= starts
;
3844 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3846 regs
->start
= regs
->end
= (regoff_t
*) 0;
3849 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
3851 /* Searching routines. */
3853 /* Like re_search_2, below, but only one string is specified, and
3854 doesn't let you say where to stop matching. */
3857 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3858 struct re_pattern_buffer
*bufp
;
3860 int size
, startpos
, range
;
3861 struct re_registers
*regs
;
3863 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3866 WEAK_ALIAS (__re_search
, re_search
)
3868 /* End address of virtual concatenation of string. */
3869 #define STOP_ADDR_VSTRING(P) \
3870 (((P) >= size1 ? string2 + size2 : string1 + size1))
3872 /* Address of POS in the concatenation of virtual string. */
3873 #define POS_ADDR_VSTRING(POS) \
3874 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
3876 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3877 virtual concatenation of STRING1 and STRING2, starting first at index
3878 STARTPOS, then at STARTPOS + 1, and so on.
3880 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3882 RANGE is how far to scan while trying to match. RANGE = 0 means try
3883 only at STARTPOS; in general, the last start tried is STARTPOS +
3886 In REGS, return the indices of the virtual concatenation of STRING1
3887 and STRING2 that matched the entire BUFP->buffer and its contained
3890 Do not consider matching one past the index STOP in the virtual
3891 concatenation of STRING1 and STRING2.
3893 We return either the position in the strings at which the match was
3894 found, -1 if no match, or -2 if error (such as failure
3898 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
3899 struct re_pattern_buffer
*bufp
;
3900 const char *str1
, *str2
;
3904 struct re_registers
*regs
;
3908 re_char
*string1
= (re_char
*) str1
;
3909 re_char
*string2
= (re_char
*) str2
;
3910 register char *fastmap
= bufp
->fastmap
;
3911 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
3912 int total_size
= size1
+ size2
;
3913 int endpos
= startpos
+ range
;
3914 boolean anchored_start
;
3916 /* Nonzero if we have to concern multibyte character. */
3917 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
3919 /* Check for out-of-range STARTPOS. */
3920 if (startpos
< 0 || startpos
> total_size
)
3923 /* Fix up RANGE if it might eventually take us outside
3924 the virtual concatenation of STRING1 and STRING2.
3925 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
3927 range
= 0 - startpos
;
3928 else if (endpos
> total_size
)
3929 range
= total_size
- startpos
;
3931 /* If the search isn't to be a backwards one, don't waste time in a
3932 search for a pattern anchored at beginning of buffer. */
3933 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3942 /* In a forward search for something that starts with \=.
3943 don't keep searching past point. */
3944 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
3946 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
3952 /* Update the fastmap now if not correct already. */
3953 if (fastmap
&& !bufp
->fastmap_accurate
)
3954 re_compile_fastmap (bufp
);
3956 /* See whether the pattern is anchored. */
3957 anchored_start
= (bufp
->buffer
[0] == begline
);
3960 gl_state
.object
= re_match_object
;
3962 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
3964 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
3968 /* Loop through the string, looking for a place to start matching. */
3971 /* If the pattern is anchored,
3972 skip quickly past places we cannot match.
3973 We don't bother to treat startpos == 0 specially
3974 because that case doesn't repeat. */
3975 if (anchored_start
&& startpos
> 0)
3977 if (! ((startpos
<= size1
? string1
[startpos
- 1]
3978 : string2
[startpos
- size1
- 1])
3983 /* If a fastmap is supplied, skip quickly over characters that
3984 cannot be the start of a match. If the pattern can match the
3985 null string, however, we don't need to skip characters; we want
3986 the first null string. */
3987 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3989 register re_char
*d
;
3990 register re_wchar_t buf_ch
;
3992 d
= POS_ADDR_VSTRING (startpos
);
3994 if (range
> 0) /* Searching forwards. */
3996 register int lim
= 0;
3999 if (startpos
< size1
&& startpos
+ range
>= size1
)
4000 lim
= range
- (size1
- startpos
);
4002 /* Written out as an if-else to avoid testing `translate'
4004 if (RE_TRANSLATE_P (translate
))
4011 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
4014 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4019 range
-= buf_charlen
;
4024 && !fastmap
[RE_TRANSLATE (translate
, *d
)])
4031 while (range
> lim
&& !fastmap
[*d
])
4037 startpos
+= irange
- range
;
4039 else /* Searching backwards. */
4041 int room
= (startpos
>= size1
4042 ? size2
+ size1
- startpos
4043 : size1
- startpos
);
4044 buf_ch
= RE_STRING_CHAR (d
, room
);
4045 buf_ch
= TRANSLATE (buf_ch
);
4047 if (! (buf_ch
>= 0400
4048 || fastmap
[buf_ch
]))
4053 /* If can't match the null string, and that's all we have left, fail. */
4054 if (range
>= 0 && startpos
== total_size
&& fastmap
4055 && !bufp
->can_be_null
)
4058 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4059 startpos
, regs
, stop
);
4060 #ifndef REGEX_MALLOC
4077 /* Update STARTPOS to the next character boundary. */
4080 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4081 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4082 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
4100 /* Update STARTPOS to the previous character boundary. */
4103 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4106 /* Find the head of multibyte form. */
4107 while (!CHAR_HEAD_P (*p
))
4112 if (MULTIBYTE_FORM_LENGTH (p
, len
+ 1) != (len
+ 1))
4128 WEAK_ALIAS (__re_search_2
, re_search_2
)
4130 /* Declarations and macros for re_match_2. */
4132 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4134 RE_TRANSLATE_TYPE translate
,
4135 const int multibyte
));
4137 /* This converts PTR, a pointer into one of the search strings `string1'
4138 and `string2' into an offset from the beginning of that string. */
4139 #define POINTER_TO_OFFSET(ptr) \
4140 (FIRST_STRING_P (ptr) \
4141 ? ((regoff_t) ((ptr) - string1)) \
4142 : ((regoff_t) ((ptr) - string2 + size1)))
4144 /* Call before fetching a character with *d. This switches over to
4145 string2 if necessary.
4146 Check re_match_2_internal for a discussion of why end_match_2 might
4147 not be within string2 (but be equal to end_match_1 instead). */
4148 #define PREFETCH() \
4151 /* End of string2 => fail. */ \
4152 if (dend == end_match_2) \
4154 /* End of string1 => advance to string2. */ \
4156 dend = end_match_2; \
4159 /* Call before fetching a char with *d if you already checked other limits.
4160 This is meant for use in lookahead operations like wordend, etc..
4161 where we might need to look at parts of the string that might be
4162 outside of the LIMITs (i.e past `stop'). */
4163 #define PREFETCH_NOLIMIT() \
4167 dend = end_match_2; \
4170 /* Test if at very beginning or at very end of the virtual concatenation
4171 of `string1' and `string2'. If only one string, it's `string2'. */
4172 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4173 #define AT_STRINGS_END(d) ((d) == end2)
4176 /* Test if D points to a character which is word-constituent. We have
4177 two special cases to check for: if past the end of string1, look at
4178 the first character in string2; and if before the beginning of
4179 string2, look at the last character in string1. */
4180 #define WORDCHAR_P(d) \
4181 (SYNTAX ((d) == end1 ? *string2 \
4182 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4185 /* Disabled due to a compiler bug -- see comment at case wordbound */
4187 /* The comment at case wordbound is following one, but we don't use
4188 AT_WORD_BOUNDARY anymore to support multibyte form.
4190 The DEC Alpha C compiler 3.x generates incorrect code for the
4191 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4192 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4193 macro and introducing temporary variables works around the bug. */
4196 /* Test if the character before D and the one at D differ with respect
4197 to being word-constituent. */
4198 #define AT_WORD_BOUNDARY(d) \
4199 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4200 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4203 /* Free everything we malloc. */
4204 #ifdef MATCH_MAY_ALLOCATE
4205 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4206 # define FREE_VARIABLES() \
4208 REGEX_FREE_STACK (fail_stack.stack); \
4209 FREE_VAR (regstart); \
4210 FREE_VAR (regend); \
4211 FREE_VAR (best_regstart); \
4212 FREE_VAR (best_regend); \
4215 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4216 #endif /* not MATCH_MAY_ALLOCATE */
4219 /* Optimization routines. */
4221 /* If the operation is a match against one or more chars,
4222 return a pointer to the next operation, else return NULL. */
4227 switch (SWITCH_ENUM_CAST (*p
++))
4238 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4241 p
= CHARSET_RANGE_TABLE (p
- 1);
4242 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4243 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4246 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4253 case notcategoryspec
:
4265 /* Jump over non-matching operations. */
4266 static unsigned char *
4267 skip_noops (p
, pend
)
4268 unsigned char *p
, *pend
;
4273 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4282 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4293 /* Non-zero if "p1 matches something" implies "p2 fails". */
4295 mutually_exclusive_p (bufp
, p1
, p2
)
4296 struct re_pattern_buffer
*bufp
;
4297 unsigned char *p1
, *p2
;
4300 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4301 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4303 assert (p1
>= bufp
->buffer
&& p1
< pend
4304 && p2
>= bufp
->buffer
&& p2
<= pend
);
4306 /* Skip over open/close-group commands.
4307 If what follows this loop is a ...+ construct,
4308 look at what begins its body, since we will have to
4309 match at least one of that. */
4310 p2
= skip_noops (p2
, pend
);
4311 /* The same skip can be done for p1, except that this function
4312 is only used in the case where p1 is a simple match operator. */
4313 /* p1 = skip_noops (p1, pend); */
4315 assert (p1
>= bufp
->buffer
&& p1
< pend
4316 && p2
>= bufp
->buffer
&& p2
<= pend
);
4318 op2
= p2
== pend
? succeed
: *p2
;
4320 switch (SWITCH_ENUM_CAST (op2
))
4324 /* If we're at the end of the pattern, we can change. */
4325 if (skip_one_char (p1
))
4327 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4335 register re_wchar_t c
4336 = (re_opcode_t
) *p2
== endline
? '\n'
4337 : RE_STRING_CHAR (p2
+ 2, pend
- p2
- 2);
4339 if ((re_opcode_t
) *p1
== exactn
)
4341 if (c
!= RE_STRING_CHAR (p1
+ 2, pend
- p1
- 2))
4343 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4348 else if ((re_opcode_t
) *p1
== charset
4349 || (re_opcode_t
) *p1
== charset_not
)
4351 int not = (re_opcode_t
) *p1
== charset_not
;
4353 /* Test if C is listed in charset (or charset_not)
4355 if (SINGLE_BYTE_CHAR_P (c
))
4357 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4358 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4361 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4362 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4364 /* `not' is equal to 1 if c would match, which means
4365 that we can't change to pop_failure_jump. */
4368 DEBUG_PRINT1 (" No match => fast loop.\n");
4372 else if ((re_opcode_t
) *p1
== anychar
4375 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4383 if ((re_opcode_t
) *p1
== exactn
)
4384 /* Reuse the code above. */
4385 return mutually_exclusive_p (bufp
, p2
, p1
);
4387 /* It is hard to list up all the character in charset
4388 P2 if it includes multibyte character. Give up in
4390 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4392 /* Now, we are sure that P2 has no range table.
4393 So, for the size of bitmap in P2, `p2[1]' is
4394 enough. But P1 may have range table, so the
4395 size of bitmap table of P1 is extracted by
4396 using macro `CHARSET_BITMAP_SIZE'.
4398 Since we know that all the character listed in
4399 P2 is ASCII, it is enough to test only bitmap
4402 if ((re_opcode_t
) *p1
== charset
)
4405 /* We win if the charset inside the loop
4406 has no overlap with the one after the loop. */
4409 && idx
< CHARSET_BITMAP_SIZE (p1
));
4411 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4415 || idx
== CHARSET_BITMAP_SIZE (p1
))
4417 DEBUG_PRINT1 (" No match => fast loop.\n");
4421 else if ((re_opcode_t
) *p1
== charset_not
)
4424 /* We win if the charset_not inside the loop lists
4425 every character listed in the charset after. */
4426 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4427 if (! (p2
[2 + idx
] == 0
4428 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4429 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4434 DEBUG_PRINT1 (" No match => fast loop.\n");
4443 switch (SWITCH_ENUM_CAST (*p1
))
4447 /* Reuse the code above. */
4448 return mutually_exclusive_p (bufp
, p2
, p1
);
4450 /* When we have two charset_not, it's very unlikely that
4451 they don't overlap. The union of the two sets of excluded
4452 chars should cover all possible chars, which, as a matter of
4453 fact, is virtually impossible in multibyte buffers. */
4460 return ((re_opcode_t
) *p1
== syntaxspec
4461 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4465 return ((re_opcode_t
) *p1
== notsyntaxspec
4466 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4469 return (((re_opcode_t
) *p1
== notsyntaxspec
4470 || (re_opcode_t
) *p1
== syntaxspec
)
4475 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4476 case notcategoryspec
:
4477 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4489 /* Matching routines. */
4491 #ifndef emacs /* Emacs never uses this. */
4492 /* re_match is like re_match_2 except it takes only a single string. */
4495 re_match (bufp
, string
, size
, pos
, regs
)
4496 struct re_pattern_buffer
*bufp
;
4499 struct re_registers
*regs
;
4501 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
4503 # if defined C_ALLOCA && !defined REGEX_MALLOC
4508 WEAK_ALIAS (__re_match
, re_match
)
4509 #endif /* not emacs */
4512 /* In Emacs, this is the string or buffer in which we
4513 are matching. It is used for looking up syntax properties. */
4514 Lisp_Object re_match_object
;
4517 /* re_match_2 matches the compiled pattern in BUFP against the
4518 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4519 and SIZE2, respectively). We start matching at POS, and stop
4522 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4523 store offsets for the substring each group matched in REGS. See the
4524 documentation for exactly how many groups we fill.
4526 We return -1 if no match, -2 if an internal error (such as the
4527 failure stack overflowing). Otherwise, we return the length of the
4528 matched substring. */
4531 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4532 struct re_pattern_buffer
*bufp
;
4533 const char *string1
, *string2
;
4536 struct re_registers
*regs
;
4543 gl_state
.object
= re_match_object
;
4544 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4545 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4548 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4549 (re_char
*) string2
, size2
,
4551 #if defined C_ALLOCA && !defined REGEX_MALLOC
4556 WEAK_ALIAS (__re_match_2
, re_match_2
)
4558 /* This is a separate function so that we can force an alloca cleanup
4561 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4562 struct re_pattern_buffer
*bufp
;
4563 re_char
*string1
, *string2
;
4566 struct re_registers
*regs
;
4569 /* General temporaries. */
4574 /* Just past the end of the corresponding string. */
4575 re_char
*end1
, *end2
;
4577 /* Pointers into string1 and string2, just past the last characters in
4578 each to consider matching. */
4579 re_char
*end_match_1
, *end_match_2
;
4581 /* Where we are in the data, and the end of the current string. */
4584 /* Used sometimes to remember where we were before starting matching
4585 an operator so that we can go back in case of failure. This "atomic"
4586 behavior of matching opcodes is indispensable to the correctness
4587 of the on_failure_keep_string_jump optimization. */
4590 /* Where we are in the pattern, and the end of the pattern. */
4591 re_char
*p
= bufp
->buffer
;
4592 re_char
*pend
= p
+ bufp
->used
;
4594 /* We use this to map every character in the string. */
4595 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4597 /* Nonzero if we have to concern multibyte character. */
4598 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4600 /* Failure point stack. Each place that can handle a failure further
4601 down the line pushes a failure point on this stack. It consists of
4602 regstart, and regend for all registers corresponding to
4603 the subexpressions we're currently inside, plus the number of such
4604 registers, and, finally, two char *'s. The first char * is where
4605 to resume scanning the pattern; the second one is where to resume
4606 scanning the strings. */
4607 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4608 fail_stack_type fail_stack
;
4611 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4614 #if defined REL_ALLOC && defined REGEX_MALLOC
4615 /* This holds the pointer to the failure stack, when
4616 it is allocated relocatably. */
4617 fail_stack_elt_t
*failure_stack_ptr
;
4620 /* We fill all the registers internally, independent of what we
4621 return, for use in backreferences. The number here includes
4622 an element for register zero. */
4623 size_t num_regs
= bufp
->re_nsub
+ 1;
4625 /* Information on the contents of registers. These are pointers into
4626 the input strings; they record just what was matched (on this
4627 attempt) by a subexpression part of the pattern, that is, the
4628 regnum-th regstart pointer points to where in the pattern we began
4629 matching and the regnum-th regend points to right after where we
4630 stopped matching the regnum-th subexpression. (The zeroth register
4631 keeps track of what the whole pattern matches.) */
4632 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4633 re_char
**regstart
, **regend
;
4636 /* The following record the register info as found in the above
4637 variables when we find a match better than any we've seen before.
4638 This happens as we backtrack through the failure points, which in
4639 turn happens only if we have not yet matched the entire string. */
4640 unsigned best_regs_set
= false;
4641 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4642 re_char
**best_regstart
, **best_regend
;
4645 /* Logically, this is `best_regend[0]'. But we don't want to have to
4646 allocate space for that if we're not allocating space for anything
4647 else (see below). Also, we never need info about register 0 for
4648 any of the other register vectors, and it seems rather a kludge to
4649 treat `best_regend' differently than the rest. So we keep track of
4650 the end of the best match so far in a separate variable. We
4651 initialize this to NULL so that when we backtrack the first time
4652 and need to test it, it's not garbage. */
4653 re_char
*match_end
= NULL
;
4656 /* Counts the total number of registers pushed. */
4657 unsigned num_regs_pushed
= 0;
4660 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4664 #ifdef MATCH_MAY_ALLOCATE
4665 /* Do not bother to initialize all the register variables if there are
4666 no groups in the pattern, as it takes a fair amount of time. If
4667 there are groups, we include space for register 0 (the whole
4668 pattern), even though we never use it, since it simplifies the
4669 array indexing. We should fix this. */
4672 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4673 regend
= REGEX_TALLOC (num_regs
, re_char
*);
4674 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4675 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
4677 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
4685 /* We must initialize all our variables to NULL, so that
4686 `FREE_VARIABLES' doesn't try to free them. */
4687 regstart
= regend
= best_regstart
= best_regend
= NULL
;
4689 #endif /* MATCH_MAY_ALLOCATE */
4691 /* The starting position is bogus. */
4692 if (pos
< 0 || pos
> size1
+ size2
)
4698 /* Initialize subexpression text positions to -1 to mark ones that no
4699 start_memory/stop_memory has been seen for. Also initialize the
4700 register information struct. */
4701 for (reg
= 1; reg
< num_regs
; reg
++)
4702 regstart
[reg
] = regend
[reg
] = NULL
;
4704 /* We move `string1' into `string2' if the latter's empty -- but not if
4705 `string1' is null. */
4706 if (size2
== 0 && string1
!= NULL
)
4713 end1
= string1
+ size1
;
4714 end2
= string2
+ size2
;
4716 /* `p' scans through the pattern as `d' scans through the data.
4717 `dend' is the end of the input string that `d' points within. `d'
4718 is advanced into the following input string whenever necessary, but
4719 this happens before fetching; therefore, at the beginning of the
4720 loop, `d' can be pointing at the end of a string, but it cannot
4724 /* Only match within string2. */
4725 d
= string2
+ pos
- size1
;
4726 dend
= end_match_2
= string2
+ stop
- size1
;
4727 end_match_1
= end1
; /* Just to give it a value. */
4733 /* Only match within string1. */
4734 end_match_1
= string1
+ stop
;
4736 When we reach end_match_1, PREFETCH normally switches to string2.
4737 But in the present case, this means that just doing a PREFETCH
4738 makes us jump from `stop' to `gap' within the string.
4739 What we really want here is for the search to stop as
4740 soon as we hit end_match_1. That's why we set end_match_2
4741 to end_match_1 (since PREFETCH fails as soon as we hit
4743 end_match_2
= end_match_1
;
4746 { /* It's important to use this code when stop == size so that
4747 moving `d' from end1 to string2 will not prevent the d == dend
4748 check from catching the end of string. */
4750 end_match_2
= string2
+ stop
- size1
;
4756 DEBUG_PRINT1 ("The compiled pattern is: ");
4757 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4758 DEBUG_PRINT1 ("The string to match is: `");
4759 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4760 DEBUG_PRINT1 ("'\n");
4762 /* This loops over pattern commands. It exits by returning from the
4763 function if the match is complete, or it drops through if the match
4764 fails at this starting point in the input data. */
4767 DEBUG_PRINT2 ("\n%p: ", p
);
4770 { /* End of pattern means we might have succeeded. */
4771 DEBUG_PRINT1 ("end of pattern ... ");
4773 /* If we haven't matched the entire string, and we want the
4774 longest match, try backtracking. */
4775 if (d
!= end_match_2
)
4777 /* 1 if this match ends in the same string (string1 or string2)
4778 as the best previous match. */
4779 boolean same_str_p
= (FIRST_STRING_P (match_end
)
4780 == FIRST_STRING_P (d
));
4781 /* 1 if this match is the best seen so far. */
4782 boolean best_match_p
;
4784 /* AIX compiler got confused when this was combined
4785 with the previous declaration. */
4787 best_match_p
= d
> match_end
;
4789 best_match_p
= !FIRST_STRING_P (d
);
4791 DEBUG_PRINT1 ("backtracking.\n");
4793 if (!FAIL_STACK_EMPTY ())
4794 { /* More failure points to try. */
4796 /* If exceeds best match so far, save it. */
4797 if (!best_regs_set
|| best_match_p
)
4799 best_regs_set
= true;
4802 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
4804 for (reg
= 1; reg
< num_regs
; reg
++)
4806 best_regstart
[reg
] = regstart
[reg
];
4807 best_regend
[reg
] = regend
[reg
];
4813 /* If no failure points, don't restore garbage. And if
4814 last match is real best match, don't restore second
4816 else if (best_regs_set
&& !best_match_p
)
4819 /* Restore best match. It may happen that `dend ==
4820 end_match_1' while the restored d is in string2.
4821 For example, the pattern `x.*y.*z' against the
4822 strings `x-' and `y-z-', if the two strings are
4823 not consecutive in memory. */
4824 DEBUG_PRINT1 ("Restoring best registers.\n");
4827 dend
= ((d
>= string1
&& d
<= end1
)
4828 ? end_match_1
: end_match_2
);
4830 for (reg
= 1; reg
< num_regs
; reg
++)
4832 regstart
[reg
] = best_regstart
[reg
];
4833 regend
[reg
] = best_regend
[reg
];
4836 } /* d != end_match_2 */
4839 DEBUG_PRINT1 ("Accepting match.\n");
4841 /* If caller wants register contents data back, do it. */
4842 if (regs
&& !bufp
->no_sub
)
4844 /* Have the register data arrays been allocated? */
4845 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
4846 { /* No. So allocate them with malloc. We need one
4847 extra element beyond `num_regs' for the `-1' marker
4849 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
4850 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
4851 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
4852 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4857 bufp
->regs_allocated
= REGS_REALLOCATE
;
4859 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
4860 { /* Yes. If we need more elements than were already
4861 allocated, reallocate them. If we need fewer, just
4863 if (regs
->num_regs
< num_regs
+ 1)
4865 regs
->num_regs
= num_regs
+ 1;
4866 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
4867 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
4868 if (regs
->start
== NULL
|| regs
->end
== NULL
)
4877 /* These braces fend off a "empty body in an else-statement"
4878 warning under GCC when assert expands to nothing. */
4879 assert (bufp
->regs_allocated
== REGS_FIXED
);
4882 /* Convert the pointer data in `regstart' and `regend' to
4883 indices. Register zero has to be set differently,
4884 since we haven't kept track of any info for it. */
4885 if (regs
->num_regs
> 0)
4887 regs
->start
[0] = pos
;
4888 regs
->end
[0] = POINTER_TO_OFFSET (d
);
4891 /* Go through the first `min (num_regs, regs->num_regs)'
4892 registers, since that is all we initialized. */
4893 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
4895 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
4896 regs
->start
[reg
] = regs
->end
[reg
] = -1;
4900 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
4902 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
4906 /* If the regs structure we return has more elements than
4907 were in the pattern, set the extra elements to -1. If
4908 we (re)allocated the registers, this is the case,
4909 because we always allocate enough to have at least one
4911 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
4912 regs
->start
[reg
] = regs
->end
[reg
] = -1;
4913 } /* regs && !bufp->no_sub */
4915 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
4916 nfailure_points_pushed
, nfailure_points_popped
,
4917 nfailure_points_pushed
- nfailure_points_popped
);
4918 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
4920 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
4922 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
4928 /* Otherwise match next pattern command. */
4929 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
4931 /* Ignore these. Used to ignore the n of succeed_n's which
4932 currently have n == 0. */
4934 DEBUG_PRINT1 ("EXECUTING no_op.\n");
4938 DEBUG_PRINT1 ("EXECUTING succeed.\n");
4941 /* Match the next n pattern characters exactly. The following
4942 byte in the pattern defines n, and the n bytes after that
4943 are the characters to match. */
4946 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
4948 /* Remember the start point to rollback upon failure. */
4951 /* This is written out as an if-else so we don't waste time
4952 testing `translate' inside the loop. */
4953 if (RE_TRANSLATE_P (translate
))
4958 int pat_charlen
, buf_charlen
;
4959 unsigned int pat_ch
, buf_ch
;
4962 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
4963 buf_ch
= STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
4965 if (RE_TRANSLATE (translate
, buf_ch
)
4974 mcnt
-= pat_charlen
;
4981 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5006 /* Match any character except possibly a newline or a null. */
5012 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5015 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5016 buf_ch
= TRANSLATE (buf_ch
);
5018 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5020 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5021 && buf_ch
== '\000'))
5024 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5033 register unsigned int c
;
5034 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5037 /* Start of actual range_table, or end of bitmap if there is no
5039 re_char
*range_table
;
5041 /* Nonzero if there is a range table. */
5042 int range_table_exists
;
5044 /* Number of ranges of range table. This is not included
5045 in the initial byte-length of the command. */
5048 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5050 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5052 if (range_table_exists
)
5054 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5055 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5059 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5060 c
= TRANSLATE (c
); /* The character to match. */
5062 if (SINGLE_BYTE_CHAR_P (c
))
5063 { /* Lookup bitmap. */
5064 /* Cast to `unsigned' instead of `unsigned char' in
5065 case the bit list is a full 32 bytes long. */
5066 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5067 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5071 else if (range_table_exists
)
5073 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5075 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5076 | (class_bits
& BIT_MULTIBYTE
)
5077 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5078 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5079 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5080 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5083 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5087 if (range_table_exists
)
5088 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5090 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5092 if (!not) goto fail
;
5099 /* The beginning of a group is represented by start_memory.
5100 The argument is the register number. The text
5101 matched within the group is recorded (in the internal
5102 registers data structure) under the register number. */
5104 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5106 /* In case we need to undo this operation (via backtracking). */
5107 PUSH_FAILURE_REG ((unsigned int)*p
);
5110 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5111 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5113 /* Move past the register number and inner group count. */
5118 /* The stop_memory opcode represents the end of a group. Its
5119 argument is the same as start_memory's: the register number. */
5121 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5123 assert (!REG_UNSET (regstart
[*p
]));
5124 /* Strictly speaking, there should be code such as:
5126 assert (REG_UNSET (regend[*p]));
5127 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5129 But the only info to be pushed is regend[*p] and it is known to
5130 be UNSET, so there really isn't anything to push.
5131 Not pushing anything, on the other hand deprives us from the
5132 guarantee that regend[*p] is UNSET since undoing this operation
5133 will not reset its value properly. This is not important since
5134 the value will only be read on the next start_memory or at
5135 the very end and both events can only happen if this stop_memory
5139 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5141 /* Move past the register number and the inner group count. */
5146 /* \<digit> has been turned into a `duplicate' command which is
5147 followed by the numeric value of <digit> as the register number. */
5150 register re_char
*d2
, *dend2
;
5151 int regno
= *p
++; /* Get which register to match against. */
5152 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5154 /* Can't back reference a group which we've never matched. */
5155 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5158 /* Where in input to try to start matching. */
5159 d2
= regstart
[regno
];
5161 /* Remember the start point to rollback upon failure. */
5164 /* Where to stop matching; if both the place to start and
5165 the place to stop matching are in the same string, then
5166 set to the place to stop, otherwise, for now have to use
5167 the end of the first string. */
5169 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5170 == FIRST_STRING_P (regend
[regno
]))
5171 ? regend
[regno
] : end_match_1
);
5174 /* If necessary, advance to next segment in register
5178 if (dend2
== end_match_2
) break;
5179 if (dend2
== regend
[regno
]) break;
5181 /* End of string1 => advance to string2. */
5183 dend2
= regend
[regno
];
5185 /* At end of register contents => success */
5186 if (d2
== dend2
) break;
5188 /* If necessary, advance to next segment in data. */
5191 /* How many characters left in this segment to match. */
5194 /* Want how many consecutive characters we can match in
5195 one shot, so, if necessary, adjust the count. */
5196 if (mcnt
> dend2
- d2
)
5199 /* Compare that many; failure if mismatch, else move
5201 if (RE_TRANSLATE_P (translate
)
5202 ? bcmp_translate (d
, d2
, mcnt
, translate
, multibyte
)
5203 : memcmp (d
, d2
, mcnt
))
5208 d
+= mcnt
, d2
+= mcnt
;
5214 /* begline matches the empty string at the beginning of the string
5215 (unless `not_bol' is set in `bufp'), and after newlines. */
5217 DEBUG_PRINT1 ("EXECUTING begline.\n");
5219 if (AT_STRINGS_BEG (d
))
5221 if (!bufp
->not_bol
) break;
5226 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5230 /* In all other cases, we fail. */
5234 /* endline is the dual of begline. */
5236 DEBUG_PRINT1 ("EXECUTING endline.\n");
5238 if (AT_STRINGS_END (d
))
5240 if (!bufp
->not_eol
) break;
5244 PREFETCH_NOLIMIT ();
5251 /* Match at the very beginning of the data. */
5253 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5254 if (AT_STRINGS_BEG (d
))
5259 /* Match at the very end of the data. */
5261 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5262 if (AT_STRINGS_END (d
))
5267 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5268 pushes NULL as the value for the string on the stack. Then
5269 `POP_FAILURE_POINT' will keep the current value for the
5270 string, instead of restoring it. To see why, consider
5271 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5272 then the . fails against the \n. But the next thing we want
5273 to do is match the \n against the \n; if we restored the
5274 string value, we would be back at the foo.
5276 Because this is used only in specific cases, we don't need to
5277 check all the things that `on_failure_jump' does, to make
5278 sure the right things get saved on the stack. Hence we don't
5279 share its code. The only reason to push anything on the
5280 stack at all is that otherwise we would have to change
5281 `anychar's code to do something besides goto fail in this
5282 case; that seems worse than this. */
5283 case on_failure_keep_string_jump
:
5284 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5285 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5288 PUSH_FAILURE_POINT (p
- 3, NULL
);
5291 /* A nasty loop is introduced by the non-greedy *? and +?.
5292 With such loops, the stack only ever contains one failure point
5293 at a time, so that a plain on_failure_jump_loop kind of
5294 cycle detection cannot work. Worse yet, such a detection
5295 can not only fail to detect a cycle, but it can also wrongly
5296 detect a cycle (between different instantiations of the same
5298 So the method used for those nasty loops is a little different:
5299 We use a special cycle-detection-stack-frame which is pushed
5300 when the on_failure_jump_nastyloop failure-point is *popped*.
5301 This special frame thus marks the beginning of one iteration
5302 through the loop and we can hence easily check right here
5303 whether something matched between the beginning and the end of
5305 case on_failure_jump_nastyloop
:
5306 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5307 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5310 assert ((re_opcode_t
)p
[-4] == no_op
);
5311 CHECK_INFINITE_LOOP (p
- 4, d
);
5312 PUSH_FAILURE_POINT (p
- 3, d
);
5316 /* Simple loop detecting on_failure_jump: just check on the
5317 failure stack if the same spot was already hit earlier. */
5318 case on_failure_jump_loop
:
5320 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5321 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5324 CHECK_INFINITE_LOOP (p
- 3, d
);
5325 PUSH_FAILURE_POINT (p
- 3, d
);
5329 /* Uses of on_failure_jump:
5331 Each alternative starts with an on_failure_jump that points
5332 to the beginning of the next alternative. Each alternative
5333 except the last ends with a jump that in effect jumps past
5334 the rest of the alternatives. (They really jump to the
5335 ending jump of the following alternative, because tensioning
5336 these jumps is a hassle.)
5338 Repeats start with an on_failure_jump that points past both
5339 the repetition text and either the following jump or
5340 pop_failure_jump back to this on_failure_jump. */
5341 case on_failure_jump
:
5342 IMMEDIATE_QUIT_CHECK
;
5343 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5344 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5347 PUSH_FAILURE_POINT (p
-3, d
);
5350 /* This operation is used for greedy *.
5351 Compare the beginning of the repeat with what in the
5352 pattern follows its end. If we can establish that there
5353 is nothing that they would both match, i.e., that we
5354 would have to backtrack because of (as in, e.g., `a*a')
5355 then we can use a non-backtracking loop based on
5356 on_failure_keep_string_jump instead of on_failure_jump. */
5357 case on_failure_jump_smart
:
5358 IMMEDIATE_QUIT_CHECK
;
5359 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5360 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5363 re_char
*p1
= p
; /* Next operation. */
5364 /* Here, we discard `const', making re_match non-reentrant. */
5365 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5366 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5368 p
-= 3; /* Reset so that we will re-execute the
5369 instruction once it's been changed. */
5371 EXTRACT_NUMBER (mcnt
, p2
- 2);
5373 /* Ensure this is a indeed the trivial kind of loop
5374 we are expecting. */
5375 assert (skip_one_char (p1
) == p2
- 3);
5376 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5377 DEBUG_STATEMENT (debug
+= 2);
5378 if (mutually_exclusive_p (bufp
, p1
, p2
))
5380 /* Use a fast `on_failure_keep_string_jump' loop. */
5381 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5382 *p3
= (unsigned char) on_failure_keep_string_jump
;
5383 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5387 /* Default to a safe `on_failure_jump' loop. */
5388 DEBUG_PRINT1 (" smart default => slow loop.\n");
5389 *p3
= (unsigned char) on_failure_jump
;
5391 DEBUG_STATEMENT (debug
-= 2);
5395 /* Unconditionally jump (without popping any failure points). */
5398 IMMEDIATE_QUIT_CHECK
;
5399 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5400 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5401 p
+= mcnt
; /* Do the jump. */
5402 DEBUG_PRINT2 ("(to %p).\n", p
);
5406 /* Have to succeed matching what follows at least n times.
5407 After that, handle like `on_failure_jump'. */
5409 /* Signedness doesn't matter since we only compare MCNT to 0. */
5410 EXTRACT_NUMBER (mcnt
, p
+ 2);
5411 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5413 /* Originally, mcnt is how many times we HAVE to succeed. */
5416 /* Here, we discard `const', making re_match non-reentrant. */
5417 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5420 PUSH_NUMBER (p2
, mcnt
);
5423 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5428 /* Signedness doesn't matter since we only compare MCNT to 0. */
5429 EXTRACT_NUMBER (mcnt
, p
+ 2);
5430 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5432 /* Originally, this is how many times we CAN jump. */
5435 /* Here, we discard `const', making re_match non-reentrant. */
5436 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5438 PUSH_NUMBER (p2
, mcnt
);
5439 goto unconditional_jump
;
5441 /* If don't have to jump any more, skip over the rest of command. */
5448 unsigned char *p2
; /* Location of the counter. */
5449 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5451 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5452 /* Here, we discard `const', making re_match non-reentrant. */
5453 p2
= (unsigned char*) p
+ mcnt
;
5454 /* Signedness doesn't matter since we only copy MCNT's bits . */
5455 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5456 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
5457 PUSH_NUMBER (p2
, mcnt
);
5463 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5464 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5466 /* We SUCCEED (or FAIL) in one of the following cases: */
5468 /* Case 1: D is at the beginning or the end of string. */
5469 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5473 /* C1 is the character before D, S1 is the syntax of C1, C2
5474 is the character at D, and S2 is the syntax of C2. */
5478 int offset
= PTR_TO_OFFSET (d
- 1);
5479 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5480 UPDATE_SYNTAX_TABLE (charpos
);
5482 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5485 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5487 PREFETCH_NOLIMIT ();
5488 c2
= RE_STRING_CHAR (d
, dend
- d
);
5491 if (/* Case 2: Only one of S1 and S2 is Sword. */
5492 ((s1
== Sword
) != (s2
== Sword
))
5493 /* Case 3: Both of S1 and S2 are Sword, and macro
5494 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5495 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5504 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5506 /* We FAIL in one of the following cases: */
5508 /* Case 1: D is at the end of string. */
5509 if (AT_STRINGS_END (d
))
5513 /* C1 is the character before D, S1 is the syntax of C1, C2
5514 is the character at D, and S2 is the syntax of C2. */
5518 int offset
= PTR_TO_OFFSET (d
);
5519 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5520 UPDATE_SYNTAX_TABLE (charpos
);
5523 c2
= RE_STRING_CHAR (d
, dend
- d
);
5526 /* Case 2: S2 is not Sword. */
5530 /* Case 3: D is not at the beginning of string ... */
5531 if (!AT_STRINGS_BEG (d
))
5533 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5535 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5539 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5541 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5548 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5550 /* We FAIL in one of the following cases: */
5552 /* Case 1: D is at the beginning of string. */
5553 if (AT_STRINGS_BEG (d
))
5557 /* C1 is the character before D, S1 is the syntax of C1, C2
5558 is the character at D, and S2 is the syntax of C2. */
5562 int offset
= PTR_TO_OFFSET (d
) - 1;
5563 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5564 UPDATE_SYNTAX_TABLE (charpos
);
5566 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5569 /* Case 2: S1 is not Sword. */
5573 /* Case 3: D is not at the end of string ... */
5574 if (!AT_STRINGS_END (d
))
5576 PREFETCH_NOLIMIT ();
5577 c2
= RE_STRING_CHAR (d
, dend
- d
);
5579 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
5583 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5585 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5593 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
5595 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
5599 int offset
= PTR_TO_OFFSET (d
);
5600 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5601 UPDATE_SYNTAX_TABLE (pos1
);
5608 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5610 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
5618 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5619 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
5624 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5625 if (PTR_BYTE_POS (d
) != PT_BYTE
)
5630 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5631 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
5636 case notcategoryspec
:
5637 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
5639 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
5645 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5647 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
5658 continue; /* Successfully executed one pattern command; keep going. */
5661 /* We goto here if a matching operation fails. */
5663 IMMEDIATE_QUIT_CHECK
;
5664 if (!FAIL_STACK_EMPTY ())
5667 /* A restart point is known. Restore to that state. */
5668 DEBUG_PRINT1 ("\nFAIL:\n");
5669 POP_FAILURE_POINT (str
, pat
);
5670 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
5672 case on_failure_keep_string_jump
:
5673 assert (str
== NULL
);
5674 goto continue_failure_jump
;
5676 case on_failure_jump_nastyloop
:
5677 assert ((re_opcode_t
)pat
[-2] == no_op
);
5678 PUSH_FAILURE_POINT (pat
- 2, str
);
5681 case on_failure_jump_loop
:
5682 case on_failure_jump
:
5685 continue_failure_jump
:
5686 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
5691 /* A special frame used for nastyloops. */
5698 assert (p
>= bufp
->buffer
&& p
<= pend
);
5700 if (d
>= string1
&& d
<= end1
)
5704 break; /* Matching at this starting point really fails. */
5708 goto restore_best_regs
;
5712 return -1; /* Failure to match. */
5715 /* Subroutine definitions for re_match_2. */
5717 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5718 bytes; nonzero otherwise. */
5721 bcmp_translate (s1
, s2
, len
, translate
, multibyte
)
5724 RE_TRANSLATE_TYPE translate
;
5725 const int multibyte
;
5727 register re_char
*p1
= s1
, *p2
= s2
;
5728 re_char
*p1_end
= s1
+ len
;
5729 re_char
*p2_end
= s2
+ len
;
5731 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5732 different lengths, but relying on a single `len' would break this. -sm */
5733 while (p1
< p1_end
&& p2
< p2_end
)
5735 int p1_charlen
, p2_charlen
;
5736 re_wchar_t p1_ch
, p2_ch
;
5738 p1_ch
= RE_STRING_CHAR_AND_LENGTH (p1
, p1_end
- p1
, p1_charlen
);
5739 p2_ch
= RE_STRING_CHAR_AND_LENGTH (p2
, p2_end
- p2
, p2_charlen
);
5741 if (RE_TRANSLATE (translate
, p1_ch
)
5742 != RE_TRANSLATE (translate
, p2_ch
))
5745 p1
+= p1_charlen
, p2
+= p2_charlen
;
5748 if (p1
!= p1_end
|| p2
!= p2_end
)
5754 /* Entry points for GNU code. */
5756 /* re_compile_pattern is the GNU regular expression compiler: it
5757 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5758 Returns 0 if the pattern was valid, otherwise an error string.
5760 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5761 are set in BUFP on entry.
5763 We call regex_compile to do the actual compilation. */
5766 re_compile_pattern (pattern
, length
, bufp
)
5767 const char *pattern
;
5769 struct re_pattern_buffer
*bufp
;
5773 /* GNU code is written to assume at least RE_NREGS registers will be set
5774 (and at least one extra will be -1). */
5775 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5777 /* And GNU code determines whether or not to get register information
5778 by passing null for the REGS argument to re_match, etc., not by
5782 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
5786 return gettext (re_error_msgid
[(int) ret
]);
5788 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
5790 /* Entry points compatible with 4.2 BSD regex library. We don't define
5791 them unless specifically requested. */
5793 #if defined _REGEX_RE_COMP || defined _LIBC
5795 /* BSD has one and only one pattern buffer. */
5796 static struct re_pattern_buffer re_comp_buf
;
5800 /* Make these definitions weak in libc, so POSIX programs can redefine
5801 these names if they don't use our functions, and still use
5802 regcomp/regexec below without link errors. */
5812 if (!re_comp_buf
.buffer
)
5813 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5814 return (char *) gettext ("No previous regular expression");
5818 if (!re_comp_buf
.buffer
)
5820 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
5821 if (re_comp_buf
.buffer
== NULL
)
5822 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5823 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5824 re_comp_buf
.allocated
= 200;
5826 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5827 if (re_comp_buf
.fastmap
== NULL
)
5828 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5829 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
5832 /* Since `re_exec' always passes NULL for the `regs' argument, we
5833 don't need to initialize the pattern buffer fields which affect it. */
5835 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
5840 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
5841 return (char *) gettext (re_error_msgid
[(int) ret
]);
5852 const int len
= strlen (s
);
5854 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
5856 #endif /* _REGEX_RE_COMP */
5858 /* POSIX.2 functions. Don't define these for Emacs. */
5862 /* regcomp takes a regular expression as a string and compiles it.
5864 PREG is a regex_t *. We do not expect any fields to be initialized,
5865 since POSIX says we shouldn't. Thus, we set
5867 `buffer' to the compiled pattern;
5868 `used' to the length of the compiled pattern;
5869 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
5870 REG_EXTENDED bit in CFLAGS is set; otherwise, to
5871 RE_SYNTAX_POSIX_BASIC;
5872 `fastmap' to an allocated space for the fastmap;
5873 `fastmap_accurate' to zero;
5874 `re_nsub' to the number of subexpressions in PATTERN.
5876 PATTERN is the address of the pattern string.
5878 CFLAGS is a series of bits which affect compilation.
5880 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
5881 use POSIX basic syntax.
5883 If REG_NEWLINE is set, then . and [^...] don't match newline.
5884 Also, regexec will try a match beginning after every newline.
5886 If REG_ICASE is set, then we considers upper- and lowercase
5887 versions of letters to be equivalent when matching.
5889 If REG_NOSUB is set, then when PREG is passed to regexec, that
5890 routine will report only success or failure, and nothing about the
5893 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
5894 the return codes and their meanings.) */
5897 regcomp (preg
, pattern
, cflags
)
5898 regex_t
*__restrict preg
;
5899 const char *__restrict pattern
;
5904 = (cflags
& REG_EXTENDED
) ?
5905 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5907 /* regex_compile will allocate the space for the compiled pattern. */
5909 preg
->allocated
= 0;
5912 /* Try to allocate space for the fastmap. */
5913 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
5915 if (cflags
& REG_ICASE
)
5920 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
5921 * sizeof (*(RE_TRANSLATE_TYPE
)0));
5922 if (preg
->translate
== NULL
)
5923 return (int) REG_ESPACE
;
5925 /* Map uppercase characters to corresponding lowercase ones. */
5926 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5927 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
5930 preg
->translate
= NULL
;
5932 /* If REG_NEWLINE is set, newlines are treated differently. */
5933 if (cflags
& REG_NEWLINE
)
5934 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5935 syntax
&= ~RE_DOT_NEWLINE
;
5936 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5939 syntax
|= RE_NO_NEWLINE_ANCHOR
;
5941 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5943 /* POSIX says a null character in the pattern terminates it, so we
5944 can use strlen here in compiling the pattern. */
5945 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
5947 /* POSIX doesn't distinguish between an unmatched open-group and an
5948 unmatched close-group: both are REG_EPAREN. */
5949 if (ret
== REG_ERPAREN
)
5952 if (ret
== REG_NOERROR
&& preg
->fastmap
)
5953 { /* Compute the fastmap now, since regexec cannot modify the pattern
5955 re_compile_fastmap (preg
);
5956 if (preg
->can_be_null
)
5957 { /* The fastmap can't be used anyway. */
5958 free (preg
->fastmap
);
5959 preg
->fastmap
= NULL
;
5964 WEAK_ALIAS (__regcomp
, regcomp
)
5967 /* regexec searches for a given pattern, specified by PREG, in the
5970 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5971 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5972 least NMATCH elements, and we set them to the offsets of the
5973 corresponding matched substrings.
5975 EFLAGS specifies `execution flags' which affect matching: if
5976 REG_NOTBOL is set, then ^ does not match at the beginning of the
5977 string; if REG_NOTEOL is set, then $ does not match at the end.
5979 We return 0 if we find a match and REG_NOMATCH if not. */
5982 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5983 const regex_t
*__restrict preg
;
5984 const char *__restrict string
;
5986 regmatch_t pmatch
[];
5990 struct re_registers regs
;
5991 regex_t private_preg
;
5992 int len
= strlen (string
);
5993 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
5995 private_preg
= *preg
;
5997 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5998 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6000 /* The user has told us exactly how many registers to return
6001 information about, via `nmatch'. We have to pass that on to the
6002 matching routines. */
6003 private_preg
.regs_allocated
= REGS_FIXED
;
6007 regs
.num_regs
= nmatch
;
6008 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6009 if (regs
.start
== NULL
)
6010 return (int) REG_NOMATCH
;
6011 regs
.end
= regs
.start
+ nmatch
;
6014 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6015 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6016 was a little bit longer but still only matching the real part.
6017 This works because the `endline' will check for a '\n' and will find a
6018 '\0', correctly deciding that this is not the end of a line.
6019 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6020 a convenient '\0' there. For all we know, the string could be preceded
6021 by '\n' which would throw things off. */
6023 /* Perform the searching operation. */
6024 ret
= re_search (&private_preg
, string
, len
,
6025 /* start: */ 0, /* range: */ len
,
6026 want_reg_info
? ®s
: (struct re_registers
*) 0);
6028 /* Copy the register information to the POSIX structure. */
6035 for (r
= 0; r
< nmatch
; r
++)
6037 pmatch
[r
].rm_so
= regs
.start
[r
];
6038 pmatch
[r
].rm_eo
= regs
.end
[r
];
6042 /* If we needed the temporary register info, free the space now. */
6046 /* We want zero return to mean success, unlike `re_search'. */
6047 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
6049 WEAK_ALIAS (__regexec
, regexec
)
6052 /* Returns a message corresponding to an error code, ERRCODE, returned
6053 from either regcomp or regexec. We don't use PREG here. */
6056 regerror (errcode
, preg
, errbuf
, errbuf_size
)
6058 const regex_t
*preg
;
6066 || errcode
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6067 /* Only error codes returned by the rest of the code should be passed
6068 to this routine. If we are given anything else, or if other regex
6069 code generates an invalid error code, then the program has a bug.
6070 Dump core so we can fix it. */
6073 msg
= gettext (re_error_msgid
[errcode
]);
6075 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6077 if (errbuf_size
!= 0)
6079 if (msg_size
> errbuf_size
)
6081 strncpy (errbuf
, msg
, errbuf_size
- 1);
6082 errbuf
[errbuf_size
- 1] = 0;
6085 strcpy (errbuf
, msg
);
6090 WEAK_ALIAS (__regerror
, regerror
)
6093 /* Free dynamically allocated space used by PREG. */
6099 if (preg
->buffer
!= NULL
)
6100 free (preg
->buffer
);
6101 preg
->buffer
= NULL
;
6103 preg
->allocated
= 0;
6106 if (preg
->fastmap
!= NULL
)
6107 free (preg
->fastmap
);
6108 preg
->fastmap
= NULL
;
6109 preg
->fastmap_accurate
= 0;
6111 if (preg
->translate
!= NULL
)
6112 free (preg
->translate
);
6113 preg
->translate
= NULL
;
6115 WEAK_ALIAS (__regfree
, regfree
)
6117 #endif /* not emacs */