1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
40 #if defined STDC_HEADERS && !defined emacs
43 /* We need this for `regex.h', and perhaps for the Emacs include files. */
44 # include <sys/types.h>
47 /* Whether to use ISO C Amendment 1 wide char functions.
48 Those should not be used for Emacs since it uses its own. */
50 #define WIDE_CHAR_SUPPORT 1
52 #define WIDE_CHAR_SUPPORT \
53 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
56 /* For platform which support the ISO C amendement 1 functionality we
57 support user defined character classes. */
59 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
65 /* We have to keep the namespace clean. */
66 # define regfree(preg) __regfree (preg)
67 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
68 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
69 # define regerror(errcode, preg, errbuf, errbuf_size) \
70 __regerror(errcode, preg, errbuf, errbuf_size)
71 # define re_set_registers(bu, re, nu, st, en) \
72 __re_set_registers (bu, re, nu, st, en)
73 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
74 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
75 # define re_match(bufp, string, size, pos, regs) \
76 __re_match (bufp, string, size, pos, regs)
77 # define re_search(bufp, string, size, startpos, range, regs) \
78 __re_search (bufp, string, size, startpos, range, regs)
79 # define re_compile_pattern(pattern, length, bufp) \
80 __re_compile_pattern (pattern, length, bufp)
81 # define re_set_syntax(syntax) __re_set_syntax (syntax)
82 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
83 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
84 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86 /* Make sure we call libc's function even if the user overrides them. */
87 # define btowc __btowc
88 # define iswctype __iswctype
89 # define wctype __wctype
91 # define WEAK_ALIAS(a,b) weak_alias (a, b)
93 /* We are also using some library internals. */
94 # include <locale/localeinfo.h>
95 # include <locale/elem-hash.h>
96 # include <langinfo.h>
98 # define WEAK_ALIAS(a,b)
101 /* This is for other GNU distributions with internationalized messages. */
102 #if HAVE_LIBINTL_H || defined _LIBC
103 # include <libintl.h>
105 # define gettext(msgid) (msgid)
109 /* This define is so xgettext can find the internationalizable
111 # define gettext_noop(String) String
114 /* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
121 /* Make syntax table lookup grant data in gl_state. */
122 # define SYNTAX_ENTRY_VIA_PROPERTY
125 # include "charset.h"
126 # include "category.h"
131 # define malloc xmalloc
135 # define realloc xrealloc
141 /* Converts the pointer to the char to BEG-based offset from the start. */
142 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
143 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
146 # define RE_STRING_CHAR(p, s) \
147 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
148 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
149 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
151 /* Set C a (possibly multibyte) character before P. P points into a
152 string which is the virtual concatenation of STR1 (which ends at
153 END1) or STR2 (which ends at END2). */
154 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
158 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
159 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
160 re_char *d0 = dtemp; \
161 PREV_CHAR_BOUNDARY (d0, dlimit); \
162 c = STRING_CHAR (d0, dtemp - d0); \
165 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
169 #else /* not emacs */
171 /* If we are not linking with Emacs proper,
172 we can't use the relocating allocator
173 even if config.h says that we can. */
176 # if defined STDC_HEADERS || defined _LIBC
183 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
184 If nothing else has been done, use the method below. */
185 # ifdef INHIBIT_STRING_HEADER
186 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
187 # if !defined bzero && !defined bcopy
188 # undef INHIBIT_STRING_HEADER
193 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
194 This is used in most programs--a few other programs avoid this
195 by defining INHIBIT_STRING_HEADER. */
196 # ifndef INHIBIT_STRING_HEADER
197 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
201 # define bzero(s, n) (memset (s, '\0', n), (s))
203 # define bzero(s, n) __bzero (s, n)
207 # include <strings.h>
209 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
212 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
217 /* Define the syntax stuff for \<, \>, etc. */
219 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
220 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1 };
222 # ifdef SWITCH_ENUM_BUG
223 # define SWITCH_ENUM_CAST(x) ((int)(x))
225 # define SWITCH_ENUM_CAST(x) (x)
228 /* Dummy macros for non-Emacs environments. */
229 # define BASE_LEADING_CODE_P(c) (0)
230 # define CHAR_CHARSET(c) 0
231 # define CHARSET_LEADING_CODE_BASE(c) 0
232 # define MAX_MULTIBYTE_LENGTH 1
233 # define RE_MULTIBYTE_P(x) 0
234 # define WORD_BOUNDARY_P(c1, c2) (0)
235 # define CHAR_HEAD_P(p) (1)
236 # define SINGLE_BYTE_CHAR_P(c) (1)
237 # define SAME_CHARSET_P(c1, c2) (1)
238 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
239 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
240 # define STRING_CHAR(p, s) (*(p))
241 # define RE_STRING_CHAR STRING_CHAR
242 # define CHAR_STRING(c, s) (*(s) = (c), 1)
243 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
244 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
245 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
246 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
247 # define MAKE_CHAR(charset, c1, c2) (c1)
248 #endif /* not emacs */
251 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
252 # define RE_TRANSLATE_P(TBL) (TBL)
255 /* Get the interface, including the syntax bits. */
258 /* isalpha etc. are used for the character classes. */
263 /* 1 if C is an ASCII character. */
264 # define IS_REAL_ASCII(c) ((c) < 0200)
266 /* 1 if C is a unibyte character. */
267 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
269 /* The Emacs definitions should not be directly affected by locales. */
271 /* In Emacs, these are only used for single-byte characters. */
272 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
273 # define ISCNTRL(c) ((c) < ' ')
274 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
275 || ((c) >= 'a' && (c) <= 'f') \
276 || ((c) >= 'A' && (c) <= 'F'))
278 /* This is only used for single-byte characters. */
279 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
281 /* The rest must handle multibyte characters. */
283 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
284 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
287 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
288 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
291 # define ISALNUM(c) (IS_REAL_ASCII (c) \
292 ? (((c) >= 'a' && (c) <= 'z') \
293 || ((c) >= 'A' && (c) <= 'Z') \
294 || ((c) >= '0' && (c) <= '9')) \
295 : SYNTAX (c) == Sword)
297 # define ISALPHA(c) (IS_REAL_ASCII (c) \
298 ? (((c) >= 'a' && (c) <= 'z') \
299 || ((c) >= 'A' && (c) <= 'Z')) \
300 : SYNTAX (c) == Sword)
302 # define ISLOWER(c) (LOWERCASEP (c))
304 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
305 ? ((c) > ' ' && (c) < 0177 \
306 && !(((c) >= 'a' && (c) <= 'z') \
307 || ((c) >= 'A' && (c) <= 'Z') \
308 || ((c) >= '0' && (c) <= '9'))) \
309 : SYNTAX (c) != Sword)
311 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
313 # define ISUPPER(c) (UPPERCASEP (c))
315 # define ISWORD(c) (SYNTAX (c) == Sword)
317 #else /* not emacs */
319 /* Jim Meyering writes:
321 "... Some ctype macros are valid only for character codes that
322 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
323 using /bin/cc or gcc but without giving an ansi option). So, all
324 ctype uses should be through macros like ISPRINT... If
325 STDC_HEADERS is defined, then autoconf has verified that the ctype
326 macros don't need to be guarded with references to isascii. ...
327 Defining isascii to 1 should let any compiler worth its salt
328 eliminate the && through constant folding."
329 Solaris defines some of these symbols so we must undefine them first. */
332 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
333 # define ISASCII(c) 1
335 # define ISASCII(c) isascii(c)
338 /* 1 if C is an ASCII character. */
339 # define IS_REAL_ASCII(c) ((c) < 0200)
341 /* This distinction is not meaningful, except in Emacs. */
342 # define ISUNIBYTE(c) 1
345 # define ISBLANK(c) (ISASCII (c) && isblank (c))
347 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
350 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
352 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
356 # define ISPRINT(c) (ISASCII (c) && isprint (c))
357 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
358 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
359 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
360 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
361 # define ISLOWER(c) (ISASCII (c) && islower (c))
362 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
363 # define ISSPACE(c) (ISASCII (c) && isspace (c))
364 # define ISUPPER(c) (ISASCII (c) && isupper (c))
365 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
367 # define ISWORD(c) ISALPHA(c)
370 # define TOLOWER(c) _tolower(c)
372 # define TOLOWER(c) tolower(c)
375 /* How many characters in the character set. */
376 # define CHAR_SET_SIZE 256
380 extern char *re_syntax_table
;
382 # else /* not SYNTAX_TABLE */
384 static char re_syntax_table
[CHAR_SET_SIZE
];
395 bzero (re_syntax_table
, sizeof re_syntax_table
);
397 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
399 re_syntax_table
[c
] = Sword
;
401 re_syntax_table
['_'] = Sword
;
406 # endif /* not SYNTAX_TABLE */
408 # define SYNTAX(c) re_syntax_table[(c)]
410 #endif /* not emacs */
413 # define NULL (void *)0
416 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
417 since ours (we hope) works properly with all combinations of
418 machines, compilers, `char' and `unsigned char' argument types.
419 (Per Bothner suggested the basic approach.) */
420 #undef SIGN_EXTEND_CHAR
422 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
423 #else /* not __STDC__ */
424 /* As in Harbison and Steele. */
425 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
428 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
432 the other hand, malloc is more portable, and easier to debug.
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
440 # define REGEX_ALLOCATE malloc
441 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442 # define REGEX_FREE free
444 #else /* not REGEX_MALLOC */
446 /* Emacs already defines alloca, sometimes. */
449 /* Make alloca work the best possible way. */
451 # define alloca __builtin_alloca
452 # else /* not __GNUC__ */
455 # endif /* HAVE_ALLOCA_H */
456 # endif /* not __GNUC__ */
458 # endif /* not alloca */
460 # define REGEX_ALLOCATE alloca
462 /* Assumes a `char *destination' variable. */
463 # define REGEX_REALLOCATE(source, osize, nsize) \
464 (destination = (char *) alloca (nsize), \
465 memcpy (destination, source, osize))
467 /* No need to do anything to free, after alloca. */
468 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
470 #endif /* not REGEX_MALLOC */
472 /* Define how to allocate the failure stack. */
474 #if defined REL_ALLOC && defined REGEX_MALLOC
476 # define REGEX_ALLOCATE_STACK(size) \
477 r_alloc (&failure_stack_ptr, (size))
478 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
479 r_re_alloc (&failure_stack_ptr, (nsize))
480 # define REGEX_FREE_STACK(ptr) \
481 r_alloc_free (&failure_stack_ptr)
483 #else /* not using relocating allocator */
487 # define REGEX_ALLOCATE_STACK malloc
488 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
489 # define REGEX_FREE_STACK free
491 # else /* not REGEX_MALLOC */
493 # define REGEX_ALLOCATE_STACK alloca
495 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
496 REGEX_REALLOCATE (source, osize, nsize)
497 /* No need to explicitly free anything. */
498 # define REGEX_FREE_STACK(arg) ((void)0)
500 # endif /* not REGEX_MALLOC */
501 #endif /* not using relocating allocator */
504 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
505 `string1' or just past its end. This works if PTR is NULL, which is
507 #define FIRST_STRING_P(ptr) \
508 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
510 /* (Re)Allocate N items of type T using malloc, or fail. */
511 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
512 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
513 #define RETALLOC_IF(addr, n, t) \
514 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
515 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
517 #define BYTEWIDTH 8 /* In bits. */
519 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
523 #define MAX(a, b) ((a) > (b) ? (a) : (b))
524 #define MIN(a, b) ((a) < (b) ? (a) : (b))
526 /* Type of source-pattern and string chars. */
527 typedef const unsigned char re_char
;
529 typedef char boolean
;
533 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
534 re_char
*string1
, int size1
,
535 re_char
*string2
, int size2
,
537 struct re_registers
*regs
,
540 /* These are the command codes that appear in compiled regular
541 expressions. Some opcodes are followed by argument bytes. A
542 command code can specify any interpretation whatsoever for its
543 arguments. Zero bytes may appear in the compiled regular expression. */
549 /* Succeed right away--no more backtracking. */
552 /* Followed by one byte giving n, then by n literal bytes. */
555 /* Matches any (more or less) character. */
558 /* Matches any one char belonging to specified set. First
559 following byte is number of bitmap bytes. Then come bytes
560 for a bitmap saying which chars are in. Bits in each byte
561 are ordered low-bit-first. A character is in the set if its
562 bit is 1. A character too large to have a bit in the map is
563 automatically not in the set.
565 If the length byte has the 0x80 bit set, then that stuff
566 is followed by a range table:
567 2 bytes of flags for character sets (low 8 bits, high 8 bits)
568 See RANGE_TABLE_WORK_BITS below.
569 2 bytes, the number of pairs that follow (upto 32767)
570 pairs, each 2 multibyte characters,
571 each multibyte character represented as 3 bytes. */
574 /* Same parameters as charset, but match any character that is
575 not one of those specified. */
578 /* Start remembering the text that is matched, for storing in a
579 register. Followed by one byte with the register number, in
580 the range 0 to one less than the pattern buffer's re_nsub
584 /* Stop remembering the text that is matched and store it in a
585 memory register. Followed by one byte with the register
586 number, in the range 0 to one less than `re_nsub' in the
590 /* Match a duplicate of something remembered. Followed by one
591 byte containing the register number. */
594 /* Fail unless at beginning of line. */
597 /* Fail unless at end of line. */
600 /* Succeeds if at beginning of buffer (if emacs) or at beginning
601 of string to be matched (if not). */
604 /* Analogously, for end of buffer/string. */
607 /* Followed by two byte relative address to which to jump. */
610 /* Followed by two-byte relative address of place to resume at
611 in case of failure. */
614 /* Like on_failure_jump, but pushes a placeholder instead of the
615 current string position when executed. */
616 on_failure_keep_string_jump
,
618 /* Just like `on_failure_jump', except that it checks that we
619 don't get stuck in an infinite loop (matching an empty string
621 on_failure_jump_loop
,
623 /* Just like `on_failure_jump_loop', except that it checks for
624 a different kind of loop (the kind that shows up with non-greedy
625 operators). This operation has to be immediately preceded
627 on_failure_jump_nastyloop
,
629 /* A smart `on_failure_jump' used for greedy * and + operators.
630 It analyses the loop before which it is put and if the
631 loop does not require backtracking, it changes itself to
632 `on_failure_keep_string_jump' and short-circuits the loop,
633 else it just defaults to changing itself into `on_failure_jump'.
634 It assumes that it is pointing to just past a `jump'. */
635 on_failure_jump_smart
,
637 /* Followed by two-byte relative address and two-byte number n.
638 After matching N times, jump to the address upon failure.
639 Does not work if N starts at 0: use on_failure_jump_loop
643 /* Followed by two-byte relative address, and two-byte number n.
644 Jump to the address N times, then fail. */
647 /* Set the following two-byte relative address to the
648 subsequent two-byte number. The address *includes* the two
652 wordbeg
, /* Succeeds if at word beginning. */
653 wordend
, /* Succeeds if at word end. */
655 wordbound
, /* Succeeds if at a word boundary. */
656 notwordbound
, /* Succeeds if not at a word boundary. */
658 /* Matches any character whose syntax is specified. Followed by
659 a byte which contains a syntax code, e.g., Sword. */
662 /* Matches any character whose syntax is not that specified. */
666 ,before_dot
, /* Succeeds if before point. */
667 at_dot
, /* Succeeds if at point. */
668 after_dot
, /* Succeeds if after point. */
670 /* Matches any character whose category-set contains the specified
671 category. The operator is followed by a byte which contains a
672 category code (mnemonic ASCII character). */
675 /* Matches any character whose category-set does not contain the
676 specified category. The operator is followed by a byte which
677 contains the category code (mnemonic ASCII character). */
682 /* Common operations on the compiled pattern. */
684 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
686 #define STORE_NUMBER(destination, number) \
688 (destination)[0] = (number) & 0377; \
689 (destination)[1] = (number) >> 8; \
692 /* Same as STORE_NUMBER, except increment DESTINATION to
693 the byte after where the number is stored. Therefore, DESTINATION
694 must be an lvalue. */
696 #define STORE_NUMBER_AND_INCR(destination, number) \
698 STORE_NUMBER (destination, number); \
699 (destination) += 2; \
702 /* Put into DESTINATION a number stored in two contiguous bytes starting
705 #define EXTRACT_NUMBER(destination, source) \
707 (destination) = *(source) & 0377; \
708 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
712 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
714 extract_number (dest
, source
)
718 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
719 *dest
= *source
& 0377;
723 # ifndef EXTRACT_MACROS /* To debug the macros. */
724 # undef EXTRACT_NUMBER
725 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
726 # endif /* not EXTRACT_MACROS */
730 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
731 SOURCE must be an lvalue. */
733 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
735 EXTRACT_NUMBER (destination, source); \
740 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
743 extract_number_and_incr (destination
, source
)
747 extract_number (destination
, *source
);
751 # ifndef EXTRACT_MACROS
752 # undef EXTRACT_NUMBER_AND_INCR
753 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
754 extract_number_and_incr (&dest, &src)
755 # endif /* not EXTRACT_MACROS */
759 /* Store a multibyte character in three contiguous bytes starting
760 DESTINATION, and increment DESTINATION to the byte after where the
761 character is stored. Therefore, DESTINATION must be an lvalue. */
763 #define STORE_CHARACTER_AND_INCR(destination, character) \
765 (destination)[0] = (character) & 0377; \
766 (destination)[1] = ((character) >> 8) & 0377; \
767 (destination)[2] = (character) >> 16; \
768 (destination) += 3; \
771 /* Put into DESTINATION a character stored in three contiguous bytes
772 starting at SOURCE. */
774 #define EXTRACT_CHARACTER(destination, source) \
776 (destination) = ((source)[0] \
777 | ((source)[1] << 8) \
778 | ((source)[2] << 16)); \
782 /* Macros for charset. */
784 /* Size of bitmap of charset P in bytes. P is a start of charset,
785 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
786 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
788 /* Nonzero if charset P has range table. */
789 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
791 /* Return the address of range table of charset P. But not the start
792 of table itself, but the before where the number of ranges is
793 stored. `2 +' means to skip re_opcode_t and size of bitmap,
794 and the 2 bytes of flags at the start of the range table. */
795 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
797 /* Extract the bit flags that start a range table. */
798 #define CHARSET_RANGE_TABLE_BITS(p) \
799 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
800 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
802 /* Test if C is listed in the bitmap of charset P. */
803 #define CHARSET_LOOKUP_BITMAP(p, c) \
804 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
805 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
807 /* Return the address of end of RANGE_TABLE. COUNT is number of
808 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
809 is start of range and end of range. `* 3' is size of each start
811 #define CHARSET_RANGE_TABLE_END(range_table, count) \
812 ((range_table) + (count) * 2 * 3)
814 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
815 COUNT is number of ranges in RANGE_TABLE. */
816 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
819 re_wchar_t range_start, range_end; \
821 re_char *range_table_end \
822 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
824 for (p = (range_table); p < range_table_end; p += 2 * 3) \
826 EXTRACT_CHARACTER (range_start, p); \
827 EXTRACT_CHARACTER (range_end, p + 3); \
829 if (range_start <= (c) && (c) <= range_end) \
838 /* Test if C is in range table of CHARSET. The flag NOT is negated if
839 C is listed in it. */
840 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
843 /* Number of ranges in range table. */ \
845 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
847 EXTRACT_NUMBER_AND_INCR (count, range_table); \
848 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
852 /* If DEBUG is defined, Regex prints many voluminous messages about what
853 it is doing (if the variable `debug' is nonzero). If linked with the
854 main program in `iregex.c', you can enter patterns and strings
855 interactively. And if linked with the main program in `main.c' and
856 the other test files, you can run the already-written tests. */
860 /* We use standard I/O for debugging. */
863 /* It is useful to test things that ``must'' be true when debugging. */
866 static int debug
= -100000;
868 # define DEBUG_STATEMENT(e) e
869 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
870 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
871 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
872 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
873 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
874 if (debug > 0) print_partial_compiled_pattern (s, e)
875 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
876 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
879 /* Print the fastmap in human-readable form. */
882 print_fastmap (fastmap
)
885 unsigned was_a_range
= 0;
888 while (i
< (1 << BYTEWIDTH
))
894 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
910 /* Print a compiled pattern string in human-readable form, starting at
911 the START pointer into it and ending just before the pointer END. */
914 print_partial_compiled_pattern (start
, end
)
924 fprintf (stderr
, "(null)\n");
928 /* Loop over pattern commands. */
931 fprintf (stderr
, "%d:\t", p
- start
);
933 switch ((re_opcode_t
) *p
++)
936 fprintf (stderr
, "/no_op");
940 fprintf (stderr
, "/succeed");
945 fprintf (stderr
, "/exactn/%d", mcnt
);
948 fprintf (stderr
, "/%c", *p
++);
954 fprintf (stderr
, "/start_memory/%d", *p
++);
958 fprintf (stderr
, "/stop_memory/%d", *p
++);
962 fprintf (stderr
, "/duplicate/%d", *p
++);
966 fprintf (stderr
, "/anychar");
972 register int c
, last
= -100;
973 register int in_range
= 0;
974 int length
= CHARSET_BITMAP_SIZE (p
- 1);
975 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
977 fprintf (stderr
, "/charset [%s",
978 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
981 fprintf (stderr
, " !extends past end of pattern! ");
983 for (c
= 0; c
< 256; c
++)
985 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
987 /* Are we starting a range? */
988 if (last
+ 1 == c
&& ! in_range
)
990 fprintf (stderr
, "-");
993 /* Have we broken a range? */
994 else if (last
+ 1 != c
&& in_range
)
996 fprintf (stderr
, "%c", last
);
1001 fprintf (stderr
, "%c", c
);
1007 fprintf (stderr
, "%c", last
);
1009 fprintf (stderr
, "]");
1013 if (has_range_table
)
1016 fprintf (stderr
, "has-range-table");
1018 /* ??? Should print the range table; for now, just skip it. */
1019 p
+= 2; /* skip range table bits */
1020 EXTRACT_NUMBER_AND_INCR (count
, p
);
1021 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1027 fprintf (stderr
, "/begline");
1031 fprintf (stderr
, "/endline");
1034 case on_failure_jump
:
1035 extract_number_and_incr (&mcnt
, &p
);
1036 fprintf (stderr
, "/on_failure_jump to %d", p
+ mcnt
- start
);
1039 case on_failure_keep_string_jump
:
1040 extract_number_and_incr (&mcnt
, &p
);
1041 fprintf (stderr
, "/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1044 case on_failure_jump_nastyloop
:
1045 extract_number_and_incr (&mcnt
, &p
);
1046 fprintf (stderr
, "/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1049 case on_failure_jump_loop
:
1050 extract_number_and_incr (&mcnt
, &p
);
1051 fprintf (stderr
, "/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1054 case on_failure_jump_smart
:
1055 extract_number_and_incr (&mcnt
, &p
);
1056 fprintf (stderr
, "/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1060 extract_number_and_incr (&mcnt
, &p
);
1061 fprintf (stderr
, "/jump to %d", p
+ mcnt
- start
);
1065 extract_number_and_incr (&mcnt
, &p
);
1066 extract_number_and_incr (&mcnt2
, &p
);
1067 fprintf (stderr
, "/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1071 extract_number_and_incr (&mcnt
, &p
);
1072 extract_number_and_incr (&mcnt2
, &p
);
1073 fprintf (stderr
, "/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1077 extract_number_and_incr (&mcnt
, &p
);
1078 extract_number_and_incr (&mcnt2
, &p
);
1079 fprintf (stderr
, "/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1083 fprintf (stderr
, "/wordbound");
1087 fprintf (stderr
, "/notwordbound");
1091 fprintf (stderr
, "/wordbeg");
1095 fprintf (stderr
, "/wordend");
1098 fprintf (stderr
, "/syntaxspec");
1100 fprintf (stderr
, "/%d", mcnt
);
1104 fprintf (stderr
, "/notsyntaxspec");
1106 fprintf (stderr
, "/%d", mcnt
);
1111 fprintf (stderr
, "/before_dot");
1115 fprintf (stderr
, "/at_dot");
1119 fprintf (stderr
, "/after_dot");
1123 fprintf (stderr
, "/categoryspec");
1125 fprintf (stderr
, "/%d", mcnt
);
1128 case notcategoryspec
:
1129 fprintf (stderr
, "/notcategoryspec");
1131 fprintf (stderr
, "/%d", mcnt
);
1136 fprintf (stderr
, "/begbuf");
1140 fprintf (stderr
, "/endbuf");
1144 fprintf (stderr
, "?%d", *(p
-1));
1147 fprintf (stderr
, "\n");
1150 fprintf (stderr
, "%d:\tend of pattern.\n", p
- start
);
1155 print_compiled_pattern (bufp
)
1156 struct re_pattern_buffer
*bufp
;
1158 re_char
*buffer
= bufp
->buffer
;
1160 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1161 printf ("%ld bytes used/%ld bytes allocated.\n",
1162 bufp
->used
, bufp
->allocated
);
1164 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1166 printf ("fastmap: ");
1167 print_fastmap (bufp
->fastmap
);
1170 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1171 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1172 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1173 printf ("no_sub: %d\t", bufp
->no_sub
);
1174 printf ("not_bol: %d\t", bufp
->not_bol
);
1175 printf ("not_eol: %d\t", bufp
->not_eol
);
1176 printf ("syntax: %lx\n", bufp
->syntax
);
1178 /* Perhaps we should print the translate table? */
1183 print_double_string (where
, string1
, size1
, string2
, size2
)
1196 if (FIRST_STRING_P (where
))
1198 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1199 putchar (string1
[this_char
]);
1204 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1205 putchar (string2
[this_char
]);
1209 #else /* not DEBUG */
1214 # define DEBUG_STATEMENT(e)
1215 # define DEBUG_PRINT1(x)
1216 # define DEBUG_PRINT2(x1, x2)
1217 # define DEBUG_PRINT3(x1, x2, x3)
1218 # define DEBUG_PRINT4(x1, x2, x3, x4)
1219 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1220 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1222 #endif /* not DEBUG */
1224 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1225 also be assigned to arbitrarily: each pattern buffer stores its own
1226 syntax, so it can be changed between regex compilations. */
1227 /* This has no initializer because initialized variables in Emacs
1228 become read-only after dumping. */
1229 reg_syntax_t re_syntax_options
;
1232 /* Specify the precise syntax of regexps for compilation. This provides
1233 for compatibility for various utilities which historically have
1234 different, incompatible syntaxes.
1236 The argument SYNTAX is a bit mask comprised of the various bits
1237 defined in regex.h. We return the old syntax. */
1240 re_set_syntax (syntax
)
1241 reg_syntax_t syntax
;
1243 reg_syntax_t ret
= re_syntax_options
;
1245 re_syntax_options
= syntax
;
1248 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1250 /* This table gives an error message for each of the error codes listed
1251 in regex.h. Obviously the order here has to be same as there.
1252 POSIX doesn't require that we do anything for REG_NOERROR,
1253 but why not be nice? */
1255 static const char *re_error_msgid
[] =
1257 gettext_noop ("Success"), /* REG_NOERROR */
1258 gettext_noop ("No match"), /* REG_NOMATCH */
1259 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1260 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1261 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1262 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1263 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1264 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1265 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1266 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1267 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1268 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1269 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1270 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1271 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1272 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1273 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1276 /* Avoiding alloca during matching, to placate r_alloc. */
1278 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1279 searching and matching functions should not call alloca. On some
1280 systems, alloca is implemented in terms of malloc, and if we're
1281 using the relocating allocator routines, then malloc could cause a
1282 relocation, which might (if the strings being searched are in the
1283 ralloc heap) shift the data out from underneath the regexp
1286 Here's another reason to avoid allocation: Emacs
1287 processes input from X in a signal handler; processing X input may
1288 call malloc; if input arrives while a matching routine is calling
1289 malloc, then we're scrod. But Emacs can't just block input while
1290 calling matching routines; then we don't notice interrupts when
1291 they come in. So, Emacs blocks input around all regexp calls
1292 except the matching calls, which it leaves unprotected, in the
1293 faith that they will not malloc. */
1295 /* Normally, this is fine. */
1296 #define MATCH_MAY_ALLOCATE
1298 /* When using GNU C, we are not REALLY using the C alloca, no matter
1299 what config.h may say. So don't take precautions for it. */
1304 /* The match routines may not allocate if (1) they would do it with malloc
1305 and (2) it's not safe for them to use malloc.
1306 Note that if REL_ALLOC is defined, matching would not use malloc for the
1307 failure stack, but we would still use it for the register vectors;
1308 so REL_ALLOC should not affect this. */
1309 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1310 # undef MATCH_MAY_ALLOCATE
1314 /* Failure stack declarations and macros; both re_compile_fastmap and
1315 re_match_2 use a failure stack. These have to be macros because of
1316 REGEX_ALLOCATE_STACK. */
1319 /* Approximate number of failure points for which to initially allocate space
1320 when matching. If this number is exceeded, we allocate more
1321 space, so it is not a hard limit. */
1322 #ifndef INIT_FAILURE_ALLOC
1323 # define INIT_FAILURE_ALLOC 20
1326 /* Roughly the maximum number of failure points on the stack. Would be
1327 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1328 This is a variable only so users of regex can assign to it; we never
1329 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1330 before using it, so it should probably be a byte-count instead. */
1331 # if defined MATCH_MAY_ALLOCATE
1332 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1333 whose default stack limit is 2mb. In order for a larger
1334 value to work reliably, you have to try to make it accord
1335 with the process stack limit. */
1336 size_t re_max_failures
= 40000;
1338 size_t re_max_failures
= 4000;
1341 union fail_stack_elt
1344 /* This should be the biggest `int' that's no bigger than a pointer. */
1348 typedef union fail_stack_elt fail_stack_elt_t
;
1352 fail_stack_elt_t
*stack
;
1354 size_t avail
; /* Offset of next open position. */
1355 size_t frame
; /* Offset of the cur constructed frame. */
1358 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1359 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1362 /* Define macros to initialize and free the failure stack.
1363 Do `return -2' if the alloc fails. */
1365 #ifdef MATCH_MAY_ALLOCATE
1366 # define INIT_FAIL_STACK() \
1368 fail_stack.stack = (fail_stack_elt_t *) \
1369 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1370 * sizeof (fail_stack_elt_t)); \
1372 if (fail_stack.stack == NULL) \
1375 fail_stack.size = INIT_FAILURE_ALLOC; \
1376 fail_stack.avail = 0; \
1377 fail_stack.frame = 0; \
1380 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1382 # define INIT_FAIL_STACK() \
1384 fail_stack.avail = 0; \
1385 fail_stack.frame = 0; \
1388 # define RESET_FAIL_STACK() ((void)0)
1392 /* Double the size of FAIL_STACK, up to a limit
1393 which allows approximately `re_max_failures' items.
1395 Return 1 if succeeds, and 0 if either ran out of memory
1396 allocating space for it or it was already too large.
1398 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1400 /* Factor to increase the failure stack size by
1401 when we increase it.
1402 This used to be 2, but 2 was too wasteful
1403 because the old discarded stacks added up to as much space
1404 were as ultimate, maximum-size stack. */
1405 #define FAIL_STACK_GROWTH_FACTOR 4
1407 #define GROW_FAIL_STACK(fail_stack) \
1408 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1409 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1411 : ((fail_stack).stack \
1412 = (fail_stack_elt_t *) \
1413 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1414 (fail_stack).size * sizeof (fail_stack_elt_t), \
1415 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1416 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1417 * FAIL_STACK_GROWTH_FACTOR))), \
1419 (fail_stack).stack == NULL \
1421 : ((fail_stack).size \
1422 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1423 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1424 * FAIL_STACK_GROWTH_FACTOR)) \
1425 / sizeof (fail_stack_elt_t)), \
1429 /* Push a pointer value onto the failure stack.
1430 Assumes the variable `fail_stack'. Probably should only
1431 be called from within `PUSH_FAILURE_POINT'. */
1432 #define PUSH_FAILURE_POINTER(item) \
1433 fail_stack.stack[fail_stack.avail++].pointer = (item)
1435 /* This pushes an integer-valued item onto the failure stack.
1436 Assumes the variable `fail_stack'. Probably should only
1437 be called from within `PUSH_FAILURE_POINT'. */
1438 #define PUSH_FAILURE_INT(item) \
1439 fail_stack.stack[fail_stack.avail++].integer = (item)
1441 /* Push a fail_stack_elt_t value onto the failure stack.
1442 Assumes the variable `fail_stack'. Probably should only
1443 be called from within `PUSH_FAILURE_POINT'. */
1444 #define PUSH_FAILURE_ELT(item) \
1445 fail_stack.stack[fail_stack.avail++] = (item)
1447 /* These three POP... operations complement the three PUSH... operations.
1448 All assume that `fail_stack' is nonempty. */
1449 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1450 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1451 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1453 /* Individual items aside from the registers. */
1454 #define NUM_NONREG_ITEMS 3
1456 /* Used to examine the stack (to detect infinite loops). */
1457 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1458 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1459 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1460 #define TOP_FAILURE_HANDLE() fail_stack.frame
1463 #define ENSURE_FAIL_STACK(space) \
1464 while (REMAINING_AVAIL_SLOTS <= space) { \
1465 if (!GROW_FAIL_STACK (fail_stack)) \
1467 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1468 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1471 /* Push register NUM onto the stack. */
1472 #define PUSH_FAILURE_REG(num) \
1474 char *destination; \
1475 ENSURE_FAIL_STACK(3); \
1476 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1477 num, regstart[num], regend[num]); \
1478 PUSH_FAILURE_POINTER (regstart[num]); \
1479 PUSH_FAILURE_POINTER (regend[num]); \
1480 PUSH_FAILURE_INT (num); \
1483 /* Change the counter's value to VAL, but make sure that it will
1484 be reset when backtracking. */
1485 #define PUSH_NUMBER(ptr,val) \
1487 char *destination; \
1489 ENSURE_FAIL_STACK(3); \
1490 EXTRACT_NUMBER (c, ptr); \
1491 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1492 PUSH_FAILURE_INT (c); \
1493 PUSH_FAILURE_POINTER (ptr); \
1494 PUSH_FAILURE_INT (-1); \
1495 STORE_NUMBER (ptr, val); \
1498 /* Pop a saved register off the stack. */
1499 #define POP_FAILURE_REG_OR_COUNT() \
1501 int reg = POP_FAILURE_INT (); \
1504 /* It's a counter. */ \
1505 /* Here, we discard `const', making re_match non-reentrant. */ \
1506 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1507 reg = POP_FAILURE_INT (); \
1508 STORE_NUMBER (ptr, reg); \
1509 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1513 regend[reg] = POP_FAILURE_POINTER (); \
1514 regstart[reg] = POP_FAILURE_POINTER (); \
1515 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1516 reg, regstart[reg], regend[reg]); \
1520 /* Check that we are not stuck in an infinite loop. */
1521 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1523 int failure = TOP_FAILURE_HANDLE (); \
1524 /* Check for infinite matching loops */ \
1525 while (failure > 0 \
1526 && (FAILURE_STR (failure) == string_place \
1527 || FAILURE_STR (failure) == NULL)) \
1529 assert (FAILURE_PAT (failure) >= bufp->buffer \
1530 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1531 if (FAILURE_PAT (failure) == pat_cur) \
1536 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1537 failure = NEXT_FAILURE_HANDLE(failure); \
1539 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1542 /* Push the information about the state we will need
1543 if we ever fail back to it.
1545 Requires variables fail_stack, regstart, regend and
1546 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1549 Does `return FAILURE_CODE' if runs out of memory. */
1551 #define PUSH_FAILURE_POINT(pattern, string_place) \
1553 char *destination; \
1554 /* Must be int, so when we don't save any registers, the arithmetic \
1555 of 0 + -1 isn't done as unsigned. */ \
1557 DEBUG_STATEMENT (nfailure_points_pushed++); \
1558 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1559 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1560 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1562 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1564 DEBUG_PRINT1 ("\n"); \
1566 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1567 PUSH_FAILURE_INT (fail_stack.frame); \
1569 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1570 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1571 DEBUG_PRINT1 ("'\n"); \
1572 PUSH_FAILURE_POINTER (string_place); \
1574 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1575 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1576 PUSH_FAILURE_POINTER (pattern); \
1578 /* Close the frame by moving the frame pointer past it. */ \
1579 fail_stack.frame = fail_stack.avail; \
1582 /* Estimate the size of data pushed by a typical failure stack entry.
1583 An estimate is all we need, because all we use this for
1584 is to choose a limit for how big to make the failure stack. */
1585 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1586 #define TYPICAL_FAILURE_SIZE 20
1588 /* How many items can still be added to the stack without overflowing it. */
1589 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1592 /* Pops what PUSH_FAIL_STACK pushes.
1594 We restore into the parameters, all of which should be lvalues:
1595 STR -- the saved data position.
1596 PAT -- the saved pattern position.
1597 REGSTART, REGEND -- arrays of string positions.
1599 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1600 `pend', `string1', `size1', `string2', and `size2'. */
1602 #define POP_FAILURE_POINT(str, pat) \
1604 assert (!FAIL_STACK_EMPTY ()); \
1606 /* Remove failure points and point to how many regs pushed. */ \
1607 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1608 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1609 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1611 /* Pop the saved registers. */ \
1612 while (fail_stack.frame < fail_stack.avail) \
1613 POP_FAILURE_REG_OR_COUNT (); \
1615 pat = POP_FAILURE_POINTER (); \
1616 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1617 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1619 /* If the saved string location is NULL, it came from an \
1620 on_failure_keep_string_jump opcode, and we want to throw away the \
1621 saved NULL, thus retaining our current position in the string. */ \
1622 str = POP_FAILURE_POINTER (); \
1623 DEBUG_PRINT2 (" Popping string %p: `", str); \
1624 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1625 DEBUG_PRINT1 ("'\n"); \
1627 fail_stack.frame = POP_FAILURE_INT (); \
1628 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1630 assert (fail_stack.avail >= 0); \
1631 assert (fail_stack.frame <= fail_stack.avail); \
1633 DEBUG_STATEMENT (nfailure_points_popped++); \
1634 } while (0) /* POP_FAILURE_POINT */
1638 /* Registers are set to a sentinel when they haven't yet matched. */
1639 #define REG_UNSET(e) ((e) == NULL)
1641 /* Subroutine declarations and macros for regex_compile. */
1643 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1644 reg_syntax_t syntax
,
1645 struct re_pattern_buffer
*bufp
));
1646 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1647 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1648 int arg1
, int arg2
));
1649 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1650 int arg
, unsigned char *end
));
1651 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1652 int arg1
, int arg2
, unsigned char *end
));
1653 static boolean at_begline_loc_p
_RE_ARGS ((re_char
*pattern
,
1655 reg_syntax_t syntax
));
1656 static boolean at_endline_loc_p
_RE_ARGS ((re_char
*p
,
1658 reg_syntax_t syntax
));
1659 static re_char
*skip_one_char
_RE_ARGS ((re_char
*p
));
1660 static int analyse_first
_RE_ARGS ((re_char
*p
, re_char
*pend
,
1661 char *fastmap
, const int multibyte
));
1663 /* Fetch the next character in the uncompiled pattern, with no
1665 #define PATFETCH(c) \
1668 if (p == pend) return REG_EEND; \
1669 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1674 /* If `translate' is non-null, return translate[D], else just D. We
1675 cast the subscript to translate because some data is declared as
1676 `char *', to avoid warnings when a string constant is passed. But
1677 when we use a character as a subscript we must make it unsigned. */
1679 # define TRANSLATE(d) \
1680 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1684 /* Macros for outputting the compiled pattern into `buffer'. */
1686 /* If the buffer isn't allocated when it comes in, use this. */
1687 #define INIT_BUF_SIZE 32
1689 /* Make sure we have at least N more bytes of space in buffer. */
1690 #define GET_BUFFER_SPACE(n) \
1691 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1694 /* Make sure we have one more byte of buffer space and then add C to it. */
1695 #define BUF_PUSH(c) \
1697 GET_BUFFER_SPACE (1); \
1698 *b++ = (unsigned char) (c); \
1702 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1703 #define BUF_PUSH_2(c1, c2) \
1705 GET_BUFFER_SPACE (2); \
1706 *b++ = (unsigned char) (c1); \
1707 *b++ = (unsigned char) (c2); \
1711 /* As with BUF_PUSH_2, except for three bytes. */
1712 #define BUF_PUSH_3(c1, c2, c3) \
1714 GET_BUFFER_SPACE (3); \
1715 *b++ = (unsigned char) (c1); \
1716 *b++ = (unsigned char) (c2); \
1717 *b++ = (unsigned char) (c3); \
1721 /* Store a jump with opcode OP at LOC to location TO. We store a
1722 relative address offset by the three bytes the jump itself occupies. */
1723 #define STORE_JUMP(op, loc, to) \
1724 store_op1 (op, loc, (to) - (loc) - 3)
1726 /* Likewise, for a two-argument jump. */
1727 #define STORE_JUMP2(op, loc, to, arg) \
1728 store_op2 (op, loc, (to) - (loc) - 3, arg)
1730 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1731 #define INSERT_JUMP(op, loc, to) \
1732 insert_op1 (op, loc, (to) - (loc) - 3, b)
1734 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1735 #define INSERT_JUMP2(op, loc, to, arg) \
1736 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1739 /* This is not an arbitrary limit: the arguments which represent offsets
1740 into the pattern are two bytes long. So if 2^15 bytes turns out to
1741 be too small, many things would have to change. */
1742 # define MAX_BUF_SIZE (1L << 15)
1744 #if 0 /* This is when we thought it could be 2^16 bytes. */
1745 /* Any other compiler which, like MSC, has allocation limit below 2^16
1746 bytes will have to use approach similar to what was done below for
1747 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1748 reallocating to 0 bytes. Such thing is not going to work too well.
1749 You have been warned!! */
1750 #if defined _MSC_VER && !defined WIN32
1751 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1752 # define MAX_BUF_SIZE 65500L
1754 # define MAX_BUF_SIZE (1L << 16)
1758 /* Extend the buffer by twice its current size via realloc and
1759 reset the pointers that pointed into the old block to point to the
1760 correct places in the new one. If extending the buffer results in it
1761 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1762 #if __BOUNDED_POINTERS__
1763 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1764 # define MOVE_BUFFER_POINTER(P) \
1765 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1766 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1769 SET_HIGH_BOUND (b); \
1770 SET_HIGH_BOUND (begalt); \
1771 if (fixup_alt_jump) \
1772 SET_HIGH_BOUND (fixup_alt_jump); \
1774 SET_HIGH_BOUND (laststart); \
1775 if (pending_exact) \
1776 SET_HIGH_BOUND (pending_exact); \
1779 # define MOVE_BUFFER_POINTER(P) (P) += incr
1780 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1782 #define EXTEND_BUFFER() \
1784 re_char *old_buffer = bufp->buffer; \
1785 if (bufp->allocated == MAX_BUF_SIZE) \
1787 bufp->allocated <<= 1; \
1788 if (bufp->allocated > MAX_BUF_SIZE) \
1789 bufp->allocated = MAX_BUF_SIZE; \
1790 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1791 if (bufp->buffer == NULL) \
1792 return REG_ESPACE; \
1793 /* If the buffer moved, move all the pointers into it. */ \
1794 if (old_buffer != bufp->buffer) \
1796 int incr = bufp->buffer - old_buffer; \
1797 MOVE_BUFFER_POINTER (b); \
1798 MOVE_BUFFER_POINTER (begalt); \
1799 if (fixup_alt_jump) \
1800 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1802 MOVE_BUFFER_POINTER (laststart); \
1803 if (pending_exact) \
1804 MOVE_BUFFER_POINTER (pending_exact); \
1806 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1810 /* Since we have one byte reserved for the register number argument to
1811 {start,stop}_memory, the maximum number of groups we can report
1812 things about is what fits in that byte. */
1813 #define MAX_REGNUM 255
1815 /* But patterns can have more than `MAX_REGNUM' registers. We just
1816 ignore the excess. */
1817 typedef int regnum_t
;
1820 /* Macros for the compile stack. */
1822 /* Since offsets can go either forwards or backwards, this type needs to
1823 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1824 /* int may be not enough when sizeof(int) == 2. */
1825 typedef long pattern_offset_t
;
1829 pattern_offset_t begalt_offset
;
1830 pattern_offset_t fixup_alt_jump
;
1831 pattern_offset_t laststart_offset
;
1833 } compile_stack_elt_t
;
1838 compile_stack_elt_t
*stack
;
1840 unsigned avail
; /* Offset of next open position. */
1841 } compile_stack_type
;
1844 #define INIT_COMPILE_STACK_SIZE 32
1846 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1847 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1849 /* The next available element. */
1850 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1852 /* Explicit quit checking is only used on NTemacs. */
1853 #if defined WINDOWSNT && defined emacs && defined QUIT
1854 extern int immediate_quit
;
1855 # define IMMEDIATE_QUIT_CHECK \
1857 if (immediate_quit) QUIT; \
1860 # define IMMEDIATE_QUIT_CHECK ((void)0)
1863 /* Structure to manage work area for range table. */
1864 struct range_table_work_area
1866 int *table
; /* actual work area. */
1867 int allocated
; /* allocated size for work area in bytes. */
1868 int used
; /* actually used size in words. */
1869 int bits
; /* flag to record character classes */
1872 /* Make sure that WORK_AREA can hold more N multibyte characters.
1873 This is used only in set_image_of_range and set_image_of_range_1.
1874 It expects WORK_AREA to be a pointer.
1875 If it can't get the space, it returns from the surrounding function. */
1877 #define EXTEND_RANGE_TABLE(work_area, n) \
1879 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1881 extend_range_table_work_area (work_area); \
1882 if ((work_area)->table == 0) \
1883 return (REG_ESPACE); \
1887 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1888 (work_area).bits |= (bit)
1890 /* Bits used to implement the multibyte-part of the various character classes
1891 such as [:alnum:] in a charset's range table. */
1892 #define BIT_WORD 0x1
1893 #define BIT_LOWER 0x2
1894 #define BIT_PUNCT 0x4
1895 #define BIT_SPACE 0x8
1896 #define BIT_UPPER 0x10
1897 #define BIT_MULTIBYTE 0x20
1899 /* Set a range START..END to WORK_AREA.
1900 The range is passed through TRANSLATE, so START and END
1901 should be untranslated. */
1902 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1905 tem = set_image_of_range (&work_area, start, end, translate); \
1907 FREE_STACK_RETURN (tem); \
1910 /* Free allocated memory for WORK_AREA. */
1911 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1913 if ((work_area).table) \
1914 free ((work_area).table); \
1917 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1918 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1919 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1920 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1923 /* Set the bit for character C in a list. */
1924 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1927 /* Get the next unsigned number in the uncompiled pattern. */
1928 #define GET_UNSIGNED_NUMBER(num) \
1929 do { if (p != pend) \
1933 FREE_STACK_RETURN (REG_BADBR); \
1934 while ('0' <= c && c <= '9') \
1940 num = num * 10 + c - '0'; \
1941 if (num / 10 != prev) \
1942 FREE_STACK_RETURN (REG_BADBR); \
1948 FREE_STACK_RETURN (REG_BADBR); \
1952 #if WIDE_CHAR_SUPPORT
1953 /* The GNU C library provides support for user-defined character classes
1954 and the functions from ISO C amendement 1. */
1955 # ifdef CHARCLASS_NAME_MAX
1956 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1958 /* This shouldn't happen but some implementation might still have this
1959 problem. Use a reasonable default value. */
1960 # define CHAR_CLASS_MAX_LENGTH 256
1962 typedef wctype_t re_wctype_t
;
1963 typedef wchar_t re_wchar_t
;
1964 # define re_wctype wctype
1965 # define re_iswctype iswctype
1966 # define re_wctype_to_bit(cc) 0
1968 # define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1971 /* Character classes. */
1972 typedef enum { RECC_ERROR
= 0,
1973 RECC_ALNUM
, RECC_ALPHA
, RECC_WORD
,
1974 RECC_GRAPH
, RECC_PRINT
,
1975 RECC_LOWER
, RECC_UPPER
,
1976 RECC_PUNCT
, RECC_CNTRL
,
1977 RECC_DIGIT
, RECC_XDIGIT
,
1978 RECC_BLANK
, RECC_SPACE
,
1979 RECC_MULTIBYTE
, RECC_NONASCII
,
1980 RECC_ASCII
, RECC_UNIBYTE
1983 typedef int re_wchar_t
;
1985 /* Map a string to the char class it names (if any). */
1990 const char *string
= str
;
1991 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
1992 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
1993 else if (STREQ (string
, "word")) return RECC_WORD
;
1994 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
1995 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
1996 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
1997 else if (STREQ (string
, "lower")) return RECC_LOWER
;
1998 else if (STREQ (string
, "print")) return RECC_PRINT
;
1999 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2000 else if (STREQ (string
, "space")) return RECC_SPACE
;
2001 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2002 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2003 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2004 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2005 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2006 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2007 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2011 /* True iff CH is in the char class CC. */
2013 re_iswctype (ch
, cc
)
2019 case RECC_ALNUM
: return ISALNUM (ch
);
2020 case RECC_ALPHA
: return ISALPHA (ch
);
2021 case RECC_BLANK
: return ISBLANK (ch
);
2022 case RECC_CNTRL
: return ISCNTRL (ch
);
2023 case RECC_DIGIT
: return ISDIGIT (ch
);
2024 case RECC_GRAPH
: return ISGRAPH (ch
);
2025 case RECC_LOWER
: return ISLOWER (ch
);
2026 case RECC_PRINT
: return ISPRINT (ch
);
2027 case RECC_PUNCT
: return ISPUNCT (ch
);
2028 case RECC_SPACE
: return ISSPACE (ch
);
2029 case RECC_UPPER
: return ISUPPER (ch
);
2030 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2031 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2032 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2033 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2034 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2035 case RECC_WORD
: return ISWORD (ch
);
2036 case RECC_ERROR
: return false;
2042 /* Return a bit-pattern to use in the range-table bits to match multibyte
2043 chars of class CC. */
2045 re_wctype_to_bit (cc
)
2050 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2051 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2052 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2053 case RECC_LOWER
: return BIT_LOWER
;
2054 case RECC_UPPER
: return BIT_UPPER
;
2055 case RECC_PUNCT
: return BIT_PUNCT
;
2056 case RECC_SPACE
: return BIT_SPACE
;
2057 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2058 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2065 /* Filling in the work area of a range. */
2067 /* Actually extend the space in WORK_AREA. */
2070 extend_range_table_work_area (work_area
)
2071 struct range_table_work_area
*work_area
;
2073 work_area
->allocated
+= 16 * sizeof (int);
2074 if (work_area
->table
)
2076 = (int *) realloc (work_area
->table
, work_area
->allocated
);
2079 = (int *) malloc (work_area
->allocated
);
2084 /* Carefully find the ranges of codes that are equivalent
2085 under case conversion to the range start..end when passed through
2086 TRANSLATE. Handle the case where non-letters can come in between
2087 two upper-case letters (which happens in Latin-1).
2088 Also handle the case of groups of more than 2 case-equivalent chars.
2090 The basic method is to look at consecutive characters and see
2091 if they can form a run that can be handled as one.
2093 Returns -1 if successful, REG_ESPACE if ran out of space. */
2096 set_image_of_range_1 (work_area
, start
, end
, translate
)
2097 RE_TRANSLATE_TYPE translate
;
2098 struct range_table_work_area
*work_area
;
2099 re_wchar_t start
, end
;
2101 /* `one_case' indicates a character, or a run of characters,
2102 each of which is an isolate (no case-equivalents).
2103 This includes all ASCII non-letters.
2105 `two_case' indicates a character, or a run of characters,
2106 each of which has two case-equivalent forms.
2107 This includes all ASCII letters.
2109 `strange' indicates a character that has more than one
2112 enum case_type
{one_case
, two_case
, strange
};
2114 /* Describe the run that is in progress,
2115 which the next character can try to extend.
2116 If run_type is strange, that means there really is no run.
2117 If run_type is one_case, then run_start...run_end is the run.
2118 If run_type is two_case, then the run is run_start...run_end,
2119 and the case-equivalents end at run_eqv_end. */
2121 enum case_type run_type
= strange
;
2122 int run_start
, run_end
, run_eqv_end
;
2124 Lisp_Object eqv_table
;
2126 if (!RE_TRANSLATE_P (translate
))
2128 EXTEND_RANGE_TABLE (work_area
, 2);
2129 work_area
->table
[work_area
->used
++] = (start
);
2130 work_area
->table
[work_area
->used
++] = (end
);
2134 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2136 for (; start
<= end
; start
++)
2138 enum case_type this_type
;
2139 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2140 int minchar
, maxchar
;
2142 /* Classify this character */
2144 this_type
= one_case
;
2145 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2146 this_type
= two_case
;
2148 this_type
= strange
;
2151 minchar
= start
, maxchar
= eqv
;
2153 minchar
= eqv
, maxchar
= start
;
2155 /* Can this character extend the run in progress? */
2156 if (this_type
== strange
|| this_type
!= run_type
2157 || !(minchar
== run_end
+ 1
2158 && (run_type
== two_case
2159 ? maxchar
== run_eqv_end
+ 1 : 1)))
2162 Record each of its equivalent ranges. */
2163 if (run_type
== one_case
)
2165 EXTEND_RANGE_TABLE (work_area
, 2);
2166 work_area
->table
[work_area
->used
++] = run_start
;
2167 work_area
->table
[work_area
->used
++] = run_end
;
2169 else if (run_type
== two_case
)
2171 EXTEND_RANGE_TABLE (work_area
, 4);
2172 work_area
->table
[work_area
->used
++] = run_start
;
2173 work_area
->table
[work_area
->used
++] = run_end
;
2174 work_area
->table
[work_area
->used
++]
2175 = RE_TRANSLATE (eqv_table
, run_start
);
2176 work_area
->table
[work_area
->used
++]
2177 = RE_TRANSLATE (eqv_table
, run_end
);
2182 if (this_type
== strange
)
2184 /* For a strange character, add each of its equivalents, one
2185 by one. Don't start a range. */
2188 EXTEND_RANGE_TABLE (work_area
, 2);
2189 work_area
->table
[work_area
->used
++] = eqv
;
2190 work_area
->table
[work_area
->used
++] = eqv
;
2191 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2193 while (eqv
!= start
);
2196 /* Add this char to the run, or start a new run. */
2197 else if (run_type
== strange
)
2199 /* Initialize a new range. */
2200 run_type
= this_type
;
2203 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2207 /* Extend a running range. */
2209 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2213 /* If a run is still in progress at the end, finish it now
2214 by recording its equivalent ranges. */
2215 if (run_type
== one_case
)
2217 EXTEND_RANGE_TABLE (work_area
, 2);
2218 work_area
->table
[work_area
->used
++] = run_start
;
2219 work_area
->table
[work_area
->used
++] = run_end
;
2221 else if (run_type
== two_case
)
2223 EXTEND_RANGE_TABLE (work_area
, 4);
2224 work_area
->table
[work_area
->used
++] = run_start
;
2225 work_area
->table
[work_area
->used
++] = run_end
;
2226 work_area
->table
[work_area
->used
++]
2227 = RE_TRANSLATE (eqv_table
, run_start
);
2228 work_area
->table
[work_area
->used
++]
2229 = RE_TRANSLATE (eqv_table
, run_end
);
2237 /* Record the the image of the range start..end when passed through
2238 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2239 and is not even necessarily contiguous.
2240 Normally we approximate it with the smallest contiguous range that contains
2241 all the chars we need. However, for Latin-1 we go to extra effort
2244 This function is not called for ASCII ranges.
2246 Returns -1 if successful, REG_ESPACE if ran out of space. */
2249 set_image_of_range (work_area
, start
, end
, translate
)
2250 RE_TRANSLATE_TYPE translate
;
2251 struct range_table_work_area
*work_area
;
2252 re_wchar_t start
, end
;
2254 re_wchar_t cmin
, cmax
;
2257 /* For Latin-1 ranges, use set_image_of_range_1
2258 to get proper handling of ranges that include letters and nonletters.
2259 For a range that includes the whole of Latin-1, this is not necessary.
2260 For other character sets, we don't bother to get this right. */
2261 if (RE_TRANSLATE_P (translate
) && start
< 04400
2262 && !(start
< 04200 && end
>= 04377))
2269 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2279 EXTEND_RANGE_TABLE (work_area
, 2);
2280 work_area
->table
[work_area
->used
++] = (start
);
2281 work_area
->table
[work_area
->used
++] = (end
);
2283 cmin
= -1, cmax
= -1;
2285 if (RE_TRANSLATE_P (translate
))
2289 for (ch
= start
; ch
<= end
; ch
++)
2291 re_wchar_t c
= TRANSLATE (ch
);
2292 if (! (start
<= c
&& c
<= end
))
2298 cmin
= MIN (cmin
, c
);
2299 cmax
= MAX (cmax
, c
);
2306 EXTEND_RANGE_TABLE (work_area
, 2);
2307 work_area
->table
[work_area
->used
++] = (cmin
);
2308 work_area
->table
[work_area
->used
++] = (cmax
);
2315 #ifndef MATCH_MAY_ALLOCATE
2317 /* If we cannot allocate large objects within re_match_2_internal,
2318 we make the fail stack and register vectors global.
2319 The fail stack, we grow to the maximum size when a regexp
2321 The register vectors, we adjust in size each time we
2322 compile a regexp, according to the number of registers it needs. */
2324 static fail_stack_type fail_stack
;
2326 /* Size with which the following vectors are currently allocated.
2327 That is so we can make them bigger as needed,
2328 but never make them smaller. */
2329 static int regs_allocated_size
;
2331 static re_char
** regstart
, ** regend
;
2332 static re_char
**best_regstart
, **best_regend
;
2334 /* Make the register vectors big enough for NUM_REGS registers,
2335 but don't make them smaller. */
2338 regex_grow_registers (num_regs
)
2341 if (num_regs
> regs_allocated_size
)
2343 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2344 RETALLOC_IF (regend
, num_regs
, re_char
*);
2345 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2346 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2348 regs_allocated_size
= num_regs
;
2352 #endif /* not MATCH_MAY_ALLOCATE */
2354 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2358 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2359 Returns one of error codes defined in `regex.h', or zero for success.
2361 Assumes the `allocated' (and perhaps `buffer') and `translate'
2362 fields are set in BUFP on entry.
2364 If it succeeds, results are put in BUFP (if it returns an error, the
2365 contents of BUFP are undefined):
2366 `buffer' is the compiled pattern;
2367 `syntax' is set to SYNTAX;
2368 `used' is set to the length of the compiled pattern;
2369 `fastmap_accurate' is zero;
2370 `re_nsub' is the number of subexpressions in PATTERN;
2371 `not_bol' and `not_eol' are zero;
2373 The `fastmap' field is neither examined nor set. */
2375 /* Insert the `jump' from the end of last alternative to "here".
2376 The space for the jump has already been allocated. */
2377 #define FIXUP_ALT_JUMP() \
2379 if (fixup_alt_jump) \
2380 STORE_JUMP (jump, fixup_alt_jump, b); \
2384 /* Return, freeing storage we allocated. */
2385 #define FREE_STACK_RETURN(value) \
2387 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2388 free (compile_stack.stack); \
2392 static reg_errcode_t
2393 regex_compile (pattern
, size
, syntax
, bufp
)
2396 reg_syntax_t syntax
;
2397 struct re_pattern_buffer
*bufp
;
2399 /* We fetch characters from PATTERN here. */
2400 register re_wchar_t c
, c1
;
2402 /* A random temporary spot in PATTERN. */
2405 /* Points to the end of the buffer, where we should append. */
2406 register unsigned char *b
;
2408 /* Keeps track of unclosed groups. */
2409 compile_stack_type compile_stack
;
2411 /* Points to the current (ending) position in the pattern. */
2413 /* `const' makes AIX compiler fail. */
2414 unsigned char *p
= pattern
;
2416 re_char
*p
= pattern
;
2418 re_char
*pend
= pattern
+ size
;
2420 /* How to translate the characters in the pattern. */
2421 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2423 /* Address of the count-byte of the most recently inserted `exactn'
2424 command. This makes it possible to tell if a new exact-match
2425 character can be added to that command or if the character requires
2426 a new `exactn' command. */
2427 unsigned char *pending_exact
= 0;
2429 /* Address of start of the most recently finished expression.
2430 This tells, e.g., postfix * where to find the start of its
2431 operand. Reset at the beginning of groups and alternatives. */
2432 unsigned char *laststart
= 0;
2434 /* Address of beginning of regexp, or inside of last group. */
2435 unsigned char *begalt
;
2437 /* Place in the uncompiled pattern (i.e., the {) to
2438 which to go back if the interval is invalid. */
2439 re_char
*beg_interval
;
2441 /* Address of the place where a forward jump should go to the end of
2442 the containing expression. Each alternative of an `or' -- except the
2443 last -- ends with a forward jump of this sort. */
2444 unsigned char *fixup_alt_jump
= 0;
2446 /* Counts open-groups as they are encountered. Remembered for the
2447 matching close-group on the compile stack, so the same register
2448 number is put in the stop_memory as the start_memory. */
2449 regnum_t regnum
= 0;
2451 /* Work area for range table of charset. */
2452 struct range_table_work_area range_table_work
;
2454 /* If the object matched can contain multibyte characters. */
2455 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2459 DEBUG_PRINT1 ("\nCompiling pattern: ");
2462 unsigned debug_count
;
2464 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2465 putchar (pattern
[debug_count
]);
2470 /* Initialize the compile stack. */
2471 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2472 if (compile_stack
.stack
== NULL
)
2475 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2476 compile_stack
.avail
= 0;
2478 range_table_work
.table
= 0;
2479 range_table_work
.allocated
= 0;
2481 /* Initialize the pattern buffer. */
2482 bufp
->syntax
= syntax
;
2483 bufp
->fastmap_accurate
= 0;
2484 bufp
->not_bol
= bufp
->not_eol
= 0;
2486 /* Set `used' to zero, so that if we return an error, the pattern
2487 printer (for debugging) will think there's no pattern. We reset it
2491 /* Always count groups, whether or not bufp->no_sub is set. */
2494 #if !defined emacs && !defined SYNTAX_TABLE
2495 /* Initialize the syntax table. */
2496 init_syntax_once ();
2499 if (bufp
->allocated
== 0)
2502 { /* If zero allocated, but buffer is non-null, try to realloc
2503 enough space. This loses if buffer's address is bogus, but
2504 that is the user's responsibility. */
2505 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2508 { /* Caller did not allocate a buffer. Do it for them. */
2509 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2511 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2513 bufp
->allocated
= INIT_BUF_SIZE
;
2516 begalt
= b
= bufp
->buffer
;
2518 /* Loop through the uncompiled pattern until we're at the end. */
2527 if ( /* If at start of pattern, it's an operator. */
2529 /* If context independent, it's an operator. */
2530 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2531 /* Otherwise, depends on what's come before. */
2532 || at_begline_loc_p (pattern
, p
, syntax
))
2533 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2542 if ( /* If at end of pattern, it's an operator. */
2544 /* If context independent, it's an operator. */
2545 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2546 /* Otherwise, depends on what's next. */
2547 || at_endline_loc_p (p
, pend
, syntax
))
2548 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2557 if ((syntax
& RE_BK_PLUS_QM
)
2558 || (syntax
& RE_LIMITED_OPS
))
2562 /* If there is no previous pattern... */
2565 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2566 FREE_STACK_RETURN (REG_BADRPT
);
2567 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2572 /* 1 means zero (many) matches is allowed. */
2573 boolean zero_times_ok
= 0, many_times_ok
= 0;
2576 /* If there is a sequence of repetition chars, collapse it
2577 down to just one (the right one). We can't combine
2578 interval operators with these because of, e.g., `a{2}*',
2579 which should only match an even number of `a's. */
2583 if ((syntax
& RE_FRUGAL
)
2584 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2588 zero_times_ok
|= c
!= '+';
2589 many_times_ok
|= c
!= '?';
2595 || (!(syntax
& RE_BK_PLUS_QM
)
2596 && (*p
== '+' || *p
== '?')))
2598 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2601 FREE_STACK_RETURN (REG_EESCAPE
);
2602 if (p
[1] == '+' || p
[1] == '?')
2603 PATFETCH (c
); /* Gobble up the backslash. */
2609 /* If we get here, we found another repeat character. */
2613 /* Star, etc. applied to an empty pattern is equivalent
2614 to an empty pattern. */
2615 if (!laststart
|| laststart
== b
)
2618 /* Now we know whether or not zero matches is allowed
2619 and also whether or not two or more matches is allowed. */
2624 boolean simple
= skip_one_char (laststart
) == b
;
2625 unsigned int startoffset
= 0;
2627 /* Check if the loop can match the empty string. */
2628 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2629 ? on_failure_jump
: on_failure_jump_loop
;
2630 assert (skip_one_char (laststart
) <= b
);
2632 if (!zero_times_ok
&& simple
)
2633 { /* Since simple * loops can be made faster by using
2634 on_failure_keep_string_jump, we turn simple P+
2635 into PP* if P is simple. */
2636 unsigned char *p1
, *p2
;
2637 startoffset
= b
- laststart
;
2638 GET_BUFFER_SPACE (startoffset
);
2639 p1
= b
; p2
= laststart
;
2645 GET_BUFFER_SPACE (6);
2648 STORE_JUMP (ofj
, b
, b
+ 6);
2650 /* Simple * loops can use on_failure_keep_string_jump
2651 depending on what follows. But since we don't know
2652 that yet, we leave the decision up to
2653 on_failure_jump_smart. */
2654 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2655 laststart
+ startoffset
, b
+ 6);
2657 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2662 /* A simple ? pattern. */
2663 assert (zero_times_ok
);
2664 GET_BUFFER_SPACE (3);
2665 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2669 else /* not greedy */
2670 { /* I wish the greedy and non-greedy cases could be merged. */
2672 GET_BUFFER_SPACE (7); /* We might use less. */
2675 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2677 /* The non-greedy multiple match looks like
2678 a repeat..until: we only need a conditional jump
2679 at the end of the loop. */
2680 if (emptyp
) BUF_PUSH (no_op
);
2681 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2682 : on_failure_jump
, b
, laststart
);
2686 /* The repeat...until naturally matches one or more.
2687 To also match zero times, we need to first jump to
2688 the end of the loop (its conditional jump). */
2689 INSERT_JUMP (jump
, laststart
, b
);
2695 /* non-greedy a?? */
2696 INSERT_JUMP (jump
, laststart
, b
+ 3);
2698 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2715 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2717 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2719 /* Ensure that we have enough space to push a charset: the
2720 opcode, the length count, and the bitset; 34 bytes in all. */
2721 GET_BUFFER_SPACE (34);
2725 /* We test `*p == '^' twice, instead of using an if
2726 statement, so we only need one BUF_PUSH. */
2727 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2731 /* Remember the first position in the bracket expression. */
2734 /* Push the number of bytes in the bitmap. */
2735 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2737 /* Clear the whole map. */
2738 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2740 /* charset_not matches newline according to a syntax bit. */
2741 if ((re_opcode_t
) b
[-2] == charset_not
2742 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2743 SET_LIST_BIT ('\n');
2745 /* Read in characters and ranges, setting map bits. */
2748 boolean escaped_char
= false;
2749 const unsigned char *p2
= p
;
2751 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2753 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2754 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2755 So the translation is done later in a loop. Example:
2756 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2759 /* \ might escape characters inside [...] and [^...]. */
2760 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2762 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2765 escaped_char
= true;
2769 /* Could be the end of the bracket expression. If it's
2770 not (i.e., when the bracket expression is `[]' so
2771 far), the ']' character bit gets set way below. */
2772 if (c
== ']' && p2
!= p1
)
2776 /* What should we do for the character which is
2777 greater than 0x7F, but not BASE_LEADING_CODE_P?
2780 /* See if we're at the beginning of a possible character
2783 if (!escaped_char
&&
2784 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2786 /* Leave room for the null. */
2787 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2788 const unsigned char *class_beg
;
2794 /* If pattern is `[[:'. */
2795 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2800 if ((c
== ':' && *p
== ']') || p
== pend
)
2802 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2805 /* This is in any case an invalid class name. */
2810 /* If isn't a word bracketed by `[:' and `:]':
2811 undo the ending character, the letters, and
2812 leave the leading `:' and `[' (but set bits for
2814 if (c
== ':' && *p
== ']')
2819 cc
= re_wctype (str
);
2822 FREE_STACK_RETURN (REG_ECTYPE
);
2824 /* Throw away the ] at the end of the character
2828 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2830 /* Most character classes in a multibyte match
2831 just set a flag. Exceptions are is_blank,
2832 is_digit, is_cntrl, and is_xdigit, since
2833 they can only match ASCII characters. We
2834 don't need to handle them for multibyte.
2835 They are distinguished by a negative wctype. */
2838 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work
,
2839 re_wctype_to_bit (cc
));
2841 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2843 int translated
= TRANSLATE (ch
);
2844 if (re_iswctype (btowc (ch
), cc
))
2845 SET_LIST_BIT (translated
);
2848 /* Repeat the loop. */
2853 /* Go back to right after the "[:". */
2857 /* Because the `:' may starts the range, we
2858 can't simply set bit and repeat the loop.
2859 Instead, just set it to C and handle below. */
2864 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2867 /* Discard the `-'. */
2870 /* Fetch the character which ends the range. */
2873 if (SINGLE_BYTE_CHAR_P (c
))
2875 if (! SINGLE_BYTE_CHAR_P (c1
))
2877 /* Handle a range starting with a
2878 character of less than 256, and ending
2879 with a character of not less than 256.
2880 Split that into two ranges, the low one
2881 ending at 0377, and the high one
2882 starting at the smallest character in
2883 the charset of C1 and ending at C1. */
2884 int charset
= CHAR_CHARSET (c1
);
2885 re_wchar_t c2
= MAKE_CHAR (charset
, 0, 0);
2887 SET_RANGE_TABLE_WORK_AREA (range_table_work
,
2892 else if (!SAME_CHARSET_P (c
, c1
))
2893 FREE_STACK_RETURN (REG_ERANGE
);
2896 /* Range from C to C. */
2899 /* Set the range ... */
2900 if (SINGLE_BYTE_CHAR_P (c
))
2901 /* ... into bitmap. */
2903 re_wchar_t this_char
;
2904 re_wchar_t range_start
= c
, range_end
= c1
;
2906 /* If the start is after the end, the range is empty. */
2907 if (range_start
> range_end
)
2909 if (syntax
& RE_NO_EMPTY_RANGES
)
2910 FREE_STACK_RETURN (REG_ERANGE
);
2911 /* Else, repeat the loop. */
2915 for (this_char
= range_start
; this_char
<= range_end
;
2917 SET_LIST_BIT (TRANSLATE (this_char
));
2921 /* ... into range table. */
2922 SET_RANGE_TABLE_WORK_AREA (range_table_work
, c
, c1
);
2925 /* Discard any (non)matching list bytes that are all 0 at the
2926 end of the map. Decrease the map-length byte too. */
2927 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2931 /* Build real range table from work area. */
2932 if (RANGE_TABLE_WORK_USED (range_table_work
)
2933 || RANGE_TABLE_WORK_BITS (range_table_work
))
2936 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
2938 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2939 bytes for flags, two for COUNT, and three bytes for
2941 GET_BUFFER_SPACE (4 + used
* 3);
2943 /* Indicate the existence of range table. */
2944 laststart
[1] |= 0x80;
2946 /* Store the character class flag bits into the range table.
2947 If not in emacs, these flag bits are always 0. */
2948 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
2949 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
2951 STORE_NUMBER_AND_INCR (b
, used
/ 2);
2952 for (i
= 0; i
< used
; i
++)
2953 STORE_CHARACTER_AND_INCR
2954 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
2961 if (syntax
& RE_NO_BK_PARENS
)
2968 if (syntax
& RE_NO_BK_PARENS
)
2975 if (syntax
& RE_NEWLINE_ALT
)
2982 if (syntax
& RE_NO_BK_VBAR
)
2989 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2990 goto handle_interval
;
2996 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2998 /* Do not translate the character after the \, so that we can
2999 distinguish, e.g., \B from \b, even if we normally would
3000 translate, e.g., B to b. */
3006 if (syntax
& RE_NO_BK_PARENS
)
3007 goto normal_backslash
;
3014 /* Look for a special (?...) construct */
3015 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3017 PATFETCH (c
); /* Gobble up the '?'. */
3021 case ':': shy
= 1; break;
3023 /* Only (?:...) is supported right now. */
3024 FREE_STACK_RETURN (REG_BADPAT
);
3035 if (COMPILE_STACK_FULL
)
3037 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3038 compile_stack_elt_t
);
3039 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3041 compile_stack
.size
<<= 1;
3044 /* These are the values to restore when we hit end of this
3045 group. They are all relative offsets, so that if the
3046 whole pattern moves because of realloc, they will still
3048 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3049 COMPILE_STACK_TOP
.fixup_alt_jump
3050 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3051 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3052 COMPILE_STACK_TOP
.regnum
= shy
? -regnum
: regnum
;
3055 start_memory for groups beyond the last one we can
3056 represent in the compiled pattern. */
3057 if (regnum
<= MAX_REGNUM
&& !shy
)
3058 BUF_PUSH_2 (start_memory
, regnum
);
3060 compile_stack
.avail
++;
3065 /* If we've reached MAX_REGNUM groups, then this open
3066 won't actually generate any code, so we'll have to
3067 clear pending_exact explicitly. */
3073 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3075 if (COMPILE_STACK_EMPTY
)
3077 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3078 goto normal_backslash
;
3080 FREE_STACK_RETURN (REG_ERPAREN
);
3086 /* See similar code for backslashed left paren above. */
3087 if (COMPILE_STACK_EMPTY
)
3089 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3092 FREE_STACK_RETURN (REG_ERPAREN
);
3095 /* Since we just checked for an empty stack above, this
3096 ``can't happen''. */
3097 assert (compile_stack
.avail
!= 0);
3099 /* We don't just want to restore into `regnum', because
3100 later groups should continue to be numbered higher,
3101 as in `(ab)c(de)' -- the second group is #2. */
3102 regnum_t this_group_regnum
;
3104 compile_stack
.avail
--;
3105 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3107 = COMPILE_STACK_TOP
.fixup_alt_jump
3108 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3110 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3111 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3112 /* If we've reached MAX_REGNUM groups, then this open
3113 won't actually generate any code, so we'll have to
3114 clear pending_exact explicitly. */
3117 /* We're at the end of the group, so now we know how many
3118 groups were inside this one. */
3119 if (this_group_regnum
<= MAX_REGNUM
&& this_group_regnum
> 0)
3120 BUF_PUSH_2 (stop_memory
, this_group_regnum
);
3125 case '|': /* `\|'. */
3126 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3127 goto normal_backslash
;
3129 if (syntax
& RE_LIMITED_OPS
)
3132 /* Insert before the previous alternative a jump which
3133 jumps to this alternative if the former fails. */
3134 GET_BUFFER_SPACE (3);
3135 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3139 /* The alternative before this one has a jump after it
3140 which gets executed if it gets matched. Adjust that
3141 jump so it will jump to this alternative's analogous
3142 jump (put in below, which in turn will jump to the next
3143 (if any) alternative's such jump, etc.). The last such
3144 jump jumps to the correct final destination. A picture:
3150 If we are at `b', then fixup_alt_jump right now points to a
3151 three-byte space after `a'. We'll put in the jump, set
3152 fixup_alt_jump to right after `b', and leave behind three
3153 bytes which we'll fill in when we get to after `c'. */
3157 /* Mark and leave space for a jump after this alternative,
3158 to be filled in later either by next alternative or
3159 when know we're at the end of a series of alternatives. */
3161 GET_BUFFER_SPACE (3);
3170 /* If \{ is a literal. */
3171 if (!(syntax
& RE_INTERVALS
)
3172 /* If we're at `\{' and it's not the open-interval
3174 || (syntax
& RE_NO_BK_BRACES
))
3175 goto normal_backslash
;
3179 /* If got here, then the syntax allows intervals. */
3181 /* At least (most) this many matches must be made. */
3182 int lower_bound
= 0, upper_bound
= -1;
3187 FREE_STACK_RETURN (REG_EBRACE
);
3189 GET_UNSIGNED_NUMBER (lower_bound
);
3192 GET_UNSIGNED_NUMBER (upper_bound
);
3194 /* Interval such as `{1}' => match exactly once. */
3195 upper_bound
= lower_bound
;
3197 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3198 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3199 FREE_STACK_RETURN (REG_BADBR
);
3201 if (!(syntax
& RE_NO_BK_BRACES
))
3204 FREE_STACK_RETURN (REG_BADBR
);
3210 FREE_STACK_RETURN (REG_BADBR
);
3212 /* We just parsed a valid interval. */
3214 /* If it's invalid to have no preceding re. */
3217 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3218 FREE_STACK_RETURN (REG_BADRPT
);
3219 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3222 goto unfetch_interval
;
3225 if (upper_bound
== 0)
3226 /* If the upper bound is zero, just drop the sub pattern
3229 else if (lower_bound
== 1 && upper_bound
== 1)
3230 /* Just match it once: nothing to do here. */
3233 /* Otherwise, we have a nontrivial interval. When
3234 we're all done, the pattern will look like:
3235 set_number_at <jump count> <upper bound>
3236 set_number_at <succeed_n count> <lower bound>
3237 succeed_n <after jump addr> <succeed_n count>
3239 jump_n <succeed_n addr> <jump count>
3240 (The upper bound and `jump_n' are omitted if
3241 `upper_bound' is 1, though.) */
3243 { /* If the upper bound is > 1, we need to insert
3244 more at the end of the loop. */
3245 unsigned int nbytes
= (upper_bound
< 0 ? 3
3246 : upper_bound
> 1 ? 5 : 0);
3247 unsigned int startoffset
= 0;
3249 GET_BUFFER_SPACE (20); /* We might use less. */
3251 if (lower_bound
== 0)
3253 /* A succeed_n that starts with 0 is really a
3254 a simple on_failure_jump_loop. */
3255 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3261 /* Initialize lower bound of the `succeed_n', even
3262 though it will be set during matching by its
3263 attendant `set_number_at' (inserted next),
3264 because `re_compile_fastmap' needs to know.
3265 Jump to the `jump_n' we might insert below. */
3266 INSERT_JUMP2 (succeed_n
, laststart
,
3271 /* Code to initialize the lower bound. Insert
3272 before the `succeed_n'. The `5' is the last two
3273 bytes of this `set_number_at', plus 3 bytes of
3274 the following `succeed_n'. */
3275 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3280 if (upper_bound
< 0)
3282 /* A negative upper bound stands for infinity,
3283 in which case it degenerates to a plain jump. */
3284 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3287 else if (upper_bound
> 1)
3288 { /* More than one repetition is allowed, so
3289 append a backward jump to the `succeed_n'
3290 that starts this interval.
3292 When we've reached this during matching,
3293 we'll have matched the interval once, so
3294 jump back only `upper_bound - 1' times. */
3295 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3299 /* The location we want to set is the second
3300 parameter of the `jump_n'; that is `b-2' as
3301 an absolute address. `laststart' will be
3302 the `set_number_at' we're about to insert;
3303 `laststart+3' the number to set, the source
3304 for the relative address. But we are
3305 inserting into the middle of the pattern --
3306 so everything is getting moved up by 5.
3307 Conclusion: (b - 2) - (laststart + 3) + 5,
3308 i.e., b - laststart.
3310 We insert this at the beginning of the loop
3311 so that if we fail during matching, we'll
3312 reinitialize the bounds. */
3313 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3314 upper_bound
- 1, b
);
3319 beg_interval
= NULL
;
3324 /* If an invalid interval, match the characters as literals. */
3325 assert (beg_interval
);
3327 beg_interval
= NULL
;
3329 /* normal_char and normal_backslash need `c'. */
3332 if (!(syntax
& RE_NO_BK_BRACES
))
3334 assert (p
> pattern
&& p
[-1] == '\\');
3335 goto normal_backslash
;
3341 /* There is no way to specify the before_dot and after_dot
3342 operators. rms says this is ok. --karl */
3350 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3356 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3362 BUF_PUSH_2 (categoryspec
, c
);
3368 BUF_PUSH_2 (notcategoryspec
, c
);
3374 if (syntax
& RE_NO_GNU_OPS
)
3377 BUF_PUSH_2 (syntaxspec
, Sword
);
3382 if (syntax
& RE_NO_GNU_OPS
)
3385 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3390 if (syntax
& RE_NO_GNU_OPS
)
3396 if (syntax
& RE_NO_GNU_OPS
)
3402 if (syntax
& RE_NO_GNU_OPS
)
3404 BUF_PUSH (wordbound
);
3408 if (syntax
& RE_NO_GNU_OPS
)
3410 BUF_PUSH (notwordbound
);
3414 if (syntax
& RE_NO_GNU_OPS
)
3420 if (syntax
& RE_NO_GNU_OPS
)
3425 case '1': case '2': case '3': case '4': case '5':
3426 case '6': case '7': case '8': case '9':
3430 if (syntax
& RE_NO_BK_REFS
)
3431 goto normal_backslash
;
3435 /* Can't back reference to a subexpression before its end. */
3436 if (reg
> regnum
|| group_in_compile_stack (compile_stack
, reg
))
3437 FREE_STACK_RETURN (REG_ESUBREG
);
3440 BUF_PUSH_2 (duplicate
, reg
);
3447 if (syntax
& RE_BK_PLUS_QM
)
3450 goto normal_backslash
;
3454 /* You might think it would be useful for \ to mean
3455 not to translate; but if we don't translate it
3456 it will never match anything. */
3463 /* Expects the character in `c'. */
3465 /* If no exactn currently being built. */
3468 /* If last exactn not at current position. */
3469 || pending_exact
+ *pending_exact
+ 1 != b
3471 /* We have only one byte following the exactn for the count. */
3472 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3474 /* If followed by a repetition operator. */
3475 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3476 || ((syntax
& RE_BK_PLUS_QM
)
3477 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3478 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3479 || ((syntax
& RE_INTERVALS
)
3480 && ((syntax
& RE_NO_BK_BRACES
)
3481 ? p
!= pend
&& *p
== '{'
3482 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3484 /* Start building a new exactn. */
3488 BUF_PUSH_2 (exactn
, 0);
3489 pending_exact
= b
- 1;
3492 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3498 len
= CHAR_STRING (c
, b
);
3502 (*pending_exact
) += len
;
3507 } /* while p != pend */
3510 /* Through the pattern now. */
3514 if (!COMPILE_STACK_EMPTY
)
3515 FREE_STACK_RETURN (REG_EPAREN
);
3517 /* If we don't want backtracking, force success
3518 the first time we reach the end of the compiled pattern. */
3519 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3522 /* We have succeeded; set the length of the buffer. */
3523 bufp
->used
= b
- bufp
->buffer
;
3528 re_compile_fastmap (bufp
);
3529 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3530 print_compiled_pattern (bufp
);
3535 #ifndef MATCH_MAY_ALLOCATE
3536 /* Initialize the failure stack to the largest possible stack. This
3537 isn't necessary unless we're trying to avoid calling alloca in
3538 the search and match routines. */
3540 int num_regs
= bufp
->re_nsub
+ 1;
3542 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3544 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3546 if (! fail_stack
.stack
)
3548 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3549 * sizeof (fail_stack_elt_t
));
3552 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3554 * sizeof (fail_stack_elt_t
)));
3557 regex_grow_registers (num_regs
);
3559 #endif /* not MATCH_MAY_ALLOCATE */
3561 FREE_STACK_RETURN (REG_NOERROR
);
3562 } /* regex_compile */
3564 /* Subroutines for `regex_compile'. */
3566 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3569 store_op1 (op
, loc
, arg
)
3574 *loc
= (unsigned char) op
;
3575 STORE_NUMBER (loc
+ 1, arg
);
3579 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3582 store_op2 (op
, loc
, arg1
, arg2
)
3587 *loc
= (unsigned char) op
;
3588 STORE_NUMBER (loc
+ 1, arg1
);
3589 STORE_NUMBER (loc
+ 3, arg2
);
3593 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3594 for OP followed by two-byte integer parameter ARG. */
3597 insert_op1 (op
, loc
, arg
, end
)
3603 register unsigned char *pfrom
= end
;
3604 register unsigned char *pto
= end
+ 3;
3606 while (pfrom
!= loc
)
3609 store_op1 (op
, loc
, arg
);
3613 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3616 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3622 register unsigned char *pfrom
= end
;
3623 register unsigned char *pto
= end
+ 5;
3625 while (pfrom
!= loc
)
3628 store_op2 (op
, loc
, arg1
, arg2
);
3632 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3633 after an alternative or a begin-subexpression. We assume there is at
3634 least one character before the ^. */
3637 at_begline_loc_p (pattern
, p
, syntax
)
3638 re_char
*pattern
, *p
;
3639 reg_syntax_t syntax
;
3641 re_char
*prev
= p
- 2;
3642 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3645 /* After a subexpression? */
3646 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3647 /* After an alternative? */
3648 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3649 /* After a shy subexpression? */
3650 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3651 && prev
[-1] == '?' && prev
[-2] == '('
3652 && (syntax
& RE_NO_BK_PARENS
3653 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3657 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3658 at least one character after the $, i.e., `P < PEND'. */
3661 at_endline_loc_p (p
, pend
, syntax
)
3663 reg_syntax_t syntax
;
3666 boolean next_backslash
= *next
== '\\';
3667 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3670 /* Before a subexpression? */
3671 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3672 : next_backslash
&& next_next
&& *next_next
== ')')
3673 /* Before an alternative? */
3674 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3675 : next_backslash
&& next_next
&& *next_next
== '|');
3679 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3680 false if it's not. */
3683 group_in_compile_stack (compile_stack
, regnum
)
3684 compile_stack_type compile_stack
;
3689 for (this_element
= compile_stack
.avail
- 1;
3692 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3699 If fastmap is non-NULL, go through the pattern and fill fastmap
3700 with all the possible leading chars. If fastmap is NULL, don't
3701 bother filling it up (obviously) and only return whether the
3702 pattern could potentially match the empty string.
3704 Return 1 if p..pend might match the empty string.
3705 Return 0 if p..pend matches at least one char.
3706 Return -1 if fastmap was not updated accurately. */
3709 analyse_first (p
, pend
, fastmap
, multibyte
)
3712 const int multibyte
;
3717 /* If all elements for base leading-codes in fastmap is set, this
3718 flag is set true. */
3719 boolean match_any_multibyte_characters
= false;
3723 /* The loop below works as follows:
3724 - It has a working-list kept in the PATTERN_STACK and which basically
3725 starts by only containing a pointer to the first operation.
3726 - If the opcode we're looking at is a match against some set of
3727 chars, then we add those chars to the fastmap and go on to the
3728 next work element from the worklist (done via `break').
3729 - If the opcode is a control operator on the other hand, we either
3730 ignore it (if it's meaningless at this point, such as `start_memory')
3731 or execute it (if it's a jump). If the jump has several destinations
3732 (i.e. `on_failure_jump'), then we push the other destination onto the
3734 We guarantee termination by ignoring backward jumps (more or less),
3735 so that `p' is monotonically increasing. More to the point, we
3736 never set `p' (or push) anything `<= p1'. */
3740 /* `p1' is used as a marker of how far back a `on_failure_jump'
3741 can go without being ignored. It is normally equal to `p'
3742 (which prevents any backward `on_failure_jump') except right
3743 after a plain `jump', to allow patterns such as:
3746 10: on_failure_jump 3
3747 as used for the *? operator. */
3750 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3757 /* If the first character has to match a backreference, that means
3758 that the group was empty (since it already matched). Since this
3759 is the only case that interests us here, we can assume that the
3760 backreference must match the empty string. */
3765 /* Following are the cases which match a character. These end
3771 int c
= RE_STRING_CHAR (p
+ 1, pend
- p
);
3773 if (SINGLE_BYTE_CHAR_P (c
))
3782 /* We could put all the chars except for \n (and maybe \0)
3783 but we don't bother since it is generally not worth it. */
3784 if (!fastmap
) break;
3789 /* Chars beyond end of bitmap are possible matches.
3790 All the single-byte codes can occur in multibyte buffers.
3791 So any that are not listed in the charset
3792 are possible matches, even in multibyte buffers. */
3793 if (!fastmap
) break;
3794 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3795 j
< (1 << BYTEWIDTH
); j
++)
3799 if (!fastmap
) break;
3800 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3801 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3803 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3806 if ((not && multibyte
)
3807 /* Any character set can possibly contain a character
3808 which doesn't match the specified set of characters. */
3809 || (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3810 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3811 /* If we can match a character class, we can match
3812 any character set. */
3814 set_fastmap_for_multibyte_characters
:
3815 if (match_any_multibyte_characters
== false)
3817 for (j
= 0x80; j
< 0xA0; j
++) /* XXX */
3818 if (BASE_LEADING_CODE_P (j
))
3820 match_any_multibyte_characters
= true;
3824 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3825 && match_any_multibyte_characters
== false)
3827 /* Set fastmap[I] 1 where I is a base leading code of each
3828 multibyte character in the range table. */
3831 /* Make P points the range table. `+ 2' is to skip flag
3832 bits for a character class. */
3833 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3835 /* Extract the number of ranges in range table into COUNT. */
3836 EXTRACT_NUMBER_AND_INCR (count
, p
);
3837 for (; count
> 0; count
--, p
+= 2 * 3) /* XXX */
3839 /* Extract the start of each range. */
3840 EXTRACT_CHARACTER (c
, p
);
3841 j
= CHAR_CHARSET (c
);
3842 fastmap
[CHARSET_LEADING_CODE_BASE (j
)] = 1;
3849 if (!fastmap
) break;
3851 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
3853 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3854 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
3858 /* This match depends on text properties. These end with
3859 aborting optimizations. */
3863 case notcategoryspec
:
3864 if (!fastmap
) break;
3865 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
3867 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3868 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
3872 /* Any character set can possibly contain a character
3873 whose category is K (or not). */
3874 goto set_fastmap_for_multibyte_characters
;
3877 /* All cases after this match the empty string. These end with
3897 EXTRACT_NUMBER_AND_INCR (j
, p
);
3899 /* Backward jumps can only go back to code that we've already
3900 visited. `re_compile' should make sure this is true. */
3903 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
3905 case on_failure_jump
:
3906 case on_failure_keep_string_jump
:
3907 case on_failure_jump_loop
:
3908 case on_failure_jump_nastyloop
:
3909 case on_failure_jump_smart
:
3915 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3916 to jump back to "just after here". */
3919 case on_failure_jump
:
3920 case on_failure_keep_string_jump
:
3921 case on_failure_jump_nastyloop
:
3922 case on_failure_jump_loop
:
3923 case on_failure_jump_smart
:
3924 EXTRACT_NUMBER_AND_INCR (j
, p
);
3926 ; /* Backward jump to be ignored. */
3928 { /* We have to look down both arms.
3929 We first go down the "straight" path so as to minimize
3930 stack usage when going through alternatives. */
3931 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
3939 /* This code simply does not properly handle forward jump_n. */
3940 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
3942 /* jump_n can either jump or fall through. The (backward) jump
3943 case has already been handled, so we only need to look at the
3944 fallthrough case. */
3948 /* If N == 0, it should be an on_failure_jump_loop instead. */
3949 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
3951 /* We only care about one iteration of the loop, so we don't
3952 need to consider the case where this behaves like an
3969 abort (); /* We have listed all the cases. */
3972 /* Getting here means we have found the possible starting
3973 characters for one path of the pattern -- and that the empty
3974 string does not match. We need not follow this path further. */
3978 /* We reached the end without matching anything. */
3981 } /* analyse_first */
3983 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3984 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3985 characters can start a string that matches the pattern. This fastmap
3986 is used by re_search to skip quickly over impossible starting points.
3988 Character codes above (1 << BYTEWIDTH) are not represented in the
3989 fastmap, but the leading codes are represented. Thus, the fastmap
3990 indicates which character sets could start a match.
3992 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3993 area as BUFP->fastmap.
3995 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3998 Returns 0 if we succeed, -2 if an internal error. */
4001 re_compile_fastmap (bufp
)
4002 struct re_pattern_buffer
*bufp
;
4004 char *fastmap
= bufp
->fastmap
;
4007 assert (fastmap
&& bufp
->buffer
);
4009 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4010 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4012 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4013 fastmap
, RE_MULTIBYTE_P (bufp
));
4014 bufp
->can_be_null
= (analysis
!= 0);
4016 } /* re_compile_fastmap */
4018 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4019 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4020 this memory for recording register information. STARTS and ENDS
4021 must be allocated using the malloc library routine, and must each
4022 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4024 If NUM_REGS == 0, then subsequent matches should allocate their own
4027 Unless this function is called, the first search or match using
4028 PATTERN_BUFFER will allocate its own register data, without
4029 freeing the old data. */
4032 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4033 struct re_pattern_buffer
*bufp
;
4034 struct re_registers
*regs
;
4036 regoff_t
*starts
, *ends
;
4040 bufp
->regs_allocated
= REGS_REALLOCATE
;
4041 regs
->num_regs
= num_regs
;
4042 regs
->start
= starts
;
4047 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4049 regs
->start
= regs
->end
= (regoff_t
*) 0;
4052 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4054 /* Searching routines. */
4056 /* Like re_search_2, below, but only one string is specified, and
4057 doesn't let you say where to stop matching. */
4060 re_search (bufp
, string
, size
, startpos
, range
, regs
)
4061 struct re_pattern_buffer
*bufp
;
4063 int size
, startpos
, range
;
4064 struct re_registers
*regs
;
4066 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4069 WEAK_ALIAS (__re_search
, re_search
)
4071 /* Head address of virtual concatenation of string. */
4072 #define HEAD_ADDR_VSTRING(P) \
4073 (((P) >= size1 ? string2 : string1))
4075 /* End address of virtual concatenation of string. */
4076 #define STOP_ADDR_VSTRING(P) \
4077 (((P) >= size1 ? string2 + size2 : string1 + size1))
4079 /* Address of POS in the concatenation of virtual string. */
4080 #define POS_ADDR_VSTRING(POS) \
4081 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4083 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4084 virtual concatenation of STRING1 and STRING2, starting first at index
4085 STARTPOS, then at STARTPOS + 1, and so on.
4087 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4089 RANGE is how far to scan while trying to match. RANGE = 0 means try
4090 only at STARTPOS; in general, the last start tried is STARTPOS +
4093 In REGS, return the indices of the virtual concatenation of STRING1
4094 and STRING2 that matched the entire BUFP->buffer and its contained
4097 Do not consider matching one past the index STOP in the virtual
4098 concatenation of STRING1 and STRING2.
4100 We return either the position in the strings at which the match was
4101 found, -1 if no match, or -2 if error (such as failure
4105 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
4106 struct re_pattern_buffer
*bufp
;
4107 const char *str1
, *str2
;
4111 struct re_registers
*regs
;
4115 re_char
*string1
= (re_char
*) str1
;
4116 re_char
*string2
= (re_char
*) str2
;
4117 register char *fastmap
= bufp
->fastmap
;
4118 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4119 int total_size
= size1
+ size2
;
4120 int endpos
= startpos
+ range
;
4121 boolean anchored_start
;
4123 /* Nonzero if we have to concern multibyte character. */
4124 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4126 /* Check for out-of-range STARTPOS. */
4127 if (startpos
< 0 || startpos
> total_size
)
4130 /* Fix up RANGE if it might eventually take us outside
4131 the virtual concatenation of STRING1 and STRING2.
4132 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4134 range
= 0 - startpos
;
4135 else if (endpos
> total_size
)
4136 range
= total_size
- startpos
;
4138 /* If the search isn't to be a backwards one, don't waste time in a
4139 search for a pattern anchored at beginning of buffer. */
4140 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4149 /* In a forward search for something that starts with \=.
4150 don't keep searching past point. */
4151 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4153 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4159 /* Update the fastmap now if not correct already. */
4160 if (fastmap
&& !bufp
->fastmap_accurate
)
4161 re_compile_fastmap (bufp
);
4163 /* See whether the pattern is anchored. */
4164 anchored_start
= (bufp
->buffer
[0] == begline
);
4167 gl_state
.object
= re_match_object
;
4169 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4171 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4175 /* Loop through the string, looking for a place to start matching. */
4178 /* If the pattern is anchored,
4179 skip quickly past places we cannot match.
4180 We don't bother to treat startpos == 0 specially
4181 because that case doesn't repeat. */
4182 if (anchored_start
&& startpos
> 0)
4184 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4185 : string2
[startpos
- size1
- 1])
4190 /* If a fastmap is supplied, skip quickly over characters that
4191 cannot be the start of a match. If the pattern can match the
4192 null string, however, we don't need to skip characters; we want
4193 the first null string. */
4194 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4196 register re_char
*d
;
4197 register re_wchar_t buf_ch
;
4199 d
= POS_ADDR_VSTRING (startpos
);
4201 if (range
> 0) /* Searching forwards. */
4203 register int lim
= 0;
4206 if (startpos
< size1
&& startpos
+ range
>= size1
)
4207 lim
= range
- (size1
- startpos
);
4209 /* Written out as an if-else to avoid testing `translate'
4211 if (RE_TRANSLATE_P (translate
))
4218 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
4221 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4226 range
-= buf_charlen
;
4231 && !fastmap
[RE_TRANSLATE (translate
, *d
)])
4238 while (range
> lim
&& !fastmap
[*d
])
4244 startpos
+= irange
- range
;
4246 else /* Searching backwards. */
4248 int room
= (startpos
>= size1
4249 ? size2
+ size1
- startpos
4250 : size1
- startpos
);
4251 buf_ch
= RE_STRING_CHAR (d
, room
);
4252 buf_ch
= TRANSLATE (buf_ch
);
4254 if (! (buf_ch
>= 0400
4255 || fastmap
[buf_ch
]))
4260 /* If can't match the null string, and that's all we have left, fail. */
4261 if (range
>= 0 && startpos
== total_size
&& fastmap
4262 && !bufp
->can_be_null
)
4265 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4266 startpos
, regs
, stop
);
4267 #ifndef REGEX_MALLOC
4284 /* Update STARTPOS to the next character boundary. */
4287 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4288 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4289 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
4307 /* Update STARTPOS to the previous character boundary. */
4310 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4312 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4314 /* Find the head of multibyte form. */
4315 PREV_CHAR_BOUNDARY (p
, phead
);
4316 range
+= p0
- 1 - p
;
4320 startpos
-= p0
- 1 - p
;
4326 WEAK_ALIAS (__re_search_2
, re_search_2
)
4328 /* Declarations and macros for re_match_2. */
4330 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4332 RE_TRANSLATE_TYPE translate
,
4333 const int multibyte
));
4335 /* This converts PTR, a pointer into one of the search strings `string1'
4336 and `string2' into an offset from the beginning of that string. */
4337 #define POINTER_TO_OFFSET(ptr) \
4338 (FIRST_STRING_P (ptr) \
4339 ? ((regoff_t) ((ptr) - string1)) \
4340 : ((regoff_t) ((ptr) - string2 + size1)))
4342 /* Call before fetching a character with *d. This switches over to
4343 string2 if necessary.
4344 Check re_match_2_internal for a discussion of why end_match_2 might
4345 not be within string2 (but be equal to end_match_1 instead). */
4346 #define PREFETCH() \
4349 /* End of string2 => fail. */ \
4350 if (dend == end_match_2) \
4352 /* End of string1 => advance to string2. */ \
4354 dend = end_match_2; \
4357 /* Call before fetching a char with *d if you already checked other limits.
4358 This is meant for use in lookahead operations like wordend, etc..
4359 where we might need to look at parts of the string that might be
4360 outside of the LIMITs (i.e past `stop'). */
4361 #define PREFETCH_NOLIMIT() \
4365 dend = end_match_2; \
4368 /* Test if at very beginning or at very end of the virtual concatenation
4369 of `string1' and `string2'. If only one string, it's `string2'. */
4370 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4371 #define AT_STRINGS_END(d) ((d) == end2)
4374 /* Test if D points to a character which is word-constituent. We have
4375 two special cases to check for: if past the end of string1, look at
4376 the first character in string2; and if before the beginning of
4377 string2, look at the last character in string1. */
4378 #define WORDCHAR_P(d) \
4379 (SYNTAX ((d) == end1 ? *string2 \
4380 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4383 /* Disabled due to a compiler bug -- see comment at case wordbound */
4385 /* The comment at case wordbound is following one, but we don't use
4386 AT_WORD_BOUNDARY anymore to support multibyte form.
4388 The DEC Alpha C compiler 3.x generates incorrect code for the
4389 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4390 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4391 macro and introducing temporary variables works around the bug. */
4394 /* Test if the character before D and the one at D differ with respect
4395 to being word-constituent. */
4396 #define AT_WORD_BOUNDARY(d) \
4397 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4398 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4401 /* Free everything we malloc. */
4402 #ifdef MATCH_MAY_ALLOCATE
4403 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4404 # define FREE_VARIABLES() \
4406 REGEX_FREE_STACK (fail_stack.stack); \
4407 FREE_VAR (regstart); \
4408 FREE_VAR (regend); \
4409 FREE_VAR (best_regstart); \
4410 FREE_VAR (best_regend); \
4413 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4414 #endif /* not MATCH_MAY_ALLOCATE */
4417 /* Optimization routines. */
4419 /* If the operation is a match against one or more chars,
4420 return a pointer to the next operation, else return NULL. */
4425 switch (SWITCH_ENUM_CAST (*p
++))
4436 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4439 p
= CHARSET_RANGE_TABLE (p
- 1);
4440 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4441 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4444 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4451 case notcategoryspec
:
4463 /* Jump over non-matching operations. */
4465 skip_noops (p
, pend
)
4471 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4480 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4491 /* Non-zero if "p1 matches something" implies "p2 fails". */
4493 mutually_exclusive_p (bufp
, p1
, p2
)
4494 struct re_pattern_buffer
*bufp
;
4498 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4499 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4501 assert (p1
>= bufp
->buffer
&& p1
< pend
4502 && p2
>= bufp
->buffer
&& p2
<= pend
);
4504 /* Skip over open/close-group commands.
4505 If what follows this loop is a ...+ construct,
4506 look at what begins its body, since we will have to
4507 match at least one of that. */
4508 p2
= skip_noops (p2
, pend
);
4509 /* The same skip can be done for p1, except that this function
4510 is only used in the case where p1 is a simple match operator. */
4511 /* p1 = skip_noops (p1, pend); */
4513 assert (p1
>= bufp
->buffer
&& p1
< pend
4514 && p2
>= bufp
->buffer
&& p2
<= pend
);
4516 op2
= p2
== pend
? succeed
: *p2
;
4518 switch (SWITCH_ENUM_CAST (op2
))
4522 /* If we're at the end of the pattern, we can change. */
4523 if (skip_one_char (p1
))
4525 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4533 register re_wchar_t c
4534 = (re_opcode_t
) *p2
== endline
? '\n'
4535 : RE_STRING_CHAR (p2
+ 2, pend
- p2
- 2);
4537 if ((re_opcode_t
) *p1
== exactn
)
4539 if (c
!= RE_STRING_CHAR (p1
+ 2, pend
- p1
- 2))
4541 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4546 else if ((re_opcode_t
) *p1
== charset
4547 || (re_opcode_t
) *p1
== charset_not
)
4549 int not = (re_opcode_t
) *p1
== charset_not
;
4551 /* Test if C is listed in charset (or charset_not)
4553 if (SINGLE_BYTE_CHAR_P (c
))
4555 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4556 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4559 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4560 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4562 /* `not' is equal to 1 if c would match, which means
4563 that we can't change to pop_failure_jump. */
4566 DEBUG_PRINT1 (" No match => fast loop.\n");
4570 else if ((re_opcode_t
) *p1
== anychar
4573 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4581 if ((re_opcode_t
) *p1
== exactn
)
4582 /* Reuse the code above. */
4583 return mutually_exclusive_p (bufp
, p2
, p1
);
4585 /* It is hard to list up all the character in charset
4586 P2 if it includes multibyte character. Give up in
4588 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4590 /* Now, we are sure that P2 has no range table.
4591 So, for the size of bitmap in P2, `p2[1]' is
4592 enough. But P1 may have range table, so the
4593 size of bitmap table of P1 is extracted by
4594 using macro `CHARSET_BITMAP_SIZE'.
4596 Since we know that all the character listed in
4597 P2 is ASCII, it is enough to test only bitmap
4600 if ((re_opcode_t
) *p1
== charset
)
4603 /* We win if the charset inside the loop
4604 has no overlap with the one after the loop. */
4607 && idx
< CHARSET_BITMAP_SIZE (p1
));
4609 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4613 || idx
== CHARSET_BITMAP_SIZE (p1
))
4615 DEBUG_PRINT1 (" No match => fast loop.\n");
4619 else if ((re_opcode_t
) *p1
== charset_not
)
4622 /* We win if the charset_not inside the loop lists
4623 every character listed in the charset after. */
4624 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4625 if (! (p2
[2 + idx
] == 0
4626 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4627 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4632 DEBUG_PRINT1 (" No match => fast loop.\n");
4641 switch (SWITCH_ENUM_CAST (*p1
))
4645 /* Reuse the code above. */
4646 return mutually_exclusive_p (bufp
, p2
, p1
);
4648 /* When we have two charset_not, it's very unlikely that
4649 they don't overlap. The union of the two sets of excluded
4650 chars should cover all possible chars, which, as a matter of
4651 fact, is virtually impossible in multibyte buffers. */
4658 return ((re_opcode_t
) *p1
== syntaxspec
4659 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4663 return ((re_opcode_t
) *p1
== notsyntaxspec
4664 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4667 return (((re_opcode_t
) *p1
== notsyntaxspec
4668 || (re_opcode_t
) *p1
== syntaxspec
)
4673 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4674 case notcategoryspec
:
4675 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4687 /* Matching routines. */
4689 #ifndef emacs /* Emacs never uses this. */
4690 /* re_match is like re_match_2 except it takes only a single string. */
4693 re_match (bufp
, string
, size
, pos
, regs
)
4694 struct re_pattern_buffer
*bufp
;
4697 struct re_registers
*regs
;
4699 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
4701 # if defined C_ALLOCA && !defined REGEX_MALLOC
4706 WEAK_ALIAS (__re_match
, re_match
)
4707 #endif /* not emacs */
4710 /* In Emacs, this is the string or buffer in which we
4711 are matching. It is used for looking up syntax properties. */
4712 Lisp_Object re_match_object
;
4715 /* re_match_2 matches the compiled pattern in BUFP against the
4716 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4717 and SIZE2, respectively). We start matching at POS, and stop
4720 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4721 store offsets for the substring each group matched in REGS. See the
4722 documentation for exactly how many groups we fill.
4724 We return -1 if no match, -2 if an internal error (such as the
4725 failure stack overflowing). Otherwise, we return the length of the
4726 matched substring. */
4729 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4730 struct re_pattern_buffer
*bufp
;
4731 const char *string1
, *string2
;
4734 struct re_registers
*regs
;
4741 gl_state
.object
= re_match_object
;
4742 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4743 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4746 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4747 (re_char
*) string2
, size2
,
4749 #if defined C_ALLOCA && !defined REGEX_MALLOC
4754 WEAK_ALIAS (__re_match_2
, re_match_2
)
4756 /* This is a separate function so that we can force an alloca cleanup
4759 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4760 struct re_pattern_buffer
*bufp
;
4761 re_char
*string1
, *string2
;
4764 struct re_registers
*regs
;
4767 /* General temporaries. */
4772 /* Just past the end of the corresponding string. */
4773 re_char
*end1
, *end2
;
4775 /* Pointers into string1 and string2, just past the last characters in
4776 each to consider matching. */
4777 re_char
*end_match_1
, *end_match_2
;
4779 /* Where we are in the data, and the end of the current string. */
4782 /* Used sometimes to remember where we were before starting matching
4783 an operator so that we can go back in case of failure. This "atomic"
4784 behavior of matching opcodes is indispensable to the correctness
4785 of the on_failure_keep_string_jump optimization. */
4788 /* Where we are in the pattern, and the end of the pattern. */
4789 re_char
*p
= bufp
->buffer
;
4790 re_char
*pend
= p
+ bufp
->used
;
4792 /* We use this to map every character in the string. */
4793 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4795 /* Nonzero if we have to concern multibyte character. */
4796 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4798 /* Failure point stack. Each place that can handle a failure further
4799 down the line pushes a failure point on this stack. It consists of
4800 regstart, and regend for all registers corresponding to
4801 the subexpressions we're currently inside, plus the number of such
4802 registers, and, finally, two char *'s. The first char * is where
4803 to resume scanning the pattern; the second one is where to resume
4804 scanning the strings. */
4805 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4806 fail_stack_type fail_stack
;
4809 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4812 #if defined REL_ALLOC && defined REGEX_MALLOC
4813 /* This holds the pointer to the failure stack, when
4814 it is allocated relocatably. */
4815 fail_stack_elt_t
*failure_stack_ptr
;
4818 /* We fill all the registers internally, independent of what we
4819 return, for use in backreferences. The number here includes
4820 an element for register zero. */
4821 size_t num_regs
= bufp
->re_nsub
+ 1;
4823 /* Information on the contents of registers. These are pointers into
4824 the input strings; they record just what was matched (on this
4825 attempt) by a subexpression part of the pattern, that is, the
4826 regnum-th regstart pointer points to where in the pattern we began
4827 matching and the regnum-th regend points to right after where we
4828 stopped matching the regnum-th subexpression. (The zeroth register
4829 keeps track of what the whole pattern matches.) */
4830 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4831 re_char
**regstart
, **regend
;
4834 /* The following record the register info as found in the above
4835 variables when we find a match better than any we've seen before.
4836 This happens as we backtrack through the failure points, which in
4837 turn happens only if we have not yet matched the entire string. */
4838 unsigned best_regs_set
= false;
4839 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4840 re_char
**best_regstart
, **best_regend
;
4843 /* Logically, this is `best_regend[0]'. But we don't want to have to
4844 allocate space for that if we're not allocating space for anything
4845 else (see below). Also, we never need info about register 0 for
4846 any of the other register vectors, and it seems rather a kludge to
4847 treat `best_regend' differently than the rest. So we keep track of
4848 the end of the best match so far in a separate variable. We
4849 initialize this to NULL so that when we backtrack the first time
4850 and need to test it, it's not garbage. */
4851 re_char
*match_end
= NULL
;
4854 /* Counts the total number of registers pushed. */
4855 unsigned num_regs_pushed
= 0;
4858 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4862 #ifdef MATCH_MAY_ALLOCATE
4863 /* Do not bother to initialize all the register variables if there are
4864 no groups in the pattern, as it takes a fair amount of time. If
4865 there are groups, we include space for register 0 (the whole
4866 pattern), even though we never use it, since it simplifies the
4867 array indexing. We should fix this. */
4870 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4871 regend
= REGEX_TALLOC (num_regs
, re_char
*);
4872 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4873 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
4875 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
4883 /* We must initialize all our variables to NULL, so that
4884 `FREE_VARIABLES' doesn't try to free them. */
4885 regstart
= regend
= best_regstart
= best_regend
= NULL
;
4887 #endif /* MATCH_MAY_ALLOCATE */
4889 /* The starting position is bogus. */
4890 if (pos
< 0 || pos
> size1
+ size2
)
4896 /* Initialize subexpression text positions to -1 to mark ones that no
4897 start_memory/stop_memory has been seen for. Also initialize the
4898 register information struct. */
4899 for (reg
= 1; reg
< num_regs
; reg
++)
4900 regstart
[reg
] = regend
[reg
] = NULL
;
4902 /* We move `string1' into `string2' if the latter's empty -- but not if
4903 `string1' is null. */
4904 if (size2
== 0 && string1
!= NULL
)
4911 end1
= string1
+ size1
;
4912 end2
= string2
+ size2
;
4914 /* `p' scans through the pattern as `d' scans through the data.
4915 `dend' is the end of the input string that `d' points within. `d'
4916 is advanced into the following input string whenever necessary, but
4917 this happens before fetching; therefore, at the beginning of the
4918 loop, `d' can be pointing at the end of a string, but it cannot
4922 /* Only match within string2. */
4923 d
= string2
+ pos
- size1
;
4924 dend
= end_match_2
= string2
+ stop
- size1
;
4925 end_match_1
= end1
; /* Just to give it a value. */
4931 /* Only match within string1. */
4932 end_match_1
= string1
+ stop
;
4934 When we reach end_match_1, PREFETCH normally switches to string2.
4935 But in the present case, this means that just doing a PREFETCH
4936 makes us jump from `stop' to `gap' within the string.
4937 What we really want here is for the search to stop as
4938 soon as we hit end_match_1. That's why we set end_match_2
4939 to end_match_1 (since PREFETCH fails as soon as we hit
4941 end_match_2
= end_match_1
;
4944 { /* It's important to use this code when stop == size so that
4945 moving `d' from end1 to string2 will not prevent the d == dend
4946 check from catching the end of string. */
4948 end_match_2
= string2
+ stop
- size1
;
4954 DEBUG_PRINT1 ("The compiled pattern is: ");
4955 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4956 DEBUG_PRINT1 ("The string to match is: `");
4957 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4958 DEBUG_PRINT1 ("'\n");
4960 /* This loops over pattern commands. It exits by returning from the
4961 function if the match is complete, or it drops through if the match
4962 fails at this starting point in the input data. */
4965 DEBUG_PRINT2 ("\n%p: ", p
);
4968 { /* End of pattern means we might have succeeded. */
4969 DEBUG_PRINT1 ("end of pattern ... ");
4971 /* If we haven't matched the entire string, and we want the
4972 longest match, try backtracking. */
4973 if (d
!= end_match_2
)
4975 /* 1 if this match ends in the same string (string1 or string2)
4976 as the best previous match. */
4977 boolean same_str_p
= (FIRST_STRING_P (match_end
)
4978 == FIRST_STRING_P (d
));
4979 /* 1 if this match is the best seen so far. */
4980 boolean best_match_p
;
4982 /* AIX compiler got confused when this was combined
4983 with the previous declaration. */
4985 best_match_p
= d
> match_end
;
4987 best_match_p
= !FIRST_STRING_P (d
);
4989 DEBUG_PRINT1 ("backtracking.\n");
4991 if (!FAIL_STACK_EMPTY ())
4992 { /* More failure points to try. */
4994 /* If exceeds best match so far, save it. */
4995 if (!best_regs_set
|| best_match_p
)
4997 best_regs_set
= true;
5000 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5002 for (reg
= 1; reg
< num_regs
; reg
++)
5004 best_regstart
[reg
] = regstart
[reg
];
5005 best_regend
[reg
] = regend
[reg
];
5011 /* If no failure points, don't restore garbage. And if
5012 last match is real best match, don't restore second
5014 else if (best_regs_set
&& !best_match_p
)
5017 /* Restore best match. It may happen that `dend ==
5018 end_match_1' while the restored d is in string2.
5019 For example, the pattern `x.*y.*z' against the
5020 strings `x-' and `y-z-', if the two strings are
5021 not consecutive in memory. */
5022 DEBUG_PRINT1 ("Restoring best registers.\n");
5025 dend
= ((d
>= string1
&& d
<= end1
)
5026 ? end_match_1
: end_match_2
);
5028 for (reg
= 1; reg
< num_regs
; reg
++)
5030 regstart
[reg
] = best_regstart
[reg
];
5031 regend
[reg
] = best_regend
[reg
];
5034 } /* d != end_match_2 */
5037 DEBUG_PRINT1 ("Accepting match.\n");
5039 /* If caller wants register contents data back, do it. */
5040 if (regs
&& !bufp
->no_sub
)
5042 /* Have the register data arrays been allocated? */
5043 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5044 { /* No. So allocate them with malloc. We need one
5045 extra element beyond `num_regs' for the `-1' marker
5047 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5048 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5049 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5050 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5055 bufp
->regs_allocated
= REGS_REALLOCATE
;
5057 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5058 { /* Yes. If we need more elements than were already
5059 allocated, reallocate them. If we need fewer, just
5061 if (regs
->num_regs
< num_regs
+ 1)
5063 regs
->num_regs
= num_regs
+ 1;
5064 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5065 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5066 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5075 /* These braces fend off a "empty body in an else-statement"
5076 warning under GCC when assert expands to nothing. */
5077 assert (bufp
->regs_allocated
== REGS_FIXED
);
5080 /* Convert the pointer data in `regstart' and `regend' to
5081 indices. Register zero has to be set differently,
5082 since we haven't kept track of any info for it. */
5083 if (regs
->num_regs
> 0)
5085 regs
->start
[0] = pos
;
5086 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5089 /* Go through the first `min (num_regs, regs->num_regs)'
5090 registers, since that is all we initialized. */
5091 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5093 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5094 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5098 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
5100 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
5104 /* If the regs structure we return has more elements than
5105 were in the pattern, set the extra elements to -1. If
5106 we (re)allocated the registers, this is the case,
5107 because we always allocate enough to have at least one
5109 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5110 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5111 } /* regs && !bufp->no_sub */
5113 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5114 nfailure_points_pushed
, nfailure_points_popped
,
5115 nfailure_points_pushed
- nfailure_points_popped
);
5116 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5118 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
5120 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5126 /* Otherwise match next pattern command. */
5127 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
5129 /* Ignore these. Used to ignore the n of succeed_n's which
5130 currently have n == 0. */
5132 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5136 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5139 /* Match the next n pattern characters exactly. The following
5140 byte in the pattern defines n, and the n bytes after that
5141 are the characters to match. */
5144 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5146 /* Remember the start point to rollback upon failure. */
5149 /* This is written out as an if-else so we don't waste time
5150 testing `translate' inside the loop. */
5151 if (RE_TRANSLATE_P (translate
))
5156 int pat_charlen
, buf_charlen
;
5157 unsigned int pat_ch
, buf_ch
;
5160 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
5161 buf_ch
= STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5163 if (RE_TRANSLATE (translate
, buf_ch
)
5172 mcnt
-= pat_charlen
;
5179 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5204 /* Match any character except possibly a newline or a null. */
5210 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5213 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5214 buf_ch
= TRANSLATE (buf_ch
);
5216 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5218 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5219 && buf_ch
== '\000'))
5222 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5231 register unsigned int c
;
5232 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5235 /* Start of actual range_table, or end of bitmap if there is no
5237 re_char
*range_table
;
5239 /* Nonzero if there is a range table. */
5240 int range_table_exists
;
5242 /* Number of ranges of range table. This is not included
5243 in the initial byte-length of the command. */
5246 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5248 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5250 if (range_table_exists
)
5252 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5253 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5257 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5258 c
= TRANSLATE (c
); /* The character to match. */
5260 if (SINGLE_BYTE_CHAR_P (c
))
5261 { /* Lookup bitmap. */
5262 /* Cast to `unsigned' instead of `unsigned char' in
5263 case the bit list is a full 32 bytes long. */
5264 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5265 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5269 else if (range_table_exists
)
5271 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5273 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5274 | (class_bits
& BIT_MULTIBYTE
)
5275 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5276 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5277 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5278 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5281 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5285 if (range_table_exists
)
5286 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5288 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5290 if (!not) goto fail
;
5297 /* The beginning of a group is represented by start_memory.
5298 The argument is the register number. The text
5299 matched within the group is recorded (in the internal
5300 registers data structure) under the register number. */
5302 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5304 /* In case we need to undo this operation (via backtracking). */
5305 PUSH_FAILURE_REG ((unsigned int)*p
);
5308 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5309 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5311 /* Move past the register number and inner group count. */
5316 /* The stop_memory opcode represents the end of a group. Its
5317 argument is the same as start_memory's: the register number. */
5319 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5321 assert (!REG_UNSET (regstart
[*p
]));
5322 /* Strictly speaking, there should be code such as:
5324 assert (REG_UNSET (regend[*p]));
5325 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5327 But the only info to be pushed is regend[*p] and it is known to
5328 be UNSET, so there really isn't anything to push.
5329 Not pushing anything, on the other hand deprives us from the
5330 guarantee that regend[*p] is UNSET since undoing this operation
5331 will not reset its value properly. This is not important since
5332 the value will only be read on the next start_memory or at
5333 the very end and both events can only happen if this stop_memory
5337 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5339 /* Move past the register number and the inner group count. */
5344 /* \<digit> has been turned into a `duplicate' command which is
5345 followed by the numeric value of <digit> as the register number. */
5348 register re_char
*d2
, *dend2
;
5349 int regno
= *p
++; /* Get which register to match against. */
5350 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5352 /* Can't back reference a group which we've never matched. */
5353 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5356 /* Where in input to try to start matching. */
5357 d2
= regstart
[regno
];
5359 /* Remember the start point to rollback upon failure. */
5362 /* Where to stop matching; if both the place to start and
5363 the place to stop matching are in the same string, then
5364 set to the place to stop, otherwise, for now have to use
5365 the end of the first string. */
5367 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5368 == FIRST_STRING_P (regend
[regno
]))
5369 ? regend
[regno
] : end_match_1
);
5372 /* If necessary, advance to next segment in register
5376 if (dend2
== end_match_2
) break;
5377 if (dend2
== regend
[regno
]) break;
5379 /* End of string1 => advance to string2. */
5381 dend2
= regend
[regno
];
5383 /* At end of register contents => success */
5384 if (d2
== dend2
) break;
5386 /* If necessary, advance to next segment in data. */
5389 /* How many characters left in this segment to match. */
5392 /* Want how many consecutive characters we can match in
5393 one shot, so, if necessary, adjust the count. */
5394 if (mcnt
> dend2
- d2
)
5397 /* Compare that many; failure if mismatch, else move
5399 if (RE_TRANSLATE_P (translate
)
5400 ? bcmp_translate (d
, d2
, mcnt
, translate
, multibyte
)
5401 : memcmp (d
, d2
, mcnt
))
5406 d
+= mcnt
, d2
+= mcnt
;
5412 /* begline matches the empty string at the beginning of the string
5413 (unless `not_bol' is set in `bufp'), and after newlines. */
5415 DEBUG_PRINT1 ("EXECUTING begline.\n");
5417 if (AT_STRINGS_BEG (d
))
5419 if (!bufp
->not_bol
) break;
5424 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5428 /* In all other cases, we fail. */
5432 /* endline is the dual of begline. */
5434 DEBUG_PRINT1 ("EXECUTING endline.\n");
5436 if (AT_STRINGS_END (d
))
5438 if (!bufp
->not_eol
) break;
5442 PREFETCH_NOLIMIT ();
5449 /* Match at the very beginning of the data. */
5451 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5452 if (AT_STRINGS_BEG (d
))
5457 /* Match at the very end of the data. */
5459 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5460 if (AT_STRINGS_END (d
))
5465 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5466 pushes NULL as the value for the string on the stack. Then
5467 `POP_FAILURE_POINT' will keep the current value for the
5468 string, instead of restoring it. To see why, consider
5469 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5470 then the . fails against the \n. But the next thing we want
5471 to do is match the \n against the \n; if we restored the
5472 string value, we would be back at the foo.
5474 Because this is used only in specific cases, we don't need to
5475 check all the things that `on_failure_jump' does, to make
5476 sure the right things get saved on the stack. Hence we don't
5477 share its code. The only reason to push anything on the
5478 stack at all is that otherwise we would have to change
5479 `anychar's code to do something besides goto fail in this
5480 case; that seems worse than this. */
5481 case on_failure_keep_string_jump
:
5482 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5483 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5486 PUSH_FAILURE_POINT (p
- 3, NULL
);
5489 /* A nasty loop is introduced by the non-greedy *? and +?.
5490 With such loops, the stack only ever contains one failure point
5491 at a time, so that a plain on_failure_jump_loop kind of
5492 cycle detection cannot work. Worse yet, such a detection
5493 can not only fail to detect a cycle, but it can also wrongly
5494 detect a cycle (between different instantiations of the same
5496 So the method used for those nasty loops is a little different:
5497 We use a special cycle-detection-stack-frame which is pushed
5498 when the on_failure_jump_nastyloop failure-point is *popped*.
5499 This special frame thus marks the beginning of one iteration
5500 through the loop and we can hence easily check right here
5501 whether something matched between the beginning and the end of
5503 case on_failure_jump_nastyloop
:
5504 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5505 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5508 assert ((re_opcode_t
)p
[-4] == no_op
);
5511 CHECK_INFINITE_LOOP (p
- 4, d
);
5513 /* If there's a cycle, just continue without pushing
5514 this failure point. The failure point is the "try again"
5515 option, which shouldn't be tried.
5516 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5517 PUSH_FAILURE_POINT (p
- 3, d
);
5521 /* Simple loop detecting on_failure_jump: just check on the
5522 failure stack if the same spot was already hit earlier. */
5523 case on_failure_jump_loop
:
5525 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5526 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5530 CHECK_INFINITE_LOOP (p
- 3, d
);
5532 /* If there's a cycle, get out of the loop, as if the matching
5533 had failed. We used to just `goto fail' here, but that was
5534 aborting the search a bit too early: we want to keep the
5535 empty-loop-match and keep matching after the loop.
5536 We want (x?)*y\1z to match both xxyz and xxyxz. */
5539 PUSH_FAILURE_POINT (p
- 3, d
);
5544 /* Uses of on_failure_jump:
5546 Each alternative starts with an on_failure_jump that points
5547 to the beginning of the next alternative. Each alternative
5548 except the last ends with a jump that in effect jumps past
5549 the rest of the alternatives. (They really jump to the
5550 ending jump of the following alternative, because tensioning
5551 these jumps is a hassle.)
5553 Repeats start with an on_failure_jump that points past both
5554 the repetition text and either the following jump or
5555 pop_failure_jump back to this on_failure_jump. */
5556 case on_failure_jump
:
5557 IMMEDIATE_QUIT_CHECK
;
5558 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5559 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5562 PUSH_FAILURE_POINT (p
-3, d
);
5565 /* This operation is used for greedy *.
5566 Compare the beginning of the repeat with what in the
5567 pattern follows its end. If we can establish that there
5568 is nothing that they would both match, i.e., that we
5569 would have to backtrack because of (as in, e.g., `a*a')
5570 then we can use a non-backtracking loop based on
5571 on_failure_keep_string_jump instead of on_failure_jump. */
5572 case on_failure_jump_smart
:
5573 IMMEDIATE_QUIT_CHECK
;
5574 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5575 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5578 re_char
*p1
= p
; /* Next operation. */
5579 /* Here, we discard `const', making re_match non-reentrant. */
5580 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5581 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5583 p
-= 3; /* Reset so that we will re-execute the
5584 instruction once it's been changed. */
5586 EXTRACT_NUMBER (mcnt
, p2
- 2);
5588 /* Ensure this is a indeed the trivial kind of loop
5589 we are expecting. */
5590 assert (skip_one_char (p1
) == p2
- 3);
5591 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5592 DEBUG_STATEMENT (debug
+= 2);
5593 if (mutually_exclusive_p (bufp
, p1
, p2
))
5595 /* Use a fast `on_failure_keep_string_jump' loop. */
5596 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5597 *p3
= (unsigned char) on_failure_keep_string_jump
;
5598 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5602 /* Default to a safe `on_failure_jump' loop. */
5603 DEBUG_PRINT1 (" smart default => slow loop.\n");
5604 *p3
= (unsigned char) on_failure_jump
;
5606 DEBUG_STATEMENT (debug
-= 2);
5610 /* Unconditionally jump (without popping any failure points). */
5613 IMMEDIATE_QUIT_CHECK
;
5614 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5615 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5616 p
+= mcnt
; /* Do the jump. */
5617 DEBUG_PRINT2 ("(to %p).\n", p
);
5621 /* Have to succeed matching what follows at least n times.
5622 After that, handle like `on_failure_jump'. */
5624 /* Signedness doesn't matter since we only compare MCNT to 0. */
5625 EXTRACT_NUMBER (mcnt
, p
+ 2);
5626 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5628 /* Originally, mcnt is how many times we HAVE to succeed. */
5631 /* Here, we discard `const', making re_match non-reentrant. */
5632 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5635 PUSH_NUMBER (p2
, mcnt
);
5638 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5643 /* Signedness doesn't matter since we only compare MCNT to 0. */
5644 EXTRACT_NUMBER (mcnt
, p
+ 2);
5645 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5647 /* Originally, this is how many times we CAN jump. */
5650 /* Here, we discard `const', making re_match non-reentrant. */
5651 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5653 PUSH_NUMBER (p2
, mcnt
);
5654 goto unconditional_jump
;
5656 /* If don't have to jump any more, skip over the rest of command. */
5663 unsigned char *p2
; /* Location of the counter. */
5664 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5666 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5667 /* Here, we discard `const', making re_match non-reentrant. */
5668 p2
= (unsigned char*) p
+ mcnt
;
5669 /* Signedness doesn't matter since we only copy MCNT's bits . */
5670 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5671 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
5672 PUSH_NUMBER (p2
, mcnt
);
5678 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5679 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5681 /* We SUCCEED (or FAIL) in one of the following cases: */
5683 /* Case 1: D is at the beginning or the end of string. */
5684 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5688 /* C1 is the character before D, S1 is the syntax of C1, C2
5689 is the character at D, and S2 is the syntax of C2. */
5693 int offset
= PTR_TO_OFFSET (d
- 1);
5694 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5695 UPDATE_SYNTAX_TABLE (charpos
);
5697 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5700 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5702 PREFETCH_NOLIMIT ();
5703 c2
= RE_STRING_CHAR (d
, dend
- d
);
5706 if (/* Case 2: Only one of S1 and S2 is Sword. */
5707 ((s1
== Sword
) != (s2
== Sword
))
5708 /* Case 3: Both of S1 and S2 are Sword, and macro
5709 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5710 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5719 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5721 /* We FAIL in one of the following cases: */
5723 /* Case 1: D is at the end of string. */
5724 if (AT_STRINGS_END (d
))
5728 /* C1 is the character before D, S1 is the syntax of C1, C2
5729 is the character at D, and S2 is the syntax of C2. */
5733 int offset
= PTR_TO_OFFSET (d
);
5734 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5735 UPDATE_SYNTAX_TABLE (charpos
);
5738 c2
= RE_STRING_CHAR (d
, dend
- d
);
5741 /* Case 2: S2 is not Sword. */
5745 /* Case 3: D is not at the beginning of string ... */
5746 if (!AT_STRINGS_BEG (d
))
5748 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5750 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5754 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5756 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5763 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5765 /* We FAIL in one of the following cases: */
5767 /* Case 1: D is at the beginning of string. */
5768 if (AT_STRINGS_BEG (d
))
5772 /* C1 is the character before D, S1 is the syntax of C1, C2
5773 is the character at D, and S2 is the syntax of C2. */
5777 int offset
= PTR_TO_OFFSET (d
) - 1;
5778 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5779 UPDATE_SYNTAX_TABLE (charpos
);
5781 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5784 /* Case 2: S1 is not Sword. */
5788 /* Case 3: D is not at the end of string ... */
5789 if (!AT_STRINGS_END (d
))
5791 PREFETCH_NOLIMIT ();
5792 c2
= RE_STRING_CHAR (d
, dend
- d
);
5794 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
5798 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5800 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5808 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
5810 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
5814 int offset
= PTR_TO_OFFSET (d
);
5815 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5816 UPDATE_SYNTAX_TABLE (pos1
);
5823 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5825 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
5833 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5834 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
5839 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5840 if (PTR_BYTE_POS (d
) != PT_BYTE
)
5845 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5846 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
5851 case notcategoryspec
:
5852 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
5854 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
5860 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5862 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
5873 continue; /* Successfully executed one pattern command; keep going. */
5876 /* We goto here if a matching operation fails. */
5878 IMMEDIATE_QUIT_CHECK
;
5879 if (!FAIL_STACK_EMPTY ())
5882 /* A restart point is known. Restore to that state. */
5883 DEBUG_PRINT1 ("\nFAIL:\n");
5884 POP_FAILURE_POINT (str
, pat
);
5885 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
5887 case on_failure_keep_string_jump
:
5888 assert (str
== NULL
);
5889 goto continue_failure_jump
;
5891 case on_failure_jump_nastyloop
:
5892 assert ((re_opcode_t
)pat
[-2] == no_op
);
5893 PUSH_FAILURE_POINT (pat
- 2, str
);
5896 case on_failure_jump_loop
:
5897 case on_failure_jump
:
5900 continue_failure_jump
:
5901 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
5906 /* A special frame used for nastyloops. */
5913 assert (p
>= bufp
->buffer
&& p
<= pend
);
5915 if (d
>= string1
&& d
<= end1
)
5919 break; /* Matching at this starting point really fails. */
5923 goto restore_best_regs
;
5927 return -1; /* Failure to match. */
5930 /* Subroutine definitions for re_match_2. */
5932 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5933 bytes; nonzero otherwise. */
5936 bcmp_translate (s1
, s2
, len
, translate
, multibyte
)
5939 RE_TRANSLATE_TYPE translate
;
5940 const int multibyte
;
5942 register re_char
*p1
= s1
, *p2
= s2
;
5943 re_char
*p1_end
= s1
+ len
;
5944 re_char
*p2_end
= s2
+ len
;
5946 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5947 different lengths, but relying on a single `len' would break this. -sm */
5948 while (p1
< p1_end
&& p2
< p2_end
)
5950 int p1_charlen
, p2_charlen
;
5951 re_wchar_t p1_ch
, p2_ch
;
5953 p1_ch
= RE_STRING_CHAR_AND_LENGTH (p1
, p1_end
- p1
, p1_charlen
);
5954 p2_ch
= RE_STRING_CHAR_AND_LENGTH (p2
, p2_end
- p2
, p2_charlen
);
5956 if (RE_TRANSLATE (translate
, p1_ch
)
5957 != RE_TRANSLATE (translate
, p2_ch
))
5960 p1
+= p1_charlen
, p2
+= p2_charlen
;
5963 if (p1
!= p1_end
|| p2
!= p2_end
)
5969 /* Entry points for GNU code. */
5971 /* re_compile_pattern is the GNU regular expression compiler: it
5972 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5973 Returns 0 if the pattern was valid, otherwise an error string.
5975 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5976 are set in BUFP on entry.
5978 We call regex_compile to do the actual compilation. */
5981 re_compile_pattern (pattern
, length
, bufp
)
5982 const char *pattern
;
5984 struct re_pattern_buffer
*bufp
;
5988 /* GNU code is written to assume at least RE_NREGS registers will be set
5989 (and at least one extra will be -1). */
5990 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5992 /* And GNU code determines whether or not to get register information
5993 by passing null for the REGS argument to re_match, etc., not by
5997 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6001 return gettext (re_error_msgid
[(int) ret
]);
6003 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6005 /* Entry points compatible with 4.2 BSD regex library. We don't define
6006 them unless specifically requested. */
6008 #if defined _REGEX_RE_COMP || defined _LIBC
6010 /* BSD has one and only one pattern buffer. */
6011 static struct re_pattern_buffer re_comp_buf
;
6015 /* Make these definitions weak in libc, so POSIX programs can redefine
6016 these names if they don't use our functions, and still use
6017 regcomp/regexec below without link errors. */
6027 if (!re_comp_buf
.buffer
)
6028 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6029 return (char *) gettext ("No previous regular expression");
6033 if (!re_comp_buf
.buffer
)
6035 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
6036 if (re_comp_buf
.buffer
== NULL
)
6037 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6038 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6039 re_comp_buf
.allocated
= 200;
6041 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6042 if (re_comp_buf
.fastmap
== NULL
)
6043 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6044 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6047 /* Since `re_exec' always passes NULL for the `regs' argument, we
6048 don't need to initialize the pattern buffer fields which affect it. */
6050 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6055 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6056 return (char *) gettext (re_error_msgid
[(int) ret
]);
6067 const int len
= strlen (s
);
6069 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
6071 #endif /* _REGEX_RE_COMP */
6073 /* POSIX.2 functions. Don't define these for Emacs. */
6077 /* regcomp takes a regular expression as a string and compiles it.
6079 PREG is a regex_t *. We do not expect any fields to be initialized,
6080 since POSIX says we shouldn't. Thus, we set
6082 `buffer' to the compiled pattern;
6083 `used' to the length of the compiled pattern;
6084 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6085 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6086 RE_SYNTAX_POSIX_BASIC;
6087 `fastmap' to an allocated space for the fastmap;
6088 `fastmap_accurate' to zero;
6089 `re_nsub' to the number of subexpressions in PATTERN.
6091 PATTERN is the address of the pattern string.
6093 CFLAGS is a series of bits which affect compilation.
6095 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6096 use POSIX basic syntax.
6098 If REG_NEWLINE is set, then . and [^...] don't match newline.
6099 Also, regexec will try a match beginning after every newline.
6101 If REG_ICASE is set, then we considers upper- and lowercase
6102 versions of letters to be equivalent when matching.
6104 If REG_NOSUB is set, then when PREG is passed to regexec, that
6105 routine will report only success or failure, and nothing about the
6108 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6109 the return codes and their meanings.) */
6112 regcomp (preg
, pattern
, cflags
)
6113 regex_t
*__restrict preg
;
6114 const char *__restrict pattern
;
6119 = (cflags
& REG_EXTENDED
) ?
6120 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6122 /* regex_compile will allocate the space for the compiled pattern. */
6124 preg
->allocated
= 0;
6127 /* Try to allocate space for the fastmap. */
6128 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6130 if (cflags
& REG_ICASE
)
6135 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
6136 * sizeof (*(RE_TRANSLATE_TYPE
)0));
6137 if (preg
->translate
== NULL
)
6138 return (int) REG_ESPACE
;
6140 /* Map uppercase characters to corresponding lowercase ones. */
6141 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6142 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6145 preg
->translate
= NULL
;
6147 /* If REG_NEWLINE is set, newlines are treated differently. */
6148 if (cflags
& REG_NEWLINE
)
6149 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6150 syntax
&= ~RE_DOT_NEWLINE
;
6151 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6154 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6156 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6158 /* POSIX says a null character in the pattern terminates it, so we
6159 can use strlen here in compiling the pattern. */
6160 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6162 /* POSIX doesn't distinguish between an unmatched open-group and an
6163 unmatched close-group: both are REG_EPAREN. */
6164 if (ret
== REG_ERPAREN
)
6167 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6168 { /* Compute the fastmap now, since regexec cannot modify the pattern
6170 re_compile_fastmap (preg
);
6171 if (preg
->can_be_null
)
6172 { /* The fastmap can't be used anyway. */
6173 free (preg
->fastmap
);
6174 preg
->fastmap
= NULL
;
6179 WEAK_ALIAS (__regcomp
, regcomp
)
6182 /* regexec searches for a given pattern, specified by PREG, in the
6185 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6186 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6187 least NMATCH elements, and we set them to the offsets of the
6188 corresponding matched substrings.
6190 EFLAGS specifies `execution flags' which affect matching: if
6191 REG_NOTBOL is set, then ^ does not match at the beginning of the
6192 string; if REG_NOTEOL is set, then $ does not match at the end.
6194 We return 0 if we find a match and REG_NOMATCH if not. */
6197 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
6198 const regex_t
*__restrict preg
;
6199 const char *__restrict string
;
6201 regmatch_t pmatch
[__restrict_arr
];
6205 struct re_registers regs
;
6206 regex_t private_preg
;
6207 int len
= strlen (string
);
6208 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6210 private_preg
= *preg
;
6212 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6213 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6215 /* The user has told us exactly how many registers to return
6216 information about, via `nmatch'. We have to pass that on to the
6217 matching routines. */
6218 private_preg
.regs_allocated
= REGS_FIXED
;
6222 regs
.num_regs
= nmatch
;
6223 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6224 if (regs
.start
== NULL
)
6225 return (int) REG_NOMATCH
;
6226 regs
.end
= regs
.start
+ nmatch
;
6229 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6230 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6231 was a little bit longer but still only matching the real part.
6232 This works because the `endline' will check for a '\n' and will find a
6233 '\0', correctly deciding that this is not the end of a line.
6234 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6235 a convenient '\0' there. For all we know, the string could be preceded
6236 by '\n' which would throw things off. */
6238 /* Perform the searching operation. */
6239 ret
= re_search (&private_preg
, string
, len
,
6240 /* start: */ 0, /* range: */ len
,
6241 want_reg_info
? ®s
: (struct re_registers
*) 0);
6243 /* Copy the register information to the POSIX structure. */
6250 for (r
= 0; r
< nmatch
; r
++)
6252 pmatch
[r
].rm_so
= regs
.start
[r
];
6253 pmatch
[r
].rm_eo
= regs
.end
[r
];
6257 /* If we needed the temporary register info, free the space now. */
6261 /* We want zero return to mean success, unlike `re_search'. */
6262 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
6264 WEAK_ALIAS (__regexec
, regexec
)
6267 /* Returns a message corresponding to an error code, ERRCODE, returned
6268 from either regcomp or regexec. We don't use PREG here. */
6271 regerror (errcode
, preg
, errbuf
, errbuf_size
)
6273 const regex_t
*preg
;
6281 || errcode
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6282 /* Only error codes returned by the rest of the code should be passed
6283 to this routine. If we are given anything else, or if other regex
6284 code generates an invalid error code, then the program has a bug.
6285 Dump core so we can fix it. */
6288 msg
= gettext (re_error_msgid
[errcode
]);
6290 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6292 if (errbuf_size
!= 0)
6294 if (msg_size
> errbuf_size
)
6296 strncpy (errbuf
, msg
, errbuf_size
- 1);
6297 errbuf
[errbuf_size
- 1] = 0;
6300 strcpy (errbuf
, msg
);
6305 WEAK_ALIAS (__regerror
, regerror
)
6308 /* Free dynamically allocated space used by PREG. */
6314 if (preg
->buffer
!= NULL
)
6315 free (preg
->buffer
);
6316 preg
->buffer
= NULL
;
6318 preg
->allocated
= 0;
6321 if (preg
->fastmap
!= NULL
)
6322 free (preg
->fastmap
);
6323 preg
->fastmap
= NULL
;
6324 preg
->fastmap_accurate
= 0;
6326 if (preg
->translate
!= NULL
)
6327 free (preg
->translate
);
6328 preg
->translate
= NULL
;
6330 WEAK_ALIAS (__regfree
, regfree
)
6332 #endif /* not emacs */
6334 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6335 (do not change this comment) */