(ibuffer-update): Call `minibufferp' with argument
[emacs.git] / man / calc.texi
blob631b810f09eb0f055c841ce17b9a8cb904fb32f1
1 \input texinfo                  @c -*-texinfo-*-
2 @comment %**start of header (This is for running Texinfo on a region.)
3 @c smallbook
4 @setfilename ../info/calc
5 @c [title]
6 @settitle GNU Emacs Calc 2.02g Manual
7 @setchapternewpage odd
8 @dircategory Emacs
9 @direntry
10 * Calc: (calc).         Advanced desk calculator and mathematical tool.
11 @end direntry
12 @comment %**end of header (This is for running Texinfo on a region.)
14 @tex
15 % Some special kludges to make TeX formatting prettier.
16 % Because makeinfo.c exists, we can't just define new commands.
17 % So instead, we take over little-used existing commands.
19 % Suggested by Karl Berry <karl@@freefriends.org>
20 \gdef\!{\mskip-\thinmuskip}
21 % Redefine @cite{text} to act like $text$ in regular TeX.
22 % Info will typeset this same as @samp{text}.
23 \gdef\goodtex{\tex \let\rm\goodrm \let\t\ttfont \turnoffactive}
24 \gdef\goodrm{\fam0\tenrm}
25 \gdef\cite{\goodtex$\citexxx}
26 \gdef\citexxx#1{#1$\Etex}
27 \global\let\oldxrefX=\xrefX
28 \gdef\xrefX[#1]{\begingroup\let\cite=\dfn\oldxrefX[#1]\endgroup}
30 % Redefine @c{tex-stuff} \n @whatever{info-stuff}.
31 \gdef\c{\futurelet\next\mycxxx}
32 \gdef\mycxxx{%
33   \ifx\next\bgroup \goodtex\let\next\mycxxy
34   \else\ifx\next\mindex \let\next\relax
35   \else\ifx\next\kindex \let\next\relax
36   \else\ifx\next\starindex \let\next\relax \else \let\next\comment
37   \fi\fi\fi\fi \next
39 \gdef\mycxxy#1#2{#1\Etex\mycxxz}
40 \gdef\mycxxz#1{}
41 @end tex
43 @c Fix some other things specifically for this manual.
44 @iftex
45 @finalout
46 @mathcode`@:=`@:  @c Make Calc fractions come out right in math mode
47 @tex
48 \gdef\coloneq{\mathrel{\mathord:\mathord=}}
50 \gdef\beforedisplay{\vskip-10pt}
51 \gdef\afterdisplay{\vskip-5pt}
52 \gdef\beforedisplayh{\vskip-25pt}
53 \gdef\afterdisplayh{\vskip-10pt}
54 @end tex
55 @newdimen@kyvpos @kyvpos=0pt
56 @newdimen@kyhpos @kyhpos=0pt
57 @newcount@calcclubpenalty @calcclubpenalty=1000
58 @ignore
59 @newcount@calcpageno
60 @newtoks@calcoldeverypar @calcoldeverypar=@everypar
61 @everypar={@calceverypar@the@calcoldeverypar}
62 @ifx@turnoffactive@undefinedzzz@def@turnoffactive{}@fi
63 @ifx@ninett@undefinedzzz@font@ninett=cmtt9@fi
64 @catcode`@\=0 \catcode`\@=11
65 \r@ggedbottomtrue
66 \catcode`\@=0 @catcode`@\=@active
67 @end ignore
68 @end iftex
70 @ifnottex
71 This file documents Calc, the GNU Emacs calculator.
73 Copyright (C) 1990, 1991, 2001, 2002 Free Software Foundation, Inc.
75 Permission is granted to copy, distribute and/or modify this document
76 under the terms of the GNU Free Documentation License, Version 1.1 or
77 any later version published by the Free Software Foundation; with the
78 Invariant Sections being just ``GNU GENERAL PUBLIC LICENSE'', with the
79 Front-Cover texts being ``A GNU Manual,'' and with the Back-Cover
80 Texts as in (a) below.
82 (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
83 this GNU Manual, like GNU software.  Copies published by the Free
84 Software Foundation raise funds for GNU development.''
85 @end ifnottex
87 @titlepage
88 @sp 6
89 @center @titlefont{Calc Manual}
90 @sp 4
91 @center GNU Emacs Calc Version 2.02g
92 @c [volume]
93 @sp 1
94 @center January 2002
95 @sp 5
96 @center Dave Gillespie
97 @center daveg@@synaptics.com
98 @page
100 @vskip 0pt plus 1filll
101 Copyright @copyright{} 1990, 1991, 2001, 2002 Free Software Foundation, Inc.
103 Permission is granted to copy, distribute and/or modify this document
104 under the terms of the GNU Free Documentation License, Version 1.1 or
105 any later version published by the Free Software Foundation; with the
106 Invariant Sections being just ``GNU GENERAL PUBLIC LICENSE'', with the
107 Front-Cover texts being ``A GNU Manual,'' and with the Back-Cover
108 Texts as in (a) below.
110 (a) The FSF's Back-Cover Text is: ``You have freedom to copy and modify
111 this GNU Manual, like GNU software.  Copies published by the Free
112 Software Foundation raise funds for GNU development.''
113 @end titlepage
115 @c [begin]
116 @ifinfo
117 @node Top, , (dir), (dir)
118 @chapter The GNU Emacs Calculator
120 @noindent
121 @dfn{Calc} is an advanced desk calculator and mathematical tool
122 that runs as part of the GNU Emacs environment.
124 This manual is divided into three major parts: ``Getting Started,''
125 the ``Calc Tutorial,'' and the ``Calc Reference.''  The Tutorial
126 introduces all the major aspects of Calculator use in an easy,
127 hands-on way.  The remainder of the manual is a complete reference to
128 the features of the Calculator.
130 For help in the Emacs Info system (which you are using to read this
131 file), type @kbd{?}.  (You can also type @kbd{h} to run through a
132 longer Info tutorial.)
134 @end ifinfo
135 @menu
136 * Copying::               How you can copy and share Calc.
138 * Getting Started::       General description and overview.
139 * Interactive Tutorial::
140 * Tutorial::              A step-by-step introduction for beginners.
142 * Introduction::          Introduction to the Calc reference manual.
143 * Data Types::            Types of objects manipulated by Calc.
144 * Stack and Trail::       Manipulating the stack and trail buffers.
145 * Mode Settings::         Adjusting display format and other modes.
146 * Arithmetic::            Basic arithmetic functions.
147 * Scientific Functions::  Transcendentals and other scientific functions.
148 * Matrix Functions::      Operations on vectors and matrices.
149 * Algebra::               Manipulating expressions algebraically.
150 * Units::                 Operations on numbers with units.
151 * Store and Recall::      Storing and recalling variables.
152 * Graphics::              Commands for making graphs of data.
153 * Kill and Yank::         Moving data into and out of Calc.
154 * Embedded Mode::         Working with formulas embedded in a file.
155 * Programming::           Calc as a programmable calculator.
157 * Installation::          Installing Calc as a part of GNU Emacs.
158 * Reporting Bugs::        How to report bugs and make suggestions.
160 * Summary::               Summary of Calc commands and functions.
162 * Key Index::             The standard Calc key sequences.
163 * Command Index::         The interactive Calc commands.
164 * Function Index::        Functions (in algebraic formulas).
165 * Concept Index::         General concepts.
166 * Variable Index::        Variables used by Calc (both user and internal).
167 * Lisp Function Index::   Internal Lisp math functions.
168 @end menu
170 @node Copying, Getting Started, Top, Top
171 @unnumbered GNU GENERAL PUBLIC LICENSE
172 @center Version 1, February 1989
174 @display
175 Copyright @copyright{} 1989 Free Software Foundation, Inc.
176 675 Mass Ave, Cambridge, MA 02139, USA
178 Everyone is permitted to copy and distribute verbatim copies
179 of this license document, but changing it is not allowed.
180 @end display
182 @unnumberedsec Preamble
184   The license agreements of most software companies try to keep users
185 at the mercy of those companies.  By contrast, our General Public
186 License is intended to guarantee your freedom to share and change free
187 software---to make sure the software is free for all its users.  The
188 General Public License applies to the Free Software Foundation's
189 software and to any other program whose authors commit to using it.
190 You can use it for your programs, too.
192   When we speak of free software, we are referring to freedom, not
193 price.  Specifically, the General Public License is designed to make
194 sure that you have the freedom to give away or sell copies of free
195 software, that you receive source code or can get it if you want it,
196 that you can change the software or use pieces of it in new free
197 programs; and that you know you can do these things.
199   To protect your rights, we need to make restrictions that forbid
200 anyone to deny you these rights or to ask you to surrender the rights.
201 These restrictions translate to certain responsibilities for you if you
202 distribute copies of the software, or if you modify it.
204   For example, if you distribute copies of a such a program, whether
205 gratis or for a fee, you must give the recipients all the rights that
206 you have.  You must make sure that they, too, receive or can get the
207 source code.  And you must tell them their rights.
209   We protect your rights with two steps: (1) copyright the software, and
210 (2) offer you this license which gives you legal permission to copy,
211 distribute and/or modify the software.
213   Also, for each author's protection and ours, we want to make certain
214 that everyone understands that there is no warranty for this free
215 software.  If the software is modified by someone else and passed on, we
216 want its recipients to know that what they have is not the original, so
217 that any problems introduced by others will not reflect on the original
218 authors' reputations.
220   The precise terms and conditions for copying, distribution and
221 modification follow.
223 @iftex
224 @unnumberedsec TERMS AND CONDITIONS
225 @end iftex
226 @ifinfo
227 @center TERMS AND CONDITIONS
228 @end ifinfo
230 @enumerate
231 @item
232 This License Agreement applies to any program or other work which
233 contains a notice placed by the copyright holder saying it may be
234 distributed under the terms of this General Public License.  The
235 ``Program'', below, refers to any such program or work, and a ``work based
236 on the Program'' means either the Program or any work containing the
237 Program or a portion of it, either verbatim or with modifications.  Each
238 licensee is addressed as ``you''.
240 @item
241 You may copy and distribute verbatim copies of the Program's source
242 code as you receive it, in any medium, provided that you conspicuously and
243 appropriately publish on each copy an appropriate copyright notice and
244 disclaimer of warranty; keep intact all the notices that refer to this
245 General Public License and to the absence of any warranty; and give any
246 other recipients of the Program a copy of this General Public License
247 along with the Program.  You may charge a fee for the physical act of
248 transferring a copy.
250 @item
251 You may modify your copy or copies of the Program or any portion of
252 it, and copy and distribute such modifications under the terms of Paragraph
253 1 above, provided that you also do the following:
255 @itemize @bullet
256 @item
257 cause the modified files to carry prominent notices stating that
258 you changed the files and the date of any change; and
260 @item
261 cause the whole of any work that you distribute or publish, that
262 in whole or in part contains the Program or any part thereof, either
263 with or without modifications, to be licensed at no charge to all
264 third parties under the terms of this General Public License (except
265 that you may choose to grant warranty protection to some or all
266 third parties, at your option).
268 @item
269 If the modified program normally reads commands interactively when
270 run, you must cause it, when started running for such interactive use
271 in the simplest and most usual way, to print or display an
272 announcement including an appropriate copyright notice and a notice
273 that there is no warranty (or else, saying that you provide a
274 warranty) and that users may redistribute the program under these
275 conditions, and telling the user how to view a copy of this General
276 Public License.
278 @item
279 You may charge a fee for the physical act of transferring a
280 copy, and you may at your option offer warranty protection in
281 exchange for a fee.
282 @end itemize
284 Mere aggregation of another independent work with the Program (or its
285 derivative) on a volume of a storage or distribution medium does not bring
286 the other work under the scope of these terms.
288 @item
289 You may copy and distribute the Program (or a portion or derivative of
290 it, under Paragraph 2) in object code or executable form under the terms of
291 Paragraphs 1 and 2 above provided that you also do one of the following:
293 @itemize @bullet
294 @item
295 accompany it with the complete corresponding machine-readable
296 source code, which must be distributed under the terms of
297 Paragraphs 1 and 2 above; or,
299 @item
300 accompany it with a written offer, valid for at least three
301 years, to give any third party free (except for a nominal charge
302 for the cost of distribution) a complete machine-readable copy of the
303 corresponding source code, to be distributed under the terms of
304 Paragraphs 1 and 2 above; or,
306 @item
307 accompany it with the information you received as to where the
308 corresponding source code may be obtained.  (This alternative is
309 allowed only for noncommercial distribution and only if you
310 received the program in object code or executable form alone.)
311 @end itemize
313 Source code for a work means the preferred form of the work for making
314 modifications to it.  For an executable file, complete source code means
315 all the source code for all modules it contains; but, as a special
316 exception, it need not include source code for modules which are standard
317 libraries that accompany the operating system on which the executable
318 file runs, or for standard header files or definitions files that
319 accompany that operating system.
321 @item
322 You may not copy, modify, sublicense, distribute or transfer the
323 Program except as expressly provided under this General Public License.
324 Any attempt otherwise to copy, modify, sublicense, distribute or transfer
325 the Program is void, and will automatically terminate your rights to use
326 the Program under this License.  However, parties who have received
327 copies, or rights to use copies, from you under this General Public
328 License will not have their licenses terminated so long as such parties
329 remain in full compliance.
331 @item
332 By copying, distributing or modifying the Program (or any work based
333 on the Program) you indicate your acceptance of this license to do so,
334 and all its terms and conditions.
336 @item
337 Each time you redistribute the Program (or any work based on the
338 Program), the recipient automatically receives a license from the original
339 licensor to copy, distribute or modify the Program subject to these
340 terms and conditions.  You may not impose any further restrictions on the
341 recipients' exercise of the rights granted herein.
343 @item
344 The Free Software Foundation may publish revised and/or new versions
345 of the General Public License from time to time.  Such new versions will
346 be similar in spirit to the present version, but may differ in detail to
347 address new problems or concerns.
349 Each version is given a distinguishing version number.  If the Program
350 specifies a version number of the license which applies to it and ``any
351 later version'', you have the option of following the terms and conditions
352 either of that version or of any later version published by the Free
353 Software Foundation.  If the Program does not specify a version number of
354 the license, you may choose any version ever published by the Free Software
355 Foundation.
357 @item
358 If you wish to incorporate parts of the Program into other free
359 programs whose distribution conditions are different, write to the author
360 to ask for permission.  For software which is copyrighted by the Free
361 Software Foundation, write to the Free Software Foundation; we sometimes
362 make exceptions for this.  Our decision will be guided by the two goals
363 of preserving the free status of all derivatives of our free software and
364 of promoting the sharing and reuse of software generally.
366 @iftex
367 @heading NO WARRANTY
368 @end iftex
369 @ifinfo
370 @center NO WARRANTY
371 @end ifinfo
373 @item
374 BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
375 FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW.  EXCEPT WHEN
376 OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
377 PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
378 OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
379 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.  THE ENTIRE RISK AS
380 TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.  SHOULD THE
381 PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
382 REPAIR OR CORRECTION.
384 @item
385 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
386 ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
387 REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
388 INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
389 ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
390 LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
391 SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
392 WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
393 ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
394 @end enumerate
396 @node Getting Started, Tutorial, Copying, Top
397 @chapter Getting Started
398 @noindent
399 This chapter provides a general overview of Calc, the GNU Emacs
400 Calculator:  What it is, how to start it and how to exit from it,
401 and what are the various ways that it can be used.
403 @menu
404 * What is Calc::
405 * About This Manual::
406 * Notations Used in This Manual::
407 * Using Calc::
408 * Demonstration of Calc::
409 * History and Acknowledgements::
410 @end menu
412 @node What is Calc, About This Manual, Getting Started, Getting Started
413 @section What is Calc?
415 @noindent
416 @dfn{Calc} is an advanced calculator and mathematical tool that runs as
417 part of the GNU Emacs environment.  Very roughly based on the HP-28/48
418 series of calculators, its many features include:
420 @itemize @bullet
421 @item
422 Choice of algebraic or RPN (stack-based) entry of calculations.
424 @item
425 Arbitrary precision integers and floating-point numbers.
427 @item
428 Arithmetic on rational numbers, complex numbers (rectangular and polar),
429 error forms with standard deviations, open and closed intervals, vectors
430 and matrices, dates and times, infinities, sets, quantities with units,
431 and algebraic formulas.
433 @item
434 Mathematical operations such as logarithms and trigonometric functions.
436 @item
437 Programmer's features (bitwise operations, non-decimal numbers).
439 @item
440 Financial functions such as future value and internal rate of return.
442 @item
443 Number theoretical features such as prime factorization and arithmetic
444 modulo @var{m} for any @var{m}.
446 @item
447 Algebraic manipulation features, including symbolic calculus.
449 @item
450 Moving data to and from regular editing buffers.
452 @item
453 ``Embedded mode'' for manipulating Calc formulas and data directly
454 inside any editing buffer.
456 @item
457 Graphics using GNUPLOT, a versatile (and free) plotting program.
459 @item
460 Easy programming using keyboard macros, algebraic formulas,
461 algebraic rewrite rules, or extended Emacs Lisp.
462 @end itemize
464 Calc tries to include a little something for everyone; as a result it is
465 large and might be intimidating to the first-time user.  If you plan to
466 use Calc only as a traditional desk calculator, all you really need to
467 read is the ``Getting Started'' chapter of this manual and possibly the
468 first few sections of the tutorial.  As you become more comfortable with
469 the program you can learn its additional features.  In terms of efficiency,
470 scope and depth, Calc cannot replace a powerful tool like Mathematica.
471 But Calc has the advantages of convenience, portability, and availability
472 of the source code.  And, of course, it's free!
474 @node About This Manual, Notations Used in This Manual, What is Calc, Getting Started
475 @section About This Manual
477 @noindent
478 This document serves as a complete description of the GNU Emacs
479 Calculator.  It works both as an introduction for novices, and as
480 a reference for experienced users.  While it helps to have some
481 experience with GNU Emacs in order to get the most out of Calc,
482 this manual ought to be readable even if you don't know or use Emacs
483 regularly.
485 @ifinfo
486 The manual is divided into three major parts:@: the ``Getting
487 Started'' chapter you are reading now, the Calc tutorial (chapter 2),
488 and the Calc reference manual (the remaining chapters and appendices).
489 @end ifinfo
490 @iftex
491 The manual is divided into three major parts:@: the ``Getting
492 Started'' chapter you are reading now, the Calc tutorial (chapter 2),
493 and the Calc reference manual (the remaining chapters and appendices).
494 @c [when-split]
495 @c This manual has been printed in two volumes, the @dfn{Tutorial} and the
496 @c @dfn{Reference}.  Both volumes include a copy of the ``Getting Started''
497 @c chapter.
498 @end iftex
500 If you are in a hurry to use Calc, there is a brief ``demonstration''
501 below which illustrates the major features of Calc in just a couple of
502 pages.  If you don't have time to go through the full tutorial, this
503 will show you everything you need to know to begin.
504 @xref{Demonstration of Calc}.
506 The tutorial chapter walks you through the various parts of Calc
507 with lots of hands-on examples and explanations.  If you are new
508 to Calc and you have some time, try going through at least the
509 beginning of the tutorial.  The tutorial includes about 70 exercises
510 with answers.  These exercises give you some guided practice with
511 Calc, as well as pointing out some interesting and unusual ways
512 to use its features.
514 The reference section discusses Calc in complete depth.  You can read
515 the reference from start to finish if you want to learn every aspect
516 of Calc.  Or, you can look in the table of contents or the Concept
517 Index to find the parts of the manual that discuss the things you
518 need to know.
520 @cindex Marginal notes
521 Every Calc keyboard command is listed in the Calc Summary, and also
522 in the Key Index.  Algebraic functions, @kbd{M-x} commands, and
523 variables also have their own indices.  @c{Each}
524 @asis{In the printed manual, each}
525 paragraph that is referenced in the Key or Function Index is marked
526 in the margin with its index entry.
528 @c [fix-ref Help Commands]
529 You can access this manual on-line at any time within Calc by
530 pressing the @kbd{h i} key sequence.  Outside of the Calc window,
531 you can press @kbd{M-# i} to read the manual on-line.  Also, you
532 can jump directly to the Tutorial by pressing @kbd{h t} or @kbd{M-# t},
533 or to the Summary by pressing @kbd{h s} or @kbd{M-# s}.  Within Calc,
534 you can also go to the part of the manual describing any Calc key,
535 function, or variable using @w{@kbd{h k}}, @kbd{h f}, or @kbd{h v},
536 respectively.  @xref{Help Commands}.
538 Printed copies of this manual are also available from the Free Software
539 Foundation.
541 @node Notations Used in This Manual, Demonstration of Calc, About This Manual, Getting Started
542 @section Notations Used in This Manual
544 @noindent
545 This section describes the various notations that are used
546 throughout the Calc manual.
548 In keystroke sequences, uppercase letters mean you must hold down
549 the shift key while typing the letter.  Keys pressed with Control
550 held down are shown as @kbd{C-x}.  Keys pressed with Meta held down
551 are shown as @kbd{M-x}.  Other notations are @key{RET} for the
552 Return key, @key{SPC} for the space bar, @key{TAB} for the Tab key,
553 @key{DEL} for the Delete key, and @key{LFD} for the Line-Feed key.
555 (If you don't have the @key{LFD} or @key{TAB} keys on your keyboard,
556 the @kbd{C-j} and @kbd{C-i} keys are equivalent to them, respectively.
557 If you don't have a Meta key, look for Alt or Extend Char.  You can
558 also press @key{ESC} or @key{C-[} first to get the same effect, so
559 that @kbd{M-x}, @kbd{@key{ESC} x}, and @kbd{C-[ x} are all equivalent.)
561 Sometimes the @key{RET} key is not shown when it is ``obvious''
562 that you must press @key{RET} to proceed.  For example, the @key{RET}
563 is usually omitted in key sequences like @kbd{M-x calc-keypad @key{RET}}.
565 Commands are generally shown like this:  @kbd{p} (@code{calc-precision})
566 or @kbd{M-# k} (@code{calc-keypad}).  This means that the command is
567 normally used by pressing the @kbd{p} key or @kbd{M-# k} key sequence,
568 but it also has the full-name equivalent shown, e.g., @kbd{M-x calc-precision}.
570 Commands that correspond to functions in algebraic notation
571 are written:  @kbd{C} (@code{calc-cos}) [@code{cos}].  This means
572 the @kbd{C} key is equivalent to @kbd{M-x calc-cos}, and that
573 the corresponding function in an algebraic-style formula would
574 be @samp{cos(@var{x})}.
576 A few commands don't have key equivalents:  @code{calc-sincos}
577 [@code{sincos}].@refill
579 @node Demonstration of Calc, Using Calc, Notations Used in This Manual, Getting Started
580 @section A Demonstration of Calc
582 @noindent
583 @cindex Demonstration of Calc
584 This section will show some typical small problems being solved with
585 Calc.  The focus is more on demonstration than explanation, but
586 everything you see here will be covered more thoroughly in the
587 Tutorial.
589 To begin, start Emacs if necessary (usually the command @code{emacs}
590 does this), and type @kbd{M-# c} (or @kbd{@key{ESC} # c}) to start the
591 Calculator.  (@xref{Starting Calc}, if this doesn't work for you.)
593 Be sure to type all the sample input exactly, especially noting the
594 difference between lower-case and upper-case letters.  Remember,
595 @key{RET}, @key{TAB}, @key{DEL}, and @key{SPC} are the Return, Tab,
596 Delete, and Space keys.
598 @strong{RPN calculation.}  In RPN, you type the input number(s) first,
599 then the command to operate on the numbers.
601 @noindent
602 Type @kbd{2 @key{RET} 3 + Q} to compute @c{$\sqrt{2+3} = 2.2360679775$}
603 @asis{the square root of 2+3, which is 2.2360679775}.
605 @noindent
606 Type @kbd{P 2 ^} to compute @c{$\pi^2 = 9.86960440109$}
607 @asis{the value of `pi' squared, 9.86960440109}.
609 @noindent
610 Type @key{TAB} to exchange the order of these two results.
612 @noindent
613 Type @kbd{- I H S} to subtract these results and compute the Inverse
614 Hyperbolic sine of the difference, 2.72996136574.
616 @noindent
617 Type @key{DEL} to erase this result.
619 @strong{Algebraic calculation.}  You can also enter calculations using
620 conventional ``algebraic'' notation.  To enter an algebraic formula,
621 use the apostrophe key.
623 @noindent
624 Type @kbd{' sqrt(2+3) @key{RET}} to compute @c{$\sqrt{2+3}$}
625 @asis{the square root of 2+3}.
627 @noindent
628 Type @kbd{' pi^2 @key{RET}} to enter @c{$\pi^2$}
629 @asis{`pi' squared}.  To evaluate this symbolic
630 formula as a number, type @kbd{=}.
632 @noindent
633 Type @kbd{' arcsinh($ - $$) @key{RET}} to subtract the second-most-recent
634 result from the most-recent and compute the Inverse Hyperbolic sine.
636 @strong{Keypad mode.}  If you are using the X window system, press
637 @w{@kbd{M-# k}} to get Keypad mode.  (If you don't use X, skip to
638 the next section.)
640 @noindent
641 Click on the @key{2}, @key{ENTER}, @key{3}, @key{+}, and @key{SQRT}
642 ``buttons'' using your left mouse button.
644 @noindent
645 Click on @key{PI}, @key{2}, and @t{y^x}.
647 @noindent
648 Click on @key{INV}, then @key{ENTER} to swap the two results.
650 @noindent
651 Click on @key{-}, @key{INV}, @key{HYP}, and @key{SIN}.
653 @noindent
654 Click on @key{<-} to erase the result, then click @key{OFF} to turn
655 the Keypad Calculator off.
657 @strong{Grabbing data.}  Type @kbd{M-# x} if necessary to exit Calc.
658 Now select the following numbers as an Emacs region:  ``Mark'' the
659 front of the list by typing @kbd{C-@key{SPC}} or @kbd{C-@@} there,
660 then move to the other end of the list.  (Either get this list from
661 the on-line copy of this manual, accessed by @w{@kbd{M-# i}}, or just
662 type these numbers into a scratch file.)  Now type @kbd{M-# g} to
663 ``grab'' these numbers into Calc.
665 @example
666 @group
667 1.23  1.97
668 1.6   2
669 1.19  1.08
670 @end group
671 @end example
673 @noindent
674 The result @samp{[1.23, 1.97, 1.6, 2, 1.19, 1.08]} is a Calc ``vector.''
675 Type @w{@kbd{V R +}} to compute the sum of these numbers.
677 @noindent
678 Type @kbd{U} to Undo this command, then type @kbd{V R *} to compute
679 the product of the numbers.
681 @noindent
682 You can also grab data as a rectangular matrix.  Place the cursor on
683 the upper-leftmost @samp{1} and set the mark, then move to just after
684 the lower-right @samp{8} and press @kbd{M-# r}.
686 @noindent
687 Type @kbd{v t} to transpose this @c{$3\times2$}
688 @asis{3x2} matrix into a @c{$2\times3$}
689 @asis{2x3} matrix.  Type
690 @w{@kbd{v u}} to unpack the rows into two separate vectors.  Now type
691 @w{@kbd{V R + @key{TAB} V R +}} to compute the sums of the two original columns.
692 (There is also a special grab-and-sum-columns command, @kbd{M-# :}.)
694 @strong{Units conversion.}  Units are entered algebraically.
695 Type @w{@kbd{' 43 mi/hr @key{RET}}} to enter the quantity 43 miles-per-hour.
696 Type @w{@kbd{u c km/hr @key{RET}}}.  Type @w{@kbd{u c m/s @key{RET}}}.
698 @strong{Date arithmetic.}  Type @kbd{t N} to get the current date and
699 time.  Type @kbd{90 +} to find the date 90 days from now.  Type
700 @kbd{' <25 dec 87> @key{RET}} to enter a date, then @kbd{- 7 /} to see how
701 many weeks have passed since then.
703 @strong{Algebra.}  Algebraic entries can also include formulas
704 or equations involving variables.  Type @kbd{@w{' [x + y} = a, x y = 1] @key{RET}}
705 to enter a pair of equations involving three variables.
706 (Note the leading apostrophe in this example; also, note that the space
707 between @samp{x y} is required.)  Type @w{@kbd{a S x,y @key{RET}}} to solve
708 these equations for the variables @cite{x} and @cite{y}.@refill
710 @noindent
711 Type @kbd{d B} to view the solutions in more readable notation.
712 Type @w{@kbd{d C}} to view them in C language notation, and @kbd{d T}
713 to view them in the notation for the @TeX{} typesetting system.
714 Type @kbd{d N} to return to normal notation.
716 @noindent
717 Type @kbd{7.5}, then @kbd{s l a @key{RET}} to let @cite{a = 7.5} in these formulas.
718 (That's a letter @kbd{l}, not a numeral @kbd{1}.)
720 @iftex
721 @strong{Help functions.}  You can read about any command in the on-line
722 manual.  Type @kbd{M-# c} to return to Calc after each of these
723 commands: @kbd{h k t N} to read about the @kbd{t N} command,
724 @kbd{h f sqrt @key{RET}} to read about the @code{sqrt} function, and
725 @kbd{h s} to read the Calc summary.
726 @end iftex
727 @ifinfo
728 @strong{Help functions.}  You can read about any command in the on-line
729 manual.  Remember to type the letter @kbd{l}, then @kbd{M-# c}, to
730 return here after each of these commands: @w{@kbd{h k t N}} to read
731 about the @w{@kbd{t N}} command, @kbd{h f sqrt @key{RET}} to read about the
732 @code{sqrt} function, and @kbd{h s} to read the Calc summary.
733 @end ifinfo
735 Press @key{DEL} repeatedly to remove any leftover results from the stack.
736 To exit from Calc, press @kbd{q} or @kbd{M-# c} again.
738 @node Using Calc, History and Acknowledgements, Demonstration of Calc, Getting Started
739 @section Using Calc
741 @noindent
742 Calc has several user interfaces that are specialized for
743 different kinds of tasks.  As well as Calc's standard interface,
744 there are Quick Mode, Keypad Mode, and Embedded Mode.
746 @c [fix-ref Installation]
747 Calc must be @dfn{installed} before it can be used.  @xref{Installation},
748 for instructions on setting up and installing Calc.  We will assume
749 you or someone on your system has already installed Calc as described
750 there.
752 @menu
753 * Starting Calc::
754 * The Standard Interface::
755 * Quick Mode Overview::
756 * Keypad Mode Overview::
757 * Standalone Operation::
758 * Embedded Mode Overview::
759 * Other M-# Commands::
760 @end menu
762 @node Starting Calc, The Standard Interface, Using Calc, Using Calc
763 @subsection Starting Calc
765 @noindent
766 On most systems, you can type @kbd{M-#} to start the Calculator.
767 The notation @kbd{M-#} is short for Meta-@kbd{#}.  On most
768 keyboards this means holding down the Meta (or Alt) and
769 Shift keys while typing @kbd{3}.
771 @cindex META key
772 Once again, if you don't have a Meta key on your keyboard you can type
773 @key{ESC} first, then @kbd{#}, to accomplish the same thing.  If you
774 don't even have an @key{ESC} key, you can fake it by holding down
775 Control or @key{CTRL} while typing a left square bracket
776 (that's @kbd{C-[} in Emacs notation).@refill
778 @kbd{M-#} is a @dfn{prefix key}; when you press it, Emacs waits for
779 you to press a second key to complete the command.  In this case,
780 you will follow @kbd{M-#} with a letter (upper- or lower-case, it
781 doesn't matter for @kbd{M-#}) that says which Calc interface you
782 want to use.
784 To get Calc's standard interface, type @kbd{M-# c}.  To get
785 Keypad Mode, type @kbd{M-# k}.  Type @kbd{M-# ?} to get a brief
786 list of the available options, and type a second @kbd{?} to get
787 a complete list.
789 To ease typing, @kbd{M-# M-#} (or @kbd{M-# #} if that's easier)
790 also works to start Calc.  It starts the same interface (either
791 @kbd{M-# c} or @w{@kbd{M-# k}}) that you last used, selecting the
792 @kbd{M-# c} interface by default.  (If your installation has
793 a special function key set up to act like @kbd{M-#}, hitting that
794 function key twice is just like hitting @kbd{M-# M-#}.)
796 If @kbd{M-#} doesn't work for you, you can always type explicit
797 commands like @kbd{M-x calc} (for the standard user interface) or
798 @w{@kbd{M-x calc-keypad}} (for Keypad Mode).  First type @kbd{M-x}
799 (that's Meta with the letter @kbd{x}), then, at the prompt,
800 type the full command (like @kbd{calc-keypad}) and press Return.
802 If you type @kbd{M-x calc} and Emacs still doesn't recognize the
803 command (it will say @samp{[No match]} when you try to press
804 @key{RET}), then Calc has not been properly installed.
806 The same commands (like @kbd{M-# c} or @kbd{M-# M-#}) that start
807 the Calculator also turn it off if it is already on.
809 @node The Standard Interface, Quick Mode Overview, Starting Calc, Using Calc
810 @subsection The Standard Calc Interface
812 @noindent
813 @cindex Standard user interface
814 Calc's standard interface acts like a traditional RPN calculator,
815 operated by the normal Emacs keyboard.  When you type @kbd{M-# c}
816 to start the Calculator, the Emacs screen splits into two windows
817 with the file you were editing on top and Calc on the bottom.
819 @smallexample
820 @group
823 --**-Emacs: myfile             (Fundamental)----All----------------------
824 --- Emacs Calculator Mode ---                   |Emacs Calc Mode v2.00...
825 2:  17.3                                        |    17.3
826 1:  -5                                          |    3
827     .                                           |    2
828                                                 |    4
829                                                 |  * 8
830                                                 |  ->-5
831                                                 |
832 --%%-Calc: 12 Deg       (Calculator)----All----- --%%-Emacs: *Calc Trail*
833 @end group
834 @end smallexample
836 In this figure, the mode-line for @file{myfile} has moved up and the
837 ``Calculator'' window has appeared below it.  As you can see, Calc
838 actually makes two windows side-by-side.  The lefthand one is
839 called the @dfn{stack window} and the righthand one is called the
840 @dfn{trail window.}  The stack holds the numbers involved in the
841 calculation you are currently performing.  The trail holds a complete
842 record of all calculations you have done.  In a desk calculator with
843 a printer, the trail corresponds to the paper tape that records what
844 you do.
846 In this case, the trail shows that four numbers (17.3, 3, 2, and 4)
847 were first entered into the Calculator, then the 2 and 4 were
848 multiplied to get 8, then the 3 and 8 were subtracted to get @i{-5}.
849 (The @samp{>} symbol shows that this was the most recent calculation.)
850 The net result is the two numbers 17.3 and @i{-5} sitting on the stack.
852 Most Calculator commands deal explicitly with the stack only, but
853 there is a set of commands that allow you to search back through
854 the trail and retrieve any previous result.
856 Calc commands use the digits, letters, and punctuation keys.
857 Shifted (i.e., upper-case) letters are different from lowercase
858 letters.  Some letters are @dfn{prefix} keys that begin two-letter
859 commands.  For example, @kbd{e} means ``enter exponent'' and shifted
860 @kbd{E} means @cite{e^x}.  With the @kbd{d} (``display modes'') prefix
861 the letter ``e'' takes on very different meanings:  @kbd{d e} means
862 ``engineering notation'' and @kbd{d E} means ``@dfn{eqn} language mode.''
864 There is nothing stopping you from switching out of the Calc
865 window and back into your editing window, say by using the Emacs
866 @w{@kbd{C-x o}} (@code{other-window}) command.  When the cursor is
867 inside a regular window, Emacs acts just like normal.  When the
868 cursor is in the Calc stack or trail windows, keys are interpreted
869 as Calc commands.
871 When you quit by pressing @kbd{M-# c} a second time, the Calculator
872 windows go away but the actual Stack and Trail are not gone, just
873 hidden.  When you press @kbd{M-# c} once again you will get the
874 same stack and trail contents you had when you last used the
875 Calculator.
877 The Calculator does not remember its state between Emacs sessions.
878 Thus if you quit Emacs and start it again, @kbd{M-# c} will give you
879 a fresh stack and trail.  There is a command (@kbd{m m}) that lets
880 you save your favorite mode settings between sessions, though.
881 One of the things it saves is which user interface (standard or
882 Keypad) you last used; otherwise, a freshly started Emacs will
883 always treat @kbd{M-# M-#} the same as @kbd{M-# c}.
885 The @kbd{q} key is another equivalent way to turn the Calculator off.
887 If you type @kbd{M-# b} first and then @kbd{M-# c}, you get a
888 full-screen version of Calc (@code{full-calc}) in which the stack and
889 trail windows are still side-by-side but are now as tall as the whole
890 Emacs screen.  When you press @kbd{q} or @kbd{M-# c} again to quit,
891 the file you were editing before reappears.  The @kbd{M-# b} key
892 switches back and forth between ``big'' full-screen mode and the
893 normal partial-screen mode.
895 Finally, @kbd{M-# o} (@code{calc-other-window}) is like @kbd{M-# c}
896 except that the Calc window is not selected.  The buffer you were
897 editing before remains selected instead.  @kbd{M-# o} is a handy
898 way to switch out of Calc momentarily to edit your file; type
899 @kbd{M-# c} to switch back into Calc when you are done.
901 @node Quick Mode Overview, Keypad Mode Overview, The Standard Interface, Using Calc
902 @subsection Quick Mode (Overview)
904 @noindent
905 @dfn{Quick Mode} is a quick way to use Calc when you don't need the
906 full complexity of the stack and trail.  To use it, type @kbd{M-# q}
907 (@code{quick-calc}) in any regular editing buffer.
909 Quick Mode is very simple:  It prompts you to type any formula in
910 standard algebraic notation (like @samp{4 - 2/3}) and then displays
911 the result at the bottom of the Emacs screen (@i{3.33333333333}
912 in this case).  You are then back in the same editing buffer you
913 were in before, ready to continue editing or to type @kbd{M-# q}
914 again to do another quick calculation.  The result of the calculation
915 will also be in the Emacs ``kill ring'' so that a @kbd{C-y} command
916 at this point will yank the result into your editing buffer.
918 Calc mode settings affect Quick Mode, too, though you will have to
919 go into regular Calc (with @kbd{M-# c}) to change the mode settings.
921 @c [fix-ref Quick Calculator mode]
922 @xref{Quick Calculator}, for further information.
924 @node Keypad Mode Overview, Standalone Operation, Quick Mode Overview, Using Calc
925 @subsection Keypad Mode (Overview)
927 @noindent
928 @dfn{Keypad Mode} is a mouse-based interface to the Calculator.
929 It is designed for use with terminals that support a mouse.  If you
930 don't have a mouse, you will have to operate keypad mode with your
931 arrow keys (which is probably more trouble than it's worth).  Keypad
932 mode is currently not supported under Emacs 19.
934 Type @kbd{M-# k} to turn Keypad Mode on or off.  Once again you
935 get two new windows, this time on the righthand side of the screen
936 instead of at the bottom.  The upper window is the familiar Calc
937 Stack; the lower window is a picture of a typical calculator keypad.
939 @tex
940 \dimen0=\pagetotal%
941 \advance \dimen0 by 24\baselineskip%
942 \ifdim \dimen0>\pagegoal \vfill\eject \fi%
943 \medskip
944 @end tex
945 @smallexample
946                                         |--- Emacs Calculator Mode ---
947                                         |2:  17.3
948                                         |1:  -5
949                                         |    .
950                                         |--%%-Calc: 12 Deg       (Calcul
951                                         |----+-----Calc 2.00-----+----1
952                                         |FLR |CEIL|RND |TRNC|CLN2|FLT |
953                                         |----+----+----+----+----+----|
954                                         | LN |EXP |    |ABS |IDIV|MOD |
955                                         |----+----+----+----+----+----|
956                                         |SIN |COS |TAN |SQRT|y^x |1/x |
957                                         |----+----+----+----+----+----|
958                                         |  ENTER  |+/- |EEX |UNDO| <- |
959                                         |-----+---+-+--+--+-+---++----|
960                                         | INV |  7  |  8  |  9  |  /  |
961                                         |-----+-----+-----+-----+-----|
962                                         | HYP |  4  |  5  |  6  |  *  |
963                                         |-----+-----+-----+-----+-----|
964                                         |EXEC |  1  |  2  |  3  |  -  |
965                                         |-----+-----+-----+-----+-----|
966                                         | OFF |  0  |  .  | PI  |  +  |
967                                         |-----+-----+-----+-----+-----+
968 @end smallexample
970 Keypad Mode is much easier for beginners to learn, because there
971 is no need to memorize lots of obscure key sequences.  But not all
972 commands in regular Calc are available on the Keypad.  You can
973 always switch the cursor into the Calc stack window to use
974 standard Calc commands if you need.  Serious Calc users, though,
975 often find they prefer the standard interface over Keypad Mode.
977 To operate the Calculator, just click on the ``buttons'' of the
978 keypad using your left mouse button.  To enter the two numbers
979 shown here you would click @w{@kbd{1 7 .@: 3 ENTER 5 +/- ENTER}}; to
980 add them together you would then click @kbd{+} (to get 12.3 on
981 the stack).
983 If you click the right mouse button, the top three rows of the
984 keypad change to show other sets of commands, such as advanced
985 math functions, vector operations, and operations on binary
986 numbers.
988 Because Keypad Mode doesn't use the regular keyboard, Calc leaves
989 the cursor in your original editing buffer.  You can type in
990 this buffer in the usual way while also clicking on the Calculator
991 keypad.  One advantage of Keypad Mode is that you don't need an
992 explicit command to switch between editing and calculating.
994 If you press @kbd{M-# b} first, you get a full-screen Keypad Mode
995 (@code{full-calc-keypad}) with three windows:  The keypad in the lower
996 left, the stack in the lower right, and the trail on top.
998 @c [fix-ref Keypad Mode]
999 @xref{Keypad Mode}, for further information.
1001 @node Standalone Operation, Embedded Mode Overview, Keypad Mode Overview, Using Calc
1002 @subsection Standalone Operation
1004 @noindent
1005 @cindex Standalone Operation
1006 If you are not in Emacs at the moment but you wish to use Calc,
1007 you must start Emacs first.  If all you want is to run Calc, you
1008 can give the commands:
1010 @example
1011 emacs -f full-calc
1012 @end example
1014 @noindent
1017 @example
1018 emacs -f full-calc-keypad
1019 @end example
1021 @noindent
1022 which run a full-screen Calculator (as if by @kbd{M-# b M-# c}) or
1023 a full-screen X-based Calculator (as if by @kbd{M-# b M-# k}).
1024 In standalone operation, quitting the Calculator (by pressing
1025 @kbd{q} or clicking on the keypad @key{EXIT} button) quits Emacs
1026 itself.
1028 @node Embedded Mode Overview, Other M-# Commands, Standalone Operation, Using Calc
1029 @subsection Embedded Mode (Overview)
1031 @noindent
1032 @dfn{Embedded Mode} is a way to use Calc directly from inside an
1033 editing buffer.  Suppose you have a formula written as part of a
1034 document like this:
1036 @smallexample
1037 @group
1038 The derivative of
1040                                    ln(ln(x))
1043 @end group
1044 @end smallexample
1046 @noindent
1047 and you wish to have Calc compute and format the derivative for
1048 you and store this derivative in the buffer automatically.  To
1049 do this with Embedded Mode, first copy the formula down to where
1050 you want the result to be:
1052 @smallexample
1053 @group
1054 The derivative of
1056                                    ln(ln(x))
1060                                    ln(ln(x))
1061 @end group
1062 @end smallexample
1064 Now, move the cursor onto this new formula and press @kbd{M-# e}.
1065 Calc will read the formula (using the surrounding blank lines to
1066 tell how much text to read), then push this formula (invisibly)
1067 onto the Calc stack.  The cursor will stay on the formula in the
1068 editing buffer, but the buffer's mode line will change to look
1069 like the Calc mode line (with mode indicators like @samp{12 Deg}
1070 and so on).  Even though you are still in your editing buffer,
1071 the keyboard now acts like the Calc keyboard, and any new result
1072 you get is copied from the stack back into the buffer.  To take
1073 the derivative, you would type @kbd{a d x @key{RET}}.
1075 @smallexample
1076 @group
1077 The derivative of
1079                                    ln(ln(x))
1083 1 / ln(x) x
1084 @end group
1085 @end smallexample
1087 To make this look nicer, you might want to press @kbd{d =} to center
1088 the formula, and even @kbd{d B} to use ``big'' display mode.
1090 @smallexample
1091 @group
1092 The derivative of
1094                                    ln(ln(x))
1097 % [calc-mode: justify: center]
1098 % [calc-mode: language: big]
1100                                        1
1101                                     -------
1102                                     ln(x) x
1103 @end group
1104 @end smallexample
1106 Calc has added annotations to the file to help it remember the modes
1107 that were used for this formula.  They are formatted like comments
1108 in the @TeX{} typesetting language, just in case you are using @TeX{}.
1109 (In this example @TeX{} is not being used, so you might want to move
1110 these comments up to the top of the file or otherwise put them out
1111 of the way.)
1113 As an extra flourish, we can add an equation number using a
1114 righthand label:  Type @kbd{d @} (1) @key{RET}}.
1116 @smallexample
1117 @group
1118 % [calc-mode: justify: center]
1119 % [calc-mode: language: big]
1120 % [calc-mode: right-label: " (1)"]
1122                                        1
1123                                     -------                      (1)
1124                                     ln(x) x
1125 @end group
1126 @end smallexample
1128 To leave Embedded Mode, type @kbd{M-# e} again.  The mode line
1129 and keyboard will revert to the way they were before.  (If you have
1130 actually been trying this as you read along, you'll want to press
1131 @kbd{M-# 0} [with the digit zero] now to reset the modes you changed.)
1133 The related command @kbd{M-# w} operates on a single word, which
1134 generally means a single number, inside text.  It uses any
1135 non-numeric characters rather than blank lines to delimit the
1136 formula it reads.  Here's an example of its use:
1138 @smallexample
1139 A slope of one-third corresponds to an angle of 1 degrees.
1140 @end smallexample
1142 Place the cursor on the @samp{1}, then type @kbd{M-# w} to enable
1143 Embedded Mode on that number.  Now type @kbd{3 /} (to get one-third),
1144 and @kbd{I T} (the Inverse Tangent converts a slope into an angle),
1145 then @w{@kbd{M-# w}} again to exit Embedded mode.
1147 @smallexample
1148 A slope of one-third corresponds to an angle of 18.4349488229 degrees.
1149 @end smallexample
1151 @c [fix-ref Embedded Mode]
1152 @xref{Embedded Mode}, for full details.
1154 @node Other M-# Commands, , Embedded Mode Overview, Using Calc
1155 @subsection Other @kbd{M-#} Commands
1157 @noindent
1158 Two more Calc-related commands are @kbd{M-# g} and @kbd{M-# r},
1159 which ``grab'' data from a selected region of a buffer into the
1160 Calculator.  The region is defined in the usual Emacs way, by
1161 a ``mark'' placed at one end of the region, and the Emacs
1162 cursor or ``point'' placed at the other.
1164 The @kbd{M-# g} command reads the region in the usual left-to-right,
1165 top-to-bottom order.  The result is packaged into a Calc vector
1166 of numbers and placed on the stack.  Calc (in its standard
1167 user interface) is then started.  Type @kbd{v u} if you want
1168 to unpack this vector into separate numbers on the stack.  Also,
1169 @kbd{C-u M-# g} interprets the region as a single number or
1170 formula.
1172 The @kbd{M-# r} command reads a rectangle, with the point and
1173 mark defining opposite corners of the rectangle.  The result
1174 is a matrix of numbers on the Calculator stack.
1176 Complementary to these is @kbd{M-# y}, which ``yanks'' the
1177 value at the top of the Calc stack back into an editing buffer.
1178 If you type @w{@kbd{M-# y}} while in such a buffer, the value is
1179 yanked at the current position.  If you type @kbd{M-# y} while
1180 in the Calc buffer, Calc makes an educated guess as to which
1181 editing buffer you want to use.  The Calc window does not have
1182 to be visible in order to use this command, as long as there
1183 is something on the Calc stack.
1185 Here, for reference, is the complete list of @kbd{M-#} commands.
1186 The shift, control, and meta keys are ignored for the keystroke
1187 following @kbd{M-#}.
1189 @noindent
1190 Commands for turning Calc on and off:
1192 @table @kbd
1193 @item #
1194 Turn Calc on or off, employing the same user interface as last time.
1196 @item C
1197 Turn Calc on or off using its standard bottom-of-the-screen
1198 interface.  If Calc is already turned on but the cursor is not
1199 in the Calc window, move the cursor into the window.
1201 @item O
1202 Same as @kbd{C}, but don't select the new Calc window.  If
1203 Calc is already turned on and the cursor is in the Calc window,
1204 move it out of that window.
1206 @item B
1207 Control whether @kbd{M-# c} and @kbd{M-# k} use the full screen.
1209 @item Q
1210 Use Quick Mode for a single short calculation.
1212 @item K
1213 Turn Calc Keypad mode on or off.
1215 @item E
1216 Turn Calc Embedded mode on or off at the current formula.
1218 @item J
1219 Turn Calc Embedded mode on or off, select the interesting part.
1221 @item W
1222 Turn Calc Embedded mode on or off at the current word (number).
1224 @item Z
1225 Turn Calc on in a user-defined way, as defined by a @kbd{Z I} command.
1227 @item X
1228 Quit Calc; turn off standard, Keypad, or Embedded mode if on.
1229 (This is like @kbd{q} or @key{OFF} inside of Calc.)
1230 @end table
1231 @iftex
1232 @sp 2
1233 @end iftex
1235 @noindent
1236 Commands for moving data into and out of the Calculator:
1238 @table @kbd
1239 @item G
1240 Grab the region into the Calculator as a vector.
1242 @item R
1243 Grab the rectangular region into the Calculator as a matrix.
1245 @item :
1246 Grab the rectangular region and compute the sums of its columns.
1248 @item _
1249 Grab the rectangular region and compute the sums of its rows.
1251 @item Y
1252 Yank a value from the Calculator into the current editing buffer.
1253 @end table
1254 @iftex
1255 @sp 2
1256 @end iftex
1258 @noindent
1259 Commands for use with Embedded Mode:
1261 @table @kbd
1262 @item A
1263 ``Activate'' the current buffer.  Locate all formulas that
1264 contain @samp{:=} or @samp{=>} symbols and record their locations
1265 so that they can be updated automatically as variables are changed.
1267 @item D
1268 Duplicate the current formula immediately below and select
1269 the duplicate.
1271 @item F
1272 Insert a new formula at the current point.
1274 @item N
1275 Move the cursor to the next active formula in the buffer.
1277 @item P
1278 Move the cursor to the previous active formula in the buffer.
1280 @item U
1281 Update (i.e., as if by the @kbd{=} key) the formula at the current point.
1283 @item `
1284 Edit (as if by @code{calc-edit}) the formula at the current point.
1285 @end table
1286 @iftex
1287 @sp 2
1288 @end iftex
1290 @noindent
1291 Miscellaneous commands:
1293 @table @kbd
1294 @item I
1295 Run the Emacs Info system to read the Calc manual.
1296 (This is the same as @kbd{h i} inside of Calc.)
1298 @item T
1299 Run the Emacs Info system to read the Calc Tutorial.
1301 @item S
1302 Run the Emacs Info system to read the Calc Summary.
1304 @item L
1305 Load Calc entirely into memory.  (Normally the various parts
1306 are loaded only as they are needed.)
1308 @item M
1309 Read a region of written keystroke names (like @kbd{C-n a b c @key{RET}})
1310 and record them as the current keyboard macro.
1312 @item 0
1313 (This is the ``zero'' digit key.)  Reset the Calculator to
1314 its default state:  Empty stack, and default mode settings.
1315 With any prefix argument, reset everything but the stack.
1316 @end table
1318 @node History and Acknowledgements, , Using Calc, Getting Started
1319 @section History and Acknowledgements
1321 @noindent
1322 Calc was originally started as a two-week project to occupy a lull
1323 in the author's schedule.  Basically, a friend asked if I remembered
1324 the value of @c{$2^{32}$}
1325 @cite{2^32}.  I didn't offhand, but I said, ``that's
1326 easy, just call up an @code{xcalc}.''  @code{Xcalc} duly reported
1327 that the answer to our question was @samp{4.294967e+09}---with no way to
1328 see the full ten digits even though we knew they were there in the
1329 program's memory!  I was so annoyed, I vowed to write a calculator
1330 of my own, once and for all.
1332 I chose Emacs Lisp, a) because I had always been curious about it
1333 and b) because, being only a text editor extension language after
1334 all, Emacs Lisp would surely reach its limits long before the project
1335 got too far out of hand.
1337 To make a long story short, Emacs Lisp turned out to be a distressingly
1338 solid implementation of Lisp, and the humble task of calculating
1339 turned out to be more open-ended than one might have expected.
1341 Emacs Lisp doesn't have built-in floating point math, so it had to be
1342 simulated in software.  In fact, Emacs integers will only comfortably
1343 fit six decimal digits or so---not enough for a decent calculator.  So
1344 I had to write my own high-precision integer code as well, and once I had
1345 this I figured that arbitrary-size integers were just as easy as large
1346 integers.  Arbitrary floating-point precision was the logical next step.
1347 Also, since the large integer arithmetic was there anyway it seemed only
1348 fair to give the user direct access to it, which in turn made it practical
1349 to support fractions as well as floats.  All these features inspired me
1350 to look around for other data types that might be worth having.
1352 Around this time, my friend Rick Koshi showed me his nifty new HP-28
1353 calculator.  It allowed the user to manipulate formulas as well as
1354 numerical quantities, and it could also operate on matrices.  I decided
1355 that these would be good for Calc to have, too.  And once things had
1356 gone this far, I figured I might as well take a look at serious algebra
1357 systems like Mathematica, Macsyma, and Maple for further ideas.  Since
1358 these systems did far more than I could ever hope to implement, I decided
1359 to focus on rewrite rules and other programming features so that users
1360 could implement what they needed for themselves.
1362 Rick complained that matrices were hard to read, so I put in code to
1363 format them in a 2D style.  Once these routines were in place, Big mode
1364 was obligatory.  Gee, what other language modes would be useful?
1366 Scott Hemphill and Allen Knutson, two friends with a strong mathematical
1367 bent, contributed ideas and algorithms for a number of Calc features
1368 including modulo forms, primality testing, and float-to-fraction conversion.
1370 Units were added at the eager insistence of Mass Sivilotti.  Later,
1371 Ulrich Mueller at CERN and Przemek Klosowski at NIST provided invaluable
1372 expert assistance with the units table.  As far as I can remember, the
1373 idea of using algebraic formulas and variables to represent units dates
1374 back to an ancient article in Byte magazine about muMath, an early
1375 algebra system for microcomputers.
1377 Many people have contributed to Calc by reporting bugs and suggesting
1378 features, large and small.  A few deserve special mention:  Tim Peters,
1379 who helped develop the ideas that led to the selection commands, rewrite
1380 rules, and many other algebra features; @c{Fran\c cois}
1381 @asis{Francois} Pinard, who contributed
1382 an early prototype of the Calc Summary appendix as well as providing
1383 valuable suggestions in many other areas of Calc; Carl Witty, whose eagle
1384 eyes discovered many typographical and factual errors in the Calc manual;
1385 Tim Kay, who drove the development of Embedded mode; Ove Ewerlid, who
1386 made many suggestions relating to the algebra commands and contributed
1387 some code for polynomial operations; Randal Schwartz, who suggested the
1388 @code{calc-eval} function; Robert J. Chassell, who suggested the Calc
1389 Tutorial and exercises; and Juha Sarlin, who first worked out how to split
1390 Calc into quickly-loading parts.  Bob Weiner helped immensely with the
1391 Lucid Emacs port.
1393 @cindex Bibliography
1394 @cindex Knuth, Art of Computer Programming
1395 @cindex Numerical Recipes
1396 @c Should these be expanded into more complete references?
1397 Among the books used in the development of Calc were Knuth's @emph{Art
1398 of Computer Programming} (especially volume II, @emph{Seminumerical
1399 Algorithms}); @emph{Numerical Recipes} by Press, Flannery, Teukolsky,
1400 and Vetterling; Bevington's @emph{Data Reduction and Error Analysis for
1401 the Physical Sciences}; @emph{Concrete Mathematics} by Graham, Knuth,
1402 and Patashnik; Steele's @emph{Common Lisp, the Language}; the @emph{CRC
1403 Standard Math Tables} (William H. Beyer, ed.); and Abramowitz and
1404 Stegun's venerable @emph{Handbook of Mathematical Functions}.  I
1405 consulted the user's manuals for the HP-28 and HP-48 calculators, as
1406 well as for the programs Mathematica, SMP, Macsyma, Maple, MathCAD,
1407 Gnuplot, and others.  Also, of course, Calc could not have been written
1408 without the excellent @emph{GNU Emacs Lisp Reference Manual}, by Bil
1409 Lewis and Dan LaLiberte.
1411 Final thanks go to Richard Stallman, without whose fine implementations
1412 of the Emacs editor, language, and environment, Calc would have been
1413 finished in two weeks.
1415 @c [tutorial]
1417 @ifinfo
1418 @c This node is accessed by the `M-# t' command.
1419 @node Interactive Tutorial, , , Top
1420 @chapter Tutorial
1422 @noindent
1423 Some brief instructions on using the Emacs Info system for this tutorial:
1425 Press the space bar and Delete keys to go forward and backward in a
1426 section by screenfuls (or use the regular Emacs scrolling commands
1427 for this).
1429 Press @kbd{n} or @kbd{p} to go to the Next or Previous section.
1430 If the section has a @dfn{menu}, press a digit key like @kbd{1}
1431 or @kbd{2} to go to a sub-section from the menu.  Press @kbd{u} to
1432 go back up from a sub-section to the menu it is part of.
1434 Exercises in the tutorial all have cross-references to the
1435 appropriate page of the ``answers'' section.  Press @kbd{f}, then
1436 the exercise number, to see the answer to an exercise.  After
1437 you have followed a cross-reference, you can press the letter
1438 @kbd{l} to return to where you were before.
1440 You can press @kbd{?} at any time for a brief summary of Info commands.
1442 Press @kbd{1} now to enter the first section of the Tutorial.
1444 @menu
1445 * Tutorial::
1446 @end menu
1447 @end ifinfo
1449 @node Tutorial, Introduction, Getting Started, Top
1450 @chapter Tutorial
1452 @noindent
1453 This chapter explains how to use Calc and its many features, in
1454 a step-by-step, tutorial way.  You are encouraged to run Calc and
1455 work along with the examples as you read (@pxref{Starting Calc}).
1456 If you are already familiar with advanced calculators, you may wish
1457 @c [not-split]
1458 to skip on to the rest of this manual.
1459 @c [when-split]
1460 @c to skip on to volume II of this manual, the @dfn{Calc Reference}.
1462 @c [fix-ref Embedded Mode]
1463 This tutorial describes the standard user interface of Calc only.
1464 The ``Quick Mode'' and ``Keypad Mode'' interfaces are fairly
1465 self-explanatory.  @xref{Embedded Mode}, for a description of
1466 the ``Embedded Mode'' interface.
1468 @ifinfo
1469 The easiest way to read this tutorial on-line is to have two windows on
1470 your Emacs screen, one with Calc and one with the Info system.  (If you
1471 have a printed copy of the manual you can use that instead.)  Press
1472 @kbd{M-# c} to turn Calc on or to switch into the Calc window, and
1473 press @kbd{M-# i} to start the Info system or to switch into its window.
1474 Or, you may prefer to use the tutorial in printed form.
1475 @end ifinfo
1476 @iftex
1477 The easiest way to read this tutorial on-line is to have two windows on
1478 your Emacs screen, one with Calc and one with the Info system.  (If you
1479 have a printed copy of the manual you can use that instead.)  Press
1480 @kbd{M-# c} to turn Calc on or to switch into the Calc window, and
1481 press @kbd{M-# i} to start the Info system or to switch into its window.
1482 @end iftex
1484 This tutorial is designed to be done in sequence.  But the rest of this
1485 manual does not assume you have gone through the tutorial.  The tutorial
1486 does not cover everything in the Calculator, but it touches on most
1487 general areas.
1489 @ifinfo
1490 You may wish to print out a copy of the Calc Summary and keep notes on
1491 it as you learn Calc.  @xref{Installation}, to see how to make a printed
1492 summary.  @xref{Summary}.
1493 @end ifinfo
1494 @iftex
1495 The Calc Summary at the end of the reference manual includes some blank
1496 space for your own use.  You may wish to keep notes there as you learn
1497 Calc.
1498 @end iftex
1500 @menu
1501 * Basic Tutorial::
1502 * Arithmetic Tutorial::
1503 * Vector/Matrix Tutorial::
1504 * Types Tutorial::
1505 * Algebra Tutorial::
1506 * Programming Tutorial::
1508 * Answers to Exercises::
1509 @end menu
1511 @node Basic Tutorial, Arithmetic Tutorial, Tutorial, Tutorial
1512 @section Basic Tutorial
1514 @noindent
1515 In this section, we learn how RPN and algebraic-style calculations
1516 work, how to undo and redo an operation done by mistake, and how
1517 to control various modes of the Calculator.
1519 @menu
1520 * RPN Tutorial::            Basic operations with the stack.
1521 * Algebraic Tutorial::      Algebraic entry; variables.
1522 * Undo Tutorial::           If you make a mistake: Undo and the trail.
1523 * Modes Tutorial::          Common mode-setting commands.
1524 @end menu
1526 @node RPN Tutorial, Algebraic Tutorial, Basic Tutorial, Basic Tutorial
1527 @subsection RPN Calculations and the Stack
1529 @cindex RPN notation
1530 @ifinfo
1531 @noindent
1532 Calc normally uses RPN notation.  You may be familiar with the RPN
1533 system from Hewlett-Packard calculators, FORTH, or PostScript.
1534 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1535 Jan Lukasiewicz.)
1536 @end ifinfo
1537 @tex
1538 \noindent
1539 Calc normally uses RPN notation.  You may be familiar with the RPN
1540 system from Hewlett-Packard calculators, FORTH, or PostScript.
1541 (Reverse Polish Notation, RPN, is named after the Polish mathematician
1542 Jan \L ukasiewicz.)
1543 @end tex
1545 The central component of an RPN calculator is the @dfn{stack}.  A
1546 calculator stack is like a stack of dishes.  New dishes (numbers) are
1547 added at the top of the stack, and numbers are normally only removed
1548 from the top of the stack.
1550 @cindex Operators
1551 @cindex Operands
1552 In an operation like @cite{2+3}, the 2 and 3 are called the @dfn{operands}
1553 and the @cite{+} is the @dfn{operator}.  In an RPN calculator you always
1554 enter the operands first, then the operator.  Each time you type a
1555 number, Calc adds or @dfn{pushes} it onto the top of the Stack.
1556 When you press an operator key like @kbd{+}, Calc @dfn{pops} the appropriate
1557 number of operands from the stack and pushes back the result.
1559 Thus we could add the numbers 2 and 3 in an RPN calculator by typing:
1560 @kbd{2 @key{RET} 3 @key{RET} +}.  (The @key{RET} key, Return, corresponds to
1561 the @key{ENTER} key on traditional RPN calculators.)  Try this now if
1562 you wish; type @kbd{M-# c} to switch into the Calc window (you can type
1563 @kbd{M-# c} again or @kbd{M-# o} to switch back to the Tutorial window).
1564 The first four keystrokes ``push'' the numbers 2 and 3 onto the stack.
1565 The @kbd{+} key ``pops'' the top two numbers from the stack, adds them,
1566 and pushes the result (5) back onto the stack.  Here's how the stack
1567 will look at various points throughout the calculation:@refill
1569 @smallexample
1570 @group
1571     .          1:  2          2:  2          1:  5              .
1572                    .          1:  3              .
1573                                   .
1575   M-# c          2 @key{RET}          3 @key{RET}            +             @key{DEL}
1576 @end group
1577 @end smallexample
1579 The @samp{.} symbol is a marker that represents the top of the stack.
1580 Note that the ``top'' of the stack is really shown at the bottom of
1581 the Stack window.  This may seem backwards, but it turns out to be
1582 less distracting in regular use.
1584 @cindex Stack levels
1585 @cindex Levels of stack
1586 The numbers @samp{1:} and @samp{2:} on the left are @dfn{stack level
1587 numbers}.  Old RPN calculators always had four stack levels called
1588 @cite{x}, @cite{y}, @cite{z}, and @cite{t}.  Calc's stack can grow
1589 as large as you like, so it uses numbers instead of letters.  Some
1590 stack-manipulation commands accept a numeric argument that says
1591 which stack level to work on.  Normal commands like @kbd{+} always
1592 work on the top few levels of the stack.@refill
1594 @c [fix-ref Truncating the Stack]
1595 The Stack buffer is just an Emacs buffer, and you can move around in
1596 it using the regular Emacs motion commands.  But no matter where the
1597 cursor is, even if you have scrolled the @samp{.} marker out of
1598 view, most Calc commands always move the cursor back down to level 1
1599 before doing anything.  It is possible to move the @samp{.} marker
1600 upwards through the stack, temporarily ``hiding'' some numbers from
1601 commands like @kbd{+}.  This is called @dfn{stack truncation} and
1602 we will not cover it in this tutorial; @pxref{Truncating the Stack},
1603 if you are interested.
1605 You don't really need the second @key{RET} in @kbd{2 @key{RET} 3
1606 @key{RET} +}.  That's because if you type any operator name or
1607 other non-numeric key when you are entering a number, the Calculator
1608 automatically enters that number and then does the requested command.
1609 Thus @kbd{2 @key{RET} 3 +} will work just as well.@refill
1611 Examples in this tutorial will often omit @key{RET} even when the
1612 stack displays shown would only happen if you did press @key{RET}:
1614 @smallexample
1615 @group
1616 1:  2          2:  2          1:  5
1617     .          1:  3              .
1618                    .
1620   2 @key{RET}            3              +
1621 @end group
1622 @end smallexample
1624 @noindent
1625 Here, after pressing @kbd{3} the stack would really show @samp{1:  2}
1626 with @samp{Calc:@: 3} in the minibuffer.  In these situations, you can
1627 press the optional @key{RET} to see the stack as the figure shows.
1629 (@bullet{}) @strong{Exercise 1.}  (This tutorial will include exercises
1630 at various points.  Try them if you wish.  Answers to all the exercises
1631 are located at the end of the Tutorial chapter.  Each exercise will
1632 include a cross-reference to its particular answer.  If you are
1633 reading with the Emacs Info system, press @kbd{f} and the
1634 exercise number to go to the answer, then the letter @kbd{l} to
1635 return to where you were.)
1637 @noindent
1638 Here's the first exercise:  What will the keystrokes @kbd{1 @key{RET} 2
1639 @key{RET} 3 @key{RET} 4 + * -} compute?  (@samp{*} is the symbol for
1640 multiplication.)  Figure it out by hand, then try it with Calc to see
1641 if you're right.  @xref{RPN Answer 1, 1}. (@bullet{})
1643 (@bullet{}) @strong{Exercise 2.}  Compute @c{$(2\times4) + (7\times9.4) + {5\over4}$}
1644 @cite{2*4 + 7*9.5 + 5/4} using the
1645 stack.  @xref{RPN Answer 2, 2}. (@bullet{})
1647 The @key{DEL} key is called Backspace on some keyboards.  It is
1648 whatever key you would use to correct a simple typing error when
1649 regularly using Emacs.  The @key{DEL} key pops and throws away the
1650 top value on the stack.  (You can still get that value back from
1651 the Trail if you should need it later on.)  There are many places
1652 in this tutorial where we assume you have used @key{DEL} to erase the
1653 results of the previous example at the beginning of a new example.
1654 In the few places where it is really important to use @key{DEL} to
1655 clear away old results, the text will remind you to do so.
1657 (It won't hurt to let things accumulate on the stack, except that
1658 whenever you give a display-mode-changing command Calc will have to
1659 spend a long time reformatting such a large stack.)
1661 Since the @kbd{-} key is also an operator (it subtracts the top two
1662 stack elements), how does one enter a negative number?  Calc uses
1663 the @kbd{_} (underscore) key to act like the minus sign in a number.
1664 So, typing @kbd{-5 @key{RET}} won't work because the @kbd{-} key
1665 will try to do a subtraction, but @kbd{_5 @key{RET}} works just fine.
1667 You can also press @kbd{n}, which means ``change sign.''  It changes
1668 the number at the top of the stack (or the number being entered)
1669 from positive to negative or vice-versa:  @kbd{5 n @key{RET}}.
1671 @cindex Duplicating a stack entry
1672 If you press @key{RET} when you're not entering a number, the effect
1673 is to duplicate the top number on the stack.  Consider this calculation:
1675 @smallexample
1676 @group
1677 1:  3          2:  3          1:  9          2:  9          1:  81
1678     .          1:  3              .          1:  9              .
1679                    .                             .
1681   3 @key{RET}           @key{RET}             *             @key{RET}             *
1682 @end group
1683 @end smallexample
1685 @noindent
1686 (Of course, an easier way to do this would be @kbd{3 @key{RET} 4 ^},
1687 to raise 3 to the fourth power.)
1689 The space-bar key (denoted @key{SPC} here) performs the same function
1690 as @key{RET}; you could replace all three occurrences of @key{RET} in
1691 the above example with @key{SPC} and the effect would be the same.
1693 @cindex Exchanging stack entries
1694 Another stack manipulation key is @key{TAB}.  This exchanges the top
1695 two stack entries.  Suppose you have computed @kbd{2 @key{RET} 3 +}
1696 to get 5, and then you realize what you really wanted to compute
1697 was @cite{20 / (2+3)}.
1699 @smallexample
1700 @group
1701 1:  5          2:  5          2:  20         1:  4
1702     .          1:  20         1:  5              .
1703                    .              .
1705  2 @key{RET} 3 +         20            @key{TAB}             /
1706 @end group
1707 @end smallexample
1709 @noindent
1710 Planning ahead, the calculation would have gone like this:
1712 @smallexample
1713 @group
1714 1:  20         2:  20         3:  20         2:  20         1:  4
1715     .          1:  2          2:  2          1:  5              .
1716                    .          1:  3              .
1717                                   .
1719   20 @key{RET}         2 @key{RET}            3              +              /
1720 @end group
1721 @end smallexample
1723 A related stack command is @kbd{M-@key{TAB}} (hold @key{META} and type
1724 @key{TAB}).  It rotates the top three elements of the stack upward,
1725 bringing the object in level 3 to the top.
1727 @smallexample
1728 @group
1729 1:  10         2:  10         3:  10         3:  20         3:  30
1730     .          1:  20         2:  20         2:  30         2:  10
1731                    .          1:  30         1:  10         1:  20
1732                                   .              .              .
1734   10 @key{RET}         20 @key{RET}         30 @key{RET}         M-@key{TAB}          M-@key{TAB}
1735 @end group
1736 @end smallexample
1738 (@bullet{}) @strong{Exercise 3.} Suppose the numbers 10, 20, and 30 are
1739 on the stack.  Figure out how to add one to the number in level 2
1740 without affecting the rest of the stack.  Also figure out how to add
1741 one to the number in level 3.  @xref{RPN Answer 3, 3}. (@bullet{})
1743 Operations like @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/}, and @kbd{^} pop two
1744 arguments from the stack and push a result.  Operations like @kbd{n} and
1745 @kbd{Q} (square root) pop a single number and push the result.  You can
1746 think of them as simply operating on the top element of the stack.
1748 @smallexample
1749 @group
1750 1:  3          1:  9          2:  9          1:  25         1:  5
1751     .              .          1:  16             .              .
1752                                   .
1754   3 @key{RET}          @key{RET} *        4 @key{RET} @key{RET} *        +              Q
1755 @end group
1756 @end smallexample
1758 @noindent
1759 (Note that capital @kbd{Q} means to hold down the Shift key while
1760 typing @kbd{q}.  Remember, plain unshifted @kbd{q} is the Quit command.)
1762 @cindex Pythagorean Theorem
1763 Here we've used the Pythagorean Theorem to determine the hypotenuse of a
1764 right triangle.  Calc actually has a built-in command for that called
1765 @kbd{f h}, but let's suppose we can't remember the necessary keystrokes.
1766 We can still enter it by its full name using @kbd{M-x} notation:
1768 @smallexample
1769 @group
1770 1:  3          2:  3          1:  5
1771     .          1:  4              .
1772                    .
1774   3 @key{RET}          4 @key{RET}      M-x calc-hypot
1775 @end group
1776 @end smallexample
1778 All Calculator commands begin with the word @samp{calc-}.  Since it
1779 gets tiring to type this, Calc provides an @kbd{x} key which is just
1780 like the regular Emacs @kbd{M-x} key except that it types the @samp{calc-}
1781 prefix for you:
1783 @smallexample
1784 @group
1785 1:  3          2:  3          1:  5
1786     .          1:  4              .
1787                    .
1789   3 @key{RET}          4 @key{RET}         x hypot
1790 @end group
1791 @end smallexample
1793 What happens if you take the square root of a negative number?
1795 @smallexample
1796 @group
1797 1:  4          1:  -4         1:  (0, 2)
1798     .              .              .
1800   4 @key{RET}            n              Q
1801 @end group
1802 @end smallexample
1804 @noindent
1805 The notation @cite{(a, b)} represents a complex number.
1806 Complex numbers are more traditionally written @c{$a + b i$}
1807 @cite{a + b i};
1808 Calc can display in this format, too, but for now we'll stick to the
1809 @cite{(a, b)} notation.
1811 If you don't know how complex numbers work, you can safely ignore this
1812 feature.  Complex numbers only arise from operations that would be
1813 errors in a calculator that didn't have complex numbers.  (For example,
1814 taking the square root or logarithm of a negative number produces a
1815 complex result.)
1817 Complex numbers are entered in the notation shown.  The @kbd{(} and
1818 @kbd{,} and @kbd{)} keys manipulate ``incomplete complex numbers.''
1820 @smallexample
1821 @group
1822 1:  ( ...      2:  ( ...      1:  (2, ...    1:  (2, ...    1:  (2, 3)
1823     .          1:  2              .              3              .
1824                    .                             .
1826     (              2              ,              3              )
1827 @end group
1828 @end smallexample
1830 You can perform calculations while entering parts of incomplete objects.
1831 However, an incomplete object cannot actually participate in a calculation:
1833 @smallexample
1834 @group
1835 1:  ( ...      2:  ( ...      3:  ( ...      1:  ( ...      1:  ( ...
1836     .          1:  2          2:  2              5              5
1837                    .          1:  3              .              .
1838                                   .
1839                                                              (error)
1840     (             2 @key{RET}           3              +              +
1841 @end group
1842 @end smallexample
1844 @noindent
1845 Adding 5 to an incomplete object makes no sense, so the last command
1846 produces an error message and leaves the stack the same.
1848 Incomplete objects can't participate in arithmetic, but they can be
1849 moved around by the regular stack commands.
1851 @smallexample
1852 @group
1853 2:  2          3:  2          3:  3          1:  ( ...      1:  (2, 3)
1854 1:  3          2:  3          2:  ( ...          2              .
1855     .          1:  ( ...      1:  2              3
1856                    .              .              .
1858 2 @key{RET} 3 @key{RET}        (            M-@key{TAB}          M-@key{TAB}            )
1859 @end group
1860 @end smallexample
1862 @noindent
1863 Note that the @kbd{,} (comma) key did not have to be used here.
1864 When you press @kbd{)} all the stack entries between the incomplete
1865 entry and the top are collected, so there's never really a reason
1866 to use the comma.  It's up to you.
1868 (@bullet{}) @strong{Exercise 4.}  To enter the complex number @cite{(2, 3)},
1869 your friend Joe typed @kbd{( 2 , @key{SPC} 3 )}.  What happened?
1870 (Joe thought of a clever way to correct his mistake in only two
1871 keystrokes, but it didn't quite work.  Try it to find out why.)
1872 @xref{RPN Answer 4, 4}. (@bullet{})
1874 Vectors are entered the same way as complex numbers, but with square
1875 brackets in place of parentheses.  We'll meet vectors again later in
1876 the tutorial.
1878 Any Emacs command can be given a @dfn{numeric prefix argument} by
1879 typing a series of @key{META}-digits beforehand.  If @key{META} is
1880 awkward for you, you can instead type @kbd{C-u} followed by the
1881 necessary digits.  Numeric prefix arguments can be negative, as in
1882 @kbd{M-- M-3 M-5} or @w{@kbd{C-u - 3 5}}.  Calc commands use numeric
1883 prefix arguments in a variety of ways.  For example, a numeric prefix
1884 on the @kbd{+} operator adds any number of stack entries at once:
1886 @smallexample
1887 @group
1888 1:  10         2:  10         3:  10         3:  10         1:  60
1889     .          1:  20         2:  20         2:  20             .
1890                    .          1:  30         1:  30
1891                                   .              .
1893   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u 3            +
1894 @end group
1895 @end smallexample
1897 For stack manipulation commands like @key{RET}, a positive numeric
1898 prefix argument operates on the top @var{n} stack entries at once.  A
1899 negative argument operates on the entry in level @var{n} only.  An
1900 argument of zero operates on the entire stack.  In this example, we copy
1901 the second-to-top element of the stack:
1903 @smallexample
1904 @group
1905 1:  10         2:  10         3:  10         3:  10         4:  10
1906     .          1:  20         2:  20         2:  20         3:  20
1907                    .          1:  30         1:  30         2:  30
1908                                   .              .          1:  20
1909                                                                 .
1911   10 @key{RET}         20 @key{RET}         30 @key{RET}         C-u -2          @key{RET}
1912 @end group
1913 @end smallexample
1915 @cindex Clearing the stack
1916 @cindex Emptying the stack
1917 Another common idiom is @kbd{M-0 @key{DEL}}, which clears the stack.
1918 (The @kbd{M-0} numeric prefix tells @key{DEL} to operate on the
1919 entire stack.)
1921 @node Algebraic Tutorial, Undo Tutorial, RPN Tutorial, Basic Tutorial
1922 @subsection Algebraic-Style Calculations
1924 @noindent
1925 If you are not used to RPN notation, you may prefer to operate the
1926 Calculator in ``algebraic mode,'' which is closer to the way
1927 non-RPN calculators work.  In algebraic mode, you enter formulas
1928 in traditional @cite{2+3} notation.
1930 You don't really need any special ``mode'' to enter algebraic formulas.
1931 You can enter a formula at any time by pressing the apostrophe (@kbd{'})
1932 key.  Answer the prompt with the desired formula, then press @key{RET}.
1933 The formula is evaluated and the result is pushed onto the RPN stack.
1934 If you don't want to think in RPN at all, you can enter your whole
1935 computation as a formula, read the result from the stack, then press
1936 @key{DEL} to delete it from the stack.
1938 Try pressing the apostrophe key, then @kbd{2+3+4}, then @key{RET}.
1939 The result should be the number 9.
1941 Algebraic formulas use the operators @samp{+}, @samp{-}, @samp{*},
1942 @samp{/}, and @samp{^}.  You can use parentheses to make the order
1943 of evaluation clear.  In the absence of parentheses, @samp{^} is
1944 evaluated first, then @samp{*}, then @samp{/}, then finally
1945 @samp{+} and @samp{-}.  For example, the expression
1947 @example
1948 2 + 3*4*5 / 6*7^8 - 9
1949 @end example
1951 @noindent
1952 is equivalent to
1954 @example
1955 2 + ((3*4*5) / (6*(7^8)) - 9
1956 @end example
1958 @noindent
1959 or, in large mathematical notation,
1961 @ifinfo
1962 @example
1963 @group
1964     3 * 4 * 5
1965 2 + --------- - 9
1966           8
1967      6 * 7
1968 @end group
1969 @end example
1970 @end ifinfo
1971 @tex
1972 \turnoffactive
1973 \beforedisplay
1974 $$ 2 + { 3 \times 4 \times 5 \over 6 \times 7^8 } - 9 $$
1975 \afterdisplay
1976 @end tex
1978 @noindent
1979 The result of this expression will be the number @i{-6.99999826533}.
1981 Calc's order of evaluation is the same as for most computer languages,
1982 except that @samp{*} binds more strongly than @samp{/}, as the above
1983 example shows.  As in normal mathematical notation, the @samp{*} symbol
1984 can often be omitted:  @samp{2 a} is the same as @samp{2*a}.
1986 Operators at the same level are evaluated from left to right, except
1987 that @samp{^} is evaluated from right to left.  Thus, @samp{2-3-4} is
1988 equivalent to @samp{(2-3)-4} or @i{-5}, whereas @samp{2^3^4} is equivalent
1989 to @samp{2^(3^4)} (a very large integer; try it!).
1991 If you tire of typing the apostrophe all the time, there is an
1992 ``algebraic mode'' you can select in which Calc automatically senses
1993 when you are about to type an algebraic expression.  To enter this
1994 mode, press the two letters @w{@kbd{m a}}.  (An @samp{Alg} indicator
1995 should appear in the Calc window's mode line.)
1997 Press @kbd{m a}, then @kbd{2+3+4} with no apostrophe, then @key{RET}.
1999 In algebraic mode, when you press any key that would normally begin
2000 entering a number (such as a digit, a decimal point, or the @kbd{_}
2001 key), or if you press @kbd{(} or @kbd{[}, Calc automatically begins
2002 an algebraic entry.
2004 Functions which do not have operator symbols like @samp{+} and @samp{*}
2005 must be entered in formulas using function-call notation.  For example,
2006 the function name corresponding to the square-root key @kbd{Q} is
2007 @code{sqrt}.  To compute a square root in a formula, you would use
2008 the notation @samp{sqrt(@var{x})}.
2010 Press the apostrophe, then type @kbd{sqrt(5*2) - 3}.  The result should
2011 be @cite{0.16227766017}.
2013 Note that if the formula begins with a function name, you need to use
2014 the apostrophe even if you are in algebraic mode.  If you type @kbd{arcsin}
2015 out of the blue, the @kbd{a r} will be taken as an Algebraic Rewrite
2016 command, and the @kbd{csin} will be taken as the name of the rewrite
2017 rule to use!
2019 Some people prefer to enter complex numbers and vectors in algebraic
2020 form because they find RPN entry with incomplete objects to be too
2021 distracting, even though they otherwise use Calc as an RPN calculator.
2023 Still in algebraic mode, type:
2025 @smallexample
2026 @group
2027 1:  (2, 3)     2:  (2, 3)     1:  (8, -1)    2:  (8, -1)    1:  (9, -1)
2028     .          1:  (1, -2)        .          1:  1              .
2029                    .                             .
2031  (2,3) @key{RET}      (1,-2) @key{RET}        *              1 @key{RET}          +
2032 @end group
2033 @end smallexample
2035 Algebraic mode allows us to enter complex numbers without pressing
2036 an apostrophe first, but it also means we need to press @key{RET}
2037 after every entry, even for a simple number like @cite{1}.
2039 (You can type @kbd{C-u m a} to enable a special ``incomplete algebraic
2040 mode'' in which the @kbd{(} and @kbd{[} keys use algebraic entry even
2041 though regular numeric keys still use RPN numeric entry.  There is also
2042 a ``total algebraic mode,'' started by typing @kbd{m t}, in which all
2043 normal keys begin algebraic entry.  You must then use the @key{META} key
2044 to type Calc commands:  @kbd{M-m t} to get back out of total algebraic
2045 mode, @kbd{M-q} to quit, etc.  Total algebraic mode is not supported
2046 under Emacs 19.)
2048 If you're still in algebraic mode, press @kbd{m a} again to turn it off.
2050 Actual non-RPN calculators use a mixture of algebraic and RPN styles.
2051 In general, operators of two numbers (like @kbd{+} and @kbd{*})
2052 use algebraic form, but operators of one number (like @kbd{n} and @kbd{Q})
2053 use RPN form.  Also, a non-RPN calculator allows you to see the
2054 intermediate results of a calculation as you go along.  You can
2055 accomplish this in Calc by performing your calculation as a series
2056 of algebraic entries, using the @kbd{$} sign to tie them together.
2057 In an algebraic formula, @kbd{$} represents the number on the top
2058 of the stack.  Here, we perform the calculation @c{$\sqrt{2\times4+1}$}
2059 @cite{sqrt(2*4+1)},
2060 which on a traditional calculator would be done by pressing
2061 @kbd{2 * 4 + 1 =} and then the square-root key.
2063 @smallexample
2064 @group
2065 1:  8          1:  9          1:  3
2066     .              .              .
2068   ' 2*4 @key{RET}        $+1 @key{RET}        Q
2069 @end group
2070 @end smallexample
2072 @noindent
2073 Notice that we didn't need to press an apostrophe for the @kbd{$+1},
2074 because the dollar sign always begins an algebraic entry.
2076 (@bullet{}) @strong{Exercise 1.}  How could you get the same effect as
2077 pressing @kbd{Q} but using an algebraic entry instead?  How about
2078 if the @kbd{Q} key on your keyboard were broken?
2079 @xref{Algebraic Answer 1, 1}. (@bullet{})
2081 The notations @kbd{$$}, @kbd{$$$}, and so on stand for higher stack
2082 entries.  For example, @kbd{' $$+$ @key{RET}} is just like typing @kbd{+}.
2084 Algebraic formulas can include @dfn{variables}.  To store in a
2085 variable, press @kbd{s s}, then type the variable name, then press
2086 @key{RET}.  (There are actually two flavors of store command:
2087 @kbd{s s} stores a number in a variable but also leaves the number
2088 on the stack, while @w{@kbd{s t}} removes a number from the stack and
2089 stores it in the variable.)  A variable name should consist of one
2090 or more letters or digits, beginning with a letter.
2092 @smallexample
2093 @group
2094 1:  17             .          1:  a + a^2    1:  306
2095     .                             .              .
2097     17          s t a @key{RET}      ' a+a^2 @key{RET}       =
2098 @end group
2099 @end smallexample
2101 @noindent
2102 The @kbd{=} key @dfn{evaluates} a formula by replacing all its
2103 variables by the values that were stored in them.
2105 For RPN calculations, you can recall a variable's value on the
2106 stack either by entering its name as a formula and pressing @kbd{=},
2107 or by using the @kbd{s r} command.
2109 @smallexample
2110 @group
2111 1:  17         2:  17         3:  17         2:  17         1:  306
2112     .          1:  17         2:  17         1:  289            .
2113                    .          1:  2              .
2114                                   .
2116   s r a @key{RET}     ' a @key{RET} =         2              ^              +
2117 @end group
2118 @end smallexample
2120 If you press a single digit for a variable name (as in @kbd{s t 3}, you
2121 get one of ten @dfn{quick variables} @code{q0} through @code{q9}.
2122 They are ``quick'' simply because you don't have to type the letter
2123 @code{q} or the @key{RET} after their names.  In fact, you can type
2124 simply @kbd{s 3} as a shorthand for @kbd{s s 3}, and likewise for
2125 @kbd{t 3} and @w{@kbd{r 3}}.
2127 Any variables in an algebraic formula for which you have not stored
2128 values are left alone, even when you evaluate the formula.
2130 @smallexample
2131 @group
2132 1:  2 a + 2 b     1:  34 + 2 b
2133     .                 .
2135  ' 2a+2b @key{RET}          =
2136 @end group
2137 @end smallexample
2139 Calls to function names which are undefined in Calc are also left
2140 alone, as are calls for which the value is undefined.
2142 @smallexample
2143 @group
2144 1:  2 + log10(0) + log10(x) + log10(5, 6) + foo(3)
2145     .
2147  ' log10(100) + log10(0) + log10(x) + log10(5,6) + foo(3) @key{RET}
2148 @end group
2149 @end smallexample
2151 @noindent
2152 In this example, the first call to @code{log10} works, but the other
2153 calls are not evaluated.  In the second call, the logarithm is
2154 undefined for that value of the argument; in the third, the argument
2155 is symbolic, and in the fourth, there are too many arguments.  In the
2156 fifth case, there is no function called @code{foo}.  You will see a
2157 ``Wrong number of arguments'' message referring to @samp{log10(5,6)}.
2158 Press the @kbd{w} (``why'') key to see any other messages that may
2159 have arisen from the last calculation.  In this case you will get
2160 ``logarithm of zero,'' then ``number expected: @code{x}''.  Calc
2161 automatically displays the first message only if the message is
2162 sufficiently important; for example, Calc considers ``wrong number
2163 of arguments'' and ``logarithm of zero'' to be important enough to
2164 report automatically, while a message like ``number expected: @code{x}''
2165 will only show up if you explicitly press the @kbd{w} key.
2167 (@bullet{}) @strong{Exercise 2.}  Joe entered the formula @samp{2 x y},
2168 stored 5 in @code{x}, pressed @kbd{=}, and got the expected result,
2169 @samp{10 y}.  He then tried the same for the formula @samp{2 x (1+y)},
2170 expecting @samp{10 (1+y)}, but it didn't work.  Why not?
2171 @xref{Algebraic Answer 2, 2}. (@bullet{})
2173 (@bullet{}) @strong{Exercise 3.}  What result would you expect
2174 @kbd{1 @key{RET} 0 /} to give?  What if you then type @kbd{0 *}?
2175 @xref{Algebraic Answer 3, 3}. (@bullet{})
2177 One interesting way to work with variables is to use the
2178 @dfn{evaluates-to} (@samp{=>}) operator.  It works like this:
2179 Enter a formula algebraically in the usual way, but follow
2180 the formula with an @samp{=>} symbol.  (There is also an @kbd{s =}
2181 command which builds an @samp{=>} formula using the stack.)  On
2182 the stack, you will see two copies of the formula with an @samp{=>}
2183 between them.  The lefthand formula is exactly like you typed it;
2184 the righthand formula has been evaluated as if by typing @kbd{=}.
2186 @smallexample
2187 @group
2188 2:  2 + 3 => 5                     2:  2 + 3 => 5
2189 1:  2 a + 2 b => 34 + 2 b          1:  2 a + 2 b => 20 + 2 b
2190     .                                  .
2192 ' 2+3 => @key{RET}  ' 2a+2b @key{RET} s =          10 s t a @key{RET}
2193 @end group
2194 @end smallexample
2196 @noindent
2197 Notice that the instant we stored a new value in @code{a}, all
2198 @samp{=>} operators already on the stack that referred to @cite{a}
2199 were updated to use the new value.  With @samp{=>}, you can push a
2200 set of formulas on the stack, then change the variables experimentally
2201 to see the effects on the formulas' values.
2203 You can also ``unstore'' a variable when you are through with it:
2205 @smallexample
2206 @group
2207 2:  2 + 5 => 5
2208 1:  2 a + 2 b => 2 a + 2 b
2209     .
2211     s u a @key{RET}
2212 @end group
2213 @end smallexample
2215 We will encounter formulas involving variables and functions again
2216 when we discuss the algebra and calculus features of the Calculator.
2218 @node Undo Tutorial, Modes Tutorial, Algebraic Tutorial, Basic Tutorial
2219 @subsection Undo and Redo
2221 @noindent
2222 If you make a mistake, you can usually correct it by pressing shift-@kbd{U},
2223 the ``undo'' command.  First, clear the stack (@kbd{M-0 @key{DEL}}) and exit
2224 and restart Calc (@kbd{M-# M-# M-# M-#}) to make sure things start off
2225 with a clean slate.  Now:
2227 @smallexample
2228 @group
2229 1:  2          2:  2          1:  8          2:  2          1:  6
2230     .          1:  3              .          1:  3              .
2231                    .                             .
2233    2 @key{RET}           3              ^              U              *
2234 @end group
2235 @end smallexample
2237 You can undo any number of times.  Calc keeps a complete record of
2238 all you have done since you last opened the Calc window.  After the
2239 above example, you could type:
2241 @smallexample
2242 @group
2243 1:  6          2:  2          1:  2              .              .
2244     .          1:  3              .
2245                    .
2246                                                              (error)
2247                    U              U              U              U
2248 @end group
2249 @end smallexample
2251 You can also type @kbd{D} to ``redo'' a command that you have undone
2252 mistakenly.
2254 @smallexample
2255 @group
2256     .          1:  2          2:  2          1:  6          1:  6
2257                    .          1:  3              .              .
2258                                   .
2259                                                              (error)
2260                    D              D              D              D
2261 @end group
2262 @end smallexample
2264 @noindent
2265 It was not possible to redo past the @cite{6}, since that was placed there
2266 by something other than an undo command.
2268 @cindex Time travel
2269 You can think of undo and redo as a sort of ``time machine.''  Press
2270 @kbd{U} to go backward in time, @kbd{D} to go forward.  If you go
2271 backward and do something (like @kbd{*}) then, as any science fiction
2272 reader knows, you have changed your future and you cannot go forward
2273 again.  Thus, the inability to redo past the @cite{6} even though there
2274 was an earlier undo command.
2276 You can always recall an earlier result using the Trail.  We've ignored
2277 the trail so far, but it has been faithfully recording everything we
2278 did since we loaded the Calculator.  If the Trail is not displayed,
2279 press @kbd{t d} now to turn it on.
2281 Let's try grabbing an earlier result.  The @cite{8} we computed was
2282 undone by a @kbd{U} command, and was lost even to Redo when we pressed
2283 @kbd{*}, but it's still there in the trail.  There should be a little
2284 @samp{>} arrow (the @dfn{trail pointer}) resting on the last trail
2285 entry.  If there isn't, press @kbd{t ]} to reset the trail pointer.
2286 Now, press @w{@kbd{t p}} to move the arrow onto the line containing
2287 @cite{8}, and press @w{@kbd{t y}} to ``yank'' that number back onto the
2288 stack.
2290 If you press @kbd{t ]} again, you will see that even our Yank command
2291 went into the trail.
2293 Let's go further back in time.  Earlier in the tutorial we computed
2294 a huge integer using the formula @samp{2^3^4}.  We don't remember
2295 what it was, but the first digits were ``241''.  Press @kbd{t r}
2296 (which stands for trail-search-reverse), then type @kbd{241}.
2297 The trail cursor will jump back to the next previous occurrence of
2298 the string ``241'' in the trail.  This is just a regular Emacs
2299 incremental search; you can now press @kbd{C-s} or @kbd{C-r} to
2300 continue the search forwards or backwards as you like.
2302 To finish the search, press @key{RET}.  This halts the incremental
2303 search and leaves the trail pointer at the thing we found.  Now we
2304 can type @kbd{t y} to yank that number onto the stack.  If we hadn't
2305 remembered the ``241'', we could simply have searched for @kbd{2^3^4},
2306 then pressed @kbd{@key{RET} t n} to halt and then move to the next item.
2308 You may have noticed that all the trail-related commands begin with
2309 the letter @kbd{t}.  (The store-and-recall commands, on the other hand,
2310 all began with @kbd{s}.)  Calc has so many commands that there aren't
2311 enough keys for all of them, so various commands are grouped into
2312 two-letter sequences where the first letter is called the @dfn{prefix}
2313 key.  If you type a prefix key by accident, you can press @kbd{C-g}
2314 to cancel it.  (In fact, you can press @kbd{C-g} to cancel almost
2315 anything in Emacs.)  To get help on a prefix key, press that key
2316 followed by @kbd{?}.  Some prefixes have several lines of help,
2317 so you need to press @kbd{?} repeatedly to see them all.  This may
2318 not work under Lucid Emacs, but you can also type @kbd{h h} to
2319 see all the help at once.
2321 Try pressing @kbd{t ?} now.  You will see a line of the form,
2323 @smallexample
2324 trail/time: Display; Fwd, Back; Next, Prev, Here, [, ]; Yank:  [MORE]  t-
2325 @end smallexample
2327 @noindent
2328 The word ``trail'' indicates that the @kbd{t} prefix key contains
2329 trail-related commands.  Each entry on the line shows one command,
2330 with a single capital letter showing which letter you press to get
2331 that command.  We have used @kbd{t n}, @kbd{t p}, @kbd{t ]}, and
2332 @kbd{t y} so far.  The @samp{[MORE]} means you can press @kbd{?}
2333 again to see more @kbd{t}-prefix commands.  Notice that the commands
2334 are roughly divided (by semicolons) into related groups.
2336 When you are in the help display for a prefix key, the prefix is
2337 still active.  If you press another key, like @kbd{y} for example,
2338 it will be interpreted as a @kbd{t y} command.  If all you wanted
2339 was to look at the help messages, press @kbd{C-g} afterwards to cancel
2340 the prefix.
2342 One more way to correct an error is by editing the stack entries.
2343 The actual Stack buffer is marked read-only and must not be edited
2344 directly, but you can press @kbd{`} (the backquote or accent grave)
2345 to edit a stack entry.
2347 Try entering @samp{3.141439} now.  If this is supposed to represent
2348 @c{$\pi$}
2349 @cite{pi}, it's got several errors.  Press @kbd{`} to edit this number.
2350 Now use the normal Emacs cursor motion and editing keys to change
2351 the second 4 to a 5, and to transpose the 3 and the 9.  When you
2352 press @key{RET}, the number on the stack will be replaced by your
2353 new number.  This works for formulas, vectors, and all other types
2354 of values you can put on the stack.  The @kbd{`} key also works
2355 during entry of a number or algebraic formula.
2357 @node Modes Tutorial, , Undo Tutorial, Basic Tutorial
2358 @subsection Mode-Setting Commands
2360 @noindent
2361 Calc has many types of @dfn{modes} that affect the way it interprets
2362 your commands or the way it displays data.  We have already seen one
2363 mode, namely algebraic mode.  There are many others, too; we'll
2364 try some of the most common ones here.
2366 Perhaps the most fundamental mode in Calc is the current @dfn{precision}.
2367 Notice the @samp{12} on the Calc window's mode line:
2369 @smallexample
2370 --%%-Calc: 12 Deg       (Calculator)----All------
2371 @end smallexample
2373 @noindent
2374 Most of the symbols there are Emacs things you don't need to worry
2375 about, but the @samp{12} and the @samp{Deg} are mode indicators.
2376 The @samp{12} means that calculations should always be carried to
2377 12 significant figures.  That is why, when we type @kbd{1 @key{RET} 7 /},
2378 we get @cite{0.142857142857} with exactly 12 digits, not counting
2379 leading and trailing zeros.
2381 You can set the precision to anything you like by pressing @kbd{p},
2382 then entering a suitable number.  Try pressing @kbd{p 30 @key{RET}},
2383 then doing @kbd{1 @key{RET} 7 /} again:
2385 @smallexample
2386 @group
2387 1:  0.142857142857
2388 2:  0.142857142857142857142857142857
2389     .
2390 @end group
2391 @end smallexample
2393 Although the precision can be set arbitrarily high, Calc always
2394 has to have @emph{some} value for the current precision.  After
2395 all, the true value @cite{1/7} is an infinitely repeating decimal;
2396 Calc has to stop somewhere.
2398 Of course, calculations are slower the more digits you request.
2399 Press @w{@kbd{p 12}} now to set the precision back down to the default.
2401 Calculations always use the current precision.  For example, even
2402 though we have a 30-digit value for @cite{1/7} on the stack, if
2403 we use it in a calculation in 12-digit mode it will be rounded
2404 down to 12 digits before it is used.  Try it; press @key{RET} to
2405 duplicate the number, then @w{@kbd{1 +}}.  Notice that the @key{RET}
2406 key didn't round the number, because it doesn't do any calculation.
2407 But the instant we pressed @kbd{+}, the number was rounded down.
2409 @smallexample
2410 @group
2411 1:  0.142857142857
2412 2:  0.142857142857142857142857142857
2413 3:  1.14285714286
2414     .
2415 @end group
2416 @end smallexample
2418 @noindent
2419 In fact, since we added a digit on the left, we had to lose one
2420 digit on the right from even the 12-digit value of @cite{1/7}.
2422 How did we get more than 12 digits when we computed @samp{2^3^4}?  The
2423 answer is that Calc makes a distinction between @dfn{integers} and
2424 @dfn{floating-point} numbers, or @dfn{floats}.  An integer is a number
2425 that does not contain a decimal point.  There is no such thing as an
2426 ``infinitely repeating fraction integer,'' so Calc doesn't have to limit
2427 itself.  If you asked for @samp{2^10000} (don't try this!), you would
2428 have to wait a long time but you would eventually get an exact answer.
2429 If you ask for @samp{2.^10000}, you will quickly get an answer which is
2430 correct only to 12 places.  The decimal point tells Calc that it should
2431 use floating-point arithmetic to get the answer, not exact integer
2432 arithmetic.
2434 You can use the @kbd{F} (@code{calc-floor}) command to convert a
2435 floating-point value to an integer, and @kbd{c f} (@code{calc-float})
2436 to convert an integer to floating-point form.
2438 Let's try entering that last calculation:
2440 @smallexample
2441 @group
2442 1:  2.         2:  2.         1:  1.99506311689e3010
2443     .          1:  10000          .
2444                    .
2446   2.0 @key{RET}          10000 @key{RET}      ^
2447 @end group
2448 @end smallexample
2450 @noindent
2451 @cindex Scientific notation, entry of
2452 Notice the letter @samp{e} in there.  It represents ``times ten to the
2453 power of,'' and is used by Calc automatically whenever writing the
2454 number out fully would introduce more extra zeros than you probably
2455 want to see.  You can enter numbers in this notation, too.
2457 @smallexample
2458 @group
2459 1:  2.         2:  2.         1:  1.99506311678e3010
2460     .          1:  10000.         .
2461                    .
2463   2.0 @key{RET}          1e4 @key{RET}        ^
2464 @end group
2465 @end smallexample
2467 @cindex Round-off errors
2468 @noindent
2469 Hey, the answer is different!  Look closely at the middle columns
2470 of the two examples.  In the first, the stack contained the
2471 exact integer @cite{10000}, but in the second it contained
2472 a floating-point value with a decimal point.  When you raise a
2473 number to an integer power, Calc uses repeated squaring and
2474 multiplication to get the answer.  When you use a floating-point
2475 power, Calc uses logarithms and exponentials.  As you can see,
2476 a slight error crept in during one of these methods.  Which
2477 one should we trust?  Let's raise the precision a bit and find
2478 out:
2480 @smallexample
2481 @group
2482     .          1:  2.         2:  2.         1:  1.995063116880828e3010
2483                    .          1:  10000.         .
2484                                   .
2486  p 16 @key{RET}        2. @key{RET}           1e4            ^    p 12 @key{RET}
2487 @end group
2488 @end smallexample
2490 @noindent
2491 @cindex Guard digits
2492 Presumably, it doesn't matter whether we do this higher-precision
2493 calculation using an integer or floating-point power, since we
2494 have added enough ``guard digits'' to trust the first 12 digits
2495 no matter what.  And the verdict is@dots{}  Integer powers were more
2496 accurate; in fact, the result was only off by one unit in the
2497 last place.
2499 @cindex Guard digits
2500 Calc does many of its internal calculations to a slightly higher
2501 precision, but it doesn't always bump the precision up enough.
2502 In each case, Calc added about two digits of precision during
2503 its calculation and then rounded back down to 12 digits
2504 afterward.  In one case, it was enough; in the other, it
2505 wasn't.  If you really need @var{x} digits of precision, it
2506 never hurts to do the calculation with a few extra guard digits.
2508 What if we want guard digits but don't want to look at them?
2509 We can set the @dfn{float format}.  Calc supports four major
2510 formats for floating-point numbers, called @dfn{normal},
2511 @dfn{fixed-point}, @dfn{scientific notation}, and @dfn{engineering
2512 notation}.  You get them by pressing @w{@kbd{d n}}, @kbd{d f},
2513 @kbd{d s}, and @kbd{d e}, respectively.  In each case, you can
2514 supply a numeric prefix argument which says how many digits
2515 should be displayed.  As an example, let's put a few numbers
2516 onto the stack and try some different display modes.  First,
2517 use @kbd{M-0 @key{DEL}} to clear the stack, then enter the four
2518 numbers shown here:
2520 @smallexample
2521 @group
2522 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2523 3:  12345.     3:  12300.     3:  1.2345e4   3:  1.23e4     3:  12345.000
2524 2:  123.45     2:  123.       2:  1.2345e2   2:  1.23e2     2:  123.450
2525 1:  12.345     1:  12.3       1:  1.2345e1   1:  1.23e1     1:  12.345
2526     .              .              .              .              .
2528    d n          M-3 d n          d s          M-3 d s        M-3 d f
2529 @end group
2530 @end smallexample
2532 @noindent
2533 Notice that when we typed @kbd{M-3 d n}, the numbers were rounded down
2534 to three significant digits, but then when we typed @kbd{d s} all
2535 five significant figures reappeared.  The float format does not
2536 affect how numbers are stored, it only affects how they are
2537 displayed.  Only the current precision governs the actual rounding
2538 of numbers in the Calculator's memory.
2540 Engineering notation, not shown here, is like scientific notation
2541 except the exponent (the power-of-ten part) is always adjusted to be
2542 a multiple of three (as in ``kilo,'' ``micro,'' etc.).  As a result
2543 there will be one, two, or three digits before the decimal point.
2545 Whenever you change a display-related mode, Calc redraws everything
2546 in the stack.  This may be slow if there are many things on the stack,
2547 so Calc allows you to type shift-@kbd{H} before any mode command to
2548 prevent it from updating the stack.  Anything Calc displays after the
2549 mode-changing command will appear in the new format.
2551 @smallexample
2552 @group
2553 4:  12345      4:  12345      4:  12345      4:  12345      4:  12345
2554 3:  12345.000  3:  12345.000  3:  12345.000  3:  1.2345e4   3:  12345.
2555 2:  123.450    2:  123.450    2:  1.2345e1   2:  1.2345e1   2:  123.45
2556 1:  12.345     1:  1.2345e1   1:  1.2345e2   1:  1.2345e2   1:  12.345
2557     .              .              .              .              .
2559     H d s          @key{DEL} U          @key{TAB}            d @key{SPC}          d n
2560 @end group
2561 @end smallexample
2563 @noindent
2564 Here the @kbd{H d s} command changes to scientific notation but without
2565 updating the screen.  Deleting the top stack entry and undoing it back
2566 causes it to show up in the new format; swapping the top two stack
2567 entries reformats both entries.  The @kbd{d @key{SPC}} command refreshes the
2568 whole stack.  The @kbd{d n} command changes back to the normal float
2569 format; since it doesn't have an @kbd{H} prefix, it also updates all
2570 the stack entries to be in @kbd{d n} format.
2572 Notice that the integer @cite{12345} was not affected by any
2573 of the float formats.  Integers are integers, and are always
2574 displayed exactly.
2576 @cindex Large numbers, readability
2577 Large integers have their own problems.  Let's look back at
2578 the result of @kbd{2^3^4}.
2580 @example
2581 2417851639229258349412352
2582 @end example
2584 @noindent
2585 Quick---how many digits does this have?  Try typing @kbd{d g}:
2587 @example
2588 2,417,851,639,229,258,349,412,352
2589 @end example
2591 @noindent
2592 Now how many digits does this have?  It's much easier to tell!
2593 We can actually group digits into clumps of any size.  Some
2594 people prefer @kbd{M-5 d g}:
2596 @example
2597 24178,51639,22925,83494,12352
2598 @end example
2600 Let's see what happens to floating-point numbers when they are grouped.
2601 First, type @kbd{p 25 @key{RET}} to make sure we have enough precision
2602 to get ourselves into trouble.  Now, type @kbd{1e13 /}:
2604 @example
2605 24,17851,63922.9258349412352
2606 @end example
2608 @noindent
2609 The integer part is grouped but the fractional part isn't.  Now try
2610 @kbd{M-- M-5 d g} (that's meta-minus-sign, meta-five):
2612 @example
2613 24,17851,63922.92583,49412,352
2614 @end example
2616 If you find it hard to tell the decimal point from the commas, try
2617 changing the grouping character to a space with @kbd{d , @key{SPC}}:
2619 @example
2620 24 17851 63922.92583 49412 352
2621 @end example
2623 Type @kbd{d , ,} to restore the normal grouping character, then
2624 @kbd{d g} again to turn grouping off.  Also, press @kbd{p 12} to
2625 restore the default precision.
2627 Press @kbd{U} enough times to get the original big integer back.
2628 (Notice that @kbd{U} does not undo each mode-setting command; if
2629 you want to undo a mode-setting command, you have to do it yourself.)
2630 Now, type @kbd{d r 16 @key{RET}}:
2632 @example
2633 16#200000000000000000000
2634 @end example
2636 @noindent
2637 The number is now displayed in @dfn{hexadecimal}, or ``base-16'' form.
2638 Suddenly it looks pretty simple; this should be no surprise, since we
2639 got this number by computing a power of two, and 16 is a power of 2.
2640 In fact, we can use @w{@kbd{d r 2 @key{RET}}} to see it in actual binary
2641 form:
2643 @example
2644 2#1000000000000000000000000000000000000000000000000000000 @dots{}
2645 @end example
2647 @noindent
2648 We don't have enough space here to show all the zeros!  They won't
2649 fit on a typical screen, either, so you will have to use horizontal
2650 scrolling to see them all.  Press @kbd{<} and @kbd{>} to scroll the
2651 stack window left and right by half its width.  Another way to view
2652 something large is to press @kbd{`} (back-quote) to edit the top of
2653 stack in a separate window.  (Press @kbd{M-# M-#} when you are done.)
2655 You can enter non-decimal numbers using the @kbd{#} symbol, too.
2656 Let's see what the hexadecimal number @samp{5FE} looks like in
2657 binary.  Type @kbd{16#5FE} (the letters can be typed in upper or
2658 lower case; they will always appear in upper case).  It will also
2659 help to turn grouping on with @kbd{d g}:
2661 @example
2662 2#101,1111,1110
2663 @end example
2665 Notice that @kbd{d g} groups by fours by default if the display radix
2666 is binary or hexadecimal, but by threes if it is decimal, octal, or any
2667 other radix.
2669 Now let's see that number in decimal; type @kbd{d r 10}:
2671 @example
2672 1,534
2673 @end example
2675 Numbers are not @emph{stored} with any particular radix attached.  They're
2676 just numbers; they can be entered in any radix, and are always displayed
2677 in whatever radix you've chosen with @kbd{d r}.  The current radix applies
2678 to integers, fractions, and floats.
2680 @cindex Roundoff errors, in non-decimal numbers
2681 (@bullet{}) @strong{Exercise 1.}  Your friend Joe tried to enter one-third
2682 as @samp{3#0.1} in @kbd{d r 3} mode with a precision of 12.  He got
2683 @samp{3#0.0222222...} (with 25 2's) in the display.  When he multiplied
2684 that by three, he got @samp{3#0.222222...} instead of the expected
2685 @samp{3#1}.  Next, Joe entered @samp{3#0.2} and, to his great relief,
2686 saw @samp{3#0.2} on the screen.  But when he typed @kbd{2 /}, he got
2687 @samp{3#0.10000001} (some zeros omitted).  What's going on here?
2688 @xref{Modes Answer 1, 1}. (@bullet{})
2690 @cindex Scientific notation, in non-decimal numbers
2691 (@bullet{}) @strong{Exercise 2.}  Scientific notation works in non-decimal
2692 modes in the natural way (the exponent is a power of the radix instead of
2693 a power of ten, although the exponent itself is always written in decimal).
2694 Thus @samp{8#1.23e3 = 8#1230.0}.  Suppose we have the hexadecimal number
2695 @samp{f.e8f} times 16 to the 15th power:  We write @samp{16#f.e8fe15}.
2696 What is wrong with this picture?  What could we write instead that would
2697 work better?  @xref{Modes Answer 2, 2}. (@bullet{})
2699 The @kbd{m} prefix key has another set of modes, relating to the way
2700 Calc interprets your inputs and does computations.  Whereas @kbd{d}-prefix
2701 modes generally affect the way things look, @kbd{m}-prefix modes affect
2702 the way they are actually computed.
2704 The most popular @kbd{m}-prefix mode is the @dfn{angular mode}.  Notice
2705 the @samp{Deg} indicator in the mode line.  This means that if you use
2706 a command that interprets a number as an angle, it will assume the
2707 angle is measured in degrees.  For example,
2709 @smallexample
2710 @group
2711 1:  45         1:  0.707106781187   1:  0.500000000001    1:  0.5
2712     .              .                    .                     .
2714     45             S                    2 ^                   c 1
2715 @end group
2716 @end smallexample
2718 @noindent
2719 The shift-@kbd{S} command computes the sine of an angle.  The sine
2720 of 45 degrees is @c{$\sqrt{2}/2$}
2721 @cite{sqrt(2)/2}; squaring this yields @cite{2/4 = 0.5}.
2722 However, there has been a slight roundoff error because the
2723 representation of @c{$\sqrt{2}/2$}
2724 @cite{sqrt(2)/2} wasn't exact.  The @kbd{c 1}
2725 command is a handy way to clean up numbers in this case; it
2726 temporarily reduces the precision by one digit while it
2727 re-rounds the number on the top of the stack.
2729 @cindex Roundoff errors, examples
2730 (@bullet{}) @strong{Exercise 3.}  Your friend Joe computed the sine
2731 of 45 degrees as shown above, then, hoping to avoid an inexact
2732 result, he increased the precision to 16 digits before squaring.
2733 What happened?  @xref{Modes Answer 3, 3}. (@bullet{})
2735 To do this calculation in radians, we would type @kbd{m r} first.
2736 (The indicator changes to @samp{Rad}.)  45 degrees corresponds to
2737 @c{$\pi\over4$}
2738 @cite{pi/4} radians.  To get @c{$\pi$}
2739 @cite{pi}, press the @kbd{P} key.  (Once
2740 again, this is a shifted capital @kbd{P}.  Remember, unshifted
2741 @kbd{p} sets the precision.)
2743 @smallexample
2744 @group
2745 1:  3.14159265359   1:  0.785398163398   1:  0.707106781187
2746     .                   .                .
2748     P                   4 /       m r    S
2749 @end group
2750 @end smallexample
2752 Likewise, inverse trigonometric functions generate results in
2753 either radians or degrees, depending on the current angular mode.
2755 @smallexample
2756 @group
2757 1:  0.707106781187   1:  0.785398163398   1:  45.
2758     .                    .                    .
2760     .5 Q        m r      I S        m d       U I S
2761 @end group
2762 @end smallexample
2764 @noindent
2765 Here we compute the Inverse Sine of @c{$\sqrt{0.5}$}
2766 @cite{sqrt(0.5)}, first in
2767 radians, then in degrees.
2769 Use @kbd{c d} and @kbd{c r} to convert a number from radians to degrees
2770 and vice-versa.
2772 @smallexample
2773 @group
2774 1:  45         1:  0.785398163397     1:  45.
2775     .              .                      .
2777     45             c r                    c d
2778 @end group
2779 @end smallexample
2781 Another interesting mode is @dfn{fraction mode}.  Normally,
2782 dividing two integers produces a floating-point result if the
2783 quotient can't be expressed as an exact integer.  Fraction mode
2784 causes integer division to produce a fraction, i.e., a rational
2785 number, instead.
2787 @smallexample
2788 @group
2789 2:  12         1:  1.33333333333    1:  4:3
2790 1:  9              .                    .
2791     .
2793  12 @key{RET} 9          /          m f       U /      m f
2794 @end group
2795 @end smallexample
2797 @noindent
2798 In the first case, we get an approximate floating-point result.
2799 In the second case, we get an exact fractional result (four-thirds).
2801 You can enter a fraction at any time using @kbd{:} notation.
2802 (Calc uses @kbd{:} instead of @kbd{/} as the fraction separator
2803 because @kbd{/} is already used to divide the top two stack
2804 elements.)  Calculations involving fractions will always
2805 produce exact fractional results; fraction mode only says
2806 what to do when dividing two integers.
2808 @cindex Fractions vs. floats
2809 @cindex Floats vs. fractions
2810 (@bullet{}) @strong{Exercise 4.}  If fractional arithmetic is exact,
2811 why would you ever use floating-point numbers instead?
2812 @xref{Modes Answer 4, 4}. (@bullet{})
2814 Typing @kbd{m f} doesn't change any existing values in the stack.
2815 In the above example, we had to Undo the division and do it over
2816 again when we changed to fraction mode.  But if you use the
2817 evaluates-to operator you can get commands like @kbd{m f} to
2818 recompute for you.
2820 @smallexample
2821 @group
2822 1:  12 / 9 => 1.33333333333    1:  12 / 9 => 1.333    1:  12 / 9 => 4:3
2823     .                              .                      .
2825    ' 12/9 => @key{RET}                   p 4 @key{RET}                m f
2826 @end group
2827 @end smallexample
2829 @noindent
2830 In this example, the righthand side of the @samp{=>} operator
2831 on the stack is recomputed when we change the precision, then
2832 again when we change to fraction mode.  All @samp{=>} expressions
2833 on the stack are recomputed every time you change any mode that
2834 might affect their values.
2836 @node Arithmetic Tutorial, Vector/Matrix Tutorial, Basic Tutorial, Tutorial
2837 @section Arithmetic Tutorial
2839 @noindent
2840 In this section, we explore the arithmetic and scientific functions
2841 available in the Calculator.
2843 The standard arithmetic commands are @kbd{+}, @kbd{-}, @kbd{*}, @kbd{/},
2844 and @kbd{^}.  Each normally takes two numbers from the top of the stack
2845 and pushes back a result.  The @kbd{n} and @kbd{&} keys perform
2846 change-sign and reciprocal operations, respectively.
2848 @smallexample
2849 @group
2850 1:  5          1:  0.2        1:  5.         1:  -5.        1:  5.
2851     .              .              .              .              .
2853     5              &              &              n              n
2854 @end group
2855 @end smallexample
2857 @cindex Binary operators
2858 You can apply a ``binary operator'' like @kbd{+} across any number of
2859 stack entries by giving it a numeric prefix.  You can also apply it
2860 pairwise to several stack elements along with the top one if you use
2861 a negative prefix.
2863 @smallexample
2864 @group
2865 3:  2          1:  9          3:  2          4:  2          3:  12
2866 2:  3              .          2:  3          3:  3          2:  13
2867 1:  4                         1:  4          2:  4          1:  14
2868     .                             .          1:  10             .
2869                                                  .
2871 2 @key{RET} 3 @key{RET} 4     M-3 +           U              10          M-- M-3 +
2872 @end group
2873 @end smallexample
2875 @cindex Unary operators
2876 You can apply a ``unary operator'' like @kbd{&} to the top @var{n}
2877 stack entries with a numeric prefix, too.
2879 @smallexample
2880 @group
2881 3:  2          3:  0.5                3:  0.5
2882 2:  3          2:  0.333333333333     2:  3.
2883 1:  4          1:  0.25               1:  4.
2884     .              .                      .
2886 2 @key{RET} 3 @key{RET} 4      M-3 &                  M-2 &
2887 @end group
2888 @end smallexample
2890 Notice that the results here are left in floating-point form.
2891 We can convert them back to integers by pressing @kbd{F}, the
2892 ``floor'' function.  This function rounds down to the next lower
2893 integer.  There is also @kbd{R}, which rounds to the nearest
2894 integer.
2896 @smallexample
2897 @group
2898 7:  2.         7:  2          7:  2
2899 6:  2.4        6:  2          6:  2
2900 5:  2.5        5:  2          5:  3
2901 4:  2.6        4:  2          4:  3
2902 3:  -2.        3:  -2         3:  -2
2903 2:  -2.4       2:  -3         2:  -2
2904 1:  -2.6       1:  -3         1:  -3
2905     .              .              .
2907                   M-7 F        U M-7 R
2908 @end group
2909 @end smallexample
2911 Since dividing-and-flooring (i.e., ``integer quotient'') is such a
2912 common operation, Calc provides a special command for that purpose, the
2913 backslash @kbd{\}.  Another common arithmetic operator is @kbd{%}, which
2914 computes the remainder that would arise from a @kbd{\} operation, i.e.,
2915 the ``modulo'' of two numbers.  For example,
2917 @smallexample
2918 @group
2919 2:  1234       1:  12         2:  1234       1:  34
2920 1:  100            .          1:  100            .
2921     .                             .
2923 1234 @key{RET} 100       \              U              %
2924 @end group
2925 @end smallexample
2927 These commands actually work for any real numbers, not just integers.
2929 @smallexample
2930 @group
2931 2:  3.1415     1:  3          2:  3.1415     1:  0.1415
2932 1:  1              .          1:  1              .
2933     .                             .
2935 3.1415 @key{RET} 1       \              U              %
2936 @end group
2937 @end smallexample
2939 (@bullet{}) @strong{Exercise 1.}  The @kbd{\} command would appear to be a
2940 frill, since you could always do the same thing with @kbd{/ F}.  Think
2941 of a situation where this is not true---@kbd{/ F} would be inadequate.
2942 Now think of a way you could get around the problem if Calc didn't
2943 provide a @kbd{\} command.  @xref{Arithmetic Answer 1, 1}. (@bullet{})
2945 We've already seen the @kbd{Q} (square root) and @kbd{S} (sine)
2946 commands.  Other commands along those lines are @kbd{C} (cosine),
2947 @kbd{T} (tangent), @kbd{E} (@cite{e^x}) and @kbd{L} (natural
2948 logarithm).  These can be modified by the @kbd{I} (inverse) and
2949 @kbd{H} (hyperbolic) prefix keys.
2951 Let's compute the sine and cosine of an angle, and verify the
2952 identity @c{$\sin^2x + \cos^2x = 1$}
2953 @cite{sin(x)^2 + cos(x)^2 = 1}.  We'll
2954 arbitrarily pick @i{-64} degrees as a good value for @cite{x}.  With
2955 the angular mode set to degrees (type @w{@kbd{m d}}), do:
2957 @smallexample
2958 @group
2959 2:  -64        2:  -64        2:  -0.89879   2:  -0.89879   1:  1.
2960 1:  -64        1:  -0.89879   1:  -64        1:  0.43837        .
2961     .              .              .              .
2963  64 n @key{RET} @key{RET}      S              @key{TAB}            C              f h
2964 @end group
2965 @end smallexample
2967 @noindent
2968 (For brevity, we're showing only five digits of the results here.
2969 You can of course do these calculations to any precision you like.)
2971 Remember, @kbd{f h} is the @code{calc-hypot}, or square-root of sum
2972 of squares, command.
2974 Another identity is @c{$\displaystyle\tan x = {\sin x \over \cos x}$}
2975 @cite{tan(x) = sin(x) / cos(x)}.
2976 @smallexample
2977 @group
2979 2:  -0.89879   1:  -2.0503    1:  -64.
2980 1:  0.43837        .              .
2981     .
2983     U              /              I T
2984 @end group
2985 @end smallexample
2987 A physical interpretation of this calculation is that if you move
2988 @cite{0.89879} units downward and @cite{0.43837} units to the right,
2989 your direction of motion is @i{-64} degrees from horizontal.  Suppose
2990 we move in the opposite direction, up and to the left:
2992 @smallexample
2993 @group
2994 2:  -0.89879   2:  0.89879    1:  -2.0503    1:  -64.
2995 1:  0.43837    1:  -0.43837       .              .
2996     .              .
2998     U U            M-2 n          /              I T
2999 @end group
3000 @end smallexample
3002 @noindent
3003 How can the angle be the same?  The answer is that the @kbd{/} operation
3004 loses information about the signs of its inputs.  Because the quotient
3005 is negative, we know exactly one of the inputs was negative, but we
3006 can't tell which one.  There is an @kbd{f T} [@code{arctan2}] function which
3007 computes the inverse tangent of the quotient of a pair of numbers.
3008 Since you feed it the two original numbers, it has enough information
3009 to give you a full 360-degree answer.
3011 @smallexample
3012 @group
3013 2:  0.89879    1:  116.       3:  116.       2:  116.       1:  180.
3014 1:  -0.43837       .          2:  -0.89879   1:  -64.           .
3015     .                         1:  0.43837        .
3016                                   .
3018     U U            f T         M-@key{RET} M-2 n       f T            -
3019 @end group
3020 @end smallexample
3022 @noindent
3023 The resulting angles differ by 180 degrees; in other words, they
3024 point in opposite directions, just as we would expect.
3026 The @key{META}-@key{RET} we used in the third step is the
3027 ``last-arguments'' command.  It is sort of like Undo, except that it
3028 restores the arguments of the last command to the stack without removing
3029 the command's result.  It is useful in situations like this one,
3030 where we need to do several operations on the same inputs.  We could
3031 have accomplished the same thing by using @kbd{M-2 @key{RET}} to duplicate
3032 the top two stack elements right after the @kbd{U U}, then a pair of
3033 @kbd{M-@key{TAB}} commands to cycle the 116 up around the duplicates.
3035 A similar identity is supposed to hold for hyperbolic sines and cosines,
3036 except that it is the @emph{difference}
3037 @c{$\cosh^2x - \sinh^2x$}
3038 @cite{cosh(x)^2 - sinh(x)^2} that always equals one.
3039 Let's try to verify this identity.@refill
3041 @smallexample
3042 @group
3043 2:  -64        2:  -64        2:  -64        2:  9.7192e54  2:  9.7192e54
3044 1:  -64        1:  -3.1175e27 1:  9.7192e54  1:  -64        1:  9.7192e54
3045     .              .              .              .              .
3047  64 n @key{RET} @key{RET}      H C            2 ^            @key{TAB}            H S 2 ^
3048 @end group
3049 @end smallexample
3051 @noindent
3052 @cindex Roundoff errors, examples
3053 Something's obviously wrong, because when we subtract these numbers
3054 the answer will clearly be zero!  But if you think about it, if these
3055 numbers @emph{did} differ by one, it would be in the 55th decimal
3056 place.  The difference we seek has been lost entirely to roundoff
3057 error.
3059 We could verify this hypothesis by doing the actual calculation with,
3060 say, 60 decimal places of precision.  This will be slow, but not
3061 enormously so.  Try it if you wish; sure enough, the answer is
3062 0.99999, reasonably close to 1.
3064 Of course, a more reasonable way to verify the identity is to use
3065 a more reasonable value for @cite{x}!
3067 @cindex Common logarithm
3068 Some Calculator commands use the Hyperbolic prefix for other purposes.
3069 The logarithm and exponential functions, for example, work to the base
3070 @cite{e} normally but use base-10 instead if you use the Hyperbolic
3071 prefix.
3073 @smallexample
3074 @group
3075 1:  1000       1:  6.9077     1:  1000       1:  3
3076     .              .              .              .
3078     1000           L              U              H L
3079 @end group
3080 @end smallexample
3082 @noindent
3083 First, we mistakenly compute a natural logarithm.  Then we undo
3084 and compute a common logarithm instead.
3086 The @kbd{B} key computes a general base-@var{b} logarithm for any
3087 value of @var{b}.
3089 @smallexample
3090 @group
3091 2:  1000       1:  3          1:  1000.      2:  1000.      1:  6.9077
3092 1:  10             .              .          1:  2.71828        .
3093     .                                            .
3095  1000 @key{RET} 10       B              H E            H P            B
3096 @end group
3097 @end smallexample
3099 @noindent
3100 Here we first use @kbd{B} to compute the base-10 logarithm, then use
3101 the ``hyperbolic'' exponential as a cheap hack to recover the number
3102 1000, then use @kbd{B} again to compute the natural logarithm.  Note
3103 that @kbd{P} with the hyperbolic prefix pushes the constant @cite{e}
3104 onto the stack.
3106 You may have noticed that both times we took the base-10 logarithm
3107 of 1000, we got an exact integer result.  Calc always tries to give
3108 an exact rational result for calculations involving rational numbers
3109 where possible.  But when we used @kbd{H E}, the result was a
3110 floating-point number for no apparent reason.  In fact, if we had
3111 computed @kbd{10 @key{RET} 3 ^} we @emph{would} have gotten an
3112 exact integer 1000.  But the @kbd{H E} command is rigged to generate
3113 a floating-point result all of the time so that @kbd{1000 H E} will
3114 not waste time computing a thousand-digit integer when all you
3115 probably wanted was @samp{1e1000}.
3117 (@bullet{}) @strong{Exercise 2.}  Find a pair of integer inputs to
3118 the @kbd{B} command for which Calc could find an exact rational
3119 result but doesn't.  @xref{Arithmetic Answer 2, 2}. (@bullet{})
3121 The Calculator also has a set of functions relating to combinatorics
3122 and statistics.  You may be familiar with the @dfn{factorial} function,
3123 which computes the product of all the integers up to a given number.
3125 @smallexample
3126 @group
3127 1:  100        1:  93326215443...    1:  100.       1:  9.3326e157
3128     .              .                     .              .
3130     100            !                     U c f          !
3131 @end group
3132 @end smallexample
3134 @noindent
3135 Recall, the @kbd{c f} command converts the integer or fraction at the
3136 top of the stack to floating-point format.  If you take the factorial
3137 of a floating-point number, you get a floating-point result
3138 accurate to the current precision.  But if you give @kbd{!} an
3139 exact integer, you get an exact integer result (158 digits long
3140 in this case).
3142 If you take the factorial of a non-integer, Calc uses a generalized
3143 factorial function defined in terms of Euler's Gamma function
3144 @c{$\Gamma(n)$}
3145 @cite{gamma(n)}
3146 (which is itself available as the @kbd{f g} command).
3148 @smallexample
3149 @group
3150 3:  4.         3:  24.               1:  5.5        1:  52.342777847
3151 2:  4.5        2:  52.3427777847         .              .
3152 1:  5.         1:  120.
3153     .              .
3155                    M-3 !              M-0 @key{DEL} 5.5       f g
3156 @end group
3157 @end smallexample
3159 @noindent
3160 Here we verify the identity @c{$n! = \Gamma(n+1)$}
3161 @cite{@var{n}!@: = gamma(@var{n}+1)}.
3163 The binomial coefficient @var{n}-choose-@var{m}@c{ or $\displaystyle {n \choose m}$}
3164 @asis{} is defined by
3165 @c{$\displaystyle {n! \over m! \, (n-m)!}$}
3166 @cite{n!@: / m!@: (n-m)!} for all reals @cite{n} and
3167 @cite{m}.  The intermediate results in this formula can become quite
3168 large even if the final result is small; the @kbd{k c} command computes
3169 a binomial coefficient in a way that avoids large intermediate
3170 values.
3172 The @kbd{k} prefix key defines several common functions out of
3173 combinatorics and number theory.  Here we compute the binomial
3174 coefficient 30-choose-20, then determine its prime factorization.
3176 @smallexample
3177 @group
3178 2:  30         1:  30045015   1:  [3, 3, 5, 7, 11, 13, 23, 29]
3179 1:  20             .              .
3180     .
3182  30 @key{RET} 20         k c            k f
3183 @end group
3184 @end smallexample
3186 @noindent
3187 You can verify these prime factors by using @kbd{v u} to ``unpack''
3188 this vector into 8 separate stack entries, then @kbd{M-8 *} to
3189 multiply them back together.  The result is the original number,
3190 30045015.
3192 @cindex Hash tables
3193 Suppose a program you are writing needs a hash table with at least
3194 10000 entries.  It's best to use a prime number as the actual size
3195 of a hash table.  Calc can compute the next prime number after 10000:
3197 @smallexample
3198 @group
3199 1:  10000      1:  10007      1:  9973
3200     .              .              .
3202     10000          k n            I k n
3203 @end group
3204 @end smallexample
3206 @noindent
3207 Just for kicks we've also computed the next prime @emph{less} than
3208 10000.
3210 @c [fix-ref Financial Functions]
3211 @xref{Financial Functions}, for a description of the Calculator
3212 commands that deal with business and financial calculations (functions
3213 like @code{pv}, @code{rate}, and @code{sln}).
3215 @c [fix-ref Binary Number Functions]
3216 @xref{Binary Functions}, to read about the commands for operating
3217 on binary numbers (like @code{and}, @code{xor}, and @code{lsh}).
3219 @node Vector/Matrix Tutorial, Types Tutorial, Arithmetic Tutorial, Tutorial
3220 @section Vector/Matrix Tutorial
3222 @noindent
3223 A @dfn{vector} is a list of numbers or other Calc data objects.
3224 Calc provides a large set of commands that operate on vectors.  Some
3225 are familiar operations from vector analysis.  Others simply treat
3226 a vector as a list of objects.
3228 @menu
3229 * Vector Analysis Tutorial::
3230 * Matrix Tutorial::
3231 * List Tutorial::
3232 @end menu
3234 @node Vector Analysis Tutorial, Matrix Tutorial, Vector/Matrix Tutorial, Vector/Matrix Tutorial
3235 @subsection Vector Analysis
3237 @noindent
3238 If you add two vectors, the result is a vector of the sums of the
3239 elements, taken pairwise.
3241 @smallexample
3242 @group
3243 1:  [1, 2, 3]     2:  [1, 2, 3]     1:  [8, 8, 3]
3244     .             1:  [7, 6, 0]         .
3245                       .
3247     [1,2,3]  s 1      [7 6 0]  s 2      +
3248 @end group
3249 @end smallexample
3251 @noindent
3252 Note that we can separate the vector elements with either commas or
3253 spaces.  This is true whether we are using incomplete vectors or
3254 algebraic entry.  The @kbd{s 1} and @kbd{s 2} commands save these
3255 vectors so we can easily reuse them later.
3257 If you multiply two vectors, the result is the sum of the products
3258 of the elements taken pairwise.  This is called the @dfn{dot product}
3259 of the vectors.
3261 @smallexample
3262 @group
3263 2:  [1, 2, 3]     1:  19
3264 1:  [7, 6, 0]         .
3265     .
3267     r 1 r 2           *
3268 @end group
3269 @end smallexample
3271 @cindex Dot product
3272 The dot product of two vectors is equal to the product of their
3273 lengths times the cosine of the angle between them.  (Here the vector
3274 is interpreted as a line from the origin @cite{(0,0,0)} to the
3275 specified point in three-dimensional space.)  The @kbd{A}
3276 (absolute value) command can be used to compute the length of a
3277 vector.
3279 @smallexample
3280 @group
3281 3:  19            3:  19          1:  0.550782    1:  56.579
3282 2:  [1, 2, 3]     2:  3.741657        .               .
3283 1:  [7, 6, 0]     1:  9.219544
3284     .                 .
3286     M-@key{RET}             M-2 A          * /             I C
3287 @end group
3288 @end smallexample
3290 @noindent
3291 First we recall the arguments to the dot product command, then
3292 we compute the absolute values of the top two stack entries to
3293 obtain the lengths of the vectors, then we divide the dot product
3294 by the product of the lengths to get the cosine of the angle.
3295 The inverse cosine finds that the angle between the vectors
3296 is about 56 degrees.
3298 @cindex Cross product
3299 @cindex Perpendicular vectors
3300 The @dfn{cross product} of two vectors is a vector whose length
3301 is the product of the lengths of the inputs times the sine of the
3302 angle between them, and whose direction is perpendicular to both
3303 input vectors.  Unlike the dot product, the cross product is
3304 defined only for three-dimensional vectors.  Let's double-check
3305 our computation of the angle using the cross product.
3307 @smallexample
3308 @group
3309 2:  [1, 2, 3]  3:  [-18, 21, -8]  1:  [-0.52, 0.61, -0.23]  1:  56.579
3310 1:  [7, 6, 0]  2:  [1, 2, 3]          .                         .
3311     .          1:  [7, 6, 0]
3312                    .
3314     r 1 r 2        V C  s 3  M-@key{RET}    M-2 A * /                 A I S
3315 @end group
3316 @end smallexample
3318 @noindent
3319 First we recall the original vectors and compute their cross product,
3320 which we also store for later reference.  Now we divide the vector
3321 by the product of the lengths of the original vectors.  The length of
3322 this vector should be the sine of the angle; sure enough, it is!
3324 @c [fix-ref General Mode Commands]
3325 Vector-related commands generally begin with the @kbd{v} prefix key.
3326 Some are uppercase letters and some are lowercase.  To make it easier
3327 to type these commands, the shift-@kbd{V} prefix key acts the same as
3328 the @kbd{v} key.  (@xref{General Mode Commands}, for a way to make all
3329 prefix keys have this property.)
3331 If we take the dot product of two perpendicular vectors we expect
3332 to get zero, since the cosine of 90 degrees is zero.  Let's check
3333 that the cross product is indeed perpendicular to both inputs:
3335 @smallexample
3336 @group
3337 2:  [1, 2, 3]      1:  0          2:  [7, 6, 0]      1:  0
3338 1:  [-18, 21, -8]      .          1:  [-18, 21, -8]      .
3339     .                                 .
3341     r 1 r 3            *          @key{DEL} r 2 r 3            *
3342 @end group
3343 @end smallexample
3345 @cindex Normalizing a vector
3346 @cindex Unit vectors
3347 (@bullet{}) @strong{Exercise 1.}  Given a vector on the top of the
3348 stack, what keystrokes would you use to @dfn{normalize} the
3349 vector, i.e., to reduce its length to one without changing its
3350 direction?  @xref{Vector Answer 1, 1}. (@bullet{})
3352 (@bullet{}) @strong{Exercise 2.}  Suppose a certain particle can be
3353 at any of several positions along a ruler.  You have a list of
3354 those positions in the form of a vector, and another list of the
3355 probabilities for the particle to be at the corresponding positions.
3356 Find the average position of the particle.
3357 @xref{Vector Answer 2, 2}. (@bullet{})
3359 @node Matrix Tutorial, List Tutorial, Vector Analysis Tutorial, Vector/Matrix Tutorial
3360 @subsection Matrices
3362 @noindent
3363 A @dfn{matrix} is just a vector of vectors, all the same length.
3364 This means you can enter a matrix using nested brackets.  You can
3365 also use the semicolon character to enter a matrix.  We'll show
3366 both methods here:
3368 @smallexample
3369 @group
3370 1:  [ [ 1, 2, 3 ]             1:  [ [ 1, 2, 3 ]
3371       [ 4, 5, 6 ] ]                 [ 4, 5, 6 ] ]
3372     .                             .
3374   [[1 2 3] [4 5 6]]             ' [1 2 3; 4 5 6] @key{RET}
3375 @end group
3376 @end smallexample
3378 @noindent
3379 We'll be using this matrix again, so type @kbd{s 4} to save it now.
3381 Note that semicolons work with incomplete vectors, but they work
3382 better in algebraic entry.  That's why we use the apostrophe in
3383 the second example.
3385 When two matrices are multiplied, the lefthand matrix must have
3386 the same number of columns as the righthand matrix has rows.
3387 Row @cite{i}, column @cite{j} of the result is effectively the
3388 dot product of row @cite{i} of the left matrix by column @cite{j}
3389 of the right matrix.
3391 If we try to duplicate this matrix and multiply it by itself,
3392 the dimensions are wrong and the multiplication cannot take place:
3394 @smallexample
3395 @group
3396 1:  [ [ 1, 2, 3 ]   * [ [ 1, 2, 3 ]
3397       [ 4, 5, 6 ] ]     [ 4, 5, 6 ] ]
3398     .
3400     @key{RET} *
3401 @end group
3402 @end smallexample
3404 @noindent
3405 Though rather hard to read, this is a formula which shows the product
3406 of two matrices.  The @samp{*} function, having invalid arguments, has
3407 been left in symbolic form.
3409 We can multiply the matrices if we @dfn{transpose} one of them first.
3411 @smallexample
3412 @group
3413 2:  [ [ 1, 2, 3 ]       1:  [ [ 14, 32 ]      1:  [ [ 17, 22, 27 ]
3414       [ 4, 5, 6 ] ]           [ 32, 77 ] ]          [ 22, 29, 36 ]
3415 1:  [ [ 1, 4 ]              .                       [ 27, 36, 45 ] ]
3416       [ 2, 5 ]                                    .
3417       [ 3, 6 ] ]
3418     .
3420     U v t                   *                     U @key{TAB} *
3421 @end group
3422 @end smallexample
3424 Matrix multiplication is not commutative; indeed, switching the
3425 order of the operands can even change the dimensions of the result
3426 matrix, as happened here!
3428 If you multiply a plain vector by a matrix, it is treated as a
3429 single row or column depending on which side of the matrix it is
3430 on.  The result is a plain vector which should also be interpreted
3431 as a row or column as appropriate.
3433 @smallexample
3434 @group
3435 2:  [ [ 1, 2, 3 ]      1:  [14, 32]
3436       [ 4, 5, 6 ] ]        .
3437 1:  [1, 2, 3]
3438     .
3440     r 4 r 1                *
3441 @end group
3442 @end smallexample
3444 Multiplying in the other order wouldn't work because the number of
3445 rows in the matrix is different from the number of elements in the
3446 vector.
3448 (@bullet{}) @strong{Exercise 1.}  Use @samp{*} to sum along the rows
3449 of the above @c{$2\times3$}
3450 @asis{2x3} matrix to get @cite{[6, 15]}.  Now use @samp{*} to
3451 sum along the columns to get @cite{[5, 7, 9]}.
3452 @xref{Matrix Answer 1, 1}. (@bullet{})
3454 @cindex Identity matrix
3455 An @dfn{identity matrix} is a square matrix with ones along the
3456 diagonal and zeros elsewhere.  It has the property that multiplication
3457 by an identity matrix, on the left or on the right, always produces
3458 the original matrix.
3460 @smallexample
3461 @group
3462 1:  [ [ 1, 2, 3 ]      2:  [ [ 1, 2, 3 ]      1:  [ [ 1, 2, 3 ]
3463       [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]          [ 4, 5, 6 ] ]
3464     .                  1:  [ [ 1, 0, 0 ]          .
3465                              [ 0, 1, 0 ]
3466                              [ 0, 0, 1 ] ]
3467                            .
3469     r 4                    v i 3 @key{RET}              *
3470 @end group
3471 @end smallexample
3473 If a matrix is square, it is often possible to find its @dfn{inverse},
3474 that is, a matrix which, when multiplied by the original matrix, yields
3475 an identity matrix.  The @kbd{&} (reciprocal) key also computes the
3476 inverse of a matrix.
3478 @smallexample
3479 @group
3480 1:  [ [ 1, 2, 3 ]      1:  [ [   -2.4,     1.2,   -0.2 ]
3481       [ 4, 5, 6 ]            [    2.8,    -1.4,    0.4 ]
3482       [ 7, 6, 0 ] ]          [ -0.73333, 0.53333, -0.2 ] ]
3483     .                      .
3485     r 4 r 2 |  s 5         &
3486 @end group
3487 @end smallexample
3489 @noindent
3490 The vertical bar @kbd{|} @dfn{concatenates} numbers, vectors, and
3491 matrices together.  Here we have used it to add a new row onto
3492 our matrix to make it square.
3494 We can multiply these two matrices in either order to get an identity.
3496 @smallexample
3497 @group
3498 1:  [ [ 1., 0., 0. ]      1:  [ [ 1., 0., 0. ]
3499       [ 0., 1., 0. ]            [ 0., 1., 0. ]
3500       [ 0., 0., 1. ] ]          [ 0., 0., 1. ] ]
3501     .                         .
3503     M-@key{RET}  *                  U @key{TAB} *
3504 @end group
3505 @end smallexample
3507 @cindex Systems of linear equations
3508 @cindex Linear equations, systems of
3509 Matrix inverses are related to systems of linear equations in algebra.
3510 Suppose we had the following set of equations:
3512 @ifinfo
3513 @group
3514 @example
3515     a + 2b + 3c = 6
3516    4a + 5b + 6c = 2
3517    7a + 6b      = 3
3518 @end example
3519 @end group
3520 @end ifinfo
3521 @tex
3522 \turnoffactive
3523 \beforedisplayh
3524 $$ \openup1\jot \tabskip=0pt plus1fil
3525 \halign to\displaywidth{\tabskip=0pt
3526    $\hfil#$&$\hfil{}#{}$&
3527    $\hfil#$&$\hfil{}#{}$&
3528    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3529   a&+&2b&+&3c&=6 \cr
3530  4a&+&5b&+&6c&=2 \cr
3531  7a&+&6b& &  &=3 \cr}
3533 \afterdisplayh
3534 @end tex
3536 @noindent
3537 This can be cast into the matrix equation,
3539 @ifinfo
3540 @group
3541 @example
3542    [ [ 1, 2, 3 ]     [ [ a ]     [ [ 6 ]
3543      [ 4, 5, 6 ]   *   [ b ]   =   [ 2 ]
3544      [ 7, 6, 0 ] ]     [ c ] ]     [ 3 ] ]
3545 @end example
3546 @end group
3547 @end ifinfo
3548 @tex
3549 \turnoffactive
3550 \beforedisplay
3551 $$ \pmatrix{ 1 & 2 & 3 \cr 4 & 5 & 6 \cr 7 & 6 & 0 }
3552    \times
3553    \pmatrix{ a \cr b \cr c } = \pmatrix{ 6 \cr 2 \cr 3 }
3555 \afterdisplay
3556 @end tex
3558 We can solve this system of equations by multiplying both sides by the
3559 inverse of the matrix.  Calc can do this all in one step:
3561 @smallexample
3562 @group
3563 2:  [6, 2, 3]          1:  [-12.6, 15.2, -3.93333]
3564 1:  [ [ 1, 2, 3 ]          .
3565       [ 4, 5, 6 ]
3566       [ 7, 6, 0 ] ]
3567     .
3569     [6,2,3] r 5            /
3570 @end group
3571 @end smallexample
3573 @noindent
3574 The result is the @cite{[a, b, c]} vector that solves the equations.
3575 (Dividing by a square matrix is equivalent to multiplying by its
3576 inverse.)
3578 Let's verify this solution:
3580 @smallexample
3581 @group
3582 2:  [ [ 1, 2, 3 ]                1:  [6., 2., 3.]
3583       [ 4, 5, 6 ]                    .
3584       [ 7, 6, 0 ] ]
3585 1:  [-12.6, 15.2, -3.93333]
3586     .
3588     r 5  @key{TAB}                         *
3589 @end group
3590 @end smallexample
3592 @noindent
3593 Note that we had to be careful about the order in which we multiplied
3594 the matrix and vector.  If we multiplied in the other order, Calc would
3595 assume the vector was a row vector in order to make the dimensions
3596 come out right, and the answer would be incorrect.  If you
3597 don't feel safe letting Calc take either interpretation of your
3598 vectors, use explicit @c{$N\times1$}
3599 @asis{Nx1} or @c{$1\times N$}
3600 @asis{1xN} matrices instead.
3601 In this case, you would enter the original column vector as
3602 @samp{[[6], [2], [3]]} or @samp{[6; 2; 3]}.
3604 (@bullet{}) @strong{Exercise 2.}  Algebraic entry allows you to make
3605 vectors and matrices that include variables.  Solve the following
3606 system of equations to get expressions for @cite{x} and @cite{y}
3607 in terms of @cite{a} and @cite{b}.
3609 @ifinfo
3610 @group
3611 @example
3612    x + a y = 6
3613    x + b y = 10
3614 @end example
3615 @end group
3616 @end ifinfo
3617 @tex
3618 \turnoffactive
3619 \beforedisplay
3620 $$ \eqalign{ x &+ a y = 6 \cr
3621              x &+ b y = 10}
3623 \afterdisplay
3624 @end tex
3626 @noindent
3627 @xref{Matrix Answer 2, 2}. (@bullet{})
3629 @cindex Least-squares for over-determined systems
3630 @cindex Over-determined systems of equations
3631 (@bullet{}) @strong{Exercise 3.}  A system of equations is ``over-determined''
3632 if it has more equations than variables.  It is often the case that
3633 there are no values for the variables that will satisfy all the
3634 equations at once, but it is still useful to find a set of values
3635 which ``nearly'' satisfy all the equations.  In terms of matrix equations,
3636 you can't solve @cite{A X = B} directly because the matrix @cite{A}
3637 is not square for an over-determined system.  Matrix inversion works
3638 only for square matrices.  One common trick is to multiply both sides
3639 on the left by the transpose of @cite{A}:
3640 @ifinfo
3641 @samp{trn(A)*A*X = trn(A)*B}.
3642 @end ifinfo
3643 @tex
3644 \turnoffactive
3645 $A^T A \, X = A^T B$, where $A^T$ is the transpose \samp{trn(A)}.
3646 @end tex
3647 Now @c{$A^T A$}
3648 @cite{trn(A)*A} is a square matrix so a solution is possible.  It
3649 turns out that the @cite{X} vector you compute in this way will be a
3650 ``least-squares'' solution, which can be regarded as the ``closest''
3651 solution to the set of equations.  Use Calc to solve the following
3652 over-determined system:@refill
3654 @ifinfo
3655 @group
3656 @example
3657     a + 2b + 3c = 6
3658    4a + 5b + 6c = 2
3659    7a + 6b      = 3
3660    2a + 4b + 6c = 11
3661 @end example
3662 @end group
3663 @end ifinfo
3664 @tex
3665 \turnoffactive
3666 \beforedisplayh
3667 $$ \openup1\jot \tabskip=0pt plus1fil
3668 \halign to\displaywidth{\tabskip=0pt
3669    $\hfil#$&$\hfil{}#{}$&
3670    $\hfil#$&$\hfil{}#{}$&
3671    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
3672   a&+&2b&+&3c&=6 \cr
3673  4a&+&5b&+&6c&=2 \cr
3674  7a&+&6b& &  &=3 \cr
3675  2a&+&4b&+&6c&=11 \cr}
3677 \afterdisplayh
3678 @end tex
3680 @noindent
3681 @xref{Matrix Answer 3, 3}. (@bullet{})
3683 @node List Tutorial, , Matrix Tutorial, Vector/Matrix Tutorial
3684 @subsection Vectors as Lists
3686 @noindent
3687 @cindex Lists
3688 Although Calc has a number of features for manipulating vectors and
3689 matrices as mathematical objects, you can also treat vectors as
3690 simple lists of values.  For example, we saw that the @kbd{k f}
3691 command returns a vector which is a list of the prime factors of a
3692 number.
3694 You can pack and unpack stack entries into vectors:
3696 @smallexample
3697 @group
3698 3:  10         1:  [10, 20, 30]     3:  10
3699 2:  20             .                2:  20
3700 1:  30                              1:  30
3701     .                                   .
3703                    M-3 v p              v u
3704 @end group
3705 @end smallexample
3707 You can also build vectors out of consecutive integers, or out
3708 of many copies of a given value:
3710 @smallexample
3711 @group
3712 1:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]    2:  [1, 2, 3, 4]
3713     .               1:  17              1:  [17, 17, 17, 17]
3714                         .                   .
3716     v x 4 @key{RET}           17                  v b 4 @key{RET}
3717 @end group
3718 @end smallexample
3720 You can apply an operator to every element of a vector using the
3721 @dfn{map} command.
3723 @smallexample
3724 @group
3725 1:  [17, 34, 51, 68]   1:  [289, 1156, 2601, 4624]  1:  [17, 34, 51, 68]
3726     .                      .                            .
3728     V M *                  2 V M ^                      V M Q
3729 @end group
3730 @end smallexample
3732 @noindent
3733 In the first step, we multiply the vector of integers by the vector
3734 of 17's elementwise.  In the second step, we raise each element to
3735 the power two.  (The general rule is that both operands must be
3736 vectors of the same length, or else one must be a vector and the
3737 other a plain number.)  In the final step, we take the square root
3738 of each element.
3740 (@bullet{}) @strong{Exercise 1.}  Compute a vector of powers of two
3741 from @c{$2^{-4}$}
3742 @cite{2^-4} to @cite{2^4}.  @xref{List Answer 1, 1}. (@bullet{})
3744 You can also @dfn{reduce} a binary operator across a vector.
3745 For example, reducing @samp{*} computes the product of all the
3746 elements in the vector:
3748 @smallexample
3749 @group
3750 1:  123123     1:  [3, 7, 11, 13, 41]      1:  123123
3751     .              .                           .
3753     123123         k f                         V R *
3754 @end group
3755 @end smallexample
3757 @noindent
3758 In this example, we decompose 123123 into its prime factors, then
3759 multiply those factors together again to yield the original number.
3761 We could compute a dot product ``by hand'' using mapping and
3762 reduction:
3764 @smallexample
3765 @group
3766 2:  [1, 2, 3]     1:  [7, 12, 0]     1:  19
3767 1:  [7, 6, 0]         .                  .
3768     .
3770     r 1 r 2           V M *              V R +
3771 @end group
3772 @end smallexample
3774 @noindent
3775 Recalling two vectors from the previous section, we compute the
3776 sum of pairwise products of the elements to get the same answer
3777 for the dot product as before.
3779 A slight variant of vector reduction is the @dfn{accumulate} operation,
3780 @kbd{V U}.  This produces a vector of the intermediate results from
3781 a corresponding reduction.  Here we compute a table of factorials:
3783 @smallexample
3784 @group
3785 1:  [1, 2, 3, 4, 5, 6]    1:  [1, 2, 6, 24, 120, 720]
3786     .                         .
3788     v x 6 @key{RET}                 V U *
3789 @end group
3790 @end smallexample
3792 Calc allows vectors to grow as large as you like, although it gets
3793 rather slow if vectors have more than about a hundred elements.
3794 Actually, most of the time is spent formatting these large vectors
3795 for display, not calculating on them.  Try the following experiment
3796 (if your computer is very fast you may need to substitute a larger
3797 vector size).
3799 @smallexample
3800 @group
3801 1:  [1, 2, 3, 4, ...      1:  [2, 3, 4, 5, ...
3802     .                         .
3804     v x 500 @key{RET}               1 V M +
3805 @end group
3806 @end smallexample
3808 Now press @kbd{v .} (the letter @kbd{v}, then a period) and try the
3809 experiment again.  In @kbd{v .} mode, long vectors are displayed
3810 ``abbreviated'' like this:
3812 @smallexample
3813 @group
3814 1:  [1, 2, 3, ..., 500]   1:  [2, 3, 4, ..., 501]
3815     .                         .
3817     v x 500 @key{RET}               1 V M +
3818 @end group
3819 @end smallexample
3821 @noindent
3822 (where now the @samp{...} is actually part of the Calc display).
3823 You will find both operations are now much faster.  But notice that
3824 even in @w{@kbd{v .}} mode, the full vectors are still shown in the Trail.
3825 Type @w{@kbd{t .}} to cause the trail to abbreviate as well, and try the
3826 experiment one more time.  Operations on long vectors are now quite
3827 fast!  (But of course if you use @kbd{t .} you will lose the ability
3828 to get old vectors back using the @kbd{t y} command.)
3830 An easy way to view a full vector when @kbd{v .} mode is active is
3831 to press @kbd{`} (back-quote) to edit the vector; editing always works
3832 with the full, unabbreviated value.
3834 @cindex Least-squares for fitting a straight line
3835 @cindex Fitting data to a line
3836 @cindex Line, fitting data to
3837 @cindex Data, extracting from buffers
3838 @cindex Columns of data, extracting
3839 As a larger example, let's try to fit a straight line to some data,
3840 using the method of least squares.  (Calc has a built-in command for
3841 least-squares curve fitting, but we'll do it by hand here just to
3842 practice working with vectors.)  Suppose we have the following list
3843 of values in a file we have loaded into Emacs:
3845 @smallexample
3846   x        y
3847  ---      ---
3848  1.34    0.234
3849  1.41    0.298
3850  1.49    0.402
3851  1.56    0.412
3852  1.64    0.466
3853  1.73    0.473
3854  1.82    0.601
3855  1.91    0.519
3856  2.01    0.603
3857  2.11    0.637
3858  2.22    0.645
3859  2.33    0.705
3860  2.45    0.917
3861  2.58    1.009
3862  2.71    0.971
3863  2.85    1.062
3864  3.00    1.148
3865  3.15    1.157
3866  3.32    1.354
3867 @end smallexample
3869 @noindent
3870 If you are reading this tutorial in printed form, you will find it
3871 easiest to press @kbd{M-# i} to enter the on-line Info version of
3872 the manual and find this table there.  (Press @kbd{g}, then type
3873 @kbd{List Tutorial}, to jump straight to this section.)
3875 Position the cursor at the upper-left corner of this table, just
3876 to the left of the @cite{1.34}.  Press @kbd{C-@@} to set the mark.
3877 (On your system this may be @kbd{C-2}, @kbd{C-@key{SPC}}, or @kbd{NUL}.)
3878 Now position the cursor to the lower-right, just after the @cite{1.354}.
3879 You have now defined this region as an Emacs ``rectangle.''  Still
3880 in the Info buffer, type @kbd{M-# r}.  This command
3881 (@code{calc-grab-rectangle}) will pop you back into the Calculator, with
3882 the contents of the rectangle you specified in the form of a matrix.@refill
3884 @smallexample
3885 @group
3886 1:  [ [ 1.34, 0.234 ]
3887       [ 1.41, 0.298 ]
3888       @dots{}
3889 @end group
3890 @end smallexample
3892 @noindent
3893 (You may wish to use @kbd{v .} mode to abbreviate the display of this
3894 large matrix.)
3896 We want to treat this as a pair of lists.  The first step is to
3897 transpose this matrix into a pair of rows.  Remember, a matrix is
3898 just a vector of vectors.  So we can unpack the matrix into a pair
3899 of row vectors on the stack.
3901 @smallexample
3902 @group
3903 1:  [ [ 1.34,  1.41,  1.49,  ... ]     2:  [1.34, 1.41, 1.49, ... ]
3904       [ 0.234, 0.298, 0.402, ... ] ]   1:  [0.234, 0.298, 0.402, ... ]
3905     .                                      .
3907     v t                                    v u
3908 @end group
3909 @end smallexample
3911 @noindent
3912 Let's store these in quick variables 1 and 2, respectively.
3914 @smallexample
3915 @group
3916 1:  [1.34, 1.41, 1.49, ... ]        .
3917     .
3919     t 2                             t 1
3920 @end group
3921 @end smallexample
3923 @noindent
3924 (Recall that @kbd{t 2} is a variant of @kbd{s 2} that removes the
3925 stored value from the stack.)
3927 In a least squares fit, the slope @cite{m} is given by the formula
3929 @ifinfo
3930 @example
3931 m = (N sum(x y) - sum(x) sum(y)) / (N sum(x^2) - sum(x)^2)
3932 @end example
3933 @end ifinfo
3934 @tex
3935 \turnoffactive
3936 \beforedisplay
3937 $$ m = {N \sum x y - \sum x \sum y  \over
3938         N \sum x^2 - \left( \sum x \right)^2} $$
3939 \afterdisplay
3940 @end tex
3942 @noindent
3943 where @c{$\sum x$}
3944 @cite{sum(x)} represents the sum of all the values of @cite{x}.
3945 While there is an actual @code{sum} function in Calc, it's easier to
3946 sum a vector using a simple reduction.  First, let's compute the four
3947 different sums that this formula uses.
3949 @smallexample
3950 @group
3951 1:  41.63                 1:  98.0003
3952     .                         .
3954  r 1 V R +   t 3           r 1 2 V M ^ V R +   t 4
3956 @end group
3957 @end smallexample
3958 @noindent
3959 @smallexample
3960 @group
3961 1:  13.613                1:  33.36554
3962     .                         .
3964  r 2 V R +   t 5           r 1 r 2 V M * V R +   t 6
3965 @end group
3966 @end smallexample
3968 @ifinfo
3969 @noindent
3970 These are @samp{sum(x)}, @samp{sum(x^2)}, @samp{sum(y)}, and @samp{sum(x y)},
3971 respectively.  (We could have used @kbd{*} to compute @samp{sum(x^2)} and
3972 @samp{sum(x y)}.)
3973 @end ifinfo
3974 @tex
3975 \turnoffactive
3976 These are $\sum x$, $\sum x^2$, $\sum y$, and $\sum x y$,
3977 respectively.  (We could have used \kbd{*} to compute $\sum x^2$ and
3978 $\sum x y$.)
3979 @end tex
3981 Finally, we also need @cite{N}, the number of data points.  This is just
3982 the length of either of our lists.
3984 @smallexample
3985 @group
3986 1:  19
3987     .
3989  r 1 v l   t 7
3990 @end group
3991 @end smallexample
3993 @noindent
3994 (That's @kbd{v} followed by a lower-case @kbd{l}.)
3996 Now we grind through the formula:
3998 @smallexample
3999 @group
4000 1:  633.94526  2:  633.94526  1:  67.23607
4001     .          1:  566.70919      .
4002                    .
4004  r 7 r 6 *      r 3 r 5 *         -
4006 @end group
4007 @end smallexample
4008 @noindent
4009 @smallexample
4010 @group
4011 2:  67.23607   3:  67.23607   2:  67.23607   1:  0.52141679
4012 1:  1862.0057  2:  1862.0057  1:  128.9488       .
4013     .          1:  1733.0569      .
4014                    .
4016  r 7 r 4 *      r 3 2 ^           -              /   t 8
4017 @end group
4018 @end smallexample
4020 That gives us the slope @cite{m}.  The y-intercept @cite{b} can now
4021 be found with the simple formula,
4023 @ifinfo
4024 @example
4025 b = (sum(y) - m sum(x)) / N
4026 @end example
4027 @end ifinfo
4028 @tex
4029 \turnoffactive
4030 \beforedisplay
4031 $$ b = {\sum y - m \sum x \over N} $$
4032 \afterdisplay
4033 \vskip10pt
4034 @end tex
4036 @smallexample
4037 @group
4038 1:  13.613     2:  13.613     1:  -8.09358   1:  -0.425978
4039     .          1:  21.70658       .              .
4040                    .
4042    r 5            r 8 r 3 *       -              r 7 /   t 9
4043 @end group
4044 @end smallexample
4046 Let's ``plot'' this straight line approximation, @c{$y \approx m x + b$}
4047 @cite{m x + b}, and compare it with the original data.@refill
4049 @smallexample
4050 @group
4051 1:  [0.699, 0.735, ... ]    1:  [0.273, 0.309, ... ]
4052     .                           .
4054     r 1 r 8 *                   r 9 +    s 0
4055 @end group
4056 @end smallexample
4058 @noindent
4059 Notice that multiplying a vector by a constant, and adding a constant
4060 to a vector, can be done without mapping commands since these are
4061 common operations from vector algebra.  As far as Calc is concerned,
4062 we've just been doing geometry in 19-dimensional space!
4064 We can subtract this vector from our original @cite{y} vector to get
4065 a feel for the error of our fit.  Let's find the maximum error:
4067 @smallexample
4068 @group
4069 1:  [0.0387, 0.0112, ... ]   1:  [0.0387, 0.0112, ... ]   1:  0.0897
4070     .                            .                            .
4072     r 2 -                        V M A                        V R X
4073 @end group
4074 @end smallexample
4076 @noindent
4077 First we compute a vector of differences, then we take the absolute
4078 values of these differences, then we reduce the @code{max} function
4079 across the vector.  (The @code{max} function is on the two-key sequence
4080 @kbd{f x}; because it is so common to use @code{max} in a vector
4081 operation, the letters @kbd{X} and @kbd{N} are also accepted for
4082 @code{max} and @code{min} in this context.  In general, you answer
4083 the @kbd{V M} or @kbd{V R} prompt with the actual key sequence that
4084 invokes the function you want.  You could have typed @kbd{V R f x} or
4085 even @kbd{V R x max @key{RET}} if you had preferred.)
4087 If your system has the GNUPLOT program, you can see graphs of your
4088 data and your straight line to see how well they match.  (If you have
4089 GNUPLOT 3.0, the following instructions will work regardless of the
4090 kind of display you have.  Some GNUPLOT 2.0, non-X-windows systems
4091 may require additional steps to view the graphs.)
4093 Let's start by plotting the original data.  Recall the ``@var{x}'' and ``@var{y}''
4094 vectors onto the stack and press @kbd{g f}.  This ``fast'' graphing
4095 command does everything you need to do for simple, straightforward
4096 plotting of data.
4098 @smallexample
4099 @group
4100 2:  [1.34, 1.41, 1.49, ... ]
4101 1:  [0.234, 0.298, 0.402, ... ]
4102     .
4104     r 1 r 2    g f
4105 @end group
4106 @end smallexample
4108 If all goes well, you will shortly get a new window containing a graph
4109 of the data.  (If not, contact your GNUPLOT or Calc installer to find
4110 out what went wrong.)  In the X window system, this will be a separate
4111 graphics window.  For other kinds of displays, the default is to
4112 display the graph in Emacs itself using rough character graphics.
4113 Press @kbd{q} when you are done viewing the character graphics.
4115 Next, let's add the line we got from our least-squares fit:
4117 @smallexample
4118 @group
4119 2:  [1.34, 1.41, 1.49, ... ]
4120 1:  [0.273, 0.309, 0.351, ... ]
4121     .
4123     @key{DEL} r 0    g a  g p
4124 @end group
4125 @end smallexample
4127 It's not very useful to get symbols to mark the data points on this
4128 second curve; you can type @kbd{g S g p} to remove them.  Type @kbd{g q}
4129 when you are done to remove the X graphics window and terminate GNUPLOT.
4131 (@bullet{}) @strong{Exercise 2.}  An earlier exercise showed how to do
4132 least squares fitting to a general system of equations.  Our 19 data
4133 points are really 19 equations of the form @cite{y_i = m x_i + b} for
4134 different pairs of @cite{(x_i,y_i)}.  Use the matrix-transpose method
4135 to solve for @cite{m} and @cite{b}, duplicating the above result.
4136 @xref{List Answer 2, 2}. (@bullet{})
4138 @cindex Geometric mean
4139 (@bullet{}) @strong{Exercise 3.}  If the input data do not form a
4140 rectangle, you can use @w{@kbd{M-# g}} (@code{calc-grab-region})
4141 to grab the data the way Emacs normally works with regions---it reads
4142 left-to-right, top-to-bottom, treating line breaks the same as spaces.
4143 Use this command to find the geometric mean of the following numbers.
4144 (The geometric mean is the @var{n}th root of the product of @var{n} numbers.)
4146 @example
4147 2.3  6  22  15.1  7
4148   15  14  7.5
4149   2.5
4150 @end example
4152 @noindent
4153 The @kbd{M-# g} command accepts numbers separated by spaces or commas,
4154 with or without surrounding vector brackets.
4155 @xref{List Answer 3, 3}. (@bullet{})
4157 @ifinfo
4158 As another example, a theorem about binomial coefficients tells
4159 us that the alternating sum of binomial coefficients
4160 @var{n}-choose-0 minus @var{n}-choose-1 plus @var{n}-choose-2, and so
4161 on up to @var{n}-choose-@var{n},
4162 always comes out to zero.  Let's verify this
4163 for @cite{n=6}.@refill
4164 @end ifinfo
4165 @tex
4166 As another example, a theorem about binomial coefficients tells
4167 us that the alternating sum of binomial coefficients
4168 ${n \choose 0} - {n \choose 1} + {n \choose 2} - \cdots \pm {n \choose n}$
4169 always comes out to zero.  Let's verify this
4170 for \cite{n=6}.
4171 @end tex
4173 @smallexample
4174 @group
4175 1:  [1, 2, 3, 4, 5, 6, 7]     1:  [0, 1, 2, 3, 4, 5, 6]
4176     .                             .
4178     v x 7 @key{RET}                     1 -
4180 @end group
4181 @end smallexample
4182 @noindent
4183 @smallexample
4184 @group
4185 1:  [1, -6, 15, -20, 15, -6, 1]          1:  0
4186     .                                        .
4188     V M ' (-1)^$ choose(6,$) @key{RET}             V R +
4189 @end group
4190 @end smallexample
4192 The @kbd{V M '} command prompts you to enter any algebraic expression
4193 to define the function to map over the vector.  The symbol @samp{$}
4194 inside this expression represents the argument to the function.
4195 The Calculator applies this formula to each element of the vector,
4196 substituting each element's value for the @samp{$} sign(s) in turn.
4198 To define a two-argument function, use @samp{$$} for the first
4199 argument and @samp{$} for the second:  @kbd{V M ' $$-$ @key{RET}} is
4200 equivalent to @kbd{V M -}.  This is analogous to regular algebraic
4201 entry, where @samp{$$} would refer to the next-to-top stack entry
4202 and @samp{$} would refer to the top stack entry, and @kbd{' $$-$ @key{RET}}
4203 would act exactly like @kbd{-}.
4205 Notice that the @kbd{V M '} command has recorded two things in the
4206 trail:  The result, as usual, and also a funny-looking thing marked
4207 @samp{oper} that represents the operator function you typed in.
4208 The function is enclosed in @samp{< >} brackets, and the argument is
4209 denoted by a @samp{#} sign.  If there were several arguments, they
4210 would be shown as @samp{#1}, @samp{#2}, and so on.  (For example,
4211 @kbd{V M ' $$-$} will put the function @samp{<#1 - #2>} on the
4212 trail.)  This object is a ``nameless function''; you can use nameless
4213 @w{@samp{< >}} notation to answer the @kbd{V M '} prompt if you like.
4214 Nameless function notation has the interesting, occasionally useful
4215 property that a nameless function is not actually evaluated until
4216 it is used.  For example, @kbd{V M ' $+random(2.0)} evaluates
4217 @samp{random(2.0)} once and adds that random number to all elements
4218 of the vector, but @kbd{V M ' <#+random(2.0)>} evaluates the
4219 @samp{random(2.0)} separately for each vector element.
4221 Another group of operators that are often useful with @kbd{V M} are
4222 the relational operators:  @kbd{a =}, for example, compares two numbers
4223 and gives the result 1 if they are equal, or 0 if not.  Similarly,
4224 @w{@kbd{a <}} checks for one number being less than another.
4226 Other useful vector operations include @kbd{v v}, to reverse a
4227 vector end-for-end; @kbd{V S}, to sort the elements of a vector
4228 into increasing order; and @kbd{v r} and @w{@kbd{v c}}, to extract
4229 one row or column of a matrix, or (in both cases) to extract one
4230 element of a plain vector.  With a negative argument, @kbd{v r}
4231 and @kbd{v c} instead delete one row, column, or vector element.
4233 @cindex Divisor functions
4234 (@bullet{}) @strong{Exercise 4.}  The @cite{k}th @dfn{divisor function}
4235 @tex
4236 $\sigma_k(n)$
4237 @end tex
4238 is the sum of the @cite{k}th powers of all the divisors of an
4239 integer @cite{n}.  Figure out a method for computing the divisor
4240 function for reasonably small values of @cite{n}.  As a test,
4241 the 0th and 1st divisor functions of 30 are 8 and 72, respectively.
4242 @xref{List Answer 4, 4}. (@bullet{})
4244 @cindex Square-free numbers
4245 @cindex Duplicate values in a list
4246 (@bullet{}) @strong{Exercise 5.}  The @kbd{k f} command produces a
4247 list of prime factors for a number.  Sometimes it is important to
4248 know that a number is @dfn{square-free}, i.e., that no prime occurs
4249 more than once in its list of prime factors.  Find a sequence of
4250 keystrokes to tell if a number is square-free; your method should
4251 leave 1 on the stack if it is, or 0 if it isn't.
4252 @xref{List Answer 5, 5}. (@bullet{})
4254 @cindex Triangular lists
4255 (@bullet{}) @strong{Exercise 6.}  Build a list of lists that looks
4256 like the following diagram.  (You may wish to use the @kbd{v /}
4257 command to enable multi-line display of vectors.)
4259 @smallexample
4260 @group
4261 1:  [ [1],
4262       [1, 2],
4263       [1, 2, 3],
4264       [1, 2, 3, 4],
4265       [1, 2, 3, 4, 5],
4266       [1, 2, 3, 4, 5, 6] ]
4267 @end group
4268 @end smallexample
4270 @noindent
4271 @xref{List Answer 6, 6}. (@bullet{})
4273 (@bullet{}) @strong{Exercise 7.}  Build the following list of lists.
4275 @smallexample
4276 @group
4277 1:  [ [0],
4278       [1, 2],
4279       [3, 4, 5],
4280       [6, 7, 8, 9],
4281       [10, 11, 12, 13, 14],
4282       [15, 16, 17, 18, 19, 20] ]
4283 @end group
4284 @end smallexample
4286 @noindent
4287 @xref{List Answer 7, 7}. (@bullet{})
4289 @cindex Maximizing a function over a list of values
4290 @c [fix-ref Numerical Solutions]
4291 (@bullet{}) @strong{Exercise 8.}  Compute a list of values of Bessel's
4292 @c{$J_1(x)$}
4293 @cite{J1} function @samp{besJ(1,x)} for @cite{x} from 0 to 5
4294 in steps of 0.25.
4295 Find the value of @cite{x} (from among the above set of values) for
4296 which @samp{besJ(1,x)} is a maximum.  Use an ``automatic'' method,
4297 i.e., just reading along the list by hand to find the largest value
4298 is not allowed!  (There is an @kbd{a X} command which does this kind
4299 of thing automatically; @pxref{Numerical Solutions}.)
4300 @xref{List Answer 8, 8}. (@bullet{})@refill
4302 @cindex Digits, vectors of
4303 (@bullet{}) @strong{Exercise 9.}  You are given an integer in the range
4304 @c{$0 \le N < 10^m$}
4305 @cite{0 <= N < 10^m} for @cite{m=12} (i.e., an integer of less than
4306 twelve digits).  Convert this integer into a vector of @cite{m}
4307 digits, each in the range from 0 to 9.  In vector-of-digits notation,
4308 add one to this integer to produce a vector of @cite{m+1} digits
4309 (since there could be a carry out of the most significant digit).
4310 Convert this vector back into a regular integer.  A good integer
4311 to try is 25129925999.  @xref{List Answer 9, 9}. (@bullet{})
4313 (@bullet{}) @strong{Exercise 10.}  Your friend Joe tried to use
4314 @kbd{V R a =} to test if all numbers in a list were equal.  What
4315 happened?  How would you do this test?  @xref{List Answer 10, 10}. (@bullet{})
4317 (@bullet{}) @strong{Exercise 11.}  The area of a circle of radius one
4318 is @c{$\pi$}
4319 @cite{pi}.  The area of the @c{$2\times2$}
4320 @asis{2x2} square that encloses that
4321 circle is 4.  So if we throw @var{n} darts at random points in the square,
4322 about @c{$\pi/4$}
4323 @cite{pi/4} of them will land inside the circle.  This gives us
4324 an entertaining way to estimate the value of @c{$\pi$}
4325 @cite{pi}.  The @w{@kbd{k r}}
4326 command picks a random number between zero and the value on the stack.
4327 We could get a random floating-point number between @i{-1} and 1 by typing
4328 @w{@kbd{2.0 k r 1 -}}.  Build a vector of 100 random @cite{(x,y)} points in
4329 this square, then use vector mapping and reduction to count how many
4330 points lie inside the unit circle.  Hint:  Use the @kbd{v b} command.
4331 @xref{List Answer 11, 11}. (@bullet{})
4333 @cindex Matchstick problem
4334 (@bullet{}) @strong{Exercise 12.}  The @dfn{matchstick problem} provides
4335 another way to calculate @c{$\pi$}
4336 @cite{pi}.  Say you have an infinite field
4337 of vertical lines with a spacing of one inch.  Toss a one-inch matchstick
4338 onto the field.  The probability that the matchstick will land crossing
4339 a line turns out to be @c{$2/\pi$}
4340 @cite{2/pi}.  Toss 100 matchsticks to estimate
4341 @c{$\pi$}
4342 @cite{pi}.  (If you want still more fun, the probability that the GCD
4343 (@w{@kbd{k g}}) of two large integers is one turns out to be @c{$6/\pi^2$}
4344 @cite{6/pi^2}.
4345 That provides yet another way to estimate @c{$\pi$}
4346 @cite{pi}.)
4347 @xref{List Answer 12, 12}. (@bullet{})
4349 (@bullet{}) @strong{Exercise 13.}  An algebraic entry of a string in
4350 double-quote marks, @samp{"hello"}, creates a vector of the numerical
4351 (ASCII) codes of the characters (here, @cite{[104, 101, 108, 108, 111]}).
4352 Sometimes it is convenient to compute a @dfn{hash code} of a string,
4353 which is just an integer that represents the value of that string.
4354 Two equal strings have the same hash code; two different strings
4355 @dfn{probably} have different hash codes.  (For example, Calc has
4356 over 400 function names, but Emacs can quickly find the definition for
4357 any given name because it has sorted the functions into ``buckets'' by
4358 their hash codes.  Sometimes a few names will hash into the same bucket,
4359 but it is easier to search among a few names than among all the names.)
4360 One popular hash function is computed as follows:  First set @cite{h = 0}.
4361 Then, for each character from the string in turn, set @cite{h = 3h + c_i}
4362 where @cite{c_i} is the character's ASCII code.  If we have 511 buckets,
4363 we then take the hash code modulo 511 to get the bucket number.  Develop a
4364 simple command or commands for converting string vectors into hash codes.
4365 The hash code for @samp{"Testing, 1, 2, 3"} is 1960915098, which modulo
4366 511 is 121.  @xref{List Answer 13, 13}. (@bullet{})
4368 (@bullet{}) @strong{Exercise 14.}  The @kbd{H V R} and @kbd{H V U}
4369 commands do nested function evaluations.  @kbd{H V U} takes a starting
4370 value and a number of steps @var{n} from the stack; it then applies the
4371 function you give to the starting value 0, 1, 2, up to @var{n} times
4372 and returns a vector of the results.  Use this command to create a
4373 ``random walk'' of 50 steps.  Start with the two-dimensional point
4374 @cite{(0,0)}; then take one step a random distance between @i{-1} and 1
4375 in both @cite{x} and @cite{y}; then take another step, and so on.  Use the
4376 @kbd{g f} command to display this random walk.  Now modify your random
4377 walk to walk a unit distance, but in a random direction, at each step.
4378 (Hint:  The @code{sincos} function returns a vector of the cosine and
4379 sine of an angle.)  @xref{List Answer 14, 14}. (@bullet{})
4381 @node Types Tutorial, Algebra Tutorial, Vector/Matrix Tutorial, Tutorial
4382 @section Types Tutorial
4384 @noindent
4385 Calc understands a variety of data types as well as simple numbers.
4386 In this section, we'll experiment with each of these types in turn.
4388 The numbers we've been using so far have mainly been either @dfn{integers}
4389 or @dfn{floats}.  We saw that floats are usually a good approximation to
4390 the mathematical concept of real numbers, but they are only approximations
4391 and are susceptible to roundoff error.  Calc also supports @dfn{fractions},
4392 which can exactly represent any rational number.
4394 @smallexample
4395 @group
4396 1:  3628800    2:  3628800    1:  518400:7   1:  518414:7   1:  7:518414
4397     .          1:  49             .              .              .
4398                    .
4400     10 !           49 @key{RET}         :              2 +            &
4401 @end group
4402 @end smallexample
4404 @noindent
4405 The @kbd{:} command divides two integers to get a fraction; @kbd{/}
4406 would normally divide integers to get a floating-point result.
4407 Notice we had to type @key{RET} between the @kbd{49} and the @kbd{:}
4408 since the @kbd{:} would otherwise be interpreted as part of a
4409 fraction beginning with 49.
4411 You can convert between floating-point and fractional format using
4412 @kbd{c f} and @kbd{c F}:
4414 @smallexample
4415 @group
4416 1:  1.35027217629e-5    1:  7:518414
4417     .                       .
4419     c f                     c F
4420 @end group
4421 @end smallexample
4423 The @kbd{c F} command replaces a floating-point number with the
4424 ``simplest'' fraction whose floating-point representation is the
4425 same, to within the current precision.
4427 @smallexample
4428 @group
4429 1:  3.14159265359   1:  1146408:364913   1:  3.1416   1:  355:113
4430     .                   .                    .            .
4432     P                   c F      @key{DEL}       p 5 @key{RET} P      c F
4433 @end group
4434 @end smallexample
4436 (@bullet{}) @strong{Exercise 1.}  A calculation has produced the
4437 result 1.26508260337.  You suspect it is the square root of the
4438 product of @c{$\pi$}
4439 @cite{pi} and some rational number.  Is it?  (Be sure
4440 to allow for roundoff error!)  @xref{Types Answer 1, 1}. (@bullet{})
4442 @dfn{Complex numbers} can be stored in both rectangular and polar form.
4444 @smallexample
4445 @group
4446 1:  -9     1:  (0, 3)    1:  (3; 90.)   1:  (6; 90.)   1:  (2.4495; 45.)
4447     .          .             .              .              .
4449     9 n        Q             c p            2 *            Q
4450 @end group
4451 @end smallexample
4453 @noindent
4454 The square root of @i{-9} is by default rendered in rectangular form
4455 (@w{@cite{0 + 3i}}), but we can convert it to polar form (3 with a
4456 phase angle of 90 degrees).  All the usual arithmetic and scientific
4457 operations are defined on both types of complex numbers.
4459 Another generalized kind of number is @dfn{infinity}.  Infinity
4460 isn't really a number, but it can sometimes be treated like one.
4461 Calc uses the symbol @code{inf} to represent positive infinity,
4462 i.e., a value greater than any real number.  Naturally, you can
4463 also write @samp{-inf} for minus infinity, a value less than any
4464 real number.  The word @code{inf} can only be input using
4465 algebraic entry.
4467 @smallexample
4468 @group
4469 2:  inf        2:  -inf       2:  -inf       2:  -inf       1:  nan
4470 1:  -17        1:  -inf       1:  -inf       1:  inf            .
4471     .              .              .              .
4473 ' inf @key{RET} 17 n     *  @key{RET}         72 +           A              +
4474 @end group
4475 @end smallexample
4477 @noindent
4478 Since infinity is infinitely large, multiplying it by any finite
4479 number (like @i{-17}) has no effect, except that since @i{-17}
4480 is negative, it changes a plus infinity to a minus infinity.
4481 (``A huge positive number, multiplied by @i{-17}, yields a huge
4482 negative number.'')  Adding any finite number to infinity also
4483 leaves it unchanged.  Taking an absolute value gives us plus
4484 infinity again.  Finally, we add this plus infinity to the minus
4485 infinity we had earlier.  If you work it out, you might expect
4486 the answer to be @i{-72} for this.  But the 72 has been completely
4487 lost next to the infinities; by the time we compute @w{@samp{inf - inf}}
4488 the finite difference between them, if any, is undetectable.
4489 So we say the result is @dfn{indeterminate}, which Calc writes
4490 with the symbol @code{nan} (for Not A Number).
4492 Dividing by zero is normally treated as an error, but you can get
4493 Calc to write an answer in terms of infinity by pressing @kbd{m i}
4494 to turn on ``infinite mode.''
4496 @smallexample
4497 @group
4498 3:  nan        2:  nan        2:  nan        2:  nan        1:  nan
4499 2:  1          1:  1 / 0      1:  uinf       1:  uinf           .
4500 1:  0              .              .              .
4501     .
4503   1 @key{RET} 0          /       m i    U /            17 n *         +
4504 @end group
4505 @end smallexample
4507 @noindent
4508 Dividing by zero normally is left unevaluated, but after @kbd{m i}
4509 it instead gives an infinite result.  The answer is actually
4510 @code{uinf}, ``undirected infinity.''  If you look at a graph of
4511 @cite{1 / x} around @w{@cite{x = 0}}, you'll see that it goes toward
4512 plus infinity as you approach zero from above, but toward minus
4513 infinity as you approach from below.  Since we said only @cite{1 / 0},
4514 Calc knows that the answer is infinite but not in which direction.
4515 That's what @code{uinf} means.  Notice that multiplying @code{uinf}
4516 by a negative number still leaves plain @code{uinf}; there's no
4517 point in saying @samp{-uinf} because the sign of @code{uinf} is
4518 unknown anyway.  Finally, we add @code{uinf} to our @code{nan},
4519 yielding @code{nan} again.  It's easy to see that, because
4520 @code{nan} means ``totally unknown'' while @code{uinf} means
4521 ``unknown sign but known to be infinite,'' the more mysterious
4522 @code{nan} wins out when it is combined with @code{uinf}, or, for
4523 that matter, with anything else.
4525 (@bullet{}) @strong{Exercise 2.}  Predict what Calc will answer
4526 for each of these formulas:  @samp{inf / inf}, @samp{exp(inf)},
4527 @samp{exp(-inf)}, @samp{sqrt(-inf)}, @samp{sqrt(uinf)},
4528 @samp{abs(uinf)}, @samp{ln(0)}.
4529 @xref{Types Answer 2, 2}. (@bullet{})
4531 (@bullet{}) @strong{Exercise 3.}  We saw that @samp{inf - inf = nan},
4532 which stands for an unknown value.  Can @code{nan} stand for
4533 a complex number?  Can it stand for infinity?
4534 @xref{Types Answer 3, 3}. (@bullet{})
4536 @dfn{HMS forms} represent a value in terms of hours, minutes, and
4537 seconds.
4539 @smallexample
4540 @group
4541 1:  2@@ 30' 0"     1:  3@@ 30' 0"     2:  3@@ 30' 0"     1:  2.
4542     .                 .             1:  1@@ 45' 0."        .
4543                                         .
4545   2@@ 30' @key{RET}          1 +               @key{RET} 2 /           /
4546 @end group
4547 @end smallexample
4549 HMS forms can also be used to hold angles in degrees, minutes, and
4550 seconds.
4552 @smallexample
4553 @group
4554 1:  0.5        1:  26.56505   1:  26@@ 33' 54.18"    1:  0.44721
4555     .              .              .                     .
4557     0.5            I T            c h                   S
4558 @end group
4559 @end smallexample
4561 @noindent
4562 First we convert the inverse tangent of 0.5 to degrees-minutes-seconds
4563 form, then we take the sine of that angle.  Note that the trigonometric
4564 functions will accept HMS forms directly as input.
4566 @cindex Beatles
4567 (@bullet{}) @strong{Exercise 4.}  The Beatles' @emph{Abbey Road} is
4568 47 minutes and 26 seconds long, and contains 17 songs.  What is the
4569 average length of a song on @emph{Abbey Road}?  If the Extended Disco
4570 Version of @emph{Abbey Road} added 20 seconds to the length of each
4571 song, how long would the album be?  @xref{Types Answer 4, 4}. (@bullet{})
4573 A @dfn{date form} represents a date, or a date and time.  Dates must
4574 be entered using algebraic entry.  Date forms are surrounded by
4575 @samp{< >} symbols; most standard formats for dates are recognized.
4577 @smallexample
4578 @group
4579 2:  <Sun Jan 13, 1991>                    1:  2.25
4580 1:  <6:00pm Thu Jan 10, 1991>                 .
4581     .
4583 ' <13 Jan 1991>, <1/10/91, 6pm> @key{RET}           -
4584 @end group
4585 @end smallexample
4587 @noindent
4588 In this example, we enter two dates, then subtract to find the
4589 number of days between them.  It is also possible to add an
4590 HMS form or a number (of days) to a date form to get another
4591 date form.
4593 @smallexample
4594 @group
4595 1:  <4:45:59pm Mon Jan 14, 1991>     1:  <2:50:59am Thu Jan 17, 1991>
4596     .                                    .
4598     t N                                  2 + 10@@ 5' +
4599 @end group
4600 @end smallexample
4602 @c [fix-ref Date Arithmetic]
4603 @noindent
4604 The @kbd{t N} (``now'') command pushes the current date and time on the
4605 stack; then we add two days, ten hours and five minutes to the date and
4606 time.  Other date-and-time related commands include @kbd{t J}, which
4607 does Julian day conversions, @kbd{t W}, which finds the beginning of
4608 the week in which a date form lies, and @kbd{t I}, which increments a
4609 date by one or several months.  @xref{Date Arithmetic}, for more.
4611 (@bullet{}) @strong{Exercise 5.}  How many days until the next
4612 Friday the 13th?  @xref{Types Answer 5, 5}. (@bullet{})
4614 (@bullet{}) @strong{Exercise 6.}  How many leap years will there be
4615 between now and the year 10001 A.D.?  @xref{Types Answer 6, 6}. (@bullet{})
4617 @cindex Slope and angle of a line
4618 @cindex Angle and slope of a line
4619 An @dfn{error form} represents a mean value with an attached standard
4620 deviation, or error estimate.  Suppose our measurements indicate that
4621 a certain telephone pole is about 30 meters away, with an estimated
4622 error of 1 meter, and 8 meters tall, with an estimated error of 0.2
4623 meters.  What is the slope of a line from here to the top of the
4624 pole, and what is the equivalent angle in degrees?
4626 @smallexample
4627 @group
4628 1:  8 +/- 0.2    2:  8 +/- 0.2   1:  0.266 +/- 0.011   1:  14.93 +/- 0.594
4629     .            1:  30 +/- 1        .                     .
4630                      .
4632     8 p .2 @key{RET}       30 p 1          /                     I T
4633 @end group
4634 @end smallexample
4636 @noindent
4637 This means that the angle is about 15 degrees, and, assuming our
4638 original error estimates were valid standard deviations, there is about
4639 a 60% chance that the result is correct within 0.59 degrees.
4641 @cindex Torus, volume of
4642 (@bullet{}) @strong{Exercise 7.}  The volume of a torus (a donut shape) is
4643 @c{$2 \pi^2 R r^2$}
4644 @w{@cite{2 pi^2 R r^2}} where @cite{R} is the radius of the circle that
4645 defines the center of the tube and @cite{r} is the radius of the tube
4646 itself.  Suppose @cite{R} is 20 cm and @cite{r} is 4 cm, each known to
4647 within 5 percent.  What is the volume and the relative uncertainty of
4648 the volume?  @xref{Types Answer 7, 7}. (@bullet{})
4650 An @dfn{interval form} represents a range of values.  While an
4651 error form is best for making statistical estimates, intervals give
4652 you exact bounds on an answer.  Suppose we additionally know that
4653 our telephone pole is definitely between 28 and 31 meters away,
4654 and that it is between 7.7 and 8.1 meters tall.
4656 @smallexample
4657 @group
4658 1:  [7.7 .. 8.1]  2:  [7.7 .. 8.1]  1:  [0.24 .. 0.28]  1:  [13.9 .. 16.1]
4659     .             1:  [28 .. 31]        .                   .
4660                       .
4662   [ 7.7 .. 8.1 ]    [ 28 .. 31 ]        /                   I T
4663 @end group
4664 @end smallexample
4666 @noindent
4667 If our bounds were correct, then the angle to the top of the pole
4668 is sure to lie in the range shown.
4670 The square brackets around these intervals indicate that the endpoints
4671 themselves are allowable values.  In other words, the distance to the
4672 telephone pole is between 28 and 31, @emph{inclusive}.  You can also
4673 make an interval that is exclusive of its endpoints by writing
4674 parentheses instead of square brackets.  You can even make an interval
4675 which is inclusive (``closed'') on one end and exclusive (``open'') on
4676 the other.
4678 @smallexample
4679 @group
4680 1:  [1 .. 10)    1:  (0.1 .. 1]   2:  (0.1 .. 1]   1:  (0.2 .. 3)
4681     .                .            1:  [2 .. 3)         .
4682                                       .
4684   [ 1 .. 10 )        &              [ 2 .. 3 )         *
4685 @end group
4686 @end smallexample
4688 @noindent
4689 The Calculator automatically keeps track of which end values should
4690 be open and which should be closed.  You can also make infinite or
4691 semi-infinite intervals by using @samp{-inf} or @samp{inf} for one
4692 or both endpoints.
4694 (@bullet{}) @strong{Exercise 8.}  What answer would you expect from
4695 @samp{@w{1 /} @w{(0 .. 10)}}?  What about @samp{@w{1 /} @w{(-10 .. 0)}}?  What
4696 about @samp{@w{1 /} @w{[0 .. 10]}} (where the interval actually includes
4697 zero)?  What about @samp{@w{1 /} @w{(-10 .. 10)}}?
4698 @xref{Types Answer 8, 8}. (@bullet{})
4700 (@bullet{}) @strong{Exercise 9.}  Two easy ways of squaring a number
4701 are @kbd{@key{RET} *} and @w{@kbd{2 ^}}.  Normally these produce the same
4702 answer.  Would you expect this still to hold true for interval forms?
4703 If not, which of these will result in a larger interval?
4704 @xref{Types Answer 9, 9}. (@bullet{})
4706 A @dfn{modulo form} is used for performing arithmetic modulo @var{m}.
4707 For example, arithmetic involving time is generally done modulo 12
4708 or 24 hours.
4710 @smallexample
4711 @group
4712 1:  17 mod 24    1:  3 mod 24     1:  21 mod 24    1:  9 mod 24
4713     .                .                .                .
4715     17 M 24 @key{RET}      10 +             n                5 /
4716 @end group
4717 @end smallexample
4719 @noindent
4720 In this last step, Calc has found a new number which, when multiplied
4721 by 5 modulo 24, produces the original number, 21.  If @var{m} is prime
4722 it is always possible to find such a number.  For non-prime @var{m}
4723 like 24, it is only sometimes possible.
4725 @smallexample
4726 @group
4727 1:  10 mod 24    1:  16 mod 24    1:  1000000...   1:  16
4728     .                .                .                .
4730     10 M 24 @key{RET}      100 ^            10 @key{RET} 100 ^     24 %
4731 @end group
4732 @end smallexample
4734 @noindent
4735 These two calculations get the same answer, but the first one is
4736 much more efficient because it avoids the huge intermediate value
4737 that arises in the second one.
4739 @cindex Fermat, primality test of
4740 (@bullet{}) @strong{Exercise 10.}  A theorem of Pierre de Fermat
4741 says that @c{\w{$x^{n-1} \bmod n = 1$}}
4742 @cite{x^(n-1) mod n = 1} if @cite{n} is a prime number
4743 and @cite{x} is an integer less than @cite{n}.  If @cite{n} is
4744 @emph{not} a prime number, this will @emph{not} be true for most
4745 values of @cite{x}.  Thus we can test informally if a number is
4746 prime by trying this formula for several values of @cite{x}.
4747 Use this test to tell whether the following numbers are prime:
4748 811749613, 15485863.  @xref{Types Answer 10, 10}. (@bullet{})
4750 It is possible to use HMS forms as parts of error forms, intervals,
4751 modulo forms, or as the phase part of a polar complex number.
4752 For example, the @code{calc-time} command pushes the current time
4753 of day on the stack as an HMS/modulo form.
4755 @smallexample
4756 @group
4757 1:  17@@ 34' 45" mod 24@@ 0' 0"     1:  6@@ 22' 15" mod 24@@ 0' 0"
4758     .                                 .
4760     x time @key{RET}                        n
4761 @end group
4762 @end smallexample
4764 @noindent
4765 This calculation tells me it is six hours and 22 minutes until midnight.
4767 (@bullet{}) @strong{Exercise 11.}  A rule of thumb is that one year
4768 is about @c{$\pi \times 10^7$}
4769 @w{@cite{pi * 10^7}} seconds.  What time will it be that
4770 many seconds from right now?  @xref{Types Answer 11, 11}. (@bullet{})
4772 (@bullet{}) @strong{Exercise 12.}  You are preparing to order packaging
4773 for the CD release of the Extended Disco Version of @emph{Abbey Road}.
4774 You are told that the songs will actually be anywhere from 20 to 60
4775 seconds longer than the originals.  One CD can hold about 75 minutes
4776 of music.  Should you order single or double packages?
4777 @xref{Types Answer 12, 12}. (@bullet{})
4779 Another kind of data the Calculator can manipulate is numbers with
4780 @dfn{units}.  This isn't strictly a new data type; it's simply an
4781 application of algebraic expressions, where we use variables with
4782 suggestive names like @samp{cm} and @samp{in} to represent units
4783 like centimeters and inches.
4785 @smallexample
4786 @group
4787 1:  2 in        1:  5.08 cm      1:  0.027778 fath   1:  0.0508 m
4788     .               .                .                   .
4790     ' 2in @key{RET}       u c cm @key{RET}       u c fath @key{RET}        u b
4791 @end group
4792 @end smallexample
4794 @noindent
4795 We enter the quantity ``2 inches'' (actually an algebraic expression
4796 which means two times the variable @samp{in}), then we convert it
4797 first to centimeters, then to fathoms, then finally to ``base'' units,
4798 which in this case means meters.
4800 @smallexample
4801 @group
4802 1:  9 acre     1:  3 sqrt(acre)   1:  190.84 m   1:  190.84 m + 30 cm
4803     .              .                  .              .
4805  ' 9 acre @key{RET}      Q                  u s            ' $+30 cm @key{RET}
4807 @end group
4808 @end smallexample
4809 @noindent
4810 @smallexample
4811 @group
4812 1:  191.14 m     1:  36536.3046 m^2    1:  365363046 cm^2
4813     .                .                     .
4815     u s              2 ^                   u c cgs
4816 @end group
4817 @end smallexample
4819 @noindent
4820 Since units expressions are really just formulas, taking the square
4821 root of @samp{acre} is undefined.  After all, @code{acre} might be an
4822 algebraic variable that you will someday assign a value.  We use the
4823 ``units-simplify'' command to simplify the expression with variables
4824 being interpreted as unit names.
4826 In the final step, we have converted not to a particular unit, but to a
4827 units system.  The ``cgs'' system uses centimeters instead of meters
4828 as its standard unit of length.
4830 There is a wide variety of units defined in the Calculator.
4832 @smallexample
4833 @group
4834 1:  55 mph     1:  88.5139 kph   1:   88.5139 km / hr   1:  8.201407e-8 c
4835     .              .                  .                     .
4837  ' 55 mph @key{RET}      u c kph @key{RET}        u c km/hr @key{RET}         u c c @key{RET}
4838 @end group
4839 @end smallexample
4841 @noindent
4842 We express a speed first in miles per hour, then in kilometers per
4843 hour, then again using a slightly more explicit notation, then
4844 finally in terms of fractions of the speed of light.
4846 Temperature conversions are a bit more tricky.  There are two ways to
4847 interpret ``20 degrees Fahrenheit''---it could mean an actual
4848 temperature, or it could mean a change in temperature.  For normal
4849 units there is no difference, but temperature units have an offset
4850 as well as a scale factor and so there must be two explicit commands
4851 for them.
4853 @smallexample
4854 @group
4855 1:  20 degF       1:  11.1111 degC     1:  -20:3 degC    1:  -6.666 degC
4856     .                 .                    .                 .
4858   ' 20 degF @key{RET}       u c degC @key{RET}         U u t degC @key{RET}    c f
4859 @end group
4860 @end smallexample
4862 @noindent
4863 First we convert a change of 20 degrees Fahrenheit into an equivalent
4864 change in degrees Celsius (or Centigrade).  Then, we convert the
4865 absolute temperature 20 degrees Fahrenheit into Celsius.  Since
4866 this comes out as an exact fraction, we then convert to floating-point
4867 for easier comparison with the other result.
4869 For simple unit conversions, you can put a plain number on the stack.
4870 Then @kbd{u c} and @kbd{u t} will prompt for both old and new units.
4871 When you use this method, you're responsible for remembering which
4872 numbers are in which units:
4874 @smallexample
4875 @group
4876 1:  55         1:  88.5139              1:  8.201407e-8
4877     .              .                        .
4879     55             u c mph @key{RET} kph @key{RET}      u c km/hr @key{RET} c @key{RET}
4880 @end group
4881 @end smallexample
4883 To see a complete list of built-in units, type @kbd{u v}.  Press
4884 @w{@kbd{M-# c}} again to re-enter the Calculator when you're done looking
4885 at the units table.
4887 (@bullet{}) @strong{Exercise 13.}  How many seconds are there really
4888 in a year?  @xref{Types Answer 13, 13}. (@bullet{})
4890 @cindex Speed of light
4891 (@bullet{}) @strong{Exercise 14.}  Supercomputer designs are limited by
4892 the speed of light (and of electricity, which is nearly as fast).
4893 Suppose a computer has a 4.1 ns (nanosecond) clock cycle, and its
4894 cabinet is one meter across.  Is speed of light going to be a
4895 significant factor in its design?  @xref{Types Answer 14, 14}. (@bullet{})
4897 (@bullet{}) @strong{Exercise 15.}  Sam the Slug normally travels about
4898 five yards in an hour.  He has obtained a supply of Power Pills; each
4899 Power Pill he eats doubles his speed.  How many Power Pills can he
4900 swallow and still travel legally on most US highways?
4901 @xref{Types Answer 15, 15}. (@bullet{})
4903 @node Algebra Tutorial, Programming Tutorial, Types Tutorial, Tutorial
4904 @section Algebra and Calculus Tutorial
4906 @noindent
4907 This section shows how to use Calc's algebra facilities to solve
4908 equations, do simple calculus problems, and manipulate algebraic
4909 formulas.
4911 @menu
4912 * Basic Algebra Tutorial::
4913 * Rewrites Tutorial::
4914 @end menu
4916 @node Basic Algebra Tutorial, Rewrites Tutorial, Algebra Tutorial, Algebra Tutorial
4917 @subsection Basic Algebra
4919 @noindent
4920 If you enter a formula in algebraic mode that refers to variables,
4921 the formula itself is pushed onto the stack.  You can manipulate
4922 formulas as regular data objects.
4924 @smallexample
4925 @group
4926 1:  2 x^2 - 6       1:  6 - 2 x^2       1:  (6 - 2 x^2) (3 x^2 + y)
4927     .                   .                   .
4929     ' 2x^2-6 @key{RET}        n                   ' 3x^2+y @key{RET} *
4930 @end group
4931 @end smallexample
4933 (@bullet{}) @strong{Exercise 1.}  Do @kbd{' x @key{RET} Q 2 ^} and
4934 @kbd{' x @key{RET} 2 ^ Q} both wind up with the same result (@samp{x})?
4935 Why or why not?  @xref{Algebra Answer 1, 1}. (@bullet{})
4937 There are also commands for doing common algebraic operations on
4938 formulas.  Continuing with the formula from the last example,
4940 @smallexample
4941 @group
4942 1:  18 x^2 + 6 y - 6 x^4 - 2 x^2 y    1:  (18 - 2 y) x^2 - 6 x^4 + 6 y
4943     .                                     .
4945     a x                                   a c x @key{RET}
4946 @end group
4947 @end smallexample
4949 @noindent
4950 First we ``expand'' using the distributive law, then we ``collect''
4951 terms involving like powers of @cite{x}.
4953 Let's find the value of this expression when @cite{x} is 2 and @cite{y}
4954 is one-half.
4956 @smallexample
4957 @group
4958 1:  17 x^2 - 6 x^4 + 3      1:  -25
4959     .                           .
4961     1:2 s l y @key{RET}               2 s l x @key{RET}
4962 @end group
4963 @end smallexample
4965 @noindent
4966 The @kbd{s l} command means ``let''; it takes a number from the top of
4967 the stack and temporarily assigns it as the value of the variable
4968 you specify.  It then evaluates (as if by the @kbd{=} key) the
4969 next expression on the stack.  After this command, the variable goes
4970 back to its original value, if any.
4972 (An earlier exercise in this tutorial involved storing a value in the
4973 variable @code{x}; if this value is still there, you will have to
4974 unstore it with @kbd{s u x @key{RET}} before the above example will work
4975 properly.)
4977 @cindex Maximum of a function using Calculus
4978 Let's find the maximum value of our original expression when @cite{y}
4979 is one-half and @cite{x} ranges over all possible values.  We can
4980 do this by taking the derivative with respect to @cite{x} and examining
4981 values of @cite{x} for which the derivative is zero.  If the second
4982 derivative of the function at that value of @cite{x} is negative,
4983 the function has a local maximum there.
4985 @smallexample
4986 @group
4987 1:  17 x^2 - 6 x^4 + 3      1:  34 x - 24 x^3
4988     .                           .
4990     U @key{DEL}  s 1                  a d x @key{RET}   s 2
4991 @end group
4992 @end smallexample
4994 @noindent
4995 Well, the derivative is clearly zero when @cite{x} is zero.  To find
4996 the other root(s), let's divide through by @cite{x} and then solve:
4998 @smallexample
4999 @group
5000 1:  (34 x - 24 x^3) / x    1:  34 x / x - 24 x^3 / x    1:  34 - 24 x^2
5001     .                          .                            .
5003     ' x @key{RET} /                  a x                          a s
5005 @end group
5006 @end smallexample
5007 @noindent
5008 @smallexample
5009 @group
5010 1:  34 - 24 x^2 = 0        1:  x = 1.19023
5011     .                          .
5013     0 a =  s 3                 a S x @key{RET}
5014 @end group
5015 @end smallexample
5017 @noindent
5018 Notice the use of @kbd{a s} to ``simplify'' the formula.  When the
5019 default algebraic simplifications don't do enough, you can use
5020 @kbd{a s} to tell Calc to spend more time on the job.
5022 Now we compute the second derivative and plug in our values of @cite{x}:
5024 @smallexample
5025 @group
5026 1:  1.19023        2:  1.19023         2:  1.19023
5027     .              1:  34 x - 24 x^3   1:  34 - 72 x^2
5028                        .                   .
5030     a .                r 2                 a d x @key{RET} s 4
5031 @end group
5032 @end smallexample
5034 @noindent
5035 (The @kbd{a .} command extracts just the righthand side of an equation.
5036 Another method would have been to use @kbd{v u} to unpack the equation
5037 @w{@samp{x = 1.19}} to @samp{x} and @samp{1.19}, then use @kbd{M-- M-2 @key{DEL}}
5038 to delete the @samp{x}.)
5040 @smallexample
5041 @group
5042 2:  34 - 72 x^2   1:  -68.         2:  34 - 72 x^2     1:  34
5043 1:  1.19023           .            1:  0                   .
5044     .                                  .
5046     @key{TAB}               s l x @key{RET}        U @key{DEL} 0             s l x @key{RET}
5047 @end group
5048 @end smallexample
5050 @noindent
5051 The first of these second derivatives is negative, so we know the function
5052 has a maximum value at @cite{x = 1.19023}.  (The function also has a
5053 local @emph{minimum} at @cite{x = 0}.)
5055 When we solved for @cite{x}, we got only one value even though
5056 @cite{34 - 24 x^2 = 0} is a quadratic equation that ought to have
5057 two solutions.  The reason is that @w{@kbd{a S}} normally returns a
5058 single ``principal'' solution.  If it needs to come up with an
5059 arbitrary sign (as occurs in the quadratic formula) it picks @cite{+}.
5060 If it needs an arbitrary integer, it picks zero.  We can get a full
5061 solution by pressing @kbd{H} (the Hyperbolic flag) before @kbd{a S}.
5063 @smallexample
5064 @group
5065 1:  34 - 24 x^2 = 0    1:  x = 1.19023 s1      1:  x = -1.19023
5066     .                      .                       .
5068     r 3                    H a S x @key{RET}  s 5        1 n  s l s1 @key{RET}
5069 @end group
5070 @end smallexample
5072 @noindent
5073 Calc has invented the variable @samp{s1} to represent an unknown sign;
5074 it is supposed to be either @i{+1} or @i{-1}.  Here we have used
5075 the ``let'' command to evaluate the expression when the sign is negative.
5076 If we plugged this into our second derivative we would get the same,
5077 negative, answer, so @cite{x = -1.19023} is also a maximum.
5079 To find the actual maximum value, we must plug our two values of @cite{x}
5080 into the original formula.
5082 @smallexample
5083 @group
5084 2:  17 x^2 - 6 x^4 + 3    1:  24.08333 s1^2 - 12.04166 s1^4 + 3
5085 1:  x = 1.19023 s1            .
5086     .
5088     r 1 r 5                   s l @key{RET}
5089 @end group
5090 @end smallexample
5092 @noindent
5093 (Here we see another way to use @kbd{s l}; if its input is an equation
5094 with a variable on the lefthand side, then @kbd{s l} treats the equation
5095 like an assignment to that variable if you don't give a variable name.)
5097 It's clear that this will have the same value for either sign of
5098 @code{s1}, but let's work it out anyway, just for the exercise:
5100 @smallexample
5101 @group
5102 2:  [-1, 1]              1:  [15.04166, 15.04166]
5103 1:  24.08333 s1^2 ...        .
5104     .
5106   [ 1 n , 1 ] @key{TAB}            V M $ @key{RET}
5107 @end group
5108 @end smallexample
5110 @noindent
5111 Here we have used a vector mapping operation to evaluate the function
5112 at several values of @samp{s1} at once.  @kbd{V M $} is like @kbd{V M '}
5113 except that it takes the formula from the top of the stack.  The
5114 formula is interpreted as a function to apply across the vector at the
5115 next-to-top stack level.  Since a formula on the stack can't contain
5116 @samp{$} signs, Calc assumes the variables in the formula stand for
5117 different arguments.  It prompts you for an @dfn{argument list}, giving
5118 the list of all variables in the formula in alphabetical order as the
5119 default list.  In this case the default is @samp{(s1)}, which is just
5120 what we want so we simply press @key{RET} at the prompt.
5122 If there had been several different values, we could have used
5123 @w{@kbd{V R X}} to find the global maximum.
5125 Calc has a built-in @kbd{a P} command that solves an equation using
5126 @w{@kbd{H a S}} and returns a vector of all the solutions.  It simply
5127 automates the job we just did by hand.  Applied to our original
5128 cubic polynomial, it would produce the vector of solutions
5129 @cite{[1.19023, -1.19023, 0]}.  (There is also an @kbd{a X} command
5130 which finds a local maximum of a function.  It uses a numerical search
5131 method rather than examining the derivatives, and thus requires you
5132 to provide some kind of initial guess to show it where to look.)
5134 (@bullet{}) @strong{Exercise 2.}  Given a vector of the roots of a
5135 polynomial (such as the output of an @kbd{a P} command), what
5136 sequence of commands would you use to reconstruct the original
5137 polynomial?  (The answer will be unique to within a constant
5138 multiple; choose the solution where the leading coefficient is one.)
5139 @xref{Algebra Answer 2, 2}. (@bullet{})
5141 The @kbd{m s} command enables ``symbolic mode,'' in which formulas
5142 like @samp{sqrt(5)} that can't be evaluated exactly are left in
5143 symbolic form rather than giving a floating-point approximate answer.
5144 Fraction mode (@kbd{m f}) is also useful when doing algebra.
5146 @smallexample
5147 @group
5148 2:  34 x - 24 x^3        2:  34 x - 24 x^3
5149 1:  34 x - 24 x^3        1:  [sqrt(51) / 6, sqrt(51) / -6, 0]
5150     .                        .
5152     r 2  @key{RET}     m s  m f    a P x @key{RET}
5153 @end group
5154 @end smallexample
5156 One more mode that makes reading formulas easier is ``Big mode.''
5158 @smallexample
5159 @group
5160                3
5161 2:  34 x - 24 x
5163       ____   ____
5164      V 51   V 51
5165 1:  [-----, -----, 0]
5166        6     -6
5168     .
5170     d B
5171 @end group
5172 @end smallexample
5174 Here things like powers, square roots, and quotients and fractions
5175 are displayed in a two-dimensional pictorial form.  Calc has other
5176 language modes as well, such as C mode, FORTRAN mode, and @TeX{} mode.
5178 @smallexample
5179 @group
5180 2:  34*x - 24*pow(x, 3)               2:  34*x - 24*x**3
5181 1:  @{sqrt(51) / 6, sqrt(51) / -6, 0@}  1:  /sqrt(51) / 6, sqrt(51) / -6, 0/
5182     .                                     .
5184     d C                                   d F
5186 @end group
5187 @end smallexample
5188 @noindent
5189 @smallexample
5190 @group
5191 3:  34 x - 24 x^3
5192 2:  [@{\sqrt@{51@} \over 6@}, @{\sqrt@{51@} \over -6@}, 0]
5193 1:  @{2 \over 3@} \sqrt@{5@}
5194     .
5196     d T   ' 2 \sqrt@{5@} \over 3 @key{RET}
5197 @end group
5198 @end smallexample
5200 @noindent
5201 As you can see, language modes affect both entry and display of
5202 formulas.  They affect such things as the names used for built-in
5203 functions, the set of arithmetic operators and their precedences,
5204 and notations for vectors and matrices.
5206 Notice that @samp{sqrt(51)} may cause problems with older
5207 implementations of C and FORTRAN, which would require something more
5208 like @samp{sqrt(51.0)}.  It is always wise to check over the formulas
5209 produced by the various language modes to make sure they are fully
5210 correct.
5212 Type @kbd{m s}, @kbd{m f}, and @kbd{d N} to reset these modes.  (You
5213 may prefer to remain in Big mode, but all the examples in the tutorial
5214 are shown in normal mode.)
5216 @cindex Area under a curve
5217 What is the area under the portion of this curve from @cite{x = 1} to @cite{2}?
5218 This is simply the integral of the function:
5220 @smallexample
5221 @group
5222 1:  17 x^2 - 6 x^4 + 3     1:  5.6666 x^3 - 1.2 x^5 + 3 x
5223     .                          .
5225     r 1                        a i x
5226 @end group
5227 @end smallexample
5229 @noindent
5230 We want to evaluate this at our two values for @cite{x} and subtract.
5231 One way to do it is again with vector mapping and reduction:
5233 @smallexample
5234 @group
5235 2:  [2, 1]            1:  [12.93333, 7.46666]    1:  5.46666
5236 1:  5.6666 x^3 ...        .                          .
5238    [ 2 , 1 ] @key{TAB}          V M $ @key{RET}                  V R -
5239 @end group
5240 @end smallexample
5242 (@bullet{}) @strong{Exercise 3.}  Find the integral from 1 to @cite{y}
5243 of @c{$x \sin \pi x$}
5244 @w{@cite{x sin(pi x)}} (where the sine is calculated in radians).
5245 Find the values of the integral for integers @cite{y} from 1 to 5.
5246 @xref{Algebra Answer 3, 3}. (@bullet{})
5248 Calc's integrator can do many simple integrals symbolically, but many
5249 others are beyond its capabilities.  Suppose we wish to find the area
5250 under the curve @c{$\sin x \ln x$}
5251 @cite{sin(x) ln(x)} over the same range of @cite{x}.  If
5252 you entered this formula and typed @kbd{a i x @key{RET}} (don't bother to try
5253 this), Calc would work for a long time but would be unable to find a
5254 solution.  In fact, there is no closed-form solution to this integral.
5255 Now what do we do?
5257 @cindex Integration, numerical
5258 @cindex Numerical integration
5259 One approach would be to do the integral numerically.  It is not hard
5260 to do this by hand using vector mapping and reduction.  It is rather
5261 slow, though, since the sine and logarithm functions take a long time.
5262 We can save some time by reducing the working precision.
5264 @smallexample
5265 @group
5266 3:  10                  1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9]
5267 2:  1                       .
5268 1:  0.1
5269     .
5271  10 @key{RET} 1 @key{RET} .1 @key{RET}        C-u v x
5272 @end group
5273 @end smallexample
5275 @noindent
5276 (Note that we have used the extended version of @kbd{v x}; we could
5277 also have used plain @kbd{v x} as follows:  @kbd{v x 10 @key{RET} 9 + .1 *}.)
5279 @smallexample
5280 @group
5281 2:  [1, 1.1, ... ]              1:  [0., 0.084941, 0.16993, ... ]
5282 1:  sin(x) ln(x)                    .
5283     .
5285     ' sin(x) ln(x) @key{RET}  s 1    m r  p 5 @key{RET}   V M $ @key{RET}
5287 @end group
5288 @end smallexample
5289 @noindent
5290 @smallexample
5291 @group
5292 1:  3.4195     0.34195
5293     .          .
5295     V R +      0.1 *
5296 @end group
5297 @end smallexample
5299 @noindent
5300 (If you got wildly different results, did you remember to switch
5301 to radians mode?)
5303 Here we have divided the curve into ten segments of equal width;
5304 approximating these segments as rectangular boxes (i.e., assuming
5305 the curve is nearly flat at that resolution), we compute the areas
5306 of the boxes (height times width), then sum the areas.  (It is
5307 faster to sum first, then multiply by the width, since the width
5308 is the same for every box.)
5310 The true value of this integral turns out to be about 0.374, so
5311 we're not doing too well.  Let's try another approach.
5313 @smallexample
5314 @group
5315 1:  sin(x) ln(x)    1:  0.84147 x - 0.84147 + 0.11957 (x - 1)^2 - ...
5316     .                   .
5318     r 1                 a t x=1 @key{RET} 4 @key{RET}
5319 @end group
5320 @end smallexample
5322 @noindent
5323 Here we have computed the Taylor series expansion of the function
5324 about the point @cite{x=1}.  We can now integrate this polynomial
5325 approximation, since polynomials are easy to integrate.
5327 @smallexample
5328 @group
5329 1:  0.42074 x^2 + ...    1:  [-0.0446, -0.42073]      1:  0.3761
5330     .                        .                            .
5332     a i x @key{RET}            [ 2 , 1 ] @key{TAB}  V M $ @key{RET}         V R -
5333 @end group
5334 @end smallexample
5336 @noindent
5337 Better!  By increasing the precision and/or asking for more terms
5338 in the Taylor series, we can get a result as accurate as we like.
5339 (Taylor series converge better away from singularities in the
5340 function such as the one at @code{ln(0)}, so it would also help to
5341 expand the series about the points @cite{x=2} or @cite{x=1.5} instead
5342 of @cite{x=1}.)
5344 @cindex Simpson's rule
5345 @cindex Integration by Simpson's rule
5346 (@bullet{}) @strong{Exercise 4.}  Our first method approximated the
5347 curve by stairsteps of width 0.1; the total area was then the sum
5348 of the areas of the rectangles under these stairsteps.  Our second
5349 method approximated the function by a polynomial, which turned out
5350 to be a better approximation than stairsteps.  A third method is
5351 @dfn{Simpson's rule}, which is like the stairstep method except
5352 that the steps are not required to be flat.  Simpson's rule boils
5353 down to the formula,
5355 @ifinfo
5356 @example
5357 (h/3) * (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + ...
5358               + 2 f(a+(n-2)*h) + 4 f(a+(n-1)*h) + f(a+n*h))
5359 @end example
5360 @end ifinfo
5361 @tex
5362 \turnoffactive
5363 \beforedisplay
5364 $$ \displaylines{
5365       \qquad {h \over 3} (f(a) + 4 f(a+h) + 2 f(a+2h) + 4 f(a+3h) + \cdots
5366    \hfill \cr \hfill    {} + 2 f(a+(n-2)h) + 4 f(a+(n-1)h) + f(a+n h)) \qquad
5367 } $$
5368 \afterdisplay
5369 @end tex
5371 @noindent
5372 where @cite{n} (which must be even) is the number of slices and @cite{h}
5373 is the width of each slice.  These are 10 and 0.1 in our example.
5374 For reference, here is the corresponding formula for the stairstep
5375 method:
5377 @ifinfo
5378 @example
5379 h * (f(a) + f(a+h) + f(a+2h) + f(a+3h) + ...
5380           + f(a+(n-2)*h) + f(a+(n-1)*h))
5381 @end example
5382 @end ifinfo
5383 @tex
5384 \turnoffactive
5385 \beforedisplay
5386 $$ h (f(a) + f(a+h) + f(a+2h) + f(a+3h) + \cdots
5387            + f(a+(n-2)h) + f(a+(n-1)h)) $$
5388 \afterdisplay
5389 @end tex
5391 Compute the integral from 1 to 2 of @c{$\sin x \ln x$}
5392 @cite{sin(x) ln(x)} using
5393 Simpson's rule with 10 slices.  @xref{Algebra Answer 4, 4}. (@bullet{})
5395 Calc has a built-in @kbd{a I} command for doing numerical integration.
5396 It uses @dfn{Romberg's method}, which is a more sophisticated cousin
5397 of Simpson's rule.  In particular, it knows how to keep refining the
5398 result until the current precision is satisfied.
5400 @c [fix-ref Selecting Sub-Formulas]
5401 Aside from the commands we've seen so far, Calc also provides a
5402 large set of commands for operating on parts of formulas.  You
5403 indicate the desired sub-formula by placing the cursor on any part
5404 of the formula before giving a @dfn{selection} command.  Selections won't
5405 be covered in the tutorial; @pxref{Selecting Subformulas}, for
5406 details and examples.
5408 @c hard exercise: simplify (2^(n r) - 2^(r*(n - 1))) / (2^r - 1) 2^(n - 1)
5409 @c                to 2^((n-1)*(r-1)).
5411 @node Rewrites Tutorial, , Basic Algebra Tutorial, Algebra Tutorial
5412 @subsection Rewrite Rules
5414 @noindent
5415 No matter how many built-in commands Calc provided for doing algebra,
5416 there would always be something you wanted to do that Calc didn't have
5417 in its repertoire.  So Calc also provides a @dfn{rewrite rule} system
5418 that you can use to define your own algebraic manipulations.
5420 Suppose we want to simplify this trigonometric formula:
5422 @smallexample
5423 @group
5424 1:  1 / cos(x) - sin(x) tan(x)
5425     .
5427     ' 1/cos(x) - sin(x) tan(x) @key{RET}   s 1
5428 @end group
5429 @end smallexample
5431 @noindent
5432 If we were simplifying this by hand, we'd probably replace the
5433 @samp{tan} with a @samp{sin/cos} first, then combine over a common
5434 denominator.  There is no Calc command to do the former; the @kbd{a n}
5435 algebra command will do the latter but we'll do both with rewrite
5436 rules just for practice.
5438 Rewrite rules are written with the @samp{:=} symbol.
5440 @smallexample
5441 @group
5442 1:  1 / cos(x) - sin(x)^2 / cos(x)
5443     .
5445     a r tan(a) := sin(a)/cos(a) @key{RET}
5446 @end group
5447 @end smallexample
5449 @noindent
5450 (The ``assignment operator'' @samp{:=} has several uses in Calc.  All
5451 by itself the formula @samp{tan(a) := sin(a)/cos(a)} doesn't do anything,
5452 but when it is given to the @kbd{a r} command, that command interprets
5453 it as a rewrite rule.)
5455 The lefthand side, @samp{tan(a)}, is called the @dfn{pattern} of the
5456 rewrite rule.  Calc searches the formula on the stack for parts that
5457 match the pattern.  Variables in a rewrite pattern are called
5458 @dfn{meta-variables}, and when matching the pattern each meta-variable
5459 can match any sub-formula.  Here, the meta-variable @samp{a} matched
5460 the actual variable @samp{x}.
5462 When the pattern part of a rewrite rule matches a part of the formula,
5463 that part is replaced by the righthand side with all the meta-variables
5464 substituted with the things they matched.  So the result is
5465 @samp{sin(x) / cos(x)}.  Calc's normal algebraic simplifications then
5466 mix this in with the rest of the original formula.
5468 To merge over a common denominator, we can use another simple rule:
5470 @smallexample
5471 @group
5472 1:  (1 - sin(x)^2) / cos(x)
5473     .
5475     a r a/x + b/x := (a+b)/x @key{RET}
5476 @end group
5477 @end smallexample
5479 This rule points out several interesting features of rewrite patterns.
5480 First, if a meta-variable appears several times in a pattern, it must
5481 match the same thing everywhere.  This rule detects common denominators
5482 because the same meta-variable @samp{x} is used in both of the
5483 denominators.
5485 Second, meta-variable names are independent from variables in the
5486 target formula.  Notice that the meta-variable @samp{x} here matches
5487 the subformula @samp{cos(x)}; Calc never confuses the two meanings of
5488 @samp{x}.
5490 And third, rewrite patterns know a little bit about the algebraic
5491 properties of formulas.  The pattern called for a sum of two quotients;
5492 Calc was able to match a difference of two quotients by matching
5493 @samp{a = 1}, @samp{b = -sin(x)^2}, and @samp{x = cos(x)}.
5495 @c [fix-ref Algebraic Properties of Rewrite Rules]
5496 We could just as easily have written @samp{a/x - b/x := (a-b)/x} for
5497 the rule.  It would have worked just the same in all cases.  (If we
5498 really wanted the rule to apply only to @samp{+} or only to @samp{-},
5499 we could have used the @code{plain} symbol.  @xref{Algebraic Properties
5500 of Rewrite Rules}, for some examples of this.)
5502 One more rewrite will complete the job.  We want to use the identity
5503 @samp{sin(x)^2 + cos(x)^2 = 1}, but of course we must first rearrange
5504 the identity in a way that matches our formula.  The obvious rule
5505 would be @samp{@w{1 - sin(x)^2} := cos(x)^2}, but a little thought shows
5506 that the rule @samp{sin(x)^2 := 1 - cos(x)^2} will also work.  The
5507 latter rule has a more general pattern so it will work in many other
5508 situations, too.
5510 @smallexample
5511 @group
5512 1:  (1 + cos(x)^2 - 1) / cos(x)           1:  cos(x)
5513     .                                         .
5515     a r sin(x)^2 := 1 - cos(x)^2 @key{RET}          a s
5516 @end group
5517 @end smallexample
5519 You may ask, what's the point of using the most general rule if you
5520 have to type it in every time anyway?  The answer is that Calc allows
5521 you to store a rewrite rule in a variable, then give the variable
5522 name in the @kbd{a r} command.  In fact, this is the preferred way to
5523 use rewrites.  For one, if you need a rule once you'll most likely
5524 need it again later.  Also, if the rule doesn't work quite right you
5525 can simply Undo, edit the variable, and run the rule again without
5526 having to retype it.
5528 @smallexample
5529 @group
5530 ' tan(x) := sin(x)/cos(x) @key{RET}      s t tsc @key{RET}
5531 ' a/x + b/x := (a+b)/x @key{RET}         s t merge @key{RET}
5532 ' sin(x)^2 := 1 - cos(x)^2 @key{RET}     s t sinsqr @key{RET}
5534 1:  1 / cos(x) - sin(x) tan(x)     1:  cos(x)
5535     .                                  .
5537     r 1                a r tsc @key{RET}  a r merge @key{RET}  a r sinsqr @key{RET}  a s
5538 @end group
5539 @end smallexample
5541 To edit a variable, type @kbd{s e} and the variable name, use regular
5542 Emacs editing commands as necessary, then type @kbd{M-# M-#} or
5543 @kbd{C-c C-c} to store the edited value back into the variable.
5544 You can also use @w{@kbd{s e}} to create a new variable if you wish.
5546 Notice that the first time you use each rule, Calc puts up a ``compiling''
5547 message briefly.  The pattern matcher converts rules into a special
5548 optimized pattern-matching language rather than using them directly.
5549 This allows @kbd{a r} to apply even rather complicated rules very
5550 efficiently.  If the rule is stored in a variable, Calc compiles it
5551 only once and stores the compiled form along with the variable.  That's
5552 another good reason to store your rules in variables rather than
5553 entering them on the fly.
5555 (@bullet{}) @strong{Exercise 1.}  Type @kbd{m s} to get symbolic
5556 mode, then enter the formula @samp{@w{(2 + sqrt(2))} / @w{(1 + sqrt(2))}}.
5557 Using a rewrite rule, simplify this formula by multiplying both
5558 sides by the conjugate @w{@samp{1 - sqrt(2)}}.  The result will have
5559 to be expanded by the distributive law; do this with another
5560 rewrite.  @xref{Rewrites Answer 1, 1}. (@bullet{})
5562 The @kbd{a r} command can also accept a vector of rewrite rules, or
5563 a variable containing a vector of rules.
5565 @smallexample
5566 @group
5567 1:  [tsc, merge, sinsqr]          1:  [tan(x) := sin(x) / cos(x), ... ]
5568     .                                 .
5570     ' [tsc,merge,sinsqr] @key{RET}          =
5572 @end group
5573 @end smallexample
5574 @noindent
5575 @smallexample
5576 @group
5577 1:  1 / cos(x) - sin(x) tan(x)    1:  cos(x)
5578     .                                 .
5580     s t trig @key{RET}  r 1                 a r trig @key{RET}  a s
5581 @end group
5582 @end smallexample
5584 @c [fix-ref Nested Formulas with Rewrite Rules]
5585 Calc tries all the rules you give against all parts of the formula,
5586 repeating until no further change is possible.  (The exact order in
5587 which things are tried is rather complex, but for simple rules like
5588 the ones we've used here the order doesn't really matter.
5589 @xref{Nested Formulas with Rewrite Rules}.)
5591 Calc actually repeats only up to 100 times, just in case your rule set
5592 has gotten into an infinite loop.  You can give a numeric prefix argument
5593 to @kbd{a r} to specify any limit.  In particular, @kbd{M-1 a r} does
5594 only one rewrite at a time.
5596 @smallexample
5597 @group
5598 1:  1 / cos(x) - sin(x)^2 / cos(x)    1:  (1 - sin(x)^2) / cos(x)
5599     .                                     .
5601     r 1  M-1 a r trig @key{RET}                 M-1 a r trig @key{RET}
5602 @end group
5603 @end smallexample
5605 You can type @kbd{M-0 a r} if you want no limit at all on the number
5606 of rewrites that occur.
5608 Rewrite rules can also be @dfn{conditional}.  Simply follow the rule
5609 with a @samp{::} symbol and the desired condition.  For example,
5611 @smallexample
5612 @group
5613 1:  exp(2 pi i) + exp(3 pi i) + exp(4 pi i)
5614     .
5616     ' exp(2 pi i) + exp(3 pi i) + exp(4 pi i) @key{RET}
5618 @end group
5619 @end smallexample
5620 @noindent
5621 @smallexample
5622 @group
5623 1:  1 + exp(3 pi i) + 1
5624     .
5626     a r exp(k pi i) := 1 :: k % 2 = 0 @key{RET}
5627 @end group
5628 @end smallexample
5630 @noindent
5631 (Recall, @samp{k % 2} is the remainder from dividing @samp{k} by 2,
5632 which will be zero only when @samp{k} is an even integer.)
5634 An interesting point is that the variables @samp{pi} and @samp{i}
5635 were matched literally rather than acting as meta-variables.
5636 This is because they are special-constant variables.  The special
5637 constants @samp{e}, @samp{phi}, and so on also match literally.
5638 A common error with rewrite
5639 rules is to write, say, @samp{f(a,b,c,d,e) := g(a+b+c+d+e)}, expecting
5640 to match any @samp{f} with five arguments but in fact matching
5641 only when the fifth argument is literally @samp{e}!@refill
5643 @cindex Fibonacci numbers
5644 @ignore
5645 @starindex
5646 @end ignore
5647 @tindex fib
5648 Rewrite rules provide an interesting way to define your own functions.
5649 Suppose we want to define @samp{fib(n)} to produce the @var{n}th
5650 Fibonacci number.  The first two Fibonacci numbers are each 1;
5651 later numbers are formed by summing the two preceding numbers in
5652 the sequence.  This is easy to express in a set of three rules:
5654 @smallexample
5655 @group
5656 ' [fib(1) := 1, fib(2) := 1, fib(n) := fib(n-1) + fib(n-2)] @key{RET}  s t fib
5658 1:  fib(7)               1:  13
5659     .                        .
5661     ' fib(7) @key{RET}             a r fib @key{RET}
5662 @end group
5663 @end smallexample
5665 One thing that is guaranteed about the order that rewrites are tried
5666 is that, for any given subformula, earlier rules in the rule set will
5667 be tried for that subformula before later ones.  So even though the
5668 first and third rules both match @samp{fib(1)}, we know the first will
5669 be used preferentially.
5671 This rule set has one dangerous bug:  Suppose we apply it to the
5672 formula @samp{fib(x)}?  (Don't actually try this.)  The third rule
5673 will match @samp{fib(x)} and replace it with @w{@samp{fib(x-1) + fib(x-2)}}.
5674 Each of these will then be replaced to get @samp{fib(x-2) + 2 fib(x-3) +
5675 fib(x-4)}, and so on, expanding forever.  What we really want is to apply
5676 the third rule only when @samp{n} is an integer greater than two.  Type
5677 @w{@kbd{s e fib @key{RET}}}, then edit the third rule to:
5679 @smallexample
5680 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2
5681 @end smallexample
5683 @noindent
5684 Now:
5686 @smallexample
5687 @group
5688 1:  fib(6) + fib(x) + fib(0)      1:  8 + fib(x) + fib(0)
5689     .                                 .
5691     ' fib(6)+fib(x)+fib(0) @key{RET}        a r fib @key{RET}
5692 @end group
5693 @end smallexample
5695 @noindent
5696 We've created a new function, @code{fib}, and a new command,
5697 @w{@kbd{a r fib @key{RET}}}, which means ``evaluate all @code{fib} calls in
5698 this formula.''  To make things easier still, we can tell Calc to
5699 apply these rules automatically by storing them in the special
5700 variable @code{EvalRules}.
5702 @smallexample
5703 @group
5704 1:  [fib(1) := ...]    .                1:  [8, 13]
5705     .                                       .
5707     s r fib @key{RET}        s t EvalRules @key{RET}    ' [fib(6), fib(7)] @key{RET}
5708 @end group
5709 @end smallexample
5711 It turns out that this rule set has the problem that it does far
5712 more work than it needs to when @samp{n} is large.  Consider the
5713 first few steps of the computation of @samp{fib(6)}:
5715 @smallexample
5716 @group
5717 fib(6) =
5718 fib(5)              +               fib(4) =
5719 fib(4)     +      fib(3)     +      fib(3)     +      fib(2) =
5720 fib(3) + fib(2) + fib(2) + fib(1) + fib(2) + fib(1) + 1 = ...
5721 @end group
5722 @end smallexample
5724 @noindent
5725 Note that @samp{fib(3)} appears three times here.  Unless Calc's
5726 algebraic simplifier notices the multiple @samp{fib(3)}s and combines
5727 them (and, as it happens, it doesn't), this rule set does lots of
5728 needless recomputation.  To cure the problem, type @code{s e EvalRules}
5729 to edit the rules (or just @kbd{s E}, a shorthand command for editing
5730 @code{EvalRules}) and add another condition:
5732 @smallexample
5733 fib(n) := fib(n-1) + fib(n-2) :: integer(n) :: n > 2 :: remember
5734 @end smallexample
5736 @noindent
5737 If a @samp{:: remember} condition appears anywhere in a rule, then if
5738 that rule succeeds Calc will add another rule that describes that match
5739 to the front of the rule set.  (Remembering works in any rule set, but
5740 for technical reasons it is most effective in @code{EvalRules}.)  For
5741 example, if the rule rewrites @samp{fib(7)} to something that evaluates
5742 to 13, then the rule @samp{fib(7) := 13} will be added to the rule set.
5744 Type @kbd{' fib(8) @key{RET}} to compute the eighth Fibonacci number, then
5745 type @kbd{s E} again to see what has happened to the rule set.
5747 With the @code{remember} feature, our rule set can now compute
5748 @samp{fib(@var{n})} in just @var{n} steps.  In the process it builds
5749 up a table of all Fibonacci numbers up to @var{n}.  After we have
5750 computed the result for a particular @var{n}, we can get it back
5751 (and the results for all smaller @var{n}) later in just one step.
5753 All Calc operations will run somewhat slower whenever @code{EvalRules}
5754 contains any rules.  You should type @kbd{s u EvalRules @key{RET}} now to
5755 un-store the variable.
5757 (@bullet{}) @strong{Exercise 2.}  Sometimes it is possible to reformulate
5758 a problem to reduce the amount of recursion necessary to solve it.
5759 Create a rule that, in about @var{n} simple steps and without recourse
5760 to the @code{remember} option, replaces @samp{fib(@var{n}, 1, 1)} with
5761 @samp{fib(1, @var{x}, @var{y})} where @var{x} and @var{y} are the
5762 @var{n}th and @var{n+1}st Fibonacci numbers, respectively.  This rule is
5763 rather clunky to use, so add a couple more rules to make the ``user
5764 interface'' the same as for our first version: enter @samp{fib(@var{n})},
5765 get back a plain number.  @xref{Rewrites Answer 2, 2}. (@bullet{})
5767 There are many more things that rewrites can do.  For example, there
5768 are @samp{&&&} and @samp{|||} pattern operators that create ``and''
5769 and ``or'' combinations of rules.  As one really simple example, we
5770 could combine our first two Fibonacci rules thusly:
5772 @example
5773 [fib(1 ||| 2) := 1, fib(n) := ... ]
5774 @end example
5776 @noindent
5777 That means ``@code{fib} of something matching either 1 or 2 rewrites
5778 to 1.''
5780 You can also make meta-variables optional by enclosing them in @code{opt}.
5781 For example, the pattern @samp{a + b x} matches @samp{2 + 3 x} but not
5782 @samp{2 + x} or @samp{3 x} or @samp{x}.  The pattern @samp{opt(a) + opt(b) x}
5783 matches all of these forms, filling in a default of zero for @samp{a}
5784 and one for @samp{b}.
5786 (@bullet{}) @strong{Exercise 3.}  Your friend Joe had @samp{2 + 3 x}
5787 on the stack and tried to use the rule
5788 @samp{opt(a) + opt(b) x := f(a, b, x)}.  What happened?
5789 @xref{Rewrites Answer 3, 3}. (@bullet{})
5791 (@bullet{}) @strong{Exercise 4.}  Starting with a positive integer @cite{a},
5792 divide @cite{a} by two if it is even, otherwise compute @cite{3 a + 1}.
5793 Now repeat this step over and over.  A famous unproved conjecture
5794 is that for any starting @cite{a}, the sequence always eventually
5795 reaches 1.  Given the formula @samp{seq(@var{a}, 0)}, write a set of
5796 rules that convert this into @samp{seq(1, @var{n})} where @var{n}
5797 is the number of steps it took the sequence to reach the value 1.
5798 Now enhance the rules to accept @samp{seq(@var{a})} as a starting
5799 configuration, and to stop with just the number @var{n} by itself.
5800 Now make the result be a vector of values in the sequence, from @var{a}
5801 to 1.  (The formula @samp{@var{x}|@var{y}} appends the vectors @var{x}
5802 and @var{y}.)  For example, rewriting @samp{seq(6)} should yield the
5803 vector @cite{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
5804 @xref{Rewrites Answer 4, 4}. (@bullet{})
5806 (@bullet{}) @strong{Exercise 5.}  Define, using rewrite rules, a function
5807 @samp{nterms(@var{x})} that returns the number of terms in the sum
5808 @var{x}, or 1 if @var{x} is not a sum.  (A @dfn{sum} for our purposes
5809 is one or more non-sum terms separated by @samp{+} or @samp{-} signs,
5810 so that @cite{2 - 3 (x + y) + x y} is a sum of three terms.)
5811 @xref{Rewrites Answer 5, 5}. (@bullet{})
5813 (@bullet{}) @strong{Exercise 6.}  Calc considers the form @cite{0^0}
5814 to be ``indeterminate,'' and leaves it unevaluated (assuming infinite
5815 mode is not enabled).  Some people prefer to define @cite{0^0 = 1},
5816 so that the identity @cite{x^0 = 1} can safely be used for all @cite{x}.
5817 Find a way to make Calc follow this convention.  What happens if you
5818 now type @kbd{m i} to turn on infinite mode?
5819 @xref{Rewrites Answer 6, 6}. (@bullet{})
5821 (@bullet{}) @strong{Exercise 7.}  A Taylor series for a function is an
5822 infinite series that exactly equals the value of that function at
5823 values of @cite{x} near zero.
5825 @ifinfo
5826 @example
5827 cos(x) = 1 - x^2 / 2! + x^4 / 4! - x^6 / 6! + ...
5828 @end example
5829 @end ifinfo
5830 @tex
5831 \turnoffactive \let\rm\goodrm
5832 \beforedisplay
5833 $$ \cos x = 1 - {x^2 \over 2!} + {x^4 \over 4!} - {x^6 \over 6!} + \cdots $$
5834 \afterdisplay
5835 @end tex
5837 The @kbd{a t} command produces a @dfn{truncated Taylor series} which
5838 is obtained by dropping all the terms higher than, say, @cite{x^2}.
5839 Calc represents the truncated Taylor series as a polynomial in @cite{x}.
5840 Mathematicians often write a truncated series using a ``big-O'' notation
5841 that records what was the lowest term that was truncated.
5843 @ifinfo
5844 @example
5845 cos(x) = 1 - x^2 / 2! + O(x^3)
5846 @end example
5847 @end ifinfo
5848 @tex
5849 \turnoffactive \let\rm\goodrm
5850 \beforedisplay
5851 $$ \cos x = 1 - {x^2 \over 2!} + O(x^3) $$
5852 \afterdisplay
5853 @end tex
5855 @noindent
5856 The meaning of @cite{O(x^3)} is ``a quantity which is negligibly small
5857 if @cite{x^3} is considered negligibly small as @cite{x} goes to zero.''
5859 The exercise is to create rewrite rules that simplify sums and products of
5860 power series represented as @samp{@var{polynomial} + O(@var{var}^@var{n})}.
5861 For example, given @samp{1 - x^2 / 2 + O(x^3)} and @samp{x - x^3 / 6 + O(x^4)}
5862 on the stack, we want to be able to type @kbd{*} and get the result
5863 @samp{x - 2:3 x^3 + O(x^4)}.  Don't worry if the terms of the sum are
5864 rearranged or if @kbd{a s} needs to be typed after rewriting.  (This one
5865 is rather tricky; the solution at the end of this chapter uses 6 rewrite
5866 rules.  Hint:  The @samp{constant(x)} condition tests whether @samp{x} is
5867 a number.)  @xref{Rewrites Answer 7, 7}. (@bullet{})
5869 @c [fix-ref Rewrite Rules]
5870 @xref{Rewrite Rules}, for the whole story on rewrite rules.
5872 @node Programming Tutorial, Answers to Exercises, Algebra Tutorial, Tutorial
5873 @section Programming Tutorial
5875 @noindent
5876 The Calculator is written entirely in Emacs Lisp, a highly extensible
5877 language.  If you know Lisp, you can program the Calculator to do
5878 anything you like.  Rewrite rules also work as a powerful programming
5879 system.  But Lisp and rewrite rules take a while to master, and often
5880 all you want to do is define a new function or repeat a command a few
5881 times.  Calc has features that allow you to do these things easily.
5883 (Note that the programming commands relating to user-defined keys
5884 are not yet supported under Lucid Emacs 19.)
5886 One very limited form of programming is defining your own functions.
5887 Calc's @kbd{Z F} command allows you to define a function name and
5888 key sequence to correspond to any formula.  Programming commands use
5889 the shift-@kbd{Z} prefix; the user commands they create use the lower
5890 case @kbd{z} prefix.
5892 @smallexample
5893 @group
5894 1:  1 + x + x^2 / 2 + x^3 / 6         1:  1 + x + x^2 / 2 + x^3 / 6
5895     .                                     .
5897     ' 1 + x + x^2/2! + x^3/3! @key{RET}         Z F e myexp @key{RET} @key{RET} @key{RET} y
5898 @end group
5899 @end smallexample
5901 This polynomial is a Taylor series approximation to @samp{exp(x)}.
5902 The @kbd{Z F} command asks a number of questions.  The above answers
5903 say that the key sequence for our function should be @kbd{z e}; the
5904 @kbd{M-x} equivalent should be @code{calc-myexp}; the name of the
5905 function in algebraic formulas should also be @code{myexp}; the
5906 default argument list @samp{(x)} is acceptable; and finally @kbd{y}
5907 answers the question ``leave it in symbolic form for non-constant
5908 arguments?''
5910 @smallexample
5911 @group
5912 1:  1.3495     2:  1.3495     3:  1.3495
5913     .          1:  1.34986    2:  1.34986
5914                    .          1:  myexp(a + 1)
5915                                   .
5917     .3 z e         .3 E           ' a+1 @key{RET} z e
5918 @end group
5919 @end smallexample
5921 @noindent
5922 First we call our new @code{exp} approximation with 0.3 as an
5923 argument, and compare it with the true @code{exp} function.  Then
5924 we note that, as requested, if we try to give @kbd{z e} an
5925 argument that isn't a plain number, it leaves the @code{myexp}
5926 function call in symbolic form.  If we had answered @kbd{n} to the
5927 final question, @samp{myexp(a + 1)} would have evaluated by plugging
5928 in @samp{a + 1} for @samp{x} in the defining formula.
5930 @cindex Sine integral Si(x)
5931 @ignore
5932 @starindex
5933 @end ignore
5934 @tindex Si
5935 (@bullet{}) @strong{Exercise 1.}  The ``sine integral'' function
5936 @c{${\rm Si}(x)$}
5937 @cite{Si(x)} is defined as the integral of @samp{sin(t)/t} for
5938 @cite{t = 0} to @cite{x} in radians.  (It was invented because this
5939 integral has no solution in terms of basic functions; if you give it
5940 to Calc's @kbd{a i} command, it will ponder it for a long time and then
5941 give up.)  We can use the numerical integration command, however,
5942 which in algebraic notation is written like @samp{ninteg(f(t), t, 0, x)}
5943 with any integrand @samp{f(t)}.  Define a @kbd{z s} command and
5944 @code{Si} function that implement this.  You will need to edit the
5945 default argument list a bit.  As a test, @samp{Si(1)} should return
5946 0.946083.  (Hint:  @code{ninteg} will run a lot faster if you reduce
5947 the precision to, say, six digits beforehand.)
5948 @xref{Programming Answer 1, 1}. (@bullet{})
5950 The simplest way to do real ``programming'' of Emacs is to define a
5951 @dfn{keyboard macro}.  A keyboard macro is simply a sequence of
5952 keystrokes which Emacs has stored away and can play back on demand.
5953 For example, if you find yourself typing @kbd{H a S x @key{RET}} often,
5954 you may wish to program a keyboard macro to type this for you.
5956 @smallexample
5957 @group
5958 1:  y = sqrt(x)          1:  x = y^2
5959     .                        .
5961     ' y=sqrt(x) @key{RET}       C-x ( H a S x @key{RET} C-x )
5963 1:  y = cos(x)           1:  x = s1 arccos(y) + 2 pi n1
5964     .                        .
5966     ' y=cos(x) @key{RET}           X
5967 @end group
5968 @end smallexample
5970 @noindent
5971 When you type @kbd{C-x (}, Emacs begins recording.  But it is also
5972 still ready to execute your keystrokes, so you're really ``training''
5973 Emacs by walking it through the procedure once.  When you type
5974 @w{@kbd{C-x )}}, the macro is recorded.  You can now type @kbd{X} to
5975 re-execute the same keystrokes.
5977 You can give a name to your macro by typing @kbd{Z K}.
5979 @smallexample
5980 @group
5981 1:  .              1:  y = x^4         1:  x = s2 sqrt(s1 sqrt(y))
5982                        .                   .
5984   Z K x @key{RET}            ' y=x^4 @key{RET}         z x
5985 @end group
5986 @end smallexample
5988 @noindent
5989 Notice that we use shift-@kbd{Z} to define the command, and lower-case
5990 @kbd{z} to call it up.
5992 Keyboard macros can call other macros.
5994 @smallexample
5995 @group
5996 1:  abs(x)        1:  x = s1 y                1:  2 / x    1:  x = 2 / y
5997     .                 .                           .            .
5999  ' abs(x) @key{RET}   C-x ( ' y @key{RET} a = z x C-x )    ' 2/x @key{RET}       X
6000 @end group
6001 @end smallexample
6003 (@bullet{}) @strong{Exercise 2.}  Define a keyboard macro to negate
6004 the item in level 3 of the stack, without disturbing the rest of
6005 the stack.  @xref{Programming Answer 2, 2}. (@bullet{})
6007 (@bullet{}) @strong{Exercise 3.}  Define keyboard macros to compute
6008 the following functions:
6010 @enumerate
6011 @item
6012 Compute @c{$\displaystyle{\sin x \over x}$}
6013 @cite{sin(x) / x}, where @cite{x} is the number on the
6014 top of the stack.
6016 @item
6017 Compute the base-@cite{b} logarithm, just like the @kbd{B} key except
6018 the arguments are taken in the opposite order.
6020 @item
6021 Produce a vector of integers from 1 to the integer on the top of
6022 the stack.
6023 @end enumerate
6024 @noindent
6025 @xref{Programming Answer 3, 3}. (@bullet{})
6027 (@bullet{}) @strong{Exercise 4.}  Define a keyboard macro to compute
6028 the average (mean) value of a list of numbers.
6029 @xref{Programming Answer 4, 4}. (@bullet{})
6031 In many programs, some of the steps must execute several times.
6032 Calc has @dfn{looping} commands that allow this.  Loops are useful
6033 inside keyboard macros, but actually work at any time.
6035 @smallexample
6036 @group
6037 1:  x^6          2:  x^6        1: 360 x^2
6038     .            1:  4             .
6039                      .
6041   ' x^6 @key{RET}          4         Z < a d x @key{RET} Z >
6042 @end group
6043 @end smallexample
6045 @noindent
6046 Here we have computed the fourth derivative of @cite{x^6} by
6047 enclosing a derivative command in a ``repeat loop'' structure.
6048 This structure pops a repeat count from the stack, then
6049 executes the body of the loop that many times.
6051 If you make a mistake while entering the body of the loop,
6052 type @w{@kbd{Z C-g}} to cancel the loop command.
6054 @cindex Fibonacci numbers
6055 Here's another example:
6057 @smallexample
6058 @group
6059 3:  1               2:  10946
6060 2:  1               1:  17711
6061 1:  20                  .
6062     .
6064 1 @key{RET} @key{RET} 20       Z < @key{TAB} C-j + Z >
6065 @end group
6066 @end smallexample
6068 @noindent
6069 The numbers in levels 2 and 1 should be the 21st and 22nd Fibonacci
6070 numbers, respectively.  (To see what's going on, try a few repetitions
6071 of the loop body by hand; @kbd{C-j}, also on the Line-Feed or @key{LFD}
6072 key if you have one, makes a copy of the number in level 2.)
6074 @cindex Golden ratio
6075 @cindex Phi, golden ratio
6076 A fascinating property of the Fibonacci numbers is that the @cite{n}th
6077 Fibonacci number can be found directly by computing @c{$\phi^n / \sqrt{5}$}
6078 @cite{phi^n / sqrt(5)}
6079 and then rounding to the nearest integer, where @c{$\phi$ (``phi'')}
6080 @cite{phi}, the
6081 ``golden ratio,'' is @c{$(1 + \sqrt{5}) / 2$}
6082 @cite{(1 + sqrt(5)) / 2}.  (For convenience, this constant is available
6083 from the @code{phi} variable, or the @kbd{I H P} command.)
6085 @smallexample
6086 @group
6087 1:  1.61803         1:  24476.0000409    1:  10945.9999817    1:  10946
6088     .                   .                    .                    .
6090     I H P               21 ^                 5 Q /                R
6091 @end group
6092 @end smallexample
6094 @cindex Continued fractions
6095 (@bullet{}) @strong{Exercise 5.}  The @dfn{continued fraction}
6096 representation of @c{$\phi$}
6097 @cite{phi} is @c{$1 + 1/(1 + 1/(1 + 1/( \ldots )))$}
6098 @cite{1 + 1/(1 + 1/(1 + 1/( ...@: )))}.
6099 We can compute an approximate value by carrying this however far
6100 and then replacing the innermost @c{$1/( \ldots )$}
6101 @cite{1/( ...@: )} by 1.  Approximate
6102 @c{$\phi$}
6103 @cite{phi} using a twenty-term continued fraction.
6104 @xref{Programming Answer 5, 5}. (@bullet{})
6106 (@bullet{}) @strong{Exercise 6.}  Linear recurrences like the one for
6107 Fibonacci numbers can be expressed in terms of matrices.  Given a
6108 vector @w{@cite{[a, b]}} determine a matrix which, when multiplied by this
6109 vector, produces the vector @cite{[b, c]}, where @cite{a}, @cite{b} and
6110 @cite{c} are three successive Fibonacci numbers.  Now write a program
6111 that, given an integer @cite{n}, computes the @cite{n}th Fibonacci number
6112 using matrix arithmetic.  @xref{Programming Answer 6, 6}. (@bullet{})
6114 @cindex Harmonic numbers
6115 A more sophisticated kind of loop is the @dfn{for} loop.  Suppose
6116 we wish to compute the 20th ``harmonic'' number, which is equal to
6117 the sum of the reciprocals of the integers from 1 to 20.
6119 @smallexample
6120 @group
6121 3:  0               1:  3.597739
6122 2:  1                   .
6123 1:  20
6124     .
6126 0 @key{RET} 1 @key{RET} 20         Z ( & + 1 Z )
6127 @end group
6128 @end smallexample
6130 @noindent
6131 The ``for'' loop pops two numbers, the lower and upper limits, then
6132 repeats the body of the loop as an internal counter increases from
6133 the lower limit to the upper one.  Just before executing the loop
6134 body, it pushes the current loop counter.  When the loop body
6135 finishes, it pops the ``step,'' i.e., the amount by which to
6136 increment the loop counter.  As you can see, our loop always
6137 uses a step of one.
6139 This harmonic number function uses the stack to hold the running
6140 total as well as for the various loop housekeeping functions.  If
6141 you find this disorienting, you can sum in a variable instead:
6143 @smallexample
6144 @group
6145 1:  0         2:  1                  .            1:  3.597739
6146     .         1:  20                                  .
6147                   .
6149     0 t 7       1 @key{RET} 20      Z ( & s + 7 1 Z )       r 7
6150 @end group
6151 @end smallexample
6153 @noindent
6154 The @kbd{s +} command adds the top-of-stack into the value in a
6155 variable (and removes that value from the stack).
6157 It's worth noting that many jobs that call for a ``for'' loop can
6158 also be done more easily by Calc's high-level operations.  Two
6159 other ways to compute harmonic numbers are to use vector mapping
6160 and reduction (@kbd{v x 20}, then @w{@kbd{V M &}}, then @kbd{V R +}),
6161 or to use the summation command @kbd{a +}.  Both of these are
6162 probably easier than using loops.  However, there are some
6163 situations where loops really are the way to go:
6165 (@bullet{}) @strong{Exercise 7.}  Use a ``for'' loop to find the first
6166 harmonic number which is greater than 4.0.
6167 @xref{Programming Answer 7, 7}. (@bullet{})
6169 Of course, if we're going to be using variables in our programs,
6170 we have to worry about the programs clobbering values that the
6171 caller was keeping in those same variables.  This is easy to
6172 fix, though:
6174 @smallexample
6175 @group
6176     .        1:  0.6667       1:  0.6667     3:  0.6667
6177                  .                .          2:  3.597739
6178                                              1:  0.6667
6179                                                  .
6181    Z `    p 4 @key{RET} 2 @key{RET} 3 /   s 7 s s a @key{RET}    Z '  r 7 s r a @key{RET}
6182 @end group
6183 @end smallexample
6185 @noindent
6186 When we type @kbd{Z `} (that's a back-quote character), Calc saves
6187 its mode settings and the contents of the ten ``quick variables''
6188 for later reference.  When we type @kbd{Z '} (that's an apostrophe
6189 now), Calc restores those saved values.  Thus the @kbd{p 4} and
6190 @kbd{s 7} commands have no effect outside this sequence.  Wrapping
6191 this around the body of a keyboard macro ensures that it doesn't
6192 interfere with what the user of the macro was doing.  Notice that
6193 the contents of the stack, and the values of named variables,
6194 survive past the @kbd{Z '} command.
6196 @cindex Bernoulli numbers, approximate
6197 The @dfn{Bernoulli numbers} are a sequence with the interesting
6198 property that all of the odd Bernoulli numbers are zero, and the
6199 even ones, while difficult to compute, can be roughly approximated
6200 by the formula @c{$\displaystyle{2 n! \over (2 \pi)^n}$}
6201 @cite{2 n!@: / (2 pi)^n}.  Let's write a keyboard
6202 macro to compute (approximate) Bernoulli numbers.  (Calc has a
6203 command, @kbd{k b}, to compute exact Bernoulli numbers, but
6204 this command is very slow for large @cite{n} since the higher
6205 Bernoulli numbers are very large fractions.)
6207 @smallexample
6208 @group
6209 1:  10               1:  0.0756823
6210     .                    .
6212     10     C-x ( @key{RET} 2 % Z [ @key{DEL} 0 Z : ' 2 $! / (2 pi)^$ @key{RET} = Z ] C-x )
6213 @end group
6214 @end smallexample
6216 @noindent
6217 You can read @kbd{Z [} as ``then,'' @kbd{Z :} as ``else,'' and
6218 @kbd{Z ]} as ``end-if.''  There is no need for an explicit ``if''
6219 command.  For the purposes of @w{@kbd{Z [}}, the condition is ``true''
6220 if the value it pops from the stack is a nonzero number, or ``false''
6221 if it pops zero or something that is not a number (like a formula).
6222 Here we take our integer argument modulo 2; this will be nonzero
6223 if we're asking for an odd Bernoulli number.
6225 The actual tenth Bernoulli number is @cite{5/66}.
6227 @smallexample
6228 @group
6229 3:  0.0756823    1:  0          1:  0.25305    1:  0          1:  1.16659
6230 2:  5:66             .              .              .              .
6231 1:  0.0757575
6232     .
6234 10 k b @key{RET} c f   M-0 @key{DEL} 11 X   @key{DEL} 12 X       @key{DEL} 13 X       @key{DEL} 14 X
6235 @end group
6236 @end smallexample
6238 Just to exercise loops a bit more, let's compute a table of even
6239 Bernoulli numbers.
6241 @smallexample
6242 @group
6243 3:  []             1:  [0.10132, 0.03079, 0.02340, 0.033197, ...]
6244 2:  2                  .
6245 1:  30
6246     .
6248  [ ] 2 @key{RET} 30          Z ( X | 2 Z )
6249 @end group
6250 @end smallexample
6252 @noindent
6253 The vertical-bar @kbd{|} is the vector-concatenation command.  When
6254 we execute it, the list we are building will be in stack level 2
6255 (initially this is an empty list), and the next Bernoulli number
6256 will be in level 1.  The effect is to append the Bernoulli number
6257 onto the end of the list.  (To create a table of exact fractional
6258 Bernoulli numbers, just replace @kbd{X} with @kbd{k b} in the above
6259 sequence of keystrokes.)
6261 With loops and conditionals, you can program essentially anything
6262 in Calc.  One other command that makes looping easier is @kbd{Z /},
6263 which takes a condition from the stack and breaks out of the enclosing
6264 loop if the condition is true (non-zero).  You can use this to make
6265 ``while'' and ``until'' style loops.
6267 If you make a mistake when entering a keyboard macro, you can edit
6268 it using @kbd{Z E}.  First, you must attach it to a key with @kbd{Z K}.
6269 One technique is to enter a throwaway dummy definition for the macro,
6270 then enter the real one in the edit command.
6272 @smallexample
6273 @group
6274 1:  3                   1:  3           Keyboard Macro Editor.
6275     .                       .           Original keys: 1 @key{RET} 2 +
6277                                         type "1\r"
6278                                         type "2"
6279                                         calc-plus
6281 C-x ( 1 @key{RET} 2 + C-x )    Z K h @key{RET}      Z E h
6282 @end group
6283 @end smallexample
6285 @noindent
6286 This shows the screen display assuming you have the @file{macedit}
6287 keyboard macro editing package installed, which is usually the case
6288 since a copy of @file{macedit} comes bundled with Calc.
6290 A keyboard macro is stored as a pure keystroke sequence.  The
6291 @file{macedit} package (invoked by @kbd{Z E}) scans along the
6292 macro and tries to decode it back into human-readable steps.
6293 If a key or keys are simply shorthand for some command with a
6294 @kbd{M-x} name, that name is shown.  Anything that doesn't correspond
6295 to a @kbd{M-x} command is written as a @samp{type} command.
6297 Let's edit in a new definition, for computing harmonic numbers.
6298 First, erase the three lines of the old definition.  Then, type
6299 in the new definition (or use Emacs @kbd{M-w} and @kbd{C-y} commands
6300 to copy it from this page of the Info file; you can skip typing
6301 the comments that begin with @samp{#}).
6303 @smallexample
6304 calc-kbd-push         # Save local values (Z `)
6305 type "0"              # Push a zero
6306 calc-store-into       # Store it in variable 1
6307 type "1"
6308 type "1"              # Initial value for loop
6309 calc-roll-down        # This is the @key{TAB} key; swap initial & final
6310 calc-kbd-for          # Begin "for" loop...
6311 calc-inv              #   Take reciprocal
6312 calc-store-plus       #   Add to accumulator
6313 type "1"
6314 type "1"              #   Loop step is 1
6315 calc-kbd-end-for      # End "for" loop
6316 calc-recall           # Now recall final accumulated value
6317 type "1"
6318 calc-kbd-pop          # Restore values (Z ')
6319 @end smallexample
6321 @noindent
6322 Press @kbd{M-# M-#} to finish editing and return to the Calculator.
6324 @smallexample
6325 @group
6326 1:  20         1:  3.597739
6327     .              .
6329     20             z h
6330 @end group
6331 @end smallexample
6333 If you don't know how to write a particular command in @file{macedit}
6334 format, you can always write it as keystrokes in a @code{type} command.
6335 There is also a @code{keys} command which interprets the rest of the
6336 line as standard Emacs keystroke names.  In fact, @file{macedit} defines
6337 a handy @code{read-kbd-macro} command which reads the current region
6338 of the current buffer as a sequence of keystroke names, and defines that
6339 sequence on the @kbd{X} (and @kbd{C-x e}) key.  Because this is so
6340 useful, Calc puts this command on the @kbd{M-# m} key.  Try reading in
6341 this macro in the following form:  Press @kbd{C-@@} (or @kbd{C-@key{SPC}}) at
6342 one end of the text below, then type @kbd{M-# m} at the other.
6344 @example
6345 @group
6346 Z ` 0 t 1
6347     1 @key{TAB}
6348     Z (  & s + 1  1 Z )
6349     r 1
6350 Z '
6351 @end group
6352 @end example
6354 (@bullet{}) @strong{Exercise 8.}  A general algorithm for solving
6355 equations numerically is @dfn{Newton's Method}.  Given the equation
6356 @cite{f(x) = 0} for any function @cite{f}, and an initial guess
6357 @cite{x_0} which is reasonably close to the desired solution, apply
6358 this formula over and over:
6360 @ifinfo
6361 @example
6362 new_x = x - f(x)/f'(x)
6363 @end example
6364 @end ifinfo
6365 @tex
6366 \beforedisplay
6367 $$ x_{\goodrm new} = x - {f(x) \over f'(x)} $$
6368 \afterdisplay
6369 @end tex
6371 @noindent
6372 where @cite{f'(x)} is the derivative of @cite{f}.  The @cite{x}
6373 values will quickly converge to a solution, i.e., eventually
6374 @c{$x_{\rm new}$}
6375 @cite{new_x} and @cite{x} will be equal to within the limits
6376 of the current precision.  Write a program which takes a formula
6377 involving the variable @cite{x}, and an initial guess @cite{x_0},
6378 on the stack, and produces a value of @cite{x} for which the formula
6379 is zero.  Use it to find a solution of @c{$\sin(\cos x) = 0.5$}
6380 @cite{sin(cos(x)) = 0.5}
6381 near @cite{x = 4.5}.  (Use angles measured in radians.)  Note that
6382 the built-in @w{@kbd{a R}} (@code{calc-find-root}) command uses Newton's
6383 method when it is able.  @xref{Programming Answer 8, 8}. (@bullet{})
6385 @cindex Digamma function
6386 @cindex Gamma constant, Euler's
6387 @cindex Euler's gamma constant
6388 (@bullet{}) @strong{Exercise 9.}  The @dfn{digamma} function @c{$\psi(z)$ (``psi'')}
6389 @cite{psi(z)}
6390 is defined as the derivative of @c{$\ln \Gamma(z)$}
6391 @cite{ln(gamma(z))}.  For large
6392 values of @cite{z}, it can be approximated by the infinite sum
6394 @ifinfo
6395 @example
6396 psi(z) ~= ln(z) - 1/2z - sum(bern(2 n) / 2 n z^(2 n), n, 1, inf)
6397 @end example
6398 @end ifinfo
6399 @tex
6400 \let\rm\goodrm
6401 \beforedisplay
6402 $$ \psi(z) \approx \ln z - {1\over2z} -
6403    \sum_{n=1}^\infty {\code{bern}(2 n) \over 2 n z^{2n}}
6405 \afterdisplay
6406 @end tex
6408 @noindent
6409 where @c{$\sum$}
6410 @cite{sum} represents the sum over @cite{n} from 1 to infinity
6411 (or to some limit high enough to give the desired accuracy), and
6412 the @code{bern} function produces (exact) Bernoulli numbers.
6413 While this sum is not guaranteed to converge, in practice it is safe.
6414 An interesting mathematical constant is Euler's gamma, which is equal
6415 to about 0.5772.  One way to compute it is by the formula,
6416 @c{$\gamma = -\psi(1)$}
6417 @cite{gamma = -psi(1)}.  Unfortunately, 1 isn't a large enough argument
6418 for the above formula to work (5 is a much safer value for @cite{z}).
6419 Fortunately, we can compute @c{$\psi(1)$}
6420 @cite{psi(1)} from @c{$\psi(5)$}
6421 @cite{psi(5)} using
6422 the recurrence @c{$\psi(z+1) = \psi(z) + {1 \over z}$}
6423 @cite{psi(z+1) = psi(z) + 1/z}.  Your task:  Develop
6424 a program to compute @c{$\psi(z)$}
6425 @cite{psi(z)}; it should ``pump up'' @cite{z}
6426 if necessary to be greater than 5, then use the above summation
6427 formula.  Use looping commands to compute the sum.  Use your function
6428 to compute @c{$\gamma$}
6429 @cite{gamma} to twelve decimal places.  (Calc has a built-in command
6430 for Euler's constant, @kbd{I P}, which you can use to check your answer.)
6431 @xref{Programming Answer 9, 9}. (@bullet{})
6433 @cindex Polynomial, list of coefficients
6434 (@bullet{}) @strong{Exercise 10.}  Given a polynomial in @cite{x} and
6435 a number @cite{m} on the stack, where the polynomial is of degree
6436 @cite{m} or less (i.e., does not have any terms higher than @cite{x^m}),
6437 write a program to convert the polynomial into a list-of-coefficients
6438 notation.  For example, @cite{5 x^4 + (x + 1)^2} with @cite{m = 6}
6439 should produce the list @cite{[1, 2, 1, 0, 5, 0, 0]}.  Also develop
6440 a way to convert from this form back to the standard algebraic form.
6441 @xref{Programming Answer 10, 10}. (@bullet{})
6443 @cindex Recursion
6444 (@bullet{}) @strong{Exercise 11.}  The @dfn{Stirling numbers of the
6445 first kind} are defined by the recurrences,
6447 @ifinfo
6448 @example
6449 s(n,n) = 1   for n >= 0,
6450 s(n,0) = 0   for n > 0,
6451 s(n+1,m) = s(n,m-1) - n s(n,m)   for n >= m >= 1.
6452 @end example
6453 @end ifinfo
6454 @tex
6455 \turnoffactive
6456 \beforedisplay
6457 $$ \eqalign{ s(n,n)   &= 1 \qquad \hbox{for } n \ge 0,  \cr
6458              s(n,0)   &= 0 \qquad \hbox{for } n > 0, \cr
6459              s(n+1,m) &= s(n,m-1) - n \, s(n,m) \qquad
6460                           \hbox{for } n \ge m \ge 1.}
6462 \afterdisplay
6463 \vskip5pt
6464 (These numbers are also sometimes written $\displaystyle{n \brack m}$.)
6465 @end tex
6467 This can be implemented using a @dfn{recursive} program in Calc; the
6468 program must invoke itself in order to calculate the two righthand
6469 terms in the general formula.  Since it always invokes itself with
6470 ``simpler'' arguments, it's easy to see that it must eventually finish
6471 the computation.  Recursion is a little difficult with Emacs keyboard
6472 macros since the macro is executed before its definition is complete.
6473 So here's the recommended strategy:  Create a ``dummy macro'' and assign
6474 it to a key with, e.g., @kbd{Z K s}.  Now enter the true definition,
6475 using the @kbd{z s} command to call itself recursively, then assign it
6476 to the same key with @kbd{Z K s}.  Now the @kbd{z s} command will run
6477 the complete recursive program.  (Another way is to use @w{@kbd{Z E}}
6478 or @kbd{M-# m} (@code{read-kbd-macro}) to read the whole macro at once,
6479 thus avoiding the ``training'' phase.)  The task:  Write a program
6480 that computes Stirling numbers of the first kind, given @cite{n} and
6481 @cite{m} on the stack.  Test it with @emph{small} inputs like
6482 @cite{s(4,2)}.  (There is a built-in command for Stirling numbers,
6483 @kbd{k s}, which you can use to check your answers.)
6484 @xref{Programming Answer 11, 11}. (@bullet{})
6486 The programming commands we've seen in this part of the tutorial
6487 are low-level, general-purpose operations.  Often you will find
6488 that a higher-level function, such as vector mapping or rewrite
6489 rules, will do the job much more easily than a detailed, step-by-step
6490 program can:
6492 (@bullet{}) @strong{Exercise 12.}  Write another program for
6493 computing Stirling numbers of the first kind, this time using
6494 rewrite rules.  Once again, @cite{n} and @cite{m} should be taken
6495 from the stack.  @xref{Programming Answer 12, 12}. (@bullet{})
6497 @example
6499 @end example
6500 This ends the tutorial section of the Calc manual.  Now you know enough
6501 about Calc to use it effectively for many kinds of calculations.  But
6502 Calc has many features that were not even touched upon in this tutorial.
6503 @c [not-split]
6504 The rest of this manual tells the whole story.
6505 @c [when-split]
6506 @c Volume II of this manual, the @dfn{Calc Reference}, tells the whole story.
6508 @page
6509 @node Answers to Exercises, , Programming Tutorial, Tutorial
6510 @section Answers to Exercises
6512 @noindent
6513 This section includes answers to all the exercises in the Calc tutorial.
6515 @menu
6516 * RPN Answer 1::           1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -
6517 * RPN Answer 2::           2*4 + 7*9.5 + 5/4
6518 * RPN Answer 3::           Operating on levels 2 and 3
6519 * RPN Answer 4::           Joe's complex problems
6520 * Algebraic Answer 1::     Simulating Q command
6521 * Algebraic Answer 2::     Joe's algebraic woes
6522 * Algebraic Answer 3::     1 / 0
6523 * Modes Answer 1::         3#0.1 = 3#0.0222222?
6524 * Modes Answer 2::         16#f.e8fe15
6525 * Modes Answer 3::         Joe's rounding bug
6526 * Modes Answer 4::         Why floating point?
6527 * Arithmetic Answer 1::    Why the \ command?
6528 * Arithmetic Answer 2::    Tripping up the B command
6529 * Vector Answer 1::        Normalizing a vector
6530 * Vector Answer 2::        Average position
6531 * Matrix Answer 1::        Row and column sums
6532 * Matrix Answer 2::        Symbolic system of equations
6533 * Matrix Answer 3::        Over-determined system
6534 * List Answer 1::          Powers of two
6535 * List Answer 2::          Least-squares fit with matrices
6536 * List Answer 3::          Geometric mean
6537 * List Answer 4::          Divisor function
6538 * List Answer 5::          Duplicate factors
6539 * List Answer 6::          Triangular list
6540 * List Answer 7::          Another triangular list
6541 * List Answer 8::          Maximum of Bessel function
6542 * List Answer 9::          Integers the hard way
6543 * List Answer 10::         All elements equal
6544 * List Answer 11::         Estimating pi with darts
6545 * List Answer 12::         Estimating pi with matchsticks
6546 * List Answer 13::         Hash codes
6547 * List Answer 14::         Random walk
6548 * Types Answer 1::         Square root of pi times rational
6549 * Types Answer 2::         Infinities
6550 * Types Answer 3::         What can "nan" be?
6551 * Types Answer 4::         Abbey Road
6552 * Types Answer 5::         Friday the 13th
6553 * Types Answer 6::         Leap years
6554 * Types Answer 7::         Erroneous donut
6555 * Types Answer 8::         Dividing intervals
6556 * Types Answer 9::         Squaring intervals
6557 * Types Answer 10::        Fermat's primality test
6558 * Types Answer 11::        pi * 10^7 seconds
6559 * Types Answer 12::        Abbey Road on CD
6560 * Types Answer 13::        Not quite pi * 10^7 seconds
6561 * Types Answer 14::        Supercomputers and c
6562 * Types Answer 15::        Sam the Slug
6563 * Algebra Answer 1::       Squares and square roots
6564 * Algebra Answer 2::       Building polynomial from roots
6565 * Algebra Answer 3::       Integral of x sin(pi x)
6566 * Algebra Answer 4::       Simpson's rule
6567 * Rewrites Answer 1::      Multiplying by conjugate
6568 * Rewrites Answer 2::      Alternative fib rule
6569 * Rewrites Answer 3::      Rewriting opt(a) + opt(b) x
6570 * Rewrites Answer 4::      Sequence of integers
6571 * Rewrites Answer 5::      Number of terms in sum
6572 * Rewrites Answer 6::      Defining 0^0 = 1
6573 * Rewrites Answer 7::      Truncated Taylor series
6574 * Programming Answer 1::   Fresnel's C(x)
6575 * Programming Answer 2::   Negate third stack element
6576 * Programming Answer 3::   Compute sin(x) / x, etc.
6577 * Programming Answer 4::   Average value of a list
6578 * Programming Answer 5::   Continued fraction phi
6579 * Programming Answer 6::   Matrix Fibonacci numbers
6580 * Programming Answer 7::   Harmonic number greater than 4
6581 * Programming Answer 8::   Newton's method
6582 * Programming Answer 9::   Digamma function
6583 * Programming Answer 10::  Unpacking a polynomial
6584 * Programming Answer 11::  Recursive Stirling numbers
6585 * Programming Answer 12::  Stirling numbers with rewrites
6586 @end menu
6588 @c The following kludgery prevents the individual answers from
6589 @c being entered on the table of contents.
6590 @tex
6591 \global\let\oldwrite=\write
6592 \gdef\skipwrite#1#2{\let\write=\oldwrite}
6593 \global\let\oldchapternofonts=\chapternofonts
6594 \gdef\chapternofonts{\let\write=\skipwrite\oldchapternofonts}
6595 @end tex
6597 @node RPN Answer 1, RPN Answer 2, Answers to Exercises, Answers to Exercises
6598 @subsection RPN Tutorial Exercise 1
6600 @noindent
6601 @kbd{1 @key{RET} 2 @key{RET} 3 @key{RET} 4 + * -}
6603 The result is @c{$1 - (2 \times (3 + 4)) = -13$}
6604 @cite{1 - (2 * (3 + 4)) = -13}.
6606 @node RPN Answer 2, RPN Answer 3, RPN Answer 1, Answers to Exercises
6607 @subsection RPN Tutorial Exercise 2
6609 @noindent
6610 @c{$2\times4 + 7\times9.5 + {5\over4} = 75.75$}
6611 @cite{2*4 + 7*9.5 + 5/4 = 75.75}
6613 After computing the intermediate term @c{$2\times4 = 8$}
6614 @cite{2*4 = 8}, you can leave
6615 that result on the stack while you compute the second term.  With
6616 both of these results waiting on the stack you can then compute the
6617 final term, then press @kbd{+ +} to add everything up.
6619 @smallexample
6620 @group
6621 2:  2          1:  8          3:  8          2:  8
6622 1:  4              .          2:  7          1:  66.5
6623     .                         1:  9.5            .
6624                                   .
6626   2 @key{RET} 4          *          7 @key{RET} 9.5          *
6628 @end group
6629 @end smallexample
6630 @noindent
6631 @smallexample
6632 @group
6633 4:  8          3:  8          2:  8          1:  75.75
6634 3:  66.5       2:  66.5       1:  67.75          .
6635 2:  5          1:  1.25           .
6636 1:  4              .
6637     .
6639   5 @key{RET} 4          /              +              +
6640 @end group
6641 @end smallexample
6643 Alternatively, you could add the first two terms before going on
6644 with the third term.
6646 @smallexample
6647 @group
6648 2:  8          1:  74.5       3:  74.5       2:  74.5       1:  75.75
6649 1:  66.5           .          2:  5          1:  1.25           .
6650     .                         1:  4              .
6651                                   .
6653    ...             +            5 @key{RET} 4          /              +
6654 @end group
6655 @end smallexample
6657 On an old-style RPN calculator this second method would have the
6658 advantage of using only three stack levels.  But since Calc's stack
6659 can grow arbitrarily large this isn't really an issue.  Which method
6660 you choose is purely a matter of taste.
6662 @node RPN Answer 3, RPN Answer 4, RPN Answer 2, Answers to Exercises
6663 @subsection RPN Tutorial Exercise 3
6665 @noindent
6666 The @key{TAB} key provides a way to operate on the number in level 2.
6668 @smallexample
6669 @group
6670 3:  10         3:  10         4:  10         3:  10         3:  10
6671 2:  20         2:  30         3:  30         2:  30         2:  21
6672 1:  30         1:  20         2:  20         1:  21         1:  30
6673     .              .          1:  1              .              .
6674                                   .
6676                   @key{TAB}             1              +             @key{TAB}
6677 @end group
6678 @end smallexample
6680 Similarly, @kbd{M-@key{TAB}} gives you access to the number in level 3.
6682 @smallexample
6683 @group
6684 3:  10         3:  21         3:  21         3:  30         3:  11
6685 2:  21         2:  30         2:  30         2:  11         2:  21
6686 1:  30         1:  10         1:  11         1:  21         1:  30
6687     .              .              .              .              .
6689                   M-@key{TAB}           1 +           M-@key{TAB}          M-@key{TAB}
6690 @end group
6691 @end smallexample
6693 @node RPN Answer 4, Algebraic Answer 1, RPN Answer 3, Answers to Exercises
6694 @subsection RPN Tutorial Exercise 4
6696 @noindent
6697 Either @kbd{( 2 , 3 )} or @kbd{( 2 @key{SPC} 3 )} would have worked,
6698 but using both the comma and the space at once yields:
6700 @smallexample
6701 @group
6702 1:  ( ...      2:  ( ...      1:  (2, ...    2:  (2, ...    2:  (2, ...
6703     .          1:  2              .          1:  (2, ...    1:  (2, 3)
6704                    .                             .              .
6706     (              2              ,             @key{SPC}            3 )
6707 @end group
6708 @end smallexample
6710 Joe probably tried to type @kbd{@key{TAB} @key{DEL}} to swap the
6711 extra incomplete object to the top of the stack and delete it.
6712 But a feature of Calc is that @key{DEL} on an incomplete object
6713 deletes just one component out of that object, so he had to press
6714 @key{DEL} twice to finish the job.
6716 @smallexample
6717 @group
6718 2:  (2, ...    2:  (2, 3)     2:  (2, 3)     1:  (2, 3)
6719 1:  (2, 3)     1:  (2, ...    1:  ( ...          .
6720     .              .              .
6722                   @key{TAB}            @key{DEL}            @key{DEL}
6723 @end group
6724 @end smallexample
6726 (As it turns out, deleting the second-to-top stack entry happens often
6727 enough that Calc provides a special key, @kbd{M-@key{DEL}}, to do just that.
6728 @kbd{M-@key{DEL}} is just like @kbd{@key{TAB} @key{DEL}}, except that it doesn't exhibit
6729 the ``feature'' that tripped poor Joe.)
6731 @node Algebraic Answer 1, Algebraic Answer 2, RPN Answer 4, Answers to Exercises
6732 @subsection Algebraic Entry Tutorial Exercise 1
6734 @noindent
6735 Type @kbd{' sqrt($) @key{RET}}.
6737 If the @kbd{Q} key is broken, you could use @kbd{' $^0.5 @key{RET}}.
6738 Or, RPN style, @kbd{0.5 ^}.
6740 (Actually, @samp{$^1:2}, using the fraction one-half as the power, is
6741 a closer equivalent, since @samp{9^0.5} yields @cite{3.0} whereas
6742 @samp{sqrt(9)} and @samp{9^1:2} yield the exact integer @cite{3}.)
6744 @node Algebraic Answer 2, Algebraic Answer 3, Algebraic Answer 1, Answers to Exercises
6745 @subsection Algebraic Entry Tutorial Exercise 2
6747 @noindent
6748 In the formula @samp{2 x (1+y)}, @samp{x} was interpreted as a function
6749 name with @samp{1+y} as its argument.  Assigning a value to a variable
6750 has no relation to a function by the same name.  Joe needed to use an
6751 explicit @samp{*} symbol here:  @samp{2 x*(1+y)}.
6753 @node Algebraic Answer 3, Modes Answer 1, Algebraic Answer 2, Answers to Exercises
6754 @subsection Algebraic Entry Tutorial Exercise 3
6756 @noindent
6757 The result from @kbd{1 @key{RET} 0 /} will be the formula @cite{1 / 0}.
6758 The ``function'' @samp{/} cannot be evaluated when its second argument
6759 is zero, so it is left in symbolic form.  When you now type @kbd{0 *},
6760 the result will be zero because Calc uses the general rule that ``zero
6761 times anything is zero.''
6763 @c [fix-ref Infinities]
6764 The @kbd{m i} command enables an @dfn{infinite mode} in which @cite{1 / 0}
6765 results in a special symbol that represents ``infinity.''  If you
6766 multiply infinity by zero, Calc uses another special new symbol to
6767 show that the answer is ``indeterminate.''  @xref{Infinities}, for
6768 further discussion of infinite and indeterminate values.
6770 @node Modes Answer 1, Modes Answer 2, Algebraic Answer 3, Answers to Exercises
6771 @subsection Modes Tutorial Exercise 1
6773 @noindent
6774 Calc always stores its numbers in decimal, so even though one-third has
6775 an exact base-3 representation (@samp{3#0.1}), it is still stored as
6776 0.3333333 (chopped off after 12 or however many decimal digits) inside
6777 the calculator's memory.  When this inexact number is converted back
6778 to base 3 for display, it may still be slightly inexact.  When we
6779 multiply this number by 3, we get 0.999999, also an inexact value.
6781 When Calc displays a number in base 3, it has to decide how many digits
6782 to show.  If the current precision is 12 (decimal) digits, that corresponds
6783 to @samp{12 / log10(3) = 25.15} base-3 digits.  Because 25.15 is not an
6784 exact integer, Calc shows only 25 digits, with the result that stored
6785 numbers carry a little bit of extra information that may not show up on
6786 the screen.  When Joe entered @samp{3#0.2}, the stored number 0.666666
6787 happened to round to a pleasing value when it lost that last 0.15 of a
6788 digit, but it was still inexact in Calc's memory.  When he divided by 2,
6789 he still got the dreaded inexact value 0.333333.  (Actually, he divided
6790 0.666667 by 2 to get 0.333334, which is why he got something a little
6791 higher than @code{3#0.1} instead of a little lower.)
6793 If Joe didn't want to be bothered with all this, he could have typed
6794 @kbd{M-24 d n} to display with one less digit than the default.  (If
6795 you give @kbd{d n} a negative argument, it uses default-minus-that,
6796 so @kbd{M-- d n} would be an easier way to get the same effect.)  Those
6797 inexact results would still be lurking there, but they would now be
6798 rounded to nice, natural-looking values for display purposes.  (Remember,
6799 @samp{0.022222} in base 3 is like @samp{0.099999} in base 10; rounding
6800 off one digit will round the number up to @samp{0.1}.)  Depending on the
6801 nature of your work, this hiding of the inexactness may be a benefit or
6802 a danger.  With the @kbd{d n} command, Calc gives you the choice.
6804 Incidentally, another consequence of all this is that if you type
6805 @kbd{M-30 d n} to display more digits than are ``really there,''
6806 you'll see garbage digits at the end of the number.  (In decimal
6807 display mode, with decimally-stored numbers, these garbage digits are
6808 always zero so they vanish and you don't notice them.)  Because Calc
6809 rounds off that 0.15 digit, there is the danger that two numbers could
6810 be slightly different internally but still look the same.  If you feel
6811 uneasy about this, set the @kbd{d n} precision to be a little higher
6812 than normal; you'll get ugly garbage digits, but you'll always be able
6813 to tell two distinct numbers apart.
6815 An interesting side note is that most computers store their
6816 floating-point numbers in binary, and convert to decimal for display.
6817 Thus everyday programs have the same problem:  Decimal 0.1 cannot be
6818 represented exactly in binary (try it: @kbd{0.1 d 2}), so @samp{0.1 * 10}
6819 comes out as an inexact approximation to 1 on some machines (though
6820 they generally arrange to hide it from you by rounding off one digit as
6821 we did above).  Because Calc works in decimal instead of binary, you can
6822 be sure that numbers that look exact @emph{are} exact as long as you stay
6823 in decimal display mode.
6825 It's not hard to show that any number that can be represented exactly
6826 in binary, octal, or hexadecimal is also exact in decimal, so the kinds
6827 of problems we saw in this exercise are likely to be severe only when
6828 you use a relatively unusual radix like 3.
6830 @node Modes Answer 2, Modes Answer 3, Modes Answer 1, Answers to Exercises
6831 @subsection Modes Tutorial Exercise 2
6833 If the radix is 15 or higher, we can't use the letter @samp{e} to mark
6834 the exponent because @samp{e} is interpreted as a digit.  When Calc
6835 needs to display scientific notation in a high radix, it writes
6836 @samp{16#F.E8F*16.^15}.  You can enter a number like this as an
6837 algebraic entry.  Also, pressing @kbd{e} without any digits before it
6838 normally types @kbd{1e}, but in a high radix it types @kbd{16.^} and
6839 puts you in algebraic entry:  @kbd{16#f.e8f @key{RET} e 15 @key{RET} *} is another
6840 way to enter this number.
6842 The reason Calc puts a decimal point in the @samp{16.^} is to prevent
6843 huge integers from being generated if the exponent is large (consider
6844 @samp{16#1.23*16^1000}, where we compute @samp{16^1000} as a giant
6845 exact integer and then throw away most of the digits when we multiply
6846 it by the floating-point @samp{16#1.23}).  While this wouldn't normally
6847 matter for display purposes, it could give you a nasty surprise if you
6848 copied that number into a file and later moved it back into Calc.
6850 @node Modes Answer 3, Modes Answer 4, Modes Answer 2, Answers to Exercises
6851 @subsection Modes Tutorial Exercise 3
6853 @noindent
6854 The answer he got was @cite{0.5000000000006399}.
6856 The problem is not that the square operation is inexact, but that the
6857 sine of 45 that was already on the stack was accurate to only 12 places.
6858 Arbitrary-precision calculations still only give answers as good as
6859 their inputs.
6861 The real problem is that there is no 12-digit number which, when
6862 squared, comes out to 0.5 exactly.  The @kbd{f [} and @kbd{f ]}
6863 commands decrease or increase a number by one unit in the last
6864 place (according to the current precision).  They are useful for
6865 determining facts like this.
6867 @smallexample
6868 @group
6869 1:  0.707106781187      1:  0.500000000001
6870     .                       .
6872     45 S                    2 ^
6874 @end group
6875 @end smallexample
6876 @noindent
6877 @smallexample
6878 @group
6879 1:  0.707106781187      1:  0.707106781186      1:  0.499999999999
6880     .                       .                       .
6882     U  @key{DEL}                  f [                     2 ^
6883 @end group
6884 @end smallexample
6886 A high-precision calculation must be carried out in high precision
6887 all the way.  The only number in the original problem which was known
6888 exactly was the quantity 45 degrees, so the precision must be raised
6889 before anything is done after the number 45 has been entered in order
6890 for the higher precision to be meaningful.
6892 @node Modes Answer 4, Arithmetic Answer 1, Modes Answer 3, Answers to Exercises
6893 @subsection Modes Tutorial Exercise 4
6895 @noindent
6896 Many calculations involve real-world quantities, like the width and
6897 height of a piece of wood or the volume of a jar.  Such quantities
6898 can't be measured exactly anyway, and if the data that is input to
6899 a calculation is inexact, doing exact arithmetic on it is a waste
6900 of time.
6902 Fractions become unwieldy after too many calculations have been
6903 done with them.  For example, the sum of the reciprocals of the
6904 integers from 1 to 10 is 7381:2520.  The sum from 1 to 30 is
6905 9304682830147:2329089562800.  After a point it will take a long
6906 time to add even one more term to this sum, but a floating-point
6907 calculation of the sum will not have this problem.
6909 Also, rational numbers cannot express the results of all calculations.
6910 There is no fractional form for the square root of two, so if you type
6911 @w{@kbd{2 Q}}, Calc has no choice but to give you a floating-point answer.
6913 @node Arithmetic Answer 1, Arithmetic Answer 2, Modes Answer 4, Answers to Exercises
6914 @subsection Arithmetic Tutorial Exercise 1
6916 @noindent
6917 Dividing two integers that are larger than the current precision may
6918 give a floating-point result that is inaccurate even when rounded
6919 down to an integer.  Consider @cite{123456789 / 2} when the current
6920 precision is 6 digits.  The true answer is @cite{61728394.5}, but
6921 with a precision of 6 this will be rounded to @c{$12345700.0/2.0 = 61728500.0$}
6922 @cite{12345700.@: / 2.@: = 61728500.}.
6923 The result, when converted to an integer, will be off by 106.
6925 Here are two solutions:  Raise the precision enough that the
6926 floating-point round-off error is strictly to the right of the
6927 decimal point.  Or, convert to fraction mode so that @cite{123456789 / 2}
6928 produces the exact fraction @cite{123456789:2}, which can be rounded
6929 down by the @kbd{F} command without ever switching to floating-point
6930 format.
6932 @node Arithmetic Answer 2, Vector Answer 1, Arithmetic Answer 1, Answers to Exercises
6933 @subsection Arithmetic Tutorial Exercise 2
6935 @noindent
6936 @kbd{27 @key{RET} 9 B} could give the exact result @cite{3:2}, but it
6937 does a floating-point calculation instead and produces @cite{1.5}.
6939 Calc will find an exact result for a logarithm if the result is an integer
6940 or the reciprocal of an integer.  But there is no efficient way to search
6941 the space of all possible rational numbers for an exact answer, so Calc
6942 doesn't try.
6944 @node Vector Answer 1, Vector Answer 2, Arithmetic Answer 2, Answers to Exercises
6945 @subsection Vector Tutorial Exercise 1
6947 @noindent
6948 Duplicate the vector, compute its length, then divide the vector
6949 by its length:  @kbd{@key{RET} A /}.
6951 @smallexample
6952 @group
6953 1:  [1, 2, 3]  2:  [1, 2, 3]      1:  [0.27, 0.53, 0.80]  1:  1.
6954     .          1:  3.74165738677      .                       .
6955                    .
6957     r 1            @key{RET} A              /                       A
6958 @end group
6959 @end smallexample
6961 The final @kbd{A} command shows that the normalized vector does
6962 indeed have unit length.
6964 @node Vector Answer 2, Matrix Answer 1, Vector Answer 1, Answers to Exercises
6965 @subsection Vector Tutorial Exercise 2
6967 @noindent
6968 The average position is equal to the sum of the products of the
6969 positions times their corresponding probabilities.  This is the
6970 definition of the dot product operation.  So all you need to do
6971 is to put the two vectors on the stack and press @kbd{*}.
6973 @node Matrix Answer 1, Matrix Answer 2, Vector Answer 2, Answers to Exercises
6974 @subsection Matrix Tutorial Exercise 1
6976 @noindent
6977 The trick is to multiply by a vector of ones.  Use @kbd{r 4 [1 1 1] *} to
6978 get the row sum.  Similarly, use @kbd{[1 1] r 4 *} to get the column sum.
6980 @node Matrix Answer 2, Matrix Answer 3, Matrix Answer 1, Answers to Exercises
6981 @subsection Matrix Tutorial Exercise 2
6983 @ifinfo
6984 @example
6985 @group
6986    x + a y = 6
6987    x + b y = 10
6988 @end group
6989 @end example
6990 @end ifinfo
6991 @tex
6992 \turnoffactive
6993 \beforedisplay
6994 $$ \eqalign{ x &+ a y = 6 \cr
6995              x &+ b y = 10}
6997 \afterdisplay
6998 @end tex
7000 Just enter the righthand side vector, then divide by the lefthand side
7001 matrix as usual.
7003 @smallexample
7004 @group
7005 1:  [6, 10]    2:  [6, 10]         1:  [6 - 4 a / (b - a), 4 / (b - a) ]
7006     .          1:  [ [ 1, a ]          .
7007                      [ 1, b ] ]
7008                    .
7010 ' [6 10] @key{RET}     ' [1 a; 1 b] @key{RET}      /
7011 @end group
7012 @end smallexample
7014 This can be made more readable using @kbd{d B} to enable ``big'' display
7015 mode:
7017 @smallexample
7018 @group
7019           4 a     4
7020 1:  [6 - -----, -----]
7021          b - a  b - a
7022 @end group
7023 @end smallexample
7025 Type @kbd{d N} to return to ``normal'' display mode afterwards.
7027 @node Matrix Answer 3, List Answer 1, Matrix Answer 2, Answers to Exercises
7028 @subsection Matrix Tutorial Exercise 3
7030 @noindent
7031 To solve @c{$A^T A \, X = A^T B$}
7032 @cite{trn(A) * A * X = trn(A) * B}, first we compute
7033 @c{$A' = A^T A$}
7034 @cite{A2 = trn(A) * A} and @c{$B' = A^T B$}
7035 @cite{B2 = trn(A) * B}; now, we have a
7036 system @c{$A' X = B'$}
7037 @cite{A2 * X = B2} which we can solve using Calc's @samp{/}
7038 command.
7040 @ifinfo
7041 @example
7042 @group
7043     a + 2b + 3c = 6
7044    4a + 5b + 6c = 2
7045    7a + 6b      = 3
7046    2a + 4b + 6c = 11
7047 @end group
7048 @end example
7049 @end ifinfo
7050 @tex
7051 \turnoffactive
7052 \beforedisplayh
7053 $$ \openup1\jot \tabskip=0pt plus1fil
7054 \halign to\displaywidth{\tabskip=0pt
7055    $\hfil#$&$\hfil{}#{}$&
7056    $\hfil#$&$\hfil{}#{}$&
7057    $\hfil#$&${}#\hfil$\tabskip=0pt plus1fil\cr
7058   a&+&2b&+&3c&=6 \cr
7059  4a&+&5b&+&6c&=2 \cr
7060  7a&+&6b& &  &=3 \cr
7061  2a&+&4b&+&6c&=11 \cr}
7063 \afterdisplayh
7064 @end tex
7066 The first step is to enter the coefficient matrix.  We'll store it in
7067 quick variable number 7 for later reference.  Next, we compute the
7068 @c{$B'$}
7069 @cite{B2} vector.
7071 @smallexample
7072 @group
7073 1:  [ [ 1, 2, 3 ]             2:  [ [ 1, 4, 7, 2 ]     1:  [57, 84, 96]
7074       [ 4, 5, 6 ]                   [ 2, 5, 6, 4 ]         .
7075       [ 7, 6, 0 ]                   [ 3, 6, 0, 6 ] ]
7076       [ 2, 4, 6 ] ]           1:  [6, 2, 3, 11]
7077     .                             .
7079 ' [1 2 3; 4 5 6; 7 6 0; 2 4 6] @key{RET}  s 7  v t  [6 2 3 11]   *
7080 @end group
7081 @end smallexample
7083 @noindent
7084 Now we compute the matrix @c{$A'$}
7085 @cite{A2} and divide.
7087 @smallexample
7088 @group
7089 2:  [57, 84, 96]          1:  [-11.64, 14.08, -3.64]
7090 1:  [ [ 70, 72, 39 ]          .
7091       [ 72, 81, 60 ]
7092       [ 39, 60, 81 ] ]
7093     .
7095     r 7 v t r 7 *             /
7096 @end group
7097 @end smallexample
7099 @noindent
7100 (The actual computed answer will be slightly inexact due to
7101 round-off error.)
7103 Notice that the answers are similar to those for the @c{$3\times3$}
7104 @asis{3x3} system
7105 solved in the text.  That's because the fourth equation that was
7106 added to the system is almost identical to the first one multiplied
7107 by two.  (If it were identical, we would have gotten the exact same
7108 answer since the @c{$4\times3$}
7109 @asis{4x3} system would be equivalent to the original @c{$3\times3$}
7110 @asis{3x3}
7111 system.)
7113 Since the first and fourth equations aren't quite equivalent, they
7114 can't both be satisfied at once.  Let's plug our answers back into
7115 the original system of equations to see how well they match.
7117 @smallexample
7118 @group
7119 2:  [-11.64, 14.08, -3.64]     1:  [5.6, 2., 3., 11.2]
7120 1:  [ [ 1, 2, 3 ]                  .
7121       [ 4, 5, 6 ]
7122       [ 7, 6, 0 ]
7123       [ 2, 4, 6 ] ]
7124     .
7126     r 7                            @key{TAB} *
7127 @end group
7128 @end smallexample
7130 @noindent
7131 This is reasonably close to our original @cite{B} vector,
7132 @cite{[6, 2, 3, 11]}.
7134 @node List Answer 1, List Answer 2, Matrix Answer 3, Answers to Exercises
7135 @subsection List Tutorial Exercise 1
7137 @noindent
7138 We can use @kbd{v x} to build a vector of integers.  This needs to be
7139 adjusted to get the range of integers we desire.  Mapping @samp{-}
7140 across the vector will accomplish this, although it turns out the
7141 plain @samp{-} key will work just as well.
7143 @smallexample
7144 @group
7145 2:  2                              2:  2
7146 1:  [1, 2, 3, 4, 5, 6, 7, 8, 9]    1:  [-4, -3, -2, -1, 0, 1, 2, 3, 4]
7147     .                                  .
7149     2  v x 9 @key{RET}                       5 V M -   or   5 -
7150 @end group
7151 @end smallexample
7153 @noindent
7154 Now we use @kbd{V M ^} to map the exponentiation operator across the
7155 vector.
7157 @smallexample
7158 @group
7159 1:  [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
7160     .
7162     V M ^
7163 @end group
7164 @end smallexample
7166 @node List Answer 2, List Answer 3, List Answer 1, Answers to Exercises
7167 @subsection List Tutorial Exercise 2
7169 @noindent
7170 Given @cite{x} and @cite{y} vectors in quick variables 1 and 2 as before,
7171 the first job is to form the matrix that describes the problem.
7173 @ifinfo
7174 @example
7175    m*x + b*1 = y
7176 @end example
7177 @end ifinfo
7178 @tex
7179 \turnoffactive
7180 \beforedisplay
7181 $$ m \times x + b \times 1 = y $$
7182 \afterdisplay
7183 @end tex
7185 Thus we want a @c{$19\times2$}
7186 @asis{19x2} matrix with our @cite{x} vector as one column and
7187 ones as the other column.  So, first we build the column of ones, then
7188 we combine the two columns to form our @cite{A} matrix.
7190 @smallexample
7191 @group
7192 2:  [1.34, 1.41, 1.49, ... ]    1:  [ [ 1.34, 1 ]
7193 1:  [1, 1, 1, ...]                    [ 1.41, 1 ]
7194     .                                 [ 1.49, 1 ]
7195                                       @dots{}
7197     r 1 1 v b 19 @key{RET}                M-2 v p v t   s 3
7198 @end group
7199 @end smallexample
7201 @noindent
7202 Now we compute @c{$A^T y$}
7203 @cite{trn(A) * y} and @c{$A^T A$}
7204 @cite{trn(A) * A} and divide.
7206 @smallexample
7207 @group
7208 1:  [33.36554, 13.613]    2:  [33.36554, 13.613]
7209     .                     1:  [ [ 98.0003, 41.63 ]
7210                                 [  41.63,   19   ] ]
7211                               .
7213  v t r 2 *                    r 3 v t r 3 *
7214 @end group
7215 @end smallexample
7217 @noindent
7218 (Hey, those numbers look familiar!)
7220 @smallexample
7221 @group
7222 1:  [0.52141679, -0.425978]
7223     .
7225     /
7226 @end group
7227 @end smallexample
7229 Since we were solving equations of the form @c{$m \times x + b \times 1 = y$}
7230 @cite{m*x + b*1 = y}, these
7231 numbers should be @cite{m} and @cite{b}, respectively.  Sure enough, they
7232 agree exactly with the result computed using @kbd{V M} and @kbd{V R}!
7234 The moral of this story:  @kbd{V M} and @kbd{V R} will probably solve
7235 your problem, but there is often an easier way using the higher-level
7236 arithmetic functions!
7238 @c [fix-ref Curve Fitting]
7239 In fact, there is a built-in @kbd{a F} command that does least-squares
7240 fits.  @xref{Curve Fitting}.
7242 @node List Answer 3, List Answer 4, List Answer 2, Answers to Exercises
7243 @subsection List Tutorial Exercise 3
7245 @noindent
7246 Move to one end of the list and press @kbd{C-@@} (or @kbd{C-@key{SPC}} or
7247 whatever) to set the mark, then move to the other end of the list
7248 and type @w{@kbd{M-# g}}.
7250 @smallexample
7251 @group
7252 1:  [2.3, 6, 22, 15.1, 7, 15, 14, 7.5, 2.5]
7253     .
7254 @end group
7255 @end smallexample
7257 To make things interesting, let's assume we don't know at a glance
7258 how many numbers are in this list.  Then we could type:
7260 @smallexample
7261 @group
7262 2:  [2.3, 6, 22, ... ]     2:  [2.3, 6, 22, ... ]
7263 1:  [2.3, 6, 22, ... ]     1:  126356422.5
7264     .                          .
7266     @key{RET}                        V R *
7268 @end group
7269 @end smallexample
7270 @noindent
7271 @smallexample
7272 @group
7273 2:  126356422.5            2:  126356422.5     1:  7.94652913734
7274 1:  [2.3, 6, 22, ... ]     1:  9                   .
7275     .                          .
7277     @key{TAB}                        v l                 I ^
7278 @end group
7279 @end smallexample
7281 @noindent
7282 (The @kbd{I ^} command computes the @var{n}th root of a number.
7283 You could also type @kbd{& ^} to take the reciprocal of 9 and
7284 then raise the number to that power.)
7286 @node List Answer 4, List Answer 5, List Answer 3, Answers to Exercises
7287 @subsection List Tutorial Exercise 4
7289 @noindent
7290 A number @cite{j} is a divisor of @cite{n} if @c{$n \mathbin{\hbox{\code{\%}}} j = 0$}
7291 @samp{n % j = 0}.  The first
7292 step is to get a vector that identifies the divisors.
7294 @smallexample
7295 @group
7296 2:  30                  2:  [0, 0, 0, 2, ...]    1:  [1, 1, 1, 0, ...]
7297 1:  [1, 2, 3, 4, ...]   1:  0                        .
7298     .                       .
7300  30 @key{RET} v x 30 @key{RET}   s 1    V M %  0                 V M a =  s 2
7301 @end group
7302 @end smallexample
7304 @noindent
7305 This vector has 1's marking divisors of 30 and 0's marking non-divisors.
7307 The zeroth divisor function is just the total number of divisors.
7308 The first divisor function is the sum of the divisors.
7310 @smallexample
7311 @group
7312 1:  8      3:  8                    2:  8                    2:  8
7313            2:  [1, 2, 3, 4, ...]    1:  [1, 2, 3, 0, ...]    1:  72
7314            1:  [1, 1, 1, 0, ...]        .                        .
7315                .
7317    V R +       r 1 r 2                  V M *                  V R +
7318 @end group
7319 @end smallexample
7321 @noindent
7322 Once again, the last two steps just compute a dot product for which
7323 a simple @kbd{*} would have worked equally well.
7325 @node List Answer 5, List Answer 6, List Answer 4, Answers to Exercises
7326 @subsection List Tutorial Exercise 5
7328 @noindent
7329 The obvious first step is to obtain the list of factors with @kbd{k f}.
7330 This list will always be in sorted order, so if there are duplicates
7331 they will be right next to each other.  A suitable method is to compare
7332 the list with a copy of itself shifted over by one.
7334 @smallexample
7335 @group
7336 1:  [3, 7, 7, 7, 19]   2:  [3, 7, 7, 7, 19]     2:  [3, 7, 7, 7, 19, 0]
7337     .                  1:  [3, 7, 7, 7, 19, 0]  1:  [0, 3, 7, 7, 7, 19]
7338                            .                        .
7340     19551 k f              @key{RET} 0 |                  @key{TAB} 0 @key{TAB} |
7342 @end group
7343 @end smallexample
7344 @noindent
7345 @smallexample
7346 @group
7347 1:  [0, 0, 1, 1, 0, 0]   1:  2          1:  0
7348     .                        .              .
7350     V M a =                  V R +          0 a =
7351 @end group
7352 @end smallexample
7354 @noindent
7355 Note that we have to arrange for both vectors to have the same length
7356 so that the mapping operation works; no prime factor will ever be
7357 zero, so adding zeros on the left and right is safe.  From then on
7358 the job is pretty straightforward.
7360 Incidentally, Calc provides the @c{\dfn{M\"obius} $\mu$}
7361 @dfn{Moebius mu} function which is
7362 zero if and only if its argument is square-free.  It would be a much
7363 more convenient way to do the above test in practice.
7365 @node List Answer 6, List Answer 7, List Answer 5, Answers to Exercises
7366 @subsection List Tutorial Exercise 6
7368 @noindent
7369 First use @kbd{v x 6 @key{RET}} to get a list of integers, then @kbd{V M v x}
7370 to get a list of lists of integers!
7372 @node List Answer 7, List Answer 8, List Answer 6, Answers to Exercises
7373 @subsection List Tutorial Exercise 7
7375 @noindent
7376 Here's one solution.  First, compute the triangular list from the previous
7377 exercise and type @kbd{1 -} to subtract one from all the elements.
7379 @smallexample
7380 @group
7381 1:  [ [0],
7382       [0, 1],
7383       [0, 1, 2],
7384       @dots{}
7386     1 -
7387 @end group
7388 @end smallexample
7390 The numbers down the lefthand edge of the list we desire are called
7391 the ``triangular numbers'' (now you know why!).  The @cite{n}th
7392 triangular number is the sum of the integers from 1 to @cite{n}, and
7393 can be computed directly by the formula @c{$n (n+1) \over 2$}
7394 @cite{n * (n+1) / 2}.
7396 @smallexample
7397 @group
7398 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7399 1:  [0, 1, 2, 3, 4, 5]      1:  [0, 1, 3, 6, 10, 15]
7400     .                           .
7402     v x 6 @key{RET} 1 -               V M ' $ ($+1)/2 @key{RET}
7403 @end group
7404 @end smallexample
7406 @noindent
7407 Adding this list to the above list of lists produces the desired
7408 result:
7410 @smallexample
7411 @group
7412 1:  [ [0],
7413       [1, 2],
7414       [3, 4, 5],
7415       [6, 7, 8, 9],
7416       [10, 11, 12, 13, 14],
7417       [15, 16, 17, 18, 19, 20] ]
7418       .
7420       V M +
7421 @end group
7422 @end smallexample
7424 If we did not know the formula for triangular numbers, we could have
7425 computed them using a @kbd{V U +} command.  We could also have
7426 gotten them the hard way by mapping a reduction across the original
7427 triangular list.
7429 @smallexample
7430 @group
7431 2:  [ [0], [0, 1], ... ]    2:  [ [0], [0, 1], ... ]
7432 1:  [ [0], [0, 1], ... ]    1:  [0, 1, 3, 6, 10, 15]
7433     .                           .
7435     @key{RET}                         V M V R +
7436 @end group
7437 @end smallexample
7439 @noindent
7440 (This means ``map a @kbd{V R +} command across the vector,'' and
7441 since each element of the main vector is itself a small vector,
7442 @kbd{V R +} computes the sum of its elements.)
7444 @node List Answer 8, List Answer 9, List Answer 7, Answers to Exercises
7445 @subsection List Tutorial Exercise 8
7447 @noindent
7448 The first step is to build a list of values of @cite{x}.
7450 @smallexample
7451 @group
7452 1:  [1, 2, 3, ..., 21]  1:  [0, 1, 2, ..., 20]  1:  [0, 0.25, 0.5, ..., 5]
7453     .                       .                       .
7455     v x 21 @key{RET}              1 -                     4 /  s 1
7456 @end group
7457 @end smallexample
7459 Next, we compute the Bessel function values.
7461 @smallexample
7462 @group
7463 1:  [0., 0.124, 0.242, ..., -0.328]
7464     .
7466     V M ' besJ(1,$) @key{RET}
7467 @end group
7468 @end smallexample
7470 @noindent
7471 (Another way to do this would be @kbd{1 @key{TAB} V M f j}.)
7473 A way to isolate the maximum value is to compute the maximum using
7474 @kbd{V R X}, then compare all the Bessel values with that maximum.
7476 @smallexample
7477 @group
7478 2:  [0., 0.124, 0.242, ... ]   1:  [0, 0, 0, ... ]    2:  [0, 0, 0, ... ]
7479 1:  0.5801562                      .                  1:  1
7480     .                                                     .
7482     @key{RET} V R X                      V M a =                @key{RET} V R +    @key{DEL}
7483 @end group
7484 @end smallexample
7486 @noindent
7487 It's a good idea to verify, as in the last step above, that only
7488 one value is equal to the maximum.  (After all, a plot of @c{$\sin x$}
7489 @cite{sin(x)}
7490 might have many points all equal to the maximum value, 1.)
7492 The vector we have now has a single 1 in the position that indicates
7493 the maximum value of @cite{x}.  Now it is a simple matter to convert
7494 this back into the corresponding value itself.
7496 @smallexample
7497 @group
7498 2:  [0, 0, 0, ... ]         1:  [0, 0., 0., ... ]    1:  1.75
7499 1:  [0, 0.25, 0.5, ... ]        .                        .
7500     .
7502     r 1                         V M *                    V R +
7503 @end group
7504 @end smallexample
7506 If @kbd{a =} had produced more than one @cite{1} value, this method
7507 would have given the sum of all maximum @cite{x} values; not very
7508 useful!  In this case we could have used @kbd{v m} (@code{calc-mask-vector})
7509 instead.  This command deletes all elements of a ``data'' vector that
7510 correspond to zeros in a ``mask'' vector, leaving us with, in this
7511 example, a vector of maximum @cite{x} values.
7513 The built-in @kbd{a X} command maximizes a function using more
7514 efficient methods.  Just for illustration, let's use @kbd{a X}
7515 to maximize @samp{besJ(1,x)} over this same interval.
7517 @smallexample
7518 @group
7519 2:  besJ(1, x)                 1:  [1.84115, 0.581865]
7520 1:  [0 .. 5]                       .
7521     .
7523 ' besJ(1,x), [0..5] @key{RET}            a X x @key{RET}
7524 @end group
7525 @end smallexample
7527 @noindent
7528 The output from @kbd{a X} is a vector containing the value of @cite{x}
7529 that maximizes the function, and the function's value at that maximum.
7530 As you can see, our simple search got quite close to the right answer.
7532 @node List Answer 9, List Answer 10, List Answer 8, Answers to Exercises
7533 @subsection List Tutorial Exercise 9
7535 @noindent
7536 Step one is to convert our integer into vector notation.
7538 @smallexample
7539 @group
7540 1:  25129925999           3:  25129925999
7541     .                     2:  10
7542                           1:  [11, 10, 9, ..., 1, 0]
7543                               .
7545     25129925999 @key{RET}           10 @key{RET} 12 @key{RET} v x 12 @key{RET} -
7547 @end group
7548 @end smallexample
7549 @noindent
7550 @smallexample
7551 @group
7552 1:  25129925999              1:  [0, 2, 25, 251, 2512, ... ]
7553 2:  [100000000000, ... ]         .
7554     .
7556     V M ^   s 1                  V M \
7557 @end group
7558 @end smallexample
7560 @noindent
7561 (Recall, the @kbd{\} command computes an integer quotient.)
7563 @smallexample
7564 @group
7565 1:  [0, 2, 5, 1, 2, 9, 9, 2, 5, 9, 9, 9]
7566     .
7568     10 V M %   s 2
7569 @end group
7570 @end smallexample
7572 Next we must increment this number.  This involves adding one to
7573 the last digit, plus handling carries.  There is a carry to the
7574 left out of a digit if that digit is a nine and all the digits to
7575 the right of it are nines.
7577 @smallexample
7578 @group
7579 1:  [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1]   1:  [1, 1, 1, 0, 0, 1, ... ]
7580     .                                          .
7582     9 V M a =                                  v v
7584 @end group
7585 @end smallexample
7586 @noindent
7587 @smallexample
7588 @group
7589 1:  [1, 1, 1, 0, 0, 0, ... ]   1:  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
7590     .                              .
7592     V U *                          v v 1 |
7593 @end group
7594 @end smallexample
7596 @noindent
7597 Accumulating @kbd{*} across a vector of ones and zeros will preserve
7598 only the initial run of ones.  These are the carries into all digits
7599 except the rightmost digit.  Concatenating a one on the right takes
7600 care of aligning the carries properly, and also adding one to the
7601 rightmost digit.
7603 @smallexample
7604 @group
7605 2:  [0, 0, 0, 0, ... ]     1:  [0, 0, 2, 5, 1, 2, 9, 9, 2, 6, 0, 0, 0]
7606 1:  [0, 0, 2, 5, ... ]         .
7607     .
7609     0 r 2 |                    V M +  10 V M %
7610 @end group
7611 @end smallexample
7613 @noindent
7614 Here we have concatenated 0 to the @emph{left} of the original number;
7615 this takes care of shifting the carries by one with respect to the
7616 digits that generated them.
7618 Finally, we must convert this list back into an integer.
7620 @smallexample
7621 @group
7622 3:  [0, 0, 2, 5, ... ]        2:  [0, 0, 2, 5, ... ]
7623 2:  1000000000000             1:  [1000000000000, 100000000000, ... ]
7624 1:  [100000000000, ... ]          .
7625     .
7627     10 @key{RET} 12 ^  r 1              |
7629 @end group
7630 @end smallexample
7631 @noindent
7632 @smallexample
7633 @group
7634 1:  [0, 0, 20000000000, 5000000000, ... ]    1:  25129926000
7635     .                                            .
7637     V M *                                        V R +
7638 @end group
7639 @end smallexample
7641 @noindent
7642 Another way to do this final step would be to reduce the formula
7643 @w{@samp{10 $$ + $}} across the vector of digits.
7645 @smallexample
7646 @group
7647 1:  [0, 0, 2, 5, ... ]        1:  25129926000
7648     .                             .
7650                                   V R ' 10 $$ + $ @key{RET}
7651 @end group
7652 @end smallexample
7654 @node List Answer 10, List Answer 11, List Answer 9, Answers to Exercises
7655 @subsection List Tutorial Exercise 10
7657 @noindent
7658 For the list @cite{[a, b, c, d]}, the result is @cite{((a = b) = c) = d},
7659 which will compare @cite{a} and @cite{b} to produce a 1 or 0, which is
7660 then compared with @cite{c} to produce another 1 or 0, which is then
7661 compared with @cite{d}.  This is not at all what Joe wanted.
7663 Here's a more correct method:
7665 @smallexample
7666 @group
7667 1:  [7, 7, 7, 8, 7]      2:  [7, 7, 7, 8, 7]
7668     .                    1:  7
7669                              .
7671   ' [7,7,7,8,7] @key{RET}          @key{RET} v r 1 @key{RET}
7673 @end group
7674 @end smallexample
7675 @noindent
7676 @smallexample
7677 @group
7678 1:  [1, 1, 1, 0, 1]      1:  0
7679     .                        .
7681     V M a =                  V R *
7682 @end group
7683 @end smallexample
7685 @node List Answer 11, List Answer 12, List Answer 10, Answers to Exercises
7686 @subsection List Tutorial Exercise 11
7688 @noindent
7689 The circle of unit radius consists of those points @cite{(x,y)} for which
7690 @cite{x^2 + y^2 < 1}.  We start by generating a vector of @cite{x^2}
7691 and a vector of @cite{y^2}.
7693 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7694 commands.
7696 @smallexample
7697 @group
7698 2:  [2., 2., ..., 2.]          2:  [2., 2., ..., 2.]
7699 1:  [2., 2., ..., 2.]          1:  [1.16, 1.98, ..., 0.81]
7700     .                              .
7702  v . t .  2. v b 100 @key{RET} @key{RET}       V M k r
7704 @end group
7705 @end smallexample
7706 @noindent
7707 @smallexample
7708 @group
7709 2:  [2., 2., ..., 2.]          1:  [0.026, 0.96, ..., 0.036]
7710 1:  [0.026, 0.96, ..., 0.036]  2:  [0.53, 0.81, ..., 0.094]
7711     .                              .
7713     1 -  2 V M ^                   @key{TAB}  V M k r  1 -  2 V M ^
7714 @end group
7715 @end smallexample
7717 Now we sum the @cite{x^2} and @cite{y^2} values, compare with 1 to
7718 get a vector of 1/0 truth values, then sum the truth values.
7720 @smallexample
7721 @group
7722 1:  [0.56, 1.78, ..., 0.13]    1:  [1, 0, ..., 1]    1:  84
7723     .                              .                     .
7725     +                              1 V M a <             V R +
7726 @end group
7727 @end smallexample
7729 @noindent
7730 The ratio @cite{84/100} should approximate the ratio @c{$\pi/4$}
7731 @cite{pi/4}.
7733 @smallexample
7734 @group
7735 1:  0.84       1:  3.36       2:  3.36       1:  1.0695
7736     .              .          1:  3.14159        .
7738     100 /          4 *            P              /
7739 @end group
7740 @end smallexample
7742 @noindent
7743 Our estimate, 3.36, is off by about 7%.  We could get a better estimate
7744 by taking more points (say, 1000), but it's clear that this method is
7745 not very efficient!
7747 (Naturally, since this example uses random numbers your own answer
7748 will be slightly different from the one shown here!)
7750 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7751 return to full-sized display of vectors.
7753 @node List Answer 12, List Answer 13, List Answer 11, Answers to Exercises
7754 @subsection List Tutorial Exercise 12
7756 @noindent
7757 This problem can be made a lot easier by taking advantage of some
7758 symmetries.  First of all, after some thought it's clear that the
7759 @cite{y} axis can be ignored altogether.  Just pick a random @cite{x}
7760 component for one end of the match, pick a random direction @c{$\theta$}
7761 @cite{theta},
7762 and see if @cite{x} and @c{$x + \cos \theta$}
7763 @cite{x + cos(theta)} (which is the @cite{x}
7764 coordinate of the other endpoint) cross a line.  The lines are at
7765 integer coordinates, so this happens when the two numbers surround
7766 an integer.
7768 Since the two endpoints are equivalent, we may as well choose the leftmost
7769 of the two endpoints as @cite{x}.  Then @cite{theta} is an angle pointing
7770 to the right, in the range -90 to 90 degrees.  (We could use radians, but
7771 it would feel like cheating to refer to @c{$\pi/2$}
7772 @cite{pi/2} radians while trying
7773 to estimate @c{$\pi$}
7774 @cite{pi}!)
7776 In fact, since the field of lines is infinite we can choose the
7777 coordinates 0 and 1 for the lines on either side of the leftmost
7778 endpoint.  The rightmost endpoint will be between 0 and 1 if the
7779 match does not cross a line, or between 1 and 2 if it does.  So:
7780 Pick random @cite{x} and @c{$\theta$}
7781 @cite{theta}, compute @c{$x + \cos \theta$}
7782 @cite{x + cos(theta)},
7783 and count how many of the results are greater than one.  Simple!
7785 We can make this go a bit faster by using the @kbd{v .} and @kbd{t .}
7786 commands.
7788 @smallexample
7789 @group
7790 1:  [0.52, 0.71, ..., 0.72]    2:  [0.52, 0.71, ..., 0.72]
7791     .                          1:  [78.4, 64.5, ..., -42.9]
7792                                    .
7794 v . t . 1. v b 100 @key{RET}  V M k r    180. v b 100 @key{RET}  V M k r  90 -
7795 @end group
7796 @end smallexample
7798 @noindent
7799 (The next step may be slow, depending on the speed of your computer.)
7801 @smallexample
7802 @group
7803 2:  [0.52, 0.71, ..., 0.72]    1:  [0.72, 1.14, ..., 1.45]
7804 1:  [0.20, 0.43, ..., 0.73]        .
7805     .
7807     m d  V M C                     +
7809 @end group
7810 @end smallexample
7811 @noindent
7812 @smallexample
7813 @group
7814 1:  [0, 1, ..., 1]       1:  0.64            1:  3.125
7815     .                        .                   .
7817     1 V M a >                V R + 100 /         2 @key{TAB} /
7818 @end group
7819 @end smallexample
7821 Let's try the third method, too.  We'll use random integers up to
7822 one million.  The @kbd{k r} command with an integer argument picks
7823 a random integer.
7825 @smallexample
7826 @group
7827 2:  [1000000, 1000000, ..., 1000000]   2:  [78489, 527587, ..., 814975]
7828 1:  [1000000, 1000000, ..., 1000000]   1:  [324014, 358783, ..., 955450]
7829     .                                      .
7831     1000000 v b 100 @key{RET} @key{RET}                V M k r  @key{TAB}  V M k r
7833 @end group
7834 @end smallexample
7835 @noindent
7836 @smallexample
7837 @group
7838 1:  [1, 1, ..., 25]      1:  [1, 1, ..., 0]     1:  0.56
7839     .                        .                      .
7841     V M k g                  1 V M a =              V R + 100 /
7843 @end group
7844 @end smallexample
7845 @noindent
7846 @smallexample
7847 @group
7848 1:  10.714        1:  3.273
7849     .                 .
7851     6 @key{TAB} /           Q
7852 @end group
7853 @end smallexample
7855 For a proof of this property of the GCD function, see section 4.5.2,
7856 exercise 10, of Knuth's @emph{Art of Computer Programming}, volume II.
7858 If you typed @kbd{v .} and @kbd{t .} before, type them again to
7859 return to full-sized display of vectors.
7861 @node List Answer 13, List Answer 14, List Answer 12, Answers to Exercises
7862 @subsection List Tutorial Exercise 13
7864 @noindent
7865 First, we put the string on the stack as a vector of ASCII codes.
7867 @smallexample
7868 @group
7869 1:  [84, 101, 115, ..., 51]
7870     .
7872     "Testing, 1, 2, 3 @key{RET}
7873 @end group
7874 @end smallexample
7876 @noindent
7877 Note that the @kbd{"} key, like @kbd{$}, initiates algebraic entry so
7878 there was no need to type an apostrophe.  Also, Calc didn't mind that
7879 we omitted the closing @kbd{"}.  (The same goes for all closing delimiters
7880 like @kbd{)} and @kbd{]} at the end of a formula.
7882 We'll show two different approaches here.  In the first, we note that
7883 if the input vector is @cite{[a, b, c, d]}, then the hash code is
7884 @cite{3 (3 (3a + b) + c) + d = 27a + 9b + 3c + d}.  In other words,
7885 it's a sum of descending powers of three times the ASCII codes.
7887 @smallexample
7888 @group
7889 2:  [84, 101, 115, ..., 51]    2:  [84, 101, 115, ..., 51]
7890 1:  16                         1:  [15, 14, 13, ..., 0]
7891     .                              .
7893     @key{RET} v l                        v x 16 @key{RET} -
7895 @end group
7896 @end smallexample
7897 @noindent
7898 @smallexample
7899 @group
7900 2:  [84, 101, 115, ..., 51]    1:  1960915098    1:  121
7901 1:  [14348907, ..., 1]             .                 .
7902     .
7904     3 @key{TAB} V M ^                    *                 511 %
7905 @end group
7906 @end smallexample
7908 @noindent
7909 Once again, @kbd{*} elegantly summarizes most of the computation.
7910 But there's an even more elegant approach:  Reduce the formula
7911 @kbd{3 $$ + $} across the vector.  Recall that this represents a
7912 function of two arguments that computes its first argument times three
7913 plus its second argument.
7915 @smallexample
7916 @group
7917 1:  [84, 101, 115, ..., 51]    1:  1960915098
7918     .                              .
7920     "Testing, 1, 2, 3 @key{RET}          V R ' 3$$+$ @key{RET}
7921 @end group
7922 @end smallexample
7924 @noindent
7925 If you did the decimal arithmetic exercise, this will be familiar.
7926 Basically, we're turning a base-3 vector of digits into an integer,
7927 except that our ``digits'' are much larger than real digits.
7929 Instead of typing @kbd{511 %} again to reduce the result, we can be
7930 cleverer still and notice that rather than computing a huge integer
7931 and taking the modulo at the end, we can take the modulo at each step
7932 without affecting the result.  While this means there are more
7933 arithmetic operations, the numbers we operate on remain small so
7934 the operations are faster.
7936 @smallexample
7937 @group
7938 1:  [84, 101, 115, ..., 51]    1:  121
7939     .                              .
7941     "Testing, 1, 2, 3 @key{RET}          V R ' (3$$+$)%511 @key{RET}
7942 @end group
7943 @end smallexample
7945 Why does this work?  Think about a two-step computation:
7946 @w{@cite{3 (3a + b) + c}}.  Taking a result modulo 511 basically means
7947 subtracting off enough 511's to put the result in the desired range.
7948 So the result when we take the modulo after every step is,
7950 @ifinfo
7951 @example
7952 3 (3 a + b - 511 m) + c - 511 n
7953 @end example
7954 @end ifinfo
7955 @tex
7956 \turnoffactive
7957 \beforedisplay
7958 $$ 3 (3 a + b - 511 m) + c - 511 n $$
7959 \afterdisplay
7960 @end tex
7962 @noindent
7963 for some suitable integers @cite{m} and @cite{n}.  Expanding out by
7964 the distributive law yields
7966 @ifinfo
7967 @example
7968 9 a + 3 b + c - 511*3 m - 511 n
7969 @end example
7970 @end ifinfo
7971 @tex
7972 \turnoffactive
7973 \beforedisplay
7974 $$ 9 a + 3 b + c - 511\times3 m - 511 n $$
7975 \afterdisplay
7976 @end tex
7978 @noindent
7979 The @cite{m} term in the latter formula is redundant because any
7980 contribution it makes could just as easily be made by the @cite{n}
7981 term.  So we can take it out to get an equivalent formula with
7982 @cite{n' = 3m + n},
7984 @ifinfo
7985 @example
7986 9 a + 3 b + c - 511 n'
7987 @end example
7988 @end ifinfo
7989 @tex
7990 \turnoffactive
7991 \beforedisplay
7992 $$ 9 a + 3 b + c - 511 n' $$
7993 \afterdisplay
7994 @end tex
7996 @noindent
7997 which is just the formula for taking the modulo only at the end of
7998 the calculation.  Therefore the two methods are essentially the same.
8000 Later in the tutorial we will encounter @dfn{modulo forms}, which
8001 basically automate the idea of reducing every intermediate result
8002 modulo some value @var{m}.
8004 @node List Answer 14, Types Answer 1, List Answer 13, Answers to Exercises
8005 @subsection List Tutorial Exercise 14
8007 We want to use @kbd{H V U} to nest a function which adds a random
8008 step to an @cite{(x,y)} coordinate.  The function is a bit long, but
8009 otherwise the problem is quite straightforward.
8011 @smallexample
8012 @group
8013 2:  [0, 0]     1:  [ [    0,       0    ]
8014 1:  50               [  0.4288, -0.1695 ]
8015     .                [ -0.4787, -0.9027 ]
8016                      ...
8018     [0,0] 50       H V U ' <# + [random(2.0)-1, random(2.0)-1]> @key{RET}
8019 @end group
8020 @end smallexample
8022 Just as the text recommended, we used @samp{< >} nameless function
8023 notation to keep the two @code{random} calls from being evaluated
8024 before nesting even begins.
8026 We now have a vector of @cite{[x, y]} sub-vectors, which by Calc's
8027 rules acts like a matrix.  We can transpose this matrix and unpack
8028 to get a pair of vectors, @cite{x} and @cite{y}, suitable for graphing.
8030 @smallexample
8031 @group
8032 2:  [ 0, 0.4288, -0.4787, ... ]
8033 1:  [ 0, -0.1696, -0.9027, ... ]
8034     .
8036     v t  v u  g f
8037 @end group
8038 @end smallexample
8040 Incidentally, because the @cite{x} and @cite{y} are completely
8041 independent in this case, we could have done two separate commands
8042 to create our @cite{x} and @cite{y} vectors of numbers directly.
8044 To make a random walk of unit steps, we note that @code{sincos} of
8045 a random direction exactly gives us an @cite{[x, y]} step of unit
8046 length; in fact, the new nesting function is even briefer, though
8047 we might want to lower the precision a bit for it.
8049 @smallexample
8050 @group
8051 2:  [0, 0]     1:  [ [    0,      0    ]
8052 1:  50               [  0.1318, 0.9912 ]
8053     .                [ -0.5965, 0.3061 ]
8054                      ...
8056     [0,0] 50   m d  p 6 @key{RET}   H V U ' <# + sincos(random(360.0))> @key{RET}
8057 @end group
8058 @end smallexample
8060 Another @kbd{v t v u g f} sequence will graph this new random walk.
8062 An interesting twist on these random walk functions would be to use
8063 complex numbers instead of 2-vectors to represent points on the plane.
8064 In the first example, we'd use something like @samp{random + random*(0,1)},
8065 and in the second we could use polar complex numbers with random phase
8066 angles.  (This exercise was first suggested in this form by Randal
8067 Schwartz.)
8069 @node Types Answer 1, Types Answer 2, List Answer 14, Answers to Exercises
8070 @subsection Types Tutorial Exercise 1
8072 @noindent
8073 If the number is the square root of @c{$\pi$}
8074 @cite{pi} times a rational number,
8075 then its square, divided by @c{$\pi$}
8076 @cite{pi}, should be a rational number.
8078 @smallexample
8079 @group
8080 1:  1.26508260337    1:  0.509433962268   1:  2486645810:4881193627
8081     .                    .                    .
8083                          2 ^ P /              c F
8084 @end group
8085 @end smallexample
8087 @noindent
8088 Technically speaking this is a rational number, but not one that is
8089 likely to have arisen in the original problem.  More likely, it just
8090 happens to be the fraction which most closely represents some
8091 irrational number to within 12 digits.
8093 But perhaps our result was not quite exact.  Let's reduce the
8094 precision slightly and try again:
8096 @smallexample
8097 @group
8098 1:  0.509433962268     1:  27:53
8099     .                      .
8101     U p 10 @key{RET}             c F
8102 @end group
8103 @end smallexample
8105 @noindent
8106 Aha!  It's unlikely that an irrational number would equal a fraction
8107 this simple to within ten digits, so our original number was probably
8108 @c{$\sqrt{27 \pi / 53}$}
8109 @cite{sqrt(27 pi / 53)}.
8111 Notice that we didn't need to re-round the number when we reduced the
8112 precision.  Remember, arithmetic operations always round their inputs
8113 to the current precision before they begin.
8115 @node Types Answer 2, Types Answer 3, Types Answer 1, Answers to Exercises
8116 @subsection Types Tutorial Exercise 2
8118 @noindent
8119 @samp{inf / inf = nan}.  Perhaps @samp{1} is the ``obvious'' answer.
8120 But if @w{@samp{17 inf = inf}}, then @samp{17 inf / inf = inf / inf = 17}, too.
8122 @samp{exp(inf) = inf}.  It's tempting to say that the exponential
8123 of infinity must be ``bigger'' than ``regular'' infinity, but as
8124 far as Calc is concerned all infinities are as just as big.
8125 In other words, as @cite{x} goes to infinity, @cite{e^x} also goes
8126 to infinity, but the fact the @cite{e^x} grows much faster than
8127 @cite{x} is not relevant here.
8129 @samp{exp(-inf) = 0}.  Here we have a finite answer even though
8130 the input is infinite.
8132 @samp{sqrt(-inf) = (0, 1) inf}.  Remember that @cite{(0, 1)}
8133 represents the imaginary number @cite{i}.  Here's a derivation:
8134 @samp{sqrt(-inf) = @w{sqrt((-1) * inf)} = sqrt(-1) * sqrt(inf)}.
8135 The first part is, by definition, @cite{i}; the second is @code{inf}
8136 because, once again, all infinities are the same size.
8138 @samp{sqrt(uinf) = uinf}.  In fact, we do know something about the
8139 direction because @code{sqrt} is defined to return a value in the
8140 right half of the complex plane.  But Calc has no notation for this,
8141 so it settles for the conservative answer @code{uinf}.
8143 @samp{abs(uinf) = inf}.  No matter which direction @cite{x} points,
8144 @samp{abs(x)} always points along the positive real axis.
8146 @samp{ln(0) = -inf}.  Here we have an infinite answer to a finite
8147 input.  As in the @cite{1 / 0} case, Calc will only use infinities
8148 here if you have turned on ``infinite'' mode.  Otherwise, it will
8149 treat @samp{ln(0)} as an error.
8151 @node Types Answer 3, Types Answer 4, Types Answer 2, Answers to Exercises
8152 @subsection Types Tutorial Exercise 3
8154 @noindent
8155 We can make @samp{inf - inf} be any real number we like, say,
8156 @cite{a}, just by claiming that we added @cite{a} to the first
8157 infinity but not to the second.  This is just as true for complex
8158 values of @cite{a}, so @code{nan} can stand for a complex number.
8159 (And, similarly, @code{uinf} can stand for an infinity that points
8160 in any direction in the complex plane, such as @samp{(0, 1) inf}).
8162 In fact, we can multiply the first @code{inf} by two.  Surely
8163 @w{@samp{2 inf - inf = inf}}, but also @samp{2 inf - inf = inf - inf = nan}.
8164 So @code{nan} can even stand for infinity.  Obviously it's just
8165 as easy to make it stand for minus infinity as for plus infinity.
8167 The moral of this story is that ``infinity'' is a slippery fish
8168 indeed, and Calc tries to handle it by having a very simple model
8169 for infinities (only the direction counts, not the ``size''); but
8170 Calc is careful to write @code{nan} any time this simple model is
8171 unable to tell what the true answer is.
8173 @node Types Answer 4, Types Answer 5, Types Answer 3, Answers to Exercises
8174 @subsection Types Tutorial Exercise 4
8176 @smallexample
8177 @group
8178 2:  0@@ 47' 26"              1:  0@@ 2' 47.411765"
8179 1:  17                          .
8180     .
8182     0@@ 47' 26" @key{RET} 17           /
8183 @end group
8184 @end smallexample
8186 @noindent
8187 The average song length is two minutes and 47.4 seconds.
8189 @smallexample
8190 @group
8191 2:  0@@ 2' 47.411765"     1:  0@@ 3' 7.411765"    1:  0@@ 53' 6.000005"
8192 1:  0@@ 0' 20"                .                      .
8193     .
8195     20"                      +                      17 *
8196 @end group
8197 @end smallexample
8199 @noindent
8200 The album would be 53 minutes and 6 seconds long.
8202 @node Types Answer 5, Types Answer 6, Types Answer 4, Answers to Exercises
8203 @subsection Types Tutorial Exercise 5
8205 @noindent
8206 Let's suppose it's January 14, 1991.  The easiest thing to do is
8207 to keep trying 13ths of months until Calc reports a Friday.
8208 We can do this by manually entering dates, or by using @kbd{t I}:
8210 @smallexample
8211 @group
8212 1:  <Wed Feb 13, 1991>    1:  <Wed Mar 13, 1991>   1:  <Sat Apr 13, 1991>
8213     .                         .                        .
8215     ' <2/13> @key{RET}       @key{DEL}    ' <3/13> @key{RET}             t I
8216 @end group
8217 @end smallexample
8219 @noindent
8220 (Calc assumes the current year if you don't say otherwise.)
8222 This is getting tedious---we can keep advancing the date by typing
8223 @kbd{t I} over and over again, but let's automate the job by using
8224 vector mapping.  The @kbd{t I} command actually takes a second
8225 ``how-many-months'' argument, which defaults to one.  This
8226 argument is exactly what we want to map over:
8228 @smallexample
8229 @group
8230 2:  <Sat Apr 13, 1991>     1:  [<Mon May 13, 1991>, <Thu Jun 13, 1991>,
8231 1:  [1, 2, 3, 4, 5, 6]          <Sat Jul 13, 1991>, <Tue Aug 13, 1991>,
8232     .                           <Fri Sep 13, 1991>, <Sun Oct 13, 1991>]
8233                                .
8235     v x 6 @key{RET}                  V M t I
8236 @end group
8237 @end smallexample
8239 @noindent
8240 Et voil@`a, September 13, 1991 is a Friday.
8242 @smallexample
8243 @group
8244 1:  242
8245     .
8247 ' <sep 13> - <jan 14> @key{RET}
8248 @end group
8249 @end smallexample
8251 @noindent
8252 And the answer to our original question:  242 days to go.
8254 @node Types Answer 6, Types Answer 7, Types Answer 5, Answers to Exercises
8255 @subsection Types Tutorial Exercise 6
8257 @noindent
8258 The full rule for leap years is that they occur in every year divisible
8259 by four, except that they don't occur in years divisible by 100, except
8260 that they @emph{do} in years divisible by 400.  We could work out the
8261 answer by carefully counting the years divisible by four and the
8262 exceptions, but there is a much simpler way that works even if we
8263 don't know the leap year rule.
8265 Let's assume the present year is 1991.  Years have 365 days, except
8266 that leap years (whenever they occur) have 366 days.  So let's count
8267 the number of days between now and then, and compare that to the
8268 number of years times 365.  The number of extra days we find must be
8269 equal to the number of leap years there were.
8271 @smallexample
8272 @group
8273 1:  <Mon Jan 1, 10001>     2:  <Mon Jan 1, 10001>     1:  2925593
8274     .                      1:  <Tue Jan 1, 1991>          .
8275                                .
8277   ' <jan 1 10001> @key{RET}         ' <jan 1 1991> @key{RET}          -
8279 @end group
8280 @end smallexample
8281 @noindent
8282 @smallexample
8283 @group
8284 3:  2925593       2:  2925593     2:  2925593     1:  1943
8285 2:  10001         1:  8010        1:  2923650         .
8286 1:  1991              .               .
8287     .
8289   10001 @key{RET} 1991      -               365 *           -
8290 @end group
8291 @end smallexample
8293 @c [fix-ref Date Forms]
8294 @noindent
8295 There will be 1943 leap years before the year 10001.  (Assuming,
8296 of course, that the algorithm for computing leap years remains
8297 unchanged for that long.  @xref{Date Forms}, for some interesting
8298 background information in that regard.)
8300 @node Types Answer 7, Types Answer 8, Types Answer 6, Answers to Exercises
8301 @subsection Types Tutorial Exercise 7
8303 @noindent
8304 The relative errors must be converted to absolute errors so that
8305 @samp{+/-} notation may be used.
8307 @smallexample
8308 @group
8309 1:  1.              2:  1.
8310     .               1:  0.2
8311                         .
8313     20 @key{RET} .05 *        4 @key{RET} .05 *
8314 @end group
8315 @end smallexample
8317 Now we simply chug through the formula.
8319 @smallexample
8320 @group
8321 1:  19.7392088022    1:  394.78 +/- 19.739    1:  6316.5 +/- 706.21
8322     .                    .                        .
8324     2 P 2 ^ *            20 p 1 *                 4 p .2 @key{RET} 2 ^ *
8325 @end group
8326 @end smallexample
8328 It turns out the @kbd{v u} command will unpack an error form as
8329 well as a vector.  This saves us some retyping of numbers.
8331 @smallexample
8332 @group
8333 3:  6316.5 +/- 706.21     2:  6316.5 +/- 706.21
8334 2:  6316.5                1:  0.1118
8335 1:  706.21                    .
8336     .
8338     @key{RET} v u                   @key{TAB} /
8339 @end group
8340 @end smallexample
8342 @noindent
8343 Thus the volume is 6316 cubic centimeters, within about 11 percent.
8345 @node Types Answer 8, Types Answer 9, Types Answer 7, Answers to Exercises
8346 @subsection Types Tutorial Exercise 8
8348 @noindent
8349 The first answer is pretty simple:  @samp{1 / (0 .. 10) = (0.1 .. inf)}.
8350 Since a number in the interval @samp{(0 .. 10)} can get arbitrarily
8351 close to zero, its reciprocal can get arbitrarily large, so the answer
8352 is an interval that effectively means, ``any number greater than 0.1''
8353 but with no upper bound.
8355 The second answer, similarly, is @samp{1 / (-10 .. 0) = (-inf .. -0.1)}.
8357 Calc normally treats division by zero as an error, so that the formula
8358 @w{@samp{1 / 0}} is left unsimplified.  Our third problem,
8359 @w{@samp{1 / [0 .. 10]}}, also (potentially) divides by zero because zero
8360 is now a member of the interval.  So Calc leaves this one unevaluated, too.
8362 If you turn on ``infinite'' mode by pressing @kbd{m i}, you will
8363 instead get the answer @samp{[0.1 .. inf]}, which includes infinity
8364 as a possible value.
8366 The fourth calculation, @samp{1 / (-10 .. 10)}, has the same problem.
8367 Zero is buried inside the interval, but it's still a possible value.
8368 It's not hard to see that the actual result of @samp{1 / (-10 .. 10)}
8369 will be either greater than @i{0.1}, or less than @i{-0.1}.  Thus
8370 the interval goes from minus infinity to plus infinity, with a ``hole''
8371 in it from @i{-0.1} to @i{0.1}.  Calc doesn't have any way to
8372 represent this, so it just reports @samp{[-inf .. inf]} as the answer.
8373 It may be disappointing to hear ``the answer lies somewhere between
8374 minus infinity and plus infinity, inclusive,'' but that's the best
8375 that interval arithmetic can do in this case.
8377 @node Types Answer 9, Types Answer 10, Types Answer 8, Answers to Exercises
8378 @subsection Types Tutorial Exercise 9
8380 @smallexample
8381 @group
8382 1:  [-3 .. 3]       2:  [-3 .. 3]     2:  [0 .. 9]
8383     .               1:  [0 .. 9]      1:  [-9 .. 9]
8384                         .                 .
8386     [ 3 n .. 3 ]        @key{RET} 2 ^           @key{TAB} @key{RET} *
8387 @end group
8388 @end smallexample
8390 @noindent
8391 In the first case the result says, ``if a number is between @i{-3} and
8392 3, its square is between 0 and 9.''  The second case says, ``the product
8393 of two numbers each between @i{-3} and 3 is between @i{-9} and 9.''
8395 An interval form is not a number; it is a symbol that can stand for
8396 many different numbers.  Two identical-looking interval forms can stand
8397 for different numbers.
8399 The same issue arises when you try to square an error form.
8401 @node Types Answer 10, Types Answer 11, Types Answer 9, Answers to Exercises
8402 @subsection Types Tutorial Exercise 10
8404 @noindent
8405 Testing the first number, we might arbitrarily choose 17 for @cite{x}.
8407 @smallexample
8408 @group
8409 1:  17 mod 811749613   2:  17 mod 811749613   1:  533694123 mod 811749613
8410     .                      811749612              .
8411                            .
8413     17 M 811749613 @key{RET}     811749612              ^
8414 @end group
8415 @end smallexample
8417 @noindent
8418 Since 533694123 is (considerably) different from 1, the number 811749613
8419 must not be prime.
8421 It's awkward to type the number in twice as we did above.  There are
8422 various ways to avoid this, and algebraic entry is one.  In fact, using
8423 a vector mapping operation we can perform several tests at once.  Let's
8424 use this method to test the second number.
8426 @smallexample
8427 @group
8428 2:  [17, 42, 100000]               1:  [1 mod 15485863, 1 mod ... ]
8429 1:  15485863                           .
8430     .
8432  [17 42 100000] 15485863 @key{RET}           V M ' ($$ mod $)^($-1) @key{RET}
8433 @end group
8434 @end smallexample
8436 @noindent
8437 The result is three ones (modulo @cite{n}), so it's very probable that
8438 15485863 is prime.  (In fact, this number is the millionth prime.)
8440 Note that the functions @samp{($$^($-1)) mod $} or @samp{$$^($-1) % $}
8441 would have been hopelessly inefficient, since they would have calculated
8442 the power using full integer arithmetic.
8444 Calc has a @kbd{k p} command that does primality testing.  For small
8445 numbers it does an exact test; for large numbers it uses a variant
8446 of the Fermat test we used here.  You can use @kbd{k p} repeatedly
8447 to prove that a large integer is prime with any desired probability.
8449 @node Types Answer 11, Types Answer 12, Types Answer 10, Answers to Exercises
8450 @subsection Types Tutorial Exercise 11
8452 @noindent
8453 There are several ways to insert a calculated number into an HMS form.
8454 One way to convert a number of seconds to an HMS form is simply to
8455 multiply the number by an HMS form representing one second:
8457 @smallexample
8458 @group
8459 1:  31415926.5359     2:  31415926.5359     1:  8726@@ 38' 46.5359"
8460     .                 1:  0@@ 0' 1"              .
8461                           .
8463     P 1e7 *               0@@ 0' 1"              *
8465 @end group
8466 @end smallexample
8467 @noindent
8468 @smallexample
8469 @group
8470 2:  8726@@ 38' 46.5359"             1:  6@@ 6' 2.5359" mod 24@@ 0' 0"
8471 1:  15@@ 27' 16" mod 24@@ 0' 0"          .
8472     .
8474     x time @key{RET}                         +
8475 @end group
8476 @end smallexample
8478 @noindent
8479 It will be just after six in the morning.
8481 The algebraic @code{hms} function can also be used to build an
8482 HMS form:
8484 @smallexample
8485 @group
8486 1:  hms(0, 0, 10000000. pi)       1:  8726@@ 38' 46.5359"
8487     .                                 .
8489   ' hms(0, 0, 1e7 pi) @key{RET}             =
8490 @end group
8491 @end smallexample
8493 @noindent
8494 The @kbd{=} key is necessary to evaluate the symbol @samp{pi} to
8495 the actual number 3.14159...
8497 @node Types Answer 12, Types Answer 13, Types Answer 11, Answers to Exercises
8498 @subsection Types Tutorial Exercise 12
8500 @noindent
8501 As we recall, there are 17 songs of about 2 minutes and 47 seconds
8502 each.
8504 @smallexample
8505 @group
8506 2:  0@@ 2' 47"                    1:  [0@@ 3' 7" .. 0@@ 3' 47"]
8507 1:  [0@@ 0' 20" .. 0@@ 1' 0"]          .
8508     .
8510     [ 0@@ 20" .. 0@@ 1' ]              +
8512 @end group
8513 @end smallexample
8514 @noindent
8515 @smallexample
8516 @group
8517 1:  [0@@ 52' 59." .. 1@@ 4' 19."]
8518     .
8520     17 *
8521 @end group
8522 @end smallexample
8524 @noindent
8525 No matter how long it is, the album will fit nicely on one CD.
8527 @node Types Answer 13, Types Answer 14, Types Answer 12, Answers to Exercises
8528 @subsection Types Tutorial Exercise 13
8530 @noindent
8531 Type @kbd{' 1 yr @key{RET} u c s @key{RET}}.  The answer is 31557600 seconds.
8533 @node Types Answer 14, Types Answer 15, Types Answer 13, Answers to Exercises
8534 @subsection Types Tutorial Exercise 14
8536 @noindent
8537 How long will it take for a signal to get from one end of the computer
8538 to the other?
8540 @smallexample
8541 @group
8542 1:  m / c         1:  3.3356 ns
8543     .                 .
8545  ' 1 m / c @key{RET}        u c ns @key{RET}
8546 @end group
8547 @end smallexample
8549 @noindent
8550 (Recall, @samp{c} is a ``unit'' corresponding to the speed of light.)
8552 @smallexample
8553 @group
8554 1:  3.3356 ns     1:  0.81356 ns / ns     1:  0.81356
8555 2:  4.1 ns            .                       .
8556     .
8558   ' 4.1 ns @key{RET}        /                       u s
8559 @end group
8560 @end smallexample
8562 @noindent
8563 Thus a signal could take up to 81 percent of a clock cycle just to
8564 go from one place to another inside the computer, assuming the signal
8565 could actually attain the full speed of light.  Pretty tight!
8567 @node Types Answer 15, Algebra Answer 1, Types Answer 14, Answers to Exercises
8568 @subsection Types Tutorial Exercise 15
8570 @noindent
8571 The speed limit is 55 miles per hour on most highways.  We want to
8572 find the ratio of Sam's speed to the US speed limit.
8574 @smallexample
8575 @group
8576 1:  55 mph         2:  55 mph           3:  11 hr mph / yd
8577     .              1:  5 yd / hr            .
8578                        .
8580   ' 55 mph @key{RET}       ' 5 yd/hr @key{RET}          /
8581 @end group
8582 @end smallexample
8584 The @kbd{u s} command cancels out these units to get a plain
8585 number.  Now we take the logarithm base two to find the final
8586 answer, assuming that each successive pill doubles his speed.
8588 @smallexample
8589 @group
8590 1:  19360.       2:  19360.       1:  14.24
8591     .            1:  2                .
8592                      .
8594     u s              2                B
8595 @end group
8596 @end smallexample
8598 @noindent
8599 Thus Sam can take up to 14 pills without a worry.
8601 @node Algebra Answer 1, Algebra Answer 2, Types Answer 15, Answers to Exercises
8602 @subsection Algebra Tutorial Exercise 1
8604 @noindent
8605 @c [fix-ref Declarations]
8606 The result @samp{sqrt(x)^2} is simplified back to @cite{x} by the
8607 Calculator, but @samp{sqrt(x^2)} is not.  (Consider what happens
8608 if @w{@cite{x = -4}}.)  If @cite{x} is real, this formula could be
8609 simplified to @samp{abs(x)}, but for general complex arguments even
8610 that is not safe.  (@xref{Declarations}, for a way to tell Calc
8611 that @cite{x} is known to be real.)
8613 @node Algebra Answer 2, Algebra Answer 3, Algebra Answer 1, Answers to Exercises
8614 @subsection Algebra Tutorial Exercise 2
8616 @noindent
8617 Suppose our roots are @cite{[a, b, c]}.  We want a polynomial which
8618 is zero when @cite{x} is any of these values.  The trivial polynomial
8619 @cite{x-a} is zero when @cite{x=a}, so the product @cite{(x-a)(x-b)(x-c)}
8620 will do the job.  We can use @kbd{a c x} to write this in a more
8621 familiar form.
8623 @smallexample
8624 @group
8625 1:  34 x - 24 x^3          1:  [1.19023, -1.19023, 0]
8626     .                          .
8628     r 2                        a P x @key{RET}
8630 @end group
8631 @end smallexample
8632 @noindent
8633 @smallexample
8634 @group
8635 1:  [x - 1.19023, x + 1.19023, x]     1:  (x - 1.19023) (x + 1.19023) x
8636     .                                     .
8638     V M ' x-$ @key{RET}                         V R *
8640 @end group
8641 @end smallexample
8642 @noindent
8643 @smallexample
8644 @group
8645 1:  x^3 - 1.41666 x        1:  34 x - 24 x^3
8646     .                          .
8648     a c x @key{RET}                  24 n *  a x
8649 @end group
8650 @end smallexample
8652 @noindent
8653 Sure enough, our answer (multiplied by a suitable constant) is the
8654 same as the original polynomial.
8656 @node Algebra Answer 3, Algebra Answer 4, Algebra Answer 2, Answers to Exercises
8657 @subsection Algebra Tutorial Exercise 3
8659 @smallexample
8660 @group
8661 1:  x sin(pi x)         1:  (sin(pi x) - pi x cos(pi x)) / pi^2
8662     .                       .
8664   ' x sin(pi x) @key{RET}   m r   a i x @key{RET}
8666 @end group
8667 @end smallexample
8668 @noindent
8669 @smallexample
8670 @group
8671 1:  [y, 1]
8672 2:  (sin(pi x) - pi x cos(pi x)) / pi^2
8673     .
8675   ' [y,1] @key{RET} @key{TAB}
8677 @end group
8678 @end smallexample
8679 @noindent
8680 @smallexample
8681 @group
8682 1:  [(sin(pi y) - pi y cos(pi y)) / pi^2, (sin(pi) - pi cos(pi)) / pi^2]
8683     .
8685     V M $ @key{RET}
8687 @end group
8688 @end smallexample
8689 @noindent
8690 @smallexample
8691 @group
8692 1:  (sin(pi y) - pi y cos(pi y)) / pi^2 + (pi cos(pi) - sin(pi)) / pi^2
8693     .
8695     V R -
8697 @end group
8698 @end smallexample
8699 @noindent
8700 @smallexample
8701 @group
8702 1:  (sin(3.14159 y) - 3.14159 y cos(3.14159 y)) / 9.8696 - 0.3183
8703     .
8705     =
8707 @end group
8708 @end smallexample
8709 @noindent
8710 @smallexample
8711 @group
8712 1:  [0., -0.95493, 0.63662, -1.5915, 1.2732]
8713     .
8715     v x 5 @key{RET}  @key{TAB}  V M $ @key{RET}
8716 @end group
8717 @end smallexample
8719 @node Algebra Answer 4, Rewrites Answer 1, Algebra Answer 3, Answers to Exercises
8720 @subsection Algebra Tutorial Exercise 4
8722 @noindent
8723 The hard part is that @kbd{V R +} is no longer sufficient to add up all
8724 the contributions from the slices, since the slices have varying
8725 coefficients.  So first we must come up with a vector of these
8726 coefficients.  Here's one way:
8728 @smallexample
8729 @group
8730 2:  -1                 2:  3                    1:  [4, 2, ..., 4]
8731 1:  [1, 2, ..., 9]     1:  [-1, 1, ..., -1]         .
8732     .                      .
8734     1 n v x 9 @key{RET}          V M ^  3 @key{TAB}             -
8736 @end group
8737 @end smallexample
8738 @noindent
8739 @smallexample
8740 @group
8741 1:  [4, 2, ..., 4, 1]      1:  [1, 4, 2, ..., 4, 1]
8742     .                          .
8744     1 |                        1 @key{TAB} |
8745 @end group
8746 @end smallexample
8748 @noindent
8749 Now we compute the function values.  Note that for this method we need
8750 eleven values, including both endpoints of the desired interval.
8752 @smallexample
8753 @group
8754 2:  [1, 4, 2, ..., 4, 1]
8755 1:  [1, 1.1, 1.2,  ...  , 1.8, 1.9, 2.]
8756     .
8758  11 @key{RET} 1 @key{RET} .1 @key{RET}  C-u v x
8760 @end group
8761 @end smallexample
8762 @noindent
8763 @smallexample
8764 @group
8765 2:  [1, 4, 2, ..., 4, 1]
8766 1:  [0., 0.084941, 0.16993, ... ]
8767     .
8769     ' sin(x) ln(x) @key{RET}   m r  p 5 @key{RET}   V M $ @key{RET}
8770 @end group
8771 @end smallexample
8773 @noindent
8774 Once again this calls for @kbd{V M * V R +}; a simple @kbd{*} does the
8775 same thing.
8777 @smallexample
8778 @group
8779 1:  11.22      1:  1.122      1:  0.374
8780     .              .              .
8782     *              .1 *           3 /
8783 @end group
8784 @end smallexample
8786 @noindent
8787 Wow!  That's even better than the result from the Taylor series method.
8789 @node Rewrites Answer 1, Rewrites Answer 2, Algebra Answer 4, Answers to Exercises
8790 @subsection Rewrites Tutorial Exercise 1
8792 @noindent
8793 We'll use Big mode to make the formulas more readable.
8795 @smallexample
8796 @group
8797                                                ___
8798                                           2 + V 2
8799 1:  (2 + sqrt(2)) / (1 + sqrt(2))     1:  --------
8800     .                                          ___
8801                                           1 + V 2
8803                                           .
8805   ' (2+sqrt(2)) / (1+sqrt(2)) @key{RET}         d B
8806 @end group
8807 @end smallexample
8809 @noindent
8810 Multiplying by the conjugate helps because @cite{(a+b) (a-b) = a^2 - b^2}.
8812 @smallexample
8813 @group
8814           ___    ___
8815 1:  (2 + V 2 ) (V 2  - 1)
8816     .
8818   a r a/(b+c) := a*(b-c) / (b^2-c^2) @key{RET}
8820 @end group
8821 @end smallexample
8822 @noindent
8823 @smallexample
8824 @group
8825          ___                         ___
8826 1:  2 + V 2  - 2                1:  V 2
8827     .                               .
8829   a r a*(b+c) := a*b + a*c          a s
8830 @end group
8831 @end smallexample
8833 @noindent
8834 (We could have used @kbd{a x} instead of a rewrite rule for the
8835 second step.)
8837 The multiply-by-conjugate rule turns out to be useful in many
8838 different circumstances, such as when the denominator involves
8839 sines and cosines or the imaginary constant @code{i}.
8841 @node Rewrites Answer 2, Rewrites Answer 3, Rewrites Answer 1, Answers to Exercises
8842 @subsection Rewrites Tutorial Exercise 2
8844 @noindent
8845 Here is the rule set:
8847 @smallexample
8848 @group
8849 [ fib(n) := fib(n, 1, 1) :: integer(n) :: n >= 1,
8850   fib(1, x, y) := x,
8851   fib(n, x, y) := fib(n-1, y, x+y) ]
8852 @end group
8853 @end smallexample
8855 @noindent
8856 The first rule turns a one-argument @code{fib} that people like to write
8857 into a three-argument @code{fib} that makes computation easier.  The
8858 second rule converts back from three-argument form once the computation
8859 is done.  The third rule does the computation itself.  It basically
8860 says that if @cite{x} and @cite{y} are two consecutive Fibonacci numbers,
8861 then @cite{y} and @cite{x+y} are the next (overlapping) pair of Fibonacci
8862 numbers.
8864 Notice that because the number @cite{n} was ``validated'' by the
8865 conditions on the first rule, there is no need to put conditions on
8866 the other rules because the rule set would never get that far unless
8867 the input were valid.  That further speeds computation, since no
8868 extra conditions need to be checked at every step.
8870 Actually, a user with a nasty sense of humor could enter a bad
8871 three-argument @code{fib} call directly, say, @samp{fib(0, 1, 1)},
8872 which would get the rules into an infinite loop.  One thing that would
8873 help keep this from happening by accident would be to use something like
8874 @samp{ZzFib} instead of @code{fib} as the name of the three-argument
8875 function.
8877 @node Rewrites Answer 3, Rewrites Answer 4, Rewrites Answer 2, Answers to Exercises
8878 @subsection Rewrites Tutorial Exercise 3
8880 @noindent
8881 He got an infinite loop.  First, Calc did as expected and rewrote
8882 @w{@samp{2 + 3 x}} to @samp{f(2, 3, x)}.  Then it looked for ways to
8883 apply the rule again, and found that @samp{f(2, 3, x)} looks like
8884 @samp{a + b x} with @w{@samp{a = 0}} and @samp{b = 1}, so it rewrote to
8885 @samp{f(0, 1, f(2, 3, x))}.  It then wrapped another @samp{f(0, 1, ...)}
8886 around that, and so on, ad infinitum.  Joe should have used @kbd{M-1 a r}
8887 to make sure the rule applied only once.
8889 (Actually, even the first step didn't work as he expected.  What Calc
8890 really gives for @kbd{M-1 a r} in this situation is @samp{f(3 x, 1, 2)},
8891 treating 2 as the ``variable,'' and @samp{3 x} as a constant being added
8892 to it.  While this may seem odd, it's just as valid a solution as the
8893 ``obvious'' one.  One way to fix this would be to add the condition
8894 @samp{:: variable(x)} to the rule, to make sure the thing that matches
8895 @samp{x} is indeed a variable, or to change @samp{x} to @samp{quote(x)}
8896 on the lefthand side, so that the rule matches the actual variable
8897 @samp{x} rather than letting @samp{x} stand for something else.)
8899 @node Rewrites Answer 4, Rewrites Answer 5, Rewrites Answer 3, Answers to Exercises
8900 @subsection Rewrites Tutorial Exercise 4
8902 @noindent
8903 @ignore
8904 @starindex
8905 @end ignore
8906 @tindex seq
8907 Here is a suitable set of rules to solve the first part of the problem:
8909 @smallexample
8910 @group
8911 [ seq(n, c) := seq(n/2,  c+1) :: n%2 = 0,
8912   seq(n, c) := seq(3n+1, c+1) :: n%2 = 1 :: n > 1 ]
8913 @end group
8914 @end smallexample
8916 Given the initial formula @samp{seq(6, 0)}, application of these
8917 rules produces the following sequence of formulas:
8919 @example
8920 seq( 3, 1)
8921 seq(10, 2)
8922 seq( 5, 3)
8923 seq(16, 4)
8924 seq( 8, 5)
8925 seq( 4, 6)
8926 seq( 2, 7)
8927 seq( 1, 8)
8928 @end example
8930 @noindent
8931 whereupon neither of the rules match, and rewriting stops.
8933 We can pretty this up a bit with a couple more rules:
8935 @smallexample
8936 @group
8937 [ seq(n) := seq(n, 0),
8938   seq(1, c) := c,
8939   ... ]
8940 @end group
8941 @end smallexample
8943 @noindent
8944 Now, given @samp{seq(6)} as the starting configuration, we get 8
8945 as the result.
8947 The change to return a vector is quite simple:
8949 @smallexample
8950 @group
8951 [ seq(n) := seq(n, []) :: integer(n) :: n > 0,
8952   seq(1, v) := v | 1,
8953   seq(n, v) := seq(n/2,  v | n) :: n%2 = 0,
8954   seq(n, v) := seq(3n+1, v | n) :: n%2 = 1 ]
8955 @end group
8956 @end smallexample
8958 @noindent
8959 Given @samp{seq(6)}, the result is @samp{[6, 3, 10, 5, 16, 8, 4, 2, 1]}.
8961 Notice that the @cite{n > 1} guard is no longer necessary on the last
8962 rule since the @cite{n = 1} case is now detected by another rule.
8963 But a guard has been added to the initial rule to make sure the
8964 initial value is suitable before the computation begins.
8966 While still a good idea, this guard is not as vitally important as it
8967 was for the @code{fib} function, since calling, say, @samp{seq(x, [])}
8968 will not get into an infinite loop.  Calc will not be able to prove
8969 the symbol @samp{x} is either even or odd, so none of the rules will
8970 apply and the rewrites will stop right away.
8972 @node Rewrites Answer 5, Rewrites Answer 6, Rewrites Answer 4, Answers to Exercises
8973 @subsection Rewrites Tutorial Exercise 5
8975 @noindent
8976 @ignore
8977 @starindex
8978 @end ignore
8979 @tindex nterms
8980 If @cite{x} is the sum @cite{a + b}, then `@t{nterms(}@var{x}@t{)}' must
8981 be `@t{nterms(}@var{a}@t{)}' plus `@t{nterms(}@var{b}@t{)}'.  If @cite{x}
8982 is not a sum, then `@t{nterms(}@var{x}@t{)}' = 1.
8984 @smallexample
8985 @group
8986 [ nterms(a + b) := nterms(a) + nterms(b),
8987   nterms(x)     := 1 ]
8988 @end group
8989 @end smallexample
8991 @noindent
8992 Here we have taken advantage of the fact that earlier rules always
8993 match before later rules; @samp{nterms(x)} will only be tried if we
8994 already know that @samp{x} is not a sum.
8996 @node Rewrites Answer 6, Rewrites Answer 7, Rewrites Answer 5, Answers to Exercises
8997 @subsection Rewrites Tutorial Exercise 6
8999 Just put the rule @samp{0^0 := 1} into @code{EvalRules}.  For example,
9000 before making this definition we have:
9002 @smallexample
9003 @group
9004 2:  [-2, -1, 0, 1, 2]                1:  [1, 1, 0^0, 1, 1]
9005 1:  0                                    .
9006     .
9008     v x 5 @key{RET}  3 -  0                    V M ^
9009 @end group
9010 @end smallexample
9012 @noindent
9013 But then:
9015 @smallexample
9016 @group
9017 2:  [-2, -1, 0, 1, 2]                1:  [1, 1, 1, 1, 1]
9018 1:  0                                    .
9019     .
9021     U  ' 0^0:=1 @key{RET} s t EvalRules @key{RET}    V M ^
9022 @end group
9023 @end smallexample
9025 Perhaps more surprisingly, this rule still works with infinite mode
9026 turned on.  Calc tries @code{EvalRules} before any built-in rules for
9027 a function.  This allows you to override the default behavior of any
9028 Calc feature:  Even though Calc now wants to evaluate @cite{0^0} to
9029 @code{nan}, your rule gets there first and evaluates it to 1 instead.
9031 Just for kicks, try adding the rule @code{2+3 := 6} to @code{EvalRules}.
9032 What happens?  (Be sure to remove this rule afterward, or you might get
9033 a nasty surprise when you use Calc to balance your checkbook!)
9035 @node Rewrites Answer 7, Programming Answer 1, Rewrites Answer 6, Answers to Exercises
9036 @subsection Rewrites Tutorial Exercise 7
9038 @noindent
9039 Here is a rule set that will do the job:
9041 @smallexample
9042 @group
9043 [ a*(b + c) := a*b + a*c,
9044   opt(a) O(x^n) + opt(b) O(x^m) := O(x^n) :: n <= m
9045      :: constant(a) :: constant(b),
9046   opt(a) O(x^n) + opt(b) x^m := O(x^n) :: n <= m
9047      :: constant(a) :: constant(b),
9048   a O(x^n) := O(x^n) :: constant(a),
9049   x^opt(m) O(x^n) := O(x^(n+m)),
9050   O(x^n) O(x^m) := O(x^(n+m)) ]
9051 @end group
9052 @end smallexample
9054 If we really want the @kbd{+} and @kbd{*} keys to operate naturally
9055 on power series, we should put these rules in @code{EvalRules}.  For
9056 testing purposes, it is better to put them in a different variable,
9057 say, @code{O}, first.
9059 The first rule just expands products of sums so that the rest of the
9060 rules can assume they have an expanded-out polynomial to work with.
9061 Note that this rule does not mention @samp{O} at all, so it will
9062 apply to any product-of-sum it encounters---this rule may surprise
9063 you if you put it into @code{EvalRules}!
9065 In the second rule, the sum of two O's is changed to the smaller O.
9066 The optional constant coefficients are there mostly so that
9067 @samp{O(x^2) - O(x^3)} and @samp{O(x^3) - O(x^2)} are handled
9068 as well as @samp{O(x^2) + O(x^3)}.
9070 The third rule absorbs higher powers of @samp{x} into O's.
9072 The fourth rule says that a constant times a negligible quantity
9073 is still negligible.  (This rule will also match @samp{O(x^3) / 4},
9074 with @samp{a = 1/4}.)
9076 The fifth rule rewrites, for example, @samp{x^2 O(x^3)} to @samp{O(x^5)}.
9077 (It is easy to see that if one of these forms is negligible, the other
9078 is, too.)  Notice the @samp{x^opt(m)} to pick up terms like
9079 @w{@samp{x O(x^3)}}.  Optional powers will match @samp{x} as @samp{x^1}
9080 but not 1 as @samp{x^0}.  This turns out to be exactly what we want here.
9082 The sixth rule is the corresponding rule for products of two O's.
9084 Another way to solve this problem would be to create a new ``data type''
9085 that represents truncated power series.  We might represent these as
9086 function calls @samp{series(@var{coefs}, @var{x})} where @var{coefs} is
9087 a vector of coefficients for @cite{x^0}, @cite{x^1}, @cite{x^2}, and so
9088 on.  Rules would exist for sums and products of such @code{series}
9089 objects, and as an optional convenience could also know how to combine a
9090 @code{series} object with a normal polynomial.  (With this, and with a
9091 rule that rewrites @samp{O(x^n)} to the equivalent @code{series} form,
9092 you could still enter power series in exactly the same notation as
9093 before.)  Operations on such objects would probably be more efficient,
9094 although the objects would be a bit harder to read.
9096 @c [fix-ref Compositions]
9097 Some other symbolic math programs provide a power series data type
9098 similar to this.  Mathematica, for example, has an object that looks
9099 like @samp{PowerSeries[@var{x}, @var{x0}, @var{coefs}, @var{nmin},
9100 @var{nmax}, @var{den}]}, where @var{x0} is the point about which the
9101 power series is taken (we've been assuming this was always zero),
9102 and @var{nmin}, @var{nmax}, and @var{den} allow pseudo-power-series
9103 with fractional or negative powers.  Also, the @code{PowerSeries}
9104 objects have a special display format that makes them look like
9105 @samp{2 x^2 + O(x^4)} when they are printed out.  (@xref{Compositions},
9106 for a way to do this in Calc, although for something as involved as
9107 this it would probably be better to write the formatting routine
9108 in Lisp.)
9110 @node Programming Answer 1, Programming Answer 2, Rewrites Answer 7, Answers to Exercises
9111 @subsection Programming Tutorial Exercise 1
9113 @noindent
9114 Just enter the formula @samp{ninteg(sin(t)/t, t, 0, x)}, type
9115 @kbd{Z F}, and answer the questions.  Since this formula contains two
9116 variables, the default argument list will be @samp{(t x)}.  We want to
9117 change this to @samp{(x)} since @cite{t} is really a dummy variable
9118 to be used within @code{ninteg}.
9120 The exact keystrokes are @kbd{Z F s Si @key{RET} @key{RET} C-b C-b @key{DEL} @key{DEL} @key{RET} y}.
9121 (The @kbd{C-b C-b @key{DEL} @key{DEL}} are what fix the argument list.)
9123 @node Programming Answer 2, Programming Answer 3, Programming Answer 1, Answers to Exercises
9124 @subsection Programming Tutorial Exercise 2
9126 @noindent
9127 One way is to move the number to the top of the stack, operate on
9128 it, then move it back:  @kbd{C-x ( M-@key{TAB} n M-@key{TAB} M-@key{TAB} C-x )}.
9130 Another way is to negate the top three stack entries, then negate
9131 again the top two stack entries:  @kbd{C-x ( M-3 n M-2 n C-x )}.
9133 Finally, it turns out that a negative prefix argument causes a
9134 command like @kbd{n} to operate on the specified stack entry only,
9135 which is just what we want:  @kbd{C-x ( M-- 3 n C-x )}.
9137 Just for kicks, let's also do it algebraically:
9138 @w{@kbd{C-x ( ' -$$$, $$, $ @key{RET} C-x )}}.
9140 @node Programming Answer 3, Programming Answer 4, Programming Answer 2, Answers to Exercises
9141 @subsection Programming Tutorial Exercise 3
9143 @noindent
9144 Each of these functions can be computed using the stack, or using
9145 algebraic entry, whichever way you prefer:
9147 @noindent
9148 Computing @c{$\displaystyle{\sin x \over x}$}
9149 @cite{sin(x) / x}:
9151 Using the stack:  @kbd{C-x (  @key{RET} S @key{TAB} /  C-x )}.
9153 Using algebraic entry:  @kbd{C-x (  ' sin($)/$ @key{RET}  C-x )}.
9155 @noindent
9156 Computing the logarithm:
9158 Using the stack:  @kbd{C-x (  @key{TAB} B  C-x )}
9160 Using algebraic entry:  @kbd{C-x (  ' log($,$$) @key{RET}  C-x )}.
9162 @noindent
9163 Computing the vector of integers:
9165 Using the stack:  @kbd{C-x (  1 @key{RET} 1  C-u v x  C-x )}.  (Recall that
9166 @kbd{C-u v x} takes the vector size, starting value, and increment
9167 from the stack.)
9169 Alternatively:  @kbd{C-x (  ~ v x  C-x )}.  (The @kbd{~} key pops a
9170 number from the stack and uses it as the prefix argument for the
9171 next command.)
9173 Using algebraic entry:  @kbd{C-x (  ' index($) @key{RET}  C-x )}.
9175 @node Programming Answer 4, Programming Answer 5, Programming Answer 3, Answers to Exercises
9176 @subsection Programming Tutorial Exercise 4
9178 @noindent
9179 Here's one way:  @kbd{C-x ( @key{RET} V R + @key{TAB} v l / C-x )}.
9181 @node Programming Answer 5, Programming Answer 6, Programming Answer 4, Answers to Exercises
9182 @subsection Programming Tutorial Exercise 5
9184 @smallexample
9185 @group
9186 2:  1              1:  1.61803398502         2:  1.61803398502
9187 1:  20                 .                     1:  1.61803398875
9188     .                                            .
9190    1 @key{RET} 20         Z < & 1 + Z >                I H P
9191 @end group
9192 @end smallexample
9194 @noindent
9195 This answer is quite accurate.
9197 @node Programming Answer 6, Programming Answer 7, Programming Answer 5, Answers to Exercises
9198 @subsection Programming Tutorial Exercise 6
9200 @noindent
9201 Here is the matrix:
9203 @example
9204 [ [ 0, 1 ]   * [a, b] = [b, a + b]
9205   [ 1, 1 ] ]
9206 @end example
9208 @noindent
9209 Thus @samp{[0, 1; 1, 1]^n * [1, 1]} computes Fibonacci numbers @cite{n+1}
9210 and @cite{n+2}.  Here's one program that does the job:
9212 @example
9213 C-x ( ' [0, 1; 1, 1] ^ ($-1) * [1, 1] @key{RET} v u @key{DEL} C-x )
9214 @end example
9216 @noindent
9217 This program is quite efficient because Calc knows how to raise a
9218 matrix (or other value) to the power @cite{n} in only @c{$\log_2 n$}
9219 @cite{log(n,2)}
9220 steps.  For example, this program can compute the 1000th Fibonacci
9221 number (a 209-digit integer!) in about 10 steps; even though the
9222 @kbd{Z < ... Z >} solution had much simpler steps, it would have
9223 required so many steps that it would not have been practical.
9225 @node Programming Answer 7, Programming Answer 8, Programming Answer 6, Answers to Exercises
9226 @subsection Programming Tutorial Exercise 7
9228 @noindent
9229 The trick here is to compute the harmonic numbers differently, so that
9230 the loop counter itself accumulates the sum of reciprocals.  We use
9231 a separate variable to hold the integer counter.
9233 @smallexample
9234 @group
9235 1:  1          2:  1       1:  .
9236     .          1:  4
9237                    .
9239     1 t 1       1 @key{RET} 4      Z ( t 2 r 1 1 + s 1 & Z )
9240 @end group
9241 @end smallexample
9243 @noindent
9244 The body of the loop goes as follows:  First save the harmonic sum
9245 so far in variable 2.  Then delete it from the stack; the for loop
9246 itself will take care of remembering it for us.  Next, recall the
9247 count from variable 1, add one to it, and feed its reciprocal to
9248 the for loop to use as the step value.  The for loop will increase
9249 the ``loop counter'' by that amount and keep going until the
9250 loop counter exceeds 4.
9252 @smallexample
9253 @group
9254 2:  31                  3:  31
9255 1:  3.99498713092       2:  3.99498713092
9256     .                   1:  4.02724519544
9257                             .
9259     r 1 r 2                 @key{RET} 31 & +
9260 @end group
9261 @end smallexample
9263 Thus we find that the 30th harmonic number is 3.99, and the 31st
9264 harmonic number is 4.02.
9266 @node Programming Answer 8, Programming Answer 9, Programming Answer 7, Answers to Exercises
9267 @subsection Programming Tutorial Exercise 8
9269 @noindent
9270 The first step is to compute the derivative @cite{f'(x)} and thus
9271 the formula @c{$\displaystyle{x - {f(x) \over f'(x)}}$}
9272 @cite{x - f(x)/f'(x)}.
9274 (Because this definition is long, it will be repeated in concise form
9275 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
9276 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9277 keystrokes without executing them.  In the following diagrams we'll
9278 pretend Calc actually executed the keystrokes as you typed them,
9279 just for purposes of illustration.)
9281 @smallexample
9282 @group
9283 2:  sin(cos(x)) - 0.5            3:  4.5
9284 1:  4.5                          2:  sin(cos(x)) - 0.5
9285     .                            1:  -(sin(x) cos(cos(x)))
9286                                      .
9288 ' sin(cos(x))-0.5 @key{RET} 4.5  m r  C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}
9290 @end group
9291 @end smallexample
9292 @noindent
9293 @smallexample
9294 @group
9295 2:  4.5
9296 1:  x + (sin(cos(x)) - 0.5) / sin(x) cos(cos(x))
9297     .
9299     /  ' x @key{RET} @key{TAB} -   t 1
9300 @end group
9301 @end smallexample
9303 Now, we enter the loop.  We'll use a repeat loop with a 20-repetition
9304 limit just in case the method fails to converge for some reason.
9305 (Normally, the @w{@kbd{Z /}} command will stop the loop before all 20
9306 repetitions are done.)
9308 @smallexample
9309 @group
9310 1:  4.5         3:  4.5                     2:  4.5
9311     .           2:  x + (sin(cos(x)) ...    1:  5.24196456928
9312                 1:  4.5                         .
9313                     .
9315   20 Z <          @key{RET} r 1 @key{TAB}                 s l x @key{RET}
9316 @end group
9317 @end smallexample
9319 This is the new guess for @cite{x}.  Now we compare it with the
9320 old one to see if we've converged.
9322 @smallexample
9323 @group
9324 3:  5.24196     2:  5.24196     1:  5.24196     1:  5.26345856348
9325 2:  5.24196     1:  0               .               .
9326 1:  4.5             .
9327     .
9329   @key{RET} M-@key{TAB}         a =             Z /             Z > Z ' C-x )
9330 @end group
9331 @end smallexample
9333 The loop converges in just a few steps to this value.  To check
9334 the result, we can simply substitute it back into the equation.
9336 @smallexample
9337 @group
9338 2:  5.26345856348
9339 1:  0.499999999997
9340     .
9342  @key{RET} ' sin(cos($)) @key{RET}
9343 @end group
9344 @end smallexample
9346 Let's test the new definition again:
9348 @smallexample
9349 @group
9350 2:  x^2 - 9           1:  3.
9351 1:  1                     .
9352     .
9354   ' x^2-9 @key{RET} 1           X
9355 @end group
9356 @end smallexample
9358 Once again, here's the full Newton's Method definition:
9360 @example
9361 @group
9362 C-x ( Z `  @key{TAB} @key{RET} a d x @key{RET}  /  ' x @key{RET} @key{TAB} -  t 1
9363            20 Z <  @key{RET} r 1 @key{TAB}  s l x @key{RET}
9364                    @key{RET} M-@key{TAB}  a =  Z /
9365               Z >
9366       Z '
9367 C-x )
9368 @end group
9369 @end example
9371 @c [fix-ref Nesting and Fixed Points]
9372 It turns out that Calc has a built-in command for applying a formula
9373 repeatedly until it converges to a number.  @xref{Nesting and Fixed Points},
9374 to see how to use it.
9376 @c [fix-ref Root Finding]
9377 Also, of course, @kbd{a R} is a built-in command that uses Newton's
9378 method (among others) to look for numerical solutions to any equation.
9379 @xref{Root Finding}.
9381 @node Programming Answer 9, Programming Answer 10, Programming Answer 8, Answers to Exercises
9382 @subsection Programming Tutorial Exercise 9
9384 @noindent
9385 The first step is to adjust @cite{z} to be greater than 5.  A simple
9386 ``for'' loop will do the job here.  If @cite{z} is less than 5, we
9387 reduce the problem using @c{$\psi(z) = \psi(z+1) - 1/z$}
9388 @cite{psi(z) = psi(z+1) - 1/z}.  We go
9389 on to compute @c{$\psi(z+1)$}
9390 @cite{psi(z+1)}, and remember to add back a factor of
9391 @cite{-1/z} when we're done.  This step is repeated until @cite{z > 5}.
9393 (Because this definition is long, it will be repeated in concise form
9394 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
9395 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9396 keystrokes without executing them.  In the following diagrams we'll
9397 pretend Calc actually executed the keystrokes as you typed them,
9398 just for purposes of illustration.)
9400 @smallexample
9401 @group
9402 1:  1.             1:  1.
9403     .                  .
9405  1.0 @key{RET}       C-x ( Z `  s 1  0 t 2
9406 @end group
9407 @end smallexample
9409 Here, variable 1 holds @cite{z} and variable 2 holds the adjustment
9410 factor.  If @cite{z < 5}, we use a loop to increase it.
9412 (By the way, we started with @samp{1.0} instead of the integer 1 because
9413 otherwise the calculation below will try to do exact fractional arithmetic,
9414 and will never converge because fractions compare equal only if they
9415 are exactly equal, not just equal to within the current precision.)
9417 @smallexample
9418 @group
9419 3:  1.      2:  1.       1:  6.
9420 2:  1.      1:  1            .
9421 1:  5           .
9422     .
9424   @key{RET} 5        a <    Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9425 @end group
9426 @end smallexample
9428 Now we compute the initial part of the sum:  @c{$\ln z - {1 \over 2z}$}
9429 @cite{ln(z) - 1/2z}
9430 minus the adjustment factor.
9432 @smallexample
9433 @group
9434 2:  1.79175946923      2:  1.7084261359      1:  -0.57490719743
9435 1:  0.0833333333333    1:  2.28333333333         .
9436     .                      .
9438     L  r 1 2 * &           -  r 2                -
9439 @end group
9440 @end smallexample
9442 Now we evaluate the series.  We'll use another ``for'' loop counting
9443 up the value of @cite{2 n}.  (Calc does have a summation command,
9444 @kbd{a +}, but we'll use loops just to get more practice with them.)
9446 @smallexample
9447 @group
9448 3:  -0.5749       3:  -0.5749        4:  -0.5749      2:  -0.5749
9449 2:  2             2:  1:6            3:  1:6          1:  2.3148e-3
9450 1:  40            1:  2              2:  2                .
9451     .                 .              1:  36.
9452                                          .
9454    2 @key{RET} 40        Z ( @key{RET} k b @key{TAB}     @key{RET} r 1 @key{TAB} ^      * /
9456 @end group
9457 @end smallexample
9458 @noindent
9459 @smallexample
9460 @group
9461 3:  -0.5749       3:  -0.5772      2:  -0.5772     1:  -0.577215664892
9462 2:  -0.5749       2:  -0.5772      1:  0               .
9463 1:  2.3148e-3     1:  -0.5749          .
9464     .                 .
9466   @key{TAB} @key{RET} M-@key{TAB}       - @key{RET} M-@key{TAB}      a =     Z /    2  Z )  Z ' C-x )
9467 @end group
9468 @end smallexample
9470 This is the value of @c{$-\gamma$}
9471 @cite{- gamma}, with a slight bit of roundoff error.
9472 To get a full 12 digits, let's use a higher precision:
9474 @smallexample
9475 @group
9476 2:  -0.577215664892      2:  -0.577215664892
9477 1:  1.                   1:  -0.577215664901532
9479     1. @key{RET}                   p 16 @key{RET} X
9480 @end group
9481 @end smallexample
9483 Here's the complete sequence of keystrokes:
9485 @example
9486 @group
9487 C-x ( Z `  s 1  0 t 2
9488            @key{RET} 5 a <  Z [  5 Z (  & s + 2  1 s + 1  1 Z ) r 1  Z ]
9489            L r 1 2 * & - r 2 -
9490            2 @key{RET} 40  Z (  @key{RET} k b @key{TAB} @key{RET} r 1 @key{TAB} ^ * /
9491                           @key{TAB} @key{RET} M-@key{TAB} - @key{RET} M-@key{TAB} a = Z /
9492                   2  Z )
9493       Z '
9494 C-x )
9495 @end group
9496 @end example
9498 @node Programming Answer 10, Programming Answer 11, Programming Answer 9, Answers to Exercises
9499 @subsection Programming Tutorial Exercise 10
9501 @noindent
9502 Taking the derivative of a term of the form @cite{x^n} will produce
9503 a term like @c{$n x^{n-1}$}
9504 @cite{n x^(n-1)}.  Taking the derivative of a constant
9505 produces zero.  From this it is easy to see that the @cite{n}th
9506 derivative of a polynomial, evaluated at @cite{x = 0}, will equal the
9507 coefficient on the @cite{x^n} term times @cite{n!}.
9509 (Because this definition is long, it will be repeated in concise form
9510 below.  You can use @w{@kbd{M-# m}} to load it from there.  While you are
9511 entering a @kbd{Z ` Z '} body in a macro, Calc simply collects
9512 keystrokes without executing them.  In the following diagrams we'll
9513 pretend Calc actually executed the keystrokes as you typed them,
9514 just for purposes of illustration.)
9516 @smallexample
9517 @group
9518 2:  5 x^4 + (x + 1)^2          3:  5 x^4 + (x + 1)^2
9519 1:  6                          2:  0
9520     .                          1:  6
9521                                    .
9523   ' 5 x^4 + (x+1)^2 @key{RET} 6        C-x ( Z `  [ ] t 1  0 @key{TAB}
9524 @end group
9525 @end smallexample
9527 @noindent
9528 Variable 1 will accumulate the vector of coefficients.
9530 @smallexample
9531 @group
9532 2:  0              3:  0                  2:  5 x^4 + ...
9533 1:  5 x^4 + ...    2:  5 x^4 + ...        1:  1
9534     .              1:  1                      .
9535                        .
9537    Z ( @key{TAB}         @key{RET} 0 s l x @key{RET}            M-@key{TAB} ! /  s | 1
9538 @end group
9539 @end smallexample
9541 @noindent
9542 Note that @kbd{s | 1} appends the top-of-stack value to the vector
9543 in a variable; it is completely analogous to @kbd{s + 1}.  We could
9544 have written instead, @kbd{r 1 @key{TAB} | t 1}.
9546 @smallexample
9547 @group
9548 1:  20 x^3 + 2 x + 2      1:  0         1:  [1, 2, 1, 0, 5, 0, 0]
9549     .                         .             .
9551     a d x @key{RET}                 1 Z )         @key{DEL} r 1  Z ' C-x )
9552 @end group
9553 @end smallexample
9555 To convert back, a simple method is just to map the coefficients
9556 against a table of powers of @cite{x}.
9558 @smallexample
9559 @group
9560 2:  [1, 2, 1, 0, 5, 0, 0]    2:  [1, 2, 1, 0, 5, 0, 0]
9561 1:  6                        1:  [0, 1, 2, 3, 4, 5, 6]
9562     .                            .
9564     6 @key{RET}                        1 + 0 @key{RET} 1 C-u v x
9566 @end group
9567 @end smallexample
9568 @noindent
9569 @smallexample
9570 @group
9571 2:  [1, 2, 1, 0, 5, 0, 0]    2:  1 + 2 x + x^2 + 5 x^4
9572 1:  [1, x, x^2, x^3, ... ]       .
9573     .
9575     ' x @key{RET} @key{TAB} V M ^            *
9576 @end group
9577 @end smallexample
9579 Once again, here are the whole polynomial to/from vector programs:
9581 @example
9582 @group
9583 C-x ( Z `  [ ] t 1  0 @key{TAB}
9584            Z (  @key{TAB} @key{RET} 0 s l x @key{RET} M-@key{TAB} ! /  s | 1
9585                 a d x @key{RET}
9586          1 Z ) r 1
9587       Z '
9588 C-x )
9590 C-x (  1 + 0 @key{RET} 1 C-u v x ' x @key{RET} @key{TAB} V M ^ *  C-x )
9591 @end group
9592 @end example
9594 @node Programming Answer 11, Programming Answer 12, Programming Answer 10, Answers to Exercises
9595 @subsection Programming Tutorial Exercise 11
9597 @noindent
9598 First we define a dummy program to go on the @kbd{z s} key.  The true
9599 @w{@kbd{z s}} key is supposed to take two numbers from the stack and
9600 return one number, so @key{DEL} as a dummy definition will make
9601 sure the stack comes out right.
9603 @smallexample
9604 @group
9605 2:  4          1:  4                         2:  4
9606 1:  2              .                         1:  2
9607     .                                            .
9609   4 @key{RET} 2       C-x ( @key{DEL} C-x )  Z K s @key{RET}       2
9610 @end group
9611 @end smallexample
9613 The last step replaces the 2 that was eaten during the creation
9614 of the dummy @kbd{z s} command.  Now we move on to the real
9615 definition.  The recurrence needs to be rewritten slightly,
9616 to the form @cite{s(n,m) = s(n-1,m-1) - (n-1) s(n-1,m)}.
9618 (Because this definition is long, it will be repeated in concise form
9619 below.  You can use @kbd{M-# m} to load it from there.)
9621 @smallexample
9622 @group
9623 2:  4        4:  4       3:  4       2:  4
9624 1:  2        3:  2       2:  2       1:  2
9625     .        2:  4       1:  0           .
9626              1:  2           .
9627                  .
9629   C-x (       M-2 @key{RET}        a =         Z [  @key{DEL} @key{DEL} 1  Z :
9631 @end group
9632 @end smallexample
9633 @noindent
9634 @smallexample
9635 @group
9636 4:  4       2:  4                     2:  3      4:  3    4:  3    3:  3
9637 3:  2       1:  2                     1:  2      3:  2    3:  2    2:  2
9638 2:  2           .                         .      2:  3    2:  3    1:  3
9639 1:  0                                            1:  2    1:  1        .
9640     .                                                .        .
9642   @key{RET} 0   a = Z [  @key{DEL} @key{DEL} 0  Z :  @key{TAB} 1 - @key{TAB}   M-2 @key{RET}     1 -      z s
9643 @end group
9644 @end smallexample
9646 @noindent
9647 (Note that the value 3 that our dummy @kbd{z s} produces is not correct;
9648 it is merely a placeholder that will do just as well for now.)
9650 @smallexample
9651 @group
9652 3:  3               4:  3           3:  3       2:  3      1:  -6
9653 2:  3               3:  3           2:  3       1:  9          .
9654 1:  2               2:  3           1:  3           .
9655     .               1:  2               .
9656                         .
9658  M-@key{TAB} M-@key{TAB}     @key{TAB} @key{RET} M-@key{TAB}         z s          *          -
9660 @end group
9661 @end smallexample
9662 @noindent
9663 @smallexample
9664 @group
9665 1:  -6                          2:  4          1:  11      2:  11
9666     .                           1:  2              .       1:  11
9667                                     .                          .
9669   Z ] Z ] C-x )   Z K s @key{RET}      @key{DEL} 4 @key{RET} 2       z s      M-@key{RET} k s
9670 @end group
9671 @end smallexample
9673 Even though the result that we got during the definition was highly
9674 bogus, once the definition is complete the @kbd{z s} command gets
9675 the right answers.
9677 Here's the full program once again:
9679 @example
9680 @group
9681 C-x (  M-2 @key{RET} a =
9682        Z [  @key{DEL} @key{DEL} 1
9683        Z :  @key{RET} 0 a =
9684             Z [  @key{DEL} @key{DEL} 0
9685             Z :  @key{TAB} 1 - @key{TAB} M-2 @key{RET} 1 - z s
9686                  M-@key{TAB} M-@key{TAB} @key{TAB} @key{RET} M-@key{TAB} z s * -
9687             Z ]
9688        Z ]
9689 C-x )
9690 @end group
9691 @end example
9693 You can read this definition using @kbd{M-# m} (@code{read-kbd-macro})
9694 followed by @kbd{Z K s}, without having to make a dummy definition
9695 first, because @code{read-kbd-macro} doesn't need to execute the
9696 definition as it reads it in.  For this reason, @code{M-# m} is often
9697 the easiest way to create recursive programs in Calc.
9699 @node Programming Answer 12, , Programming Answer 11, Answers to Exercises
9700 @subsection Programming Tutorial Exercise 12
9702 @noindent
9703 This turns out to be a much easier way to solve the problem.  Let's
9704 denote Stirling numbers as calls of the function @samp{s}.
9706 First, we store the rewrite rules corresponding to the definition of
9707 Stirling numbers in a convenient variable:
9709 @smallexample
9710 s e StirlingRules @key{RET}
9711 [ s(n,n) := 1  :: n >= 0,
9712   s(n,0) := 0  :: n > 0,
9713   s(n,m) := s(n-1,m-1) - (n-1) s(n-1,m) :: n >= m :: m >= 1 ]
9714 C-c C-c
9715 @end smallexample
9717 Now, it's just a matter of applying the rules:
9719 @smallexample
9720 @group
9721 2:  4          1:  s(4, 2)              1:  11
9722 1:  2              .                        .
9723     .
9725   4 @key{RET} 2       C-x (  ' s($$,$) @key{RET}     a r StirlingRules @key{RET}  C-x )
9726 @end group
9727 @end smallexample
9729 As in the case of the @code{fib} rules, it would be useful to put these
9730 rules in @code{EvalRules} and to add a @samp{:: remember} condition to
9731 the last rule.
9733 @c This ends the table-of-contents kludge from above:
9734 @tex
9735 \global\let\chapternofonts=\oldchapternofonts
9736 @end tex
9738 @c [reference]
9740 @node Introduction, Data Types, Tutorial, Top
9741 @chapter Introduction
9743 @noindent
9744 This chapter is the beginning of the Calc reference manual.
9745 It covers basic concepts such as the stack, algebraic and
9746 numeric entry, undo, numeric prefix arguments, etc.
9748 @c [when-split]
9749 @c (Chapter 2, the Tutorial, has been printed in a separate volume.)
9751 @menu
9752 * Basic Commands::
9753 * Help Commands::
9754 * Stack Basics::
9755 * Numeric Entry::
9756 * Algebraic Entry::
9757 * Quick Calculator::
9758 * Keypad Mode::
9759 * Prefix Arguments::
9760 * Undo::
9761 * Error Messages::
9762 * Multiple Calculators::
9763 * Troubleshooting Commands::
9764 @end menu
9766 @node Basic Commands, Help Commands, Introduction, Introduction
9767 @section Basic Commands
9769 @noindent
9770 @pindex calc
9771 @pindex calc-mode
9772 @cindex Starting the Calculator
9773 @cindex Running the Calculator
9774 To start the Calculator in its standard interface, type @kbd{M-x calc}.
9775 By default this creates a pair of small windows, @samp{*Calculator*}
9776 and @samp{*Calc Trail*}.  The former displays the contents of the
9777 Calculator stack and is manipulated exclusively through Calc commands.
9778 It is possible (though not usually necessary) to create several Calc
9779 Mode buffers each of which has an independent stack, undo list, and
9780 mode settings.  There is exactly one Calc Trail buffer; it records a
9781 list of the results of all calculations that have been done.  The
9782 Calc Trail buffer uses a variant of Calc Mode, so Calculator commands
9783 still work when the trail buffer's window is selected.  It is possible
9784 to turn the trail window off, but the @samp{*Calc Trail*} buffer itself
9785 still exists and is updated silently.  @xref{Trail Commands}.@refill
9787 @kindex M-# c
9788 @kindex M-# M-#
9789 @ignore
9790 @mindex @null
9791 @end ignore
9792 @kindex M-# #
9793 In most installations, the @kbd{M-# c} key sequence is a more
9794 convenient way to start the Calculator.  Also, @kbd{M-# M-#} and
9795 @kbd{M-# #} are synonyms for @kbd{M-# c} unless you last used Calc
9796 in its ``keypad'' mode.
9798 @kindex x
9799 @kindex M-x
9800 @pindex calc-execute-extended-command
9801 Most Calc commands use one or two keystrokes.  Lower- and upper-case
9802 letters are distinct.  Commands may also be entered in full @kbd{M-x} form;
9803 for some commands this is the only form.  As a convenience, the @kbd{x}
9804 key (@code{calc-execute-extended-command})
9805 is like @kbd{M-x} except that it enters the initial string @samp{calc-}
9806 for you.  For example, the following key sequences are equivalent:
9807 @kbd{S}, @kbd{M-x calc-sin @key{RET}}, @kbd{x sin @key{RET}}.@refill
9809 @cindex Extensions module
9810 @cindex @file{calc-ext} module
9811 The Calculator exists in many parts.  When you type @kbd{M-# c}, the
9812 Emacs ``auto-load'' mechanism will bring in only the first part, which
9813 contains the basic arithmetic functions.  The other parts will be
9814 auto-loaded the first time you use the more advanced commands like trig
9815 functions or matrix operations.  This is done to improve the response time
9816 of the Calculator in the common case when all you need to do is a
9817 little arithmetic.  If for some reason the Calculator fails to load an
9818 extension module automatically, you can force it to load all the
9819 extensions by using the @kbd{M-# L} (@code{calc-load-everything})
9820 command.  @xref{Mode Settings}.@refill
9822 If you type @kbd{M-x calc} or @kbd{M-# c} with any numeric prefix argument,
9823 the Calculator is loaded if necessary, but it is not actually started.
9824 If the argument is positive, the @file{calc-ext} extensions are also
9825 loaded if necessary.  User-written Lisp code that wishes to make use
9826 of Calc's arithmetic routines can use @samp{(calc 0)} or @samp{(calc 1)}
9827 to auto-load the Calculator.@refill
9829 @kindex M-# b
9830 @pindex full-calc
9831 If you type @kbd{M-# b}, then next time you use @kbd{M-# c} you
9832 will get a Calculator that uses the full height of the Emacs screen.
9833 When full-screen mode is on, @kbd{M-# c} runs the @code{full-calc}
9834 command instead of @code{calc}.  From the Unix shell you can type
9835 @samp{emacs -f full-calc} to start a new Emacs specifically for use
9836 as a calculator.  When Calc is started from the Emacs command line
9837 like this, Calc's normal ``quit'' commands actually quit Emacs itself.
9839 @kindex M-# o
9840 @pindex calc-other-window
9841 The @kbd{M-# o} command is like @kbd{M-# c} except that the Calc
9842 window is not actually selected.  If you are already in the Calc
9843 window, @kbd{M-# o} switches you out of it.  (The regular Emacs
9844 @kbd{C-x o} command would also work for this, but it has a
9845 tendency to drop you into the Calc Trail window instead, which
9846 @kbd{M-# o} takes care not to do.)
9848 @ignore
9849 @mindex M-# q
9850 @end ignore
9851 For one quick calculation, you can type @kbd{M-# q} (@code{quick-calc})
9852 which prompts you for a formula (like @samp{2+3/4}).  The result is
9853 displayed at the bottom of the Emacs screen without ever creating
9854 any special Calculator windows.  @xref{Quick Calculator}.
9856 @ignore
9857 @mindex M-# k
9858 @end ignore
9859 Finally, if you are using the X window system you may want to try
9860 @kbd{M-# k} (@code{calc-keypad}) which runs Calc with a
9861 ``calculator keypad'' picture as well as a stack display.  Click on
9862 the keys with the mouse to operate the calculator.  @xref{Keypad Mode}.
9864 @kindex q
9865 @pindex calc-quit
9866 @cindex Quitting the Calculator
9867 @cindex Exiting the Calculator
9868 The @kbd{q} key (@code{calc-quit}) exits Calc Mode and closes the
9869 Calculator's window(s).  It does not delete the Calculator buffers.
9870 If you type @kbd{M-x calc} again, the Calculator will reappear with the
9871 contents of the stack intact.  Typing @kbd{M-# c} or @kbd{M-# M-#}
9872 again from inside the Calculator buffer is equivalent to executing
9873 @code{calc-quit}; you can think of @kbd{M-# M-#} as toggling the
9874 Calculator on and off.@refill
9876 @kindex M-# x
9877 The @kbd{M-# x} command also turns the Calculator off, no matter which
9878 user interface (standard, Keypad, or Embedded) is currently active.
9879 It also cancels @code{calc-edit} mode if used from there.
9881 @kindex d @key{SPC}
9882 @pindex calc-refresh
9883 @cindex Refreshing a garbled display
9884 @cindex Garbled displays, refreshing
9885 The @kbd{d @key{SPC}} key sequence (@code{calc-refresh}) redraws the contents
9886 of the Calculator buffer from memory.  Use this if the contents of the
9887 buffer have been damaged somehow.
9889 @ignore
9890 @mindex o
9891 @end ignore
9892 The @kbd{o} key (@code{calc-realign}) moves the cursor back to its
9893 ``home'' position at the bottom of the Calculator buffer.
9895 @kindex <
9896 @kindex >
9897 @pindex calc-scroll-left
9898 @pindex calc-scroll-right
9899 @cindex Horizontal scrolling
9900 @cindex Scrolling
9901 @cindex Wide text, scrolling
9902 The @kbd{<} and @kbd{>} keys are bound to @code{calc-scroll-left} and
9903 @code{calc-scroll-right}.  These are just like the normal horizontal
9904 scrolling commands except that they scroll one half-screen at a time by
9905 default.  (Calc formats its output to fit within the bounds of the
9906 window whenever it can.)@refill
9908 @kindex @{
9909 @kindex @}
9910 @pindex calc-scroll-down
9911 @pindex calc-scroll-up
9912 @cindex Vertical scrolling
9913 The @kbd{@{} and @kbd{@}} keys are bound to @code{calc-scroll-down}
9914 and @code{calc-scroll-up}.  They scroll up or down by one-half the
9915 height of the Calc window.@refill
9917 @kindex M-# 0
9918 @pindex calc-reset
9919 The @kbd{M-# 0} command (@code{calc-reset}; that's @kbd{M-#} followed
9920 by a zero) resets the Calculator to its default state.  This clears
9921 the stack, resets all the modes, clears the caches (@pxref{Caches}),
9922 and so on.  (It does @emph{not} erase the values of any variables.)
9923 With a numeric prefix argument, @kbd{M-# 0} preserves the contents
9924 of the stack but resets everything else.
9926 @pindex calc-version
9927 The @kbd{M-x calc-version} command displays the current version number
9928 of Calc and the name of the person who installed it on your system.
9929 (This information is also present in the @samp{*Calc Trail*} buffer,
9930 and in the output of the @kbd{h h} command.)
9932 @node Help Commands, Stack Basics, Basic Commands, Introduction
9933 @section Help Commands
9935 @noindent
9936 @cindex Help commands
9937 @kindex ?
9938 @pindex calc-help
9939 The @kbd{?} key (@code{calc-help}) displays a series of brief help messages.
9940 Some keys (such as @kbd{b} and @kbd{d}) are prefix keys, like Emacs'
9941 @key{ESC} and @kbd{C-x} prefixes.  You can type
9942 @kbd{?} after a prefix to see a list of commands beginning with that
9943 prefix.  (If the message includes @samp{[MORE]}, press @kbd{?} again
9944 to see additional commands for that prefix.)
9946 @kindex h h
9947 @pindex calc-full-help
9948 The @kbd{h h} (@code{calc-full-help}) command displays all the @kbd{?}
9949 responses at once.  When printed, this makes a nice, compact (three pages)
9950 summary of Calc keystrokes.
9952 In general, the @kbd{h} key prefix introduces various commands that
9953 provide help within Calc.  Many of the @kbd{h} key functions are
9954 Calc-specific analogues to the @kbd{C-h} functions for Emacs help.
9956 @kindex h i
9957 @kindex M-# i
9958 @kindex i
9959 @pindex calc-info
9960 The @kbd{h i} (@code{calc-info}) command runs the Emacs Info system
9961 to read this manual on-line.  This is basically the same as typing
9962 @kbd{C-h i} (the regular way to run the Info system), then, if Info
9963 is not already in the Calc manual, selecting the beginning of the
9964 manual.  The @kbd{M-# i} command is another way to read the Calc
9965 manual; it is different from @kbd{h i} in that it works any time,
9966 not just inside Calc.  The plain @kbd{i} key is also equivalent to
9967 @kbd{h i}, though this key is obsolete and may be replaced with a
9968 different command in a future version of Calc.
9970 @kindex h t
9971 @kindex M-# t
9972 @pindex calc-tutorial
9973 The @kbd{h t} (@code{calc-tutorial}) command runs the Info system on
9974 the Tutorial section of the Calc manual.  It is like @kbd{h i},
9975 except that it selects the starting node of the tutorial rather
9976 than the beginning of the whole manual.  (It actually selects the
9977 node ``Interactive Tutorial'' which tells a few things about
9978 using the Info system before going on to the actual tutorial.)
9979 The @kbd{M-# t} key is equivalent to @kbd{h t} (but it works at
9980 all times).
9982 @kindex h s
9983 @kindex M-# s
9984 @pindex calc-info-summary
9985 The @kbd{h s} (@code{calc-info-summary}) command runs the Info system
9986 on the Summary node of the Calc manual.  @xref{Summary}.  The @kbd{M-# s}
9987 key is equivalent to @kbd{h s}.
9989 @kindex h k
9990 @pindex calc-describe-key
9991 The @kbd{h k} (@code{calc-describe-key}) command looks up a key
9992 sequence in the Calc manual.  For example, @kbd{h k H a S} looks
9993 up the documentation on the @kbd{H a S} (@code{calc-solve-for})
9994 command.  This works by looking up the textual description of
9995 the key(s) in the Key Index of the manual, then jumping to the
9996 node indicated by the index.
9998 Most Calc commands do not have traditional Emacs documentation
9999 strings, since the @kbd{h k} command is both more convenient and
10000 more instructive.  This means the regular Emacs @kbd{C-h k}
10001 (@code{describe-key}) command will not be useful for Calc keystrokes.
10003 @kindex h c
10004 @pindex calc-describe-key-briefly
10005 The @kbd{h c} (@code{calc-describe-key-briefly}) command reads a
10006 key sequence and displays a brief one-line description of it at
10007 the bottom of the screen.  It looks for the key sequence in the
10008 Summary node of the Calc manual; if it doesn't find the sequence
10009 there, it acts just like its regular Emacs counterpart @kbd{C-h c}
10010 (@code{describe-key-briefly}).  For example, @kbd{h c H a S}
10011 gives the description:
10013 @smallexample
10014 H a S runs calc-solve-for:  a `H a S' v  => fsolve(a,v)  (?=notes)
10015 @end smallexample
10017 @noindent
10018 which means the command @kbd{H a S} or @kbd{H M-x calc-solve-for}
10019 takes a value @cite{a} from the stack, prompts for a value @cite{v},
10020 then applies the algebraic function @code{fsolve} to these values.
10021 The @samp{?=notes} message means you can now type @kbd{?} to see
10022 additional notes from the summary that apply to this command.
10024 @kindex h f
10025 @pindex calc-describe-function
10026 The @kbd{h f} (@code{calc-describe-function}) command looks up an
10027 algebraic function or a command name in the Calc manual.  The
10028 prompt initially contains @samp{calcFunc-}; follow this with an
10029 algebraic function name to look up that function in the Function
10030 Index.  Or, backspace and enter a command name beginning with
10031 @samp{calc-} to look it up in the Command Index.  This command
10032 will also look up operator symbols that can appear in algebraic
10033 formulas, like @samp{%} and @samp{=>}.
10035 @kindex h v
10036 @pindex calc-describe-variable
10037 The @kbd{h v} (@code{calc-describe-variable}) command looks up a
10038 variable in the Calc manual.  The prompt initially contains the
10039 @samp{var-} prefix; just add a variable name like @code{pi} or
10040 @code{PlotRejects}.
10042 @kindex h b
10043 @pindex describe-bindings
10044 The @kbd{h b} (@code{calc-describe-bindings}) command is just like
10045 @kbd{C-h b}, except that only local (Calc-related) key bindings are
10046 listed.
10048 @kindex h n
10049 The @kbd{h n} or @kbd{h C-n} (@code{calc-view-news}) command displays
10050 the ``news'' or change history of Calc.  This is kept in the file
10051 @file{README}, which Calc looks for in the same directory as the Calc
10052 source files.
10054 @kindex h C-c
10055 @kindex h C-d
10056 @kindex h C-w
10057 The @kbd{h C-c}, @kbd{h C-d}, and @kbd{h C-w} keys display copying,
10058 distribution, and warranty information about Calc.  These work by
10059 pulling up the appropriate parts of the ``Copying'' or ``Reporting
10060 Bugs'' sections of the manual.
10062 @node Stack Basics, Numeric Entry, Help Commands, Introduction
10063 @section Stack Basics
10065 @noindent
10066 @cindex Stack basics
10067 @c [fix-tut RPN Calculations and the Stack]
10068 Calc uses RPN notation.  If you are not familiar with RPN, @pxref{RPN
10069 Tutorial}.
10071 To add the numbers 1 and 2 in Calc you would type the keys:
10072 @kbd{1 @key{RET} 2 +}.
10073 (@key{RET} corresponds to the @key{ENTER} key on most calculators.)
10074 The first three keystrokes ``push'' the numbers 1 and 2 onto the stack.  The
10075 @kbd{+} key always ``pops'' the top two numbers from the stack, adds them,
10076 and pushes the result (3) back onto the stack.  This number is ready for
10077 further calculations:  @kbd{5 -} pushes 5 onto the stack, then pops the
10078 3 and 5, subtracts them, and pushes the result (@i{-2}).@refill
10080 Note that the ``top'' of the stack actually appears at the @emph{bottom}
10081 of the buffer.  A line containing a single @samp{.} character signifies
10082 the end of the buffer; Calculator commands operate on the number(s)
10083 directly above this line.  The @kbd{d t} (@code{calc-truncate-stack})
10084 command allows you to move the @samp{.} marker up and down in the stack;
10085 @pxref{Truncating the Stack}.
10087 @kindex d l
10088 @pindex calc-line-numbering
10089 Stack elements are numbered consecutively, with number 1 being the top of
10090 the stack.  These line numbers are ordinarily displayed on the lefthand side
10091 of the window.  The @kbd{d l} (@code{calc-line-numbering}) command controls
10092 whether these numbers appear.  (Line numbers may be turned off since they
10093 slow the Calculator down a bit and also clutter the display.)
10095 @kindex o
10096 @pindex calc-realign
10097 The unshifted letter @kbd{o} (@code{calc-realign}) command repositions
10098 the cursor to its top-of-stack ``home'' position.  It also undoes any
10099 horizontal scrolling in the window.  If you give it a numeric prefix
10100 argument, it instead moves the cursor to the specified stack element.
10102 The @key{RET} (or equivalent @key{SPC}) key is only required to separate
10103 two consecutive numbers.
10104 (After all, if you typed @kbd{1 2} by themselves the Calculator
10105 would enter the number 12.)  If you press @key{RET} or @key{SPC} @emph{not}
10106 right after typing a number, the key duplicates the number on the top of
10107 the stack.  @kbd{@key{RET} *} is thus a handy way to square a number.@refill
10109 The @key{DEL} key pops and throws away the top number on the stack.
10110 The @key{TAB} key swaps the top two objects on the stack.
10111 @xref{Stack and Trail}, for descriptions of these and other stack-related
10112 commands.@refill
10114 @node Numeric Entry, Algebraic Entry, Stack Basics, Introduction
10115 @section Numeric Entry
10117 @noindent
10118 @kindex 0-9
10119 @kindex .
10120 @kindex e
10121 @cindex Numeric entry
10122 @cindex Entering numbers
10123 Pressing a digit or other numeric key begins numeric entry using the
10124 minibuffer.  The number is pushed on the stack when you press the @key{RET}
10125 or @key{SPC} keys.  If you press any other non-numeric key, the number is
10126 pushed onto the stack and the appropriate operation is performed.  If
10127 you press a numeric key which is not valid, the key is ignored.
10129 @cindex Minus signs
10130 @cindex Negative numbers, entering
10131 @kindex _
10132 There are three different concepts corresponding to the word ``minus,''
10133 typified by @cite{a-b} (subtraction), @cite{-x}
10134 (change-sign), and @cite{-5} (negative number).  Calc uses three
10135 different keys for these operations, respectively:
10136 @kbd{-}, @kbd{n}, and @kbd{_} (the underscore).  The @kbd{-} key subtracts
10137 the two numbers on the top of the stack.  The @kbd{n} key changes the sign
10138 of the number on the top of the stack or the number currently being entered.
10139 The @kbd{_} key begins entry of a negative number or changes the sign of
10140 the number currently being entered.  The following sequences all enter the
10141 number @i{-5} onto the stack:  @kbd{0 @key{RET} 5 -}, @kbd{5 n @key{RET}},
10142 @kbd{5 @key{RET} n}, @kbd{_ 5 @key{RET}}, @kbd{5 _ @key{RET}}.@refill
10144 Some other keys are active during numeric entry, such as @kbd{#} for
10145 non-decimal numbers, @kbd{:} for fractions, and @kbd{@@} for HMS forms.
10146 These notations are described later in this manual with the corresponding
10147 data types.  @xref{Data Types}.
10149 During numeric entry, the only editing key available is @key{DEL}.
10151 @node Algebraic Entry, Quick Calculator, Numeric Entry, Introduction
10152 @section Algebraic Entry
10154 @noindent
10155 @kindex '
10156 @pindex calc-algebraic-entry
10157 @cindex Algebraic notation
10158 @cindex Formulas, entering
10159 Calculations can also be entered in algebraic form.  This is accomplished
10160 by typing the apostrophe key, @kbd{'}, followed by the expression in
10161 standard format:  @kbd{@key{'} 2+3*4 @key{RET}} computes
10162 @c{$2+(3\times4) = 14$}
10163 @cite{2+(3*4) = 14} and pushes that on the stack.  If you wish you can
10164 ignore the RPN aspect of Calc altogether and simply enter algebraic
10165 expressions in this way.  You may want to use @key{DEL} every so often to
10166 clear previous results off the stack.@refill
10168 You can press the apostrophe key during normal numeric entry to switch
10169 the half-entered number into algebraic entry mode.  One reason to do this
10170 would be to use the full Emacs cursor motion and editing keys, which are
10171 available during algebraic entry but not during numeric entry.
10173 In the same vein, during either numeric or algebraic entry you can
10174 press @kbd{`} (backquote) to switch to @code{calc-edit} mode, where
10175 you complete your half-finished entry in a separate buffer.
10176 @xref{Editing Stack Entries}.
10178 @kindex m a
10179 @pindex calc-algebraic-mode
10180 @cindex Algebraic mode
10181 If you prefer algebraic entry, you can use the command @kbd{m a}
10182 (@code{calc-algebraic-mode}) to set Algebraic mode.  In this mode,
10183 digits and other keys that would normally start numeric entry instead
10184 start full algebraic entry; as long as your formula begins with a digit
10185 you can omit the apostrophe.  Open parentheses and square brackets also
10186 begin algebraic entry.  You can still do RPN calculations in this mode,
10187 but you will have to press @key{RET} to terminate every number:
10188 @kbd{2 @key{RET} 3 @key{RET} * 4 @key{RET} +} would accomplish the same
10189 thing as @kbd{2*3+4 @key{RET}}.@refill
10191 @cindex Incomplete algebraic mode
10192 If you give a numeric prefix argument like @kbd{C-u} to the @kbd{m a}
10193 command, it enables Incomplete Algebraic mode; this is like regular
10194 Algebraic mode except that it applies to the @kbd{(} and @kbd{[} keys
10195 only.  Numeric keys still begin a numeric entry in this mode.
10197 @kindex m t
10198 @pindex calc-total-algebraic-mode
10199 @cindex Total algebraic mode
10200 The @kbd{m t} (@code{calc-total-algebraic-mode}) gives you an even
10201 stronger algebraic-entry mode, in which @emph{all} regular letter and
10202 punctuation keys begin algebraic entry.  Use this if you prefer typing
10203 @w{@kbd{sqrt( )}} instead of @kbd{Q}, @w{@kbd{factor( )}} instead of
10204 @kbd{a f}, and so on.  To type regular Calc commands when you are in
10205 ``total'' algebraic mode, hold down the @key{META} key.  Thus @kbd{M-q}
10206 is the command to quit Calc, @kbd{M-p} sets the precision, and
10207 @kbd{M-m t} (or @kbd{M-m M-t}, if you prefer) turns total algebraic
10208 mode back off again.  Meta keys also terminate algebraic entry, so
10209 that @kbd{2+3 M-S} is equivalent to @kbd{2+3 @key{RET} M-S}.  The symbol
10210 @samp{Alg*} will appear in the mode line whenever you are in this mode.
10212 Pressing @kbd{'} (the apostrophe) a second time re-enters the previous
10213 algebraic formula.  You can then use the normal Emacs editing keys to
10214 modify this formula to your liking before pressing @key{RET}.
10216 @kindex $
10217 @cindex Formulas, referring to stack
10218 Within a formula entered from the keyboard, the symbol @kbd{$}
10219 represents the number on the top of the stack.  If an entered formula
10220 contains any @kbd{$} characters, the Calculator replaces the top of
10221 stack with that formula rather than simply pushing the formula onto the
10222 stack.  Thus, @kbd{' 1+2 @key{RET}} pushes 3 on the stack, and @kbd{$*2
10223 @key{RET}} replaces it with 6.  Note that the @kbd{$} key always
10224 initiates algebraic entry; the @kbd{'} is unnecessary if @kbd{$} is the
10225 first character in the new formula.@refill
10227 Higher stack elements can be accessed from an entered formula with the
10228 symbols @kbd{$$}, @kbd{$$$}, and so on.  The number of stack elements
10229 removed (to be replaced by the entered values) equals the number of dollar
10230 signs in the longest such symbol in the formula.  For example, @samp{$$+$$$}
10231 adds the second and third stack elements, replacing the top three elements
10232 with the answer.  (All information about the top stack element is thus lost
10233 since no single @samp{$} appears in this formula.)@refill
10235 A slightly different way to refer to stack elements is with a dollar
10236 sign followed by a number:  @samp{$1}, @samp{$2}, and so on are much
10237 like @samp{$}, @samp{$$}, etc., except that stack entries referred
10238 to numerically are not replaced by the algebraic entry.  That is, while
10239 @samp{$+1} replaces 5 on the stack with 6, @samp{$1+1} leaves the 5
10240 on the stack and pushes an additional 6.
10242 If a sequence of formulas are entered separated by commas, each formula
10243 is pushed onto the stack in turn.  For example, @samp{1,2,3} pushes
10244 those three numbers onto the stack (leaving the 3 at the top), and
10245 @samp{$+1,$-1} replaces a 5 on the stack with 4 followed by 6.  Also,
10246 @samp{$,$$} exchanges the top two elements of the stack, just like the
10247 @key{TAB} key.
10249 You can finish an algebraic entry with @kbd{M-=} or @kbd{M-@key{RET}} instead
10250 of @key{RET}.  This uses @kbd{=} to evaluate the variables in each
10251 formula that goes onto the stack.  (Thus @kbd{' pi @key{RET}} pushes
10252 the variable @samp{pi}, but @kbd{' pi M-@key{RET}} pushes 3.1415.)
10254 If you finish your algebraic entry by pressing @key{LFD} (or @kbd{C-j})
10255 instead of @key{RET}, Calc disables the default simplifications
10256 (as if by @kbd{m O}; @pxref{Simplification Modes}) while the entry
10257 is being pushed on the stack.  Thus @kbd{' 1+2 @key{RET}} pushes 3
10258 on the stack, but @kbd{' 1+2 @key{LFD}} pushes the formula @cite{1+2};
10259 you might then press @kbd{=} when it is time to evaluate this formula.
10261 @node Quick Calculator, Prefix Arguments, Algebraic Entry, Introduction
10262 @section ``Quick Calculator'' Mode
10264 @noindent
10265 @kindex M-# q
10266 @pindex quick-calc
10267 @cindex Quick Calculator
10268 There is another way to invoke the Calculator if all you need to do
10269 is make one or two quick calculations.  Type @kbd{M-# q} (or
10270 @kbd{M-x quick-calc}), then type any formula as an algebraic entry.
10271 The Calculator will compute the result and display it in the echo
10272 area, without ever actually putting up a Calc window.
10274 You can use the @kbd{$} character in a Quick Calculator formula to
10275 refer to the previous Quick Calculator result.  Older results are
10276 not retained; the Quick Calculator has no effect on the full
10277 Calculator's stack or trail.  If you compute a result and then
10278 forget what it was, just run @code{M-# q} again and enter
10279 @samp{$} as the formula.
10281 If this is the first time you have used the Calculator in this Emacs
10282 session, the @kbd{M-# q} command will create the @code{*Calculator*}
10283 buffer and perform all the usual initializations; it simply will
10284 refrain from putting that buffer up in a new window.  The Quick
10285 Calculator refers to the @code{*Calculator*} buffer for all mode
10286 settings.  Thus, for example, to set the precision that the Quick
10287 Calculator uses, simply run the full Calculator momentarily and use
10288 the regular @kbd{p} command.
10290 If you use @code{M-# q} from inside the Calculator buffer, the
10291 effect is the same as pressing the apostrophe key (algebraic entry).
10293 The result of a Quick calculation is placed in the Emacs ``kill ring''
10294 as well as being displayed.  A subsequent @kbd{C-y} command will
10295 yank the result into the editing buffer.  You can also use this
10296 to yank the result into the next @kbd{M-# q} input line as a more
10297 explicit alternative to @kbd{$} notation, or to yank the result
10298 into the Calculator stack after typing @kbd{M-# c}.
10300 If you finish your formula by typing @key{LFD} (or @kbd{C-j}) instead
10301 of @key{RET}, the result is inserted immediately into the current
10302 buffer rather than going into the kill ring.
10304 Quick Calculator results are actually evaluated as if by the @kbd{=}
10305 key (which replaces variable names by their stored values, if any).
10306 If the formula you enter is an assignment to a variable using the
10307 @samp{:=} operator, say, @samp{foo := 2 + 3} or @samp{foo := foo + 1},
10308 then the result of the evaluation is stored in that Calc variable.
10309 @xref{Store and Recall}.
10311 If the result is an integer and the current display radix is decimal,
10312 the number will also be displayed in hex and octal formats.  If the
10313 integer is in the range from 1 to 126, it will also be displayed as
10314 an ASCII character.
10316 For example, the quoted character @samp{"x"} produces the vector
10317 result @samp{[120]} (because 120 is the ASCII code of the lower-case
10318 `x'; @pxref{Strings}).  Since this is a vector, not an integer, it
10319 is displayed only according to the current mode settings.  But
10320 running Quick Calc again and entering @samp{120} will produce the
10321 result @samp{120 (16#78, 8#170, x)} which shows the number in its
10322 decimal, hexadecimal, octal, and ASCII forms.
10324 Please note that the Quick Calculator is not any faster at loading
10325 or computing the answer than the full Calculator; the name ``quick''
10326 merely refers to the fact that it's much less hassle to use for
10327 small calculations.
10329 @node Prefix Arguments, Undo, Quick Calculator, Introduction
10330 @section Numeric Prefix Arguments
10332 @noindent
10333 Many Calculator commands use numeric prefix arguments.  Some, such as
10334 @kbd{d s} (@code{calc-sci-notation}), set a parameter to the value of
10335 the prefix argument or use a default if you don't use a prefix.
10336 Others (like @kbd{d f} (@code{calc-fix-notation})) require an argument
10337 and prompt for a number if you don't give one as a prefix.@refill
10339 As a rule, stack-manipulation commands accept a numeric prefix argument
10340 which is interpreted as an index into the stack.  A positive argument
10341 operates on the top @var{n} stack entries; a negative argument operates
10342 on the @var{n}th stack entry in isolation; and a zero argument operates
10343 on the entire stack.
10345 Most commands that perform computations (such as the arithmetic and
10346 scientific functions) accept a numeric prefix argument that allows the
10347 operation to be applied across many stack elements.  For unary operations
10348 (that is, functions of one argument like absolute value or complex
10349 conjugate), a positive prefix argument applies that function to the top
10350 @var{n} stack entries simultaneously, and a negative argument applies it
10351 to the @var{n}th stack entry only.  For binary operations (functions of
10352 two arguments like addition, GCD, and vector concatenation), a positive
10353 prefix argument ``reduces'' the function across the top @var{n}
10354 stack elements (for example, @kbd{C-u 5 +} sums the top 5 stack entries;
10355 @pxref{Reducing and Mapping}), and a negative argument maps the next-to-top
10356 @var{n} stack elements with the top stack element as a second argument
10357 (for example, @kbd{7 c-u -5 +} adds 7 to the top 5 stack elements).
10358 This feature is not available for operations which use the numeric prefix
10359 argument for some other purpose.
10361 Numeric prefixes are specified the same way as always in Emacs:  Press
10362 a sequence of @key{META}-digits, or press @key{ESC} followed by digits,
10363 or press @kbd{C-u} followed by digits.  Some commands treat plain
10364 @kbd{C-u} (without any actual digits) specially.@refill
10366 @kindex ~
10367 @pindex calc-num-prefix
10368 You can type @kbd{~} (@code{calc-num-prefix}) to pop an integer from the
10369 top of the stack and enter it as the numeric prefix for the next command.
10370 For example, @kbd{C-u 16 p} sets the precision to 16 digits; an alternate
10371 (silly) way to do this would be @kbd{2 @key{RET} 4 ^ ~ p}, i.e., compute 2
10372 to the fourth power and set the precision to that value.@refill
10374 Conversely, if you have typed a numeric prefix argument the @kbd{~} key
10375 pushes it onto the stack in the form of an integer.
10377 @node Undo, Error Messages, Prefix Arguments, Introduction
10378 @section Undoing Mistakes
10380 @noindent
10381 @kindex U
10382 @kindex C-_
10383 @pindex calc-undo
10384 @cindex Mistakes, undoing
10385 @cindex Undoing mistakes
10386 @cindex Errors, undoing
10387 The shift-@kbd{U} key (@code{calc-undo}) undoes the most recent operation.
10388 If that operation added or dropped objects from the stack, those objects
10389 are removed or restored.  If it was a ``store'' operation, you are
10390 queried whether or not to restore the variable to its original value.
10391 The @kbd{U} key may be pressed any number of times to undo successively
10392 farther back in time; with a numeric prefix argument it undoes a
10393 specified number of operations.  The undo history is cleared only by the
10394 @kbd{q} (@code{calc-quit}) command.  (Recall that @kbd{M-# c} is
10395 synonymous with @code{calc-quit} while inside the Calculator; this
10396 also clears the undo history.)
10398 Currently the mode-setting commands (like @code{calc-precision}) are not
10399 undoable.  You can undo past a point where you changed a mode, but you
10400 will need to reset the mode yourself.
10402 @kindex D
10403 @pindex calc-redo
10404 @cindex Redoing after an Undo
10405 The shift-@kbd{D} key (@code{calc-redo}) redoes an operation that was
10406 mistakenly undone.  Pressing @kbd{U} with a negative prefix argument is
10407 equivalent to executing @code{calc-redo}.  You can redo any number of
10408 times, up to the number of recent consecutive undo commands.  Redo
10409 information is cleared whenever you give any command that adds new undo
10410 information, i.e., if you undo, then enter a number on the stack or make
10411 any other change, then it will be too late to redo.
10413 @kindex M-@key{RET}
10414 @pindex calc-last-args
10415 @cindex Last-arguments feature
10416 @cindex Arguments, restoring
10417 The @kbd{M-@key{RET}} key (@code{calc-last-args}) is like undo in that
10418 it restores the arguments of the most recent command onto the stack;
10419 however, it does not remove the result of that command.  Given a numeric
10420 prefix argument, this command applies to the @cite{n}th most recent
10421 command which removed items from the stack; it pushes those items back
10422 onto the stack.
10424 The @kbd{K} (@code{calc-keep-args}) command provides a related function
10425 to @kbd{M-@key{RET}}.  @xref{Stack and Trail}.
10427 It is also possible to recall previous results or inputs using the trail.
10428 @xref{Trail Commands}.
10430 The standard Emacs @kbd{C-_} undo key is recognized as a synonym for @kbd{U}.
10432 @node Error Messages, Multiple Calculators, Undo, Introduction
10433 @section Error Messages
10435 @noindent
10436 @kindex w
10437 @pindex calc-why
10438 @cindex Errors, messages
10439 @cindex Why did an error occur?
10440 Many situations that would produce an error message in other calculators
10441 simply create unsimplified formulas in the Emacs Calculator.  For example,
10442 @kbd{1 @key{RET} 0 /} pushes the formula @cite{1 / 0}; @w{@kbd{0 L}} pushes
10443 the formula @samp{ln(0)}.  Floating-point overflow and underflow are also
10444 reasons for this to happen.
10446 When a function call must be left in symbolic form, Calc usually
10447 produces a message explaining why.  Messages that are probably
10448 surprising or indicative of user errors are displayed automatically.
10449 Other messages are simply kept in Calc's memory and are displayed only
10450 if you type @kbd{w} (@code{calc-why}).  You can also press @kbd{w} if
10451 the same computation results in several messages.  (The first message
10452 will end with @samp{[w=more]} in this case.)
10454 @kindex d w
10455 @pindex calc-auto-why
10456 The @kbd{d w} (@code{calc-auto-why}) command controls when error messages
10457 are displayed automatically.  (Calc effectively presses @kbd{w} for you
10458 after your computation finishes.)  By default, this occurs only for
10459 ``important'' messages.  The other possible modes are to report
10460 @emph{all} messages automatically, or to report none automatically (so
10461 that you must always press @kbd{w} yourself to see the messages).
10463 @node Multiple Calculators, Troubleshooting Commands, Error Messages, Introduction
10464 @section Multiple Calculators
10466 @noindent
10467 @pindex another-calc
10468 It is possible to have any number of Calc Mode buffers at once.
10469 Usually this is done by executing @kbd{M-x another-calc}, which
10470 is similar to @kbd{M-# c} except that if a @samp{*Calculator*}
10471 buffer already exists, a new, independent one with a name of the
10472 form @samp{*Calculator*<@var{n}>} is created.  You can also use the
10473 command @code{calc-mode} to put any buffer into Calculator mode, but
10474 this would ordinarily never be done.
10476 The @kbd{q} (@code{calc-quit}) command does not destroy a Calculator buffer;
10477 it only closes its window.  Use @kbd{M-x kill-buffer} to destroy a
10478 Calculator buffer.
10480 Each Calculator buffer keeps its own stack, undo list, and mode settings
10481 such as precision, angular mode, and display formats.  In Emacs terms,
10482 variables such as @code{calc-stack} are buffer-local variables.  The
10483 global default values of these variables are used only when a new
10484 Calculator buffer is created.  The @code{calc-quit} command saves
10485 the stack and mode settings of the buffer being quit as the new defaults.
10487 There is only one trail buffer, @samp{*Calc Trail*}, used by all
10488 Calculator buffers.
10490 @node Troubleshooting Commands, , Multiple Calculators, Introduction
10491 @section Troubleshooting Commands
10493 @noindent
10494 This section describes commands you can use in case a computation
10495 incorrectly fails or gives the wrong answer.
10497 @xref{Reporting Bugs}, if you find a problem that appears to be due
10498 to a bug or deficiency in Calc.
10500 @menu
10501 * Autoloading Problems::
10502 * Recursion Depth::
10503 * Caches::
10504 * Debugging Calc::
10505 @end menu
10507 @node Autoloading Problems, Recursion Depth, Troubleshooting Commands, Troubleshooting Commands
10508 @subsection Autoloading Problems
10510 @noindent
10511 The Calc program is split into many component files; components are
10512 loaded automatically as you use various commands that require them.
10513 Occasionally Calc may lose track of when a certain component is
10514 necessary; typically this means you will type a command and it won't
10515 work because some function you've never heard of was undefined.
10517 @kindex M-# L
10518 @pindex calc-load-everything
10519 If this happens, the easiest workaround is to type @kbd{M-# L}
10520 (@code{calc-load-everything}) to force all the parts of Calc to be
10521 loaded right away.  This will cause Emacs to take up a lot more
10522 memory than it would otherwise, but it's guaranteed to fix the problem.
10524 If you seem to run into this problem no matter what you do, or if
10525 even the @kbd{M-# L} command crashes, Calc may have been improperly
10526 installed.  @xref{Installation}, for details of the installation
10527 process.
10529 @node Recursion Depth, Caches, Autoloading Problems, Troubleshooting Commands
10530 @subsection Recursion Depth
10532 @noindent
10533 @kindex M
10534 @kindex I M
10535 @pindex calc-more-recursion-depth
10536 @pindex calc-less-recursion-depth
10537 @cindex Recursion depth
10538 @cindex ``Computation got stuck'' message
10539 @cindex @code{max-lisp-eval-depth}
10540 @cindex @code{max-specpdl-size}
10541 Calc uses recursion in many of its calculations.  Emacs Lisp keeps a
10542 variable @code{max-lisp-eval-depth} which limits the amount of recursion
10543 possible in an attempt to recover from program bugs.  If a calculation
10544 ever halts incorrectly with the message ``Computation got stuck or
10545 ran too long,'' use the @kbd{M} command (@code{calc-more-recursion-depth})
10546 to increase this limit.  (Of course, this will not help if the
10547 calculation really did get stuck due to some problem inside Calc.)@refill
10549 The limit is always increased (multiplied) by a factor of two.  There
10550 is also an @kbd{I M} (@code{calc-less-recursion-depth}) command which
10551 decreases this limit by a factor of two, down to a minimum value of 200.
10552 The default value is 1000.
10554 These commands also double or halve @code{max-specpdl-size}, another
10555 internal Lisp recursion limit.  The minimum value for this limit is 600.
10557 @node Caches, Debugging Calc, Recursion Depth, Troubleshooting Commands
10558 @subsection Caches
10560 @noindent
10561 @cindex Caches
10562 @cindex Flushing caches
10563 Calc saves certain values after they have been computed once.  For
10564 example, the @kbd{P} (@code{calc-pi}) command initially ``knows'' the
10565 constant @c{$\pi$}
10566 @cite{pi} to about 20 decimal places; if the current precision
10567 is greater than this, it will recompute @c{$\pi$}
10568 @cite{pi} using a series
10569 approximation.  This value will not need to be recomputed ever again
10570 unless you raise the precision still further.  Many operations such as
10571 logarithms and sines make use of similarly cached values such as
10572 @c{$\pi \over 4$}
10573 @cite{pi/4} and @c{$\ln 2$}
10574 @cite{ln(2)}.  The visible effect of caching is that
10575 high-precision computations may seem to do extra work the first time.
10576 Other things cached include powers of two (for the binary arithmetic
10577 functions), matrix inverses and determinants, symbolic integrals, and
10578 data points computed by the graphing commands.
10580 @pindex calc-flush-caches
10581 If you suspect a Calculator cache has become corrupt, you can use the
10582 @code{calc-flush-caches} command to reset all caches to the empty state.
10583 (This should only be necessary in the event of bugs in the Calculator.)
10584 The @kbd{M-# 0} (with the zero key) command also resets caches along
10585 with all other aspects of the Calculator's state.
10587 @node Debugging Calc, , Caches, Troubleshooting Commands
10588 @subsection Debugging Calc
10590 @noindent
10591 A few commands exist to help in the debugging of Calc commands.
10592 @xref{Programming}, to see the various ways that you can write
10593 your own Calc commands.
10595 @kindex Z T
10596 @pindex calc-timing
10597 The @kbd{Z T} (@code{calc-timing}) command turns on and off a mode
10598 in which the timing of slow commands is reported in the Trail.
10599 Any Calc command that takes two seconds or longer writes a line
10600 to the Trail showing how many seconds it took.  This value is
10601 accurate only to within one second.
10603 All steps of executing a command are included; in particular, time
10604 taken to format the result for display in the stack and trail is
10605 counted.  Some prompts also count time taken waiting for them to
10606 be answered, while others do not; this depends on the exact
10607 implementation of the command.  For best results, if you are timing
10608 a sequence that includes prompts or multiple commands, define a
10609 keyboard macro to run the whole sequence at once.  Calc's @kbd{X}
10610 command (@pxref{Keyboard Macros}) will then report the time taken
10611 to execute the whole macro.
10613 Another advantage of the @kbd{X} command is that while it is
10614 executing, the stack and trail are not updated from step to step.
10615 So if you expect the output of your test sequence to leave a result
10616 that may take a long time to format and you don't wish to count
10617 this formatting time, end your sequence with a @key{DEL} keystroke
10618 to clear the result from the stack.  When you run the sequence with
10619 @kbd{X}, Calc will never bother to format the large result.
10621 Another thing @kbd{Z T} does is to increase the Emacs variable
10622 @code{gc-cons-threshold} to a much higher value (two million; the
10623 usual default in Calc is 250,000) for the duration of each command.
10624 This generally prevents garbage collection during the timing of
10625 the command, though it may cause your Emacs process to grow
10626 abnormally large.  (Garbage collection time is a major unpredictable
10627 factor in the timing of Emacs operations.)
10629 Another command that is useful when debugging your own Lisp
10630 extensions to Calc is @kbd{M-x calc-pass-errors}, which disables
10631 the error handler that changes the ``@code{max-lisp-eval-depth}
10632 exceeded'' message to the much more friendly ``Computation got
10633 stuck or ran too long.''  This handler interferes with the Emacs
10634 Lisp debugger's @code{debug-on-error} mode.  Errors are reported
10635 in the handler itself rather than at the true location of the
10636 error.  After you have executed @code{calc-pass-errors}, Lisp
10637 errors will be reported correctly but the user-friendly message
10638 will be lost.
10640 @node Data Types, Stack and Trail, Introduction, Top
10641 @chapter Data Types
10643 @noindent
10644 This chapter discusses the various types of objects that can be placed
10645 on the Calculator stack, how they are displayed, and how they are
10646 entered.  (@xref{Data Type Formats}, for information on how these data
10647 types are represented as underlying Lisp objects.)@refill
10649 Integers, fractions, and floats are various ways of describing real
10650 numbers.  HMS forms also for many purposes act as real numbers.  These
10651 types can be combined to form complex numbers, modulo forms, error forms,
10652 or interval forms.  (But these last four types cannot be combined
10653 arbitrarily:@: error forms may not contain modulo forms, for example.)
10654 Finally, all these types of numbers may be combined into vectors,
10655 matrices, or algebraic formulas.
10657 @menu
10658 * Integers::                The most basic data type.
10659 * Fractions::               This and above are called @dfn{rationals}.
10660 * Floats::                  This and above are called @dfn{reals}.
10661 * Complex Numbers::         This and above are called @dfn{numbers}.
10662 * Infinities::
10663 * Vectors and Matrices::
10664 * Strings::
10665 * HMS Forms::
10666 * Date Forms::
10667 * Modulo Forms::
10668 * Error Forms::
10669 * Interval Forms::
10670 * Incomplete Objects::
10671 * Variables::
10672 * Formulas::
10673 @end menu
10675 @node Integers, Fractions, Data Types, Data Types
10676 @section Integers
10678 @noindent
10679 @cindex Integers
10680 The Calculator stores integers to arbitrary precision.  Addition,
10681 subtraction, and multiplication of integers always yields an exact
10682 integer result.  (If the result of a division or exponentiation of
10683 integers is not an integer, it is expressed in fractional or
10684 floating-point form according to the current Fraction Mode.
10685 @xref{Fraction Mode}.)
10687 A decimal integer is represented as an optional sign followed by a
10688 sequence of digits.  Grouping (@pxref{Grouping Digits}) can be used to
10689 insert a comma at every third digit for display purposes, but you
10690 must not type commas during the entry of numbers.@refill
10692 @kindex #
10693 A non-decimal integer is represented as an optional sign, a radix
10694 between 2 and 36, a @samp{#} symbol, and one or more digits.  For radix 11
10695 and above, the letters A through Z (upper- or lower-case) count as
10696 digits and do not terminate numeric entry mode.  @xref{Radix Modes}, for how
10697 to set the default radix for display of integers.  Numbers of any radix
10698 may be entered at any time.  If you press @kbd{#} at the beginning of a
10699 number, the current display radix is used.@refill
10701 @node Fractions, Floats, Integers, Data Types
10702 @section Fractions
10704 @noindent
10705 @cindex Fractions
10706 A @dfn{fraction} is a ratio of two integers.  Fractions are traditionally
10707 written ``2/3'' but Calc uses the notation @samp{2:3}.  (The @kbd{/} key
10708 performs RPN division; the following two sequences push the number
10709 @samp{2:3} on the stack:  @kbd{2 :@: 3 @key{RET}}, or @kbd{2 @key{RET} 3 /}
10710 assuming Fraction Mode has been enabled.)
10711 When the Calculator produces a fractional result it always reduces it to
10712 simplest form, which may in fact be an integer.@refill
10714 Fractions may also be entered in a three-part form, where @samp{2:3:4}
10715 represents two-and-three-quarters.  @xref{Fraction Formats}, for fraction
10716 display formats.@refill
10718 Non-decimal fractions are entered and displayed as
10719 @samp{@var{radix}#@var{num}:@var{denom}} (or in the analogous three-part
10720 form).  The numerator and denominator always use the same radix.@refill
10722 @node Floats, Complex Numbers, Fractions, Data Types
10723 @section Floats
10725 @noindent
10726 @cindex Floating-point numbers
10727 A floating-point number or @dfn{float} is a number stored in scientific
10728 notation.  The number of significant digits in the fractional part is
10729 governed by the current floating precision (@pxref{Precision}).  The
10730 range of acceptable values is from @c{$10^{-3999999}$}
10731 @cite{10^-3999999} (inclusive)
10732 to @c{$10^{4000000}$}
10733 @cite{10^4000000}
10734 (exclusive), plus the corresponding negative
10735 values and zero.
10737 Calculations that would exceed the allowable range of values (such
10738 as @samp{exp(exp(20))}) are left in symbolic form by Calc.  The
10739 messages ``floating-point overflow'' or ``floating-point underflow''
10740 indicate that during the calculation a number would have been produced
10741 that was too large or too close to zero, respectively, to be represented
10742 by Calc.  This does not necessarily mean the final result would have
10743 overflowed, just that an overflow occurred while computing the result.
10744 (In fact, it could report an underflow even though the final result
10745 would have overflowed!)
10747 If a rational number and a float are mixed in a calculation, the result
10748 will in general be expressed as a float.  Commands that require an integer
10749 value (such as @kbd{k g} [@code{gcd}]) will also accept integer-valued
10750 floats, i.e., floating-point numbers with nothing after the decimal point.
10752 Floats are identified by the presence of a decimal point and/or an
10753 exponent.  In general a float consists of an optional sign, digits
10754 including an optional decimal point, and an optional exponent consisting
10755 of an @samp{e}, an optional sign, and up to seven exponent digits.
10756 For example, @samp{23.5e-2} is 23.5 times ten to the minus-second power,
10757 or 0.235.
10759 Floating-point numbers are normally displayed in decimal notation with
10760 all significant figures shown.  Exceedingly large or small numbers are
10761 displayed in scientific notation.  Various other display options are
10762 available.  @xref{Float Formats}.
10764 @cindex Accuracy of calculations
10765 Floating-point numbers are stored in decimal, not binary.  The result
10766 of each operation is rounded to the nearest value representable in the
10767 number of significant digits specified by the current precision,
10768 rounding away from zero in the case of a tie.  Thus (in the default
10769 display mode) what you see is exactly what you get.  Some operations such
10770 as square roots and transcendental functions are performed with several
10771 digits of extra precision and then rounded down, in an effort to make the
10772 final result accurate to the full requested precision.  However,
10773 accuracy is not rigorously guaranteed.  If you suspect the validity of a
10774 result, try doing the same calculation in a higher precision.  The
10775 Calculator's arithmetic is not intended to be IEEE-conformant in any
10776 way.@refill
10778 While floats are always @emph{stored} in decimal, they can be entered
10779 and displayed in any radix just like integers and fractions.  The
10780 notation @samp{@var{radix}#@var{ddd}.@var{ddd}} is a floating-point
10781 number whose digits are in the specified radix.  Note that the @samp{.}
10782 is more aptly referred to as a ``radix point'' than as a decimal
10783 point in this case.  The number @samp{8#123.4567} is defined as
10784 @samp{8#1234567 * 8^-4}.  If the radix is 14 or less, you can use
10785 @samp{e} notation to write a non-decimal number in scientific notation.
10786 The exponent is written in decimal, and is considered to be a power
10787 of the radix: @samp{8#1234567e-4}.  If the radix is 15 or above, the
10788 letter @samp{e} is a digit, so scientific notation must be written
10789 out, e.g., @samp{16#123.4567*16^2}.  The first two exercises of the
10790 Modes Tutorial explore some of the properties of non-decimal floats.
10792 @node Complex Numbers, Infinities, Floats, Data Types
10793 @section Complex Numbers
10795 @noindent
10796 @cindex Complex numbers
10797 There are two supported formats for complex numbers: rectangular and
10798 polar.  The default format is rectangular, displayed in the form
10799 @samp{(@var{real},@var{imag})} where @var{real} is the real part and
10800 @var{imag} is the imaginary part, each of which may be any real number.
10801 Rectangular complex numbers can also be displayed in @samp{@var{a}+@var{b}i}
10802 notation; @pxref{Complex Formats}.@refill
10804 Polar complex numbers are displayed in the form `@t{(}@var{r}@t{;}@c{$\theta$}
10805 @var{theta}@t{)}'
10806 where @var{r} is the nonnegative magnitude and @c{$\theta$}
10807 @var{theta} is the argument
10808 or phase angle.  The range of @c{$\theta$}
10809 @var{theta} depends on the current angular
10810 mode (@pxref{Angular Modes}); it is generally between @i{-180} and
10811 @i{+180} degrees or the equivalent range in radians.@refill
10813 Complex numbers are entered in stages using incomplete objects.
10814 @xref{Incomplete Objects}.
10816 Operations on rectangular complex numbers yield rectangular complex
10817 results, and similarly for polar complex numbers.  Where the two types
10818 are mixed, or where new complex numbers arise (as for the square root of
10819 a negative real), the current @dfn{Polar Mode} is used to determine the
10820 type.  @xref{Polar Mode}.
10822 A complex result in which the imaginary part is zero (or the phase angle
10823 is 0 or 180 degrees or @c{$\pi$}
10824 @cite{pi} radians) is automatically converted to a real
10825 number.
10827 @node Infinities, Vectors and Matrices, Complex Numbers, Data Types
10828 @section Infinities
10830 @noindent
10831 @cindex Infinity
10832 @cindex @code{inf} variable
10833 @cindex @code{uinf} variable
10834 @cindex @code{nan} variable
10835 @vindex inf
10836 @vindex uinf
10837 @vindex nan
10838 The word @code{inf} represents the mathematical concept of @dfn{infinity}.
10839 Calc actually has three slightly different infinity-like values:
10840 @code{inf}, @code{uinf}, and @code{nan}.  These are just regular
10841 variable names (@pxref{Variables}); you should avoid using these
10842 names for your own variables because Calc gives them special
10843 treatment.  Infinities, like all variable names, are normally
10844 entered using algebraic entry.
10846 Mathematically speaking, it is not rigorously correct to treat
10847 ``infinity'' as if it were a number, but mathematicians often do
10848 so informally.  When they say that @samp{1 / inf = 0}, what they
10849 really mean is that @cite{1 / x}, as @cite{x} becomes larger and
10850 larger, becomes arbitrarily close to zero.  So you can imagine
10851 that if @cite{x} got ``all the way to infinity,'' then @cite{1 / x}
10852 would go all the way to zero.  Similarly, when they say that
10853 @samp{exp(inf) = inf}, they mean that @c{$e^x$}
10854 @cite{exp(x)} grows without
10855 bound as @cite{x} grows.  The symbol @samp{-inf} likewise stands
10856 for an infinitely negative real value; for example, we say that
10857 @samp{exp(-inf) = 0}.  You can have an infinity pointing in any
10858 direction on the complex plane:  @samp{sqrt(-inf) = i inf}.
10860 The same concept of limits can be used to define @cite{1 / 0}.  We
10861 really want the value that @cite{1 / x} approaches as @cite{x}
10862 approaches zero.  But if all we have is @cite{1 / 0}, we can't
10863 tell which direction @cite{x} was coming from.  If @cite{x} was
10864 positive and decreasing toward zero, then we should say that
10865 @samp{1 / 0 = inf}.  But if @cite{x} was negative and increasing
10866 toward zero, the answer is @samp{1 / 0 = -inf}.  In fact, @cite{x}
10867 could be an imaginary number, giving the answer @samp{i inf} or
10868 @samp{-i inf}.  Calc uses the special symbol @samp{uinf} to mean
10869 @dfn{undirected infinity}, i.e., a value which is infinitely
10870 large but with an unknown sign (or direction on the complex plane).
10872 Calc actually has three modes that say how infinities are handled.
10873 Normally, infinities never arise from calculations that didn't
10874 already have them.  Thus, @cite{1 / 0} is treated simply as an
10875 error and left unevaluated.  The @kbd{m i} (@code{calc-infinite-mode})
10876 command (@pxref{Infinite Mode}) enables a mode in which
10877 @cite{1 / 0} evaluates to @code{uinf} instead.  There is also
10878 an alternative type of infinite mode which says to treat zeros
10879 as if they were positive, so that @samp{1 / 0 = inf}.  While this
10880 is less mathematically correct, it may be the answer you want in
10881 some cases.
10883 Since all infinities are ``as large'' as all others, Calc simplifies,
10884 e.g., @samp{5 inf} to @samp{inf}.  Another example is
10885 @samp{5 - inf = -inf}, where the @samp{-inf} is so large that
10886 adding a finite number like five to it does not affect it.
10887 Note that @samp{a - inf} also results in @samp{-inf}; Calc assumes
10888 that variables like @code{a} always stand for finite quantities.
10889 Just to show that infinities really are all the same size,
10890 note that @samp{sqrt(inf) = inf^2 = exp(inf) = inf} in Calc's
10891 notation.
10893 It's not so easy to define certain formulas like @samp{0 * inf} and
10894 @samp{inf / inf}.  Depending on where these zeros and infinities
10895 came from, the answer could be literally anything.  The latter
10896 formula could be the limit of @cite{x / x} (giving a result of one),
10897 or @cite{2 x / x} (giving two), or @cite{x^2 / x} (giving @code{inf}),
10898 or @cite{x / x^2} (giving zero).  Calc uses the symbol @code{nan}
10899 to represent such an @dfn{indeterminate} value.  (The name ``nan''
10900 comes from analogy with the ``NAN'' concept of IEEE standard
10901 arithmetic; it stands for ``Not A Number.''  This is somewhat of a
10902 misnomer, since @code{nan} @emph{does} stand for some number or
10903 infinity, it's just that @emph{which} number it stands for
10904 cannot be determined.)  In Calc's notation, @samp{0 * inf = nan}
10905 and @samp{inf / inf = nan}.  A few other common indeterminate
10906 expressions are @samp{inf - inf} and @samp{inf ^ 0}.  Also,
10907 @samp{0 / 0 = nan} if you have turned on ``infinite mode''
10908 (as described above).
10910 Infinities are especially useful as parts of @dfn{intervals}.
10911 @xref{Interval Forms}.
10913 @node Vectors and Matrices, Strings, Infinities, Data Types
10914 @section Vectors and Matrices
10916 @noindent
10917 @cindex Vectors
10918 @cindex Plain vectors
10919 @cindex Matrices
10920 The @dfn{vector} data type is flexible and general.  A vector is simply a
10921 list of zero or more data objects.  When these objects are numbers, the
10922 whole is a vector in the mathematical sense.  When these objects are
10923 themselves vectors of equal (nonzero) length, the whole is a @dfn{matrix}.
10924 A vector which is not a matrix is referred to here as a @dfn{plain vector}.
10926 A vector is displayed as a list of values separated by commas and enclosed
10927 in square brackets:  @samp{[1, 2, 3]}.  Thus the following is a 2 row by
10928 3 column matrix:  @samp{[[1, 2, 3], [4, 5, 6]]}.  Vectors, like complex
10929 numbers, are entered as incomplete objects.  @xref{Incomplete Objects}.
10930 During algebraic entry, vectors are entered all at once in the usual
10931 brackets-and-commas form.  Matrices may be entered algebraically as nested
10932 vectors, or using the shortcut notation @w{@samp{[1, 2, 3; 4, 5, 6]}},
10933 with rows separated by semicolons.  The commas may usually be omitted
10934 when entering vectors:  @samp{[1 2 3]}.  Curly braces may be used in
10935 place of brackets: @samp{@{1, 2, 3@}}, but the commas are required in
10936 this case.
10938 Traditional vector and matrix arithmetic is also supported;
10939 @pxref{Basic Arithmetic} and @pxref{Matrix Functions}.
10940 Many other operations are applied to vectors element-wise.  For example,
10941 the complex conjugate of a vector is a vector of the complex conjugates
10942 of its elements.@refill
10944 @ignore
10945 @starindex
10946 @end ignore
10947 @tindex vec
10948 Algebraic functions for building vectors include @samp{vec(a, b, c)}
10949 to build @samp{[a, b, c]}, @samp{cvec(a, n, m)} to build an @c{$n\times m$}
10950 @asis{@var{n}x@var{m}}
10951 matrix of @samp{a}s, and @samp{index(n)} to build a vector of integers
10952 from 1 to @samp{n}.
10954 @node Strings, HMS Forms, Vectors and Matrices, Data Types
10955 @section Strings
10957 @noindent
10958 @kindex "
10959 @cindex Strings
10960 @cindex Character strings
10961 Character strings are not a special data type in the Calculator.
10962 Rather, a string is represented simply as a vector all of whose
10963 elements are integers in the range 0 to 255 (ASCII codes).  You can
10964 enter a string at any time by pressing the @kbd{"} key.  Quotation
10965 marks and backslashes are written @samp{\"} and @samp{\\}, respectively,
10966 inside strings.  Other notations introduced by backslashes are:
10968 @example
10969 @group
10970 \a     7          \^@@    0
10971 \b     8          \^a-z  1-26
10972 \e     27         \^[    27
10973 \f     12         \^\\   28
10974 \n     10         \^]    29
10975 \r     13         \^^    30
10976 \t     9          \^_    31
10977                   \^?    127
10978 @end group
10979 @end example
10981 @noindent
10982 Finally, a backslash followed by three octal digits produces any
10983 character from its ASCII code.
10985 @kindex d "
10986 @pindex calc-display-strings
10987 Strings are normally displayed in vector-of-integers form.  The
10988 @w{@kbd{d "}} (@code{calc-display-strings}) command toggles a mode in
10989 which any vectors of small integers are displayed as quoted strings
10990 instead.
10992 The backslash notations shown above are also used for displaying
10993 strings.  Characters 128 and above are not translated by Calc; unless
10994 you have an Emacs modified for 8-bit fonts, these will show up in
10995 backslash-octal-digits notation.  For characters below 32, and
10996 for character 127, Calc uses the backslash-letter combination if
10997 there is one, or otherwise uses a @samp{\^} sequence.
10999 The only Calc feature that uses strings is @dfn{compositions};
11000 @pxref{Compositions}.  Strings also provide a convenient
11001 way to do conversions between ASCII characters and integers.
11003 @ignore
11004 @starindex
11005 @end ignore
11006 @tindex string
11007 There is a @code{string} function which provides a different display
11008 format for strings.  Basically, @samp{string(@var{s})}, where @var{s}
11009 is a vector of integers in the proper range, is displayed as the
11010 corresponding string of characters with no surrounding quotation
11011 marks or other modifications.  Thus @samp{string("ABC")} (or
11012 @samp{string([65 66 67])}) will look like @samp{ABC} on the stack.
11013 This happens regardless of whether @w{@kbd{d "}} has been used.  The
11014 only way to turn it off is to use @kbd{d U} (unformatted language
11015 mode) which will display @samp{string("ABC")} instead.
11017 Control characters are displayed somewhat differently by @code{string}.
11018 Characters below 32, and character 127, are shown using @samp{^} notation
11019 (same as shown above, but without the backslash).  The quote and
11020 backslash characters are left alone, as are characters 128 and above.
11022 @ignore
11023 @starindex
11024 @end ignore
11025 @tindex bstring
11026 The @code{bstring} function is just like @code{string} except that
11027 the resulting string is breakable across multiple lines if it doesn't
11028 fit all on one line.  Potential break points occur at every space
11029 character in the string.
11031 @node HMS Forms, Date Forms, Strings, Data Types
11032 @section HMS Forms
11034 @noindent
11035 @cindex Hours-minutes-seconds forms
11036 @cindex Degrees-minutes-seconds forms
11037 @dfn{HMS} stands for Hours-Minutes-Seconds; when used as an angular
11038 argument, the interpretation is Degrees-Minutes-Seconds.  All functions
11039 that operate on angles accept HMS forms.  These are interpreted as
11040 degrees regardless of the current angular mode.  It is also possible to
11041 use HMS as the angular mode so that calculated angles are expressed in
11042 degrees, minutes, and seconds.
11044 @kindex @@
11045 @ignore
11046 @mindex @null
11047 @end ignore
11048 @kindex ' (HMS forms)
11049 @ignore
11050 @mindex @null
11051 @end ignore
11052 @kindex " (HMS forms)
11053 @ignore
11054 @mindex @null
11055 @end ignore
11056 @kindex h (HMS forms)
11057 @ignore
11058 @mindex @null
11059 @end ignore
11060 @kindex o (HMS forms)
11061 @ignore
11062 @mindex @null
11063 @end ignore
11064 @kindex m (HMS forms)
11065 @ignore
11066 @mindex @null
11067 @end ignore
11068 @kindex s (HMS forms)
11069 The default format for HMS values is
11070 @samp{@var{hours}@@ @var{mins}' @var{secs}"}.  During entry, the letters
11071 @samp{h} (for ``hours'') or
11072 @samp{o} (approximating the ``degrees'' symbol) are accepted as well as
11073 @samp{@@}, @samp{m} is accepted in place of @samp{'}, and @samp{s} is
11074 accepted in place of @samp{"}.
11075 The @var{hours} value is an integer (or integer-valued float).
11076 The @var{mins} value is an integer or integer-valued float between 0 and 59.
11077 The @var{secs} value is a real number between 0 (inclusive) and 60
11078 (exclusive).  A positive HMS form is interpreted as @var{hours} +
11079 @var{mins}/60 + @var{secs}/3600.  A negative HMS form is interpreted
11080 as @i{- @var{hours}} @i{-} @var{mins}/60 @i{-} @var{secs}/3600.
11081 Display format for HMS forms is quite flexible.  @xref{HMS Formats}.@refill
11083 HMS forms can be added and subtracted.  When they are added to numbers,
11084 the numbers are interpreted according to the current angular mode.  HMS
11085 forms can also be multiplied and divided by real numbers.  Dividing
11086 two HMS forms produces a real-valued ratio of the two angles.
11088 @pindex calc-time
11089 @cindex Time of day
11090 Just for kicks, @kbd{M-x calc-time} pushes the current time of day on
11091 the stack as an HMS form.
11093 @node Date Forms, Modulo Forms, HMS Forms, Data Types
11094 @section Date Forms
11096 @noindent
11097 @cindex Date forms
11098 A @dfn{date form} represents a date and possibly an associated time.
11099 Simple date arithmetic is supported:  Adding a number to a date
11100 produces a new date shifted by that many days; adding an HMS form to
11101 a date shifts it by that many hours.  Subtracting two date forms
11102 computes the number of days between them (represented as a simple
11103 number).  Many other operations, such as multiplying two date forms,
11104 are nonsensical and are not allowed by Calc.
11106 Date forms are entered and displayed enclosed in @samp{< >} brackets.
11107 The default format is, e.g., @samp{<Wed Jan 9, 1991>} for dates,
11108 or @samp{<3:32:20pm Wed Jan 9, 1991>} for dates with times.
11109 Input is flexible; date forms can be entered in any of the usual
11110 notations for dates and times.  @xref{Date Formats}.
11112 Date forms are stored internally as numbers, specifically the number
11113 of days since midnight on the morning of January 1 of the year 1 AD.
11114 If the internal number is an integer, the form represents a date only;
11115 if the internal number is a fraction or float, the form represents
11116 a date and time.  For example, @samp{<6:00am Wed Jan 9, 1991>}
11117 is represented by the number 726842.25.  The standard precision of
11118 12 decimal digits is enough to ensure that a (reasonable) date and
11119 time can be stored without roundoff error.
11121 If the current precision is greater than 12, date forms will keep
11122 additional digits in the seconds position.  For example, if the
11123 precision is 15, the seconds will keep three digits after the
11124 decimal point.  Decreasing the precision below 12 may cause the
11125 time part of a date form to become inaccurate.  This can also happen
11126 if astronomically high years are used, though this will not be an
11127 issue in everyday (or even everymillennium) use.  Note that date
11128 forms without times are stored as exact integers, so roundoff is
11129 never an issue for them.
11131 You can use the @kbd{v p} (@code{calc-pack}) and @kbd{v u}
11132 (@code{calc-unpack}) commands to get at the numerical representation
11133 of a date form.  @xref{Packing and Unpacking}.
11135 Date forms can go arbitrarily far into the future or past.  Negative
11136 year numbers represent years BC.  Calc uses a combination of the
11137 Gregorian and Julian calendars, following the history of Great
11138 Britain and the British colonies.  This is the same calendar that
11139 is used by the @code{cal} program in most Unix implementations.
11141 @cindex Julian calendar
11142 @cindex Gregorian calendar
11143 Some historical background:  The Julian calendar was created by
11144 Julius Caesar in the year 46 BC as an attempt to fix the gradual
11145 drift caused by the lack of leap years in the calendar used
11146 until that time.  The Julian calendar introduced an extra day in
11147 all years divisible by four.  After some initial confusion, the
11148 calendar was adopted around the year we call 8 AD.  Some centuries
11149 later it became apparent that the Julian year of 365.25 days was
11150 itself not quite right.  In 1582 Pope Gregory XIII introduced the
11151 Gregorian calendar, which added the new rule that years divisible
11152 by 100, but not by 400, were not to be considered leap years
11153 despite being divisible by four.  Many countries delayed adoption
11154 of the Gregorian calendar because of religious differences;
11155 in Britain it was put off until the year 1752, by which time
11156 the Julian calendar had fallen eleven days behind the true
11157 seasons.  So the switch to the Gregorian calendar in early
11158 September 1752 introduced a discontinuity:  The day after
11159 Sep 2, 1752 is Sep 14, 1752.  Calc follows this convention.
11160 To take another example, Russia waited until 1918 before
11161 adopting the new calendar, and thus needed to remove thirteen
11162 days (between Feb 1, 1918 and Feb 14, 1918).  This means that
11163 Calc's reckoning will be inconsistent with Russian history between
11164 1752 and 1918, and similarly for various other countries.
11166 Today's timekeepers introduce an occasional ``leap second'' as
11167 well, but Calc does not take these minor effects into account.
11168 (If it did, it would have to report a non-integer number of days
11169 between, say, @samp{<12:00am Mon Jan 1, 1900>} and
11170 @samp{<12:00am Sat Jan 1, 2000>}.)
11172 Calc uses the Julian calendar for all dates before the year 1752,
11173 including dates BC when the Julian calendar technically had not
11174 yet been invented.  Thus the claim that day number @i{-10000} is
11175 called ``August 16, 28 BC'' should be taken with a grain of salt.
11177 Please note that there is no ``year 0''; the day before
11178 @samp{<Sat Jan 1, +1>} is @samp{<Fri Dec 31, -1>}.  These are
11179 days 0 and @i{-1} respectively in Calc's internal numbering scheme.
11181 @cindex Julian day counting
11182 Another day counting system in common use is, confusingly, also
11183 called ``Julian.''  It was invented in 1583 by Joseph Justus
11184 Scaliger, who named it in honor of his father Julius Caesar
11185 Scaliger.  For obscure reasons he chose to start his day
11186 numbering on Jan 1, 4713 BC at noon, which in Calc's scheme
11187 is @i{-1721423.5} (recall that Calc starts at midnight instead
11188 of noon).  Thus to convert a Calc date code obtained by
11189 unpacking a date form into a Julian day number, simply add
11190 1721423.5.  The Julian code for @samp{6:00am Jan 9, 1991}
11191 is 2448265.75.  The built-in @kbd{t J} command performs
11192 this conversion for you.
11194 @cindex Unix time format
11195 The Unix operating system measures time as an integer number of
11196 seconds since midnight, Jan 1, 1970.  To convert a Calc date
11197 value into a Unix time stamp, first subtract 719164 (the code
11198 for @samp{<Jan 1, 1970>}), then multiply by 86400 (the number of
11199 seconds in a day) and press @kbd{R} to round to the nearest
11200 integer.  If you have a date form, you can simply subtract the
11201 day @samp{<Jan 1, 1970>} instead of unpacking and subtracting
11202 719164.  Likewise, divide by 86400 and add @samp{<Jan 1, 1970>}
11203 to convert from Unix time to a Calc date form.  (Note that
11204 Unix normally maintains the time in the GMT time zone; you may
11205 need to subtract five hours to get New York time, or eight hours
11206 for California time.  The same is usually true of Julian day
11207 counts.)  The built-in @kbd{t U} command performs these
11208 conversions.
11210 @node Modulo Forms, Error Forms, Date Forms, Data Types
11211 @section Modulo Forms
11213 @noindent
11214 @cindex Modulo forms
11215 A @dfn{modulo form} is a real number which is taken modulo (i.e., within
11216 an integer multiple of) some value @var{M}.  Arithmetic modulo @var{M}
11217 often arises in number theory.  Modulo forms are written
11218 `@var{a} @t{mod} @var{M}',
11219 where @var{a} and @var{M} are real numbers or HMS forms, and
11220 @c{$0 \le a < M$}
11221 @cite{0 <= a < @var{M}}.
11222 In many applications @cite{a} and @cite{M} will be
11223 integers but this is not required.@refill
11225 Modulo forms are not to be confused with the modulo operator @samp{%}.
11226 The expression @samp{27 % 10} means to compute 27 modulo 10 to produce
11227 the result 7.  Further computations treat this 7 as just a regular integer.
11228 The expression @samp{27 mod 10} produces the result @samp{7 mod 10};
11229 further computations with this value are again reduced modulo 10 so that
11230 the result always lies in the desired range.
11232 When two modulo forms with identical @cite{M}'s are added or multiplied,
11233 the Calculator simply adds or multiplies the values, then reduces modulo
11234 @cite{M}.  If one argument is a modulo form and the other a plain number,
11235 the plain number is treated like a compatible modulo form.  It is also
11236 possible to raise modulo forms to powers; the result is the value raised
11237 to the power, then reduced modulo @cite{M}.  (When all values involved
11238 are integers, this calculation is done much more efficiently than
11239 actually computing the power and then reducing.)
11241 @cindex Modulo division
11242 Two modulo forms `@var{a} @t{mod} @var{M}' and `@var{b} @t{mod} @var{M}'
11243 can be divided if @cite{a}, @cite{b}, and @cite{M} are all
11244 integers.  The result is the modulo form which, when multiplied by
11245 `@var{b} @t{mod} @var{M}', produces `@var{a} @t{mod} @var{M}'.  If
11246 there is no solution to this equation (which can happen only when
11247 @cite{M} is non-prime), or if any of the arguments are non-integers, the
11248 division is left in symbolic form.  Other operations, such as square
11249 roots, are not yet supported for modulo forms.  (Note that, although
11250 @w{`@t{(}@var{a} @t{mod} @var{M}@t{)^.5}'} will compute a ``modulo square root''
11251 in the sense of reducing @c{$\sqrt a$}
11252 @cite{sqrt(a)} modulo @cite{M}, this is not a
11253 useful definition from the number-theoretical point of view.)@refill
11255 @ignore
11256 @mindex M
11257 @end ignore
11258 @kindex M (modulo forms)
11259 @ignore
11260 @mindex mod
11261 @end ignore
11262 @tindex mod (operator)
11263 To create a modulo form during numeric entry, press the shift-@kbd{M}
11264 key to enter the word @samp{mod}.  As a special convenience, pressing
11265 shift-@kbd{M} a second time automatically enters the value of @cite{M}
11266 that was most recently used before.  During algebraic entry, either
11267 type @samp{mod} by hand or press @kbd{M-m} (that's @kbd{@key{META}-m}).
11268 Once again, pressing this a second time enters the current modulo.@refill
11270 You can also use @kbd{v p} and @kbd{%} to modify modulo forms.
11271 @xref{Building Vectors}.  @xref{Basic Arithmetic}.
11273 It is possible to mix HMS forms and modulo forms.  For example, an
11274 HMS form modulo 24 could be used to manipulate clock times; an HMS
11275 form modulo 360 would be suitable for angles.  Making the modulo @cite{M}
11276 also be an HMS form eliminates troubles that would arise if the angular
11277 mode were inadvertently set to Radians, in which case
11278 @w{@samp{2@@ 0' 0" mod 24}} would be interpreted as two degrees modulo
11279 24 radians!
11281 Modulo forms cannot have variables or formulas for components.  If you
11282 enter the formula @samp{(x + 2) mod 5}, Calc propagates the modulus
11283 to each of the coefficients:  @samp{(1 mod 5) x + (2 mod 5)}.
11285 @ignore
11286 @starindex
11287 @end ignore
11288 @tindex makemod
11289 The algebraic function @samp{makemod(a, m)} builds the modulo form
11290 @w{@samp{a mod m}}.
11292 @node Error Forms, Interval Forms, Modulo Forms, Data Types
11293 @section Error Forms
11295 @noindent
11296 @cindex Error forms
11297 @cindex Standard deviations
11298 An @dfn{error form} is a number with an associated standard
11299 deviation, as in @samp{2.3 +/- 0.12}.  The notation
11300 `@var{x} @t{+/-} @c{$\sigma$}
11301 @asis{sigma}' stands for an uncertain value which follows a normal or
11302 Gaussian distribution of mean @cite{x} and standard deviation or
11303 ``error'' @c{$\sigma$}
11304 @cite{sigma}.  Both the mean and the error can be either numbers or
11305 formulas.  Generally these are real numbers but the mean may also be
11306 complex.  If the error is negative or complex, it is changed to its
11307 absolute value.  An error form with zero error is converted to a
11308 regular number by the Calculator.@refill
11310 All arithmetic and transcendental functions accept error forms as input.
11311 Operations on the mean-value part work just like operations on regular
11312 numbers.  The error part for any function @cite{f(x)} (such as @c{$\sin x$}
11313 @cite{sin(x)})
11314 is defined by the error of @cite{x} times the derivative of @cite{f}
11315 evaluated at the mean value of @cite{x}.  For a two-argument function
11316 @cite{f(x,y)} (such as addition) the error is the square root of the sum
11317 of the squares of the errors due to @cite{x} and @cite{y}.
11318 @tex
11319 $$ \eqalign{
11320   f(x \hbox{\code{ +/- }} \sigma)
11321     &= f(x) \hbox{\code{ +/- }} \sigma \left| {df(x) \over dx} \right| \cr
11322   f(x \hbox{\code{ +/- }} \sigma_x, y \hbox{\code{ +/- }} \sigma_y)
11323     &= f(x,y) \hbox{\code{ +/- }}
11324         \sqrt{\left(\sigma_x \left| {\partial f(x,y) \over \partial x}
11325                              \right| \right)^2
11326              +\left(\sigma_y \left| {\partial f(x,y) \over \partial y}
11327                              \right| \right)^2 } \cr
11328 } $$
11329 @end tex
11330 Note that this
11331 definition assumes the errors in @cite{x} and @cite{y} are uncorrelated.
11332 A side effect of this definition is that @samp{(2 +/- 1) * (2 +/- 1)}
11333 is not the same as @samp{(2 +/- 1)^2}; the former represents the product
11334 of two independent values which happen to have the same probability
11335 distributions, and the latter is the product of one random value with itself.
11336 The former will produce an answer with less error, since on the average
11337 the two independent errors can be expected to cancel out.@refill
11339 Consult a good text on error analysis for a discussion of the proper use
11340 of standard deviations.  Actual errors often are neither Gaussian-distributed
11341 nor uncorrelated, and the above formulas are valid only when errors
11342 are small.  As an example, the error arising from
11343 `@t{sin(}@var{x} @t{+/-} @c{$\sigma$}
11344 @var{sigma}@t{)}' is
11345 `@c{$\sigma$\nobreak}
11346 @var{sigma} @t{abs(cos(}@var{x}@t{))}'.  When @cite{x} is close to zero,
11347 @c{$\cos x$}
11348 @cite{cos(x)} is
11349 close to one so the error in the sine is close to @c{$\sigma$}
11350 @cite{sigma}; this makes sense, since @c{$\sin x$}
11351 @cite{sin(x)} is approximately @cite{x} near zero, so a given
11352 error in @cite{x} will produce about the same error in the sine.  Likewise,
11353 near 90 degrees @c{$\cos x$}
11354 @cite{cos(x)} is nearly zero and so the computed error is
11355 small:  The sine curve is nearly flat in that region, so an error in @cite{x}
11356 has relatively little effect on the value of @c{$\sin x$}
11357 @cite{sin(x)}.  However, consider
11358 @samp{sin(90 +/- 1000)}.  The cosine of 90 is zero, so Calc will report
11359 zero error!  We get an obviously wrong result because we have violated
11360 the small-error approximation underlying the error analysis.  If the error
11361 in @cite{x} had been small, the error in @c{$\sin x$}
11362 @cite{sin(x)} would indeed have been negligible.@refill
11364 @ignore
11365 @mindex p
11366 @end ignore
11367 @kindex p (error forms)
11368 @tindex +/-
11369 To enter an error form during regular numeric entry, use the @kbd{p}
11370 (``plus-or-minus'') key to type the @samp{+/-} symbol.  (If you try actually
11371 typing @samp{+/-} the @kbd{+} key will be interpreted as the Calculator's
11372 @kbd{+} command!)  Within an algebraic formula, you can press @kbd{M-p} to
11373 type the @samp{+/-} symbol, or type it out by hand.
11375 Error forms and complex numbers can be mixed; the formulas shown above
11376 are used for complex numbers, too; note that if the error part evaluates
11377 to a complex number its absolute value (or the square root of the sum of
11378 the squares of the absolute values of the two error contributions) is
11379 used.  Mathematically, this corresponds to a radially symmetric Gaussian
11380 distribution of numbers on the complex plane.  However, note that Calc
11381 considers an error form with real components to represent a real number,
11382 not a complex distribution around a real mean.
11384 Error forms may also be composed of HMS forms.  For best results, both
11385 the mean and the error should be HMS forms if either one is.
11387 @ignore
11388 @starindex
11389 @end ignore
11390 @tindex sdev
11391 The algebraic function @samp{sdev(a, b)} builds the error form @samp{a +/- b}.
11393 @node Interval Forms, Incomplete Objects, Error Forms, Data Types
11394 @section Interval Forms
11396 @noindent
11397 @cindex Interval forms
11398 An @dfn{interval} is a subset of consecutive real numbers.  For example,
11399 the interval @samp{[2 ..@: 4]} represents all the numbers from 2 to 4,
11400 inclusive.  If you multiply it by the interval @samp{[0.5 ..@: 2]} you
11401 obtain @samp{[1 ..@: 8]}.  This calculation represents the fact that if
11402 you multiply some number in the range @samp{[2 ..@: 4]} by some other
11403 number in the range @samp{[0.5 ..@: 2]}, your result will lie in the range
11404 from 1 to 8.  Interval arithmetic is used to get a worst-case estimate
11405 of the possible range of values a computation will produce, given the
11406 set of possible values of the input.
11408 @ifinfo
11409 Calc supports several varieties of intervals, including @dfn{closed}
11410 intervals of the type shown above, @dfn{open} intervals such as
11411 @samp{(2 ..@: 4)}, which represents the range of numbers from 2 to 4
11412 @emph{exclusive}, and @dfn{semi-open} intervals in which one end
11413 uses a round parenthesis and the other a square bracket.  In mathematical
11414 terms,
11415 @samp{[2 ..@: 4]} means @cite{2 <= x <= 4}, whereas
11416 @samp{[2 ..@: 4)} represents @cite{2 <= x < 4},
11417 @samp{(2 ..@: 4]} represents @cite{2 < x <= 4}, and
11418 @samp{(2 ..@: 4)} represents @cite{2 < x < 4}.@refill
11419 @end ifinfo
11420 @tex
11421 Calc supports several varieties of intervals, including \dfn{closed}
11422 intervals of the type shown above, \dfn{open} intervals such as
11423 \samp{(2 ..\: 4)}, which represents the range of numbers from 2 to 4
11424 \emph{exclusive}, and \dfn{semi-open} intervals in which one end
11425 uses a round parenthesis and the other a square bracket.  In mathematical
11426 terms,
11427 $$ \eqalign{
11428    [2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2 \le x \le 4  \cr
11429    [2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2 \le x  <  4  \cr
11430    (2 \hbox{\cite{..}} 4]  &\quad\hbox{means}\quad  2  <  x \le 4  \cr
11431    (2 \hbox{\cite{..}} 4)  &\quad\hbox{means}\quad  2  <  x  <  4  \cr
11432 } $$
11433 @end tex
11435 The lower and upper limits of an interval must be either real numbers
11436 (or HMS or date forms), or symbolic expressions which are assumed to be
11437 real-valued, or @samp{-inf} and @samp{inf}.  In general the lower limit
11438 must be less than the upper limit.  A closed interval containing only
11439 one value, @samp{[3 ..@: 3]}, is converted to a plain number (3)
11440 automatically.  An interval containing no values at all (such as
11441 @samp{[3 ..@: 2]} or @samp{[2 ..@: 2)}) can be represented but is not
11442 guaranteed to behave well when used in arithmetic.  Note that the
11443 interval @samp{[3 .. inf)} represents all real numbers greater than
11444 or equal to 3, and @samp{(-inf .. inf)} represents all real numbers.
11445 In fact, @samp{[-inf .. inf]} represents all real numbers including
11446 the real infinities.
11448 Intervals are entered in the notation shown here, either as algebraic
11449 formulas, or using incomplete forms.  (@xref{Incomplete Objects}.)
11450 In algebraic formulas, multiple periods in a row are collected from
11451 left to right, so that @samp{1...1e2} is interpreted as @samp{1.0 ..@: 1e2}
11452 rather than @samp{1 ..@: 0.1e2}.  Add spaces or zeros if you want to
11453 get the other interpretation.  If you omit the lower or upper limit,
11454 a default of @samp{-inf} or @samp{inf} (respectively) is furnished.
11456 ``Infinite mode'' also affects operations on intervals
11457 (@pxref{Infinities}).  Calc will always introduce an open infinity,
11458 as in @samp{1 / (0 .. 2] = [0.5 .. inf)}.  But closed infinities,
11459 @w{@samp{1 / [0 .. 2] = [0.5 .. inf]}}, arise only in infinite mode;
11460 otherwise they are left unevaluated.  Note that the ``direction'' of
11461 a zero is not an issue in this case since the zero is always assumed
11462 to be continuous with the rest of the interval.  For intervals that
11463 contain zero inside them Calc is forced to give the result,
11464 @samp{1 / (-2 .. 2) = [-inf .. inf]}.
11466 While it may seem that intervals and error forms are similar, they are
11467 based on entirely different concepts of inexact quantities.  An error
11468 form `@var{x} @t{+/-} @c{$\sigma$}
11469 @var{sigma}' means a variable is random, and its value could
11470 be anything but is ``probably'' within one @c{$\sigma$}
11471 @var{sigma} of the mean value @cite{x}.
11472 An interval `@t{[}@var{a} @t{..@:} @var{b}@t{]}' means a variable's value
11473 is unknown, but guaranteed to lie in the specified range.  Error forms
11474 are statistical or ``average case'' approximations; interval arithmetic
11475 tends to produce ``worst case'' bounds on an answer.@refill
11477 Intervals may not contain complex numbers, but they may contain
11478 HMS forms or date forms.
11480 @xref{Set Operations}, for commands that interpret interval forms
11481 as subsets of the set of real numbers.
11483 @ignore
11484 @starindex
11485 @end ignore
11486 @tindex intv
11487 The algebraic function @samp{intv(n, a, b)} builds an interval form
11488 from @samp{a} to @samp{b}; @samp{n} is an integer code which must
11489 be 0 for @samp{(..)}, 1 for @samp{(..]}, 2 for @samp{[..)}, or
11490 3 for @samp{[..]}.
11492 Please note that in fully rigorous interval arithmetic, care would be
11493 taken to make sure that the computation of the lower bound rounds toward
11494 minus infinity, while upper bound computations round toward plus
11495 infinity.  Calc's arithmetic always uses a round-to-nearest mode,
11496 which means that roundoff errors could creep into an interval
11497 calculation to produce intervals slightly smaller than they ought to
11498 be.  For example, entering @samp{[1..2]} and pressing @kbd{Q 2 ^}
11499 should yield the interval @samp{[1..2]} again, but in fact it yields the
11500 (slightly too small) interval @samp{[1..1.9999999]} due to roundoff
11501 error.
11503 @node Incomplete Objects, Variables, Interval Forms, Data Types
11504 @section Incomplete Objects
11506 @noindent
11507 @ignore
11508 @mindex [ ]
11509 @end ignore
11510 @kindex [
11511 @ignore
11512 @mindex ( )
11513 @end ignore
11514 @kindex (
11515 @kindex ,
11516 @ignore
11517 @mindex @null
11518 @end ignore
11519 @kindex ]
11520 @ignore
11521 @mindex @null
11522 @end ignore
11523 @kindex )
11524 @cindex Incomplete vectors
11525 @cindex Incomplete complex numbers
11526 @cindex Incomplete interval forms
11527 When @kbd{(} or @kbd{[} is typed to begin entering a complex number or
11528 vector, respectively, the effect is to push an @dfn{incomplete} complex
11529 number or vector onto the stack.  The @kbd{,} key adds the value(s) at
11530 the top of the stack onto the current incomplete object.  The @kbd{)}
11531 and @kbd{]} keys ``close'' the incomplete object after adding any values
11532 on the top of the stack in front of the incomplete object.
11534 As a result, the sequence of keystrokes @kbd{[ 2 , 3 @key{RET} 2 * , 9 ]}
11535 pushes the vector @samp{[2, 6, 9]} onto the stack.  Likewise, @kbd{( 1 , 2 Q )}
11536 pushes the complex number @samp{(1, 1.414)} (approximately).
11538 If several values lie on the stack in front of the incomplete object,
11539 all are collected and appended to the object.  Thus the @kbd{,} key
11540 is redundant:  @kbd{[ 2 @key{RET} 3 @key{RET} 2 * 9 ]}.  Some people
11541 prefer the equivalent @key{SPC} key to @key{RET}.@refill
11543 As a special case, typing @kbd{,} immediately after @kbd{(}, @kbd{[}, or
11544 @kbd{,} adds a zero or duplicates the preceding value in the list being
11545 formed.  Typing @key{DEL} during incomplete entry removes the last item
11546 from the list.
11548 @kindex ;
11549 The @kbd{;} key is used in the same way as @kbd{,} to create polar complex
11550 numbers:  @kbd{( 1 ; 2 )}.  When entering a vector, @kbd{;} is useful for
11551 creating a matrix.  In particular, @kbd{[ [ 1 , 2 ; 3 , 4 ; 5 , 6 ] ]} is
11552 equivalent to @kbd{[ [ 1 , 2 ] , [ 3 , 4 ] , [ 5 , 6 ] ]}.
11554 @kindex ..
11555 @pindex calc-dots
11556 Incomplete entry is also used to enter intervals.  For example,
11557 @kbd{[ 2 ..@: 4 )} enters a semi-open interval.  Note that when you type
11558 the first period, it will be interpreted as a decimal point, but when
11559 you type a second period immediately afterward, it is re-interpreted as
11560 part of the interval symbol.  Typing @kbd{..} corresponds to executing
11561 the @code{calc-dots} command.
11563 If you find incomplete entry distracting, you may wish to enter vectors
11564 and complex numbers as algebraic formulas by pressing the apostrophe key.
11566 @node Variables, Formulas, Incomplete Objects, Data Types
11567 @section Variables
11569 @noindent
11570 @cindex Variables, in formulas
11571 A @dfn{variable} is somewhere between a storage register on a conventional
11572 calculator, and a variable in a programming language.  (In fact, a Calc
11573 variable is really just an Emacs Lisp variable that contains a Calc number
11574 or formula.)  A variable's name is normally composed of letters and digits.
11575 Calc also allows apostrophes and @code{#} signs in variable names.
11576 The Calc variable @code{foo} corresponds to the Emacs Lisp variable
11577 @code{var-foo}.  Commands like @kbd{s s} (@code{calc-store}) that operate
11578 on variables can be made to use any arbitrary Lisp variable simply by
11579 backspacing over the @samp{var-} prefix in the minibuffer.@refill
11581 In a command that takes a variable name, you can either type the full
11582 name of a variable, or type a single digit to use one of the special
11583 convenience variables @code{var-q0} through @code{var-q9}.  For example,
11584 @kbd{3 s s 2} stores the number 3 in variable @code{var-q2}, and
11585 @w{@kbd{3 s s foo @key{RET}}} stores that number in variable
11586 @code{var-foo}.@refill
11588 To push a variable itself (as opposed to the variable's value) on the
11589 stack, enter its name as an algebraic expression using the apostrophe
11590 (@key{'}) key.  Variable names in algebraic formulas implicitly have
11591 @samp{var-} prefixed to their names.  The @samp{#} character in variable
11592 names used in algebraic formulas corresponds to a dash @samp{-} in the
11593 Lisp variable name.  If the name contains any dashes, the prefix @samp{var-}
11594 is @emph{not} automatically added.  Thus the two formulas @samp{foo + 1}
11595 and @samp{var#foo + 1} both refer to the same variable.
11597 @kindex =
11598 @pindex calc-evaluate
11599 @cindex Evaluation of variables in a formula
11600 @cindex Variables, evaluation
11601 @cindex Formulas, evaluation
11602 The @kbd{=} (@code{calc-evaluate}) key ``evaluates'' a formula by
11603 replacing all variables in the formula which have been given values by a
11604 @code{calc-store} or @code{calc-let} command by their stored values.
11605 Other variables are left alone.  Thus a variable that has not been
11606 stored acts like an abstract variable in algebra; a variable that has
11607 been stored acts more like a register in a traditional calculator.
11608 With a positive numeric prefix argument, @kbd{=} evaluates the top
11609 @var{n} stack entries; with a negative argument, @kbd{=} evaluates
11610 the @var{n}th stack entry.
11612 @cindex @code{e} variable
11613 @cindex @code{pi} variable
11614 @cindex @code{i} variable
11615 @cindex @code{phi} variable
11616 @cindex @code{gamma} variable
11617 @vindex e
11618 @vindex pi
11619 @vindex i
11620 @vindex phi
11621 @vindex gamma
11622 A few variables are called @dfn{special constants}.  Their names are
11623 @samp{e}, @samp{pi}, @samp{i}, @samp{phi}, and @samp{gamma}.
11624 (@xref{Scientific Functions}.)  When they are evaluated with @kbd{=},
11625 their values are calculated if necessary according to the current precision
11626 or complex polar mode.  If you wish to use these symbols for other purposes,
11627 simply undefine or redefine them using @code{calc-store}.@refill
11629 The variables @samp{inf}, @samp{uinf}, and @samp{nan} stand for
11630 infinite or indeterminate values.  It's best not to use them as
11631 regular variables, since Calc uses special algebraic rules when
11632 it manipulates them.  Calc displays a warning message if you store
11633 a value into any of these special variables.
11635 @xref{Store and Recall}, for a discussion of commands dealing with variables.
11637 @node Formulas, , Variables, Data Types
11638 @section Formulas
11640 @noindent
11641 @cindex Formulas
11642 @cindex Expressions
11643 @cindex Operators in formulas
11644 @cindex Precedence of operators
11645 When you press the apostrophe key you may enter any expression or formula
11646 in algebraic form.  (Calc uses the terms ``expression'' and ``formula''
11647 interchangeably.)  An expression is built up of numbers, variable names,
11648 and function calls, combined with various arithmetic operators.
11649 Parentheses may
11650 be used to indicate grouping.  Spaces are ignored within formulas, except
11651 that spaces are not permitted within variable names or numbers.
11652 Arithmetic operators, in order from highest to lowest precedence, and
11653 with their equivalent function names, are:
11655 @samp{_} [@code{subscr}] (subscripts);
11657 postfix @samp{%} [@code{percent}] (as in @samp{25% = 0.25});
11659 prefix @samp{+} and @samp{-} [@code{neg}] (as in @samp{-x})
11660 and prefix @samp{!} [@code{lnot}] (logical ``not,'' as in @samp{!x});
11662 @samp{+/-} [@code{sdev}] (the standard deviation symbol) and
11663 @samp{mod} [@code{makemod}] (the symbol for modulo forms);
11665 postfix @samp{!} [@code{fact}] (factorial, as in @samp{n!})
11666 and postfix @samp{!!} [@code{dfact}] (double factorial);
11668 @samp{^} [@code{pow}] (raised-to-the-power-of);
11670 @samp{*} [@code{mul}];
11672 @samp{/} [@code{div}], @samp{%} [@code{mod}] (modulo), and
11673 @samp{\} [@code{idiv}] (integer division);
11675 infix @samp{+} [@code{add}] and @samp{-} [@code{sub}] (as in @samp{x-y});
11677 @samp{|} [@code{vconcat}] (vector concatenation);
11679 relations @samp{=} [@code{eq}], @samp{!=} [@code{neq}], @samp{<} [@code{lt}],
11680 @samp{>} [@code{gt}], @samp{<=} [@code{leq}], and @samp{>=} [@code{geq}];
11682 @samp{&&} [@code{land}] (logical ``and'');
11684 @samp{||} [@code{lor}] (logical ``or'');
11686 the C-style ``if'' operator @samp{a?b:c} [@code{if}];
11688 @samp{!!!} [@code{pnot}] (rewrite pattern ``not'');
11690 @samp{&&&} [@code{pand}] (rewrite pattern ``and'');
11692 @samp{|||} [@code{por}] (rewrite pattern ``or'');
11694 @samp{:=} [@code{assign}] (for assignments and rewrite rules);
11696 @samp{::} [@code{condition}] (rewrite pattern condition);
11698 @samp{=>} [@code{evalto}].
11700 Note that, unlike in usual computer notation, multiplication binds more
11701 strongly than division:  @samp{a*b/c*d} is equivalent to @c{$a b \over c d$}
11702 @cite{(a*b)/(c*d)}.
11704 @cindex Multiplication, implicit
11705 @cindex Implicit multiplication
11706 The multiplication sign @samp{*} may be omitted in many cases.  In particular,
11707 if the righthand side is a number, variable name, or parenthesized
11708 expression, the @samp{*} may be omitted.  Implicit multiplication has the
11709 same precedence as the explicit @samp{*} operator.  The one exception to
11710 the rule is that a variable name followed by a parenthesized expression,
11711 as in @samp{f(x)},
11712 is interpreted as a function call, not an implicit @samp{*}.  In many
11713 cases you must use a space if you omit the @samp{*}:  @samp{2a} is the
11714 same as @samp{2*a}, and @samp{a b} is the same as @samp{a*b}, but @samp{ab}
11715 is a variable called @code{ab}, @emph{not} the product of @samp{a} and
11716 @samp{b}!  Also note that @samp{f (x)} is still a function call.@refill
11718 @cindex Implicit comma in vectors
11719 The rules are slightly different for vectors written with square brackets.
11720 In vectors, the space character is interpreted (like the comma) as a
11721 separator of elements of the vector.  Thus @w{@samp{[ 2a b+c d ]}} is
11722 equivalent to @samp{[2*a, b+c, d]}, whereas @samp{2a b+c d} is equivalent
11723 to @samp{2*a*b + c*d}.
11724 Note that spaces around the brackets, and around explicit commas, are
11725 ignored.  To force spaces to be interpreted as multiplication you can
11726 enclose a formula in parentheses as in @samp{[(a b) 2(c d)]}, which is
11727 interpreted as @samp{[a*b, 2*c*d]}.  An implicit comma is also inserted
11728 between @samp{][}, as in the matrix @samp{[[1 2][3 4]]}.@refill
11730 Vectors that contain commas (not embedded within nested parentheses or
11731 brackets) do not treat spaces specially:  @samp{[a b, 2 c d]} is a vector
11732 of two elements.  Also, if it would be an error to treat spaces as
11733 separators, but not otherwise, then Calc will ignore spaces:
11734 @w{@samp{[a - b]}} is a vector of one element, but @w{@samp{[a -b]}} is
11735 a vector of two elements.  Finally, vectors entered with curly braces
11736 instead of square brackets do not give spaces any special treatment.
11737 When Calc displays a vector that does not contain any commas, it will
11738 insert parentheses if necessary to make the meaning clear:
11739 @w{@samp{[(a b)]}}.
11741 The expression @samp{5%-2} is ambiguous; is this five-percent minus two,
11742 or five modulo minus-two?  Calc always interprets the leftmost symbol as
11743 an infix operator preferentially (modulo, in this case), so you would
11744 need to write @samp{(5%)-2} to get the former interpretation.
11746 @cindex Function call notation
11747 A function call is, e.g., @samp{sin(1+x)}.  Function names follow the same
11748 rules as variable names except that the default prefix @samp{calcFunc-} is
11749 used (instead of @samp{var-}) for the internal Lisp form.
11750 Most mathematical Calculator commands like
11751 @code{calc-sin} have function equivalents like @code{sin}.
11752 If no Lisp function is defined for a function called by a formula, the
11753 call is left as it is during algebraic manipulation: @samp{f(x+y)} is
11754 left alone.  Beware that many innocent-looking short names like @code{in}
11755 and @code{re} have predefined meanings which could surprise you; however,
11756 single letters or single letters followed by digits are always safe to
11757 use for your own function names.  @xref{Function Index}.@refill
11759 In the documentation for particular commands, the notation @kbd{H S}
11760 (@code{calc-sinh}) [@code{sinh}] means that the key sequence @kbd{H S}, the
11761 command @kbd{M-x calc-sinh}, and the algebraic function @code{sinh(x)} all
11762 represent the same operation.@refill
11764 Commands that interpret (``parse'') text as algebraic formulas include
11765 algebraic entry (@kbd{'}), editing commands like @kbd{`} which parse
11766 the contents of the editing buffer when you finish, the @kbd{M-# g}
11767 and @w{@kbd{M-# r}} commands, the @kbd{C-y} command, the X window system
11768 ``paste'' mouse operation, and Embedded Mode.  All of these operations
11769 use the same rules for parsing formulas; in particular, language modes
11770 (@pxref{Language Modes}) affect them all in the same way.
11772 When you read a large amount of text into the Calculator (say a vector
11773 which represents a big set of rewrite rules; @pxref{Rewrite Rules}),
11774 you may wish to include comments in the text.  Calc's formula parser
11775 ignores the symbol @samp{%%} and anything following it on a line:
11777 @example
11778 [ a + b,   %% the sum of "a" and "b"
11779   c + d,
11780   %% last line is coming up:
11781   e + f ]
11782 @end example
11784 @noindent
11785 This is parsed exactly the same as @samp{[ a + b, c + d, e + f ]}.
11787 @xref{Syntax Tables}, for a way to create your own operators and other
11788 input notations.  @xref{Compositions}, for a way to create new display
11789 formats.
11791 @xref{Algebra}, for commands for manipulating formulas symbolically.
11793 @node Stack and Trail, Mode Settings, Data Types, Top
11794 @chapter Stack and Trail Commands
11796 @noindent
11797 This chapter describes the Calc commands for manipulating objects on the
11798 stack and in the trail buffer.  (These commands operate on objects of any
11799 type, such as numbers, vectors, formulas, and incomplete objects.)
11801 @menu
11802 * Stack Manipulation::
11803 * Editing Stack Entries::
11804 * Trail Commands::
11805 * Keep Arguments::
11806 @end menu
11808 @node Stack Manipulation, Editing Stack Entries, Stack and Trail, Stack and Trail
11809 @section Stack Manipulation Commands
11811 @noindent
11812 @kindex @key{RET}
11813 @kindex @key{SPC}
11814 @pindex calc-enter
11815 @cindex Duplicating stack entries
11816 To duplicate the top object on the stack, press @key{RET} or @key{SPC}
11817 (two equivalent keys for the @code{calc-enter} command).
11818 Given a positive numeric prefix argument, these commands duplicate
11819 several elements at the top of the stack.
11820 Given a negative argument,
11821 these commands duplicate the specified element of the stack.
11822 Given an argument of zero, they duplicate the entire stack.
11823 For example, with @samp{10 20 30} on the stack,
11824 @key{RET} creates @samp{10 20 30 30},
11825 @kbd{C-u 2 @key{RET}} creates @samp{10 20 30 20 30},
11826 @kbd{C-u - 2 @key{RET}} creates @samp{10 20 30 20}, and
11827 @kbd{C-u 0 @key{RET}} creates @samp{10 20 30 10 20 30}.@refill
11829 @kindex @key{LFD}
11830 @pindex calc-over
11831 The @key{LFD} (@code{calc-over}) command (on a key marked Line-Feed if you
11832 have it, else on @kbd{C-j}) is like @code{calc-enter}
11833 except that the sign of the numeric prefix argument is interpreted
11834 oppositely.  Also, with no prefix argument the default argument is 2.
11835 Thus with @samp{10 20 30} on the stack, @key{LFD} and @kbd{C-u 2 @key{LFD}}
11836 are both equivalent to @kbd{C-u - 2 @key{RET}}, producing
11837 @samp{10 20 30 20}.@refill
11839 @kindex @key{DEL}
11840 @kindex C-d
11841 @pindex calc-pop
11842 @cindex Removing stack entries
11843 @cindex Deleting stack entries
11844 To remove the top element from the stack, press @key{DEL} (@code{calc-pop}).
11845 The @kbd{C-d} key is a synonym for @key{DEL}.
11846 (If the top element is an incomplete object with at least one element, the
11847 last element is removed from it.)  Given a positive numeric prefix argument,
11848 several elements are removed.  Given a negative argument, the specified
11849 element of the stack is deleted.  Given an argument of zero, the entire
11850 stack is emptied.
11851 For example, with @samp{10 20 30} on the stack,
11852 @key{DEL} leaves @samp{10 20},
11853 @kbd{C-u 2 @key{DEL}} leaves @samp{10},
11854 @kbd{C-u - 2 @key{DEL}} leaves @samp{10 30}, and
11855 @kbd{C-u 0 @key{DEL}} leaves an empty stack.@refill
11857 @kindex M-@key{DEL}
11858 @pindex calc-pop-above
11859 The @kbd{M-@key{DEL}} (@code{calc-pop-above}) command is to @key{DEL} what
11860 @key{LFD} is to @key{RET}:  It interprets the sign of the numeric
11861 prefix argument in the opposite way, and the default argument is 2.
11862 Thus @kbd{M-@key{DEL}} by itself removes the second-from-top stack element,
11863 leaving the first, third, fourth, and so on; @kbd{M-3 M-@key{DEL}} deletes
11864 the third stack element.
11866 @kindex @key{TAB}
11867 @pindex calc-roll-down
11868 To exchange the top two elements of the stack, press @key{TAB}
11869 (@code{calc-roll-down}).  Given a positive numeric prefix argument, the
11870 specified number of elements at the top of the stack are rotated downward.
11871 Given a negative argument, the entire stack is rotated downward the specified
11872 number of times.  Given an argument of zero, the entire stack is reversed
11873 top-for-bottom.
11874 For example, with @samp{10 20 30 40 50} on the stack,
11875 @key{TAB} creates @samp{10 20 30 50 40},
11876 @kbd{C-u 3 @key{TAB}} creates @samp{10 20 50 30 40},
11877 @kbd{C-u - 2 @key{TAB}} creates @samp{40 50 10 20 30}, and
11878 @kbd{C-u 0 @key{TAB}} creates @samp{50 40 30 20 10}.@refill
11880 @kindex M-@key{TAB}
11881 @pindex calc-roll-up
11882 The command @kbd{M-@key{TAB}} (@code{calc-roll-up}) is analogous to @key{TAB}
11883 except that it rotates upward instead of downward.  Also, the default
11884 with no prefix argument is to rotate the top 3 elements.
11885 For example, with @samp{10 20 30 40 50} on the stack,
11886 @kbd{M-@key{TAB}} creates @samp{10 20 40 50 30},
11887 @kbd{C-u 4 M-@key{TAB}} creates @samp{10 30 40 50 20},
11888 @kbd{C-u - 2 M-@key{TAB}} creates @samp{30 40 50 10 20}, and
11889 @kbd{C-u 0 M-@key{TAB}} creates @samp{50 40 30 20 10}.@refill
11891 A good way to view the operation of @key{TAB} and @kbd{M-@key{TAB}} is in
11892 terms of moving a particular element to a new position in the stack.
11893 With a positive argument @var{n}, @key{TAB} moves the top stack
11894 element down to level @var{n}, making room for it by pulling all the
11895 intervening stack elements toward the top.  @kbd{M-@key{TAB}} moves the
11896 element at level @var{n} up to the top.  (Compare with @key{LFD},
11897 which copies instead of moving the element in level @var{n}.)
11899 With a negative argument @i{-@var{n}}, @key{TAB} rotates the stack
11900 to move the object in level @var{n} to the deepest place in the
11901 stack, and the object in level @i{@var{n}+1} to the top.  @kbd{M-@key{TAB}}
11902 rotates the deepest stack element to be in level @i{n}, also
11903 putting the top stack element in level @i{@var{n}+1}.
11905 @xref{Selecting Subformulas}, for a way to apply these commands to
11906 any portion of a vector or formula on the stack.
11908 @node Editing Stack Entries, Trail Commands, Stack Manipulation, Stack and Trail
11909 @section Editing Stack Entries
11911 @noindent
11912 @kindex `
11913 @pindex calc-edit
11914 @pindex calc-edit-finish
11915 @cindex Editing the stack with Emacs
11916 The backquote, @kbd{`} (@code{calc-edit}) command creates a temporary
11917 buffer (@samp{*Calc Edit*}) for editing the top-of-stack value using
11918 regular Emacs commands.  With a numeric prefix argument, it edits the
11919 specified number of stack entries at once.  (An argument of zero edits
11920 the entire stack; a negative argument edits one specific stack entry.)
11922 When you are done editing, press @kbd{M-# M-#} to finish and return
11923 to Calc.  The @key{RET} and @key{LFD} keys also work to finish most
11924 sorts of editing, though in some cases Calc leaves @key{RET} with its
11925 usual meaning (``insert a newline'') if it's a situation where you
11926 might want to insert new lines into the editing buffer.  The traditional
11927 Emacs ``finish'' key sequence, @kbd{C-c C-c}, also works to finish
11928 editing and may be easier to type, depending on your keyboard.
11930 When you finish editing, the Calculator parses the lines of text in
11931 the @samp{*Calc Edit*} buffer as numbers or formulas, replaces the
11932 original stack elements in the original buffer with these new values,
11933 then kills the @samp{*Calc Edit*} buffer.  The original Calculator buffer
11934 continues to exist during editing, but for best results you should be
11935 careful not to change it until you have finished the edit.  You can
11936 also cancel the edit by pressing @kbd{M-# x}.
11938 The formula is normally reevaluated as it is put onto the stack.
11939 For example, editing @samp{a + 2} to @samp{3 + 2} and pressing
11940 @kbd{M-# M-#} will push 5 on the stack.  If you use @key{LFD} to
11941 finish, Calc will put the result on the stack without evaluating it.
11943 If you give a prefix argument to @kbd{M-# M-#} (or @kbd{C-c C-c}),
11944 Calc will not kill the @samp{*Calc Edit*} buffer.  You can switch
11945 back to that buffer and continue editing if you wish.  However, you
11946 should understand that if you initiated the edit with @kbd{`}, the
11947 @kbd{M-# M-#} operation will be programmed to replace the top of the
11948 stack with the new edited value, and it will do this even if you have
11949 rearranged the stack in the meanwhile.  This is not so much of a problem
11950 with other editing commands, though, such as @kbd{s e}
11951 (@code{calc-edit-variable}; @pxref{Operations on Variables}).
11953 If the @code{calc-edit} command involves more than one stack entry,
11954 each line of the @samp{*Calc Edit*} buffer is interpreted as a
11955 separate formula.  Otherwise, the entire buffer is interpreted as
11956 one formula, with line breaks ignored.  (You can use @kbd{C-o} or
11957 @kbd{C-q C-j} to insert a newline in the buffer without pressing @key{RET}.)
11959 The @kbd{`} key also works during numeric or algebraic entry.  The
11960 text entered so far is moved to the @code{*Calc Edit*} buffer for
11961 more extensive editing than is convenient in the minibuffer.
11963 @node Trail Commands, Keep Arguments, Editing Stack Entries, Stack and Trail
11964 @section Trail Commands
11966 @noindent
11967 @cindex Trail buffer
11968 The commands for manipulating the Calc Trail buffer are two-key sequences
11969 beginning with the @kbd{t} prefix.
11971 @kindex t d
11972 @pindex calc-trail-display
11973 The @kbd{t d} (@code{calc-trail-display}) command turns display of the
11974 trail on and off.  Normally the trail display is toggled on if it was off,
11975 off if it was on.  With a numeric prefix of zero, this command always
11976 turns the trail off; with a prefix of one, it always turns the trail on.
11977 The other trail-manipulation commands described here automatically turn
11978 the trail on.  Note that when the trail is off values are still recorded
11979 there; they are simply not displayed.  To set Emacs to turn the trail
11980 off by default, type @kbd{t d} and then save the mode settings with
11981 @kbd{m m} (@code{calc-save-modes}).
11983 @kindex t i
11984 @pindex calc-trail-in
11985 @kindex t o
11986 @pindex calc-trail-out
11987 The @kbd{t i} (@code{calc-trail-in}) and @kbd{t o}
11988 (@code{calc-trail-out}) commands switch the cursor into and out of the
11989 Calc Trail window.  In practice they are rarely used, since the commands
11990 shown below are a more convenient way to move around in the
11991 trail, and they work ``by remote control'' when the cursor is still
11992 in the Calculator window.@refill
11994 @cindex Trail pointer
11995 There is a @dfn{trail pointer} which selects some entry of the trail at
11996 any given time.  The trail pointer looks like a @samp{>} symbol right
11997 before the selected number.  The following commands operate on the
11998 trail pointer in various ways.
12000 @kindex t y
12001 @pindex calc-trail-yank
12002 @cindex Retrieving previous results
12003 The @kbd{t y} (@code{calc-trail-yank}) command reads the selected value in
12004 the trail and pushes it onto the Calculator stack.  It allows you to
12005 re-use any previously computed value without retyping.  With a numeric
12006 prefix argument @var{n}, it yanks the value @var{n} lines above the current
12007 trail pointer.
12009 @kindex t <
12010 @pindex calc-trail-scroll-left
12011 @kindex t >
12012 @pindex calc-trail-scroll-right
12013 The @kbd{t <} (@code{calc-trail-scroll-left}) and @kbd{t >}
12014 (@code{calc-trail-scroll-right}) commands horizontally scroll the trail
12015 window left or right by one half of its width.@refill
12017 @kindex t n
12018 @pindex calc-trail-next
12019 @kindex t p
12020 @pindex calc-trail-previous
12021 @kindex t f
12022 @pindex calc-trail-forward
12023 @kindex t b
12024 @pindex calc-trail-backward
12025 The @kbd{t n} (@code{calc-trail-next}) and @kbd{t p}
12026 (@code{calc-trail-previous)} commands move the trail pointer down or up
12027 one line.  The @kbd{t f} (@code{calc-trail-forward}) and @kbd{t b}
12028 (@code{calc-trail-backward}) commands move the trail pointer down or up
12029 one screenful at a time.  All of these commands accept numeric prefix
12030 arguments to move several lines or screenfuls at a time.@refill
12032 @kindex t [
12033 @pindex calc-trail-first
12034 @kindex t ]
12035 @pindex calc-trail-last
12036 @kindex t h
12037 @pindex calc-trail-here
12038 The @kbd{t [} (@code{calc-trail-first}) and @kbd{t ]}
12039 (@code{calc-trail-last}) commands move the trail pointer to the first or
12040 last line of the trail.  The @kbd{t h} (@code{calc-trail-here}) command
12041 moves the trail pointer to the cursor position; unlike the other trail
12042 commands, @kbd{t h} works only when Calc Trail is the selected window.@refill
12044 @kindex t s
12045 @pindex calc-trail-isearch-forward
12046 @kindex t r
12047 @pindex calc-trail-isearch-backward
12048 @ifinfo
12049 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12050 (@code{calc-trail-isearch-backward}) commands perform an incremental
12051 search forward or backward through the trail.  You can press @key{RET}
12052 to terminate the search; the trail pointer moves to the current line.
12053 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12054 it was when the search began.@refill
12055 @end ifinfo
12056 @tex
12057 The @kbd{t s} (@code{calc-trail-isearch-forward}) and @kbd{t r}
12058 (@code{calc-trail-isearch-backward}) com\-mands perform an incremental
12059 search forward or backward through the trail.  You can press @key{RET}
12060 to terminate the search; the trail pointer moves to the current line.
12061 If you cancel the search with @kbd{C-g}, the trail pointer stays where
12062 it was when the search began.
12063 @end tex
12065 @kindex t m
12066 @pindex calc-trail-marker
12067 The @kbd{t m} (@code{calc-trail-marker}) command allows you to enter a
12068 line of text of your own choosing into the trail.  The text is inserted
12069 after the line containing the trail pointer; this usually means it is
12070 added to the end of the trail.  Trail markers are useful mainly as the
12071 targets for later incremental searches in the trail.
12073 @kindex t k
12074 @pindex calc-trail-kill
12075 The @kbd{t k} (@code{calc-trail-kill}) command removes the selected line
12076 from the trail.  The line is saved in the Emacs kill ring suitable for
12077 yanking into another buffer, but it is not easy to yank the text back
12078 into the trail buffer.  With a numeric prefix argument, this command
12079 kills the @var{n} lines below or above the selected one.
12081 The @kbd{t .} (@code{calc-full-trail-vectors}) command is described
12082 elsewhere; @pxref{Vector and Matrix Formats}.
12084 @node Keep Arguments, , Trail Commands, Stack and Trail
12085 @section Keep Arguments
12087 @noindent
12088 @kindex K
12089 @pindex calc-keep-args
12090 The @kbd{K} (@code{calc-keep-args}) command acts like a prefix for
12091 the following command.  It prevents that command from removing its
12092 arguments from the stack.  For example, after @kbd{2 @key{RET} 3 +},
12093 the stack contains the sole number 5, but after @kbd{2 @key{RET} 3 K +},
12094 the stack contains the arguments and the result: @samp{2 3 5}.
12096 This works for all commands that take arguments off the stack.  As
12097 another example, @kbd{K a s} simplifies a formula, pushing the
12098 simplified version of the formula onto the stack after the original
12099 formula (rather than replacing the original formula).
12101 Note that you could get the same effect by typing @kbd{@key{RET} a s},
12102 copying the formula and then simplifying the copy.  One difference
12103 is that for a very large formula the time taken to format the
12104 intermediate copy in @kbd{@key{RET} a s} could be noticeable; @kbd{K a s}
12105 would avoid this extra work.
12107 Even stack manipulation commands are affected.  @key{TAB} works by
12108 popping two values and pushing them back in the opposite order,
12109 so @kbd{2 @key{RET} 3 K @key{TAB}} produces @samp{2 3 3 2}.
12111 A few Calc commands provide other ways of doing the same thing.
12112 For example, @kbd{' sin($)} replaces the number on the stack with
12113 its sine using algebraic entry; to push the sine and keep the
12114 original argument you could use either @kbd{' sin($1)} or
12115 @kbd{K ' sin($)}.  @xref{Algebraic Entry}.  Also, the @kbd{s s}
12116 command is effectively the same as @kbd{K s t}.  @xref{Storing Variables}.
12118 Keyboard macros may interact surprisingly with the @kbd{K} prefix.
12119 If you have defined a keyboard macro to be, say, @samp{Q +} to add
12120 one number to the square root of another, then typing @kbd{K X} will
12121 execute @kbd{K Q +}, probably not what you expected.  The @kbd{K}
12122 prefix will apply to just the first command in the macro rather than
12123 the whole macro.
12125 If you execute a command and then decide you really wanted to keep
12126 the argument, you can press @kbd{M-@key{RET}} (@code{calc-last-args}).
12127 This command pushes the last arguments that were popped by any command
12128 onto the stack.  Note that the order of things on the stack will be
12129 different than with @kbd{K}:  @kbd{2 @key{RET} 3 + M-@key{RET}} leaves
12130 @samp{5 2 3} on the stack instead of @samp{2 3 5}.  @xref{Undo}.
12132 @node Mode Settings, Arithmetic, Stack and Trail, Top
12133 @chapter Mode Settings
12135 @noindent
12136 This chapter describes commands that set modes in the Calculator.
12137 They do not affect the contents of the stack, although they may change
12138 the @emph{appearance} or @emph{interpretation} of the stack's contents.
12140 @menu
12141 * General Mode Commands::
12142 * Precision::
12143 * Inverse and Hyperbolic::
12144 * Calculation Modes::
12145 * Simplification Modes::
12146 * Declarations::
12147 * Display Modes::
12148 * Language Modes::
12149 * Modes Variable::
12150 * Calc Mode Line::
12151 @end menu
12153 @node General Mode Commands, Precision, Mode Settings, Mode Settings
12154 @section General Mode Commands
12156 @noindent
12157 @kindex m m
12158 @pindex calc-save-modes
12159 @cindex Continuous memory
12160 @cindex Saving mode settings
12161 @cindex Permanent mode settings
12162 @cindex @file{.emacs} file, mode settings
12163 You can save all of the current mode settings in your @file{.emacs} file
12164 with the @kbd{m m} (@code{calc-save-modes}) command.  This will cause
12165 Emacs to reestablish these modes each time it starts up.  The modes saved
12166 in the file include everything controlled by the @kbd{m} and @kbd{d}
12167 prefix keys, the current precision and binary word size, whether or not
12168 the trail is displayed, the current height of the Calc window, and more.
12169 The current interface (used when you type @kbd{M-# M-#}) is also saved.
12170 If there were already saved mode settings in the file, they are replaced.
12171 Otherwise, the new mode information is appended to the end of the file.
12173 @kindex m R
12174 @pindex calc-mode-record-mode
12175 The @kbd{m R} (@code{calc-mode-record-mode}) command tells Calc to
12176 record the new mode settings (as if by pressing @kbd{m m}) every
12177 time a mode setting changes.  If Embedded Mode is enabled, other
12178 options are available; @pxref{Mode Settings in Embedded Mode}.
12180 @kindex m F
12181 @pindex calc-settings-file-name
12182 The @kbd{m F} (@code{calc-settings-file-name}) command allows you to
12183 choose a different place than your @file{.emacs} file for @kbd{m m},
12184 @kbd{Z P}, and similar commands to save permanent information.
12185 You are prompted for a file name.  All Calc modes are then reset to
12186 their default values, then settings from the file you named are loaded
12187 if this file exists, and this file becomes the one that Calc will
12188 use in the future for commands like @kbd{m m}.  The default settings
12189 file name is @file{~/.emacs}.  You can see the current file name by
12190 giving a blank response to the @kbd{m F} prompt.  See also the
12191 discussion of the @code{calc-settings-file} variable; @pxref{Installation}.
12193 If the file name you give contains the string @samp{.emacs} anywhere
12194 inside it, @kbd{m F} will not automatically load the new file.  This
12195 is because you are presumably switching to your @file{~/.emacs} file,
12196 which may contain other things you don't want to reread.  You can give
12197 a numeric prefix argument of 1 to @kbd{m F} to force it to read the
12198 file no matter what its name.  Conversely, an argument of @i{-1} tells
12199 @kbd{m F} @emph{not} to read the new file.  An argument of 2 or @i{-2}
12200 tells @kbd{m F} not to reset the modes to their defaults beforehand,
12201 which is useful if you intend your new file to have a variant of the
12202 modes present in the file you were using before.
12204 @kindex m x
12205 @pindex calc-always-load-extensions
12206 The @kbd{m x} (@code{calc-always-load-extensions}) command enables a mode
12207 in which the first use of Calc loads the entire program, including all
12208 extensions modules.  Otherwise, the extensions modules will not be loaded
12209 until the various advanced Calc features are used.  Since this mode only
12210 has effect when Calc is first loaded, @kbd{m x} is usually followed by
12211 @kbd{m m} to make the mode-setting permanent.  To load all of Calc just
12212 once, rather than always in the future, you can press @kbd{M-# L}.
12214 @kindex m S
12215 @pindex calc-shift-prefix
12216 The @kbd{m S} (@code{calc-shift-prefix}) command enables a mode in which
12217 all of Calc's letter prefix keys may be typed shifted as well as unshifted.
12218 If you are typing, say, @kbd{a S} (@code{calc-solve-for}) quite often
12219 you might find it easier to turn this mode on so that you can type
12220 @kbd{A S} instead.  When this mode is enabled, the commands that used to
12221 be on those single shifted letters (e.g., @kbd{A} (@code{calc-abs})) can
12222 now be invoked by pressing the shifted letter twice: @kbd{A A}.  Note
12223 that the @kbd{v} prefix key always works both shifted and unshifted, and
12224 the @kbd{z} and @kbd{Z} prefix keys are always distinct.  Also, the @kbd{h}
12225 prefix is not affected by this mode.  Press @kbd{m S} again to disable
12226 shifted-prefix mode.
12228 @node Precision, Inverse and Hyperbolic, General Mode Commands, Mode Settings
12229 @section Precision
12231 @noindent
12232 @kindex p
12233 @pindex calc-precision
12234 @cindex Precision of calculations
12235 The @kbd{p} (@code{calc-precision}) command controls the precision to
12236 which floating-point calculations are carried.  The precision must be
12237 at least 3 digits and may be arbitrarily high, within the limits of
12238 memory and time.  This affects only floats:  Integer and rational
12239 calculations are always carried out with as many digits as necessary.
12241 The @kbd{p} key prompts for the current precision.  If you wish you
12242 can instead give the precision as a numeric prefix argument.
12244 Many internal calculations are carried to one or two digits higher
12245 precision than normal.  Results are rounded down afterward to the
12246 current precision.  Unless a special display mode has been selected,
12247 floats are always displayed with their full stored precision, i.e.,
12248 what you see is what you get.  Reducing the current precision does not
12249 round values already on the stack, but those values will be rounded
12250 down before being used in any calculation.  The @kbd{c 0} through
12251 @kbd{c 9} commands (@pxref{Conversions}) can be used to round an
12252 existing value to a new precision.@refill
12254 @cindex Accuracy of calculations
12255 It is important to distinguish the concepts of @dfn{precision} and
12256 @dfn{accuracy}.  In the normal usage of these words, the number
12257 123.4567 has a precision of 7 digits but an accuracy of 4 digits.
12258 The precision is the total number of digits not counting leading
12259 or trailing zeros (regardless of the position of the decimal point).
12260 The accuracy is simply the number of digits after the decimal point
12261 (again not counting trailing zeros).  In Calc you control the precision,
12262 not the accuracy of computations.  If you were to set the accuracy
12263 instead, then calculations like @samp{exp(100)} would generate many
12264 more digits than you would typically need, while @samp{exp(-100)} would
12265 probably round to zero!  In Calc, both these computations give you
12266 exactly 12 (or the requested number of) significant digits.
12268 The only Calc features that deal with accuracy instead of precision
12269 are fixed-point display mode for floats (@kbd{d f}; @pxref{Float Formats}),
12270 and the rounding functions like @code{floor} and @code{round}
12271 (@pxref{Integer Truncation}).  Also, @kbd{c 0} through @kbd{c 9}
12272 deal with both precision and accuracy depending on the magnitudes
12273 of the numbers involved.
12275 If you need to work with a particular fixed accuracy (say, dollars and
12276 cents with two digits after the decimal point), one solution is to work
12277 with integers and an ``implied'' decimal point.  For example, $8.99
12278 divided by 6 would be entered @kbd{899 @key{RET} 6 /}, yielding 149.833
12279 (actually $1.49833 with our implied decimal point); pressing @kbd{R}
12280 would round this to 150 cents, i.e., $1.50.
12282 @xref{Floats}, for still more on floating-point precision and related
12283 issues.
12285 @node Inverse and Hyperbolic, Calculation Modes, Precision, Mode Settings
12286 @section Inverse and Hyperbolic Flags
12288 @noindent
12289 @kindex I
12290 @pindex calc-inverse
12291 There is no single-key equivalent to the @code{calc-arcsin} function.
12292 Instead, you must first press @kbd{I} (@code{calc-inverse}) to set
12293 the @dfn{Inverse Flag}, then press @kbd{S} (@code{calc-sin}).
12294 The @kbd{I} key actually toggles the Inverse Flag.  When this flag
12295 is set, the word @samp{Inv} appears in the mode line.@refill
12297 @kindex H
12298 @pindex calc-hyperbolic
12299 Likewise, the @kbd{H} key (@code{calc-hyperbolic}) sets or clears the
12300 Hyperbolic Flag, which transforms @code{calc-sin} into @code{calc-sinh}.
12301 If both of these flags are set at once, the effect will be
12302 @code{calc-arcsinh}.  (The Hyperbolic flag is also used by some
12303 non-trigonometric commands; for example @kbd{H L} computes a base-10,
12304 instead of base-@i{e}, logarithm.)@refill
12306 Command names like @code{calc-arcsin} are provided for completeness, and
12307 may be executed with @kbd{x} or @kbd{M-x}.  Their effect is simply to
12308 toggle the Inverse and/or Hyperbolic flags and then execute the
12309 corresponding base command (@code{calc-sin} in this case).
12311 The Inverse and Hyperbolic flags apply only to the next Calculator
12312 command, after which they are automatically cleared.  (They are also
12313 cleared if the next keystroke is not a Calc command.)  Digits you
12314 type after @kbd{I} or @kbd{H} (or @kbd{K}) are treated as prefix
12315 arguments for the next command, not as numeric entries.  The same
12316 is true of @kbd{C-u}, but not of the minus sign (@kbd{K -} means to
12317 subtract and keep arguments).
12319 The third Calc prefix flag, @kbd{K} (keep-arguments), is discussed
12320 elsewhere.  @xref{Keep Arguments}.
12322 @node Calculation Modes, Simplification Modes, Inverse and Hyperbolic, Mode Settings
12323 @section Calculation Modes
12325 @noindent
12326 The commands in this section are two-key sequences beginning with
12327 the @kbd{m} prefix.  (That's the letter @kbd{m}, not the @key{META} key.)
12328 The @samp{m a} (@code{calc-algebraic-mode}) command is described elsewhere
12329 (@pxref{Algebraic Entry}).
12331 @menu
12332 * Angular Modes::
12333 * Polar Mode::
12334 * Fraction Mode::
12335 * Infinite Mode::
12336 * Symbolic Mode::
12337 * Matrix Mode::
12338 * Automatic Recomputation::
12339 * Working Message::
12340 @end menu
12342 @node Angular Modes, Polar Mode, Calculation Modes, Calculation Modes
12343 @subsection Angular Modes
12345 @noindent
12346 @cindex Angular mode
12347 The Calculator supports three notations for angles: radians, degrees,
12348 and degrees-minutes-seconds.  When a number is presented to a function
12349 like @code{sin} that requires an angle, the current angular mode is
12350 used to interpret the number as either radians or degrees.  If an HMS
12351 form is presented to @code{sin}, it is always interpreted as
12352 degrees-minutes-seconds.
12354 Functions that compute angles produce a number in radians, a number in
12355 degrees, or an HMS form depending on the current angular mode.  If the
12356 result is a complex number and the current mode is HMS, the number is
12357 instead expressed in degrees.  (Complex-number calculations would
12358 normally be done in radians mode, though.  Complex numbers are converted
12359 to degrees by calculating the complex result in radians and then
12360 multiplying by 180 over @c{$\pi$}
12361 @cite{pi}.)
12363 @kindex m r
12364 @pindex calc-radians-mode
12365 @kindex m d
12366 @pindex calc-degrees-mode
12367 @kindex m h
12368 @pindex calc-hms-mode
12369 The @kbd{m r} (@code{calc-radians-mode}), @kbd{m d} (@code{calc-degrees-mode}),
12370 and @kbd{m h} (@code{calc-hms-mode}) commands control the angular mode.
12371 The current angular mode is displayed on the Emacs mode line.
12372 The default angular mode is degrees.@refill
12374 @node Polar Mode, Fraction Mode, Angular Modes, Calculation Modes
12375 @subsection Polar Mode
12377 @noindent
12378 @cindex Polar mode
12379 The Calculator normally ``prefers'' rectangular complex numbers in the
12380 sense that rectangular form is used when the proper form can not be
12381 decided from the input.  This might happen by multiplying a rectangular
12382 number by a polar one, by taking the square root of a negative real
12383 number, or by entering @kbd{( 2 @key{SPC} 3 )}.
12385 @kindex m p
12386 @pindex calc-polar-mode
12387 The @kbd{m p} (@code{calc-polar-mode}) command toggles complex-number
12388 preference between rectangular and polar forms.  In polar mode, all
12389 of the above example situations would produce polar complex numbers.
12391 @node Fraction Mode, Infinite Mode, Polar Mode, Calculation Modes
12392 @subsection Fraction Mode
12394 @noindent
12395 @cindex Fraction mode
12396 @cindex Division of integers
12397 Division of two integers normally yields a floating-point number if the
12398 result cannot be expressed as an integer.  In some cases you would
12399 rather get an exact fractional answer.  One way to accomplish this is
12400 to multiply fractions instead:  @kbd{6 @key{RET} 1:4 *} produces @cite{3:2}
12401 even though @kbd{6 @key{RET} 4 /} produces @cite{1.5}.
12403 @kindex m f
12404 @pindex calc-frac-mode
12405 To set the Calculator to produce fractional results for normal integer
12406 divisions, use the @kbd{m f} (@code{calc-frac-mode}) command.
12407 For example, @cite{8/4} produces @cite{2} in either mode,
12408 but @cite{6/4} produces @cite{3:2} in Fraction Mode, @cite{1.5} in
12409 Float Mode.@refill
12411 At any time you can use @kbd{c f} (@code{calc-float}) to convert a
12412 fraction to a float, or @kbd{c F} (@code{calc-fraction}) to convert a
12413 float to a fraction.  @xref{Conversions}.
12415 @node Infinite Mode, Symbolic Mode, Fraction Mode, Calculation Modes
12416 @subsection Infinite Mode
12418 @noindent
12419 @cindex Infinite mode
12420 The Calculator normally treats results like @cite{1 / 0} as errors;
12421 formulas like this are left in unsimplified form.  But Calc can be
12422 put into a mode where such calculations instead produce ``infinite''
12423 results.
12425 @kindex m i
12426 @pindex calc-infinite-mode
12427 The @kbd{m i} (@code{calc-infinite-mode}) command turns this mode
12428 on and off.  When the mode is off, infinities do not arise except
12429 in calculations that already had infinities as inputs.  (One exception
12430 is that infinite open intervals like @samp{[0 .. inf)} can be
12431 generated; however, intervals closed at infinity (@samp{[0 .. inf]})
12432 will not be generated when infinite mode is off.)
12434 With infinite mode turned on, @samp{1 / 0} will generate @code{uinf},
12435 an undirected infinity.  @xref{Infinities}, for a discussion of the
12436 difference between @code{inf} and @code{uinf}.  Also, @cite{0 / 0}
12437 evaluates to @code{nan}, the ``indeterminate'' symbol.  Various other
12438 functions can also return infinities in this mode; for example,
12439 @samp{ln(0) = -inf}, and @samp{gamma(-7) = uinf}.  Once again,
12440 note that @samp{exp(inf) = inf} regardless of infinite mode because
12441 this calculation has infinity as an input.
12443 @cindex Positive infinite mode
12444 The @kbd{m i} command with a numeric prefix argument of zero,
12445 i.e., @kbd{C-u 0 m i}, turns on a ``positive infinite mode'' in
12446 which zero is treated as positive instead of being directionless.  
12447 Thus, @samp{1 / 0 = inf} and @samp{-1 / 0 = -inf} in this mode.
12448 Note that zero never actually has a sign in Calc; there are no
12449 separate representations for @i{+0} and @i{-0}.  Positive
12450 infinite mode merely changes the interpretation given to the
12451 single symbol, @samp{0}.  One consequence of this is that, while
12452 you might expect @samp{1 / -0 = -inf}, actually @samp{1 / -0}
12453 is equivalent to @samp{1 / 0}, which is equal to positive @code{inf}.
12455 @node Symbolic Mode, Matrix Mode, Infinite Mode, Calculation Modes
12456 @subsection Symbolic Mode
12458 @noindent
12459 @cindex Symbolic mode
12460 @cindex Inexact results
12461 Calculations are normally performed numerically wherever possible.
12462 For example, the @code{calc-sqrt} command, or @code{sqrt} function in an
12463 algebraic expression, produces a numeric answer if the argument is a
12464 number or a symbolic expression if the argument is an expression:
12465 @kbd{2 Q} pushes 1.4142 but @kbd{@key{'} x+1 @key{RET} Q} pushes @samp{sqrt(x+1)}.
12467 @kindex m s
12468 @pindex calc-symbolic-mode
12469 In @dfn{symbolic mode}, controlled by the @kbd{m s} (@code{calc-symbolic-mode})
12470 command, functions which would produce inexact, irrational results are
12471 left in symbolic form.  Thus @kbd{16 Q} pushes 4, but @kbd{2 Q} pushes
12472 @samp{sqrt(2)}.
12474 @kindex N
12475 @pindex calc-eval-num
12476 The shift-@kbd{N} (@code{calc-eval-num}) command evaluates numerically
12477 the expression at the top of the stack, by temporarily disabling
12478 @code{calc-symbolic-mode} and executing @kbd{=} (@code{calc-evaluate}).
12479 Given a numeric prefix argument, it also
12480 sets the floating-point precision to the specified value for the duration
12481 of the command.@refill
12483 To evaluate a formula numerically without expanding the variables it
12484 contains, you can use the key sequence @kbd{m s a v m s} (this uses
12485 @code{calc-alg-evaluate}, which resimplifies but doesn't evaluate
12486 variables.)
12488 @node Matrix Mode, Automatic Recomputation, Symbolic Mode, Calculation Modes
12489 @subsection Matrix and Scalar Modes
12491 @noindent
12492 @cindex Matrix mode
12493 @cindex Scalar mode
12494 Calc sometimes makes assumptions during algebraic manipulation that
12495 are awkward or incorrect when vectors and matrices are involved.
12496 Calc has two modes, @dfn{matrix mode} and @dfn{scalar mode}, which
12497 modify its behavior around vectors in useful ways.
12499 @kindex m v
12500 @pindex calc-matrix-mode
12501 Press @kbd{m v} (@code{calc-matrix-mode}) once to enter matrix mode.
12502 In this mode, all objects are assumed to be matrices unless provably
12503 otherwise.  One major effect is that Calc will no longer consider
12504 multiplication to be commutative.  (Recall that in matrix arithmetic,
12505 @samp{A*B} is not the same as @samp{B*A}.)  This assumption affects
12506 rewrite rules and algebraic simplification.  Another effect of this
12507 mode is that calculations that would normally produce constants like
12508 0 and 1 (e.g., @cite{a - a} and @cite{a / a}, respectively) will now
12509 produce function calls that represent ``generic'' zero or identity
12510 matrices: @samp{idn(0)}, @samp{idn(1)}.  The @code{idn} function
12511 @samp{idn(@var{a},@var{n})} returns @var{a} times an @var{n}x@var{n}
12512 identity matrix; if @var{n} is omitted, it doesn't know what
12513 dimension to use and so the @code{idn} call remains in symbolic
12514 form.  However, if this generic identity matrix is later combined
12515 with a matrix whose size is known, it will be converted into
12516 a true identity matrix of the appropriate size.  On the other hand,
12517 if it is combined with a scalar (as in @samp{idn(1) + 2}), Calc
12518 will assume it really was a scalar after all and produce, e.g., 3.
12520 Press @kbd{m v} a second time to get scalar mode.  Here, objects are
12521 assumed @emph{not} to be vectors or matrices unless provably so.
12522 For example, normally adding a variable to a vector, as in
12523 @samp{[x, y, z] + a}, will leave the sum in symbolic form because
12524 as far as Calc knows, @samp{a} could represent either a number or
12525 another 3-vector.  In scalar mode, @samp{a} is assumed to be a
12526 non-vector, and the addition is evaluated to @samp{[x+a, y+a, z+a]}.
12528 Press @kbd{m v} a third time to return to the normal mode of operation.
12530 If you press @kbd{m v} with a numeric prefix argument @var{n}, you
12531 get a special ``dimensioned matrix mode'' in which matrices of
12532 unknown size are assumed to be @var{n}x@var{n} square matrices.
12533 Then, the function call @samp{idn(1)} will expand into an actual
12534 matrix rather than representing a ``generic'' matrix.
12536 @cindex Declaring scalar variables
12537 Of course these modes are approximations to the true state of
12538 affairs, which is probably that some quantities will be matrices
12539 and others will be scalars.  One solution is to ``declare''
12540 certain variables or functions to be scalar-valued.
12541 @xref{Declarations}, to see how to make declarations in Calc.
12543 There is nothing stopping you from declaring a variable to be
12544 scalar and then storing a matrix in it; however, if you do, the
12545 results you get from Calc may not be valid.  Suppose you let Calc
12546 get the result @samp{[x+a, y+a, z+a]} shown above, and then stored
12547 @samp{[1, 2, 3]} in @samp{a}.  The result would not be the same as
12548 for @samp{[x, y, z] + [1, 2, 3]}, but that's because you have broken
12549 your earlier promise to Calc that @samp{a} would be scalar.
12551 Another way to mix scalars and matrices is to use selections
12552 (@pxref{Selecting Subformulas}).  Use matrix mode when operating on
12553 your formula normally; then, to apply scalar mode to a certain part
12554 of the formula without affecting the rest just select that part,
12555 change into scalar mode and press @kbd{=} to resimplify the part
12556 under this mode, then change back to matrix mode before deselecting.
12558 @node Automatic Recomputation, Working Message, Matrix Mode, Calculation Modes
12559 @subsection Automatic Recomputation
12561 @noindent
12562 The @dfn{evaluates-to} operator, @samp{=>}, has the special
12563 property that any @samp{=>} formulas on the stack are recomputed
12564 whenever variable values or mode settings that might affect them
12565 are changed.  @xref{Evaluates-To Operator}.
12567 @kindex m C
12568 @pindex calc-auto-recompute
12569 The @kbd{m C} (@code{calc-auto-recompute}) command turns this
12570 automatic recomputation on and off.  If you turn it off, Calc will
12571 not update @samp{=>} operators on the stack (nor those in the
12572 attached Embedded Mode buffer, if there is one).  They will not
12573 be updated unless you explicitly do so by pressing @kbd{=} or until
12574 you press @kbd{m C} to turn recomputation back on.  (While automatic
12575 recomputation is off, you can think of @kbd{m C m C} as a command
12576 to update all @samp{=>} operators while leaving recomputation off.)
12578 To update @samp{=>} operators in an Embedded buffer while
12579 automatic recomputation is off, use @w{@kbd{M-# u}}.
12580 @xref{Embedded Mode}.
12582 @node Working Message, , Automatic Recomputation, Calculation Modes
12583 @subsection Working Messages
12585 @noindent
12586 @cindex Performance
12587 @cindex Working messages
12588 Since the Calculator is written entirely in Emacs Lisp, which is not
12589 designed for heavy numerical work, many operations are quite slow.
12590 The Calculator normally displays the message @samp{Working...} in the
12591 echo area during any command that may be slow.  In addition, iterative
12592 operations such as square roots and trigonometric functions display the
12593 intermediate result at each step.  Both of these types of messages can
12594 be disabled if you find them distracting.
12596 @kindex m w
12597 @pindex calc-working
12598 Type @kbd{m w} (@code{calc-working}) with a numeric prefix of 0 to
12599 disable all ``working'' messages.  Use a numeric prefix of 1 to enable
12600 only the plain @samp{Working...} message.  Use a numeric prefix of 2 to
12601 see intermediate results as well.  With no numeric prefix this displays
12602 the current mode.@refill
12604 While it may seem that the ``working'' messages will slow Calc down
12605 considerably, experiments have shown that their impact is actually
12606 quite small.  But if your terminal is slow you may find that it helps
12607 to turn the messages off.
12609 @node Simplification Modes, Declarations, Calculation Modes, Mode Settings
12610 @section Simplification Modes
12612 @noindent
12613 The current @dfn{simplification mode} controls how numbers and formulas
12614 are ``normalized'' when being taken from or pushed onto the stack.
12615 Some normalizations are unavoidable, such as rounding floating-point
12616 results to the current precision, and reducing fractions to simplest
12617 form.  Others, such as simplifying a formula like @cite{a+a} (or @cite{2+3}),
12618 are done by default but can be turned off when necessary.
12620 When you press a key like @kbd{+} when @cite{2} and @cite{3} are on the
12621 stack, Calc pops these numbers, normalizes them, creates the formula
12622 @cite{2+3}, normalizes it, and pushes the result.  Of course the standard
12623 rules for normalizing @cite{2+3} will produce the result @cite{5}.
12625 Simplification mode commands consist of the lower-case @kbd{m} prefix key
12626 followed by a shifted letter.
12628 @kindex m O
12629 @pindex calc-no-simplify-mode
12630 The @kbd{m O} (@code{calc-no-simplify-mode}) command turns off all optional
12631 simplifications.  These would leave a formula like @cite{2+3} alone.  In
12632 fact, nothing except simple numbers are ever affected by normalization
12633 in this mode.
12635 @kindex m N
12636 @pindex calc-num-simplify-mode
12637 The @kbd{m N} (@code{calc-num-simplify-mode}) command turns off simplification
12638 of any formulas except those for which all arguments are constants.  For
12639 example, @cite{1+2} is simplified to @cite{3}, and @cite{a+(2-2)} is
12640 simplified to @cite{a+0} but no further, since one argument of the sum
12641 is not a constant.  Unfortunately, @cite{(a+2)-2} is @emph{not} simplified
12642 because the top-level @samp{-} operator's arguments are not both
12643 constant numbers (one of them is the formula @cite{a+2}).
12644 A constant is a number or other numeric object (such as a constant
12645 error form or modulo form), or a vector all of whose
12646 elements are constant.@refill
12648 @kindex m D
12649 @pindex calc-default-simplify-mode
12650 The @kbd{m D} (@code{calc-default-simplify-mode}) command restores the
12651 default simplifications for all formulas.  This includes many easy and
12652 fast algebraic simplifications such as @cite{a+0} to @cite{a}, and
12653 @cite{a + 2 a} to @cite{3 a}, as well as evaluating functions like
12654 @cite{@t{deriv}(x^2, x)} to @cite{2 x}.
12656 @kindex m B
12657 @pindex calc-bin-simplify-mode
12658 The @kbd{m B} (@code{calc-bin-simplify-mode}) mode applies the default
12659 simplifications to a result and then, if the result is an integer,
12660 uses the @kbd{b c} (@code{calc-clip}) command to clip the integer according
12661 to the current binary word size.  @xref{Binary Functions}.  Real numbers
12662 are rounded to the nearest integer and then clipped; other kinds of
12663 results (after the default simplifications) are left alone.
12665 @kindex m A
12666 @pindex calc-alg-simplify-mode
12667 The @kbd{m A} (@code{calc-alg-simplify-mode}) mode does algebraic
12668 simplification; it applies all the default simplifications, and also
12669 the more powerful (and slower) simplifications made by @kbd{a s}
12670 (@code{calc-simplify}).  @xref{Algebraic Simplifications}.
12672 @kindex m E
12673 @pindex calc-ext-simplify-mode
12674 The @kbd{m E} (@code{calc-ext-simplify-mode}) mode does ``extended''
12675 algebraic simplification, as by the @kbd{a e} (@code{calc-simplify-extended})
12676 command.  @xref{Unsafe Simplifications}.
12678 @kindex m U
12679 @pindex calc-units-simplify-mode
12680 The @kbd{m U} (@code{calc-units-simplify-mode}) mode does units
12681 simplification; it applies the command @kbd{u s}
12682 (@code{calc-simplify-units}), which in turn
12683 is a superset of @kbd{a s}.  In this mode, variable names which
12684 are identifiable as unit names (like @samp{mm} for ``millimeters'')
12685 are simplified with their unit definitions in mind.@refill
12687 A common technique is to set the simplification mode down to the lowest
12688 amount of simplification you will allow to be applied automatically, then
12689 use manual commands like @kbd{a s} and @kbd{c c} (@code{calc-clean}) to
12690 perform higher types of simplifications on demand.  @xref{Algebraic
12691 Definitions}, for another sample use of no-simplification mode.@refill
12693 @node Declarations, Display Modes, Simplification Modes, Mode Settings
12694 @section Declarations
12696 @noindent
12697 A @dfn{declaration} is a statement you make that promises you will
12698 use a certain variable or function in a restricted way.  This may
12699 give Calc the freedom to do things that it couldn't do if it had to
12700 take the fully general situation into account.
12702 @menu
12703 * Declaration Basics::
12704 * Kinds of Declarations::
12705 * Functions for Declarations::
12706 @end menu
12708 @node Declaration Basics, Kinds of Declarations, Declarations, Declarations
12709 @subsection Declaration Basics
12711 @noindent
12712 @kindex s d
12713 @pindex calc-declare-variable
12714 The @kbd{s d} (@code{calc-declare-variable}) command is the easiest
12715 way to make a declaration for a variable.  This command prompts for
12716 the variable name, then prompts for the declaration.  The default
12717 at the declaration prompt is the previous declaration, if any.
12718 You can edit this declaration, or press @kbd{C-k} to erase it and
12719 type a new declaration.  (Or, erase it and press @key{RET} to clear
12720 the declaration, effectively ``undeclaring'' the variable.)
12722 A declaration is in general a vector of @dfn{type symbols} and
12723 @dfn{range} values.  If there is only one type symbol or range value,
12724 you can write it directly rather than enclosing it in a vector.
12725 For example, @kbd{s d foo @key{RET} real @key{RET}} declares @code{foo} to
12726 be a real number, and @kbd{s d bar @key{RET} [int, const, [1..6]] @key{RET}}
12727 declares @code{bar} to be a constant integer between 1 and 6.
12728 (Actually, you can omit the outermost brackets and Calc will
12729 provide them for you: @kbd{s d bar @key{RET} int, const, [1..6] @key{RET}}.)
12731 @cindex @code{Decls} variable
12732 @vindex Decls
12733 Declarations in Calc are kept in a special variable called @code{Decls}.
12734 This variable encodes the set of all outstanding declarations in
12735 the form of a matrix.  Each row has two elements:  A variable or
12736 vector of variables declared by that row, and the declaration
12737 specifier as described above.  You can use the @kbd{s D} command to
12738 edit this variable if you wish to see all the declarations at once.
12739 @xref{Operations on Variables}, for a description of this command
12740 and the @kbd{s p} command that allows you to save your declarations
12741 permanently if you wish.
12743 Items being declared can also be function calls.  The arguments in
12744 the call are ignored; the effect is to say that this function returns
12745 values of the declared type for any valid arguments.  The @kbd{s d}
12746 command declares only variables, so if you wish to make a function
12747 declaration you will have to edit the @code{Decls} matrix yourself.
12749 For example, the declaration matrix
12751 @smallexample
12752 @group
12753 [ [ foo,       real       ]
12754   [ [j, k, n], int        ]
12755   [ f(1,2,3),  [0 .. inf) ] ]
12756 @end group
12757 @end smallexample
12759 @noindent
12760 declares that @code{foo} represents a real number, @code{j}, @code{k}
12761 and @code{n} represent integers, and the function @code{f} always
12762 returns a real number in the interval shown.
12764 @vindex All
12765 If there is a declaration for the variable @code{All}, then that
12766 declaration applies to all variables that are not otherwise declared.
12767 It does not apply to function names.  For example, using the row
12768 @samp{[All, real]} says that all your variables are real unless they
12769 are explicitly declared without @code{real} in some other row.
12770 The @kbd{s d} command declares @code{All} if you give a blank
12771 response to the variable-name prompt.
12773 @node Kinds of Declarations, Functions for Declarations, Declaration Basics, Declarations
12774 @subsection Kinds of Declarations
12776 @noindent
12777 The type-specifier part of a declaration (that is, the second prompt
12778 in the @kbd{s d} command) can be a type symbol, an interval, or a
12779 vector consisting of zero or more type symbols followed by zero or
12780 more intervals or numbers that represent the set of possible values
12781 for the variable.
12783 @smallexample
12784 @group
12785 [ [ a, [1, 2, 3, 4, 5] ]
12786   [ b, [1 .. 5]        ]
12787   [ c, [int, 1 .. 5]   ] ]
12788 @end group
12789 @end smallexample
12791 Here @code{a} is declared to contain one of the five integers shown;
12792 @code{b} is any number in the interval from 1 to 5 (any real number
12793 since we haven't specified), and @code{c} is any integer in that
12794 interval.  Thus the declarations for @code{a} and @code{c} are
12795 nearly equivalent (see below).
12797 The type-specifier can be the empty vector @samp{[]} to say that
12798 nothing is known about a given variable's value.  This is the same
12799 as not declaring the variable at all except that it overrides any
12800 @code{All} declaration which would otherwise apply.
12802 The initial value of @code{Decls} is the empty vector @samp{[]}.
12803 If @code{Decls} has no stored value or if the value stored in it
12804 is not valid, it is ignored and there are no declarations as far
12805 as Calc is concerned.  (The @kbd{s d} command will replace such a
12806 malformed value with a fresh empty matrix, @samp{[]}, before recording
12807 the new declaration.)  Unrecognized type symbols are ignored.
12809 The following type symbols describe what sorts of numbers will be
12810 stored in a variable:
12812 @table @code
12813 @item int
12814 Integers.
12815 @item numint
12816 Numerical integers.  (Integers or integer-valued floats.)
12817 @item frac
12818 Fractions.  (Rational numbers which are not integers.)
12819 @item rat
12820 Rational numbers.  (Either integers or fractions.)
12821 @item float
12822 Floating-point numbers.
12823 @item real
12824 Real numbers.  (Integers, fractions, or floats.  Actually,
12825 intervals and error forms with real components also count as
12826 reals here.)
12827 @item pos
12828 Positive real numbers.  (Strictly greater than zero.)
12829 @item nonneg
12830 Nonnegative real numbers.  (Greater than or equal to zero.)
12831 @item number
12832 Numbers.  (Real or complex.)
12833 @end table
12835 Calc uses this information to determine when certain simplifications
12836 of formulas are safe.  For example, @samp{(x^y)^z} cannot be
12837 simplified to @samp{x^(y z)} in general; for example,
12838 @samp{((-3)^2)^1:2} is 3, but @samp{(-3)^(2*1:2) = (-3)^1} is @i{-3}.
12839 However, this simplification @emph{is} safe if @code{z} is known
12840 to be an integer, or if @code{x} is known to be a nonnegative
12841 real number.  If you have given declarations that allow Calc to
12842 deduce either of these facts, Calc will perform this simplification
12843 of the formula.
12845 Calc can apply a certain amount of logic when using declarations.
12846 For example, @samp{(x^y)^(2n+1)} will be simplified if @code{n}
12847 has been declared @code{int}; Calc knows that an integer times an
12848 integer, plus an integer, must always be an integer.  (In fact,
12849 Calc would simplify @samp{(-x)^(2n+1)} to @samp{-(x^(2n+1))} since
12850 it is able to determine that @samp{2n+1} must be an odd integer.)
12852 Similarly, @samp{(abs(x)^y)^z} will be simplified to @samp{abs(x)^(y z)}
12853 because Calc knows that the @code{abs} function always returns a
12854 nonnegative real.  If you had a @code{myabs} function that also had
12855 this property, you could get Calc to recognize it by adding the row
12856 @samp{[myabs(), nonneg]} to the @code{Decls} matrix.
12858 One instance of this simplification is @samp{sqrt(x^2)} (since the
12859 @code{sqrt} function is effectively a one-half power).  Normally
12860 Calc leaves this formula alone.  After the command
12861 @kbd{s d x @key{RET} real @key{RET}}, however, it can simplify the formula to
12862 @samp{abs(x)}.  And after @kbd{s d x @key{RET} nonneg @key{RET}}, Calc can
12863 simplify this formula all the way to @samp{x}.
12865 If there are any intervals or real numbers in the type specifier,
12866 they comprise the set of possible values that the variable or
12867 function being declared can have.  In particular, the type symbol
12868 @code{real} is effectively the same as the range @samp{[-inf .. inf]}
12869 (note that infinity is included in the range of possible values);
12870 @code{pos} is the same as @samp{(0 .. inf]}, and @code{nonneg} is
12871 the same as @samp{[0 .. inf]}.  Saying @samp{[real, [-5 .. 5]]} is
12872 redundant because the fact that the variable is real can be
12873 deduced just from the interval, but @samp{[int, [-5 .. 5]]} and
12874 @samp{[rat, [-5 .. 5]]} are useful combinations.
12876 Note that the vector of intervals or numbers is in the same format
12877 used by Calc's set-manipulation commands.  @xref{Set Operations}.
12879 The type specifier @samp{[1, 2, 3]} is equivalent to
12880 @samp{[numint, 1, 2, 3]}, @emph{not} to @samp{[int, 1, 2, 3]}.
12881 In other words, the range of possible values means only that
12882 the variable's value must be numerically equal to a number in
12883 that range, but not that it must be equal in type as well.
12884 Calc's set operations act the same way; @samp{in(2, [1., 2., 3.])}
12885 and @samp{in(1.5, [1:2, 3:2, 5:2])} both report ``true.''
12887 If you use a conflicting combination of type specifiers, the
12888 results are unpredictable.  An example is @samp{[pos, [0 .. 5]]},
12889 where the interval does not lie in the range described by the
12890 type symbol.
12892 ``Real'' declarations mostly affect simplifications involving powers
12893 like the one described above.  Another case where they are used
12894 is in the @kbd{a P} command which returns a list of all roots of a
12895 polynomial; if the variable has been declared real, only the real
12896 roots (if any) will be included in the list.
12898 ``Integer'' declarations are used for simplifications which are valid
12899 only when certain values are integers (such as @samp{(x^y)^z}
12900 shown above).
12902 Another command that makes use of declarations is @kbd{a s}, when
12903 simplifying equations and inequalities.  It will cancel @code{x}
12904 from both sides of @samp{a x = b x} only if it is sure @code{x}
12905 is non-zero, say, because it has a @code{pos} declaration.
12906 To declare specifically that @code{x} is real and non-zero,
12907 use @samp{[[-inf .. 0), (0 .. inf]]}.  (There is no way in the
12908 current notation to say that @code{x} is nonzero but not necessarily
12909 real.)  The @kbd{a e} command does ``unsafe'' simplifications,
12910 including cancelling @samp{x} from the equation when @samp{x} is
12911 not known to be nonzero.
12913 Another set of type symbols distinguish between scalars and vectors.
12915 @table @code
12916 @item scalar
12917 The value is not a vector.
12918 @item vector
12919 The value is a vector.
12920 @item matrix
12921 The value is a matrix (a rectangular vector of vectors).
12922 @end table
12924 These type symbols can be combined with the other type symbols
12925 described above; @samp{[int, matrix]} describes an object which
12926 is a matrix of integers.
12928 Scalar/vector declarations are used to determine whether certain
12929 algebraic operations are safe.  For example, @samp{[a, b, c] + x}
12930 is normally not simplified to @samp{[a + x, b + x, c + x]}, but
12931 it will be if @code{x} has been declared @code{scalar}.  On the
12932 other hand, multiplication is usually assumed to be commutative,
12933 but the terms in @samp{x y} will never be exchanged if both @code{x}
12934 and @code{y} are known to be vectors or matrices.  (Calc currently
12935 never distinguishes between @code{vector} and @code{matrix}
12936 declarations.)
12938 @xref{Matrix Mode}, for a discussion of ``matrix mode'' and
12939 ``scalar mode,'' which are similar to declaring @samp{[All, matrix]}
12940 or @samp{[All, scalar]} but much more convenient.
12942 One more type symbol that is recognized is used with the @kbd{H a d}
12943 command for taking total derivatives of a formula.  @xref{Calculus}.
12945 @table @code
12946 @item const
12947 The value is a constant with respect to other variables.
12948 @end table
12950 Calc does not check the declarations for a variable when you store
12951 a value in it.  However, storing @i{-3.5} in a variable that has
12952 been declared @code{pos}, @code{int}, or @code{matrix} may have
12953 unexpected effects; Calc may evaluate @samp{sqrt(x^2)} to @cite{3.5}
12954 if it substitutes the value first, or to @cite{-3.5} if @code{x}
12955 was declared @code{pos} and the formula @samp{sqrt(x^2)} is
12956 simplified to @samp{x} before the value is substituted.  Before
12957 using a variable for a new purpose, it is best to use @kbd{s d}
12958 or @kbd{s D} to check to make sure you don't still have an old
12959 declaration for the variable that will conflict with its new meaning.
12961 @node Functions for Declarations, , Kinds of Declarations, Declarations
12962 @subsection Functions for Declarations
12964 @noindent
12965 Calc has a set of functions for accessing the current declarations
12966 in a convenient manner.  These functions return 1 if the argument
12967 can be shown to have the specified property, or 0 if the argument
12968 can be shown @emph{not} to have that property; otherwise they are
12969 left unevaluated.  These functions are suitable for use with rewrite
12970 rules (@pxref{Conditional Rewrite Rules}) or programming constructs
12971 (@pxref{Conditionals in Macros}).  They can be entered only using
12972 algebraic notation.  @xref{Logical Operations}, for functions
12973 that perform other tests not related to declarations.
12975 For example, @samp{dint(17)} returns 1 because 17 is an integer, as
12976 do @samp{dint(n)} and @samp{dint(2 n - 3)} if @code{n} has been declared
12977 @code{int}, but @samp{dint(2.5)} and @samp{dint(n + 0.5)} return 0.
12978 Calc consults knowledge of its own built-in functions as well as your
12979 own declarations: @samp{dint(floor(x))} returns 1.
12981 @ignore
12982 @starindex
12983 @end ignore
12984 @tindex dint
12985 @ignore
12986 @starindex
12987 @end ignore
12988 @tindex dnumint
12989 @ignore
12990 @starindex
12991 @end ignore
12992 @tindex dnatnum
12993 The @code{dint} function checks if its argument is an integer.
12994 The @code{dnatnum} function checks if its argument is a natural
12995 number, i.e., a nonnegative integer.  The @code{dnumint} function
12996 checks if its argument is numerically an integer, i.e., either an
12997 integer or an integer-valued float.  Note that these and the other
12998 data type functions also accept vectors or matrices composed of
12999 suitable elements, and that real infinities @samp{inf} and @samp{-inf}
13000 are considered to be integers for the purposes of these functions.
13002 @ignore
13003 @starindex
13004 @end ignore
13005 @tindex drat
13006 The @code{drat} function checks if its argument is rational, i.e.,
13007 an integer or fraction.  Infinities count as rational, but intervals
13008 and error forms do not.
13010 @ignore
13011 @starindex
13012 @end ignore
13013 @tindex dreal
13014 The @code{dreal} function checks if its argument is real.  This
13015 includes integers, fractions, floats, real error forms, and intervals.
13017 @ignore
13018 @starindex
13019 @end ignore
13020 @tindex dimag
13021 The @code{dimag} function checks if its argument is imaginary,
13022 i.e., is mathematically equal to a real number times @cite{i}.
13024 @ignore
13025 @starindex
13026 @end ignore
13027 @tindex dpos
13028 @ignore
13029 @starindex
13030 @end ignore
13031 @tindex dneg
13032 @ignore
13033 @starindex
13034 @end ignore
13035 @tindex dnonneg
13036 The @code{dpos} function checks for positive (but nonzero) reals.
13037 The @code{dneg} function checks for negative reals.  The @code{dnonneg}
13038 function checks for nonnegative reals, i.e., reals greater than or
13039 equal to zero.  Note that the @kbd{a s} command can simplify an
13040 expression like @cite{x > 0} to 1 or 0 using @code{dpos}, and that
13041 @kbd{a s} is effectively applied to all conditions in rewrite rules,
13042 so the actual functions @code{dpos}, @code{dneg}, and @code{dnonneg}
13043 are rarely necessary.
13045 @ignore
13046 @starindex
13047 @end ignore
13048 @tindex dnonzero
13049 The @code{dnonzero} function checks that its argument is nonzero.
13050 This includes all nonzero real or complex numbers, all intervals that
13051 do not include zero, all nonzero modulo forms, vectors all of whose
13052 elements are nonzero, and variables or formulas whose values can be
13053 deduced to be nonzero.  It does not include error forms, since they
13054 represent values which could be anything including zero.  (This is
13055 also the set of objects considered ``true'' in conditional contexts.)
13057 @ignore
13058 @starindex
13059 @end ignore
13060 @tindex deven
13061 @ignore
13062 @starindex
13063 @end ignore
13064 @tindex dodd
13065 The @code{deven} function returns 1 if its argument is known to be
13066 an even integer (or integer-valued float); it returns 0 if its argument
13067 is known not to be even (because it is known to be odd or a non-integer).
13068 The @kbd{a s} command uses this to simplify a test of the form
13069 @samp{x % 2 = 0}.  There is also an analogous @code{dodd} function.
13071 @ignore
13072 @starindex
13073 @end ignore
13074 @tindex drange
13075 The @code{drange} function returns a set (an interval or a vector
13076 of intervals and/or numbers; @pxref{Set Operations}) that describes
13077 the set of possible values of its argument.  If the argument is
13078 a variable or a function with a declaration, the range is copied
13079 from the declaration.  Otherwise, the possible signs of the
13080 expression are determined using a method similar to @code{dpos},
13081 etc., and a suitable set like @samp{[0 .. inf]} is returned.  If
13082 the expression is not provably real, the @code{drange} function
13083 remains unevaluated.
13085 @ignore
13086 @starindex
13087 @end ignore
13088 @tindex dscalar
13089 The @code{dscalar} function returns 1 if its argument is provably
13090 scalar, or 0 if its argument is provably non-scalar.  It is left
13091 unevaluated if this cannot be determined.  (If matrix mode or scalar
13092 mode are in effect, this function returns 1 or 0, respectively,
13093 if it has no other information.)  When Calc interprets a condition
13094 (say, in a rewrite rule) it considers an unevaluated formula to be
13095 ``false.''  Thus, @samp{dscalar(a)} is ``true'' only if @code{a} is
13096 provably scalar, and @samp{!dscalar(a)} is ``true'' only if @code{a}
13097 is provably non-scalar; both are ``false'' if there is insufficient
13098 information to tell.
13100 @node Display Modes, Language Modes, Declarations, Mode Settings
13101 @section Display Modes
13103 @noindent
13104 The commands in this section are two-key sequences beginning with the
13105 @kbd{d} prefix.  The @kbd{d l} (@code{calc-line-numbering}) and @kbd{d b}
13106 (@code{calc-line-breaking}) commands are described elsewhere;
13107 @pxref{Stack Basics} and @pxref{Normal Language Modes}, respectively.
13108 Display formats for vectors and matrices are also covered elsewhere;
13109 @pxref{Vector and Matrix Formats}.@refill
13111 One thing all display modes have in common is their treatment of the
13112 @kbd{H} prefix.  This prefix causes any mode command that would normally
13113 refresh the stack to leave the stack display alone.  The word ``Dirty''
13114 will appear in the mode line when Calc thinks the stack display may not
13115 reflect the latest mode settings.
13117 @kindex d @key{RET}
13118 @pindex calc-refresh-top
13119 The @kbd{d @key{RET}} (@code{calc-refresh-top}) command reformats the
13120 top stack entry according to all the current modes.  Positive prefix
13121 arguments reformat the top @var{n} entries; negative prefix arguments
13122 reformat the specified entry, and a prefix of zero is equivalent to
13123 @kbd{d @key{SPC}} (@code{calc-refresh}), which reformats the entire stack.
13124 For example, @kbd{H d s M-2 d @key{RET}} changes to scientific notation
13125 but reformats only the top two stack entries in the new mode.
13127 The @kbd{I} prefix has another effect on the display modes.  The mode
13128 is set only temporarily; the top stack entry is reformatted according
13129 to that mode, then the original mode setting is restored.  In other
13130 words, @kbd{I d s} is equivalent to @kbd{H d s d @key{RET} H d (@var{old mode})}.
13132 @menu
13133 * Radix Modes::
13134 * Grouping Digits::
13135 * Float Formats::
13136 * Complex Formats::
13137 * Fraction Formats::
13138 * HMS Formats::
13139 * Date Formats::
13140 * Truncating the Stack::
13141 * Justification::
13142 * Labels::
13143 @end menu
13145 @node Radix Modes, Grouping Digits, Display Modes, Display Modes
13146 @subsection Radix Modes
13148 @noindent
13149 @cindex Radix display
13150 @cindex Non-decimal numbers
13151 @cindex Decimal and non-decimal numbers
13152 Calc normally displays numbers in decimal (@dfn{base-10} or @dfn{radix-10})
13153 notation.  Calc can actually display in any radix from two (binary) to 36.
13154 When the radix is above 10, the letters @code{A} to @code{Z} are used as
13155 digits.  When entering such a number, letter keys are interpreted as
13156 potential digits rather than terminating numeric entry mode.
13158 @kindex d 2
13159 @kindex d 8
13160 @kindex d 6
13161 @kindex d 0
13162 @cindex Hexadecimal integers
13163 @cindex Octal integers
13164 The key sequences @kbd{d 2}, @kbd{d 8}, @kbd{d 6}, and @kbd{d 0} select
13165 binary, octal, hexadecimal, and decimal as the current display radix,
13166 respectively.  Numbers can always be entered in any radix, though the
13167 current radix is used as a default if you press @kbd{#} without any initial
13168 digits.  A number entered without a @kbd{#} is @emph{always} interpreted
13169 as decimal.@refill
13171 @kindex d r
13172 @pindex calc-radix
13173 To set the radix generally, use @kbd{d r} (@code{calc-radix}) and enter
13174 an integer from 2 to 36.  You can specify the radix as a numeric prefix
13175 argument; otherwise you will be prompted for it.
13177 @kindex d z
13178 @pindex calc-leading-zeros
13179 @cindex Leading zeros
13180 Integers normally are displayed with however many digits are necessary to
13181 represent the integer and no more.  The @kbd{d z} (@code{calc-leading-zeros})
13182 command causes integers to be padded out with leading zeros according to the
13183 current binary word size.  (@xref{Binary Functions}, for a discussion of
13184 word size.)  If the absolute value of the word size is @cite{w}, all integers
13185 are displayed with at least enough digits to represent @c{$2^w-1$}
13186 @cite{(2^w)-1} in the
13187 current radix.  (Larger integers will still be displayed in their entirety.)
13189 @node Grouping Digits, Float Formats, Radix Modes, Display Modes
13190 @subsection Grouping Digits
13192 @noindent
13193 @kindex d g
13194 @pindex calc-group-digits
13195 @cindex Grouping digits
13196 @cindex Digit grouping
13197 Long numbers can be hard to read if they have too many digits.  For
13198 example, the factorial of 30 is 33 digits long!  Press @kbd{d g}
13199 (@code{calc-group-digits}) to enable @dfn{grouping} mode, in which digits
13200 are displayed in clumps of 3 or 4 (depending on the current radix)
13201 separated by commas.
13203 The @kbd{d g} command toggles grouping on and off.
13204 With a numerix prefix of 0, this command displays the current state of
13205 the grouping flag; with an argument of minus one it disables grouping;
13206 with a positive argument @cite{N} it enables grouping on every @cite{N}
13207 digits.  For floating-point numbers, grouping normally occurs only
13208 before the decimal point.  A negative prefix argument @cite{-N} enables
13209 grouping every @cite{N} digits both before and after the decimal point.@refill
13211 @kindex d ,
13212 @pindex calc-group-char
13213 The @kbd{d ,} (@code{calc-group-char}) command allows you to choose any
13214 character as the grouping separator.  The default is the comma character.
13215 If you find it difficult to read vectors of large integers grouped with
13216 commas, you may wish to use spaces or some other character instead.
13217 This command takes the next character you type, whatever it is, and
13218 uses it as the digit separator.  As a special case, @kbd{d , \} selects
13219 @samp{\,} (@TeX{}'s thin-space symbol) as the digit separator.
13221 Please note that grouped numbers will not generally be parsed correctly
13222 if re-read in textual form, say by the use of @kbd{M-# y} and @kbd{M-# g}.
13223 (@xref{Kill and Yank}, for details on these commands.)  One exception is
13224 the @samp{\,} separator, which doesn't interfere with parsing because it
13225 is ignored by @TeX{} language mode.
13227 @node Float Formats, Complex Formats, Grouping Digits, Display Modes
13228 @subsection Float Formats
13230 @noindent
13231 Floating-point quantities are normally displayed in standard decimal
13232 form, with scientific notation used if the exponent is especially high
13233 or low.  All significant digits are normally displayed.  The commands
13234 in this section allow you to choose among several alternative display
13235 formats for floats.
13237 @kindex d n
13238 @pindex calc-normal-notation
13239 The @kbd{d n} (@code{calc-normal-notation}) command selects the normal
13240 display format.  All significant figures in a number are displayed.
13241 With a positive numeric prefix, numbers are rounded if necessary to
13242 that number of significant digits.  With a negative numerix prefix,
13243 the specified number of significant digits less than the current
13244 precision is used.  (Thus @kbd{C-u -2 d n} displays 10 digits if the
13245 current precision is 12.)
13247 @kindex d f
13248 @pindex calc-fix-notation
13249 The @kbd{d f} (@code{calc-fix-notation}) command selects fixed-point
13250 notation.  The numeric argument is the number of digits after the
13251 decimal point, zero or more.  This format will relax into scientific
13252 notation if a nonzero number would otherwise have been rounded all the
13253 way to zero.  Specifying a negative number of digits is the same as
13254 for a positive number, except that small nonzero numbers will be rounded
13255 to zero rather than switching to scientific notation.
13257 @kindex d s
13258 @pindex calc-sci-notation
13259 @cindex Scientific notation, display of
13260 The @kbd{d s} (@code{calc-sci-notation}) command selects scientific
13261 notation.  A positive argument sets the number of significant figures
13262 displayed, of which one will be before and the rest after the decimal
13263 point.  A negative argument works the same as for @kbd{d n} format.
13264 The default is to display all significant digits.
13266 @kindex d e
13267 @pindex calc-eng-notation
13268 @cindex Engineering notation, display of
13269 The @kbd{d e} (@code{calc-eng-notation}) command selects engineering
13270 notation.  This is similar to scientific notation except that the
13271 exponent is rounded down to a multiple of three, with from one to three
13272 digits before the decimal point.  An optional numeric prefix sets the
13273 number of significant digits to display, as for @kbd{d s}.
13275 It is important to distinguish between the current @emph{precision} and
13276 the current @emph{display format}.  After the commands @kbd{C-u 10 p}
13277 and @kbd{C-u 6 d n} the Calculator computes all results to ten
13278 significant figures but displays only six.  (In fact, intermediate
13279 calculations are often carried to one or two more significant figures,
13280 but values placed on the stack will be rounded down to ten figures.)
13281 Numbers are never actually rounded to the display precision for storage,
13282 except by commands like @kbd{C-k} and @kbd{M-# y} which operate on the
13283 actual displayed text in the Calculator buffer.
13285 @kindex d .
13286 @pindex calc-point-char
13287 The @kbd{d .} (@code{calc-point-char}) command selects the character used
13288 as a decimal point.  Normally this is a period; users in some countries
13289 may wish to change this to a comma.  Note that this is only a display
13290 style; on entry, periods must always be used to denote floating-point
13291 numbers, and commas to separate elements in a list.
13293 @node Complex Formats, Fraction Formats, Float Formats, Display Modes
13294 @subsection Complex Formats
13296 @noindent
13297 @kindex d c
13298 @pindex calc-complex-notation
13299 There are three supported notations for complex numbers in rectangular
13300 form.  The default is as a pair of real numbers enclosed in parentheses
13301 and separated by a comma: @samp{(a,b)}.  The @kbd{d c}
13302 (@code{calc-complex-notation}) command selects this style.@refill
13304 @kindex d i
13305 @pindex calc-i-notation
13306 @kindex d j
13307 @pindex calc-j-notation
13308 The other notations are @kbd{d i} (@code{calc-i-notation}), in which
13309 numbers are displayed in @samp{a+bi} form, and @kbd{d j}
13310 (@code{calc-j-notation}) which displays the form @samp{a+bj} preferred
13311 in some disciplines.@refill
13313 @cindex @code{i} variable
13314 @vindex i
13315 Complex numbers are normally entered in @samp{(a,b)} format.
13316 If you enter @samp{2+3i} as an algebraic formula, it will be stored as
13317 the formula @samp{2 + 3 * i}.  However, if you use @kbd{=} to evaluate
13318 this formula and you have not changed the variable @samp{i}, the @samp{i}
13319 will be interpreted as @samp{(0,1)} and the formula will be simplified
13320 to @samp{(2,3)}.  Other commands (like @code{calc-sin}) will @emph{not}
13321 interpret the formula @samp{2 + 3 * i} as a complex number.
13322 @xref{Variables}, under ``special constants.''@refill
13324 @node Fraction Formats, HMS Formats, Complex Formats, Display Modes
13325 @subsection Fraction Formats
13327 @noindent
13328 @kindex d o
13329 @pindex calc-over-notation
13330 Display of fractional numbers is controlled by the @kbd{d o}
13331 (@code{calc-over-notation}) command.  By default, a number like
13332 eight thirds is displayed in the form @samp{8:3}.  The @kbd{d o} command
13333 prompts for a one- or two-character format.  If you give one character,
13334 that character is used as the fraction separator.  Common separators are
13335 @samp{:} and @samp{/}.  (During input of numbers, the @kbd{:} key must be
13336 used regardless of the display format; in particular, the @kbd{/} is used
13337 for RPN-style division, @emph{not} for entering fractions.)
13339 If you give two characters, fractions use ``integer-plus-fractional-part''
13340 notation.  For example, the format @samp{+/} would display eight thirds
13341 as @samp{2+2/3}.  If two colons are present in a number being entered,
13342 the number is interpreted in this form (so that the entries @kbd{2:2:3}
13343 and @kbd{8:3} are equivalent).
13345 It is also possible to follow the one- or two-character format with
13346 a number.  For example:  @samp{:10} or @samp{+/3}.  In this case,
13347 Calc adjusts all fractions that are displayed to have the specified
13348 denominator, if possible.  Otherwise it adjusts the denominator to
13349 be a multiple of the specified value.  For example, in @samp{:6} mode
13350 the fraction @cite{1:6} will be unaffected, but @cite{2:3} will be
13351 displayed as @cite{4:6}, @cite{1:2} will be displayed as @cite{3:6},
13352 and @cite{1:8} will be displayed as @cite{3:24}.  Integers are also
13353 affected by this mode:  3 is displayed as @cite{18:6}.  Note that the
13354 format @samp{:1} writes fractions the same as @samp{:}, but it writes
13355 integers as @cite{n:1}.
13357 The fraction format does not affect the way fractions or integers are
13358 stored, only the way they appear on the screen.  The fraction format
13359 never affects floats.
13361 @node HMS Formats, Date Formats, Fraction Formats, Display Modes
13362 @subsection HMS Formats
13364 @noindent
13365 @kindex d h
13366 @pindex calc-hms-notation
13367 The @kbd{d h} (@code{calc-hms-notation}) command controls the display of
13368 HMS (hours-minutes-seconds) forms.  It prompts for a string which
13369 consists basically of an ``hours'' marker, optional punctuation, a
13370 ``minutes'' marker, more optional punctuation, and a ``seconds'' marker.
13371 Punctuation is zero or more spaces, commas, or semicolons.  The hours
13372 marker is one or more non-punctuation characters.  The minutes and
13373 seconds markers must be single non-punctuation characters.
13375 The default HMS format is @samp{@@ ' "}, producing HMS values of the form
13376 @samp{23@@ 30' 15.75"}.  The format @samp{deg, ms} would display this same
13377 value as @samp{23deg, 30m15.75s}.  During numeric entry, the @kbd{h} or @kbd{o}
13378 keys are recognized as synonyms for @kbd{@@} regardless of display format.
13379 The @kbd{m} and @kbd{s} keys are recognized as synonyms for @kbd{'} and
13380 @kbd{"}, respectively, but only if an @kbd{@@} (or @kbd{h} or @kbd{o}) has
13381 already been typed; otherwise, they have their usual meanings
13382 (@kbd{m-} prefix and @kbd{s-} prefix).  Thus, @kbd{5 "}, @kbd{0 @@ 5 "}, and
13383 @kbd{0 h 5 s} are some of the ways to enter the quantity ``five seconds.''
13384 The @kbd{'} key is recognized as ``minutes'' only if @kbd{@@} (or @kbd{h} or
13385 @kbd{o}) has already been pressed; otherwise it means to switch to algebraic
13386 entry.
13388 @node Date Formats, Truncating the Stack, HMS Formats, Display Modes
13389 @subsection Date Formats
13391 @noindent
13392 @kindex d d
13393 @pindex calc-date-notation
13394 The @kbd{d d} (@code{calc-date-notation}) command controls the display
13395 of date forms (@pxref{Date Forms}).  It prompts for a string which
13396 contains letters that represent the various parts of a date and time.
13397 To show which parts should be omitted when the form represents a pure
13398 date with no time, parts of the string can be enclosed in @samp{< >}
13399 marks.  If you don't include @samp{< >} markers in the format, Calc
13400 guesses at which parts, if any, should be omitted when formatting
13401 pure dates.
13403 The default format is:  @samp{<H:mm:SSpp >Www Mmm D, YYYY}.
13404 An example string in this format is @samp{3:32pm Wed Jan 9, 1991}.
13405 If you enter a blank format string, this default format is
13406 reestablished.
13408 Calc uses @samp{< >} notation for nameless functions as well as for
13409 dates.  @xref{Specifying Operators}.  To avoid confusion with nameless
13410 functions, your date formats should avoid using the @samp{#} character.
13412 @menu
13413 * Date Formatting Codes::
13414 * Free-Form Dates::
13415 * Standard Date Formats::
13416 @end menu
13418 @node Date Formatting Codes, Free-Form Dates, Date Formats, Date Formats
13419 @subsubsection Date Formatting Codes
13421 @noindent
13422 When displaying a date, the current date format is used.  All
13423 characters except for letters and @samp{<} and @samp{>} are
13424 copied literally when dates are formatted.  The portion between
13425 @samp{< >} markers is omitted for pure dates, or included for
13426 date/time forms.  Letters are interpreted according to the table
13427 below.
13429 When dates are read in during algebraic entry, Calc first tries to
13430 match the input string to the current format either with or without
13431 the time part.  The punctuation characters (including spaces) must
13432 match exactly; letter fields must correspond to suitable text in
13433 the input.  If this doesn't work, Calc checks if the input is a
13434 simple number; if so, the number is interpreted as a number of days
13435 since Jan 1, 1 AD.  Otherwise, Calc tries a much more relaxed and
13436 flexible algorithm which is described in the next section.
13438 Weekday names are ignored during reading.
13440 Two-digit year numbers are interpreted as lying in the range
13441 from 1941 to 2039.  Years outside that range are always
13442 entered and displayed in full.  Year numbers with a leading
13443 @samp{+} sign are always interpreted exactly, allowing the
13444 entry and display of the years 1 through 99 AD.
13446 Here is a complete list of the formatting codes for dates:
13448 @table @asis
13449 @item Y
13450 Year:  ``91'' for 1991, ``7'' for 2007, ``+23'' for 23 AD.
13451 @item YY
13452 Year:  ``91'' for 1991, ``07'' for 2007, ``+23'' for 23 AD.
13453 @item BY
13454 Year:  ``91'' for 1991, `` 7'' for 2007, ``+23'' for 23 AD.
13455 @item YYY
13456 Year:  ``1991'' for 1991, ``23'' for 23 AD.
13457 @item YYYY
13458 Year:  ``1991'' for 1991, ``+23'' for 23 AD.
13459 @item aa
13460 Year:  ``ad'' or blank.
13461 @item AA
13462 Year:  ``AD'' or blank.
13463 @item aaa
13464 Year:  ``ad '' or blank.  (Note trailing space.)
13465 @item AAA
13466 Year:  ``AD '' or blank.
13467 @item aaaa
13468 Year:  ``a.d.'' or blank.
13469 @item AAAA
13470 Year:  ``A.D.'' or blank.
13471 @item bb
13472 Year:  ``bc'' or blank.
13473 @item BB
13474 Year:  ``BC'' or blank.
13475 @item bbb
13476 Year:  `` bc'' or blank.  (Note leading space.)
13477 @item BBB
13478 Year:  `` BC'' or blank.
13479 @item bbbb
13480 Year:  ``b.c.'' or blank.
13481 @item BBBB
13482 Year:  ``B.C.'' or blank.
13483 @item M
13484 Month:  ``8'' for August.
13485 @item MM
13486 Month:  ``08'' for August.
13487 @item BM
13488 Month:  `` 8'' for August.
13489 @item MMM
13490 Month:  ``AUG'' for August.
13491 @item Mmm
13492 Month:  ``Aug'' for August.
13493 @item mmm
13494 Month:  ``aug'' for August.
13495 @item MMMM
13496 Month:  ``AUGUST'' for August.
13497 @item Mmmm
13498 Month:  ``August'' for August.
13499 @item D
13500 Day:  ``7'' for 7th day of month.
13501 @item DD
13502 Day:  ``07'' for 7th day of month.
13503 @item BD
13504 Day:  `` 7'' for 7th day of month.
13505 @item W
13506 Weekday:  ``0'' for Sunday, ``6'' for Saturday.
13507 @item WWW
13508 Weekday:  ``SUN'' for Sunday.
13509 @item Www
13510 Weekday:  ``Sun'' for Sunday.
13511 @item www
13512 Weekday:  ``sun'' for Sunday.
13513 @item WWWW
13514 Weekday:  ``SUNDAY'' for Sunday.
13515 @item Wwww
13516 Weekday:  ``Sunday'' for Sunday.
13517 @item d
13518 Day of year:  ``34'' for Feb. 3.
13519 @item ddd
13520 Day of year:  ``034'' for Feb. 3.
13521 @item bdd
13522 Day of year:  `` 34'' for Feb. 3.
13523 @item h
13524 Hour:  ``5'' for 5 AM; ``17'' for 5 PM.
13525 @item hh
13526 Hour:  ``05'' for 5 AM; ``17'' for 5 PM.
13527 @item bh
13528 Hour:  `` 5'' for 5 AM; ``17'' for 5 PM.
13529 @item H
13530 Hour:  ``5'' for 5 AM and 5 PM.
13531 @item HH
13532 Hour:  ``05'' for 5 AM and 5 PM.
13533 @item BH
13534 Hour:  `` 5'' for 5 AM and 5 PM.
13535 @item p
13536 AM/PM:  ``a'' or ``p''.
13537 @item P
13538 AM/PM:  ``A'' or ``P''.
13539 @item pp
13540 AM/PM:  ``am'' or ``pm''.
13541 @item PP
13542 AM/PM:  ``AM'' or ``PM''.
13543 @item pppp
13544 AM/PM:  ``a.m.'' or ``p.m.''.
13545 @item PPPP
13546 AM/PM:  ``A.M.'' or ``P.M.''.
13547 @item m
13548 Minutes:  ``7'' for 7.
13549 @item mm
13550 Minutes:  ``07'' for 7.
13551 @item bm
13552 Minutes:  `` 7'' for 7.
13553 @item s
13554 Seconds:  ``7'' for 7;  ``7.23'' for 7.23.
13555 @item ss
13556 Seconds:  ``07'' for 7;  ``07.23'' for 7.23.
13557 @item bs
13558 Seconds:  `` 7'' for 7;  `` 7.23'' for 7.23.
13559 @item SS
13560 Optional seconds:  ``07'' for 7;  blank for 0.
13561 @item BS
13562 Optional seconds:  `` 7'' for 7;  blank for 0.
13563 @item N
13564 Numeric date/time:  ``726842.25'' for 6:00am Wed Jan 9, 1991.
13565 @item n
13566 Numeric date:  ``726842'' for any time on Wed Jan 9, 1991.
13567 @item J
13568 Julian date/time:  ``2448265.75'' for 6:00am Wed Jan 9, 1991.
13569 @item j
13570 Julian date:  ``2448266'' for any time on Wed Jan 9, 1991.
13571 @item U
13572 Unix time:  ``663400800'' for 6:00am Wed Jan 9, 1991.
13573 @item X
13574 Brackets suppression.  An ``X'' at the front of the format
13575 causes the surrounding @w{@samp{< >}} delimiters to be omitted
13576 when formatting dates.  Note that the brackets are still
13577 required for algebraic entry.
13578 @end table
13580 If ``SS'' or ``BS'' (optional seconds) is preceded by a colon, the
13581 colon is also omitted if the seconds part is zero.
13583 If ``bb,'' ``bbb'' or ``bbbb'' or their upper-case equivalents
13584 appear in the format, then negative year numbers are displayed
13585 without a minus sign.  Note that ``aa'' and ``bb'' are mutually
13586 exclusive.  Some typical usages would be @samp{YYYY AABB};
13587 @samp{AAAYYYYBBB}; @samp{YYYYBBB}.
13589 The formats ``YY,'' ``YYYY,'' ``MM,'' ``DD,'' ``ddd,'' ``hh,'' ``HH,''
13590 ``mm,'' ``ss,'' and ``SS'' actually match any number of digits during
13591 reading unless several of these codes are strung together with no
13592 punctuation in between, in which case the input must have exactly as
13593 many digits as there are letters in the format.
13595 The ``j,'' ``J,'' and ``U'' formats do not make any time zone
13596 adjustment.  They effectively use @samp{julian(x,0)} and
13597 @samp{unixtime(x,0)} to make the conversion; @pxref{Date Arithmetic}.
13599 @node Free-Form Dates, Standard Date Formats, Date Formatting Codes, Date Formats
13600 @subsubsection Free-Form Dates
13602 @noindent
13603 When reading a date form during algebraic entry, Calc falls back
13604 on the algorithm described here if the input does not exactly
13605 match the current date format.  This algorithm generally
13606 ``does the right thing'' and you don't have to worry about it,
13607 but it is described here in full detail for the curious.
13609 Calc does not distinguish between upper- and lower-case letters
13610 while interpreting dates.
13612 First, the time portion, if present, is located somewhere in the
13613 text and then removed.  The remaining text is then interpreted as
13614 the date.
13616 A time is of the form @samp{hh:mm:ss}, possibly with the seconds
13617 part omitted and possibly with an AM/PM indicator added to indicate
13618 12-hour time.  If the AM/PM is present, the minutes may also be
13619 omitted.  The AM/PM part may be any of the words @samp{am},
13620 @samp{pm}, @samp{noon}, or @samp{midnight}; each of these may be
13621 abbreviated to one letter, and the alternate forms @samp{a.m.},
13622 @samp{p.m.}, and @samp{mid} are also understood.  Obviously
13623 @samp{noon} and @samp{midnight} are allowed only on 12:00:00.
13624 The words @samp{noon}, @samp{mid}, and @samp{midnight} are also
13625 recognized with no number attached.
13627 If there is no AM/PM indicator, the time is interpreted in 24-hour
13628 format.
13630 To read the date portion, all words and numbers are isolated
13631 from the string; other characters are ignored.  All words must
13632 be either month names or day-of-week names (the latter of which
13633 are ignored).  Names can be written in full or as three-letter
13634 abbreviations.
13636 Large numbers, or numbers with @samp{+} or @samp{-} signs,
13637 are interpreted as years.  If one of the other numbers is
13638 greater than 12, then that must be the day and the remaining
13639 number in the input is therefore the month.  Otherwise, Calc
13640 assumes the month, day and year are in the same order that they
13641 appear in the current date format.  If the year is omitted, the
13642 current year is taken from the system clock.
13644 If there are too many or too few numbers, or any unrecognizable
13645 words, then the input is rejected.
13647 If there are any large numbers (of five digits or more) other than
13648 the year, they are ignored on the assumption that they are something
13649 like Julian dates that were included along with the traditional
13650 date components when the date was formatted.
13652 One of the words @samp{ad}, @samp{a.d.}, @samp{bc}, or @samp{b.c.}
13653 may optionally be used; the latter two are equivalent to a
13654 minus sign on the year value.
13656 If you always enter a four-digit year, and use a name instead
13657 of a number for the month, there is no danger of ambiguity.
13659 @node Standard Date Formats, , Free-Form Dates, Date Formats
13660 @subsubsection Standard Date Formats
13662 @noindent
13663 There are actually ten standard date formats, numbered 0 through 9.
13664 Entering a blank line at the @kbd{d d} command's prompt gives
13665 you format number 1, Calc's usual format.  You can enter any digit
13666 to select the other formats.
13668 To create your own standard date formats, give a numeric prefix
13669 argument from 0 to 9 to the @w{@kbd{d d}} command.  The format you
13670 enter will be recorded as the new standard format of that
13671 number, as well as becoming the new current date format.
13672 You can save your formats permanently with the @w{@kbd{m m}}
13673 command (@pxref{Mode Settings}).
13675 @table @asis
13676 @item 0
13677 @samp{N}  (Numerical format)
13678 @item 1
13679 @samp{<H:mm:SSpp >Www Mmm D, YYYY}  (American format)
13680 @item 2
13681 @samp{D Mmm YYYY<, h:mm:SS>}  (European format)
13682 @item 3
13683 @samp{Www Mmm BD< hh:mm:ss> YYYY}  (Unix written date format)
13684 @item 4
13685 @samp{M/D/Y< H:mm:SSpp>}  (American slashed format)
13686 @item 5
13687 @samp{D.M.Y< h:mm:SS>}  (European dotted format)
13688 @item 6
13689 @samp{M-D-Y< H:mm:SSpp>}  (American dashed format)
13690 @item 7
13691 @samp{D-M-Y< h:mm:SS>}  (European dashed format)
13692 @item 8
13693 @samp{j<, h:mm:ss>}  (Julian day plus time)
13694 @item 9
13695 @samp{YYddd< hh:mm:ss>}  (Year-day format)
13696 @end table
13698 @node Truncating the Stack, Justification, Date Formats, Display Modes
13699 @subsection Truncating the Stack
13701 @noindent
13702 @kindex d t
13703 @pindex calc-truncate-stack
13704 @cindex Truncating the stack
13705 @cindex Narrowing the stack
13706 The @kbd{d t} (@code{calc-truncate-stack}) command moves the @samp{.}@:
13707 line that marks the top-of-stack up or down in the Calculator buffer.
13708 The number right above that line is considered to the be at the top of
13709 the stack.  Any numbers below that line are ``hidden'' from all stack
13710 operations.  This is similar to the Emacs ``narrowing'' feature, except
13711 that the values below the @samp{.} are @emph{visible}, just temporarily
13712 frozen.  This feature allows you to keep several independent calculations
13713 running at once in different parts of the stack, or to apply a certain
13714 command to an element buried deep in the stack.@refill
13716 Pressing @kbd{d t} by itself moves the @samp{.} to the line the cursor
13717 is on.  Thus, this line and all those below it become hidden.  To un-hide
13718 these lines, move down to the end of the buffer and press @w{@kbd{d t}}.
13719 With a positive numeric prefix argument @cite{n}, @kbd{d t} hides the
13720 bottom @cite{n} values in the buffer.  With a negative argument, it hides
13721 all but the top @cite{n} values.  With an argument of zero, it hides zero
13722 values, i.e., moves the @samp{.} all the way down to the bottom.@refill
13724 @kindex d [
13725 @pindex calc-truncate-up
13726 @kindex d ]
13727 @pindex calc-truncate-down
13728 The @kbd{d [} (@code{calc-truncate-up}) and @kbd{d ]}
13729 (@code{calc-truncate-down}) commands move the @samp{.} up or down one
13730 line at a time (or several lines with a prefix argument).@refill
13732 @node Justification, Labels, Truncating the Stack, Display Modes
13733 @subsection Justification
13735 @noindent
13736 @kindex d <
13737 @pindex calc-left-justify
13738 @kindex d =
13739 @pindex calc-center-justify
13740 @kindex d >
13741 @pindex calc-right-justify
13742 Values on the stack are normally left-justified in the window.  You can
13743 control this arrangement by typing @kbd{d <} (@code{calc-left-justify}),
13744 @kbd{d >} (@code{calc-right-justify}), or @kbd{d =}
13745 (@code{calc-center-justify}).  For example, in right-justification mode,
13746 stack entries are displayed flush-right against the right edge of the
13747 window.@refill
13749 If you change the width of the Calculator window you may have to type
13750 @kbd{d @key{SPC}} (@code{calc-refresh}) to re-align right-justified or centered
13751 text.
13753 Right-justification is especially useful together with fixed-point
13754 notation (see @code{d f}; @code{calc-fix-notation}).  With these modes
13755 together, the decimal points on numbers will always line up.
13757 With a numeric prefix argument, the justification commands give you
13758 a little extra control over the display.  The argument specifies the
13759 horizontal ``origin'' of a display line.  It is also possible to
13760 specify a maximum line width using the @kbd{d b} command (@pxref{Normal
13761 Language Modes}).  For reference, the precise rules for formatting and
13762 breaking lines are given below.  Notice that the interaction between
13763 origin and line width is slightly different in each justification
13764 mode.
13766 In left-justified mode, the line is indented by a number of spaces
13767 given by the origin (default zero).  If the result is longer than the
13768 maximum line width, if given, or too wide to fit in the Calc window
13769 otherwise, then it is broken into lines which will fit; each broken
13770 line is indented to the origin.
13772 In right-justified mode, lines are shifted right so that the rightmost
13773 character is just before the origin, or just before the current
13774 window width if no origin was specified.  If the line is too long
13775 for this, then it is broken; the current line width is used, if
13776 specified, or else the origin is used as a width if that is
13777 specified, or else the line is broken to fit in the window.
13779 In centering mode, the origin is the column number of the center of
13780 each stack entry.  If a line width is specified, lines will not be
13781 allowed to go past that width; Calc will either indent less or
13782 break the lines if necessary.  If no origin is specified, half the
13783 line width or Calc window width is used.
13785 Note that, in each case, if line numbering is enabled the display
13786 is indented an additional four spaces to make room for the line
13787 number.  The width of the line number is taken into account when
13788 positioning according to the current Calc window width, but not
13789 when positioning by explicit origins and widths.  In the latter
13790 case, the display is formatted as specified, and then uniformly
13791 shifted over four spaces to fit the line numbers.
13793 @node Labels, , Justification, Display Modes
13794 @subsection Labels
13796 @noindent
13797 @kindex d @{
13798 @pindex calc-left-label
13799 The @kbd{d @{} (@code{calc-left-label}) command prompts for a string,
13800 then displays that string to the left of every stack entry.  If the
13801 entries are left-justified (@pxref{Justification}), then they will
13802 appear immediately after the label (unless you specified an origin
13803 greater than the length of the label).  If the entries are centered
13804 or right-justified, the label appears on the far left and does not
13805 affect the horizontal position of the stack entry.
13807 Give a blank string (with @kbd{d @{ @key{RET}}) to turn the label off.
13809 @kindex d @}
13810 @pindex calc-right-label
13811 The @kbd{d @}} (@code{calc-right-label}) command similarly adds a
13812 label on the righthand side.  It does not affect positioning of
13813 the stack entries unless they are right-justified.  Also, if both
13814 a line width and an origin are given in right-justified mode, the
13815 stack entry is justified to the origin and the righthand label is
13816 justified to the line width.
13818 One application of labels would be to add equation numbers to
13819 formulas you are manipulating in Calc and then copying into a
13820 document (possibly using Embedded Mode).  The equations would
13821 typically be centered, and the equation numbers would be on the
13822 left or right as you prefer.
13824 @node Language Modes, Modes Variable, Display Modes, Mode Settings
13825 @section Language Modes
13827 @noindent
13828 The commands in this section change Calc to use a different notation for
13829 entry and display of formulas, corresponding to the conventions of some
13830 other common language such as Pascal or @TeX{}.  Objects displayed on the
13831 stack or yanked from the Calculator to an editing buffer will be formatted
13832 in the current language; objects entered in algebraic entry or yanked from
13833 another buffer will be interpreted according to the current language.
13835 The current language has no effect on things written to or read from the
13836 trail buffer, nor does it affect numeric entry.  Only algebraic entry is
13837 affected.  You can make even algebraic entry ignore the current language
13838 and use the standard notation by giving a numeric prefix, e.g., @kbd{C-u '}.
13840 For example, suppose the formula @samp{2*a[1] + atan(a[2])} occurs in a C
13841 program; elsewhere in the program you need the derivatives of this formula
13842 with respect to @samp{a[1]} and @samp{a[2]}.  First, type @kbd{d C}
13843 to switch to C notation.  Now use @code{C-u M-# g} to grab the formula
13844 into the Calculator, @kbd{a d a[1] @key{RET}} to differentiate with respect
13845 to the first variable, and @kbd{M-# y} to yank the formula for the derivative
13846 back into your C program.  Press @kbd{U} to undo the differentiation and
13847 repeat with @kbd{a d a[2] @key{RET}} for the other derivative.
13849 Without being switched into C mode first, Calc would have misinterpreted
13850 the brackets in @samp{a[1]} and @samp{a[2]}, would not have known that
13851 @code{atan} was equivalent to Calc's built-in @code{arctan} function,
13852 and would have written the formula back with notations (like implicit
13853 multiplication) which would not have been legal for a C program.
13855 As another example, suppose you are maintaining a C program and a @TeX{}
13856 document, each of which needs a copy of the same formula.  You can grab the
13857 formula from the program in C mode, switch to @TeX{} mode, and yank the
13858 formula into the document in @TeX{} math-mode format.
13860 Language modes are selected by typing the letter @kbd{d} followed by a
13861 shifted letter key.
13863 @menu
13864 * Normal Language Modes::
13865 * C FORTRAN Pascal::
13866 * TeX Language Mode::
13867 * Eqn Language Mode::
13868 * Mathematica Language Mode::
13869 * Maple Language Mode::
13870 * Compositions::
13871 * Syntax Tables::
13872 @end menu
13874 @node Normal Language Modes, C FORTRAN Pascal, Language Modes, Language Modes
13875 @subsection Normal Language Modes
13877 @noindent
13878 @kindex d N
13879 @pindex calc-normal-language
13880 The @kbd{d N} (@code{calc-normal-language}) command selects the usual
13881 notation for Calc formulas, as described in the rest of this manual.
13882 Matrices are displayed in a multi-line tabular format, but all other
13883 objects are written in linear form, as they would be typed from the
13884 keyboard.
13886 @kindex d O
13887 @pindex calc-flat-language
13888 @cindex Matrix display
13889 The @kbd{d O} (@code{calc-flat-language}) command selects a language
13890 identical with the normal one, except that matrices are written in
13891 one-line form along with everything else.  In some applications this
13892 form may be more suitable for yanking data into other buffers.
13894 @kindex d b
13895 @pindex calc-line-breaking
13896 @cindex Line breaking
13897 @cindex Breaking up long lines
13898 Even in one-line mode, long formulas or vectors will still be split
13899 across multiple lines if they exceed the width of the Calculator window.
13900 The @kbd{d b} (@code{calc-line-breaking}) command turns this line-breaking
13901 feature on and off.  (It works independently of the current language.)
13902 If you give a numeric prefix argument of five or greater to the @kbd{d b}
13903 command, that argument will specify the line width used when breaking
13904 long lines.
13906 @kindex d B
13907 @pindex calc-big-language
13908 The @kbd{d B} (@code{calc-big-language}) command selects a language
13909 which uses textual approximations to various mathematical notations,
13910 such as powers, quotients, and square roots:
13912 @example
13913   ____________
13914  | a + 1    2
13915  | ----- + c
13916 \|   b
13917 @end example
13919 @noindent
13920 in place of @samp{sqrt((a+1)/b + c^2)}.
13922 Subscripts like @samp{a_i} are displayed as actual subscripts in ``big''
13923 mode.  Double subscripts, @samp{a_i_j} (@samp{subscr(subscr(a, i), j)})
13924 are displayed as @samp{a} with subscripts separated by commas:
13925 @samp{i, j}.  They must still be entered in the usual underscore
13926 notation.
13928 One slight ambiguity of Big notation is that
13930 @example
13931   3
13932 - -
13933   4
13934 @end example
13936 @noindent
13937 can represent either the negative rational number @cite{-3:4}, or the
13938 actual expression @samp{-(3/4)}; but the latter formula would normally
13939 never be displayed because it would immediately be evaluated to
13940 @cite{-3:4} or @cite{-0.75}, so this ambiguity is not a problem in
13941 typical use.
13943 Non-decimal numbers are displayed with subscripts.  Thus there is no
13944 way to tell the difference between @samp{16#C2} and @samp{C2_16},
13945 though generally you will know which interpretation is correct.
13946 Logarithms @samp{log(x,b)} and @samp{log10(x)} also use subscripts
13947 in Big mode.
13949 In Big mode, stack entries often take up several lines.  To aid
13950 readability, stack entries are separated by a blank line in this mode.
13951 You may find it useful to expand the Calc window's height using
13952 @kbd{C-x ^} (@code{enlarge-window}) or to make the Calc window the only
13953 one on the screen with @kbd{C-x 1} (@code{delete-other-windows}).
13955 Long lines are currently not rearranged to fit the window width in
13956 Big mode, so you may need to use the @kbd{<} and @kbd{>} keys
13957 to scroll across a wide formula.  For really big formulas, you may
13958 even need to use @kbd{@{} and @kbd{@}} to scroll up and down.
13960 @kindex d U
13961 @pindex calc-unformatted-language
13962 The @kbd{d U} (@code{calc-unformatted-language}) command altogether disables
13963 the use of operator notation in formulas.  In this mode, the formula
13964 shown above would be displayed:
13966 @example
13967 sqrt(add(div(add(a, 1), b), pow(c, 2)))
13968 @end example
13970 These four modes differ only in display format, not in the format
13971 expected for algebraic entry.  The standard Calc operators work in
13972 all four modes, and unformatted notation works in any language mode
13973 (except that Mathematica mode expects square brackets instead of
13974 parentheses).
13976 @node C FORTRAN Pascal, TeX Language Mode, Normal Language Modes, Language Modes
13977 @subsection C, FORTRAN, and Pascal Modes
13979 @noindent
13980 @kindex d C
13981 @pindex calc-c-language
13982 @cindex C language
13983 The @kbd{d C} (@code{calc-c-language}) command selects the conventions
13984 of the C language for display and entry of formulas.  This differs from
13985 the normal language mode in a variety of (mostly minor) ways.  In
13986 particular, C language operators and operator precedences are used in
13987 place of Calc's usual ones.  For example, @samp{a^b} means @samp{xor(a,b)}
13988 in C mode; a value raised to a power is written as a function call,
13989 @samp{pow(a,b)}.
13991 In C mode, vectors and matrices use curly braces instead of brackets.
13992 Octal and hexadecimal values are written with leading @samp{0} or @samp{0x}
13993 rather than using the @samp{#} symbol.  Array subscripting is
13994 translated into @code{subscr} calls, so that @samp{a[i]} in C
13995 mode is the same as @samp{a_i} in normal mode.  Assignments
13996 turn into the @code{assign} function, which Calc normally displays
13997 using the @samp{:=} symbol.
13999 The variables @code{var-pi} and @code{var-e} would be displayed @samp{pi}
14000 and @samp{e} in normal mode, but in C mode they are displayed as
14001 @samp{M_PI} and @samp{M_E}, corresponding to the names of constants
14002 typically provided in the @file{<math.h>} header.  Functions whose
14003 names are different in C are translated automatically for entry and
14004 display purposes.  For example, entering @samp{asin(x)} will push the
14005 formula @samp{arcsin(x)} onto the stack; this formula will be displayed
14006 as @samp{asin(x)} as long as C mode is in effect.
14008 @kindex d P
14009 @pindex calc-pascal-language
14010 @cindex Pascal language
14011 The @kbd{d P} (@code{calc-pascal-language}) command selects Pascal
14012 conventions.  Like C mode, Pascal mode interprets array brackets and uses
14013 a different table of operators.  Hexadecimal numbers are entered and
14014 displayed with a preceding dollar sign.  (Thus the regular meaning of
14015 @kbd{$2} during algebraic entry does not work in Pascal mode, though
14016 @kbd{$} (and @kbd{$$}, etc.) not followed by digits works the same as
14017 always.)  No special provisions are made for other non-decimal numbers,
14018 vectors, and so on, since there is no universally accepted standard way
14019 of handling these in Pascal.
14021 @kindex d F
14022 @pindex calc-fortran-language
14023 @cindex FORTRAN language
14024 The @kbd{d F} (@code{calc-fortran-language}) command selects FORTRAN
14025 conventions.  Various function names are transformed into FORTRAN
14026 equivalents.  Vectors are written as @samp{/1, 2, 3/}, and may be
14027 entered this way or using square brackets.  Since FORTRAN uses round
14028 parentheses for both function calls and array subscripts, Calc displays
14029 both in the same way; @samp{a(i)} is interpreted as a function call
14030 upon reading, and subscripts must be entered as @samp{subscr(a, i)}.
14031 Also, if the variable @code{a} has been declared to have type
14032 @code{vector} or @code{matrix} then @samp{a(i)} will be parsed as a
14033 subscript.  (@xref{Declarations}.)  Usually it doesn't matter, though;
14034 if you enter the subscript expression @samp{a(i)} and Calc interprets
14035 it as a function call, you'll never know the difference unless you
14036 switch to another language mode or replace @code{a} with an actual
14037 vector (or unless @code{a} happens to be the name of a built-in
14038 function!).
14040 Underscores are allowed in variable and function names in all of these
14041 language modes.  The underscore here is equivalent to the @samp{#} in
14042 normal mode, or to hyphens in the underlying Emacs Lisp variable names.
14044 FORTRAN and Pascal modes normally do not adjust the case of letters in
14045 formulas.  Most built-in Calc names use lower-case letters.  If you use a
14046 positive numeric prefix argument with @kbd{d P} or @kbd{d F}, these
14047 modes will use upper-case letters exclusively for display, and will
14048 convert to lower-case on input.  With a negative prefix, these modes
14049 convert to lower-case for display and input.
14051 @node TeX Language Mode, Eqn Language Mode, C FORTRAN Pascal, Language Modes
14052 @subsection @TeX{} Language Mode
14054 @noindent
14055 @kindex d T
14056 @pindex calc-tex-language
14057 @cindex TeX language
14058 The @kbd{d T} (@code{calc-tex-language}) command selects the conventions
14059 of ``math mode'' in the @TeX{} typesetting language, by Donald Knuth.
14060 Formulas are entered
14061 and displayed in @TeX{} notation, as in @samp{\sin\left( a \over b \right)}.
14062 Math formulas are usually enclosed by @samp{$ $} signs in @TeX{}; these
14063 should be omitted when interfacing with Calc.  To Calc, the @samp{$} sign
14064 has the same meaning it always does in algebraic formulas (a reference to
14065 an existing entry on the stack).@refill
14067 Complex numbers are displayed as in @samp{3 + 4i}.  Fractions and
14068 quotients are written using @code{\over};
14069 binomial coefficients are written with @code{\choose}.
14070 Interval forms are written with @code{\ldots}, and
14071 error forms are written with @code{\pm}.
14072 Absolute values are written as in @samp{|x + 1|}, and the floor and
14073 ceiling functions are written with @code{\lfloor}, @code{\rfloor}, etc.
14074 The words @code{\left} and @code{\right} are ignored when reading
14075 formulas in @TeX{} mode.  Both @code{inf} and @code{uinf} are written
14076 as @code{\infty}; when read, @code{\infty} always translates to
14077 @code{inf}.@refill
14079 Function calls are written the usual way, with the function name followed
14080 by the arguments in parentheses.  However, functions for which @TeX{} has
14081 special names (like @code{\sin}) will use curly braces instead of
14082 parentheses for very simple arguments.  During input, curly braces and
14083 parentheses work equally well for grouping, but when the document is
14084 formatted the curly braces will be invisible.  Thus the printed result is
14085 @c{$\sin{2 x}$}
14086 @cite{sin 2x} but @c{$\sin(2 + x)$}
14087 @cite{sin(2 + x)}.
14089 Function and variable names not treated specially by @TeX{} are simply
14090 written out as-is, which will cause them to come out in italic letters
14091 in the printed document.  If you invoke @kbd{d T} with a positive numeric
14092 prefix argument, names of more than one character will instead be written
14093 @samp{\hbox@{@var{name}@}}.  The @samp{\hbox@{ @}} notation is ignored
14094 during reading.  If you use a negative prefix argument, such function
14095 names are written @samp{\@var{name}}, and function names that begin
14096 with @code{\} during reading have the @code{\} removed.  (Note that
14097 in this mode, long variable names are still written with @code{\hbox}.
14098 However, you can always make an actual variable name like @code{\bar}
14099 in any @TeX{} mode.)
14101 During reading, text of the form @samp{\matrix@{ ...@: @}} is replaced
14102 by @samp{[ ...@: ]}.  The same also applies to @code{\pmatrix} and
14103 @code{\bmatrix}.  The symbol @samp{&} is interpreted as a comma,
14104 and the symbols @samp{\cr} and @samp{\\} are interpreted as semicolons.
14105 During output, matrices are displayed in @samp{\matrix@{ a & b \\ c & d@}}
14106 format; you may need to edit this afterwards to change @code{\matrix}
14107 to @code{\pmatrix} or @code{\\} to @code{\cr}.
14109 Accents like @code{\tilde} and @code{\bar} translate into function
14110 calls internally (@samp{tilde(x)}, @samp{bar(x)}).  The @code{\underline}
14111 sequence is treated as an accent.  The @code{\vec} accent corresponds
14112 to the function name @code{Vec}, because @code{vec} is the name of
14113 a built-in Calc function.  The following table shows the accents
14114 in Calc, @TeX{}, and @dfn{eqn} (described in the next section):
14116 @iftex
14117 @begingroup
14118 @let@calcindexershow=@calcindexernoshow  @c Suppress marginal notes
14119 @let@calcindexersh=@calcindexernoshow
14120 @end iftex
14121 @ignore
14122 @starindex
14123 @end ignore
14124 @tindex acute
14125 @ignore
14126 @starindex
14127 @end ignore
14128 @tindex bar
14129 @ignore
14130 @starindex
14131 @end ignore
14132 @tindex breve
14133 @ignore
14134 @starindex
14135 @end ignore
14136 @tindex check
14137 @ignore
14138 @starindex
14139 @end ignore
14140 @tindex dot
14141 @ignore
14142 @starindex
14143 @end ignore
14144 @tindex dotdot
14145 @ignore
14146 @starindex
14147 @end ignore
14148 @tindex dyad
14149 @ignore
14150 @starindex
14151 @end ignore
14152 @tindex grave
14153 @ignore
14154 @starindex
14155 @end ignore
14156 @tindex hat
14157 @ignore
14158 @starindex
14159 @end ignore
14160 @tindex Prime
14161 @ignore
14162 @starindex
14163 @end ignore
14164 @tindex tilde
14165 @ignore
14166 @starindex
14167 @end ignore
14168 @tindex under
14169 @ignore
14170 @starindex
14171 @end ignore
14172 @tindex Vec
14173 @iftex
14174 @endgroup
14175 @end iftex
14176 @example
14177 Calc      TeX           eqn
14178 ----      ---           ---
14179 acute     \acute
14180 bar       \bar          bar
14181 breve     \breve        
14182 check     \check
14183 dot       \dot          dot
14184 dotdot    \ddot         dotdot
14185 dyad                    dyad
14186 grave     \grave
14187 hat       \hat          hat
14188 Prime                   prime
14189 tilde     \tilde        tilde
14190 under     \underline    under
14191 Vec       \vec          vec
14192 @end example
14194 The @samp{=>} (evaluates-to) operator appears as a @code{\to} symbol:
14195 @samp{@{@var{a} \to @var{b}@}}.  @TeX{} defines @code{\to} as an
14196 alias for @code{\rightarrow}.  However, if the @samp{=>} is the
14197 top-level expression being formatted, a slightly different notation
14198 is used:  @samp{\evalto @var{a} \to @var{b}}.  The @code{\evalto}
14199 word is ignored by Calc's input routines, and is undefined in @TeX{}.
14200 You will typically want to include one of the following definitions
14201 at the top of a @TeX{} file that uses @code{\evalto}:
14203 @example
14204 \def\evalto@{@}
14205 \def\evalto#1\to@{@}
14206 @end example
14208 The first definition formats evaluates-to operators in the usual
14209 way.  The second causes only the @var{b} part to appear in the
14210 printed document; the @var{a} part and the arrow are hidden.
14211 Another definition you may wish to use is @samp{\let\to=\Rightarrow}
14212 which causes @code{\to} to appear more like Calc's @samp{=>} symbol.
14213 @xref{Evaluates-To Operator}, for a discussion of @code{evalto}.
14215 The complete set of @TeX{} control sequences that are ignored during
14216 reading is:
14218 @example
14219 \hbox  \mbox  \text  \left  \right
14220 \,  \>  \:  \;  \!  \quad  \qquad  \hfil  \hfill
14221 \displaystyle  \textstyle  \dsize  \tsize
14222 \scriptstyle  \scriptscriptstyle  \ssize  \ssize
14223 \rm  \bf  \it  \sl  \roman  \bold  \italic  \slanted
14224 \cal  \mit  \Cal  \Bbb  \frak  \goth
14225 \evalto
14226 @end example
14228 Note that, because these symbols are ignored, reading a @TeX{} formula
14229 into Calc and writing it back out may lose spacing and font information.
14231 Also, the ``discretionary multiplication sign'' @samp{\*} is read
14232 the same as @samp{*}.
14234 @ifinfo
14235 The @TeX{} version of this manual includes some printed examples at the
14236 end of this section.
14237 @end ifinfo
14238 @iftex
14239 Here are some examples of how various Calc formulas are formatted in @TeX{}:
14241 @example
14242 @group
14243 sin(a^2 / b_i)
14244 \sin\left( {a^2 \over b_i} \right)
14245 @end group
14246 @end example
14247 @tex
14248 \let\rm\goodrm
14249 $$ \sin\left( a^2 \over b_i \right) $$
14250 @end tex
14251 @sp 1
14253 @example
14254 @group
14255 [(3, 4), 3:4, 3 +/- 4, [3 .. inf)]
14256 [3 + 4i, @{3 \over 4@}, 3 \pm 4, [3 \ldots \infty)]
14257 @end group
14258 @end example
14259 @tex
14260 \turnoffactive
14261 $$ [3 + 4i, {3 \over 4}, 3 \pm 4, [ 3 \ldots \infty)] $$
14262 @end tex
14263 @sp 1
14265 @example
14266 @group
14267 [abs(a), abs(a / b), floor(a), ceil(a / b)]
14268 [|a|, \left| a \over b \right|,
14269  \lfloor a \rfloor, \left\lceil a \over b \right\rceil]
14270 @end group
14271 @end example
14272 @tex
14273 $$ [|a|, \left| a \over b \right|,
14274     \lfloor a \rfloor, \left\lceil a \over b \right\rceil] $$
14275 @end tex
14276 @sp 1
14278 @example
14279 @group
14280 [sin(a), sin(2 a), sin(2 + a), sin(a / b)]
14281 [\sin@{a@}, \sin@{2 a@}, \sin(2 + a),
14282  \sin\left( @{a \over b@} \right)]
14283 @end group
14284 @end example
14285 @tex
14286 \turnoffactive\let\rm\goodrm
14287 $$ [\sin{a}, \sin{2 a}, \sin(2 + a), \sin\left( {a \over b} \right)] $$
14288 @end tex
14289 @sp 2
14291 First with plain @kbd{d T}, then with @kbd{C-u d T}, then finally with
14292 @kbd{C-u - d T} (using the example definition
14293 @samp{\def\foo#1@{\tilde F(#1)@}}:
14295 @example
14296 @group
14297 [f(a), foo(bar), sin(pi)]
14298 [f(a), foo(bar), \sin{\pi}]
14299 [f(a), \hbox@{foo@}(\hbox@{bar@}), \sin@{\pi@}]
14300 [f(a), \foo@{\hbox@{bar@}@}, \sin@{\pi@}]
14301 @end group
14302 @end example
14303 @tex
14304 \let\rm\goodrm
14305 $$ [f(a), foo(bar), \sin{\pi}] $$
14306 $$ [f(a), \hbox{foo}(\hbox{bar}), \sin{\pi}] $$
14307 $$ [f(a), \tilde F(\hbox{bar}), \sin{\pi}] $$
14308 @end tex
14309 @sp 2
14311 First with @samp{\def\evalto@{@}}, then with @samp{\def\evalto#1\to@{@}}:
14313 @example
14314 @group
14315 2 + 3 => 5
14316 \evalto 2 + 3 \to 5
14317 @end group
14318 @end example
14319 @tex
14320 \turnoffactive
14321 $$ 2 + 3 \to 5 $$
14322 $$ 5 $$
14323 @end tex
14324 @sp 2
14326 First with standard @code{\to}, then with @samp{\let\to\Rightarrow}:
14328 @example
14329 @group
14330 [2 + 3 => 5, a / 2 => (b + c) / 2]
14331 [@{2 + 3 \to 5@}, @{@{a \over 2@} \to @{b + c \over 2@}@}]
14332 @end group
14333 @end example
14334 @tex
14335 \turnoffactive
14336 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$
14337 {\let\to\Rightarrow
14338 $$ [{2 + 3 \to 5}, {{a \over 2} \to {b + c \over 2}}] $$}
14339 @end tex
14340 @sp 2
14342 Matrices normally, then changing @code{\matrix} to @code{\pmatrix}:
14344 @example
14345 @group
14346 [ [ a / b, 0 ], [ 0, 2^(x + 1) ] ]
14347 \matrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14348 \pmatrix@{ @{a \over b@} & 0 \\ 0 & 2^@{(x + 1)@} @}
14349 @end group
14350 @end example
14351 @tex
14352 \turnoffactive
14353 $$ \matrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14354 $$ \pmatrix{ {a \over b} & 0 \cr 0 & 2^{(x + 1)} } $$
14355 @end tex
14356 @sp 2
14357 @end iftex
14359 @node Eqn Language Mode, Mathematica Language Mode, TeX Language Mode, Language Modes
14360 @subsection Eqn Language Mode
14362 @noindent
14363 @kindex d E
14364 @pindex calc-eqn-language
14365 @dfn{Eqn} is another popular formatter for math formulas.  It is
14366 designed for use with the TROFF text formatter, and comes standard
14367 with many versions of Unix.  The @kbd{d E} (@code{calc-eqn-language})
14368 command selects @dfn{eqn} notation.
14370 The @dfn{eqn} language's main idiosyncrasy is that whitespace plays
14371 a significant part in the parsing of the language.  For example,
14372 @samp{sqrt x+1 + y} treats @samp{x+1} as the argument of the
14373 @code{sqrt} operator.  @dfn{Eqn} also understands more conventional
14374 grouping using curly braces:  @samp{sqrt@{x+1@} + y}.  Braces are
14375 required only when the argument contains spaces.
14377 In Calc's @dfn{eqn} mode, however, curly braces are required to
14378 delimit arguments of operators like @code{sqrt}.  The first of the
14379 above examples would treat only the @samp{x} as the argument of
14380 @code{sqrt}, and in fact @samp{sin x+1} would be interpreted as
14381 @samp{sin * x + 1}, because @code{sin} is not a special operator
14382 in the @dfn{eqn} language.  If you always surround the argument
14383 with curly braces, Calc will never misunderstand.
14385 Calc also understands parentheses as grouping characters.  Another
14386 peculiarity of @dfn{eqn}'s syntax makes it advisable to separate
14387 words with spaces from any surrounding characters that aren't curly
14388 braces, so Calc writes @samp{sin ( x + y )} in @dfn{eqn} mode.
14389 (The spaces around @code{sin} are important to make @dfn{eqn}
14390 recognize that @code{sin} should be typeset in a roman font, and
14391 the spaces around @code{x} and @code{y} are a good idea just in
14392 case the @dfn{eqn} document has defined special meanings for these
14393 names, too.)
14395 Powers and subscripts are written with the @code{sub} and @code{sup}
14396 operators, respectively.  Note that the caret symbol @samp{^} is
14397 treated the same as a space in @dfn{eqn} mode, as is the @samp{~}
14398 symbol (these are used to introduce spaces of various widths into
14399 the typeset output of @dfn{eqn}).
14401 As in @TeX{} mode, Calc's formatter omits parentheses around the
14402 arguments of functions like @code{ln} and @code{sin} if they are
14403 ``simple-looking''; in this case Calc surrounds the argument with
14404 braces, separated by a @samp{~} from the function name: @samp{sin~@{x@}}.
14406 Font change codes (like @samp{roman @var{x}}) and positioning codes
14407 (like @samp{~} and @samp{down @var{n} @var{x}}) are ignored by the
14408 @dfn{eqn} reader.  Also ignored are the words @code{left}, @code{right},
14409 @code{mark}, and @code{lineup}.  Quotation marks in @dfn{eqn} mode input
14410 are treated the same as curly braces: @samp{sqrt "1+x"} is equivalent to
14411 @samp{sqrt @{1+x@}}; this is only an approximation to the true meaning
14412 of quotes in @dfn{eqn}, but it is good enough for most uses.
14414 Accent codes (@samp{@var{x} dot}) are handled by treating them as
14415 function calls (@samp{dot(@var{x})}) internally.  @xref{TeX Language
14416 Mode}, for a table of these accent functions.  The @code{prime} accent
14417 is treated specially if it occurs on a variable or function name:
14418 @samp{f prime prime @w{( x prime )}} is stored internally as
14419 @samp{f'@w{'}(x')}.  For example, taking the derivative of @samp{f(2 x)}
14420 with @kbd{a d x} will produce @samp{2 f'(2 x)}, which @dfn{eqn} mode
14421 will display as @samp{2 f prime ( 2 x )}.
14423 Assignments are written with the @samp{<-} (left-arrow) symbol,
14424 and @code{evalto} operators are written with @samp{->} or
14425 @samp{evalto ... ->} (@pxref{TeX Language Mode}, for a discussion
14426 of this).  The regular Calc symbols @samp{:=} and @samp{=>} are also
14427 recognized for these operators during reading.
14429 Vectors in @dfn{eqn} mode use regular Calc square brackets, but
14430 matrices are formatted as @samp{matrix @{ ccol @{ a above b @} ... @}}.
14431 The words @code{lcol} and @code{rcol} are recognized as synonyms
14432 for @code{ccol} during input, and are generated instead of @code{ccol}
14433 if the matrix justification mode so specifies.
14435 @node Mathematica Language Mode, Maple Language Mode, Eqn Language Mode, Language Modes
14436 @subsection Mathematica Language Mode
14438 @noindent
14439 @kindex d M
14440 @pindex calc-mathematica-language
14441 @cindex Mathematica language
14442 The @kbd{d M} (@code{calc-mathematica-language}) command selects the
14443 conventions of Mathematica, a powerful and popular mathematical tool
14444 from Wolfram Research, Inc.  Notable differences in Mathematica mode
14445 are that the names of built-in functions are capitalized, and function
14446 calls use square brackets instead of parentheses.  Thus the Calc
14447 formula @samp{sin(2 x)} is entered and displayed @w{@samp{Sin[2 x]}} in
14448 Mathematica mode.
14450 Vectors and matrices use curly braces in Mathematica.  Complex numbers
14451 are written @samp{3 + 4 I}.  The standard special constants in Calc are
14452 written @code{Pi}, @code{E}, @code{I}, @code{GoldenRatio}, @code{EulerGamma},
14453 @code{Infinity}, @code{ComplexInfinity}, and @code{Indeterminate} in
14454 Mathematica mode.
14455 Non-decimal numbers are written, e.g., @samp{16^^7fff}.  Floating-point
14456 numbers in scientific notation are written @samp{1.23*10.^3}.
14457 Subscripts use double square brackets: @samp{a[[i]]}.@refill
14459 @node Maple Language Mode, Compositions, Mathematica Language Mode, Language Modes
14460 @subsection Maple Language Mode
14462 @noindent
14463 @kindex d W
14464 @pindex calc-maple-language
14465 @cindex Maple language
14466 The @kbd{d W} (@code{calc-maple-language}) command selects the
14467 conventions of Maple, another mathematical tool from the University
14468 of Waterloo.  
14470 Maple's language is much like C.  Underscores are allowed in symbol
14471 names; square brackets are used for subscripts; explicit @samp{*}s for
14472 multiplications are required.  Use either @samp{^} or @samp{**} to
14473 denote powers.
14475 Maple uses square brackets for lists and curly braces for sets.  Calc
14476 interprets both notations as vectors, and displays vectors with square
14477 brackets.  This means Maple sets will be converted to lists when they
14478 pass through Calc.  As a special case, matrices are written as calls
14479 to the function @code{matrix}, given a list of lists as the argument,
14480 and can be read in this form or with all-capitals @code{MATRIX}.
14482 The Maple interval notation @samp{2 .. 3} has no surrounding brackets;
14483 Calc reads @samp{2 .. 3} as the closed interval @samp{[2 .. 3]}, and
14484 writes any kind of interval as @samp{2 .. 3}.  This means you cannot
14485 see the difference between an open and a closed interval while in
14486 Maple display mode.
14488 Maple writes complex numbers as @samp{3 + 4*I}.  Its special constants
14489 are @code{Pi}, @code{E}, @code{I}, and @code{infinity} (all three of
14490 @code{inf}, @code{uinf}, and @code{nan} display as @code{infinity}).
14491 Floating-point numbers are written @samp{1.23*10.^3}.
14493 Among things not currently handled by Calc's Maple mode are the
14494 various quote symbols, procedures and functional operators, and
14495 inert (@samp{&}) operators.
14497 @node Compositions, Syntax Tables, Maple Language Mode, Language Modes
14498 @subsection Compositions
14500 @noindent
14501 @cindex Compositions
14502 There are several @dfn{composition functions} which allow you to get
14503 displays in a variety of formats similar to those in Big language
14504 mode.  Most of these functions do not evaluate to anything; they are
14505 placeholders which are left in symbolic form by Calc's evaluator but
14506 are recognized by Calc's display formatting routines.
14508 Two of these, @code{string} and @code{bstring}, are described elsewhere.
14509 @xref{Strings}.  For example, @samp{string("ABC")} is displayed as
14510 @samp{ABC}.  When viewed on the stack it will be indistinguishable from
14511 the variable @code{ABC}, but internally it will be stored as
14512 @samp{string([65, 66, 67])} and can still be manipulated this way; for
14513 example, the selection and vector commands @kbd{j 1 v v j u} would
14514 select the vector portion of this object and reverse the elements, then
14515 deselect to reveal a string whose characters had been reversed.
14517 The composition functions do the same thing in all language modes
14518 (although their components will of course be formatted in the current
14519 language mode).  The one exception is Unformatted mode (@kbd{d U}),
14520 which does not give the composition functions any special treatment.
14521 The functions are discussed here because of their relationship to
14522 the language modes.
14524 @menu
14525 * Composition Basics::
14526 * Horizontal Compositions::
14527 * Vertical Compositions::
14528 * Other Compositions::
14529 * Information about Compositions::
14530 * User-Defined Compositions::
14531 @end menu
14533 @node Composition Basics, Horizontal Compositions, Compositions, Compositions
14534 @subsubsection Composition Basics
14536 @noindent
14537 Compositions are generally formed by stacking formulas together
14538 horizontally or vertically in various ways.  Those formulas are
14539 themselves compositions.  @TeX{} users will find this analogous
14540 to @TeX{}'s ``boxes.''  Each multi-line composition has a
14541 @dfn{baseline}; horizontal compositions use the baselines to
14542 decide how formulas should be positioned relative to one another.
14543 For example, in the Big mode formula
14545 @example
14546 @group
14547           2
14548      a + b
14549 17 + ------
14550        c
14551 @end group
14552 @end example
14554 @noindent
14555 the second term of the sum is four lines tall and has line three as
14556 its baseline.  Thus when the term is combined with 17, line three
14557 is placed on the same level as the baseline of 17.
14559 @tex
14560 \bigskip
14561 @end tex
14563 Another important composition concept is @dfn{precedence}.  This is
14564 an integer that represents the binding strength of various operators.
14565 For example, @samp{*} has higher precedence (195) than @samp{+} (180),
14566 which means that @samp{(a * b) + c} will be formatted without the
14567 parentheses, but @samp{a * (b + c)} will keep the parentheses.
14569 The operator table used by normal and Big language modes has the
14570 following precedences:
14572 @example
14573 _     1200   @r{(subscripts)}
14574 %     1100   @r{(as in n}%@r{)}
14575 -     1000   @r{(as in }-@r{n)}
14576 !     1000   @r{(as in }!@r{n)}
14577 mod    400
14578 +/-    300
14579 !!     210    @r{(as in n}!!@r{)}
14580 !      210    @r{(as in n}!@r{)}
14581 ^      200
14582 *      195    @r{(or implicit multiplication)}
14583 / % \  190
14584 + -    180    @r{(as in a}+@r{b)}
14585 |      170
14586 < =    160    @r{(and other relations)}
14587 &&     110
14588 ||     100
14589 ? :     90
14590 !!!     85
14591 &&&     80
14592 |||     75
14593 :=      50
14594 ::      45
14595 =>      40
14596 @end example
14598 The general rule is that if an operator with precedence @cite{n}
14599 occurs as an argument to an operator with precedence @cite{m}, then
14600 the argument is enclosed in parentheses if @cite{n < m}.  Top-level
14601 expressions and expressions which are function arguments, vector
14602 components, etc., are formatted with precedence zero (so that they
14603 normally never get additional parentheses).
14605 For binary left-associative operators like @samp{+}, the righthand
14606 argument is actually formatted with one-higher precedence than shown
14607 in the table.  This makes sure @samp{(a + b) + c} omits the parentheses,
14608 but the unnatural form @samp{a + (b + c)} keeps its parentheses.
14609 Right-associative operators like @samp{^} format the lefthand argument
14610 with one-higher precedence.
14612 @ignore
14613 @starindex
14614 @end ignore
14615 @tindex cprec
14616 The @code{cprec} function formats an expression with an arbitrary
14617 precedence.  For example, @samp{cprec(abc, 185)} will combine into
14618 sums and products as follows:  @samp{7 + abc}, @samp{7 (abc)} (because
14619 this @code{cprec} form has higher precedence than addition, but lower
14620 precedence than multiplication).
14622 @tex
14623 \bigskip
14624 @end tex
14626 A final composition issue is @dfn{line breaking}.  Calc uses two
14627 different strategies for ``flat'' and ``non-flat'' compositions.
14628 A non-flat composition is anything that appears on multiple lines
14629 (not counting line breaking).  Examples would be matrices and Big
14630 mode powers and quotients.  Non-flat compositions are displayed
14631 exactly as specified.  If they come out wider than the current
14632 window, you must use horizontal scrolling (@kbd{<} and @kbd{>}) to
14633 view them.
14635 Flat compositions, on the other hand, will be broken across several
14636 lines if they are too wide to fit the window.  Certain points in a
14637 composition are noted internally as @dfn{break points}.  Calc's
14638 general strategy is to fill each line as much as possible, then to
14639 move down to the next line starting at the first break point that
14640 didn't fit.  However, the line breaker understands the hierarchical
14641 structure of formulas.  It will not break an ``inner'' formula if
14642 it can use an earlier break point from an ``outer'' formula instead.
14643 For example, a vector of sums might be formatted as:
14645 @example
14646 @group
14647 [ a + b + c, d + e + f,
14648   g + h + i, j + k + l, m ]
14649 @end group
14650 @end example
14652 @noindent
14653 If the @samp{m} can fit, then so, it seems, could the @samp{g}.
14654 But Calc prefers to break at the comma since the comma is part
14655 of a ``more outer'' formula.  Calc would break at a plus sign
14656 only if it had to, say, if the very first sum in the vector had
14657 itself been too large to fit.
14659 Of the composition functions described below, only @code{choriz}
14660 generates break points.  The @code{bstring} function (@pxref{Strings})
14661 also generates breakable items:  A break point is added after every
14662 space (or group of spaces) except for spaces at the very beginning or
14663 end of the string.
14665 Composition functions themselves count as levels in the formula
14666 hierarchy, so a @code{choriz} that is a component of a larger
14667 @code{choriz} will be less likely to be broken.  As a special case,
14668 if a @code{bstring} occurs as a component of a @code{choriz} or
14669 @code{choriz}-like object (such as a vector or a list of arguments
14670 in a function call), then the break points in that @code{bstring}
14671 will be on the same level as the break points of the surrounding
14672 object.
14674 @node Horizontal Compositions, Vertical Compositions, Composition Basics, Compositions
14675 @subsubsection Horizontal Compositions
14677 @noindent
14678 @ignore
14679 @starindex
14680 @end ignore
14681 @tindex choriz
14682 The @code{choriz} function takes a vector of objects and composes
14683 them horizontally.  For example, @samp{choriz([17, a b/c, d])} formats
14684 as @w{@samp{17a b / cd}} in normal language mode, or as
14686 @example
14687 @group
14688   a b
14689 17---d
14690    c
14691 @end group
14692 @end example
14694 @noindent
14695 in Big language mode.  This is actually one case of the general
14696 function @samp{choriz(@var{vec}, @var{sep}, @var{prec})}, where
14697 either or both of @var{sep} and @var{prec} may be omitted.
14698 @var{Prec} gives the @dfn{precedence} to use when formatting
14699 each of the components of @var{vec}.  The default precedence is
14700 the precedence from the surrounding environment.
14702 @var{Sep} is a string (i.e., a vector of character codes as might
14703 be entered with @code{" "} notation) which should separate components
14704 of the composition.  Also, if @var{sep} is given, the line breaker
14705 will allow lines to be broken after each occurrence of @var{sep}.
14706 If @var{sep} is omitted, the composition will not be breakable
14707 (unless any of its component compositions are breakable).
14709 For example, @samp{2 choriz([a, b c, d = e], " + ", 180)} is
14710 formatted as @samp{2 a + b c + (d = e)}.  To get the @code{choriz}
14711 to have precedence 180 ``outwards'' as well as ``inwards,''
14712 enclose it in a @code{cprec} form:  @samp{2 cprec(choriz(...), 180)}
14713 formats as @samp{2 (a + b c + (d = e))}.
14715 The baseline of a horizontal composition is the same as the
14716 baselines of the component compositions, which are all aligned.
14718 @node Vertical Compositions, Other Compositions, Horizontal Compositions, Compositions
14719 @subsubsection Vertical Compositions
14721 @noindent
14722 @ignore
14723 @starindex
14724 @end ignore
14725 @tindex cvert
14726 The @code{cvert} function makes a vertical composition.  Each
14727 component of the vector is centered in a column.  The baseline of
14728 the result is by default the top line of the resulting composition.
14729 For example, @samp{f(cvert([a, bb, ccc]), cvert([a^2 + 1, b^2]))}
14730 formats in Big mode as
14732 @example
14733 @group
14734 f( a ,  2    )
14735   bb   a  + 1
14736   ccc     2
14737          b
14738 @end group
14739 @end example
14741 @ignore
14742 @starindex
14743 @end ignore
14744 @tindex cbase
14745 There are several special composition functions that work only as
14746 components of a vertical composition.  The @code{cbase} function
14747 controls the baseline of the vertical composition; the baseline
14748 will be the same as the baseline of whatever component is enclosed
14749 in @code{cbase}.  Thus @samp{f(cvert([a, cbase(bb), ccc]),
14750 cvert([a^2 + 1, cbase(b^2)]))} displays as
14752 @example
14753 @group
14754         2
14755        a  + 1
14756    a      2
14757 f(bb ,   b   )
14758   ccc
14759 @end group
14760 @end example
14762 @ignore
14763 @starindex
14764 @end ignore
14765 @tindex ctbase
14766 @ignore
14767 @starindex
14768 @end ignore
14769 @tindex cbbase
14770 There are also @code{ctbase} and @code{cbbase} functions which
14771 make the baseline of the vertical composition equal to the top
14772 or bottom line (rather than the baseline) of that component.
14773 Thus @samp{cvert([cbase(a / b)]) + cvert([ctbase(a / b)]) +
14774 cvert([cbbase(a / b)])} gives
14776 @example
14777 @group
14778         a
14779 a       -
14780 - + a + b
14781 b   -
14782     b
14783 @end group
14784 @end example
14786 There should be only one @code{cbase}, @code{ctbase}, or @code{cbbase}
14787 function in a given vertical composition.  These functions can also
14788 be written with no arguments:  @samp{ctbase()} is a zero-height object
14789 which means the baseline is the top line of the following item, and
14790 @samp{cbbase()} means the baseline is the bottom line of the preceding
14791 item.
14793 @ignore
14794 @starindex
14795 @end ignore
14796 @tindex crule
14797 The @code{crule} function builds a ``rule,'' or horizontal line,
14798 across a vertical composition.  By itself @samp{crule()} uses @samp{-}
14799 characters to build the rule.  You can specify any other character,
14800 e.g., @samp{crule("=")}.  The argument must be a character code or
14801 vector of exactly one character code.  It is repeated to match the
14802 width of the widest item in the stack.  For example, a quotient
14803 with a thick line is @samp{cvert([a + 1, cbase(crule("=")), b^2])}:
14805 @example
14806 @group
14807 a + 1
14808 =====
14809   2
14811 @end group
14812 @end example
14814 @ignore
14815 @starindex
14816 @end ignore
14817 @tindex clvert
14818 @ignore
14819 @starindex
14820 @end ignore
14821 @tindex crvert
14822 Finally, the functions @code{clvert} and @code{crvert} act exactly
14823 like @code{cvert} except that the items are left- or right-justified
14824 in the stack.  Thus @samp{clvert([a, bb, ccc]) + crvert([a, bb, ccc])}
14825 gives:
14827 @example
14828 @group
14829 a   +   a
14830 bb     bb
14831 ccc   ccc
14832 @end group
14833 @end example
14835 Like @code{choriz}, the vertical compositions accept a second argument
14836 which gives the precedence to use when formatting the components.
14837 Vertical compositions do not support separator strings.
14839 @node Other Compositions, Information about Compositions, Vertical Compositions, Compositions
14840 @subsubsection Other Compositions
14842 @noindent
14843 @ignore
14844 @starindex
14845 @end ignore
14846 @tindex csup
14847 The @code{csup} function builds a superscripted expression.  For
14848 example, @samp{csup(a, b)} looks the same as @samp{a^b} does in Big
14849 language mode.  This is essentially a horizontal composition of
14850 @samp{a} and @samp{b}, where @samp{b} is shifted up so that its
14851 bottom line is one above the baseline.
14853 @ignore
14854 @starindex
14855 @end ignore
14856 @tindex csub
14857 Likewise, the @code{csub} function builds a subscripted expression.
14858 This shifts @samp{b} down so that its top line is one below the
14859 bottom line of @samp{a} (note that this is not quite analogous to
14860 @code{csup}).  Other arrangements can be obtained by using
14861 @code{choriz} and @code{cvert} directly.
14863 @ignore
14864 @starindex
14865 @end ignore
14866 @tindex cflat
14867 The @code{cflat} function formats its argument in ``flat'' mode,
14868 as obtained by @samp{d O}, if the current language mode is normal
14869 or Big.  It has no effect in other language modes.  For example,
14870 @samp{a^(b/c)} is formatted by Big mode like @samp{csup(a, cflat(b/c))}
14871 to improve its readability.
14873 @ignore
14874 @starindex
14875 @end ignore
14876 @tindex cspace
14877 The @code{cspace} function creates horizontal space.  For example,
14878 @samp{cspace(4)} is effectively the same as @samp{string("    ")}.
14879 A second string (i.e., vector of characters) argument is repeated
14880 instead of the space character.  For example, @samp{cspace(4, "ab")}
14881 looks like @samp{abababab}.  If the second argument is not a string,
14882 it is formatted in the normal way and then several copies of that
14883 are composed together:  @samp{cspace(4, a^2)} yields
14885 @example
14886 @group
14887  2 2 2 2
14888 a a a a
14889 @end group
14890 @end example
14892 @noindent
14893 If the number argument is zero, this is a zero-width object.
14895 @ignore
14896 @starindex
14897 @end ignore
14898 @tindex cvspace
14899 The @code{cvspace} function creates vertical space, or a vertical
14900 stack of copies of a certain string or formatted object.  The
14901 baseline is the center line of the resulting stack.  A numerical
14902 argument of zero will produce an object which contributes zero
14903 height if used in a vertical composition.
14905 @ignore
14906 @starindex
14907 @end ignore
14908 @tindex ctspace
14909 @ignore
14910 @starindex
14911 @end ignore
14912 @tindex cbspace
14913 There are also @code{ctspace} and @code{cbspace} functions which
14914 create vertical space with the baseline the same as the baseline
14915 of the top or bottom copy, respectively, of the second argument.
14916 Thus @samp{cvspace(2, a/b) + ctspace(2, a/b) + cbspace(2, a/b)}
14917 displays as:
14919 @example
14920 @group
14921         a
14922         -
14923 a       b
14924 -   a   a
14925 b + - + -
14926 a   b   b
14927 -   a
14928 b   -
14929     b
14930 @end group
14931 @end example
14933 @node Information about Compositions, User-Defined Compositions, Other Compositions, Compositions
14934 @subsubsection Information about Compositions
14936 @noindent
14937 The functions in this section are actual functions; they compose their
14938 arguments according to the current language and other display modes,
14939 then return a certain measurement of the composition as an integer.
14941 @ignore
14942 @starindex
14943 @end ignore
14944 @tindex cwidth
14945 The @code{cwidth} function measures the width, in characters, of a
14946 composition.  For example, @samp{cwidth(a + b)} is 5, and
14947 @samp{cwidth(a / b)} is 5 in normal mode, 1 in Big mode, and 11 in
14948 @TeX{} mode (for @samp{@{a \over b@}}).  The argument may involve
14949 the composition functions described in this section.
14951 @ignore
14952 @starindex
14953 @end ignore
14954 @tindex cheight
14955 The @code{cheight} function measures the height of a composition.
14956 This is the total number of lines in the argument's printed form.
14958 @ignore
14959 @starindex
14960 @end ignore
14961 @tindex cascent
14962 @ignore
14963 @starindex
14964 @end ignore
14965 @tindex cdescent
14966 The functions @code{cascent} and @code{cdescent} measure the amount
14967 of the height that is above (and including) the baseline, or below
14968 the baseline, respectively.  Thus @samp{cascent(@var{x}) + cdescent(@var{x})}
14969 always equals @samp{cheight(@var{x})}.  For a one-line formula like
14970 @samp{a + b}, @code{cascent} returns 1 and @code{cdescent} returns 0.
14971 For @samp{a / b} in Big mode, @code{cascent} returns 2 and @code{cdescent}
14972 returns 1.  The only formula for which @code{cascent} will return zero
14973 is @samp{cvspace(0)} or equivalents.
14975 @node User-Defined Compositions, , Information about Compositions, Compositions
14976 @subsubsection User-Defined Compositions
14978 @noindent
14979 @kindex Z C
14980 @pindex calc-user-define-composition
14981 The @kbd{Z C} (@code{calc-user-define-composition}) command lets you
14982 define the display format for any algebraic function.  You provide a
14983 formula containing a certain number of argument variables on the stack.
14984 Any time Calc formats a call to the specified function in the current
14985 language mode and with that number of arguments, Calc effectively
14986 replaces the function call with that formula with the arguments
14987 replaced.
14989 Calc builds the default argument list by sorting all the variable names
14990 that appear in the formula into alphabetical order.  You can edit this
14991 argument list before pressing @key{RET} if you wish.  Any variables in
14992 the formula that do not appear in the argument list will be displayed
14993 literally; any arguments that do not appear in the formula will not
14994 affect the display at all.
14996 You can define formats for built-in functions, for functions you have
14997 defined with @kbd{Z F} (@pxref{Algebraic Definitions}), or for functions
14998 which have no definitions but are being used as purely syntactic objects.
14999 You can define different formats for each language mode, and for each
15000 number of arguments, using a succession of @kbd{Z C} commands.  When
15001 Calc formats a function call, it first searches for a format defined
15002 for the current language mode (and number of arguments); if there is
15003 none, it uses the format defined for the Normal language mode.  If
15004 neither format exists, Calc uses its built-in standard format for that
15005 function (usually just @samp{@var{func}(@var{args})}).
15007 If you execute @kbd{Z C} with the number 0 on the stack instead of a
15008 formula, any defined formats for the function in the current language
15009 mode will be removed.  The function will revert to its standard format.
15011 For example, the default format for the binomial coefficient function
15012 @samp{choose(n, m)} in the Big language mode is
15014 @example
15015 @group
15017 ( )
15019 @end group
15020 @end example
15022 @noindent
15023 You might prefer the notation,
15025 @example
15026 @group
15028 n m
15029 @end group
15030 @end example
15032 @noindent
15033 To define this notation, first make sure you are in Big mode,
15034 then put the formula
15036 @smallexample
15037 choriz([cvert([cvspace(1), n]), C, cvert([cvspace(1), m])])
15038 @end smallexample
15040 @noindent
15041 on the stack and type @kbd{Z C}.  Answer the first prompt with
15042 @code{choose}.  The second prompt will be the default argument list
15043 of @samp{(C m n)}.  Edit this list to be @samp{(n m)} and press
15044 @key{RET}.  Now, try it out:  For example, turn simplification
15045 off with @kbd{m O} and enter @samp{choose(a,b) + choose(7,3)}
15046 as an algebraic entry.
15048 @example
15049 @group
15050  C  +  C 
15051 a b   7 3
15052 @end group
15053 @end example
15055 As another example, let's define the usual notation for Stirling
15056 numbers of the first kind, @samp{stir1(n, m)}.  This is just like
15057 the regular format for binomial coefficients but with square brackets
15058 instead of parentheses.
15060 @smallexample
15061 choriz([string("["), cvert([n, cbase(cvspace(1)), m]), string("]")])
15062 @end smallexample
15064 Now type @kbd{Z C stir1 @key{RET}}, edit the argument list to
15065 @samp{(n m)}, and type @key{RET}.
15067 The formula provided to @kbd{Z C} usually will involve composition
15068 functions, but it doesn't have to.  Putting the formula @samp{a + b + c}
15069 onto the stack and typing @kbd{Z C foo @key{RET} @key{RET}} would define
15070 the function @samp{foo(x,y,z)} to display like @samp{x + y + z}.
15071 This ``sum'' will act exactly like a real sum for all formatting
15072 purposes (it will be parenthesized the same, and so on).  However
15073 it will be computationally unrelated to a sum.  For example, the
15074 formula @samp{2 * foo(1, 2, 3)} will display as @samp{2 (1 + 2 + 3)}.
15075 Operator precedences have caused the ``sum'' to be written in
15076 parentheses, but the arguments have not actually been summed.
15077 (Generally a display format like this would be undesirable, since
15078 it can easily be confused with a real sum.)
15080 The special function @code{eval} can be used inside a @kbd{Z C}
15081 composition formula to cause all or part of the formula to be
15082 evaluated at display time.  For example, if the formula is
15083 @samp{a + eval(b + c)}, then @samp{foo(1, 2, 3)} will be displayed
15084 as @samp{1 + 5}.  Evaluation will use the default simplifications,
15085 regardless of the current simplification mode.  There are also
15086 @code{evalsimp} and @code{evalextsimp} which simplify as if by
15087 @kbd{a s} and @kbd{a e} (respectively).  Note that these ``functions''
15088 operate only in the context of composition formulas (and also in
15089 rewrite rules, where they serve a similar purpose; @pxref{Rewrite
15090 Rules}).  On the stack, a call to @code{eval} will be left in
15091 symbolic form.
15093 It is not a good idea to use @code{eval} except as a last resort.
15094 It can cause the display of formulas to be extremely slow.  For
15095 example, while @samp{eval(a + b)} might seem quite fast and simple,
15096 there are several situations where it could be slow.  For example,
15097 @samp{a} and/or @samp{b} could be polar complex numbers, in which
15098 case doing the sum requires trigonometry.  Or, @samp{a} could be
15099 the factorial @samp{fact(100)} which is unevaluated because you
15100 have typed @kbd{m O}; @code{eval} will evaluate it anyway to
15101 produce a large, unwieldy integer.
15103 You can save your display formats permanently using the @kbd{Z P}
15104 command (@pxref{Creating User Keys}).
15106 @node Syntax Tables, , Compositions, Language Modes
15107 @subsection Syntax Tables
15109 @noindent
15110 @cindex Syntax tables
15111 @cindex Parsing formulas, customized
15112 Syntax tables do for input what compositions do for output:  They
15113 allow you to teach custom notations to Calc's formula parser.
15114 Calc keeps a separate syntax table for each language mode.
15116 (Note that the Calc ``syntax tables'' discussed here are completely
15117 unrelated to the syntax tables described in the Emacs manual.)
15119 @kindex Z S
15120 @pindex calc-edit-user-syntax
15121 The @kbd{Z S} (@code{calc-edit-user-syntax}) command edits the
15122 syntax table for the current language mode.  If you want your
15123 syntax to work in any language, define it in the normal language
15124 mode.  Type @kbd{M-# M-#} to finish editing the syntax table, or
15125 @kbd{M-# x} to cancel the edit.  The @kbd{m m} command saves all
15126 the syntax tables along with the other mode settings;
15127 @pxref{General Mode Commands}.
15129 @menu
15130 * Syntax Table Basics::
15131 * Precedence in Syntax Tables::
15132 * Advanced Syntax Patterns::
15133 * Conditional Syntax Rules::
15134 @end menu
15136 @node Syntax Table Basics, Precedence in Syntax Tables, Syntax Tables, Syntax Tables
15137 @subsubsection Syntax Table Basics
15139 @noindent
15140 @dfn{Parsing} is the process of converting a raw string of characters,
15141 such as you would type in during algebraic entry, into a Calc formula.
15142 Calc's parser works in two stages.  First, the input is broken down
15143 into @dfn{tokens}, such as words, numbers, and punctuation symbols
15144 like @samp{+}, @samp{:=}, and @samp{+/-}.  Space between tokens is
15145 ignored (except when it serves to separate adjacent words).  Next,
15146 the parser matches this string of tokens against various built-in
15147 syntactic patterns, such as ``an expression followed by @samp{+}
15148 followed by another expression'' or ``a name followed by @samp{(},
15149 zero or more expressions separated by commas, and @samp{)}.''
15151 A @dfn{syntax table} is a list of user-defined @dfn{syntax rules},
15152 which allow you to specify new patterns to define your own
15153 favorite input notations.  Calc's parser always checks the syntax
15154 table for the current language mode, then the table for the normal
15155 language mode, before it uses its built-in rules to parse an
15156 algebraic formula you have entered.  Each syntax rule should go on
15157 its own line; it consists of a @dfn{pattern}, a @samp{:=} symbol,
15158 and a Calc formula with an optional @dfn{condition}.  (Syntax rules
15159 resemble algebraic rewrite rules, but the notation for patterns is
15160 completely different.)
15162 A syntax pattern is a list of tokens, separated by spaces.
15163 Except for a few special symbols, tokens in syntax patterns are
15164 matched literally, from left to right.  For example, the rule,
15166 @example
15167 foo ( ) := 2+3
15168 @end example
15170 @noindent
15171 would cause Calc to parse the formula @samp{4+foo()*5} as if it
15172 were @samp{4+(2+3)*5}.  Notice that the parentheses were written
15173 as two separate tokens in the rule.  As a result, the rule works
15174 for both @samp{foo()} and @w{@samp{foo (  )}}.  If we had written
15175 the rule as @samp{foo () := 2+3}, then Calc would treat @samp{()}
15176 as a single, indivisible token, so that @w{@samp{foo( )}} would
15177 not be recognized by the rule.  (It would be parsed as a regular
15178 zero-argument function call instead.)  In fact, this rule would
15179 also make trouble for the rest of Calc's parser:  An unrelated
15180 formula like @samp{bar()} would now be tokenized into @samp{bar ()}
15181 instead of @samp{bar ( )}, so that the standard parser for function
15182 calls would no longer recognize it!
15184 While it is possible to make a token with a mixture of letters
15185 and punctuation symbols, this is not recommended.  It is better to
15186 break it into several tokens, as we did with @samp{foo()} above.
15188 The symbol @samp{#} in a syntax pattern matches any Calc expression.
15189 On the righthand side, the things that matched the @samp{#}s can
15190 be referred to as @samp{#1}, @samp{#2}, and so on (where @samp{#1}
15191 matches the leftmost @samp{#} in the pattern).  For example, these
15192 rules match a user-defined function, prefix operator, infix operator,
15193 and postfix operator, respectively:
15195 @example
15196 foo ( # ) := myfunc(#1)
15197 foo # := myprefix(#1)
15198 # foo # := myinfix(#1,#2)
15199 # foo := mypostfix(#1)
15200 @end example
15202 Thus @samp{foo(3)} will parse as @samp{myfunc(3)}, and @samp{2+3 foo}
15203 will parse as @samp{mypostfix(2+3)}.
15205 It is important to write the first two rules in the order shown,
15206 because Calc tries rules in order from first to last.  If the
15207 pattern @samp{foo #} came first, it would match anything that could
15208 match the @samp{foo ( # )} rule, since an expression in parentheses
15209 is itself a valid expression.  Thus the @w{@samp{foo ( # )}} rule would
15210 never get to match anything.  Likewise, the last two rules must be
15211 written in the order shown or else @samp{3 foo 4} will be parsed as
15212 @samp{mypostfix(3) * 4}.  (Of course, the best way to avoid these
15213 ambiguities is not to use the same symbol in more than one way at
15214 the same time!  In case you're not convinced, try the following
15215 exercise:  How will the above rules parse the input @samp{foo(3,4)},
15216 if at all?  Work it out for yourself, then try it in Calc and see.)
15218 Calc is quite flexible about what sorts of patterns are allowed.
15219 The only rule is that every pattern must begin with a literal
15220 token (like @samp{foo} in the first two patterns above), or with
15221 a @samp{#} followed by a literal token (as in the last two
15222 patterns).  After that, any mixture is allowed, although putting
15223 two @samp{#}s in a row will not be very useful since two
15224 expressions with nothing between them will be parsed as one
15225 expression that uses implicit multiplication.
15227 As a more practical example, Maple uses the notation
15228 @samp{sum(a(i), i=1..10)} for sums, which Calc's Maple mode doesn't
15229 recognize at present.  To handle this syntax, we simply add the
15230 rule,
15232 @example
15233 sum ( # , # = # .. # ) := sum(#1,#2,#3,#4)
15234 @end example
15236 @noindent
15237 to the Maple mode syntax table.  As another example, C mode can't
15238 read assignment operators like @samp{++} and @samp{*=}.  We can
15239 define these operators quite easily:
15241 @example
15242 # *= # := muleq(#1,#2)
15243 # ++ := postinc(#1)
15244 ++ # := preinc(#1)
15245 @end example
15247 @noindent
15248 To complete the job, we would use corresponding composition functions
15249 and @kbd{Z C} to cause these functions to display in their respective
15250 Maple and C notations.  (Note that the C example ignores issues of
15251 operator precedence, which are discussed in the next section.)
15253 You can enclose any token in quotes to prevent its usual
15254 interpretation in syntax patterns:
15256 @example
15257 # ":=" # := becomes(#1,#2)
15258 @end example
15260 Quotes also allow you to include spaces in a token, although once
15261 again it is generally better to use two tokens than one token with
15262 an embedded space.  To include an actual quotation mark in a quoted
15263 token, precede it with a backslash.  (This also works to include
15264 backslashes in tokens.)
15266 @example
15267 # "bad token" # "/\"\\" # := silly(#1,#2,#3)
15268 @end example
15270 @noindent
15271 This will parse @samp{3 bad token 4 /"\ 5} to @samp{silly(3,4,5)}.
15273 The token @kbd{#} has a predefined meaning in Calc's formula parser;
15274 it is not legal to use @samp{"#"} in a syntax rule.  However, longer
15275 tokens that include the @samp{#} character are allowed.  Also, while
15276 @samp{"$"} and @samp{"\""} are allowed as tokens, their presence in
15277 the syntax table will prevent those characters from working in their
15278 usual ways (referring to stack entries and quoting strings,
15279 respectively).
15281 Finally, the notation @samp{%%} anywhere in a syntax table causes
15282 the rest of the line to be ignored as a comment.
15284 @node Precedence in Syntax Tables, Advanced Syntax Patterns, Syntax Table Basics, Syntax Tables
15285 @subsubsection Precedence
15287 @noindent
15288 Different operators are generally assigned different @dfn{precedences}.
15289 By default, an operator defined by a rule like
15291 @example
15292 # foo # := foo(#1,#2)
15293 @end example
15295 @noindent
15296 will have an extremely low precedence, so that @samp{2*3+4 foo 5 == 6}
15297 will be parsed as @samp{(2*3+4) foo (5 == 6)}.  To change the
15298 precedence of an operator, use the notation @samp{#/@var{p}} in
15299 place of @samp{#}, where @var{p} is an integer precedence level.
15300 For example, 185 lies between the precedences for @samp{+} and
15301 @samp{*}, so if we change this rule to
15303 @example
15304 #/185 foo #/186 := foo(#1,#2)
15305 @end example
15307 @noindent
15308 then @samp{2+3 foo 4*5} will be parsed as @samp{2+(3 foo (4*5))}.
15309 Also, because we've given the righthand expression slightly higher
15310 precedence, our new operator will be left-associative:
15311 @samp{1 foo 2 foo 3} will be parsed as @samp{(1 foo 2) foo 3}.
15312 By raising the precedence of the lefthand expression instead, we
15313 can create a right-associative operator.
15315 @xref{Composition Basics}, for a table of precedences of the
15316 standard Calc operators.  For the precedences of operators in other
15317 language modes, look in the Calc source file @file{calc-lang.el}.
15319 @node Advanced Syntax Patterns, Conditional Syntax Rules, Precedence in Syntax Tables, Syntax Tables
15320 @subsubsection Advanced Syntax Patterns
15322 @noindent
15323 To match a function with a variable number of arguments, you could
15324 write
15326 @example
15327 foo ( # ) := myfunc(#1)
15328 foo ( # , # ) := myfunc(#1,#2)
15329 foo ( # , # , # ) := myfunc(#1,#2,#3)
15330 @end example
15332 @noindent
15333 but this isn't very elegant.  To match variable numbers of items,
15334 Calc uses some notations inspired regular expressions and the
15335 ``extended BNF'' style used by some language designers.
15337 @example
15338 foo ( @{ # @}*, ) := apply(myfunc,#1)
15339 @end example
15341 The token @samp{@{} introduces a repeated or optional portion.
15342 One of the three tokens @samp{@}*}, @samp{@}+}, or @samp{@}?}
15343 ends the portion.  These will match zero or more, one or more,
15344 or zero or one copies of the enclosed pattern, respectively.
15345 In addition, @samp{@}*} and @samp{@}+} can be followed by a
15346 separator token (with no space in between, as shown above).
15347 Thus @samp{@{ # @}*,} matches nothing, or one expression, or
15348 several expressions separated by commas.
15350 A complete @samp{@{ ... @}} item matches as a vector of the
15351 items that matched inside it.  For example, the above rule will
15352 match @samp{foo(1,2,3)} to get @samp{apply(myfunc,[1,2,3])}.
15353 The Calc @code{apply} function takes a function name and a vector
15354 of arguments and builds a call to the function with those
15355 arguments, so the net result is the formula @samp{myfunc(1,2,3)}.
15357 If the body of a @samp{@{ ... @}} contains several @samp{#}s
15358 (or nested @samp{@{ ... @}} constructs), then the items will be
15359 strung together into the resulting vector.  If the body
15360 does not contain anything but literal tokens, the result will
15361 always be an empty vector.
15363 @example
15364 foo ( @{ # , # @}+, ) := bar(#1)
15365 foo ( @{ @{ # @}*, @}*; ) := matrix(#1)
15366 @end example
15368 @noindent
15369 will parse @samp{foo(1, 2, 3, 4)} as @samp{bar([1, 2, 3, 4])}, and
15370 @samp{foo(1, 2; 3, 4)} as @samp{matrix([[1, 2], [3, 4]])}.  Also, after
15371 some thought it's easy to see how this pair of rules will parse
15372 @samp{foo(1, 2, 3)} as @samp{matrix([[1, 2, 3]])}, since the first
15373 rule will only match an even number of arguments.  The rule
15375 @example
15376 foo ( # @{ , # , # @}? ) := bar(#1,#2)
15377 @end example
15379 @noindent
15380 will parse @samp{foo(2,3,4)} as @samp{bar(2,[3,4])}, and
15381 @samp{foo(2)} as @samp{bar(2,[])}.
15383 The notation @samp{@{ ... @}?.} (note the trailing period) works
15384 just the same as regular @samp{@{ ... @}?}, except that it does not
15385 count as an argument; the following two rules are equivalent:
15387 @example
15388 foo ( # , @{ also @}? # ) := bar(#1,#3)
15389 foo ( # , @{ also @}?. # ) := bar(#1,#2)
15390 @end example
15392 @noindent
15393 Note that in the first case the optional text counts as @samp{#2},
15394 which will always be an empty vector, but in the second case no
15395 empty vector is produced.
15397 Another variant is @samp{@{ ... @}?$}, which means the body is
15398 optional only at the end of the input formula.  All built-in syntax
15399 rules in Calc use this for closing delimiters, so that during
15400 algebraic entry you can type @kbd{[sqrt(2), sqrt(3 @key{RET}}, omitting
15401 the closing parenthesis and bracket.  Calc does this automatically
15402 for trailing @samp{)}, @samp{]}, and @samp{>} tokens in syntax
15403 rules, but you can use @samp{@{ ... @}?$} explicitly to get
15404 this effect with any token (such as @samp{"@}"} or @samp{end}).
15405 Like @samp{@{ ... @}?.}, this notation does not count as an
15406 argument.  Conversely, you can use quotes, as in @samp{")"}, to
15407 prevent a closing-delimiter token from being automatically treated
15408 as optional.
15410 Calc's parser does not have full backtracking, which means some
15411 patterns will not work as you might expect:
15413 @example
15414 foo ( @{ # , @}? # , # ) := bar(#1,#2,#3)
15415 @end example
15417 @noindent
15418 Here we are trying to make the first argument optional, so that
15419 @samp{foo(2,3)} parses as @samp{bar([],2,3)}.  Unfortunately, Calc
15420 first tries to match @samp{2,} against the optional part of the
15421 pattern, finds a match, and so goes ahead to match the rest of the
15422 pattern.  Later on it will fail to match the second comma, but it
15423 doesn't know how to go back and try the other alternative at that
15424 point.  One way to get around this would be to use two rules:
15426 @example
15427 foo ( # , # , # ) := bar([#1],#2,#3)
15428 foo ( # , # ) := bar([],#1,#2)
15429 @end example
15431 More precisely, when Calc wants to match an optional or repeated
15432 part of a pattern, it scans forward attempting to match that part.
15433 If it reaches the end of the optional part without failing, it
15434 ``finalizes'' its choice and proceeds.  If it fails, though, it
15435 backs up and tries the other alternative.  Thus Calc has ``partial''
15436 backtracking.  A fully backtracking parser would go on to make sure
15437 the rest of the pattern matched before finalizing the choice.
15439 @node Conditional Syntax Rules, , Advanced Syntax Patterns, Syntax Tables
15440 @subsubsection Conditional Syntax Rules
15442 @noindent
15443 It is possible to attach a @dfn{condition} to a syntax rule.  For
15444 example, the rules
15446 @example
15447 foo ( # ) := ifoo(#1) :: integer(#1)
15448 foo ( # ) := gfoo(#1)
15449 @end example
15451 @noindent
15452 will parse @samp{foo(3)} as @samp{ifoo(3)}, but will parse
15453 @samp{foo(3.5)} and @samp{foo(x)} as calls to @code{gfoo}.  Any
15454 number of conditions may be attached; all must be true for the
15455 rule to succeed.  A condition is ``true'' if it evaluates to a
15456 nonzero number.  @xref{Logical Operations}, for a list of Calc
15457 functions like @code{integer} that perform logical tests.
15459 The exact sequence of events is as follows:  When Calc tries a
15460 rule, it first matches the pattern as usual.  It then substitutes
15461 @samp{#1}, @samp{#2}, etc., in the conditions, if any.  Next, the
15462 conditions are simplified and evaluated in order from left to right,
15463 as if by the @w{@kbd{a s}} algebra command (@pxref{Simplifying Formulas}).
15464 Each result is true if it is a nonzero number, or an expression
15465 that can be proven to be nonzero (@pxref{Declarations}).  If the
15466 results of all conditions are true, the expression (such as
15467 @samp{ifoo(#1)}) has its @samp{#}s substituted, and that is the
15468 result of the parse.  If the result of any condition is false, Calc
15469 goes on to try the next rule in the syntax table.
15471 Syntax rules also support @code{let} conditions, which operate in
15472 exactly the same way as they do in algebraic rewrite rules.
15473 @xref{Other Features of Rewrite Rules}, for details.  A @code{let}
15474 condition is always true, but as a side effect it defines a
15475 variable which can be used in later conditions, and also in the
15476 expression after the @samp{:=} sign:
15478 @example
15479 foo ( # ) := hifoo(x) :: let(x := #1 + 0.5) :: dnumint(x)
15480 @end example
15482 @noindent
15483 The @code{dnumint} function tests if a value is numerically an
15484 integer, i.e., either a true integer or an integer-valued float.
15485 This rule will parse @code{foo} with a half-integer argument,
15486 like @samp{foo(3.5)}, to a call like @samp{hifoo(4.)}.
15488 The lefthand side of a syntax rule @code{let} must be a simple
15489 variable, not the arbitrary pattern that is allowed in rewrite
15490 rules.
15492 The @code{matches} function is also treated specially in syntax
15493 rule conditions (again, in the same way as in rewrite rules).
15494 @xref{Matching Commands}.  If the matching pattern contains
15495 meta-variables, then those meta-variables may be used in later
15496 conditions and in the result expression.  The arguments to
15497 @code{matches} are not evaluated in this situation.
15499 @example
15500 sum ( # , # ) := sum(#1,a,b,c) :: matches(#2, a=[b..c])
15501 @end example
15503 @noindent
15504 This is another way to implement the Maple mode @code{sum} notation.
15505 In this approach, we allow @samp{#2} to equal the whole expression
15506 @samp{i=1..10}.  Then, we use @code{matches} to break it apart into
15507 its components.  If the expression turns out not to match the pattern,
15508 the syntax rule will fail.  Note that @kbd{Z S} always uses Calc's
15509 normal language mode for editing expressions in syntax rules, so we
15510 must use regular Calc notation for the interval @samp{[b..c]} that
15511 will correspond to the Maple mode interval @samp{1..10}.
15513 @node Modes Variable, Calc Mode Line, Language Modes, Mode Settings
15514 @section The @code{Modes} Variable
15516 @noindent
15517 @kindex m g
15518 @pindex calc-get-modes
15519 The @kbd{m g} (@code{calc-get-modes}) command pushes onto the stack
15520 a vector of numbers that describes the various mode settings that
15521 are in effect.  With a numeric prefix argument, it pushes only the
15522 @var{n}th mode, i.e., the @var{n}th element of this vector.  Keyboard
15523 macros can use the @kbd{m g} command to modify their behavior based
15524 on the current mode settings.
15526 @cindex @code{Modes} variable
15527 @vindex Modes
15528 The modes vector is also available in the special variable
15529 @code{Modes}.  In other words, @kbd{m g} is like @kbd{s r Modes @key{RET}}.
15530 It will not work to store into this variable; in fact, if you do,
15531 @code{Modes} will cease to track the current modes.  (The @kbd{m g}
15532 command will continue to work, however.)
15534 In general, each number in this vector is suitable as a numeric
15535 prefix argument to the associated mode-setting command.  (Recall
15536 that the @kbd{~} key takes a number from the stack and gives it as
15537 a numeric prefix to the next command.)
15539 The elements of the modes vector are as follows:
15541 @enumerate
15542 @item
15543 Current precision.  Default is 12; associated command is @kbd{p}.
15545 @item
15546 Binary word size.  Default is 32; associated command is @kbd{b w}.
15548 @item
15549 Stack size (not counting the value about to be pushed by @kbd{m g}).
15550 This is zero if @kbd{m g} is executed with an empty stack.
15552 @item
15553 Number radix.  Default is 10; command is @kbd{d r}.
15555 @item
15556 Floating-point format.  This is the number of digits, plus the
15557 constant 0 for normal notation, 10000 for scientific notation,
15558 20000 for engineering notation, or 30000 for fixed-point notation.
15559 These codes are acceptable as prefix arguments to the @kbd{d n}
15560 command, but note that this may lose information:  For example,
15561 @kbd{d s} and @kbd{C-u 12 d s} have similar (but not quite
15562 identical) effects if the current precision is 12, but they both
15563 produce a code of 10012, which will be treated by @kbd{d n} as
15564 @kbd{C-u 12 d s}.  If the precision then changes, the float format
15565 will still be frozen at 12 significant figures.
15567 @item
15568 Angular mode.  Default is 1 (degrees).  Other values are 2 (radians)
15569 and 3 (HMS).  The @kbd{m d} command accepts these prefixes.
15571 @item
15572 Symbolic mode.  Value is 0 or 1; default is 0.  Command is @kbd{m s}.
15574 @item 
15575 Fraction mode.  Value is 0 or 1; default is 0.  Command is @kbd{m f}.
15577 @item
15578 Polar mode.  Value is 0 (rectangular) or 1 (polar); default is 0.
15579 Command is @kbd{m p}.
15581 @item
15582 Matrix/scalar mode.  Default value is @i{-1}.  Value is 0 for scalar
15583 mode, @i{-2} for matrix mode, or @var{N} for @c{$N\times N$}
15584 @var{N}x@var{N} matrix mode.  Command is @kbd{m v}.
15586 @item
15587 Simplification mode.  Default is 1.  Value is @i{-1} for off (@kbd{m O}),
15588 0 for @kbd{m N}, 2 for @kbd{m B}, 3 for @kbd{m A}, 4 for @kbd{m E},
15589 or 5 for @w{@kbd{m U}}.  The @kbd{m D} command accepts these prefixes.
15591 @item
15592 Infinite mode.  Default is @i{-1} (off).  Value is 1 if the mode is on,
15593 or 0 if the mode is on with positive zeros.  Command is @kbd{m i}.
15594 @end enumerate
15596 For example, the sequence @kbd{M-1 m g @key{RET} 2 + ~ p} increases the
15597 precision by two, leaving a copy of the old precision on the stack.
15598 Later, @kbd{~ p} will restore the original precision using that
15599 stack value.  (This sequence might be especially useful inside a
15600 keyboard macro.)
15602 As another example, @kbd{M-3 m g 1 - ~ @key{DEL}} deletes all but the
15603 oldest (bottommost) stack entry.
15605 Yet another example:  The HP-48 ``round'' command rounds a number
15606 to the current displayed precision.  You could roughly emulate this
15607 in Calc with the sequence @kbd{M-5 m g 10000 % ~ c c}.  (This
15608 would not work for fixed-point mode, but it wouldn't be hard to
15609 do a full emulation with the help of the @kbd{Z [} and @kbd{Z ]}
15610 programming commands.  @xref{Conditionals in Macros}.)
15612 @node Calc Mode Line, , Modes Variable, Mode Settings
15613 @section The Calc Mode Line
15615 @noindent
15616 @cindex Mode line indicators
15617 This section is a summary of all symbols that can appear on the
15618 Calc mode line, the highlighted bar that appears under the Calc
15619 stack window (or under an editing window in Embedded Mode).
15621 The basic mode line format is:
15623 @example
15624 --%%-Calc: 12 Deg @var{other modes}       (Calculator)
15625 @end example
15627 The @samp{%%} is the Emacs symbol for ``read-only''; it shows that
15628 regular Emacs commands are not allowed to edit the stack buffer
15629 as if it were text.
15631 The word @samp{Calc:} changes to @samp{CalcEmbed:} if Embedded Mode
15632 is enabled.  The words after this describe the various Calc modes
15633 that are in effect.
15635 The first mode is always the current precision, an integer.
15636 The second mode is always the angular mode, either @code{Deg},
15637 @code{Rad}, or @code{Hms}.
15639 Here is a complete list of the remaining symbols that can appear
15640 on the mode line:
15642 @table @code
15643 @item Alg
15644 Algebraic mode (@kbd{m a}; @pxref{Algebraic Entry}).
15646 @item Alg[(
15647 Incomplete algebraic mode (@kbd{C-u m a}).
15649 @item Alg*
15650 Total algebraic mode (@kbd{m t}).
15652 @item Symb
15653 Symbolic mode (@kbd{m s}; @pxref{Symbolic Mode}).
15655 @item Matrix
15656 Matrix mode (@kbd{m v}; @pxref{Matrix Mode}).
15658 @item Matrix@var{n}
15659 Dimensioned matrix mode (@kbd{C-u @var{n} m v}).
15661 @item Scalar
15662 Scalar mode (@kbd{m v}; @pxref{Matrix Mode}).
15664 @item Polar
15665 Polar complex mode (@kbd{m p}; @pxref{Polar Mode}).
15667 @item Frac
15668 Fraction mode (@kbd{m f}; @pxref{Fraction Mode}).
15670 @item Inf
15671 Infinite mode (@kbd{m i}; @pxref{Infinite Mode}).
15673 @item +Inf
15674 Positive infinite mode (@kbd{C-u 0 m i}).
15676 @item NoSimp
15677 Default simplifications off (@kbd{m O}; @pxref{Simplification Modes}).
15679 @item NumSimp
15680 Default simplifications for numeric arguments only (@kbd{m N}).
15682 @item BinSimp@var{w}
15683 Binary-integer simplification mode; word size @var{w} (@kbd{m B}, @kbd{b w}).
15685 @item AlgSimp
15686 Algebraic simplification mode (@kbd{m A}).
15688 @item ExtSimp
15689 Extended algebraic simplification mode (@kbd{m E}).
15691 @item UnitSimp
15692 Units simplification mode (@kbd{m U}).
15694 @item Bin
15695 Current radix is 2 (@kbd{d 2}; @pxref{Radix Modes}).
15697 @item Oct
15698 Current radix is 8 (@kbd{d 8}).
15700 @item Hex
15701 Current radix is 16 (@kbd{d 6}).
15703 @item Radix@var{n}
15704 Current radix is @var{n} (@kbd{d r}).
15706 @item Zero
15707 Leading zeros (@kbd{d z}; @pxref{Radix Modes}).
15709 @item Big
15710 Big language mode (@kbd{d B}; @pxref{Normal Language Modes}).
15712 @item Flat
15713 One-line normal language mode (@kbd{d O}).
15715 @item Unform
15716 Unformatted language mode (@kbd{d U}).
15718 @item C
15719 C language mode (@kbd{d C}; @pxref{C FORTRAN Pascal}).
15721 @item Pascal
15722 Pascal language mode (@kbd{d P}).
15724 @item Fortran
15725 FORTRAN language mode (@kbd{d F}).
15727 @item TeX
15728 @TeX{} language mode (@kbd{d T}; @pxref{TeX Language Mode}).
15730 @item Eqn
15731 @dfn{Eqn} language mode (@kbd{d E}; @pxref{Eqn Language Mode}).
15733 @item Math
15734 Mathematica language mode (@kbd{d M}; @pxref{Mathematica Language Mode}).
15736 @item Maple
15737 Maple language mode (@kbd{d W}; @pxref{Maple Language Mode}).
15739 @item Norm@var{n}
15740 Normal float mode with @var{n} digits (@kbd{d n}; @pxref{Float Formats}).
15742 @item Fix@var{n}
15743 Fixed point mode with @var{n} digits after the point (@kbd{d f}).
15745 @item Sci
15746 Scientific notation mode (@kbd{d s}).
15748 @item Sci@var{n}
15749 Scientific notation with @var{n} digits (@kbd{d s}).
15751 @item Eng
15752 Engineering notation mode (@kbd{d e}).
15754 @item Eng@var{n}
15755 Engineering notation with @var{n} digits (@kbd{d e}).
15757 @item Left@var{n}
15758 Left-justified display indented by @var{n} (@kbd{d <}; @pxref{Justification}).
15760 @item Right
15761 Right-justified display (@kbd{d >}).
15763 @item Right@var{n}
15764 Right-justified display with width @var{n} (@kbd{d >}).
15766 @item Center
15767 Centered display (@kbd{d =}).
15769 @item Center@var{n}
15770 Centered display with center column @var{n} (@kbd{d =}).
15772 @item Wid@var{n}
15773 Line breaking with width @var{n} (@kbd{d b}; @pxref{Normal Language Modes}).
15775 @item Wide
15776 No line breaking (@kbd{d b}).
15778 @item Break
15779 Selections show deep structure (@kbd{j b}; @pxref{Making Selections}).
15781 @item Save
15782 Record modes in @file{~/.emacs} (@kbd{m R}; @pxref{General Mode Commands}).
15784 @item Local
15785 Record modes in Embedded buffer (@kbd{m R}).
15787 @item LocEdit
15788 Record modes as editing-only in Embedded buffer (@kbd{m R}).
15790 @item LocPerm
15791 Record modes as permanent-only in Embedded buffer (@kbd{m R}).
15793 @item Global
15794 Record modes as global in Embedded buffer (@kbd{m R}).
15796 @item Manual
15797 Automatic recomputation turned off (@kbd{m C}; @pxref{Automatic
15798 Recomputation}).
15800 @item Graph
15801 GNUPLOT process is alive in background (@pxref{Graphics}).
15803 @item Sel
15804 Top-of-stack has a selection (Embedded only; @pxref{Making Selections}).
15806 @item Dirty
15807 The stack display may not be up-to-date (@pxref{Display Modes}).
15809 @item Inv
15810 ``Inverse'' prefix was pressed (@kbd{I}; @pxref{Inverse and Hyperbolic}).
15812 @item Hyp
15813 ``Hyperbolic'' prefix was pressed (@kbd{H}).
15815 @item Keep
15816 ``Keep-arguments'' prefix was pressed (@kbd{K}).
15818 @item Narrow
15819 Stack is truncated (@kbd{d t}; @pxref{Truncating the Stack}).
15820 @end table
15822 In addition, the symbols @code{Active} and @code{~Active} can appear
15823 as minor modes on an Embedded buffer's mode line.  @xref{Embedded Mode}.
15825 @node Arithmetic, Scientific Functions, Mode Settings, Top
15826 @chapter Arithmetic Functions
15828 @noindent
15829 This chapter describes the Calc commands for doing simple calculations
15830 on numbers, such as addition, absolute value, and square roots.  These
15831 commands work by removing the top one or two values from the stack,
15832 performing the desired operation, and pushing the result back onto the
15833 stack.  If the operation cannot be performed, the result pushed is a
15834 formula instead of a number, such as @samp{2/0} (because division by zero
15835 is illegal) or @samp{sqrt(x)} (because the argument @samp{x} is a formula).
15837 Most of the commands described here can be invoked by a single keystroke.
15838 Some of the more obscure ones are two-letter sequences beginning with
15839 the @kbd{f} (``functions'') prefix key.
15841 @xref{Prefix Arguments}, for a discussion of the effect of numeric
15842 prefix arguments on commands in this chapter which do not otherwise
15843 interpret a prefix argument.
15845 @menu
15846 * Basic Arithmetic::
15847 * Integer Truncation::
15848 * Complex Number Functions::
15849 * Conversions::
15850 * Date Arithmetic::
15851 * Financial Functions::
15852 * Binary Functions::
15853 @end menu
15855 @node Basic Arithmetic, Integer Truncation, Arithmetic, Arithmetic
15856 @section Basic Arithmetic
15858 @noindent
15859 @kindex +
15860 @pindex calc-plus
15861 @ignore
15862 @mindex @null
15863 @end ignore
15864 @tindex +
15865 The @kbd{+} (@code{calc-plus}) command adds two numbers.  The numbers may
15866 be any of the standard Calc data types.  The resulting sum is pushed back
15867 onto the stack.
15869 If both arguments of @kbd{+} are vectors or matrices (of matching dimensions),
15870 the result is a vector or matrix sum.  If one argument is a vector and the
15871 other a scalar (i.e., a non-vector), the scalar is added to each of the
15872 elements of the vector to form a new vector.  If the scalar is not a
15873 number, the operation is left in symbolic form:  Suppose you added @samp{x}
15874 to the vector @samp{[1,2]}.  You may want the result @samp{[1+x,2+x]}, or
15875 you may plan to substitute a 2-vector for @samp{x} in the future.  Since
15876 the Calculator can't tell which interpretation you want, it makes the
15877 safest assumption.  @xref{Reducing and Mapping}, for a way to add @samp{x}
15878 to every element of a vector.
15880 If either argument of @kbd{+} is a complex number, the result will in general
15881 be complex.  If one argument is in rectangular form and the other polar,
15882 the current Polar Mode determines the form of the result.  If Symbolic
15883 Mode is enabled, the sum may be left as a formula if the necessary
15884 conversions for polar addition are non-trivial.
15886 If both arguments of @kbd{+} are HMS forms, the forms are added according to
15887 the usual conventions of hours-minutes-seconds notation.  If one argument
15888 is an HMS form and the other is a number, that number is converted from
15889 degrees or radians (depending on the current Angular Mode) to HMS format
15890 and then the two HMS forms are added.
15892 If one argument of @kbd{+} is a date form, the other can be either a
15893 real number, which advances the date by a certain number of days, or
15894 an HMS form, which advances the date by a certain amount of time.
15895 Subtracting two date forms yields the number of days between them.
15896 Adding two date forms is meaningless, but Calc interprets it as the
15897 subtraction of one date form and the negative of the other.  (The
15898 negative of a date form can be understood by remembering that dates
15899 are stored as the number of days before or after Jan 1, 1 AD.)
15901 If both arguments of @kbd{+} are error forms, the result is an error form
15902 with an appropriately computed standard deviation.  If one argument is an
15903 error form and the other is a number, the number is taken to have zero error.
15904 Error forms may have symbolic formulas as their mean and/or error parts;
15905 adding these will produce a symbolic error form result.  However, adding an
15906 error form to a plain symbolic formula (as in @samp{(a +/- b) + c}) will not
15907 work, for the same reasons just mentioned for vectors.  Instead you must
15908 write @samp{(a +/- b) + (c +/- 0)}.
15910 If both arguments of @kbd{+} are modulo forms with equal values of @cite{M},
15911 or if one argument is a modulo form and the other a plain number, the
15912 result is a modulo form which represents the sum, modulo @cite{M}, of
15913 the two values.
15915 If both arguments of @kbd{+} are intervals, the result is an interval
15916 which describes all possible sums of the possible input values.  If
15917 one argument is a plain number, it is treated as the interval
15918 @w{@samp{[x ..@: x]}}.
15920 If one argument of @kbd{+} is an infinity and the other is not, the
15921 result is that same infinity.  If both arguments are infinite and in
15922 the same direction, the result is the same infinity, but if they are
15923 infinite in different directions the result is @code{nan}.
15925 @kindex -
15926 @pindex calc-minus
15927 @ignore
15928 @mindex @null
15929 @end ignore
15930 @tindex -
15931 The @kbd{-} (@code{calc-minus}) command subtracts two values.  The top
15932 number on the stack is subtracted from the one behind it, so that the
15933 computation @kbd{5 @key{RET} 2 -} produces 3, not @i{-3}.  All options
15934 available for @kbd{+} are available for @kbd{-} as well.
15936 @kindex *
15937 @pindex calc-times
15938 @ignore
15939 @mindex @null
15940 @end ignore
15941 @tindex *
15942 The @kbd{*} (@code{calc-times}) command multiplies two numbers.  If one
15943 argument is a vector and the other a scalar, the scalar is multiplied by
15944 the elements of the vector to produce a new vector.  If both arguments
15945 are vectors, the interpretation depends on the dimensions of the
15946 vectors:  If both arguments are matrices, a matrix multiplication is
15947 done.  If one argument is a matrix and the other a plain vector, the
15948 vector is interpreted as a row vector or column vector, whichever is
15949 dimensionally correct.  If both arguments are plain vectors, the result
15950 is a single scalar number which is the dot product of the two vectors.
15952 If one argument of @kbd{*} is an HMS form and the other a number, the
15953 HMS form is multiplied by that amount.  It is an error to multiply two
15954 HMS forms together, or to attempt any multiplication involving date
15955 forms.  Error forms, modulo forms, and intervals can be multiplied;
15956 see the comments for addition of those forms.  When two error forms
15957 or intervals are multiplied they are considered to be statistically
15958 independent; thus, @samp{[-2 ..@: 3] * [-2 ..@: 3]} is @samp{[-6 ..@: 9]},
15959 whereas @w{@samp{[-2 ..@: 3] ^ 2}} is @samp{[0 ..@: 9]}.
15961 @kindex /
15962 @pindex calc-divide
15963 @ignore
15964 @mindex @null
15965 @end ignore
15966 @tindex /
15967 The @kbd{/} (@code{calc-divide}) command divides two numbers.  When
15968 dividing a scalar @cite{B} by a square matrix @cite{A}, the computation
15969 performed is @cite{B} times the inverse of @cite{A}.  This also occurs
15970 if @cite{B} is itself a vector or matrix, in which case the effect is
15971 to solve the set of linear equations represented by @cite{B}.  If @cite{B}
15972 is a matrix with the same number of rows as @cite{A}, or a plain vector
15973 (which is interpreted here as a column vector), then the equation
15974 @cite{A X = B} is solved for the vector or matrix @cite{X}.  Otherwise,
15975 if @cite{B} is a non-square matrix with the same number of @emph{columns}
15976 as @cite{A}, the equation @cite{X A = B} is solved.  If you wish a vector
15977 @cite{B} to be interpreted as a row vector to be solved as @cite{X A = B},
15978 make it into a one-row matrix with @kbd{C-u 1 v p} first.  To force a
15979 left-handed solution with a square matrix @cite{B}, transpose @cite{A} and
15980 @cite{B} before dividing, then transpose the result.
15982 HMS forms can be divided by real numbers or by other HMS forms.  Error
15983 forms can be divided in any combination of ways.  Modulo forms where both
15984 values and the modulo are integers can be divided to get an integer modulo
15985 form result.  Intervals can be divided; dividing by an interval that
15986 encompasses zero or has zero as a limit will result in an infinite
15987 interval.
15989 @kindex ^
15990 @pindex calc-power
15991 @ignore
15992 @mindex @null
15993 @end ignore
15994 @tindex ^
15995 The @kbd{^} (@code{calc-power}) command raises a number to a power.  If
15996 the power is an integer, an exact result is computed using repeated
15997 multiplications.  For non-integer powers, Calc uses Newton's method or
15998 logarithms and exponentials.  Square matrices can be raised to integer
15999 powers.  If either argument is an error (or interval or modulo) form,
16000 the result is also an error (or interval or modulo) form.
16002 @kindex I ^
16003 @tindex nroot
16004 If you press the @kbd{I} (inverse) key first, the @kbd{I ^} command
16005 computes an Nth root:  @kbd{125 @key{RET} 3 I ^} computes the number 5.
16006 (This is entirely equivalent to @kbd{125 @key{RET} 1:3 ^}.)
16008 @kindex \
16009 @pindex calc-idiv
16010 @tindex idiv
16011 @ignore
16012 @mindex @null
16013 @end ignore
16014 @tindex \
16015 The @kbd{\} (@code{calc-idiv}) command divides two numbers on the stack
16016 to produce an integer result.  It is equivalent to dividing with
16017 @key{/}, then rounding down with @kbd{F} (@code{calc-floor}), only a bit
16018 more convenient and efficient.  Also, since it is an all-integer
16019 operation when the arguments are integers, it avoids problems that
16020 @kbd{/ F} would have with floating-point roundoff.
16022 @kindex %
16023 @pindex calc-mod
16024 @ignore
16025 @mindex @null
16026 @end ignore
16027 @tindex %
16028 The @kbd{%} (@code{calc-mod}) command performs a ``modulo'' (or ``remainder'')
16029 operation.  Mathematically, @samp{a%b = a - (a\b)*b}, and is defined
16030 for all real numbers @cite{a} and @cite{b} (except @cite{b=0}).  For
16031 positive @cite{b}, the result will always be between 0 (inclusive) and
16032 @cite{b} (exclusive).  Modulo does not work for HMS forms and error forms.
16033 If @cite{a} is a modulo form, its modulo is changed to @cite{b}, which
16034 must be positive real number.
16036 @kindex :
16037 @pindex calc-fdiv
16038 @tindex fdiv
16039 The @kbd{:} (@code{calc-fdiv}) command [@code{fdiv} function in a formula]
16040 divides the two integers on the top of the stack to produce a fractional
16041 result.  This is a convenient shorthand for enabling Fraction Mode (with
16042 @kbd{m f}) temporarily and using @samp{/}.  Note that during numeric entry
16043 the @kbd{:} key is interpreted as a fraction separator, so to divide 8 by 6
16044 you would have to type @kbd{8 @key{RET} 6 @key{RET} :}.  (Of course, in
16045 this case, it would be much easier simply to enter the fraction directly
16046 as @kbd{8:6 @key{RET}}!)
16048 @kindex n
16049 @pindex calc-change-sign
16050 The @kbd{n} (@code{calc-change-sign}) command negates the number on the top
16051 of the stack.  It works on numbers, vectors and matrices, HMS forms, date
16052 forms, error forms, intervals, and modulo forms.
16054 @kindex A
16055 @pindex calc-abs
16056 @tindex abs
16057 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the absolute
16058 value of a number.  The result of @code{abs} is always a nonnegative
16059 real number:  With a complex argument, it computes the complex magnitude.
16060 With a vector or matrix argument, it computes the Frobenius norm, i.e.,
16061 the square root of the sum of the squares of the absolute values of the
16062 elements.  The absolute value of an error form is defined by replacing
16063 the mean part with its absolute value and leaving the error part the same.
16064 The absolute value of a modulo form is undefined.  The absolute value of
16065 an interval is defined in the obvious way.
16067 @kindex f A
16068 @pindex calc-abssqr
16069 @tindex abssqr
16070 The @kbd{f A} (@code{calc-abssqr}) [@code{abssqr}] command computes the
16071 absolute value squared of a number, vector or matrix, or error form.
16073 @kindex f s
16074 @pindex calc-sign
16075 @tindex sign
16076 The @kbd{f s} (@code{calc-sign}) [@code{sign}] command returns 1 if its
16077 argument is positive, @i{-1} if its argument is negative, or 0 if its
16078 argument is zero.  In algebraic form, you can also write @samp{sign(a,x)}
16079 which evaluates to @samp{x * sign(a)}, i.e., either @samp{x}, @samp{-x}, or
16080 zero depending on the sign of @samp{a}.
16082 @kindex &
16083 @pindex calc-inv
16084 @tindex inv
16085 @cindex Reciprocal
16086 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
16087 reciprocal of a number, i.e., @cite{1 / x}.  Operating on a square
16088 matrix, it computes the inverse of that matrix.
16090 @kindex Q
16091 @pindex calc-sqrt
16092 @tindex sqrt
16093 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] command computes the square
16094 root of a number.  For a negative real argument, the result will be a
16095 complex number whose form is determined by the current Polar Mode.
16097 @kindex f h
16098 @pindex calc-hypot
16099 @tindex hypot
16100 The @kbd{f h} (@code{calc-hypot}) [@code{hypot}] command computes the square
16101 root of the sum of the squares of two numbers.  That is, @samp{hypot(a,b)}
16102 is the length of the hypotenuse of a right triangle with sides @cite{a}
16103 and @cite{b}.  If the arguments are complex numbers, their squared
16104 magnitudes are used.
16106 @kindex f Q
16107 @pindex calc-isqrt
16108 @tindex isqrt
16109 The @kbd{f Q} (@code{calc-isqrt}) [@code{isqrt}] command computes the
16110 integer square root of an integer.  This is the true square root of the
16111 number, rounded down to an integer.  For example, @samp{isqrt(10)}
16112 produces 3.  Note that, like @kbd{\} [@code{idiv}], this uses exact
16113 integer arithmetic throughout to avoid roundoff problems.  If the input
16114 is a floating-point number or other non-integer value, this is exactly
16115 the same as @samp{floor(sqrt(x))}.
16117 @kindex f n
16118 @kindex f x
16119 @pindex calc-min
16120 @tindex min
16121 @pindex calc-max
16122 @tindex max
16123 The @kbd{f n} (@code{calc-min}) [@code{min}] and @kbd{f x} (@code{calc-max})
16124 [@code{max}] commands take the minimum or maximum of two real numbers,
16125 respectively.  These commands also work on HMS forms, date forms,
16126 intervals, and infinities.  (In algebraic expressions, these functions
16127 take any number of arguments and return the maximum or minimum among
16128 all the arguments.)@refill
16130 @kindex f M
16131 @kindex f X
16132 @pindex calc-mant-part
16133 @tindex mant
16134 @pindex calc-xpon-part
16135 @tindex xpon
16136 The @kbd{f M} (@code{calc-mant-part}) [@code{mant}] function extracts
16137 the ``mantissa'' part @cite{m} of its floating-point argument; @kbd{f X}
16138 (@code{calc-xpon-part}) [@code{xpon}] extracts the ``exponent'' part
16139 @cite{e}.  The original number is equal to @c{$m \times 10^e$}
16140 @cite{m * 10^e},
16141 where @cite{m} is in the interval @samp{[1.0 ..@: 10.0)} except that
16142 @cite{m=e=0} if the original number is zero.  For integers
16143 and fractions, @code{mant} returns the number unchanged and @code{xpon}
16144 returns zero.  The @kbd{v u} (@code{calc-unpack}) command can also be
16145 used to ``unpack'' a floating-point number; this produces an integer
16146 mantissa and exponent, with the constraint that the mantissa is not
16147 a multiple of ten (again except for the @cite{m=e=0} case).@refill
16149 @kindex f S
16150 @pindex calc-scale-float
16151 @tindex scf
16152 The @kbd{f S} (@code{calc-scale-float}) [@code{scf}] function scales a number
16153 by a given power of ten.  Thus, @samp{scf(mant(x), xpon(x)) = x} for any
16154 real @samp{x}.  The second argument must be an integer, but the first
16155 may actually be any numeric value.  For example, @samp{scf(5,-2) = 0.05}
16156 or @samp{1:20} depending on the current Fraction Mode.@refill
16158 @kindex f [
16159 @kindex f ]
16160 @pindex calc-decrement
16161 @pindex calc-increment
16162 @tindex decr
16163 @tindex incr
16164 The @kbd{f [} (@code{calc-decrement}) [@code{decr}] and @kbd{f ]}
16165 (@code{calc-increment}) [@code{incr}] functions decrease or increase
16166 a number by one unit.  For integers, the effect is obvious.  For
16167 floating-point numbers, the change is by one unit in the last place.
16168 For example, incrementing @samp{12.3456} when the current precision
16169 is 6 digits yields @samp{12.3457}.  If the current precision had been
16170 8 digits, the result would have been @samp{12.345601}.  Incrementing
16171 @samp{0.0} produces @c{$10^{-p}$}
16172 @cite{10^-p}, where @cite{p} is the current
16173 precision.  These operations are defined only on integers and floats.
16174 With numeric prefix arguments, they change the number by @cite{n} units.
16176 Note that incrementing followed by decrementing, or vice-versa, will
16177 almost but not quite always cancel out.  Suppose the precision is
16178 6 digits and the number @samp{9.99999} is on the stack.  Incrementing
16179 will produce @samp{10.0000}; decrementing will produce @samp{9.9999}.
16180 One digit has been dropped.  This is an unavoidable consequence of the
16181 way floating-point numbers work.
16183 Incrementing a date/time form adjusts it by a certain number of seconds.
16184 Incrementing a pure date form adjusts it by a certain number of days.
16186 @node Integer Truncation, Complex Number Functions, Basic Arithmetic, Arithmetic
16187 @section Integer Truncation
16189 @noindent
16190 There are four commands for truncating a real number to an integer,
16191 differing mainly in their treatment of negative numbers.  All of these
16192 commands have the property that if the argument is an integer, the result
16193 is the same integer.  An integer-valued floating-point argument is converted
16194 to integer form.
16196 If you press @kbd{H} (@code{calc-hyperbolic}) first, the result will be
16197 expressed as an integer-valued floating-point number.
16199 @cindex Integer part of a number
16200 @kindex F
16201 @pindex calc-floor
16202 @tindex floor
16203 @tindex ffloor
16204 @ignore
16205 @mindex @null
16206 @end ignore
16207 @kindex H F
16208 The @kbd{F} (@code{calc-floor}) [@code{floor} or @code{ffloor}] command
16209 truncates a real number to the next lower integer, i.e., toward minus
16210 infinity.  Thus @kbd{3.6 F} produces 3, but @kbd{_3.6 F} produces
16211 @i{-4}.@refill
16213 @kindex I F
16214 @pindex calc-ceiling
16215 @tindex ceil
16216 @tindex fceil
16217 @ignore
16218 @mindex @null
16219 @end ignore
16220 @kindex H I F
16221 The @kbd{I F} (@code{calc-ceiling}) [@code{ceil} or @code{fceil}]
16222 command truncates toward positive infinity.  Thus @kbd{3.6 I F} produces
16223 4, and @kbd{_3.6 I F} produces @i{-3}.@refill
16225 @kindex R
16226 @pindex calc-round
16227 @tindex round
16228 @tindex fround
16229 @ignore
16230 @mindex @null
16231 @end ignore
16232 @kindex H R
16233 The @kbd{R} (@code{calc-round}) [@code{round} or @code{fround}] command
16234 rounds to the nearest integer.  When the fractional part is .5 exactly,
16235 this command rounds away from zero.  (All other rounding in the
16236 Calculator uses this convention as well.)  Thus @kbd{3.5 R} produces 4
16237 but @kbd{3.4 R} produces 3; @kbd{_3.5 R} produces @i{-4}.@refill
16239 @kindex I R
16240 @pindex calc-trunc
16241 @tindex trunc
16242 @tindex ftrunc
16243 @ignore
16244 @mindex @null
16245 @end ignore
16246 @kindex H I R
16247 The @kbd{I R} (@code{calc-trunc}) [@code{trunc} or @code{ftrunc}]
16248 command truncates toward zero.  In other words, it ``chops off''
16249 everything after the decimal point.  Thus @kbd{3.6 I R} produces 3 and
16250 @kbd{_3.6 I R} produces @i{-3}.@refill
16252 These functions may not be applied meaningfully to error forms, but they
16253 do work for intervals.  As a convenience, applying @code{floor} to a
16254 modulo form floors the value part of the form.  Applied to a vector,
16255 these functions operate on all elements of the vector one by one.
16256 Applied to a date form, they operate on the internal numerical
16257 representation of dates, converting a date/time form into a pure date.
16259 @ignore
16260 @starindex
16261 @end ignore
16262 @tindex rounde
16263 @ignore
16264 @starindex
16265 @end ignore
16266 @tindex roundu
16267 @ignore
16268 @starindex
16269 @end ignore
16270 @tindex frounde
16271 @ignore
16272 @starindex
16273 @end ignore
16274 @tindex froundu
16275 There are two more rounding functions which can only be entered in
16276 algebraic notation.  The @code{roundu} function is like @code{round}
16277 except that it rounds up, toward plus infinity, when the fractional
16278 part is .5.  This distinction matters only for negative arguments.
16279 Also, @code{rounde} rounds to an even number in the case of a tie,
16280 rounding up or down as necessary.  For example, @samp{rounde(3.5)} and
16281 @samp{rounde(4.5)} both return 4, but @samp{rounde(5.5)} returns 6.
16282 The advantage of round-to-even is that the net error due to rounding
16283 after a long calculation tends to cancel out to zero.  An important
16284 subtle point here is that the number being fed to @code{rounde} will
16285 already have been rounded to the current precision before @code{rounde}
16286 begins.  For example, @samp{rounde(2.500001)} with a current precision
16287 of 6 will incorrectly, or at least surprisingly, yield 2 because the
16288 argument will first have been rounded down to @cite{2.5} (which
16289 @code{rounde} sees as an exact tie between 2 and 3).
16291 Each of these functions, when written in algebraic formulas, allows
16292 a second argument which specifies the number of digits after the
16293 decimal point to keep.  For example, @samp{round(123.4567, 2)} will
16294 produce the answer 123.46, and @samp{round(123.4567, -1)} will
16295 produce 120 (i.e., the cutoff is one digit to the @emph{left} of
16296 the decimal point).  A second argument of zero is equivalent to
16297 no second argument at all.
16299 @cindex Fractional part of a number
16300 To compute the fractional part of a number (i.e., the amount which, when
16301 added to `@t{floor(}@var{n}@t{)}', will produce @var{n}) just take @var{n}
16302 modulo 1 using the @code{%} command.@refill
16304 Note also the @kbd{\} (integer quotient), @kbd{f I} (integer logarithm),
16305 and @kbd{f Q} (integer square root) commands, which are analogous to
16306 @kbd{/}, @kbd{B}, and @kbd{Q}, respectively, except that they take integer
16307 arguments and return the result rounded down to an integer.
16309 @node Complex Number Functions, Conversions, Integer Truncation, Arithmetic
16310 @section Complex Number Functions
16312 @noindent
16313 @kindex J
16314 @pindex calc-conj
16315 @tindex conj
16316 The @kbd{J} (@code{calc-conj}) [@code{conj}] command computes the
16317 complex conjugate of a number.  For complex number @cite{a+bi}, the
16318 complex conjugate is @cite{a-bi}.  If the argument is a real number,
16319 this command leaves it the same.  If the argument is a vector or matrix,
16320 this command replaces each element by its complex conjugate.
16322 @kindex G
16323 @pindex calc-argument
16324 @tindex arg
16325 The @kbd{G} (@code{calc-argument}) [@code{arg}] command computes the
16326 ``argument'' or polar angle of a complex number.  For a number in polar
16327 notation, this is simply the second component of the pair
16328 `@t{(}@var{r}@t{;}@c{$\theta$}
16329 @var{theta}@t{)}'.
16330 The result is expressed according to the current angular mode and will
16331 be in the range @i{-180} degrees (exclusive) to @i{+180} degrees
16332 (inclusive), or the equivalent range in radians.@refill
16334 @pindex calc-imaginary
16335 The @code{calc-imaginary} command multiplies the number on the
16336 top of the stack by the imaginary number @cite{i = (0,1)}.  This
16337 command is not normally bound to a key in Calc, but it is available
16338 on the @key{IMAG} button in Keypad Mode.
16340 @kindex f r
16341 @pindex calc-re
16342 @tindex re
16343 The @kbd{f r} (@code{calc-re}) [@code{re}] command replaces a complex number
16344 by its real part.  This command has no effect on real numbers.  (As an
16345 added convenience, @code{re} applied to a modulo form extracts
16346 the value part.)@refill
16348 @kindex f i
16349 @pindex calc-im
16350 @tindex im
16351 The @kbd{f i} (@code{calc-im}) [@code{im}] command replaces a complex number
16352 by its imaginary part; real numbers are converted to zero.  With a vector
16353 or matrix argument, these functions operate element-wise.@refill
16355 @ignore
16356 @mindex v p
16357 @end ignore
16358 @kindex v p (complex)
16359 @pindex calc-pack
16360 The @kbd{v p} (@code{calc-pack}) command can pack the top two numbers on
16361 the stack into a composite object such as a complex number.  With
16362 a prefix argument of @i{-1}, it produces a rectangular complex number;
16363 with an argument of @i{-2}, it produces a polar complex number.
16364 (Also, @pxref{Building Vectors}.)
16366 @ignore
16367 @mindex v u
16368 @end ignore
16369 @kindex v u (complex)
16370 @pindex calc-unpack
16371 The @kbd{v u} (@code{calc-unpack}) command takes the complex number
16372 (or other composite object) on the top of the stack and unpacks it
16373 into its separate components.
16375 @node Conversions, Date Arithmetic, Complex Number Functions, Arithmetic
16376 @section Conversions
16378 @noindent
16379 The commands described in this section convert numbers from one form
16380 to another; they are two-key sequences beginning with the letter @kbd{c}.
16382 @kindex c f
16383 @pindex calc-float
16384 @tindex pfloat
16385 The @kbd{c f} (@code{calc-float}) [@code{pfloat}] command converts the
16386 number on the top of the stack to floating-point form.  For example,
16387 @cite{23} is converted to @cite{23.0}, @cite{3:2} is converted to
16388 @cite{1.5}, and @cite{2.3} is left the same.  If the value is a composite
16389 object such as a complex number or vector, each of the components is
16390 converted to floating-point.  If the value is a formula, all numbers
16391 in the formula are converted to floating-point.  Note that depending
16392 on the current floating-point precision, conversion to floating-point
16393 format may lose information.@refill
16395 As a special exception, integers which appear as powers or subscripts
16396 are not floated by @kbd{c f}.  If you really want to float a power,
16397 you can use a @kbd{j s} command to select the power followed by @kbd{c f}.
16398 Because @kbd{c f} cannot examine the formula outside of the selection,
16399 it does not notice that the thing being floated is a power.
16400 @xref{Selecting Subformulas}.
16402 The normal @kbd{c f} command is ``pervasive'' in the sense that it
16403 applies to all numbers throughout the formula.  The @code{pfloat}
16404 algebraic function never stays around in a formula; @samp{pfloat(a + 1)}
16405 changes to @samp{a + 1.0} as soon as it is evaluated.
16407 @kindex H c f
16408 @tindex float
16409 With the Hyperbolic flag, @kbd{H c f} [@code{float}] operates
16410 only on the number or vector of numbers at the top level of its
16411 argument.  Thus, @samp{float(1)} is 1.0, but @samp{float(a + 1)}
16412 is left unevaluated because its argument is not a number.
16414 You should use @kbd{H c f} if you wish to guarantee that the final
16415 value, once all the variables have been assigned, is a float; you
16416 would use @kbd{c f} if you wish to do the conversion on the numbers
16417 that appear right now.
16419 @kindex c F
16420 @pindex calc-fraction
16421 @tindex pfrac
16422 The @kbd{c F} (@code{calc-fraction}) [@code{pfrac}] command converts a
16423 floating-point number into a fractional approximation.  By default, it
16424 produces a fraction whose decimal representation is the same as the
16425 input number, to within the current precision.  You can also give a
16426 numeric prefix argument to specify a tolerance, either directly, or,
16427 if the prefix argument is zero, by using the number on top of the stack
16428 as the tolerance.  If the tolerance is a positive integer, the fraction
16429 is correct to within that many significant figures.  If the tolerance is
16430 a non-positive integer, it specifies how many digits fewer than the current
16431 precision to use.  If the tolerance is a floating-point number, the
16432 fraction is correct to within that absolute amount.
16434 @kindex H c F
16435 @tindex frac
16436 The @code{pfrac} function is pervasive, like @code{pfloat}.
16437 There is also a non-pervasive version, @kbd{H c F} [@code{frac}],
16438 which is analogous to @kbd{H c f} discussed above.
16440 @kindex c d
16441 @pindex calc-to-degrees
16442 @tindex deg
16443 The @kbd{c d} (@code{calc-to-degrees}) [@code{deg}] command converts a
16444 number into degrees form.  The value on the top of the stack may be an
16445 HMS form (interpreted as degrees-minutes-seconds), or a real number which
16446 will be interpreted in radians regardless of the current angular mode.@refill
16448 @kindex c r
16449 @pindex calc-to-radians
16450 @tindex rad
16451 The @kbd{c r} (@code{calc-to-radians}) [@code{rad}] command converts an
16452 HMS form or angle in degrees into an angle in radians.
16454 @kindex c h
16455 @pindex calc-to-hms
16456 @tindex hms
16457 The @kbd{c h} (@code{calc-to-hms}) [@code{hms}] command converts a real
16458 number, interpreted according to the current angular mode, to an HMS
16459 form describing the same angle.  In algebraic notation, the @code{hms}
16460 function also accepts three arguments: @samp{hms(@var{h}, @var{m}, @var{s})}.
16461 (The three-argument version is independent of the current angular mode.)
16463 @pindex calc-from-hms
16464 The @code{calc-from-hms} command converts the HMS form on the top of the
16465 stack into a real number according to the current angular mode.
16467 @kindex c p
16468 @kindex I c p
16469 @pindex calc-polar
16470 @tindex polar
16471 @tindex rect
16472 The @kbd{c p} (@code{calc-polar}) command converts the complex number on
16473 the top of the stack from polar to rectangular form, or from rectangular
16474 to polar form, whichever is appropriate.  Real numbers are left the same.
16475 This command is equivalent to the @code{rect} or @code{polar}
16476 functions in algebraic formulas, depending on the direction of
16477 conversion.  (It uses @code{polar}, except that if the argument is
16478 already a polar complex number, it uses @code{rect} instead.  The
16479 @kbd{I c p} command always uses @code{rect}.)@refill
16481 @kindex c c
16482 @pindex calc-clean
16483 @tindex pclean
16484 The @kbd{c c} (@code{calc-clean}) [@code{pclean}] command ``cleans'' the
16485 number on the top of the stack.  Floating point numbers are re-rounded
16486 according to the current precision.  Polar numbers whose angular
16487 components have strayed from the @i{-180} to @i{+180} degree range
16488 are normalized.  (Note that results will be undesirable if the current
16489 angular mode is different from the one under which the number was
16490 produced!)  Integers and fractions are generally unaffected by this
16491 operation.  Vectors and formulas are cleaned by cleaning each component
16492 number (i.e., pervasively).@refill
16494 If the simplification mode is set below the default level, it is raised
16495 to the default level for the purposes of this command.  Thus, @kbd{c c}
16496 applies the default simplifications even if their automatic application
16497 is disabled.  @xref{Simplification Modes}.
16499 @cindex Roundoff errors, correcting
16500 A numeric prefix argument to @kbd{c c} sets the floating-point precision
16501 to that value for the duration of the command.  A positive prefix (of at
16502 least 3) sets the precision to the specified value; a negative or zero
16503 prefix decreases the precision by the specified amount.
16505 @kindex c 0-9
16506 @pindex calc-clean-num
16507 The keystroke sequences @kbd{c 0} through @kbd{c 9} are equivalent
16508 to @kbd{c c} with the corresponding negative prefix argument.  If roundoff
16509 errors have changed 2.0 into 1.999999, typing @kbd{c 1} to clip off one
16510 decimal place often conveniently does the trick.
16512 The @kbd{c c} command with a numeric prefix argument, and the @kbd{c 0}
16513 through @kbd{c 9} commands, also ``clip'' very small floating-point
16514 numbers to zero.  If the exponent is less than or equal to the negative
16515 of the specified precision, the number is changed to 0.0.  For example,
16516 if the current precision is 12, then @kbd{c 2} changes the vector
16517 @samp{[1e-8, 1e-9, 1e-10, 1e-11]} to @samp{[1e-8, 1e-9, 0, 0]}.
16518 Numbers this small generally arise from roundoff noise.
16520 If the numbers you are using really are legitimately this small,
16521 you should avoid using the @kbd{c 0} through @kbd{c 9} commands.
16522 (The plain @kbd{c c} command rounds to the current precision but
16523 does not clip small numbers.)
16525 One more property of @kbd{c 0} through @kbd{c 9}, and of @kbd{c c} with
16526 a prefix argument, is that integer-valued floats are converted to
16527 plain integers, so that @kbd{c 1} on @samp{[1., 1.5, 2., 2.5, 3.]}
16528 produces @samp{[1, 1.5, 2, 2.5, 3]}.  This is not done for huge
16529 numbers (@samp{1e100} is technically an integer-valued float, but
16530 you wouldn't want it automatically converted to a 100-digit integer).
16532 @kindex H c 0-9
16533 @kindex H c c
16534 @tindex clean
16535 With the Hyperbolic flag, @kbd{H c c} and @kbd{H c 0} through @kbd{H c 9}
16536 operate non-pervasively [@code{clean}].
16538 @node Date Arithmetic, Financial Functions, Conversions, Arithmetic
16539 @section Date Arithmetic
16541 @noindent
16542 @cindex Date arithmetic, additional functions
16543 The commands described in this section perform various conversions
16544 and calculations involving date forms (@pxref{Date Forms}).  They
16545 use the @kbd{t} (for time/date) prefix key followed by shifted
16546 letters.
16548 The simplest date arithmetic is done using the regular @kbd{+} and @kbd{-}
16549 commands.  In particular, adding a number to a date form advances the
16550 date form by a certain number of days; adding an HMS form to a date
16551 form advances the date by a certain amount of time; and subtracting two
16552 date forms produces a difference measured in days.  The commands
16553 described here provide additional, more specialized operations on dates.
16555 Many of these commands accept a numeric prefix argument; if you give
16556 plain @kbd{C-u} as the prefix, these commands will instead take the
16557 additional argument from the top of the stack.
16559 @menu
16560 * Date Conversions::
16561 * Date Functions::
16562 * Time Zones::
16563 * Business Days::
16564 @end menu
16566 @node Date Conversions, Date Functions, Date Arithmetic, Date Arithmetic
16567 @subsection Date Conversions
16569 @noindent
16570 @kindex t D
16571 @pindex calc-date
16572 @tindex date
16573 The @kbd{t D} (@code{calc-date}) [@code{date}] command converts a
16574 date form into a number, measured in days since Jan 1, 1 AD.  The
16575 result will be an integer if @var{date} is a pure date form, or a
16576 fraction or float if @var{date} is a date/time form.  Or, if its
16577 argument is a number, it converts this number into a date form.
16579 With a numeric prefix argument, @kbd{t D} takes that many objects
16580 (up to six) from the top of the stack and interprets them in one
16581 of the following ways:
16583 The @samp{date(@var{year}, @var{month}, @var{day})} function
16584 builds a pure date form out of the specified year, month, and
16585 day, which must all be integers.  @var{Year} is a year number,
16586 such as 1991 (@emph{not} the same as 91!).  @var{Month} must be
16587 an integer in the range 1 to 12; @var{day} must be in the range
16588 1 to 31.  If the specified month has fewer than 31 days and
16589 @var{day} is too large, the equivalent day in the following
16590 month will be used.
16592 The @samp{date(@var{month}, @var{day})} function builds a
16593 pure date form using the current year, as determined by the
16594 real-time clock.
16596 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hms})}
16597 function builds a date/time form using an @var{hms} form.
16599 The @samp{date(@var{year}, @var{month}, @var{day}, @var{hour},
16600 @var{minute}, @var{second})} function builds a date/time form.
16601 @var{hour} should be an integer in the range 0 to 23;
16602 @var{minute} should be an integer in the range 0 to 59;
16603 @var{second} should be any real number in the range @samp{[0 .. 60)}.
16604 The last two arguments default to zero if omitted.
16606 @kindex t J
16607 @pindex calc-julian
16608 @tindex julian
16609 @cindex Julian day counts, conversions
16610 The @kbd{t J} (@code{calc-julian}) [@code{julian}] command converts
16611 a date form into a Julian day count, which is the number of days
16612 since noon on Jan 1, 4713 BC.  A pure date is converted to an integer
16613 Julian count representing noon of that day.  A date/time form is
16614 converted to an exact floating-point Julian count, adjusted to
16615 interpret the date form in the current time zone but the Julian
16616 day count in Greenwich Mean Time.  A numeric prefix argument allows
16617 you to specify the time zone; @pxref{Time Zones}.  Use a prefix of
16618 zero to suppress the time zone adjustment.  Note that pure date forms
16619 are never time-zone adjusted.
16621 This command can also do the opposite conversion, from a Julian day
16622 count (either an integer day, or a floating-point day and time in
16623 the GMT zone), into a pure date form or a date/time form in the
16624 current or specified time zone.
16626 @kindex t U
16627 @pindex calc-unix-time
16628 @tindex unixtime
16629 @cindex Unix time format, conversions
16630 The @kbd{t U} (@code{calc-unix-time}) [@code{unixtime}] command
16631 converts a date form into a Unix time value, which is the number of
16632 seconds since midnight on Jan 1, 1970, or vice-versa.  The numeric result
16633 will be an integer if the current precision is 12 or less; for higher
16634 precisions, the result may be a float with (@var{precision}@minus{}12)
16635 digits after the decimal.  Just as for @kbd{t J}, the numeric time
16636 is interpreted in the GMT time zone and the date form is interpreted
16637 in the current or specified zone.  Some systems use Unix-like
16638 numbering but with the local time zone; give a prefix of zero to
16639 suppress the adjustment if so.
16641 @kindex t C
16642 @pindex calc-convert-time-zones
16643 @tindex tzconv
16644 @cindex Time Zones, converting between
16645 The @kbd{t C} (@code{calc-convert-time-zones}) [@code{tzconv}]
16646 command converts a date form from one time zone to another.  You
16647 are prompted for each time zone name in turn; you can answer with
16648 any suitable Calc time zone expression (@pxref{Time Zones}).
16649 If you answer either prompt with a blank line, the local time
16650 zone is used for that prompt.  You can also answer the first
16651 prompt with @kbd{$} to take the two time zone names from the
16652 stack (and the date to be converted from the third stack level).
16654 @node Date Functions, Business Days, Date Conversions, Date Arithmetic
16655 @subsection Date Functions
16657 @noindent
16658 @kindex t N
16659 @pindex calc-now
16660 @tindex now
16661 The @kbd{t N} (@code{calc-now}) [@code{now}] command pushes the
16662 current date and time on the stack as a date form.  The time is
16663 reported in terms of the specified time zone; with no numeric prefix
16664 argument, @kbd{t N} reports for the current time zone.
16666 @kindex t P
16667 @pindex calc-date-part
16668 The @kbd{t P} (@code{calc-date-part}) command extracts one part
16669 of a date form.  The prefix argument specifies the part; with no
16670 argument, this command prompts for a part code from 1 to 9.
16671 The various part codes are described in the following paragraphs.
16673 @tindex year
16674 The @kbd{M-1 t P} [@code{year}] function extracts the year number
16675 from a date form as an integer, e.g., 1991.  This and the
16676 following functions will also accept a real number for an
16677 argument, which is interpreted as a standard Calc day number.
16678 Note that this function will never return zero, since the year
16679 1 BC immediately precedes the year 1 AD.
16681 @tindex month
16682 The @kbd{M-2 t P} [@code{month}] function extracts the month number
16683 from a date form as an integer in the range 1 to 12.
16685 @tindex day
16686 The @kbd{M-3 t P} [@code{day}] function extracts the day number
16687 from a date form as an integer in the range 1 to 31.
16689 @tindex hour
16690 The @kbd{M-4 t P} [@code{hour}] function extracts the hour from
16691 a date form as an integer in the range 0 (midnight) to 23.  Note
16692 that 24-hour time is always used.  This returns zero for a pure
16693 date form.  This function (and the following two) also accept
16694 HMS forms as input.
16696 @tindex minute
16697 The @kbd{M-5 t P} [@code{minute}] function extracts the minute
16698 from a date form as an integer in the range 0 to 59.
16700 @tindex second
16701 The @kbd{M-6 t P} [@code{second}] function extracts the second
16702 from a date form.  If the current precision is 12 or less,
16703 the result is an integer in the range 0 to 59.  For higher
16704 precisions, the result may instead be a floating-point number.
16706 @tindex weekday
16707 The @kbd{M-7 t P} [@code{weekday}] function extracts the weekday
16708 number from a date form as an integer in the range 0 (Sunday)
16709 to 6 (Saturday).
16711 @tindex yearday
16712 The @kbd{M-8 t P} [@code{yearday}] function extracts the day-of-year
16713 number from a date form as an integer in the range 1 (January 1)
16714 to 366 (December 31 of a leap year).
16716 @tindex time
16717 The @kbd{M-9 t P} [@code{time}] function extracts the time portion
16718 of a date form as an HMS form.  This returns @samp{0@@ 0' 0"}
16719 for a pure date form.
16721 @kindex t M
16722 @pindex calc-new-month
16723 @tindex newmonth
16724 The @kbd{t M} (@code{calc-new-month}) [@code{newmonth}] command
16725 computes a new date form that represents the first day of the month
16726 specified by the input date.  The result is always a pure date
16727 form; only the year and month numbers of the input are retained.
16728 With a numeric prefix argument @var{n} in the range from 1 to 31,
16729 @kbd{t M} computes the @var{n}th day of the month.  (If @var{n}
16730 is greater than the actual number of days in the month, or if
16731 @var{n} is zero, the last day of the month is used.)
16733 @kindex t Y
16734 @pindex calc-new-year
16735 @tindex newyear
16736 The @kbd{t Y} (@code{calc-new-year}) [@code{newyear}] command
16737 computes a new pure date form that represents the first day of
16738 the year specified by the input.  The month, day, and time
16739 of the input date form are lost.  With a numeric prefix argument
16740 @var{n} in the range from 1 to 366, @kbd{t Y} computes the
16741 @var{n}th day of the year (366 is treated as 365 in non-leap
16742 years).  A prefix argument of 0 computes the last day of the
16743 year (December 31).  A negative prefix argument from @i{-1} to
16744 @i{-12} computes the first day of the @var{n}th month of the year.
16746 @kindex t W
16747 @pindex calc-new-week
16748 @tindex newweek
16749 The @kbd{t W} (@code{calc-new-week}) [@code{newweek}] command
16750 computes a new pure date form that represents the Sunday on or before
16751 the input date.  With a numeric prefix argument, it can be made to
16752 use any day of the week as the starting day; the argument must be in
16753 the range from 0 (Sunday) to 6 (Saturday).  This function always
16754 subtracts between 0 and 6 days from the input date.
16756 Here's an example use of @code{newweek}:  Find the date of the next
16757 Wednesday after a given date.  Using @kbd{M-3 t W} or @samp{newweek(d, 3)}
16758 will give you the @emph{preceding} Wednesday, so @samp{newweek(d+7, 3)}
16759 will give you the following Wednesday.  A further look at the definition
16760 of @code{newweek} shows that if the input date is itself a Wednesday,
16761 this formula will return the Wednesday one week in the future.  An
16762 exercise for the reader is to modify this formula to yield the same day
16763 if the input is already a Wednesday.  Another interesting exercise is
16764 to preserve the time-of-day portion of the input (@code{newweek} resets
16765 the time to midnight; hint:@: how can @code{newweek} be defined in terms
16766 of the @code{weekday} function?).
16768 @ignore
16769 @starindex
16770 @end ignore
16771 @tindex pwday
16772 The @samp{pwday(@var{date})} function (not on any key) computes the
16773 day-of-month number of the Sunday on or before @var{date}.  With
16774 two arguments, @samp{pwday(@var{date}, @var{day})} computes the day
16775 number of the Sunday on or before day number @var{day} of the month
16776 specified by @var{date}.  The @var{day} must be in the range from
16777 7 to 31; if the day number is greater than the actual number of days
16778 in the month, the true number of days is used instead.  Thus
16779 @samp{pwday(@var{date}, 7)} finds the first Sunday of the month, and
16780 @samp{pwday(@var{date}, 31)} finds the last Sunday of the month.
16781 With a third @var{weekday} argument, @code{pwday} can be made to look
16782 for any day of the week instead of Sunday.
16784 @kindex t I
16785 @pindex calc-inc-month
16786 @tindex incmonth
16787 The @kbd{t I} (@code{calc-inc-month}) [@code{incmonth}] command
16788 increases a date form by one month, or by an arbitrary number of
16789 months specified by a numeric prefix argument.  The time portion,
16790 if any, of the date form stays the same.  The day also stays the
16791 same, except that if the new month has fewer days the day
16792 number may be reduced to lie in the valid range.  For example,
16793 @samp{incmonth(<Jan 31, 1991>)} produces @samp{<Feb 28, 1991>}.
16794 Because of this, @kbd{t I t I} and @kbd{M-2 t I} do not always give
16795 the same results (@samp{<Mar 28, 1991>} versus @samp{<Mar 31, 1991>}
16796 in this case).
16798 @ignore
16799 @starindex
16800 @end ignore
16801 @tindex incyear
16802 The @samp{incyear(@var{date}, @var{step})} function increases
16803 a date form by the specified number of years, which may be
16804 any positive or negative integer.  Note that @samp{incyear(d, n)}
16805 is equivalent to @w{@samp{incmonth(d, 12*n)}}, but these do not have
16806 simple equivalents in terms of day arithmetic because
16807 months and years have varying lengths.  If the @var{step}
16808 argument is omitted, 1 year is assumed.  There is no keyboard
16809 command for this function; use @kbd{C-u 12 t I} instead.
16811 There is no @code{newday} function at all because @kbd{F} [@code{floor}]
16812 serves this purpose.  Similarly, instead of @code{incday} and
16813 @code{incweek} simply use @cite{d + n} or @cite{d + 7 n}.
16815 @xref{Basic Arithmetic}, for the @kbd{f ]} [@code{incr}] command
16816 which can adjust a date/time form by a certain number of seconds.
16818 @node Business Days, Time Zones, Date Functions, Date Arithmetic
16819 @subsection Business Days
16821 @noindent
16822 Often time is measured in ``business days'' or ``working days,''
16823 where weekends and holidays are skipped.  Calc's normal date
16824 arithmetic functions use calendar days, so that subtracting two
16825 consecutive Mondays will yield a difference of 7 days.  By contrast,
16826 subtracting two consecutive Mondays would yield 5 business days
16827 (assuming two-day weekends and the absence of holidays).
16829 @kindex t +
16830 @kindex t -
16831 @tindex badd
16832 @tindex bsub
16833 @pindex calc-business-days-plus
16834 @pindex calc-business-days-minus
16835 The @kbd{t +} (@code{calc-business-days-plus}) [@code{badd}]
16836 and @kbd{t -} (@code{calc-business-days-minus}) [@code{bsub}]
16837 commands perform arithmetic using business days.  For @kbd{t +},
16838 one argument must be a date form and the other must be a real
16839 number (positive or negative).  If the number is not an integer,
16840 then a certain amount of time is added as well as a number of
16841 days; for example, adding 0.5 business days to a time in Friday
16842 evening will produce a time in Monday morning.  It is also
16843 possible to add an HMS form; adding @samp{12@@ 0' 0"} also adds
16844 half a business day.  For @kbd{t -}, the arguments are either a
16845 date form and a number or HMS form, or two date forms, in which
16846 case the result is the number of business days between the two
16847 dates.
16849 @cindex @code{Holidays} variable
16850 @vindex Holidays
16851 By default, Calc considers any day that is not a Saturday or
16852 Sunday to be a business day.  You can define any number of
16853 additional holidays by editing the variable @code{Holidays}.
16854 (There is an @w{@kbd{s H}} convenience command for editing this
16855 variable.)  Initially, @code{Holidays} contains the vector
16856 @samp{[sat, sun]}.  Entries in the @code{Holidays} vector may
16857 be any of the following kinds of objects:
16859 @itemize @bullet
16860 @item
16861 Date forms (pure dates, not date/time forms).  These specify
16862 particular days which are to be treated as holidays.
16864 @item
16865 Intervals of date forms.  These specify a range of days, all of
16866 which are holidays (e.g., Christmas week).  @xref{Interval Forms}.
16868 @item
16869 Nested vectors of date forms.  Each date form in the vector is
16870 considered to be a holiday.
16872 @item
16873 Any Calc formula which evaluates to one of the above three things.
16874 If the formula involves the variable @cite{y}, it stands for a
16875 yearly repeating holiday; @cite{y} will take on various year
16876 numbers like 1992.  For example, @samp{date(y, 12, 25)} specifies
16877 Christmas day, and @samp{newweek(date(y, 11, 7), 4) + 21} specifies
16878 Thanksgiving (which is held on the fourth Thursday of November).
16879 If the formula involves the variable @cite{m}, that variable
16880 takes on month numbers from 1 to 12:  @samp{date(y, m, 15)} is
16881 a holiday that takes place on the 15th of every month.
16883 @item
16884 A weekday name, such as @code{sat} or @code{sun}.  This is really
16885 a variable whose name is a three-letter, lower-case day name.
16887 @item
16888 An interval of year numbers (integers).  This specifies the span of
16889 years over which this holiday list is to be considered valid.  Any
16890 business-day arithmetic that goes outside this range will result
16891 in an error message.  Use this if you are including an explicit
16892 list of holidays, rather than a formula to generate them, and you
16893 want to make sure you don't accidentally go beyond the last point
16894 where the holidays you entered are complete.  If there is no
16895 limiting interval in the @code{Holidays} vector, the default
16896 @samp{[1 .. 2737]} is used.  (This is the absolute range of years
16897 for which Calc's business-day algorithms will operate.)
16899 @item
16900 An interval of HMS forms.  This specifies the span of hours that
16901 are to be considered one business day.  For example, if this
16902 range is @samp{[9@@ 0' 0" .. 17@@ 0' 0"]} (i.e., 9am to 5pm), then
16903 the business day is only eight hours long, so that @kbd{1.5 t +}
16904 on @samp{<4:00pm Fri Dec 13, 1991>} will add one business day and
16905 four business hours to produce @samp{<12:00pm Tue Dec 17, 1991>}.
16906 Likewise, @kbd{t -} will now express differences in time as
16907 fractions of an eight-hour day.  Times before 9am will be treated
16908 as 9am by business date arithmetic, and times at or after 5pm will
16909 be treated as 4:59:59pm.  If there is no HMS interval in @code{Holidays},
16910 the full 24-hour day @samp{[0@ 0' 0" .. 24@ 0' 0"]} is assumed.
16911 (Regardless of the type of bounds you specify, the interval is
16912 treated as inclusive on the low end and exclusive on the high end,
16913 so that the work day goes from 9am up to, but not including, 5pm.)
16914 @end itemize
16916 If the @code{Holidays} vector is empty, then @kbd{t +} and
16917 @kbd{t -} will act just like @kbd{+} and @kbd{-} because there will
16918 then be no difference between business days and calendar days.
16920 Calc expands the intervals and formulas you give into a complete
16921 list of holidays for internal use.  This is done mainly to make
16922 sure it can detect multiple holidays.  (For example,
16923 @samp{<Jan 1, 1989>} is both New Year's Day and a Sunday, but
16924 Calc's algorithms take care to count it only once when figuring
16925 the number of holidays between two dates.)
16927 Since the complete list of holidays for all the years from 1 to
16928 2737 would be huge, Calc actually computes only the part of the
16929 list between the smallest and largest years that have been involved
16930 in business-day calculations so far.  Normally, you won't have to
16931 worry about this.  Keep in mind, however, that if you do one
16932 calculation for 1992, and another for 1792, even if both involve
16933 only a small range of years, Calc will still work out all the
16934 holidays that fall in that 200-year span.
16936 If you add a (positive) number of days to a date form that falls on a
16937 weekend or holiday, the date form is treated as if it were the most
16938 recent business day.  (Thus adding one business day to a Friday,
16939 Saturday, or Sunday will all yield the following Monday.)  If you
16940 subtract a number of days from a weekend or holiday, the date is
16941 effectively on the following business day.  (So subtracting one business
16942 day from Saturday, Sunday, or Monday yields the preceding Friday.)  The
16943 difference between two dates one or both of which fall on holidays
16944 equals the number of actual business days between them.  These
16945 conventions are consistent in the sense that, if you add @var{n}
16946 business days to any date, the difference between the result and the
16947 original date will come out to @var{n} business days.  (It can't be
16948 completely consistent though; a subtraction followed by an addition
16949 might come out a bit differently, since @kbd{t +} is incapable of
16950 producing a date that falls on a weekend or holiday.)
16952 @ignore
16953 @starindex
16954 @end ignore
16955 @tindex holiday
16956 There is a @code{holiday} function, not on any keys, that takes
16957 any date form and returns 1 if that date falls on a weekend or
16958 holiday, as defined in @code{Holidays}, or 0 if the date is a
16959 business day.
16961 @node Time Zones, , Business Days, Date Arithmetic
16962 @subsection Time Zones
16964 @noindent
16965 @cindex Time zones
16966 @cindex Daylight savings time
16967 Time zones and daylight savings time are a complicated business.
16968 The conversions to and from Julian and Unix-style dates automatically
16969 compute the correct time zone and daylight savings adjustment to use,
16970 provided they can figure out this information.  This section describes
16971 Calc's time zone adjustment algorithm in detail, in case you want to
16972 do conversions in different time zones or in case Calc's algorithms
16973 can't determine the right correction to use.
16975 Adjustments for time zones and daylight savings time are done by
16976 @kbd{t U}, @kbd{t J}, @kbd{t N}, and @kbd{t C}, but not by any other
16977 commands.  In particular, @samp{<may 1 1991> - <apr 1 1991>} evaluates
16978 to exactly 30 days even though there is a daylight-savings
16979 transition in between.  This is also true for Julian pure dates:
16980 @samp{julian(<may 1 1991>) - julian(<apr 1 1991>)}.  But Julian
16981 and Unix date/times will adjust for daylight savings time:
16982 @samp{julian(<12am may 1 1991>) - julian(<12am apr 1 1991>)}
16983 evaluates to @samp{29.95834} (that's 29 days and 23 hours)
16984 because one hour was lost when daylight savings commenced on
16985 April 7, 1991.
16987 In brief, the idiom @samp{julian(@var{date1}) - julian(@var{date2})}
16988 computes the actual number of 24-hour periods between two dates, whereas
16989 @samp{@var{date1} - @var{date2}} computes the number of calendar
16990 days between two dates without taking daylight savings into account.
16992 @pindex calc-time-zone
16993 @ignore
16994 @starindex
16995 @end ignore
16996 @tindex tzone
16997 The @code{calc-time-zone} [@code{tzone}] command converts the time
16998 zone specified by its numeric prefix argument into a number of
16999 seconds difference from Greenwich mean time (GMT).  If the argument
17000 is a number, the result is simply that value multiplied by 3600.
17001 Typical arguments for North America are 5 (Eastern) or 8 (Pacific).  If
17002 Daylight Savings time is in effect, one hour should be subtracted from
17003 the normal difference.
17005 If you give a prefix of plain @kbd{C-u}, @code{calc-time-zone} (like other
17006 date arithmetic commands that include a time zone argument) takes the
17007 zone argument from the top of the stack.  (In the case of @kbd{t J}
17008 and @kbd{t U}, the normal argument is then taken from the second-to-top
17009 stack position.)  This allows you to give a non-integer time zone
17010 adjustment.  The time-zone argument can also be an HMS form, or
17011 it can be a variable which is a time zone name in upper- or lower-case.
17012 For example @samp{tzone(PST) = tzone(8)} and @samp{tzone(pdt) = tzone(7)}
17013 (for Pacific standard and daylight savings times, respectively).
17015 North American and European time zone names are defined as follows;
17016 note that for each time zone there is one name for standard time,
17017 another for daylight savings time, and a third for ``generalized'' time
17018 in which the daylight savings adjustment is computed from context.
17020 @smallexample
17021 @group
17022 YST  PST  MST  CST  EST  AST    NST    GMT   WET     MET    MEZ
17023  9    8    7    6    5    4     3.5     0     -1      -2     -2
17025 YDT  PDT  MDT  CDT  EDT  ADT    NDT    BST  WETDST  METDST  MESZ
17026  8    7    6    5    4    3     2.5     -1    -2      -3     -3
17028 YGT  PGT  MGT  CGT  EGT  AGT    NGT    BGT   WEGT    MEGT   MEGZ
17029 9/8  8/7  7/6  6/5  5/4  4/3  3.5/2.5  0/-1 -1/-2   -2/-3  -2/-3
17030 @end group
17031 @end smallexample
17033 @vindex math-tzone-names
17034 To define time zone names that do not appear in the above table,
17035 you must modify the Lisp variable @code{math-tzone-names}.  This
17036 is a list of lists describing the different time zone names; its
17037 structure is best explained by an example.  The three entries for
17038 Pacific Time look like this:
17040 @smallexample
17041 @group
17042 ( ( "PST" 8 0 )    ; Name as an upper-case string, then standard
17043   ( "PDT" 8 -1 )   ; adjustment, then daylight savings adjustment.
17044   ( "PGT" 8 "PST" "PDT" ) )   ; Generalized time zone.
17045 @end group
17046 @end smallexample
17048 @cindex @code{TimeZone} variable
17049 @vindex TimeZone
17050 With no arguments, @code{calc-time-zone} or @samp{tzone()} obtains an
17051 argument from the Calc variable @code{TimeZone} if a value has been
17052 stored for that variable.  If not, Calc runs the Unix @samp{date}
17053 command and looks for one of the above time zone names in the output;
17054 if this does not succeed, @samp{tzone()} leaves itself unevaluated.
17055 The time zone name in the @samp{date} output may be followed by a signed
17056 adjustment, e.g., @samp{GMT+5} or @samp{GMT+0500} which specifies a
17057 number of hours and minutes to be added to the base time zone.
17058 Calc stores the time zone it finds into @code{TimeZone} to speed
17059 later calls to @samp{tzone()}.
17061 The special time zone name @code{local} is equivalent to no argument,
17062 i.e., it uses the local time zone as obtained from the @code{date}
17063 command.
17065 If the time zone name found is one of the standard or daylight
17066 savings zone names from the above table, and Calc's internal
17067 daylight savings algorithm says that time and zone are consistent
17068 (e.g., @code{PDT} accompanies a date that Calc's algorithm would also
17069 consider to be daylight savings, or @code{PST} accompanies a date
17070 that Calc would consider to be standard time), then Calc substitutes
17071 the corresponding generalized time zone (like @code{PGT}).
17073 If your system does not have a suitable @samp{date} command, you
17074 may wish to put a @samp{(setq var-TimeZone ...)} in your Emacs
17075 initialization file to set the time zone.  The easiest way to do
17076 this is to edit the @code{TimeZone} variable using Calc's @kbd{s T}
17077 command, then use the @kbd{s p} (@code{calc-permanent-variable})
17078 command to save the value of @code{TimeZone} permanently.
17080 The @kbd{t J} and @code{t U} commands with no numeric prefix
17081 arguments do the same thing as @samp{tzone()}.  If the current
17082 time zone is a generalized time zone, e.g., @code{EGT}, Calc
17083 examines the date being converted to tell whether to use standard
17084 or daylight savings time.  But if the current time zone is explicit,
17085 e.g., @code{EST} or @code{EDT}, then that adjustment is used exactly
17086 and Calc's daylight savings algorithm is not consulted.
17088 Some places don't follow the usual rules for daylight savings time.
17089 The state of Arizona, for example, does not observe daylight savings
17090 time.  If you run Calc during the winter season in Arizona, the
17091 Unix @code{date} command will report @code{MST} time zone, which
17092 Calc will change to @code{MGT}.  If you then convert a time that
17093 lies in the summer months, Calc will apply an incorrect daylight
17094 savings time adjustment.  To avoid this, set your @code{TimeZone}
17095 variable explicitly to @code{MST} to force the use of standard,
17096 non-daylight-savings time.
17098 @vindex math-daylight-savings-hook
17099 @findex math-std-daylight-savings
17100 By default Calc always considers daylight savings time to begin at
17101 2 a.m.@: on the first Sunday of April, and to end at 2 a.m.@: on the
17102 last Sunday of October.  This is the rule that has been in effect
17103 in North America since 1987.  If you are in a country that uses
17104 different rules for computing daylight savings time, you have two
17105 choices:  Write your own daylight savings hook, or control time
17106 zones explicitly by setting the @code{TimeZone} variable and/or
17107 always giving a time-zone argument for the conversion functions.
17109 The Lisp variable @code{math-daylight-savings-hook} holds the
17110 name of a function that is used to compute the daylight savings
17111 adjustment for a given date.  The default is
17112 @code{math-std-daylight-savings}, which computes an adjustment
17113 (either 0 or @i{-1}) using the North American rules given above.
17115 The daylight savings hook function is called with four arguments:
17116 The date, as a floating-point number in standard Calc format;
17117 a six-element list of the date decomposed into year, month, day,
17118 hour, minute, and second, respectively; a string which contains
17119 the generalized time zone name in upper-case, e.g., @code{"WEGT"};
17120 and a special adjustment to be applied to the hour value when
17121 converting into a generalized time zone (see below).
17123 @findex math-prev-weekday-in-month
17124 The Lisp function @code{math-prev-weekday-in-month} is useful for
17125 daylight savings computations.  This is an internal version of
17126 the user-level @code{pwday} function described in the previous
17127 section. It takes four arguments:  The floating-point date value,
17128 the corresponding six-element date list, the day-of-month number,
17129 and the weekday number (0-6).
17131 The default daylight savings hook ignores the time zone name, but a
17132 more sophisticated hook could use different algorithms for different
17133 time zones.  It would also be possible to use different algorithms
17134 depending on the year number, but the default hook always uses the
17135 algorithm for 1987 and later.  Here is a listing of the default
17136 daylight savings hook:
17138 @smallexample
17139 (defun math-std-daylight-savings (date dt zone bump)
17140   (cond ((< (nth 1 dt) 4) 0)
17141         ((= (nth 1 dt) 4)
17142          (let ((sunday (math-prev-weekday-in-month date dt 7 0)))
17143            (cond ((< (nth 2 dt) sunday) 0)
17144                  ((= (nth 2 dt) sunday)
17145                   (if (>= (nth 3 dt) (+ 3 bump)) -1 0))
17146                  (t -1))))
17147         ((< (nth 1 dt) 10) -1)
17148         ((= (nth 1 dt) 10)
17149          (let ((sunday (math-prev-weekday-in-month date dt 31 0)))
17150            (cond ((< (nth 2 dt) sunday) -1)
17151                  ((= (nth 2 dt) sunday)
17152                   (if (>= (nth 3 dt) (+ 2 bump)) 0 -1))
17153                  (t 0))))
17154         (t 0))
17156 @end smallexample
17158 @noindent
17159 The @code{bump} parameter is equal to zero when Calc is converting
17160 from a date form in a generalized time zone into a GMT date value.
17161 It is @i{-1} when Calc is converting in the other direction.  The
17162 adjustments shown above ensure that the conversion behaves correctly
17163 and reasonably around the 2 a.m.@: transition in each direction.
17165 There is a ``missing'' hour between 2 a.m.@: and 3 a.m.@: at the
17166 beginning of daylight savings time; converting a date/time form that
17167 falls in this hour results in a time value for the following hour,
17168 from 3 a.m.@: to 4 a.m.  At the end of daylight savings time, the
17169 hour from 1 a.m.@: to 2 a.m.@: repeats itself; converting a date/time
17170 form that falls in in this hour results in a time value for the first
17171 manifestation of that time (@emph{not} the one that occurs one hour later).
17173 If @code{math-daylight-savings-hook} is @code{nil}, then the
17174 daylight savings adjustment is always taken to be zero.
17176 In algebraic formulas, @samp{tzone(@var{zone}, @var{date})}
17177 computes the time zone adjustment for a given zone name at a
17178 given date.  The @var{date} is ignored unless @var{zone} is a
17179 generalized time zone.  If @var{date} is a date form, the
17180 daylight savings computation is applied to it as it appears.
17181 If @var{date} is a numeric date value, it is adjusted for the
17182 daylight-savings version of @var{zone} before being given to
17183 the daylight savings hook.  This odd-sounding rule ensures
17184 that the daylight-savings computation is always done in
17185 local time, not in the GMT time that a numeric @var{date}
17186 is typically represented in.
17188 @ignore
17189 @starindex
17190 @end ignore
17191 @tindex dsadj
17192 The @samp{dsadj(@var{date}, @var{zone})} function computes the
17193 daylight savings adjustment that is appropriate for @var{date} in
17194 time zone @var{zone}.  If @var{zone} is explicitly in or not in
17195 daylight savings time (e.g., @code{PDT} or @code{PST}) the
17196 @var{date} is ignored.  If @var{zone} is a generalized time zone,
17197 the algorithms described above are used.  If @var{zone} is omitted,
17198 the computation is done for the current time zone.
17200 @xref{Reporting Bugs}, for the address of Calc's author, if you
17201 should wish to contribute your improved versions of
17202 @code{math-tzone-names} and @code{math-daylight-savings-hook}
17203 to the Calc distribution.
17205 @node Financial Functions, Binary Functions, Date Arithmetic, Arithmetic
17206 @section Financial Functions
17208 @noindent
17209 Calc's financial or business functions use the @kbd{b} prefix
17210 key followed by a shifted letter.  (The @kbd{b} prefix followed by
17211 a lower-case letter is used for operations on binary numbers.)
17213 Note that the rate and the number of intervals given to these
17214 functions must be on the same time scale, e.g., both months or
17215 both years.  Mixing an annual interest rate with a time expressed
17216 in months will give you very wrong answers!
17218 It is wise to compute these functions to a higher precision than
17219 you really need, just to make sure your answer is correct to the
17220 last penny; also, you may wish to check the definitions at the end
17221 of this section to make sure the functions have the meaning you expect.
17223 @menu
17224 * Percentages::
17225 * Future Value::
17226 * Present Value::
17227 * Related Financial Functions::
17228 * Depreciation Functions::
17229 * Definitions of Financial Functions::
17230 @end menu
17232 @node Percentages, Future Value, Financial Functions, Financial Functions
17233 @subsection Percentages
17235 @kindex M-%
17236 @pindex calc-percent
17237 @tindex %
17238 @tindex percent
17239 The @kbd{M-%} (@code{calc-percent}) command takes a percentage value,
17240 say 5.4, and converts it to an equivalent actual number.  For example,
17241 @kbd{5.4 M-%} enters 0.054 on the stack.  (That's the @key{META} or
17242 @key{ESC} key combined with @kbd{%}.)
17244 Actually, @kbd{M-%} creates a formula of the form @samp{5.4%}.
17245 You can enter @samp{5.4%} yourself during algebraic entry.  The
17246 @samp{%} operator simply means, ``the preceding value divided by
17247 100.''  The @samp{%} operator has very high precedence, so that
17248 @samp{1+8%} is interpreted as @samp{1+(8%)}, not as @samp{(1+8)%}.
17249 (The @samp{%} operator is just a postfix notation for the
17250 @code{percent} function, just like @samp{20!} is the notation for
17251 @samp{fact(20)}, or twenty-factorial.)
17253 The formula @samp{5.4%} would normally evaluate immediately to
17254 0.054, but the @kbd{M-%} command suppresses evaluation as it puts
17255 the formula onto the stack.  However, the next Calc command that
17256 uses the formula @samp{5.4%} will evaluate it as its first step.
17257 The net effect is that you get to look at @samp{5.4%} on the stack,
17258 but Calc commands see it as @samp{0.054}, which is what they expect.
17260 In particular, @samp{5.4%} and @samp{0.054} are suitable values
17261 for the @var{rate} arguments of the various financial functions,
17262 but the number @samp{5.4} is probably @emph{not} suitable---it
17263 represents a rate of 540 percent!
17265 The key sequence @kbd{M-% *} effectively means ``percent-of.''
17266 For example, @kbd{68 @key{RET} 25 M-% *} computes 17, which is 25% of
17267 68 (and also 68% of 25, which comes out to the same thing).
17269 @kindex c %
17270 @pindex calc-convert-percent
17271 The @kbd{c %} (@code{calc-convert-percent}) command converts the
17272 value on the top of the stack from numeric to percentage form.
17273 For example, if 0.08 is on the stack, @kbd{c %} converts it to
17274 @samp{8%}.  The quantity is the same, it's just represented
17275 differently.  (Contrast this with @kbd{M-%}, which would convert
17276 this number to @samp{0.08%}.)  The @kbd{=} key is a convenient way
17277 to convert a formula like @samp{8%} back to numeric form, 0.08.
17279 To compute what percentage one quantity is of another quantity,
17280 use @kbd{/ c %}.  For example, @w{@kbd{17 @key{RET} 68 / c %}} displays
17281 @samp{25%}.
17283 @kindex b %
17284 @pindex calc-percent-change
17285 @tindex relch
17286 The @kbd{b %} (@code{calc-percent-change}) [@code{relch}] command
17287 calculates the percentage change from one number to another.
17288 For example, @kbd{40 @key{RET} 50 b %} produces the answer @samp{25%},
17289 since 50 is 25% larger than 40.  A negative result represents a
17290 decrease:  @kbd{50 @key{RET} 40 b %} produces @samp{-20%}, since 40 is
17291 20% smaller than 50.  (The answers are different in magnitude
17292 because, in the first case, we're increasing by 25% of 40, but
17293 in the second case, we're decreasing by 20% of 50.)  The effect
17294 of @kbd{40 @key{RET} 50 b %} is to compute @cite{(50-40)/40}, converting
17295 the answer to percentage form as if by @kbd{c %}.
17297 @node Future Value, Present Value, Percentages, Financial Functions
17298 @subsection Future Value
17300 @noindent
17301 @kindex b F
17302 @pindex calc-fin-fv
17303 @tindex fv
17304 The @kbd{b F} (@code{calc-fin-fv}) [@code{fv}] command computes
17305 the future value of an investment.  It takes three arguments
17306 from the stack:  @samp{fv(@var{rate}, @var{n}, @var{payment})}.
17307 If you give payments of @var{payment} every year for @var{n}
17308 years, and the money you have paid earns interest at @var{rate} per
17309 year, then this function tells you what your investment would be
17310 worth at the end of the period.  (The actual interval doesn't
17311 have to be years, as long as @var{n} and @var{rate} are expressed
17312 in terms of the same intervals.)  This function assumes payments
17313 occur at the @emph{end} of each interval.
17315 @kindex I b F
17316 @tindex fvb
17317 The @kbd{I b F} [@code{fvb}] command does the same computation,
17318 but assuming your payments are at the beginning of each interval.
17319 Suppose you plan to deposit $1000 per year in a savings account
17320 earning 5.4% interest, starting right now.  How much will be
17321 in the account after five years?  @code{fvb(5.4%, 5, 1000) = 5870.73}.
17322 Thus you will have earned $870 worth of interest over the years.
17323 Using the stack, this calculation would have been
17324 @kbd{5.4 M-% 5 @key{RET} 1000 I b F}.  Note that the rate is expressed
17325 as a number between 0 and 1, @emph{not} as a percentage.
17327 @kindex H b F
17328 @tindex fvl
17329 The @kbd{H b F} [@code{fvl}] command computes the future value
17330 of an initial lump sum investment.  Suppose you could deposit
17331 those five thousand dollars in the bank right now; how much would
17332 they be worth in five years?  @code{fvl(5.4%, 5, 5000) = 6503.89}.
17334 The algebraic functions @code{fv} and @code{fvb} accept an optional
17335 fourth argument, which is used as an initial lump sum in the sense
17336 of @code{fvl}.  In other words, @code{fv(@var{rate}, @var{n},
17337 @var{payment}, @var{initial}) = fv(@var{rate}, @var{n}, @var{payment})
17338 + fvl(@var{rate}, @var{n}, @var{initial})}.@refill
17340 To illustrate the relationships between these functions, we could
17341 do the @code{fvb} calculation ``by hand'' using @code{fvl}.  The
17342 final balance will be the sum of the contributions of our five
17343 deposits at various times.  The first deposit earns interest for
17344 five years:  @code{fvl(5.4%, 5, 1000) = 1300.78}.  The second
17345 deposit only earns interest for four years:  @code{fvl(5.4%, 4, 1000) =
17346 1234.13}.  And so on down to the last deposit, which earns one
17347 year's interest:  @code{fvl(5.4%, 1, 1000) = 1054.00}.  The sum of
17348 these five values is, sure enough, $5870.73, just as was computed
17349 by @code{fvb} directly.
17351 What does @code{fv(5.4%, 5, 1000) = 5569.96} mean?  The payments
17352 are now at the ends of the periods.  The end of one year is the same
17353 as the beginning of the next, so what this really means is that we've
17354 lost the payment at year zero (which contributed $1300.78), but we're
17355 now counting the payment at year five (which, since it didn't have
17356 a chance to earn interest, counts as $1000).  Indeed, @cite{5569.96 =
17357 5870.73 - 1300.78 + 1000} (give or take a bit of roundoff error).
17359 @node Present Value, Related Financial Functions, Future Value, Financial Functions
17360 @subsection Present Value
17362 @noindent
17363 @kindex b P
17364 @pindex calc-fin-pv
17365 @tindex pv
17366 The @kbd{b P} (@code{calc-fin-pv}) [@code{pv}] command computes
17367 the present value of an investment.  Like @code{fv}, it takes
17368 three arguments:  @code{pv(@var{rate}, @var{n}, @var{payment})}.
17369 It computes the present value of a series of regular payments.
17370 Suppose you have the chance to make an investment that will
17371 pay $2000 per year over the next four years; as you receive
17372 these payments you can put them in the bank at 9% interest.
17373 You want to know whether it is better to make the investment, or
17374 to keep the money in the bank where it earns 9% interest right
17375 from the start.  The calculation @code{pv(9%, 4, 2000)} gives the
17376 result 6479.44.  If your initial investment must be less than this,
17377 say, $6000, then the investment is worthwhile.  But if you had to
17378 put up $7000, then it would be better just to leave it in the bank.
17380 Here is the interpretation of the result of @code{pv}:  You are
17381 trying to compare the return from the investment you are
17382 considering, which is @code{fv(9%, 4, 2000) = 9146.26}, with
17383 the return from leaving the money in the bank, which is
17384 @code{fvl(9%, 4, @var{x})} where @var{x} is the amount of money
17385 you would have to put up in advance.  The @code{pv} function
17386 finds the break-even point, @cite{x = 6479.44}, at which
17387 @code{fvl(9%, 4, 6479.44)} is also equal to 9146.26.  This is
17388 the largest amount you should be willing to invest.
17390 @kindex I b P
17391 @tindex pvb
17392 The @kbd{I b P} [@code{pvb}] command solves the same problem,
17393 but with payments occurring at the beginning of each interval.
17394 It has the same relationship to @code{fvb} as @code{pv} has
17395 to @code{fv}.  For example @code{pvb(9%, 4, 2000) = 7062.59},
17396 a larger number than @code{pv} produced because we get to start
17397 earning interest on the return from our investment sooner.
17399 @kindex H b P
17400 @tindex pvl
17401 The @kbd{H b P} [@code{pvl}] command computes the present value of
17402 an investment that will pay off in one lump sum at the end of the
17403 period.  For example, if we get our $8000 all at the end of the
17404 four years, @code{pvl(9%, 4, 8000) = 5667.40}.  This is much
17405 less than @code{pv} reported, because we don't earn any interest
17406 on the return from this investment.  Note that @code{pvl} and
17407 @code{fvl} are simple inverses:  @code{fvl(9%, 4, 5667.40) = 8000}.
17409 You can give an optional fourth lump-sum argument to @code{pv}
17410 and @code{pvb}; this is handled in exactly the same way as the
17411 fourth argument for @code{fv} and @code{fvb}.
17413 @kindex b N
17414 @pindex calc-fin-npv
17415 @tindex npv
17416 The @kbd{b N} (@code{calc-fin-npv}) [@code{npv}] command computes
17417 the net present value of a series of irregular investments.
17418 The first argument is the interest rate.  The second argument is
17419 a vector which represents the expected return from the investment
17420 at the end of each interval.  For example, if the rate represents
17421 a yearly interest rate, then the vector elements are the return
17422 from the first year, second year, and so on.
17424 Thus, @code{npv(9%, [2000,2000,2000,2000]) = pv(9%, 4, 2000) = 6479.44}.
17425 Obviously this function is more interesting when the payments are
17426 not all the same!
17428 The @code{npv} function can actually have two or more arguments.
17429 Multiple arguments are interpreted in the same way as for the
17430 vector statistical functions like @code{vsum}.
17431 @xref{Single-Variable Statistics}.  Basically, if there are several
17432 payment arguments, each either a vector or a plain number, all these
17433 values are collected left-to-right into the complete list of payments.
17434 A numeric prefix argument on the @kbd{b N} command says how many
17435 payment values or vectors to take from the stack.@refill
17437 @kindex I b N
17438 @tindex npvb
17439 The @kbd{I b N} [@code{npvb}] command computes the net present
17440 value where payments occur at the beginning of each interval
17441 rather than at the end.
17443 @node Related Financial Functions, Depreciation Functions, Present Value, Financial Functions
17444 @subsection Related Financial Functions
17446 @noindent
17447 The functions in this section are basically inverses of the
17448 present value functions with respect to the various arguments.
17450 @kindex b M
17451 @pindex calc-fin-pmt
17452 @tindex pmt
17453 The @kbd{b M} (@code{calc-fin-pmt}) [@code{pmt}] command computes
17454 the amount of periodic payment necessary to amortize a loan.
17455 Thus @code{pmt(@var{rate}, @var{n}, @var{amount})} equals the
17456 value of @var{payment} such that @code{pv(@var{rate}, @var{n},
17457 @var{payment}) = @var{amount}}.@refill
17459 @kindex I b M
17460 @tindex pmtb
17461 The @kbd{I b M} [@code{pmtb}] command does the same computation
17462 but using @code{pvb} instead of @code{pv}.  Like @code{pv} and
17463 @code{pvb}, these functions can also take a fourth argument which
17464 represents an initial lump-sum investment.
17466 @kindex H b M
17467 The @kbd{H b M} key just invokes the @code{fvl} function, which is
17468 the inverse of @code{pvl}.  There is no explicit @code{pmtl} function.
17470 @kindex b #
17471 @pindex calc-fin-nper
17472 @tindex nper
17473 The @kbd{b #} (@code{calc-fin-nper}) [@code{nper}] command computes
17474 the number of regular payments necessary to amortize a loan.
17475 Thus @code{nper(@var{rate}, @var{payment}, @var{amount})} equals
17476 the value of @var{n} such that @code{pv(@var{rate}, @var{n},
17477 @var{payment}) = @var{amount}}.  If @var{payment} is too small
17478 ever to amortize a loan for @var{amount} at interest rate @var{rate},
17479 the @code{nper} function is left in symbolic form.@refill
17481 @kindex I b #
17482 @tindex nperb
17483 The @kbd{I b #} [@code{nperb}] command does the same computation
17484 but using @code{pvb} instead of @code{pv}.  You can give a fourth
17485 lump-sum argument to these functions, but the computation will be
17486 rather slow in the four-argument case.@refill
17488 @kindex H b #
17489 @tindex nperl
17490 The @kbd{H b #} [@code{nperl}] command does the same computation
17491 using @code{pvl}.  By exchanging @var{payment} and @var{amount} you
17492 can also get the solution for @code{fvl}.  For example,
17493 @code{nperl(8%, 2000, 1000) = 9.006}, so if you place $1000 in a
17494 bank account earning 8%, it will take nine years to grow to $2000.@refill
17496 @kindex b T
17497 @pindex calc-fin-rate
17498 @tindex rate
17499 The @kbd{b T} (@code{calc-fin-rate}) [@code{rate}] command computes
17500 the rate of return on an investment.  This is also an inverse of @code{pv}:
17501 @code{rate(@var{n}, @var{payment}, @var{amount})} computes the value of
17502 @var{rate} such that @code{pv(@var{rate}, @var{n}, @var{payment}) =
17503 @var{amount}}.  The result is expressed as a formula like @samp{6.3%}.@refill
17505 @kindex I b T
17506 @kindex H b T
17507 @tindex rateb
17508 @tindex ratel
17509 The @kbd{I b T} [@code{rateb}] and @kbd{H b T} [@code{ratel}]
17510 commands solve the analogous equations with @code{pvb} or @code{pvl}
17511 in place of @code{pv}.  Also, @code{rate} and @code{rateb} can
17512 accept an optional fourth argument just like @code{pv} and @code{pvb}.
17513 To redo the above example from a different perspective,
17514 @code{ratel(9, 2000, 1000) = 8.00597%}, which says you will need an
17515 interest rate of 8% in order to double your account in nine years.@refill
17517 @kindex b I
17518 @pindex calc-fin-irr
17519 @tindex irr
17520 The @kbd{b I} (@code{calc-fin-irr}) [@code{irr}] command is the
17521 analogous function to @code{rate} but for net present value.
17522 Its argument is a vector of payments.  Thus @code{irr(@var{payments})}
17523 computes the @var{rate} such that @code{npv(@var{rate}, @var{payments}) = 0};
17524 this rate is known as the @dfn{internal rate of return}.
17526 @kindex I b I
17527 @tindex irrb
17528 The @kbd{I b I} [@code{irrb}] command computes the internal rate of
17529 return assuming payments occur at the beginning of each period.
17531 @node Depreciation Functions, Definitions of Financial Functions, Related Financial Functions, Financial Functions
17532 @subsection Depreciation Functions
17534 @noindent
17535 The functions in this section calculate @dfn{depreciation}, which is
17536 the amount of value that a possession loses over time.  These functions
17537 are characterized by three parameters:  @var{cost}, the original cost
17538 of the asset; @var{salvage}, the value the asset will have at the end
17539 of its expected ``useful life''; and @var{life}, the number of years
17540 (or other periods) of the expected useful life.
17542 There are several methods for calculating depreciation that differ in
17543 the way they spread the depreciation over the lifetime of the asset.
17545 @kindex b S
17546 @pindex calc-fin-sln
17547 @tindex sln
17548 The @kbd{b S} (@code{calc-fin-sln}) [@code{sln}] command computes the
17549 ``straight-line'' depreciation.  In this method, the asset depreciates
17550 by the same amount every year (or period).  For example,
17551 @samp{sln(12000, 2000, 5)} returns 2000.  The asset costs $12000
17552 initially and will be worth $2000 after five years; it loses $2000
17553 per year.
17555 @kindex b Y
17556 @pindex calc-fin-syd
17557 @tindex syd
17558 The @kbd{b Y} (@code{calc-fin-syd}) [@code{syd}] command computes the
17559 accelerated ``sum-of-years'-digits'' depreciation.  Here the depreciation
17560 is higher during the early years of the asset's life.  Since the
17561 depreciation is different each year, @kbd{b Y} takes a fourth @var{period}
17562 parameter which specifies which year is requested, from 1 to @var{life}.
17563 If @var{period} is outside this range, the @code{syd} function will
17564 return zero.
17566 @kindex b D
17567 @pindex calc-fin-ddb
17568 @tindex ddb
17569 The @kbd{b D} (@code{calc-fin-ddb}) [@code{ddb}] command computes an
17570 accelerated depreciation using the double-declining balance method.
17571 It also takes a fourth @var{period} parameter.
17573 For symmetry, the @code{sln} function will accept a @var{period}
17574 parameter as well, although it will ignore its value except that the
17575 return value will as usual be zero if @var{period} is out of range.
17577 For example, pushing the vector @cite{[1,2,3,4,5]} (perhaps with @kbd{v x 5})
17578 and then mapping @kbd{V M ' [sln(12000,2000,5,$), syd(12000,2000,5,$),
17579 ddb(12000,2000,5,$)] @key{RET}} produces a matrix that allows us to compare
17580 the three depreciation methods:
17582 @example
17583 @group
17584 [ [ 2000, 3333, 4800 ]
17585   [ 2000, 2667, 2880 ]
17586   [ 2000, 2000, 1728 ]
17587   [ 2000, 1333,  592 ]
17588   [ 2000,  667,   0  ] ]
17589 @end group
17590 @end example
17592 @noindent
17593 (Values have been rounded to nearest integers in this figure.)
17594 We see that @code{sln} depreciates by the same amount each year,
17595 @kbd{syd} depreciates more at the beginning and less at the end,
17596 and @kbd{ddb} weights the depreciation even more toward the beginning.
17598 Summing columns with @kbd{V R : +} yields @cite{[10000, 10000, 10000]};
17599 the total depreciation in any method is (by definition) the
17600 difference between the cost and the salvage value.
17602 @node Definitions of Financial Functions, , Depreciation Functions, Financial Functions
17603 @subsection Definitions
17605 @noindent
17606 For your reference, here are the actual formulas used to compute
17607 Calc's financial functions.
17609 Calc will not evaluate a financial function unless the @var{rate} or
17610 @var{n} argument is known.  However, @var{payment} or @var{amount} can
17611 be a variable.  Calc expands these functions according to the
17612 formulas below for symbolic arguments only when you use the @kbd{a "}
17613 (@code{calc-expand-formula}) command, or when taking derivatives or
17614 integrals or solving equations involving the functions.
17616 @ifinfo
17617 These formulas are shown using the conventions of ``Big'' display
17618 mode (@kbd{d B}); for example, the formula for @code{fv} written
17619 linearly is @samp{pmt * ((1 + rate)^n) - 1) / rate}.
17621 @example
17622                                         n
17623                               (1 + rate)  - 1
17624 fv(rate, n, pmt) =      pmt * ---------------
17625                                    rate
17627                                          n
17628                               ((1 + rate)  - 1) (1 + rate)
17629 fvb(rate, n, pmt) =     pmt * ----------------------------
17630                                          rate
17632                                         n
17633 fvl(rate, n, pmt) =     pmt * (1 + rate)
17635                                             -n
17636                               1 - (1 + rate)  
17637 pv(rate, n, pmt) =      pmt * ----------------
17638                                     rate
17640                                              -n
17641                               (1 - (1 + rate)  ) (1 + rate)
17642 pvb(rate, n, pmt) =     pmt * -----------------------------
17643                                          rate
17645                                         -n
17646 pvl(rate, n, pmt) =     pmt * (1 + rate)
17648                                     -1               -2               -3
17649 npv(rate, [a, b, c]) =  a*(1 + rate)   + b*(1 + rate)   + c*(1 + rate)
17651                                         -1               -2
17652 npvb(rate, [a, b, c]) = a + b*(1 + rate)   + c*(1 + rate)
17654                                              -n
17655                         (amt - x * (1 + rate)  ) * rate
17656 pmt(rate, n, amt, x) =  -------------------------------
17657                                              -n
17658                                1 - (1 + rate)
17660                                              -n
17661                         (amt - x * (1 + rate)  ) * rate
17662 pmtb(rate, n, amt, x) = -------------------------------
17663                                         -n
17664                          (1 - (1 + rate)  ) (1 + rate)
17666                                    amt * rate
17667 nper(rate, pmt, amt) =  - log(1 - ------------, 1 + rate)
17668                                       pmt
17670                                     amt * rate
17671 nperb(rate, pmt, amt) = - log(1 - ---------------, 1 + rate)
17672                                   pmt * (1 + rate)
17674                               amt
17675 nperl(rate, pmt, amt) = - log(---, 1 + rate)
17676                               pmt
17678                            1/n
17679                         pmt
17680 ratel(n, pmt, amt) =    ------ - 1
17681                            1/n
17682                         amt
17684                         cost - salv
17685 sln(cost, salv, life) = -----------
17686                            life
17688                              (cost - salv) * (life - per + 1)
17689 syd(cost, salv, life, per) = --------------------------------
17690                                   life * (life + 1) / 2
17692                              book * 2
17693 ddb(cost, salv, life, per) = --------,  book = cost - depreciation so far
17694                                life
17695 @end example
17696 @end ifinfo
17697 @tex
17698 \turnoffactive
17699 $$ \code{fv}(r, n, p) = p { (1 + r)^n - 1 \over r } $$
17700 $$ \code{fvb}(r, n, p) = p { ((1 + r)^n - 1) (1 + r) \over r } $$
17701 $$ \code{fvl}(r, n, p) = p (1 + r)^n $$
17702 $$ \code{pv}(r, n, p) = p { 1 - (1 + r)^{-n} \over r } $$
17703 $$ \code{pvb}(r, n, p) = p { (1 - (1 + r)^{-n}) (1 + r) \over r } $$
17704 $$ \code{pvl}(r, n, p) = p (1 + r)^{-n} $$
17705 $$ \code{npv}(r, [a,b,c]) = a (1 + r)^{-1} + b (1 + r)^{-2} + c (1 + r)^{-3} $$
17706 $$ \code{npvb}(r, [a,b,c]) = a + b (1 + r)^{-1} + c (1 + r)^{-2} $$
17707 $$ \code{pmt}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over 1 - (1 + r)^{-n} }$$
17708 $$ \code{pmtb}(r, n, a, x) = { (a - x (1 + r)^{-n}) r \over
17709                                (1 - (1 + r)^{-n}) (1 + r) } $$
17710 $$ \code{nper}(r, p, a) = -\code{log}(1 - { a r \over p }, 1 + r) $$
17711 $$ \code{nperb}(r, p, a) = -\code{log}(1 - { a r \over p (1 + r) }, 1 + r) $$
17712 $$ \code{nperl}(r, p, a) = -\code{log}({a \over p}, 1 + r) $$
17713 $$ \code{ratel}(n, p, a) = { p^{1/n} \over a^{1/n} } - 1 $$
17714 $$ \code{sln}(c, s, l) = { c - s \over l } $$
17715 $$ \code{syd}(c, s, l, p) = { (c - s) (l - p + 1) \over l (l+1) / 2 } $$
17716 $$ \code{ddb}(c, s, l, p) = { 2 (c - \hbox{depreciation so far}) \over l } $$
17717 @end tex
17719 @noindent
17720 In @code{pmt} and @code{pmtb}, @cite{x=0} if omitted.
17722 These functions accept any numeric objects, including error forms,
17723 intervals, and even (though not very usefully) complex numbers.  The
17724 above formulas specify exactly the behavior of these functions with
17725 all sorts of inputs.
17727 Note that if the first argument to the @code{log} in @code{nper} is
17728 negative, @code{nper} leaves itself in symbolic form rather than
17729 returning a (financially meaningless) complex number.
17731 @samp{rate(num, pmt, amt)} solves the equation
17732 @samp{pv(rate, num, pmt) = amt} for @samp{rate} using @kbd{H a R}
17733 (@code{calc-find-root}), with the interval @samp{[.01% .. 100%]}
17734 for an initial guess.  The @code{rateb} function is the same except
17735 that it uses @code{pvb}.  Note that @code{ratel} can be solved
17736 directly; its formula is shown in the above list.
17738 Similarly, @samp{irr(pmts)} solves the equation @samp{npv(rate, pmts) = 0}
17739 for @samp{rate}.
17741 If you give a fourth argument to @code{nper} or @code{nperb}, Calc
17742 will also use @kbd{H a R} to solve the equation using an initial
17743 guess interval of @samp{[0 .. 100]}.
17745 A fourth argument to @code{fv} simply sums the two components
17746 calculated from the above formulas for @code{fv} and @code{fvl}.
17747 The same is true of @code{fvb}, @code{pv}, and @code{pvb}.
17749 The @kbd{ddb} function is computed iteratively; the ``book'' value
17750 starts out equal to @var{cost}, and decreases according to the above
17751 formula for the specified number of periods.  If the book value
17752 would decrease below @var{salvage}, it only decreases to @var{salvage}
17753 and the depreciation is zero for all subsequent periods.  The @code{ddb}
17754 function returns the amount the book value decreased in the specified
17755 period.
17757 The Calc financial function names were borrowed mostly from Microsoft
17758 Excel and Borland's Quattro.  The @code{ratel} function corresponds to
17759 @samp{@@CGR} in Borland's Reflex.  The @code{nper} and @code{nperl}
17760 functions correspond to @samp{@@TERM} and @samp{@@CTERM} in Quattro,
17761 respectively.  Beware that the Calc functions may take their arguments
17762 in a different order than the corresponding functions in your favorite
17763 spreadsheet.
17765 @node Binary Functions, , Financial Functions, Arithmetic
17766 @section Binary Number Functions
17768 @noindent
17769 The commands in this chapter all use two-letter sequences beginning with
17770 the @kbd{b} prefix.
17772 @cindex Binary numbers
17773 The ``binary'' operations actually work regardless of the currently
17774 displayed radix, although their results make the most sense in a radix
17775 like 2, 8, or 16 (as obtained by the @kbd{d 2}, @kbd{d 8}, or @w{@kbd{d 6}}
17776 commands, respectively).  You may also wish to enable display of leading
17777 zeros with @kbd{d z}.  @xref{Radix Modes}.
17779 @cindex Word size for binary operations
17780 The Calculator maintains a current @dfn{word size} @cite{w}, an
17781 arbitrary positive or negative integer.  For a positive word size, all
17782 of the binary operations described here operate modulo @cite{2^w}.  In
17783 particular, negative arguments are converted to positive integers modulo
17784 @cite{2^w} by all binary functions.@refill
17786 If the word size is negative, binary operations produce 2's complement
17787 integers from @c{$-2^{-w-1}$}
17788 @cite{-(2^(-w-1))} to @c{$2^{-w-1}-1$}
17789 @cite{2^(-w-1)-1} inclusive.  Either
17790 mode accepts inputs in any range; the sign of @cite{w} affects only
17791 the results produced.
17793 @kindex b c
17794 @pindex calc-clip
17795 @tindex clip
17796 The @kbd{b c} (@code{calc-clip})
17797 [@code{clip}] command can be used to clip a number by reducing it modulo
17798 @cite{2^w}.  The commands described in this chapter automatically clip
17799 their results to the current word size.  Note that other operations like
17800 addition do not use the current word size, since integer addition
17801 generally is not ``binary.''  (However, @pxref{Simplification Modes},
17802 @code{calc-bin-simplify-mode}.)  For example, with a word size of 8
17803 bits @kbd{b c} converts a number to the range 0 to 255; with a word
17804 size of @i{-8} @kbd{b c} converts to the range @i{-128} to 127.@refill
17806 @kindex b w
17807 @pindex calc-word-size
17808 The default word size is 32 bits.  All operations except the shifts and
17809 rotates allow you to specify a different word size for that one
17810 operation by giving a numeric prefix argument:  @kbd{C-u 8 b c} clips the
17811 top of stack to the range 0 to 255 regardless of the current word size.
17812 To set the word size permanently, use @kbd{b w} (@code{calc-word-size}).
17813 This command displays a prompt with the current word size; press @key{RET}
17814 immediately to keep this word size, or type a new word size at the prompt.
17816 When the binary operations are written in symbolic form, they take an
17817 optional second (or third) word-size parameter.  When a formula like
17818 @samp{and(a,b)} is finally evaluated, the word size current at that time
17819 will be used, but when @samp{and(a,b,-8)} is evaluated, a word size of
17820 @i{-8} will always be used.  A symbolic binary function will be left
17821 in symbolic form unless the all of its argument(s) are integers or
17822 integer-valued floats.
17824 If either or both arguments are modulo forms for which @cite{M} is a
17825 power of two, that power of two is taken as the word size unless a
17826 numeric prefix argument overrides it.  The current word size is never
17827 consulted when modulo-power-of-two forms are involved.
17829 @kindex b a
17830 @pindex calc-and
17831 @tindex and
17832 The @kbd{b a} (@code{calc-and}) [@code{and}] command computes the bitwise
17833 AND of the two numbers on the top of the stack.  In other words, for each
17834 of the @cite{w} binary digits of the two numbers (pairwise), the corresponding
17835 bit of the result is 1 if and only if both input bits are 1:
17836 @samp{and(2#1100, 2#1010) = 2#1000}.
17838 @kindex b o
17839 @pindex calc-or
17840 @tindex or
17841 The @kbd{b o} (@code{calc-or}) [@code{or}] command computes the bitwise
17842 inclusive OR of two numbers.  A bit is 1 if either of the input bits, or
17843 both, are 1:  @samp{or(2#1100, 2#1010) = 2#1110}.
17845 @kindex b x
17846 @pindex calc-xor
17847 @tindex xor
17848 The @kbd{b x} (@code{calc-xor}) [@code{xor}] command computes the bitwise
17849 exclusive OR of two numbers.  A bit is 1 if exactly one of the input bits
17850 is 1:  @samp{xor(2#1100, 2#1010) = 2#0110}.
17852 @kindex b d
17853 @pindex calc-diff
17854 @tindex diff
17855 The @kbd{b d} (@code{calc-diff}) [@code{diff}] command computes the bitwise
17856 difference of two numbers; this is defined by @samp{diff(a,b) = and(a,not(b))},
17857 so that @samp{diff(2#1100, 2#1010) = 2#0100}.
17859 @kindex b n
17860 @pindex calc-not
17861 @tindex not
17862 The @kbd{b n} (@code{calc-not}) [@code{not}] command computes the bitwise
17863 NOT of a number.  A bit is 1 if the input bit is 0 and vice-versa.
17865 @kindex b l
17866 @pindex calc-lshift-binary
17867 @tindex lsh
17868 The @kbd{b l} (@code{calc-lshift-binary}) [@code{lsh}] command shifts a
17869 number left by one bit, or by the number of bits specified in the numeric
17870 prefix argument.  A negative prefix argument performs a logical right shift,
17871 in which zeros are shifted in on the left.  In symbolic form, @samp{lsh(a)}
17872 is short for @samp{lsh(a,1)}, which in turn is short for @samp{lsh(a,n,w)}.
17873 Bits shifted ``off the end,'' according to the current word size, are lost.
17875 @kindex H b l
17876 @kindex H b r
17877 @ignore
17878 @mindex @idots
17879 @end ignore
17880 @kindex H b L
17881 @ignore
17882 @mindex @null
17883 @end ignore
17884 @kindex H b R
17885 @ignore
17886 @mindex @null
17887 @end ignore
17888 @kindex H b t
17889 The @kbd{H b l} command also does a left shift, but it takes two arguments
17890 from the stack (the value to shift, and, at top-of-stack, the number of
17891 bits to shift).  This version interprets the prefix argument just like
17892 the regular binary operations, i.e., as a word size.  The Hyperbolic flag
17893 has a similar effect on the rest of the binary shift and rotate commands.
17895 @kindex b r
17896 @pindex calc-rshift-binary
17897 @tindex rsh
17898 The @kbd{b r} (@code{calc-rshift-binary}) [@code{rsh}] command shifts a
17899 number right by one bit, or by the number of bits specified in the numeric
17900 prefix argument:  @samp{rsh(a,n) = lsh(a,-n)}.
17902 @kindex b L
17903 @pindex calc-lshift-arith
17904 @tindex ash
17905 The @kbd{b L} (@code{calc-lshift-arith}) [@code{ash}] command shifts a
17906 number left.  It is analogous to @code{lsh}, except that if the shift
17907 is rightward (the prefix argument is negative), an arithmetic shift
17908 is performed as described below.
17910 @kindex b R
17911 @pindex calc-rshift-arith
17912 @tindex rash
17913 The @kbd{b R} (@code{calc-rshift-arith}) [@code{rash}] command performs
17914 an ``arithmetic'' shift to the right, in which the leftmost bit (according
17915 to the current word size) is duplicated rather than shifting in zeros.
17916 This corresponds to dividing by a power of two where the input is interpreted
17917 as a signed, twos-complement number.  (The distinction between the @samp{rsh}
17918 and @samp{rash} operations is totally independent from whether the word
17919 size is positive or negative.)  With a negative prefix argument, this
17920 performs a standard left shift.
17922 @kindex b t
17923 @pindex calc-rotate-binary
17924 @tindex rot
17925 The @kbd{b t} (@code{calc-rotate-binary}) [@code{rot}] command rotates a
17926 number one bit to the left.  The leftmost bit (according to the current
17927 word size) is dropped off the left and shifted in on the right.  With a
17928 numeric prefix argument, the number is rotated that many bits to the left
17929 or right.
17931 @xref{Set Operations}, for the @kbd{b p} and @kbd{b u} commands that
17932 pack and unpack binary integers into sets.  (For example, @kbd{b u}
17933 unpacks the number @samp{2#11001} to the set of bit-numbers
17934 @samp{[0, 3, 4]}.)  Type @kbd{b u V #} to count the number of ``1''
17935 bits in a binary integer.
17937 Another interesting use of the set representation of binary integers
17938 is to reverse the bits in, say, a 32-bit integer.  Type @kbd{b u} to
17939 unpack; type @kbd{31 @key{TAB} -} to replace each bit-number in the set
17940 with 31 minus that bit-number; type @kbd{b p} to pack the set back
17941 into a binary integer.
17943 @node Scientific Functions, Matrix Functions, Arithmetic, Top
17944 @chapter Scientific Functions
17946 @noindent
17947 The functions described here perform trigonometric and other transcendental
17948 calculations.  They generally produce floating-point answers correct to the
17949 full current precision.  The @kbd{H} (Hyperbolic) and @kbd{I} (Inverse)
17950 flag keys must be used to get some of these functions from the keyboard.
17952 @kindex P
17953 @pindex calc-pi
17954 @cindex @code{pi} variable
17955 @vindex pi
17956 @kindex H P
17957 @cindex @code{e} variable
17958 @vindex e
17959 @kindex I P
17960 @cindex @code{gamma} variable
17961 @vindex gamma
17962 @cindex Gamma constant, Euler's
17963 @cindex Euler's gamma constant
17964 @kindex H I P
17965 @cindex @code{phi} variable
17966 @cindex Phi, golden ratio
17967 @cindex Golden ratio
17968 One miscellaneous command is shift-@kbd{P} (@code{calc-pi}), which pushes
17969 the value of @c{$\pi$}
17970 @cite{pi} (at the current precision) onto the stack.  With the
17971 Hyperbolic flag, it pushes the value @cite{e}, the base of natural logarithms.
17972 With the Inverse flag, it pushes Euler's constant @c{$\gamma$}
17973 @cite{gamma} (about 0.5772).  With both Inverse and Hyperbolic, it
17974 pushes the ``golden ratio'' @c{$\phi$}
17975 @cite{phi} (about 1.618).  (At present, Euler's constant is not available
17976 to unlimited precision; Calc knows only the first 100 digits.)
17977 In Symbolic mode, these commands push the
17978 actual variables @samp{pi}, @samp{e}, @samp{gamma}, and @samp{phi},
17979 respectively, instead of their values; @pxref{Symbolic Mode}.@refill
17981 @ignore
17982 @mindex Q
17983 @end ignore
17984 @ignore
17985 @mindex I Q
17986 @end ignore
17987 @kindex I Q
17988 @tindex sqr
17989 The @kbd{Q} (@code{calc-sqrt}) [@code{sqrt}] function is described elsewhere;
17990 @pxref{Basic Arithmetic}.  With the Inverse flag [@code{sqr}], this command
17991 computes the square of the argument.
17993 @xref{Prefix Arguments}, for a discussion of the effect of numeric
17994 prefix arguments on commands in this chapter which do not otherwise
17995 interpret a prefix argument.
17997 @menu
17998 * Logarithmic Functions::
17999 * Trigonometric and Hyperbolic Functions::
18000 * Advanced Math Functions::
18001 * Branch Cuts::
18002 * Random Numbers::
18003 * Combinatorial Functions::
18004 * Probability Distribution Functions::
18005 @end menu
18007 @node Logarithmic Functions, Trigonometric and Hyperbolic Functions, Scientific Functions, Scientific Functions
18008 @section Logarithmic Functions
18010 @noindent
18011 @kindex L
18012 @pindex calc-ln
18013 @tindex ln
18014 @ignore
18015 @mindex @null
18016 @end ignore
18017 @kindex I E
18018 The shift-@kbd{L} (@code{calc-ln}) [@code{ln}] command computes the natural
18019 logarithm of the real or complex number on the top of the stack.  With
18020 the Inverse flag it computes the exponential function instead, although
18021 this is redundant with the @kbd{E} command.
18023 @kindex E
18024 @pindex calc-exp
18025 @tindex exp
18026 @ignore
18027 @mindex @null
18028 @end ignore
18029 @kindex I L
18030 The shift-@kbd{E} (@code{calc-exp}) [@code{exp}] command computes the
18031 exponential, i.e., @cite{e} raised to the power of the number on the stack.
18032 The meanings of the Inverse and Hyperbolic flags follow from those for
18033 the @code{calc-ln} command.
18035 @kindex H L
18036 @kindex H E
18037 @pindex calc-log10
18038 @tindex log10
18039 @tindex exp10
18040 @ignore
18041 @mindex @null
18042 @end ignore
18043 @kindex H I L
18044 @ignore
18045 @mindex @null
18046 @end ignore
18047 @kindex H I E
18048 The @kbd{H L} (@code{calc-log10}) [@code{log10}] command computes the common
18049 (base-10) logarithm of a number.  (With the Inverse flag [@code{exp10}],
18050 it raises ten to a given power.)  Note that the common logarithm of a
18051 complex number is computed by taking the natural logarithm and dividing
18052 by @c{$\ln10$}
18053 @cite{ln(10)}.
18055 @kindex B
18056 @kindex I B
18057 @pindex calc-log
18058 @tindex log
18059 @tindex alog
18060 The @kbd{B} (@code{calc-log}) [@code{log}] command computes a logarithm
18061 to any base.  For example, @kbd{1024 @key{RET} 2 B} produces 10, since
18062 @c{$2^{10} = 1024$}
18063 @cite{2^10 = 1024}.  In certain cases like @samp{log(3,9)}, the result
18064 will be either @cite{1:2} or @cite{0.5} depending on the current Fraction
18065 Mode setting.  With the Inverse flag [@code{alog}], this command is
18066 similar to @kbd{^} except that the order of the arguments is reversed.
18068 @kindex f I
18069 @pindex calc-ilog
18070 @tindex ilog
18071 The @kbd{f I} (@code{calc-ilog}) [@code{ilog}] command computes the
18072 integer logarithm of a number to any base.  The number and the base must
18073 themselves be positive integers.  This is the true logarithm, rounded
18074 down to an integer.  Thus @kbd{ilog(x,10)} is 3 for all @cite{x} in the
18075 range from 1000 to 9999.  If both arguments are positive integers, exact
18076 integer arithmetic is used; otherwise, this is equivalent to
18077 @samp{floor(log(x,b))}.
18079 @kindex f E
18080 @pindex calc-expm1
18081 @tindex expm1
18082 The @kbd{f E} (@code{calc-expm1}) [@code{expm1}] command computes
18083 @c{$e^x - 1$}
18084 @cite{exp(x)-1}, but using an algorithm that produces a more accurate
18085 answer when the result is close to zero, i.e., when @c{$e^x$}
18086 @cite{exp(x)} is close
18087 to one.
18089 @kindex f L
18090 @pindex calc-lnp1
18091 @tindex lnp1
18092 The @kbd{f L} (@code{calc-lnp1}) [@code{lnp1}] command computes
18093 @c{$\ln(x+1)$}
18094 @cite{ln(x+1)}, producing a more accurate answer when @cite{x} is close
18095 to zero.
18097 @node Trigonometric and Hyperbolic Functions, Advanced Math Functions, Logarithmic Functions, Scientific Functions
18098 @section Trigonometric/Hyperbolic Functions
18100 @noindent
18101 @kindex S
18102 @pindex calc-sin
18103 @tindex sin
18104 The shift-@kbd{S} (@code{calc-sin}) [@code{sin}] command computes the sine
18105 of an angle or complex number.  If the input is an HMS form, it is interpreted
18106 as degrees-minutes-seconds; otherwise, the input is interpreted according
18107 to the current angular mode.  It is best to use Radians mode when operating
18108 on complex numbers.@refill
18110 Calc's ``units'' mechanism includes angular units like @code{deg},
18111 @code{rad}, and @code{grad}.  While @samp{sin(45 deg)} is not evaluated
18112 all the time, the @kbd{u s} (@code{calc-simplify-units}) command will
18113 simplify @samp{sin(45 deg)} by taking the sine of 45 degrees, regardless
18114 of the current angular mode.  @xref{Basic Operations on Units}.
18116 Also, the symbolic variable @code{pi} is not ordinarily recognized in
18117 arguments to trigonometric functions, as in @samp{sin(3 pi / 4)}, but
18118 the @kbd{a s} (@code{calc-simplify}) command recognizes many such
18119 formulas when the current angular mode is radians @emph{and} symbolic
18120 mode is enabled; this example would be replaced by @samp{sqrt(2) / 2}.
18121 @xref{Symbolic Mode}.  Beware, this simplification occurs even if you
18122 have stored a different value in the variable @samp{pi}; this is one
18123 reason why changing built-in variables is a bad idea.  Arguments of
18124 the form @cite{x} plus a multiple of @c{$\pi/2$}
18125 @cite{pi/2} are also simplified.
18126 Calc includes similar formulas for @code{cos} and @code{tan}.@refill
18128 The @kbd{a s} command knows all angles which are integer multiples of
18129 @c{$\pi/12$}
18130 @cite{pi/12}, @c{$\pi/10$}
18131 @cite{pi/10}, or @c{$\pi/8$}
18132 @cite{pi/8} radians.  In degrees mode,
18133 analogous simplifications occur for integer multiples of 15 or 18
18134 degrees, and for arguments plus multiples of 90 degrees.
18136 @kindex I S
18137 @pindex calc-arcsin
18138 @tindex arcsin
18139 With the Inverse flag, @code{calc-sin} computes an arcsine.  This is also
18140 available as the @code{calc-arcsin} command or @code{arcsin} algebraic
18141 function.  The returned argument is converted to degrees, radians, or HMS
18142 notation depending on the current angular mode.
18144 @kindex H S
18145 @pindex calc-sinh
18146 @tindex sinh
18147 @kindex H I S
18148 @pindex calc-arcsinh
18149 @tindex arcsinh
18150 With the Hyperbolic flag, @code{calc-sin} computes the hyperbolic
18151 sine, also available as @code{calc-sinh} [@code{sinh}].  With the
18152 Hyperbolic and Inverse flags, it computes the hyperbolic arcsine
18153 (@code{calc-arcsinh}) [@code{arcsinh}].
18155 @kindex C
18156 @pindex calc-cos
18157 @tindex cos
18158 @ignore
18159 @mindex @idots
18160 @end ignore
18161 @kindex I C
18162 @pindex calc-arccos
18163 @ignore
18164 @mindex @null
18165 @end ignore
18166 @tindex arccos
18167 @ignore
18168 @mindex @null
18169 @end ignore
18170 @kindex H C
18171 @pindex calc-cosh
18172 @ignore
18173 @mindex @null
18174 @end ignore
18175 @tindex cosh
18176 @ignore
18177 @mindex @null
18178 @end ignore
18179 @kindex H I C
18180 @pindex calc-arccosh
18181 @ignore
18182 @mindex @null
18183 @end ignore
18184 @tindex arccosh
18185 @ignore
18186 @mindex @null
18187 @end ignore
18188 @kindex T
18189 @pindex calc-tan
18190 @ignore
18191 @mindex @null
18192 @end ignore
18193 @tindex tan
18194 @ignore
18195 @mindex @null
18196 @end ignore
18197 @kindex I T
18198 @pindex calc-arctan
18199 @ignore
18200 @mindex @null
18201 @end ignore
18202 @tindex arctan
18203 @ignore
18204 @mindex @null
18205 @end ignore
18206 @kindex H T
18207 @pindex calc-tanh
18208 @ignore
18209 @mindex @null
18210 @end ignore
18211 @tindex tanh
18212 @ignore
18213 @mindex @null
18214 @end ignore
18215 @kindex H I T
18216 @pindex calc-arctanh
18217 @ignore
18218 @mindex @null
18219 @end ignore
18220 @tindex arctanh
18221 The shift-@kbd{C} (@code{calc-cos}) [@code{cos}] command computes the cosine
18222 of an angle or complex number, and shift-@kbd{T} (@code{calc-tan}) [@code{tan}]
18223 computes the tangent, along with all the various inverse and hyperbolic
18224 variants of these functions.
18226 @kindex f T
18227 @pindex calc-arctan2
18228 @tindex arctan2
18229 The @kbd{f T} (@code{calc-arctan2}) [@code{arctan2}] command takes two
18230 numbers from the stack and computes the arc tangent of their ratio.  The
18231 result is in the full range from @i{-180} (exclusive) to @i{+180}
18232 (inclusive) degrees, or the analogous range in radians.  A similar
18233 result would be obtained with @kbd{/} followed by @kbd{I T}, but the
18234 value would only be in the range from @i{-90} to @i{+90} degrees
18235 since the division loses information about the signs of the two
18236 components, and an error might result from an explicit division by zero
18237 which @code{arctan2} would avoid.  By (arbitrary) definition,
18238 @samp{arctan2(0,0)=0}.
18240 @pindex calc-sincos
18241 @ignore
18242 @starindex
18243 @end ignore
18244 @tindex sincos
18245 @ignore
18246 @starindex
18247 @end ignore
18248 @ignore
18249 @mindex arc@idots
18250 @end ignore
18251 @tindex arcsincos
18252 The @code{calc-sincos} [@code{sincos}] command computes the sine and
18253 cosine of a number, returning them as a vector of the form
18254 @samp{[@var{cos}, @var{sin}]}.
18255 With the Inverse flag [@code{arcsincos}], this command takes a two-element
18256 vector as an argument and computes @code{arctan2} of the elements.
18257 (This command does not accept the Hyperbolic flag.)@refill
18259 @node Advanced Math Functions, Branch Cuts, Trigonometric and Hyperbolic Functions, Scientific Functions
18260 @section Advanced Mathematical Functions
18262 @noindent
18263 Calc can compute a variety of less common functions that arise in
18264 various branches of mathematics.  All of the functions described in
18265 this section allow arbitrary complex arguments and, except as noted,
18266 will work to arbitrarily large precisions.  They can not at present
18267 handle error forms or intervals as arguments.
18269 NOTE:  These functions are still experimental.  In particular, their
18270 accuracy is not guaranteed in all domains.  It is advisable to set the
18271 current precision comfortably higher than you actually need when
18272 using these functions.  Also, these functions may be impractically
18273 slow for some values of the arguments.
18275 @kindex f g
18276 @pindex calc-gamma
18277 @tindex gamma
18278 The @kbd{f g} (@code{calc-gamma}) [@code{gamma}] command computes the Euler
18279 gamma function.  For positive integer arguments, this is related to the
18280 factorial function:  @samp{gamma(n+1) = fact(n)}.  For general complex
18281 arguments the gamma function can be defined by the following definite
18282 integral:  @c{$\Gamma(a) = \int_0^\infty t^{a-1} e^t dt$}
18283 @cite{gamma(a) = integ(t^(a-1) exp(t), t, 0, inf)}.
18284 (The actual implementation uses far more efficient computational methods.)
18286 @kindex f G
18287 @tindex gammaP
18288 @ignore
18289 @mindex @idots
18290 @end ignore
18291 @kindex I f G
18292 @ignore
18293 @mindex @null
18294 @end ignore
18295 @kindex H f G
18296 @ignore
18297 @mindex @null
18298 @end ignore
18299 @kindex H I f G
18300 @pindex calc-inc-gamma
18301 @ignore
18302 @mindex @null
18303 @end ignore
18304 @tindex gammaQ
18305 @ignore
18306 @mindex @null
18307 @end ignore
18308 @tindex gammag
18309 @ignore
18310 @mindex @null
18311 @end ignore
18312 @tindex gammaG
18313 The @kbd{f G} (@code{calc-inc-gamma}) [@code{gammaP}] command computes
18314 the incomplete gamma function, denoted @samp{P(a,x)}.  This is defined by
18315 the integral, @c{$P(a,x) = \left( \int_0^x t^{a-1} e^t dt \right) / \Gamma(a)$}
18316 @cite{gammaP(a,x) = integ(t^(a-1) exp(t), t, 0, x) / gamma(a)}.
18317 This implies that @samp{gammaP(a,inf) = 1} for any @cite{a} (see the
18318 definition of the normal gamma function).
18320 Several other varieties of incomplete gamma function are defined.
18321 The complement of @cite{P(a,x)}, called @cite{Q(a,x) = 1-P(a,x)} by
18322 some authors, is computed by the @kbd{I f G} [@code{gammaQ}] command.
18323 You can think of this as taking the other half of the integral, from
18324 @cite{x} to infinity.
18326 @ifinfo
18327 The functions corresponding to the integrals that define @cite{P(a,x)}
18328 and @cite{Q(a,x)} but without the normalizing @cite{1/gamma(a)}
18329 factor are called @cite{g(a,x)} and @cite{G(a,x)}, respectively
18330 (where @cite{g} and @cite{G} represent the lower- and upper-case Greek
18331 letter gamma).  You can obtain these using the @kbd{H f G} [@code{gammag}]
18332 and @kbd{H I f G} [@code{gammaG}] commands.
18333 @end ifinfo
18334 @tex
18335 \turnoffactive
18336 The functions corresponding to the integrals that define $P(a,x)$
18337 and $Q(a,x)$ but without the normalizing $1/\Gamma(a)$
18338 factor are called $\gamma(a,x)$ and $\Gamma(a,x)$, respectively.
18339 You can obtain these using the \kbd{H f G} [\code{gammag}] and
18340 \kbd{I H f G} [\code{gammaG}] commands.
18341 @end tex
18343 @kindex f b
18344 @pindex calc-beta
18345 @tindex beta
18346 The @kbd{f b} (@code{calc-beta}) [@code{beta}] command computes the
18347 Euler beta function, which is defined in terms of the gamma function as
18348 @c{$B(a,b) = \Gamma(a) \Gamma(b) / \Gamma(a+b)$}
18349 @cite{beta(a,b) = gamma(a) gamma(b) / gamma(a+b)}, or by
18350 @c{$B(a,b) = \int_0^1 t^{a-1} (1-t)^{b-1} dt$}
18351 @cite{beta(a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, 1)}.
18353 @kindex f B
18354 @kindex H f B
18355 @pindex calc-inc-beta
18356 @tindex betaI
18357 @tindex betaB
18358 The @kbd{f B} (@code{calc-inc-beta}) [@code{betaI}] command computes
18359 the incomplete beta function @cite{I(x,a,b)}.  It is defined by
18360 @c{$I(x,a,b) = \left( \int_0^x t^{a-1} (1-t)^{b-1} dt \right) / B(a,b)$}
18361 @cite{betaI(x,a,b) = integ(t^(a-1) (1-t)^(b-1), t, 0, x) / beta(a,b)}.
18362 Once again, the @kbd{H} (hyperbolic) prefix gives the corresponding
18363 un-normalized version [@code{betaB}].
18365 @kindex f e
18366 @kindex I f e
18367 @pindex calc-erf
18368 @tindex erf
18369 @tindex erfc
18370 The @kbd{f e} (@code{calc-erf}) [@code{erf}] command computes the
18371 error function @c{$\hbox{erf}(x) = {2 \over \sqrt{\pi}} \int_0^x e^{-t^2} dt$}
18372 @cite{erf(x) = 2 integ(exp(-(t^2)), t, 0, x) / sqrt(pi)}.
18373 The complementary error function @kbd{I f e} (@code{calc-erfc}) [@code{erfc}]
18374 is the corresponding integral from @samp{x} to infinity; the sum
18375 @c{$\hbox{erf}(x) + \hbox{erfc}(x) = 1$}
18376 @cite{erf(x) + erfc(x) = 1}.
18378 @kindex f j
18379 @kindex f y
18380 @pindex calc-bessel-J
18381 @pindex calc-bessel-Y
18382 @tindex besJ
18383 @tindex besY
18384 The @kbd{f j} (@code{calc-bessel-J}) [@code{besJ}] and @kbd{f y}
18385 (@code{calc-bessel-Y}) [@code{besY}] commands compute the Bessel
18386 functions of the first and second kinds, respectively.
18387 In @samp{besJ(n,x)} and @samp{besY(n,x)} the ``order'' parameter
18388 @cite{n} is often an integer, but is not required to be one.
18389 Calc's implementation of the Bessel functions currently limits the
18390 precision to 8 digits, and may not be exact even to that precision.
18391 Use with care!@refill
18393 @node Branch Cuts, Random Numbers, Advanced Math Functions, Scientific Functions
18394 @section Branch Cuts and Principal Values
18396 @noindent
18397 @cindex Branch cuts
18398 @cindex Principal values
18399 All of the logarithmic, trigonometric, and other scientific functions are
18400 defined for complex numbers as well as for reals.
18401 This section describes the values
18402 returned in cases where the general result is a family of possible values.
18403 Calc follows section 12.5.3 of Steele's @dfn{Common Lisp, the Language},
18404 second edition, in these matters.  This section will describe each
18405 function briefly; for a more detailed discussion (including some nifty
18406 diagrams), consult Steele's book.
18408 Note that the branch cuts for @code{arctan} and @code{arctanh} were
18409 changed between the first and second editions of Steele.  Versions of
18410 Calc starting with 2.00 follow the second edition.
18412 The new branch cuts exactly match those of the HP-28/48 calculators.
18413 They also match those of Mathematica 1.2, except that Mathematica's
18414 @code{arctan} cut is always in the right half of the complex plane,
18415 and its @code{arctanh} cut is always in the top half of the plane.
18416 Calc's cuts are continuous with quadrants I and III for @code{arctan},
18417 or II and IV for @code{arctanh}.
18419 Note:  The current implementations of these functions with complex arguments
18420 are designed with proper behavior around the branch cuts in mind, @emph{not}
18421 efficiency or accuracy.  You may need to increase the floating precision
18422 and wait a while to get suitable answers from them.
18424 For @samp{sqrt(a+bi)}:  When @cite{a<0} and @cite{b} is small but positive
18425 or zero, the result is close to the @cite{+i} axis.  For @cite{b} small and
18426 negative, the result is close to the @cite{-i} axis.  The result always lies
18427 in the right half of the complex plane.
18429 For @samp{ln(a+bi)}:  The real part is defined as @samp{ln(abs(a+bi))}.
18430 The imaginary part is defined as @samp{arg(a+bi) = arctan2(b,a)}.
18431 Thus the branch cuts for @code{sqrt} and @code{ln} both lie on the
18432 negative real axis.
18434 The following table describes these branch cuts in another way.
18435 If the real and imaginary parts of @cite{z} are as shown, then
18436 the real and imaginary parts of @cite{f(z)} will be as shown.
18437 Here @code{eps} stands for a small positive value; each
18438 occurrence of @code{eps} may stand for a different small value.
18440 @smallexample
18441      z           sqrt(z)       ln(z)
18442 ----------------------------------------
18443    +,   0         +,  0       any, 0
18444    -,   0         0,  +       any, pi
18445    -, +eps      +eps, +      +eps, +
18446    -, -eps      +eps, -      +eps, -
18447 @end smallexample
18449 For @samp{z1^z2}:  This is defined by @samp{exp(ln(z1)*z2)}.
18450 One interesting consequence of this is that @samp{(-8)^1:3} does
18451 not evaluate to @i{-2} as you might expect, but to the complex
18452 number @cite{(1., 1.732)}.  Both of these are valid cube roots
18453 of @i{-8} (as is @cite{(1., -1.732)}); Calc chooses a perhaps
18454 less-obvious root for the sake of mathematical consistency.
18456 For @samp{arcsin(z)}:  This is defined by @samp{-i*ln(i*z + sqrt(1-z^2))}.
18457 The branch cuts are on the real axis, less than @i{-1} and greater than 1.
18459 For @samp{arccos(z)}:  This is defined by @samp{-i*ln(z + i*sqrt(1-z^2))},
18460 or equivalently by @samp{pi/2 - arcsin(z)}.  The branch cuts are on
18461 the real axis, less than @i{-1} and greater than 1.
18463 For @samp{arctan(z)}:  This is defined by
18464 @samp{(ln(1+i*z) - ln(1-i*z)) / (2*i)}.  The branch cuts are on the
18465 imaginary axis, below @cite{-i} and above @cite{i}.
18467 For @samp{arcsinh(z)}:  This is defined by @samp{ln(z + sqrt(1+z^2))}.
18468 The branch cuts are on the imaginary axis, below @cite{-i} and
18469 above @cite{i}.
18471 For @samp{arccosh(z)}:  This is defined by
18472 @samp{ln(z + (z+1)*sqrt((z-1)/(z+1)))}.  The branch cut is on the
18473 real axis less than 1.
18475 For @samp{arctanh(z)}:  This is defined by @samp{(ln(1+z) - ln(1-z)) / 2}.
18476 The branch cuts are on the real axis, less than @i{-1} and greater than 1.
18478 The following tables for @code{arcsin}, @code{arccos}, and
18479 @code{arctan} assume the current angular mode is radians.  The
18480 hyperbolic functions operate independently of the angular mode.
18482 @smallexample
18483        z             arcsin(z)            arccos(z)
18484 -------------------------------------------------------
18485  (-1..1),  0      (-pi/2..pi/2), 0       (0..pi), 0
18486  (-1..1), +eps    (-pi/2..pi/2), +eps    (0..pi), -eps
18487  (-1..1), -eps    (-pi/2..pi/2), -eps    (0..pi), +eps
18488    <-1,    0          -pi/2,     +         pi,    -
18489    <-1,  +eps      -pi/2 + eps,  +      pi - eps, -
18490    <-1,  -eps      -pi/2 + eps,  -      pi - eps, +
18491     >1,    0           pi/2,     -          0,    +
18492     >1,  +eps       pi/2 - eps,  +        +eps,   -
18493     >1,  -eps       pi/2 - eps,  -        +eps,   +
18494 @end smallexample
18496 @smallexample
18497        z            arccosh(z)         arctanh(z)
18498 -----------------------------------------------------
18499  (-1..1),  0        0,  (0..pi)       any,     0
18500  (-1..1), +eps    +eps, (0..pi)       any,    +eps
18501  (-1..1), -eps    +eps, (-pi..0)      any,    -eps
18502    <-1,    0        +,    pi           -,     pi/2
18503    <-1,  +eps       +,  pi - eps       -,  pi/2 - eps
18504    <-1,  -eps       +, -pi + eps       -, -pi/2 + eps
18505     >1,    0        +,     0           +,    -pi/2
18506     >1,  +eps       +,   +eps          +,  pi/2 - eps
18507     >1,  -eps       +,   -eps          +, -pi/2 + eps
18508 @end smallexample
18510 @smallexample
18511        z           arcsinh(z)           arctan(z)
18512 -----------------------------------------------------
18513    0, (-1..1)    0, (-pi/2..pi/2)         0,     any
18514    0,   <-1      -,    -pi/2            -pi/2,    -
18515  +eps,  <-1      +, -pi/2 + eps       pi/2 - eps, -
18516  -eps,  <-1      -, -pi/2 + eps      -pi/2 + eps, -
18517    0,    >1      +,     pi/2             pi/2,    +
18518  +eps,   >1      +,  pi/2 - eps       pi/2 - eps, +
18519  -eps,   >1      -,  pi/2 - eps      -pi/2 + eps, +
18520 @end smallexample
18522 Finally, the following identities help to illustrate the relationship
18523 between the complex trigonometric and hyperbolic functions.  They
18524 are valid everywhere, including on the branch cuts.
18526 @smallexample
18527 sin(i*z)  = i*sinh(z)       arcsin(i*z)  = i*arcsinh(z)
18528 cos(i*z)  =   cosh(z)       arcsinh(i*z) = i*arcsin(z)
18529 tan(i*z)  = i*tanh(z)       arctan(i*z)  = i*arctanh(z)
18530 sinh(i*z) = i*sin(z)        cosh(i*z)    =   cos(z)
18531 @end smallexample
18533 The ``advanced math'' functions (gamma, Bessel, etc.@:) are also defined
18534 for general complex arguments, but their branch cuts and principal values
18535 are not rigorously specified at present.
18537 @node Random Numbers, Combinatorial Functions, Branch Cuts, Scientific Functions
18538 @section Random Numbers
18540 @noindent
18541 @kindex k r
18542 @pindex calc-random
18543 @tindex random
18544 The @kbd{k r} (@code{calc-random}) [@code{random}] command produces
18545 random numbers of various sorts.
18547 Given a positive numeric prefix argument @cite{M}, it produces a random
18548 integer @cite{N} in the range @c{$0 \le N < M$}
18549 @cite{0 <= N < M}.  Each of the @cite{M}
18550 values appears with equal probability.@refill
18552 With no numeric prefix argument, the @kbd{k r} command takes its argument
18553 from the stack instead.  Once again, if this is a positive integer @cite{M}
18554 the result is a random integer less than @cite{M}.  However, note that
18555 while numeric prefix arguments are limited to six digits or so, an @cite{M}
18556 taken from the stack can be arbitrarily large.  If @cite{M} is negative,
18557 the result is a random integer in the range @c{$M < N \le 0$}
18558 @cite{M < N <= 0}.
18560 If the value on the stack is a floating-point number @cite{M}, the result
18561 is a random floating-point number @cite{N} in the range @c{$0 \le N < M$}
18562 @cite{0 <= N < M}
18563 or @c{$M < N \le 0$}
18564 @cite{M < N <= 0}, according to the sign of @cite{M}.
18566 If @cite{M} is zero, the result is a Gaussian-distributed random real
18567 number; the distribution has a mean of zero and a standard deviation
18568 of one.  The algorithm used generates random numbers in pairs; thus,
18569 every other call to this function will be especially fast.
18571 If @cite{M} is an error form @c{$m$ @code{+/-} $\sigma$}
18572 @samp{m +/- s} where @var{m}
18573 and @c{$\sigma$}
18574 @var{s} are both real numbers, the result uses a Gaussian
18575 distribution with mean @var{m} and standard deviation @c{$\sigma$}
18576 @var{s}.
18578 If @cite{M} is an interval form, the lower and upper bounds specify the
18579 acceptable limits of the random numbers.  If both bounds are integers,
18580 the result is a random integer in the specified range.  If either bound
18581 is floating-point, the result is a random real number in the specified
18582 range.  If the interval is open at either end, the result will be sure
18583 not to equal that end value.  (This makes a big difference for integer
18584 intervals, but for floating-point intervals it's relatively minor:
18585 with a precision of 6, @samp{random([1.0..2.0))} will return any of one
18586 million numbers from 1.00000 to 1.99999; @samp{random([1.0..2.0])} may
18587 additionally return 2.00000, but the probability of this happening is
18588 extremely small.)
18590 If @cite{M} is a vector, the result is one element taken at random from
18591 the vector.  All elements of the vector are given equal probabilities.
18593 @vindex RandSeed
18594 The sequence of numbers produced by @kbd{k r} is completely random by
18595 default, i.e., the sequence is seeded each time you start Calc using
18596 the current time and other information.  You can get a reproducible
18597 sequence by storing a particular ``seed value'' in the Calc variable
18598 @code{RandSeed}.  Any integer will do for a seed; integers of from 1
18599 to 12 digits are good.  If you later store a different integer into
18600 @code{RandSeed}, Calc will switch to a different pseudo-random
18601 sequence.  If you ``unstore'' @code{RandSeed}, Calc will re-seed itself
18602 from the current time.  If you store the same integer that you used
18603 before back into @code{RandSeed}, you will get the exact same sequence
18604 of random numbers as before.
18606 @pindex calc-rrandom
18607 The @code{calc-rrandom} command (not on any key) produces a random real
18608 number between zero and one.  It is equivalent to @samp{random(1.0)}.
18610 @kindex k a
18611 @pindex calc-random-again
18612 The @kbd{k a} (@code{calc-random-again}) command produces another random
18613 number, re-using the most recent value of @cite{M}.  With a numeric
18614 prefix argument @var{n}, it produces @var{n} more random numbers using
18615 that value of @cite{M}.
18617 @kindex k h
18618 @pindex calc-shuffle
18619 @tindex shuffle
18620 The @kbd{k h} (@code{calc-shuffle}) command produces a vector of several
18621 random values with no duplicates.  The value on the top of the stack
18622 specifies the set from which the random values are drawn, and may be any
18623 of the @cite{M} formats described above.  The numeric prefix argument
18624 gives the length of the desired list.  (If you do not provide a numeric
18625 prefix argument, the length of the list is taken from the top of the
18626 stack, and @cite{M} from second-to-top.)
18628 If @cite{M} is a floating-point number, zero, or an error form (so
18629 that the random values are being drawn from the set of real numbers)
18630 there is little practical difference between using @kbd{k h} and using
18631 @kbd{k r} several times.  But if the set of possible values consists
18632 of just a few integers, or the elements of a vector, then there is
18633 a very real chance that multiple @kbd{k r}'s will produce the same
18634 number more than once.  The @kbd{k h} command produces a vector whose
18635 elements are always distinct.  (Actually, there is a slight exception:
18636 If @cite{M} is a vector, no given vector element will be drawn more
18637 than once, but if several elements of @cite{M} are equal, they may
18638 each make it into the result vector.)
18640 One use of @kbd{k h} is to rearrange a list at random.  This happens
18641 if the prefix argument is equal to the number of values in the list:
18642 @kbd{[1, 1.5, 2, 2.5, 3] 5 k h} might produce the permuted list
18643 @samp{[2.5, 1, 1.5, 3, 2]}.  As a convenient feature, if the argument
18644 @var{n} is negative it is replaced by the size of the set represented
18645 by @cite{M}.  Naturally, this is allowed only when @cite{M} specifies
18646 a small discrete set of possibilities.
18648 To do the equivalent of @kbd{k h} but with duplications allowed,
18649 given @cite{M} on the stack and with @var{n} just entered as a numeric
18650 prefix, use @kbd{v b} to build a vector of copies of @cite{M}, then use
18651 @kbd{V M k r} to ``map'' the normal @kbd{k r} function over the
18652 elements of this vector.  @xref{Matrix Functions}.
18654 @menu
18655 * Random Number Generator::     (Complete description of Calc's algorithm)
18656 @end menu
18658 @node Random Number Generator, , Random Numbers, Random Numbers
18659 @subsection Random Number Generator
18661 Calc's random number generator uses several methods to ensure that
18662 the numbers it produces are highly random.  Knuth's @emph{Art of
18663 Computer Programming}, Volume II, contains a thorough description
18664 of the theory of random number generators and their measurement and
18665 characterization.
18667 If @code{RandSeed} has no stored value, Calc calls Emacs' built-in
18668 @code{random} function to get a stream of random numbers, which it
18669 then treats in various ways to avoid problems inherent in the simple
18670 random number generators that many systems use to implement @code{random}.
18672 When Calc's random number generator is first invoked, it ``seeds''
18673 the low-level random sequence using the time of day, so that the
18674 random number sequence will be different every time you use Calc.
18676 Since Emacs Lisp doesn't specify the range of values that will be
18677 returned by its @code{random} function, Calc exercises the function
18678 several times to estimate the range.  When Calc subsequently uses
18679 the @code{random} function, it takes only 10 bits of the result
18680 near the most-significant end.  (It avoids at least the bottom
18681 four bits, preferably more, and also tries to avoid the top two
18682 bits.)  This strategy works well with the linear congruential
18683 generators that are typically used to implement @code{random}.
18685 If @code{RandSeed} contains an integer, Calc uses this integer to
18686 seed an ``additive congruential'' method (Knuth's algorithm 3.2.2A,
18687 computing @c{$X_{n-55} - X_{n-24}$}
18688 @cite{X_n-55 - X_n-24}).  This method expands the seed
18689 value into a large table which is maintained internally; the variable
18690 @code{RandSeed} is changed from, e.g., 42 to the vector @cite{[42]}
18691 to indicate that the seed has been absorbed into this table.  When
18692 @code{RandSeed} contains a vector, @kbd{k r} and related commands
18693 continue to use the same internal table as last time.  There is no
18694 way to extract the complete state of the random number generator
18695 so that you can restart it from any point; you can only restart it
18696 from the same initial seed value.  A simple way to restart from the
18697 same seed is to type @kbd{s r RandSeed} to get the seed vector,
18698 @kbd{v u} to unpack it back into a number, then @kbd{s t RandSeed}
18699 to reseed the generator with that number.
18701 Calc uses a ``shuffling'' method as described in algorithm 3.2.2B
18702 of Knuth.  It fills a table with 13 random 10-bit numbers.  Then,
18703 to generate a new random number, it uses the previous number to
18704 index into the table, picks the value it finds there as the new
18705 random number, then replaces that table entry with a new value
18706 obtained from a call to the base random number generator (either
18707 the additive congruential generator or the @code{random} function
18708 supplied by the system).  If there are any flaws in the base
18709 generator, shuffling will tend to even them out.  But if the system
18710 provides an excellent @code{random} function, shuffling will not
18711 damage its randomness.
18713 To create a random integer of a certain number of digits, Calc
18714 builds the integer three decimal digits at a time.  For each group
18715 of three digits, Calc calls its 10-bit shuffling random number generator
18716 (which returns a value from 0 to 1023); if the random value is 1000
18717 or more, Calc throws it out and tries again until it gets a suitable
18718 value.
18720 To create a random floating-point number with precision @var{p}, Calc
18721 simply creates a random @var{p}-digit integer and multiplies by
18722 @c{$10^{-p}$}
18723 @cite{10^-p}.  The resulting random numbers should be very clean, but note
18724 that relatively small numbers will have few significant random digits.
18725 In other words, with a precision of 12, you will occasionally get
18726 numbers on the order of @c{$10^{-9}$}
18727 @cite{10^-9} or @c{$10^{-10}$}
18728 @cite{10^-10}, but those numbers
18729 will only have two or three random digits since they correspond to small
18730 integers times @c{$10^{-12}$}
18731 @cite{10^-12}.
18733 To create a random integer in the interval @samp{[0 .. @var{m})}, Calc
18734 counts the digits in @var{m}, creates a random integer with three
18735 additional digits, then reduces modulo @var{m}.  Unless @var{m} is a
18736 power of ten the resulting values will be very slightly biased toward
18737 the lower numbers, but this bias will be less than 0.1%.  (For example,
18738 if @var{m} is 42, Calc will reduce a random integer less than 100000
18739 modulo 42 to get a result less than 42.  It is easy to show that the
18740 numbers 40 and 41 will be only 2380/2381 as likely to result from this
18741 modulo operation as numbers 39 and below.)  If @var{m} is a power of
18742 ten, however, the numbers should be completely unbiased.
18744 The Gaussian random numbers generated by @samp{random(0.0)} use the
18745 ``polar'' method described in Knuth section 3.4.1C.  This method
18746 generates a pair of Gaussian random numbers at a time, so only every
18747 other call to @samp{random(0.0)} will require significant calculations.
18749 @node Combinatorial Functions, Probability Distribution Functions, Random Numbers, Scientific Functions
18750 @section Combinatorial Functions
18752 @noindent
18753 Commands relating to combinatorics and number theory begin with the
18754 @kbd{k} key prefix.
18756 @kindex k g
18757 @pindex calc-gcd
18758 @tindex gcd
18759 The @kbd{k g} (@code{calc-gcd}) [@code{gcd}] command computes the
18760 Greatest Common Divisor of two integers.  It also accepts fractions;
18761 the GCD of two fractions is defined by taking the GCD of the
18762 numerators, and the LCM of the denominators.  This definition is
18763 consistent with the idea that @samp{a / gcd(a,x)} should yield an
18764 integer for any @samp{a} and @samp{x}.  For other types of arguments,
18765 the operation is left in symbolic form.@refill
18767 @kindex k l
18768 @pindex calc-lcm
18769 @tindex lcm
18770 The @kbd{k l} (@code{calc-lcm}) [@code{lcm}] command computes the
18771 Least Common Multiple of two integers or fractions.  The product of
18772 the LCM and GCD of two numbers is equal to the product of the
18773 numbers.@refill
18775 @kindex k E
18776 @pindex calc-extended-gcd
18777 @tindex egcd
18778 The @kbd{k E} (@code{calc-extended-gcd}) [@code{egcd}] command computes
18779 the GCD of two integers @cite{x} and @cite{y} and returns a vector
18780 @cite{[g, a, b]} where @c{$g = \gcd(x,y) = a x + b y$}
18781 @cite{g = gcd(x,y) = a x + b y}.
18783 @kindex !
18784 @pindex calc-factorial
18785 @tindex fact
18786 @ignore
18787 @mindex @null
18788 @end ignore
18789 @tindex !
18790 The @kbd{!} (@code{calc-factorial}) [@code{fact}] command computes the
18791 factorial of the number at the top of the stack.  If the number is an
18792 integer, the result is an exact integer.  If the number is an
18793 integer-valued float, the result is a floating-point approximation.  If
18794 the number is a non-integral real number, the generalized factorial is used,
18795 as defined by the Euler Gamma function.  Please note that computation of
18796 large factorials can be slow; using floating-point format will help
18797 since fewer digits must be maintained.  The same is true of many of
18798 the commands in this section.@refill
18800 @kindex k d
18801 @pindex calc-double-factorial
18802 @tindex dfact
18803 @ignore
18804 @mindex @null
18805 @end ignore
18806 @tindex !!
18807 The @kbd{k d} (@code{calc-double-factorial}) [@code{dfact}] command
18808 computes the ``double factorial'' of an integer.  For an even integer,
18809 this is the product of even integers from 2 to @cite{N}.  For an odd
18810 integer, this is the product of odd integers from 3 to @cite{N}.  If
18811 the argument is an integer-valued float, the result is a floating-point
18812 approximation.  This function is undefined for negative even integers.
18813 The notation @cite{N!!} is also recognized for double factorials.@refill
18815 @kindex k c
18816 @pindex calc-choose
18817 @tindex choose
18818 The @kbd{k c} (@code{calc-choose}) [@code{choose}] command computes the
18819 binomial coefficient @cite{N}-choose-@cite{M}, where @cite{M} is the number
18820 on the top of the stack and @cite{N} is second-to-top.  If both arguments
18821 are integers, the result is an exact integer.  Otherwise, the result is a
18822 floating-point approximation.  The binomial coefficient is defined for all
18823 real numbers by @c{$N! \over M! (N-M)!\,$}
18824 @cite{N! / M! (N-M)!}.
18826 @kindex H k c
18827 @pindex calc-perm
18828 @tindex perm
18829 @ifinfo
18830 The @kbd{H k c} (@code{calc-perm}) [@code{perm}] command computes the
18831 number-of-permutations function @cite{N! / (N-M)!}.
18832 @end ifinfo
18833 @tex
18834 The \kbd{H k c} (\code{calc-perm}) [\code{perm}] command computes the
18835 number-of-perm\-utations function $N! \over (N-M)!\,$.
18836 @end tex
18838 @kindex k b
18839 @kindex H k b
18840 @pindex calc-bernoulli-number
18841 @tindex bern
18842 The @kbd{k b} (@code{calc-bernoulli-number}) [@code{bern}] command
18843 computes a given Bernoulli number.  The value at the top of the stack
18844 is a nonnegative integer @cite{n} that specifies which Bernoulli number
18845 is desired.  The @kbd{H k b} command computes a Bernoulli polynomial,
18846 taking @cite{n} from the second-to-top position and @cite{x} from the
18847 top of the stack.  If @cite{x} is a variable or formula the result is
18848 a polynomial in @cite{x}; if @cite{x} is a number the result is a number.
18850 @kindex k e
18851 @kindex H k e
18852 @pindex calc-euler-number
18853 @tindex euler
18854 The @kbd{k e} (@code{calc-euler-number}) [@code{euler}] command similarly
18855 computes an Euler number, and @w{@kbd{H k e}} computes an Euler polynomial.
18856 Bernoulli and Euler numbers occur in the Taylor expansions of several
18857 functions.
18859 @kindex k s
18860 @kindex H k s
18861 @pindex calc-stirling-number
18862 @tindex stir1
18863 @tindex stir2
18864 The @kbd{k s} (@code{calc-stirling-number}) [@code{stir1}] command
18865 computes a Stirling number of the first kind@c{ $n \brack m$}
18866 @asis{}, given two integers
18867 @cite{n} and @cite{m} on the stack.  The @kbd{H k s} [@code{stir2}]
18868 command computes a Stirling number of the second kind@c{ $n \brace m$}
18869 @asis{}.  These are
18870 the number of @cite{m}-cycle permutations of @cite{n} objects, and
18871 the number of ways to partition @cite{n} objects into @cite{m}
18872 non-empty sets, respectively.
18874 @kindex k p
18875 @pindex calc-prime-test
18876 @cindex Primes
18877 The @kbd{k p} (@code{calc-prime-test}) command checks if the integer on
18878 the top of the stack is prime.  For integers less than eight million, the
18879 answer is always exact and reasonably fast.  For larger integers, a
18880 probabilistic method is used (see Knuth vol. II, section 4.5.4, algorithm P).
18881 The number is first checked against small prime factors (up to 13).  Then,
18882 any number of iterations of the algorithm are performed.  Each step either
18883 discovers that the number is non-prime, or substantially increases the
18884 certainty that the number is prime.  After a few steps, the chance that
18885 a number was mistakenly described as prime will be less than one percent.
18886 (Indeed, this is a worst-case estimate of the probability; in practice
18887 even a single iteration is quite reliable.)  After the @kbd{k p} command,
18888 the number will be reported as definitely prime or non-prime if possible,
18889 or otherwise ``probably'' prime with a certain probability of error.
18891 @ignore
18892 @starindex
18893 @end ignore
18894 @tindex prime
18895 The normal @kbd{k p} command performs one iteration of the primality
18896 test.  Pressing @kbd{k p} repeatedly for the same integer will perform
18897 additional iterations.  Also, @kbd{k p} with a numeric prefix performs
18898 the specified number of iterations.  There is also an algebraic function
18899 @samp{prime(n)} or @samp{prime(n,iters)} which returns 1 if @cite{n}
18900 is (probably) prime and 0 if not.
18902 @kindex k f
18903 @pindex calc-prime-factors
18904 @tindex prfac
18905 The @kbd{k f} (@code{calc-prime-factors}) [@code{prfac}] command
18906 attempts to decompose an integer into its prime factors.  For numbers up
18907 to 25 million, the answer is exact although it may take some time.  The
18908 result is a vector of the prime factors in increasing order.  For larger
18909 inputs, prime factors above 5000 may not be found, in which case the
18910 last number in the vector will be an unfactored integer greater than 25
18911 million (with a warning message).  For negative integers, the first
18912 element of the list will be @i{-1}.  For inputs @i{-1}, @i{0}, and
18913 @i{1}, the result is a list of the same number.
18915 @kindex k n
18916 @pindex calc-next-prime
18917 @ignore
18918 @mindex nextpr@idots
18919 @end ignore
18920 @tindex nextprime
18921 The @kbd{k n} (@code{calc-next-prime}) [@code{nextprime}] command finds
18922 the next prime above a given number.  Essentially, it searches by calling
18923 @code{calc-prime-test} on successive integers until it finds one that
18924 passes the test.  This is quite fast for integers less than eight million,
18925 but once the probabilistic test comes into play the search may be rather
18926 slow.  Ordinarily this command stops for any prime that passes one iteration
18927 of the primality test.  With a numeric prefix argument, a number must pass
18928 the specified number of iterations before the search stops.  (This only
18929 matters when searching above eight million.)  You can always use additional
18930 @kbd{k p} commands to increase your certainty that the number is indeed
18931 prime.
18933 @kindex I k n
18934 @pindex calc-prev-prime
18935 @ignore
18936 @mindex prevpr@idots
18937 @end ignore
18938 @tindex prevprime
18939 The @kbd{I k n} (@code{calc-prev-prime}) [@code{prevprime}] command
18940 analogously finds the next prime less than a given number.
18942 @kindex k t
18943 @pindex calc-totient
18944 @tindex totient
18945 The @kbd{k t} (@code{calc-totient}) [@code{totient}] command computes the
18946 Euler ``totient'' function@c{ $\phi(n)$}
18947 @asis{}, the number of integers less than @cite{n} which
18948 are relatively prime to @cite{n}.
18950 @kindex k m
18951 @pindex calc-moebius
18952 @tindex moebius
18953 The @kbd{k m} (@code{calc-moebius}) [@code{moebius}] command computes the
18954 @c{M\"obius $\mu$}
18955 @asis{Moebius ``mu''} function.  If the input number is a product of @cite{k}
18956 distinct factors, this is @cite{(-1)^k}.  If the input number has any
18957 duplicate factors (i.e., can be divided by the same prime more than once),
18958 the result is zero.
18960 @node Probability Distribution Functions, , Combinatorial Functions, Scientific Functions
18961 @section Probability Distribution Functions
18963 @noindent
18964 The functions in this section compute various probability distributions.
18965 For continuous distributions, this is the integral of the probability
18966 density function from @cite{x} to infinity.  (These are the ``upper
18967 tail'' distribution functions; there are also corresponding ``lower
18968 tail'' functions which integrate from minus infinity to @cite{x}.)
18969 For discrete distributions, the upper tail function gives the sum
18970 from @cite{x} to infinity; the lower tail function gives the sum
18971 from minus infinity up to, but not including,@w{ }@cite{x}.
18973 To integrate from @cite{x} to @cite{y}, just use the distribution
18974 function twice and subtract.  For example, the probability that a
18975 Gaussian random variable with mean 2 and standard deviation 1 will
18976 lie in the range from 2.5 to 2.8 is @samp{utpn(2.5,2,1) - utpn(2.8,2,1)}
18977 (``the probability that it is greater than 2.5, but not greater than 2.8''),
18978 or equivalently @samp{ltpn(2.8,2,1) - ltpn(2.5,2,1)}.
18980 @kindex k B
18981 @kindex I k B
18982 @pindex calc-utpb
18983 @tindex utpb
18984 @tindex ltpb
18985 The @kbd{k B} (@code{calc-utpb}) [@code{utpb}] function uses the
18986 binomial distribution.  Push the parameters @var{n}, @var{p}, and
18987 then @var{x} onto the stack; the result (@samp{utpb(x,n,p)}) is the
18988 probability that an event will occur @var{x} or more times out
18989 of @var{n} trials, if its probability of occurring in any given
18990 trial is @var{p}.  The @kbd{I k B} [@code{ltpb}] function is
18991 the probability that the event will occur fewer than @var{x} times.
18993 The other probability distribution functions similarly take the
18994 form @kbd{k @var{X}} (@code{calc-utp@var{x}}) [@code{utp@var{x}}]
18995 and @kbd{I k @var{X}} [@code{ltp@var{x}}], for various letters
18996 @var{x}.  The arguments to the algebraic functions are the value of
18997 the random variable first, then whatever other parameters define the
18998 distribution.  Note these are among the few Calc functions where the
18999 order of the arguments in algebraic form differs from the order of
19000 arguments as found on the stack.  (The random variable comes last on
19001 the stack, so that you can type, e.g., @kbd{2 @key{RET} 1 @key{RET} 2.5
19002 k N M-@key{RET} @key{DEL} 2.8 k N -}, using @kbd{M-@key{RET} @key{DEL}} to
19003 recover the original arguments but substitute a new value for @cite{x}.)
19005 @kindex k C
19006 @pindex calc-utpc
19007 @tindex utpc
19008 @ignore
19009 @mindex @idots
19010 @end ignore
19011 @kindex I k C
19012 @ignore
19013 @mindex @null
19014 @end ignore
19015 @tindex ltpc
19016 The @samp{utpc(x,v)} function uses the chi-square distribution with
19017 @c{$\nu$}
19018 @cite{v} degrees of freedom.  It is the probability that a model is
19019 correct if its chi-square statistic is @cite{x}.
19021 @kindex k F
19022 @pindex calc-utpf
19023 @tindex utpf
19024 @ignore
19025 @mindex @idots
19026 @end ignore
19027 @kindex I k F
19028 @ignore
19029 @mindex @null
19030 @end ignore
19031 @tindex ltpf
19032 The @samp{utpf(F,v1,v2)} function uses the F distribution, used in
19033 various statistical tests.  The parameters @c{$\nu_1$}
19034 @cite{v1} and @c{$\nu_2$}
19035 @cite{v2}
19036 are the degrees of freedom in the numerator and denominator,
19037 respectively, used in computing the statistic @cite{F}.
19039 @kindex k N
19040 @pindex calc-utpn
19041 @tindex utpn
19042 @ignore
19043 @mindex @idots
19044 @end ignore
19045 @kindex I k N
19046 @ignore
19047 @mindex @null
19048 @end ignore
19049 @tindex ltpn
19050 The @samp{utpn(x,m,s)} function uses a normal (Gaussian) distribution
19051 with mean @cite{m} and standard deviation @c{$\sigma$}
19052 @cite{s}.  It is the
19053 probability that such a normal-distributed random variable would
19054 exceed @cite{x}.
19056 @kindex k P
19057 @pindex calc-utpp
19058 @tindex utpp
19059 @ignore
19060 @mindex @idots
19061 @end ignore
19062 @kindex I k P
19063 @ignore
19064 @mindex @null
19065 @end ignore
19066 @tindex ltpp
19067 The @samp{utpp(n,x)} function uses a Poisson distribution with
19068 mean @cite{x}.  It is the probability that @cite{n} or more such
19069 Poisson random events will occur.
19071 @kindex k T
19072 @pindex calc-ltpt
19073 @tindex utpt
19074 @ignore
19075 @mindex @idots
19076 @end ignore
19077 @kindex I k T
19078 @ignore
19079 @mindex @null
19080 @end ignore
19081 @tindex ltpt
19082 The @samp{utpt(t,v)} function uses the Student's ``t'' distribution
19083 with @c{$\nu$}
19084 @cite{v} degrees of freedom.  It is the probability that a
19085 t-distributed random variable will be greater than @cite{t}.
19086 (Note:  This computes the distribution function @c{$A(t|\nu)$}
19087 @cite{A(t|v)}
19088 where @c{$A(0|\nu) = 1$}
19089 @cite{A(0|v) = 1} and @c{$A(\infty|\nu) \to 0$}
19090 @cite{A(inf|v) -> 0}.  The
19091 @code{UTPT} operation on the HP-48 uses a different definition
19092 which returns half of Calc's value:  @samp{UTPT(t,v) = .5*utpt(t,v)}.)
19094 While Calc does not provide inverses of the probability distribution
19095 functions, the @kbd{a R} command can be used to solve for the inverse.
19096 Since the distribution functions are monotonic, @kbd{a R} is guaranteed
19097 to be able to find a solution given any initial guess.
19098 @xref{Numerical Solutions}.
19100 @node Matrix Functions, Algebra, Scientific Functions, Top
19101 @chapter Vector/Matrix Functions
19103 @noindent
19104 Many of the commands described here begin with the @kbd{v} prefix.
19105 (For convenience, the shift-@kbd{V} prefix is equivalent to @kbd{v}.)
19106 The commands usually apply to both plain vectors and matrices; some
19107 apply only to matrices or only to square matrices.  If the argument
19108 has the wrong dimensions the operation is left in symbolic form.
19110 Vectors are entered and displayed using @samp{[a,b,c]} notation.
19111 Matrices are vectors of which all elements are vectors of equal length.
19112 (Though none of the standard Calc commands use this concept, a
19113 three-dimensional matrix or rank-3 tensor could be defined as a
19114 vector of matrices, and so on.)
19116 @menu
19117 * Packing and Unpacking::
19118 * Building Vectors::
19119 * Extracting Elements::
19120 * Manipulating Vectors::
19121 * Vector and Matrix Arithmetic::
19122 * Set Operations::
19123 * Statistical Operations::
19124 * Reducing and Mapping::
19125 * Vector and Matrix Formats::
19126 @end menu
19128 @node Packing and Unpacking, Building Vectors, Matrix Functions, Matrix Functions
19129 @section Packing and Unpacking
19131 @noindent
19132 Calc's ``pack'' and ``unpack'' commands collect stack entries to build
19133 composite objects such as vectors and complex numbers.  They are
19134 described in this chapter because they are most often used to build
19135 vectors.
19137 @kindex v p
19138 @pindex calc-pack
19139 The @kbd{v p} (@code{calc-pack}) [@code{pack}] command collects several
19140 elements from the stack into a matrix, complex number, HMS form, error
19141 form, etc.  It uses a numeric prefix argument to specify the kind of
19142 object to be built; this argument is referred to as the ``packing mode.''
19143 If the packing mode is a nonnegative integer, a vector of that
19144 length is created.  For example, @kbd{C-u 5 v p} will pop the top
19145 five stack elements and push back a single vector of those five
19146 elements.  (@kbd{C-u 0 v p} simply creates an empty vector.)
19148 The same effect can be had by pressing @kbd{[} to push an incomplete
19149 vector on the stack, using @key{TAB} (@code{calc-roll-down}) to sneak
19150 the incomplete object up past a certain number of elements, and
19151 then pressing @kbd{]} to complete the vector.
19153 Negative packing modes create other kinds of composite objects:
19155 @table @cite
19156 @item -1
19157 Two values are collected to build a complex number.  For example,
19158 @kbd{5 @key{RET} 7 C-u -1 v p} creates the complex number
19159 @cite{(5, 7)}.  The result is always a rectangular complex
19160 number.  The two input values must both be real numbers,
19161 i.e., integers, fractions, or floats.  If they are not, Calc
19162 will instead build a formula like @samp{a + (0, 1) b}.  (The
19163 other packing modes also create a symbolic answer if the
19164 components are not suitable.)
19166 @item -2
19167 Two values are collected to build a polar complex number.
19168 The first is the magnitude; the second is the phase expressed
19169 in either degrees or radians according to the current angular
19170 mode.
19172 @item -3
19173 Three values are collected into an HMS form.  The first
19174 two values (hours and minutes) must be integers or
19175 integer-valued floats.  The third value may be any real
19176 number.
19178 @item -4
19179 Two values are collected into an error form.  The inputs
19180 may be real numbers or formulas.
19182 @item -5
19183 Two values are collected into a modulo form.  The inputs
19184 must be real numbers.
19186 @item -6
19187 Two values are collected into the interval @samp{[a .. b]}.
19188 The inputs may be real numbers, HMS or date forms, or formulas.
19190 @item -7
19191 Two values are collected into the interval @samp{[a .. b)}.
19193 @item -8
19194 Two values are collected into the interval @samp{(a .. b]}.
19196 @item -9
19197 Two values are collected into the interval @samp{(a .. b)}.
19199 @item -10
19200 Two integer values are collected into a fraction.
19202 @item -11
19203 Two values are collected into a floating-point number.
19204 The first is the mantissa; the second, which must be an
19205 integer, is the exponent.  The result is the mantissa
19206 times ten to the power of the exponent.
19208 @item -12
19209 This is treated the same as @i{-11} by the @kbd{v p} command.
19210 When unpacking, @i{-12} specifies that a floating-point mantissa
19211 is desired.
19213 @item -13
19214 A real number is converted into a date form.
19216 @item -14
19217 Three numbers (year, month, day) are packed into a pure date form.
19219 @item -15
19220 Six numbers are packed into a date/time form.
19221 @end table
19223 With any of the two-input negative packing modes, either or both
19224 of the inputs may be vectors.  If both are vectors of the same
19225 length, the result is another vector made by packing corresponding
19226 elements of the input vectors.  If one input is a vector and the
19227 other is a plain number, the number is packed along with each vector
19228 element to produce a new vector.  For example, @kbd{C-u -4 v p}
19229 could be used to convert a vector of numbers and a vector of errors
19230 into a single vector of error forms; @kbd{C-u -5 v p} could convert
19231 a vector of numbers and a single number @var{M} into a vector of
19232 numbers modulo @var{M}.
19234 If you don't give a prefix argument to @kbd{v p}, it takes
19235 the packing mode from the top of the stack.  The elements to
19236 be packed then begin at stack level 2.  Thus
19237 @kbd{1 @key{RET} 2 @key{RET} 4 n v p} is another way to
19238 enter the error form @samp{1 +/- 2}.
19240 If the packing mode taken from the stack is a vector, the result is a
19241 matrix with the dimensions specified by the elements of the vector,
19242 which must each be integers.  For example, if the packing mode is
19243 @samp{[2, 3]}, then six numbers will be taken from the stack and
19244 returned in the form @samp{[@w{[a, b, c]}, [d, e, f]]}.
19246 If any elements of the vector are negative, other kinds of
19247 packing are done at that level as described above.  For
19248 example, @samp{[2, 3, -4]} takes 12 objects and creates a
19249 @c{$2\times3$}
19250 @asis{2x3} matrix of error forms: @samp{[[a +/- b, c +/- d ... ]]}.
19251 Also, @samp{[-4, -10]} will convert four integers into an
19252 error form consisting of two fractions:  @samp{a:b +/- c:d}.
19254 @ignore
19255 @starindex
19256 @end ignore
19257 @tindex pack
19258 There is an equivalent algebraic function,
19259 @samp{pack(@var{mode}, @var{items})} where @var{mode} is a
19260 packing mode (an integer or a vector of integers) and @var{items}
19261 is a vector of objects to be packed (re-packed, really) according
19262 to that mode.  For example, @samp{pack([3, -4], [a,b,c,d,e,f])}
19263 yields @samp{[a +/- b, @w{c +/- d}, e +/- f]}.  The function is
19264 left in symbolic form if the packing mode is illegal, or if the
19265 number of data items does not match the number of items required
19266 by the mode.
19268 @kindex v u
19269 @pindex calc-unpack
19270 The @kbd{v u} (@code{calc-unpack}) command takes the vector, complex
19271 number, HMS form, or other composite object on the top of the stack and
19272 ``unpacks'' it, pushing each of its elements onto the stack as separate
19273 objects.  Thus, it is the ``inverse'' of @kbd{v p}.  If the value
19274 at the top of the stack is a formula, @kbd{v u} unpacks it by pushing
19275 each of the arguments of the top-level operator onto the stack.
19277 You can optionally give a numeric prefix argument to @kbd{v u}
19278 to specify an explicit (un)packing mode.  If the packing mode is
19279 negative and the input is actually a vector or matrix, the result
19280 will be two or more similar vectors or matrices of the elements.
19281 For example, given the vector @samp{[@w{a +/- b}, c^2, d +/- 7]},
19282 the result of @kbd{C-u -4 v u} will be the two vectors
19283 @samp{[a, c^2, d]} and @w{@samp{[b, 0, 7]}}.
19285 Note that the prefix argument can have an effect even when the input is
19286 not a vector.  For example, if the input is the number @i{-5}, then
19287 @kbd{c-u -1 v u} yields @i{-5} and 0 (the components of @i{-5}
19288 when viewed as a rectangular complex number); @kbd{C-u -2 v u} yields 5
19289 and 180 (assuming degrees mode); and @kbd{C-u -10 v u} yields @i{-5}
19290 and 1 (the numerator and denominator of @i{-5}, viewed as a rational
19291 number).  Plain @kbd{v u} with this input would complain that the input
19292 is not a composite object.
19294 Unpacking mode @i{-11} converts a float into an integer mantissa and
19295 an integer exponent, where the mantissa is not divisible by 10
19296 (except that 0.0 is represented by a mantissa and exponent of 0).
19297 Unpacking mode @i{-12} converts a float into a floating-point mantissa
19298 and integer exponent, where the mantissa (for non-zero numbers)
19299 is guaranteed to lie in the range [1 .. 10).  In both cases,
19300 the mantissa is shifted left or right (and the exponent adjusted
19301 to compensate) in order to satisfy these constraints.
19303 Positive unpacking modes are treated differently than for @kbd{v p}.
19304 A mode of 1 is much like plain @kbd{v u} with no prefix argument,
19305 except that in addition to the components of the input object,
19306 a suitable packing mode to re-pack the object is also pushed.
19307 Thus, @kbd{C-u 1 v u} followed by @kbd{v p} will re-build the
19308 original object.
19310 A mode of 2 unpacks two levels of the object; the resulting
19311 re-packing mode will be a vector of length 2.  This might be used
19312 to unpack a matrix, say, or a vector of error forms.  Higher
19313 unpacking modes unpack the input even more deeply.
19315 @ignore
19316 @starindex
19317 @end ignore
19318 @tindex unpack
19319 There are two algebraic functions analogous to @kbd{v u}.
19320 The @samp{unpack(@var{mode}, @var{item})} function unpacks the
19321 @var{item} using the given @var{mode}, returning the result as
19322 a vector of components.  Here the @var{mode} must be an
19323 integer, not a vector.  For example, @samp{unpack(-4, a +/- b)}
19324 returns @samp{[a, b]}, as does @samp{unpack(1, a +/- b)}.
19326 @ignore
19327 @starindex
19328 @end ignore
19329 @tindex unpackt
19330 The @code{unpackt} function is like @code{unpack} but instead
19331 of returning a simple vector of items, it returns a vector of
19332 two things:  The mode, and the vector of items.  For example,
19333 @samp{unpackt(1, 2:3 +/- 1:4)} returns @samp{[-4, [2:3, 1:4]]},
19334 and @samp{unpackt(2, 2:3 +/- 1:4)} returns @samp{[[-4, -10], [2, 3, 1, 4]]}.
19335 The identity for re-building the original object is
19336 @samp{apply(pack, unpackt(@var{n}, @var{x})) = @var{x}}.  (The
19337 @code{apply} function builds a function call given the function
19338 name and a vector of arguments.)
19340 @cindex Numerator of a fraction, extracting
19341 Subscript notation is a useful way to extract a particular part
19342 of an object.  For example, to get the numerator of a rational
19343 number, you can use @samp{unpack(-10, @var{x})_1}.
19345 @node Building Vectors, Extracting Elements, Packing and Unpacking, Matrix Functions
19346 @section Building Vectors
19348 @noindent
19349 Vectors and matrices can be added,
19350 subtracted, multiplied, and divided; @pxref{Basic Arithmetic}.@refill
19352 @kindex |
19353 @pindex calc-concat
19354 @ignore
19355 @mindex @null
19356 @end ignore
19357 @tindex |
19358 The @kbd{|} (@code{calc-concat}) command ``concatenates'' two vectors
19359 into one.  For example, after @kbd{@w{[ 1 , 2 ]} [ 3 , 4 ] |}, the stack
19360 will contain the single vector @samp{[1, 2, 3, 4]}.  If the arguments
19361 are matrices, the rows of the first matrix are concatenated with the
19362 rows of the second.  (In other words, two matrices are just two vectors
19363 of row-vectors as far as @kbd{|} is concerned.)
19365 If either argument to @kbd{|} is a scalar (a non-vector), it is treated
19366 like a one-element vector for purposes of concatenation:  @kbd{1 [ 2 , 3 ] |}
19367 produces the vector @samp{[1, 2, 3]}.  Likewise, if one argument is a
19368 matrix and the other is a plain vector, the vector is treated as a
19369 one-row matrix.
19371 @kindex H |
19372 @tindex append
19373 The @kbd{H |} (@code{calc-append}) [@code{append}] command concatenates
19374 two vectors without any special cases.  Both inputs must be vectors.
19375 Whether or not they are matrices is not taken into account.  If either
19376 argument is a scalar, the @code{append} function is left in symbolic form.
19377 See also @code{cons} and @code{rcons} below.
19379 @kindex I |
19380 @kindex H I |
19381 The @kbd{I |} and @kbd{H I |} commands are similar, but they use their
19382 two stack arguments in the opposite order.  Thus @kbd{I |} is equivalent
19383 to @kbd{@key{TAB} |}, but possibly more convenient and also a bit faster.
19385 @kindex v d
19386 @pindex calc-diag
19387 @tindex diag
19388 The @kbd{v d} (@code{calc-diag}) [@code{diag}] function builds a diagonal
19389 square matrix.  The optional numeric prefix gives the number of rows
19390 and columns in the matrix.  If the value at the top of the stack is a
19391 vector, the elements of the vector are used as the diagonal elements; the
19392 prefix, if specified, must match the size of the vector.  If the value on
19393 the stack is a scalar, it is used for each element on the diagonal, and
19394 the prefix argument is required.
19396 To build a constant square matrix, e.g., a @c{$3\times3$}
19397 @asis{3x3} matrix filled with ones,
19398 use @kbd{0 M-3 v d 1 +}, i.e., build a zero matrix first and then add a
19399 constant value to that matrix.  (Another alternative would be to use
19400 @kbd{v b} and @kbd{v a}; see below.)
19402 @kindex v i
19403 @pindex calc-ident
19404 @tindex idn
19405 The @kbd{v i} (@code{calc-ident}) [@code{idn}] function builds an identity
19406 matrix of the specified size.  It is a convenient form of @kbd{v d}
19407 where the diagonal element is always one.  If no prefix argument is given,
19408 this command prompts for one.
19410 In algebraic notation, @samp{idn(a,n)} acts much like @samp{diag(a,n)},
19411 except that @cite{a} is required to be a scalar (non-vector) quantity.
19412 If @cite{n} is omitted, @samp{idn(a)} represents @cite{a} times an
19413 identity matrix of unknown size.  Calc can operate algebraically on
19414 such generic identity matrices, and if one is combined with a matrix
19415 whose size is known, it is converted automatically to an identity
19416 matrix of a suitable matching size.  The @kbd{v i} command with an
19417 argument of zero creates a generic identity matrix, @samp{idn(1)}.
19418 Note that in dimensioned matrix mode (@pxref{Matrix Mode}), generic
19419 identity matrices are immediately expanded to the current default
19420 dimensions.
19422 @kindex v x
19423 @pindex calc-index
19424 @tindex index
19425 The @kbd{v x} (@code{calc-index}) [@code{index}] function builds a vector
19426 of consecutive integers from 1 to @var{n}, where @var{n} is the numeric
19427 prefix argument.  If you do not provide a prefix argument, you will be
19428 prompted to enter a suitable number.  If @var{n} is negative, the result
19429 is a vector of negative integers from @var{n} to @i{-1}.
19431 With a prefix argument of just @kbd{C-u}, the @kbd{v x} command takes
19432 three values from the stack: @var{n}, @var{start}, and @var{incr} (with
19433 @var{incr} at top-of-stack).  Counting starts at @var{start} and increases
19434 by @var{incr} for successive vector elements.  If @var{start} or @var{n}
19435 is in floating-point format, the resulting vector elements will also be
19436 floats.  Note that @var{start} and @var{incr} may in fact be any kind
19437 of numbers or formulas.
19439 When @var{start} and @var{incr} are specified, a negative @var{n} has a
19440 different interpretation:  It causes a geometric instead of arithmetic
19441 sequence to be generated.  For example, @samp{index(-3, a, b)} produces
19442 @samp{[a, a b, a b^2]}.  If you omit @var{incr} in the algebraic form,
19443 @samp{index(@var{n}, @var{start})}, the default value for @var{incr}
19444 is one for positive @var{n} or two for negative @var{n}.
19446 @kindex v b
19447 @pindex calc-build-vector
19448 @tindex cvec
19449 The @kbd{v b} (@code{calc-build-vector}) [@code{cvec}] function builds a
19450 vector of @var{n} copies of the value on the top of the stack, where @var{n}
19451 is the numeric prefix argument.  In algebraic formulas, @samp{cvec(x,n,m)}
19452 can also be used to build an @var{n}-by-@var{m} matrix of copies of @var{x}.
19453 (Interactively, just use @kbd{v b} twice: once to build a row, then again
19454 to build a matrix of copies of that row.)
19456 @kindex v h
19457 @kindex I v h
19458 @pindex calc-head
19459 @pindex calc-tail
19460 @tindex head
19461 @tindex tail
19462 The @kbd{v h} (@code{calc-head}) [@code{head}] function returns the first
19463 element of a vector.  The @kbd{I v h} (@code{calc-tail}) [@code{tail}]
19464 function returns the vector with its first element removed.  In both
19465 cases, the argument must be a non-empty vector.
19467 @kindex v k
19468 @pindex calc-cons
19469 @tindex cons
19470 The @kbd{v k} (@code{calc-cons}) [@code{cons}] function takes a value @var{h}
19471 and a vector @var{t} from the stack, and produces the vector whose head is
19472 @var{h} and whose tail is @var{t}.  This is similar to @kbd{|}, except
19473 if @var{h} is itself a vector, @kbd{|} will concatenate the two vectors
19474 whereas @code{cons} will insert @var{h} at the front of the vector @var{t}.
19476 @kindex H v h
19477 @tindex rhead
19478 @ignore
19479 @mindex @idots
19480 @end ignore
19481 @kindex H I v h
19482 @ignore
19483 @mindex @null
19484 @end ignore
19485 @kindex H v k
19486 @ignore
19487 @mindex @null
19488 @end ignore
19489 @tindex rtail
19490 @ignore
19491 @mindex @null
19492 @end ignore
19493 @tindex rcons
19494 Each of these three functions also accepts the Hyperbolic flag [@code{rhead},
19495 @code{rtail}, @code{rcons}] in which case @var{t} instead represents
19496 the @emph{last} single element of the vector, with @var{h}
19497 representing the remainder of the vector.  Thus the vector
19498 @samp{[a, b, c, d] = cons(a, [b, c, d]) = rcons([a, b, c], d)}.
19499 Also, @samp{head([a, b, c, d]) = a}, @samp{tail([a, b, c, d]) = [b, c, d]},
19500 @samp{rhead([a, b, c, d]) = [a, b, c]}, and @samp{rtail([a, b, c, d]) = d}.
19502 @node Extracting Elements, Manipulating Vectors, Building Vectors, Matrix Functions
19503 @section Extracting Vector Elements
19505 @noindent
19506 @kindex v r
19507 @pindex calc-mrow
19508 @tindex mrow
19509 The @kbd{v r} (@code{calc-mrow}) [@code{mrow}] command extracts one row of
19510 the matrix on the top of the stack, or one element of the plain vector on
19511 the top of the stack.  The row or element is specified by the numeric
19512 prefix argument; the default is to prompt for the row or element number.
19513 The matrix or vector is replaced by the specified row or element in the
19514 form of a vector or scalar, respectively.
19516 @cindex Permutations, applying
19517 With a prefix argument of @kbd{C-u} only, @kbd{v r} takes the index of
19518 the element or row from the top of the stack, and the vector or matrix
19519 from the second-to-top position.  If the index is itself a vector of
19520 integers, the result is a vector of the corresponding elements of the
19521 input vector, or a matrix of the corresponding rows of the input matrix.
19522 This command can be used to obtain any permutation of a vector.
19524 With @kbd{C-u}, if the index is an interval form with integer components,
19525 it is interpreted as a range of indices and the corresponding subvector or
19526 submatrix is returned.
19528 @cindex Subscript notation
19529 @kindex a _
19530 @pindex calc-subscript
19531 @tindex subscr
19532 @tindex _
19533 Subscript notation in algebraic formulas (@samp{a_b}) stands for the
19534 Calc function @code{subscr}, which is synonymous with @code{mrow}.
19535 Thus, @samp{[x, y, z]_k} produces @cite{x}, @cite{y}, or @cite{z} if
19536 @cite{k} is one, two, or three, respectively.  A double subscript
19537 (@samp{M_i_j}, equivalent to @samp{subscr(subscr(M, i), j)}) will
19538 access the element at row @cite{i}, column @cite{j} of a matrix.
19539 The @kbd{a _} (@code{calc-subscript}) command creates a subscript
19540 formula @samp{a_b} out of two stack entries.  (It is on the @kbd{a}
19541 ``algebra'' prefix because subscripted variables are often used
19542 purely as an algebraic notation.)
19544 @tindex mrrow
19545 Given a negative prefix argument, @kbd{v r} instead deletes one row or
19546 element from the matrix or vector on the top of the stack.  Thus
19547 @kbd{C-u 2 v r} replaces a matrix with its second row, but @kbd{C-u -2 v r}
19548 replaces the matrix with the same matrix with its second row removed.
19549 In algebraic form this function is called @code{mrrow}.
19551 @tindex getdiag
19552 Given a prefix argument of zero, @kbd{v r} extracts the diagonal elements
19553 of a square matrix in the form of a vector.  In algebraic form this
19554 function is called @code{getdiag}.
19556 @kindex v c
19557 @pindex calc-mcol
19558 @tindex mcol
19559 @tindex mrcol
19560 The @kbd{v c} (@code{calc-mcol}) [@code{mcol} or @code{mrcol}] command is
19561 the analogous operation on columns of a matrix.  Given a plain vector
19562 it extracts (or removes) one element, just like @kbd{v r}.  If the
19563 index in @kbd{C-u v c} is an interval or vector and the argument is a
19564 matrix, the result is a submatrix with only the specified columns
19565 retained (and possibly permuted in the case of a vector index).@refill
19567 To extract a matrix element at a given row and column, use @kbd{v r} to
19568 extract the row as a vector, then @kbd{v c} to extract the column element
19569 from that vector.  In algebraic formulas, it is often more convenient to
19570 use subscript notation:  @samp{m_i_j} gives row @cite{i}, column @cite{j}
19571 of matrix @cite{m}.
19573 @kindex v s
19574 @pindex calc-subvector
19575 @tindex subvec
19576 The @kbd{v s} (@code{calc-subvector}) [@code{subvec}] command extracts
19577 a subvector of a vector.  The arguments are the vector, the starting
19578 index, and the ending index, with the ending index in the top-of-stack
19579 position.  The starting index indicates the first element of the vector
19580 to take.  The ending index indicates the first element @emph{past} the
19581 range to be taken.  Thus, @samp{subvec([a, b, c, d, e], 2, 4)} produces
19582 the subvector @samp{[b, c]}.  You could get the same result using
19583 @samp{mrow([a, b, c, d, e], @w{[2 .. 4)})}.
19585 If either the start or the end index is zero or negative, it is
19586 interpreted as relative to the end of the vector.  Thus
19587 @samp{subvec([a, b, c, d, e], 2, -2)} also produces @samp{[b, c]}.  In
19588 the algebraic form, the end index can be omitted in which case it
19589 is taken as zero, i.e., elements from the starting element to the
19590 end of the vector are used.  The infinity symbol, @code{inf}, also
19591 has this effect when used as the ending index.
19593 @kindex I v s
19594 @tindex rsubvec
19595 With the Inverse flag, @kbd{I v s} [@code{rsubvec}] removes a subvector
19596 from a vector.  The arguments are interpreted the same as for the
19597 normal @kbd{v s} command.  Thus, @samp{rsubvec([a, b, c, d, e], 2, 4)}
19598 produces @samp{[a, d, e]}.  It is always true that @code{subvec} and
19599 @code{rsubvec} return complementary parts of the input vector.
19601 @xref{Selecting Subformulas}, for an alternative way to operate on
19602 vectors one element at a time.
19604 @node Manipulating Vectors, Vector and Matrix Arithmetic, Extracting Elements, Matrix Functions
19605 @section Manipulating Vectors
19607 @noindent
19608 @kindex v l
19609 @pindex calc-vlength
19610 @tindex vlen
19611 The @kbd{v l} (@code{calc-vlength}) [@code{vlen}] command computes the
19612 length of a vector.  The length of a non-vector is considered to be zero.
19613 Note that matrices are just vectors of vectors for the purposes of this
19614 command.@refill
19616 @kindex H v l
19617 @tindex mdims
19618 With the Hyperbolic flag, @kbd{H v l} [@code{mdims}] computes a vector
19619 of the dimensions of a vector, matrix, or higher-order object.  For
19620 example, @samp{mdims([[a,b,c],[d,e,f]])} returns @samp{[2, 3]} since
19621 its argument is a @c{$2\times3$}
19622 @asis{2x3} matrix.
19624 @kindex v f
19625 @pindex calc-vector-find
19626 @tindex find
19627 The @kbd{v f} (@code{calc-vector-find}) [@code{find}] command searches
19628 along a vector for the first element equal to a given target.  The target
19629 is on the top of the stack; the vector is in the second-to-top position.
19630 If a match is found, the result is the index of the matching element.
19631 Otherwise, the result is zero.  The numeric prefix argument, if given,
19632 allows you to select any starting index for the search.
19634 @kindex v a
19635 @pindex calc-arrange-vector
19636 @tindex arrange
19637 @cindex Arranging a matrix
19638 @cindex Reshaping a matrix
19639 @cindex Flattening a matrix
19640 The @kbd{v a} (@code{calc-arrange-vector}) [@code{arrange}] command
19641 rearranges a vector to have a certain number of columns and rows.  The
19642 numeric prefix argument specifies the number of columns; if you do not
19643 provide an argument, you will be prompted for the number of columns.
19644 The vector or matrix on the top of the stack is @dfn{flattened} into a
19645 plain vector.  If the number of columns is nonzero, this vector is
19646 then formed into a matrix by taking successive groups of @var{n} elements.
19647 If the number of columns does not evenly divide the number of elements
19648 in the vector, the last row will be short and the result will not be
19649 suitable for use as a matrix.  For example, with the matrix
19650 @samp{[[1, 2], @w{[3, 4]}]} on the stack, @kbd{v a 4} produces
19651 @samp{[[1, 2, 3, 4]]} (a @c{$1\times4$}
19652 @asis{1x4} matrix), @kbd{v a 1} produces
19653 @samp{[[1], [2], [3], [4]]} (a @c{$4\times1$}
19654 @asis{4x1} matrix), @kbd{v a 2} produces
19655 @samp{[[1, 2], [3, 4]]} (the original @c{$2\times2$}
19656 @asis{2x2} matrix), @w{@kbd{v a 3}} produces
19657 @samp{[[1, 2, 3], [4]]} (not a matrix), and @kbd{v a 0} produces
19658 the flattened list @samp{[1, 2, @w{3, 4}]}.
19660 @cindex Sorting data
19661 @kindex V S
19662 @kindex I V S
19663 @pindex calc-sort
19664 @tindex sort
19665 @tindex rsort
19666 The @kbd{V S} (@code{calc-sort}) [@code{sort}] command sorts the elements of
19667 a vector into increasing order.  Real numbers, real infinities, and
19668 constant interval forms come first in this ordering; next come other
19669 kinds of numbers, then variables (in alphabetical order), then finally
19670 come formulas and other kinds of objects; these are sorted according
19671 to a kind of lexicographic ordering with the useful property that
19672 one vector is less or greater than another if the first corresponding
19673 unequal elements are less or greater, respectively.  Since quoted strings
19674 are stored by Calc internally as vectors of ASCII character codes
19675 (@pxref{Strings}), this means vectors of strings are also sorted into
19676 alphabetical order by this command.
19678 The @kbd{I V S} [@code{rsort}] command sorts a vector into decreasing order.
19680 @cindex Permutation, inverse of
19681 @cindex Inverse of permutation
19682 @cindex Index tables
19683 @cindex Rank tables
19684 @kindex V G
19685 @kindex I V G
19686 @pindex calc-grade
19687 @tindex grade
19688 @tindex rgrade
19689 The @kbd{V G} (@code{calc-grade}) [@code{grade}, @code{rgrade}] command
19690 produces an index table or permutation vector which, if applied to the
19691 input vector (as the index of @kbd{C-u v r}, say), would sort the vector.
19692 A permutation vector is just a vector of integers from 1 to @var{n}, where
19693 each integer occurs exactly once.  One application of this is to sort a
19694 matrix of data rows using one column as the sort key; extract that column,
19695 grade it with @kbd{V G}, then use the result to reorder the original matrix
19696 with @kbd{C-u v r}.  Another interesting property of the @code{V G} command
19697 is that, if the input is itself a permutation vector, the result will
19698 be the inverse of the permutation.  The inverse of an index table is
19699 a rank table, whose @var{k}th element says where the @var{k}th original
19700 vector element will rest when the vector is sorted.  To get a rank
19701 table, just use @kbd{V G V G}.
19703 With the Inverse flag, @kbd{I V G} produces an index table that would
19704 sort the input into decreasing order.  Note that @kbd{V S} and @kbd{V G}
19705 use a ``stable'' sorting algorithm, i.e., any two elements which are equal
19706 will not be moved out of their original order.  Generally there is no way
19707 to tell with @kbd{V S}, since two elements which are equal look the same,
19708 but with @kbd{V G} this can be an important issue.  In the matrix-of-rows
19709 example, suppose you have names and telephone numbers as two columns and
19710 you wish to sort by phone number primarily, and by name when the numbers
19711 are equal.  You can sort the data matrix by names first, and then again
19712 by phone numbers.  Because the sort is stable, any two rows with equal
19713 phone numbers will remain sorted by name even after the second sort.
19715 @cindex Histograms
19716 @kindex V H
19717 @pindex calc-histogram
19718 @ignore
19719 @mindex histo@idots
19720 @end ignore
19721 @tindex histogram
19722 The @kbd{V H} (@code{calc-histogram}) [@code{histogram}] command builds a
19723 histogram of a vector of numbers.  Vector elements are assumed to be
19724 integers or real numbers in the range [0..@var{n}) for some ``number of
19725 bins'' @var{n}, which is the numeric prefix argument given to the
19726 command.  The result is a vector of @var{n} counts of how many times
19727 each value appeared in the original vector.  Non-integers in the input
19728 are rounded down to integers.  Any vector elements outside the specified
19729 range are ignored.  (You can tell if elements have been ignored by noting
19730 that the counts in the result vector don't add up to the length of the
19731 input vector.)
19733 @kindex H V H
19734 With the Hyperbolic flag, @kbd{H V H} pulls two vectors from the stack.
19735 The second-to-top vector is the list of numbers as before.  The top
19736 vector is an equal-sized list of ``weights'' to attach to the elements
19737 of the data vector.  For example, if the first data element is 4.2 and
19738 the first weight is 10, then 10 will be added to bin 4 of the result
19739 vector.  Without the hyperbolic flag, every element has a weight of one.
19741 @kindex v t
19742 @pindex calc-transpose
19743 @tindex trn
19744 The @kbd{v t} (@code{calc-transpose}) [@code{trn}] command computes
19745 the transpose of the matrix at the top of the stack.  If the argument
19746 is a plain vector, it is treated as a row vector and transposed into
19747 a one-column matrix.
19749 @kindex v v
19750 @pindex calc-reverse-vector
19751 @tindex rev
19752 The @kbd{v v} (@code{calc-reverse-vector}) [@code{vec}] command reverses
19753 a vector end-for-end.  Given a matrix, it reverses the order of the rows.
19754 (To reverse the columns instead, just use @kbd{v t v v v t}.  The same
19755 principle can be used to apply other vector commands to the columns of
19756 a matrix.)
19758 @kindex v m
19759 @pindex calc-mask-vector
19760 @tindex vmask
19761 The @kbd{v m} (@code{calc-mask-vector}) [@code{vmask}] command uses
19762 one vector as a mask to extract elements of another vector.  The mask
19763 is in the second-to-top position; the target vector is on the top of
19764 the stack.  These vectors must have the same length.  The result is
19765 the same as the target vector, but with all elements which correspond
19766 to zeros in the mask vector deleted.  Thus, for example,
19767 @samp{vmask([1, 0, 1, 0, 1], [a, b, c, d, e])} produces @samp{[a, c, e]}.
19768 @xref{Logical Operations}.
19770 @kindex v e
19771 @pindex calc-expand-vector
19772 @tindex vexp
19773 The @kbd{v e} (@code{calc-expand-vector}) [@code{vexp}] command
19774 expands a vector according to another mask vector.  The result is a
19775 vector the same length as the mask, but with nonzero elements replaced
19776 by successive elements from the target vector.  The length of the target
19777 vector is normally the number of nonzero elements in the mask.  If the
19778 target vector is longer, its last few elements are lost.  If the target
19779 vector is shorter, the last few nonzero mask elements are left
19780 unreplaced in the result.  Thus @samp{vexp([2, 0, 3, 0, 7], [a, b])}
19781 produces @samp{[a, 0, b, 0, 7]}.
19783 @kindex H v e
19784 With the Hyperbolic flag, @kbd{H v e} takes a filler value from the
19785 top of the stack; the mask and target vectors come from the third and
19786 second elements of the stack.  This filler is used where the mask is
19787 zero:  @samp{vexp([2, 0, 3, 0, 7], [a, b], z)} produces
19788 @samp{[a, z, c, z, 7]}.  If the filler value is itself a vector,
19789 then successive values are taken from it, so that the effect is to
19790 interleave two vectors according to the mask:
19791 @samp{vexp([2, 0, 3, 7, 0, 0], [a, b], [x, y])} produces
19792 @samp{[a, x, b, 7, y, 0]}.
19794 Another variation on the masking idea is to combine @samp{[a, b, c, d, e]}
19795 with the mask @samp{[1, 0, 1, 0, 1]} to produce @samp{[a, 0, c, 0, e]}.
19796 You can accomplish this with @kbd{V M a &}, mapping the logical ``and''
19797 operation across the two vectors.  @xref{Logical Operations}.  Note that
19798 the @code{? :} operation also discussed there allows other types of
19799 masking using vectors.
19801 @node Vector and Matrix Arithmetic, Set Operations, Manipulating Vectors, Matrix Functions
19802 @section Vector and Matrix Arithmetic
19804 @noindent
19805 Basic arithmetic operations like addition and multiplication are defined
19806 for vectors and matrices as well as for numbers.  Division of matrices, in
19807 the sense of multiplying by the inverse, is supported.  (Division by a
19808 matrix actually uses LU-decomposition for greater accuracy and speed.)
19809 @xref{Basic Arithmetic}.
19811 The following functions are applied element-wise if their arguments are
19812 vectors or matrices: @code{change-sign}, @code{conj}, @code{arg},
19813 @code{re}, @code{im}, @code{polar}, @code{rect}, @code{clean},
19814 @code{float}, @code{frac}.  @xref{Function Index}.@refill
19816 @kindex V J
19817 @pindex calc-conj-transpose
19818 @tindex ctrn
19819 The @kbd{V J} (@code{calc-conj-transpose}) [@code{ctrn}] command computes
19820 the conjugate transpose of its argument, i.e., @samp{conj(trn(x))}.
19822 @ignore
19823 @mindex A
19824 @end ignore
19825 @kindex A (vectors)
19826 @pindex calc-abs (vectors)
19827 @ignore
19828 @mindex abs
19829 @end ignore
19830 @tindex abs (vectors)
19831 The @kbd{A} (@code{calc-abs}) [@code{abs}] command computes the
19832 Frobenius norm of a vector or matrix argument.  This is the square
19833 root of the sum of the squares of the absolute values of the
19834 elements of the vector or matrix.  If the vector is interpreted as
19835 a point in two- or three-dimensional space, this is the distance
19836 from that point to the origin.@refill
19838 @kindex v n
19839 @pindex calc-rnorm
19840 @tindex rnorm
19841 The @kbd{v n} (@code{calc-rnorm}) [@code{rnorm}] command computes
19842 the row norm, or infinity-norm, of a vector or matrix.  For a plain
19843 vector, this is the maximum of the absolute values of the elements.
19844 For a matrix, this is the maximum of the row-absolute-value-sums,
19845 i.e., of the sums of the absolute values of the elements along the
19846 various rows.
19848 @kindex V N
19849 @pindex calc-cnorm
19850 @tindex cnorm
19851 The @kbd{V N} (@code{calc-cnorm}) [@code{cnorm}] command computes
19852 the column norm, or one-norm, of a vector or matrix.  For a plain
19853 vector, this is the sum of the absolute values of the elements.
19854 For a matrix, this is the maximum of the column-absolute-value-sums.
19855 General @cite{k}-norms for @cite{k} other than one or infinity are
19856 not provided.
19858 @kindex V C
19859 @pindex calc-cross
19860 @tindex cross
19861 The @kbd{V C} (@code{calc-cross}) [@code{cross}] command computes the
19862 right-handed cross product of two vectors, each of which must have
19863 exactly three elements.
19865 @ignore
19866 @mindex &
19867 @end ignore
19868 @kindex & (matrices)
19869 @pindex calc-inv (matrices)
19870 @ignore
19871 @mindex inv
19872 @end ignore
19873 @tindex inv (matrices)
19874 The @kbd{&} (@code{calc-inv}) [@code{inv}] command computes the
19875 inverse of a square matrix.  If the matrix is singular, the inverse
19876 operation is left in symbolic form.  Matrix inverses are recorded so
19877 that once an inverse (or determinant) of a particular matrix has been
19878 computed, the inverse and determinant of the matrix can be recomputed
19879 quickly in the future.
19881 If the argument to @kbd{&} is a plain number @cite{x}, this
19882 command simply computes @cite{1/x}.  This is okay, because the
19883 @samp{/} operator also does a matrix inversion when dividing one
19884 by a matrix.
19886 @kindex V D
19887 @pindex calc-mdet
19888 @tindex det
19889 The @kbd{V D} (@code{calc-mdet}) [@code{det}] command computes the
19890 determinant of a square matrix.
19892 @kindex V L
19893 @pindex calc-mlud
19894 @tindex lud
19895 The @kbd{V L} (@code{calc-mlud}) [@code{lud}] command computes the
19896 LU decomposition of a matrix.  The result is a list of three matrices
19897 which, when multiplied together left-to-right, form the original matrix.
19898 The first is a permutation matrix that arises from pivoting in the
19899 algorithm, the second is lower-triangular with ones on the diagonal,
19900 and the third is upper-triangular.
19902 @kindex V T
19903 @pindex calc-mtrace
19904 @tindex tr
19905 The @kbd{V T} (@code{calc-mtrace}) [@code{tr}] command computes the
19906 trace of a square matrix.  This is defined as the sum of the diagonal
19907 elements of the matrix.
19909 @node Set Operations, Statistical Operations, Vector and Matrix Arithmetic, Matrix Functions
19910 @section Set Operations using Vectors
19912 @noindent
19913 @cindex Sets, as vectors
19914 Calc includes several commands which interpret vectors as @dfn{sets} of
19915 objects.  A set is a collection of objects; any given object can appear
19916 only once in the set.  Calc stores sets as vectors of objects in
19917 sorted order.  Objects in a Calc set can be any of the usual things,
19918 such as numbers, variables, or formulas.  Two set elements are considered
19919 equal if they are identical, except that numerically equal numbers like
19920 the integer 4 and the float 4.0 are considered equal even though they
19921 are not ``identical.''  Variables are treated like plain symbols without
19922 attached values by the set operations; subtracting the set @samp{[b]}
19923 from @samp{[a, b]} always yields the set @samp{[a]} even though if
19924 the variables @samp{a} and @samp{b} both equaled 17, you might
19925 expect the answer @samp{[]}.
19927 If a set contains interval forms, then it is assumed to be a set of
19928 real numbers.  In this case, all set operations require the elements
19929 of the set to be only things that are allowed in intervals:  Real
19930 numbers, plus and minus infinity, HMS forms, and date forms.  If
19931 there are variables or other non-real objects present in a real set,
19932 all set operations on it will be left in unevaluated form.
19934 If the input to a set operation is a plain number or interval form
19935 @var{a}, it is treated like the one-element vector @samp{[@var{a}]}.
19936 The result is always a vector, except that if the set consists of a
19937 single interval, the interval itself is returned instead.
19939 @xref{Logical Operations}, for the @code{in} function which tests if
19940 a certain value is a member of a given set.  To test if the set @cite{A}
19941 is a subset of the set @cite{B}, use @samp{vdiff(A, B) = []}.
19943 @kindex V +
19944 @pindex calc-remove-duplicates
19945 @tindex rdup
19946 The @kbd{V +} (@code{calc-remove-duplicates}) [@code{rdup}] command
19947 converts an arbitrary vector into set notation.  It works by sorting
19948 the vector as if by @kbd{V S}, then removing duplicates.  (For example,
19949 @kbd{[a, 5, 4, a, 4.0]} is sorted to @samp{[4, 4.0, 5, a, a]} and then
19950 reduced to @samp{[4, 5, a]}).  Overlapping intervals are merged as
19951 necessary.  You rarely need to use @kbd{V +} explicitly, since all the
19952 other set-based commands apply @kbd{V +} to their inputs before using
19953 them.
19955 @kindex V V
19956 @pindex calc-set-union
19957 @tindex vunion
19958 The @kbd{V V} (@code{calc-set-union}) [@code{vunion}] command computes
19959 the union of two sets.  An object is in the union of two sets if and
19960 only if it is in either (or both) of the input sets.  (You could
19961 accomplish the same thing by concatenating the sets with @kbd{|},
19962 then using @kbd{V +}.)
19964 @kindex V ^
19965 @pindex calc-set-intersect
19966 @tindex vint
19967 The @kbd{V ^} (@code{calc-set-intersect}) [@code{vint}] command computes
19968 the intersection of two sets.  An object is in the intersection if
19969 and only if it is in both of the input sets.  Thus if the input
19970 sets are disjoint, i.e., if they share no common elements, the result
19971 will be the empty vector @samp{[]}.  Note that the characters @kbd{V}
19972 and @kbd{^} were chosen to be close to the conventional mathematical
19973 notation for set union@c{ ($A \cup B$)}
19974 @asis{} and intersection@c{ ($A \cap B$)}
19975 @asis{}.
19977 @kindex V -
19978 @pindex calc-set-difference
19979 @tindex vdiff
19980 The @kbd{V -} (@code{calc-set-difference}) [@code{vdiff}] command computes
19981 the difference between two sets.  An object is in the difference
19982 @cite{A - B} if and only if it is in @cite{A} but not in @cite{B}.
19983 Thus subtracting @samp{[y,z]} from a set will remove the elements
19984 @samp{y} and @samp{z} if they are present.  You can also think of this
19985 as a general @dfn{set complement} operator; if @cite{A} is the set of
19986 all possible values, then @cite{A - B} is the ``complement'' of @cite{B}.
19987 Obviously this is only practical if the set of all possible values in
19988 your problem is small enough to list in a Calc vector (or simple
19989 enough to express in a few intervals).
19991 @kindex V X
19992 @pindex calc-set-xor
19993 @tindex vxor
19994 The @kbd{V X} (@code{calc-set-xor}) [@code{vxor}] command computes
19995 the ``exclusive-or,'' or ``symmetric difference'' of two sets.
19996 An object is in the symmetric difference of two sets if and only
19997 if it is in one, but @emph{not} both, of the sets.  Objects that
19998 occur in both sets ``cancel out.''
20000 @kindex V ~
20001 @pindex calc-set-complement
20002 @tindex vcompl
20003 The @kbd{V ~} (@code{calc-set-complement}) [@code{vcompl}] command
20004 computes the complement of a set with respect to the real numbers.
20005 Thus @samp{vcompl(x)} is equivalent to @samp{vdiff([-inf .. inf], x)}.
20006 For example, @samp{vcompl([2, (3 .. 4]])} evaluates to
20007 @samp{[[-inf .. 2), (2 .. 3], (4 .. inf]]}.
20009 @kindex V F
20010 @pindex calc-set-floor
20011 @tindex vfloor
20012 The @kbd{V F} (@code{calc-set-floor}) [@code{vfloor}] command
20013 reinterprets a set as a set of integers.  Any non-integer values,
20014 and intervals that do not enclose any integers, are removed.  Open
20015 intervals are converted to equivalent closed intervals.  Successive
20016 integers are converted into intervals of integers.  For example, the
20017 complement of the set @samp{[2, 6, 7, 8]} is messy, but if you wanted
20018 the complement with respect to the set of integers you could type
20019 @kbd{V ~ V F} to get @samp{[[-inf .. 1], [3 .. 5], [9 .. inf]]}.
20021 @kindex V E
20022 @pindex calc-set-enumerate
20023 @tindex venum
20024 The @kbd{V E} (@code{calc-set-enumerate}) [@code{venum}] command
20025 converts a set of integers into an explicit vector.  Intervals in
20026 the set are expanded out to lists of all integers encompassed by
20027 the intervals.  This only works for finite sets (i.e., sets which
20028 do not involve @samp{-inf} or @samp{inf}).
20030 @kindex V :
20031 @pindex calc-set-span
20032 @tindex vspan
20033 The @kbd{V :} (@code{calc-set-span}) [@code{vspan}] command converts any
20034 set of reals into an interval form that encompasses all its elements.
20035 The lower limit will be the smallest element in the set; the upper
20036 limit will be the largest element.  For an empty set, @samp{vspan([])}
20037 returns the empty interval @w{@samp{[0 .. 0)}}.
20039 @kindex V #
20040 @pindex calc-set-cardinality
20041 @tindex vcard
20042 The @kbd{V #} (@code{calc-set-cardinality}) [@code{vcard}] command counts
20043 the number of integers in a set.  The result is the length of the vector
20044 that would be produced by @kbd{V E}, although the computation is much
20045 more efficient than actually producing that vector.
20047 @cindex Sets, as binary numbers
20048 Another representation for sets that may be more appropriate in some
20049 cases is binary numbers.  If you are dealing with sets of integers
20050 in the range 0 to 49, you can use a 50-bit binary number where a
20051 particular bit is 1 if the corresponding element is in the set.
20052 @xref{Binary Functions}, for a list of commands that operate on
20053 binary numbers.  Note that many of the above set operations have
20054 direct equivalents in binary arithmetic:  @kbd{b o} (@code{calc-or}),
20055 @kbd{b a} (@code{calc-and}), @kbd{b d} (@code{calc-diff}),
20056 @kbd{b x} (@code{calc-xor}), and @kbd{b n} (@code{calc-not}),
20057 respectively.  You can use whatever representation for sets is most
20058 convenient to you.
20060 @kindex b p
20061 @kindex b u
20062 @pindex calc-pack-bits
20063 @pindex calc-unpack-bits
20064 @tindex vpack
20065 @tindex vunpack
20066 The @kbd{b u} (@code{calc-unpack-bits}) [@code{vunpack}] command
20067 converts an integer that represents a set in binary into a set
20068 in vector/interval notation.  For example, @samp{vunpack(67)}
20069 returns @samp{[[0 .. 1], 6]}.  If the input is negative, the set
20070 it represents is semi-infinite: @samp{vunpack(-4) = [2 .. inf)}.
20071 Use @kbd{V E} afterwards to expand intervals to individual
20072 values if you wish.  Note that this command uses the @kbd{b}
20073 (binary) prefix key.
20075 The @kbd{b p} (@code{calc-pack-bits}) [@code{vpack}] command
20076 converts the other way, from a vector or interval representing
20077 a set of nonnegative integers into a binary integer describing
20078 the same set.  The set may include positive infinity, but must
20079 not include any negative numbers.  The input is interpreted as a
20080 set of integers in the sense of @kbd{V F} (@code{vfloor}).  Beware
20081 that a simple input like @samp{[100]} can result in a huge integer
20082 representation (@c{$2^{100}$}
20083 @cite{2^100}, a 31-digit integer, in this case).
20085 @node Statistical Operations, Reducing and Mapping, Set Operations, Matrix Functions
20086 @section Statistical Operations on Vectors
20088 @noindent
20089 @cindex Statistical functions
20090 The commands in this section take vectors as arguments and compute
20091 various statistical measures on the data stored in the vectors.  The
20092 references used in the definitions of these functions are Bevington's
20093 @emph{Data Reduction and Error Analysis for the Physical Sciences},
20094 and @emph{Numerical Recipes} by Press, Flannery, Teukolsky and
20095 Vetterling.
20097 The statistical commands use the @kbd{u} prefix key followed by
20098 a shifted letter or other character.
20100 @xref{Manipulating Vectors}, for a description of @kbd{V H}
20101 (@code{calc-histogram}).
20103 @xref{Curve Fitting}, for the @kbd{a F} command for doing
20104 least-squares fits to statistical data.
20106 @xref{Probability Distribution Functions}, for several common
20107 probability distribution functions.
20109 @menu
20110 * Single-Variable Statistics::
20111 * Paired-Sample Statistics::
20112 @end menu
20114 @node Single-Variable Statistics, Paired-Sample Statistics, Statistical Operations, Statistical Operations
20115 @subsection Single-Variable Statistics
20117 @noindent
20118 These functions do various statistical computations on single
20119 vectors.  Given a numeric prefix argument, they actually pop
20120 @var{n} objects from the stack and combine them into a data
20121 vector.  Each object may be either a number or a vector; if a
20122 vector, any sub-vectors inside it are ``flattened'' as if by
20123 @kbd{v a 0}; @pxref{Manipulating Vectors}.  By default one object
20124 is popped, which (in order to be useful) is usually a vector.
20126 If an argument is a variable name, and the value stored in that
20127 variable is a vector, then the stored vector is used.  This method
20128 has the advantage that if your data vector is large, you can avoid
20129 the slow process of manipulating it directly on the stack.
20131 These functions are left in symbolic form if any of their arguments
20132 are not numbers or vectors, e.g., if an argument is a formula, or
20133 a non-vector variable.  However, formulas embedded within vector
20134 arguments are accepted; the result is a symbolic representation
20135 of the computation, based on the assumption that the formula does
20136 not itself represent a vector.  All varieties of numbers such as
20137 error forms and interval forms are acceptable.
20139 Some of the functions in this section also accept a single error form
20140 or interval as an argument.  They then describe a property of the
20141 normal or uniform (respectively) statistical distribution described
20142 by the argument.  The arguments are interpreted in the same way as
20143 the @var{M} argument of the random number function @kbd{k r}.  In
20144 particular, an interval with integer limits is considered an integer
20145 distribution, so that @samp{[2 .. 6)} is the same as @samp{[2 .. 5]}.
20146 An interval with at least one floating-point limit is a continuous
20147 distribution:  @samp{[2.0 .. 6.0)} is @emph{not} the same as
20148 @samp{[2.0 .. 5.0]}!
20150 @kindex u #
20151 @pindex calc-vector-count
20152 @tindex vcount
20153 The @kbd{u #} (@code{calc-vector-count}) [@code{vcount}] command
20154 computes the number of data values represented by the inputs.
20155 For example, @samp{vcount(1, [2, 3], [[4, 5], [], x, y])} returns 7.
20156 If the argument is a single vector with no sub-vectors, this
20157 simply computes the length of the vector.
20159 @kindex u +
20160 @kindex u *
20161 @pindex calc-vector-sum
20162 @pindex calc-vector-prod
20163 @tindex vsum
20164 @tindex vprod
20165 @cindex Summations (statistical)
20166 The @kbd{u +} (@code{calc-vector-sum}) [@code{vsum}] command
20167 computes the sum of the data values.  The @kbd{u *}
20168 (@code{calc-vector-prod}) [@code{vprod}] command computes the
20169 product of the data values.  If the input is a single flat vector,
20170 these are the same as @kbd{V R +} and @kbd{V R *}
20171 (@pxref{Reducing and Mapping}).@refill
20173 @kindex u X
20174 @kindex u N
20175 @pindex calc-vector-max
20176 @pindex calc-vector-min
20177 @tindex vmax
20178 @tindex vmin
20179 The @kbd{u X} (@code{calc-vector-max}) [@code{vmax}] command
20180 computes the maximum of the data values, and the @kbd{u N}
20181 (@code{calc-vector-min}) [@code{vmin}] command computes the minimum.
20182 If the argument is an interval, this finds the minimum or maximum
20183 value in the interval.  (Note that @samp{vmax([2..6)) = 5} as
20184 described above.)  If the argument is an error form, this returns
20185 plus or minus infinity.
20187 @kindex u M
20188 @pindex calc-vector-mean
20189 @tindex vmean
20190 @cindex Mean of data values
20191 The @kbd{u M} (@code{calc-vector-mean}) [@code{vmean}] command
20192 computes the average (arithmetic mean) of the data values.
20193 If the inputs are error forms @c{$x$ @code{+/-} $\sigma$}
20194 @samp{x +/- s}, this is the weighted
20195 mean of the @cite{x} values with weights @c{$1 / \sigma^2$}
20196 @cite{1 / s^2}.
20197 @tex
20198 \turnoffactive
20199 $$ \mu = { \displaystyle \sum { x_i \over \sigma_i^2 } \over
20200            \displaystyle \sum { 1 \over \sigma_i^2 } } $$
20201 @end tex
20202 If the inputs are not error forms, this is simply the sum of the
20203 values divided by the count of the values.@refill
20205 Note that a plain number can be considered an error form with
20206 error @c{$\sigma = 0$}
20207 @cite{s = 0}.  If the input to @kbd{u M} is a mixture of
20208 plain numbers and error forms, the result is the mean of the
20209 plain numbers, ignoring all values with non-zero errors.  (By the
20210 above definitions it's clear that a plain number effectively
20211 has an infinite weight, next to which an error form with a finite
20212 weight is completely negligible.)
20214 This function also works for distributions (error forms or
20215 intervals).  The mean of an error form `@var{a} @t{+/-} @var{b}' is simply
20216 @cite{a}.  The mean of an interval is the mean of the minimum
20217 and maximum values of the interval.
20219 @kindex I u M
20220 @pindex calc-vector-mean-error
20221 @tindex vmeane
20222 The @kbd{I u M} (@code{calc-vector-mean-error}) [@code{vmeane}]
20223 command computes the mean of the data points expressed as an
20224 error form.  This includes the estimated error associated with
20225 the mean.  If the inputs are error forms, the error is the square
20226 root of the reciprocal of the sum of the reciprocals of the squares
20227 of the input errors.  (I.e., the variance is the reciprocal of the
20228 sum of the reciprocals of the variances.)
20229 @tex
20230 \turnoffactive
20231 $$ \sigma_\mu^2 = {1 \over \displaystyle \sum {1 \over \sigma_i^2}} $$
20232 @end tex
20233 If the inputs are plain
20234 numbers, the error is equal to the standard deviation of the values
20235 divided by the square root of the number of values.  (This works
20236 out to be equivalent to calculating the standard deviation and
20237 then assuming each value's error is equal to this standard
20238 deviation.)@refill
20239 @tex
20240 \turnoffactive
20241 $$ \sigma_\mu^2 = {\sigma^2 \over N} $$
20242 @end tex
20244 @kindex H u M
20245 @pindex calc-vector-median
20246 @tindex vmedian
20247 @cindex Median of data values
20248 The @kbd{H u M} (@code{calc-vector-median}) [@code{vmedian}]
20249 command computes the median of the data values.  The values are
20250 first sorted into numerical order; the median is the middle
20251 value after sorting.  (If the number of data values is even,
20252 the median is taken to be the average of the two middle values.)
20253 The median function is different from the other functions in
20254 this section in that the arguments must all be real numbers;
20255 variables are not accepted even when nested inside vectors.
20256 (Otherwise it is not possible to sort the data values.)  If
20257 any of the input values are error forms, their error parts are
20258 ignored.
20260 The median function also accepts distributions.  For both normal
20261 (error form) and uniform (interval) distributions, the median is
20262 the same as the mean.
20264 @kindex H I u M
20265 @pindex calc-vector-harmonic-mean
20266 @tindex vhmean
20267 @cindex Harmonic mean
20268 The @kbd{H I u M} (@code{calc-vector-harmonic-mean}) [@code{vhmean}]
20269 command computes the harmonic mean of the data values.  This is
20270 defined as the reciprocal of the arithmetic mean of the reciprocals
20271 of the values.
20272 @tex
20273 \turnoffactive
20274 $$ { N \over \displaystyle \sum {1 \over x_i} } $$
20275 @end tex
20277 @kindex u G
20278 @pindex calc-vector-geometric-mean
20279 @tindex vgmean
20280 @cindex Geometric mean
20281 The @kbd{u G} (@code{calc-vector-geometric-mean}) [@code{vgmean}]
20282 command computes the geometric mean of the data values.  This
20283 is the @var{n}th root of the product of the values.  This is also
20284 equal to the @code{exp} of the arithmetic mean of the logarithms
20285 of the data values.
20286 @tex
20287 \turnoffactive
20288 $$ \exp \left ( \sum { \ln x_i } \right ) =
20289    \left ( \prod { x_i } \right)^{1 / N} $$
20290 @end tex
20292 @kindex H u G
20293 @tindex agmean
20294 The @kbd{H u G} [@code{agmean}] command computes the ``arithmetic-geometric
20295 mean'' of two numbers taken from the stack.  This is computed by
20296 replacing the two numbers with their arithmetic mean and geometric
20297 mean, then repeating until the two values converge.
20298 @tex
20299 \turnoffactive
20300 $$ a_{i+1} = { a_i + b_i \over 2 } , \qquad b_{i+1} = \sqrt{a_i b_i} $$
20301 @end tex
20303 @cindex Root-mean-square
20304 Another commonly used mean, the RMS (root-mean-square), can be computed
20305 for a vector of numbers simply by using the @kbd{A} command.
20307 @kindex u S
20308 @pindex calc-vector-sdev
20309 @tindex vsdev
20310 @cindex Standard deviation
20311 @cindex Sample statistics
20312 The @kbd{u S} (@code{calc-vector-sdev}) [@code{vsdev}] command
20313 computes the standard deviation@c{ $\sigma$}
20314 @asis{} of the data values.  If the
20315 values are error forms, the errors are used as weights just
20316 as for @kbd{u M}.  This is the @emph{sample} standard deviation,
20317 whose value is the square root of the sum of the squares of the
20318 differences between the values and the mean of the @cite{N} values,
20319 divided by @cite{N-1}.
20320 @tex
20321 \turnoffactive
20322 $$ \sigma^2 = {1 \over N - 1} \sum (x_i - \mu)^2 $$
20323 @end tex
20325 This function also applies to distributions.  The standard deviation
20326 of a single error form is simply the error part.  The standard deviation
20327 of a continuous interval happens to equal the difference between the
20328 limits, divided by @c{$\sqrt{12}$}
20329 @cite{sqrt(12)}.  The standard deviation of an
20330 integer interval is the same as the standard deviation of a vector
20331 of those integers.
20333 @kindex I u S
20334 @pindex calc-vector-pop-sdev
20335 @tindex vpsdev
20336 @cindex Population statistics
20337 The @kbd{I u S} (@code{calc-vector-pop-sdev}) [@code{vpsdev}]
20338 command computes the @emph{population} standard deviation.
20339 It is defined by the same formula as above but dividing
20340 by @cite{N} instead of by @cite{N-1}.  The population standard
20341 deviation is used when the input represents the entire set of
20342 data values in the distribution; the sample standard deviation
20343 is used when the input represents a sample of the set of all
20344 data values, so that the mean computed from the input is itself
20345 only an estimate of the true mean.
20346 @tex
20347 \turnoffactive
20348 $$ \sigma^2 = {1 \over N} \sum (x_i - \mu)^2 $$
20349 @end tex
20351 For error forms and continuous intervals, @code{vpsdev} works
20352 exactly like @code{vsdev}.  For integer intervals, it computes the
20353 population standard deviation of the equivalent vector of integers.
20355 @kindex H u S
20356 @kindex H I u S
20357 @pindex calc-vector-variance
20358 @pindex calc-vector-pop-variance
20359 @tindex vvar
20360 @tindex vpvar
20361 @cindex Variance of data values
20362 The @kbd{H u S} (@code{calc-vector-variance}) [@code{vvar}] and
20363 @kbd{H I u S} (@code{calc-vector-pop-variance}) [@code{vpvar}]
20364 commands compute the variance of the data values.  The variance
20365 is the square@c{ $\sigma^2$}
20366 @asis{} of the standard deviation, i.e., the sum of the
20367 squares of the deviations of the data values from the mean.
20368 (This definition also applies when the argument is a distribution.)
20370 @ignore
20371 @starindex
20372 @end ignore
20373 @tindex vflat
20374 The @code{vflat} algebraic function returns a vector of its
20375 arguments, interpreted in the same way as the other functions
20376 in this section.  For example, @samp{vflat(1, [2, [3, 4]], 5)}
20377 returns @samp{[1, 2, 3, 4, 5]}.
20379 @node Paired-Sample Statistics, , Single-Variable Statistics, Statistical Operations
20380 @subsection Paired-Sample Statistics
20382 @noindent
20383 The functions in this section take two arguments, which must be
20384 vectors of equal size.  The vectors are each flattened in the same
20385 way as by the single-variable statistical functions.  Given a numeric
20386 prefix argument of 1, these functions instead take one object from
20387 the stack, which must be an @c{$N\times2$}
20388 @asis{Nx2} matrix of data values.  Once
20389 again, variable names can be used in place of actual vectors and
20390 matrices.
20392 @kindex u C
20393 @pindex calc-vector-covariance
20394 @tindex vcov
20395 @cindex Covariance
20396 The @kbd{u C} (@code{calc-vector-covariance}) [@code{vcov}] command
20397 computes the sample covariance of two vectors.  The covariance
20398 of vectors @var{x} and @var{y} is the sum of the products of the
20399 differences between the elements of @var{x} and the mean of @var{x}
20400 times the differences between the corresponding elements of @var{y}
20401 and the mean of @var{y}, all divided by @cite{N-1}.  Note that
20402 the variance of a vector is just the covariance of the vector
20403 with itself.  Once again, if the inputs are error forms the
20404 errors are used as weight factors.  If both @var{x} and @var{y}
20405 are composed of error forms, the error for a given data point
20406 is taken as the square root of the sum of the squares of the two
20407 input errors.
20408 @tex
20409 \turnoffactive
20410 $$ \sigma_{x\!y}^2 = {1 \over N-1} \sum (x_i - \mu_x) (y_i - \mu_y) $$
20411 $$ \sigma_{x\!y}^2 =
20412     {\displaystyle {1 \over N-1}
20413                    \sum {(x_i - \mu_x) (y_i - \mu_y) \over \sigma_i^2}
20414      \over \displaystyle {1 \over N} \sum {1 \over \sigma_i^2}}
20416 @end tex
20418 @kindex I u C
20419 @pindex calc-vector-pop-covariance
20420 @tindex vpcov
20421 The @kbd{I u C} (@code{calc-vector-pop-covariance}) [@code{vpcov}]
20422 command computes the population covariance, which is the same as the
20423 sample covariance computed by @kbd{u C} except dividing by @cite{N}
20424 instead of @cite{N-1}.
20426 @kindex H u C
20427 @pindex calc-vector-correlation
20428 @tindex vcorr
20429 @cindex Correlation coefficient
20430 @cindex Linear correlation
20431 The @kbd{H u C} (@code{calc-vector-correlation}) [@code{vcorr}]
20432 command computes the linear correlation coefficient of two vectors.
20433 This is defined by the covariance of the vectors divided by the
20434 product of their standard deviations.  (There is no difference
20435 between sample or population statistics here.)
20436 @tex
20437 \turnoffactive
20438 $$ r_{x\!y} = { \sigma_{x\!y}^2 \over \sigma_x^2 \sigma_y^2 } $$
20439 @end tex
20441 @node Reducing and Mapping, Vector and Matrix Formats, Statistical Operations, Matrix Functions
20442 @section Reducing and Mapping Vectors
20444 @noindent
20445 The commands in this section allow for more general operations on the
20446 elements of vectors.
20448 @kindex V A
20449 @pindex calc-apply
20450 @tindex apply
20451 The simplest of these operations is @kbd{V A} (@code{calc-apply})
20452 [@code{apply}], which applies a given operator to the elements of a vector.
20453 For example, applying the hypothetical function @code{f} to the vector
20454 @w{@samp{[1, 2, 3]}} would produce the function call @samp{f(1, 2, 3)}.
20455 Applying the @code{+} function to the vector @samp{[a, b]} gives
20456 @samp{a + b}.  Applying @code{+} to the vector @samp{[a, b, c]} is an
20457 error, since the @code{+} function expects exactly two arguments.
20459 While @kbd{V A} is useful in some cases, you will usually find that either
20460 @kbd{V R} or @kbd{V M}, described below, is closer to what you want.
20462 @menu
20463 * Specifying Operators::
20464 * Mapping::
20465 * Reducing::
20466 * Nesting and Fixed Points::
20467 * Generalized Products::
20468 @end menu
20470 @node Specifying Operators, Mapping, Reducing and Mapping, Reducing and Mapping
20471 @subsection Specifying Operators
20473 @noindent
20474 Commands in this section (like @kbd{V A}) prompt you to press the key
20475 corresponding to the desired operator.  Press @kbd{?} for a partial
20476 list of the available operators.  Generally, an operator is any key or
20477 sequence of keys that would normally take one or more arguments from
20478 the stack and replace them with a result.  For example, @kbd{V A H C}
20479 uses the hyperbolic cosine operator, @code{cosh}.  (Since @code{cosh}
20480 expects one argument, @kbd{V A H C} requires a vector with a single
20481 element as its argument.)
20483 You can press @kbd{x} at the operator prompt to select any algebraic
20484 function by name to use as the operator.  This includes functions you
20485 have defined yourself using the @kbd{Z F} command.  (@xref{Algebraic
20486 Definitions}.)  If you give a name for which no function has been
20487 defined, the result is left in symbolic form, as in @samp{f(1, 2, 3)}.
20488 Calc will prompt for the number of arguments the function takes if it
20489 can't figure it out on its own (say, because you named a function that
20490 is currently undefined).  It is also possible to type a digit key before
20491 the function name to specify the number of arguments, e.g.,
20492 @kbd{V M 3 x f @key{RET}} calls @code{f} with three arguments even if it
20493 looks like it ought to have only two.  This technique may be necessary
20494 if the function allows a variable number of arguments.  For example,
20495 the @kbd{v e} [@code{vexp}] function accepts two or three arguments;
20496 if you want to map with the three-argument version, you will have to
20497 type @kbd{V M 3 v e}.
20499 It is also possible to apply any formula to a vector by treating that
20500 formula as a function.  When prompted for the operator to use, press
20501 @kbd{'} (the apostrophe) and type your formula as an algebraic entry.
20502 You will then be prompted for the argument list, which defaults to a
20503 list of all variables that appear in the formula, sorted into alphabetic
20504 order.  For example, suppose you enter the formula @w{@samp{x + 2y^x}}.
20505 The default argument list would be @samp{(x y)}, which means that if
20506 this function is applied to the arguments @samp{[3, 10]} the result will
20507 be @samp{3 + 2*10^3}.  (If you plan to use a certain formula in this
20508 way often, you might consider defining it as a function with @kbd{Z F}.)
20510 Another way to specify the arguments to the formula you enter is with
20511 @kbd{$}, @kbd{$$}, and so on.  For example, @kbd{V A ' $$ + 2$^$$}
20512 has the same effect as the previous example.  The argument list is
20513 automatically taken to be @samp{($$ $)}.  (The order of the arguments
20514 may seem backwards, but it is analogous to the way normal algebraic
20515 entry interacts with the stack.)
20517 If you press @kbd{$} at the operator prompt, the effect is similar to
20518 the apostrophe except that the relevant formula is taken from top-of-stack
20519 instead.  The actual vector arguments of the @kbd{V A $} or related command
20520 then start at the second-to-top stack position.  You will still be
20521 prompted for an argument list.
20523 @cindex Nameless functions
20524 @cindex Generic functions
20525 A function can be written without a name using the notation @samp{<#1 - #2>},
20526 which means ``a function of two arguments that computes the first
20527 argument minus the second argument.''  The symbols @samp{#1} and @samp{#2}
20528 are placeholders for the arguments.  You can use any names for these
20529 placeholders if you wish, by including an argument list followed by a
20530 colon:  @samp{<x, y : x - y>}.  When you type @kbd{V A ' $$ + 2$^$$ @key{RET}},
20531 Calc builds the nameless function @samp{<#1 + 2 #2^#1>} as the function
20532 to map across the vectors.  When you type @kbd{V A ' x + 2y^x @key{RET} @key{RET}},
20533 Calc builds the nameless function @w{@samp{<x, y : x + 2 y^x>}}.  In both
20534 cases, Calc also writes the nameless function to the Trail so that you
20535 can get it back later if you wish.
20537 If there is only one argument, you can write @samp{#} in place of @samp{#1}.
20538 (Note that @samp{< >} notation is also used for date forms.  Calc tells
20539 that @samp{<@var{stuff}>} is a nameless function by the presence of
20540 @samp{#} signs inside @var{stuff}, or by the fact that @var{stuff}
20541 begins with a list of variables followed by a colon.)
20543 You can type a nameless function directly to @kbd{V A '}, or put one on
20544 the stack and use it with @w{@kbd{V A $}}.  Calc will not prompt for an
20545 argument list in this case, since the nameless function specifies the
20546 argument list as well as the function itself.  In @kbd{V A '}, you can
20547 omit the @samp{< >} marks if you use @samp{#} notation for the arguments,
20548 so that @kbd{V A ' #1+#2 @key{RET}} is the same as @kbd{V A ' <#1+#2> @key{RET}},
20549 which in turn is the same as @kbd{V A ' $$+$ @key{RET}}.
20551 @cindex Lambda expressions
20552 @ignore
20553 @starindex
20554 @end ignore
20555 @tindex lambda
20556 The internal format for @samp{<x, y : x + y>} is @samp{lambda(x, y, x + y)}.
20557 (The word @code{lambda} derives from Lisp notation and the theory of
20558 functions.)  The internal format for @samp{<#1 + #2>} is @samp{lambda(ArgA,
20559 ArgB, ArgA + ArgB)}.  Note that there is no actual Calc function called
20560 @code{lambda}; the whole point is that the @code{lambda} expression is
20561 used in its symbolic form, not evaluated for an answer until it is applied
20562 to specific arguments by a command like @kbd{V A} or @kbd{V M}.
20564 (Actually, @code{lambda} does have one special property:  Its arguments
20565 are never evaluated; for example, putting @samp{<(2/3) #>} on the stack
20566 will not simplify the @samp{2/3} until the nameless function is actually
20567 called.)
20569 @tindex add
20570 @tindex sub
20571 @ignore
20572 @mindex @idots
20573 @end ignore
20574 @tindex mul
20575 @ignore
20576 @mindex @null
20577 @end ignore
20578 @tindex div
20579 @ignore
20580 @mindex @null
20581 @end ignore
20582 @tindex pow
20583 @ignore
20584 @mindex @null
20585 @end ignore
20586 @tindex neg
20587 @ignore
20588 @mindex @null
20589 @end ignore
20590 @tindex mod
20591 @ignore
20592 @mindex @null
20593 @end ignore
20594 @tindex vconcat
20595 As usual, commands like @kbd{V A} have algebraic function name equivalents.
20596 For example, @kbd{V A k g} with an argument of @samp{v} is equivalent to
20597 @samp{apply(gcd, v)}.  The first argument specifies the operator name,
20598 and is either a variable whose name is the same as the function name,
20599 or a nameless function like @samp{<#^3+1>}.  Operators that are normally
20600 written as algebraic symbols have the names @code{add}, @code{sub},
20601 @code{mul}, @code{div}, @code{pow}, @code{neg}, @code{mod}, and
20602 @code{vconcat}.@refill
20604 @ignore
20605 @starindex
20606 @end ignore
20607 @tindex call
20608 The @code{call} function builds a function call out of several arguments:
20609 @samp{call(gcd, x, y)} is the same as @samp{apply(gcd, [x, y])}, which
20610 in turn is the same as @samp{gcd(x, y)}.  The first argument of @code{call},
20611 like the other functions described here, may be either a variable naming a
20612 function, or a nameless function (@samp{call(<#1+2#2>, x, y)} is the same
20613 as @samp{x + 2y}).
20615 (Experts will notice that it's not quite proper to use a variable to name
20616 a function, since the name @code{gcd} corresponds to the Lisp variable
20617 @code{var-gcd} but to the Lisp function @code{calcFunc-gcd}.  Calc
20618 automatically makes this translation, so you don't have to worry
20619 about it.)
20621 @node Mapping, Reducing, Specifying Operators, Reducing and Mapping
20622 @subsection Mapping
20624 @noindent
20625 @kindex V M
20626 @pindex calc-map
20627 @tindex map
20628 The @kbd{V M} (@code{calc-map}) [@code{map}] command applies a given
20629 operator elementwise to one or more vectors.  For example, mapping
20630 @code{A} [@code{abs}] produces a vector of the absolute values of the
20631 elements in the input vector.  Mapping @code{+} pops two vectors from
20632 the stack, which must be of equal length, and produces a vector of the
20633 pairwise sums of the elements.  If either argument is a non-vector, it
20634 is duplicated for each element of the other vector.  For example,
20635 @kbd{[1,2,3] 2 V M ^} squares the elements of the specified vector.
20636 With the 2 listed first, it would have computed a vector of powers of
20637 two.  Mapping a user-defined function pops as many arguments from the
20638 stack as the function requires.  If you give an undefined name, you will
20639 be prompted for the number of arguments to use.@refill
20641 If any argument to @kbd{V M} is a matrix, the operator is normally mapped
20642 across all elements of the matrix.  For example, given the matrix
20643 @cite{[[1, -2, 3], [-4, 5, -6]]}, @kbd{V M A} takes six absolute values to
20644 produce another @c{$3\times2$}
20645 @asis{3x2} matrix, @cite{[[1, 2, 3], [4, 5, 6]]}.
20647 @tindex mapr
20648 The command @kbd{V M _} [@code{mapr}] (i.e., type an underscore at the
20649 operator prompt) maps by rows instead.  For example, @kbd{V M _ A} views
20650 the above matrix as a vector of two 3-element row vectors.  It produces
20651 a new vector which contains the absolute values of those row vectors,
20652 namely @cite{[3.74, 8.77]}.  (Recall, the absolute value of a vector is
20653 defined as the square root of the sum of the squares of the elements.)
20654 Some operators accept vectors and return new vectors; for example,
20655 @kbd{v v} reverses a vector, so @kbd{V M _ v v} would reverse each row
20656 of the matrix to get a new matrix, @cite{[[3, -2, 1], [-6, 5, -4]]}.
20658 Sometimes a vector of vectors (representing, say, strings, sets, or lists)
20659 happens to look like a matrix.  If so, remember to use @kbd{V M _} if you
20660 want to map a function across the whole strings or sets rather than across
20661 their individual elements.
20663 @tindex mapc
20664 The command @kbd{V M :} [@code{mapc}] maps by columns.  Basically, it
20665 transposes the input matrix, maps by rows, and then, if the result is a
20666 matrix, transposes again.  For example, @kbd{V M : A} takes the absolute
20667 values of the three columns of the matrix, treating each as a 2-vector,
20668 and @kbd{V M : v v} reverses the columns to get the matrix
20669 @cite{[[-4, 5, -6], [1, -2, 3]]}.
20671 (The symbols @kbd{_} and @kbd{:} were chosen because they had row-like
20672 and column-like appearances, and were not already taken by useful
20673 operators.  Also, they appear shifted on most keyboards so they are easy
20674 to type after @kbd{V M}.)
20676 The @kbd{_} and @kbd{:} modifiers have no effect on arguments that are
20677 not matrices (so if none of the arguments are matrices, they have no
20678 effect at all).  If some of the arguments are matrices and others are
20679 plain numbers, the plain numbers are held constant for all rows of the
20680 matrix (so that @kbd{2 V M _ ^} squares every row of a matrix; squaring
20681 a vector takes a dot product of the vector with itself).
20683 If some of the arguments are vectors with the same lengths as the
20684 rows (for @kbd{V M _}) or columns (for @kbd{V M :}) of the matrix
20685 arguments, those vectors are also held constant for every row or
20686 column.
20688 Sometimes it is useful to specify another mapping command as the operator
20689 to use with @kbd{V M}.  For example, @kbd{V M _ V A +} applies @kbd{V A +}
20690 to each row of the input matrix, which in turn adds the two values on that
20691 row.  If you give another vector-operator command as the operator for
20692 @kbd{V M}, it automatically uses map-by-rows mode if you don't specify
20693 otherwise; thus @kbd{V M V A +} is equivalent to @kbd{V M _ V A +}.  (If
20694 you really want to map-by-elements another mapping command, you can use
20695 a triple-nested mapping command:  @kbd{V M V M V A +} means to map
20696 @kbd{V M V A +} over the rows of the matrix; in turn, @kbd{V A +} is
20697 mapped over the elements of each row.)
20699 @tindex mapa
20700 @tindex mapd
20701 Previous versions of Calc had ``map across'' and ``map down'' modes
20702 that are now considered obsolete; the old ``map across'' is now simply
20703 @kbd{V M V A}, and ``map down'' is now @kbd{V M : V A}.  The algebraic
20704 functions @code{mapa} and @code{mapd} are still supported, though.
20705 Note also that, while the old mapping modes were persistent (once you
20706 set the mode, it would apply to later mapping commands until you reset
20707 it), the new @kbd{:} and @kbd{_} modifiers apply only to the current
20708 mapping command.  The default @kbd{V M} always means map-by-elements.
20710 @xref{Algebraic Manipulation}, for the @kbd{a M} command, which is like
20711 @kbd{V M} but for equations and inequalities instead of vectors.
20712 @xref{Storing Variables}, for the @kbd{s m} command which modifies a
20713 variable's stored value using a @kbd{V M}-like operator.
20715 @node Reducing, Nesting and Fixed Points, Mapping, Reducing and Mapping
20716 @subsection Reducing
20718 @noindent
20719 @kindex V R
20720 @pindex calc-reduce
20721 @tindex reduce
20722 The @kbd{V R} (@code{calc-reduce}) [@code{reduce}] command applies a given
20723 binary operator across all the elements of a vector.  A binary operator is
20724 a function such as @code{+} or @code{max} which takes two arguments.  For
20725 example, reducing @code{+} over a vector computes the sum of the elements
20726 of the vector.  Reducing @code{-} computes the first element minus each of
20727 the remaining elements.  Reducing @code{max} computes the maximum element
20728 and so on.  In general, reducing @code{f} over the vector @samp{[a, b, c, d]}
20729 produces @samp{f(f(f(a, b), c), d)}.
20731 @kindex I V R
20732 @tindex rreduce
20733 The @kbd{I V R} [@code{rreduce}] command is similar to @kbd{V R} except
20734 that works from right to left through the vector.  For example, plain
20735 @kbd{V R -} on the vector @samp{[a, b, c, d]} produces @samp{a - b - c - d}
20736 but @kbd{I V R -} on the same vector produces @samp{a - (b - (c - d))},
20737 or @samp{a - b + c - d}.  This ``alternating sum'' occurs frequently
20738 in power series expansions.
20740 @kindex V U
20741 @tindex accum
20742 The @kbd{V U} (@code{calc-accumulate}) [@code{accum}] command does an
20743 accumulation operation.  Here Calc does the corresponding reduction
20744 operation, but instead of producing only the final result, it produces
20745 a vector of all the intermediate results.  Accumulating @code{+} over
20746 the vector @samp{[a, b, c, d]} produces the vector
20747 @samp{[a, a + b, a + b + c, a + b + c + d]}.
20749 @kindex I V U
20750 @tindex raccum
20751 The @kbd{I V U} [@code{raccum}] command does a right-to-left accumulation.
20752 For example, @kbd{I V U -} on the vector @samp{[a, b, c, d]} produces the
20753 vector @samp{[a - b + c - d, b - c + d, c - d, d]}.
20755 @tindex reducea
20756 @tindex rreducea
20757 @tindex reduced
20758 @tindex rreduced
20759 As for @kbd{V M}, @kbd{V R} normally reduces a matrix elementwise.  For
20760 example, given the matrix @cite{[[a, b, c], [d, e, f]]}, @kbd{V R +} will
20761 compute @cite{a + b + c + d + e + f}.  You can type @kbd{V R _} or
20762 @kbd{V R :} to modify this behavior.  The @kbd{V R _} [@code{reducea}]
20763 command reduces ``across'' the matrix; it reduces each row of the matrix
20764 as a vector, then collects the results.  Thus @kbd{V R _ +} of this
20765 matrix would produce @cite{[a + b + c, d + e + f]}.  Similarly, @kbd{V R :}
20766 [@code{reduced}] reduces down; @kbd{V R : +} would produce @cite{[a + d,
20767 b + e, c + f]}.
20769 @tindex reducer
20770 @tindex rreducer
20771 There is a third ``by rows'' mode for reduction that is occasionally
20772 useful; @kbd{V R =} [@code{reducer}] simply reduces the operator over
20773 the rows of the matrix themselves.  Thus @kbd{V R = +} on the above
20774 matrix would get the same result as @kbd{V R : +}, since adding two
20775 row vectors is equivalent to adding their elements.  But @kbd{V R = *}
20776 would multiply the two rows (to get a single number, their dot product),
20777 while @kbd{V R : *} would produce a vector of the products of the columns.
20779 These three matrix reduction modes work with @kbd{V R} and @kbd{I V R},
20780 but they are not currently supported with @kbd{V U} or @kbd{I V U}.
20782 @tindex reducec
20783 @tindex rreducec
20784 The obsolete reduce-by-columns function, @code{reducec}, is still
20785 supported but there is no way to get it through the @kbd{V R} command.
20787 The commands @kbd{M-# :} and @kbd{M-# _} are equivalent to typing
20788 @kbd{M-# r} to grab a rectangle of data into Calc, and then typing
20789 @kbd{V R : +} or @kbd{V R _ +}, respectively, to sum the columns or
20790 rows of the matrix.  @xref{Grabbing From Buffers}.
20792 @node Nesting and Fixed Points, Generalized Products, Reducing, Reducing and Mapping
20793 @subsection Nesting and Fixed Points
20795 @noindent
20796 @kindex H V R
20797 @tindex nest
20798 The @kbd{H V R} [@code{nest}] command applies a function to a given
20799 argument repeatedly.  It takes two values, @samp{a} and @samp{n}, from
20800 the stack, where @samp{n} must be an integer.  It then applies the
20801 function nested @samp{n} times; if the function is @samp{f} and @samp{n}
20802 is 3, the result is @samp{f(f(f(a)))}.  The number @samp{n} may be
20803 negative if Calc knows an inverse for the function @samp{f}; for
20804 example, @samp{nest(sin, a, -2)} returns @samp{arcsin(arcsin(a))}.
20806 @kindex H V U
20807 @tindex anest
20808 The @kbd{H V U} [@code{anest}] command is an accumulating version of
20809 @code{nest}:  It returns a vector of @samp{n+1} values, e.g.,
20810 @samp{[a, f(a), f(f(a)), f(f(f(a)))]}.  If @samp{n} is negative and
20811 @samp{F} is the inverse of @samp{f}, then the result is of the
20812 form @samp{[a, F(a), F(F(a)), F(F(F(a)))]}.
20814 @kindex H I V R
20815 @tindex fixp
20816 @cindex Fixed points
20817 The @kbd{H I V R} [@code{fixp}] command is like @kbd{H V R}, except
20818 that it takes only an @samp{a} value from the stack; the function is
20819 applied until it reaches a ``fixed point,'' i.e., until the result
20820 no longer changes.
20822 @kindex H I V U
20823 @tindex afixp
20824 The @kbd{H I V U} [@code{afixp}] command is an accumulating @code{fixp}.
20825 The first element of the return vector will be the initial value @samp{a};
20826 the last element will be the final result that would have been returned
20827 by @code{fixp}.
20829 For example, 0.739085 is a fixed point of the cosine function (in radians):
20830 @samp{cos(0.739085) = 0.739085}.  You can find this value by putting, say,
20831 1.0 on the stack and typing @kbd{H I V U C}.  (We use the accumulating
20832 version so we can see the intermediate results:  @samp{[1, 0.540302, 0.857553,
20833 0.65329, ...]}.  With a precision of six, this command will take 36 steps
20834 to converge to 0.739085.)
20836 Newton's method for finding roots is a classic example of iteration
20837 to a fixed point.  To find the square root of five starting with an
20838 initial guess, Newton's method would look for a fixed point of the
20839 function @samp{(x + 5/x) / 2}.  Putting a guess of 1 on the stack
20840 and typing @kbd{H I V R ' ($ + 5/$)/2 @key{RET}} quickly yields the result
20841 2.23607.  This is equivalent to using the @kbd{a R} (@code{calc-find-root})
20842 command to find a root of the equation @samp{x^2 = 5}.
20844 These examples used numbers for @samp{a} values.  Calc keeps applying
20845 the function until two successive results are equal to within the
20846 current precision.  For complex numbers, both the real parts and the
20847 imaginary parts must be equal to within the current precision.  If
20848 @samp{a} is a formula (say, a variable name), then the function is
20849 applied until two successive results are exactly the same formula.
20850 It is up to you to ensure that the function will eventually converge;
20851 if it doesn't, you may have to press @kbd{C-g} to stop the Calculator.
20853 The algebraic @code{fixp} function takes two optional arguments, @samp{n}
20854 and @samp{tol}.  The first is the maximum number of steps to be allowed,
20855 and must be either an integer or the symbol @samp{inf} (infinity, the
20856 default).  The second is a convergence tolerance.  If a tolerance is
20857 specified, all results during the calculation must be numbers, not
20858 formulas, and the iteration stops when the magnitude of the difference
20859 between two successive results is less than or equal to the tolerance.
20860 (This implies that a tolerance of zero iterates until the results are
20861 exactly equal.)
20863 Putting it all together, @samp{fixp(<(# + A/#)/2>, B, 20, 1e-10)}
20864 computes the square root of @samp{A} given the initial guess @samp{B},
20865 stopping when the result is correct within the specified tolerance, or
20866 when 20 steps have been taken, whichever is sooner.
20868 @node Generalized Products, , Nesting and Fixed Points, Reducing and Mapping
20869 @subsection Generalized Products
20871 @kindex V O
20872 @pindex calc-outer-product
20873 @tindex outer
20874 The @kbd{V O} (@code{calc-outer-product}) [@code{outer}] command applies
20875 a given binary operator to all possible pairs of elements from two
20876 vectors, to produce a matrix.  For example, @kbd{V O *} with @samp{[a, b]}
20877 and @samp{[x, y, z]} on the stack produces a multiplication table:
20878 @samp{[[a x, a y, a z], [b x, b y, b z]]}.  Element @var{r},@var{c} of
20879 the result matrix is obtained by applying the operator to element @var{r}
20880 of the lefthand vector and element @var{c} of the righthand vector.
20882 @kindex V I
20883 @pindex calc-inner-product
20884 @tindex inner
20885 The @kbd{V I} (@code{calc-inner-product}) [@code{inner}] command computes
20886 the generalized inner product of two vectors or matrices, given a
20887 ``multiplicative'' operator and an ``additive'' operator.  These can each
20888 actually be any binary operators; if they are @samp{*} and @samp{+},
20889 respectively, the result is a standard matrix multiplication.  Element
20890 @var{r},@var{c} of the result matrix is obtained by mapping the
20891 multiplicative operator across row @var{r} of the lefthand matrix and
20892 column @var{c} of the righthand matrix, and then reducing with the additive
20893 operator.  Just as for the standard @kbd{*} command, this can also do a
20894 vector-matrix or matrix-vector inner product, or a vector-vector
20895 generalized dot product.
20897 Since @kbd{V I} requires two operators, it prompts twice.  In each case,
20898 you can use any of the usual methods for entering the operator.  If you
20899 use @kbd{$} twice to take both operator formulas from the stack, the
20900 first (multiplicative) operator is taken from the top of the stack
20901 and the second (additive) operator is taken from second-to-top.
20903 @node Vector and Matrix Formats, , Reducing and Mapping, Matrix Functions
20904 @section Vector and Matrix Display Formats
20906 @noindent
20907 Commands for controlling vector and matrix display use the @kbd{v} prefix
20908 instead of the usual @kbd{d} prefix.  But they are display modes; in
20909 particular, they are influenced by the @kbd{I} and @kbd{H} prefix keys
20910 in the same way (@pxref{Display Modes}).  Matrix display is also
20911 influenced by the @kbd{d O} (@code{calc-flat-language}) mode;
20912 @pxref{Normal Language Modes}.
20914 @kindex V <
20915 @pindex calc-matrix-left-justify
20916 @kindex V =
20917 @pindex calc-matrix-center-justify
20918 @kindex V >
20919 @pindex calc-matrix-right-justify
20920 The commands @kbd{v <} (@code{calc-matrix-left-justify}), @kbd{v >}
20921 (@code{calc-matrix-right-justify}), and @w{@kbd{v =}}
20922 (@code{calc-matrix-center-justify}) control whether matrix elements
20923 are justified to the left, right, or center of their columns.@refill
20925 @kindex V [
20926 @pindex calc-vector-brackets
20927 @kindex V @{
20928 @pindex calc-vector-braces
20929 @kindex V (
20930 @pindex calc-vector-parens
20931 The @kbd{v [} (@code{calc-vector-brackets}) command turns the square
20932 brackets that surround vectors and matrices displayed in the stack on
20933 and off.  The @kbd{v @{} (@code{calc-vector-braces}) and @kbd{v (}
20934 (@code{calc-vector-parens}) commands use curly braces or parentheses,
20935 respectively, instead of square brackets.  For example, @kbd{v @{} might
20936 be used in preparation for yanking a matrix into a buffer running
20937 Mathematica.  (In fact, the Mathematica language mode uses this mode;
20938 @pxref{Mathematica Language Mode}.)  Note that, regardless of the
20939 display mode, either brackets or braces may be used to enter vectors,
20940 and parentheses may never be used for this purpose.@refill
20942 @kindex V ]
20943 @pindex calc-matrix-brackets
20944 The @kbd{v ]} (@code{calc-matrix-brackets}) command controls the
20945 ``big'' style display of matrices.  It prompts for a string of code
20946 letters; currently implemented letters are @code{R}, which enables
20947 brackets on each row of the matrix; @code{O}, which enables outer
20948 brackets in opposite corners of the matrix; and @code{C}, which
20949 enables commas or semicolons at the ends of all rows but the last.
20950 The default format is @samp{RO}.  (Before Calc 2.00, the format
20951 was fixed at @samp{ROC}.)  Here are some example matrices:
20953 @example
20954 @group
20955 [ [ 123,  0,   0  ]       [ [ 123,  0,   0  ],
20956   [  0,  123,  0  ]         [  0,  123,  0  ],
20957   [  0,   0,  123 ] ]       [  0,   0,  123 ] ]
20959          RO                        ROC
20961 @end group
20962 @end example
20963 @noindent
20964 @example
20965 @group
20966   [ 123,  0,   0            [ 123,  0,   0 ;
20967      0,  123,  0               0,  123,  0 ;
20968      0,   0,  123 ]            0,   0,  123 ]
20970           O                        OC
20972 @end group
20973 @end example
20974 @noindent
20975 @example
20976 @group
20977   [ 123,  0,   0  ]           123,  0,   0
20978   [  0,  123,  0  ]            0,  123,  0
20979   [  0,   0,  123 ]            0,   0,  123
20981           R                       @r{blank}
20982 @end group
20983 @end example
20985 @noindent
20986 Note that of the formats shown here, @samp{RO}, @samp{ROC}, and
20987 @samp{OC} are all recognized as matrices during reading, while
20988 the others are useful for display only.
20990 @kindex V ,
20991 @pindex calc-vector-commas
20992 The @kbd{v ,} (@code{calc-vector-commas}) command turns commas on and
20993 off in vector and matrix display.@refill
20995 In vectors of length one, and in all vectors when commas have been
20996 turned off, Calc adds extra parentheses around formulas that might
20997 otherwise be ambiguous.  For example, @samp{[a b]} could be a vector
20998 of the one formula @samp{a b}, or it could be a vector of two
20999 variables with commas turned off.  Calc will display the former
21000 case as @samp{[(a b)]}.  You can disable these extra parentheses
21001 (to make the output less cluttered at the expense of allowing some
21002 ambiguity) by adding the letter @code{P} to the control string you
21003 give to @kbd{v ]} (as described above).
21005 @kindex V .
21006 @pindex calc-full-vectors
21007 The @kbd{v .} (@code{calc-full-vectors}) command turns abbreviated
21008 display of long vectors on and off.  In this mode, vectors of six
21009 or more elements, or matrices of six or more rows or columns, will
21010 be displayed in an abbreviated form that displays only the first
21011 three elements and the last element:  @samp{[a, b, c, ..., z]}.
21012 When very large vectors are involved this will substantially
21013 improve Calc's display speed.
21015 @kindex t .
21016 @pindex calc-full-trail-vectors
21017 The @kbd{t .} (@code{calc-full-trail-vectors}) command controls a
21018 similar mode for recording vectors in the Trail.  If you turn on
21019 this mode, vectors of six or more elements and matrices of six or
21020 more rows or columns will be abbreviated when they are put in the
21021 Trail.  The @kbd{t y} (@code{calc-trail-yank}) command will be
21022 unable to recover those vectors.  If you are working with very
21023 large vectors, this mode will improve the speed of all operations
21024 that involve the trail.
21026 @kindex V /
21027 @pindex calc-break-vectors
21028 The @kbd{v /} (@code{calc-break-vectors}) command turns multi-line
21029 vector display on and off.  Normally, matrices are displayed with one
21030 row per line but all other types of vectors are displayed in a single
21031 line.  This mode causes all vectors, whether matrices or not, to be
21032 displayed with a single element per line.  Sub-vectors within the
21033 vectors will still use the normal linear form.
21035 @node Algebra, Units, Matrix Functions, Top
21036 @chapter Algebra
21038 @noindent
21039 This section covers the Calc features that help you work with
21040 algebraic formulas.  First, the general sub-formula selection
21041 mechanism is described; this works in conjunction with any Calc
21042 commands.  Then, commands for specific algebraic operations are
21043 described.  Finally, the flexible @dfn{rewrite rule} mechanism
21044 is discussed.
21046 The algebraic commands use the @kbd{a} key prefix; selection
21047 commands use the @kbd{j} (for ``just a letter that wasn't used
21048 for anything else'') prefix.
21050 @xref{Editing Stack Entries}, to see how to manipulate formulas
21051 using regular Emacs editing commands.@refill
21053 When doing algebraic work, you may find several of the Calculator's
21054 modes to be helpful, including algebraic-simplification mode (@kbd{m A})
21055 or no-simplification mode (@kbd{m O}),
21056 algebraic-entry mode (@kbd{m a}), fraction mode (@kbd{m f}), and
21057 symbolic mode (@kbd{m s}).  @xref{Mode Settings}, for discussions
21058 of these modes.  You may also wish to select ``big'' display mode (@kbd{d B}).
21059 @xref{Normal Language Modes}.@refill
21061 @menu
21062 * Selecting Subformulas::
21063 * Algebraic Manipulation::
21064 * Simplifying Formulas::
21065 * Polynomials::
21066 * Calculus::
21067 * Solving Equations::
21068 * Numerical Solutions::
21069 * Curve Fitting::
21070 * Summations::
21071 * Logical Operations::
21072 * Rewrite Rules::
21073 @end menu
21075 @node Selecting Subformulas, Algebraic Manipulation, Algebra, Algebra
21076 @section Selecting Sub-Formulas
21078 @noindent
21079 @cindex Selections
21080 @cindex Sub-formulas
21081 @cindex Parts of formulas
21082 When working with an algebraic formula it is often necessary to
21083 manipulate a portion of the formula rather than the formula as a
21084 whole.  Calc allows you to ``select'' a portion of any formula on
21085 the stack.  Commands which would normally operate on that stack
21086 entry will now operate only on the sub-formula, leaving the
21087 surrounding part of the stack entry alone.
21089 One common non-algebraic use for selection involves vectors.  To work
21090 on one element of a vector in-place, simply select that element as a
21091 ``sub-formula'' of the vector.
21093 @menu
21094 * Making Selections::
21095 * Changing Selections::
21096 * Displaying Selections::
21097 * Operating on Selections::
21098 * Rearranging with Selections::
21099 @end menu
21101 @node Making Selections, Changing Selections, Selecting Subformulas, Selecting Subformulas
21102 @subsection Making Selections
21104 @noindent
21105 @kindex j s
21106 @pindex calc-select-here
21107 To select a sub-formula, move the Emacs cursor to any character in that
21108 sub-formula, and press @w{@kbd{j s}} (@code{calc-select-here}).  Calc will
21109 highlight the smallest portion of the formula that contains that
21110 character.  By default the sub-formula is highlighted by blanking out
21111 all of the rest of the formula with dots.  Selection works in any
21112 display mode but is perhaps easiest in ``big'' (@kbd{d B}) mode.
21113 Suppose you enter the following formula:
21115 @smallexample
21116 @group
21117            3    ___
21118     (a + b)  + V c
21119 1:  ---------------
21120         2 x + 1
21121 @end group
21122 @end smallexample
21124 @noindent
21125 (by typing @kbd{' ((a+b)^3 + sqrt(c)) / (2x+1)}).  If you move the
21126 cursor to the letter @samp{b} and press @w{@kbd{j s}}, the display changes
21129 @smallexample
21130 @group
21131            .    ...
21132     .. . b.  . . .
21133 1*  ...............
21134         . . . .
21135 @end group
21136 @end smallexample
21138 @noindent
21139 Every character not part of the sub-formula @samp{b} has been changed
21140 to a dot.  The @samp{*} next to the line number is to remind you that
21141 the formula has a portion of it selected.  (In this case, it's very
21142 obvious, but it might not always be.  If Embedded Mode is enabled,
21143 the word @samp{Sel} also appears in the mode line because the stack
21144 may not be visible.  @pxref{Embedded Mode}.)
21146 If you had instead placed the cursor on the parenthesis immediately to
21147 the right of the @samp{b}, the selection would have been:
21149 @smallexample
21150 @group
21151            .    ...
21152     (a + b)  . . .
21153 1*  ...............
21154         . . . .
21155 @end group
21156 @end smallexample
21158 @noindent
21159 The portion selected is always large enough to be considered a complete
21160 formula all by itself, so selecting the parenthesis selects the whole
21161 formula that it encloses.  Putting the cursor on the @samp{+} sign
21162 would have had the same effect.
21164 (Strictly speaking, the Emacs cursor is really the manifestation of
21165 the Emacs ``point,'' which is a position @emph{between} two characters
21166 in the buffer.  So purists would say that Calc selects the smallest
21167 sub-formula which contains the character to the right of ``point.'')
21169 If you supply a numeric prefix argument @var{n}, the selection is
21170 expanded to the @var{n}th enclosing sub-formula.  Thus, positioning
21171 the cursor on the @samp{b} and typing @kbd{C-u 1 j s} will select
21172 @samp{a + b}; typing @kbd{C-u 2 j s} will select @samp{(a + b)^3},
21173 and so on.
21175 If the cursor is not on any part of the formula, or if you give a
21176 numeric prefix that is too large, the entire formula is selected.
21178 If the cursor is on the @samp{.} line that marks the top of the stack
21179 (i.e., its normal ``rest position''), this command selects the entire
21180 formula at stack level 1.  Most selection commands similarly operate
21181 on the formula at the top of the stack if you haven't positioned the
21182 cursor on any stack entry.
21184 @kindex j a
21185 @pindex calc-select-additional
21186 The @kbd{j a} (@code{calc-select-additional}) command enlarges the
21187 current selection to encompass the cursor.  To select the smallest
21188 sub-formula defined by two different points, move to the first and
21189 press @kbd{j s}, then move to the other and press @kbd{j a}.  This
21190 is roughly analogous to using @kbd{C-@@} (@code{set-mark-command}) to
21191 select the two ends of a region of text during normal Emacs editing.
21193 @kindex j o
21194 @pindex calc-select-once
21195 The @kbd{j o} (@code{calc-select-once}) command selects a formula in
21196 exactly the same way as @kbd{j s}, except that the selection will
21197 last only as long as the next command that uses it.  For example,
21198 @kbd{j o 1 +} is a handy way to add one to the sub-formula indicated
21199 by the cursor.
21201 (A somewhat more precise definition: The @kbd{j o} command sets a flag
21202 such that the next command involving selected stack entries will clear
21203 the selections on those stack entries afterwards.  All other selection
21204 commands except @kbd{j a} and @kbd{j O} clear this flag.)
21206 @kindex j S
21207 @kindex j O
21208 @pindex calc-select-here-maybe
21209 @pindex calc-select-once-maybe
21210 The @kbd{j S} (@code{calc-select-here-maybe}) and @kbd{j O}
21211 (@code{calc-select-once-maybe}) commands are equivalent to @kbd{j s}
21212 and @kbd{j o}, respectively, except that if the formula already
21213 has a selection they have no effect.  This is analogous to the
21214 behavior of some commands such as @kbd{j r} (@code{calc-rewrite-selection};
21215 @pxref{Selections with Rewrite Rules}) and is mainly intended to be
21216 used in keyboard macros that implement your own selection-oriented
21217 commands.@refill
21219 Selection of sub-formulas normally treats associative terms like
21220 @samp{a + b - c + d} and @samp{x * y * z} as single levels of the formula.
21221 If you place the cursor anywhere inside @samp{a + b - c + d} except
21222 on one of the variable names and use @kbd{j s}, you will select the
21223 entire four-term sum.
21225 @kindex j b
21226 @pindex calc-break-selections
21227 The @kbd{j b} (@code{calc-break-selections}) command controls a mode
21228 in which the ``deep structure'' of these associative formulas shows
21229 through.  Calc actually stores the above formulas as @samp{((a + b) - c) + d}
21230 and @samp{x * (y * z)}.  (Note that for certain obscure reasons, Calc
21231 treats multiplication as right-associative.)  Once you have enabled
21232 @kbd{j b} mode, selecting with the cursor on the @samp{-} sign would
21233 only select the @samp{a + b - c} portion, which makes sense when the
21234 deep structure of the sum is considered.  There is no way to select
21235 the @samp{b - c + d} portion; although this might initially look
21236 like just as legitimate a sub-formula as @samp{a + b - c}, the deep
21237 structure shows that it isn't.  The @kbd{d U} command can be used
21238 to view the deep structure of any formula (@pxref{Normal Language Modes}).
21240 When @kbd{j b} mode has not been enabled, the deep structure is
21241 generally hidden by the selection commands---what you see is what
21242 you get.
21244 @kindex j u
21245 @pindex calc-unselect
21246 The @kbd{j u} (@code{calc-unselect}) command unselects the formula
21247 that the cursor is on.  If there was no selection in the formula,
21248 this command has no effect.  With a numeric prefix argument, it
21249 unselects the @var{n}th stack element rather than using the cursor
21250 position.
21252 @kindex j c
21253 @pindex calc-clear-selections
21254 The @kbd{j c} (@code{calc-clear-selections}) command unselects all
21255 stack elements.
21257 @node Changing Selections, Displaying Selections, Making Selections, Selecting Subformulas
21258 @subsection Changing Selections
21260 @noindent
21261 @kindex j m
21262 @pindex calc-select-more
21263 Once you have selected a sub-formula, you can expand it using the
21264 @w{@kbd{j m}} (@code{calc-select-more}) command.  If @samp{a + b} is
21265 selected, pressing @w{@kbd{j m}} repeatedly works as follows:
21267 @smallexample
21268 @group
21269            3    ...                3    ___                3    ___
21270     (a + b)  . . .          (a + b)  + V c          (a + b)  + V c
21271 1*  ...............     1*  ...............     1*  ---------------
21272         . . . .                 . . . .                 2 x + 1
21273 @end group
21274 @end smallexample
21276 @noindent
21277 In the last example, the entire formula is selected.  This is roughly
21278 the same as having no selection at all, but because there are subtle
21279 differences the @samp{*} character is still there on the line number.
21281 With a numeric prefix argument @var{n}, @kbd{j m} expands @var{n}
21282 times (or until the entire formula is selected).  Note that @kbd{j s}
21283 with argument @var{n} is equivalent to plain @kbd{j s} followed by
21284 @kbd{j m} with argument @var{n}.  If @w{@kbd{j m}} is used when there
21285 is no current selection, it is equivalent to @w{@kbd{j s}}.
21287 Even though @kbd{j m} does not explicitly use the location of the
21288 cursor within the formula, it nevertheless uses the cursor to determine
21289 which stack element to operate on.  As usual, @kbd{j m} when the cursor
21290 is not on any stack element operates on the top stack element.
21292 @kindex j l
21293 @pindex calc-select-less
21294 The @kbd{j l} (@code{calc-select-less}) command reduces the current
21295 selection around the cursor position.  That is, it selects the
21296 immediate sub-formula of the current selection which contains the
21297 cursor, the opposite of @kbd{j m}.  If the cursor is not inside the
21298 current selection, the command de-selects the formula.
21300 @kindex j 1-9
21301 @pindex calc-select-part
21302 The @kbd{j 1} through @kbd{j 9} (@code{calc-select-part}) commands
21303 select the @var{n}th sub-formula of the current selection.  They are
21304 like @kbd{j l} (@code{calc-select-less}) except they use counting
21305 rather than the cursor position to decide which sub-formula to select.
21306 For example, if the current selection is @kbd{a + b + c} or
21307 @kbd{f(a, b, c)} or @kbd{[a, b, c]}, then @kbd{j 1} selects @samp{a},
21308 @kbd{j 2} selects @samp{b}, and @kbd{j 3} selects @samp{c}; in each of
21309 these cases, @kbd{j 4} through @kbd{j 9} would be errors.
21311 If there is no current selection, @kbd{j 1} through @kbd{j 9} select
21312 the @var{n}th top-level sub-formula.  (In other words, they act as if
21313 the entire stack entry were selected first.)  To select the @var{n}th
21314 sub-formula where @var{n} is greater than nine, you must instead invoke
21315 @w{@kbd{j 1}} with @var{n} as a numeric prefix argument.@refill
21317 @kindex j n
21318 @kindex j p
21319 @pindex calc-select-next
21320 @pindex calc-select-previous
21321 The @kbd{j n} (@code{calc-select-next}) and @kbd{j p}
21322 (@code{calc-select-previous}) commands change the current selection
21323 to the next or previous sub-formula at the same level.  For example,
21324 if @samp{b} is selected in @w{@samp{2 + a*b*c + x}}, then @kbd{j n}
21325 selects @samp{c}.  Further @kbd{j n} commands would be in error because,
21326 even though there is something to the right of @samp{c} (namely, @samp{x}),
21327 it is not at the same level; in this case, it is not a term of the
21328 same product as @samp{b} and @samp{c}.  However, @kbd{j m} (to select
21329 the whole product @samp{a*b*c} as a term of the sum) followed by
21330 @w{@kbd{j n}} would successfully select the @samp{x}.
21332 Similarly, @kbd{j p} moves the selection from the @samp{b} in this
21333 sample formula to the @samp{a}.  Both commands accept numeric prefix
21334 arguments to move several steps at a time.
21336 It is interesting to compare Calc's selection commands with the
21337 Emacs Info system's commands for navigating through hierarchically
21338 organized documentation.  Calc's @kbd{j n} command is completely
21339 analogous to Info's @kbd{n} command.  Likewise, @kbd{j p} maps to
21340 @kbd{p}, @kbd{j 2} maps to @kbd{2}, and Info's @kbd{u} is like @kbd{j m}.
21341 (Note that @kbd{j u} stands for @code{calc-unselect}, not ``up''.)
21342 The Info @kbd{m} command is somewhat similar to Calc's @kbd{j s} and
21343 @kbd{j l}; in each case, you can jump directly to a sub-component
21344 of the hierarchy simply by pointing to it with the cursor.
21346 @node Displaying Selections, Operating on Selections, Changing Selections, Selecting Subformulas
21347 @subsection Displaying Selections
21349 @noindent
21350 @kindex j d
21351 @pindex calc-show-selections
21352 The @kbd{j d} (@code{calc-show-selections}) command controls how
21353 selected sub-formulas are displayed.  One of the alternatives is
21354 illustrated in the above examples; if we press @kbd{j d} we switch
21355 to the other style in which the selected portion itself is obscured
21356 by @samp{#} signs:
21358 @smallexample
21359 @group
21360            3    ...                  #    ___
21361     (a + b)  . . .            ## # ##  + V c
21362 1*  ...............       1*  ---------------
21363         . . . .                   2 x + 1
21364 @end group
21365 @end smallexample
21367 @node Operating on Selections, Rearranging with Selections, Displaying Selections, Selecting Subformulas
21368 @subsection Operating on Selections
21370 @noindent
21371 Once a selection is made, all Calc commands that manipulate items
21372 on the stack will operate on the selected portions of the items
21373 instead.  (Note that several stack elements may have selections
21374 at once, though there can be only one selection at a time in any
21375 given stack element.)
21377 @kindex j e
21378 @pindex calc-enable-selections
21379 The @kbd{j e} (@code{calc-enable-selections}) command disables the
21380 effect that selections have on Calc commands.  The current selections
21381 still exist, but Calc commands operate on whole stack elements anyway.
21382 This mode can be identified by the fact that the @samp{*} markers on
21383 the line numbers are gone, even though selections are visible.  To
21384 reactivate the selections, press @kbd{j e} again.
21386 To extract a sub-formula as a new formula, simply select the
21387 sub-formula and press @key{RET}.  This normally duplicates the top
21388 stack element; here it duplicates only the selected portion of that
21389 element.
21391 To replace a sub-formula with something different, you can enter the
21392 new value onto the stack and press @key{TAB}.  This normally exchanges
21393 the top two stack elements; here it swaps the value you entered into
21394 the selected portion of the formula, returning the old selected
21395 portion to the top of the stack.
21397 @smallexample
21398 @group
21399            3    ...                    ...                    ___
21400     (a + b)  . . .           17 x y . . .           17 x y + V c
21401 2*  ...............      2*  .............      2:  -------------
21402         . . . .                 . . . .                2 x + 1
21404                                     3                      3
21405 1:  17 x y               1:  (a + b)            1:  (a + b)
21406 @end group
21407 @end smallexample
21409 In this example we select a sub-formula of our original example,
21410 enter a new formula, @key{TAB} it into place, then deselect to see
21411 the complete, edited formula.
21413 If you want to swap whole formulas around even though they contain
21414 selections, just use @kbd{j e} before and after.
21416 @kindex j '
21417 @pindex calc-enter-selection
21418 The @kbd{j '} (@code{calc-enter-selection}) command is another way
21419 to replace a selected sub-formula.  This command does an algebraic
21420 entry just like the regular @kbd{'} key.  When you press @key{RET},
21421 the formula you type replaces the original selection.  You can use
21422 the @samp{$} symbol in the formula to refer to the original
21423 selection.  If there is no selection in the formula under the cursor,
21424 the cursor is used to make a temporary selection for the purposes of
21425 the command.  Thus, to change a term of a formula, all you have to
21426 do is move the Emacs cursor to that term and press @kbd{j '}.
21428 @kindex j `
21429 @pindex calc-edit-selection
21430 The @kbd{j `} (@code{calc-edit-selection}) command is a similar
21431 analogue of the @kbd{`} (@code{calc-edit}) command.  It edits the
21432 selected sub-formula in a separate buffer.  If there is no
21433 selection, it edits the sub-formula indicated by the cursor.
21435 To delete a sub-formula, press @key{DEL}.  This generally replaces
21436 the sub-formula with the constant zero, but in a few suitable contexts
21437 it uses the constant one instead.  The @key{DEL} key automatically
21438 deselects and re-simplifies the entire formula afterwards.  Thus:
21440 @smallexample
21441 @group
21442               ###
21443     17 x y + # #          17 x y         17 # y          17 y
21444 1*  -------------     1:  -------    1*  -------    1:  -------
21445        2 x + 1            2 x + 1        2 x + 1        2 x + 1
21446 @end group
21447 @end smallexample
21449 In this example, we first delete the @samp{sqrt(c)} term; Calc
21450 accomplishes this by replacing @samp{sqrt(c)} with zero and
21451 resimplifying.  We then delete the @kbd{x} in the numerator;
21452 since this is part of a product, Calc replaces it with @samp{1}
21453 and resimplifies.
21455 If you select an element of a vector and press @key{DEL}, that
21456 element is deleted from the vector.  If you delete one side of
21457 an equation or inequality, only the opposite side remains.
21459 @kindex j @key{DEL}
21460 @pindex calc-del-selection
21461 The @kbd{j @key{DEL}} (@code{calc-del-selection}) command is like
21462 @key{DEL} but with the auto-selecting behavior of @kbd{j '} and
21463 @kbd{j `}.  It deletes the selected portion of the formula
21464 indicated by the cursor, or, in the absence of a selection, it
21465 deletes the sub-formula indicated by the cursor position.
21467 @kindex j @key{RET}
21468 @pindex calc-grab-selection
21469 (There is also an auto-selecting @kbd{j @key{RET}} (@code{calc-copy-selection})
21470 command.)
21472 Normal arithmetic operations also apply to sub-formulas.  Here we
21473 select the denominator, press @kbd{5 -} to subtract five from the
21474 denominator, press @kbd{n} to negate the denominator, then
21475 press @kbd{Q} to take the square root.
21477 @smallexample
21478 @group
21479      .. .           .. .           .. .             .. .
21480 1*  .......    1*  .......    1*  .......    1*  ..........
21481     2 x + 1        2 x - 4        4 - 2 x         _________
21482                                                  V 4 - 2 x
21483 @end group
21484 @end smallexample
21486 Certain types of operations on selections are not allowed.  For
21487 example, for an arithmetic function like @kbd{-} no more than one of
21488 the arguments may be a selected sub-formula.  (As the above example
21489 shows, the result of the subtraction is spliced back into the argument
21490 which had the selection; if there were more than one selection involved,
21491 this would not be well-defined.)  If you try to subtract two selections,
21492 the command will abort with an error message.
21494 Operations on sub-formulas sometimes leave the formula as a whole
21495 in an ``un-natural'' state.  Consider negating the @samp{2 x} term
21496 of our sample formula by selecting it and pressing @kbd{n}
21497 (@code{calc-change-sign}).@refill
21499 @smallexample
21500 @group
21501        .. .                .. .
21502 1*  ..........      1*  ...........
21503      .........           ..........
21504     . . . 2 x           . . . -2 x
21505 @end group
21506 @end smallexample
21508 Unselecting the sub-formula reveals that the minus sign, which would
21509 normally have cancelled out with the subtraction automatically, has
21510 not been able to do so because the subtraction was not part of the
21511 selected portion.  Pressing @kbd{=} (@code{calc-evaluate}) or doing
21512 any other mathematical operation on the whole formula will cause it
21513 to be simplified.
21515 @smallexample
21516 @group
21517        17 y                17 y
21518 1:  -----------     1:  ----------
21519      __________          _________
21520     V 4 - -2 x          V 4 + 2 x
21521 @end group
21522 @end smallexample
21524 @node Rearranging with Selections, , Operating on Selections, Selecting Subformulas
21525 @subsection Rearranging Formulas using Selections
21527 @noindent
21528 @kindex j R
21529 @pindex calc-commute-right
21530 The @kbd{j R} (@code{calc-commute-right}) command moves the selected
21531 sub-formula to the right in its surrounding formula.  Generally the
21532 selection is one term of a sum or product; the sum or product is
21533 rearranged according to the commutative laws of algebra.
21535 As with @kbd{j '} and @kbd{j @key{DEL}}, the term under the cursor is used
21536 if there is no selection in the current formula.  All commands described
21537 in this section share this property.  In this example, we place the
21538 cursor on the @samp{a} and type @kbd{j R}, then repeat.
21540 @smallexample
21541 1:  a + b - c          1:  b + a - c          1:  b - c + a
21542 @end smallexample
21544 @noindent
21545 Note that in the final step above, the @samp{a} is switched with
21546 the @samp{c} but the signs are adjusted accordingly.  When moving
21547 terms of sums and products, @kbd{j R} will never change the
21548 mathematical meaning of the formula.
21550 The selected term may also be an element of a vector or an argument
21551 of a function.  The term is exchanged with the one to its right.
21552 In this case, the ``meaning'' of the vector or function may of
21553 course be drastically changed.
21555 @smallexample
21556 1:  [a, b, c]          1:  [b, a, c]          1:  [b, c, a]
21558 1:  f(a, b, c)         1:  f(b, a, c)         1:  f(b, c, a)
21559 @end smallexample
21561 @kindex j L
21562 @pindex calc-commute-left
21563 The @kbd{j L} (@code{calc-commute-left}) command is like @kbd{j R}
21564 except that it swaps the selected term with the one to its left.
21566 With numeric prefix arguments, these commands move the selected
21567 term several steps at a time.  It is an error to try to move a
21568 term left or right past the end of its enclosing formula.
21569 With numeric prefix arguments of zero, these commands move the
21570 selected term as far as possible in the given direction.
21572 @kindex j D
21573 @pindex calc-sel-distribute
21574 The @kbd{j D} (@code{calc-sel-distribute}) command mixes the selected
21575 sum or product into the surrounding formula using the distributive
21576 law.  For example, in @samp{a * (b - c)} with the @samp{b - c}
21577 selected, the result is @samp{a b - a c}.  This also distributes
21578 products or quotients into surrounding powers, and can also do
21579 transformations like @samp{exp(a + b)} to @samp{exp(a) exp(b)},
21580 where @samp{a + b} is the selected term, and @samp{ln(a ^ b)}
21581 to @samp{ln(a) b}, where @samp{a ^ b} is the selected term.
21583 For multiple-term sums or products, @kbd{j D} takes off one term
21584 at a time:  @samp{a * (b + c - d)} goes to @samp{a * (c - d) + a b}
21585 with the @samp{c - d} selected so that you can type @kbd{j D}
21586 repeatedly to expand completely.  The @kbd{j D} command allows a
21587 numeric prefix argument which specifies the maximum number of
21588 times to expand at once; the default is one time only.
21590 @vindex DistribRules
21591 The @kbd{j D} command is implemented using rewrite rules.
21592 @xref{Selections with Rewrite Rules}.  The rules are stored in
21593 the Calc variable @code{DistribRules}.  A convenient way to view
21594 these rules is to use @kbd{s e} (@code{calc-edit-variable}) which
21595 displays and edits the stored value of a variable.  Press @kbd{M-# M-#}
21596 to return from editing mode; be careful not to make any actual changes
21597 or else you will affect the behavior of future @kbd{j D} commands!
21599 To extend @kbd{j D} to handle new cases, just edit @code{DistribRules}
21600 as described above.  You can then use the @kbd{s p} command to save
21601 this variable's value permanently for future Calc sessions.
21602 @xref{Operations on Variables}.
21604 @kindex j M
21605 @pindex calc-sel-merge
21606 @vindex MergeRules
21607 The @kbd{j M} (@code{calc-sel-merge}) command is the complement
21608 of @kbd{j D}; given @samp{a b - a c} with either @samp{a b} or
21609 @samp{a c} selected, the result is @samp{a * (b - c)}.  Once
21610 again, @kbd{j M} can also merge calls to functions like @code{exp}
21611 and @code{ln}; examine the variable @code{MergeRules} to see all
21612 the relevant rules.
21614 @kindex j C
21615 @pindex calc-sel-commute
21616 @vindex CommuteRules
21617 The @kbd{j C} (@code{calc-sel-commute}) command swaps the arguments
21618 of the selected sum, product, or equation.  It always behaves as
21619 if @kbd{j b} mode were in effect, i.e., the sum @samp{a + b + c} is
21620 treated as the nested sums @samp{(a + b) + c} by this command.
21621 If you put the cursor on the first @samp{+}, the result is
21622 @samp{(b + a) + c}; if you put the cursor on the second @samp{+}, the
21623 result is @samp{c + (a + b)} (which the default simplifications
21624 will rearrange to @samp{(c + a) + b}).  The relevant rules are stored
21625 in the variable @code{CommuteRules}.
21627 You may need to turn default simplifications off (with the @kbd{m O}
21628 command) in order to get the full benefit of @kbd{j C}.  For example,
21629 commuting @samp{a - b} produces @samp{-b + a}, but the default
21630 simplifications will ``simplify'' this right back to @samp{a - b} if
21631 you don't turn them off.  The same is true of some of the other
21632 manipulations described in this section.
21634 @kindex j N
21635 @pindex calc-sel-negate
21636 @vindex NegateRules
21637 The @kbd{j N} (@code{calc-sel-negate}) command replaces the selected
21638 term with the negative of that term, then adjusts the surrounding
21639 formula in order to preserve the meaning.  For example, given
21640 @samp{exp(a - b)} where @samp{a - b} is selected, the result is
21641 @samp{1 / exp(b - a)}.  By contrast, selecting a term and using the
21642 regular @kbd{n} (@code{calc-change-sign}) command negates the
21643 term without adjusting the surroundings, thus changing the meaning
21644 of the formula as a whole.  The rules variable is @code{NegateRules}.
21646 @kindex j &
21647 @pindex calc-sel-invert
21648 @vindex InvertRules
21649 The @kbd{j &} (@code{calc-sel-invert}) command is similar to @kbd{j N}
21650 except it takes the reciprocal of the selected term.  For example,
21651 given @samp{a - ln(b)} with @samp{b} selected, the result is
21652 @samp{a + ln(1/b)}.  The rules variable is @code{InvertRules}.
21654 @kindex j E
21655 @pindex calc-sel-jump-equals
21656 @vindex JumpRules
21657 The @kbd{j E} (@code{calc-sel-jump-equals}) command moves the
21658 selected term from one side of an equation to the other.  Given
21659 @samp{a + b = c + d} with @samp{c} selected, the result is
21660 @samp{a + b - c = d}.  This command also works if the selected
21661 term is part of a @samp{*}, @samp{/}, or @samp{^} formula.  The
21662 relevant rules variable is @code{JumpRules}.
21664 @kindex j I
21665 @kindex H j I
21666 @pindex calc-sel-isolate
21667 The @kbd{j I} (@code{calc-sel-isolate}) command isolates the
21668 selected term on its side of an equation.  It uses the @kbd{a S}
21669 (@code{calc-solve-for}) command to solve the equation, and the
21670 Hyperbolic flag affects it in the same way.  @xref{Solving Equations}.
21671 When it applies, @kbd{j I} is often easier to use than @kbd{j E}.
21672 It understands more rules of algebra, and works for inequalities
21673 as well as equations.
21675 @kindex j *
21676 @kindex j /
21677 @pindex calc-sel-mult-both-sides
21678 @pindex calc-sel-div-both-sides
21679 The @kbd{j *} (@code{calc-sel-mult-both-sides}) command prompts for a
21680 formula using algebraic entry, then multiplies both sides of the
21681 selected quotient or equation by that formula.  It simplifies each
21682 side with @kbd{a s} (@code{calc-simplify}) before re-forming the
21683 quotient or equation.  You can suppress this simplification by
21684 providing any numeric prefix argument.  There is also a @kbd{j /}
21685 (@code{calc-sel-div-both-sides}) which is similar to @kbd{j *} but
21686 dividing instead of multiplying by the factor you enter.
21688 As a special feature, if the numerator of the quotient is 1, then
21689 the denominator is expanded at the top level using the distributive
21690 law (i.e., using the @kbd{C-u -1 a x} command).  Suppose the
21691 formula on the stack is @samp{1 / (sqrt(a) + 1)}, and you wish
21692 to eliminate the square root in the denominator by multiplying both
21693 sides by @samp{sqrt(a) - 1}.  Calc's default simplifications would
21694 change the result @samp{(sqrt(a) - 1) / (sqrt(a) - 1) (sqrt(a) + 1)}
21695 right back to the original form by cancellation; Calc expands the
21696 denominator to @samp{sqrt(a) (sqrt(a) - 1) + sqrt(a) - 1} to prevent
21697 this.  (You would now want to use an @kbd{a x} command to expand
21698 the rest of the way, whereupon the denominator would cancel out to
21699 the desired form, @samp{a - 1}.)  When the numerator is not 1, this
21700 initial expansion is not necessary because Calc's default
21701 simplifications will not notice the potential cancellation.
21703 If the selection is an inequality, @kbd{j *} and @kbd{j /} will
21704 accept any factor, but will warn unless they can prove the factor
21705 is either positive or negative.  (In the latter case the direction
21706 of the inequality will be switched appropriately.)  @xref{Declarations},
21707 for ways to inform Calc that a given variable is positive or
21708 negative.  If Calc can't tell for sure what the sign of the factor
21709 will be, it will assume it is positive and display a warning
21710 message.
21712 For selections that are not quotients, equations, or inequalities,
21713 these commands pull out a multiplicative factor:  They divide (or
21714 multiply) by the entered formula, simplify, then multiply (or divide)
21715 back by the formula.
21717 @kindex j +
21718 @kindex j -
21719 @pindex calc-sel-add-both-sides
21720 @pindex calc-sel-sub-both-sides
21721 The @kbd{j +} (@code{calc-sel-add-both-sides}) and @kbd{j -}
21722 (@code{calc-sel-sub-both-sides}) commands analogously add to or
21723 subtract from both sides of an equation or inequality.  For other
21724 types of selections, they extract an additive factor.  A numeric
21725 prefix argument suppresses simplification of the intermediate
21726 results.
21728 @kindex j U
21729 @pindex calc-sel-unpack
21730 The @kbd{j U} (@code{calc-sel-unpack}) command replaces the
21731 selected function call with its argument.  For example, given
21732 @samp{a + sin(x^2)} with @samp{sin(x^2)} selected, the result
21733 is @samp{a + x^2}.  (The @samp{x^2} will remain selected; if you
21734 wanted to change the @code{sin} to @code{cos}, just press @kbd{C}
21735 now to take the cosine of the selected part.)
21737 @kindex j v
21738 @pindex calc-sel-evaluate
21739 The @kbd{j v} (@code{calc-sel-evaluate}) command performs the
21740 normal default simplifications on the selected sub-formula.
21741 These are the simplifications that are normally done automatically
21742 on all results, but which may have been partially inhibited by
21743 previous selection-related operations, or turned off altogether
21744 by the @kbd{m O} command.  This command is just an auto-selecting
21745 version of the @w{@kbd{a v}} command (@pxref{Algebraic Manipulation}).
21747 With a numeric prefix argument of 2, @kbd{C-u 2 j v} applies
21748 the @kbd{a s} (@code{calc-simplify}) command to the selected
21749 sub-formula.  With a prefix argument of 3 or more, e.g., @kbd{C-u j v}
21750 applies the @kbd{a e} (@code{calc-simplify-extended}) command.
21751 @xref{Simplifying Formulas}.  With a negative prefix argument
21752 it simplifies at the top level only, just as with @kbd{a v}.
21753 Here the ``top'' level refers to the top level of the selected
21754 sub-formula.
21756 @kindex j "
21757 @pindex calc-sel-expand-formula
21758 The @kbd{j "} (@code{calc-sel-expand-formula}) command is to @kbd{a "}
21759 (@pxref{Algebraic Manipulation}) what @kbd{j v} is to @kbd{a v}.
21761 You can use the @kbd{j r} (@code{calc-rewrite-selection}) command
21762 to define other algebraic operations on sub-formulas.  @xref{Rewrite Rules}.
21764 @node Algebraic Manipulation, Simplifying Formulas, Selecting Subformulas, Algebra
21765 @section Algebraic Manipulation
21767 @noindent
21768 The commands in this section perform general-purpose algebraic
21769 manipulations.  They work on the whole formula at the top of the
21770 stack (unless, of course, you have made a selection in that
21771 formula).
21773 Many algebra commands prompt for a variable name or formula.  If you
21774 answer the prompt with a blank line, the variable or formula is taken
21775 from top-of-stack, and the normal argument for the command is taken
21776 from the second-to-top stack level.
21778 @kindex a v
21779 @pindex calc-alg-evaluate
21780 The @kbd{a v} (@code{calc-alg-evaluate}) command performs the normal
21781 default simplifications on a formula; for example, @samp{a - -b} is
21782 changed to @samp{a + b}.  These simplifications are normally done
21783 automatically on all Calc results, so this command is useful only if
21784 you have turned default simplifications off with an @kbd{m O}
21785 command.  @xref{Simplification Modes}.
21787 It is often more convenient to type @kbd{=}, which is like @kbd{a v}
21788 but which also substitutes stored values for variables in the formula.
21789 Use @kbd{a v} if you want the variables to ignore their stored values.
21791 If you give a numeric prefix argument of 2 to @kbd{a v}, it simplifies
21792 as if in algebraic simplification mode.  This is equivalent to typing
21793 @kbd{a s}; @pxref{Simplifying Formulas}.  If you give a numeric prefix
21794 of 3 or more, it uses extended simplification mode (@kbd{a e}).
21796 If you give a negative prefix argument @i{-1}, @i{-2}, or @i{-3},
21797 it simplifies in the corresponding mode but only works on the top-level
21798 function call of the formula.  For example, @samp{(2 + 3) * (2 + 3)} will
21799 simplify to @samp{(2 + 3)^2}, without simplifying the sub-formulas
21800 @samp{2 + 3}.  As another example, typing @kbd{V R +} to sum the vector
21801 @samp{[1, 2, 3, 4]} produces the formula @samp{reduce(add, [1, 2, 3, 4])}
21802 in no-simplify mode.  Using @kbd{a v} will evaluate this all the way to
21803 10; using @kbd{C-u - a v} will evaluate it only to @samp{1 + 2 + 3 + 4}.
21804 (@xref{Reducing and Mapping}.)
21806 @tindex evalv
21807 @tindex evalvn
21808 The @kbd{=} command corresponds to the @code{evalv} function, and
21809 the related @kbd{N} command, which is like @kbd{=} but temporarily
21810 disables symbolic (@kbd{m s}) mode during the evaluation, corresponds
21811 to the @code{evalvn} function.  (These commands interpret their prefix
21812 arguments differently than @kbd{a v}; @kbd{=} treats the prefix as
21813 the number of stack elements to evaluate at once, and @kbd{N} treats
21814 it as a temporary different working precision.)
21816 The @code{evalvn} function can take an alternate working precision
21817 as an optional second argument.  This argument can be either an
21818 integer, to set the precision absolutely, or a vector containing
21819 a single integer, to adjust the precision relative to the current
21820 precision.  Note that @code{evalvn} with a larger than current
21821 precision will do the calculation at this higher precision, but the
21822 result will as usual be rounded back down to the current precision
21823 afterward.  For example, @samp{evalvn(pi - 3.1415)} at a precision
21824 of 12 will return @samp{9.265359e-5}; @samp{evalvn(pi - 3.1415, 30)}
21825 will return @samp{9.26535897932e-5} (computing a 25-digit result which
21826 is then rounded down to 12); and @samp{evalvn(pi - 3.1415, [-2])}
21827 will return @samp{9.2654e-5}.
21829 @kindex a "
21830 @pindex calc-expand-formula
21831 The @kbd{a "} (@code{calc-expand-formula}) command expands functions
21832 into their defining formulas wherever possible.  For example,
21833 @samp{deg(x^2)} is changed to @samp{180 x^2 / pi}.  Most functions,
21834 like @code{sin} and @code{gcd}, are not defined by simple formulas
21835 and so are unaffected by this command.  One important class of
21836 functions which @emph{can} be expanded is the user-defined functions
21837 created by the @kbd{Z F} command.  @xref{Algebraic Definitions}.
21838 Other functions which @kbd{a "} can expand include the probability
21839 distribution functions, most of the financial functions, and the
21840 hyperbolic and inverse hyperbolic functions.  A numeric prefix argument
21841 affects @kbd{a "} in the same way as it does @kbd{a v}:  A positive
21842 argument expands all functions in the formula and then simplifies in
21843 various ways; a negative argument expands and simplifies only the
21844 top-level function call.
21846 @kindex a M
21847 @pindex calc-map-equation
21848 @tindex mapeq
21849 The @kbd{a M} (@code{calc-map-equation}) [@code{mapeq}] command applies
21850 a given function or operator to one or more equations.  It is analogous
21851 to @kbd{V M}, which operates on vectors instead of equations.
21852 @pxref{Reducing and Mapping}.  For example, @kbd{a M S} changes
21853 @samp{x = y+1} to @samp{sin(x) = sin(y+1)}, and @kbd{a M +} with
21854 @samp{x = y+1} and @cite{6} on the stack produces @samp{x+6 = y+7}.
21855 With two equations on the stack, @kbd{a M +} would add the lefthand
21856 sides together and the righthand sides together to get the two
21857 respective sides of a new equation.
21859 Mapping also works on inequalities.  Mapping two similar inequalities
21860 produces another inequality of the same type.  Mapping an inequality
21861 with an equation produces an inequality of the same type.  Mapping a
21862 @samp{<=} with a @samp{<} or @samp{!=} (not-equal) produces a @samp{<}.
21863 If inequalities with opposite direction (e.g., @samp{<} and @samp{>})
21864 are mapped, the direction of the second inequality is reversed to
21865 match the first:  Using @kbd{a M +} on @samp{a < b} and @samp{a > 2}
21866 reverses the latter to get @samp{2 < a}, which then allows the
21867 combination @samp{a + 2 < b + a}, which the @kbd{a s} command can
21868 then simplify to get @samp{2 < b}.
21870 Using @kbd{a M *}, @kbd{a M /}, @kbd{a M n}, or @kbd{a M &} to negate
21871 or invert an inequality will reverse the direction of the inequality.
21872 Other adjustments to inequalities are @emph{not} done automatically;
21873 @kbd{a M S} will change @w{@samp{x < y}} to @samp{sin(x) < sin(y)} even
21874 though this is not true for all values of the variables.
21876 @kindex H a M
21877 @tindex mapeqp
21878 With the Hyperbolic flag, @kbd{H a M} [@code{mapeqp}] does a plain
21879 mapping operation without reversing the direction of any inequalities.
21880 Thus, @kbd{H a M &} would change @kbd{x > 2} to @kbd{1/x > 0.5}.
21881 (This change is mathematically incorrect, but perhaps you were
21882 fixing an inequality which was already incorrect.)
21884 @kindex I a M
21885 @tindex mapeqr
21886 With the Inverse flag, @kbd{I a M} [@code{mapeqr}] always reverses
21887 the direction of the inequality.  You might use @kbd{I a M C} to
21888 change @samp{x < y} to @samp{cos(x) > cos(y)} if you know you are
21889 working with small positive angles.
21891 @kindex a b
21892 @pindex calc-substitute
21893 @tindex subst
21894 The @kbd{a b} (@code{calc-substitute}) [@code{subst}] command substitutes
21895 all occurrences
21896 of some variable or sub-expression of an expression with a new
21897 sub-expression.  For example, substituting @samp{sin(x)} with @samp{cos(y)}
21898 in @samp{2 sin(x)^2 + x sin(x) + sin(2 x)} produces
21899 @samp{2 cos(y)^2 + x cos(y) + @w{sin(2 x)}}.
21900 Note that this is a purely structural substitution; the lone @samp{x} and
21901 the @samp{sin(2 x)} stayed the same because they did not look like
21902 @samp{sin(x)}.  @xref{Rewrite Rules}, for a more general method for
21903 doing substitutions.@refill
21905 The @kbd{a b} command normally prompts for two formulas, the old
21906 one and the new one.  If you enter a blank line for the first
21907 prompt, all three arguments are taken from the stack (new, then old,
21908 then target expression).  If you type an old formula but then enter a
21909 blank line for the new one, the new formula is taken from top-of-stack
21910 and the target from second-to-top.  If you answer both prompts, the
21911 target is taken from top-of-stack as usual.
21913 Note that @kbd{a b} has no understanding of commutativity or
21914 associativity.  The pattern @samp{x+y} will not match the formula
21915 @samp{y+x}.  Also, @samp{y+z} will not match inside the formula @samp{x+y+z}
21916 because the @samp{+} operator is left-associative, so the ``deep
21917 structure'' of that formula is @samp{(x+y) + z}.  Use @kbd{d U}
21918 (@code{calc-unformatted-language}) mode to see the true structure of
21919 a formula.  The rewrite rule mechanism, discussed later, does not have
21920 these limitations.
21922 As an algebraic function, @code{subst} takes three arguments:
21923 Target expression, old, new.  Note that @code{subst} is always
21924 evaluated immediately, even if its arguments are variables, so if
21925 you wish to put a call to @code{subst} onto the stack you must
21926 turn the default simplifications off first (with @kbd{m O}).
21928 @node Simplifying Formulas, Polynomials, Algebraic Manipulation, Algebra
21929 @section Simplifying Formulas
21931 @noindent
21932 @kindex a s
21933 @pindex calc-simplify
21934 @tindex simplify
21935 The @kbd{a s} (@code{calc-simplify}) [@code{simplify}] command applies
21936 various algebraic rules to simplify a formula.  This includes rules which
21937 are not part of the default simplifications because they may be too slow
21938 to apply all the time, or may not be desirable all of the time.  For
21939 example, non-adjacent terms of sums are combined, as in @samp{a + b + 2 a}
21940 to @samp{b + 3 a}, and some formulas like @samp{sin(arcsin(x))} are
21941 simplified to @samp{x}.
21943 The sections below describe all the various kinds of algebraic
21944 simplifications Calc provides in full detail.  None of Calc's
21945 simplification commands are designed to pull rabbits out of hats;
21946 they simply apply certain specific rules to put formulas into
21947 less redundant or more pleasing forms.  Serious algebra in Calc
21948 must be done manually, usually with a combination of selections
21949 and rewrite rules.  @xref{Rearranging with Selections}.
21950 @xref{Rewrite Rules}.
21952 @xref{Simplification Modes}, for commands to control what level of
21953 simplification occurs automatically.  Normally only the ``default
21954 simplifications'' occur.
21956 @menu
21957 * Default Simplifications::
21958 * Algebraic Simplifications::
21959 * Unsafe Simplifications::
21960 * Simplification of Units::
21961 @end menu
21963 @node Default Simplifications, Algebraic Simplifications, Simplifying Formulas, Simplifying Formulas
21964 @subsection Default Simplifications
21966 @noindent
21967 @cindex Default simplifications
21968 This section describes the ``default simplifications,'' those which are
21969 normally applied to all results.  For example, if you enter the variable
21970 @cite{x} on the stack twice and push @kbd{+}, Calc's default
21971 simplifications automatically change @cite{x + x} to @cite{2 x}.
21973 The @kbd{m O} command turns off the default simplifications, so that
21974 @cite{x + x} will remain in this form unless you give an explicit
21975 ``simplify'' command like @kbd{=} or @kbd{a v}.  @xref{Algebraic
21976 Manipulation}.  The @kbd{m D} command turns the default simplifications
21977 back on.
21979 The most basic default simplification is the evaluation of functions.
21980 For example, @cite{2 + 3} is evaluated to @cite{5}, and @cite{@t{sqrt}(9)}
21981 is evaluated to @cite{3}.  Evaluation does not occur if the arguments
21982 to a function are somehow of the wrong type (@cite{@t{tan}([2,3,4])},
21983 range (@cite{@t{tan}(90)}), or number (@cite{@t{tan}(3,5)}), or if the
21984 function name is not recognized (@cite{@t{f}(5)}), or if ``symbolic''
21985 mode (@pxref{Symbolic Mode}) prevents evaluation (@cite{@t{sqrt}(2)}).
21987 Calc simplifies (evaluates) the arguments to a function before it
21988 simplifies the function itself.  Thus @cite{@t{sqrt}(5+4)} is
21989 simplified to @cite{@t{sqrt}(9)} before the @code{sqrt} function
21990 itself is applied.  There are very few exceptions to this rule:
21991 @code{quote}, @code{lambda}, and @code{condition} (the @code{::}
21992 operator) do not evaluate their arguments, @code{if} (the @code{? :}
21993 operator) does not evaluate all of its arguments, and @code{evalto}
21994 does not evaluate its lefthand argument.
21996 Most commands apply the default simplifications to all arguments they
21997 take from the stack, perform a particular operation, then simplify
21998 the result before pushing it back on the stack.  In the common special
21999 case of regular arithmetic commands like @kbd{+} and @kbd{Q} [@code{sqrt}],
22000 the arguments are simply popped from the stack and collected into a
22001 suitable function call, which is then simplified (the arguments being
22002 simplified first as part of the process, as described above).
22004 The default simplifications are too numerous to describe completely
22005 here, but this section will describe the ones that apply to the
22006 major arithmetic operators.  This list will be rather technical in
22007 nature, and will probably be interesting to you only if you are
22008 a serious user of Calc's algebra facilities.
22010 @tex
22011 \bigskip
22012 @end tex
22014 As well as the simplifications described here, if you have stored
22015 any rewrite rules in the variable @code{EvalRules} then these rules
22016 will also be applied before any built-in default simplifications.
22017 @xref{Automatic Rewrites}, for details.
22019 @tex
22020 \bigskip
22021 @end tex
22023 And now, on with the default simplifications:
22025 Arithmetic operators like @kbd{+} and @kbd{*} always take two
22026 arguments in Calc's internal form.  Sums and products of three or
22027 more terms are arranged by the associative law of algebra into
22028 a left-associative form for sums, @cite{((a + b) + c) + d}, and
22029 a right-associative form for products, @cite{a * (b * (c * d))}.
22030 Formulas like @cite{(a + b) + (c + d)} are rearranged to
22031 left-associative form, though this rarely matters since Calc's
22032 algebra commands are designed to hide the inner structure of
22033 sums and products as much as possible.  Sums and products in
22034 their proper associative form will be written without parentheses
22035 in the examples below.
22037 Sums and products are @emph{not} rearranged according to the
22038 commutative law (@cite{a + b} to @cite{b + a}) except in a few
22039 special cases described below.  Some algebra programs always
22040 rearrange terms into a canonical order, which enables them to
22041 see that @cite{a b + b a} can be simplified to @cite{2 a b}.
22042 Calc assumes you have put the terms into the order you want
22043 and generally leaves that order alone, with the consequence
22044 that formulas like the above will only be simplified if you
22045 explicitly give the @kbd{a s} command.  @xref{Algebraic
22046 Simplifications}.
22048 Differences @cite{a - b} are treated like sums @cite{a + (-b)}
22049 for purposes of simplification; one of the default simplifications
22050 is to rewrite @cite{a + (-b)} or @cite{(-b) + a}, where @cite{-b}
22051 represents a ``negative-looking'' term, into @cite{a - b} form.
22052 ``Negative-looking'' means negative numbers, negated formulas like
22053 @cite{-x}, and products or quotients in which either term is
22054 negative-looking.
22056 Other simplifications involving negation are @cite{-(-x)} to @cite{x};
22057 @cite{-(a b)} or @cite{-(a/b)} where either @cite{a} or @cite{b} is
22058 negative-looking, simplified by negating that term, or else where
22059 @cite{a} or @cite{b} is any number, by negating that number;
22060 @cite{-(a + b)} to @cite{-a - b}, and @cite{-(b - a)} to @cite{a - b}.
22061 (This, and rewriting @cite{(-b) + a} to @cite{a - b}, are the only
22062 cases where the order of terms in a sum is changed by the default
22063 simplifications.)
22065 The distributive law is used to simplify sums in some cases:
22066 @cite{a x + b x} to @cite{(a + b) x}, where @cite{a} represents
22067 a number or an implicit 1 or @i{-1} (as in @cite{x} or @cite{-x})
22068 and similarly for @cite{b}.  Use the @kbd{a c}, @w{@kbd{a f}}, or
22069 @kbd{j M} commands to merge sums with non-numeric coefficients
22070 using the distributive law.
22072 The distributive law is only used for sums of two terms, or
22073 for adjacent terms in a larger sum.  Thus @cite{a + b + b + c}
22074 is simplified to @cite{a + 2 b + c}, but @cite{a + b + c + b}
22075 is not simplified.  The reason is that comparing all terms of a
22076 sum with one another would require time proportional to the
22077 square of the number of terms; Calc relegates potentially slow
22078 operations like this to commands that have to be invoked
22079 explicitly, like @kbd{a s}.
22081 Finally, @cite{a + 0} and @cite{0 + a} are simplified to @cite{a}.
22082 A consequence of the above rules is that @cite{0 - a} is simplified
22083 to @cite{-a}.
22085 @tex
22086 \bigskip
22087 @end tex
22089 The products @cite{1 a} and @cite{a 1} are simplified to @cite{a};
22090 @cite{(-1) a} and @cite{a (-1)} are simplified to @cite{-a};
22091 @cite{0 a} and @cite{a 0} are simplified to @cite{0}, except that
22092 in matrix mode where @cite{a} is not provably scalar the result
22093 is the generic zero matrix @samp{idn(0)}, and that if @cite{a} is
22094 infinite the result is @samp{nan}.
22096 Also, @cite{(-a) b} and @cite{a (-b)} are simplified to @cite{-(a b)},
22097 where this occurs for negated formulas but not for regular negative
22098 numbers.
22100 Products are commuted only to move numbers to the front:
22101 @cite{a b 2} is commuted to @cite{2 a b}.
22103 The product @cite{a (b + c)} is distributed over the sum only if
22104 @cite{a} and at least one of @cite{b} and @cite{c} are numbers:
22105 @cite{2 (x + 3)} goes to @cite{2 x + 6}.  The formula
22106 @cite{(-a) (b - c)}, where @cite{-a} is a negative number, is
22107 rewritten to @cite{a (c - b)}.
22109 The distributive law of products and powers is used for adjacent
22110 terms of the product: @cite{x^a x^b} goes to @c{$x^{a+b}$}
22111 @cite{x^(a+b)}
22112 where @cite{a} is a number, or an implicit 1 (as in @cite{x}),
22113 or the implicit one-half of @cite{@t{sqrt}(x)}, and similarly for
22114 @cite{b}.  The result is written using @samp{sqrt} or @samp{1/sqrt}
22115 if the sum of the powers is @cite{1/2} or @cite{-1/2}, respectively.
22116 If the sum of the powers is zero, the product is simplified to
22117 @cite{1} or to @samp{idn(1)} if matrix mode is enabled.
22119 The product of a negative power times anything but another negative
22120 power is changed to use division:  @c{$x^{-2} y$}
22121 @cite{x^(-2) y} goes to @cite{y / x^2} unless matrix mode is
22122 in effect and neither @cite{x} nor @cite{y} are scalar (in which
22123 case it is considered unsafe to rearrange the order of the terms).
22125 Finally, @cite{a (b/c)} is rewritten to @cite{(a b)/c}, and also
22126 @cite{(a/b) c} is changed to @cite{(a c)/b} unless in matrix mode.
22128 @tex
22129 \bigskip
22130 @end tex
22132 Simplifications for quotients are analogous to those for products.
22133 The quotient @cite{0 / x} is simplified to @cite{0}, with the same
22134 exceptions that were noted for @cite{0 x}.  Likewise, @cite{x / 1}
22135 and @cite{x / (-1)} are simplified to @cite{x} and @cite{-x},
22136 respectively.
22138 The quotient @cite{x / 0} is left unsimplified or changed to an
22139 infinite quantity, as directed by the current infinite mode.
22140 @xref{Infinite Mode}.
22142 The expression @c{$a / b^{-c}$}
22143 @cite{a / b^(-c)} is changed to @cite{a b^c},
22144 where @cite{-c} is any negative-looking power.  Also, @cite{1 / b^c}
22145 is changed to @c{$b^{-c}$}
22146 @cite{b^(-c)} for any power @cite{c}.
22148 Also, @cite{(-a) / b} and @cite{a / (-b)} go to @cite{-(a/b)};
22149 @cite{(a/b) / c} goes to @cite{a / (b c)}; and @cite{a / (b/c)}
22150 goes to @cite{(a c) / b} unless matrix mode prevents this
22151 rearrangement.  Similarly, @cite{a / (b:c)} is simplified to
22152 @cite{(c:b) a} for any fraction @cite{b:c}.
22154 The distributive law is applied to @cite{(a + b) / c} only if
22155 @cite{c} and at least one of @cite{a} and @cite{b} are numbers.
22156 Quotients of powers and square roots are distributed just as
22157 described for multiplication.
22159 Quotients of products cancel only in the leading terms of the
22160 numerator and denominator.  In other words, @cite{a x b / a y b}
22161 is cancelled to @cite{x b / y b} but not to @cite{x / y}.  Once
22162 again this is because full cancellation can be slow; use @kbd{a s}
22163 to cancel all terms of the quotient.
22165 Quotients of negative-looking values are simplified according
22166 to @cite{(-a) / (-b)} to @cite{a / b}, @cite{(-a) / (b - c)}
22167 to @cite{a / (c - b)}, and @cite{(a - b) / (-c)} to @cite{(b - a) / c}.
22169 @tex
22170 \bigskip
22171 @end tex
22173 The formula @cite{x^0} is simplified to @cite{1}, or to @samp{idn(1)}
22174 in matrix mode.  The formula @cite{0^x} is simplified to @cite{0}
22175 unless @cite{x} is a negative number or complex number, in which
22176 case the result is an infinity or an unsimplified formula according
22177 to the current infinite mode.  Note that @cite{0^0} is an
22178 indeterminate form, as evidenced by the fact that the simplifications
22179 for @cite{x^0} and @cite{0^x} conflict when @cite{x=0}.
22181 Powers of products or quotients @cite{(a b)^c}, @cite{(a/b)^c}
22182 are distributed to @cite{a^c b^c}, @cite{a^c / b^c} only if @cite{c}
22183 is an integer, or if either @cite{a} or @cite{b} are nonnegative
22184 real numbers.  Powers of powers @cite{(a^b)^c} are simplified to
22185 @c{$a^{b c}$}
22186 @cite{a^(b c)} only when @cite{c} is an integer and @cite{b c} also
22187 evaluates to an integer.  Without these restrictions these simplifications
22188 would not be safe because of problems with principal values.
22189 (In other words, @c{$((-3)^{1/2})^2$}
22190 @cite{((-3)^1:2)^2} is safe to simplify, but
22191 @c{$((-3)^2)^{1/2}$}
22192 @cite{((-3)^2)^1:2} is not.)  @xref{Declarations}, for ways to inform
22193 Calc that your variables satisfy these requirements.
22195 As a special case of this rule, @cite{@t{sqrt}(x)^n} is simplified to
22196 @c{$x^{n/2}$}
22197 @cite{x^(n/2)} only for even integers @cite{n}.
22199 If @cite{a} is known to be real, @cite{b} is an even integer, and
22200 @cite{c} is a half- or quarter-integer, then @cite{(a^b)^c} is
22201 simplified to @c{$@t{abs}(a^{b c})$}
22202 @cite{@t{abs}(a^(b c))}.
22204 Also, @cite{(-a)^b} is simplified to @cite{a^b} if @cite{b} is an
22205 even integer, or to @cite{-(a^b)} if @cite{b} is an odd integer,
22206 for any negative-looking expression @cite{-a}.
22208 Square roots @cite{@t{sqrt}(x)} generally act like one-half powers
22209 @c{$x^{1:2}$}
22210 @cite{x^1:2} for the purposes of the above-listed simplifications.
22212 Also, note that @c{$1 / x^{1:2}$}
22213 @cite{1 / x^1:2} is changed to @c{$x^{-1:2}$}
22214 @cite{x^(-1:2)},
22215 but @cite{1 / @t{sqrt}(x)} is left alone.
22217 @tex
22218 \bigskip
22219 @end tex
22221 Generic identity matrices (@pxref{Matrix Mode}) are simplified by the
22222 following rules:  @cite{@t{idn}(a) + b} to @cite{a + b} if @cite{b}
22223 is provably scalar, or expanded out if @cite{b} is a matrix;
22224 @cite{@t{idn}(a) + @t{idn}(b)} to @cite{@t{idn}(a + b)};
22225 @cite{-@t{idn}(a)} to @cite{@t{idn}(-a)}; @cite{a @t{idn}(b)} to
22226 @cite{@t{idn}(a b)} if @cite{a} is provably scalar, or to @cite{a b}
22227 if @cite{a} is provably non-scalar; @cite{@t{idn}(a) @t{idn}(b)}
22228 to @cite{@t{idn}(a b)}; analogous simplifications for quotients
22229 involving @code{idn}; and @cite{@t{idn}(a)^n} to @cite{@t{idn}(a^n)}
22230 where @cite{n} is an integer.
22232 @tex
22233 \bigskip
22234 @end tex
22236 The @code{floor} function and other integer truncation functions
22237 vanish if the argument is provably integer-valued, so that
22238 @cite{@t{floor}(@t{round}(x))} simplifies to @cite{@t{round}(x)}.
22239 Also, combinations of @code{float}, @code{floor} and its friends,
22240 and @code{ffloor} and its friends, are simplified in appropriate
22241 ways.  @xref{Integer Truncation}.
22243 The expression @cite{@t{abs}(-x)} changes to @cite{@t{abs}(x)}.
22244 The expression @cite{@t{abs}(@t{abs}(x))} changes to @cite{@t{abs}(x)};
22245 in fact, @cite{@t{abs}(x)} changes to @cite{x} or @cite{-x} if @cite{x}
22246 is provably nonnegative or nonpositive (@pxref{Declarations}).
22248 While most functions do not recognize the variable @code{i} as an
22249 imaginary number, the @code{arg} function does handle the two cases
22250 @cite{@t{arg}(@t{i})} and @cite{@t{arg}(-@t{i})} just for convenience.
22252 The expression @cite{@t{conj}(@t{conj}(x))} simplifies to @cite{x}.
22253 Various other expressions involving @code{conj}, @code{re}, and
22254 @code{im} are simplified, especially if some of the arguments are
22255 provably real or involve the constant @code{i}.  For example,
22256 @cite{@t{conj}(a + b i)} is changed to @cite{@t{conj}(a) - @t{conj}(b) i},
22257 or to @cite{a - b i} if @cite{a} and @cite{b} are known to be real.
22259 Functions like @code{sin} and @code{arctan} generally don't have
22260 any default simplifications beyond simply evaluating the functions
22261 for suitable numeric arguments and infinity.  The @kbd{a s} command
22262 described in the next section does provide some simplifications for
22263 these functions, though.
22265 One important simplification that does occur is that @cite{@t{ln}(@t{e})}
22266 is simplified to 1, and @cite{@t{ln}(@t{e}^x)} is simplified to @cite{x}
22267 for any @cite{x}.  This occurs even if you have stored a different
22268 value in the Calc variable @samp{e}; but this would be a bad idea
22269 in any case if you were also using natural logarithms!
22271 Among the logical functions, @t{(@var{a} <= @var{b})} changes to
22272 @t{@var{a} > @var{b}} and so on.  Equations and inequalities where both sides
22273 are either negative-looking or zero are simplified by negating both sides
22274 and reversing the inequality.  While it might seem reasonable to simplify
22275 @cite{!!x} to @cite{x}, this would not be valid in general because
22276 @cite{!!2} is 1, not 2.
22278 Most other Calc functions have few if any default simplifications
22279 defined, aside of course from evaluation when the arguments are
22280 suitable numbers.
22282 @node Algebraic Simplifications, Unsafe Simplifications, Default Simplifications, Simplifying Formulas
22283 @subsection Algebraic Simplifications
22285 @noindent
22286 @cindex Algebraic simplifications
22287 The @kbd{a s} command makes simplifications that may be too slow to
22288 do all the time, or that may not be desirable all of the time.
22289 If you find these simplifications are worthwhile, you can type
22290 @kbd{m A} to have Calc apply them automatically.
22292 This section describes all simplifications that are performed by
22293 the @kbd{a s} command.  Note that these occur in addition to the
22294 default simplifications; even if the default simplifications have
22295 been turned off by an @kbd{m O} command, @kbd{a s} will turn them
22296 back on temporarily while it simplifies the formula.
22298 There is a variable, @code{AlgSimpRules}, in which you can put rewrites
22299 to be applied by @kbd{a s}.  Its use is analogous to @code{EvalRules},
22300 but without the special restrictions.  Basically, the simplifier does
22301 @samp{@w{a r} AlgSimpRules} with an infinite repeat count on the whole
22302 expression being simplified, then it traverses the expression applying
22303 the built-in rules described below.  If the result is different from
22304 the original expression, the process repeats with the default
22305 simplifications (including @code{EvalRules}), then @code{AlgSimpRules},
22306 then the built-in simplifications, and so on.
22308 @tex
22309 \bigskip
22310 @end tex
22312 Sums are simplified in two ways.  Constant terms are commuted to the
22313 end of the sum, so that @cite{a + 2 + b} changes to @cite{a + b + 2}.
22314 The only exception is that a constant will not be commuted away
22315 from the first position of a difference, i.e., @cite{2 - x} is not
22316 commuted to @cite{-x + 2}.
22318 Also, terms of sums are combined by the distributive law, as in
22319 @cite{x + y + 2 x} to @cite{y + 3 x}.  This always occurs for
22320 adjacent terms, but @kbd{a s} compares all pairs of terms including
22321 non-adjacent ones.
22323 @tex
22324 \bigskip
22325 @end tex
22327 Products are sorted into a canonical order using the commutative
22328 law.  For example, @cite{b c a} is commuted to @cite{a b c}.
22329 This allows easier comparison of products; for example, the default
22330 simplifications will not change @cite{x y + y x} to @cite{2 x y},
22331 but @kbd{a s} will; it first rewrites the sum to @cite{x y + x y},
22332 and then the default simplifications are able to recognize a sum
22333 of identical terms.
22335 The canonical ordering used to sort terms of products has the
22336 property that real-valued numbers, interval forms and infinities
22337 come first, and are sorted into increasing order.  The @kbd{V S}
22338 command uses the same ordering when sorting a vector.
22340 Sorting of terms of products is inhibited when matrix mode is
22341 turned on; in this case, Calc will never exchange the order of
22342 two terms unless it knows at least one of the terms is a scalar.
22344 Products of powers are distributed by comparing all pairs of
22345 terms, using the same method that the default simplifications
22346 use for adjacent terms of products.
22348 Even though sums are not sorted, the commutative law is still
22349 taken into account when terms of a product are being compared.
22350 Thus @cite{(x + y) (y + x)} will be simplified to @cite{(x + y)^2}.
22351 A subtle point is that @cite{(x - y) (y - x)} will @emph{not}
22352 be simplified to @cite{-(x - y)^2}; Calc does not notice that
22353 one term can be written as a constant times the other, even if
22354 that constant is @i{-1}.
22356 A fraction times any expression, @cite{(a:b) x}, is changed to
22357 a quotient involving integers:  @cite{a x / b}.  This is not
22358 done for floating-point numbers like @cite{0.5}, however.  This
22359 is one reason why you may find it convenient to turn Fraction mode
22360 on while doing algebra; @pxref{Fraction Mode}.
22362 @tex
22363 \bigskip
22364 @end tex
22366 Quotients are simplified by comparing all terms in the numerator
22367 with all terms in the denominator for possible cancellation using
22368 the distributive law.  For example, @cite{a x^2 b / c x^3 d} will
22369 cancel @cite{x^2} from both sides to get @cite{a b / c x d}.
22370 (The terms in the denominator will then be rearranged to @cite{c d x}
22371 as described above.)  If there is any common integer or fractional
22372 factor in the numerator and denominator, it is cancelled out;
22373 for example, @cite{(4 x + 6) / 8 x} simplifies to @cite{(2 x + 3) / 4 x}.
22375 Non-constant common factors are not found even by @kbd{a s}.  To
22376 cancel the factor @cite{a} in @cite{(a x + a) / a^2} you could first
22377 use @kbd{j M} on the product @cite{a x} to Merge the numerator to
22378 @cite{a (1+x)}, which can then be simplified successfully.
22380 @tex
22381 \bigskip
22382 @end tex
22384 Integer powers of the variable @code{i} are simplified according
22385 to the identity @cite{i^2 = -1}.  If you store a new value other
22386 than the complex number @cite{(0,1)} in @code{i}, this simplification
22387 will no longer occur.  This is done by @kbd{a s} instead of by default
22388 in case someone (unwisely) uses the name @code{i} for a variable
22389 unrelated to complex numbers; it would be unfortunate if Calc
22390 quietly and automatically changed this formula for reasons the
22391 user might not have been thinking of.
22393 Square roots of integer or rational arguments are simplified in
22394 several ways.  (Note that these will be left unevaluated only in
22395 Symbolic mode.)  First, square integer or rational factors are
22396 pulled out so that @cite{@t{sqrt}(8)} is rewritten as
22397 @c{$2\,\t{sqrt}(2)$}
22398 @cite{2 sqrt(2)}.  Conceptually speaking this implies factoring
22399 the argument into primes and moving pairs of primes out of the
22400 square root, but for reasons of efficiency Calc only looks for
22401 primes up to 29.
22403 Square roots in the denominator of a quotient are moved to the
22404 numerator:  @cite{1 / @t{sqrt}(3)} changes to @cite{@t{sqrt}(3) / 3}.
22405 The same effect occurs for the square root of a fraction:
22406 @cite{@t{sqrt}(2:3)} changes to @cite{@t{sqrt}(6) / 3}.
22408 @tex
22409 \bigskip
22410 @end tex
22412 The @code{%} (modulo) operator is simplified in several ways
22413 when the modulus @cite{M} is a positive real number.  First, if
22414 the argument is of the form @cite{x + n} for some real number
22415 @cite{n}, then @cite{n} is itself reduced modulo @cite{M}.  For
22416 example, @samp{(x - 23) % 10} is simplified to @samp{(x + 7) % 10}.
22418 If the argument is multiplied by a constant, and this constant
22419 has a common integer divisor with the modulus, then this factor is
22420 cancelled out.  For example, @samp{12 x % 15} is changed to
22421 @samp{3 (4 x % 5)} by factoring out 3.  Also, @samp{(12 x + 1) % 15}
22422 is changed to @samp{3 ((4 x + 1:3) % 5)}.  While these forms may
22423 not seem ``simpler,'' they allow Calc to discover useful information
22424 about modulo forms in the presence of declarations.
22426 If the modulus is 1, then Calc can use @code{int} declarations to
22427 evaluate the expression.  For example, the idiom @samp{x % 2} is
22428 often used to check whether a number is odd or even.  As described
22429 above, @w{@samp{2 n % 2}} and @samp{(2 n + 1) % 2} are simplified to
22430 @samp{2 (n % 1)} and @samp{2 ((n + 1:2) % 1)}, respectively; Calc
22431 can simplify these to 0 and 1 (respectively) if @code{n} has been
22432 declared to be an integer.
22434 @tex
22435 \bigskip
22436 @end tex
22438 Trigonometric functions are simplified in several ways.  First,
22439 @cite{@t{sin}(@t{arcsin}(x))} is simplified to @cite{x}, and
22440 similarly for @code{cos} and @code{tan}.  If the argument to
22441 @code{sin} is negative-looking, it is simplified to @cite{-@t{sin}(x)},
22442 and similarly for @code{cos} and @code{tan}.  Finally, certain
22443 special values of the argument are recognized;
22444 @pxref{Trigonometric and Hyperbolic Functions}.
22446 Trigonometric functions of inverses of different trigonometric
22447 functions can also be simplified, as in @cite{@t{sin}(@t{arccos}(x))}
22448 to @cite{@t{sqrt}(1 - x^2)}.
22450 Hyperbolic functions of their inverses and of negative-looking
22451 arguments are also handled, as are exponentials of inverse
22452 hyperbolic functions.
22454 No simplifications for inverse trigonometric and hyperbolic
22455 functions are known, except for negative arguments of @code{arcsin},
22456 @code{arctan}, @code{arcsinh}, and @code{arctanh}.  Note that
22457 @cite{@t{arcsin}(@t{sin}(x))} can @emph{not} safely change to
22458 @cite{x}, since this only correct within an integer multiple
22459 of @c{$2 \pi$}
22460 @cite{2 pi} radians or 360 degrees.  However,
22461 @cite{@t{arcsinh}(@t{sinh}(x))} is simplified to @cite{x} if
22462 @cite{x} is known to be real.
22464 Several simplifications that apply to logarithms and exponentials
22465 are that @cite{@t{exp}(@t{ln}(x))}, @c{$@t{e}^{\ln(x)}$}
22466 @cite{e^@t{ln}(x)}, and
22467 @c{$10^{{\rm log10}(x)}$}
22468 @cite{10^@t{log10}(x)} all reduce to @cite{x}.
22469 Also, @cite{@t{ln}(@t{exp}(x))}, etc., can reduce to @cite{x} if
22470 @cite{x} is provably real.  The form @cite{@t{exp}(x)^y} is simplified
22471 to @cite{@t{exp}(x y)}.  If @cite{x} is a suitable multiple of @c{$\pi i$}
22472 @cite{pi i}
22473 (as described above for the trigonometric functions), then @cite{@t{exp}(x)}
22474 or @cite{e^x} will be expanded.  Finally, @cite{@t{ln}(x)} is simplified
22475 to a form involving @code{pi} and @code{i} where @cite{x} is provably
22476 negative, positive imaginary, or negative imaginary.
22478 The error functions @code{erf} and @code{erfc} are simplified when
22479 their arguments are negative-looking or are calls to the @code{conj}
22480 function.
22482 @tex
22483 \bigskip
22484 @end tex
22486 Equations and inequalities are simplified by cancelling factors
22487 of products, quotients, or sums on both sides.  Inequalities
22488 change sign if a negative multiplicative factor is cancelled.
22489 Non-constant multiplicative factors as in @cite{a b = a c} are
22490 cancelled from equations only if they are provably nonzero (generally
22491 because they were declared so; @pxref{Declarations}).  Factors
22492 are cancelled from inequalities only if they are nonzero and their
22493 sign is known.
22495 Simplification also replaces an equation or inequality with
22496 1 or 0 (``true'' or ``false'') if it can through the use of
22497 declarations.  If @cite{x} is declared to be an integer greater
22498 than 5, then @cite{x < 3}, @cite{x = 3}, and @cite{x = 7.5} are
22499 all simplified to 0, but @cite{x > 3} is simplified to 1.
22500 By a similar analysis, @cite{abs(x) >= 0} is simplified to 1,
22501 as is @cite{x^2 >= 0} if @cite{x} is known to be real.
22503 @node Unsafe Simplifications, Simplification of Units, Algebraic Simplifications, Simplifying Formulas
22504 @subsection ``Unsafe'' Simplifications
22506 @noindent
22507 @cindex Unsafe simplifications
22508 @cindex Extended simplification
22509 @kindex a e
22510 @pindex calc-simplify-extended
22511 @ignore
22512 @mindex esimpl@idots
22513 @end ignore
22514 @tindex esimplify
22515 The @kbd{a e} (@code{calc-simplify-extended}) [@code{esimplify}] command
22516 is like @kbd{a s}
22517 except that it applies some additional simplifications which are not
22518 ``safe'' in all cases.  Use this only if you know the values in your
22519 formula lie in the restricted ranges for which these simplifications
22520 are valid.  The symbolic integrator uses @kbd{a e};
22521 one effect of this is that the integrator's results must be used with
22522 caution.  Where an integral table will often attach conditions like
22523 ``for positive @cite{a} only,'' Calc (like most other symbolic
22524 integration programs) will simply produce an unqualified result.@refill
22526 Because @kbd{a e}'s simplifications are unsafe, it is sometimes better
22527 to type @kbd{C-u -3 a v}, which does extended simplification only
22528 on the top level of the formula without affecting the sub-formulas.
22529 In fact, @kbd{C-u -3 j v} allows you to target extended simplification
22530 to any specific part of a formula.
22532 The variable @code{ExtSimpRules} contains rewrites to be applied by
22533 the @kbd{a e} command.  These are applied in addition to
22534 @code{EvalRules} and @code{AlgSimpRules}.  (The @kbd{a r AlgSimpRules}
22535 step described above is simply followed by an @kbd{a r ExtSimpRules} step.)
22537 Following is a complete list of ``unsafe'' simplifications performed
22538 by @kbd{a e}.
22540 @tex
22541 \bigskip
22542 @end tex
22544 Inverse trigonometric or hyperbolic functions, called with their
22545 corresponding non-inverse functions as arguments, are simplified
22546 by @kbd{a e}.  For example, @cite{@t{arcsin}(@t{sin}(x))} changes
22547 to @cite{x}.  Also, @cite{@t{arcsin}(@t{cos}(x))} and
22548 @cite{@t{arccos}(@t{sin}(x))} both change to @cite{@t{pi}/2 - x}.
22549 These simplifications are unsafe because they are valid only for
22550 values of @cite{x} in a certain range; outside that range, values
22551 are folded down to the 360-degree range that the inverse trigonometric
22552 functions always produce.
22554 Powers of powers @cite{(x^a)^b} are simplified to @c{$x^{a b}$}
22555 @cite{x^(a b)}
22556 for all @cite{a} and @cite{b}.  These results will be valid only
22557 in a restricted range of @cite{x}; for example, in @c{$(x^2)^{1:2}$}
22558 @cite{(x^2)^1:2}
22559 the powers cancel to get @cite{x}, which is valid for positive values
22560 of @cite{x} but not for negative or complex values.
22562 Similarly, @cite{@t{sqrt}(x^a)} and @cite{@t{sqrt}(x)^a} are both
22563 simplified (possibly unsafely) to @c{$x^{a/2}$}
22564 @cite{x^(a/2)}.
22566 Forms like @cite{@t{sqrt}(1 - @t{sin}(x)^2)} are simplified to, e.g.,
22567 @cite{@t{cos}(x)}.  Calc has identities of this sort for @code{sin},
22568 @code{cos}, @code{tan}, @code{sinh}, and @code{cosh}.
22570 Arguments of square roots are partially factored to look for
22571 squared terms that can be extracted.  For example,
22572 @cite{@t{sqrt}(a^2 b^3 + a^3 b^2)} simplifies to @cite{a b @t{sqrt}(a+b)}.
22574 The simplifications of @cite{@t{ln}(@t{exp}(x))}, @cite{@t{ln}(@t{e}^x)},
22575 and @cite{@t{log10}(10^x)} to @cite{x} are also unsafe because
22576 of problems with principal values (although these simplifications
22577 are safe if @cite{x} is known to be real).
22579 Common factors are cancelled from products on both sides of an
22580 equation, even if those factors may be zero:  @cite{a x / b x}
22581 to @cite{a / b}.  Such factors are never cancelled from
22582 inequalities:  Even @kbd{a e} is not bold enough to reduce
22583 @cite{a x < b x} to @cite{a < b} (or @cite{a > b}, depending
22584 on whether you believe @cite{x} is positive or negative).
22585 The @kbd{a M /} command can be used to divide a factor out of
22586 both sides of an inequality.
22588 @node Simplification of Units, , Unsafe Simplifications, Simplifying Formulas
22589 @subsection Simplification of Units
22591 @noindent
22592 The simplifications described in this section are applied by the
22593 @kbd{u s} (@code{calc-simplify-units}) command.  These are in addition
22594 to the regular @kbd{a s} (but not @kbd{a e}) simplifications described
22595 earlier.  @xref{Basic Operations on Units}.
22597 The variable @code{UnitSimpRules} contains rewrites to be applied by
22598 the @kbd{u s} command.  These are applied in addition to @code{EvalRules}
22599 and @code{AlgSimpRules}.
22601 Scalar mode is automatically put into effect when simplifying units.
22602 @xref{Matrix Mode}.
22604 Sums @cite{a + b} involving units are simplified by extracting the
22605 units of @cite{a} as if by the @kbd{u x} command (call the result
22606 @cite{u_a}), then simplifying the expression @cite{b / u_a}
22607 using @kbd{u b} and @kbd{u s}.  If the result has units then the sum
22608 is inconsistent and is left alone.  Otherwise, it is rewritten
22609 in terms of the units @cite{u_a}.
22611 If units auto-ranging mode is enabled, products or quotients in
22612 which the first argument is a number which is out of range for the
22613 leading unit are modified accordingly.
22615 When cancelling and combining units in products and quotients,
22616 Calc accounts for unit names that differ only in the prefix letter.
22617 For example, @samp{2 km m} is simplified to @samp{2000 m^2}.
22618 However, compatible but different units like @code{ft} and @code{in}
22619 are not combined in this way.
22621 Quotients @cite{a / b} are simplified in three additional ways.  First,
22622 if @cite{b} is a number or a product beginning with a number, Calc
22623 computes the reciprocal of this number and moves it to the numerator.
22625 Second, for each pair of unit names from the numerator and denominator
22626 of a quotient, if the units are compatible (e.g., they are both
22627 units of area) then they are replaced by the ratio between those
22628 units.  For example, in @samp{3 s in N / kg cm} the units
22629 @samp{in / cm} will be replaced by @cite{2.54}.
22631 Third, if the units in the quotient exactly cancel out, so that
22632 a @kbd{u b} command on the quotient would produce a dimensionless
22633 number for an answer, then the quotient simplifies to that number.
22635 For powers and square roots, the ``unsafe'' simplifications
22636 @cite{(a b)^c} to @cite{a^c b^c}, @cite{(a/b)^c} to @cite{a^c / b^c},
22637 and @cite{(a^b)^c} to @c{$a^{b c}$}
22638 @cite{a^(b c)} are done if the powers are
22639 real numbers.  (These are safe in the context of units because
22640 all numbers involved can reasonably be assumed to be real.)
22642 Also, if a unit name is raised to a fractional power, and the
22643 base units in that unit name all occur to powers which are a
22644 multiple of the denominator of the power, then the unit name
22645 is expanded out into its base units, which can then be simplified
22646 according to the previous paragraph.  For example, @samp{acre^1.5}
22647 is simplified by noting that @cite{1.5 = 3:2}, that @samp{acre}
22648 is defined in terms of @samp{m^2}, and that the 2 in the power of
22649 @code{m} is a multiple of 2 in @cite{3:2}.  Thus, @code{acre^1.5} is
22650 replaced by approximately @c{$(4046 m^2)^{1.5}$}
22651 @cite{(4046 m^2)^1.5}, which is then
22652 changed to @c{$4046^{1.5} \, (m^2)^{1.5}$}
22653 @cite{4046^1.5 (m^2)^1.5}, then to @cite{257440 m^3}.
22655 The functions @code{float}, @code{frac}, @code{clean}, @code{abs},
22656 as well as @code{floor} and the other integer truncation functions,
22657 applied to unit names or products or quotients involving units, are
22658 simplified.  For example, @samp{round(1.6 in)} is changed to
22659 @samp{round(1.6) round(in)}; the lefthand term evaluates to 2,
22660 and the righthand term simplifies to @code{in}.
22662 The functions @code{sin}, @code{cos}, and @code{tan} with arguments
22663 that have angular units like @code{rad} or @code{arcmin} are
22664 simplified by converting to base units (radians), then evaluating
22665 with the angular mode temporarily set to radians.
22667 @node Polynomials, Calculus, Simplifying Formulas, Algebra
22668 @section Polynomials
22670 A @dfn{polynomial} is a sum of terms which are coefficients times
22671 various powers of a ``base'' variable.  For example, @cite{2 x^2 + 3 x - 4}
22672 is a polynomial in @cite{x}.  Some formulas can be considered
22673 polynomials in several different variables:  @cite{1 + 2 x + 3 y + 4 x y^2}
22674 is a polynomial in both @cite{x} and @cite{y}.  Polynomial coefficients
22675 are often numbers, but they may in general be any formulas not
22676 involving the base variable.
22678 @kindex a f
22679 @pindex calc-factor
22680 @tindex factor
22681 The @kbd{a f} (@code{calc-factor}) [@code{factor}] command factors a
22682 polynomial into a product of terms.  For example, the polynomial
22683 @cite{x^3 + 2 x^2 + x} is factored into @samp{x*(x+1)^2}.  As another
22684 example, @cite{a c + b d + b c + a d} is factored into the product
22685 @cite{(a + b) (c + d)}.
22687 Calc currently has three algorithms for factoring.  Formulas which are
22688 linear in several variables, such as the second example above, are
22689 merged according to the distributive law.  Formulas which are
22690 polynomials in a single variable, with constant integer or fractional
22691 coefficients, are factored into irreducible linear and/or quadratic
22692 terms.  The first example above factors into three linear terms
22693 (@cite{x}, @cite{x+1}, and @cite{x+1} again).  Finally, formulas
22694 which do not fit the above criteria are handled by the algebraic
22695 rewrite mechanism.
22697 Calc's polynomial factorization algorithm works by using the general
22698 root-finding command (@w{@kbd{a P}}) to solve for the roots of the
22699 polynomial.  It then looks for roots which are rational numbers
22700 or complex-conjugate pairs, and converts these into linear and
22701 quadratic terms, respectively.  Because it uses floating-point
22702 arithmetic, it may be unable to find terms that involve large
22703 integers (whose number of digits approaches the current precision).
22704 Also, irreducible factors of degree higher than quadratic are not
22705 found, and polynomials in more than one variable are not treated.
22706 (A more robust factorization algorithm may be included in a future
22707 version of Calc.)
22709 @vindex FactorRules
22710 @ignore
22711 @starindex
22712 @end ignore
22713 @tindex thecoefs
22714 @ignore
22715 @starindex
22716 @end ignore
22717 @ignore
22718 @mindex @idots
22719 @end ignore
22720 @tindex thefactors
22721 The rewrite-based factorization method uses rules stored in the variable
22722 @code{FactorRules}.  @xref{Rewrite Rules}, for a discussion of the
22723 operation of rewrite rules.  The default @code{FactorRules} are able
22724 to factor quadratic forms symbolically into two linear terms,
22725 @cite{(a x + b) (c x + d)}.  You can edit these rules to include other
22726 cases if you wish.  To use the rules, Calc builds the formula
22727 @samp{thecoefs(x, [a, b, c, ...])} where @code{x} is the polynomial
22728 base variable and @code{a}, @code{b}, etc., are polynomial coefficients
22729 (which may be numbers or formulas).  The constant term is written first,
22730 i.e., in the @code{a} position.  When the rules complete, they should have
22731 changed the formula into the form @samp{thefactors(x, [f1, f2, f3, ...])}
22732 where each @code{fi} should be a factored term, e.g., @samp{x - ai}.
22733 Calc then multiplies these terms together to get the complete
22734 factored form of the polynomial.  If the rules do not change the
22735 @code{thecoefs} call to a @code{thefactors} call, @kbd{a f} leaves the
22736 polynomial alone on the assumption that it is unfactorable.  (Note that
22737 the function names @code{thecoefs} and @code{thefactors} are used only
22738 as placeholders; there are no actual Calc functions by those names.)
22740 @kindex H a f
22741 @tindex factors
22742 The @kbd{H a f} [@code{factors}] command also factors a polynomial,
22743 but it returns a list of factors instead of an expression which is the
22744 product of the factors.  Each factor is represented by a sub-vector
22745 of the factor, and the power with which it appears.  For example,
22746 @cite{x^5 + x^4 - 33 x^3 + 63 x^2} factors to @cite{(x + 7) x^2 (x - 3)^2}
22747 in @kbd{a f}, or to @cite{[ [x, 2], [x+7, 1], [x-3, 2] ]} in @kbd{H a f}.
22748 If there is an overall numeric factor, it always comes first in the list.
22749 The functions @code{factor} and @code{factors} allow a second argument
22750 when written in algebraic form; @samp{factor(x,v)} factors @cite{x} with
22751 respect to the specific variable @cite{v}.  The default is to factor with
22752 respect to all the variables that appear in @cite{x}.
22754 @kindex a c
22755 @pindex calc-collect
22756 @tindex collect
22757 The @kbd{a c} (@code{calc-collect}) [@code{collect}] command rearranges a
22758 formula as a
22759 polynomial in a given variable, ordered in decreasing powers of that
22760 variable.  For example, given @cite{1 + 2 x + 3 y + 4 x y^2} on
22761 the stack, @kbd{a c x} would produce @cite{(2 + 4 y^2) x + (1 + 3 y)},
22762 and @kbd{a c y} would produce @cite{(4 x) y^2 + 3 y + (1 + 2 x)}.
22763 The polynomial will be expanded out using the distributive law as
22764 necessary:  Collecting @cite{x} in @cite{(x - 1)^3} produces
22765 @cite{x^3 - 3 x^2 + 3 x - 1}.  Terms not involving @cite{x} will
22766 not be expanded.
22768 The ``variable'' you specify at the prompt can actually be any
22769 expression: @kbd{a c ln(x+1)} will collect together all terms multiplied
22770 by @samp{ln(x+1)} or integer powers thereof.  If @samp{x} also appears
22771 in the formula in a context other than @samp{ln(x+1)}, @kbd{a c} will
22772 treat those occurrences as unrelated to @samp{ln(x+1)}, i.e., as constants.
22774 @kindex a x
22775 @pindex calc-expand
22776 @tindex expand
22777 The @kbd{a x} (@code{calc-expand}) [@code{expand}] command expands an
22778 expression by applying the distributive law everywhere.  It applies to
22779 products, quotients, and powers involving sums.  By default, it fully
22780 distributes all parts of the expression.  With a numeric prefix argument,
22781 the distributive law is applied only the specified number of times, then
22782 the partially expanded expression is left on the stack.
22784 The @kbd{a x} and @kbd{j D} commands are somewhat redundant.  Use
22785 @kbd{a x} if you want to expand all products of sums in your formula.
22786 Use @kbd{j D} if you want to expand a particular specified term of
22787 the formula.  There is an exactly analogous correspondence between
22788 @kbd{a f} and @kbd{j M}.  (The @kbd{j D} and @kbd{j M} commands
22789 also know many other kinds of expansions, such as
22790 @samp{exp(a + b) = exp(a) exp(b)}, which @kbd{a x} and @kbd{a f}
22791 do not do.)
22793 Calc's automatic simplifications will sometimes reverse a partial
22794 expansion.  For example, the first step in expanding @cite{(x+1)^3} is
22795 to write @cite{(x+1) (x+1)^2}.  If @kbd{a x} stops there and tries
22796 to put this formula onto the stack, though, Calc will automatically
22797 simplify it back to @cite{(x+1)^3} form.  The solution is to turn
22798 simplification off first (@pxref{Simplification Modes}), or to run
22799 @kbd{a x} without a numeric prefix argument so that it expands all
22800 the way in one step.
22802 @kindex a a
22803 @pindex calc-apart
22804 @tindex apart
22805 The @kbd{a a} (@code{calc-apart}) [@code{apart}] command expands a
22806 rational function by partial fractions.  A rational function is the
22807 quotient of two polynomials; @code{apart} pulls this apart into a
22808 sum of rational functions with simple denominators.  In algebraic
22809 notation, the @code{apart} function allows a second argument that
22810 specifies which variable to use as the ``base''; by default, Calc
22811 chooses the base variable automatically.
22813 @kindex a n
22814 @pindex calc-normalize-rat
22815 @tindex nrat
22816 The @kbd{a n} (@code{calc-normalize-rat}) [@code{nrat}] command
22817 attempts to arrange a formula into a quotient of two polynomials.
22818 For example, given @cite{1 + (a + b/c) / d}, the result would be
22819 @cite{(b + a c + c d) / c d}.  The quotient is reduced, so that
22820 @kbd{a n} will simplify @cite{(x^2 + 2x + 1) / (x^2 - 1)} by dividing
22821 out the common factor @cite{x + 1}, yielding @cite{(x + 1) / (x - 1)}.
22823 @kindex a \
22824 @pindex calc-poly-div
22825 @tindex pdiv
22826 The @kbd{a \} (@code{calc-poly-div}) [@code{pdiv}] command divides
22827 two polynomials @cite{u} and @cite{v}, yielding a new polynomial
22828 @cite{q}.  If several variables occur in the inputs, the inputs are
22829 considered multivariate polynomials.  (Calc divides by the variable
22830 with the largest power in @cite{u} first, or, in the case of equal
22831 powers, chooses the variables in alphabetical order.)  For example,
22832 dividing @cite{x^2 + 3 x + 2} by @cite{x + 2} yields @cite{x + 1}.
22833 The remainder from the division, if any, is reported at the bottom
22834 of the screen and is also placed in the Trail along with the quotient.
22836 Using @code{pdiv} in algebraic notation, you can specify the particular
22837 variable to be used as the base: @code{pdiv(@var{a},@var{b},@var{x})}.
22838 If @code{pdiv} is given only two arguments (as is always the case with
22839 the @kbd{a \} command), then it does a multivariate division as outlined
22840 above.
22842 @kindex a %
22843 @pindex calc-poly-rem
22844 @tindex prem
22845 The @kbd{a %} (@code{calc-poly-rem}) [@code{prem}] command divides
22846 two polynomials and keeps the remainder @cite{r}.  The quotient
22847 @cite{q} is discarded.  For any formulas @cite{a} and @cite{b}, the
22848 results of @kbd{a \} and @kbd{a %} satisfy @cite{a = q b + r}.
22849 (This is analogous to plain @kbd{\} and @kbd{%}, which compute the
22850 integer quotient and remainder from dividing two numbers.)
22852 @kindex a /
22853 @kindex H a /
22854 @pindex calc-poly-div-rem
22855 @tindex pdivrem
22856 @tindex pdivide
22857 The @kbd{a /} (@code{calc-poly-div-rem}) [@code{pdivrem}] command
22858 divides two polynomials and reports both the quotient and the
22859 remainder as a vector @cite{[q, r]}.  The @kbd{H a /} [@code{pdivide}]
22860 command divides two polynomials and constructs the formula
22861 @cite{q + r/b} on the stack.  (Naturally if the remainder is zero,
22862 this will immediately simplify to @cite{q}.)
22864 @kindex a g
22865 @pindex calc-poly-gcd
22866 @tindex pgcd
22867 The @kbd{a g} (@code{calc-poly-gcd}) [@code{pgcd}] command computes
22868 the greatest common divisor of two polynomials.  (The GCD actually
22869 is unique only to within a constant multiplier; Calc attempts to
22870 choose a GCD which will be unsurprising.)  For example, the @kbd{a n}
22871 command uses @kbd{a g} to take the GCD of the numerator and denominator
22872 of a quotient, then divides each by the result using @kbd{a \}.  (The
22873 definition of GCD ensures that this division can take place without
22874 leaving a remainder.)
22876 While the polynomials used in operations like @kbd{a /} and @kbd{a g}
22877 often have integer coefficients, this is not required.  Calc can also
22878 deal with polynomials over the rationals or floating-point reals.
22879 Polynomials with modulo-form coefficients are also useful in many
22880 applications; if you enter @samp{(x^2 + 3 x - 1) mod 5}, Calc
22881 automatically transforms this into a polynomial over the field of
22882 integers mod 5:  @samp{(1 mod 5) x^2 + (3 mod 5) x + (4 mod 5)}.
22884 Congratulations and thanks go to Ove Ewerlid
22885 (@code{ewerlid@@mizar.DoCS.UU.SE}), who contributed many of the
22886 polynomial routines used in the above commands.
22888 @xref{Decomposing Polynomials}, for several useful functions for
22889 extracting the individual coefficients of a polynomial.
22891 @node Calculus, Solving Equations, Polynomials, Algebra
22892 @section Calculus
22894 @noindent
22895 The following calculus commands do not automatically simplify their
22896 inputs or outputs using @code{calc-simplify}.  You may find it helps
22897 to do this by hand by typing @kbd{a s} or @kbd{a e}.  It may also help
22898 to use @kbd{a x} and/or @kbd{a c} to arrange a result in the most
22899 readable way.
22901 @menu
22902 * Differentiation::
22903 * Integration::
22904 * Customizing the Integrator::
22905 * Numerical Integration::
22906 * Taylor Series::
22907 @end menu
22909 @node Differentiation, Integration, Calculus, Calculus
22910 @subsection Differentiation
22912 @noindent
22913 @kindex a d
22914 @kindex H a d
22915 @pindex calc-derivative
22916 @tindex deriv
22917 @tindex tderiv
22918 The @kbd{a d} (@code{calc-derivative}) [@code{deriv}] command computes
22919 the derivative of the expression on the top of the stack with respect to
22920 some variable, which it will prompt you to enter.  Normally, variables
22921 in the formula other than the specified differentiation variable are
22922 considered constant, i.e., @samp{deriv(y,x)} is reduced to zero.  With
22923 the Hyperbolic flag, the @code{tderiv} (total derivative) operation is used
22924 instead, in which derivatives of variables are not reduced to zero
22925 unless those variables are known to be ``constant,'' i.e., independent
22926 of any other variables.  (The built-in special variables like @code{pi}
22927 are considered constant, as are variables that have been declared
22928 @code{const}; @pxref{Declarations}.)
22930 With a numeric prefix argument @var{n}, this command computes the
22931 @var{n}th derivative.
22933 When working with trigonometric functions, it is best to switch to
22934 radians mode first (with @w{@kbd{m r}}).  The derivative of @samp{sin(x)}
22935 in degrees is @samp{(pi/180) cos(x)}, probably not the expected
22936 answer!
22938 If you use the @code{deriv} function directly in an algebraic formula,
22939 you can write @samp{deriv(f,x,x0)} which represents the derivative
22940 of @cite{f} with respect to @cite{x}, evaluated at the point @c{$x=x_0$}
22941 @cite{x=x0}.
22943 If the formula being differentiated contains functions which Calc does
22944 not know, the derivatives of those functions are produced by adding
22945 primes (apostrophe characters).  For example, @samp{deriv(f(2x), x)}
22946 produces @samp{2 f'(2 x)}, where the function @code{f'} represents the
22947 derivative of @code{f}.
22949 For functions you have defined with the @kbd{Z F} command, Calc expands
22950 the functions according to their defining formulas unless you have
22951 also defined @code{f'} suitably.  For example, suppose we define
22952 @samp{sinc(x) = sin(x)/x} using @kbd{Z F}.  If we then differentiate
22953 the formula @samp{sinc(2 x)}, the formula will be expanded to
22954 @samp{sin(2 x) / (2 x)} and differentiated.  However, if we also
22955 define @samp{sinc'(x) = dsinc(x)}, say, then Calc will write the
22956 result as @samp{2 dsinc(2 x)}.  @xref{Algebraic Definitions}.
22958 For multi-argument functions @samp{f(x,y,z)}, the derivative with respect
22959 to the first argument is written @samp{f'(x,y,z)}; derivatives with
22960 respect to the other arguments are @samp{f'2(x,y,z)} and @samp{f'3(x,y,z)}.
22961 Various higher-order derivatives can be formed in the obvious way, e.g.,
22962 @samp{f'@var{}'(x)} (the second derivative of @code{f}) or
22963 @samp{f'@var{}'2'3(x,y,z)} (@code{f} differentiated with respect to each
22964 argument once).@refill
22966 @node Integration, Customizing the Integrator, Differentiation, Calculus
22967 @subsection Integration
22969 @noindent
22970 @kindex a i
22971 @pindex calc-integral
22972 @tindex integ
22973 The @kbd{a i} (@code{calc-integral}) [@code{integ}] command computes the
22974 indefinite integral of the expression on the top of the stack with
22975 respect to a variable.  The integrator is not guaranteed to work for
22976 all integrable functions, but it is able to integrate several large
22977 classes of formulas.  In particular, any polynomial or rational function
22978 (a polynomial divided by a polynomial) is acceptable.  (Rational functions
22979 don't have to be in explicit quotient form, however; @c{$x/(1+x^{-2})$}
22980 @cite{x/(1+x^-2)}
22981 is not strictly a quotient of polynomials, but it is equivalent to
22982 @cite{x^3/(x^2+1)}, which is.)  Also, square roots of terms involving
22983 @cite{x} and @cite{x^2} may appear in rational functions being
22984 integrated.  Finally, rational functions involving trigonometric or
22985 hyperbolic functions can be integrated.
22987 @ifinfo
22988 If you use the @code{integ} function directly in an algebraic formula,
22989 you can also write @samp{integ(f,x,v)} which expresses the resulting
22990 indefinite integral in terms of variable @code{v} instead of @code{x}.
22991 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
22992 integral from @code{a} to @code{b}.
22993 @end ifinfo
22994 @tex  
22995 If you use the @code{integ} function directly in an algebraic formula,
22996 you can also write @samp{integ(f,x,v)} which expresses the resulting
22997 indefinite integral in terms of variable @code{v} instead of @code{x}.
22998 With four arguments, @samp{integ(f(x),x,a,b)} represents a definite
22999 integral $\int_a^b f(x) \, dx$.
23000 @end tex
23002 Please note that the current implementation of Calc's integrator sometimes
23003 produces results that are significantly more complex than they need to
23004 be.  For example, the integral Calc finds for @c{$1/(x+\sqrt{x^2+1})$}
23005 @cite{1/(x+sqrt(x^2+1))}
23006 is several times more complicated than the answer Mathematica
23007 returns for the same input, although the two forms are numerically
23008 equivalent.  Also, any indefinite integral should be considered to have
23009 an arbitrary constant of integration added to it, although Calc does not
23010 write an explicit constant of integration in its result.  For example,
23011 Calc's solution for @c{$1/(1+\tan x)$}
23012 @cite{1/(1+tan(x))} differs from the solution given
23013 in the @emph{CRC Math Tables} by a constant factor of @c{$\pi i / 2$}
23014 @cite{pi i / 2},
23015 due to a different choice of constant of integration.
23017 The Calculator remembers all the integrals it has done.  If conditions
23018 change in a way that would invalidate the old integrals, say, a switch
23019 from degrees to radians mode, then they will be thrown out.  If you
23020 suspect this is not happening when it should, use the
23021 @code{calc-flush-caches} command; @pxref{Caches}.
23023 @vindex IntegLimit
23024 Calc normally will pursue integration by substitution or integration by
23025 parts up to 3 nested times before abandoning an approach as fruitless.
23026 If the integrator is taking too long, you can lower this limit by storing
23027 a number (like 2) in the variable @code{IntegLimit}.  (The @kbd{s I}
23028 command is a convenient way to edit @code{IntegLimit}.)  If this variable
23029 has no stored value or does not contain a nonnegative integer, a limit
23030 of 3 is used.  The lower this limit is, the greater the chance that Calc
23031 will be unable to integrate a function it could otherwise handle.  Raising
23032 this limit allows the Calculator to solve more integrals, though the time
23033 it takes may grow exponentially.  You can monitor the integrator's actions
23034 by creating an Emacs buffer called @code{*Trace*}.  If such a buffer
23035 exists, the @kbd{a i} command will write a log of its actions there.
23037 If you want to manipulate integrals in a purely symbolic way, you can
23038 set the integration nesting limit to 0 to prevent all but fast
23039 table-lookup solutions of integrals.  You might then wish to define
23040 rewrite rules for integration by parts, various kinds of substitutions,
23041 and so on.  @xref{Rewrite Rules}.
23043 @node Customizing the Integrator, Numerical Integration, Integration, Calculus
23044 @subsection Customizing the Integrator
23046 @noindent
23047 @vindex IntegRules
23048 Calc has two built-in rewrite rules called @code{IntegRules} and
23049 @code{IntegAfterRules} which you can edit to define new integration
23050 methods.  @xref{Rewrite Rules}.  At each step of the integration process,
23051 Calc wraps the current integrand in a call to the fictitious function
23052 @samp{integtry(@var{expr},@var{var})}, where @var{expr} is the
23053 integrand and @var{var} is the integration variable.  If your rules
23054 rewrite this to be a plain formula (not a call to @code{integtry}), then
23055 Calc will use this formula as the integral of @var{expr}.  For example,
23056 the rule @samp{integtry(mysin(x),x) := -mycos(x)} would define a rule to
23057 integrate a function @code{mysin} that acts like the sine function.
23058 Then, putting @samp{4 mysin(2y+1)} on the stack and typing @kbd{a i y}
23059 will produce the integral @samp{-2 mycos(2y+1)}.  Note that Calc has
23060 automatically made various transformations on the integral to allow it
23061 to use your rule; integral tables generally give rules for
23062 @samp{mysin(a x + b)}, but you don't need to use this much generality
23063 in your @code{IntegRules}.
23065 @cindex Exponential integral Ei(x)
23066 @ignore
23067 @starindex
23068 @end ignore
23069 @tindex Ei
23070 As a more serious example, the expression @samp{exp(x)/x} cannot be
23071 integrated in terms of the standard functions, so the ``exponential
23072 integral'' function @c{${\rm Ei}(x)$}
23073 @cite{Ei(x)} was invented to describe it.
23074 We can get Calc to do this integral in terms of a made-up @code{Ei}
23075 function by adding the rule @samp{[integtry(exp(x)/x, x) := Ei(x)]}
23076 to @code{IntegRules}.  Now entering @samp{exp(2x)/x} on the stack
23077 and typing @kbd{a i x} yields @samp{Ei(2 x)}.  This new rule will
23078 work with Calc's various built-in integration methods (such as
23079 integration by substitution) to solve a variety of other problems
23080 involving @code{Ei}:  For example, now Calc will also be able to
23081 integrate @samp{exp(exp(x))} and @samp{ln(ln(x))} (to get @samp{Ei(exp(x))}
23082 and @samp{x ln(ln(x)) - Ei(ln(x))}, respectively).
23084 Your rule may do further integration by calling @code{integ}.  For
23085 example, @samp{integtry(twice(u),x) := twice(integ(u))} allows Calc
23086 to integrate @samp{twice(sin(x))} to get @samp{twice(-cos(x))}.
23087 Note that @code{integ} was called with only one argument.  This notation
23088 is allowed only within @code{IntegRules}; it means ``integrate this
23089 with respect to the same integration variable.''  If Calc is unable
23090 to integrate @code{u}, the integration that invoked @code{IntegRules}
23091 also fails.  Thus integrating @samp{twice(f(x))} fails, returning the
23092 unevaluated integral @samp{integ(twice(f(x)), x)}.  It is still legal
23093 to call @code{integ} with two or more arguments, however; in this case,
23094 if @code{u} is not integrable, @code{twice} itself will still be
23095 integrated:  If the above rule is changed to @samp{... := twice(integ(u,x))},
23096 then integrating @samp{twice(f(x))} will yield @samp{twice(integ(f(x),x))}.
23098 If a rule instead produces the formula @samp{integsubst(@var{sexpr},
23099 @var{svar})}, either replacing the top-level @code{integtry} call or
23100 nested anywhere inside the expression, then Calc will apply the
23101 substitution @samp{@var{u} = @var{sexpr}(@var{svar})} to try to
23102 integrate the original @var{expr}.  For example, the rule
23103 @samp{sqrt(a) := integsubst(sqrt(x),x)} says that if Calc ever finds
23104 a square root in the integrand, it should attempt the substitution
23105 @samp{u = sqrt(x)}.  (This particular rule is unnecessary because
23106 Calc always tries ``obvious'' substitutions where @var{sexpr} actually
23107 appears in the integrand.)  The variable @var{svar} may be the same
23108 as the @var{var} that appeared in the call to @code{integtry}, but
23109 it need not be.
23111 When integrating according to an @code{integsubst}, Calc uses the
23112 equation solver to find the inverse of @var{sexpr} (if the integrand
23113 refers to @var{var} anywhere except in subexpressions that exactly
23114 match @var{sexpr}).  It uses the differentiator to find the derivative
23115 of @var{sexpr} and/or its inverse (it has two methods that use one
23116 derivative or the other).  You can also specify these items by adding
23117 extra arguments to the @code{integsubst} your rules construct; the
23118 general form is @samp{integsubst(@var{sexpr}, @var{svar}, @var{sinv},
23119 @var{sprime})}, where @var{sinv} is the inverse of @var{sexpr} (still
23120 written as a function of @var{svar}), and @var{sprime} is the
23121 derivative of @var{sexpr} with respect to @var{svar}.  If you don't
23122 specify these things, and Calc is not able to work them out on its
23123 own with the information it knows, then your substitution rule will
23124 work only in very specific, simple cases.
23126 Calc applies @code{IntegRules} as if by @kbd{C-u 1 a r IntegRules};
23127 in other words, Calc stops rewriting as soon as any rule in your rule
23128 set succeeds.  (If it weren't for this, the @samp{integsubst(sqrt(x),x)}
23129 example above would keep on adding layers of @code{integsubst} calls
23130 forever!)
23132 @vindex IntegSimpRules
23133 Another set of rules, stored in @code{IntegSimpRules}, are applied
23134 every time the integrator uses @kbd{a s} to simplify an intermediate
23135 result.  For example, putting the rule @samp{twice(x) := 2 x} into
23136 @code{IntegSimpRules} would tell Calc to convert the @code{twice}
23137 function into a form it knows whenever integration is attempted.
23139 One more way to influence the integrator is to define a function with
23140 the @kbd{Z F} command (@pxref{Algebraic Definitions}).  Calc's
23141 integrator automatically expands such functions according to their
23142 defining formulas, even if you originally asked for the function to
23143 be left unevaluated for symbolic arguments.  (Certain other Calc
23144 systems, such as the differentiator and the equation solver, also
23145 do this.)
23147 @vindex IntegAfterRules
23148 Sometimes Calc is able to find a solution to your integral, but it
23149 expresses the result in a way that is unnecessarily complicated.  If
23150 this happens, you can either use @code{integsubst} as described
23151 above to try to hint at a more direct path to the desired result, or
23152 you can use @code{IntegAfterRules}.  This is an extra rule set that
23153 runs after the main integrator returns its result; basically, Calc does
23154 an @kbd{a r IntegAfterRules} on the result before showing it to you.
23155 (It also does an @kbd{a s}, without @code{IntegSimpRules}, after that
23156 to further simplify the result.)  For example, Calc's integrator
23157 sometimes produces expressions of the form @samp{ln(1+x) - ln(1-x)};
23158 the default @code{IntegAfterRules} rewrite this into the more readable
23159 form @samp{2 arctanh(x)}.  Note that, unlike @code{IntegRules},
23160 @code{IntegSimpRules} and @code{IntegAfterRules} are applied any number
23161 of times until no further changes are possible.  Rewriting by
23162 @code{IntegAfterRules} occurs only after the main integrator has
23163 finished, not at every step as for @code{IntegRules} and
23164 @code{IntegSimpRules}.
23166 @node Numerical Integration, Taylor Series, Customizing the Integrator, Calculus
23167 @subsection Numerical Integration
23169 @noindent
23170 @kindex a I
23171 @pindex calc-num-integral
23172 @tindex ninteg
23173 If you want a purely numerical answer to an integration problem, you can
23174 use the @kbd{a I} (@code{calc-num-integral}) [@code{ninteg}] command.  This
23175 command prompts for an integration variable, a lower limit, and an
23176 upper limit.  Except for the integration variable, all other variables
23177 that appear in the integrand formula must have stored values.  (A stored
23178 value, if any, for the integration variable itself is ignored.)
23180 Numerical integration works by evaluating your formula at many points in
23181 the specified interval.  Calc uses an ``open Romberg'' method; this means
23182 that it does not evaluate the formula actually at the endpoints (so that
23183 it is safe to integrate @samp{sin(x)/x} from zero, for example).  Also,
23184 the Romberg method works especially well when the function being
23185 integrated is fairly smooth.  If the function is not smooth, Calc will
23186 have to evaluate it at quite a few points before it can accurately
23187 determine the value of the integral.
23189 Integration is much faster when the current precision is small.  It is
23190 best to set the precision to the smallest acceptable number of digits
23191 before you use @kbd{a I}.  If Calc appears to be taking too long, press
23192 @kbd{C-g} to halt it and try a lower precision.  If Calc still appears
23193 to need hundreds of evaluations, check to make sure your function is
23194 well-behaved in the specified interval.
23196 It is possible for the lower integration limit to be @samp{-inf} (minus
23197 infinity).  Likewise, the upper limit may be plus infinity.  Calc
23198 internally transforms the integral into an equivalent one with finite
23199 limits.  However, integration to or across singularities is not supported:
23200 The integral of @samp{1/sqrt(x)} from 0 to 1 exists (it can be found
23201 by Calc's symbolic integrator, for example), but @kbd{a I} will fail
23202 because the integrand goes to infinity at one of the endpoints.
23204 @node Taylor Series, , Numerical Integration, Calculus
23205 @subsection Taylor Series
23207 @noindent
23208 @kindex a t
23209 @pindex calc-taylor
23210 @tindex taylor
23211 The @kbd{a t} (@code{calc-taylor}) [@code{taylor}] command computes a
23212 power series expansion or Taylor series of a function.  You specify the
23213 variable and the desired number of terms.  You may give an expression of
23214 the form @samp{@var{var} = @var{a}} or @samp{@var{var} - @var{a}} instead
23215 of just a variable to produce a Taylor expansion about the point @var{a}.
23216 You may specify the number of terms with a numeric prefix argument;
23217 otherwise the command will prompt you for the number of terms.  Note that
23218 many series expansions have coefficients of zero for some terms, so you
23219 may appear to get fewer terms than you asked for.@refill
23221 If the @kbd{a i} command is unable to find a symbolic integral for a
23222 function, you can get an approximation by integrating the function's
23223 Taylor series.
23225 @node Solving Equations, Numerical Solutions, Calculus, Algebra
23226 @section Solving Equations
23228 @noindent
23229 @kindex a S
23230 @pindex calc-solve-for
23231 @tindex solve
23232 @cindex Equations, solving
23233 @cindex Solving equations
23234 The @kbd{a S} (@code{calc-solve-for}) [@code{solve}] command rearranges
23235 an equation to solve for a specific variable.  An equation is an
23236 expression of the form @cite{L = R}.  For example, the command @kbd{a S x}
23237 will rearrange @cite{y = 3x + 6} to the form, @cite{x = y/3 - 2}.  If the
23238 input is not an equation, it is treated like an equation of the
23239 form @cite{X = 0}.
23241 This command also works for inequalities, as in @cite{y < 3x + 6}.
23242 Some inequalities cannot be solved where the analogous equation could
23243 be; for example, solving @c{$a < b \, c$}
23244 @cite{a < b c} for @cite{b} is impossible
23245 without knowing the sign of @cite{c}.  In this case, @kbd{a S} will
23246 produce the result @c{$b \mathbin{\hbox{\code{!=}}} a/c$}
23247 @cite{b != a/c} (using the not-equal-to operator)
23248 to signify that the direction of the inequality is now unknown.  The
23249 inequality @c{$a \le b \, c$}
23250 @cite{a <= b c} is not even partially solved.
23251 @xref{Declarations}, for a way to tell Calc that the signs of the
23252 variables in a formula are in fact known.
23254 Two useful commands for working with the result of @kbd{a S} are
23255 @kbd{a .} (@pxref{Logical Operations}), which converts @cite{x = y/3 - 2}
23256 to @cite{y/3 - 2}, and @kbd{s l} (@pxref{Let Command}) which evaluates
23257 another formula with @cite{x} set equal to @cite{y/3 - 2}.
23259 @menu 
23260 * Multiple Solutions::
23261 * Solving Systems of Equations::
23262 * Decomposing Polynomials::
23263 @end menu
23265 @node Multiple Solutions, Solving Systems of Equations, Solving Equations, Solving Equations
23266 @subsection Multiple Solutions
23268 @noindent
23269 @kindex H a S
23270 @tindex fsolve
23271 Some equations have more than one solution.  The Hyperbolic flag
23272 (@code{H a S}) [@code{fsolve}] tells the solver to report the fully
23273 general family of solutions.  It will invent variables @code{n1},
23274 @code{n2}, @dots{}, which represent independent arbitrary integers, and
23275 @code{s1}, @code{s2}, @dots{}, which represent independent arbitrary
23276 signs (either @i{+1} or @i{-1}).  If you don't use the Hyperbolic
23277 flag, Calc will use zero in place of all arbitrary integers, and plus
23278 one in place of all arbitrary signs.  Note that variables like @code{n1}
23279 and @code{s1} are not given any special interpretation in Calc except by
23280 the equation solver itself.  As usual, you can use the @w{@kbd{s l}}
23281 (@code{calc-let}) command to obtain solutions for various actual values
23282 of these variables.
23284 For example, @kbd{' x^2 = y @key{RET} H a S x @key{RET}} solves to
23285 get @samp{x = s1 sqrt(y)}, indicating that the two solutions to the
23286 equation are @samp{sqrt(y)} and @samp{-sqrt(y)}.  Another way to
23287 think about it is that the square-root operation is really a
23288 two-valued function; since every Calc function must return a
23289 single result, @code{sqrt} chooses to return the positive result.
23290 Then @kbd{H a S} doctors this result using @code{s1} to indicate
23291 the full set of possible values of the mathematical square-root.
23293 There is a similar phenomenon going the other direction:  Suppose
23294 we solve @samp{sqrt(y) = x} for @code{y}.  Calc squares both sides
23295 to get @samp{y = x^2}.  This is correct, except that it introduces
23296 some dubious solutions.  Consider solving @samp{sqrt(y) = -3}:
23297 Calc will report @cite{y = 9} as a valid solution, which is true
23298 in the mathematical sense of square-root, but false (there is no
23299 solution) for the actual Calc positive-valued @code{sqrt}.  This
23300 happens for both @kbd{a S} and @kbd{H a S}.
23302 @cindex @code{GenCount} variable
23303 @vindex GenCount
23304 @ignore
23305 @starindex
23306 @end ignore
23307 @tindex an
23308 @ignore
23309 @starindex
23310 @end ignore
23311 @tindex as
23312 If you store a positive integer in the Calc variable @code{GenCount},
23313 then Calc will generate formulas of the form @samp{as(@var{n})} for
23314 arbitrary signs, and @samp{an(@var{n})} for arbitrary integers,
23315 where @var{n} represents successive values taken by incrementing
23316 @code{GenCount} by one.  While the normal arbitrary sign and
23317 integer symbols start over at @code{s1} and @code{n1} with each
23318 new Calc command, the @code{GenCount} approach will give each
23319 arbitrary value a name that is unique throughout the entire Calc
23320 session.  Also, the arbitrary values are function calls instead
23321 of variables, which is advantageous in some cases.  For example,
23322 you can make a rewrite rule that recognizes all arbitrary signs
23323 using a pattern like @samp{as(n)}.  The @kbd{s l} command only works
23324 on variables, but you can use the @kbd{a b} (@code{calc-substitute})
23325 command to substitute actual values for function calls like @samp{as(3)}.
23327 The @kbd{s G} (@code{calc-edit-GenCount}) command is a convenient
23328 way to create or edit this variable.  Press @kbd{M-# M-#} to finish.
23330 If you have not stored a value in @code{GenCount}, or if the value
23331 in that variable is not a positive integer, the regular
23332 @code{s1}/@code{n1} notation is used.
23334 @kindex I a S
23335 @kindex H I a S
23336 @tindex finv
23337 @tindex ffinv
23338 With the Inverse flag, @kbd{I a S} [@code{finv}] treats the expression
23339 on top of the stack as a function of the specified variable and solves
23340 to find the inverse function, written in terms of the same variable.
23341 For example, @kbd{I a S x} inverts @cite{2x + 6} to @cite{x/2 - 3}.
23342 You can use both Inverse and Hyperbolic [@code{ffinv}] to obtain a
23343 fully general inverse, as described above.
23345 @kindex a P
23346 @pindex calc-poly-roots
23347 @tindex roots
23348 Some equations, specifically polynomials, have a known, finite number
23349 of solutions.  The @kbd{a P} (@code{calc-poly-roots}) [@code{roots}]
23350 command uses @kbd{H a S} to solve an equation in general form, then, for
23351 all arbitrary-sign variables like @code{s1}, and all arbitrary-integer
23352 variables like @code{n1} for which @code{n1} only usefully varies over
23353 a finite range, it expands these variables out to all their possible
23354 values.  The results are collected into a vector, which is returned.
23355 For example, @samp{roots(x^4 = 1, x)} returns the four solutions
23356 @samp{[1, -1, (0, 1), (0, -1)]}.  Generally an @var{n}th degree
23357 polynomial will always have @var{n} roots on the complex plane.
23358 (If you have given a @code{real} declaration for the solution
23359 variable, then only the real-valued solutions, if any, will be
23360 reported; @pxref{Declarations}.)
23362 Note that because @kbd{a P} uses @kbd{H a S}, it is able to deliver
23363 symbolic solutions if the polynomial has symbolic coefficients.  Also
23364 note that Calc's solver is not able to get exact symbolic solutions
23365 to all polynomials.  Polynomials containing powers up to @cite{x^4}
23366 can always be solved exactly; polynomials of higher degree sometimes
23367 can be:  @cite{x^6 + x^3 + 1} is converted to @cite{(x^3)^2 + (x^3) + 1},
23368 which can be solved for @cite{x^3} using the quadratic equation, and then
23369 for @cite{x} by taking cube roots.  But in many cases, like
23370 @cite{x^6 + x + 1}, Calc does not know how to rewrite the polynomial
23371 into a form it can solve.  The @kbd{a P} command can still deliver a
23372 list of numerical roots, however, provided that symbolic mode (@kbd{m s})
23373 is not turned on.  (If you work with symbolic mode on, recall that the
23374 @kbd{N} (@code{calc-eval-num}) key is a handy way to reevaluate the
23375 formula on the stack with symbolic mode temporarily off.)  Naturally,
23376 @kbd{a P} can only provide numerical roots if the polynomial coefficients
23377 are all numbers (real or complex).
23379 @node Solving Systems of Equations, Decomposing Polynomials, Multiple Solutions, Solving Equations
23380 @subsection Solving Systems of Equations
23382 @noindent
23383 @cindex Systems of equations, symbolic
23384 You can also use the commands described above to solve systems of
23385 simultaneous equations.  Just create a vector of equations, then
23386 specify a vector of variables for which to solve.  (You can omit
23387 the surrounding brackets when entering the vector of variables
23388 at the prompt.)
23390 For example, putting @samp{[x + y = a, x - y = b]} on the stack
23391 and typing @kbd{a S x,y @key{RET}} produces the vector of solutions
23392 @samp{[x = a - (a-b)/2, y = (a-b)/2]}.  The result vector will
23393 have the same length as the variables vector, and the variables
23394 will be listed in the same order there.  Note that the solutions
23395 are not always simplified as far as possible; the solution for
23396 @cite{x} here could be improved by an application of the @kbd{a n}
23397 command.
23399 Calc's algorithm works by trying to eliminate one variable at a
23400 time by solving one of the equations for that variable and then
23401 substituting into the other equations.  Calc will try all the
23402 possibilities, but you can speed things up by noting that Calc
23403 first tries to eliminate the first variable with the first
23404 equation, then the second variable with the second equation,
23405 and so on.  It also helps to put the simpler (e.g., more linear)
23406 equations toward the front of the list.  Calc's algorithm will
23407 solve any system of linear equations, and also many kinds of
23408 nonlinear systems.
23410 @ignore
23411 @starindex
23412 @end ignore
23413 @tindex elim
23414 Normally there will be as many variables as equations.  If you
23415 give fewer variables than equations (an ``over-determined'' system
23416 of equations), Calc will find a partial solution.  For example,
23417 typing @kbd{a S y @key{RET}} with the above system of equations
23418 would produce @samp{[y = a - x]}.  There are now several ways to
23419 express this solution in terms of the original variables; Calc uses
23420 the first one that it finds.  You can control the choice by adding
23421 variable specifiers of the form @samp{elim(@var{v})} to the
23422 variables list.  This says that @var{v} should be eliminated from
23423 the equations; the variable will not appear at all in the solution.
23424 For example, typing @kbd{a S y,elim(x)} would yield
23425 @samp{[y = a - (b+a)/2]}.
23427 If the variables list contains only @code{elim} specifiers,
23428 Calc simply eliminates those variables from the equations
23429 and then returns the resulting set of equations.  For example,
23430 @kbd{a S elim(x)} produces @samp{[a - 2 y = b]}.  Every variable
23431 eliminated will reduce the number of equations in the system
23432 by one.
23434 Again, @kbd{a S} gives you one solution to the system of
23435 equations.  If there are several solutions, you can use @kbd{H a S}
23436 to get a general family of solutions, or, if there is a finite
23437 number of solutions, you can use @kbd{a P} to get a list.  (In
23438 the latter case, the result will take the form of a matrix where
23439 the rows are different solutions and the columns correspond to the
23440 variables you requested.)
23442 Another way to deal with certain kinds of overdetermined systems of
23443 equations is the @kbd{a F} command, which does least-squares fitting
23444 to satisfy the equations.  @xref{Curve Fitting}.
23446 @node Decomposing Polynomials, , Solving Systems of Equations, Solving Equations
23447 @subsection Decomposing Polynomials
23449 @noindent
23450 @ignore
23451 @starindex
23452 @end ignore
23453 @tindex poly
23454 The @code{poly} function takes a polynomial and a variable as
23455 arguments, and returns a vector of polynomial coefficients (constant
23456 coefficient first).  For example, @samp{poly(x^3 + 2 x, x)} returns
23457 @cite{[0, 2, 0, 1]}.  If the input is not a polynomial in @cite{x},
23458 the call to @code{poly} is left in symbolic form.  If the input does
23459 not involve the variable @cite{x}, the input is returned in a list
23460 of length one, representing a polynomial with only a constant
23461 coefficient.  The call @samp{poly(x, x)} returns the vector @cite{[0, 1]}.
23462 The last element of the returned vector is guaranteed to be nonzero;
23463 note that @samp{poly(0, x)} returns the empty vector @cite{[]}.
23464 Note also that @cite{x} may actually be any formula; for example,
23465 @samp{poly(sin(x)^2 - sin(x) + 3, sin(x))} returns @cite{[3, -1, 1]}.
23467 @cindex Coefficients of polynomial
23468 @cindex Degree of polynomial
23469 To get the @cite{x^k} coefficient of polynomial @cite{p}, use
23470 @samp{poly(p, x)_(k+1)}.  To get the degree of polynomial @cite{p},
23471 use @samp{vlen(poly(p, x)) - 1}.  For example, @samp{poly((x+1)^4, x)}
23472 returns @samp{[1, 4, 6, 4, 1]}, so @samp{poly((x+1)^4, x)_(2+1)}
23473 gives the @cite{x^2} coefficient of this polynomial, 6.
23475 @ignore
23476 @starindex
23477 @end ignore
23478 @tindex gpoly
23479 One important feature of the solver is its ability to recognize
23480 formulas which are ``essentially'' polynomials.  This ability is
23481 made available to the user through the @code{gpoly} function, which
23482 is used just like @code{poly}:  @samp{gpoly(@var{expr}, @var{var})}.
23483 If @var{expr} is a polynomial in some term which includes @var{var}, then
23484 this function will return a vector @samp{[@var{x}, @var{c}, @var{a}]}
23485 where @var{x} is the term that depends on @var{var}, @var{c} is a
23486 vector of polynomial coefficients (like the one returned by @code{poly}),
23487 and @var{a} is a multiplier which is usually 1.  Basically,
23488 @samp{@var{expr} = @var{a}*(@var{c}_1 + @var{c}_2 @var{x} +
23489 @var{c}_3 @var{x}^2 + ...)}.  The last element of @var{c} is
23490 guaranteed to be non-zero, and @var{c} will not equal @samp{[1]}
23491 (i.e., the trivial decomposition @var{expr} = @var{x} is not
23492 considered a polynomial).  One side effect is that @samp{gpoly(x, x)}
23493 and @samp{gpoly(6, x)}, both of which might be expected to recognize
23494 their arguments as polynomials, will not because the decomposition
23495 is considered trivial.
23497 For example, @samp{gpoly((x-2)^2, x)} returns @samp{[x, [4, -4, 1], 1]},
23498 since the expanded form of this polynomial is @cite{4 - 4 x + x^2}.
23500 The term @var{x} may itself be a polynomial in @var{var}.  This is
23501 done to reduce the size of the @var{c} vector.  For example,
23502 @samp{gpoly(x^4 + x^2 - 1, x)} returns @samp{[x^2, [-1, 1, 1], 1]},
23503 since a quadratic polynomial in @cite{x^2} is easier to solve than
23504 a quartic polynomial in @cite{x}.
23506 A few more examples of the kinds of polynomials @code{gpoly} can
23507 discover:
23509 @smallexample
23510 sin(x) - 1               [sin(x), [-1, 1], 1]
23511 x + 1/x - 1              [x, [1, -1, 1], 1/x]
23512 x + 1/x                  [x^2, [1, 1], 1/x]
23513 x^3 + 2 x                [x^2, [2, 1], x]
23514 x + x^2:3 + sqrt(x)      [x^1:6, [1, 1, 0, 1], x^1:2]
23515 x^(2a) + 2 x^a + 5       [x^a, [5, 2, 1], 1]
23516 (exp(-x) + exp(x)) / 2   [e^(2 x), [0.5, 0.5], e^-x]
23517 @end smallexample
23519 The @code{poly} and @code{gpoly} functions accept a third integer argument
23520 which specifies the largest degree of polynomial that is acceptable.
23521 If this is @cite{n}, then only @var{c} vectors of length @cite{n+1}
23522 or less will be returned.  Otherwise, the @code{poly} or @code{gpoly}
23523 call will remain in symbolic form.  For example, the equation solver
23524 can handle quartics and smaller polynomials, so it calls
23525 @samp{gpoly(@var{expr}, @var{var}, 4)} to discover whether @var{expr}
23526 can be treated by its linear, quadratic, cubic, or quartic formulas.
23528 @ignore
23529 @starindex
23530 @end ignore
23531 @tindex pdeg
23532 The @code{pdeg} function computes the degree of a polynomial;
23533 @samp{pdeg(p,x)} is the highest power of @code{x} that appears in
23534 @code{p}.  This is the same as @samp{vlen(poly(p,x))-1}, but is
23535 much more efficient.  If @code{p} is constant with respect to @code{x},
23536 then @samp{pdeg(p,x) = 0}.  If @code{p} is not a polynomial in @code{x}
23537 (e.g., @samp{pdeg(2 cos(x), x)}, the function remains unevaluated.
23538 It is possible to omit the second argument @code{x}, in which case
23539 @samp{pdeg(p)} returns the highest total degree of any term of the
23540 polynomial, counting all variables that appear in @code{p}.  Note
23541 that @code{pdeg(c) = pdeg(c,x) = 0} for any nonzero constant @code{c};
23542 the degree of the constant zero is considered to be @code{-inf}
23543 (minus infinity).
23545 @ignore
23546 @starindex
23547 @end ignore
23548 @tindex plead
23549 The @code{plead} function finds the leading term of a polynomial.
23550 Thus @samp{plead(p,x)} is equivalent to @samp{poly(p,x)_vlen(poly(p,x))},
23551 though again more efficient.  In particular, @samp{plead((2x+1)^10, x)}
23552 returns 1024 without expanding out the list of coefficients.  The
23553 value of @code{plead(p,x)} will be zero only if @cite{p = 0}.
23555 @ignore
23556 @starindex
23557 @end ignore
23558 @tindex pcont
23559 The @code{pcont} function finds the @dfn{content} of a polynomial.  This
23560 is the greatest common divisor of all the coefficients of the polynomial.
23561 With two arguments, @code{pcont(p,x)} effectively uses @samp{poly(p,x)}
23562 to get a list of coefficients, then uses @code{pgcd} (the polynomial
23563 GCD function) to combine these into an answer.  For example,
23564 @samp{pcont(4 x y^2 + 6 x^2 y, x)} is @samp{2 y}.  The content is
23565 basically the ``biggest'' polynomial that can be divided into @code{p}
23566 exactly.  The sign of the content is the same as the sign of the leading
23567 coefficient.
23569 With only one argument, @samp{pcont(p)} computes the numerical
23570 content of the polynomial, i.e., the @code{gcd} of the numerical
23571 coefficients of all the terms in the formula.  Note that @code{gcd}
23572 is defined on rational numbers as well as integers; it computes
23573 the @code{gcd} of the numerators and the @code{lcm} of the
23574 denominators.  Thus @samp{pcont(4:3 x y^2 + 6 x^2 y)} returns 2:3.
23575 Dividing the polynomial by this number will clear all the
23576 denominators, as well as dividing by any common content in the
23577 numerators.  The numerical content of a polynomial is negative only
23578 if all the coefficients in the polynomial are negative.
23580 @ignore
23581 @starindex
23582 @end ignore
23583 @tindex pprim
23584 The @code{pprim} function finds the @dfn{primitive part} of a
23585 polynomial, which is simply the polynomial divided (using @code{pdiv}
23586 if necessary) by its content.  If the input polynomial has rational
23587 coefficients, the result will have integer coefficients in simplest
23588 terms.
23590 @node Numerical Solutions, Curve Fitting, Solving Equations, Algebra
23591 @section Numerical Solutions
23593 @noindent
23594 Not all equations can be solved symbolically.  The commands in this
23595 section use numerical algorithms that can find a solution to a specific
23596 instance of an equation to any desired accuracy.  Note that the
23597 numerical commands are slower than their algebraic cousins; it is a
23598 good idea to try @kbd{a S} before resorting to these commands.
23600 (@xref{Curve Fitting}, for some other, more specialized, operations
23601 on numerical data.)
23603 @menu
23604 * Root Finding::
23605 * Minimization::
23606 * Numerical Systems of Equations::
23607 @end menu
23609 @node Root Finding, Minimization, Numerical Solutions, Numerical Solutions
23610 @subsection Root Finding
23612 @noindent
23613 @kindex a R
23614 @pindex calc-find-root
23615 @tindex root
23616 @cindex Newton's method
23617 @cindex Roots of equations
23618 @cindex Numerical root-finding
23619 The @kbd{a R} (@code{calc-find-root}) [@code{root}] command finds a
23620 numerical solution (or @dfn{root}) of an equation.  (This command treats
23621 inequalities the same as equations.  If the input is any other kind
23622 of formula, it is interpreted as an equation of the form @cite{X = 0}.)
23624 The @kbd{a R} command requires an initial guess on the top of the
23625 stack, and a formula in the second-to-top position.  It prompts for a
23626 solution variable, which must appear in the formula.  All other variables
23627 that appear in the formula must have assigned values, i.e., when
23628 a value is assigned to the solution variable and the formula is
23629 evaluated with @kbd{=}, it should evaluate to a number.  Any assigned
23630 value for the solution variable itself is ignored and unaffected by
23631 this command.
23633 When the command completes, the initial guess is replaced on the stack
23634 by a vector of two numbers:  The value of the solution variable that
23635 solves the equation, and the difference between the lefthand and
23636 righthand sides of the equation at that value.  Ordinarily, the second
23637 number will be zero or very nearly zero.  (Note that Calc uses a
23638 slightly higher precision while finding the root, and thus the second
23639 number may be slightly different from the value you would compute from
23640 the equation yourself.)
23642 The @kbd{v h} (@code{calc-head}) command is a handy way to extract
23643 the first element of the result vector, discarding the error term.
23645 The initial guess can be a real number, in which case Calc searches
23646 for a real solution near that number, or a complex number, in which
23647 case Calc searches the whole complex plane near that number for a
23648 solution, or it can be an interval form which restricts the search
23649 to real numbers inside that interval.
23651 Calc tries to use @kbd{a d} to take the derivative of the equation.
23652 If this succeeds, it uses Newton's method.  If the equation is not
23653 differentiable Calc uses a bisection method.  (If Newton's method
23654 appears to be going astray, Calc switches over to bisection if it
23655 can, or otherwise gives up.  In this case it may help to try again
23656 with a slightly different initial guess.)  If the initial guess is a
23657 complex number, the function must be differentiable.
23659 If the formula (or the difference between the sides of an equation)
23660 is negative at one end of the interval you specify and positive at
23661 the other end, the root finder is guaranteed to find a root.
23662 Otherwise, Calc subdivides the interval into small parts looking for
23663 positive and negative values to bracket the root.  When your guess is
23664 an interval, Calc will not look outside that interval for a root.
23666 @kindex H a R
23667 @tindex wroot
23668 The @kbd{H a R} [@code{wroot}] command is similar to @kbd{a R}, except
23669 that if the initial guess is an interval for which the function has
23670 the same sign at both ends, then rather than subdividing the interval
23671 Calc attempts to widen it to enclose a root.  Use this mode if
23672 you are not sure if the function has a root in your interval.
23674 If the function is not differentiable, and you give a simple number
23675 instead of an interval as your initial guess, Calc uses this widening
23676 process even if you did not type the Hyperbolic flag.  (If the function
23677 @emph{is} differentiable, Calc uses Newton's method which does not
23678 require a bounding interval in order to work.)
23680 If Calc leaves the @code{root} or @code{wroot} function in symbolic
23681 form on the stack, it will normally display an explanation for why
23682 no root was found.  If you miss this explanation, press @kbd{w}
23683 (@code{calc-why}) to get it back.
23685 @node Minimization, Numerical Systems of Equations, Root Finding, Numerical Solutions
23686 @subsection Minimization
23688 @noindent
23689 @kindex a N
23690 @kindex H a N
23691 @kindex a X
23692 @kindex H a X
23693 @pindex calc-find-minimum
23694 @pindex calc-find-maximum
23695 @tindex minimize
23696 @tindex maximize
23697 @cindex Minimization, numerical
23698 The @kbd{a N} (@code{calc-find-minimum}) [@code{minimize}] command
23699 finds a minimum value for a formula.  It is very similar in operation
23700 to @kbd{a R} (@code{calc-find-root}):  You give the formula and an initial
23701 guess on the stack, and are prompted for the name of a variable.  The guess
23702 may be either a number near the desired minimum, or an interval enclosing
23703 the desired minimum.  The function returns a vector containing the
23704 value of the variable which minimizes the formula's value, along
23705 with the minimum value itself.
23707 Note that this command looks for a @emph{local} minimum.  Many functions
23708 have more than one minimum; some, like @c{$x \sin x$}
23709 @cite{x sin(x)}, have infinitely
23710 many.  In fact, there is no easy way to define the ``global'' minimum
23711 of @c{$x \sin x$}
23712 @cite{x sin(x)} but Calc can still locate any particular local minimum
23713 for you.  Calc basically goes downhill from the initial guess until it
23714 finds a point at which the function's value is greater both to the left
23715 and to the right.  Calc does not use derivatives when minimizing a function.
23717 If your initial guess is an interval and it looks like the minimum
23718 occurs at one or the other endpoint of the interval, Calc will return
23719 that endpoint only if that endpoint is closed; thus, minimizing @cite{17 x}
23720 over @cite{[2..3]} will return @cite{[2, 38]}, but minimizing over
23721 @cite{(2..3]} would report no minimum found.  In general, you should
23722 use closed intervals to find literally the minimum value in that
23723 range of @cite{x}, or open intervals to find the local minimum, if
23724 any, that happens to lie in that range.
23726 Most functions are smooth and flat near their minimum values.  Because
23727 of this flatness, if the current precision is, say, 12 digits, the
23728 variable can only be determined meaningfully to about six digits.  Thus
23729 you should set the precision to twice as many digits as you need in your
23730 answer.
23732 @ignore
23733 @mindex wmin@idots
23734 @end ignore
23735 @tindex wminimize
23736 @ignore
23737 @mindex wmax@idots
23738 @end ignore
23739 @tindex wmaximize
23740 The @kbd{H a N} [@code{wminimize}] command, analogously to @kbd{H a R},
23741 expands the guess interval to enclose a minimum rather than requiring
23742 that the minimum lie inside the interval you supply.
23744 The @kbd{a X} (@code{calc-find-maximum}) [@code{maximize}] and
23745 @kbd{H a X} [@code{wmaximize}] commands effectively minimize the
23746 negative of the formula you supply.
23748 The formula must evaluate to a real number at all points inside the
23749 interval (or near the initial guess if the guess is a number).  If
23750 the initial guess is a complex number the variable will be minimized
23751 over the complex numbers; if it is real or an interval it will
23752 be minimized over the reals.
23754 @node Numerical Systems of Equations, , Minimization, Numerical Solutions
23755 @subsection Systems of Equations
23757 @noindent
23758 @cindex Systems of equations, numerical
23759 The @kbd{a R} command can also solve systems of equations.  In this
23760 case, the equation should instead be a vector of equations, the
23761 guess should instead be a vector of numbers (intervals are not
23762 supported), and the variable should be a vector of variables.  You
23763 can omit the brackets while entering the list of variables.  Each
23764 equation must be differentiable by each variable for this mode to
23765 work.  The result will be a vector of two vectors:  The variable
23766 values that solved the system of equations, and the differences
23767 between the sides of the equations with those variable values.
23768 There must be the same number of equations as variables.  Since
23769 only plain numbers are allowed as guesses, the Hyperbolic flag has
23770 no effect when solving a system of equations.
23772 It is also possible to minimize over many variables with @kbd{a N}
23773 (or maximize with @kbd{a X}).  Once again the variable name should
23774 be replaced by a vector of variables, and the initial guess should
23775 be an equal-sized vector of initial guesses.  But, unlike the case of
23776 multidimensional @kbd{a R}, the formula being minimized should
23777 still be a single formula, @emph{not} a vector.  Beware that
23778 multidimensional minimization is currently @emph{very} slow.
23780 @node Curve Fitting, Summations, Numerical Solutions, Algebra
23781 @section Curve Fitting
23783 @noindent
23784 The @kbd{a F} command fits a set of data to a @dfn{model formula},
23785 such as @cite{y = m x + b} where @cite{m} and @cite{b} are parameters
23786 to be determined.  For a typical set of measured data there will be
23787 no single @cite{m} and @cite{b} that exactly fit the data; in this
23788 case, Calc chooses values of the parameters that provide the closest
23789 possible fit.
23791 @menu
23792 * Linear Fits::
23793 * Polynomial and Multilinear Fits::
23794 * Error Estimates for Fits::
23795 * Standard Nonlinear Models::
23796 * Curve Fitting Details::
23797 * Interpolation::
23798 @end menu
23800 @node Linear Fits, Polynomial and Multilinear Fits, Curve Fitting, Curve Fitting
23801 @subsection Linear Fits
23803 @noindent
23804 @kindex a F
23805 @pindex calc-curve-fit
23806 @tindex fit
23807 @cindex Linear regression
23808 @cindex Least-squares fits
23809 The @kbd{a F} (@code{calc-curve-fit}) [@code{fit}] command attempts
23810 to fit a set of data (@cite{x} and @cite{y} vectors of numbers) to a
23811 straight line, polynomial, or other function of @cite{x}.  For the
23812 moment we will consider only the case of fitting to a line, and we
23813 will ignore the issue of whether or not the model was in fact a good
23814 fit for the data.
23816 In a standard linear least-squares fit, we have a set of @cite{(x,y)}
23817 data points that we wish to fit to the model @cite{y = m x + b}
23818 by adjusting the parameters @cite{m} and @cite{b} to make the @cite{y}
23819 values calculated from the formula be as close as possible to the actual
23820 @cite{y} values in the data set.  (In a polynomial fit, the model is
23821 instead, say, @cite{y = a x^3 + b x^2 + c x + d}.  In a multilinear fit,
23822 we have data points of the form @cite{(x_1,x_2,x_3,y)} and our model is
23823 @cite{y = a x_1 + b x_2 + c x_3 + d}.  These will be discussed later.)
23825 In the model formula, variables like @cite{x} and @cite{x_2} are called
23826 the @dfn{independent variables}, and @cite{y} is the @dfn{dependent
23827 variable}.  Variables like @cite{m}, @cite{a}, and @cite{b} are called
23828 the @dfn{parameters} of the model.
23830 The @kbd{a F} command takes the data set to be fitted from the stack.
23831 By default, it expects the data in the form of a matrix.  For example,
23832 for a linear or polynomial fit, this would be a @c{$2\times N$}
23833 @asis{2xN} matrix where
23834 the first row is a list of @cite{x} values and the second row has the
23835 corresponding @cite{y} values.  For the multilinear fit shown above,
23836 the matrix would have four rows (@cite{x_1}, @cite{x_2}, @cite{x_3}, and
23837 @cite{y}, respectively).
23839 If you happen to have an @c{$N\times2$}
23840 @asis{Nx2} matrix instead of a @c{$2\times N$}
23841 @asis{2xN} matrix,
23842 just press @kbd{v t} first to transpose the matrix.
23844 After you type @kbd{a F}, Calc prompts you to select a model.  For a
23845 linear fit, press the digit @kbd{1}.
23847 Calc then prompts for you to name the variables.  By default it chooses
23848 high letters like @cite{x} and @cite{y} for independent variables and
23849 low letters like @cite{a} and @cite{b} for parameters.  (The dependent
23850 variable doesn't need a name.)  The two kinds of variables are separated
23851 by a semicolon.  Since you generally care more about the names of the
23852 independent variables than of the parameters, Calc also allows you to
23853 name only those and let the parameters use default names.
23855 For example, suppose the data matrix
23857 @ifinfo
23858 @example
23859 @group
23860 [ [ 1, 2, 3, 4,  5  ]
23861   [ 5, 7, 9, 11, 13 ] ]
23862 @end group
23863 @end example
23864 @end ifinfo
23865 @tex
23866 \turnoffactive
23867 \turnoffactive
23868 \beforedisplay
23869 $$ \pmatrix{ 1 & 2 & 3 & 4  & 5  \cr
23870              5 & 7 & 9 & 11 & 13 }
23872 \afterdisplay
23873 @end tex
23875 @noindent
23876 is on the stack and we wish to do a simple linear fit.  Type
23877 @kbd{a F}, then @kbd{1} for the model, then @key{RET} to use
23878 the default names.  The result will be the formula @cite{3 + 2 x}
23879 on the stack.  Calc has created the model expression @kbd{a + b x},
23880 then found the optimal values of @cite{a} and @cite{b} to fit the
23881 data.  (In this case, it was able to find an exact fit.)  Calc then
23882 substituted those values for @cite{a} and @cite{b} in the model
23883 formula.
23885 The @kbd{a F} command puts two entries in the trail.  One is, as
23886 always, a copy of the result that went to the stack; the other is
23887 a vector of the actual parameter values, written as equations:
23888 @cite{[a = 3, b = 2]}, in case you'd rather read them in a list
23889 than pick them out of the formula.  (You can type @kbd{t y}
23890 to move this vector to the stack; see @ref{Trail Commands}.
23892 Specifying a different independent variable name will affect the
23893 resulting formula: @kbd{a F 1 k @key{RET}} produces @kbd{3 + 2 k}.
23894 Changing the parameter names (say, @kbd{a F 1 k;b,m @key{RET}}) will affect
23895 the equations that go into the trail.
23897 @tex
23898 \bigskip
23899 @end tex
23901 To see what happens when the fit is not exact, we could change
23902 the number 13 in the data matrix to 14 and try the fit again.
23903 The result is:
23905 @example
23906 2.6 + 2.2 x
23907 @end example
23909 Evaluating this formula, say with @kbd{v x 5 @key{RET} @key{TAB} V M $ @key{RET}}, shows
23910 a reasonably close match to the y-values in the data.
23912 @example
23913 [4.8, 7., 9.2, 11.4, 13.6]
23914 @end example
23916 Since there is no line which passes through all the @var{n} data points,
23917 Calc has chosen a line that best approximates the data points using
23918 the method of least squares.  The idea is to define the @dfn{chi-square}
23919 error measure
23921 @ifinfo
23922 @example
23923 chi^2 = sum((y_i - (a + b x_i))^2, i, 1, N)
23924 @end example
23925 @end ifinfo
23926 @tex
23927 \turnoffactive
23928 \beforedisplay
23929 $$ \chi^2 = \sum_{i=1}^N (y_i - (a + b x_i))^2 $$
23930 \afterdisplay
23931 @end tex
23933 @noindent
23934 which is clearly zero if @cite{a + b x} exactly fits all data points,
23935 and increases as various @cite{a + b x_i} values fail to match the
23936 corresponding @cite{y_i} values.  There are several reasons why the
23937 summand is squared, one of them being to ensure that @c{$\chi^2 \ge 0$}
23938 @cite{chi^2 >= 0}.
23939 Least-squares fitting simply chooses the values of @cite{a} and @cite{b}
23940 for which the error @c{$\chi^2$}
23941 @cite{chi^2} is as small as possible.
23943 Other kinds of models do the same thing but with a different model
23944 formula in place of @cite{a + b x_i}.
23946 @tex
23947 \bigskip
23948 @end tex
23950 A numeric prefix argument causes the @kbd{a F} command to take the
23951 data in some other form than one big matrix.  A positive argument @var{n}
23952 will take @var{N} items from the stack, corresponding to the @var{n} rows
23953 of a data matrix.  In the linear case, @var{n} must be 2 since there
23954 is always one independent variable and one dependent variable.
23956 A prefix of zero or plain @kbd{C-u} is a compromise; Calc takes two
23957 items from the stack, an @var{n}-row matrix of @cite{x} values, and a
23958 vector of @cite{y} values.  If there is only one independent variable,
23959 the @cite{x} values can be either a one-row matrix or a plain vector,
23960 in which case the @kbd{C-u} prefix is the same as a @w{@kbd{C-u 2}} prefix.
23962 @node Polynomial and Multilinear Fits, Error Estimates for Fits, Linear Fits, Curve Fitting
23963 @subsection Polynomial and Multilinear Fits
23965 @noindent
23966 To fit the data to higher-order polynomials, just type one of the
23967 digits @kbd{2} through @kbd{9} when prompted for a model.  For example,
23968 we could fit the original data matrix from the previous section
23969 (with 13, not 14) to a parabola instead of a line by typing
23970 @kbd{a F 2 @key{RET}}.
23972 @example
23973 2.00000000001 x - 1.5e-12 x^2 + 2.99999999999
23974 @end example
23976 Note that since the constant and linear terms are enough to fit the
23977 data exactly, it's no surprise that Calc chose a tiny contribution
23978 for @cite{x^2}.  (The fact that it's not exactly zero is due only
23979 to roundoff error.  Since our data are exact integers, we could get
23980 an exact answer by typing @kbd{m f} first to get fraction mode.
23981 Then the @cite{x^2} term would vanish altogether.  Usually, though,
23982 the data being fitted will be approximate floats so fraction mode
23983 won't help.)
23985 Doing the @kbd{a F 2} fit on the data set with 14 instead of 13
23986 gives a much larger @cite{x^2} contribution, as Calc bends the
23987 line slightly to improve the fit.
23989 @example
23990 0.142857142855 x^2 + 1.34285714287 x + 3.59999999998
23991 @end example
23993 An important result from the theory of polynomial fitting is that it
23994 is always possible to fit @var{n} data points exactly using a polynomial
23995 of degree @i{@var{n}-1}, sometimes called an @dfn{interpolating polynomial}.
23996 Using the modified (14) data matrix, a model number of 4 gives
23997 a polynomial that exactly matches all five data points:
23999 @example
24000 0.04167 x^4 - 0.4167 x^3 + 1.458 x^2 - 0.08333 x + 4.
24001 @end example
24003 The actual coefficients we get with a precision of 12, like
24004 @cite{0.0416666663588}, clearly suffer from loss of precision.
24005 It is a good idea to increase the working precision to several
24006 digits beyond what you need when you do a fitting operation.
24007 Or, if your data are exact, use fraction mode to get exact
24008 results.
24010 You can type @kbd{i} instead of a digit at the model prompt to fit
24011 the data exactly to a polynomial.  This just counts the number of
24012 columns of the data matrix to choose the degree of the polynomial
24013 automatically.
24015 Fitting data ``exactly'' to high-degree polynomials is not always
24016 a good idea, though.  High-degree polynomials have a tendency to
24017 wiggle uncontrollably in between the fitting data points.  Also,
24018 if the exact-fit polynomial is going to be used to interpolate or
24019 extrapolate the data, it is numerically better to use the @kbd{a p}
24020 command described below.  @xref{Interpolation}.
24022 @tex
24023 \bigskip
24024 @end tex
24026 Another generalization of the linear model is to assume the
24027 @cite{y} values are a sum of linear contributions from several
24028 @cite{x} values.  This is a @dfn{multilinear} fit, and it is also
24029 selected by the @kbd{1} digit key.  (Calc decides whether the fit
24030 is linear or multilinear by counting the rows in the data matrix.)
24032 Given the data matrix,
24034 @example
24035 @group
24036 [ [  1,   2,   3,    4,   5  ]
24037   [  7,   2,   3,    5,   2  ]
24038   [ 14.5, 15, 18.5, 22.5, 24 ] ]
24039 @end group
24040 @end example
24042 @noindent
24043 the command @kbd{a F 1 @key{RET}} will call the first row @cite{x} and the
24044 second row @cite{y}, and will fit the values in the third row to the
24045 model @cite{a + b x + c y}.
24047 @example
24048 8. + 3. x + 0.5 y
24049 @end example
24051 Calc can do multilinear fits with any number of independent variables
24052 (i.e., with any number of data rows).
24054 @tex
24055 \bigskip
24056 @end tex
24058 Yet another variation is @dfn{homogeneous} linear models, in which
24059 the constant term is known to be zero.  In the linear case, this
24060 means the model formula is simply @cite{a x}; in the multilinear
24061 case, the model might be @cite{a x + b y + c z}; and in the polynomial
24062 case, the model could be @cite{a x + b x^2 + c x^3}.  You can get
24063 a homogeneous linear or multilinear model by pressing the letter
24064 @kbd{h} followed by a regular model key, like @kbd{1} or @kbd{2}.
24066 It is certainly possible to have other constrained linear models,
24067 like @cite{2.3 + a x} or @cite{a - 4 x}.  While there is no single
24068 key to select models like these, a later section shows how to enter
24069 any desired model by hand.  In the first case, for example, you
24070 would enter @kbd{a F ' 2.3 + a x}.
24072 Another class of models that will work but must be entered by hand
24073 are multinomial fits, e.g., @cite{a + b x + c y + d x^2 + e y^2 + f x y}.
24075 @node Error Estimates for Fits, Standard Nonlinear Models, Polynomial and Multilinear Fits, Curve Fitting
24076 @subsection Error Estimates for Fits
24078 @noindent
24079 @kindex H a F
24080 @tindex efit
24081 With the Hyperbolic flag, @kbd{H a F} [@code{efit}] performs the same
24082 fitting operation as @kbd{a F}, but reports the coefficients as error
24083 forms instead of plain numbers.  Fitting our two data matrices (first
24084 with 13, then with 14) to a line with @kbd{H a F} gives the results,
24086 @example
24087 3. + 2. x
24088 2.6 +/- 0.382970843103 + 2.2 +/- 0.115470053838 x
24089 @end example
24091 In the first case the estimated errors are zero because the linear
24092 fit is perfect.  In the second case, the errors are nonzero but
24093 moderately small, because the data are still very close to linear.
24095 It is also possible for the @emph{input} to a fitting operation to
24096 contain error forms.  The data values must either all include errors
24097 or all be plain numbers.  Error forms can go anywhere but generally
24098 go on the numbers in the last row of the data matrix.  If the last
24099 row contains error forms
24100 `@var{y_i}@w{ @t{+/-} }@c{$\sigma_i$}
24101 @var{sigma_i}', then the @c{$\chi^2$}
24102 @cite{chi^2}
24103 statistic is now,
24105 @ifinfo
24106 @example
24107 chi^2 = sum(((y_i - (a + b x_i)) / sigma_i)^2, i, 1, N)
24108 @end example
24109 @end ifinfo
24110 @tex
24111 \turnoffactive
24112 \beforedisplay
24113 $$ \chi^2 = \sum_{i=1}^N \left(y_i - (a + b x_i) \over \sigma_i\right)^2 $$
24114 \afterdisplay
24115 @end tex
24117 @noindent
24118 so that data points with larger error estimates contribute less to
24119 the fitting operation.
24121 If there are error forms on other rows of the data matrix, all the
24122 errors for a given data point are combined; the square root of the
24123 sum of the squares of the errors forms the @c{$\sigma_i$}
24124 @cite{sigma_i} used for
24125 the data point.
24127 Both @kbd{a F} and @kbd{H a F} can accept error forms in the input
24128 matrix, although if you are concerned about error analysis you will
24129 probably use @kbd{H a F} so that the output also contains error
24130 estimates.
24132 If the input contains error forms but all the @c{$\sigma_i$}
24133 @cite{sigma_i} values are
24134 the same, it is easy to see that the resulting fitted model will be
24135 the same as if the input did not have error forms at all (@c{$\chi^2$}
24136 @cite{chi^2}
24137 is simply scaled uniformly by @c{$1 / \sigma^2$}
24138 @cite{1 / sigma^2}, which doesn't affect
24139 where it has a minimum).  But there @emph{will} be a difference
24140 in the estimated errors of the coefficients reported by @kbd{H a F}.
24142 Consult any text on statistical modeling of data for a discussion
24143 of where these error estimates come from and how they should be
24144 interpreted.
24146 @tex
24147 \bigskip
24148 @end tex
24150 @kindex I a F
24151 @tindex xfit
24152 With the Inverse flag, @kbd{I a F} [@code{xfit}] produces even more
24153 information.  The result is a vector of six items:
24155 @enumerate
24156 @item
24157 The model formula with error forms for its coefficients or
24158 parameters.  This is the result that @kbd{H a F} would have
24159 produced.
24161 @item
24162 A vector of ``raw'' parameter values for the model.  These are the
24163 polynomial coefficients or other parameters as plain numbers, in the
24164 same order as the parameters appeared in the final prompt of the
24165 @kbd{I a F} command.  For polynomials of degree @cite{d}, this vector
24166 will have length @cite{M = d+1} with the constant term first.
24168 @item
24169 The covariance matrix @cite{C} computed from the fit.  This is
24170 an @var{m}x@var{m} symmetric matrix; the diagonal elements
24171 @c{$C_{jj}$}
24172 @cite{C_j_j} are the variances @c{$\sigma_j^2$}
24173 @cite{sigma_j^2} of the parameters.
24174 The other elements are covariances @c{$\sigma_{ij}^2$}
24175 @cite{sigma_i_j^2} that describe the
24176 correlation between pairs of parameters.  (A related set of
24177 numbers, the @dfn{linear correlation coefficients} @c{$r_{ij}$}
24178 @cite{r_i_j},
24179 are defined as @c{$\sigma_{ij}^2 / \sigma_i \, \sigma_j$}
24180 @cite{sigma_i_j^2 / sigma_i sigma_j}.)
24182 @item
24183 A vector of @cite{M} ``parameter filter'' functions whose
24184 meanings are described below.  If no filters are necessary this
24185 will instead be an empty vector; this is always the case for the
24186 polynomial and multilinear fits described so far.
24188 @item
24189 The value of @c{$\chi^2$}
24190 @cite{chi^2} for the fit, calculated by the formulas
24191 shown above.  This gives a measure of the quality of the fit;
24192 statisticians consider @c{$\chi^2 \approx N - M$}
24193 @cite{chi^2 = N - M} to indicate a moderately good fit
24194 (where again @cite{N} is the number of data points and @cite{M}
24195 is the number of parameters).
24197 @item
24198 A measure of goodness of fit expressed as a probability @cite{Q}.
24199 This is computed from the @code{utpc} probability distribution
24200 function using @c{$\chi^2$}
24201 @cite{chi^2} with @cite{N - M} degrees of freedom.  A
24202 value of 0.5 implies a good fit; some texts recommend that often
24203 @cite{Q = 0.1} or even 0.001 can signify an acceptable fit.  In
24204 particular, @c{$\chi^2$}
24205 @cite{chi^2} statistics assume the errors in your inputs
24206 follow a normal (Gaussian) distribution; if they don't, you may
24207 have to accept smaller values of @cite{Q}.
24209 The @cite{Q} value is computed only if the input included error
24210 estimates.  Otherwise, Calc will report the symbol @code{nan}
24211 for @cite{Q}.  The reason is that in this case the @c{$\chi^2$}
24212 @cite{chi^2}
24213 value has effectively been used to estimate the original errors
24214 in the input, and thus there is no redundant information left
24215 over to use for a confidence test.
24216 @end enumerate
24218 @node Standard Nonlinear Models, Curve Fitting Details, Error Estimates for Fits, Curve Fitting
24219 @subsection Standard Nonlinear Models
24221 @noindent
24222 The @kbd{a F} command also accepts other kinds of models besides
24223 lines and polynomials.  Some common models have quick single-key
24224 abbreviations; others must be entered by hand as algebraic formulas.
24226 Here is a complete list of the standard models recognized by @kbd{a F}:
24228 @table @kbd
24229 @item 1
24230 Linear or multilinear.  @i{a + b x + c y + d z}.
24231 @item 2-9
24232 Polynomials.  @i{a + b x + c x^2 + d x^3}.
24233 @item e
24234 Exponential.  @i{a} @t{exp}@i{(b x)} @t{exp}@i{(c y)}.
24235 @item E
24236 Base-10 exponential.  @i{a} @t{10^}@i{(b x)} @t{10^}@i{(c y)}.
24237 @item x
24238 Exponential (alternate notation).  @t{exp}@i{(a + b x + c y)}.
24239 @item X
24240 Base-10 exponential (alternate).  @t{10^}@i{(a + b x + c y)}.
24241 @item l
24242 Logarithmic.  @i{a + b} @t{ln}@i{(x) + c} @t{ln}@i{(y)}.
24243 @item L
24244 Base-10 logarithmic.  @i{a + b} @t{log10}@i{(x) + c} @t{log10}@i{(y)}.
24245 @item ^
24246 General exponential.  @i{a b^x c^y}.
24247 @item p
24248 Power law.  @i{a x^b y^c}.
24249 @item q
24250 Quadratic.  @i{a + b (x-c)^2 + d (x-e)^2}.
24251 @item g
24252 Gaussian.  @c{${a \over b \sqrt{2 \pi}} \exp\left( -{1 \over 2} \left( x - c \over b \right)^2 \right)$}
24253 @i{(a / b sqrt(2 pi)) exp(-0.5*((x-c)/b)^2)}.
24254 @end table
24256 All of these models are used in the usual way; just press the appropriate
24257 letter at the model prompt, and choose variable names if you wish.  The
24258 result will be a formula as shown in the above table, with the best-fit
24259 values of the parameters substituted.  (You may find it easier to read
24260 the parameter values from the vector that is placed in the trail.)
24262 All models except Gaussian and polynomials can generalize as shown to any
24263 number of independent variables.  Also, all the built-in models have an
24264 additive or multiplicative parameter shown as @cite{a} in the above table
24265 which can be replaced by zero or one, as appropriate, by typing @kbd{h}
24266 before the model key.
24268 Note that many of these models are essentially equivalent, but express
24269 the parameters slightly differently.  For example, @cite{a b^x} and
24270 the other two exponential models are all algebraic rearrangements of
24271 each other.  Also, the ``quadratic'' model is just a degree-2 polynomial
24272 with the parameters expressed differently.  Use whichever form best
24273 matches the problem.
24275 The HP-28/48 calculators support four different models for curve
24276 fitting, called @code{LIN}, @code{LOG}, @code{EXP}, and @code{PWR}.
24277 These correspond to Calc models @samp{a + b x}, @samp{a + b ln(x)},
24278 @samp{a exp(b x)}, and @samp{a x^b}, respectively.  In each case,
24279 @cite{a} is what the HP-48 identifies as the ``intercept,'' and
24280 @cite{b} is what it calls the ``slope.''
24282 @tex
24283 \bigskip
24284 @end tex
24286 If the model you want doesn't appear on this list, press @kbd{'}
24287 (the apostrophe key) at the model prompt to enter any algebraic
24288 formula, such as @kbd{m x - b}, as the model.  (Not all models
24289 will work, though---see the next section for details.)
24291 The model can also be an equation like @cite{y = m x + b}.
24292 In this case, Calc thinks of all the rows of the data matrix on
24293 equal terms; this model effectively has two parameters
24294 (@cite{m} and @cite{b}) and two independent variables (@cite{x}
24295 and @cite{y}), with no ``dependent'' variables.  Model equations
24296 do not need to take this @cite{y =} form.  For example, the
24297 implicit line equation @cite{a x + b y = 1} works fine as a
24298 model.
24300 When you enter a model, Calc makes an alphabetical list of all
24301 the variables that appear in the model.  These are used for the
24302 default parameters, independent variables, and dependent variable
24303 (in that order).  If you enter a plain formula (not an equation),
24304 Calc assumes the dependent variable does not appear in the formula
24305 and thus does not need a name.
24307 For example, if the model formula has the variables @cite{a,mu,sigma,t,x},
24308 and the data matrix has three rows (meaning two independent variables),
24309 Calc will use @cite{a,mu,sigma} as the default parameters, and the
24310 data rows will be named @cite{t} and @cite{x}, respectively.  If you
24311 enter an equation instead of a plain formula, Calc will use @cite{a,mu}
24312 as the parameters, and @cite{sigma,t,x} as the three independent
24313 variables.
24315 You can, of course, override these choices by entering something
24316 different at the prompt.  If you leave some variables out of the list,
24317 those variables must have stored values and those stored values will
24318 be used as constants in the model.  (Stored values for the parameters
24319 and independent variables are ignored by the @kbd{a F} command.)
24320 If you list only independent variables, all the remaining variables
24321 in the model formula will become parameters.
24323 If there are @kbd{$} signs in the model you type, they will stand
24324 for parameters and all other variables (in alphabetical order)
24325 will be independent.  Use @kbd{$} for one parameter, @kbd{$$} for
24326 another, and so on.  Thus @kbd{$ x + $$} is another way to describe
24327 a linear model.
24329 If you type a @kbd{$} instead of @kbd{'} at the model prompt itself,
24330 Calc will take the model formula from the stack.  (The data must then
24331 appear at the second stack level.)  The same conventions are used to
24332 choose which variables in the formula are independent by default and
24333 which are parameters.
24335 Models taken from the stack can also be expressed as vectors of
24336 two or three elements, @cite{[@var{model}, @var{vars}]} or
24337 @cite{[@var{model}, @var{vars}, @var{params}]}.  Each of @var{vars}
24338 and @var{params} may be either a variable or a vector of variables.
24339 (If @var{params} is omitted, all variables in @var{model} except
24340 those listed as @var{vars} are parameters.)@refill
24342 When you enter a model manually with @kbd{'}, Calc puts a 3-vector
24343 describing the model in the trail so you can get it back if you wish.
24345 @tex
24346 \bigskip
24347 @end tex
24349 @vindex Model1
24350 @vindex Model2
24351 Finally, you can store a model in one of the Calc variables
24352 @code{Model1} or @code{Model2}, then use this model by typing
24353 @kbd{a F u} or @kbd{a F U} (respectively).  The value stored in
24354 the variable can be any of the formats that @kbd{a F $} would
24355 accept for a model on the stack.
24357 @tex
24358 \bigskip
24359 @end tex
24361 Calc uses the principal values of inverse functions like @code{ln}
24362 and @code{arcsin} when doing fits.  For example, when you enter
24363 the model @samp{y = sin(a t + b)} Calc actually uses the easier
24364 form @samp{arcsin(y) = a t + b}.  The @code{arcsin} function always
24365 returns results in the range from @i{-90} to 90 degrees (or the
24366 equivalent range in radians).  Suppose you had data that you
24367 believed to represent roughly three oscillations of a sine wave,
24368 so that the argument of the sine might go from zero to @c{$3\times360$}
24369 @i{3*360} degrees.
24370 The above model would appear to be a good way to determine the
24371 true frequency and phase of the sine wave, but in practice it
24372 would fail utterly.  The righthand side of the actual model
24373 @samp{arcsin(y) = a t + b} will grow smoothly with @cite{t}, but
24374 the lefthand side will bounce back and forth between @i{-90} and 90.
24375 No values of @cite{a} and @cite{b} can make the two sides match,
24376 even approximately.
24378 There is no good solution to this problem at present.  You could
24379 restrict your data to small enough ranges so that the above problem
24380 doesn't occur (i.e., not straddling any peaks in the sine wave).
24381 Or, in this case, you could use a totally different method such as
24382 Fourier analysis, which is beyond the scope of the @kbd{a F} command.
24383 (Unfortunately, Calc does not currently have any facilities for
24384 taking Fourier and related transforms.)
24386 @node Curve Fitting Details, Interpolation, Standard Nonlinear Models, Curve Fitting
24387 @subsection Curve Fitting Details
24389 @noindent
24390 Calc's internal least-squares fitter can only handle multilinear
24391 models.  More precisely, it can handle any model of the form
24392 @cite{a f(x,y,z) + b g(x,y,z) + c h(x,y,z)}, where @cite{a,b,c}
24393 are the parameters and @cite{x,y,z} are the independent variables
24394 (of course there can be any number of each, not just three).
24396 In a simple multilinear or polynomial fit, it is easy to see how
24397 to convert the model into this form.  For example, if the model
24398 is @cite{a + b x + c x^2}, then @cite{f(x) = 1}, @cite{g(x) = x},
24399 and @cite{h(x) = x^2} are suitable functions.
24401 For other models, Calc uses a variety of algebraic manipulations
24402 to try to put the problem into the form
24404 @smallexample
24405 Y(x,y,z) = A(a,b,c) F(x,y,z) + B(a,b,c) G(x,y,z) + C(a,b,c) H(x,y,z)
24406 @end smallexample
24408 @noindent
24409 where @cite{Y,A,B,C,F,G,H} are arbitrary functions.  It computes
24410 @cite{Y}, @cite{F}, @cite{G}, and @cite{H} for all the data points,
24411 does a standard linear fit to find the values of @cite{A}, @cite{B},
24412 and @cite{C}, then uses the equation solver to solve for @cite{a,b,c}
24413 in terms of @cite{A,B,C}.
24415 A remarkable number of models can be cast into this general form.
24416 We'll look at two examples here to see how it works.  The power-law
24417 model @cite{y = a x^b} with two independent variables and two parameters
24418 can be rewritten as follows:
24420 @example
24421 y = a x^b
24422 y = a exp(b ln(x))
24423 y = exp(ln(a) + b ln(x))
24424 ln(y) = ln(a) + b ln(x)
24425 @end example
24427 @noindent
24428 which matches the desired form with @c{$Y = \ln(y)$}
24429 @cite{Y = ln(y)}, @c{$A = \ln(a)$}
24430 @cite{A = ln(a)},
24431 @cite{F = 1}, @cite{B = b}, and @c{$G = \ln(x)$}
24432 @cite{G = ln(x)}.  Calc thus computes
24433 the logarithms of your @cite{y} and @cite{x} values, does a linear fit
24434 for @cite{A} and @cite{B}, then solves to get @c{$a = \exp(A)$}
24435 @cite{a = exp(A)} and
24436 @cite{b = B}.
24438 Another interesting example is the ``quadratic'' model, which can
24439 be handled by expanding according to the distributive law.
24441 @example
24442 y = a + b*(x - c)^2
24443 y = a + b c^2 - 2 b c x + b x^2
24444 @end example
24446 @noindent
24447 which matches with @cite{Y = y}, @cite{A = a + b c^2}, @cite{F = 1},
24448 @cite{B = -2 b c}, @cite{G = x} (the @i{-2} factor could just as easily
24449 have been put into @cite{G} instead of @cite{B}), @cite{C = b}, and
24450 @cite{H = x^2}.
24452 The Gaussian model looks quite complicated, but a closer examination
24453 shows that it's actually similar to the quadratic model but with an
24454 exponential that can be brought to the top and moved into @cite{Y}.
24456 An example of a model that cannot be put into general linear
24457 form is a Gaussian with a constant background added on, i.e.,
24458 @cite{d} + the regular Gaussian formula.  If you have a model like
24459 this, your best bet is to replace enough of your parameters with
24460 constants to make the model linearizable, then adjust the constants
24461 manually by doing a series of fits.  You can compare the fits by
24462 graphing them, by examining the goodness-of-fit measures returned by
24463 @kbd{I a F}, or by some other method suitable to your application.
24464 Note that some models can be linearized in several ways.  The
24465 Gaussian-plus-@var{d} model can be linearized by setting @cite{d}
24466 (the background) to a constant, or by setting @cite{b} (the standard
24467 deviation) and @cite{c} (the mean) to constants.
24469 To fit a model with constants substituted for some parameters, just
24470 store suitable values in those parameter variables, then omit them
24471 from the list of parameters when you answer the variables prompt.
24473 @tex
24474 \bigskip
24475 @end tex
24477 A last desperate step would be to use the general-purpose
24478 @code{minimize} function rather than @code{fit}.  After all, both
24479 functions solve the problem of minimizing an expression (the @c{$\chi^2$}
24480 @cite{chi^2}
24481 sum) by adjusting certain parameters in the expression.  The @kbd{a F}
24482 command is able to use a vastly more efficient algorithm due to its
24483 special knowledge about linear chi-square sums, but the @kbd{a N}
24484 command can do the same thing by brute force.
24486 A compromise would be to pick out a few parameters without which the
24487 fit is linearizable, and use @code{minimize} on a call to @code{fit}
24488 which efficiently takes care of the rest of the parameters.  The thing
24489 to be minimized would be the value of @c{$\chi^2$}
24490 @cite{chi^2} returned as
24491 the fifth result of the @code{xfit} function:
24493 @smallexample
24494 minimize(xfit(gaus(a,b,c,d,x), x, [a,b,c], data)_5, d, guess)
24495 @end smallexample
24497 @noindent
24498 where @code{gaus} represents the Gaussian model with background,
24499 @code{data} represents the data matrix, and @code{guess} represents
24500 the initial guess for @cite{d} that @code{minimize} requires.
24501 This operation will only be, shall we say, extraordinarily slow
24502 rather than astronomically slow (as would be the case if @code{minimize}
24503 were used by itself to solve the problem).
24505 @tex
24506 \bigskip
24507 @end tex
24509 The @kbd{I a F} [@code{xfit}] command is somewhat trickier when
24510 nonlinear models are used.  The second item in the result is the
24511 vector of ``raw'' parameters @cite{A}, @cite{B}, @cite{C}.  The
24512 covariance matrix is written in terms of those raw parameters.
24513 The fifth item is a vector of @dfn{filter} expressions.  This
24514 is the empty vector @samp{[]} if the raw parameters were the same
24515 as the requested parameters, i.e., if @cite{A = a}, @cite{B = b},
24516 and so on (which is always true if the model is already linear
24517 in the parameters as written, e.g., for polynomial fits).  If the
24518 parameters had to be rearranged, the fifth item is instead a vector
24519 of one formula per parameter in the original model.  The raw
24520 parameters are expressed in these ``filter'' formulas as
24521 @samp{fitdummy(1)} for @cite{A}, @samp{fitdummy(2)} for @cite{B},
24522 and so on.
24524 When Calc needs to modify the model to return the result, it replaces
24525 @samp{fitdummy(1)} in all the filters with the first item in the raw
24526 parameters list, and so on for the other raw parameters, then
24527 evaluates the resulting filter formulas to get the actual parameter
24528 values to be substituted into the original model.  In the case of
24529 @kbd{H a F} and @kbd{I a F} where the parameters must be error forms,
24530 Calc uses the square roots of the diagonal entries of the covariance
24531 matrix as error values for the raw parameters, then lets Calc's
24532 standard error-form arithmetic take it from there.
24534 If you use @kbd{I a F} with a nonlinear model, be sure to remember
24535 that the covariance matrix is in terms of the raw parameters,
24536 @emph{not} the actual requested parameters.  It's up to you to
24537 figure out how to interpret the covariances in the presence of
24538 nontrivial filter functions.
24540 Things are also complicated when the input contains error forms.
24541 Suppose there are three independent and dependent variables, @cite{x},
24542 @cite{y}, and @cite{z}, one or more of which are error forms in the
24543 data.  Calc combines all the error values by taking the square root
24544 of the sum of the squares of the errors.  It then changes @cite{x}
24545 and @cite{y} to be plain numbers, and makes @cite{z} into an error
24546 form with this combined error.  The @cite{Y(x,y,z)} part of the
24547 linearized model is evaluated, and the result should be an error
24548 form.  The error part of that result is used for @c{$\sigma_i$}
24549 @cite{sigma_i} for
24550 the data point.  If for some reason @cite{Y(x,y,z)} does not return
24551 an error form, the combined error from @cite{z} is used directly
24552 for @c{$\sigma_i$}
24553 @cite{sigma_i}.  Finally, @cite{z} is also stripped of its error
24554 for use in computing @cite{F(x,y,z)}, @cite{G(x,y,z)} and so on;
24555 the righthand side of the linearized model is computed in regular
24556 arithmetic with no error forms.
24558 (While these rules may seem complicated, they are designed to do
24559 the most reasonable thing in the typical case that @cite{Y(x,y,z)}
24560 depends only on the dependent variable @cite{z}, and in fact is
24561 often simply equal to @cite{z}.  For common cases like polynomials
24562 and multilinear models, the combined error is simply used as the
24563 @c{$\sigma$}
24564 @cite{sigma} for the data point with no further ado.)
24566 @tex
24567 \bigskip
24568 @end tex
24570 @vindex FitRules
24571 It may be the case that the model you wish to use is linearizable,
24572 but Calc's built-in rules are unable to figure it out.  Calc uses
24573 its algebraic rewrite mechanism to linearize a model.  The rewrite
24574 rules are kept in the variable @code{FitRules}.  You can edit this
24575 variable using the @kbd{s e FitRules} command; in fact, there is
24576 a special @kbd{s F} command just for editing @code{FitRules}.
24577 @xref{Operations on Variables}.
24579 @xref{Rewrite Rules}, for a discussion of rewrite rules.
24581 @ignore
24582 @starindex
24583 @end ignore
24584 @tindex fitvar
24585 @ignore
24586 @starindex
24587 @end ignore
24588 @ignore
24589 @mindex @idots
24590 @end ignore
24591 @tindex fitparam
24592 @ignore
24593 @starindex
24594 @end ignore
24595 @ignore
24596 @mindex @null
24597 @end ignore
24598 @tindex fitmodel
24599 @ignore
24600 @starindex
24601 @end ignore
24602 @ignore
24603 @mindex @null
24604 @end ignore
24605 @tindex fitsystem
24606 @ignore
24607 @starindex
24608 @end ignore
24609 @ignore
24610 @mindex @null
24611 @end ignore
24612 @tindex fitdummy
24613 Calc uses @code{FitRules} as follows.  First, it converts the model
24614 to an equation if necessary and encloses the model equation in a
24615 call to the function @code{fitmodel} (which is not actually a defined
24616 function in Calc; it is only used as a placeholder by the rewrite rules).
24617 Parameter variables are renamed to function calls @samp{fitparam(1)},
24618 @samp{fitparam(2)}, and so on, and independent variables are renamed
24619 to @samp{fitvar(1)}, @samp{fitvar(2)}, etc.  The dependent variable
24620 is the highest-numbered @code{fitvar}.  For example, the power law
24621 model @cite{a x^b} is converted to @cite{y = a x^b}, then to
24623 @smallexample
24624 @group
24625 fitmodel(fitvar(2) = fitparam(1) fitvar(1)^fitparam(2))
24626 @end group
24627 @end smallexample
24629 Calc then applies the rewrites as if by @samp{C-u 0 a r FitRules}.
24630 (The zero prefix means that rewriting should continue until no further
24631 changes are possible.)
24633 When rewriting is complete, the @code{fitmodel} call should have
24634 been replaced by a @code{fitsystem} call that looks like this:
24636 @example
24637 fitsystem(@var{Y}, @var{FGH}, @var{abc})
24638 @end example
24640 @noindent
24641 where @var{Y} is a formula that describes the function @cite{Y(x,y,z)},
24642 @var{FGH} is the vector of formulas @cite{[F(x,y,z), G(x,y,z), H(x,y,z)]},
24643 and @var{abc} is the vector of parameter filters which refer to the
24644 raw parameters as @samp{fitdummy(1)} for @cite{A}, @samp{fitdummy(2)}
24645 for @cite{B}, etc.  While the number of raw parameters (the length of
24646 the @var{FGH} vector) is usually the same as the number of original
24647 parameters (the length of the @var{abc} vector), this is not required.
24649 The power law model eventually boils down to
24651 @smallexample
24652 @group
24653 fitsystem(ln(fitvar(2)),
24654           [1, ln(fitvar(1))],
24655           [exp(fitdummy(1)), fitdummy(2)])
24656 @end group
24657 @end smallexample
24659 The actual implementation of @code{FitRules} is complicated; it
24660 proceeds in four phases.  First, common rearrangements are done
24661 to try to bring linear terms together and to isolate functions like
24662 @code{exp} and @code{ln} either all the way ``out'' (so that they
24663 can be put into @var{Y}) or all the way ``in'' (so that they can
24664 be put into @var{abc} or @var{FGH}).  In particular, all
24665 non-constant powers are converted to logs-and-exponentials form,
24666 and the distributive law is used to expand products of sums.
24667 Quotients are rewritten to use the @samp{fitinv} function, where
24668 @samp{fitinv(x)} represents @cite{1/x} while the @code{FitRules}
24669 are operating.  (The use of @code{fitinv} makes recognition of
24670 linear-looking forms easier.)  If you modify @code{FitRules}, you
24671 will probably only need to modify the rules for this phase.
24673 Phase two, whose rules can actually also apply during phases one
24674 and three, first rewrites @code{fitmodel} to a two-argument
24675 form @samp{fitmodel(@var{Y}, @var{model})}, where @var{Y} is
24676 initially zero and @var{model} has been changed from @cite{a=b}
24677 to @cite{a-b} form.  It then tries to peel off invertible functions
24678 from the outside of @var{model} and put them into @var{Y} instead,
24679 calling the equation solver to invert the functions.  Finally, when
24680 this is no longer possible, the @code{fitmodel} is changed to a
24681 four-argument @code{fitsystem}, where the fourth argument is
24682 @var{model} and the @var{FGH} and @var{abc} vectors are initially
24683 empty.  (The last vector is really @var{ABC}, corresponding to
24684 raw parameters, for now.)
24686 Phase three converts a sum of items in the @var{model} to a sum
24687 of @samp{fitpart(@var{a}, @var{b}, @var{c})} terms which represent
24688 terms @samp{@var{a}*@var{b}*@var{c}} of the sum, where @var{a}
24689 is all factors that do not involve any variables, @var{b} is all
24690 factors that involve only parameters, and @var{c} is the factors
24691 that involve only independent variables.  (If this decomposition
24692 is not possible, the rule set will not complete and Calc will
24693 complain that the model is too complex.)  Then @code{fitpart}s
24694 with equal @var{b} or @var{c} components are merged back together
24695 using the distributive law in order to minimize the number of
24696 raw parameters needed.
24698 Phase four moves the @code{fitpart} terms into the @var{FGH} and
24699 @var{ABC} vectors.  Also, some of the algebraic expansions that
24700 were done in phase 1 are undone now to make the formulas more
24701 computationally efficient.  Finally, it calls the solver one more
24702 time to convert the @var{ABC} vector to an @var{abc} vector, and
24703 removes the fourth @var{model} argument (which by now will be zero)
24704 to obtain the three-argument @code{fitsystem} that the linear
24705 least-squares solver wants to see.
24707 @ignore
24708 @starindex
24709 @end ignore
24710 @ignore
24711 @mindex hasfit@idots
24712 @end ignore
24713 @tindex hasfitparams
24714 @ignore
24715 @starindex
24716 @end ignore
24717 @ignore
24718 @mindex @null
24719 @end ignore
24720 @tindex hasfitvars
24721 Two functions which are useful in connection with @code{FitRules}
24722 are @samp{hasfitparams(x)} and @samp{hasfitvars(x)}, which check
24723 whether @cite{x} refers to any parameters or independent variables,
24724 respectively.  Specifically, these functions return ``true'' if the
24725 argument contains any @code{fitparam} (or @code{fitvar}) function
24726 calls, and ``false'' otherwise.  (Recall that ``true'' means a
24727 nonzero number, and ``false'' means zero.  The actual nonzero number
24728 returned is the largest @var{n} from all the @samp{fitparam(@var{n})}s
24729 or @samp{fitvar(@var{n})}s, respectively, that appear in the formula.)
24731 @tex
24732 \bigskip
24733 @end tex
24735 The @code{fit} function in algebraic notation normally takes four
24736 arguments, @samp{fit(@var{model}, @var{vars}, @var{params}, @var{data})},
24737 where @var{model} is the model formula as it would be typed after
24738 @kbd{a F '}, @var{vars} is the independent variable or a vector of
24739 independent variables, @var{params} likewise gives the parameter(s),
24740 and @var{data} is the data matrix.  Note that the length of @var{vars}
24741 must be equal to the number of rows in @var{data} if @var{model} is
24742 an equation, or one less than the number of rows if @var{model} is
24743 a plain formula.  (Actually, a name for the dependent variable is
24744 allowed but will be ignored in the plain-formula case.)
24746 If @var{params} is omitted, the parameters are all variables in
24747 @var{model} except those that appear in @var{vars}.  If @var{vars}
24748 is also omitted, Calc sorts all the variables that appear in
24749 @var{model} alphabetically and uses the higher ones for @var{vars}
24750 and the lower ones for @var{params}.
24752 Alternatively, @samp{fit(@var{modelvec}, @var{data})} is allowed
24753 where @var{modelvec} is a 2- or 3-vector describing the model
24754 and variables, as discussed previously.
24756 If Calc is unable to do the fit, the @code{fit} function is left
24757 in symbolic form, ordinarily with an explanatory message.  The
24758 message will be ``Model expression is too complex'' if the
24759 linearizer was unable to put the model into the required form.
24761 The @code{efit} (corresponding to @kbd{H a F}) and @code{xfit}
24762 (for @kbd{I a F}) functions are completely analogous.
24764 @node Interpolation, ,  Curve Fitting Details, Curve Fitting
24765 @subsection Polynomial Interpolation
24767 @kindex a p
24768 @pindex calc-poly-interp
24769 @tindex polint
24770 The @kbd{a p} (@code{calc-poly-interp}) [@code{polint}] command does
24771 a polynomial interpolation at a particular @cite{x} value.  It takes
24772 two arguments from the stack:  A data matrix of the sort used by
24773 @kbd{a F}, and a single number which represents the desired @cite{x}
24774 value.  Calc effectively does an exact polynomial fit as if by @kbd{a F i},
24775 then substitutes the @cite{x} value into the result in order to get an
24776 approximate @cite{y} value based on the fit.  (Calc does not actually
24777 use @kbd{a F i}, however; it uses a direct method which is both more
24778 efficient and more numerically stable.)
24780 The result of @kbd{a p} is actually a vector of two values:  The @cite{y}
24781 value approximation, and an error measure @cite{dy} that reflects Calc's
24782 estimation of the probable error of the approximation at that value of
24783 @cite{x}.  If the input @cite{x} is equal to any of the @cite{x} values
24784 in the data matrix, the output @cite{y} will be the corresponding @cite{y}
24785 value from the matrix, and the output @cite{dy} will be exactly zero.
24787 A prefix argument of 2 causes @kbd{a p} to take separate x- and
24788 y-vectors from the stack instead of one data matrix.
24790 If @cite{x} is a vector of numbers, @kbd{a p} will return a matrix of
24791 interpolated results for each of those @cite{x} values.  (The matrix will
24792 have two columns, the @cite{y} values and the @cite{dy} values.)
24793 If @cite{x} is a formula instead of a number, the @code{polint} function
24794 remains in symbolic form; use the @kbd{a "} command to expand it out to
24795 a formula that describes the fit in symbolic terms.
24797 In all cases, the @kbd{a p} command leaves the data vectors or matrix
24798 on the stack.  Only the @cite{x} value is replaced by the result.
24800 @kindex H a p
24801 @tindex ratint
24802 The @kbd{H a p} [@code{ratint}] command does a rational function
24803 interpolation.  It is used exactly like @kbd{a p}, except that it
24804 uses as its model the quotient of two polynomials.  If there are
24805 @cite{N} data points, the numerator and denominator polynomials will
24806 each have degree @cite{N/2} (if @cite{N} is odd, the denominator will
24807 have degree one higher than the numerator).
24809 Rational approximations have the advantage that they can accurately
24810 describe functions that have poles (points at which the function's value
24811 goes to infinity, so that the denominator polynomial of the approximation
24812 goes to zero).  If @cite{x} corresponds to a pole of the fitted rational
24813 function, then the result will be a division by zero.  If Infinite mode
24814 is enabled, the result will be @samp{[uinf, uinf]}.
24816 There is no way to get the actual coefficients of the rational function
24817 used by @kbd{H a p}.  (The algorithm never generates these coefficients
24818 explicitly, and quotients of polynomials are beyond @w{@kbd{a F}}'s
24819 capabilities to fit.)
24821 @node Summations, Logical Operations, Curve Fitting, Algebra
24822 @section Summations
24824 @noindent
24825 @cindex Summation of a series
24826 @kindex a +
24827 @pindex calc-summation
24828 @tindex sum
24829 The @kbd{a +} (@code{calc-summation}) [@code{sum}] command computes
24830 the sum of a formula over a certain range of index values.  The formula
24831 is taken from the top of the stack; the command prompts for the
24832 name of the summation index variable, the lower limit of the
24833 sum (any formula), and the upper limit of the sum.  If you
24834 enter a blank line at any of these prompts, that prompt and
24835 any later ones are answered by reading additional elements from
24836 the stack.  Thus, @kbd{' k^2 @key{RET} ' k @key{RET} 1 @key{RET} 5 @key{RET} a + @key{RET}}
24837 produces the result 55.
24838 @tex
24839 \turnoffactive
24840 $$ \sum_{k=1}^5 k^2 = 55 $$
24841 @end tex
24843 The choice of index variable is arbitrary, but it's best not to
24844 use a variable with a stored value.  In particular, while
24845 @code{i} is often a favorite index variable, it should be avoided
24846 in Calc because @code{i} has the imaginary constant @cite{(0, 1)}
24847 as a value.  If you pressed @kbd{=} on a sum over @code{i}, it would
24848 be changed to a nonsensical sum over the ``variable'' @cite{(0, 1)}!
24849 If you really want to use @code{i} as an index variable, use
24850 @w{@kbd{s u i @key{RET}}} first to ``unstore'' this variable.
24851 (@xref{Storing Variables}.)
24853 A numeric prefix argument steps the index by that amount rather
24854 than by one.  Thus @kbd{' a_k @key{RET} C-u -2 a + k @key{RET} 10 @key{RET} 0 @key{RET}}
24855 yields @samp{a_10 + a_8 + a_6 + a_4 + a_2 + a_0}.  A prefix
24856 argument of plain @kbd{C-u} causes @kbd{a +} to prompt for the
24857 step value, in which case you can enter any formula or enter
24858 a blank line to take the step value from the stack.  With the
24859 @kbd{C-u} prefix, @kbd{a +} can take up to five arguments from
24860 the stack:  The formula, the variable, the lower limit, the
24861 upper limit, and (at the top of the stack), the step value.
24863 Calc knows how to do certain sums in closed form.  For example,
24864 @samp{sum(6 k^2, k, 1, n) = @w{2 n^3} + 3 n^2 + n}.  In particular,
24865 this is possible if the formula being summed is polynomial or
24866 exponential in the index variable.  Sums of logarithms are
24867 transformed into logarithms of products.  Sums of trigonometric
24868 and hyperbolic functions are transformed to sums of exponentials
24869 and then done in closed form.  Also, of course, sums in which the
24870 lower and upper limits are both numbers can always be evaluated
24871 just by grinding them out, although Calc will use closed forms
24872 whenever it can for the sake of efficiency.
24874 The notation for sums in algebraic formulas is
24875 @samp{sum(@var{expr}, @var{var}, @var{low}, @var{high}, @var{step})}.
24876 If @var{step} is omitted, it defaults to one.  If @var{high} is
24877 omitted, @var{low} is actually the upper limit and the lower limit
24878 is one.  If @var{low} is also omitted, the limits are @samp{-inf}
24879 and @samp{inf}, respectively.
24881 Infinite sums can sometimes be evaluated:  @samp{sum(.5^k, k, 1, inf)}
24882 returns @cite{1}.  This is done by evaluating the sum in closed
24883 form (to @samp{1. - 0.5^n} in this case), then evaluating this
24884 formula with @code{n} set to @code{inf}.  Calc's usual rules
24885 for ``infinite'' arithmetic can find the answer from there.  If
24886 infinite arithmetic yields a @samp{nan}, or if the sum cannot be
24887 solved in closed form, Calc leaves the @code{sum} function in
24888 symbolic form.  @xref{Infinities}.
24890 As a special feature, if the limits are infinite (or omitted, as
24891 described above) but the formula includes vectors subscripted by
24892 expressions that involve the iteration variable, Calc narrows
24893 the limits to include only the range of integers which result in
24894 legal subscripts for the vector.  For example, the sum
24895 @samp{sum(k [a,b,c,d,e,f,g]_(2k),k)} evaluates to @samp{b + 2 d + 3 f}.
24897 The limits of a sum do not need to be integers.  For example,
24898 @samp{sum(a_k, k, 0, 2 n, n)} produces @samp{a_0 + a_n + a_(2 n)}.
24899 Calc computes the number of iterations using the formula
24900 @samp{1 + (@var{high} - @var{low}) / @var{step}}, which must,
24901 after simplification as if by @kbd{a s}, evaluate to an integer.
24903 If the number of iterations according to the above formula does
24904 not come out to an integer, the sum is illegal and will be left
24905 in symbolic form.  However, closed forms are still supplied, and
24906 you are on your honor not to misuse the resulting formulas by
24907 substituting mismatched bounds into them.  For example,
24908 @samp{sum(k, k, 1, 10, 2)} is invalid, but Calc will go ahead and
24909 evaluate the closed form solution for the limits 1 and 10 to get
24910 the rather dubious answer, 29.25.
24912 If the lower limit is greater than the upper limit (assuming a
24913 positive step size), the result is generally zero.  However,
24914 Calc only guarantees a zero result when the upper limit is
24915 exactly one step less than the lower limit, i.e., if the number
24916 of iterations is @i{-1}.  Thus @samp{sum(f(k), k, n, n-1)} is zero
24917 but the sum from @samp{n} to @samp{n-2} may report a nonzero value
24918 if Calc used a closed form solution.
24920 Calc's logical predicates like @cite{a < b} return 1 for ``true''
24921 and 0 for ``false.''  @xref{Logical Operations}.  This can be
24922 used to advantage for building conditional sums.  For example,
24923 @samp{sum(prime(k)*k^2, k, 1, 20)} is the sum of the squares of all
24924 prime numbers from 1 to 20; the @code{prime} predicate returns 1 if
24925 its argument is prime and 0 otherwise.  You can read this expression
24926 as ``the sum of @cite{k^2}, where @cite{k} is prime.''  Indeed,
24927 @samp{sum(prime(k)*k^2, k)} would represent the sum of @emph{all} primes
24928 squared, since the limits default to plus and minus infinity, but
24929 there are no such sums that Calc's built-in rules can do in
24930 closed form.
24932 As another example, @samp{sum((k != k_0) * f(k), k, 1, n)} is the
24933 sum of @cite{f(k)} for all @cite{k} from 1 to @cite{n}, excluding
24934 one value @cite{k_0}.  Slightly more tricky is the summand
24935 @samp{(k != k_0) / (k - k_0)}, which is an attempt to describe
24936 the sum of all @cite{1/(k-k_0)} except at @cite{k = k_0}, where
24937 this would be a division by zero.  But at @cite{k = k_0}, this
24938 formula works out to the indeterminate form @cite{0 / 0}, which
24939 Calc will not assume is zero.  Better would be to use
24940 @samp{(k != k_0) ? 1/(k-k_0) : 0}; the @samp{? :} operator does
24941 an ``if-then-else'' test:  This expression says, ``if @c{$k \ne k_0$}
24942 @cite{k != k_0},
24943 then @cite{1/(k-k_0)}, else zero.''  Now the formula @cite{1/(k-k_0)}
24944 will not even be evaluated by Calc when @cite{k = k_0}.
24946 @cindex Alternating sums
24947 @kindex a -
24948 @pindex calc-alt-summation
24949 @tindex asum
24950 The @kbd{a -} (@code{calc-alt-summation}) [@code{asum}] command
24951 computes an alternating sum.  Successive terms of the sequence
24952 are given alternating signs, with the first term (corresponding
24953 to the lower index value) being positive.  Alternating sums
24954 are converted to normal sums with an extra term of the form
24955 @samp{(-1)^(k-@var{low})}.  This formula is adjusted appropriately
24956 if the step value is other than one.  For example, the Taylor
24957 series for the sine function is @samp{asum(x^k / k!, k, 1, inf, 2)}.
24958 (Calc cannot evaluate this infinite series, but it can approximate
24959 it if you replace @code{inf} with any particular odd number.)
24960 Calc converts this series to a regular sum with a step of one,
24961 namely @samp{sum((-1)^k x^(2k+1) / (2k+1)!, k, 0, inf)}.
24963 @cindex Product of a sequence
24964 @kindex a *
24965 @pindex calc-product
24966 @tindex prod
24967 The @kbd{a *} (@code{calc-product}) [@code{prod}] command is
24968 the analogous way to take a product of many terms.  Calc also knows
24969 some closed forms for products, such as @samp{prod(k, k, 1, n) = n!}.
24970 Conditional products can be written @samp{prod(k^prime(k), k, 1, n)}
24971 or @samp{prod(prime(k) ? k : 1, k, 1, n)}.
24973 @kindex a T
24974 @pindex calc-tabulate
24975 @tindex table
24976 The @kbd{a T} (@code{calc-tabulate}) [@code{table}] command
24977 evaluates a formula at a series of iterated index values, just
24978 like @code{sum} and @code{prod}, but its result is simply a
24979 vector of the results.  For example, @samp{table(a_i, i, 1, 7, 2)}
24980 produces @samp{[a_1, a_3, a_5, a_7]}.
24982 @node Logical Operations, Rewrite Rules, Summations, Algebra
24983 @section Logical Operations
24985 @noindent
24986 The following commands and algebraic functions return true/false values,
24987 where 1 represents ``true'' and 0 represents ``false.''  In cases where
24988 a truth value is required (such as for the condition part of a rewrite
24989 rule, or as the condition for a @w{@kbd{Z [ Z ]}} control structure), any
24990 nonzero value is accepted to mean ``true.''  (Specifically, anything
24991 for which @code{dnonzero} returns 1 is ``true,'' and anything for
24992 which @code{dnonzero} returns 0 or cannot decide is assumed ``false.''
24993 Note that this means that @w{@kbd{Z [ Z ]}} will execute the ``then''
24994 portion if its condition is provably true, but it will execute the
24995 ``else'' portion for any condition like @cite{a = b} that is not
24996 provably true, even if it might be true.  Algebraic functions that
24997 have conditions as arguments, like @code{? :} and @code{&&}, remain
24998 unevaluated if the condition is neither provably true nor provably
24999 false.  @xref{Declarations}.)
25001 @kindex a =
25002 @pindex calc-equal-to
25003 @tindex eq
25004 @tindex =
25005 @tindex ==
25006 The @kbd{a =} (@code{calc-equal-to}) command, or @samp{eq(a,b)} function
25007 (which can also be written @samp{a = b} or @samp{a == b} in an algebraic
25008 formula) is true if @cite{a} and @cite{b} are equal, either because they
25009 are identical expressions, or because they are numbers which are
25010 numerically equal.  (Thus the integer 1 is considered equal to the float
25011 1.0.)  If the equality of @cite{a} and @cite{b} cannot be determined,
25012 the comparison is left in symbolic form.  Note that as a command, this
25013 operation pops two values from the stack and pushes back either a 1 or
25014 a 0, or a formula @samp{a = b} if the values' equality cannot be determined.
25016 Many Calc commands use @samp{=} formulas to represent @dfn{equations}.
25017 For example, the @kbd{a S} (@code{calc-solve-for}) command rearranges
25018 an equation to solve for a given variable.  The @kbd{a M}
25019 (@code{calc-map-equation}) command can be used to apply any
25020 function to both sides of an equation; for example, @kbd{2 a M *}
25021 multiplies both sides of the equation by two.  Note that just
25022 @kbd{2 *} would not do the same thing; it would produce the formula
25023 @samp{2 (a = b)} which represents 2 if the equality is true or
25024 zero if not.
25026 The @code{eq} function with more than two arguments (e.g., @kbd{C-u 3 a =}
25027 or @samp{a = b = c}) tests if all of its arguments are equal.  In
25028 algebraic notation, the @samp{=} operator is unusual in that it is
25029 neither left- nor right-associative:  @samp{a = b = c} is not the
25030 same as @samp{(a = b) = c} or @samp{a = (b = c)} (which each compare
25031 one variable with the 1 or 0 that results from comparing two other
25032 variables).
25034 @kindex a #
25035 @pindex calc-not-equal-to
25036 @tindex neq
25037 @tindex !=
25038 The @kbd{a #} (@code{calc-not-equal-to}) command, or @samp{neq(a,b)} or
25039 @samp{a != b} function, is true if @cite{a} and @cite{b} are not equal.
25040 This also works with more than two arguments; @samp{a != b != c != d}
25041 tests that all four of @cite{a}, @cite{b}, @cite{c}, and @cite{d} are
25042 distinct numbers.
25044 @kindex a <
25045 @tindex lt
25046 @ignore
25047 @mindex @idots
25048 @end ignore
25049 @kindex a >
25050 @ignore
25051 @mindex @null
25052 @end ignore
25053 @kindex a [
25054 @ignore
25055 @mindex @null
25056 @end ignore
25057 @kindex a ]
25058 @pindex calc-less-than
25059 @pindex calc-greater-than
25060 @pindex calc-less-equal
25061 @pindex calc-greater-equal
25062 @ignore
25063 @mindex @null
25064 @end ignore
25065 @tindex gt
25066 @ignore
25067 @mindex @null
25068 @end ignore
25069 @tindex leq
25070 @ignore
25071 @mindex @null
25072 @end ignore
25073 @tindex geq
25074 @ignore
25075 @mindex @null
25076 @end ignore
25077 @tindex <
25078 @ignore
25079 @mindex @null
25080 @end ignore
25081 @tindex >
25082 @ignore
25083 @mindex @null
25084 @end ignore
25085 @tindex <=
25086 @ignore
25087 @mindex @null
25088 @end ignore
25089 @tindex >=
25090 The @kbd{a <} (@code{calc-less-than}) [@samp{lt(a,b)} or @samp{a < b}]
25091 operation is true if @cite{a} is less than @cite{b}.  Similar functions
25092 are @kbd{a >} (@code{calc-greater-than}) [@samp{gt(a,b)} or @samp{a > b}],
25093 @kbd{a [} (@code{calc-less-equal}) [@samp{leq(a,b)} or @samp{a <= b}], and
25094 @kbd{a ]} (@code{calc-greater-equal}) [@samp{geq(a,b)} or @samp{a >= b}].
25096 While the inequality functions like @code{lt} do not accept more
25097 than two arguments, the syntax @w{@samp{a <= b < c}} is translated to an
25098 equivalent expression involving intervals: @samp{b in [a .. c)}.
25099 (See the description of @code{in} below.)  All four combinations
25100 of @samp{<} and @samp{<=} are allowed, or any of the four combinations
25101 of @samp{>} and @samp{>=}.  Four-argument constructions like
25102 @samp{a < b < c < d}, and mixtures like @w{@samp{a < b = c}} that
25103 involve both equalities and inequalities, are not allowed.
25105 @kindex a .
25106 @pindex calc-remove-equal
25107 @tindex rmeq
25108 The @kbd{a .} (@code{calc-remove-equal}) [@code{rmeq}] command extracts
25109 the righthand side of the equation or inequality on the top of the
25110 stack.  It also works elementwise on vectors.  For example, if
25111 @samp{[x = 2.34, y = z / 2]} is on the stack, then @kbd{a .} produces
25112 @samp{[2.34, z / 2]}.  As a special case, if the righthand side is a
25113 variable and the lefthand side is a number (as in @samp{2.34 = x}), then
25114 Calc keeps the lefthand side instead.  Finally, this command works with
25115 assignments @samp{x := 2.34} as well as equations, always taking the
25116 the righthand side, and for @samp{=>} (evaluates-to) operators, always
25117 taking the lefthand side.
25119 @kindex a &
25120 @pindex calc-logical-and
25121 @tindex land
25122 @tindex &&
25123 The @kbd{a &} (@code{calc-logical-and}) [@samp{land(a,b)} or @samp{a && b}]
25124 function is true if both of its arguments are true, i.e., are
25125 non-zero numbers.  In this case, the result will be either @cite{a} or
25126 @cite{b}, chosen arbitrarily.  If either argument is zero, the result is
25127 zero.  Otherwise, the formula is left in symbolic form.
25129 @kindex a |
25130 @pindex calc-logical-or
25131 @tindex lor
25132 @tindex ||
25133 The @kbd{a |} (@code{calc-logical-or}) [@samp{lor(a,b)} or @samp{a || b}]
25134 function is true if either or both of its arguments are true (nonzero).
25135 The result is whichever argument was nonzero, choosing arbitrarily if both
25136 are nonzero.  If both @cite{a} and @cite{b} are zero, the result is
25137 zero.
25139 @kindex a !
25140 @pindex calc-logical-not
25141 @tindex lnot
25142 @tindex !
25143 The @kbd{a !} (@code{calc-logical-not}) [@samp{lnot(a)} or @samp{!@: a}]
25144 function is true if @cite{a} is false (zero), or false if @cite{a} is
25145 true (nonzero).  It is left in symbolic form if @cite{a} is not a
25146 number.
25148 @kindex a :
25149 @pindex calc-logical-if
25150 @tindex if
25151 @ignore
25152 @mindex ? :
25153 @end ignore
25154 @tindex ?
25155 @ignore
25156 @mindex @null
25157 @end ignore
25158 @tindex :
25159 @cindex Arguments, not evaluated
25160 The @kbd{a :} (@code{calc-logical-if}) [@samp{if(a,b,c)} or @samp{a ? b :@: c}]
25161 function is equal to either @cite{b} or @cite{c} if @cite{a} is a nonzero
25162 number or zero, respectively.  If @cite{a} is not a number, the test is
25163 left in symbolic form and neither @cite{b} nor @cite{c} is evaluated in
25164 any way.  In algebraic formulas, this is one of the few Calc functions
25165 whose arguments are not automatically evaluated when the function itself
25166 is evaluated.  The others are @code{lambda}, @code{quote}, and
25167 @code{condition}.
25169 One minor surprise to watch out for is that the formula @samp{a?3:4}
25170 will not work because the @samp{3:4} is parsed as a fraction instead of
25171 as three separate symbols.  Type something like @samp{a ? 3 : 4} or
25172 @samp{a?(3):4} instead.
25174 As a special case, if @cite{a} evaluates to a vector, then both @cite{b}
25175 and @cite{c} are evaluated; the result is a vector of the same length
25176 as @cite{a} whose elements are chosen from corresponding elements of
25177 @cite{b} and @cite{c} according to whether each element of @cite{a}
25178 is zero or nonzero.  Each of @cite{b} and @cite{c} must be either a
25179 vector of the same length as @cite{a}, or a non-vector which is matched
25180 with all elements of @cite{a}.
25182 @kindex a @{
25183 @pindex calc-in-set
25184 @tindex in
25185 The @kbd{a @{} (@code{calc-in-set}) [@samp{in(a,b)}] function is true if
25186 the number @cite{a} is in the set of numbers represented by @cite{b}.
25187 If @cite{b} is an interval form, @cite{a} must be one of the values
25188 encompassed by the interval.  If @cite{b} is a vector, @cite{a} must be
25189 equal to one of the elements of the vector.  (If any vector elements are
25190 intervals, @cite{a} must be in any of the intervals.)  If @cite{b} is a
25191 plain number, @cite{a} must be numerically equal to @cite{b}.
25192 @xref{Set Operations}, for a group of commands that manipulate sets
25193 of this sort.
25195 @ignore
25196 @starindex
25197 @end ignore
25198 @tindex typeof
25199 The @samp{typeof(a)} function produces an integer or variable which
25200 characterizes @cite{a}.  If @cite{a} is a number, vector, or variable,
25201 the result will be one of the following numbers:
25203 @example
25204  1   Integer
25205  2   Fraction
25206  3   Floating-point number
25207  4   HMS form
25208  5   Rectangular complex number
25209  6   Polar complex number
25210  7   Error form
25211  8   Interval form
25212  9   Modulo form
25213 10   Date-only form
25214 11   Date/time form
25215 12   Infinity (inf, uinf, or nan)
25216 100  Variable
25217 101  Vector (but not a matrix)
25218 102  Matrix
25219 @end example
25221 Otherwise, @cite{a} is a formula, and the result is a variable which
25222 represents the name of the top-level function call.
25224 @ignore
25225 @starindex
25226 @end ignore
25227 @tindex integer
25228 @ignore
25229 @starindex
25230 @end ignore
25231 @tindex real
25232 @ignore
25233 @starindex
25234 @end ignore
25235 @tindex constant
25236 The @samp{integer(a)} function returns true if @cite{a} is an integer.
25237 The @samp{real(a)} function
25238 is true if @cite{a} is a real number, either integer, fraction, or
25239 float.  The @samp{constant(a)} function returns true if @cite{a} is
25240 any of the objects for which @code{typeof} would produce an integer
25241 code result except for variables, and provided that the components of
25242 an object like a vector or error form are themselves constant.
25243 Note that infinities do not satisfy any of these tests, nor do
25244 special constants like @code{pi} and @code{e}.@refill
25246 @xref{Declarations}, for a set of similar functions that recognize
25247 formulas as well as actual numbers.  For example, @samp{dint(floor(x))}
25248 is true because @samp{floor(x)} is provably integer-valued, but
25249 @samp{integer(floor(x))} does not because @samp{floor(x)} is not
25250 literally an integer constant.
25252 @ignore
25253 @starindex
25254 @end ignore
25255 @tindex refers
25256 The @samp{refers(a,b)} function is true if the variable (or sub-expression)
25257 @cite{b} appears in @cite{a}, or false otherwise.  Unlike the other
25258 tests described here, this function returns a definite ``no'' answer
25259 even if its arguments are still in symbolic form.  The only case where
25260 @code{refers} will be left unevaluated is if @cite{a} is a plain
25261 variable (different from @cite{b}).
25263 @ignore
25264 @starindex
25265 @end ignore
25266 @tindex negative
25267 The @samp{negative(a)} function returns true if @cite{a} ``looks'' negative,
25268 because it is a negative number, because it is of the form @cite{-x},
25269 or because it is a product or quotient with a term that looks negative.
25270 This is most useful in rewrite rules.  Beware that @samp{negative(a)}
25271 evaluates to 1 or 0 for @emph{any} argument @cite{a}, so it can only
25272 be stored in a formula if the default simplifications are turned off
25273 first with @kbd{m O} (or if it appears in an unevaluated context such
25274 as a rewrite rule condition).
25276 @ignore
25277 @starindex
25278 @end ignore
25279 @tindex variable
25280 The @samp{variable(a)} function is true if @cite{a} is a variable,
25281 or false if not.  If @cite{a} is a function call, this test is left
25282 in symbolic form.  Built-in variables like @code{pi} and @code{inf}
25283 are considered variables like any others by this test.
25285 @ignore
25286 @starindex
25287 @end ignore
25288 @tindex nonvar
25289 The @samp{nonvar(a)} function is true if @cite{a} is a non-variable.
25290 If its argument is a variable it is left unsimplified; it never
25291 actually returns zero.  However, since Calc's condition-testing
25292 commands consider ``false'' anything not provably true, this is
25293 often good enough.
25295 @ignore
25296 @starindex
25297 @end ignore
25298 @tindex lin
25299 @ignore
25300 @starindex
25301 @end ignore
25302 @tindex linnt
25303 @ignore
25304 @starindex
25305 @end ignore
25306 @tindex islin
25307 @ignore
25308 @starindex
25309 @end ignore
25310 @tindex islinnt
25311 @cindex Linearity testing
25312 The functions @code{lin}, @code{linnt}, @code{islin}, and @code{islinnt}
25313 check if an expression is ``linear,'' i.e., can be written in the form
25314 @cite{a + b x} for some constants @cite{a} and @cite{b}, and some
25315 variable or subformula @cite{x}.  The function @samp{islin(f,x)} checks
25316 if formula @cite{f} is linear in @cite{x}, returning 1 if so.  For
25317 example, @samp{islin(x,x)}, @samp{islin(-x,x)}, @samp{islin(3,x)}, and
25318 @samp{islin(x y / 3 - 2, x)} all return 1.  The @samp{lin(f,x)} function
25319 is similar, except that instead of returning 1 it returns the vector
25320 @cite{[a, b, x]}.  For the above examples, this vector would be
25321 @cite{[0, 1, x]}, @cite{[0, -1, x]}, @cite{[3, 0, x]}, and
25322 @cite{[-2, y/3, x]}, respectively.  Both @code{lin} and @code{islin}
25323 generally remain unevaluated for expressions which are not linear,
25324 e.g., @samp{lin(2 x^2, x)} and @samp{lin(sin(x), x)}.  The second
25325 argument can also be a formula; @samp{islin(2 + 3 sin(x), sin(x))}
25326 returns true.
25328 The @code{linnt} and @code{islinnt} functions perform a similar check,
25329 but require a ``non-trivial'' linear form, which means that the
25330 @cite{b} coefficient must be non-zero.  For example, @samp{lin(2,x)}
25331 returns @cite{[2, 0, x]} and @samp{lin(y,x)} returns @cite{[y, 0, x]},
25332 but @samp{linnt(2,x)} and @samp{linnt(y,x)} are left unevaluated
25333 (in other words, these formulas are considered to be only ``trivially''
25334 linear in @cite{x}).
25336 All four linearity-testing functions allow you to omit the second
25337 argument, in which case the input may be linear in any non-constant
25338 formula.  Here, the @cite{a=0}, @cite{b=1} case is also considered
25339 trivial, and only constant values for @cite{a} and @cite{b} are
25340 recognized.  Thus, @samp{lin(2 x y)} returns @cite{[0, 2, x y]},
25341 @samp{lin(2 - x y)} returns @cite{[2, -1, x y]}, and @samp{lin(x y)}
25342 returns @cite{[0, 1, x y]}.  The @code{linnt} function would allow the
25343 first two cases but not the third.  Also, neither @code{lin} nor
25344 @code{linnt} accept plain constants as linear in the one-argument
25345 case: @samp{islin(2,x)} is true, but @samp{islin(2)} is false.
25347 @ignore
25348 @starindex
25349 @end ignore
25350 @tindex istrue
25351 The @samp{istrue(a)} function returns 1 if @cite{a} is a nonzero
25352 number or provably nonzero formula, or 0 if @cite{a} is anything else.
25353 Calls to @code{istrue} can only be manipulated if @kbd{m O} mode is
25354 used to make sure they are not evaluated prematurely.  (Note that
25355 declarations are used when deciding whether a formula is true;
25356 @code{istrue} returns 1 when @code{dnonzero} would return 1, and
25357 it returns 0 when @code{dnonzero} would return 0 or leave itself
25358 in symbolic form.)
25360 @node Rewrite Rules, , Logical Operations, Algebra
25361 @section Rewrite Rules
25363 @noindent
25364 @cindex Rewrite rules
25365 @cindex Transformations
25366 @cindex Pattern matching
25367 @kindex a r
25368 @pindex calc-rewrite
25369 @tindex rewrite
25370 The @kbd{a r} (@code{calc-rewrite}) [@code{rewrite}] command makes
25371 substitutions in a formula according to a specified pattern or patterns
25372 known as @dfn{rewrite rules}.  Whereas @kbd{a b} (@code{calc-substitute})
25373 matches literally, so that substituting @samp{sin(x)} with @samp{cos(x)}
25374 matches only the @code{sin} function applied to the variable @code{x},
25375 rewrite rules match general kinds of formulas; rewriting using the rule
25376 @samp{sin(x) := cos(x)} matches @code{sin} of any argument and replaces
25377 it with @code{cos} of that same argument.  The only significance of the
25378 name @code{x} is that the same name is used on both sides of the rule.
25380 Rewrite rules rearrange formulas already in Calc's memory.
25381 @xref{Syntax Tables}, to read about @dfn{syntax rules}, which are
25382 similar to algebraic rewrite rules but operate when new algebraic
25383 entries are being parsed, converting strings of characters into
25384 Calc formulas.
25386 @menu
25387 * Entering Rewrite Rules::
25388 * Basic Rewrite Rules::
25389 * Conditional Rewrite Rules::
25390 * Algebraic Properties of Rewrite Rules::
25391 * Other Features of Rewrite Rules::
25392 * Composing Patterns in Rewrite Rules::
25393 * Nested Formulas with Rewrite Rules::
25394 * Multi-Phase Rewrite Rules::
25395 * Selections with Rewrite Rules::
25396 * Matching Commands::
25397 * Automatic Rewrites::
25398 * Debugging Rewrites::
25399 * Examples of Rewrite Rules::
25400 @end menu
25402 @node Entering Rewrite Rules, Basic Rewrite Rules, Rewrite Rules, Rewrite Rules
25403 @subsection Entering Rewrite Rules
25405 @noindent
25406 Rewrite rules normally use the ``assignment'' operator
25407 @samp{@var{old} := @var{new}}.
25408 This operator is equivalent to the function call @samp{assign(old, new)}.
25409 The @code{assign} function is undefined by itself in Calc, so an
25410 assignment formula such as a rewrite rule will be left alone by ordinary
25411 Calc commands.  But certain commands, like the rewrite system, interpret
25412 assignments in special ways.@refill
25414 For example, the rule @samp{sin(x)^2 := 1-cos(x)^2} says to replace
25415 every occurrence of the sine of something, squared, with one minus the
25416 square of the cosine of that same thing.  All by itself as a formula
25417 on the stack it does nothing, but when given to the @kbd{a r} command
25418 it turns that command into a sine-squared-to-cosine-squared converter.
25420 To specify a set of rules to be applied all at once, make a vector of
25421 rules.
25423 When @kbd{a r} prompts you to enter the rewrite rules, you can answer
25424 in several ways:
25426 @enumerate
25427 @item
25428 With a rule:  @kbd{f(x) := g(x) @key{RET}}.
25429 @item
25430 With a vector of rules:  @kbd{[f1(x) := g1(x), f2(x) := g2(x)] @key{RET}}.
25431 (You can omit the enclosing square brackets if you wish.)
25432 @item
25433 With the name of a variable that contains the rule or rules vector:
25434 @kbd{myrules @key{RET}}.
25435 @item
25436 With any formula except a rule, a vector, or a variable name; this
25437 will be interpreted as the @var{old} half of a rewrite rule,
25438 and you will be prompted a second time for the @var{new} half:
25439 @kbd{f(x) @key{RET} g(x) @key{RET}}.
25440 @item
25441 With a blank line, in which case the rule, rules vector, or variable
25442 will be taken from the top of the stack (and the formula to be
25443 rewritten will come from the second-to-top position).
25444 @end enumerate
25446 If you enter the rules directly (as opposed to using rules stored
25447 in a variable), those rules will be put into the Trail so that you
25448 can retrieve them later.  @xref{Trail Commands}.
25450 It is most convenient to store rules you use often in a variable and
25451 invoke them by giving the variable name.  The @kbd{s e}
25452 (@code{calc-edit-variable}) command is an easy way to create or edit a
25453 rule set stored in a variable.  You may also wish to use @kbd{s p}
25454 (@code{calc-permanent-variable}) to save your rules permanently;
25455 @pxref{Operations on Variables}.@refill
25457 Rewrite rules are compiled into a special internal form for faster
25458 matching.  If you enter a rule set directly it must be recompiled
25459 every time.  If you store the rules in a variable and refer to them
25460 through that variable, they will be compiled once and saved away
25461 along with the variable for later reference.  This is another good
25462 reason to store your rules in a variable.
25464 Calc also accepts an obsolete notation for rules, as vectors
25465 @samp{[@var{old}, @var{new}]}.  But because it is easily confused with a
25466 vector of two rules, the use of this notation is no longer recommended.
25468 @node Basic Rewrite Rules, Conditional Rewrite Rules, Entering Rewrite Rules, Rewrite Rules
25469 @subsection Basic Rewrite Rules
25471 @noindent
25472 To match a particular formula @cite{x} with a particular rewrite rule
25473 @samp{@var{old} := @var{new}}, Calc compares the structure of @cite{x} with
25474 the structure of @var{old}.  Variables that appear in @var{old} are
25475 treated as @dfn{meta-variables}; the corresponding positions in @cite{x}
25476 may contain any sub-formulas.  For example, the pattern @samp{f(x,y)}
25477 would match the expression @samp{f(12, a+1)} with the meta-variable
25478 @samp{x} corresponding to 12 and with @samp{y} corresponding to
25479 @samp{a+1}.  However, this pattern would not match @samp{f(12)} or
25480 @samp{g(12, a+1)}, since there is no assignment of the meta-variables
25481 that will make the pattern match these expressions.  Notice that if
25482 the pattern is a single meta-variable, it will match any expression.
25484 If a given meta-variable appears more than once in @var{old}, the
25485 corresponding sub-formulas of @cite{x} must be identical.  Thus
25486 the pattern @samp{f(x,x)} would match @samp{f(12, 12)} and
25487 @samp{f(a+1, a+1)} but not @samp{f(12, a+1)} or @samp{f(a+b, b+a)}.
25488 (@xref{Conditional Rewrite Rules}, for a way to match the latter.)
25490 Things other than variables must match exactly between the pattern
25491 and the target formula.  To match a particular variable exactly, use
25492 the pseudo-function @samp{quote(v)} in the pattern.  For example, the
25493 pattern @samp{x+quote(y)} matches @samp{x+y}, @samp{2+y}, or
25494 @samp{sin(a)+y}.
25496 The special variable names @samp{e}, @samp{pi}, @samp{i}, @samp{phi},
25497 @samp{gamma}, @samp{inf}, @samp{uinf}, and @samp{nan} always match
25498 literally.  Thus the pattern @samp{sin(d + e + f)} acts exactly like
25499 @samp{sin(d + quote(e) + f)}.
25501 If the @var{old} pattern is found to match a given formula, that
25502 formula is replaced by @var{new}, where any occurrences in @var{new}
25503 of meta-variables from the pattern are replaced with the sub-formulas
25504 that they matched.  Thus, applying the rule @samp{f(x,y) := g(y+x,x)}
25505 to @samp{f(12, a+1)} would produce @samp{g(a+13, 12)}.
25507 The normal @kbd{a r} command applies rewrite rules over and over
25508 throughout the target formula until no further changes are possible
25509 (up to a limit of 100 times).  Use @kbd{C-u 1 a r} to make only one
25510 change at a time.
25512 @node Conditional Rewrite Rules, Algebraic Properties of Rewrite Rules, Basic Rewrite Rules, Rewrite Rules
25513 @subsection Conditional Rewrite Rules
25515 @noindent
25516 A rewrite rule can also be @dfn{conditional}, written in the form
25517 @samp{@var{old} := @var{new} :: @var{cond}}.  (There is also the obsolete
25518 form @samp{[@var{old}, @var{new}, @var{cond}]}.)  If a @var{cond} part
25519 is present in the
25520 rule, this is an additional condition that must be satisfied before
25521 the rule is accepted.  Once @var{old} has been successfully matched
25522 to the target expression, @var{cond} is evaluated (with all the
25523 meta-variables substituted for the values they matched) and simplified
25524 with @kbd{a s} (@code{calc-simplify}).  If the result is a nonzero
25525 number or any other object known to be nonzero (@pxref{Declarations}),
25526 the rule is accepted.  If the result is zero or if it is a symbolic
25527 formula that is not known to be nonzero, the rule is rejected.
25528 @xref{Logical Operations}, for a number of functions that return
25529 1 or 0 according to the results of various tests.@refill
25531 For example, the formula @samp{n > 0} simplifies to 1 or 0 if @cite{n}
25532 is replaced by a positive or nonpositive number, respectively (or if
25533 @cite{n} has been declared to be positive or nonpositive).  Thus,
25534 the rule @samp{f(x,y) := g(y+x,x) :: x+y > 0} would apply to
25535 @samp{f(0, 4)} but not to @samp{f(-3, 2)} or @samp{f(12, a+1)}
25536 (assuming no outstanding declarations for @cite{a}).  In the case of
25537 @samp{f(-3, 2)}, the condition can be shown not to be satisfied; in
25538 the case of @samp{f(12, a+1)}, the condition merely cannot be shown
25539 to be satisfied, but that is enough to reject the rule.
25541 While Calc will use declarations to reason about variables in the
25542 formula being rewritten, declarations do not apply to meta-variables.
25543 For example, the rule @samp{f(a) := g(a+1)} will match for any values
25544 of @samp{a}, such as complex numbers, vectors, or formulas, even if
25545 @samp{a} has been declared to be real or scalar.  If you want the
25546 meta-variable @samp{a} to match only literal real numbers, use
25547 @samp{f(a) := g(a+1) :: real(a)}.  If you want @samp{a} to match only
25548 reals and formulas which are provably real, use @samp{dreal(a)} as
25549 the condition.
25551 The @samp{::} operator is a shorthand for the @code{condition}
25552 function; @samp{@var{old} := @var{new} :: @var{cond}} is equivalent to
25553 the formula @samp{condition(assign(@var{old}, @var{new}), @var{cond})}.
25555 If you have several conditions, you can use @samp{... :: c1 :: c2 :: c3}
25556 or @samp{... :: c1 && c2 && c3}.  The two are entirely equivalent.
25558 It is also possible to embed conditions inside the pattern:
25559 @samp{f(x :: x>0, y) := g(y+x, x)}.  This is purely a notational
25560 convenience, though; where a condition appears in a rule has no
25561 effect on when it is tested.  The rewrite-rule compiler automatically
25562 decides when it is best to test each condition while a rule is being
25563 matched.
25565 Certain conditions are handled as special cases by the rewrite rule
25566 system and are tested very efficiently:  Where @cite{x} is any
25567 meta-variable, these conditions are @samp{integer(x)}, @samp{real(x)},
25568 @samp{constant(x)}, @samp{negative(x)}, @samp{x >= y} where @cite{y}
25569 is either a constant or another meta-variable and @samp{>=} may be
25570 replaced by any of the six relational operators, and @samp{x % a = b}
25571 where @cite{a} and @cite{b} are constants.  Other conditions, like
25572 @samp{x >= y+1} or @samp{dreal(x)}, will be less efficient to check
25573 since Calc must bring the whole evaluator and simplifier into play.
25575 An interesting property of @samp{::} is that neither of its arguments
25576 will be touched by Calc's default simplifications.  This is important
25577 because conditions often are expressions that cannot safely be
25578 evaluated early.  For example, the @code{typeof} function never
25579 remains in symbolic form; entering @samp{typeof(a)} will put the
25580 number 100 (the type code for variables like @samp{a}) on the stack.
25581 But putting the condition @samp{... :: typeof(a) = 6} on the stack
25582 is safe since @samp{::} prevents the @code{typeof} from being
25583 evaluated until the condition is actually used by the rewrite system.
25585 Since @samp{::} protects its lefthand side, too, you can use a dummy
25586 condition to protect a rule that must itself not evaluate early.
25587 For example, it's not safe to put @samp{a(f,x) := apply(f, [x])} on
25588 the stack because it will immediately evaluate to @samp{a(f,x) := f(x)},
25589 where the meta-variable-ness of @code{f} on the righthand side has been
25590 lost.  But @samp{a(f,x) := apply(f, [x]) :: 1} is safe, and of course
25591 the condition @samp{1} is always true (nonzero) so it has no effect on
25592 the functioning of the rule.  (The rewrite compiler will ensure that
25593 it doesn't even impact the speed of matching the rule.)
25595 @node Algebraic Properties of Rewrite Rules, Other Features of Rewrite Rules, Conditional Rewrite Rules, Rewrite Rules
25596 @subsection Algebraic Properties of Rewrite Rules
25598 @noindent
25599 The rewrite mechanism understands the algebraic properties of functions
25600 like @samp{+} and @samp{*}.  In particular, pattern matching takes
25601 the associativity and commutativity of the following functions into
25602 account:
25604 @smallexample
25605 + - *  = !=  && ||  and or xor  vint vunion vxor  gcd lcm  max min  beta
25606 @end smallexample
25608 For example, the rewrite rule:
25610 @example
25611 a x + b x  :=  (a + b) x
25612 @end example
25614 @noindent
25615 will match formulas of the form,
25617 @example
25618 a x + b x,  x a + x b,  a x + x b,  x a + b x
25619 @end example
25621 Rewrites also understand the relationship between the @samp{+} and @samp{-}
25622 operators.  The above rewrite rule will also match the formulas,
25624 @example
25625 a x - b x,  x a - x b,  a x - x b,  x a - b x
25626 @end example
25628 @noindent
25629 by matching @samp{b} in the pattern to @samp{-b} from the formula.
25631 Applied to a sum of many terms like @samp{r + a x + s + b x + t}, this
25632 pattern will check all pairs of terms for possible matches.  The rewrite
25633 will take whichever suitable pair it discovers first.
25635 In general, a pattern using an associative operator like @samp{a + b}
25636 will try @var{2 n} different ways to match a sum of @var{n} terms
25637 like @samp{x + y + z - w}.  First, @samp{a} is matched against each
25638 of @samp{x}, @samp{y}, @samp{z}, and @samp{-w} in turn, with @samp{b}
25639 being matched to the remainders @samp{y + z - w}, @samp{x + z - w}, etc.
25640 If none of these succeed, then @samp{b} is matched against each of the
25641 four terms with @samp{a} matching the remainder.  Half-and-half matches,
25642 like @samp{(x + y) + (z - w)}, are not tried.
25644 Note that @samp{*} is not commutative when applied to matrices, but
25645 rewrite rules pretend that it is.  If you type @kbd{m v} to enable
25646 matrix mode (@pxref{Matrix Mode}), rewrite rules will match @samp{*}
25647 literally, ignoring its usual commutativity property.  (In the
25648 current implementation, the associativity also vanishes---it is as
25649 if the pattern had been enclosed in a @code{plain} marker; see below.)
25650 If you are applying rewrites to formulas with matrices, it's best to
25651 enable matrix mode first to prevent algebraically incorrect rewrites
25652 from occurring.
25654 The pattern @samp{-x} will actually match any expression.  For example,
25655 the rule
25657 @example
25658 f(-x)  :=  -f(x)
25659 @end example
25661 @noindent
25662 will rewrite @samp{f(a)} to @samp{-f(-a)}.  To avoid this, either use
25663 a @code{plain} marker as described below, or add a @samp{negative(x)}
25664 condition.  The @code{negative} function is true if its argument
25665 ``looks'' negative, for example, because it is a negative number or
25666 because it is a formula like @samp{-x}.  The new rule using this
25667 condition is:
25669 @example
25670 f(x)  :=  -f(-x)  :: negative(x)    @r{or, equivalently,}
25671 f(-x)  :=  -f(x)  :: negative(-x)
25672 @end example
25674 In the same way, the pattern @samp{x - y} will match the sum @samp{a + b}
25675 by matching @samp{y} to @samp{-b}.
25677 The pattern @samp{a b} will also match the formula @samp{x/y} if
25678 @samp{y} is a number.  Thus the rule @samp{a x + @w{b x} := (a+b) x}
25679 will also convert @samp{a x + x / 2} to @samp{(a + 0.5) x} (or
25680 @samp{(a + 1:2) x}, depending on the current fraction mode).
25682 Calc will @emph{not} take other liberties with @samp{*}, @samp{/}, and
25683 @samp{^}.  For example, the pattern @samp{f(a b)} will not match
25684 @samp{f(x^2)}, and @samp{f(a + b)} will not match @samp{f(2 x)}, even
25685 though conceivably these patterns could match with @samp{a = b = x}.
25686 Nor will @samp{f(a b)} match @samp{f(x / y)} if @samp{y} is not a
25687 constant, even though it could be considered to match with @samp{a = x}
25688 and @samp{b = 1/y}.  The reasons are partly for efficiency, and partly
25689 because while few mathematical operations are substantively different
25690 for addition and subtraction, often it is preferable to treat the cases
25691 of multiplication, division, and integer powers separately.
25693 Even more subtle is the rule set
25695 @example
25696 [ f(a) + f(b) := f(a + b),  -f(a) := f(-a) ]
25697 @end example
25699 @noindent
25700 attempting to match @samp{f(x) - f(y)}.  You might think that Calc
25701 will view this subtraction as @samp{f(x) + (-f(y))} and then apply
25702 the above two rules in turn, but actually this will not work because
25703 Calc only does this when considering rules for @samp{+} (like the
25704 first rule in this set).  So it will see first that @samp{f(x) + (-f(y))}
25705 does not match @samp{f(a) + f(b)} for any assignments of the
25706 meta-variables, and then it will see that @samp{f(x) - f(y)} does
25707 not match @samp{-f(a)} for any assignment of @samp{a}.  Because Calc
25708 tries only one rule at a time, it will not be able to rewrite
25709 @samp{f(x) - f(y)} with this rule set.  An explicit @samp{f(a) - f(b)}
25710 rule will have to be added.
25712 Another thing patterns will @emph{not} do is break up complex numbers.
25713 The pattern @samp{myconj(a + @w{b i)} := a - b i} will work for formulas
25714 involving the special constant @samp{i} (such as @samp{3 - 4 i}), but
25715 it will not match actual complex numbers like @samp{(3, -4)}.  A version
25716 of the above rule for complex numbers would be
25718 @example
25719 myconj(a)  :=  re(a) - im(a) (0,1)  :: im(a) != 0
25720 @end example
25722 @noindent
25723 (Because the @code{re} and @code{im} functions understand the properties
25724 of the special constant @samp{i}, this rule will also work for
25725 @samp{3 - 4 i}.  In fact, this particular rule would probably be better
25726 without the @samp{im(a) != 0} condition, since if @samp{im(a) = 0} the
25727 righthand side of the rule will still give the correct answer for the
25728 conjugate of a real number.)
25730 It is also possible to specify optional arguments in patterns.  The rule
25732 @example
25733 opt(a) x + opt(b) (x^opt(c) + opt(d))  :=  f(a, b, c, d)
25734 @end example
25736 @noindent
25737 will match the formula
25739 @example
25740 5 (x^2 - 4) + 3 x
25741 @end example
25743 @noindent
25744 in a fairly straightforward manner, but it will also match reduced
25745 formulas like
25747 @example
25748 x + x^2,    2(x + 1) - x,    x + x
25749 @end example
25751 @noindent
25752 producing, respectively,
25754 @example
25755 f(1, 1, 2, 0),   f(-1, 2, 1, 1),   f(1, 1, 1, 0)
25756 @end example
25758 (The latter two formulas can be entered only if default simplifications
25759 have been turned off with @kbd{m O}.)
25761 The default value for a term of a sum is zero.  The default value
25762 for a part of a product, for a power, or for the denominator of a
25763 quotient, is one.  Also, @samp{-x} matches the pattern @samp{opt(a) b}
25764 with @samp{a = -1}.
25766 In particular, the distributive-law rule can be refined to
25768 @example
25769 opt(a) x + opt(b) x  :=  (a + b) x
25770 @end example
25772 @noindent
25773 so that it will convert, e.g., @samp{a x - x}, to @samp{(a - 1) x}.
25775 The pattern @samp{opt(a) + opt(b) x} matches almost any formulas which
25776 are linear in @samp{x}.  You can also use the @code{lin} and @code{islin}
25777 functions with rewrite conditions to test for this; @pxref{Logical
25778 Operations}.  These functions are not as convenient to use in rewrite
25779 rules, but they recognize more kinds of formulas as linear:
25780 @samp{x/z} is considered linear with @cite{b = 1/z} by @code{lin},
25781 but it will not match the above pattern because that pattern calls
25782 for a multiplication, not a division.
25784 As another example, the obvious rule to replace @samp{sin(x)^2 + cos(x)^2}
25785 by 1,
25787 @example
25788 sin(x)^2 + cos(x)^2  :=  1
25789 @end example
25791 @noindent
25792 misses many cases because the sine and cosine may both be multiplied by
25793 an equal factor.  Here's a more successful rule:
25795 @example
25796 opt(a) sin(x)^2 + opt(a) cos(x)^2  :=  a
25797 @end example
25799 Note that this rule will @emph{not} match @samp{sin(x)^2 + 6 cos(x)^2}
25800 because one @cite{a} would have ``matched'' 1 while the other matched 6.
25802 Calc automatically converts a rule like
25804 @example
25805 f(x-1, x)  :=  g(x)
25806 @end example
25808 @noindent
25809 into the form
25811 @example
25812 f(temp, x)  :=  g(x)  :: temp = x-1
25813 @end example
25815 @noindent
25816 (where @code{temp} stands for a new, invented meta-variable that
25817 doesn't actually have a name).  This modified rule will successfully
25818 match @samp{f(6, 7)}, binding @samp{temp} and @samp{x} to 6 and 7,
25819 respectively, then verifying that they differ by one even though
25820 @samp{6} does not superficially look like @samp{x-1}.
25822 However, Calc does not solve equations to interpret a rule.  The
25823 following rule,
25825 @example
25826 f(x-1, x+1)  :=  g(x)
25827 @end example
25829 @noindent
25830 will not work.  That is, it will match @samp{f(a - 1 + b, a + 1 + b)}
25831 but not @samp{f(6, 8)}.  Calc always interprets at least one occurrence
25832 of a variable by literal matching.  If the variable appears ``isolated''
25833 then Calc is smart enough to use it for literal matching.  But in this
25834 last example, Calc is forced to rewrite the rule to @samp{f(x-1, temp)
25835 := g(x) :: temp = x+1} where the @samp{x-1} term must correspond to an
25836 actual ``something-minus-one'' in the target formula.
25838 A successful way to write this would be @samp{f(x, x+2) := g(x+1)}.
25839 You could make this resemble the original form more closely by using
25840 @code{let} notation, which is described in the next section:
25842 @example
25843 f(xm1, x+1)  :=  g(x)  :: let(x := xm1+1)
25844 @end example
25846 Calc does this rewriting or ``conditionalizing'' for any sub-pattern
25847 which involves only the functions in the following list, operating
25848 only on constants and meta-variables which have already been matched
25849 elsewhere in the pattern.  When matching a function call, Calc is
25850 careful to match arguments which are plain variables before arguments
25851 which are calls to any of the functions below, so that a pattern like
25852 @samp{f(x-1, x)} can be conditionalized even though the isolated
25853 @samp{x} comes after the @samp{x-1}.
25855 @smallexample
25856 + - * / \ % ^  abs sign  round rounde roundu trunc floor ceil
25857 max min  re im conj arg
25858 @end smallexample
25860 You can suppress all of the special treatments described in this
25861 section by surrounding a function call with a @code{plain} marker.
25862 This marker causes the function call which is its argument to be
25863 matched literally, without regard to commutativity, associativity,
25864 negation, or conditionalization.  When you use @code{plain}, the
25865 ``deep structure'' of the formula being matched can show through.
25866 For example,
25868 @example
25869 plain(a - a b)  :=  f(a, b)
25870 @end example
25872 @noindent
25873 will match only literal subtractions.  However, the @code{plain}
25874 marker does not affect its arguments' arguments.  In this case,
25875 commutativity and associativity is still considered while matching
25876 the @w{@samp{a b}} sub-pattern, so the whole pattern will match
25877 @samp{x - y x} as well as @samp{x - x y}.  We could go still
25878 further and use
25880 @example
25881 plain(a - plain(a b))  :=  f(a, b)
25882 @end example
25884 @noindent
25885 which would do a completely strict match for the pattern.
25887 By contrast, the @code{quote} marker means that not only the
25888 function name but also the arguments must be literally the same.
25889 The above pattern will match @samp{x - x y} but
25891 @example
25892 quote(a - a b)  :=  f(a, b)
25893 @end example
25895 @noindent
25896 will match only the single formula @samp{a - a b}.  Also,
25898 @example
25899 quote(a - quote(a b))  :=  f(a, b)
25900 @end example
25902 @noindent
25903 will match only @samp{a - quote(a b)}---probably not the desired
25904 effect!
25906 A certain amount of algebra is also done when substituting the
25907 meta-variables on the righthand side of a rule.  For example,
25908 in the rule
25910 @example
25911 a + f(b)  :=  f(a + b)
25912 @end example
25914 @noindent
25915 matching @samp{f(x) - y} would produce @samp{f((-y) + x)} if
25916 taken literally, but the rewrite mechanism will simplify the
25917 righthand side to @samp{f(x - y)} automatically.  (Of course,
25918 the default simplifications would do this anyway, so this
25919 special simplification is only noticeable if you have turned the
25920 default simplifications off.)  This rewriting is done only when
25921 a meta-variable expands to a ``negative-looking'' expression.
25922 If this simplification is not desirable, you can use a @code{plain}
25923 marker on the righthand side:
25925 @example
25926 a + f(b)  :=  f(plain(a + b))
25927 @end example
25929 @noindent
25930 In this example, we are still allowing the pattern-matcher to
25931 use all the algebra it can muster, but the righthand side will
25932 always simplify to a literal addition like @samp{f((-y) + x)}.
25934 @node Other Features of Rewrite Rules, Composing Patterns in Rewrite Rules, Algebraic Properties of Rewrite Rules, Rewrite Rules
25935 @subsection Other Features of Rewrite Rules
25937 @noindent
25938 Certain ``function names'' serve as markers in rewrite rules.
25939 Here is a complete list of these markers.  First are listed the
25940 markers that work inside a pattern; then come the markers that
25941 work in the righthand side of a rule.
25943 @ignore
25944 @starindex
25945 @end ignore
25946 @tindex import
25947 One kind of marker, @samp{import(x)}, takes the place of a whole
25948 rule.  Here @cite{x} is the name of a variable containing another
25949 rule set; those rules are ``spliced into'' the rule set that
25950 imports them.  For example, if @samp{[f(a+b) := f(a) + f(b),
25951 f(a b) := a f(b) :: real(a)]} is stored in variable @samp{linearF},
25952 then the rule set @samp{[f(0) := 0, import(linearF)]} will apply
25953 all three rules.  It is possible to modify the imported rules
25954 slightly:  @samp{import(x, v1, x1, v2, x2, @dots{})} imports
25955 the rule set @cite{x} with all occurrences of @c{$v_1$}
25956 @cite{v1}, as either
25957 a variable name or a function name, replaced with @c{$x_1$}
25958 @cite{x1} and
25959 so on.  (If @c{$v_1$}
25960 @cite{v1} is used as a function name, then @c{$x_1$}
25961 @cite{x1}
25962 must be either a function name itself or a @w{@samp{< >}} nameless
25963 function; @pxref{Specifying Operators}.)  For example, @samp{[g(0) := 0,
25964 import(linearF, f, g)]} applies the linearity rules to the function
25965 @samp{g} instead of @samp{f}.  Imports can be nested, but the
25966 import-with-renaming feature may fail to rename sub-imports properly.
25968 The special functions allowed in patterns are:
25970 @table @samp
25971 @item quote(x)
25972 @ignore
25973 @starindex
25974 @end ignore
25975 @tindex quote
25976 This pattern matches exactly @cite{x}; variable names in @cite{x} are
25977 not interpreted as meta-variables.  The only flexibility is that
25978 numbers are compared for numeric equality, so that the pattern
25979 @samp{f(quote(12))} will match both @samp{f(12)} and @samp{f(12.0)}.
25980 (Numbers are always treated this way by the rewrite mechanism:
25981 The rule @samp{f(x,x) := g(x)} will match @samp{f(12, 12.0)}.
25982 The rewrite may produce either @samp{g(12)} or @samp{g(12.0)}
25983 as a result in this case.)
25985 @item plain(x)
25986 @ignore
25987 @starindex
25988 @end ignore
25989 @tindex plain
25990 Here @cite{x} must be a function call @samp{f(x1,x2,@dots{})}.  This
25991 pattern matches a call to function @cite{f} with the specified
25992 argument patterns.  No special knowledge of the properties of the
25993 function @cite{f} is used in this case; @samp{+} is not commutative or
25994 associative.  Unlike @code{quote}, the arguments @samp{x1,x2,@dots{}}
25995 are treated as patterns.  If you wish them to be treated ``plainly''
25996 as well, you must enclose them with more @code{plain} markers:
25997 @samp{plain(plain(@w{-a}) + plain(b c))}.
25999 @item opt(x,def)
26000 @ignore
26001 @starindex
26002 @end ignore
26003 @tindex opt
26004 Here @cite{x} must be a variable name.  This must appear as an
26005 argument to a function or an element of a vector; it specifies that
26006 the argument or element is optional.
26007 As an argument to @samp{+}, @samp{-}, @samp{*}, @samp{&&}, or @samp{||},
26008 or as the second argument to @samp{/} or @samp{^}, the value @var{def}
26009 may be omitted.  The pattern @samp{x + opt(y)} matches a sum by
26010 binding one summand to @cite{x} and the other to @cite{y}, and it
26011 matches anything else by binding the whole expression to @cite{x} and
26012 zero to @cite{y}.  The other operators above work similarly.@refill
26014 For general miscellaneous functions, the default value @code{def}
26015 must be specified.  Optional arguments are dropped starting with
26016 the rightmost one during matching.  For example, the pattern
26017 @samp{f(opt(a,0), b, opt(c,b))} will match @samp{f(b)}, @samp{f(a,b)},
26018 or @samp{f(a,b,c)}.  Default values of zero and @cite{b} are
26019 supplied in this example for the omitted arguments.  Note that
26020 the literal variable @cite{b} will be the default in the latter
26021 case, @emph{not} the value that matched the meta-variable @cite{b}.
26022 In other words, the default @var{def} is effectively quoted.
26024 @item condition(x,c)
26025 @ignore
26026 @starindex
26027 @end ignore
26028 @tindex condition
26029 @tindex ::
26030 This matches the pattern @cite{x}, with the attached condition
26031 @cite{c}.  It is the same as @samp{x :: c}.
26033 @item pand(x,y)
26034 @ignore
26035 @starindex
26036 @end ignore
26037 @tindex pand
26038 @tindex &&&
26039 This matches anything that matches both pattern @cite{x} and
26040 pattern @cite{y}.  It is the same as @samp{x &&& y}.
26041 @pxref{Composing Patterns in Rewrite Rules}.
26043 @item por(x,y)
26044 @ignore
26045 @starindex
26046 @end ignore
26047 @tindex por
26048 @tindex |||
26049 This matches anything that matches either pattern @cite{x} or
26050 pattern @cite{y}.  It is the same as @w{@samp{x ||| y}}.
26052 @item pnot(x)
26053 @ignore
26054 @starindex
26055 @end ignore
26056 @tindex pnot
26057 @tindex !!!
26058 This matches anything that does not match pattern @cite{x}.
26059 It is the same as @samp{!!! x}.
26061 @item cons(h,t)
26062 @ignore
26063 @mindex cons
26064 @end ignore
26065 @tindex cons (rewrites)
26066 This matches any vector of one or more elements.  The first
26067 element is matched to @cite{h}; a vector of the remaining
26068 elements is matched to @cite{t}.  Note that vectors of fixed
26069 length can also be matched as actual vectors:  The rule
26070 @samp{cons(a,cons(b,[])) := cons(a+b,[])} is equivalent
26071 to the rule @samp{[a,b] := [a+b]}.
26073 @item rcons(t,h)
26074 @ignore
26075 @mindex rcons
26076 @end ignore
26077 @tindex rcons (rewrites)
26078 This is like @code{cons}, except that the @emph{last} element
26079 is matched to @cite{h}, with the remaining elements matched
26080 to @cite{t}.
26082 @item apply(f,args)
26083 @ignore
26084 @mindex apply
26085 @end ignore
26086 @tindex apply (rewrites)
26087 This matches any function call.  The name of the function, in
26088 the form of a variable, is matched to @cite{f}.  The arguments
26089 of the function, as a vector of zero or more objects, are
26090 matched to @samp{args}.  Constants, variables, and vectors
26091 do @emph{not} match an @code{apply} pattern.  For example,
26092 @samp{apply(f,x)} matches any function call, @samp{apply(quote(f),x)}
26093 matches any call to the function @samp{f}, @samp{apply(f,[a,b])}
26094 matches any function call with exactly two arguments, and
26095 @samp{apply(quote(f), cons(a,cons(b,x)))} matches any call
26096 to the function @samp{f} with two or more arguments.  Another
26097 way to implement the latter, if the rest of the rule does not
26098 need to refer to the first two arguments of @samp{f} by name,
26099 would be @samp{apply(quote(f), x :: vlen(x) >= 2)}.
26100 Here's a more interesting sample use of @code{apply}:
26102 @example
26103 apply(f,[x+n])  :=  n + apply(f,[x])
26104    :: in(f, [floor,ceil,round,trunc]) :: integer(n)
26105 @end example
26107 Note, however, that this will be slower to match than a rule
26108 set with four separate rules.  The reason is that Calc sorts
26109 the rules of a rule set according to top-level function name;
26110 if the top-level function is @code{apply}, Calc must try the
26111 rule for every single formula and sub-formula.  If the top-level
26112 function in the pattern is, say, @code{floor}, then Calc invokes
26113 the rule only for sub-formulas which are calls to @code{floor}.
26115 Formulas normally written with operators like @code{+} are still
26116 considered function calls:  @code{apply(f,x)} matches @samp{a+b}
26117 with @samp{f = add}, @samp{x = [a,b]}.
26119 You must use @code{apply} for meta-variables with function names
26120 on both sides of a rewrite rule:  @samp{apply(f, [x]) := f(x+1)}
26121 is @emph{not} correct, because it rewrites @samp{spam(6)} into
26122 @samp{f(7)}.  The righthand side should be @samp{apply(f, [x+1])}.
26123 Also note that you will have to use no-simplify (@kbd{m O})
26124 mode when entering this rule so that the @code{apply} isn't
26125 evaluated immediately to get the new rule @samp{f(x) := f(x+1)}.
26126 Or, use @kbd{s e} to enter the rule without going through the stack,
26127 or enter the rule as @samp{apply(f, [x]) := apply(f, [x+1]) @w{:: 1}}.
26128 @xref{Conditional Rewrite Rules}.
26130 @item select(x)
26131 @ignore
26132 @starindex
26133 @end ignore
26134 @tindex select
26135 This is used for applying rules to formulas with selections;
26136 @pxref{Selections with Rewrite Rules}.
26137 @end table
26139 Special functions for the righthand sides of rules are:
26141 @table @samp
26142 @item quote(x)
26143 The notation @samp{quote(x)} is changed to @samp{x} when the
26144 righthand side is used.  As far as the rewrite rule is concerned,
26145 @code{quote} is invisible.  However, @code{quote} has the special
26146 property in Calc that its argument is not evaluated.  Thus,
26147 while it will not work to put the rule @samp{t(a) := typeof(a)}
26148 on the stack because @samp{typeof(a)} is evaluated immediately
26149 to produce @samp{t(a) := 100}, you can use @code{quote} to
26150 protect the righthand side:  @samp{t(a) := quote(typeof(a))}.
26151 (@xref{Conditional Rewrite Rules}, for another trick for
26152 protecting rules from evaluation.)
26154 @item plain(x)
26155 Special properties of and simplifications for the function call
26156 @cite{x} are not used.  One interesting case where @code{plain}
26157 is useful is the rule, @samp{q(x) := quote(x)}, trying to expand a
26158 shorthand notation for the @code{quote} function.  This rule will
26159 not work as shown; instead of replacing @samp{q(foo)} with
26160 @samp{quote(foo)}, it will replace it with @samp{foo}!  The correct
26161 rule would be @samp{q(x) := plain(quote(x))}.
26163 @item cons(h,t)
26164 Where @cite{t} is a vector, this is converted into an expanded
26165 vector during rewrite processing.  Note that @code{cons} is a regular
26166 Calc function which normally does this anyway; the only way @code{cons}
26167 is treated specially by rewrites is that @code{cons} on the righthand
26168 side of a rule will be evaluated even if default simplifications
26169 have been turned off.
26171 @item rcons(t,h)
26172 Analogous to @code{cons} except putting @cite{h} at the @emph{end} of
26173 the vector @cite{t}.
26175 @item apply(f,args)
26176 Where @cite{f} is a variable and @var{args} is a vector, this
26177 is converted to a function call.  Once again, note that @code{apply}
26178 is also a regular Calc function.
26180 @item eval(x)
26181 @ignore
26182 @starindex
26183 @end ignore
26184 @tindex eval
26185 The formula @cite{x} is handled in the usual way, then the
26186 default simplifications are applied to it even if they have
26187 been turned off normally.  This allows you to treat any function
26188 similarly to the way @code{cons} and @code{apply} are always
26189 treated.  However, there is a slight difference:  @samp{cons(2+3, [])}
26190 with default simplifications off will be converted to @samp{[2+3]},
26191 whereas @samp{eval(cons(2+3, []))} will be converted to @samp{[5]}.
26193 @item evalsimp(x)
26194 @ignore
26195 @starindex
26196 @end ignore
26197 @tindex evalsimp
26198 The formula @cite{x} has meta-variables substituted in the usual
26199 way, then algebraically simplified as if by the @kbd{a s} command.
26201 @item evalextsimp(x)
26202 @ignore
26203 @starindex
26204 @end ignore
26205 @tindex evalextsimp
26206 The formula @cite{x} has meta-variables substituted in the normal
26207 way, then ``extendedly'' simplified as if by the @kbd{a e} command.
26209 @item select(x)
26210 @xref{Selections with Rewrite Rules}.
26211 @end table
26213 There are also some special functions you can use in conditions.
26215 @table @samp
26216 @item let(v := x)
26217 @ignore
26218 @starindex
26219 @end ignore
26220 @tindex let
26221 The expression @cite{x} is evaluated with meta-variables substituted.
26222 The @kbd{a s} command's simplifications are @emph{not} applied by
26223 default, but @cite{x} can include calls to @code{evalsimp} or
26224 @code{evalextsimp} as described above to invoke higher levels
26225 of simplification.  The
26226 result of @cite{x} is then bound to the meta-variable @cite{v}.  As
26227 usual, if this meta-variable has already been matched to something
26228 else the two values must be equal; if the meta-variable is new then
26229 it is bound to the result of the expression.  This variable can then
26230 appear in later conditions, and on the righthand side of the rule.
26231 In fact, @cite{v} may be any pattern in which case the result of
26232 evaluating @cite{x} is matched to that pattern, binding any
26233 meta-variables that appear in that pattern.  Note that @code{let}
26234 can only appear by itself as a condition, or as one term of an
26235 @samp{&&} which is a whole condition:  It cannot be inside
26236 an @samp{||} term or otherwise buried.@refill
26238 The alternate, equivalent form @samp{let(v, x)} is also recognized.
26239 Note that the use of @samp{:=} by @code{let}, while still being
26240 assignment-like in character, is unrelated to the use of @samp{:=}
26241 in the main part of a rewrite rule.
26243 As an example, @samp{f(a) := g(ia) :: let(ia := 1/a) :: constant(ia)}
26244 replaces @samp{f(a)} with @samp{g} of the inverse of @samp{a}, if
26245 that inverse exists and is constant.  For example, if @samp{a} is a
26246 singular matrix the operation @samp{1/a} is left unsimplified and
26247 @samp{constant(ia)} fails, but if @samp{a} is an invertible matrix
26248 then the rule succeeds.  Without @code{let} there would be no way
26249 to express this rule that didn't have to invert the matrix twice.
26250 Note that, because the meta-variable @samp{ia} is otherwise unbound
26251 in this rule, the @code{let} condition itself always ``succeeds''
26252 because no matter what @samp{1/a} evaluates to, it can successfully
26253 be bound to @code{ia}.@refill
26255 Here's another example, for integrating cosines of linear
26256 terms:  @samp{myint(cos(y),x) := sin(y)/b :: let([a,b,x] := lin(y,x))}.
26257 The @code{lin} function returns a 3-vector if its argument is linear,
26258 or leaves itself unevaluated if not.  But an unevaluated @code{lin}
26259 call will not match the 3-vector on the lefthand side of the @code{let},
26260 so this @code{let} both verifies that @code{y} is linear, and binds
26261 the coefficients @code{a} and @code{b} for use elsewhere in the rule.
26262 (It would have been possible to use @samp{sin(a x + b)/b} for the
26263 righthand side instead, but using @samp{sin(y)/b} avoids gratuitous
26264 rearrangement of the argument of the sine.)@refill
26266 @ignore
26267 @starindex
26268 @end ignore
26269 @tindex ierf
26270 Similarly, here is a rule that implements an inverse-@code{erf}
26271 function.  It uses @code{root} to search for a solution.  If
26272 @code{root} succeeds, it will return a vector of two numbers
26273 where the first number is the desired solution.  If no solution
26274 is found, @code{root} remains in symbolic form.  So we use
26275 @code{let} to check that the result was indeed a vector.
26277 @example
26278 ierf(x)  :=  y  :: let([y,z] := root(erf(a) = x, a, .5))
26279 @end example
26281 @item matches(v,p)
26282 The meta-variable @var{v}, which must already have been matched
26283 to something elsewhere in the rule, is compared against pattern
26284 @var{p}.  Since @code{matches} is a standard Calc function, it
26285 can appear anywhere in a condition.  But if it appears alone or
26286 as a term of a top-level @samp{&&}, then you get the special
26287 extra feature that meta-variables which are bound to things
26288 inside @var{p} can be used elsewhere in the surrounding rewrite
26289 rule.
26291 The only real difference between @samp{let(p := v)} and
26292 @samp{matches(v, p)} is that the former evaluates @samp{v} using
26293 the default simplifications, while the latter does not.
26295 @item remember
26296 @vindex remember
26297 This is actually a variable, not a function.  If @code{remember}
26298 appears as a condition in a rule, then when that rule succeeds
26299 the original expression and rewritten expression are added to the
26300 front of the rule set that contained the rule.  If the rule set
26301 was not stored in a variable, @code{remember} is ignored.  The
26302 lefthand side is enclosed in @code{quote} in the added rule if it
26303 contains any variables.
26305 For example, the rule @samp{f(n) := n f(n-1) :: remember} applied
26306 to @samp{f(7)} will add the rule @samp{f(7) := 7 f(6)} to the front
26307 of the rule set.  The rule set @code{EvalRules} works slightly
26308 differently:  There, the evaluation of @samp{f(6)} will complete before
26309 the result is added to the rule set, in this case as @samp{f(7) := 5040}.
26310 Thus @code{remember} is most useful inside @code{EvalRules}.
26312 It is up to you to ensure that the optimization performed by
26313 @code{remember} is safe.  For example, the rule @samp{foo(n) := n
26314 :: evalv(eatfoo) > 0 :: remember} is a bad idea (@code{evalv} is
26315 the function equivalent of the @kbd{=} command); if the variable
26316 @code{eatfoo} ever contains 1, rules like @samp{foo(7) := 7} will
26317 be added to the rule set and will continue to operate even if
26318 @code{eatfoo} is later changed to 0.
26320 @item remember(c)
26321 @ignore
26322 @starindex
26323 @end ignore
26324 @tindex remember
26325 Remember the match as described above, but only if condition @cite{c}
26326 is true.  For example, @samp{remember(n % 4 = 0)} in the above factorial
26327 rule remembers only every fourth result.  Note that @samp{remember(1)}
26328 is equivalent to @samp{remember}, and @samp{remember(0)} has no effect.
26329 @end table
26331 @node Composing Patterns in Rewrite Rules, Nested Formulas with Rewrite Rules, Other Features of Rewrite Rules, Rewrite Rules
26332 @subsection Composing Patterns in Rewrite Rules
26334 @noindent
26335 There are three operators, @samp{&&&}, @samp{|||}, and @samp{!!!},
26336 that combine rewrite patterns to make larger patterns.  The
26337 combinations are ``and,'' ``or,'' and ``not,'' respectively, and
26338 these operators are the pattern equivalents of @samp{&&}, @samp{||}
26339 and @samp{!} (which operate on zero-or-nonzero logical values).
26341 Note that @samp{&&&}, @samp{|||}, and @samp{!!!} are left in symbolic
26342 form by all regular Calc features; they have special meaning only in
26343 the context of rewrite rule patterns.
26345 The pattern @samp{@var{p1} &&& @var{p2}} matches anything that
26346 matches both @var{p1} and @var{p2}.  One especially useful case is
26347 when one of @var{p1} or @var{p2} is a meta-variable.  For example,
26348 here is a rule that operates on error forms:
26350 @example
26351 f(x &&& a +/- b, x)  :=  g(x)
26352 @end example
26354 This does the same thing, but is arguably simpler than, the rule
26356 @example
26357 f(a +/- b, a +/- b)  :=  g(a +/- b)
26358 @end example
26360 @ignore
26361 @starindex
26362 @end ignore
26363 @tindex ends
26364 Here's another interesting example:
26366 @example
26367 ends(cons(a, x) &&& rcons(y, b))  :=  [a, b]
26368 @end example
26370 @noindent
26371 which effectively clips out the middle of a vector leaving just
26372 the first and last elements.  This rule will change a one-element
26373 vector @samp{[a]} to @samp{[a, a]}.  The similar rule
26375 @example
26376 ends(cons(a, rcons(y, b)))  :=  [a, b]
26377 @end example
26379 @noindent
26380 would do the same thing except that it would fail to match a
26381 one-element vector.
26383 @tex
26384 \bigskip
26385 @end tex
26387 The pattern @samp{@var{p1} ||| @var{p2}} matches anything that
26388 matches either @var{p1} or @var{p2}.  Calc first tries matching
26389 against @var{p1}; if that fails, it goes on to try @var{p2}.
26391 @ignore
26392 @starindex
26393 @end ignore
26394 @tindex curve
26395 A simple example of @samp{|||} is
26397 @example
26398 curve(inf ||| -inf)  :=  0
26399 @end example
26401 @noindent
26402 which converts both @samp{curve(inf)} and @samp{curve(-inf)} to zero.
26404 Here is a larger example:
26406 @example
26407 log(a, b) ||| (ln(a) :: let(b := e))  :=  mylog(a, b)
26408 @end example
26410 This matches both generalized and natural logarithms in a single rule.
26411 Note that the @samp{::} term must be enclosed in parentheses because
26412 that operator has lower precedence than @samp{|||} or @samp{:=}.
26414 (In practice this rule would probably include a third alternative,
26415 omitted here for brevity, to take care of @code{log10}.)
26417 While Calc generally treats interior conditions exactly the same as
26418 conditions on the outside of a rule, it does guarantee that if all the
26419 variables in the condition are special names like @code{e}, or already
26420 bound in the pattern to which the condition is attached (say, if
26421 @samp{a} had appeared in this condition), then Calc will process this
26422 condition right after matching the pattern to the left of the @samp{::}.
26423 Thus, we know that @samp{b} will be bound to @samp{e} only if the
26424 @code{ln} branch of the @samp{|||} was taken.
26426 Note that this rule was careful to bind the same set of meta-variables
26427 on both sides of the @samp{|||}.  Calc does not check this, but if
26428 you bind a certain meta-variable only in one branch and then use that
26429 meta-variable elsewhere in the rule, results are unpredictable:
26431 @example
26432 f(a,b) ||| g(b)  :=  h(a,b)
26433 @end example
26435 Here if the pattern matches @samp{g(17)}, Calc makes no promises about
26436 the value that will be substituted for @samp{a} on the righthand side.
26438 @tex
26439 \bigskip
26440 @end tex
26442 The pattern @samp{!!! @var{pat}} matches anything that does not
26443 match @var{pat}.  Any meta-variables that are bound while matching
26444 @var{pat} remain unbound outside of @var{pat}.
26446 For example,
26448 @example
26449 f(x &&& !!! a +/- b, !!![])  :=  g(x)
26450 @end example
26452 @noindent
26453 converts @code{f} whose first argument is anything @emph{except} an
26454 error form, and whose second argument is not the empty vector, into
26455 a similar call to @code{g} (but without the second argument).
26457 If we know that the second argument will be a vector (empty or not),
26458 then an equivalent rule would be:
26460 @example
26461 f(x, y)  :=  g(x)  :: typeof(x) != 7 :: vlen(y) > 0
26462 @end example
26464 @noindent
26465 where of course 7 is the @code{typeof} code for error forms.
26466 Another final condition, that works for any kind of @samp{y},
26467 would be @samp{!istrue(y == [])}.  (The @code{istrue} function
26468 returns an explicit 0 if its argument was left in symbolic form;
26469 plain @samp{!(y == [])} or @samp{y != []} would not work to replace
26470 @samp{!!![]} since these would be left unsimplified, and thus cause
26471 the rule to fail, if @samp{y} was something like a variable name.)
26473 It is possible for a @samp{!!!} to refer to meta-variables bound
26474 elsewhere in the pattern.  For example,
26476 @example
26477 f(a, !!!a)  :=  g(a)
26478 @end example
26480 @noindent
26481 matches any call to @code{f} with different arguments, changing
26482 this to @code{g} with only the first argument.
26484 If a function call is to be matched and one of the argument patterns
26485 contains a @samp{!!!} somewhere inside it, that argument will be
26486 matched last.  Thus
26488 @example
26489 f(!!!a, a)  :=  g(a)
26490 @end example
26492 @noindent
26493 will be careful to bind @samp{a} to the second argument of @code{f}
26494 before testing the first argument.  If Calc had tried to match the
26495 first argument of @code{f} first, the results would have been
26496 disastrous: since @code{a} was unbound so far, the pattern @samp{a}
26497 would have matched anything at all, and the pattern @samp{!!!a}
26498 therefore would @emph{not} have matched anything at all!
26500 @node Nested Formulas with Rewrite Rules, Multi-Phase Rewrite Rules, Composing Patterns in Rewrite Rules, Rewrite Rules
26501 @subsection Nested Formulas with Rewrite Rules
26503 @noindent
26504 When @kbd{a r} (@code{calc-rewrite}) is used, it takes an expression from
26505 the top of the stack and attempts to match any of the specified rules
26506 to any part of the expression, starting with the whole expression
26507 and then, if that fails, trying deeper and deeper sub-expressions.
26508 For each part of the expression, the rules are tried in the order
26509 they appear in the rules vector.  The first rule to match the first
26510 sub-expression wins; it replaces the matched sub-expression according
26511 to the @var{new} part of the rule.
26513 Often, the rule set will match and change the formula several times.
26514 The top-level formula is first matched and substituted repeatedly until
26515 it no longer matches the pattern; then, sub-formulas are tried, and
26516 so on.  Once every part of the formula has gotten its chance, the
26517 rewrite mechanism starts over again with the top-level formula
26518 (in case a substitution of one of its arguments has caused it again
26519 to match).  This continues until no further matches can be made
26520 anywhere in the formula.
26522 It is possible for a rule set to get into an infinite loop.  The
26523 most obvious case, replacing a formula with itself, is not a problem
26524 because a rule is not considered to ``succeed'' unless the righthand
26525 side actually comes out to something different than the original
26526 formula or sub-formula that was matched.  But if you accidentally
26527 had both @samp{ln(a b) := ln(a) + ln(b)} and the reverse
26528 @samp{ln(a) + ln(b) := ln(a b)} in your rule set, Calc would
26529 run forever switching a formula back and forth between the two
26530 forms.
26532 To avoid disaster, Calc normally stops after 100 changes have been
26533 made to the formula.  This will be enough for most multiple rewrites,
26534 but it will keep an endless loop of rewrites from locking up the
26535 computer forever.  (On most systems, you can also type @kbd{C-g} to
26536 halt any Emacs command prematurely.)
26538 To change this limit, give a positive numeric prefix argument.
26539 In particular, @kbd{M-1 a r} applies only one rewrite at a time,
26540 useful when you are first testing your rule (or just if repeated
26541 rewriting is not what is called for by your application).
26543 @ignore
26544 @starindex
26545 @end ignore
26546 @ignore
26547 @mindex iter@idots
26548 @end ignore
26549 @tindex iterations
26550 You can also put a ``function call'' @samp{iterations(@var{n})}
26551 in place of a rule anywhere in your rules vector (but usually at
26552 the top).  Then, @var{n} will be used instead of 100 as the default
26553 number of iterations for this rule set.  You can use
26554 @samp{iterations(inf)} if you want no iteration limit by default.
26555 A prefix argument will override the @code{iterations} limit in the
26556 rule set.
26558 @example
26559 [ iterations(1),
26560   f(x) := f(x+1) ]
26561 @end example
26563 More precisely, the limit controls the number of ``iterations,''
26564 where each iteration is a successful matching of a rule pattern whose
26565 righthand side, after substituting meta-variables and applying the
26566 default simplifications, is different from the original sub-formula
26567 that was matched.
26569 A prefix argument of zero sets the limit to infinity.  Use with caution!
26571 Given a negative numeric prefix argument, @kbd{a r} will match and
26572 substitute the top-level expression up to that many times, but
26573 will not attempt to match the rules to any sub-expressions.
26575 In a formula, @code{rewrite(@var{expr}, @var{rules}, @var{n})}
26576 does a rewriting operation.  Here @var{expr} is the expression
26577 being rewritten, @var{rules} is the rule, vector of rules, or
26578 variable containing the rules, and @var{n} is the optional
26579 iteration limit, which may be a positive integer, a negative
26580 integer, or @samp{inf} or @samp{-inf}.  If @var{n} is omitted
26581 the @code{iterations} value from the rule set is used; if both
26582 are omitted, 100 is used.
26584 @node Multi-Phase Rewrite Rules, Selections with Rewrite Rules, Nested Formulas with Rewrite Rules, Rewrite Rules
26585 @subsection Multi-Phase Rewrite Rules
26587 @noindent
26588 It is possible to separate a rewrite rule set into several @dfn{phases}.
26589 During each phase, certain rules will be enabled while certain others
26590 will be disabled.  A @dfn{phase schedule} controls the order in which
26591 phases occur during the rewriting process.
26593 @ignore
26594 @starindex
26595 @end ignore
26596 @tindex phase
26597 @vindex all
26598 If a call to the marker function @code{phase} appears in the rules
26599 vector in place of a rule, all rules following that point will be
26600 members of the phase(s) identified in the arguments to @code{phase}.
26601 Phases are given integer numbers.  The markers @samp{phase()} and
26602 @samp{phase(all)} both mean the following rules belong to all phases;
26603 this is the default at the start of the rule set.
26605 If you do not explicitly schedule the phases, Calc sorts all phase
26606 numbers that appear in the rule set and executes the phases in
26607 ascending order.  For example, the rule set
26609 @example
26610 @group
26611 [ f0(x) := g0(x),
26612   phase(1),
26613   f1(x) := g1(x),
26614   phase(2),
26615   f2(x) := g2(x),
26616   phase(3),
26617   f3(x) := g3(x),
26618   phase(1,2),
26619   f4(x) := g4(x) ]
26620 @end group
26621 @end example
26623 @noindent
26624 has three phases, 1 through 3.  Phase 1 consists of the @code{f0},
26625 @code{f1}, and @code{f4} rules (in that order).  Phase 2 consists of
26626 @code{f0}, @code{f2}, and @code{f4}.  Phase 3 consists of @code{f0}
26627 and @code{f3}.
26629 When Calc rewrites a formula using this rule set, it first rewrites
26630 the formula using only the phase 1 rules until no further changes are
26631 possible.  Then it switches to the phase 2 rule set and continues
26632 until no further changes occur, then finally rewrites with phase 3.
26633 When no more phase 3 rules apply, rewriting finishes.  (This is
26634 assuming @kbd{a r} with a large enough prefix argument to allow the
26635 rewriting to run to completion; the sequence just described stops
26636 early if the number of iterations specified in the prefix argument,
26637 100 by default, is reached.)
26639 During each phase, Calc descends through the nested levels of the
26640 formula as described previously.  (@xref{Nested Formulas with Rewrite
26641 Rules}.)  Rewriting starts at the top of the formula, then works its
26642 way down to the parts, then goes back to the top and works down again.
26643 The phase 2 rules do not begin until no phase 1 rules apply anywhere
26644 in the formula.
26646 @ignore
26647 @starindex
26648 @end ignore
26649 @tindex schedule
26650 A @code{schedule} marker appearing in the rule set (anywhere, but
26651 conventionally at the top) changes the default schedule of phases.
26652 In the simplest case, @code{schedule} has a sequence of phase numbers
26653 for arguments; each phase number is invoked in turn until the
26654 arguments to @code{schedule} are exhausted.  Thus adding
26655 @samp{schedule(3,2,1)} at the top of the above rule set would
26656 reverse the order of the phases; @samp{schedule(1,2,3)} would have
26657 no effect since this is the default schedule; and @samp{schedule(1,2,1,3)}
26658 would give phase 1 a second chance after phase 2 has completed, before
26659 moving on to phase 3.
26661 Any argument to @code{schedule} can instead be a vector of phase
26662 numbers (or even of sub-vectors).  Then the sub-sequence of phases
26663 described by the vector are tried repeatedly until no change occurs
26664 in any phase in the sequence.  For example, @samp{schedule([1, 2], 3)}
26665 tries phase 1, then phase 2, then, if either phase made any changes
26666 to the formula, repeats these two phases until they can make no
26667 further progress.  Finally, it goes on to phase 3 for finishing
26668 touches.
26670 Also, items in @code{schedule} can be variable names as well as
26671 numbers.  A variable name is interpreted as the name of a function
26672 to call on the whole formula.  For example, @samp{schedule(1, simplify)}
26673 says to apply the phase-1 rules (presumably, all of them), then to
26674 call @code{simplify} which is the function name equivalent of @kbd{a s}.
26675 Likewise, @samp{schedule([1, simplify])} says to alternate between
26676 phase 1 and @kbd{a s} until no further changes occur.
26678 Phases can be used purely to improve efficiency; if it is known that
26679 a certain group of rules will apply only at the beginning of rewriting,
26680 and a certain other group will apply only at the end, then rewriting
26681 will be faster if these groups are identified as separate phases.
26682 Once the phase 1 rules are done, Calc can put them aside and no longer
26683 spend any time on them while it works on phase 2.
26685 There are also some problems that can only be solved with several
26686 rewrite phases.  For a real-world example of a multi-phase rule set,
26687 examine the set @code{FitRules}, which is used by the curve-fitting
26688 command to convert a model expression to linear form.
26689 @xref{Curve Fitting Details}.  This set is divided into four phases.
26690 The first phase rewrites certain kinds of expressions to be more
26691 easily linearizable, but less computationally efficient.  After the
26692 linear components have been picked out, the final phase includes the
26693 opposite rewrites to put each component back into an efficient form.
26694 If both sets of rules were included in one big phase, Calc could get
26695 into an infinite loop going back and forth between the two forms.
26697 Elsewhere in @code{FitRules}, the components are first isolated,
26698 then recombined where possible to reduce the complexity of the linear
26699 fit, then finally packaged one component at a time into vectors.
26700 If the packaging rules were allowed to begin before the recombining
26701 rules were finished, some components might be put away into vectors
26702 before they had a chance to recombine.  By putting these rules in
26703 two separate phases, this problem is neatly avoided.
26705 @node Selections with Rewrite Rules, Matching Commands, Multi-Phase Rewrite Rules, Rewrite Rules
26706 @subsection Selections with Rewrite Rules
26708 @noindent
26709 If a sub-formula of the current formula is selected (as by @kbd{j s};
26710 @pxref{Selecting Subformulas}), the @kbd{a r} (@code{calc-rewrite})
26711 command applies only to that sub-formula.  Together with a negative
26712 prefix argument, you can use this fact to apply a rewrite to one
26713 specific part of a formula without affecting any other parts.
26715 @kindex j r
26716 @pindex calc-rewrite-selection
26717 The @kbd{j r} (@code{calc-rewrite-selection}) command allows more
26718 sophisticated operations on selections.  This command prompts for
26719 the rules in the same way as @kbd{a r}, but it then applies those
26720 rules to the whole formula in question even though a sub-formula
26721 of it has been selected.  However, the selected sub-formula will
26722 first have been surrounded by a @samp{select( )} function call.
26723 (Calc's evaluator does not understand the function name @code{select};
26724 this is only a tag used by the @kbd{j r} command.)
26726 For example, suppose the formula on the stack is @samp{2 (a + b)^2}
26727 and the sub-formula @samp{a + b} is selected.  This formula will
26728 be rewritten to @samp{2 select(a + b)^2} and then the rewrite
26729 rules will be applied in the usual way.  The rewrite rules can
26730 include references to @code{select} to tell where in the pattern
26731 the selected sub-formula should appear.
26733 If there is still exactly one @samp{select( )} function call in
26734 the formula after rewriting is done, it indicates which part of
26735 the formula should be selected afterwards.  Otherwise, the
26736 formula will be unselected.
26738 You can make @kbd{j r} act much like @kbd{a r} by enclosing both parts
26739 of the rewrite rule with @samp{select()}.  However, @kbd{j r}
26740 allows you to use the current selection in more flexible ways.
26741 Suppose you wished to make a rule which removed the exponent from
26742 the selected term; the rule @samp{select(a)^x := select(a)} would
26743 work.  In the above example, it would rewrite @samp{2 select(a + b)^2}
26744 to @samp{2 select(a + b)}.  This would then be returned to the
26745 stack as @samp{2 (a + b)} with the @samp{a + b} selected.
26747 The @kbd{j r} command uses one iteration by default, unlike
26748 @kbd{a r} which defaults to 100 iterations.  A numeric prefix
26749 argument affects @kbd{j r} in the same way as @kbd{a r}.
26750 @xref{Nested Formulas with Rewrite Rules}.
26752 As with other selection commands, @kbd{j r} operates on the stack
26753 entry that contains the cursor.  (If the cursor is on the top-of-stack
26754 @samp{.} marker, it works as if the cursor were on the formula
26755 at stack level 1.)
26757 If you don't specify a set of rules, the rules are taken from the
26758 top of the stack, just as with @kbd{a r}.  In this case, the
26759 cursor must indicate stack entry 2 or above as the formula to be
26760 rewritten (otherwise the same formula would be used as both the
26761 target and the rewrite rules).
26763 If the indicated formula has no selection, the cursor position within
26764 the formula temporarily selects a sub-formula for the purposes of this
26765 command.  If the cursor is not on any sub-formula (e.g., it is in
26766 the line-number area to the left of the formula), the @samp{select( )}
26767 markers are ignored by the rewrite mechanism and the rules are allowed
26768 to apply anywhere in the formula.
26770 As a special feature, the normal @kbd{a r} command also ignores
26771 @samp{select( )} calls in rewrite rules.  For example, if you used the
26772 above rule @samp{select(a)^x := select(a)} with @kbd{a r}, it would apply
26773 the rule as if it were @samp{a^x := a}.  Thus, you can write general
26774 purpose rules with @samp{select( )} hints inside them so that they
26775 will ``do the right thing'' in both @kbd{a r} and @kbd{j r},
26776 both with and without selections.
26778 @node Matching Commands, Automatic Rewrites, Selections with Rewrite Rules, Rewrite Rules
26779 @subsection Matching Commands
26781 @noindent
26782 @kindex a m
26783 @pindex calc-match
26784 @tindex match
26785 The @kbd{a m} (@code{calc-match}) [@code{match}] function takes a
26786 vector of formulas and a rewrite-rule-style pattern, and produces
26787 a vector of all formulas which match the pattern.  The command
26788 prompts you to enter the pattern; as for @kbd{a r}, you can enter
26789 a single pattern (i.e., a formula with meta-variables), or a
26790 vector of patterns, or a variable which contains patterns, or
26791 you can give a blank response in which case the patterns are taken
26792 from the top of the stack.  The pattern set will be compiled once
26793 and saved if it is stored in a variable.  If there are several
26794 patterns in the set, vector elements are kept if they match any
26795 of the patterns.
26797 For example, @samp{match(a+b, [x, x+y, x-y, 7, x+y+z])}
26798 will return @samp{[x+y, x-y, x+y+z]}.
26800 The @code{import} mechanism is not available for pattern sets.
26802 The @kbd{a m} command can also be used to extract all vector elements
26803 which satisfy any condition:  The pattern @samp{x :: x>0} will select
26804 all the positive vector elements.
26806 @kindex I a m
26807 @tindex matchnot
26808 With the Inverse flag [@code{matchnot}], this command extracts all
26809 vector elements which do @emph{not} match the given pattern.
26811 @ignore
26812 @starindex
26813 @end ignore
26814 @tindex matches
26815 There is also a function @samp{matches(@var{x}, @var{p})} which
26816 evaluates to 1 if expression @var{x} matches pattern @var{p}, or
26817 to 0 otherwise.  This is sometimes useful for including into the
26818 conditional clauses of other rewrite rules.
26820 @ignore
26821 @starindex
26822 @end ignore
26823 @tindex vmatches
26824 The function @code{vmatches} is just like @code{matches}, except
26825 that if the match succeeds it returns a vector of assignments to
26826 the meta-variables instead of the number 1.  For example,
26827 @samp{vmatches(f(1,2), f(a,b))} returns @samp{[a := 1, b := 2]}.
26828 If the match fails, the function returns the number 0.
26830 @node Automatic Rewrites, Debugging Rewrites, Matching Commands, Rewrite Rules
26831 @subsection Automatic Rewrites
26833 @noindent
26834 @cindex @code{EvalRules} variable
26835 @vindex EvalRules
26836 It is possible to get Calc to apply a set of rewrite rules on all
26837 results, effectively adding to the built-in set of default
26838 simplifications.  To do this, simply store your rule set in the
26839 variable @code{EvalRules}.  There is a convenient @kbd{s E} command
26840 for editing @code{EvalRules}; @pxref{Operations on Variables}.
26842 For example, suppose you want @samp{sin(a + b)} to be expanded out
26843 to @samp{sin(b) cos(a) + cos(b) sin(a)} wherever it appears, and
26844 similarly for @samp{cos(a + b)}.  The corresponding rewrite rule
26845 set would be,
26847 @smallexample
26848 @group
26849 [ sin(a + b)  :=  cos(a) sin(b) + sin(a) cos(b),
26850   cos(a + b)  :=  cos(a) cos(b) - sin(a) sin(b) ]
26851 @end group
26852 @end smallexample
26854 To apply these manually, you could put them in a variable called
26855 @code{trigexp} and then use @kbd{a r trigexp} every time you wanted
26856 to expand trig functions.  But if instead you store them in the
26857 variable @code{EvalRules}, they will automatically be applied to all
26858 sines and cosines of sums.  Then, with @samp{2 x} and @samp{45} on
26859 the stack, typing @kbd{+ S} will (assuming degrees mode) result in
26860 @samp{0.7071 sin(2 x) + 0.7071 cos(2 x)} automatically.
26862 As each level of a formula is evaluated, the rules from
26863 @code{EvalRules} are applied before the default simplifications.
26864 Rewriting continues until no further @code{EvalRules} apply.
26865 Note that this is different from the usual order of application of
26866 rewrite rules:  @code{EvalRules} works from the bottom up, simplifying
26867 the arguments to a function before the function itself, while @kbd{a r}
26868 applies rules from the top down.
26870 Because the @code{EvalRules} are tried first, you can use them to
26871 override the normal behavior of any built-in Calc function.
26873 It is important not to write a rule that will get into an infinite
26874 loop.  For example, the rule set @samp{[f(0) := 1, f(n) := n f(n-1)]}
26875 appears to be a good definition of a factorial function, but it is
26876 unsafe.  Imagine what happens if @samp{f(2.5)} is simplified.  Calc
26877 will continue to subtract 1 from this argument forever without reaching
26878 zero.  A safer second rule would be @samp{f(n) := n f(n-1) :: n>0}.
26879 Another dangerous rule is @samp{g(x, y) := g(y, x)}.  Rewriting
26880 @samp{g(2, 4)}, this would bounce back and forth between that and
26881 @samp{g(4, 2)} forever.  If an infinite loop in @code{EvalRules}
26882 occurs, Emacs will eventually stop with a ``Computation got stuck
26883 or ran too long'' message.
26885 Another subtle difference between @code{EvalRules} and regular rewrites
26886 concerns rules that rewrite a formula into an identical formula.  For
26887 example, @samp{f(n) := f(floor(n))} ``fails to match'' when @cite{n} is
26888 already an integer.  But in @code{EvalRules} this case is detected only
26889 if the righthand side literally becomes the original formula before any
26890 further simplification.  This means that @samp{f(n) := f(floor(n))} will
26891 get into an infinite loop if it occurs in @code{EvalRules}.  Calc will
26892 replace @samp{f(6)} with @samp{f(floor(6))}, which is different from
26893 @samp{f(6)}, so it will consider the rule to have matched and will
26894 continue simplifying that formula; first the argument is simplified
26895 to get @samp{f(6)}, then the rule matches again to get @samp{f(floor(6))}
26896 again, ad infinitum.  A much safer rule would check its argument first,
26897 say, with @samp{f(n) := f(floor(n)) :: !dint(n)}.
26899 (What really happens is that the rewrite mechanism substitutes the
26900 meta-variables in the righthand side of a rule, compares to see if the
26901 result is the same as the original formula and fails if so, then uses
26902 the default simplifications to simplify the result and compares again
26903 (and again fails if the formula has simplified back to its original
26904 form).  The only special wrinkle for the @code{EvalRules} is that the
26905 same rules will come back into play when the default simplifications
26906 are used.  What Calc wants to do is build @samp{f(floor(6))}, see that
26907 this is different from the original formula, simplify to @samp{f(6)},
26908 see that this is the same as the original formula, and thus halt the
26909 rewriting.  But while simplifying, @samp{f(6)} will again trigger
26910 the same @code{EvalRules} rule and Calc will get into a loop inside
26911 the rewrite mechanism itself.)
26913 The @code{phase}, @code{schedule}, and @code{iterations} markers do
26914 not work in @code{EvalRules}.  If the rule set is divided into phases,
26915 only the phase 1 rules are applied, and the schedule is ignored.
26916 The rules are always repeated as many times as possible.
26918 The @code{EvalRules} are applied to all function calls in a formula,
26919 but not to numbers (and other number-like objects like error forms),
26920 nor to vectors or individual variable names.  (Though they will apply
26921 to @emph{components} of vectors and error forms when appropriate.)  You
26922 might try to make a variable @code{phihat} which automatically expands
26923 to its definition without the need to press @kbd{=} by writing the
26924 rule @samp{quote(phihat) := (1-sqrt(5))/2}, but unfortunately this rule
26925 will not work as part of @code{EvalRules}.
26927 Finally, another limitation is that Calc sometimes calls its built-in
26928 functions directly rather than going through the default simplifications.
26929 When it does this, @code{EvalRules} will not be able to override those
26930 functions.  For example, when you take the absolute value of the complex
26931 number @cite{(2, 3)}, Calc computes @samp{sqrt(2*2 + 3*3)} by calling
26932 the multiplication, addition, and square root functions directly rather
26933 than applying the default simplifications to this formula.  So an
26934 @code{EvalRules} rule that (perversely) rewrites @samp{sqrt(13) := 6}
26935 would not apply.  (However, if you put Calc into symbolic mode so that
26936 @samp{sqrt(13)} will be left in symbolic form by the built-in square
26937 root function, your rule will be able to apply.  But if the complex
26938 number were @cite{(3,4)}, so that @samp{sqrt(25)} must be calculated,
26939 then symbolic mode will not help because @samp{sqrt(25)} can be
26940 evaluated exactly to 5.)
26942 One subtle restriction that normally only manifests itself with
26943 @code{EvalRules} is that while a given rewrite rule is in the process
26944 of being checked, that same rule cannot be recursively applied.  Calc
26945 effectively removes the rule from its rule set while checking the rule,
26946 then puts it back once the match succeeds or fails.  (The technical
26947 reason for this is that compiled pattern programs are not reentrant.)
26948 For example, consider the rule @samp{foo(x) := x :: foo(x/2) > 0}
26949 attempting to match @samp{foo(8)}.  This rule will be inactive while
26950 the condition @samp{foo(4) > 0} is checked, even though it might be
26951 an integral part of evaluating that condition.  Note that this is not
26952 a problem for the more usual recursive type of rule, such as
26953 @samp{foo(x) := foo(x/2)}, because there the rule has succeeded and
26954 been reactivated by the time the righthand side is evaluated.
26956 If @code{EvalRules} has no stored value (its default state), or if
26957 anything but a vector is stored in it, then it is ignored.
26959 Even though Calc's rewrite mechanism is designed to compare rewrite
26960 rules to formulas as quickly as possible, storing rules in
26961 @code{EvalRules} may make Calc run substantially slower.  This is
26962 particularly true of rules where the top-level call is a commonly used
26963 function, or is not fixed.  The rule @samp{f(n) := n f(n-1) :: n>0} will
26964 only activate the rewrite mechanism for calls to the function @code{f},
26965 but @samp{lg(n) + lg(m) := lg(n m)} will check every @samp{+} operator.
26967 @smallexample
26968 apply(f, [a*b]) := apply(f, [a]) + apply(f, [b]) :: in(f, [ln, log10])
26969 @end smallexample
26971 @noindent
26972 may seem more ``efficient'' than two separate rules for @code{ln} and
26973 @code{log10}, but actually it is vastly less efficient because rules
26974 with @code{apply} as the top-level pattern must be tested against
26975 @emph{every} function call that is simplified.
26977 @cindex @code{AlgSimpRules} variable
26978 @vindex AlgSimpRules
26979 Suppose you want @samp{sin(a + b)} to be expanded out not all the time,
26980 but only when @kbd{a s} is used to simplify the formula.  The variable
26981 @code{AlgSimpRules} holds rules for this purpose.  The @kbd{a s} command
26982 will apply @code{EvalRules} and @code{AlgSimpRules} to the formula, as
26983 well as all of its built-in simplifications.
26985 Most of the special limitations for @code{EvalRules} don't apply to
26986 @code{AlgSimpRules}.  Calc simply does an @kbd{a r AlgSimpRules}
26987 command with an infinite repeat count as the first step of @kbd{a s}.
26988 It then applies its own built-in simplifications throughout the
26989 formula, and then repeats these two steps (along with applying the
26990 default simplifications) until no further changes are possible.
26992 @cindex @code{ExtSimpRules} variable
26993 @cindex @code{UnitSimpRules} variable
26994 @vindex ExtSimpRules
26995 @vindex UnitSimpRules
26996 There are also @code{ExtSimpRules} and @code{UnitSimpRules} variables
26997 that are used by @kbd{a e} and @kbd{u s}, respectively; these commands
26998 also apply @code{EvalRules} and @code{AlgSimpRules}.  The variable
26999 @code{IntegSimpRules} contains simplification rules that are used
27000 only during integration by @kbd{a i}.
27002 @node Debugging Rewrites, Examples of Rewrite Rules, Automatic Rewrites, Rewrite Rules
27003 @subsection Debugging Rewrites
27005 @noindent
27006 If a buffer named @samp{*Trace*} exists, the rewrite mechanism will
27007 record some useful information there as it operates.  The original
27008 formula is written there, as is the result of each successful rewrite,
27009 and the final result of the rewriting.  All phase changes are also
27010 noted.
27012 Calc always appends to @samp{*Trace*}.  You must empty this buffer
27013 yourself periodically if it is in danger of growing unwieldy.
27015 Note that the rewriting mechanism is substantially slower when the
27016 @samp{*Trace*} buffer exists, even if the buffer is not visible on
27017 the screen.  Once you are done, you will probably want to kill this
27018 buffer (with @kbd{C-x k *Trace* @key{RET}}).  If you leave it in
27019 existence and forget about it, all your future rewrite commands will
27020 be needlessly slow.
27022 @node Examples of Rewrite Rules, , Debugging Rewrites, Rewrite Rules
27023 @subsection Examples of Rewrite Rules
27025 @noindent
27026 Returning to the example of substituting the pattern
27027 @samp{sin(x)^2 + cos(x)^2} with 1, we saw that the rule
27028 @samp{opt(a) sin(x)^2 + opt(a) cos(x)^2 := a} does a good job of
27029 finding suitable cases.  Another solution would be to use the rule
27030 @samp{cos(x)^2 := 1 - sin(x)^2}, followed by algebraic simplification
27031 if necessary.  This rule will be the most effective way to do the job,
27032 but at the expense of making some changes that you might not desire.@refill
27034 Another algebraic rewrite rule is @samp{exp(x+y) := exp(x) exp(y)}.
27035 To make this work with the @w{@kbd{j r}} command so that it can be
27036 easily targeted to a particular exponential in a large formula,
27037 you might wish to write the rule as @samp{select(exp(x+y)) :=
27038 select(exp(x) exp(y))}.  The @samp{select} markers will be
27039 ignored by the regular @kbd{a r} command
27040 (@pxref{Selections with Rewrite Rules}).@refill
27042 A surprisingly useful rewrite rule is @samp{a/(b-c) := a*(b+c)/(b^2-c^2)}.
27043 This will simplify the formula whenever @cite{b} and/or @cite{c} can
27044 be made simpler by squaring.  For example, applying this rule to
27045 @samp{2 / (sqrt(2) + 3)} yields @samp{6:7 - 2:7 sqrt(2)} (assuming
27046 Symbolic Mode has been enabled to keep the square root from being
27047 evaluated to a floating-point approximation).  This rule is also
27048 useful when working with symbolic complex numbers, e.g.,
27049 @samp{(a + b i) / (c + d i)}.
27051 As another example, we could define our own ``triangular numbers'' function
27052 with the rules @samp{[tri(0) := 0, tri(n) := n + tri(n-1) :: n>0]}.  Enter
27053 this vector and store it in a variable:  @kbd{@w{s t} trirules}.  Now, given
27054 a suitable formula like @samp{tri(5)} on the stack, type @samp{a r trirules}
27055 to apply these rules repeatedly.  After six applications, @kbd{a r} will
27056 stop with 15 on the stack.  Once these rules are debugged, it would probably
27057 be most useful to add them to @code{EvalRules} so that Calc will evaluate
27058 the new @code{tri} function automatically.  We could then use @kbd{Z K} on
27059 the keyboard macro @kbd{' tri($) @key{RET}} to make a command that applies
27060 @code{tri} to the value on the top of the stack.  @xref{Programming}.
27062 @cindex Quaternions
27063 The following rule set, contributed by @c{Fran\c cois}
27064 @asis{Francois} Pinard, implements
27065 @dfn{quaternions}, a generalization of the concept of complex numbers.
27066 Quaternions have four components, and are here represented by function
27067 calls @samp{quat(@var{w}, [@var{x}, @var{y}, @var{z}])} with ``real
27068 part'' @var{w} and the three ``imaginary'' parts collected into a
27069 vector.  Various arithmetical operations on quaternions are supported.
27070 To use these rules, either add them to @code{EvalRules}, or create a
27071 command based on @kbd{a r} for simplifying quaternion formulas.
27072 A convenient way to enter quaternions would be a command defined by
27073 a keyboard macro containing: @kbd{' quat($$$$, [$$$, $$, $]) @key{RET}}.
27075 @smallexample
27076 [ quat(w, x, y, z) := quat(w, [x, y, z]),
27077   quat(w, [0, 0, 0]) := w,
27078   abs(quat(w, v)) := hypot(w, v),
27079   -quat(w, v) := quat(-w, -v),
27080   r + quat(w, v) := quat(r + w, v) :: real(r),
27081   r - quat(w, v) := quat(r - w, -v) :: real(r),
27082   quat(w1, v1) + quat(w2, v2) := quat(w1 + w2, v1 + v2),
27083   r * quat(w, v) := quat(r * w, r * v) :: real(r),
27084   plain(quat(w1, v1) * quat(w2, v2))
27085      := quat(w1 * w2 - v1 * v2, w1 * v2 + w2 * v1 + cross(v1, v2)),
27086   quat(w1, v1) / r := quat(w1 / r, v1 / r) :: real(r),
27087   z / quat(w, v) := z * quatinv(quat(w, v)),
27088   quatinv(quat(w, v)) := quat(w, -v) / (w^2 + v^2),
27089   quatsqr(quat(w, v)) := quat(w^2 - v^2, 2 * w * v),
27090   quat(w, v)^k := quatsqr(quat(w, v)^(k / 2))
27091                :: integer(k) :: k > 0 :: k % 2 = 0,
27092   quat(w, v)^k := quatsqr(quat(w, v)^((k - 1) / 2)) * quat(w, v)
27093                :: integer(k) :: k > 2,
27094   quat(w, v)^-k := quatinv(quat(w, v)^k) :: integer(k) :: k > 0 ]
27095 @end smallexample
27097 Quaternions, like matrices, have non-commutative multiplication.
27098 In other words, @cite{q1 * q2 = q2 * q1} is not necessarily true if
27099 @cite{q1} and @cite{q2} are @code{quat} forms.  The @samp{quat*quat}
27100 rule above uses @code{plain} to prevent Calc from rearranging the
27101 product.  It may also be wise to add the line @samp{[quat(), matrix]}
27102 to the @code{Decls} matrix, to ensure that Calc's other algebraic
27103 operations will not rearrange a quaternion product.  @xref{Declarations}.
27105 These rules also accept a four-argument @code{quat} form, converting
27106 it to the preferred form in the first rule.  If you would rather see
27107 results in the four-argument form, just append the two items
27108 @samp{phase(2), quat(w, [x, y, z]) := quat(w, x, y, z)} to the end
27109 of the rule set.  (But remember that multi-phase rule sets don't work
27110 in @code{EvalRules}.)
27112 @node Units, Store and Recall, Algebra, Top
27113 @chapter Operating on Units
27115 @noindent
27116 One special interpretation of algebraic formulas is as numbers with units.
27117 For example, the formula @samp{5 m / s^2} can be read ``five meters
27118 per second squared.''  The commands in this chapter help you
27119 manipulate units expressions in this form.  Units-related commands
27120 begin with the @kbd{u} prefix key.
27122 @menu
27123 * Basic Operations on Units::
27124 * The Units Table::
27125 * Predefined Units::
27126 * User-Defined Units::
27127 @end menu
27129 @node Basic Operations on Units, The Units Table, Units, Units
27130 @section Basic Operations on Units
27132 @noindent
27133 A @dfn{units expression} is a formula which is basically a number
27134 multiplied and/or divided by one or more @dfn{unit names}, which may
27135 optionally be raised to integer powers.  Actually, the value part need not
27136 be a number; any product or quotient involving unit names is a units
27137 expression.  Many of the units commands will also accept any formula,
27138 where the command applies to all units expressions which appear in the
27139 formula.
27141 A unit name is a variable whose name appears in the @dfn{unit table},
27142 or a variable whose name is a prefix character like @samp{k} (for ``kilo'')
27143 or @samp{u} (for ``micro'') followed by a name in the unit table.
27144 A substantial table of built-in units is provided with Calc;
27145 @pxref{Predefined Units}.  You can also define your own unit names;
27146 @pxref{User-Defined Units}.@refill
27148 Note that if the value part of a units expression is exactly @samp{1},
27149 it will be removed by the Calculator's automatic algebra routines:  The
27150 formula @samp{1 mm} is ``simplified'' to @samp{mm}.  This is only a
27151 display anomaly, however; @samp{mm} will work just fine as a
27152 representation of one millimeter.@refill
27154 You may find that Algebraic Mode (@pxref{Algebraic Entry}) makes working
27155 with units expressions easier.  Otherwise, you will have to remember
27156 to hit the apostrophe key every time you wish to enter units.
27158 @kindex u s
27159 @pindex calc-simplify-units
27160 @ignore
27161 @mindex usimpl@idots
27162 @end ignore
27163 @tindex usimplify
27164 The @kbd{u s} (@code{calc-simplify-units}) [@code{usimplify}] command
27165 simplifies a units
27166 expression.  It uses @kbd{a s} (@code{calc-simplify}) to simplify the
27167 expression first as a regular algebraic formula; it then looks for
27168 features that can be further simplified by converting one object's units
27169 to be compatible with another's.  For example, @samp{5 m + 23 mm} will
27170 simplify to @samp{5.023 m}.  When different but compatible units are
27171 added, the righthand term's units are converted to match those of the
27172 lefthand term.  @xref{Simplification Modes}, for a way to have this done
27173 automatically at all times.@refill
27175 Units simplification also handles quotients of two units with the same
27176 dimensionality, as in @w{@samp{2 in s/L cm}} to @samp{5.08 s/L}; fractional
27177 powers of unit expressions, as in @samp{sqrt(9 mm^2)} to @samp{3 mm} and
27178 @samp{sqrt(9 acre)} to a quantity in meters; and @code{floor},
27179 @code{ceil}, @code{round}, @code{rounde}, @code{roundu}, @code{trunc},
27180 @code{float}, @code{frac}, @code{abs}, and @code{clean}
27181 applied to units expressions, in which case
27182 the operation in question is applied only to the numeric part of the
27183 expression.  Finally, trigonometric functions of quantities with units
27184 of angle are evaluated, regardless of the current angular mode.@refill
27186 @kindex u c
27187 @pindex calc-convert-units
27188 The @kbd{u c} (@code{calc-convert-units}) command converts a units
27189 expression to new, compatible units.  For example, given the units
27190 expression @samp{55 mph}, typing @kbd{u c m/s @key{RET}} produces
27191 @samp{24.5872 m/s}.  If the units you request are inconsistent with
27192 the original units, the number will be converted into your units
27193 times whatever ``remainder'' units are left over.  For example,
27194 converting @samp{55 mph} into acres produces @samp{6.08e-3 acre / m s}.
27195 (Recall that multiplication binds more strongly than division in Calc
27196 formulas, so the units here are acres per meter-second.)  Remainder
27197 units are expressed in terms of ``fundamental'' units like @samp{m} and
27198 @samp{s}, regardless of the input units.
27200 One special exception is that if you specify a single unit name, and
27201 a compatible unit appears somewhere in the units expression, then
27202 that compatible unit will be converted to the new unit and the
27203 remaining units in the expression will be left alone.  For example,
27204 given the input @samp{980 cm/s^2}, the command @kbd{u c ms} will
27205 change the @samp{s} to @samp{ms} to get @samp{9.8e-4 cm/ms^2}.
27206 The ``remainder unit'' @samp{cm} is left alone rather than being
27207 changed to the base unit @samp{m}.
27209 You can use explicit unit conversion instead of the @kbd{u s} command
27210 to gain more control over the units of the result of an expression.
27211 For example, given @samp{5 m + 23 mm}, you can type @kbd{u c m} or
27212 @kbd{u c mm} to express the result in either meters or millimeters.
27213 (For that matter, you could type @kbd{u c fath} to express the result
27214 in fathoms, if you preferred!)
27216 In place of a specific set of units, you can also enter one of the
27217 units system names @code{si}, @code{mks} (equivalent), or @code{cgs}.
27218 For example, @kbd{u c si @key{RET}} converts the expression into
27219 International System of Units (SI) base units.  Also, @kbd{u c base}
27220 converts to Calc's base units, which are the same as @code{si} units
27221 except that @code{base} uses @samp{g} as the fundamental unit of mass
27222 whereas @code{si} uses @samp{kg}.
27224 @cindex Composite units
27225 The @kbd{u c} command also accepts @dfn{composite units}, which
27226 are expressed as the sum of several compatible unit names.  For
27227 example, converting @samp{30.5 in} to units @samp{mi+ft+in} (miles,
27228 feet, and inches) produces @samp{2 ft + 6.5 in}.  Calc first
27229 sorts the unit names into order of decreasing relative size.
27230 It then accounts for as much of the input quantity as it can
27231 using an integer number times the largest unit, then moves on
27232 to the next smaller unit, and so on.  Only the smallest unit
27233 may have a non-integer amount attached in the result.  A few
27234 standard unit names exist for common combinations, such as
27235 @code{mfi} for @samp{mi+ft+in}, and @code{tpo} for @samp{ton+lb+oz}.
27236 Composite units are expanded as if by @kbd{a x}, so that
27237 @samp{(ft+in)/hr} is first converted to @samp{ft/hr+in/hr}.
27239 If the value on the stack does not contain any units, @kbd{u c} will
27240 prompt first for the old units which this value should be considered
27241 to have, then for the new units.  Assuming the old and new units you
27242 give are consistent with each other, the result also will not contain
27243 any units.  For example, @kbd{@w{u c} cm @key{RET} in @key{RET}} converts the number
27244 2 on the stack to 5.08.
27246 @kindex u b
27247 @pindex calc-base-units
27248 The @kbd{u b} (@code{calc-base-units}) command is shorthand for
27249 @kbd{u c base}; it converts the units expression on the top of the
27250 stack into @code{base} units.  If @kbd{u s} does not simplify a
27251 units expression as far as you would like, try @kbd{u b}.
27253 The @kbd{u c} and @kbd{u b} commands treat temperature units (like
27254 @samp{degC} and @samp{K}) as relative temperatures.  For example,
27255 @kbd{u c} converts @samp{10 degC} to @samp{18 degF}: A change of 10
27256 degrees Celsius corresponds to a change of 18 degrees Fahrenheit.
27258 @kindex u t
27259 @pindex calc-convert-temperature
27260 @cindex Temperature conversion
27261 The @kbd{u t} (@code{calc-convert-temperature}) command converts
27262 absolute temperatures.  The value on the stack must be a simple units
27263 expression with units of temperature only.  This command would convert
27264 @samp{10 degC} to @samp{50 degF}, the equivalent temperature on the
27265 Fahrenheit scale.@refill
27267 @kindex u r
27268 @pindex calc-remove-units
27269 @kindex u x
27270 @pindex calc-extract-units
27271 The @kbd{u r} (@code{calc-remove-units}) command removes units from the
27272 formula at the top of the stack.  The @kbd{u x}
27273 (@code{calc-extract-units}) command extracts only the units portion of a
27274 formula.  These commands essentially replace every term of the formula
27275 that does or doesn't (respectively) look like a unit name by the
27276 constant 1, then resimplify the formula.@refill
27278 @kindex u a
27279 @pindex calc-autorange-units
27280 The @kbd{u a} (@code{calc-autorange-units}) command turns on and off a
27281 mode in which unit prefixes like @code{k} (``kilo'') are automatically
27282 applied to keep the numeric part of a units expression in a reasonable
27283 range.  This mode affects @kbd{u s} and all units conversion commands
27284 except @kbd{u b}.  For example, with autoranging on, @samp{12345 Hz}
27285 will be simplified to @samp{12.345 kHz}.  Autoranging is useful for
27286 some kinds of units (like @code{Hz} and @code{m}), but is probably
27287 undesirable for non-metric units like @code{ft} and @code{tbsp}.
27288 (Composite units are more appropriate for those; see above.)
27290 Autoranging always applies the prefix to the leftmost unit name.
27291 Calc chooses the largest prefix that causes the number to be greater
27292 than or equal to 1.0.  Thus an increasing sequence of adjusted times
27293 would be @samp{1 ms, 10 ms, 100 ms, 1 s, 10 s, 100 s, 1 ks}.
27294 Generally the rule of thumb is that the number will be adjusted
27295 to be in the interval @samp{[1 .. 1000)}, although there are several
27296 exceptions to this rule.  First, if the unit has a power then this
27297 is not possible; @samp{0.1 s^2} simplifies to @samp{100000 ms^2}.
27298 Second, the ``centi-'' prefix is allowed to form @code{cm} (centimeters),
27299 but will not apply to other units.  The ``deci-,'' ``deka-,'' and
27300 ``hecto-'' prefixes are never used.  Thus the allowable interval is
27301 @samp{[1 .. 10)} for millimeters and @samp{[1 .. 100)} for centimeters.
27302 Finally, a prefix will not be added to a unit if the resulting name
27303 is also the actual name of another unit; @samp{1e-15 t} would normally
27304 be considered a ``femto-ton,'' but it is written as @samp{1000 at}
27305 (1000 atto-tons) instead because @code{ft} would be confused with feet.
27307 @node The Units Table, Predefined Units, Basic Operations on Units, Units
27308 @section The Units Table
27310 @noindent
27311 @kindex u v
27312 @pindex calc-enter-units-table
27313 The @kbd{u v} (@code{calc-enter-units-table}) command displays the units table
27314 in another buffer called @code{*Units Table*}.  Each entry in this table
27315 gives the unit name as it would appear in an expression, the definition
27316 of the unit in terms of simpler units, and a full name or description of
27317 the unit.  Fundamental units are defined as themselves; these are the
27318 units produced by the @kbd{u b} command.  The fundamental units are
27319 meters, seconds, grams, kelvins, amperes, candelas, moles, radians,
27320 and steradians.
27322 The Units Table buffer also displays the Unit Prefix Table.  Note that
27323 two prefixes, ``kilo'' and ``hecto,'' accept either upper- or lower-case
27324 prefix letters.  @samp{Meg} is also accepted as a synonym for the @samp{M}
27325 prefix.  Whenever a unit name can be interpreted as either a built-in name
27326 or a prefix followed by another built-in name, the former interpretation
27327 wins.  For example, @samp{2 pt} means two pints, not two pico-tons.
27329 The Units Table buffer, once created, is not rebuilt unless you define
27330 new units.  To force the buffer to be rebuilt, give any numeric prefix
27331 argument to @kbd{u v}.
27333 @kindex u V
27334 @pindex calc-view-units-table
27335 The @kbd{u V} (@code{calc-view-units-table}) command is like @kbd{u v} except
27336 that the cursor is not moved into the Units Table buffer.  You can
27337 type @kbd{u V} again to remove the Units Table from the display.  To
27338 return from the Units Table buffer after a @kbd{u v}, type @kbd{M-# c}
27339 again or use the regular Emacs @w{@kbd{C-x o}} (@code{other-window})
27340 command.  You can also kill the buffer with @kbd{C-x k} if you wish;
27341 the actual units table is safely stored inside the Calculator.
27343 @kindex u g
27344 @pindex calc-get-unit-definition
27345 The @kbd{u g} (@code{calc-get-unit-definition}) command retrieves a unit's
27346 defining expression and pushes it onto the Calculator stack.  For example,
27347 @kbd{u g in} will produce the expression @samp{2.54 cm}.  This is the
27348 same definition for the unit that would appear in the Units Table buffer.
27349 Note that this command works only for actual unit names; @kbd{u g km}
27350 will report that no such unit exists, for example, because @code{km} is
27351 really the unit @code{m} with a @code{k} (``kilo'') prefix.  To see a
27352 definition of a unit in terms of base units, it is easier to push the
27353 unit name on the stack and then reduce it to base units with @kbd{u b}.
27355 @kindex u e
27356 @pindex calc-explain-units
27357 The @kbd{u e} (@code{calc-explain-units}) command displays an English
27358 description of the units of the expression on the stack.  For example,
27359 for the expression @samp{62 km^2 g / s^2 mol K}, the description is
27360 ``Square-Kilometer Gram per (Second-squared Mole Degree-Kelvin).''  This
27361 command uses the English descriptions that appear in the righthand
27362 column of the Units Table.
27364 @node Predefined Units, User-Defined Units, The Units Table, Units
27365 @section Predefined Units
27367 @noindent
27368 Since the exact definitions of many kinds of units have evolved over the
27369 years, and since certain countries sometimes have local differences in
27370 their definitions, it is a good idea to examine Calc's definition of a
27371 unit before depending on its exact value.  For example, there are three
27372 different units for gallons, corresponding to the US (@code{gal}),
27373 Canadian (@code{galC}), and British (@code{galUK}) definitions.  Also,
27374 note that @code{oz} is a standard ounce of mass, @code{ozt} is a Troy
27375 ounce, and @code{ozfl} is a fluid ounce.
27377 The temperature units corresponding to degrees Kelvin and Centigrade
27378 (Celsius) are the same in this table, since most units commands treat
27379 temperatures as being relative.  The @code{calc-convert-temperature}
27380 command has special rules for handling the different absolute magnitudes
27381 of the various temperature scales.
27383 The unit of volume ``liters'' can be referred to by either the lower-case
27384 @code{l} or the upper-case @code{L}.
27386 The unit @code{A} stands for Amperes; the name @code{Ang} is used
27387 @tex
27388 for \AA ngstroms.
27389 @end tex
27390 @ifinfo
27391 for Angstroms.
27392 @end ifinfo
27394 The unit @code{pt} stands for pints; the name @code{point} stands for
27395 a typographical point, defined by @samp{72 point = 1 in}.  There is
27396 also @code{tpt}, which stands for a printer's point as defined by the
27397 @TeX{} typesetting system:  @samp{72.27 tpt = 1 in}.
27399 The unit @code{e} stands for the elementary (electron) unit of charge;
27400 because algebra command could mistake this for the special constant
27401 @cite{e}, Calc provides the alternate unit name @code{ech} which is
27402 preferable to @code{e}.
27404 The name @code{g} stands for one gram of mass; there is also @code{gf},
27405 one gram of force.  (Likewise for @kbd{lb}, pounds, and @kbd{lbf}.)
27406 Meanwhile, one ``@cite{g}'' of acceleration is denoted @code{ga}.
27408 The unit @code{ton} is a U.S. ton of @samp{2000 lb}, and @code{t} is
27409 a metric ton of @samp{1000 kg}.
27411 The names @code{s} (or @code{sec}) and @code{min} refer to units of
27412 time; @code{arcsec} and @code{arcmin} are units of angle.
27414 Some ``units'' are really physical constants; for example, @code{c}
27415 represents the speed of light, and @code{h} represents Planck's
27416 constant.  You can use these just like other units: converting
27417 @samp{.5 c} to @samp{m/s} expresses one-half the speed of light in
27418 meters per second.  You can also use this merely as a handy reference;
27419 the @kbd{u g} command gets the definition of one of these constants
27420 in its normal terms, and @kbd{u b} expresses the definition in base
27421 units.
27423 Two units, @code{pi} and @code{fsc} (the fine structure constant,
27424 approximately @i{1/137}) are dimensionless.  The units simplification
27425 commands simply treat these names as equivalent to their corresponding
27426 values.  However you can, for example, use @kbd{u c} to convert a pure
27427 number into multiples of the fine structure constant, or @kbd{u b} to
27428 convert this back into a pure number.  (When @kbd{u c} prompts for the
27429 ``old units,'' just enter a blank line to signify that the value
27430 really is unitless.)
27432 @c Describe angular units, luminosity vs. steradians problem.
27434 @node User-Defined Units, , Predefined Units, Units
27435 @section User-Defined Units
27437 @noindent
27438 Calc provides ways to get quick access to your selected ``favorite''
27439 units, as well as ways to define your own new units.
27441 @kindex u 0-9
27442 @pindex calc-quick-units
27443 @vindex Units
27444 @cindex @code{Units} variable
27445 @cindex Quick units
27446 To select your favorite units, store a vector of unit names or
27447 expressions in the Calc variable @code{Units}.  The @kbd{u 1}
27448 through @kbd{u 9} commands (@code{calc-quick-units}) provide access
27449 to these units.  If the value on the top of the stack is a plain
27450 number (with no units attached), then @kbd{u 1} gives it the
27451 specified units.  (Basically, it multiplies the number by the
27452 first item in the @code{Units} vector.)  If the number on the
27453 stack @emph{does} have units, then @kbd{u 1} converts that number
27454 to the new units.  For example, suppose the vector @samp{[in, ft]}
27455 is stored in @code{Units}.  Then @kbd{30 u 1} will create the
27456 expression @samp{30 in}, and @kbd{u 2} will convert that expression
27457 to @samp{2.5 ft}.
27459 The @kbd{u 0} command accesses the tenth element of @code{Units}.
27460 Only ten quick units may be defined at a time.  If the @code{Units}
27461 variable has no stored value (the default), or if its value is not
27462 a vector, then the quick-units commands will not function.  The
27463 @kbd{s U} command is a convenient way to edit the @code{Units}
27464 variable; @pxref{Operations on Variables}.
27466 @kindex u d
27467 @pindex calc-define-unit
27468 @cindex User-defined units
27469 The @kbd{u d} (@code{calc-define-unit}) command records the units
27470 expression on the top of the stack as the definition for a new,
27471 user-defined unit.  For example, putting @samp{16.5 ft} on the stack and
27472 typing @kbd{u d rod} defines the new unit @samp{rod} to be equivalent to
27473 16.5 feet.  The unit conversion and simplification commands will now
27474 treat @code{rod} just like any other unit of length.  You will also be
27475 prompted for an optional English description of the unit, which will
27476 appear in the Units Table.
27478 @kindex u u
27479 @pindex calc-undefine-unit
27480 The @kbd{u u} (@code{calc-undefine-unit}) command removes a user-defined
27481 unit.  It is not possible to remove one of the predefined units,
27482 however.
27484 If you define a unit with an existing unit name, your new definition
27485 will replace the original definition of that unit.  If the unit was a
27486 predefined unit, the old definition will not be replaced, only
27487 ``shadowed.''  The built-in definition will reappear if you later use
27488 @kbd{u u} to remove the shadowing definition.
27490 To create a new fundamental unit, use either 1 or the unit name itself
27491 as the defining expression.  Otherwise the expression can involve any
27492 other units that you like (except for composite units like @samp{mfi}).
27493 You can create a new composite unit with a sum of other units as the
27494 defining expression.  The next unit operation like @kbd{u c} or @kbd{u v}
27495 will rebuild the internal unit table incorporating your modifications.
27496 Note that erroneous definitions (such as two units defined in terms of
27497 each other) will not be detected until the unit table is next rebuilt;
27498 @kbd{u v} is a convenient way to force this to happen.
27500 Temperature units are treated specially inside the Calculator; it is not
27501 possible to create user-defined temperature units.
27503 @kindex u p
27504 @pindex calc-permanent-units
27505 @cindex @file{.emacs} file, user-defined units
27506 The @kbd{u p} (@code{calc-permanent-units}) command stores the user-defined
27507 units in your @file{.emacs} file, so that the units will still be
27508 available in subsequent Emacs sessions.  If there was already a set of
27509 user-defined units in your @file{.emacs} file, it is replaced by the
27510 new set.  (@xref{General Mode Commands}, for a way to tell Calc to use
27511 a different file instead of @file{.emacs}.)
27513 @node Store and Recall, Graphics, Units, Top
27514 @chapter Storing and Recalling
27516 @noindent
27517 Calculator variables are really just Lisp variables that contain numbers
27518 or formulas in a form that Calc can understand.  The commands in this
27519 section allow you to manipulate variables conveniently.  Commands related
27520 to variables use the @kbd{s} prefix key.
27522 @menu
27523 * Storing Variables::
27524 * Recalling Variables::
27525 * Operations on Variables::
27526 * Let Command::
27527 * Evaluates-To Operator::
27528 @end menu
27530 @node Storing Variables, Recalling Variables, Store and Recall, Store and Recall
27531 @section Storing Variables
27533 @noindent
27534 @kindex s s
27535 @pindex calc-store
27536 @cindex Storing variables
27537 @cindex Quick variables
27538 @vindex q0
27539 @vindex q9
27540 The @kbd{s s} (@code{calc-store}) command stores the value at the top of
27541 the stack into a specified variable.  It prompts you to enter the
27542 name of the variable.  If you press a single digit, the value is stored
27543 immediately in one of the ``quick'' variables @code{var-q0} through
27544 @code{var-q9}.  Or you can enter any variable name.  The prefix @samp{var-}
27545 is supplied for you; when a name appears in a formula (as in @samp{a+q2})
27546 the prefix @samp{var-} is also supplied there, so normally you can simply
27547 forget about @samp{var-} everywhere.  Its only purpose is to enable you to
27548 use Calc variables without fear of accidentally clobbering some variable in
27549 another Emacs package.  If you really want to store in an arbitrary Lisp
27550 variable, just backspace over the @samp{var-}.
27552 @kindex s t
27553 @pindex calc-store-into
27554 The @kbd{s s} command leaves the stored value on the stack.  There is
27555 also an @kbd{s t} (@code{calc-store-into}) command, which removes a
27556 value from the stack and stores it in a variable.
27558 If the top of stack value is an equation @samp{a = 7} or assignment
27559 @samp{a := 7} with a variable on the lefthand side, then Calc will
27560 assign that variable with that value by default, i.e., if you type
27561 @kbd{s s @key{RET}} or @kbd{s t @key{RET}}.  In this example, the
27562 value 7 would be stored in the variable @samp{a}.  (If you do type
27563 a variable name at the prompt, the top-of-stack value is stored in
27564 its entirety, even if it is an equation:  @samp{s s b @key{RET}}
27565 with @samp{a := 7} on the stack stores @samp{a := 7} in @code{b}.)
27567 In fact, the top of stack value can be a vector of equations or
27568 assignments with different variables on their lefthand sides; the
27569 default will be to store all the variables with their corresponding
27570 righthand sides simultaneously.
27572 It is also possible to type an equation or assignment directly at
27573 the prompt for the @kbd{s s} or @kbd{s t} command:  @kbd{s s foo = 7}.
27574 In this case the expression to the right of the @kbd{=} or @kbd{:=}
27575 symbol is evaluated as if by the @kbd{=} command, and that value is
27576 stored in the variable.  No value is taken from the stack; @kbd{s s}
27577 and @kbd{s t} are equivalent when used in this way.
27579 @kindex s 0-9
27580 @kindex t 0-9
27581 The prefix keys @kbd{s} and @kbd{t} may be followed immediately by a
27582 digit; @kbd{s 9} is equivalent to @kbd{s s 9}, and @kbd{t 9} is
27583 equivalent to @kbd{s t 9}.  (The @kbd{t} prefix is otherwise used
27584 for trail and time/date commands.)
27586 @kindex s +
27587 @kindex s -
27588 @ignore
27589 @mindex @idots
27590 @end ignore
27591 @kindex s *
27592 @ignore
27593 @mindex @null
27594 @end ignore
27595 @kindex s /
27596 @ignore
27597 @mindex @null
27598 @end ignore
27599 @kindex s ^
27600 @ignore
27601 @mindex @null
27602 @end ignore
27603 @kindex s |
27604 @ignore
27605 @mindex @null
27606 @end ignore
27607 @kindex s n
27608 @ignore
27609 @mindex @null
27610 @end ignore
27611 @kindex s &
27612 @ignore
27613 @mindex @null
27614 @end ignore
27615 @kindex s [
27616 @ignore
27617 @mindex @null
27618 @end ignore
27619 @kindex s ]
27620 @pindex calc-store-plus
27621 @pindex calc-store-minus
27622 @pindex calc-store-times
27623 @pindex calc-store-div
27624 @pindex calc-store-power
27625 @pindex calc-store-concat
27626 @pindex calc-store-neg
27627 @pindex calc-store-inv
27628 @pindex calc-store-decr
27629 @pindex calc-store-incr
27630 There are also several ``arithmetic store'' commands.  For example,
27631 @kbd{s +} removes a value from the stack and adds it to the specified
27632 variable.  The other arithmetic stores are @kbd{s -}, @kbd{s *}, @kbd{s /},
27633 @kbd{s ^}, and @w{@kbd{s |}} (vector concatenation), plus @kbd{s n} and
27634 @kbd{s &} which negate or invert the value in a variable, and @w{@kbd{s [}}
27635 and @kbd{s ]} which decrease or increase a variable by one.
27637 All the arithmetic stores accept the Inverse prefix to reverse the
27638 order of the operands.  If @cite{v} represents the contents of the
27639 variable, and @cite{a} is the value drawn from the stack, then regular
27640 @w{@kbd{s -}} assigns @c{$v \coloneq v - a$}
27641 @cite{v := v - a}, but @kbd{I s -} assigns
27642 @c{$v \coloneq a - v$}
27643 @cite{v := a - v}.  While @kbd{I s *} might seem pointless, it is
27644 useful if matrix multiplication is involved.  Actually, all the
27645 arithmetic stores use formulas designed to behave usefully both
27646 forwards and backwards:
27648 @example
27649 @group
27650 s +        v := v + a          v := a + v
27651 s -        v := v - a          v := a - v
27652 s *        v := v * a          v := a * v
27653 s /        v := v / a          v := a / v
27654 s ^        v := v ^ a          v := a ^ v
27655 s |        v := v | a          v := a | v
27656 s n        v := v / (-1)       v := (-1) / v
27657 s &        v := v ^ (-1)       v := (-1) ^ v
27658 s [        v := v - 1          v := 1 - v
27659 s ]        v := v - (-1)       v := (-1) - v
27660 @end group
27661 @end example
27663 In the last four cases, a numeric prefix argument will be used in
27664 place of the number one.  (For example, @kbd{M-2 s ]} increases
27665 a variable by 2, and @kbd{M-2 I s ]} replaces a variable by
27666 minus-two minus the variable.
27668 The first six arithmetic stores can also be typed @kbd{s t +}, @kbd{s t -},
27669 etc.  The commands @kbd{s s +}, @kbd{s s -}, and so on are analogous
27670 arithmetic stores that don't remove the value @cite{a} from the stack.
27672 All arithmetic stores report the new value of the variable in the
27673 Trail for your information.  They signal an error if the variable
27674 previously had no stored value.  If default simplifications have been
27675 turned off, the arithmetic stores temporarily turn them on for numeric
27676 arguments only (i.e., they temporarily do an @kbd{m N} command).
27677 @xref{Simplification Modes}.  Large vectors put in the trail by
27678 these commands always use abbreviated (@kbd{t .}) mode.
27680 @kindex s m
27681 @pindex calc-store-map
27682 The @kbd{s m} command is a general way to adjust a variable's value
27683 using any Calc function.  It is a ``mapping'' command analogous to
27684 @kbd{V M}, @kbd{V R}, etc.  @xref{Reducing and Mapping}, to see
27685 how to specify a function for a mapping command.  Basically,
27686 all you do is type the Calc command key that would invoke that
27687 function normally.  For example, @kbd{s m n} applies the @kbd{n}
27688 key to negate the contents of the variable, so @kbd{s m n} is
27689 equivalent to @kbd{s n}.  Also, @kbd{s m Q} takes the square root
27690 of the value stored in a variable, @kbd{s m v v} uses @kbd{v v} to
27691 reverse the vector stored in the variable, and @kbd{s m H I S}
27692 takes the hyperbolic arcsine of the variable contents.
27694 If the mapping function takes two or more arguments, the additional
27695 arguments are taken from the stack; the old value of the variable
27696 is provided as the first argument.  Thus @kbd{s m -} with @cite{a}
27697 on the stack computes @cite{v - a}, just like @kbd{s -}.  With the
27698 Inverse prefix, the variable's original value becomes the @emph{last}
27699 argument instead of the first.  Thus @kbd{I s m -} is also
27700 equivalent to @kbd{I s -}.
27702 @kindex s x
27703 @pindex calc-store-exchange
27704 The @kbd{s x} (@code{calc-store-exchange}) command exchanges the value
27705 of a variable with the value on the top of the stack.  Naturally, the
27706 variable must already have a stored value for this to work.
27708 You can type an equation or assignment at the @kbd{s x} prompt.  The
27709 command @kbd{s x a=6} takes no values from the stack; instead, it
27710 pushes the old value of @samp{a} on the stack and stores @samp{a = 6}.
27712 @kindex s u
27713 @pindex calc-unstore
27714 @cindex Void variables
27715 @cindex Un-storing variables
27716 Until you store something in them, variables are ``void,'' that is, they
27717 contain no value at all.  If they appear in an algebraic formula they
27718 will be left alone even if you press @kbd{=} (@code{calc-evaluate}).
27719 The @kbd{s u} (@code{calc-unstore}) command returns a variable to the
27720 void state.@refill
27722 The only variables with predefined values are the ``special constants''
27723 @code{pi}, @code{e}, @code{i}, @code{phi}, and @code{gamma}.  You are free
27724 to unstore these variables or to store new values into them if you like,
27725 although some of the algebraic-manipulation functions may assume these
27726 variables represent their standard values.  Calc displays a warning if
27727 you change the value of one of these variables, or of one of the other
27728 special variables @code{inf}, @code{uinf}, and @code{nan} (which are
27729 normally void).
27731 Note that @code{var-pi} doesn't actually have 3.14159265359 stored
27732 in it, but rather a special magic value that evaluates to @c{$\pi$}
27733 @cite{pi}
27734 at the current precision.  Likewise @code{var-e}, @code{var-i}, and
27735 @code{var-phi} evaluate according to the current precision or polar mode.
27736 If you recall a value from @code{pi} and store it back, this magic
27737 property will be lost.
27739 @kindex s c
27740 @pindex calc-copy-variable
27741 The @kbd{s c} (@code{calc-copy-variable}) command copies the stored
27742 value of one variable to another.  It differs from a simple @kbd{s r}
27743 followed by an @kbd{s t} in two important ways.  First, the value never
27744 goes on the stack and thus is never rounded, evaluated, or simplified
27745 in any way; it is not even rounded down to the current precision.
27746 Second, the ``magic'' contents of a variable like @code{var-e} can
27747 be copied into another variable with this command, perhaps because
27748 you need to unstore @code{var-e} right now but you wish to put it
27749 back when you're done.  The @kbd{s c} command is the only way to
27750 manipulate these magic values intact.
27752 @node Recalling Variables, Operations on Variables, Storing Variables, Store and Recall
27753 @section Recalling Variables
27755 @noindent
27756 @kindex s r
27757 @pindex calc-recall
27758 @cindex Recalling variables
27759 The most straightforward way to extract the stored value from a variable
27760 is to use the @kbd{s r} (@code{calc-recall}) command.  This command prompts
27761 for a variable name (similarly to @code{calc-store}), looks up the value
27762 of the specified variable, and pushes that value onto the stack.  It is
27763 an error to try to recall a void variable.
27765 It is also possible to recall the value from a variable by evaluating a
27766 formula containing that variable.  For example, @kbd{' a @key{RET} =} is
27767 the same as @kbd{s r a @key{RET}} except that if the variable is void, the
27768 former will simply leave the formula @samp{a} on the stack whereas the
27769 latter will produce an error message.
27771 @kindex r 0-9
27772 The @kbd{r} prefix may be followed by a digit, so that @kbd{r 9} is
27773 equivalent to @kbd{s r 9}.  (The @kbd{r} prefix is otherwise unused
27774 in the current version of Calc.)
27776 @node Operations on Variables, Let Command, Recalling Variables, Store and Recall
27777 @section Other Operations on Variables
27779 @noindent
27780 @kindex s e
27781 @pindex calc-edit-variable
27782 The @kbd{s e} (@code{calc-edit-variable}) command edits the stored
27783 value of a variable without ever putting that value on the stack
27784 or simplifying or evaluating the value.  It prompts for the name of
27785 the variable to edit.  If the variable has no stored value, the
27786 editing buffer will start out empty.  If the editing buffer is
27787 empty when you press @kbd{M-# M-#} to finish, the variable will
27788 be made void.  @xref{Editing Stack Entries}, for a general
27789 description of editing.
27791 The @kbd{s e} command is especially useful for creating and editing
27792 rewrite rules which are stored in variables.  Sometimes these rules
27793 contain formulas which must not be evaluated until the rules are
27794 actually used.  (For example, they may refer to @samp{deriv(x,y)},
27795 where @code{x} will someday become some expression involving @code{y};
27796 if you let Calc evaluate the rule while you are defining it, Calc will
27797 replace @samp{deriv(x,y)} with 0 because the formula @code{x} does
27798 not itself refer to @code{y}.)  By contrast, recalling the variable,
27799 editing with @kbd{`}, and storing will evaluate the variable's value
27800 as a side effect of putting the value on the stack.
27802 @kindex s A
27803 @kindex s D
27804 @ignore
27805 @mindex @idots
27806 @end ignore
27807 @kindex s E
27808 @ignore
27809 @mindex @null
27810 @end ignore
27811 @kindex s F
27812 @ignore
27813 @mindex @null
27814 @end ignore
27815 @kindex s G
27816 @ignore
27817 @mindex @null
27818 @end ignore
27819 @kindex s H
27820 @ignore
27821 @mindex @null
27822 @end ignore
27823 @kindex s I
27824 @ignore
27825 @mindex @null
27826 @end ignore
27827 @kindex s L
27828 @ignore
27829 @mindex @null
27830 @end ignore
27831 @kindex s P
27832 @ignore
27833 @mindex @null
27834 @end ignore
27835 @kindex s R
27836 @ignore
27837 @mindex @null
27838 @end ignore
27839 @kindex s T
27840 @ignore
27841 @mindex @null
27842 @end ignore
27843 @kindex s U
27844 @ignore
27845 @mindex @null
27846 @end ignore
27847 @kindex s X
27848 @pindex calc-store-AlgSimpRules
27849 @pindex calc-store-Decls
27850 @pindex calc-store-EvalRules
27851 @pindex calc-store-FitRules
27852 @pindex calc-store-GenCount
27853 @pindex calc-store-Holidays
27854 @pindex calc-store-IntegLimit
27855 @pindex calc-store-LineStyles
27856 @pindex calc-store-PointStyles
27857 @pindex calc-store-PlotRejects
27858 @pindex calc-store-TimeZone
27859 @pindex calc-store-Units
27860 @pindex calc-store-ExtSimpRules
27861 There are several special-purpose variable-editing commands that
27862 use the @kbd{s} prefix followed by a shifted letter:
27864 @table @kbd
27865 @item s A
27866 Edit @code{AlgSimpRules}.  @xref{Algebraic Simplifications}.
27867 @item s D
27868 Edit @code{Decls}.  @xref{Declarations}.
27869 @item s E
27870 Edit @code{EvalRules}.  @xref{Default Simplifications}.
27871 @item s F
27872 Edit @code{FitRules}.  @xref{Curve Fitting}.
27873 @item s G
27874 Edit @code{GenCount}.  @xref{Solving Equations}.
27875 @item s H
27876 Edit @code{Holidays}.  @xref{Business Days}.
27877 @item s I
27878 Edit @code{IntegLimit}.  @xref{Calculus}.
27879 @item s L
27880 Edit @code{LineStyles}.  @xref{Graphics}.
27881 @item s P
27882 Edit @code{PointStyles}.  @xref{Graphics}.
27883 @item s R
27884 Edit @code{PlotRejects}.  @xref{Graphics}.
27885 @item s T
27886 Edit @code{TimeZone}.  @xref{Time Zones}.
27887 @item s U
27888 Edit @code{Units}.  @xref{User-Defined Units}.
27889 @item s X
27890 Edit @code{ExtSimpRules}.  @xref{Unsafe Simplifications}.
27891 @end table
27893 These commands are just versions of @kbd{s e} that use fixed variable
27894 names rather than prompting for the variable name.
27896 @kindex s p
27897 @pindex calc-permanent-variable
27898 @cindex Storing variables
27899 @cindex Permanent variables
27900 @cindex @file{.emacs} file, variables
27901 The @kbd{s p} (@code{calc-permanent-variable}) command saves a
27902 variable's value permanently in your @file{.emacs} file, so that its
27903 value will still be available in future Emacs sessions.  You can
27904 re-execute @w{@kbd{s p}} later on to update the saved value, but the
27905 only way to remove a saved variable is to edit your @file{.emacs} file
27906 by hand.  (@xref{General Mode Commands}, for a way to tell Calc to
27907 use a different file instead of @file{.emacs}.)
27909 If you do not specify the name of a variable to save (i.e.,
27910 @kbd{s p @key{RET}}), all @samp{var-} variables with defined values
27911 are saved except for the special constants @code{pi}, @code{e},
27912 @code{i}, @code{phi}, and @code{gamma}; the variables @code{TimeZone}
27913 and @code{PlotRejects};
27914 @code{FitRules}, @code{DistribRules}, and other built-in rewrite
27915 rules; and @code{PlotData@var{n}} variables generated
27916 by the graphics commands.  (You can still save these variables by
27917 explicitly naming them in an @kbd{s p} command.)@refill
27919 @kindex s i
27920 @pindex calc-insert-variables
27921 The @kbd{s i} (@code{calc-insert-variables}) command writes
27922 the values of all @samp{var-} variables into a specified buffer.
27923 The variables are written in the form of Lisp @code{setq} commands
27924 which store the values in string form.  You can place these commands
27925 in your @file{.emacs} buffer if you wish, though in this case it
27926 would be easier to use @kbd{s p @key{RET}}.  (Note that @kbd{s i}
27927 omits the same set of variables as @w{@kbd{s p @key{RET}}}; the difference
27928 is that @kbd{s i} will store the variables in any buffer, and it also
27929 stores in a more human-readable format.)
27931 @node Let Command, Evaluates-To Operator, Operations on Variables, Store and Recall
27932 @section The Let Command
27934 @noindent
27935 @kindex s l
27936 @pindex calc-let
27937 @cindex Variables, temporary assignment
27938 @cindex Temporary assignment to variables
27939 If you have an expression like @samp{a+b^2} on the stack and you wish to
27940 compute its value where @cite{b=3}, you can simply store 3 in @cite{b} and
27941 then press @kbd{=} to reevaluate the formula.  This has the side-effect
27942 of leaving the stored value of 3 in @cite{b} for future operations.
27944 The @kbd{s l} (@code{calc-let}) command evaluates a formula under a
27945 @emph{temporary} assignment of a variable.  It stores the value on the
27946 top of the stack into the specified variable, then evaluates the
27947 second-to-top stack entry, then restores the original value (or lack of one)
27948 in the variable.  Thus after @kbd{'@w{ }a+b^2 @key{RET} 3 s l b @key{RET}},
27949 the stack will contain the formula @samp{a + 9}.  The subsequent command
27950 @kbd{@w{5 s l a} @key{RET}} will replace this formula with the number 14.
27951 The variables @samp{a} and @samp{b} are not permanently affected in any way
27952 by these commands.
27954 The value on the top of the stack may be an equation or assignment, or
27955 a vector of equations or assignments, in which case the default will be
27956 analogous to the case of @kbd{s t @key{RET}}.  @xref{Storing Variables}.
27958 Also, you can answer the variable-name prompt with an equation or
27959 assignment:  @kbd{s l b=3 @key{RET}} is the same as storing 3 on the stack
27960 and typing @kbd{s l b @key{RET}}.
27962 The @kbd{a b} (@code{calc-substitute}) command is another way to substitute
27963 a variable with a value in a formula.  It does an actual substitution
27964 rather than temporarily assigning the variable and evaluating.  For
27965 example, letting @cite{n=2} in @samp{f(n pi)} with @kbd{a b} will
27966 produce @samp{f(2 pi)}, whereas @kbd{s l} would give @samp{f(6.28)}
27967 since the evaluation step will also evaluate @code{pi}.
27969 @node Evaluates-To Operator, , Let Command, Store and Recall
27970 @section The Evaluates-To Operator
27972 @noindent
27973 @tindex evalto
27974 @tindex =>
27975 @cindex Evaluates-to operator
27976 @cindex @samp{=>} operator
27977 The special algebraic symbol @samp{=>} is known as the @dfn{evaluates-to
27978 operator}.  (It will show up as an @code{evalto} function call in
27979 other language modes like Pascal and @TeX{}.)  This is a binary
27980 operator, that is, it has a lefthand and a righthand argument,
27981 although it can be entered with the righthand argument omitted.
27983 A formula like @samp{@var{a} => @var{b}} is evaluated by Calc as
27984 follows:  First, @var{a} is not simplified or modified in any
27985 way.  The previous value of argument @var{b} is thrown away; the
27986 formula @var{a} is then copied and evaluated as if by the @kbd{=}
27987 command according to all current modes and stored variable values,
27988 and the result is installed as the new value of @var{b}.
27990 For example, suppose you enter the algebraic formula @samp{2 + 3 => 17}.
27991 The number 17 is ignored, and the lefthand argument is left in its
27992 unevaluated form; the result is the formula @samp{2 + 3 => 5}.
27994 @kindex s =
27995 @pindex calc-evalto
27996 You can enter an @samp{=>} formula either directly using algebraic
27997 entry (in which case the righthand side may be omitted since it is
27998 going to be replaced right away anyhow), or by using the @kbd{s =}
27999 (@code{calc-evalto}) command, which takes @var{a} from the stack
28000 and replaces it with @samp{@var{a} => @var{b}}.
28002 Calc keeps track of all @samp{=>} operators on the stack, and
28003 recomputes them whenever anything changes that might affect their
28004 values, i.e., a mode setting or variable value.  This occurs only
28005 if the @samp{=>} operator is at the top level of the formula, or
28006 if it is part of a top-level vector.  In other words, pushing
28007 @samp{2 + (a => 17)} will change the 17 to the actual value of
28008 @samp{a} when you enter the formula, but the result will not be
28009 dynamically updated when @samp{a} is changed later because the
28010 @samp{=>} operator is buried inside a sum.  However, a vector
28011 of @samp{=>} operators will be recomputed, since it is convenient
28012 to push a vector like @samp{[a =>, b =>, c =>]} on the stack to
28013 make a concise display of all the variables in your problem.
28014 (Another way to do this would be to use @samp{[a, b, c] =>},
28015 which provides a slightly different format of display.  You
28016 can use whichever you find easiest to read.)
28018 @kindex m C
28019 @pindex calc-auto-recompute
28020 The @kbd{m C} (@code{calc-auto-recompute}) command allows you to
28021 turn this automatic recomputation on or off.  If you turn
28022 recomputation off, you must explicitly recompute an @samp{=>}
28023 operator on the stack in one of the usual ways, such as by
28024 pressing @kbd{=}.  Turning recomputation off temporarily can save
28025 a lot of time if you will be changing several modes or variables
28026 before you look at the @samp{=>} entries again.
28028 Most commands are not especially useful with @samp{=>} operators
28029 as arguments.  For example, given @samp{x + 2 => 17}, it won't
28030 work to type @kbd{1 +} to get @samp{x + 3 => 18}.  If you want
28031 to operate on the lefthand side of the @samp{=>} operator on
28032 the top of the stack, type @kbd{j 1} (that's the digit ``one'')
28033 to select the lefthand side, execute your commands, then type
28034 @kbd{j u} to unselect.
28036 All current modes apply when an @samp{=>} operator is computed,
28037 including the current simplification mode.  Recall that the
28038 formula @samp{x + y + x} is not handled by Calc's default
28039 simplifications, but the @kbd{a s} command will reduce it to
28040 the simpler form @samp{y + 2 x}.  You can also type @kbd{m A}
28041 to enable an algebraic-simplification mode in which the
28042 equivalent of @kbd{a s} is used on all of Calc's results.
28043 If you enter @samp{x + y + x =>} normally, the result will
28044 be @samp{x + y + x => x + y + x}.  If you change to
28045 algebraic-simplification mode, the result will be
28046 @samp{x + y + x => y + 2 x}.  However, just pressing @kbd{a s}
28047 once will have no effect on @samp{x + y + x => x + y + x},
28048 because the righthand side depends only on the lefthand side
28049 and the current mode settings, and the lefthand side is not
28050 affected by commands like @kbd{a s}.
28052 The ``let'' command (@kbd{s l}) has an interesting interaction
28053 with the @samp{=>} operator.  The @kbd{s l} command evaluates the
28054 second-to-top stack entry with the top stack entry supplying
28055 a temporary value for a given variable.  As you might expect,
28056 if that stack entry is an @samp{=>} operator its righthand
28057 side will temporarily show this value for the variable.  In
28058 fact, all @samp{=>}s on the stack will be updated if they refer
28059 to that variable.  But this change is temporary in the sense
28060 that the next command that causes Calc to look at those stack
28061 entries will make them revert to the old variable value.
28063 @smallexample
28064 @group
28065 2:  a => a             2:  a => 17         2:  a => a
28066 1:  a + 1 => a + 1     1:  a + 1 => 18     1:  a + 1 => a + 1
28067     .                      .                   .
28069                            17 s l a @key{RET}        p 8 @key{RET}
28070 @end group
28071 @end smallexample
28073 Here the @kbd{p 8} command changes the current precision,
28074 thus causing the @samp{=>} forms to be recomputed after the
28075 influence of the ``let'' is gone.  The @kbd{d @key{SPC}} command
28076 (@code{calc-refresh}) is a handy way to force the @samp{=>}
28077 operators on the stack to be recomputed without any other
28078 side effects.
28080 @kindex s :
28081 @pindex calc-assign
28082 @tindex assign
28083 @tindex :=
28084 Embedded Mode also uses @samp{=>} operators.  In embedded mode,
28085 the lefthand side of an @samp{=>} operator can refer to variables
28086 assigned elsewhere in the file by @samp{:=} operators.  The
28087 assignment operator @samp{a := 17} does not actually do anything
28088 by itself.  But Embedded Mode recognizes it and marks it as a sort
28089 of file-local definition of the variable.  You can enter @samp{:=}
28090 operators in algebraic mode, or by using the @kbd{s :}
28091 (@code{calc-assign}) [@code{assign}] command which takes a variable
28092 and value from the stack and replaces them with an assignment.
28094 @xref{TeX Language Mode}, for the way @samp{=>} appears in
28095 @TeX{} language output.  The @dfn{eqn} mode gives similar
28096 treatment to @samp{=>}.
28098 @node Graphics, Kill and Yank, Store and Recall, Top
28099 @chapter Graphics
28101 @noindent
28102 The commands for graphing data begin with the @kbd{g} prefix key.  Calc
28103 uses GNUPLOT 2.0 or 3.0 to do graphics.  These commands will only work
28104 if GNUPLOT is available on your system.  (While GNUPLOT sounds like
28105 a relative of GNU Emacs, it is actually completely unrelated.
28106 However, it is free software and can be obtained from the Free
28107 Software Foundation's machine @samp{prep.ai.mit.edu}.)
28109 @vindex calc-gnuplot-name
28110 If you have GNUPLOT installed on your system but Calc is unable to
28111 find it, you may need to set the @code{calc-gnuplot-name} variable
28112 in your @file{.emacs} file.  You may also need to set some Lisp
28113 variables to show Calc how to run GNUPLOT on your system; these
28114 are described under @kbd{g D} and @kbd{g O} below.  If you are
28115 using the X window system, Calc will configure GNUPLOT for you
28116 automatically.  If you have GNUPLOT 3.0 and you are not using X,
28117 Calc will configure GNUPLOT to display graphs using simple character
28118 graphics that will work on any terminal.
28120 @menu
28121 * Basic Graphics::
28122 * Three Dimensional Graphics::
28123 * Managing Curves::
28124 * Graphics Options::
28125 * Devices::
28126 @end menu
28128 @node Basic Graphics, Three Dimensional Graphics, Graphics, Graphics
28129 @section Basic Graphics
28131 @noindent
28132 @kindex g f
28133 @pindex calc-graph-fast
28134 The easiest graphics command is @kbd{g f} (@code{calc-graph-fast}).
28135 This command takes two vectors of equal length from the stack.
28136 The vector at the top of the stack represents the ``y'' values of
28137 the various data points.  The vector in the second-to-top position
28138 represents the corresponding ``x'' values.  This command runs
28139 GNUPLOT (if it has not already been started by previous graphing
28140 commands) and displays the set of data points.  The points will
28141 be connected by lines, and there will also be some kind of symbol
28142 to indicate the points themselves.
28144 The ``x'' entry may instead be an interval form, in which case suitable
28145 ``x'' values are interpolated between the minimum and maximum values of
28146 the interval (whether the interval is open or closed is ignored).
28148 The ``x'' entry may also be a number, in which case Calc uses the
28149 sequence of ``x'' values @cite{x}, @cite{x+1}, @cite{x+2}, etc.
28150 (Generally the number 0 or 1 would be used for @cite{x} in this case.)
28152 The ``y'' entry may be any formula instead of a vector.  Calc effectively
28153 uses @kbd{N} (@code{calc-eval-num}) to evaluate variables in the formula;
28154 the result of this must be a formula in a single (unassigned) variable.
28155 The formula is plotted with this variable taking on the various ``x''
28156 values.  Graphs of formulas by default use lines without symbols at the
28157 computed data points.  Note that if neither ``x'' nor ``y'' is a vector,
28158 Calc guesses at a reasonable number of data points to use.  See the
28159 @kbd{g N} command below.  (The ``x'' values must be either a vector
28160 or an interval if ``y'' is a formula.)
28162 @ignore
28163 @starindex
28164 @end ignore
28165 @tindex xy
28166 If ``y'' is (or evaluates to) a formula of the form
28167 @samp{xy(@var{x}, @var{y})} then the result is a
28168 parametric plot.  The two arguments of the fictitious @code{xy} function
28169 are used as the ``x'' and ``y'' coordinates of the curve, respectively.
28170 In this case the ``x'' vector or interval you specified is not directly
28171 visible in the graph.  For example, if ``x'' is the interval @samp{[0..360]}
28172 and ``y'' is the formula @samp{xy(sin(t), cos(t))}, the resulting graph
28173 will be a circle.@refill
28175 Also, ``x'' and ``y'' may each be variable names, in which case Calc
28176 looks for suitable vectors, intervals, or formulas stored in those
28177 variables.
28179 The ``x'' and ``y'' values for the data points (as pulled from the vectors,
28180 calculated from the formulas, or interpolated from the intervals) should
28181 be real numbers (integers, fractions, or floats).  If either the ``x''
28182 value or the ``y'' value of a given data point is not a real number, that
28183 data point will be omitted from the graph.  The points on either side
28184 of the invalid point will @emph{not} be connected by a line.
28186 See the documentation for @kbd{g a} below for a description of the way
28187 numeric prefix arguments affect @kbd{g f}.
28189 @cindex @code{PlotRejects} variable
28190 @vindex PlotRejects
28191 If you store an empty vector in the variable @code{PlotRejects}
28192 (i.e., @kbd{[ ] s t PlotRejects}), Calc will append information to
28193 this vector for every data point which was rejected because its
28194 ``x'' or ``y'' values were not real numbers.  The result will be
28195 a matrix where each row holds the curve number, data point number,
28196 ``x'' value, and ``y'' value for a rejected data point.
28197 @xref{Evaluates-To Operator}, for a handy way to keep tabs on the
28198 current value of @code{PlotRejects}.  @xref{Operations on Variables},
28199 for the @kbd{s R} command which is another easy way to examine
28200 @code{PlotRejects}.
28202 @kindex g c
28203 @pindex calc-graph-clear
28204 To clear the graphics display, type @kbd{g c} (@code{calc-graph-clear}).
28205 If the GNUPLOT output device is an X window, the window will go away.
28206 Effects on other kinds of output devices will vary.  You don't need
28207 to use @kbd{g c} if you don't want to---if you give another @kbd{g f}
28208 or @kbd{g p} command later on, it will reuse the existing graphics
28209 window if there is one.
28211 @node Three Dimensional Graphics, Managing Curves, Basic Graphics, Graphics
28212 @section Three-Dimensional Graphics
28214 @kindex g F
28215 @pindex calc-graph-fast-3d
28216 The @kbd{g F} (@code{calc-graph-fast-3d}) command makes a three-dimensional
28217 graph.  It works only if you have GNUPLOT 3.0 or later; with GNUPLOT 2.0,
28218 you will see a GNUPLOT error message if you try this command.
28220 The @kbd{g F} command takes three values from the stack, called ``x'',
28221 ``y'', and ``z'', respectively.  As was the case for 2D graphs, there
28222 are several options for these values.
28224 In the first case, ``x'' and ``y'' are each vectors (not necessarily of
28225 the same length); either or both may instead be interval forms.  The
28226 ``z'' value must be a matrix with the same number of rows as elements
28227 in ``x'', and the same number of columns as elements in ``y''.  The
28228 result is a surface plot where @c{$z_{ij}$}
28229 @cite{z_ij} is the height of the point
28230 at coordinate @cite{(x_i, y_j)} on the surface.  The 3D graph will
28231 be displayed from a certain default viewpoint; you can change this
28232 viewpoint by adding a @samp{set view} to the @samp{*Gnuplot Commands*}
28233 buffer as described later.  See the GNUPLOT 3.0 documentation for a
28234 description of the @samp{set view} command.
28236 Each point in the matrix will be displayed as a dot in the graph,
28237 and these points will be connected by a grid of lines (@dfn{isolines}).
28239 In the second case, ``x'', ``y'', and ``z'' are all vectors of equal
28240 length.  The resulting graph displays a 3D line instead of a surface,
28241 where the coordinates of points along the line are successive triplets
28242 of values from the input vectors.
28244 In the third case, ``x'' and ``y'' are vectors or interval forms, and
28245 ``z'' is any formula involving two variables (not counting variables
28246 with assigned values).  These variables are sorted into alphabetical
28247 order; the first takes on values from ``x'' and the second takes on
28248 values from ``y'' to form a matrix of results that are graphed as a
28249 3D surface.
28251 @ignore
28252 @starindex
28253 @end ignore
28254 @tindex xyz
28255 If the ``z'' formula evaluates to a call to the fictitious function
28256 @samp{xyz(@var{x}, @var{y}, @var{z})}, then the result is a
28257 ``parametric surface.''  In this case, the axes of the graph are
28258 taken from the @var{x} and @var{y} values in these calls, and the
28259 ``x'' and ``y'' values from the input vectors or intervals are used only
28260 to specify the range of inputs to the formula.  For example, plotting
28261 @samp{[0..360], [0..180], xyz(sin(x)*sin(y), cos(x)*sin(y), cos(y))}
28262 will draw a sphere.  (Since the default resolution for 3D plots is
28263 5 steps in each of ``x'' and ``y'', this will draw a very crude
28264 sphere.  You could use the @kbd{g N} command, described below, to
28265 increase this resolution, or specify the ``x'' and ``y'' values as
28266 vectors with more than 5 elements.
28268 It is also possible to have a function in a regular @kbd{g f} plot
28269 evaluate to an @code{xyz} call.  Since @kbd{g f} plots a line, not
28270 a surface, the result will be a 3D parametric line.  For example,
28271 @samp{[[0..720], xyz(sin(x), cos(x), x)]} will plot two turns of a
28272 helix (a three-dimensional spiral).
28274 As for @kbd{g f}, each of ``x'', ``y'', and ``z'' may instead be
28275 variables containing the relevant data.
28277 @node Managing Curves, Graphics Options, Three Dimensional Graphics, Graphics
28278 @section Managing Curves
28280 @noindent
28281 The @kbd{g f} command is really shorthand for the following commands:
28282 @kbd{C-u g d  g a  g p}.  Likewise, @w{@kbd{g F}} is shorthand for
28283 @kbd{C-u g d  g A  g p}.  You can gain more control over your graph
28284 by using these commands directly.
28286 @kindex g a
28287 @pindex calc-graph-add
28288 The @kbd{g a} (@code{calc-graph-add}) command adds the ``curve''
28289 represented by the two values on the top of the stack to the current
28290 graph.  You can have any number of curves in the same graph.  When
28291 you give the @kbd{g p} command, all the curves will be drawn superimposed
28292 on the same axes.
28294 The @kbd{g a} command (and many others that affect the current graph)
28295 will cause a special buffer, @samp{*Gnuplot Commands*}, to be displayed
28296 in another window.  This buffer is a template of the commands that will
28297 be sent to GNUPLOT when it is time to draw the graph.  The first
28298 @kbd{g a} command adds a @code{plot} command to this buffer.  Succeeding
28299 @kbd{g a} commands add extra curves onto that @code{plot} command.
28300 Other graph-related commands put other GNUPLOT commands into this
28301 buffer.  In normal usage you never need to work with this buffer
28302 directly, but you can if you wish.  The only constraint is that there
28303 must be only one @code{plot} command, and it must be the last command
28304 in the buffer.  If you want to save and later restore a complete graph
28305 configuration, you can use regular Emacs commands to save and restore
28306 the contents of the @samp{*Gnuplot Commands*} buffer.
28308 @vindex PlotData1
28309 @vindex PlotData2
28310 If the values on the stack are not variable names, @kbd{g a} will invent
28311 variable names for them (of the form @samp{PlotData@var{n}}) and store
28312 the values in those variables.  The ``x'' and ``y'' variables are what
28313 go into the @code{plot} command in the template.  If you add a curve
28314 that uses a certain variable and then later change that variable, you
28315 can replot the graph without having to delete and re-add the curve.
28316 That's because the variable name, not the vector, interval or formula
28317 itself, is what was added by @kbd{g a}.
28319 A numeric prefix argument on @kbd{g a} or @kbd{g f} changes the way
28320 stack entries are interpreted as curves.  With a positive prefix
28321 argument @cite{n}, the top @cite{n} stack entries are ``y'' values
28322 for @cite{n} different curves which share a common ``x'' value in
28323 the @cite{n+1}st stack entry.  (Thus @kbd{g a} with no prefix
28324 argument is equivalent to @kbd{C-u 1 g a}.)
28326 A prefix of zero or plain @kbd{C-u} means to take two stack entries,
28327 ``x'' and ``y'' as usual, but to interpret ``y'' as a vector of
28328 ``y'' values for several curves that share a common ``x''.
28330 A negative prefix argument tells Calc to read @cite{n} vectors from
28331 the stack; each vector @cite{[x, y]} describes an independent curve.
28332 This is the only form of @kbd{g a} that creates several curves at once
28333 that don't have common ``x'' values.  (Of course, the range of ``x''
28334 values covered by all the curves ought to be roughly the same if
28335 they are to look nice on the same graph.)
28337 For example, to plot @c{$\sin n x$}
28338 @cite{sin(n x)} for integers @cite{n}
28339 from 1 to 5, you could use @kbd{v x} to create a vector of integers
28340 (@cite{n}), then @kbd{V M '} or @kbd{V M $} to map @samp{sin(n x)}
28341 across this vector.  The resulting vector of formulas is suitable
28342 for use as the ``y'' argument to a @kbd{C-u g a} or @kbd{C-u g f}
28343 command.
28345 @kindex g A
28346 @pindex calc-graph-add-3d
28347 The @kbd{g A} (@code{calc-graph-add-3d}) command adds a 3D curve
28348 to the graph.  It is not legal to intermix 2D and 3D curves in a
28349 single graph.  This command takes three arguments, ``x'', ``y'',
28350 and ``z'', from the stack.  With a positive prefix @cite{n}, it
28351 takes @cite{n+2} arguments (common ``x'' and ``y'', plus @cite{n}
28352 separate ``z''s).  With a zero prefix, it takes three stack entries
28353 but the ``z'' entry is a vector of curve values.  With a negative
28354 prefix @cite{-n}, it takes @cite{n} vectors of the form @cite{[x, y, z]}.
28355 The @kbd{g A} command works by adding a @code{splot} (surface-plot)
28356 command to the @samp{*Gnuplot Commands*} buffer.
28358 (Although @kbd{g a} adds a 2D @code{plot} command to the
28359 @samp{*Gnuplot Commands*} buffer, Calc changes this to @code{splot}
28360 before sending it to GNUPLOT if it notices that the data points are
28361 evaluating to @code{xyz} calls.  It will not work to mix 2D and 3D
28362 @kbd{g a} curves in a single graph, although Calc does not currently
28363 check for this.)
28365 @kindex g d
28366 @pindex calc-graph-delete
28367 The @kbd{g d} (@code{calc-graph-delete}) command deletes the most
28368 recently added curve from the graph.  It has no effect if there are
28369 no curves in the graph.  With a numeric prefix argument of any kind,
28370 it deletes all of the curves from the graph.
28372 @kindex g H
28373 @pindex calc-graph-hide
28374 The @kbd{g H} (@code{calc-graph-hide}) command ``hides'' or ``unhides''
28375 the most recently added curve.  A hidden curve will not appear in
28376 the actual plot, but information about it such as its name and line and
28377 point styles will be retained.
28379 @kindex g j
28380 @pindex calc-graph-juggle
28381 The @kbd{g j} (@code{calc-graph-juggle}) command moves the curve
28382 at the end of the list (the ``most recently added curve'') to the
28383 front of the list.  The next-most-recent curve is thus exposed for
28384 @w{@kbd{g d}} or similar commands to use.  With @kbd{g j} you can work
28385 with any curve in the graph even though curve-related commands only
28386 affect the last curve in the list.
28388 @kindex g p
28389 @pindex calc-graph-plot
28390 The @kbd{g p} (@code{calc-graph-plot}) command uses GNUPLOT to draw
28391 the graph described in the @samp{*Gnuplot Commands*} buffer.  Any
28392 GNUPLOT parameters which are not defined by commands in this buffer
28393 are reset to their default values.  The variables named in the @code{plot}
28394 command are written to a temporary data file and the variable names
28395 are then replaced by the file name in the template.  The resulting
28396 plotting commands are fed to the GNUPLOT program.  See the documentation
28397 for the GNUPLOT program for more specific information.  All temporary
28398 files are removed when Emacs or GNUPLOT exits.
28400 If you give a formula for ``y'', Calc will remember all the values that
28401 it calculates for the formula so that later plots can reuse these values.
28402 Calc throws out these saved values when you change any circumstances
28403 that may affect the data, such as switching from Degrees to Radians
28404 mode, or changing the value of a parameter in the formula.  You can
28405 force Calc to recompute the data from scratch by giving a negative
28406 numeric prefix argument to @kbd{g p}.
28408 Calc uses a fairly rough step size when graphing formulas over intervals.
28409 This is to ensure quick response.  You can ``refine'' a plot by giving
28410 a positive numeric prefix argument to @kbd{g p}.  Calc goes through
28411 the data points it has computed and saved from previous plots of the
28412 function, and computes and inserts a new data point midway between
28413 each of the existing points.  You can refine a plot any number of times,
28414 but beware that the amount of calculation involved doubles each time.
28416 Calc does not remember computed values for 3D graphs.  This means the
28417 numerix prefix argument, if any, to @kbd{g p} is effectively ignored if
28418 the current graph is three-dimensional.
28420 @kindex g P
28421 @pindex calc-graph-print
28422 The @kbd{g P} (@code{calc-graph-print}) command is like @kbd{g p},
28423 except that it sends the output to a printer instead of to the
28424 screen.  More precisely, @kbd{g p} looks for @samp{set terminal}
28425 or @samp{set output} commands in the @samp{*Gnuplot Commands*} buffer;
28426 lacking these it uses the default settings.  However, @kbd{g P}
28427 ignores @samp{set terminal} and @samp{set output} commands and
28428 uses a different set of default values.  All of these values are
28429 controlled by the @kbd{g D} and @kbd{g O} commands discussed below.
28430 Provided everything is set up properly, @kbd{g p} will plot to
28431 the screen unless you have specified otherwise and @kbd{g P} will
28432 always plot to the printer.
28434 @node Graphics Options, Devices, Managing Curves, Graphics
28435 @section Graphics Options
28437 @noindent
28438 @kindex g g
28439 @pindex calc-graph-grid
28440 The @kbd{g g} (@code{calc-graph-grid}) command turns the ``grid''
28441 on and off.  It is off by default; tick marks appear only at the
28442 edges of the graph.  With the grid turned on, dotted lines appear
28443 across the graph at each tick mark.  Note that this command only
28444 changes the setting in @samp{*Gnuplot Commands*}; to see the effects
28445 of the change you must give another @kbd{g p} command.
28447 @kindex g b
28448 @pindex calc-graph-border
28449 The @kbd{g b} (@code{calc-graph-border}) command turns the border
28450 (the box that surrounds the graph) on and off.  It is on by default.
28451 This command will only work with GNUPLOT 3.0 and later versions.
28453 @kindex g k
28454 @pindex calc-graph-key
28455 The @kbd{g k} (@code{calc-graph-key}) command turns the ``key''
28456 on and off.  The key is a chart in the corner of the graph that
28457 shows the correspondence between curves and line styles.  It is
28458 off by default, and is only really useful if you have several
28459 curves on the same graph.
28461 @kindex g N
28462 @pindex calc-graph-num-points
28463 The @kbd{g N} (@code{calc-graph-num-points}) command allows you
28464 to select the number of data points in the graph.  This only affects
28465 curves where neither ``x'' nor ``y'' is specified as a vector.
28466 Enter a blank line to revert to the default value (initially 15).
28467 With no prefix argument, this command affects only the current graph.
28468 With a positive prefix argument this command changes or, if you enter
28469 a blank line, displays the default number of points used for all
28470 graphs created by @kbd{g a} that don't specify the resolution explicitly.
28471 With a negative prefix argument, this command changes or displays
28472 the default value (initially 5) used for 3D graphs created by @kbd{g A}.
28473 Note that a 3D setting of 5 means that a total of @cite{5^2 = 25} points
28474 will be computed for the surface.
28476 Data values in the graph of a function are normally computed to a
28477 precision of five digits, regardless of the current precision at the
28478 time. This is usually more than adequate, but there are cases where
28479 it will not be.  For example, plotting @cite{1 + x} with @cite{x} in the
28480 interval @samp{[0 ..@: 1e-6]} will round all the data points down
28481 to 1.0!  Putting the command @samp{set precision @var{n}} in the
28482 @samp{*Gnuplot Commands*} buffer will cause the data to be computed
28483 at precision @var{n} instead of 5.  Since this is such a rare case,
28484 there is no keystroke-based command to set the precision.
28486 @kindex g h
28487 @pindex calc-graph-header
28488 The @kbd{g h} (@code{calc-graph-header}) command sets the title
28489 for the graph.  This will show up centered above the graph.
28490 The default title is blank (no title).
28492 @kindex g n
28493 @pindex calc-graph-name
28494 The @kbd{g n} (@code{calc-graph-name}) command sets the title of an
28495 individual curve.  Like the other curve-manipulating commands, it
28496 affects the most recently added curve, i.e., the last curve on the
28497 list in the @samp{*Gnuplot Commands*} buffer.  To set the title of
28498 the other curves you must first juggle them to the end of the list
28499 with @kbd{g j}, or edit the @samp{*Gnuplot Commands*} buffer by hand.
28500 Curve titles appear in the key; if the key is turned off they are
28501 not used.
28503 @kindex g t
28504 @kindex g T
28505 @pindex calc-graph-title-x
28506 @pindex calc-graph-title-y
28507 The @kbd{g t} (@code{calc-graph-title-x}) and @kbd{g T}
28508 (@code{calc-graph-title-y}) commands set the titles on the ``x''
28509 and ``y'' axes, respectively.  These titles appear next to the
28510 tick marks on the left and bottom edges of the graph, respectively.
28511 Calc does not have commands to control the tick marks themselves,
28512 but you can edit them into the @samp{*Gnuplot Commands*} buffer if
28513 you wish.  See the GNUPLOT documentation for details.
28515 @kindex g r
28516 @kindex g R
28517 @pindex calc-graph-range-x
28518 @pindex calc-graph-range-y
28519 The @kbd{g r} (@code{calc-graph-range-x}) and @kbd{g R}
28520 (@code{calc-graph-range-y}) commands set the range of values on the
28521 ``x'' and ``y'' axes, respectively.  You are prompted to enter a
28522 suitable range.  This should be either a pair of numbers of the
28523 form, @samp{@var{min}:@var{max}}, or a blank line to revert to the
28524 default behavior of setting the range based on the range of values
28525 in the data, or @samp{$} to take the range from the top of the stack.
28526 Ranges on the stack can be represented as either interval forms or
28527 vectors:  @samp{[@var{min} ..@: @var{max}]} or @samp{[@var{min}, @var{max}]}.
28529 @kindex g l
28530 @kindex g L
28531 @pindex calc-graph-log-x
28532 @pindex calc-graph-log-y
28533 The @kbd{g l} (@code{calc-graph-log-x}) and @kbd{g L} (@code{calc-graph-log-y})
28534 commands allow you to set either or both of the axes of the graph to
28535 be logarithmic instead of linear.
28537 @kindex g C-l
28538 @kindex g C-r
28539 @kindex g C-t
28540 @pindex calc-graph-log-z
28541 @pindex calc-graph-range-z
28542 @pindex calc-graph-title-z
28543 For 3D plots, @kbd{g C-t}, @kbd{g C-r}, and @kbd{g C-l} (those are
28544 letters with the Control key held down) are the corresponding commands
28545 for the ``z'' axis.
28547 @kindex g z
28548 @kindex g Z
28549 @pindex calc-graph-zero-x
28550 @pindex calc-graph-zero-y
28551 The @kbd{g z} (@code{calc-graph-zero-x}) and @kbd{g Z}
28552 (@code{calc-graph-zero-y}) commands control whether a dotted line is
28553 drawn to indicate the ``x'' and/or ``y'' zero axes.  (These are the same
28554 dotted lines that would be drawn there anyway if you used @kbd{g g} to
28555 turn the ``grid'' feature on.)  Zero-axis lines are on by default, and
28556 may be turned off only in GNUPLOT 3.0 and later versions.  They are
28557 not available for 3D plots.
28559 @kindex g s
28560 @pindex calc-graph-line-style
28561 The @kbd{g s} (@code{calc-graph-line-style}) command turns the connecting
28562 lines on or off for the most recently added curve, and optionally selects
28563 the style of lines to be used for that curve.  Plain @kbd{g s} simply
28564 toggles the lines on and off.  With a numeric prefix argument, @kbd{g s}
28565 turns lines on and sets a particular line style.  Line style numbers
28566 start at one and their meanings vary depending on the output device.
28567 GNUPLOT guarantees that there will be at least six different line styles
28568 available for any device.
28570 @kindex g S
28571 @pindex calc-graph-point-style
28572 The @kbd{g S} (@code{calc-graph-point-style}) command similarly turns
28573 the symbols at the data points on or off, or sets the point style.
28574 If you turn both lines and points off, the data points will show as
28575 tiny dots.
28577 @cindex @code{LineStyles} variable
28578 @cindex @code{PointStyles} variable
28579 @vindex LineStyles
28580 @vindex PointStyles
28581 Another way to specify curve styles is with the @code{LineStyles} and
28582 @code{PointStyles} variables.  These variables initially have no stored
28583 values, but if you store a vector of integers in one of these variables,
28584 the @kbd{g a} and @kbd{g f} commands will use those style numbers
28585 instead of the defaults for new curves that are added to the graph.
28586 An entry should be a positive integer for a specific style, or 0 to let
28587 the style be chosen automatically, or @i{-1} to turn off lines or points
28588 altogether.  If there are more curves than elements in the vector, the
28589 last few curves will continue to have the default styles.  Of course,
28590 you can later use @kbd{g s} and @kbd{g S} to change any of these styles.
28592 For example, @kbd{'[2 -1 3] @key{RET} s t LineStyles} causes the first curve
28593 to have lines in style number 2, the second curve to have no connecting
28594 lines, and the third curve to have lines in style 3.  Point styles will
28595 still be assigned automatically, but you could store another vector in
28596 @code{PointStyles} to define them, too.
28598 @node Devices, , Graphics Options, Graphics
28599 @section Graphical Devices
28601 @noindent
28602 @kindex g D
28603 @pindex calc-graph-device
28604 The @kbd{g D} (@code{calc-graph-device}) command sets the device name
28605 (or ``terminal name'' in GNUPLOT lingo) to be used by @kbd{g p} commands
28606 on this graph.  It does not affect the permanent default device name.
28607 If you enter a blank name, the device name reverts to the default.
28608 Enter @samp{?} to see a list of supported devices.
28610 With a positive numeric prefix argument, @kbd{g D} instead sets
28611 the default device name, used by all plots in the future which do
28612 not override it with a plain @kbd{g D} command.  If you enter a
28613 blank line this command shows you the current default.  The special
28614 name @code{default} signifies that Calc should choose @code{x11} if
28615 the X window system is in use (as indicated by the presence of a
28616 @code{DISPLAY} environment variable), or otherwise @code{dumb} under
28617 GNUPLOT 3.0 and later, or @code{postscript} under GNUPLOT 2.0.
28618 This is the initial default value.
28620 The @code{dumb} device is an interface to ``dumb terminals,'' i.e.,
28621 terminals with no special graphics facilities.  It writes a crude
28622 picture of the graph composed of characters like @code{-} and @code{|}
28623 to a buffer called @samp{*Gnuplot Trail*}, which Calc then displays.
28624 The graph is made the same size as the Emacs screen, which on most
28625 dumb terminals will be @c{$80\times24$}
28626 @asis{80x24} characters.  The graph is displayed in
28627 an Emacs ``recursive edit''; type @kbd{q} or @kbd{M-# M-#} to exit
28628 the recursive edit and return to Calc.  Note that the @code{dumb}
28629 device is present only in GNUPLOT 3.0 and later versions.
28631 The word @code{dumb} may be followed by two numbers separated by
28632 spaces.  These are the desired width and height of the graph in
28633 characters.  Also, the device name @code{big} is like @code{dumb}
28634 but creates a graph four times the width and height of the Emacs
28635 screen.  You will then have to scroll around to view the entire
28636 graph.  In the @samp{*Gnuplot Trail*} buffer, @key{SPC}, @key{DEL},
28637 @kbd{<}, and @kbd{>} are defined to scroll by one screenful in each
28638 of the four directions.
28640 With a negative numeric prefix argument, @kbd{g D} sets or displays
28641 the device name used by @kbd{g P} (@code{calc-graph-print}).  This
28642 is initially @code{postscript}.  If you don't have a PostScript
28643 printer, you may decide once again to use @code{dumb} to create a
28644 plot on any text-only printer.
28646 @kindex g O
28647 @pindex calc-graph-output
28648 The @kbd{g O} (@code{calc-graph-output}) command sets the name of
28649 the output file used by GNUPLOT.  For some devices, notably @code{x11},
28650 there is no output file and this information is not used.  Many other
28651 ``devices'' are really file formats like @code{postscript}; in these
28652 cases the output in the desired format goes into the file you name
28653 with @kbd{g O}.  Type @kbd{g O stdout @key{RET}} to set GNUPLOT to write
28654 to its standard output stream, i.e., to @samp{*Gnuplot Trail*}.
28655 This is the default setting.
28657 Another special output name is @code{tty}, which means that GNUPLOT
28658 is going to write graphics commands directly to its standard output,
28659 which you wish Emacs to pass through to your terminal.  Tektronix
28660 graphics terminals, among other devices, operate this way.  Calc does
28661 this by telling GNUPLOT to write to a temporary file, then running a
28662 sub-shell executing the command @samp{cat tempfile >/dev/tty}.  On
28663 typical Unix systems, this will copy the temporary file directly to
28664 the terminal, bypassing Emacs entirely.  You will have to type @kbd{C-l}
28665 to Emacs afterwards to refresh the screen.
28667 Once again, @kbd{g O} with a positive or negative prefix argument
28668 sets the default or printer output file names, respectively.  In each
28669 case you can specify @code{auto}, which causes Calc to invent a temporary
28670 file name for each @kbd{g p} (or @kbd{g P}) command.  This temporary file
28671 will be deleted once it has been displayed or printed.  If the output file
28672 name is not @code{auto}, the file is not automatically deleted.
28674 The default and printer devices and output files can be saved
28675 permanently by the @kbd{m m} (@code{calc-save-modes}) command.  The
28676 default number of data points (see @kbd{g N}) and the X geometry
28677 (see @kbd{g X}) are also saved.  Other graph information is @emph{not}
28678 saved; you can save a graph's configuration simply by saving the contents
28679 of the @samp{*Gnuplot Commands*} buffer.
28681 @vindex calc-gnuplot-plot-command
28682 @vindex calc-gnuplot-default-device
28683 @vindex calc-gnuplot-default-output
28684 @vindex calc-gnuplot-print-command
28685 @vindex calc-gnuplot-print-device
28686 @vindex calc-gnuplot-print-output
28687 If you are installing Calc you may wish to configure the default and
28688 printer devices and output files for the whole system.  The relevant
28689 Lisp variables are @code{calc-gnuplot-default-device} and @code{-output},
28690 and @code{calc-gnuplot-print-device} and @code{-output}.  The output
28691 file names must be either strings as described above, or Lisp
28692 expressions which are evaluated on the fly to get the output file names.
28694 Other important Lisp variables are @code{calc-gnuplot-plot-command} and
28695 @code{calc-gnuplot-print-command}, which give the system commands to
28696 display or print the output of GNUPLOT, respectively.  These may be
28697 @code{nil} if no command is necessary, or strings which can include
28698 @samp{%s} to signify the name of the file to be displayed or printed.
28699 Or, these variables may contain Lisp expressions which are evaluated
28700 to display or print the output.
28702 @kindex g x
28703 @pindex calc-graph-display
28704 The @kbd{g x} (@code{calc-graph-display}) command lets you specify
28705 on which X window system display your graphs should be drawn.  Enter
28706 a blank line to see the current display name.  This command has no
28707 effect unless the current device is @code{x11}.
28709 @kindex g X
28710 @pindex calc-graph-geometry
28711 The @kbd{g X} (@code{calc-graph-geometry}) command is a similar
28712 command for specifying the position and size of the X window.
28713 The normal value is @code{default}, which generally means your
28714 window manager will let you place the window interactively.
28715 Entering @samp{800x500+0+0} would create an 800-by-500 pixel
28716 window in the upper-left corner of the screen.
28718 The buffer called @samp{*Gnuplot Trail*} holds a transcript of the
28719 session with GNUPLOT.  This shows the commands Calc has ``typed'' to
28720 GNUPLOT and the responses it has received.  Calc tries to notice when an
28721 error message has appeared here and display the buffer for you when
28722 this happens.  You can check this buffer yourself if you suspect
28723 something has gone wrong.
28725 @kindex g C
28726 @pindex calc-graph-command
28727 The @kbd{g C} (@code{calc-graph-command}) command prompts you to
28728 enter any line of text, then simply sends that line to the current
28729 GNUPLOT process.  The @samp{*Gnuplot Trail*} buffer looks deceptively
28730 like a Shell buffer but you can't type commands in it yourself.
28731 Instead, you must use @kbd{g C} for this purpose.
28733 @kindex g v
28734 @kindex g V
28735 @pindex calc-graph-view-commands
28736 @pindex calc-graph-view-trail
28737 The @kbd{g v} (@code{calc-graph-view-commands}) and @kbd{g V}
28738 (@code{calc-graph-view-trail}) commands display the @samp{*Gnuplot Commands*}
28739 and @samp{*Gnuplot Trail*} buffers, respectively, in another window.
28740 This happens automatically when Calc thinks there is something you
28741 will want to see in either of these buffers.  If you type @kbd{g v}
28742 or @kbd{g V} when the relevant buffer is already displayed, the
28743 buffer is hidden again.
28745 One reason to use @kbd{g v} is to add your own commands to the
28746 @samp{*Gnuplot Commands*} buffer.  Press @kbd{g v}, then use
28747 @kbd{C-x o} to switch into that window.  For example, GNUPLOT has
28748 @samp{set label} and @samp{set arrow} commands that allow you to
28749 annotate your plots.  Since Calc doesn't understand these commands,
28750 you have to add them to the @samp{*Gnuplot Commands*} buffer
28751 yourself, then use @w{@kbd{g p}} to replot using these new commands.  Note
28752 that your commands must appear @emph{before} the @code{plot} command.
28753 To get help on any GNUPLOT feature, type, e.g., @kbd{g C help set label}.
28754 You may have to type @kbd{g C @key{RET}} a few times to clear the
28755 ``press return for more'' or ``subtopic of @dots{}'' requests.
28756 Note that Calc always sends commands (like @samp{set nolabel}) to
28757 reset all plotting parameters to the defaults before each plot, so
28758 to delete a label all you need to do is delete the @samp{set label}
28759 line you added (or comment it out with @samp{#}) and then replot
28760 with @kbd{g p}.
28762 @kindex g q
28763 @pindex calc-graph-quit
28764 You can use @kbd{g q} (@code{calc-graph-quit}) to kill the GNUPLOT
28765 process that is running.  The next graphing command you give will
28766 start a fresh GNUPLOT process.  The word @samp{Graph} appears in
28767 the Calc window's mode line whenever a GNUPLOT process is currently
28768 running.  The GNUPLOT process is automatically killed when you
28769 exit Emacs if you haven't killed it manually by then.
28771 @kindex g K
28772 @pindex calc-graph-kill
28773 The @kbd{g K} (@code{calc-graph-kill}) command is like @kbd{g q}
28774 except that it also views the @samp{*Gnuplot Trail*} buffer so that
28775 you can see the process being killed.  This is better if you are
28776 killing GNUPLOT because you think it has gotten stuck.
28778 @node Kill and Yank, Keypad Mode, Graphics, Top
28779 @chapter Kill and Yank Functions
28781 @noindent
28782 The commands in this chapter move information between the Calculator and
28783 other Emacs editing buffers.
28785 In many cases Embedded Mode is an easier and more natural way to
28786 work with Calc from a regular editing buffer.  @xref{Embedded Mode}.
28788 @menu
28789 * Killing From Stack::
28790 * Yanking Into Stack::
28791 * Grabbing From Buffers::
28792 * Yanking Into Buffers::
28793 * X Cut and Paste::
28794 @end menu
28796 @node Killing From Stack, Yanking Into Stack, Kill and Yank, Kill and Yank
28797 @section Killing from the Stack
28799 @noindent
28800 @kindex C-k
28801 @pindex calc-kill
28802 @kindex M-k
28803 @pindex calc-copy-as-kill
28804 @kindex C-w
28805 @pindex calc-kill-region
28806 @kindex M-w
28807 @pindex calc-copy-region-as-kill
28808 @cindex Kill ring
28809 @dfn{Kill} commands are Emacs commands that insert text into the
28810 ``kill ring,'' from which it can later be ``yanked'' by a @kbd{C-y}
28811 command.  Three common kill commands in normal Emacs are @kbd{C-k}, which
28812 kills one line, @kbd{C-w}, which kills the region between mark and point,
28813 and @kbd{M-w}, which puts the region into the kill ring without actually
28814 deleting it.  All of these commands work in the Calculator, too.  Also,
28815 @kbd{M-k} has been provided to complete the set; it puts the current line
28816 into the kill ring without deleting anything.
28818 The kill commands are unusual in that they pay attention to the location
28819 of the cursor in the Calculator buffer.  If the cursor is on or below the
28820 bottom line, the kill commands operate on the top of the stack.  Otherwise,
28821 they operate on whatever stack element the cursor is on.  Calc's kill
28822 commands always operate on whole stack entries.  (They act the same as their
28823 standard Emacs cousins except they ``round up'' the specified region to
28824 encompass full lines.)  The text is copied into the kill ring exactly as
28825 it appears on the screen, including line numbers if they are enabled.
28827 A numeric prefix argument to @kbd{C-k} or @kbd{M-k} affects the number
28828 of lines killed.  A positive argument kills the current line and @cite{n-1}
28829 lines below it.  A negative argument kills the @cite{-n} lines above the
28830 current line.  Again this mirrors the behavior of the standard Emacs
28831 @kbd{C-k} command.  Although a whole line is always deleted, @kbd{C-k}
28832 with no argument copies only the number itself into the kill ring, whereas
28833 @kbd{C-k} with a prefix argument of 1 copies the number with its trailing
28834 newline.
28836 @node Yanking Into Stack, Grabbing From Buffers, Killing From Stack, Kill and Yank
28837 @section Yanking into the Stack
28839 @noindent
28840 @kindex C-y
28841 @pindex calc-yank
28842 The @kbd{C-y} command yanks the most recently killed text back into the
28843 Calculator.  It pushes this value onto the top of the stack regardless of
28844 the cursor position.  In general it re-parses the killed text as a number
28845 or formula (or a list of these separated by commas or newlines).  However if
28846 the thing being yanked is something that was just killed from the Calculator
28847 itself, its full internal structure is yanked.  For example, if you have
28848 set the floating-point display mode to show only four significant digits,
28849 then killing and re-yanking 3.14159 (which displays as 3.142) will yank the
28850 full 3.14159, even though yanking it into any other buffer would yank the
28851 number in its displayed form, 3.142.  (Since the default display modes
28852 show all objects to their full precision, this feature normally makes no
28853 difference.)
28855 @node Grabbing From Buffers, Yanking Into Buffers, Yanking Into Stack, Kill and Yank
28856 @section Grabbing from Other Buffers
28858 @noindent
28859 @kindex M-# g
28860 @pindex calc-grab-region
28861 The @kbd{M-# g} (@code{calc-grab-region}) command takes the text between
28862 point and mark in the current buffer and attempts to parse it as a
28863 vector of values.  Basically, it wraps the text in vector brackets
28864 @samp{[ ]} unless the text already is enclosed in vector brackets,
28865 then reads the text as if it were an algebraic entry.  The contents
28866 of the vector may be numbers, formulas, or any other Calc objects.
28867 If the @kbd{M-# g} command works successfully, it does an automatic
28868 @kbd{M-# c} to enter the Calculator buffer.
28870 A numeric prefix argument grabs the specified number of lines around
28871 point, ignoring the mark.  A positive prefix grabs from point to the
28872 @cite{n}th following newline (so that @kbd{M-1 M-# g} grabs from point
28873 to the end of the current line); a negative prefix grabs from point
28874 back to the @cite{n+1}st preceding newline.  In these cases the text
28875 that is grabbed is exactly the same as the text that @kbd{C-k} would
28876 delete given that prefix argument.
28878 A prefix of zero grabs the current line; point may be anywhere on the
28879 line.
28881 A plain @kbd{C-u} prefix interprets the region between point and mark
28882 as a single number or formula rather than a vector.  For example,
28883 @kbd{M-# g} on the text @samp{2 a b} produces the vector of three
28884 values @samp{[2, a, b]}, but @kbd{C-u M-# g} on the same region
28885 reads a formula which is a product of three things:  @samp{2 a b}.
28886 (The text @samp{a + b}, on the other hand, will be grabbed as a
28887 vector of one element by plain @kbd{M-# g} because the interpretation
28888 @samp{[a, +, b]} would be a syntax error.)
28890 If a different language has been specified (@pxref{Language Modes}),
28891 the grabbed text will be interpreted according to that language.
28893 @kindex M-# r
28894 @pindex calc-grab-rectangle
28895 The @kbd{M-# r} (@code{calc-grab-rectangle}) command takes the text between
28896 point and mark and attempts to parse it as a matrix.  If point and mark
28897 are both in the leftmost column, the lines in between are parsed in their
28898 entirety.  Otherwise, point and mark define the corners of a rectangle
28899 whose contents are parsed.
28901 Each line of the grabbed area becomes a row of the matrix.  The result
28902 will actually be a vector of vectors, which Calc will treat as a matrix
28903 only if every row contains the same number of values.
28905 If a line contains a portion surrounded by square brackets (or curly
28906 braces), that portion is interpreted as a vector which becomes a row
28907 of the matrix.  Any text surrounding the bracketed portion on the line
28908 is ignored.
28910 Otherwise, the entire line is interpreted as a row vector as if it
28911 were surrounded by square brackets.  Leading line numbers (in the
28912 format used in the Calc stack buffer) are ignored.  If you wish to
28913 force this interpretation (even if the line contains bracketed
28914 portions), give a negative numeric prefix argument to the
28915 @kbd{M-# r} command.
28917 If you give a numeric prefix argument of zero or plain @kbd{C-u}, each
28918 line is instead interpreted as a single formula which is converted into
28919 a one-element vector.  Thus the result of @kbd{C-u M-# r} will be a
28920 one-column matrix.  For example, suppose one line of the data is the
28921 expression @samp{2 a}.  A plain @w{@kbd{M-# r}} will interpret this as
28922 @samp{[2 a]}, which in turn is read as a two-element vector that forms
28923 one row of the matrix.  But a @kbd{C-u M-# r} will interpret this row
28924 as @samp{[2*a]}.
28926 If you give a positive numeric prefix argument @var{n}, then each line
28927 will be split up into columns of width @var{n}; each column is parsed
28928 separately as a matrix element.  If a line contained
28929 @w{@samp{2 +/- 3 4 +/- 5}}, then grabbing with a prefix argument of 8
28930 would correctly split the line into two error forms.@refill
28932 @xref{Matrix Functions}, to see how to pull the matrix apart into its
28933 constituent rows and columns.  (If it is a @c{$1\times1$}
28934 @asis{1x1} matrix, just hit @kbd{v u}
28935 (@code{calc-unpack}) twice.)
28937 @kindex M-# :
28938 @kindex M-# _
28939 @pindex calc-grab-sum-across
28940 @pindex calc-grab-sum-down
28941 @cindex Summing rows and columns of data
28942 The @kbd{M-# :} (@code{calc-grab-sum-down}) command is a handy way to
28943 grab a rectangle of data and sum its columns.  It is equivalent to
28944 typing @kbd{M-# r}, followed by @kbd{V R : +} (the vector reduction
28945 command that sums the columns of a matrix; @pxref{Reducing}).  The
28946 result of the command will be a vector of numbers, one for each column
28947 in the input data.  The @kbd{M-# _} (@code{calc-grab-sum-across}) command
28948 similarly grabs a rectangle and sums its rows by executing @w{@kbd{V R _ +}}.
28950 As well as being more convenient, @kbd{M-# :} and @kbd{M-# _} are also
28951 much faster because they don't actually place the grabbed vector on
28952 the stack.  In a @kbd{M-# r V R : +} sequence, formatting the vector
28953 for display on the stack takes a large fraction of the total time
28954 (unless you have planned ahead and used @kbd{v .} and @kbd{t .} modes).
28956 For example, suppose we have a column of numbers in a file which we
28957 wish to sum.  Go to one corner of the column and press @kbd{C-@@} to
28958 set the mark; go to the other corner and type @kbd{M-# :}.  Since there
28959 is only one column, the result will be a vector of one number, the sum.
28960 (You can type @kbd{v u} to unpack this vector into a plain number if
28961 you want to do further arithmetic with it.)
28963 To compute the product of the column of numbers, we would have to do
28964 it ``by hand'' since there's no special grab-and-multiply command.
28965 Use @kbd{M-# r} to grab the column of numbers into the calculator in
28966 the form of a column matrix.  The statistics command @kbd{u *} is a
28967 handy way to find the product of a vector or matrix of numbers.
28968 @xref{Statistical Operations}.  Another approach would be to use
28969 an explicit column reduction command, @kbd{V R : *}.
28971 @node Yanking Into Buffers, X Cut and Paste, Grabbing From Buffers, Kill and Yank
28972 @section Yanking into Other Buffers
28974 @noindent
28975 @kindex y
28976 @pindex calc-copy-to-buffer
28977 The plain @kbd{y} (@code{calc-copy-to-buffer}) command inserts the number
28978 at the top of the stack into the most recently used normal editing buffer.
28979 (More specifically, this is the most recently used buffer which is displayed
28980 in a window and whose name does not begin with @samp{*}.  If there is no
28981 such buffer, this is the most recently used buffer except for Calculator
28982 and Calc Trail buffers.)  The number is inserted exactly as it appears and
28983 without a newline.  (If line-numbering is enabled, the line number is
28984 normally not included.)  The number is @emph{not} removed from the stack.
28986 With a prefix argument, @kbd{y} inserts several numbers, one per line.
28987 A positive argument inserts the specified number of values from the top
28988 of the stack.  A negative argument inserts the @cite{n}th value from the
28989 top of the stack.  An argument of zero inserts the entire stack.  Note
28990 that @kbd{y} with an argument of 1 is slightly different from @kbd{y}
28991 with no argument; the former always copies full lines, whereas the
28992 latter strips off the trailing newline.
28994 With a lone @kbd{C-u} as a prefix argument, @kbd{y} @emph{replaces} the
28995 region in the other buffer with the yanked text, then quits the
28996 Calculator, leaving you in that buffer.  A typical use would be to use
28997 @kbd{M-# g} to read a region of data into the Calculator, operate on the
28998 data to produce a new matrix, then type @kbd{C-u y} to replace the
28999 original data with the new data.  One might wish to alter the matrix
29000 display style (@pxref{Vector and Matrix Formats}) or change the current
29001 display language (@pxref{Language Modes}) before doing this.  Also, note
29002 that this command replaces a linear region of text (as grabbed by
29003 @kbd{M-# g}), not a rectangle (as grabbed by @kbd{M-# r}).@refill
29005 If the editing buffer is in overwrite (as opposed to insert) mode,
29006 and the @kbd{C-u} prefix was not used, then the yanked number will
29007 overwrite the characters following point rather than being inserted
29008 before those characters.  The usual conventions of overwrite mode
29009 are observed; for example, characters will be inserted at the end of
29010 a line rather than overflowing onto the next line.  Yanking a multi-line
29011 object such as a matrix in overwrite mode overwrites the next @var{n}
29012 lines in the buffer, lengthening or shortening each line as necessary.
29013 Finally, if the thing being yanked is a simple integer or floating-point
29014 number (like @samp{-1.2345e-3}) and the characters following point also
29015 make up such a number, then Calc will replace that number with the new
29016 number, lengthening or shortening as necessary.  The concept of
29017 ``overwrite mode'' has thus been generalized from overwriting characters
29018 to overwriting one complete number with another.
29020 @kindex M-# y
29021 The @kbd{M-# y} key sequence is equivalent to @kbd{y} except that
29022 it can be typed anywhere, not just in Calc.  This provides an easy
29023 way to guarantee that Calc knows which editing buffer you want to use!
29025 @node X Cut and Paste, , Yanking Into Buffers, Kill and Yank
29026 @section X Cut and Paste
29028 @noindent
29029 If you are using Emacs with the X window system, there is an easier
29030 way to move small amounts of data into and out of the calculator:
29031 Use the mouse-oriented cut and paste facilities of X.
29033 The default bindings for a three-button mouse cause the left button
29034 to move the Emacs cursor to the given place, the right button to
29035 select the text between the cursor and the clicked location, and
29036 the middle button to yank the selection into the buffer at the
29037 clicked location.  So, if you have a Calc window and an editing
29038 window on your Emacs screen, you can use left-click/right-click
29039 to select a number, vector, or formula from one window, then
29040 middle-click to paste that value into the other window.  When you
29041 paste text into the Calc window, Calc interprets it as an algebraic
29042 entry.  It doesn't matter where you click in the Calc window; the
29043 new value is always pushed onto the top of the stack.
29045 The @code{xterm} program that is typically used for general-purpose
29046 shell windows in X interprets the mouse buttons in the same way.
29047 So you can use the mouse to move data between Calc and any other
29048 Unix program.  One nice feature of @code{xterm} is that a double
29049 left-click selects one word, and a triple left-click selects a
29050 whole line.  So you can usually transfer a single number into Calc
29051 just by double-clicking on it in the shell, then middle-clicking
29052 in the Calc window.
29054 @node Keypad Mode, Embedded Mode, Kill and Yank, Introduction
29055 @chapter ``Keypad'' Mode
29057 @noindent
29058 @kindex M-# k
29059 @pindex calc-keypad
29060 The @kbd{M-# k} (@code{calc-keypad}) command starts the Calculator
29061 and displays a picture of a calculator-style keypad.  If you are using
29062 the X window system, you can click on any of the ``keys'' in the
29063 keypad using the left mouse button to operate the calculator.
29064 The original window remains the selected window; in keypad mode
29065 you can type in your file while simultaneously performing
29066 calculations with the mouse.
29068 @pindex full-calc-keypad
29069 If you have used @kbd{M-# b} first, @kbd{M-# k} instead invokes
29070 the @code{full-calc-keypad} command, which takes over the whole
29071 Emacs screen and displays the keypad, the Calc stack, and the Calc
29072 trail all at once.  This mode would normally be used when running
29073 Calc standalone (@pxref{Standalone Operation}).
29075 If you aren't using the X window system, you must switch into
29076 the @samp{*Calc Keypad*} window, place the cursor on the desired
29077 ``key,'' and type @key{SPC} or @key{RET}.  If you think this
29078 is easier than using Calc normally, go right ahead.
29080 Calc commands are more or less the same in keypad mode.  Certain
29081 keypad keys differ slightly from the corresponding normal Calc
29082 keystrokes; all such deviations are described below.
29084 Keypad Mode includes many more commands than will fit on the keypad
29085 at once.  Click the right mouse button [@code{calc-keypad-menu}]
29086 to switch to the next menu.  The bottom five rows of the keypad
29087 stay the same; the top three rows change to a new set of commands.
29088 To return to earlier menus, click the middle mouse button
29089 [@code{calc-keypad-menu-back}] or simply advance through the menus
29090 until you wrap around.  Typing @key{TAB} inside the keypad window
29091 is equivalent to clicking the right mouse button there.
29093 You can always click the @key{EXEC} button and type any normal
29094 Calc key sequence.  This is equivalent to switching into the
29095 Calc buffer, typing the keys, then switching back to your
29096 original buffer.
29098 @menu
29099 * Keypad Main Menu::
29100 * Keypad Functions Menu::
29101 * Keypad Binary Menu::
29102 * Keypad Vectors Menu::
29103 * Keypad Modes Menu::
29104 @end menu
29106 @node Keypad Main Menu, Keypad Functions Menu, Keypad Mode, Keypad Mode
29107 @section Main Menu
29109 @smallexample
29110 @group
29111 |----+-----Calc 2.00-----+----1
29112 |FLR |CEIL|RND |TRNC|CLN2|FLT |
29113 |----+----+----+----+----+----|
29114 | LN |EXP |    |ABS |IDIV|MOD |
29115 |----+----+----+----+----+----|
29116 |SIN |COS |TAN |SQRT|y^x |1/x |
29117 |----+----+----+----+----+----|
29118 |  ENTER  |+/- |EEX |UNDO| <- |
29119 |-----+---+-+--+--+-+---++----|
29120 | INV |  7  |  8  |  9  |  /  |
29121 |-----+-----+-----+-----+-----|
29122 | HYP |  4  |  5  |  6  |  *  |
29123 |-----+-----+-----+-----+-----|
29124 |EXEC |  1  |  2  |  3  |  -  |
29125 |-----+-----+-----+-----+-----|
29126 | OFF |  0  |  .  | PI  |  +  |
29127 |-----+-----+-----+-----+-----+
29128 @end group
29129 @end smallexample
29131 @noindent
29132 This is the menu that appears the first time you start Keypad Mode.
29133 It will show up in a vertical window on the right side of your screen.
29134 Above this menu is the traditional Calc stack display.  On a 24-line
29135 screen you will be able to see the top three stack entries.
29137 The ten digit keys, decimal point, and @key{EEX} key are used for
29138 entering numbers in the obvious way.  @key{EEX} begins entry of an
29139 exponent in scientific notation.  Just as with regular Calc, the
29140 number is pushed onto the stack as soon as you press @key{ENTER}
29141 or any other function key.
29143 The @key{+/-} key corresponds to normal Calc's @kbd{n} key.  During
29144 numeric entry it changes the sign of the number or of the exponent.
29145 At other times it changes the sign of the number on the top of the
29146 stack.
29148 The @key{INV} and @key{HYP} keys modify other keys.  As well as
29149 having the effects described elsewhere in this manual, Keypad Mode
29150 defines several other ``inverse'' operations.  These are described
29151 below and in the following sections.
29153 The @key{ENTER} key finishes the current numeric entry, or otherwise
29154 duplicates the top entry on the stack.
29156 The @key{UNDO} key undoes the most recent Calc operation.
29157 @kbd{INV UNDO} is the ``redo'' command, and @kbd{HYP UNDO} is
29158 ``last arguments'' (@kbd{M-@key{RET}}).
29160 The @key{<-} key acts as a ``backspace'' during numeric entry.
29161 At other times it removes the top stack entry.  @kbd{INV <-}
29162 clears the entire stack.  @kbd{HYP <-} takes an integer from
29163 the stack, then removes that many additional stack elements.
29165 The @key{EXEC} key prompts you to enter any keystroke sequence
29166 that would normally work in Calc mode.  This can include a
29167 numeric prefix if you wish.  It is also possible simply to
29168 switch into the Calc window and type commands in it; there is
29169 nothing ``magic'' about this window when Keypad Mode is active.
29171 The other keys in this display perform their obvious calculator
29172 functions.  @key{CLN2} rounds the top-of-stack by temporarily
29173 reducing the precision by 2 digits.  @key{FLT} converts an
29174 integer or fraction on the top of the stack to floating-point.
29176 The @key{INV} and @key{HYP} keys combined with several of these keys
29177 give you access to some common functions even if the appropriate menu
29178 is not displayed.  Obviously you don't need to learn these keys
29179 unless you find yourself wasting time switching among the menus.
29181 @table @kbd
29182 @item INV +/-
29183 is the same as @key{1/x}.
29184 @item INV +
29185 is the same as @key{SQRT}.
29186 @item INV -
29187 is the same as @key{CONJ}.
29188 @item INV *
29189 is the same as @key{y^x}.
29190 @item INV /
29191 is the same as @key{INV y^x} (the @cite{x}th root of @cite{y}).
29192 @item HYP/INV 1
29193 are the same as @key{SIN} / @kbd{INV SIN}.
29194 @item HYP/INV 2
29195 are the same as @key{COS} / @kbd{INV COS}.
29196 @item HYP/INV 3
29197 are the same as @key{TAN} / @kbd{INV TAN}.
29198 @item INV/HYP 4
29199 are the same as @key{LN} / @kbd{HYP LN}.
29200 @item INV/HYP 5
29201 are the same as @key{EXP} / @kbd{HYP EXP}.
29202 @item INV 6
29203 is the same as @key{ABS}.
29204 @item INV 7
29205 is the same as @key{RND} (@code{calc-round}).
29206 @item INV 8
29207 is the same as @key{CLN2}.
29208 @item INV 9
29209 is the same as @key{FLT} (@code{calc-float}).
29210 @item INV 0
29211 is the same as @key{IMAG}.
29212 @item INV .
29213 is the same as @key{PREC}.
29214 @item INV ENTER
29215 is the same as @key{SWAP}.
29216 @item HYP ENTER
29217 is the same as @key{RLL3}.
29218 @item INV HYP ENTER
29219 is the same as @key{OVER}.
29220 @item HYP +/-
29221 packs the top two stack entries as an error form.
29222 @item HYP EEX
29223 packs the top two stack entries as a modulo form.
29224 @item INV EEX
29225 creates an interval form; this removes an integer which is one
29226 of 0 @samp{[]}, 1 @samp{[)}, 2 @samp{(]} or 3 @samp{()}, followed
29227 by the two limits of the interval.
29228 @end table
29230 The @kbd{OFF} key turns Calc off; typing @kbd{M-# k} or @kbd{M-# M-#}
29231 again has the same effect.  This is analogous to typing @kbd{q} or
29232 hitting @kbd{M-# c} again in the normal calculator.  If Calc is
29233 running standalone (the @code{full-calc-keypad} command appeared in the
29234 command line that started Emacs), then @kbd{OFF} is replaced with
29235 @kbd{EXIT}; clicking on this actually exits Emacs itself.
29237 @node Keypad Functions Menu, Keypad Binary Menu, Keypad Main Menu, Keypad Mode
29238 @section Functions Menu
29240 @smallexample
29241 @group
29242 |----+----+----+----+----+----2
29243 |IGAM|BETA|IBET|ERF |BESJ|BESY|
29244 |----+----+----+----+----+----|
29245 |IMAG|CONJ| RE |ATN2|RAND|RAGN|
29246 |----+----+----+----+----+----|
29247 |GCD |FACT|DFCT|BNOM|PERM|NXTP|
29248 |----+----+----+----+----+----|
29249 @end group
29250 @end smallexample
29252 @noindent
29253 This menu provides various operations from the @kbd{f} and @kbd{k}
29254 prefix keys.
29256 @key{IMAG} multiplies the number on the stack by the imaginary
29257 number @cite{i = (0, 1)}.
29259 @key{RE} extracts the real part a complex number.  @kbd{INV RE}
29260 extracts the imaginary part.
29262 @key{RAND} takes a number from the top of the stack and computes
29263 a random number greater than or equal to zero but less than that
29264 number.  (@xref{Random Numbers}.)  @key{RAGN} is the ``random
29265 again'' command; it computes another random number using the
29266 same limit as last time.
29268 @key{INV GCD} computes the LCM (least common multiple) function.
29270 @key{INV FACT} is the gamma function.  @c{$\Gamma(x) = (x-1)!$}
29271 @cite{gamma(x) = (x-1)!}.
29273 @key{PERM} is the number-of-permutations function, which is on the
29274 @kbd{H k c} key in normal Calc.
29276 @key{NXTP} finds the next prime after a number.  @kbd{INV NXTP}
29277 finds the previous prime.
29279 @node Keypad Binary Menu, Keypad Vectors Menu, Keypad Functions Menu, Keypad Mode
29280 @section Binary Menu
29282 @smallexample
29283 @group
29284 |----+----+----+----+----+----3
29285 |AND | OR |XOR |NOT |LSH |RSH |
29286 |----+----+----+----+----+----|
29287 |DEC |HEX |OCT |BIN |WSIZ|ARSH|
29288 |----+----+----+----+----+----|
29289 | A  | B  | C  | D  | E  | F  |
29290 |----+----+----+----+----+----|
29291 @end group
29292 @end smallexample
29294 @noindent
29295 The keys in this menu perform operations on binary integers.
29296 Note that both logical and arithmetic right-shifts are provided.
29297 @key{INV LSH} rotates one bit to the left.
29299 The ``difference'' function (normally on @kbd{b d}) is on @key{INV AND}.
29300 The ``clip'' function (normally on @w{@kbd{b c}}) is on @key{INV NOT}.
29302 The @key{DEC}, @key{HEX}, @key{OCT}, and @key{BIN} keys select the
29303 current radix for display and entry of numbers:  Decimal, hexadecimal,
29304 octal, or binary.  The six letter keys @key{A} through @key{F} are used
29305 for entering hexadecimal numbers.
29307 The @key{WSIZ} key displays the current word size for binary operations
29308 and allows you to enter a new word size.  You can respond to the prompt
29309 using either the keyboard or the digits and @key{ENTER} from the keypad.
29310 The initial word size is 32 bits.
29312 @node Keypad Vectors Menu, Keypad Modes Menu, Keypad Binary Menu, Keypad Mode
29313 @section Vectors Menu
29315 @smallexample
29316 @group
29317 |----+----+----+----+----+----4
29318 |SUM |PROD|MAX |MAP*|MAP^|MAP$|
29319 |----+----+----+----+----+----|
29320 |MINV|MDET|MTRN|IDNT|CRSS|"x" |
29321 |----+----+----+----+----+----|
29322 |PACK|UNPK|INDX|BLD |LEN |... |
29323 |----+----+----+----+----+----|
29324 @end group
29325 @end smallexample
29327 @noindent
29328 The keys in this menu operate on vectors and matrices.
29330 @key{PACK} removes an integer @var{n} from the top of the stack;
29331 the next @var{n} stack elements are removed and packed into a vector,
29332 which is replaced onto the stack.  Thus the sequence
29333 @kbd{1 ENTER 3 ENTER 5 ENTER 3 PACK} enters the vector
29334 @samp{[1, 3, 5]} onto the stack.  To enter a matrix, build each row
29335 on the stack as a vector, then use a final @key{PACK} to collect the
29336 rows into a matrix.
29338 @key{UNPK} unpacks the vector on the stack, pushing each of its
29339 components separately.
29341 @key{INDX} removes an integer @var{n}, then builds a vector of
29342 integers from 1 to @var{n}.  @kbd{INV INDX} takes three numbers
29343 from the stack:  The vector size @var{n}, the starting number,
29344 and the increment.  @kbd{BLD} takes an integer @var{n} and any
29345 value @var{x} and builds a vector of @var{n} copies of @var{x}.
29347 @key{IDNT} removes an integer @var{n}, then builds an @var{n}-by-@var{n}
29348 identity matrix.
29350 @key{LEN} replaces a vector by its length, an integer.
29352 @key{...} turns on or off ``abbreviated'' display mode for large vectors.
29354 @key{MINV}, @key{MDET}, @key{MTRN}, and @key{CROSS} are the matrix
29355 inverse, determinant, and transpose, and vector cross product.
29357 @key{SUM} replaces a vector by the sum of its elements.  It is
29358 equivalent to @kbd{u +} in normal Calc (@pxref{Statistical Operations}).
29359 @key{PROD} computes the product of the elements of a vector, and
29360 @key{MAX} computes the maximum of all the elements of a vector.
29362 @key{INV SUM} computes the alternating sum of the first element
29363 minus the second, plus the third, minus the fourth, and so on.
29364 @key{INV MAX} computes the minimum of the vector elements.
29366 @key{HYP SUM} computes the mean of the vector elements.
29367 @key{HYP PROD} computes the sample standard deviation.
29368 @key{HYP MAX} computes the median.
29370 @key{MAP*} multiplies two vectors elementwise.  It is equivalent
29371 to the @kbd{V M *} command.  @key{MAP^} computes powers elementwise.
29372 The arguments must be vectors of equal length, or one must be a vector
29373 and the other must be a plain number.  For example, @kbd{2 MAP^} squares
29374 all the elements of a vector.
29376 @key{MAP$} maps the formula on the top of the stack across the
29377 vector in the second-to-top position.  If the formula contains
29378 several variables, Calc takes that many vectors starting at the
29379 second-to-top position and matches them to the variables in
29380 alphabetical order.  The result is a vector of the same size as
29381 the input vectors, whose elements are the formula evaluated with
29382 the variables set to the various sets of numbers in those vectors.
29383 For example, you could simulate @key{MAP^} using @key{MAP$} with
29384 the formula @samp{x^y}.
29386 The @kbd{"x"} key pushes the variable name @cite{x} onto the
29387 stack.  To build the formula @cite{x^2 + 6}, you would use the
29388 key sequence @kbd{"x" 2 y^x 6 +}.  This formula would then be
29389 suitable for use with the @key{MAP$} key described above.
29390 With @key{INV}, @key{HYP}, or @key{INV} and @key{HYP}, the
29391 @kbd{"x"} key pushes the variable names @cite{y}, @cite{z}, and
29392 @cite{t}, respectively.
29394 @node Keypad Modes Menu, , Keypad Vectors Menu, Keypad Mode
29395 @section Modes Menu
29397 @smallexample
29398 @group
29399 |----+----+----+----+----+----5
29400 |FLT |FIX |SCI |ENG |GRP |    |
29401 |----+----+----+----+----+----|
29402 |RAD |DEG |FRAC|POLR|SYMB|PREC|
29403 |----+----+----+----+----+----|
29404 |SWAP|RLL3|RLL4|OVER|STO |RCL |
29405 |----+----+----+----+----+----|
29406 @end group
29407 @end smallexample
29409 @noindent
29410 The keys in this menu manipulate modes, variables, and the stack.
29412 The @key{FLT}, @key{FIX}, @key{SCI}, and @key{ENG} keys select
29413 floating-point, fixed-point, scientific, or engineering notation.
29414 @key{FIX} displays two digits after the decimal by default; the
29415 others display full precision.  With the @key{INV} prefix, these
29416 keys pop a number-of-digits argument from the stack.
29418 The @key{GRP} key turns grouping of digits with commas on or off.
29419 @kbd{INV GRP} enables grouping to the right of the decimal point as
29420 well as to the left.
29422 The @key{RAD} and @key{DEG} keys switch between radians and degrees
29423 for trigonometric functions.
29425 The @key{FRAC} key turns Fraction mode on or off.  This affects
29426 whether commands like @kbd{/} with integer arguments produce
29427 fractional or floating-point results.
29429 The @key{POLR} key turns Polar mode on or off, determining whether
29430 polar or rectangular complex numbers are used by default.
29432 The @key{SYMB} key turns Symbolic mode on or off, in which
29433 operations that would produce inexact floating-point results
29434 are left unevaluated as algebraic formulas.
29436 The @key{PREC} key selects the current precision.  Answer with
29437 the keyboard or with the keypad digit and @key{ENTER} keys.
29439 The @key{SWAP} key exchanges the top two stack elements.
29440 The @key{RLL3} key rotates the top three stack elements upwards.
29441 The @key{RLL4} key rotates the top four stack elements upwards.
29442 The @key{OVER} key duplicates the second-to-top stack element.
29444 The @key{STO} and @key{RCL} keys are analogous to @kbd{s t} and
29445 @kbd{s r} in regular Calc.  @xref{Store and Recall}.  Click the
29446 @key{STO} or @key{RCL} key, then one of the ten digits.  (Named
29447 variables are not available in Keypad Mode.)  You can also use,
29448 for example, @kbd{STO + 3} to add to register 3.
29450 @node Embedded Mode, Programming, Keypad Mode, Top
29451 @chapter Embedded Mode
29453 @noindent
29454 Embedded Mode in Calc provides an alternative to copying numbers
29455 and formulas back and forth between editing buffers and the Calc
29456 stack.  In Embedded Mode, your editing buffer becomes temporarily
29457 linked to the stack and this copying is taken care of automatically.
29459 @menu
29460 * Basic Embedded Mode::
29461 * More About Embedded Mode::
29462 * Assignments in Embedded Mode::
29463 * Mode Settings in Embedded Mode::
29464 * Customizing Embedded Mode::
29465 @end menu
29467 @node Basic Embedded Mode, More About Embedded Mode, Embedded Mode, Embedded Mode
29468 @section Basic Embedded Mode
29470 @noindent
29471 @kindex M-# e
29472 @pindex calc-embedded
29473 To enter Embedded mode, position the Emacs point (cursor) on a
29474 formula in any buffer and press @kbd{M-# e} (@code{calc-embedded}).
29475 Note that @kbd{M-# e} is not to be used in the Calc stack buffer
29476 like most Calc commands, but rather in regular editing buffers that
29477 are visiting your own files.
29479 Calc normally scans backward and forward in the buffer for the
29480 nearest opening and closing @dfn{formula delimiters}.  The simplest
29481 delimiters are blank lines.  Other delimiters that Embedded Mode
29482 understands are:
29484 @enumerate
29485 @item
29486 The @TeX{} and La@TeX{} math delimiters @samp{$ $}, @samp{$$ $$},
29487 @samp{\[ \]}, and @samp{\( \)};
29488 @item
29489 Lines beginning with @samp{\begin} and @samp{\end};
29490 @item
29491 Lines beginning with @samp{@@} (Texinfo delimiters).
29492 @item
29493 Lines beginning with @samp{.EQ} and @samp{.EN} (@dfn{eqn} delimiters);
29494 @item
29495 Lines containing a single @samp{%} or @samp{.\"} symbol and nothing else.
29496 @end enumerate
29498 @xref{Customizing Embedded Mode}, to see how to make Calc recognize
29499 your own favorite delimiters.  Delimiters like @samp{$ $} can appear
29500 on their own separate lines or in-line with the formula.
29502 If you give a positive or negative numeric prefix argument, Calc
29503 instead uses the current point as one end of the formula, and moves
29504 forward or backward (respectively) by that many lines to find the
29505 other end.  Explicit delimiters are not necessary in this case.
29507 With a prefix argument of zero, Calc uses the current region
29508 (delimited by point and mark) instead of formula delimiters.
29510 @kindex M-# w
29511 @pindex calc-embedded-word
29512 With a prefix argument of @kbd{C-u} only, Calc scans for the first
29513 non-numeric character (i.e., the first character that is not a
29514 digit, sign, decimal point, or upper- or lower-case @samp{e})
29515 forward and backward to delimit the formula.  @kbd{M-# w}
29516 (@code{calc-embedded-word}) is equivalent to @kbd{C-u M-# e}.
29518 When you enable Embedded mode for a formula, Calc reads the text
29519 between the delimiters and tries to interpret it as a Calc formula.
29520 It's best if the current Calc language mode is correct for the
29521 formula, but Calc can generally identify @TeX{} formulas and
29522 Big-style formulas even if the language mode is wrong.  If Calc
29523 can't make sense of the formula, it beeps and refuses to enter
29524 Embedded mode.  But if the current language is wrong, Calc can
29525 sometimes parse the formula successfully (but incorrectly);
29526 for example, the C expression @samp{atan(a[1])} can be parsed
29527 in Normal language mode, but the @code{atan} won't correspond to
29528 the built-in @code{arctan} function, and the @samp{a[1]} will be
29529 interpreted as @samp{a} times the vector @samp{[1]}!
29531 If you press @kbd{M-# e} or @kbd{M-# w} to activate an embedded
29532 formula which is blank, say with the cursor on the space between
29533 the two delimiters @samp{$ $}, Calc will immediately prompt for
29534 an algebraic entry.
29536 Only one formula in one buffer can be enabled at a time.  If you
29537 move to another area of the current buffer and give Calc commands,
29538 Calc turns Embedded mode off for the old formula and then tries
29539 to restart Embedded mode at the new position.  Other buffers are
29540 not affected by Embedded mode.
29542 When Embedded mode begins, Calc pushes the current formula onto
29543 the stack.  No Calc stack window is created; however, Calc copies
29544 the top-of-stack position into the original buffer at all times.
29545 You can create a Calc window by hand with @kbd{M-# o} if you
29546 find you need to see the entire stack.
29548 For example, typing @kbd{M-# e} while somewhere in the formula
29549 @samp{n>2} in the following line enables Embedded mode on that
29550 inequality:
29552 @example
29553 We define $F_n = F_(n-1)+F_(n-2)$ for all $n>2$.
29554 @end example
29556 @noindent
29557 The formula @cite{n>2} will be pushed onto the Calc stack, and
29558 the top of stack will be copied back into the editing buffer.
29559 This means that spaces will appear around the @samp{>} symbol
29560 to match Calc's usual display style:
29562 @example
29563 We define $F_n = F_(n-1)+F_(n-2)$ for all $n > 2$.
29564 @end example
29566 @noindent
29567 No spaces have appeared around the @samp{+} sign because it's
29568 in a different formula, one which we have not yet touched with
29569 Embedded mode.
29571 Now that Embedded mode is enabled, keys you type in this buffer
29572 are interpreted as Calc commands.  At this point we might use
29573 the ``commute'' command @kbd{j C} to reverse the inequality.
29574 This is a selection-based command for which we first need to
29575 move the cursor onto the operator (@samp{>} in this case) that
29576 needs to be commuted.
29578 @example
29579 We define $F_n = F_(n-1)+F_(n-2)$ for all $2 < n$.
29580 @end example
29582 The @kbd{M-# o} command is a useful way to open a Calc window
29583 without actually selecting that window.  Giving this command
29584 verifies that @samp{2 < n} is also on the Calc stack.  Typing
29585 @kbd{17 @key{RET}} would produce:
29587 @example
29588 We define $F_n = F_(n-1)+F_(n-2)$ for all $17$.
29589 @end example
29591 @noindent
29592 with @samp{2 < n} and @samp{17} on the stack; typing @key{TAB}
29593 at this point will exchange the two stack values and restore
29594 @samp{2 < n} to the embedded formula.  Even though you can't
29595 normally see the stack in Embedded mode, it is still there and
29596 it still operates in the same way.  But, as with old-fashioned
29597 RPN calculators, you can only see the value at the top of the
29598 stack at any given time (unless you use @kbd{M-# o}).
29600 Typing @kbd{M-# e} again turns Embedded mode off.  The Calc
29601 window reveals that the formula @w{@samp{2 < n}} is automatically
29602 removed from the stack, but the @samp{17} is not.  Entering
29603 Embedded mode always pushes one thing onto the stack, and
29604 leaving Embedded mode always removes one thing.  Anything else
29605 that happens on the stack is entirely your business as far as
29606 Embedded mode is concerned.
29608 If you press @kbd{M-# e} in the wrong place by accident, it is
29609 possible that Calc will be able to parse the nearby text as a
29610 formula and will mangle that text in an attempt to redisplay it
29611 ``properly'' in the current language mode.  If this happens,
29612 press @kbd{M-# e} again to exit Embedded mode, then give the
29613 regular Emacs ``undo'' command (@kbd{C-_} or @kbd{C-x u}) to put
29614 the text back the way it was before Calc edited it.  Note that Calc's
29615 own Undo command (typed before you turn Embedded mode back off)
29616 will not do you any good, because as far as Calc is concerned
29617 you haven't done anything with this formula yet.
29619 @node More About Embedded Mode, Assignments in Embedded Mode, Basic Embedded Mode, Embedded Mode
29620 @section More About Embedded Mode
29622 @noindent
29623 When Embedded mode ``activates'' a formula, i.e., when it examines
29624 the formula for the first time since the buffer was created or
29625 loaded, Calc tries to sense the language in which the formula was
29626 written.  If the formula contains any @TeX{}-like @samp{\} sequences,
29627 it is parsed (i.e., read) in @TeX{} mode.  If the formula appears to
29628 be written in multi-line Big mode, it is parsed in Big mode.  Otherwise,
29629 it is parsed according to the current language mode.
29631 Note that Calc does not change the current language mode according
29632 to what it finds.  Even though it can read a @TeX{} formula when
29633 not in @TeX{} mode, it will immediately rewrite this formula using
29634 whatever language mode is in effect.  You must then type @kbd{d T}
29635 to switch Calc permanently into @TeX{} mode if that is what you
29636 desire.
29638 @tex
29639 \bigskip
29640 @end tex
29642 @kindex d p
29643 @pindex calc-show-plain
29644 Calc's parser is unable to read certain kinds of formulas.  For
29645 example, with @kbd{v ]} (@code{calc-matrix-brackets}) you can
29646 specify matrix display styles which the parser is unable to
29647 recognize as matrices.  The @kbd{d p} (@code{calc-show-plain})
29648 command turns on a mode in which a ``plain'' version of a
29649 formula is placed in front of the fully-formatted version.
29650 When Calc reads a formula that has such a plain version in
29651 front, it reads the plain version and ignores the formatted
29652 version.
29654 Plain formulas are preceded and followed by @samp{%%%} signs
29655 by default.  This notation has the advantage that the @samp{%}
29656 character begins a comment in @TeX{}, so if your formula is
29657 embedded in a @TeX{} document its plain version will be
29658 invisible in the final printed copy.  @xref{Customizing
29659 Embedded Mode}, to see how to change the ``plain'' formula
29660 delimiters, say to something that @dfn{eqn} or some other
29661 formatter will treat as a comment.
29663 There are several notations which Calc's parser for ``big''
29664 formatted formulas can't yet recognize.  In particular, it can't
29665 read the large symbols for @code{sum}, @code{prod}, and @code{integ},
29666 and it can't handle @samp{=>} with the righthand argument omitted.
29667 Also, Calc won't recognize special formats you have defined with
29668 the @kbd{Z C} command (@pxref{User-Defined Compositions}).  In
29669 these cases it is important to use ``plain'' mode to make sure
29670 Calc will be able to read your formula later.
29672 Another example where ``plain'' mode is important is if you have
29673 specified a float mode with few digits of precision.  Normally
29674 any digits that are computed but not displayed will simply be
29675 lost when you save and re-load your embedded buffer, but ``plain''
29676 mode allows you to make sure that the complete number is present
29677 in the file as well as the rounded-down number.
29679 @tex
29680 \bigskip
29681 @end tex
29683 Embedded buffers remember active formulas for as long as they
29684 exist in Emacs memory.  Suppose you have an embedded formula
29685 which is @c{$\pi$}
29686 @cite{pi} to the normal 12 decimal places, and then
29687 type @w{@kbd{C-u 5 d n}} to display only five decimal places.
29688 If you then type @kbd{d n}, all 12 places reappear because the
29689 full number is still there on the Calc stack.  More surprisingly,
29690 even if you exit Embedded mode and later re-enter it for that
29691 formula, typing @kbd{d n} will restore all 12 places because
29692 each buffer remembers all its active formulas.  However, if you
29693 save the buffer in a file and reload it in a new Emacs session,
29694 all non-displayed digits will have been lost unless you used
29695 ``plain'' mode.
29697 @tex
29698 \bigskip
29699 @end tex
29701 In some applications of Embedded mode, you will want to have a
29702 sequence of copies of a formula that show its evolution as you
29703 work on it.  For example, you might want to have a sequence
29704 like this in your file (elaborating here on the example from
29705 the ``Getting Started'' chapter):
29707 @smallexample
29708 The derivative of
29710                               ln(ln(x))
29714                   @r{(the derivative of }ln(ln(x))@r{)}
29716 whose value at x = 2 is
29718                             @r{(the value)}
29720 and at x = 3 is
29722                             @r{(the value)}
29723 @end smallexample
29725 @kindex M-# d
29726 @pindex calc-embedded-duplicate
29727 The @kbd{M-# d} (@code{calc-embedded-duplicate}) command is a
29728 handy way to make sequences like this.  If you type @kbd{M-# d},
29729 the formula under the cursor (which may or may not have Embedded
29730 mode enabled for it at the time) is copied immediately below and
29731 Embedded mode is then enabled for that copy.
29733 For this example, you would start with just
29735 @smallexample
29736 The derivative of
29738                               ln(ln(x))
29739 @end smallexample
29741 @noindent
29742 and press @kbd{M-# d} with the cursor on this formula.  The result
29745 @smallexample
29746 The derivative of
29748                               ln(ln(x))
29751                               ln(ln(x))
29752 @end smallexample
29754 @noindent
29755 with the second copy of the formula enabled in Embedded mode.
29756 You can now press @kbd{a d x @key{RET}} to take the derivative, and
29757 @kbd{M-# d M-# d} to make two more copies of the derivative.
29758 To complete the computations, type @kbd{3 s l x @key{RET}} to evaluate
29759 the last formula, then move up to the second-to-last formula
29760 and type @kbd{2 s l x @key{RET}}.
29762 Finally, you would want to press @kbd{M-# e} to exit Embedded
29763 mode, then go up and insert the necessary text in between the
29764 various formulas and numbers.
29766 @tex
29767 \bigskip
29768 @end tex
29770 @kindex M-# f
29771 @kindex M-# '
29772 @pindex calc-embedded-new-formula
29773 The @kbd{M-# f} (@code{calc-embedded-new-formula}) command
29774 creates a new embedded formula at the current point.  It inserts
29775 some default delimiters, which are usually just blank lines,
29776 and then does an algebraic entry to get the formula (which is
29777 then enabled for Embedded mode).  This is just shorthand for
29778 typing the delimiters yourself, positioning the cursor between
29779 the new delimiters, and pressing @kbd{M-# e}.  The key sequence
29780 @kbd{M-# '} is equivalent to @kbd{M-# f}.
29782 @kindex M-# n
29783 @kindex M-# p
29784 @pindex calc-embedded-next
29785 @pindex calc-embedded-previous
29786 The @kbd{M-# n} (@code{calc-embedded-next}) and @kbd{M-# p}
29787 (@code{calc-embedded-previous}) commands move the cursor to the
29788 next or previous active embedded formula in the buffer.  They
29789 can take positive or negative prefix arguments to move by several
29790 formulas.  Note that these commands do not actually examine the
29791 text of the buffer looking for formulas; they only see formulas
29792 which have previously been activated in Embedded mode.  In fact,
29793 @kbd{M-# n} and @kbd{M-# p} are a useful way to tell which
29794 embedded formulas are currently active.  Also, note that these
29795 commands do not enable Embedded mode on the next or previous
29796 formula, they just move the cursor.  (By the way, @kbd{M-# n} is
29797 not as awkward to type as it may seem, because @kbd{M-#} ignores
29798 Shift and Meta on the second keystroke:  @kbd{M-# M-N} can be typed
29799 by holding down Shift and Meta and alternately typing two keys.)
29801 @kindex M-# `
29802 @pindex calc-embedded-edit
29803 The @kbd{M-# `} (@code{calc-embedded-edit}) command edits the
29804 embedded formula at the current point as if by @kbd{`} (@code{calc-edit}).
29805 Embedded mode does not have to be enabled for this to work.  Press
29806 @kbd{M-# M-#} to finish the edit, or @kbd{M-# x} to cancel.
29808 @node Assignments in Embedded Mode, Mode Settings in Embedded Mode, More About Embedded Mode, Embedded Mode
29809 @section Assignments in Embedded Mode
29811 @noindent
29812 The @samp{:=} (assignment) and @samp{=>} (``evaluates-to'') operators
29813 are especially useful in Embedded mode.  They allow you to make
29814 a definition in one formula, then refer to that definition in
29815 other formulas embedded in the same buffer.
29817 An embedded formula which is an assignment to a variable, as in
29819 @example
29820 foo := 5
29821 @end example
29823 @noindent
29824 records @cite{5} as the stored value of @code{foo} for the
29825 purposes of Embedded mode operations in the current buffer.  It
29826 does @emph{not} actually store @cite{5} as the ``global'' value
29827 of @code{foo}, however.  Regular Calc operations, and Embedded
29828 formulas in other buffers, will not see this assignment.
29830 One way to use this assigned value is simply to create an
29831 Embedded formula elsewhere that refers to @code{foo}, and to press
29832 @kbd{=} in that formula.  However, this permanently replaces the
29833 @code{foo} in the formula with its current value.  More interesting
29834 is to use @samp{=>} elsewhere:
29836 @example
29837 foo + 7 => 12
29838 @end example
29840 @xref{Evaluates-To Operator}, for a general discussion of @samp{=>}.
29842 If you move back and change the assignment to @code{foo}, any
29843 @samp{=>} formulas which refer to it are automatically updated.
29845 @example
29846 foo := 17
29848 foo + 7 => 24
29849 @end example
29851 The obvious question then is, @emph{how} can one easily change the
29852 assignment to @code{foo}?  If you simply select the formula in
29853 Embedded mode and type 17, the assignment itself will be replaced
29854 by the 17.  The effect on the other formula will be that the
29855 variable @code{foo} becomes unassigned:
29857 @example
29860 foo + 7 => foo + 7
29861 @end example
29863 The right thing to do is first to use a selection command (@kbd{j 2}
29864 will do the trick) to select the righthand side of the assignment.
29865 Then, @kbd{17 @key{TAB} @key{DEL}} will swap the 17 into place (@pxref{Selecting
29866 Subformulas}, to see how this works).
29868 @kindex M-# j
29869 @pindex calc-embedded-select
29870 The @kbd{M-# j} (@code{calc-embedded-select}) command provides an
29871 easy way to operate on assignments.  It is just like @kbd{M-# e},
29872 except that if the enabled formula is an assignment, it uses
29873 @kbd{j 2} to select the righthand side.  If the enabled formula
29874 is an evaluates-to, it uses @kbd{j 1} to select the lefthand side.
29875 A formula can also be a combination of both:
29877 @example
29878 bar := foo + 3 => 20
29879 @end example
29881 @noindent
29882 in which case @kbd{M-# j} will select the middle part (@samp{foo + 3}).
29884 The formula is automatically deselected when you leave Embedded
29885 mode.
29887 @kindex M-# u
29888 @kindex M-# =
29889 @pindex calc-embedded-update
29890 Another way to change the assignment to @code{foo} would simply be
29891 to edit the number using regular Emacs editing rather than Embedded
29892 mode.  Then, we have to find a way to get Embedded mode to notice
29893 the change.  The @kbd{M-# u} or @kbd{M-# =}
29894 (@code{calc-embedded-update-formula}) command is a convenient way
29895 to do this.@refill
29897 @example
29898 foo := 6
29900 foo + 7 => 13
29901 @end example
29903 Pressing @kbd{M-# u} is much like pressing @kbd{M-# e = M-# e}, that
29904 is, temporarily enabling Embedded mode for the formula under the
29905 cursor and then evaluating it with @kbd{=}.  But @kbd{M-# u} does
29906 not actually use @kbd{M-# e}, and in fact another formula somewhere
29907 else can be enabled in Embedded mode while you use @kbd{M-# u} and
29908 that formula will not be disturbed.
29910 With a numeric prefix argument, @kbd{M-# u} updates all active
29911 @samp{=>} formulas in the buffer.  Formulas which have not yet
29912 been activated in Embedded mode, and formulas which do not have
29913 @samp{=>} as their top-level operator, are not affected by this.
29914 (This is useful only if you have used @kbd{m C}; see below.)
29916 With a plain @kbd{C-u} prefix, @kbd{C-u M-# u} updates only in the
29917 region between mark and point rather than in the whole buffer.
29919 @kbd{M-# u} is also a handy way to activate a formula, such as an
29920 @samp{=>} formula that has freshly been typed in or loaded from a
29921 file.
29923 @kindex M-# a
29924 @pindex calc-embedded-activate
29925 The @kbd{M-# a} (@code{calc-embedded-activate}) command scans
29926 through the current buffer and activates all embedded formulas
29927 that contain @samp{:=} or @samp{=>} symbols.  This does not mean
29928 that Embedded mode is actually turned on, but only that the
29929 formulas' positions are registered with Embedded mode so that
29930 the @samp{=>} values can be properly updated as assignments are
29931 changed.
29933 It is a good idea to type @kbd{M-# a} right after loading a file
29934 that uses embedded @samp{=>} operators.  Emacs includes a nifty
29935 ``buffer-local variables'' feature that you can use to do this
29936 automatically.  The idea is to place near the end of your file
29937 a few lines that look like this:
29939 @example
29940 --- Local Variables: ---
29941 --- eval:(calc-embedded-activate) ---
29942 --- End: ---
29943 @end example
29945 @noindent
29946 where the leading and trailing @samp{---} can be replaced by
29947 any suitable strings (which must be the same on all three lines)
29948 or omitted altogether; in a @TeX{} file, @samp{%} would be a good
29949 leading string and no trailing string would be necessary.  In a
29950 C program, @samp{/*} and @samp{*/} would be good leading and
29951 trailing strings.
29953 When Emacs loads a file into memory, it checks for a Local Variables
29954 section like this one at the end of the file.  If it finds this
29955 section, it does the specified things (in this case, running
29956 @kbd{M-# a} automatically) before editing of the file begins.
29957 The Local Variables section must be within 3000 characters of the
29958 end of the file for Emacs to find it, and it must be in the last
29959 page of the file if the file has any page separators.
29960 @xref{File Variables, , Local Variables in Files, emacs, the
29961 Emacs manual}.
29963 Note that @kbd{M-# a} does not update the formulas it finds.
29964 To do this, type, say, @kbd{M-1 M-# u} after @w{@kbd{M-# a}}.
29965 Generally this should not be a problem, though, because the
29966 formulas will have been up-to-date already when the file was
29967 saved.
29969 Normally, @kbd{M-# a} activates all the formulas it finds, but
29970 any previous active formulas remain active as well.  With a
29971 positive numeric prefix argument, @kbd{M-# a} first deactivates
29972 all current active formulas, then actives the ones it finds in
29973 its scan of the buffer.  With a negative prefix argument,
29974 @kbd{M-# a} simply deactivates all formulas.
29976 Embedded mode has two symbols, @samp{Active} and @samp{~Active},
29977 which it puts next to the major mode name in a buffer's mode line.
29978 It puts @samp{Active} if it has reason to believe that all
29979 formulas in the buffer are active, because you have typed @kbd{M-# a}
29980 and Calc has not since had to deactivate any formulas (which can
29981 happen if Calc goes to update an @samp{=>} formula somewhere because
29982 a variable changed, and finds that the formula is no longer there
29983 due to some kind of editing outside of Embedded mode).  Calc puts
29984 @samp{~Active} in the mode line if some, but probably not all,
29985 formulas in the buffer are active.  This happens if you activate
29986 a few formulas one at a time but never use @kbd{M-# a}, or if you
29987 used @kbd{M-# a} but then Calc had to deactivate a formula
29988 because it lost track of it.  If neither of these symbols appears
29989 in the mode line, no embedded formulas are active in the buffer
29990 (e.g., before Embedded mode has been used, or after a @kbd{M-- M-# a}).
29992 Embedded formulas can refer to assignments both before and after them
29993 in the buffer.  If there are several assignments to a variable, the
29994 nearest preceding assignment is used if there is one, otherwise the
29995 following assignment is used.
29997 @example
29998 x => 1
30000 x := 1
30002 x => 1
30004 x := 2
30006 x => 2
30007 @end example
30009 As well as simple variables, you can also assign to subscript
30010 expressions of the form @samp{@var{var}_@var{number}} (as in
30011 @code{x_0}), or @samp{@var{var}_@var{var}} (as in @code{x_max}).
30012 Assignments to other kinds of objects can be represented by Calc,
30013 but the automatic linkage between assignments and references works
30014 only for plain variables and these two kinds of subscript expressions.
30016 If there are no assignments to a given variable, the global
30017 stored value for the variable is used (@pxref{Storing Variables}),
30018 or, if no value is stored, the variable is left in symbolic form.
30019 Note that global stored values will be lost when the file is saved
30020 and loaded in a later Emacs session, unless you have used the
30021 @kbd{s p} (@code{calc-permanent-variable}) command to save them;
30022 @pxref{Operations on Variables}.
30024 The @kbd{m C} (@code{calc-auto-recompute}) command turns automatic
30025 recomputation of @samp{=>} forms on and off.  If you turn automatic
30026 recomputation off, you will have to use @kbd{M-# u} to update these
30027 formulas manually after an assignment has been changed.  If you
30028 plan to change several assignments at once, it may be more efficient
30029 to type @kbd{m C}, change all the assignments, then use @kbd{M-1 M-# u}
30030 to update the entire buffer afterwards.  The @kbd{m C} command also
30031 controls @samp{=>} formulas on the stack; @pxref{Evaluates-To
30032 Operator}.  When you turn automatic recomputation back on, the
30033 stack will be updated but the Embedded buffer will not; you must
30034 use @kbd{M-# u} to update the buffer by hand.
30036 @node Mode Settings in Embedded Mode, Customizing Embedded Mode, Assignments in Embedded Mode, Embedded Mode
30037 @section Mode Settings in Embedded Mode
30039 @noindent
30040 Embedded Mode has a rather complicated mechanism for handling mode
30041 settings in Embedded formulas.  It is possible to put annotations
30042 in the file that specify mode settings either global to the entire
30043 file or local to a particular formula or formulas.  In the latter
30044 case, different modes can be specified for use when a formula
30045 is the enabled Embedded Mode formula.
30047 When you give any mode-setting command, like @kbd{m f} (for fraction
30048 mode) or @kbd{d s} (for scientific notation), Embedded Mode adds
30049 a line like the following one to the file just before the opening
30050 delimiter of the formula.
30052 @example
30053 % [calc-mode: fractions: t]
30054 % [calc-mode: float-format: (sci 0)]
30055 @end example
30057 When Calc interprets an embedded formula, it scans the text before
30058 the formula for mode-setting annotations like these and sets the
30059 Calc buffer to match these modes.  Modes not explicitly described
30060 in the file are not changed.  Calc scans all the way to the top of
30061 the file, or up to a line of the form
30063 @example
30064 % [calc-defaults]
30065 @end example
30067 @noindent
30068 which you can insert at strategic places in the file if this backward
30069 scan is getting too slow, or just to provide a barrier between one
30070 ``zone'' of mode settings and another.
30072 If the file contains several annotations for the same mode, the
30073 closest one before the formula is used.  Annotations after the
30074 formula are never used (except for global annotations, described
30075 below).
30077 The scan does not look for the leading @samp{% }, only for the
30078 square brackets and the text they enclose.  You can edit the mode
30079 annotations to a style that works better in context if you wish.
30080 @xref{Customizing Embedded Mode}, to see how to change the style
30081 that Calc uses when it generates the annotations.  You can write
30082 mode annotations into the file yourself if you know the syntax;
30083 the easiest way to find the syntax for a given mode is to let
30084 Calc write the annotation for it once and see what it does.
30086 If you give a mode-changing command for a mode that already has
30087 a suitable annotation just above the current formula, Calc will
30088 modify that annotation rather than generating a new, conflicting
30089 one.
30091 Mode annotations have three parts, separated by colons.  (Spaces
30092 after the colons are optional.)  The first identifies the kind
30093 of mode setting, the second is a name for the mode itself, and
30094 the third is the value in the form of a Lisp symbol, number,
30095 or list.  Annotations with unrecognizable text in the first or
30096 second parts are ignored.  The third part is not checked to make
30097 sure the value is of a legal type or range; if you write an
30098 annotation by hand, be sure to give a proper value or results
30099 will be unpredictable.  Mode-setting annotations are case-sensitive.
30101 While Embedded Mode is enabled, the word @code{Local} appears in
30102 the mode line.  This is to show that mode setting commands generate
30103 annotations that are ``local'' to the current formula or set of
30104 formulas.  The @kbd{m R} (@code{calc-mode-record-mode}) command
30105 causes Calc to generate different kinds of annotations.  Pressing
30106 @kbd{m R} repeatedly cycles through the possible modes.
30108 @code{LocEdit} and @code{LocPerm} modes generate annotations
30109 that look like this, respectively:
30111 @example
30112 % [calc-edit-mode: float-format: (sci 0)]
30113 % [calc-perm-mode: float-format: (sci 5)]
30114 @end example
30116 The first kind of annotation will be used only while a formula
30117 is enabled in Embedded Mode.  The second kind will be used only
30118 when the formula is @emph{not} enabled.  (Whether the formula
30119 is ``active'' or not, i.e., whether Calc has seen this formula
30120 yet, is not relevant here.)
30122 @code{Global} mode generates an annotation like this at the end
30123 of the file:
30125 @example
30126 % [calc-global-mode: fractions t]
30127 @end example
30129 Global mode annotations affect all formulas throughout the file,
30130 and may appear anywhere in the file.  This allows you to tuck your
30131 mode annotations somewhere out of the way, say, on a new page of
30132 the file, as long as those mode settings are suitable for all
30133 formulas in the file.
30135 Enabling a formula with @kbd{M-# e} causes a fresh scan for local
30136 mode annotations; you will have to use this after adding annotations
30137 above a formula by hand to get the formula to notice them.  Updating
30138 a formula with @kbd{M-# u} will also re-scan the local modes, but
30139 global modes are only re-scanned by @kbd{M-# a}.
30141 Another way that modes can get out of date is if you add a local
30142 mode annotation to a formula that has another formula after it.
30143 In this example, we have used the @kbd{d s} command while the
30144 first of the two embedded formulas is active.  But the second
30145 formula has not changed its style to match, even though by the
30146 rules of reading annotations the @samp{(sci 0)} applies to it, too.
30148 @example
30149 % [calc-mode: float-format: (sci 0)]
30150 1.23e2
30152 456.
30153 @end example
30155 We would have to go down to the other formula and press @kbd{M-# u}
30156 on it in order to get it to notice the new annotation.
30158 Two more mode-recording modes selectable by @kbd{m R} are @code{Save}
30159 (which works even outside of Embedded Mode), in which mode settings
30160 are recorded permanently in your Emacs startup file @file{~/.emacs}
30161 rather than by annotating the current document, and no-recording
30162 mode (where there is no symbol like @code{Save} or @code{Local} in
30163 the mode line), in which mode-changing commands do not leave any
30164 annotations at all.
30166 When Embedded Mode is not enabled, mode-recording modes except
30167 for @code{Save} have no effect.
30169 @node Customizing Embedded Mode, , Mode Settings in Embedded Mode, Embedded Mode
30170 @section Customizing Embedded Mode
30172 @noindent
30173 You can modify Embedded Mode's behavior by setting various Lisp
30174 variables described here.  Use @kbd{M-x set-variable} or
30175 @kbd{M-x edit-options} to adjust a variable on the fly, or
30176 put a suitable @code{setq} statement in your @file{~/.emacs}
30177 file to set a variable permanently.  (Another possibility would
30178 be to use a file-local variable annotation at the end of the
30179 file; @pxref{File Variables, , Local Variables in Files, emacs, the
30180 Emacs manual}.)
30182 While none of these variables will be buffer-local by default, you
30183 can make any of them local to any embedded-mode buffer.  (Their
30184 values in the @samp{*Calculator*} buffer are never used.)
30186 @vindex calc-embedded-open-formula
30187 The @code{calc-embedded-open-formula} variable holds a regular
30188 expression for the opening delimiter of a formula.  @xref{Regexp Search,
30189 , Regular Expression Search, emacs, the Emacs manual}, to see
30190 how regular expressions work.  Basically, a regular expression is a
30191 pattern that Calc can search for.  A regular expression that considers
30192 blank lines, @samp{$}, and @samp{$$} to be opening delimiters is
30193 @code{"\\`\\|^\n\\|\\$\\$?"}.  Just in case the meaning of this
30194 regular expression is not completely plain, let's go through it
30195 in detail.
30197 The surrounding @samp{" "} marks quote the text between them as a
30198 Lisp string.  If you left them off, @code{set-variable} or
30199 @code{edit-options} would try to read the regular expression as a
30200 Lisp program.
30202 The most obvious property of this regular expression is that it
30203 contains indecently many backslashes.  There are actually two levels
30204 of backslash usage going on here.  First, when Lisp reads a quoted
30205 string, all pairs of characters beginning with a backslash are
30206 interpreted as special characters.  Here, @code{\n} changes to a
30207 new-line character, and @code{\\} changes to a single backslash.
30208 So the actual regular expression seen by Calc is
30209 @samp{\`\|^ @r{(newline)} \|\$\$?}.
30211 Regular expressions also consider pairs beginning with backslash
30212 to have special meanings.  Sometimes the backslash is used to quote
30213 a character that otherwise would have a special meaning in a regular
30214 expression, like @samp{$}, which normally means ``end-of-line,''
30215 or @samp{?}, which means that the preceding item is optional.  So
30216 @samp{\$\$?} matches either one or two dollar signs.
30218 The other codes in this regular expression are @samp{^}, which matches
30219 ``beginning-of-line,'' @samp{\|}, which means ``or,'' and @samp{\`},
30220 which matches ``beginning-of-buffer.''  So the whole pattern means
30221 that a formula begins at the beginning of the buffer, or on a newline
30222 that occurs at the beginning of a line (i.e., a blank line), or at
30223 one or two dollar signs.
30225 The default value of @code{calc-embedded-open-formula} looks just
30226 like this example, with several more alternatives added on to
30227 recognize various other common kinds of delimiters.
30229 By the way, the reason to use @samp{^\n} rather than @samp{^$}
30230 or @samp{\n\n}, which also would appear to match blank lines,
30231 is that the former expression actually ``consumes'' only one
30232 newline character as @emph{part of} the delimiter, whereas the
30233 latter expressions consume zero or two newlines, respectively.
30234 The former choice gives the most natural behavior when Calc
30235 must operate on a whole formula including its delimiters.
30237 See the Emacs manual for complete details on regular expressions.
30238 But just for your convenience, here is a list of all characters
30239 which must be quoted with backslash (like @samp{\$}) to avoid
30240 some special interpretation:  @samp{. * + ? [ ] ^ $ \}.  (Note
30241 the backslash in this list; for example, to match @samp{\[} you
30242 must use @code{"\\\\\\["}.  An exercise for the reader is to
30243 account for each of these six backslashes!)
30245 @vindex calc-embedded-close-formula
30246 The @code{calc-embedded-close-formula} variable holds a regular
30247 expression for the closing delimiter of a formula.  A closing
30248 regular expression to match the above example would be
30249 @code{"\\'\\|\n$\\|\\$\\$?"}.  This is almost the same as the
30250 other one, except it now uses @samp{\'} (``end-of-buffer'') and
30251 @samp{\n$} (newline occurring at end of line, yet another way
30252 of describing a blank line that is more appropriate for this
30253 case).
30255 @vindex calc-embedded-open-word
30256 @vindex calc-embedded-close-word
30257 The @code{calc-embedded-open-word} and @code{calc-embedded-close-word}
30258 variables are similar expressions used when you type @kbd{M-# w}
30259 instead of @kbd{M-# e} to enable Embedded mode.
30261 @vindex calc-embedded-open-plain
30262 The @code{calc-embedded-open-plain} variable is a string which
30263 begins a ``plain'' formula written in front of the formatted
30264 formula when @kbd{d p} mode is turned on.  Note that this is an
30265 actual string, not a regular expression, because Calc must be able
30266 to write this string into a buffer as well as to recognize it.
30267 The default string is @code{"%%% "} (note the trailing space).
30269 @vindex calc-embedded-close-plain
30270 The @code{calc-embedded-close-plain} variable is a string which
30271 ends a ``plain'' formula.  The default is @code{" %%%\n"}.  Without
30272 the trailing newline here, the first line of a ``big'' mode formula
30273 that followed might be shifted over with respect to the other lines.
30275 @vindex calc-embedded-open-new-formula
30276 The @code{calc-embedded-open-new-formula} variable is a string
30277 which is inserted at the front of a new formula when you type
30278 @kbd{M-# f}.  Its default value is @code{"\n\n"}.  If this
30279 string begins with a newline character and the @kbd{M-# f} is
30280 typed at the beginning of a line, @kbd{M-# f} will skip this
30281 first newline to avoid introducing unnecessary blank lines in
30282 the file.
30284 @vindex calc-embedded-close-new-formula
30285 The @code{calc-embedded-close-new-formula} variable is the corresponding
30286 string which is inserted at the end of a new formula.  Its default
30287 value is also @code{"\n\n"}.  The final newline is omitted by
30288 @w{@kbd{M-# f}} if typed at the end of a line.  (It follows that if
30289 @kbd{M-# f} is typed on a blank line, both a leading opening
30290 newline and a trailing closing newline are omitted.)
30292 @vindex calc-embedded-announce-formula
30293 The @code{calc-embedded-announce-formula} variable is a regular
30294 expression which is sure to be followed by an embedded formula.
30295 The @kbd{M-# a} command searches for this pattern as well as for
30296 @samp{=>} and @samp{:=} operators.  Note that @kbd{M-# a} will
30297 not activate just anything surrounded by formula delimiters; after
30298 all, blank lines are considered formula delimiters by default!
30299 But if your language includes a delimiter which can only occur
30300 actually in front of a formula, you can take advantage of it here.
30301 The default pattern is @code{"%Embed\n\\(% .*\n\\)*"}, which
30302 checks for @samp{%Embed} followed by any number of lines beginning
30303 with @samp{%} and a space.  This last is important to make Calc
30304 consider mode annotations part of the pattern, so that the formula's
30305 opening delimiter really is sure to follow the pattern.
30307 @vindex calc-embedded-open-mode
30308 The @code{calc-embedded-open-mode} variable is a string (not a
30309 regular expression) which should precede a mode annotation.
30310 Calc never scans for this string; Calc always looks for the
30311 annotation itself.  But this is the string that is inserted before
30312 the opening bracket when Calc adds an annotation on its own.
30313 The default is @code{"% "}.
30315 @vindex calc-embedded-close-mode
30316 The @code{calc-embedded-close-mode} variable is a string which
30317 follows a mode annotation written by Calc.  Its default value
30318 is simply a newline, @code{"\n"}.  If you change this, it is a
30319 good idea still to end with a newline so that mode annotations
30320 will appear on lines by themselves.
30322 @node Programming, Installation, Embedded Mode, Top
30323 @chapter Programming
30325 @noindent
30326 There are several ways to ``program'' the Emacs Calculator, depending
30327 on the nature of the problem you need to solve.
30329 @enumerate
30330 @item
30331 @dfn{Keyboard macros} allow you to record a sequence of keystrokes
30332 and play them back at a later time.  This is just the standard Emacs
30333 keyboard macro mechanism, dressed up with a few more features such
30334 as loops and conditionals.
30336 @item
30337 @dfn{Algebraic definitions} allow you to use any formula to define a
30338 new function.  This function can then be used in algebraic formulas or
30339 as an interactive command.
30341 @item
30342 @dfn{Rewrite rules} are discussed in the section on algebra commands.
30343 @xref{Rewrite Rules}.  If you put your rewrite rules in the variable
30344 @code{EvalRules}, they will be applied automatically to all Calc
30345 results in just the same way as an internal ``rule'' is applied to
30346 evaluate @samp{sqrt(9)} to 3 and so on.  @xref{Automatic Rewrites}.
30348 @item
30349 @dfn{Lisp} is the programming language that Calc (and most of Emacs)
30350 is written in.  If the above techniques aren't powerful enough, you
30351 can write Lisp functions to do anything that built-in Calc commands
30352 can do.  Lisp code is also somewhat faster than keyboard macros or
30353 rewrite rules.
30354 @end enumerate
30356 @kindex z
30357 Programming features are available through the @kbd{z} and @kbd{Z}
30358 prefix keys.  New commands that you define are two-key sequences
30359 beginning with @kbd{z}.  Commands for managing these definitions
30360 use the shift-@kbd{Z} prefix.  (The @kbd{Z T} (@code{calc-timing})
30361 command is described elsewhere; @pxref{Troubleshooting Commands}.
30362 The @kbd{Z C} (@code{calc-user-define-composition}) command is also
30363 described elsewhere; @pxref{User-Defined Compositions}.)
30365 @menu
30366 * Creating User Keys::
30367 * Keyboard Macros::
30368 * Invocation Macros::
30369 * Algebraic Definitions::
30370 * Lisp Definitions::
30371 @end menu
30373 @node Creating User Keys, Keyboard Macros, Programming, Programming
30374 @section Creating User Keys
30376 @noindent
30377 @kindex Z D
30378 @pindex calc-user-define
30379 Any Calculator command may be bound to a key using the @kbd{Z D}
30380 (@code{calc-user-define}) command.  Actually, it is bound to a two-key
30381 sequence beginning with the lower-case @kbd{z} prefix.
30383 The @kbd{Z D} command first prompts for the key to define.  For example,
30384 press @kbd{Z D a} to define the new key sequence @kbd{z a}.  You are then
30385 prompted for the name of the Calculator command that this key should
30386 run.  For example, the @code{calc-sincos} command is not normally
30387 available on a key.  Typing @kbd{Z D s sincos @key{RET}} programs the
30388 @kbd{z s} key sequence to run @code{calc-sincos}.  This definition will remain
30389 in effect for the rest of this Emacs session, or until you redefine
30390 @kbd{z s} to be something else.
30392 You can actually bind any Emacs command to a @kbd{z} key sequence by
30393 backspacing over the @samp{calc-} when you are prompted for the command name.
30395 As with any other prefix key, you can type @kbd{z ?} to see a list of
30396 all the two-key sequences you have defined that start with @kbd{z}.
30397 Initially, no @kbd{z} sequences (except @kbd{z ?} itself) are defined.
30399 User keys are typically letters, but may in fact be any key.
30400 (@key{META}-keys are not permitted, nor are a terminal's special
30401 function keys which generate multi-character sequences when pressed.)
30402 You can define different commands on the shifted and unshifted versions
30403 of a letter if you wish.
30405 @kindex Z U
30406 @pindex calc-user-undefine
30407 The @kbd{Z U} (@code{calc-user-undefine}) command unbinds a user key.
30408 For example, the key sequence @kbd{Z U s} will undefine the @code{sincos}
30409 key we defined above.
30411 @kindex Z P
30412 @pindex calc-user-define-permanent
30413 @cindex Storing user definitions
30414 @cindex Permanent user definitions
30415 @cindex @file{.emacs} file, user-defined commands
30416 The @kbd{Z P} (@code{calc-user-define-permanent}) command makes a key
30417 binding permanent so that it will remain in effect even in future Emacs
30418 sessions.  (It does this by adding a suitable bit of Lisp code into
30419 your @file{.emacs} file.)  For example, @kbd{Z P s} would register
30420 our @code{sincos} command permanently.  If you later wish to unregister
30421 this command you must edit your @file{.emacs} file by hand.
30422 (@xref{General Mode Commands}, for a way to tell Calc to use a
30423 different file instead of @file{.emacs}.)
30425 The @kbd{Z P} command also saves the user definition, if any, for the
30426 command bound to the key.  After @kbd{Z F} and @kbd{Z C}, a given user
30427 key could invoke a command, which in turn calls an algebraic function,
30428 which might have one or more special display formats.  A single @kbd{Z P}
30429 command will save all of these definitions.
30431 To save a command or function without its key binding (or if there is
30432 no key binding for the command or function), type @kbd{'} (the apostrophe)
30433 when prompted for a key.  Then, type the function name, or backspace
30434 to change the @samp{calcFunc-} prefix to @samp{calc-} and enter a
30435 command name.  (If the command you give implies a function, the function
30436 will be saved, and if the function has any display formats, those will
30437 be saved, but not the other way around:  Saving a function will not save
30438 any commands or key bindings associated with the function.)
30440 @kindex Z E
30441 @pindex calc-user-define-edit
30442 @cindex Editing user definitions
30443 The @kbd{Z E} (@code{calc-user-define-edit}) command edits the definition
30444 of a user key.  This works for keys that have been defined by either
30445 keyboard macros or formulas; further details are contained in the relevant
30446 following sections.
30448 @node Keyboard Macros, Invocation Macros, Creating User Keys, Programming
30449 @section Programming with Keyboard Macros
30451 @noindent
30452 @kindex X
30453 @cindex Programming with keyboard macros
30454 @cindex Keyboard macros
30455 The easiest way to ``program'' the Emacs Calculator is to use standard
30456 keyboard macros.  Press @w{@kbd{C-x (}} to begin recording a macro.  From
30457 this point on, keystrokes you type will be saved away as well as
30458 performing their usual functions.  Press @kbd{C-x )} to end recording.
30459 Press shift-@kbd{X} (or the standard Emacs key sequence @kbd{C-x e}) to
30460 execute your keyboard macro by replaying the recorded keystrokes.
30461 @xref{Keyboard Macros, , , emacs, the Emacs Manual}, for further
30462 information.@refill
30464 When you use @kbd{X} to invoke a keyboard macro, the entire macro is
30465 treated as a single command by the undo and trail features.  The stack
30466 display buffer is not updated during macro execution, but is instead
30467 fixed up once the macro completes.  Thus, commands defined with keyboard
30468 macros are convenient and efficient.  The @kbd{C-x e} command, on the
30469 other hand, invokes the keyboard macro with no special treatment: Each
30470 command in the macro will record its own undo information and trail entry,
30471 and update the stack buffer accordingly.  If your macro uses features
30472 outside of Calc's control to operate on the contents of the Calc stack
30473 buffer, or if it includes Undo, Redo, or last-arguments commands, you
30474 must use @kbd{C-x e} to make sure the buffer and undo list are up-to-date
30475 at all times.  You could also consider using @kbd{K} (@code{calc-keep-args})
30476 instead of @kbd{M-@key{RET}} (@code{calc-last-args}).
30478 Calc extends the standard Emacs keyboard macros in several ways.
30479 Keyboard macros can be used to create user-defined commands.  Keyboard
30480 macros can include conditional and iteration structures, somewhat
30481 analogous to those provided by a traditional programmable calculator.
30483 @menu
30484 * Naming Keyboard Macros::
30485 * Conditionals in Macros::
30486 * Loops in Macros::
30487 * Local Values in Macros::
30488 * Queries in Macros::
30489 @end menu
30491 @node Naming Keyboard Macros, Conditionals in Macros, Keyboard Macros, Keyboard Macros
30492 @subsection Naming Keyboard Macros
30494 @noindent
30495 @kindex Z K
30496 @pindex calc-user-define-kbd-macro
30497 Once you have defined a keyboard macro, you can bind it to a @kbd{z}
30498 key sequence with the @kbd{Z K} (@code{calc-user-define-kbd-macro}) command.
30499 This command prompts first for a key, then for a command name.  For
30500 example, if you type @kbd{C-x ( n @key{TAB} n @key{TAB} C-x )} you will
30501 define a keyboard macro which negates the top two numbers on the stack
30502 (@key{TAB} swaps the top two stack elements).  Now you can type
30503 @kbd{Z K n @key{RET}} to define this keyboard macro onto the @kbd{z n} key
30504 sequence.  The default command name (if you answer the second prompt with
30505 just the @key{RET} key as in this example) will be something like
30506 @samp{calc-User-n}.  The keyboard macro will now be available as both
30507 @kbd{z n} and @kbd{M-x calc-User-n}.  You can backspace and enter a more
30508 descriptive command name if you wish.@refill
30510 Macros defined by @kbd{Z K} act like single commands; they are executed
30511 in the same way as by the @kbd{X} key.  If you wish to define the macro
30512 as a standard no-frills Emacs macro (to be executed as if by @kbd{C-x e}),
30513 give a negative prefix argument to @kbd{Z K}.
30515 Once you have bound your keyboard macro to a key, you can use
30516 @kbd{Z P} to register it permanently with Emacs.  @xref{Creating User Keys}.
30518 @cindex Keyboard macros, editing
30519 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
30520 been defined by a keyboard macro tries to use the @code{edit-kbd-macro}
30521 command to edit the macro.  This command may be found in the
30522 @file{macedit} package, a copy of which comes with Calc.  It decomposes
30523 the macro definition into full Emacs command names, like @code{calc-pop}
30524 and @code{calc-add}.  Type @kbd{M-# M-#} to finish editing and update
30525 the definition stored on the key, or, to cancel the edit, type
30526 @kbd{M-# x}.@refill
30528 If you give a negative numeric prefix argument to @kbd{Z E}, the keyboard
30529 macro is edited in spelled-out keystroke form.  For example, the editing
30530 buffer might contain the nine characters @w{@samp{1 @key{RET} 2 +}}.  When you press
30531 @kbd{M-# M-#}, the @code{read-kbd-macro} feature of the @file{macedit}
30532 package is used to reinterpret these key names.  The
30533 notations @code{RET}, @code{LFD}, @code{TAB}, @code{SPC}, @code{DEL}, and
30534 @code{NUL} must be written in all uppercase, as must the prefixes @code{C-}
30535 and @code{M-}.  Spaces and line breaks are ignored.  Other characters are
30536 copied verbatim into the keyboard macro.  Basically, the notation is the
30537 same as is used in all of this manual's examples, except that the manual
30538 takes some liberties with spaces:  When we say @kbd{' [1 2 3] @key{RET}}, we take
30539 it for granted that it is clear we really mean @kbd{' [1 @key{SPC} 2 @key{SPC} 3] @key{RET}},
30540 which is what @code{read-kbd-macro} wants to see.@refill
30542 If @file{macedit} is not available, @kbd{Z E} edits the keyboard macro
30543 in ``raw'' form; the editing buffer simply contains characters like
30544 @samp{1^M2+} (here @samp{^M} represents the carriage-return character).
30545 Editing in this mode, you will have to use @kbd{C-q} to enter new
30546 control characters into the buffer.@refill
30548 @kindex M-# m
30549 @pindex read-kbd-macro
30550 The @kbd{M-# m} (@code{read-kbd-macro}) command reads an Emacs ``region''
30551 of spelled-out keystrokes and defines it as the current keyboard macro.
30552 It is a convenient way to define a keyboard macro that has been stored
30553 in a file, or to define a macro without executing it at the same time.
30554 The @kbd{M-# m} command works only if @file{macedit} is present.
30556 @node Conditionals in Macros, Loops in Macros, Naming Keyboard Macros, Keyboard Macros
30557 @subsection Conditionals in Keyboard Macros
30559 @noindent
30560 @kindex Z [
30561 @kindex Z ]
30562 @pindex calc-kbd-if
30563 @pindex calc-kbd-else
30564 @pindex calc-kbd-else-if
30565 @pindex calc-kbd-end-if
30566 @cindex Conditional structures
30567 The @kbd{Z [} (@code{calc-kbd-if}) and @kbd{Z ]} (@code{calc-kbd-end-if})
30568 commands allow you to put simple tests in a keyboard macro.  When Calc
30569 sees the @kbd{Z [}, it pops an object from the stack and, if the object is
30570 a non-zero value, continues executing keystrokes.  But if the object is
30571 zero, or if it is not provably nonzero, Calc skips ahead to the matching
30572 @kbd{Z ]} keystroke.  @xref{Logical Operations}, for a set of commands for
30573 performing tests which conveniently produce 1 for true and 0 for false.
30575 For example, @kbd{@key{RET} 0 a < Z [ n Z ]} implements an absolute-value
30576 function in the form of a keyboard macro.  This macro duplicates the
30577 number on the top of the stack, pushes zero and compares using @kbd{a <}
30578 (@code{calc-less-than}), then, if the number was less than zero,
30579 executes @kbd{n} (@code{calc-change-sign}).  Otherwise, the change-sign
30580 command is skipped.
30582 To program this macro, type @kbd{C-x (}, type the above sequence of
30583 keystrokes, then type @kbd{C-x )}.  Note that the keystrokes will be
30584 executed while you are making the definition as well as when you later
30585 re-execute the macro by typing @kbd{X}.  Thus you should make sure a
30586 suitable number is on the stack before defining the macro so that you
30587 don't get a stack-underflow error during the definition process.
30589 Conditionals can be nested arbitrarily.  However, there should be exactly
30590 one @kbd{Z ]} for each @kbd{Z [} in a keyboard macro.
30592 @kindex Z :
30593 The @kbd{Z :} (@code{calc-kbd-else}) command allows you to choose between
30594 two keystroke sequences.  The general format is @kbd{@var{cond} Z [
30595 @var{then-part} Z : @var{else-part} Z ]}.  If @var{cond} is true
30596 (i.e., if the top of stack contains a non-zero number after @var{cond}
30597 has been executed), the @var{then-part} will be executed and the
30598 @var{else-part} will be skipped.  Otherwise, the @var{then-part} will
30599 be skipped and the @var{else-part} will be executed.
30601 @kindex Z |
30602 The @kbd{Z |} (@code{calc-kbd-else-if}) command allows you to choose
30603 between any number of alternatives.  For example,
30604 @kbd{@var{cond1} Z [ @var{part1} Z : @var{cond2} Z | @var{part2} Z :
30605 @var{part3} Z ]} will execute @var{part1} if @var{cond1} is true,
30606 otherwise it will execute @var{part2} if @var{cond2} is true, otherwise
30607 it will execute @var{part3}.
30609 More precisely, @kbd{Z [} pops a number and conditionally skips to the
30610 next matching @kbd{Z :} or @kbd{Z ]} key.  @w{@kbd{Z ]}} has no effect when
30611 actually executed.  @kbd{Z :} skips to the next matching @kbd{Z ]}.
30612 @kbd{Z |} pops a number and conditionally skips to the next matching
30613 @kbd{Z :} or @kbd{Z ]}; thus, @kbd{Z [} and @kbd{Z |} are functionally
30614 equivalent except that @kbd{Z [} participates in nesting but @kbd{Z |}
30615 does not.
30617 Calc's conditional and looping constructs work by scanning the
30618 keyboard macro for occurrences of character sequences like @samp{Z:}
30619 and @samp{Z]}.  One side-effect of this is that if you use these
30620 constructs you must be careful that these character pairs do not
30621 occur by accident in other parts of the macros.  Since Calc rarely
30622 uses shift-@kbd{Z} for any purpose except as a prefix character, this
30623 is not likely to be a problem.  Another side-effect is that it will
30624 not work to define your own custom key bindings for these commands.
30625 Only the standard shift-@kbd{Z} bindings will work correctly.
30627 @kindex Z C-g
30628 If Calc gets stuck while skipping characters during the definition of a
30629 macro, type @kbd{Z C-g} to cancel the definition.  (Typing plain @kbd{C-g}
30630 actually adds a @kbd{C-g} keystroke to the macro.)
30632 @node Loops in Macros, Local Values in Macros, Conditionals in Macros, Keyboard Macros
30633 @subsection Loops in Keyboard Macros
30635 @noindent
30636 @kindex Z <
30637 @kindex Z >
30638 @pindex calc-kbd-repeat
30639 @pindex calc-kbd-end-repeat
30640 @cindex Looping structures
30641 @cindex Iterative structures
30642 The @kbd{Z <} (@code{calc-kbd-repeat}) and @kbd{Z >}
30643 (@code{calc-kbd-end-repeat}) commands pop a number from the stack,
30644 which must be an integer, then repeat the keystrokes between the brackets
30645 the specified number of times.  If the integer is zero or negative, the
30646 body is skipped altogether.  For example, @kbd{1 @key{TAB} Z < 2 * Z >}
30647 computes two to a nonnegative integer power.  First, we push 1 on the
30648 stack and then swap the integer argument back to the top.  The @kbd{Z <}
30649 pops that argument leaving the 1 back on top of the stack.  Then, we
30650 repeat a multiply-by-two step however many times.@refill
30652 Once again, the keyboard macro is executed as it is being entered.
30653 In this case it is especially important to set up reasonable initial
30654 conditions before making the definition:  Suppose the integer 1000 just
30655 happened to be sitting on the stack before we typed the above definition!
30656 Another approach is to enter a harmless dummy definition for the macro,
30657 then go back and edit in the real one with a @kbd{Z E} command.  Yet
30658 another approach is to type the macro as written-out keystroke names
30659 in a buffer, then use @kbd{M-# m} (@code{read-kbd-macro}) to read the
30660 macro.
30662 @kindex Z /
30663 @pindex calc-break
30664 The @kbd{Z /} (@code{calc-kbd-break}) command allows you to break out
30665 of a keyboard macro loop prematurely.  It pops an object from the stack;
30666 if that object is true (a non-zero number), control jumps out of the
30667 innermost enclosing @kbd{Z <} @dots{} @kbd{Z >} loop and continues
30668 after the @kbd{Z >}.  If the object is false, the @kbd{Z /} has no
30669 effect.  Thus @kbd{@var{cond} Z /} is similar to @samp{if (@var{cond}) break;}
30670 in the C language.@refill
30672 @kindex Z (
30673 @kindex Z )
30674 @pindex calc-kbd-for
30675 @pindex calc-kbd-end-for
30676 The @kbd{Z (} (@code{calc-kbd-for}) and @kbd{Z )} (@code{calc-kbd-end-for})
30677 commands are similar to @kbd{Z <} and @kbd{Z >}, except that they make the
30678 value of the counter available inside the loop.  The general layout is
30679 @kbd{@var{init} @var{final} Z ( @var{body} @var{step} Z )}.  The @kbd{Z (}
30680 command pops initial and final values from the stack.  It then creates
30681 a temporary internal counter and initializes it with the value @var{init}.
30682 The @kbd{Z (} command then repeatedly pushes the counter value onto the
30683 stack and executes @var{body} and @var{step}, adding @var{step} to the
30684 counter each time until the loop finishes.@refill
30686 @cindex Summations (by keyboard macros)
30687 By default, the loop finishes when the counter becomes greater than (or
30688 less than) @var{final}, assuming @var{initial} is less than (greater
30689 than) @var{final}.  If @var{initial} is equal to @var{final}, the body
30690 executes exactly once.  The body of the loop always executes at least
30691 once.  For example, @kbd{0 1 10 Z ( 2 ^ + 1 Z )} computes the sum of the
30692 squares of the integers from 1 to 10, in steps of 1.
30694 If you give a numeric prefix argument of 1 to @kbd{Z (}, the loop is
30695 forced to use upward-counting conventions.  In this case, if @var{initial}
30696 is greater than @var{final} the body will not be executed at all.
30697 Note that @var{step} may still be negative in this loop; the prefix
30698 argument merely constrains the loop-finished test.  Likewise, a prefix
30699 argument of @i{-1} forces downward-counting conventions.
30701 @kindex Z @{
30702 @kindex Z @}
30703 @pindex calc-kbd-loop
30704 @pindex calc-kbd-end-loop
30705 The @kbd{Z @{} (@code{calc-kbd-loop}) and @kbd{Z @}}
30706 (@code{calc-kbd-end-loop}) commands are similar to @kbd{Z <} and
30707 @kbd{Z >}, except that they do not pop a count from the stack---they
30708 effectively create an infinite loop.  Every @kbd{Z @{} @dots{} @kbd{Z @}}
30709 loop ought to include at least one @kbd{Z /} to make sure the loop
30710 doesn't run forever.  (If any error message occurs which causes Emacs
30711 to beep, the keyboard macro will also be halted; this is a standard
30712 feature of Emacs.  You can also generally press @kbd{C-g} to halt a
30713 running keyboard macro, although not all versions of Unix support
30714 this feature.)
30716 The conditional and looping constructs are not actually tied to
30717 keyboard macros, but they are most often used in that context.
30718 For example, the keystrokes @kbd{10 Z < 23 @key{RET} Z >} push
30719 ten copies of 23 onto the stack.  This can be typed ``live'' just
30720 as easily as in a macro definition.
30722 @xref{Conditionals in Macros}, for some additional notes about
30723 conditional and looping commands.
30725 @node Local Values in Macros, Queries in Macros, Loops in Macros, Keyboard Macros
30726 @subsection Local Values in Macros
30728 @noindent
30729 @cindex Local variables
30730 @cindex Restoring saved modes
30731 Keyboard macros sometimes want to operate under known conditions
30732 without affecting surrounding conditions.  For example, a keyboard
30733 macro may wish to turn on Fraction Mode, or set a particular
30734 precision, independent of the user's normal setting for those
30735 modes.
30737 @kindex Z `
30738 @kindex Z '
30739 @pindex calc-kbd-push
30740 @pindex calc-kbd-pop
30741 Macros also sometimes need to use local variables.  Assignments to
30742 local variables inside the macro should not affect any variables
30743 outside the macro.  The @kbd{Z `} (@code{calc-kbd-push}) and @kbd{Z '}
30744 (@code{calc-kbd-pop}) commands give you both of these capabilities.
30746 When you type @kbd{Z `} (with a backquote or accent grave character),
30747 the values of various mode settings are saved away.  The ten ``quick''
30748 variables @code{q0} through @code{q9} are also saved.  When
30749 you type @w{@kbd{Z '}} (with an apostrophe), these values are restored.
30750 Pairs of @kbd{Z `} and @kbd{Z '} commands may be nested.
30752 If a keyboard macro halts due to an error in between a @kbd{Z `} and
30753 a @kbd{Z '}, the saved values will be restored correctly even though
30754 the macro never reaches the @kbd{Z '} command.  Thus you can use
30755 @kbd{Z `} and @kbd{Z '} without having to worry about what happens
30756 in exceptional conditions.
30758 If you type @kbd{Z `} ``live'' (not in a keyboard macro), Calc puts
30759 you into a ``recursive edit.''  You can tell you are in a recursive
30760 edit because there will be extra square brackets in the mode line,
30761 as in @samp{[(Calculator)]}.  These brackets will go away when you
30762 type the matching @kbd{Z '} command.  The modes and quick variables
30763 will be saved and restored in just the same way as if actual keyboard
30764 macros were involved.
30766 The modes saved by @kbd{Z `} and @kbd{Z '} are the current precision
30767 and binary word size, the angular mode (Deg, Rad, or HMS), the
30768 simplification mode, Algebraic mode, Symbolic mode, Infinite mode,
30769 Matrix or Scalar mode, Fraction mode, and the current complex mode
30770 (Polar or Rectangular).  The ten ``quick'' variables' values (or lack
30771 thereof) are also saved.
30773 Most mode-setting commands act as toggles, but with a numeric prefix
30774 they force the mode either on (positive prefix) or off (negative
30775 or zero prefix).  Since you don't know what the environment might
30776 be when you invoke your macro, it's best to use prefix arguments
30777 for all mode-setting commands inside the macro.
30779 In fact, @kbd{C-u Z `} is like @kbd{Z `} except that it sets the modes
30780 listed above to their default values.  As usual, the matching @kbd{Z '}
30781 will restore the modes to their settings from before the @kbd{C-u Z `}.
30782 Also, @w{@kbd{Z `}} with a negative prefix argument resets algebraic mode
30783 to its default (off) but leaves the other modes the same as they were
30784 outside the construct.
30786 The contents of the stack and trail, values of non-quick variables, and
30787 other settings such as the language mode and the various display modes,
30788 are @emph{not} affected by @kbd{Z `} and @kbd{Z '}.
30790 @node Queries in Macros, , Local Values in Macros, Keyboard Macros
30791 @subsection Queries in Keyboard Macros
30793 @noindent
30794 @kindex Z =
30795 @pindex calc-kbd-report
30796 The @kbd{Z =} (@code{calc-kbd-report}) command displays an informative
30797 message including the value on the top of the stack.  You are prompted
30798 to enter a string.  That string, along with the top-of-stack value,
30799 is displayed unless @kbd{m w} (@code{calc-working}) has been used
30800 to turn such messages off.
30802 @kindex Z #
30803 @pindex calc-kbd-query
30804 The @kbd{Z #} (@code{calc-kbd-query}) command displays a prompt message
30805 (which you enter during macro definition), then does an algebraic entry
30806 which takes its input from the keyboard, even during macro execution.
30807 This command allows your keyboard macros to accept numbers or formulas
30808 as interactive input.  All the normal conventions of algebraic input,
30809 including the use of @kbd{$} characters, are supported.
30811 @xref{Kbd Macro Query, , , emacs, the Emacs Manual}, for a description of
30812 @kbd{C-x q} (@code{kbd-macro-query}), the standard Emacs way to accept
30813 keyboard input during a keyboard macro.  In particular, you can use
30814 @kbd{C-x q} to enter a recursive edit, which allows the user to perform
30815 any Calculator operations interactively before pressing @kbd{C-M-c} to
30816 return control to the keyboard macro.
30818 @node Invocation Macros, Algebraic Definitions, Keyboard Macros, Programming
30819 @section Invocation Macros
30821 @kindex M-# z
30822 @kindex Z I
30823 @pindex calc-user-invocation
30824 @pindex calc-user-define-invocation
30825 Calc provides one special keyboard macro, called up by @kbd{M-# z}
30826 (@code{calc-user-invocation}), that is intended to allow you to define
30827 your own special way of starting Calc.  To define this ``invocation
30828 macro,'' create the macro in the usual way with @kbd{C-x (} and
30829 @kbd{C-x )}, then type @kbd{Z I} (@code{calc-user-define-invocation}).
30830 There is only one invocation macro, so you don't need to type any
30831 additional letters after @kbd{Z I}.  From now on, you can type
30832 @kbd{M-# z} at any time to execute your invocation macro.
30834 For example, suppose you find yourself often grabbing rectangles of
30835 numbers into Calc and multiplying their columns.  You can do this
30836 by typing @kbd{M-# r} to grab, and @kbd{V R : *} to multiply columns.
30837 To make this into an invocation macro, just type @kbd{C-x ( M-# r
30838 V R : * C-x )}, then @kbd{Z I}.  Then, to multiply a rectangle of data,
30839 just mark the data in its buffer in the usual way and type @kbd{M-# z}.
30841 Invocation macros are treated like regular Emacs keyboard macros;
30842 all the special features described above for @kbd{Z K}-style macros
30843 do not apply.  @kbd{M-# z} is just like @kbd{C-x e}, except that it
30844 uses the macro that was last stored by @kbd{Z I}.  (In fact, the
30845 macro does not even have to have anything to do with Calc!)
30847 The @kbd{m m} command saves the last invocation macro defined by
30848 @kbd{Z I} along with all the other Calc mode settings.
30849 @xref{General Mode Commands}.
30851 @node Algebraic Definitions, Lisp Definitions, Invocation Macros, Programming
30852 @section Programming with Formulas
30854 @noindent
30855 @kindex Z F
30856 @pindex calc-user-define-formula
30857 @cindex Programming with algebraic formulas
30858 Another way to create a new Calculator command uses algebraic formulas.
30859 The @kbd{Z F} (@code{calc-user-define-formula}) command stores the
30860 formula at the top of the stack as the definition for a key.  This
30861 command prompts for five things: The key, the command name, the function
30862 name, the argument list, and the behavior of the command when given
30863 non-numeric arguments.
30865 For example, suppose we type @kbd{' a+2b @key{RET}} to push the formula
30866 @samp{a + 2*b} onto the stack.  We now type @kbd{Z F m} to define this
30867 formula on the @kbd{z m} key sequence.  The next prompt is for a command
30868 name, beginning with @samp{calc-}, which should be the long (@kbd{M-x}) form
30869 for the new command.  If you simply press @key{RET}, a default name like
30870 @code{calc-User-m} will be constructed.  In our example, suppose we enter
30871 @kbd{spam @key{RET}} to define the new command as @code{calc-spam}.
30873 If you want to give the formula a long-style name only, you can press
30874 @key{SPC} or @key{RET} when asked which single key to use.  For example
30875 @kbd{Z F @key{RET} spam @key{RET}} defines the new command as
30876 @kbd{M-x calc-spam}, with no keyboard equivalent.
30878 The third prompt is for a function name.  The default is to use the same
30879 name as the command name but with @samp{calcFunc-} in place of
30880 @samp{calc-}.  This is the name you will use if you want to enter your
30881 new function in an algebraic formula.  Suppose we enter @kbd{yow @key{RET}}.
30882 Then the new function can be invoked by pushing two numbers on the
30883 stack and typing @kbd{z m} or @kbd{x spam}, or by entering the algebraic
30884 formula @samp{yow(x,y)}.@refill
30886 The fourth prompt is for the function's argument list.  This is used to
30887 associate values on the stack with the variables that appear in the formula.
30888 The default is a list of all variables which appear in the formula, sorted
30889 into alphabetical order.  In our case, the default would be @samp{(a b)}.
30890 This means that, when the user types @kbd{z m}, the Calculator will remove
30891 two numbers from the stack, substitute these numbers for @samp{a} and
30892 @samp{b} (respectively) in the formula, then simplify the formula and
30893 push the result on the stack.  In other words, @kbd{10 @key{RET} 100 z m}
30894 would replace the 10 and 100 on the stack with the number 210, which is
30895 @cite{a + 2 b} with @cite{a=10} and @cite{b=100}.  Likewise, the formula
30896 @samp{yow(10, 100)} will be evaluated by substituting @cite{a=10} and
30897 @cite{b=100} in the definition.
30899 You can rearrange the order of the names before pressing @key{RET} to
30900 control which stack positions go to which variables in the formula.  If
30901 you remove a variable from the argument list, that variable will be left
30902 in symbolic form by the command.  Thus using an argument list of @samp{(b)}
30903 for our function would cause @kbd{10 z m} to replace the 10 on the stack
30904 with the formula @samp{a + 20}.  If we had used an argument list of
30905 @samp{(b a)}, the result with inputs 10 and 100 would have been 120.
30907 You can also put a nameless function on the stack instead of just a
30908 formula, as in @samp{<a, b : a + 2 b>}.  @xref{Specifying Operators}.
30909 In this example, the command will be defined by the formula @samp{a + 2 b}
30910 using the argument list @samp{(a b)}.
30912 The final prompt is a y-or-n question concerning what to do if symbolic
30913 arguments are given to your function.  If you answer @kbd{y}, then
30914 executing @kbd{z m} (using the original argument list @samp{(a b)}) with
30915 arguments @cite{10} and @cite{x} will leave the function in symbolic
30916 form, i.e., @samp{yow(10,x)}.  On the other hand, if you answer @kbd{n},
30917 then the formula will always be expanded, even for non-constant
30918 arguments: @samp{10 + 2 x}.  If you never plan to feed algebraic
30919 formulas to your new function, it doesn't matter how you answer this
30920 question.@refill
30922 If you answered @kbd{y} to this question you can still cause a function
30923 call to be expanded by typing @kbd{a "} (@code{calc-expand-formula}).
30924 Also, Calc will expand the function if necessary when you take a
30925 derivative or integral or solve an equation involving the function.
30927 @kindex Z G
30928 @pindex calc-get-user-defn
30929 Once you have defined a formula on a key, you can retrieve this formula
30930 with the @kbd{Z G} (@code{calc-user-define-get-defn}) command.  Press a
30931 key, and this command pushes the formula that was used to define that
30932 key onto the stack.  Actually, it pushes a nameless function that
30933 specifies both the argument list and the defining formula.  You will get
30934 an error message if the key is undefined, or if the key was not defined
30935 by a @kbd{Z F} command.@refill
30937 The @kbd{Z E} (@code{calc-user-define-edit}) command on a key that has
30938 been defined by a formula uses a variant of the @code{calc-edit} command
30939 to edit the defining formula.  Press @kbd{M-# M-#} to finish editing and
30940 store the new formula back in the definition, or @kbd{M-# x} to
30941 cancel the edit.  (The argument list and other properties of the
30942 definition are unchanged; to adjust the argument list, you can use
30943 @kbd{Z G} to grab the function onto the stack, edit with @kbd{`}, and
30944 then re-execute the @kbd{Z F} command.)
30946 As usual, the @kbd{Z P} command records your definition permanently.
30947 In this case it will permanently record all three of the relevant
30948 definitions: the key, the command, and the function.
30950 You may find it useful to turn off the default simplifications with
30951 @kbd{m O} (@code{calc-no-simplify-mode}) when entering a formula to be
30952 used as a function definition.  For example, the formula @samp{deriv(a^2,v)}
30953 which might be used to define a new function @samp{dsqr(a,v)} will be
30954 ``simplified'' to 0 immediately upon entry since @code{deriv} considers
30955 @cite{a} to be constant with respect to @cite{v}.  Turning off
30956 default simplifications cures this problem:  The definition will be stored
30957 in symbolic form without ever activating the @code{deriv} function.  Press
30958 @kbd{m D} to turn the default simplifications back on afterwards.
30960 @node Lisp Definitions, , Algebraic Definitions, Programming
30961 @section Programming with Lisp
30963 @noindent
30964 The Calculator can be programmed quite extensively in Lisp.  All you
30965 do is write a normal Lisp function definition, but with @code{defmath}
30966 in place of @code{defun}.  This has the same form as @code{defun}, but it
30967 automagically replaces calls to standard Lisp functions like @code{+} and
30968 @code{zerop} with calls to the corresponding functions in Calc's own library.
30969 Thus you can write natural-looking Lisp code which operates on all of the
30970 standard Calculator data types.  You can then use @kbd{Z D} if you wish to
30971 bind your new command to a @kbd{z}-prefix key sequence.  The @kbd{Z E} command
30972 will not edit a Lisp-based definition.
30974 Emacs Lisp is described in the GNU Emacs Lisp Reference Manual.  This section
30975 assumes a familiarity with Lisp programming concepts; if you do not know
30976 Lisp, you may find keyboard macros or rewrite rules to be an easier way
30977 to program the Calculator.
30979 This section first discusses ways to write commands, functions, or
30980 small programs to be executed inside of Calc.  Then it discusses how
30981 your own separate programs are able to call Calc from the outside.
30982 Finally, there is a list of internal Calc functions and data structures
30983 for the true Lisp enthusiast.
30985 @menu
30986 * Defining Functions::
30987 * Defining Simple Commands::
30988 * Defining Stack Commands::
30989 * Argument Qualifiers::
30990 * Example Definitions::
30992 * Calling Calc from Your Programs::
30993 * Internals::
30994 @end menu
30996 @node Defining Functions, Defining Simple Commands, Lisp Definitions, Lisp Definitions
30997 @subsection Defining New Functions
30999 @noindent
31000 @findex defmath
31001 The @code{defmath} function (actually a Lisp macro) is like @code{defun}
31002 except that code in the body of the definition can make use of the full
31003 range of Calculator data types.  The prefix @samp{calcFunc-} is added
31004 to the specified name to get the actual Lisp function name.  As a simple
31005 example,
31007 @example
31008 (defmath myfact (n)
31009   (if (> n 0)
31010       (* n (myfact (1- n)))
31011     1))
31012 @end example
31014 @noindent
31015 This actually expands to the code,
31017 @example
31018 (defun calcFunc-myfact (n)
31019   (if (math-posp n)
31020       (math-mul n (calcFunc-myfact (math-add n -1)))
31021     1))
31022 @end example
31024 @noindent
31025 This function can be used in algebraic expressions, e.g., @samp{myfact(5)}.
31027 The @samp{myfact} function as it is defined above has the bug that an
31028 expression @samp{myfact(a+b)} will be simplified to 1 because the
31029 formula @samp{a+b} is not considered to be @code{posp}.  A robust
31030 factorial function would be written along the following lines:
31032 @smallexample
31033 (defmath myfact (n)
31034   (if (> n 0)
31035       (* n (myfact (1- n)))
31036     (if (= n 0)
31037         1
31038       nil)))    ; this could be simplified as: (and (= n 0) 1)
31039 @end smallexample
31041 If a function returns @code{nil}, it is left unsimplified by the Calculator
31042 (except that its arguments will be simplified).  Thus, @samp{myfact(a+1+2)}
31043 will be simplified to @samp{myfact(a+3)} but no further.  Beware that every
31044 time the Calculator reexamines this formula it will attempt to resimplify
31045 it, so your function ought to detect the returning-@code{nil} case as
31046 efficiently as possible.
31048 The following standard Lisp functions are treated by @code{defmath}:
31049 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^} or
31050 @code{expt}, @code{=}, @code{<}, @code{>}, @code{<=}, @code{>=},
31051 @code{/=}, @code{1+}, @code{1-}, @code{logand}, @code{logior}, @code{logxor},
31052 @code{logandc2}, @code{lognot}.  Also, @code{~=} is an abbreviation for
31053 @code{math-nearly-equal}, which is useful in implementing Taylor series.@refill
31055 For other functions @var{func}, if a function by the name
31056 @samp{calcFunc-@var{func}} exists it is used, otherwise if a function by the
31057 name @samp{math-@var{func}} exists it is used, otherwise if @var{func} itself
31058 is defined as a function it is used, otherwise @samp{calcFunc-@var{func}} is
31059 used on the assumption that this is a to-be-defined math function.  Also, if
31060 the function name is quoted as in @samp{('integerp a)} the function name is
31061 always used exactly as written (but not quoted).@refill
31063 Variable names have @samp{var-} prepended to them unless they appear in
31064 the function's argument list or in an enclosing @code{let}, @code{let*},
31065 @code{for}, or @code{foreach} form,
31066 or their names already contain a @samp{-} character.  Thus a reference to
31067 @samp{foo} is the same as a reference to @samp{var-foo}.@refill
31069 A few other Lisp extensions are available in @code{defmath} definitions:
31071 @itemize @bullet
31072 @item
31073 The @code{elt} function accepts any number of index variables.
31074 Note that Calc vectors are stored as Lisp lists whose first
31075 element is the symbol @code{vec}; thus, @samp{(elt v 2)} yields
31076 the second element of vector @code{v}, and @samp{(elt m i j)}
31077 yields one element of a Calc matrix.
31079 @item
31080 The @code{setq} function has been extended to act like the Common
31081 Lisp @code{setf} function.  (The name @code{setf} is recognized as
31082 a synonym of @code{setq}.)  Specifically, the first argument of
31083 @code{setq} can be an @code{nth}, @code{elt}, @code{car}, or @code{cdr} form,
31084 in which case the effect is to store into the specified
31085 element of a list.  Thus, @samp{(setq (elt m i j) x)} stores @cite{x}
31086 into one element of a matrix.
31088 @item
31089 A @code{for} looping construct is available.  For example,
31090 @samp{(for ((i 0 10)) body)} executes @code{body} once for each
31091 binding of @cite{i} from zero to 10.  This is like a @code{let}
31092 form in that @cite{i} is temporarily bound to the loop count
31093 without disturbing its value outside the @code{for} construct.
31094 Nested loops, as in @samp{(for ((i 0 10) (j 0 (1- i) 2)) body)},
31095 are also available.  For each value of @cite{i} from zero to 10,
31096 @cite{j} counts from 0 to @cite{i-1} in steps of two.  Note that
31097 @code{for} has the same general outline as @code{let*}, except
31098 that each element of the header is a list of three or four
31099 things, not just two.
31101 @item
31102 The @code{foreach} construct loops over elements of a list.
31103 For example, @samp{(foreach ((x (cdr v))) body)} executes
31104 @code{body} with @cite{x} bound to each element of Calc vector
31105 @cite{v} in turn.  The purpose of @code{cdr} here is to skip over
31106 the initial @code{vec} symbol in the vector.
31108 @item
31109 The @code{break} function breaks out of the innermost enclosing
31110 @code{while}, @code{for}, or @code{foreach} loop.  If given a
31111 value, as in @samp{(break x)}, this value is returned by the
31112 loop.  (Lisp loops otherwise always return @code{nil}.)
31114 @item
31115 The @code{return} function prematurely returns from the enclosing
31116 function.  For example, @samp{(return (+ x y))} returns @cite{x+y}
31117 as the value of a function.  You can use @code{return} anywhere
31118 inside the body of the function.
31119 @end itemize
31121 Non-integer numbers (and extremely large integers) cannot be included
31122 directly into a @code{defmath} definition.  This is because the Lisp
31123 reader will fail to parse them long before @code{defmath} ever gets control.
31124 Instead, use the notation, @samp{:"3.1415"}.  In fact, any algebraic
31125 formula can go between the quotes.  For example,
31127 @smallexample
31128 (defmath sqexp (x)     ; sqexp(x) == sqrt(exp(x)) == exp(x*0.5)
31129   (and (numberp x)
31130        (exp :"x * 0.5")))
31131 @end smallexample
31133 expands to
31135 @smallexample
31136 (defun calcFunc-sqexp (x)
31137   (and (math-numberp x)
31138        (calcFunc-exp (math-mul x '(float 5 -1)))))
31139 @end smallexample
31141 Note the use of @code{numberp} as a guard to ensure that the argument is
31142 a number first, returning @code{nil} if not.  The exponential function
31143 could itself have been included in the expression, if we had preferred:
31144 @samp{:"exp(x * 0.5)"}.  As another example, the multiplication-and-recursion
31145 step of @code{myfact} could have been written
31147 @example
31148 :"n * myfact(n-1)"
31149 @end example
31151 If a file named @file{.emacs} exists in your home directory, Emacs reads
31152 and executes the Lisp forms in this file as it starts up.  While it may
31153 seem like a good idea to put your favorite @code{defmath} commands here,
31154 this has the unfortunate side-effect that parts of the Calculator must be
31155 loaded in to process the @code{defmath} commands whether or not you will
31156 actually use the Calculator!  A better effect can be had by writing
31158 @example
31159 (put 'calc-define 'thing '(progn
31160  (defmath ... )
31161  (defmath ... )
31163 @end example
31165 @noindent
31166 @vindex calc-define
31167 The @code{put} function adds a @dfn{property} to a symbol.  Each Lisp
31168 symbol has a list of properties associated with it.  Here we add a
31169 property with a name of @code{thing} and a @samp{(progn ...)} form as
31170 its value.  When Calc starts up, and at the start of every Calc command,
31171 the property list for the symbol @code{calc-define} is checked and the
31172 values of any properties found are evaluated as Lisp forms.  The
31173 properties are removed as they are evaluated.  The property names
31174 (like @code{thing}) are not used; you should choose something like the
31175 name of your project so as not to conflict with other properties.
31177 The net effect is that you can put the above code in your @file{.emacs}
31178 file and it will not be executed until Calc is loaded.  Or, you can put
31179 that same code in another file which you load by hand either before or
31180 after Calc itself is loaded.
31182 The properties of @code{calc-define} are evaluated in the same order
31183 that they were added.  They can assume that the Calc modules @file{calc.el},
31184 @file{calc-ext.el}, and @file{calc-macs.el} have been fully loaded, and
31185 that the @samp{*Calculator*} buffer will be the current buffer.
31187 If your @code{calc-define} property only defines algebraic functions,
31188 you can be sure that it will have been evaluated before Calc tries to
31189 call your function, even if the file defining the property is loaded
31190 after Calc is loaded.  But if the property defines commands or key
31191 sequences, it may not be evaluated soon enough.  (Suppose it defines the
31192 new command @code{tweak-calc}; the user can load your file, then type
31193 @kbd{M-x tweak-calc} before Calc has had chance to do anything.)  To
31194 protect against this situation, you can put
31196 @example
31197 (run-hooks 'calc-check-defines)
31198 @end example
31200 @findex calc-check-defines
31201 @noindent
31202 at the end of your file.  The @code{calc-check-defines} function is what
31203 looks for and evaluates properties on @code{calc-define}; @code{run-hooks}
31204 has the advantage that it is quietly ignored if @code{calc-check-defines}
31205 is not yet defined because Calc has not yet been loaded.
31207 Examples of things that ought to be enclosed in a @code{calc-define}
31208 property are @code{defmath} calls, @code{define-key} calls that modify
31209 the Calc key map, and any calls that redefine things defined inside Calc.
31210 Ordinary @code{defun}s need not be enclosed with @code{calc-define}.
31212 @node Defining Simple Commands, Defining Stack Commands, Defining Functions, Lisp Definitions
31213 @subsection Defining New Simple Commands
31215 @noindent
31216 @findex interactive
31217 If a @code{defmath} form contains an @code{interactive} clause, it defines
31218 a Calculator command.  Actually such a @code{defmath} results in @emph{two}
31219 function definitions:  One, a @samp{calcFunc-} function as was just described,
31220 with the @code{interactive} clause removed.  Two, a @samp{calc-} function
31221 with a suitable @code{interactive} clause and some sort of wrapper to make
31222 the command work in the Calc environment.
31224 In the simple case, the @code{interactive} clause has the same form as
31225 for normal Emacs Lisp commands:
31227 @smallexample
31228 (defmath increase-precision (delta)
31229   "Increase precision by DELTA."     ; This is the "documentation string"
31230   (interactive "p")                  ; Register this as a M-x-able command
31231   (setq calc-internal-prec (+ calc-internal-prec delta)))
31232 @end smallexample
31234 This expands to the pair of definitions,
31236 @smallexample
31237 (defun calc-increase-precision (delta)
31238   "Increase precision by DELTA."
31239   (interactive "p")
31240   (calc-wrapper
31241    (setq calc-internal-prec (math-add calc-internal-prec delta))))
31243 (defun calcFunc-increase-precision (delta)
31244   "Increase precision by DELTA."
31245   (setq calc-internal-prec (math-add calc-internal-prec delta)))
31246 @end smallexample
31248 @noindent
31249 where in this case the latter function would never really be used!  Note
31250 that since the Calculator stores small integers as plain Lisp integers,
31251 the @code{math-add} function will work just as well as the native
31252 @code{+} even when the intent is to operate on native Lisp integers.
31254 @findex calc-wrapper
31255 The @samp{calc-wrapper} call invokes a macro which surrounds the body of
31256 the function with code that looks roughly like this:
31258 @smallexample
31259 (let ((calc-command-flags nil))
31260   (unwind-protect
31261       (save-excursion
31262         (calc-select-buffer)
31263         @emph{body of function}
31264         @emph{renumber stack}
31265         @emph{clear} Working @emph{message})
31266     @emph{realign cursor and window}
31267     @emph{clear Inverse, Hyperbolic, and Keep Args flags}
31268     @emph{update Emacs mode line}))
31269 @end smallexample
31271 @findex calc-select-buffer
31272 The @code{calc-select-buffer} function selects the @samp{*Calculator*}
31273 buffer if necessary, say, because the command was invoked from inside
31274 the @samp{*Calc Trail*} window.
31276 @findex calc-set-command-flag
31277 You can call, for example, @code{(calc-set-command-flag 'no-align)} to
31278 set the above-mentioned command flags.  Calc routines recognize the
31279 following command flags:
31281 @table @code
31282 @item renum-stack
31283 Stack line numbers @samp{1:}, @samp{2:}, and so on must be renumbered
31284 after this command completes.  This is set by routines like
31285 @code{calc-push}.
31287 @item clear-message
31288 Calc should call @samp{(message "")} if this command completes normally
31289 (to clear a ``Working@dots{}'' message out of the echo area).
31291 @item no-align
31292 Do not move the cursor back to the @samp{.} top-of-stack marker.
31294 @item position-point
31295 Use the variables @code{calc-position-point-line} and
31296 @code{calc-position-point-column} to position the cursor after
31297 this command finishes.
31299 @item keep-flags
31300 Do not clear @code{calc-inverse-flag}, @code{calc-hyperbolic-flag},
31301 and @code{calc-keep-args-flag} at the end of this command.
31303 @item do-edit
31304 Switch to buffer @samp{*Calc Edit*} after this command.
31306 @item hold-trail
31307 Do not move trail pointer to end of trail when something is recorded
31308 there.
31309 @end table
31311 @kindex Y
31312 @kindex Y ?
31313 @vindex calc-Y-help-msgs
31314 Calc reserves a special prefix key, shift-@kbd{Y}, for user-written
31315 extensions to Calc.  There are no built-in commands that work with
31316 this prefix key; you must call @code{define-key} from Lisp (probably
31317 from inside a @code{calc-define} property) to add to it.  Initially only
31318 @kbd{Y ?} is defined; it takes help messages from a list of strings
31319 (initially @code{nil}) in the variable @code{calc-Y-help-msgs}.  All
31320 other undefined keys except for @kbd{Y} are reserved for use by
31321 future versions of Calc.
31323 If you are writing a Calc enhancement which you expect to give to
31324 others, it is best to minimize the number of @kbd{Y}-key sequences
31325 you use.  In fact, if you have more than one key sequence you should
31326 consider defining three-key sequences with a @kbd{Y}, then a key that
31327 stands for your package, then a third key for the particular command
31328 within your package.
31330 Users may wish to install several Calc enhancements, and it is possible
31331 that several enhancements will choose to use the same key.  In the
31332 example below, a variable @code{inc-prec-base-key} has been defined
31333 to contain the key that identifies the @code{inc-prec} package.  Its
31334 value is initially @code{"P"}, but a user can change this variable
31335 if necessary without having to modify the file.
31337 Here is a complete file, @file{inc-prec.el}, which makes a @kbd{Y P I}
31338 command that increases the precision, and a @kbd{Y P D} command that
31339 decreases the precision.
31341 @smallexample
31342 ;;; Increase and decrease Calc precision.  Dave Gillespie, 5/31/91.
31343 ;;; (Include copyright or copyleft stuff here.)
31345 (defvar inc-prec-base-key "P"
31346   "Base key for inc-prec.el commands.")
31348 (put 'calc-define 'inc-prec '(progn
31350 (define-key calc-mode-map (format "Y%sI" inc-prec-base-key)
31351             'increase-precision)
31352 (define-key calc-mode-map (format "Y%sD" inc-prec-base-key)
31353             'decrease-precision)
31355 (setq calc-Y-help-msgs
31356       (cons (format "%s + Inc-prec, Dec-prec" inc-prec-base-key)
31357             calc-Y-help-msgs))
31359 (defmath increase-precision (delta)
31360   "Increase precision by DELTA."
31361   (interactive "p")
31362   (setq calc-internal-prec (+ calc-internal-prec delta)))
31364 (defmath decrease-precision (delta)
31365   "Decrease precision by DELTA."
31366   (interactive "p")
31367   (setq calc-internal-prec (- calc-internal-prec delta)))
31369 ))  ; end of calc-define property
31371 (run-hooks 'calc-check-defines)
31372 @end smallexample
31374 @node Defining Stack Commands, Argument Qualifiers, Defining Simple Commands, Lisp Definitions
31375 @subsection Defining New Stack-Based Commands
31377 @noindent
31378 To define a new computational command which takes and/or leaves arguments
31379 on the stack, a special form of @code{interactive} clause is used.
31381 @example
31382 (interactive @var{num} @var{tag})
31383 @end example
31385 @noindent
31386 where @var{num} is an integer, and @var{tag} is a string.  The effect is
31387 to pop @var{num} values off the stack, resimplify them by calling
31388 @code{calc-normalize}, and hand them to your function according to the
31389 function's argument list.  Your function may include @code{&optional} and
31390 @code{&rest} parameters, so long as calling the function with @var{num}
31391 parameters is legal.
31393 Your function must return either a number or a formula in a form
31394 acceptable to Calc, or a list of such numbers or formulas.  These value(s)
31395 are pushed onto the stack when the function completes.  They are also
31396 recorded in the Calc Trail buffer on a line beginning with @var{tag},
31397 a string of (normally) four characters or less.  If you omit @var{tag}
31398 or use @code{nil} as a tag, the result is not recorded in the trail.
31400 As an example, the definition
31402 @smallexample
31403 (defmath myfact (n)
31404   "Compute the factorial of the integer at the top of the stack."
31405   (interactive 1 "fact")
31406   (if (> n 0)
31407       (* n (myfact (1- n)))
31408     (and (= n 0) 1)))
31409 @end smallexample
31411 @noindent
31412 is a version of the factorial function shown previously which can be used
31413 as a command as well as an algebraic function.  It expands to
31415 @smallexample
31416 (defun calc-myfact ()
31417   "Compute the factorial of the integer at the top of the stack."
31418   (interactive)
31419   (calc-slow-wrapper
31420    (calc-enter-result 1 "fact"
31421      (cons 'calcFunc-myfact (calc-top-list-n 1)))))
31423 (defun calcFunc-myfact (n)
31424   "Compute the factorial of the integer at the top of the stack."
31425   (if (math-posp n)
31426       (math-mul n (calcFunc-myfact (math-add n -1)))
31427     (and (math-zerop n) 1)))
31428 @end smallexample
31430 @findex calc-slow-wrapper
31431 The @code{calc-slow-wrapper} function is a version of @code{calc-wrapper}
31432 that automatically puts up a @samp{Working...} message before the
31433 computation begins.  (This message can be turned off by the user
31434 with an @kbd{m w} (@code{calc-working}) command.)
31436 @findex calc-top-list-n
31437 The @code{calc-top-list-n} function returns a list of the specified number
31438 of values from the top of the stack.  It resimplifies each value by
31439 calling @code{calc-normalize}.  If its argument is zero it returns an
31440 empty list.  It does not actually remove these values from the stack.
31442 @findex calc-enter-result
31443 The @code{calc-enter-result} function takes an integer @var{num} and string
31444 @var{tag} as described above, plus a third argument which is either a
31445 Calculator data object or a list of such objects.  These objects are
31446 resimplified and pushed onto the stack after popping the specified number
31447 of values from the stack.  If @var{tag} is non-@code{nil}, the values
31448 being pushed are also recorded in the trail.
31450 Note that if @code{calcFunc-myfact} returns @code{nil} this represents
31451 ``leave the function in symbolic form.''  To return an actual empty list,
31452 in the sense that @code{calc-enter-result} will push zero elements back
31453 onto the stack, you should return the special value @samp{'(nil)}, a list
31454 containing the single symbol @code{nil}.
31456 The @code{interactive} declaration can actually contain a limited
31457 Emacs-style code string as well which comes just before @var{num} and
31458 @var{tag}.  Currently the only Emacs code supported is @samp{"p"}, as in
31460 @example
31461 (defmath foo (a b &optional c)
31462   (interactive "p" 2 "foo")
31463   @var{body})
31464 @end example
31466 In this example, the command @code{calc-foo} will evaluate the expression
31467 @samp{foo(a,b)} if executed with no argument, or @samp{foo(a,b,n)} if
31468 executed with a numeric prefix argument of @cite{n}.
31470 The other code string allowed is @samp{"m"} (unrelated to the usual @samp{"m"}
31471 code as used with @code{defun}).  It uses the numeric prefix argument as the
31472 number of objects to remove from the stack and pass to the function.
31473 In this case, the integer @var{num} serves as a default number of
31474 arguments to be used when no prefix is supplied.
31476 @node Argument Qualifiers, Example Definitions, Defining Stack Commands, Lisp Definitions
31477 @subsection Argument Qualifiers
31479 @noindent
31480 Anywhere a parameter name can appear in the parameter list you can also use
31481 an @dfn{argument qualifier}.  Thus the general form of a definition is:
31483 @example
31484 (defmath @var{name} (@var{param} @var{param...}
31485                &optional @var{param} @var{param...}
31486                &rest @var{param})
31487   @var{body})
31488 @end example
31490 @noindent
31491 where each @var{param} is either a symbol or a list of the form
31493 @example
31494 (@var{qual} @var{param})
31495 @end example
31497 The following qualifiers are recognized:
31499 @table @samp
31500 @item complete
31501 @findex complete
31502 The argument must not be an incomplete vector, interval, or complex number.
31503 (This is rarely needed since the Calculator itself will never call your
31504 function with an incomplete argument.  But there is nothing stopping your
31505 own Lisp code from calling your function with an incomplete argument.)@refill
31507 @item integer
31508 @findex integer
31509 The argument must be an integer.  If it is an integer-valued float
31510 it will be accepted but converted to integer form.  Non-integers and
31511 formulas are rejected.
31513 @item natnum
31514 @findex natnum
31515 Like @samp{integer}, but the argument must be non-negative.
31517 @item fixnum
31518 @findex fixnum
31519 Like @samp{integer}, but the argument must fit into a native Lisp integer,
31520 which on most systems means less than 2^23 in absolute value.  The
31521 argument is converted into Lisp-integer form if necessary.
31523 @item float
31524 @findex float
31525 The argument is converted to floating-point format if it is a number or
31526 vector.  If it is a formula it is left alone.  (The argument is never
31527 actually rejected by this qualifier.)
31529 @item @var{pred}
31530 The argument must satisfy predicate @var{pred}, which is one of the
31531 standard Calculator predicates.  @xref{Predicates}.
31533 @item not-@var{pred}
31534 The argument must @emph{not} satisfy predicate @var{pred}.
31535 @end table
31537 For example,
31539 @example
31540 (defmath foo (a (constp (not-matrixp b)) &optional (float c)
31541               &rest (integer d))
31542   @var{body})
31543 @end example
31545 @noindent
31546 expands to
31548 @example
31549 (defun calcFunc-foo (a b &optional c &rest d)
31550   (and (math-matrixp b)
31551        (math-reject-arg b 'not-matrixp))
31552   (or (math-constp b)
31553       (math-reject-arg b 'constp))
31554   (and c (setq c (math-check-float c)))
31555   (setq d (mapcar 'math-check-integer d))
31556   @var{body})
31557 @end example
31559 @noindent
31560 which performs the necessary checks and conversions before executing the
31561 body of the function.
31563 @node Example Definitions, Calling Calc from Your Programs, Argument Qualifiers, Lisp Definitions
31564 @subsection Example Definitions
31566 @noindent
31567 This section includes some Lisp programming examples on a larger scale.
31568 These programs make use of some of the Calculator's internal functions;
31569 @pxref{Internals}.
31571 @menu
31572 * Bit Counting Example::
31573 * Sine Example::
31574 @end menu
31576 @node Bit Counting Example, Sine Example, Example Definitions, Example Definitions
31577 @subsubsection Bit-Counting
31579 @noindent
31580 @ignore
31581 @starindex
31582 @end ignore
31583 @tindex bcount
31584 Calc does not include a built-in function for counting the number of
31585 ``one'' bits in a binary integer.  It's easy to invent one using @kbd{b u}
31586 to convert the integer to a set, and @kbd{V #} to count the elements of
31587 that set; let's write a function that counts the bits without having to
31588 create an intermediate set.
31590 @smallexample
31591 (defmath bcount ((natnum n))
31592   (interactive 1 "bcnt")
31593   (let ((count 0))
31594     (while (> n 0)
31595       (if (oddp n)
31596           (setq count (1+ count)))
31597       (setq n (lsh n -1)))
31598     count))
31599 @end smallexample
31601 @noindent
31602 When this is expanded by @code{defmath}, it will become the following
31603 Emacs Lisp function:
31605 @smallexample
31606 (defun calcFunc-bcount (n)
31607   (setq n (math-check-natnum n))
31608   (let ((count 0))
31609     (while (math-posp n)
31610       (if (math-oddp n)
31611           (setq count (math-add count 1)))
31612       (setq n (calcFunc-lsh n -1)))
31613     count))
31614 @end smallexample
31616 If the input numbers are large, this function involves a fair amount
31617 of arithmetic.  A binary right shift is essentially a division by two;
31618 recall that Calc stores integers in decimal form so bit shifts must
31619 involve actual division.
31621 To gain a bit more efficiency, we could divide the integer into
31622 @var{n}-bit chunks, each of which can be handled quickly because
31623 they fit into Lisp integers.  It turns out that Calc's arithmetic
31624 routines are especially fast when dividing by an integer less than
31625 1000, so we can set @var{n = 9} bits and use repeated division by 512:
31627 @smallexample
31628 (defmath bcount ((natnum n))
31629   (interactive 1 "bcnt")
31630   (let ((count 0))
31631     (while (not (fixnump n))
31632       (let ((qr (idivmod n 512)))
31633         (setq count (+ count (bcount-fixnum (cdr qr)))
31634               n (car qr))))
31635     (+ count (bcount-fixnum n))))
31637 (defun bcount-fixnum (n)
31638   (let ((count 0))
31639     (while (> n 0)
31640       (setq count (+ count (logand n 1))
31641             n (lsh n -1)))
31642     count))
31643 @end smallexample
31645 @noindent
31646 Note that the second function uses @code{defun}, not @code{defmath}.
31647 Because this function deals only with native Lisp integers (``fixnums''),
31648 it can use the actual Emacs @code{+} and related functions rather
31649 than the slower but more general Calc equivalents which @code{defmath}
31650 uses.
31652 The @code{idivmod} function does an integer division, returning both
31653 the quotient and the remainder at once.  Again, note that while it
31654 might seem that @samp{(logand n 511)} and @samp{(lsh n -9)} are
31655 more efficient ways to split off the bottom nine bits of @code{n},
31656 actually they are less efficient because each operation is really
31657 a division by 512 in disguise; @code{idivmod} allows us to do the
31658 same thing with a single division by 512.
31660 @node Sine Example, , Bit Counting Example, Example Definitions
31661 @subsubsection The Sine Function
31663 @noindent
31664 @ignore
31665 @starindex
31666 @end ignore
31667 @tindex mysin
31668 A somewhat limited sine function could be defined as follows, using the
31669 well-known Taylor series expansion for @c{$\sin x$}
31670 @samp{sin(x)}:
31672 @smallexample
31673 (defmath mysin ((float (anglep x)))
31674   (interactive 1 "mysn")
31675   (setq x (to-radians x))    ; Convert from current angular mode.
31676   (let ((sum x)              ; Initial term of Taylor expansion of sin.
31677         newsum
31678         (nfact 1)            ; "nfact" equals "n" factorial at all times.
31679         (xnegsqr :"-(x^2)")) ; "xnegsqr" equals -x^2.
31680     (for ((n 3 100 2))       ; Upper limit of 100 is a good precaution.
31681       (working "mysin" sum)  ; Display "Working" message, if enabled.
31682       (setq nfact (* nfact (1- n) n)
31683             x (* x xnegsqr)
31684             newsum (+ sum (/ x nfact)))
31685       (if (~= newsum sum)    ; If newsum is "nearly equal to" sum,
31686           (break))           ;  then we are done.
31687       (setq sum newsum))
31688     sum))
31689 @end smallexample
31691 The actual @code{sin} function in Calc works by first reducing the problem
31692 to a sine or cosine of a nonnegative number less than @c{$\pi \over 4$}
31693 @cite{pi/4}.  This
31694 ensures that the Taylor series will converge quickly.  Also, the calculation
31695 is carried out with two extra digits of precision to guard against cumulative
31696 round-off in @samp{sum}.  Finally, complex arguments are allowed and handled
31697 by a separate algorithm.
31699 @smallexample
31700 (defmath mysin ((float (scalarp x)))
31701   (interactive 1 "mysn")
31702   (setq x (to-radians x))    ; Convert from current angular mode.
31703   (with-extra-prec 2         ; Evaluate with extra precision.
31704     (cond ((complexp x)
31705            (mysin-complex x))
31706           ((< x 0)
31707            (- (mysin-raw (- x)))    ; Always call mysin-raw with x >= 0.
31708           (t (mysin-raw x))))))
31710 (defmath mysin-raw (x)
31711   (cond ((>= x 7)
31712          (mysin-raw (% x (two-pi))))     ; Now x < 7.
31713         ((> x (pi-over-2))
31714          (- (mysin-raw (- x (pi)))))     ; Now -pi/2 <= x <= pi/2.
31715         ((> x (pi-over-4))
31716          (mycos-raw (- x (pi-over-2))))  ; Now -pi/2 <= x <= pi/4.
31717         ((< x (- (pi-over-4)))
31718          (- (mycos-raw (+ x (pi-over-2)))))  ; Now -pi/4 <= x <= pi/4,
31719         (t (mysin-series x))))           ; so the series will be efficient.
31720 @end smallexample
31722 @noindent
31723 where @code{mysin-complex} is an appropriate function to handle complex
31724 numbers, @code{mysin-series} is the routine to compute the sine Taylor
31725 series as before, and @code{mycos-raw} is a function analogous to
31726 @code{mysin-raw} for cosines.
31728 The strategy is to ensure that @cite{x} is nonnegative before calling
31729 @code{mysin-raw}.  This function then recursively reduces its argument
31730 to a suitable range, namely, plus-or-minus @c{$\pi \over 4$}
31731 @cite{pi/4}.  Note that each
31732 test, and particularly the first comparison against 7, is designed so
31733 that small roundoff errors cannot produce an infinite loop.  (Suppose
31734 we compared with @samp{(two-pi)} instead; if due to roundoff problems
31735 the modulo operator ever returned @samp{(two-pi)} exactly, an infinite
31736 recursion could result!)  We use modulo only for arguments that will
31737 clearly get reduced, knowing that the next rule will catch any reductions
31738 that this rule misses.
31740 If a program is being written for general use, it is important to code
31741 it carefully as shown in this second example.  For quick-and-dirty programs,
31742 when you know that your own use of the sine function will never encounter
31743 a large argument, a simpler program like the first one shown is fine.
31745 @node Calling Calc from Your Programs, Internals, Example Definitions, Lisp Definitions
31746 @subsection Calling Calc from Your Lisp Programs
31748 @noindent
31749 A later section (@pxref{Internals}) gives a full description of
31750 Calc's internal Lisp functions.  It's not hard to call Calc from
31751 inside your programs, but the number of these functions can be daunting.
31752 So Calc provides one special ``programmer-friendly'' function called
31753 @code{calc-eval} that can be made to do just about everything you
31754 need.  It's not as fast as the low-level Calc functions, but it's
31755 much simpler to use!
31757 It may seem that @code{calc-eval} itself has a daunting number of
31758 options, but they all stem from one simple operation.
31760 In its simplest manifestation, @samp{(calc-eval "1+2")} parses the
31761 string @code{"1+2"} as if it were a Calc algebraic entry and returns
31762 the result formatted as a string: @code{"3"}.
31764 Since @code{calc-eval} is on the list of recommended @code{autoload}
31765 functions, you don't need to make any special preparations to load
31766 Calc before calling @code{calc-eval} the first time.  Calc will be
31767 loaded and initialized for you.
31769 All the Calc modes that are currently in effect will be used when
31770 evaluating the expression and formatting the result.
31772 @ifinfo
31773 @example
31775 @end example
31776 @end ifinfo
31777 @subsubsection Additional Arguments to @code{calc-eval}
31779 @noindent
31780 If the input string parses to a list of expressions, Calc returns
31781 the results separated by @code{", "}.  You can specify a different
31782 separator by giving a second string argument to @code{calc-eval}:
31783 @samp{(calc-eval "1+2,3+4" ";")} returns @code{"3;7"}.
31785 The ``separator'' can also be any of several Lisp symbols which
31786 request other behaviors from @code{calc-eval}.  These are discussed
31787 one by one below.
31789 You can give additional arguments to be substituted for
31790 @samp{$}, @samp{$$}, and so on in the main expression.  For
31791 example, @samp{(calc-eval "$/$$" nil "7" "1+1")} evaluates the
31792 expression @code{"7/(1+1)"} to yield the result @code{"3.5"}
31793 (assuming Fraction mode is not in effect).  Note the @code{nil}
31794 used as a placeholder for the item-separator argument.
31796 @ifinfo
31797 @example
31799 @end example
31800 @end ifinfo
31801 @subsubsection Error Handling
31803 @noindent
31804 If @code{calc-eval} encounters an error, it returns a list containing
31805 the character position of the error, plus a suitable message as a
31806 string.  Note that @samp{1 / 0} is @emph{not} an error by Calc's
31807 standards; it simply returns the string @code{"1 / 0"} which is the
31808 division left in symbolic form.  But @samp{(calc-eval "1/")} will
31809 return the list @samp{(2 "Expected a number")}.
31811 If you bind the variable @code{calc-eval-error} to @code{t}
31812 using a @code{let} form surrounding the call to @code{calc-eval},
31813 errors instead call the Emacs @code{error} function which aborts
31814 to the Emacs command loop with a beep and an error message.
31816 If you bind this variable to the symbol @code{string}, error messages
31817 are returned as strings instead of lists.  The character position is
31818 ignored.
31820 As a courtesy to other Lisp code which may be using Calc, be sure
31821 to bind @code{calc-eval-error} using @code{let} rather than changing
31822 it permanently with @code{setq}.
31824 @ifinfo
31825 @example
31827 @end example
31828 @end ifinfo
31829 @subsubsection Numbers Only
31831 @noindent
31832 Sometimes it is preferable to treat @samp{1 / 0} as an error
31833 rather than returning a symbolic result.  If you pass the symbol
31834 @code{num} as the second argument to @code{calc-eval}, results
31835 that are not constants are treated as errors.  The error message
31836 reported is the first @code{calc-why} message if there is one,
31837 or otherwise ``Number expected.''
31839 A result is ``constant'' if it is a number, vector, or other
31840 object that does not include variables or function calls.  If it
31841 is a vector, the components must themselves be constants.
31843 @ifinfo
31844 @example
31846 @end example
31847 @end ifinfo
31848 @subsubsection Default Modes
31850 @noindent
31851 If the first argument to @code{calc-eval} is a list whose first
31852 element is a formula string, then @code{calc-eval} sets all the
31853 various Calc modes to their default values while the formula is
31854 evaluated and formatted.  For example, the precision is set to 12
31855 digits, digit grouping is turned off, and the normal language
31856 mode is used.
31858 This same principle applies to the other options discussed below.
31859 If the first argument would normally be @var{x}, then it can also
31860 be the list @samp{(@var{x})} to use the default mode settings.
31862 If there are other elements in the list, they are taken as
31863 variable-name/value pairs which override the default mode
31864 settings.  Look at the documentation at the front of the
31865 @file{calc.el} file to find the names of the Lisp variables for
31866 the various modes.  The mode settings are restored to their
31867 original values when @code{calc-eval} is done.
31869 For example, @samp{(calc-eval '("$+$$" calc-internal-prec 8) 'num a b)}
31870 computes the sum of two numbers, requiring a numeric result, and
31871 using default mode settings except that the precision is 8 instead
31872 of the default of 12.
31874 It's usually best to use this form of @code{calc-eval} unless your
31875 program actually considers the interaction with Calc's mode settings
31876 to be a feature.  This will avoid all sorts of potential ``gotchas'';
31877 consider what happens with @samp{(calc-eval "sqrt(2)" 'num)}
31878 when the user has left Calc in symbolic mode or no-simplify mode.
31880 As another example, @samp{(equal (calc-eval '("$<$$") nil a b) "1")}
31881 checks if the number in string @cite{a} is less than the one in
31882 string @cite{b}.  Without using a list, the integer 1 might
31883 come out in a variety of formats which would be hard to test for
31884 conveniently: @code{"1"}, @code{"8#1"}, @code{"00001"}.  (But
31885 see ``Predicates'' mode, below.)
31887 @ifinfo
31888 @example
31890 @end example
31891 @end ifinfo
31892 @subsubsection Raw Numbers
31894 @noindent
31895 Normally all input and output for @code{calc-eval} is done with strings.
31896 You can do arithmetic with, say, @samp{(calc-eval "$+$$" nil a b)}
31897 in place of @samp{(+ a b)}, but this is very inefficient since the
31898 numbers must be converted to and from string format as they are passed
31899 from one @code{calc-eval} to the next.
31901 If the separator is the symbol @code{raw}, the result will be returned
31902 as a raw Calc data structure rather than a string.  You can read about
31903 how these objects look in the following sections, but usually you can
31904 treat them as ``black box'' objects with no important internal
31905 structure.
31907 There is also a @code{rawnum} symbol, which is a combination of
31908 @code{raw} (returning a raw Calc object) and @code{num} (signaling
31909 an error if that object is not a constant).
31911 You can pass a raw Calc object to @code{calc-eval} in place of a
31912 string, either as the formula itself or as one of the @samp{$}
31913 arguments.  Thus @samp{(calc-eval "$+$$" 'raw a b)} is an
31914 addition function that operates on raw Calc objects.  Of course
31915 in this case it would be easier to call the low-level @code{math-add}
31916 function in Calc, if you can remember its name.
31918 In particular, note that a plain Lisp integer is acceptable to Calc
31919 as a raw object.  (All Lisp integers are accepted on input, but
31920 integers of more than six decimal digits are converted to ``big-integer''
31921 form for output.  @xref{Data Type Formats}.)
31923 When it comes time to display the object, just use @samp{(calc-eval a)}
31924 to format it as a string.
31926 It is an error if the input expression evaluates to a list of
31927 values.  The separator symbol @code{list} is like @code{raw}
31928 except that it returns a list of one or more raw Calc objects.
31930 Note that a Lisp string is not a valid Calc object, nor is a list
31931 containing a string.  Thus you can still safely distinguish all the
31932 various kinds of error returns discussed above.
31934 @ifinfo
31935 @example
31937 @end example
31938 @end ifinfo
31939 @subsubsection Predicates
31941 @noindent
31942 If the separator symbol is @code{pred}, the result of the formula is
31943 treated as a true/false value; @code{calc-eval} returns @code{t} or
31944 @code{nil}, respectively.  A value is considered ``true'' if it is a
31945 non-zero number, or false if it is zero or if it is not a number.
31947 For example, @samp{(calc-eval "$<$$" 'pred a b)} tests whether
31948 one value is less than another.
31950 As usual, it is also possible for @code{calc-eval} to return one of
31951 the error indicators described above.  Lisp will interpret such an
31952 indicator as ``true'' if you don't check for it explicitly.  If you
31953 wish to have an error register as ``false'', use something like
31954 @samp{(eq (calc-eval ...) t)}.
31956 @ifinfo
31957 @example
31959 @end example
31960 @end ifinfo
31961 @subsubsection Variable Values
31963 @noindent
31964 Variables in the formula passed to @code{calc-eval} are not normally
31965 replaced by their values.  If you wish this, you can use the
31966 @code{evalv} function (@pxref{Algebraic Manipulation}).  For example,
31967 if 4 is stored in Calc variable @code{a} (i.e., in Lisp variable
31968 @code{var-a}), then @samp{(calc-eval "a+pi")} will return the
31969 formula @code{"a + pi"}, but @samp{(calc-eval "evalv(a+pi)")}
31970 will return @code{"7.14159265359"}.
31972 To store in a Calc variable, just use @code{setq} to store in the
31973 corresponding Lisp variable.  (This is obtained by prepending
31974 @samp{var-} to the Calc variable name.)  Calc routines will
31975 understand either string or raw form values stored in variables,
31976 although raw data objects are much more efficient.  For example,
31977 to increment the Calc variable @code{a}:
31979 @example
31980 (setq var-a (calc-eval "evalv(a+1)" 'raw))
31981 @end example
31983 @ifinfo
31984 @example
31986 @end example
31987 @end ifinfo
31988 @subsubsection Stack Access
31990 @noindent
31991 If the separator symbol is @code{push}, the formula argument is
31992 evaluated (with possible @samp{$} expansions, as usual).  The
31993 result is pushed onto the Calc stack.  The return value is @code{nil}
31994 (unless there is an error from evaluating the formula, in which
31995 case the return value depends on @code{calc-eval-error} in the
31996 usual way).
31998 If the separator symbol is @code{pop}, the first argument to
31999 @code{calc-eval} must be an integer instead of a string.  That
32000 many values are popped from the stack and thrown away.  A negative
32001 argument deletes the entry at that stack level.  The return value
32002 is the number of elements remaining in the stack after popping;
32003 @samp{(calc-eval 0 'pop)} is a good way to measure the size of
32004 the stack.
32006 If the separator symbol is @code{top}, the first argument to
32007 @code{calc-eval} must again be an integer.  The value at that
32008 stack level is formatted as a string and returned.  Thus
32009 @samp{(calc-eval 1 'top)} returns the top-of-stack value.  If the
32010 integer is out of range, @code{nil} is returned.
32012 The separator symbol @code{rawtop} is just like @code{top} except
32013 that the stack entry is returned as a raw Calc object instead of
32014 as a string.
32016 In all of these cases the first argument can be made a list in
32017 order to force the default mode settings, as described above.
32018 Thus @samp{(calc-eval '(2 calc-number-radix 16) 'top)} returns the
32019 second-to-top stack entry, formatted as a string using the default
32020 instead of current display modes, except that the radix is
32021 hexadecimal instead of decimal.
32023 It is, of course, polite to put the Calc stack back the way you
32024 found it when you are done, unless the user of your program is
32025 actually expecting it to affect the stack.
32027 Note that you do not actually have to switch into the @samp{*Calculator*}
32028 buffer in order to use @code{calc-eval}; it temporarily switches into
32029 the stack buffer if necessary.
32031 @ifinfo
32032 @example
32034 @end example
32035 @end ifinfo
32036 @subsubsection Keyboard Macros
32038 @noindent
32039 If the separator symbol is @code{macro}, the first argument must be a
32040 string of characters which Calc can execute as a sequence of keystrokes.
32041 This switches into the Calc buffer for the duration of the macro.
32042 For example, @samp{(calc-eval "vx5\rVR+" 'macro)} pushes the
32043 vector @samp{[1,2,3,4,5]} on the stack and then replaces it
32044 with the sum of those numbers.  Note that @samp{\r} is the Lisp
32045 notation for the carriage-return, @key{RET}, character.
32047 If your keyboard macro wishes to pop the stack, @samp{\C-d} is
32048 safer than @samp{\177} (the @key{DEL} character) because some
32049 installations may have switched the meanings of @key{DEL} and
32050 @kbd{C-h}.  Calc always interprets @kbd{C-d} as a synonym for
32051 ``pop-stack'' regardless of key mapping.
32053 If you provide a third argument to @code{calc-eval}, evaluation
32054 of the keyboard macro will leave a record in the Trail using
32055 that argument as a tag string.  Normally the Trail is unaffected.
32057 The return value in this case is always @code{nil}.
32059 @ifinfo
32060 @example
32062 @end example
32063 @end ifinfo
32064 @subsubsection Lisp Evaluation
32066 @noindent
32067 Finally, if the separator symbol is @code{eval}, then the Lisp
32068 @code{eval} function is called on the first argument, which must
32069 be a Lisp expression rather than a Calc formula.  Remember to
32070 quote the expression so that it is not evaluated until inside
32071 @code{calc-eval}.
32073 The difference from plain @code{eval} is that @code{calc-eval}
32074 switches to the Calc buffer before evaluating the expression.
32075 For example, @samp{(calc-eval '(setq calc-internal-prec 17) 'eval)}
32076 will correctly affect the buffer-local Calc precision variable.
32078 An alternative would be @samp{(calc-eval '(calc-precision 17) 'eval)}.
32079 This is evaluating a call to the function that is normally invoked
32080 by the @kbd{p} key, giving it 17 as its ``numeric prefix argument.''
32081 Note that this function will leave a message in the echo area as
32082 a side effect.  Also, all Calc functions switch to the Calc buffer
32083 automatically if not invoked from there, so the above call is
32084 also equivalent to @samp{(calc-precision 17)} by itself.
32085 In all cases, Calc uses @code{save-excursion} to switch back to
32086 your original buffer when it is done.
32088 As usual the first argument can be a list that begins with a Lisp
32089 expression to use default instead of current mode settings.
32091 The result of @code{calc-eval} in this usage is just the result
32092 returned by the evaluated Lisp expression.
32094 @ifinfo
32095 @example
32097 @end example
32098 @end ifinfo
32099 @subsubsection Example
32101 @noindent
32102 @findex convert-temp
32103 Here is a sample Emacs command that uses @code{calc-eval}.  Suppose
32104 you have a document with lots of references to temperatures on the
32105 Fahrenheit scale, say ``98.6 F'', and you wish to convert these
32106 references to Centigrade.  The following command does this conversion.
32107 Place the Emacs cursor right after the letter ``F'' and invoke the
32108 command to change ``98.6 F'' to ``37 C''.  Or, if the temperature is
32109 already in Centigrade form, the command changes it back to Fahrenheit.
32111 @example
32112 (defun convert-temp ()
32113   (interactive)
32114   (save-excursion
32115     (re-search-backward "[^-.0-9]\\([-.0-9]+\\) *\\([FC]\\)")
32116     (let* ((top1 (match-beginning 1))
32117            (bot1 (match-end 1))
32118            (number (buffer-substring top1 bot1))
32119            (top2 (match-beginning 2))
32120            (bot2 (match-end 2))
32121            (type (buffer-substring top2 bot2)))
32122       (if (equal type "F")
32123           (setq type "C"
32124                 number (calc-eval "($ - 32)*5/9" nil number))
32125         (setq type "F"
32126               number (calc-eval "$*9/5 + 32" nil number)))
32127       (goto-char top2)
32128       (delete-region top2 bot2)
32129       (insert-before-markers type)
32130       (goto-char top1)
32131       (delete-region top1 bot1)
32132       (if (string-match "\\.$" number)   ; change "37." to "37"
32133           (setq number (substring number 0 -1)))
32134       (insert number))))
32135 @end example
32137 Note the use of @code{insert-before-markers} when changing between
32138 ``F'' and ``C'', so that the character winds up before the cursor
32139 instead of after it.
32141 @node Internals, , Calling Calc from Your Programs, Lisp Definitions
32142 @subsection Calculator Internals
32144 @noindent
32145 This section describes the Lisp functions defined by the Calculator that
32146 may be of use to user-written Calculator programs (as described in the
32147 rest of this chapter).  These functions are shown by their names as they
32148 conventionally appear in @code{defmath}.  Their full Lisp names are
32149 generally gotten by prepending @samp{calcFunc-} or @samp{math-} to their
32150 apparent names.  (Names that begin with @samp{calc-} are already in
32151 their full Lisp form.)  You can use the actual full names instead if you
32152 prefer them, or if you are calling these functions from regular Lisp.
32154 The functions described here are scattered throughout the various
32155 Calc component files.  Note that @file{calc.el} includes @code{autoload}s
32156 for only a few component files; when Calc wants to call an advanced
32157 function it calls @samp{(calc-extensions)} first; this function
32158 autoloads @file{calc-ext.el}, which in turn autoloads all the functions
32159 in the remaining component files.
32161 Because @code{defmath} itself uses the extensions, user-written code
32162 generally always executes with the extensions already loaded, so
32163 normally you can use any Calc function and be confident that it will
32164 be autoloaded for you when necessary.  If you are doing something
32165 special, check carefully to make sure each function you are using is
32166 from @file{calc.el} or its components, and call @samp{(calc-extensions)}
32167 before using any function based in @file{calc-ext.el} if you can't
32168 prove this file will already be loaded.
32170 @menu
32171 * Data Type Formats::
32172 * Interactive Lisp Functions::
32173 * Stack Lisp Functions::
32174 * Predicates::
32175 * Computational Lisp Functions::
32176 * Vector Lisp Functions::
32177 * Symbolic Lisp Functions::
32178 * Formatting Lisp Functions::
32179 * Hooks::
32180 @end menu
32182 @node Data Type Formats, Interactive Lisp Functions, Internals, Internals
32183 @subsubsection Data Type Formats
32185 @noindent
32186 Integers are stored in either of two ways, depending on their magnitude.
32187 Integers less than one million in absolute value are stored as standard
32188 Lisp integers.  This is the only storage format for Calc data objects
32189 which is not a Lisp list.
32191 Large integers are stored as lists of the form @samp{(bigpos @var{d0}
32192 @var{d1} @var{d2} @dots{})} for positive integers 1000000 or more, or
32193 @samp{(bigneg @var{d0} @var{d1} @var{d2} @dots{})} for negative integers
32194 @i{-1000000} or less.  Each @var{d} is a base-1000 ``digit,'' a Lisp integer
32195 from 0 to 999.  The least significant digit is @var{d0}; the last digit,
32196 @var{dn}, which is always nonzero, is the most significant digit.  For
32197 example, the integer @i{-12345678} is stored as @samp{(bigneg 678 345 12)}.
32199 The distinction between small and large integers is entirely hidden from
32200 the user.  In @code{defmath} definitions, the Lisp predicate @code{integerp}
32201 returns true for either kind of integer, and in general both big and small
32202 integers are accepted anywhere the word ``integer'' is used in this manual.
32203 If the distinction must be made, native Lisp integers are called @dfn{fixnums}
32204 and large integers are called @dfn{bignums}.
32206 Fractions are stored as a list of the form, @samp{(frac @var{n} @var{d})}
32207 where @var{n} is an integer (big or small) numerator, @var{d} is an
32208 integer denominator greater than one, and @var{n} and @var{d} are relatively
32209 prime.  Note that fractions where @var{d} is one are automatically converted
32210 to plain integers by all math routines; fractions where @var{d} is negative
32211 are normalized by negating the numerator and denominator.
32213 Floating-point numbers are stored in the form, @samp{(float @var{mant}
32214 @var{exp})}, where @var{mant} (the ``mantissa'') is an integer less than
32215 @samp{10^@var{p}} in absolute value (@var{p} represents the current
32216 precision), and @var{exp} (the ``exponent'') is a fixnum.  The value of
32217 the float is @samp{@var{mant} * 10^@var{exp}}.  For example, the number
32218 @i{-3.14} is stored as @samp{(float -314 -2) = -314*10^-2}.  Other constraints
32219 are that the number 0.0 is always stored as @samp{(float 0 0)}, and,
32220 except for the 0.0 case, the rightmost base-10 digit of @var{mant} is
32221 always nonzero.  (If the rightmost digit is zero, the number is
32222 rearranged by dividing @var{mant} by ten and incrementing @var{exp}.)@refill
32224 Rectangular complex numbers are stored in the form @samp{(cplx @var{re}
32225 @var{im})}, where @var{re} and @var{im} are each real numbers, either
32226 integers, fractions, or floats.  The value is @samp{@var{re} + @var{im}i}.
32227 The @var{im} part is nonzero; complex numbers with zero imaginary
32228 components are converted to real numbers automatically.@refill
32230 Polar complex numbers are stored in the form @samp{(polar @var{r}
32231 @var{theta})}, where @var{r} is a positive real value and @var{theta}
32232 is a real value or HMS form representing an angle.  This angle is
32233 usually normalized to lie in the interval @samp{(-180 ..@: 180)} degrees,
32234 or @samp{(-pi ..@: pi)} radians, according to the current angular mode.
32235 If the angle is 0 the value is converted to a real number automatically.
32236 (If the angle is 180 degrees, the value is usually also converted to a
32237 negative real number.)@refill
32239 Hours-minutes-seconds forms are stored as @samp{(hms @var{h} @var{m}
32240 @var{s})}, where @var{h} is an integer or an integer-valued float (i.e.,
32241 a float with @samp{@var{exp} >= 0}), @var{m} is an integer or integer-valued
32242 float in the range @w{@samp{[0 ..@: 60)}}, and @var{s} is any real number
32243 in the range @samp{[0 ..@: 60)}.@refill
32245 Date forms are stored as @samp{(date @var{n})}, where @var{n} is
32246 a real number that counts days since midnight on the morning of
32247 January 1, 1 AD.  If @var{n} is an integer, this is a pure date
32248 form.  If @var{n} is a fraction or float, this is a date/time form.
32250 Modulo forms are stored as @samp{(mod @var{n} @var{m})}, where @var{m} is a
32251 positive real number or HMS form, and @var{n} is a real number or HMS
32252 form in the range @samp{[0 ..@: @var{m})}.
32254 Error forms are stored as @samp{(sdev @var{x} @var{sigma})}, where @var{x}
32255 is the mean value and @var{sigma} is the standard deviation.  Each
32256 component is either a number, an HMS form, or a symbolic object
32257 (a variable or function call).  If @var{sigma} is zero, the value is
32258 converted to a plain real number.  If @var{sigma} is negative or
32259 complex, it is automatically normalized to be a positive real.
32261 Interval forms are stored as @samp{(intv @var{mask} @var{lo} @var{hi})},
32262 where @var{mask} is one of the integers 0, 1, 2, or 3, and @var{lo} and
32263 @var{hi} are real numbers, HMS forms, or symbolic objects.  The @var{mask}
32264 is a binary integer where 1 represents the fact that the interval is
32265 closed on the high end, and 2 represents the fact that it is closed on
32266 the low end.  (Thus 3 represents a fully closed interval.)  The interval
32267 @w{@samp{(intv 3 @var{x} @var{x})}} is converted to the plain number @var{x};
32268 intervals @samp{(intv @var{mask} @var{x} @var{x})} for any other @var{mask}
32269 represent empty intervals.  If @var{hi} is less than @var{lo}, the interval
32270 is converted to a standard empty interval by replacing @var{hi} with @var{lo}.
32272 Vectors are stored as @samp{(vec @var{v1} @var{v2} @dots{})}, where @var{v1}
32273 is the first element of the vector, @var{v2} is the second, and so on.
32274 An empty vector is stored as @samp{(vec)}.  A matrix is simply a vector
32275 where all @var{v}'s are themselves vectors of equal lengths.  Note that
32276 Calc vectors are unrelated to the Emacs Lisp ``vector'' type, which is
32277 generally unused by Calc data structures.
32279 Variables are stored as @samp{(var @var{name} @var{sym})}, where
32280 @var{name} is a Lisp symbol whose print name is used as the visible name
32281 of the variable, and @var{sym} is a Lisp symbol in which the variable's
32282 value is actually stored.  Thus, @samp{(var pi var-pi)} represents the
32283 special constant @samp{pi}.  Almost always, the form is @samp{(var
32284 @var{v} var-@var{v})}.  If the variable name was entered with @code{#}
32285 signs (which are converted to hyphens internally), the form is
32286 @samp{(var @var{u} @var{v})}, where @var{u} is a symbol whose name
32287 contains @code{#} characters, and @var{v} is a symbol that contains
32288 @code{-} characters instead.  The value of a variable is the Calc
32289 object stored in its @var{sym} symbol's value cell.  If the symbol's
32290 value cell is void or if it contains @code{nil}, the variable has no
32291 value.  Special constants have the form @samp{(special-const
32292 @var{value})} stored in their value cell, where @var{value} is a formula
32293 which is evaluated when the constant's value is requested.  Variables
32294 which represent units are not stored in any special way; they are units
32295 only because their names appear in the units table.  If the value
32296 cell contains a string, it is parsed to get the variable's value when
32297 the variable is used.@refill
32299 A Lisp list with any other symbol as the first element is a function call.
32300 The symbols @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, @code{^},
32301 and @code{|} represent special binary operators; these lists are always
32302 of the form @samp{(@var{op} @var{lhs} @var{rhs})} where @var{lhs} is the
32303 sub-formula on the lefthand side and @var{rhs} is the sub-formula on the
32304 right.  The symbol @code{neg} represents unary negation; this list is always
32305 of the form @samp{(neg @var{arg})}.  Any other symbol @var{func} represents a
32306 function that would be displayed in function-call notation; the symbol
32307 @var{func} is in general always of the form @samp{calcFunc-@var{name}}.
32308 The function cell of the symbol @var{func} should contain a Lisp function
32309 for evaluating a call to @var{func}.  This function is passed the remaining
32310 elements of the list (themselves already evaluated) as arguments; such
32311 functions should return @code{nil} or call @code{reject-arg} to signify
32312 that they should be left in symbolic form, or they should return a Calc
32313 object which represents their value, or a list of such objects if they
32314 wish to return multiple values.  (The latter case is allowed only for
32315 functions which are the outer-level call in an expression whose value is
32316 about to be pushed on the stack; this feature is considered obsolete
32317 and is not used by any built-in Calc functions.)@refill
32319 @node Interactive Lisp Functions, Stack Lisp Functions, Data Type Formats, Internals
32320 @subsubsection Interactive Functions
32322 @noindent
32323 The functions described here are used in implementing interactive Calc
32324 commands.  Note that this list is not exhaustive!  If there is an
32325 existing command that behaves similarly to the one you want to define,
32326 you may find helpful tricks by checking the source code for that command.
32328 @defun calc-set-command-flag flag
32329 Set the command flag @var{flag}.  This is generally a Lisp symbol, but
32330 may in fact be anything.  The effect is to add @var{flag} to the list
32331 stored in the variable @code{calc-command-flags}, unless it is already
32332 there.  @xref{Defining Simple Commands}.
32333 @end defun
32335 @defun calc-clear-command-flag flag
32336 If @var{flag} appears among the list of currently-set command flags,
32337 remove it from that list.
32338 @end defun
32340 @defun calc-record-undo rec
32341 Add the ``undo record'' @var{rec} to the list of steps to take if the
32342 current operation should need to be undone.  Stack push and pop functions
32343 automatically call @code{calc-record-undo}, so the kinds of undo records
32344 you might need to create take the form @samp{(set @var{sym} @var{value})},
32345 which says that the Lisp variable @var{sym} was changed and had previously
32346 contained @var{value}; @samp{(store @var{var} @var{value})} which says that
32347 the Calc variable @var{var} (a string which is the name of the symbol that
32348 contains the variable's value) was stored and its previous value was
32349 @var{value} (either a Calc data object, or @code{nil} if the variable was
32350 previously void); or @samp{(eval @var{undo} @var{redo} @var{args} @dots{})},
32351 which means that to undo requires calling the function @samp{(@var{undo}
32352 @var{args} @dots{})} and, if the undo is later redone, calling
32353 @samp{(@var{redo} @var{args} @dots{})}.@refill
32354 @end defun
32356 @defun calc-record-why msg args
32357 Record the error or warning message @var{msg}, which is normally a string.
32358 This message will be replayed if the user types @kbd{w} (@code{calc-why});
32359 if the message string begins with a @samp{*}, it is considered important
32360 enough to display even if the user doesn't type @kbd{w}.  If one or more
32361 @var{args} are present, the displayed message will be of the form,
32362 @samp{@var{msg}: @var{arg1}, @var{arg2}, @dots{}}, where the arguments are
32363 formatted on the assumption that they are either strings or Calc objects of
32364 some sort.  If @var{msg} is a symbol, it is the name of a Calc predicate
32365 (such as @code{integerp} or @code{numvecp}) which the arguments did not
32366 satisfy; it is expanded to a suitable string such as ``Expected an
32367 integer.''  The @code{reject-arg} function calls @code{calc-record-why}
32368 automatically; @pxref{Predicates}.@refill
32369 @end defun
32371 @defun calc-is-inverse
32372 This predicate returns true if the current command is inverse,
32373 i.e., if the Inverse (@kbd{I} key) flag was set.
32374 @end defun
32376 @defun calc-is-hyperbolic
32377 This predicate is the analogous function for the @kbd{H} key.
32378 @end defun
32380 @node Stack Lisp Functions, Predicates, Interactive Lisp Functions, Internals
32381 @subsubsection Stack-Oriented Functions
32383 @noindent
32384 The functions described here perform various operations on the Calc
32385 stack and trail.  They are to be used in interactive Calc commands.
32387 @defun calc-push-list vals n
32388 Push the Calc objects in list @var{vals} onto the stack at stack level
32389 @var{n}.  If @var{n} is omitted it defaults to 1, so that the elements
32390 are pushed at the top of the stack.  If @var{n} is greater than 1, the
32391 elements will be inserted into the stack so that the last element will
32392 end up at level @var{n}, the next-to-last at level @var{n}+1, etc.
32393 The elements of @var{vals} are assumed to be valid Calc objects, and
32394 are not evaluated, rounded, or renormalized in any way.  If @var{vals}
32395 is an empty list, nothing happens.@refill
32397 The stack elements are pushed without any sub-formula selections.
32398 You can give an optional third argument to this function, which must
32399 be a list the same size as @var{vals} of selections.  Each selection
32400 must be @code{eq} to some sub-formula of the corresponding formula
32401 in @var{vals}, or @code{nil} if that formula should have no selection.
32402 @end defun
32404 @defun calc-top-list n m
32405 Return a list of the @var{n} objects starting at level @var{m} of the
32406 stack.  If @var{m} is omitted it defaults to 1, so that the elements are
32407 taken from the top of the stack.  If @var{n} is omitted, it also
32408 defaults to 1, so that the top stack element (in the form of a
32409 one-element list) is returned.  If @var{m} is greater than 1, the
32410 @var{m}th stack element will be at the end of the list, the @var{m}+1st
32411 element will be next-to-last, etc.  If @var{n} or @var{m} are out of
32412 range, the command is aborted with a suitable error message.  If @var{n}
32413 is zero, the function returns an empty list.  The stack elements are not
32414 evaluated, rounded, or renormalized.@refill
32416 If any stack elements contain selections, and selections have not
32417 been disabled by the @kbd{j e} (@code{calc-enable-selections}) command,
32418 this function returns the selected portions rather than the entire
32419 stack elements.  It can be given a third ``selection-mode'' argument
32420 which selects other behaviors.  If it is the symbol @code{t}, then
32421 a selection in any of the requested stack elements produces an
32422 ``illegal operation on selections'' error.  If it is the symbol @code{full},
32423 the whole stack entry is always returned regardless of selections.
32424 If it is the symbol @code{sel}, the selected portion is always returned,
32425 or @code{nil} if there is no selection.  (This mode ignores the @kbd{j e}
32426 command.)  If the symbol is @code{entry}, the complete stack entry in
32427 list form is returned; the first element of this list will be the whole
32428 formula, and the third element will be the selection (or @code{nil}).
32429 @end defun
32431 @defun calc-pop-stack n m
32432 Remove the specified elements from the stack.  The parameters @var{n}
32433 and @var{m} are defined the same as for @code{calc-top-list}.  The return
32434 value of @code{calc-pop-stack} is uninteresting.
32436 If there are any selected sub-formulas among the popped elements, and
32437 @kbd{j e} has not been used to disable selections, this produces an
32438 error without changing the stack.  If you supply an optional third
32439 argument of @code{t}, the stack elements are popped even if they
32440 contain selections.
32441 @end defun
32443 @defun calc-record-list vals tag
32444 This function records one or more results in the trail.  The @var{vals}
32445 are a list of strings or Calc objects.  The @var{tag} is the four-character
32446 tag string to identify the values.  If @var{tag} is omitted, a blank tag
32447 will be used.
32448 @end defun
32450 @defun calc-normalize n
32451 This function takes a Calc object and ``normalizes'' it.  At the very
32452 least this involves re-rounding floating-point values according to the
32453 current precision and other similar jobs.  Also, unless the user has
32454 selected no-simplify mode (@pxref{Simplification Modes}), this involves
32455 actually evaluating a formula object by executing the function calls
32456 it contains, and possibly also doing algebraic simplification, etc.
32457 @end defun
32459 @defun calc-top-list-n n m
32460 This function is identical to @code{calc-top-list}, except that it calls
32461 @code{calc-normalize} on the values that it takes from the stack.  They
32462 are also passed through @code{check-complete}, so that incomplete
32463 objects will be rejected with an error message.  All computational
32464 commands should use this in preference to @code{calc-top-list}; the only
32465 standard Calc commands that operate on the stack without normalizing
32466 are stack management commands like @code{calc-enter} and @code{calc-roll-up}.
32467 This function accepts the same optional selection-mode argument as
32468 @code{calc-top-list}.
32469 @end defun
32471 @defun calc-top-n m
32472 This function is a convenient form of @code{calc-top-list-n} in which only
32473 a single element of the stack is taken and returned, rather than a list
32474 of elements.  This also accepts an optional selection-mode argument.
32475 @end defun
32477 @defun calc-enter-result n tag vals
32478 This function is a convenient interface to most of the above functions.
32479 The @var{vals} argument should be either a single Calc object, or a list
32480 of Calc objects; the object or objects are normalized, and the top @var{n}
32481 stack entries are replaced by the normalized objects.  If @var{tag} is
32482 non-@code{nil}, the normalized objects are also recorded in the trail.
32483 A typical stack-based computational command would take the form,
32485 @smallexample
32486 (calc-enter-result @var{n} @var{tag} (cons 'calcFunc-@var{func}
32487                                (calc-top-list-n @var{n})))
32488 @end smallexample
32490 If any of the @var{n} stack elements replaced contain sub-formula
32491 selections, and selections have not been disabled by @kbd{j e},
32492 this function takes one of two courses of action.  If @var{n} is
32493 equal to the number of elements in @var{vals}, then each element of
32494 @var{vals} is spliced into the corresponding selection; this is what
32495 happens when you use the @key{TAB} key, or when you use a unary
32496 arithmetic operation like @code{sqrt}.  If @var{vals} has only one
32497 element but @var{n} is greater than one, there must be only one
32498 selection among the top @var{n} stack elements; the element from
32499 @var{vals} is spliced into that selection.  This is what happens when
32500 you use a binary arithmetic operation like @kbd{+}.  Any other
32501 combination of @var{n} and @var{vals} is an error when selections
32502 are present.
32503 @end defun
32505 @defun calc-unary-op tag func arg
32506 This function implements a unary operator that allows a numeric prefix
32507 argument to apply the operator over many stack entries.  If the prefix
32508 argument @var{arg} is @code{nil}, this uses @code{calc-enter-result}
32509 as outlined above.  Otherwise, it maps the function over several stack
32510 elements; @pxref{Prefix Arguments}.  For example,@refill
32512 @smallexample
32513 (defun calc-zeta (arg)
32514   (interactive "P")
32515   (calc-unary-op "zeta" 'calcFunc-zeta arg))
32516 @end smallexample
32517 @end defun
32519 @defun calc-binary-op tag func arg ident unary
32520 This function implements a binary operator, analogously to
32521 @code{calc-unary-op}.  The optional @var{ident} and @var{unary}
32522 arguments specify the behavior when the prefix argument is zero or
32523 one, respectively.  If the prefix is zero, the value @var{ident}
32524 is pushed onto the stack, if specified, otherwise an error message
32525 is displayed.  If the prefix is one, the unary function @var{unary}
32526 is applied to the top stack element, or, if @var{unary} is not
32527 specified, nothing happens.  When the argument is two or more,
32528 the binary function @var{func} is reduced across the top @var{arg}
32529 stack elements; when the argument is negative, the function is
32530 mapped between the next-to-top @i{-@var{arg}} stack elements and the
32531 top element.@refill
32532 @end defun
32534 @defun calc-stack-size
32535 Return the number of elements on the stack as an integer.  This count
32536 does not include elements that have been temporarily hidden by stack
32537 truncation; @pxref{Truncating the Stack}.
32538 @end defun
32540 @defun calc-cursor-stack-index n
32541 Move the point to the @var{n}th stack entry.  If @var{n} is zero, this
32542 will be the @samp{.} line.  If @var{n} is from 1 to the current stack size,
32543 this will be the beginning of the first line of that stack entry's display.
32544 If line numbers are enabled, this will move to the first character of the
32545 line number, not the stack entry itself.@refill
32546 @end defun
32548 @defun calc-substack-height n
32549 Return the number of lines between the beginning of the @var{n}th stack
32550 entry and the bottom of the buffer.  If @var{n} is zero, this
32551 will be one (assuming no stack truncation).  If all stack entries are
32552 one line long (i.e., no matrices are displayed), the return value will
32553 be equal @var{n}+1 as long as @var{n} is in range.  (Note that in Big
32554 mode, the return value includes the blank lines that separate stack
32555 entries.)@refill
32556 @end defun
32558 @defun calc-refresh
32559 Erase the @code{*Calculator*} buffer and reformat its contents from memory.
32560 This must be called after changing any parameter, such as the current
32561 display radix, which might change the appearance of existing stack
32562 entries.  (During a keyboard macro invoked by the @kbd{X} key, refreshing
32563 is suppressed, but a flag is set so that the entire stack will be refreshed
32564 rather than just the top few elements when the macro finishes.)@refill
32565 @end defun
32567 @node Predicates, Computational Lisp Functions, Stack Lisp Functions, Internals
32568 @subsubsection Predicates
32570 @noindent
32571 The functions described here are predicates, that is, they return a
32572 true/false value where @code{nil} means false and anything else means
32573 true.  These predicates are expanded by @code{defmath}, for example,
32574 from @code{zerop} to @code{math-zerop}.  In many cases they correspond
32575 to native Lisp functions by the same name, but are extended to cover
32576 the full range of Calc data types.
32578 @defun zerop x
32579 Returns true if @var{x} is numerically zero, in any of the Calc data
32580 types.  (Note that for some types, such as error forms and intervals,
32581 it never makes sense to return true.)  In @code{defmath}, the expression
32582 @samp{(= x 0)} will automatically be converted to @samp{(math-zerop x)},
32583 and @samp{(/= x 0)} will be converted to @samp{(not (math-zerop x))}.
32584 @end defun
32586 @defun negp x
32587 Returns true if @var{x} is negative.  This accepts negative real numbers
32588 of various types, negative HMS and date forms, and intervals in which
32589 all included values are negative.  In @code{defmath}, the expression
32590 @samp{(< x 0)} will automatically be converted to @samp{(math-negp x)},
32591 and @samp{(>= x 0)} will be converted to @samp{(not (math-negp x))}.
32592 @end defun
32594 @defun posp x
32595 Returns true if @var{x} is positive (and non-zero).  For complex
32596 numbers, none of these three predicates will return true.
32597 @end defun
32599 @defun looks-negp x
32600 Returns true if @var{x} is ``negative-looking.''  This returns true if
32601 @var{x} is a negative number, or a formula with a leading minus sign
32602 such as @samp{-a/b}.  In other words, this is an object which can be
32603 made simpler by calling @code{(- @var{x})}.
32604 @end defun
32606 @defun integerp x
32607 Returns true if @var{x} is an integer of any size.
32608 @end defun
32610 @defun fixnump x
32611 Returns true if @var{x} is a native Lisp integer.
32612 @end defun
32614 @defun natnump x
32615 Returns true if @var{x} is a nonnegative integer of any size.
32616 @end defun
32618 @defun fixnatnump x
32619 Returns true if @var{x} is a nonnegative Lisp integer.
32620 @end defun
32622 @defun num-integerp x
32623 Returns true if @var{x} is numerically an integer, i.e., either a
32624 true integer or a float with no significant digits to the right of
32625 the decimal point.
32626 @end defun
32628 @defun messy-integerp x
32629 Returns true if @var{x} is numerically, but not literally, an integer.
32630 A value is @code{num-integerp} if it is @code{integerp} or
32631 @code{messy-integerp} (but it is never both at once).
32632 @end defun
32634 @defun num-natnump x
32635 Returns true if @var{x} is numerically a nonnegative integer.
32636 @end defun
32638 @defun evenp x
32639 Returns true if @var{x} is an even integer.
32640 @end defun
32642 @defun looks-evenp x
32643 Returns true if @var{x} is an even integer, or a formula with a leading
32644 multiplicative coefficient which is an even integer.
32645 @end defun
32647 @defun oddp x
32648 Returns true if @var{x} is an odd integer.
32649 @end defun
32651 @defun ratp x
32652 Returns true if @var{x} is a rational number, i.e., an integer or a
32653 fraction.
32654 @end defun
32656 @defun realp x
32657 Returns true if @var{x} is a real number, i.e., an integer, fraction,
32658 or floating-point number.
32659 @end defun
32661 @defun anglep x
32662 Returns true if @var{x} is a real number or HMS form.
32663 @end defun
32665 @defun floatp x
32666 Returns true if @var{x} is a float, or a complex number, error form,
32667 interval, date form, or modulo form in which at least one component
32668 is a float.
32669 @end defun
32671 @defun complexp x
32672 Returns true if @var{x} is a rectangular or polar complex number
32673 (but not a real number).
32674 @end defun
32676 @defun rect-complexp x
32677 Returns true if @var{x} is a rectangular complex number.
32678 @end defun
32680 @defun polar-complexp x
32681 Returns true if @var{x} is a polar complex number.
32682 @end defun
32684 @defun numberp x
32685 Returns true if @var{x} is a real number or a complex number.
32686 @end defun
32688 @defun scalarp x
32689 Returns true if @var{x} is a real or complex number or an HMS form.
32690 @end defun
32692 @defun vectorp x
32693 Returns true if @var{x} is a vector (this simply checks if its argument
32694 is a list whose first element is the symbol @code{vec}).
32695 @end defun
32697 @defun numvecp x
32698 Returns true if @var{x} is a number or vector.
32699 @end defun
32701 @defun matrixp x
32702 Returns true if @var{x} is a matrix, i.e., a vector of one or more vectors,
32703 all of the same size.
32704 @end defun
32706 @defun square-matrixp x
32707 Returns true if @var{x} is a square matrix.
32708 @end defun
32710 @defun objectp x
32711 Returns true if @var{x} is any numeric Calc object, including real and
32712 complex numbers, HMS forms, date forms, error forms, intervals, and
32713 modulo forms.  (Note that error forms and intervals may include formulas
32714 as their components; see @code{constp} below.)
32715 @end defun
32717 @defun objvecp x
32718 Returns true if @var{x} is an object or a vector.  This also accepts
32719 incomplete objects, but it rejects variables and formulas (except as
32720 mentioned above for @code{objectp}).
32721 @end defun
32723 @defun primp x
32724 Returns true if @var{x} is a ``primitive'' or ``atomic'' Calc object,
32725 i.e., one whose components cannot be regarded as sub-formulas.  This
32726 includes variables, and all @code{objectp} types except error forms
32727 and intervals.
32728 @end defun
32730 @defun constp x
32731 Returns true if @var{x} is constant, i.e., a real or complex number,
32732 HMS form, date form, or error form, interval, or vector all of whose
32733 components are @code{constp}.
32734 @end defun
32736 @defun lessp x y
32737 Returns true if @var{x} is numerically less than @var{y}.  Returns false
32738 if @var{x} is greater than or equal to @var{y}, or if the order is
32739 undefined or cannot be determined.  Generally speaking, this works
32740 by checking whether @samp{@var{x} - @var{y}} is @code{negp}.  In
32741 @code{defmath}, the expression @samp{(< x y)} will automatically be
32742 converted to @samp{(lessp x y)}; expressions involving @code{>}, @code{<=},
32743 and @code{>=} are similarly converted in terms of @code{lessp}.@refill
32744 @end defun
32746 @defun beforep x y
32747 Returns true if @var{x} comes before @var{y} in a canonical ordering
32748 of Calc objects.  If @var{x} and @var{y} are both real numbers, this
32749 will be the same as @code{lessp}.  But whereas @code{lessp} considers
32750 other types of objects to be unordered, @code{beforep} puts any two
32751 objects into a definite, consistent order.  The @code{beforep}
32752 function is used by the @kbd{V S} vector-sorting command, and also
32753 by @kbd{a s} to put the terms of a product into canonical order:
32754 This allows @samp{x y + y x} to be simplified easily to @samp{2 x y}.
32755 @end defun
32757 @defun equal x y
32758 This is the standard Lisp @code{equal} predicate; it returns true if
32759 @var{x} and @var{y} are structurally identical.  This is the usual way
32760 to compare numbers for equality, but note that @code{equal} will treat
32761 0 and 0.0 as different.
32762 @end defun
32764 @defun math-equal x y
32765 Returns true if @var{x} and @var{y} are numerically equal, either because
32766 they are @code{equal}, or because their difference is @code{zerop}.  In
32767 @code{defmath}, the expression @samp{(= x y)} will automatically be
32768 converted to @samp{(math-equal x y)}.
32769 @end defun
32771 @defun equal-int x n
32772 Returns true if @var{x} and @var{n} are numerically equal, where @var{n}
32773 is a fixnum which is not a multiple of 10.  This will automatically be
32774 used by @code{defmath} in place of the more general @code{math-equal}
32775 whenever possible.@refill
32776 @end defun
32778 @defun nearly-equal x y
32779 Returns true if @var{x} and @var{y}, as floating-point numbers, are
32780 equal except possibly in the last decimal place.  For example,
32781 314.159 and 314.166 are considered nearly equal if the current
32782 precision is 6 (since they differ by 7 units), but not if the current
32783 precision is 7 (since they differ by 70 units).  Most functions which
32784 use series expansions use @code{with-extra-prec} to evaluate the
32785 series with 2 extra digits of precision, then use @code{nearly-equal}
32786 to decide when the series has converged; this guards against cumulative
32787 error in the series evaluation without doing extra work which would be
32788 lost when the result is rounded back down to the current precision.
32789 In @code{defmath}, this can be written @samp{(~= @var{x} @var{y})}.
32790 The @var{x} and @var{y} can be numbers of any kind, including complex.
32791 @end defun
32793 @defun nearly-zerop x y
32794 Returns true if @var{x} is nearly zero, compared to @var{y}.  This
32795 checks whether @var{x} plus @var{y} would by be @code{nearly-equal}
32796 to @var{y} itself, to within the current precision, in other words,
32797 if adding @var{x} to @var{y} would have a negligible effect on @var{y}
32798 due to roundoff error.  @var{X} may be a real or complex number, but
32799 @var{y} must be real.
32800 @end defun
32802 @defun is-true x
32803 Return true if the formula @var{x} represents a true value in
32804 Calc, not Lisp, terms.  It tests if @var{x} is a non-zero number
32805 or a provably non-zero formula.
32806 @end defun
32808 @defun reject-arg val pred
32809 Abort the current function evaluation due to unacceptable argument values.
32810 This calls @samp{(calc-record-why @var{pred} @var{val})}, then signals a
32811 Lisp error which @code{normalize} will trap.  The net effect is that the
32812 function call which led here will be left in symbolic form.@refill
32813 @end defun
32815 @defun inexact-value
32816 If Symbolic Mode is enabled, this will signal an error that causes
32817 @code{normalize} to leave the formula in symbolic form, with the message
32818 ``Inexact result.''  (This function has no effect when not in Symbolic Mode.)
32819 Note that if your function calls @samp{(sin 5)} in Symbolic Mode, the
32820 @code{sin} function will call @code{inexact-value}, which will cause your
32821 function to be left unsimplified.  You may instead wish to call
32822 @samp{(normalize (list 'calcFunc-sin 5))}, which in Symbolic Mode will
32823 return the formula @samp{sin(5)} to your function.@refill
32824 @end defun
32826 @defun overflow
32827 This signals an error that will be reported as a floating-point overflow.
32828 @end defun
32830 @defun underflow
32831 This signals a floating-point underflow.
32832 @end defun
32834 @node Computational Lisp Functions, Vector Lisp Functions, Predicates, Internals
32835 @subsubsection Computational Functions
32837 @noindent
32838 The functions described here do the actual computational work of the
32839 Calculator.  In addition to these, note that any function described in
32840 the main body of this manual may be called from Lisp; for example, if
32841 the documentation refers to the @code{calc-sqrt} [@code{sqrt}] command,
32842 this means @code{calc-sqrt} is an interactive stack-based square-root
32843 command and @code{sqrt} (which @code{defmath} expands to @code{calcFunc-sqrt})
32844 is the actual Lisp function for taking square roots.@refill
32846 The functions @code{math-add}, @code{math-sub}, @code{math-mul},
32847 @code{math-div}, @code{math-mod}, and @code{math-neg} are not included
32848 in this list, since @code{defmath} allows you to write native Lisp
32849 @code{+}, @code{-}, @code{*}, @code{/}, @code{%}, and unary @code{-},
32850 respectively, instead.@refill
32852 @defun normalize val
32853 (Full form: @code{math-normalize}.)
32854 Reduce the value @var{val} to standard form.  For example, if @var{val}
32855 is a fixnum, it will be converted to a bignum if it is too large, and
32856 if @var{val} is a bignum it will be normalized by clipping off trailing
32857 (i.e., most-significant) zero digits and converting to a fixnum if it is
32858 small.  All the various data types are similarly converted to their standard
32859 forms.  Variables are left alone, but function calls are actually evaluated
32860 in formulas.  For example, normalizing @samp{(+ 2 (calcFunc-abs -4))} will
32861 return 6.@refill
32863 If a function call fails, because the function is void or has the wrong
32864 number of parameters, or because it returns @code{nil} or calls
32865 @code{reject-arg} or @code{inexact-result}, @code{normalize} returns
32866 the formula still in symbolic form.@refill
32868 If the current Simplification Mode is ``none'' or ``numeric arguments
32869 only,'' @code{normalize} will act appropriately.  However, the more
32870 powerful simplification modes (like algebraic simplification) are
32871 not handled by @code{normalize}.  They are handled by @code{calc-normalize},
32872 which calls @code{normalize} and possibly some other routines, such
32873 as @code{simplify} or @code{simplify-units}.  Programs generally will
32874 never call @code{calc-normalize} except when popping or pushing values
32875 on the stack.@refill
32876 @end defun
32878 @defun evaluate-expr expr
32879 Replace all variables in @var{expr} that have values with their values,
32880 then use @code{normalize} to simplify the result.  This is what happens
32881 when you press the @kbd{=} key interactively.@refill
32882 @end defun
32884 @defmac with-extra-prec n body
32885 Evaluate the Lisp forms in @var{body} with precision increased by @var{n}
32886 digits.  This is a macro which expands to
32888 @smallexample
32889 (math-normalize
32890   (let ((calc-internal-prec (+ calc-internal-prec @var{n})))
32891     @var{body}))
32892 @end smallexample
32894 The surrounding call to @code{math-normalize} causes a floating-point
32895 result to be rounded down to the original precision afterwards.  This
32896 is important because some arithmetic operations assume a number's
32897 mantissa contains no more digits than the current precision allows.
32898 @end defmac
32900 @defun make-frac n d
32901 Build a fraction @samp{@var{n}:@var{d}}.  This is equivalent to calling
32902 @samp{(normalize (list 'frac @var{n} @var{d}))}, but more efficient.
32903 @end defun
32905 @defun make-float mant exp
32906 Build a floating-point value out of @var{mant} and @var{exp}, both
32907 of which are arbitrary integers.  This function will return a
32908 properly normalized float value, or signal an overflow or underflow
32909 if @var{exp} is out of range.
32910 @end defun
32912 @defun make-sdev x sigma
32913 Build an error form out of @var{x} and the absolute value of @var{sigma}.
32914 If @var{sigma} is zero, the result is the number @var{x} directly.
32915 If @var{sigma} is negative or complex, its absolute value is used.
32916 If @var{x} or @var{sigma} is not a valid type of object for use in
32917 error forms, this calls @code{reject-arg}.
32918 @end defun
32920 @defun make-intv mask lo hi
32921 Build an interval form out of @var{mask} (which is assumed to be an
32922 integer from 0 to 3), and the limits @var{lo} and @var{hi}.  If
32923 @var{lo} is greater than @var{hi}, an empty interval form is returned.
32924 This calls @code{reject-arg} if @var{lo} or @var{hi} is unsuitable.
32925 @end defun
32927 @defun sort-intv mask lo hi
32928 Build an interval form, similar to @code{make-intv}, except that if
32929 @var{lo} is less than @var{hi} they are simply exchanged, and the
32930 bits of @var{mask} are swapped accordingly.
32931 @end defun
32933 @defun make-mod n m
32934 Build a modulo form out of @var{n} and the modulus @var{m}.  Since modulo
32935 forms do not allow formulas as their components, if @var{n} or @var{m}
32936 is not a real number or HMS form the result will be a formula which
32937 is a call to @code{makemod}, the algebraic version of this function.
32938 @end defun
32940 @defun float x
32941 Convert @var{x} to floating-point form.  Integers and fractions are
32942 converted to numerically equivalent floats; components of complex
32943 numbers, vectors, HMS forms, date forms, error forms, intervals, and
32944 modulo forms are recursively floated.  If the argument is a variable
32945 or formula, this calls @code{reject-arg}.
32946 @end defun
32948 @defun compare x y
32949 Compare the numbers @var{x} and @var{y}, and return @i{-1} if
32950 @samp{(lessp @var{x} @var{y})}, 1 if @samp{(lessp @var{y} @var{x})},
32951 0 if @samp{(math-equal @var{x} @var{y})}, or 2 if the order is
32952 undefined or cannot be determined.@refill
32953 @end defun
32955 @defun numdigs n
32956 Return the number of digits of integer @var{n}, effectively
32957 @samp{ceil(log10(@var{n}))}, but much more efficient.  Zero is
32958 considered to have zero digits.
32959 @end defun
32961 @defun scale-int x n
32962 Shift integer @var{x} left @var{n} decimal digits, or right @i{-@var{n}}
32963 digits with truncation toward zero.
32964 @end defun
32966 @defun scale-rounding x n
32967 Like @code{scale-int}, except that a right shift rounds to the nearest
32968 integer rather than truncating.
32969 @end defun
32971 @defun fixnum n
32972 Return the integer @var{n} as a fixnum, i.e., a native Lisp integer.
32973 If @var{n} is outside the permissible range for Lisp integers (usually
32974 24 binary bits) the result is undefined.
32975 @end defun
32977 @defun sqr x
32978 Compute the square of @var{x}; short for @samp{(* @var{x} @var{x})}.
32979 @end defun
32981 @defun quotient x y
32982 Divide integer @var{x} by integer @var{y}; return an integer quotient
32983 and discard the remainder.  If @var{x} or @var{y} is negative, the
32984 direction of rounding is undefined.
32985 @end defun
32987 @defun idiv x y
32988 Perform an integer division; if @var{x} and @var{y} are both nonnegative
32989 integers, this uses the @code{quotient} function, otherwise it computes
32990 @samp{floor(@var{x}/@var{y})}.  Thus the result is well-defined but
32991 slower than for @code{quotient}.
32992 @end defun
32994 @defun imod x y
32995 Divide integer @var{x} by integer @var{y}; return the integer remainder
32996 and discard the quotient.  Like @code{quotient}, this works only for
32997 integer arguments and is not well-defined for negative arguments.
32998 For a more well-defined result, use @samp{(% @var{x} @var{y})}.
32999 @end defun
33001 @defun idivmod x y
33002 Divide integer @var{x} by integer @var{y}; return a cons cell whose
33003 @code{car} is @samp{(quotient @var{x} @var{y})} and whose @code{cdr}
33004 is @samp{(imod @var{x} @var{y})}.@refill
33005 @end defun
33007 @defun pow x y
33008 Compute @var{x} to the power @var{y}.  In @code{defmath} code, this can
33009 also be written @samp{(^ @var{x} @var{y})} or
33010 @w{@samp{(expt @var{x} @var{y})}}.@refill
33011 @end defun
33013 @defun abs-approx x
33014 Compute a fast approximation to the absolute value of @var{x}.  For
33015 example, for a rectangular complex number the result is the sum of
33016 the absolute values of the components.
33017 @end defun
33019 @findex two-pi
33020 @findex pi-over-2
33021 @findex pi-over-4
33022 @findex pi-over-180
33023 @findex sqrt-two-pi
33024 @findex sqrt-e
33025 @findex e
33026 @findex ln-2
33027 @findex ln-10
33028 @defun pi
33029 The function @samp{(pi)} computes @samp{pi} to the current precision.
33030 Other related constant-generating functions are @code{two-pi},
33031 @code{pi-over-2}, @code{pi-over-4}, @code{pi-over-180}, @code{sqrt-two-pi},
33032 @code{e}, @code{sqrt-e}, @code{ln-2}, and @code{ln-10}.  Each function
33033 returns a floating-point value in the current precision, and each uses
33034 caching so that all calls after the first are essentially free.@refill
33035 @end defun
33037 @defmac math-defcache @var{func} @var{initial} @var{form}
33038 This macro, usually used as a top-level call like @code{defun} or
33039 @code{defvar}, defines a new cached constant analogous to @code{pi}, etc.
33040 It defines a function @code{func} which returns the requested value;
33041 if @var{initial} is non-@code{nil} it must be a @samp{(float @dots{})}
33042 form which serves as an initial value for the cache.  If @var{func}
33043 is called when the cache is empty or does not have enough digits to
33044 satisfy the current precision, the Lisp expression @var{form} is evaluated
33045 with the current precision increased by four, and the result minus its
33046 two least significant digits is stored in the cache.  For example,
33047 calling @samp{(pi)} with a precision of 30 computes @samp{pi} to 34
33048 digits, rounds it down to 32 digits for future use, then rounds it
33049 again to 30 digits for use in the present request.@refill
33050 @end defmac
33052 @findex half-circle
33053 @findex quarter-circle
33054 @defun full-circle symb
33055 If the current angular mode is Degrees or HMS, this function returns the
33056 integer 360.  In Radians mode, this function returns either the
33057 corresponding value in radians to the current precision, or the formula
33058 @samp{2*pi}, depending on the Symbolic Mode.  There are also similar
33059 function @code{half-circle} and @code{quarter-circle}.
33060 @end defun
33062 @defun power-of-2 n
33063 Compute two to the integer power @var{n}, as a (potentially very large)
33064 integer.  Powers of two are cached, so only the first call for a
33065 particular @var{n} is expensive.
33066 @end defun
33068 @defun integer-log2 n
33069 Compute the base-2 logarithm of @var{n}, which must be an integer which
33070 is a power of two.  If @var{n} is not a power of two, this function will
33071 return @code{nil}.
33072 @end defun
33074 @defun div-mod a b m
33075 Divide @var{a} by @var{b}, modulo @var{m}.  This returns @code{nil} if
33076 there is no solution, or if any of the arguments are not integers.@refill
33077 @end defun
33079 @defun pow-mod a b m
33080 Compute @var{a} to the power @var{b}, modulo @var{m}.  If @var{a},
33081 @var{b}, and @var{m} are integers, this uses an especially efficient
33082 algorithm.  Otherwise, it simply computes @samp{(% (^ a b) m)}.
33083 @end defun
33085 @defun isqrt n
33086 Compute the integer square root of @var{n}.  This is the square root
33087 of @var{n} rounded down toward zero, i.e., @samp{floor(sqrt(@var{n}))}.
33088 If @var{n} is itself an integer, the computation is especially efficient.
33089 @end defun
33091 @defun to-hms a ang
33092 Convert the argument @var{a} into an HMS form.  If @var{ang} is specified,
33093 it is the angular mode in which to interpret @var{a}, either @code{deg}
33094 or @code{rad}.  Otherwise, the current angular mode is used.  If @var{a}
33095 is already an HMS form it is returned as-is.
33096 @end defun
33098 @defun from-hms a ang
33099 Convert the HMS form @var{a} into a real number.  If @var{ang} is specified,
33100 it is the angular mode in which to express the result, otherwise the
33101 current angular mode is used.  If @var{a} is already a real number, it
33102 is returned as-is.
33103 @end defun
33105 @defun to-radians a
33106 Convert the number or HMS form @var{a} to radians from the current
33107 angular mode.
33108 @end defun
33110 @defun from-radians a
33111 Convert the number @var{a} from radians to the current angular mode.
33112 If @var{a} is a formula, this returns the formula @samp{deg(@var{a})}.
33113 @end defun
33115 @defun to-radians-2 a
33116 Like @code{to-radians}, except that in Symbolic Mode a degrees to
33117 radians conversion yields a formula like @samp{@var{a}*pi/180}.
33118 @end defun
33120 @defun from-radians-2 a
33121 Like @code{from-radians}, except that in Symbolic Mode a radians to
33122 degrees conversion yields a formula like @samp{@var{a}*180/pi}.
33123 @end defun
33125 @defun random-digit
33126 Produce a random base-1000 digit in the range 0 to 999.
33127 @end defun
33129 @defun random-digits n
33130 Produce a random @var{n}-digit integer; this will be an integer
33131 in the interval @samp{[0, 10^@var{n})}.
33132 @end defun
33134 @defun random-float
33135 Produce a random float in the interval @samp{[0, 1)}.
33136 @end defun
33138 @defun prime-test n iters
33139 Determine whether the integer @var{n} is prime.  Return a list which has
33140 one of these forms: @samp{(nil @var{f})} means the number is non-prime
33141 because it was found to be divisible by @var{f}; @samp{(nil)} means it
33142 was found to be non-prime by table look-up (so no factors are known);
33143 @samp{(nil unknown)} means it is definitely non-prime but no factors
33144 are known because @var{n} was large enough that Fermat's probabilistic
33145 test had to be used; @samp{(t)} means the number is definitely prime;
33146 and @samp{(maybe @var{i} @var{p})} means that Fermat's test, after @var{i}
33147 iterations, is @var{p} percent sure that the number is prime.  The
33148 @var{iters} parameter is the number of Fermat iterations to use, in the
33149 case that this is necessary.  If @code{prime-test} returns ``maybe,''
33150 you can call it again with the same @var{n} to get a greater certainty;
33151 @code{prime-test} remembers where it left off.@refill
33152 @end defun
33154 @defun to-simple-fraction f
33155 If @var{f} is a floating-point number which can be represented exactly
33156 as a small rational number. return that number, else return @var{f}.
33157 For example, 0.75 would be converted to 3:4.  This function is very
33158 fast.
33159 @end defun
33161 @defun to-fraction f tol
33162 Find a rational approximation to floating-point number @var{f} to within
33163 a specified tolerance @var{tol}; this corresponds to the algebraic
33164 function @code{frac}, and can be rather slow.
33165 @end defun
33167 @defun quarter-integer n
33168 If @var{n} is an integer or integer-valued float, this function
33169 returns zero.  If @var{n} is a half-integer (i.e., an integer plus
33170 @i{1:2} or 0.5), it returns 2.  If @var{n} is a quarter-integer,
33171 it returns 1 or 3.  If @var{n} is anything else, this function
33172 returns @code{nil}.
33173 @end defun
33175 @node Vector Lisp Functions, Symbolic Lisp Functions, Computational Lisp Functions, Internals
33176 @subsubsection Vector Functions
33178 @noindent
33179 The functions described here perform various operations on vectors and
33180 matrices.
33182 @defun math-concat x y
33183 Do a vector concatenation; this operation is written @samp{@var{x} | @var{y}}
33184 in a symbolic formula.  @xref{Building Vectors}.
33185 @end defun
33187 @defun vec-length v
33188 Return the length of vector @var{v}.  If @var{v} is not a vector, the
33189 result is zero.  If @var{v} is a matrix, this returns the number of
33190 rows in the matrix.
33191 @end defun
33193 @defun mat-dimens m
33194 Determine the dimensions of vector or matrix @var{m}.  If @var{m} is not
33195 a vector, the result is an empty list.  If @var{m} is a plain vector
33196 but not a matrix, the result is a one-element list containing the length
33197 of the vector.  If @var{m} is a matrix with @var{r} rows and @var{c} columns,
33198 the result is the list @samp{(@var{r} @var{c})}.  Higher-order tensors
33199 produce lists of more than two dimensions.  Note that the object
33200 @samp{[[1, 2, 3], [4, 5]]} is a vector of vectors not all the same size,
33201 and is treated by this and other Calc routines as a plain vector of two
33202 elements.@refill
33203 @end defun
33205 @defun dimension-error
33206 Abort the current function with a message of ``Dimension error.''
33207 The Calculator will leave the function being evaluated in symbolic
33208 form; this is really just a special case of @code{reject-arg}.
33209 @end defun
33211 @defun build-vector args
33212 Return a Calc vector with @var{args} as elements.
33213 For example, @samp{(build-vector 1 2 3)} returns the Calc vector
33214 @samp{[1, 2, 3]}, stored internally as the list @samp{(vec 1 2 3)}.
33215 @end defun
33217 @defun make-vec obj dims
33218 Return a Calc vector or matrix all of whose elements are equal to
33219 @var{obj}.  For example, @samp{(make-vec 27 3 4)} returns a 3x4 matrix
33220 filled with 27's.
33221 @end defun
33223 @defun row-matrix v
33224 If @var{v} is a plain vector, convert it into a row matrix, i.e.,
33225 a matrix whose single row is @var{v}.  If @var{v} is already a matrix,
33226 leave it alone.
33227 @end defun
33229 @defun col-matrix v
33230 If @var{v} is a plain vector, convert it into a column matrix, i.e., a
33231 matrix with each element of @var{v} as a separate row.  If @var{v} is
33232 already a matrix, leave it alone.
33233 @end defun
33235 @defun map-vec f v
33236 Map the Lisp function @var{f} over the Calc vector @var{v}.  For example,
33237 @samp{(map-vec 'math-floor v)} returns a vector of the floored components
33238 of vector @var{v}.
33239 @end defun
33241 @defun map-vec-2 f a b
33242 Map the Lisp function @var{f} over the two vectors @var{a} and @var{b}.
33243 If @var{a} and @var{b} are vectors of equal length, the result is a
33244 vector of the results of calling @samp{(@var{f} @var{ai} @var{bi})}
33245 for each pair of elements @var{ai} and @var{bi}.  If either @var{a} or
33246 @var{b} is a scalar, it is matched with each value of the other vector.
33247 For example, @samp{(map-vec-2 'math-add v 1)} returns the vector @var{v}
33248 with each element increased by one.  Note that using @samp{'+} would not
33249 work here, since @code{defmath} does not expand function names everywhere,
33250 just where they are in the function position of a Lisp expression.@refill
33251 @end defun
33253 @defun reduce-vec f v
33254 Reduce the function @var{f} over the vector @var{v}.  For example, if
33255 @var{v} is @samp{[10, 20, 30, 40]}, this calls @samp{(f (f (f 10 20) 30) 40)}.
33256 If @var{v} is a matrix, this reduces over the rows of @var{v}.
33257 @end defun
33259 @defun reduce-cols f m
33260 Reduce the function @var{f} over the columns of matrix @var{m}.  For
33261 example, if @var{m} is @samp{[[1, 2], [3, 4], [5, 6]]}, the result
33262 is a vector of the two elements @samp{(f (f 1 3) 5)} and @samp{(f (f 2 4) 6)}.
33263 @end defun
33265 @defun mat-row m n
33266 Return the @var{n}th row of matrix @var{m}.  This is equivalent to
33267 @samp{(elt m n)}.  For a slower but safer version, use @code{mrow}.
33268 (@xref{Extracting Elements}.)
33269 @end defun
33271 @defun mat-col m n
33272 Return the @var{n}th column of matrix @var{m}, in the form of a vector.
33273 The arguments are not checked for correctness.
33274 @end defun
33276 @defun mat-less-row m n
33277 Return a copy of matrix @var{m} with its @var{n}th row deleted.  The
33278 number @var{n} must be in range from 1 to the number of rows in @var{m}.
33279 @end defun
33281 @defun mat-less-col m n
33282 Return a copy of matrix @var{m} with its @var{n}th column deleted.
33283 @end defun
33285 @defun transpose m
33286 Return the transpose of matrix @var{m}.
33287 @end defun
33289 @defun flatten-vector v
33290 Flatten nested vector @var{v} into a vector of scalars.  For example,
33291 if @var{v} is @samp{[[1, 2, 3], [4, 5]]} the result is @samp{[1, 2, 3, 4, 5]}.
33292 @end defun
33294 @defun copy-matrix m
33295 If @var{m} is a matrix, return a copy of @var{m}.  This maps
33296 @code{copy-sequence} over the rows of @var{m}; in Lisp terms, each
33297 element of the result matrix will be @code{eq} to the corresponding
33298 element of @var{m}, but none of the @code{cons} cells that make up
33299 the structure of the matrix will be @code{eq}.  If @var{m} is a plain
33300 vector, this is the same as @code{copy-sequence}.@refill
33301 @end defun
33303 @defun swap-rows m r1 r2
33304 Exchange rows @var{r1} and @var{r2} of matrix @var{m} in-place.  In
33305 other words, unlike most of the other functions described here, this
33306 function changes @var{m} itself rather than building up a new result
33307 matrix.  The return value is @var{m}, i.e., @samp{(eq (swap-rows m 1 2) m)}
33308 is true, with the side effect of exchanging the first two rows of
33309 @var{m}.@refill
33310 @end defun
33312 @node Symbolic Lisp Functions, Formatting Lisp Functions, Vector Lisp Functions, Internals
33313 @subsubsection Symbolic Functions
33315 @noindent
33316 The functions described here operate on symbolic formulas in the
33317 Calculator.
33319 @defun calc-prepare-selection num
33320 Prepare a stack entry for selection operations.  If @var{num} is
33321 omitted, the stack entry containing the cursor is used; otherwise,
33322 it is the number of the stack entry to use.  This function stores
33323 useful information about the current stack entry into a set of
33324 variables.  @code{calc-selection-cache-num} contains the number of
33325 the stack entry involved (equal to @var{num} if you specified it);
33326 @code{calc-selection-cache-entry} contains the stack entry as a
33327 list (such as @code{calc-top-list} would return with @code{entry}
33328 as the selection mode); and @code{calc-selection-cache-comp} contains
33329 a special ``tagged'' composition (@pxref{Formatting Lisp Functions})
33330 which allows Calc to relate cursor positions in the buffer with
33331 their corresponding sub-formulas.
33333 A slight complication arises in the selection mechanism because
33334 formulas may contain small integers.  For example, in the vector
33335 @samp{[1, 2, 1]} the first and last elements are @code{eq} to each
33336 other; selections are recorded as the actual Lisp object that
33337 appears somewhere in the tree of the whole formula, but storing
33338 @code{1} would falsely select both @code{1}'s in the vector.  So
33339 @code{calc-prepare-selection} also checks the stack entry and
33340 replaces any plain integers with ``complex number'' lists of the form
33341 @samp{(cplx @var{n} 0)}.  This list will be displayed the same as a
33342 plain @var{n} and the change will be completely invisible to the
33343 user, but it will guarantee that no two sub-formulas of the stack
33344 entry will be @code{eq} to each other.  Next time the stack entry
33345 is involved in a computation, @code{calc-normalize} will replace
33346 these lists with plain numbers again, again invisibly to the user.
33347 @end defun
33349 @defun calc-encase-atoms x
33350 This modifies the formula @var{x} to ensure that each part of the
33351 formula is a unique atom, using the @samp{(cplx @var{n} 0)} trick
33352 described above.  This function may use @code{setcar} to modify
33353 the formula in-place.
33354 @end defun
33356 @defun calc-find-selected-part
33357 Find the smallest sub-formula of the current formula that contains
33358 the cursor.  This assumes @code{calc-prepare-selection} has been
33359 called already.  If the cursor is not actually on any part of the
33360 formula, this returns @code{nil}.
33361 @end defun
33363 @defun calc-change-current-selection selection
33364 Change the currently prepared stack element's selection to
33365 @var{selection}, which should be @code{eq} to some sub-formula
33366 of the stack element, or @code{nil} to unselect the formula.
33367 The stack element's appearance in the Calc buffer is adjusted
33368 to reflect the new selection.
33369 @end defun
33371 @defun calc-find-nth-part expr n
33372 Return the @var{n}th sub-formula of @var{expr}.  This function is used
33373 by the selection commands, and (unless @kbd{j b} has been used) treats
33374 sums and products as flat many-element formulas.  Thus if @var{expr}
33375 is @samp{((a + b) - c) + d}, calling @code{calc-find-nth-part} with
33376 @var{n} equal to four will return @samp{d}.
33377 @end defun
33379 @defun calc-find-parent-formula expr part
33380 Return the sub-formula of @var{expr} which immediately contains
33381 @var{part}.  If @var{expr} is @samp{a*b + (c+1)*d} and @var{part}
33382 is @code{eq} to the @samp{c+1} term of @var{expr}, then this function
33383 will return @samp{(c+1)*d}.  If @var{part} turns out not to be a
33384 sub-formula of @var{expr}, the function returns @code{nil}.  If
33385 @var{part} is @code{eq} to @var{expr}, the function returns @code{t}.
33386 This function does not take associativity into account.
33387 @end defun
33389 @defun calc-find-assoc-parent-formula expr part
33390 This is the same as @code{calc-find-parent-formula}, except that
33391 (unless @kbd{j b} has been used) it continues widening the selection
33392 to contain a complete level of the formula.  Given @samp{a} from
33393 @samp{((a + b) - c) + d}, @code{calc-find-parent-formula} will
33394 return @samp{a + b} but @code{calc-find-assoc-parent-formula} will
33395 return the whole expression.
33396 @end defun
33398 @defun calc-grow-assoc-formula expr part
33399 This expands sub-formula @var{part} of @var{expr} to encompass a
33400 complete level of the formula.  If @var{part} and its immediate
33401 parent are not compatible associative operators, or if @kbd{j b}
33402 has been used, this simply returns @var{part}.
33403 @end defun
33405 @defun calc-find-sub-formula expr part
33406 This finds the immediate sub-formula of @var{expr} which contains
33407 @var{part}.  It returns an index @var{n} such that
33408 @samp{(calc-find-nth-part @var{expr} @var{n})} would return @var{part}.
33409 If @var{part} is not a sub-formula of @var{expr}, it returns @code{nil}.
33410 If @var{part} is @code{eq} to @var{expr}, it returns @code{t}.  This
33411 function does not take associativity into account.
33412 @end defun
33414 @defun calc-replace-sub-formula expr old new
33415 This function returns a copy of formula @var{expr}, with the
33416 sub-formula that is @code{eq} to @var{old} replaced by @var{new}.
33417 @end defun
33419 @defun simplify expr
33420 Simplify the expression @var{expr} by applying various algebraic rules.
33421 This is what the @w{@kbd{a s}} (@code{calc-simplify}) command uses.  This
33422 always returns a copy of the expression; the structure @var{expr} points
33423 to remains unchanged in memory.
33425 More precisely, here is what @code{simplify} does:  The expression is
33426 first normalized and evaluated by calling @code{normalize}.  If any
33427 @code{AlgSimpRules} have been defined, they are then applied.  Then
33428 the expression is traversed in a depth-first, bottom-up fashion; at
33429 each level, any simplifications that can be made are made until no
33430 further changes are possible.  Once the entire formula has been
33431 traversed in this way, it is compared with the original formula (from
33432 before the call to @code{normalize}) and, if it has changed,
33433 the entire procedure is repeated (starting with @code{normalize})
33434 until no further changes occur.  Usually only two iterations are
33435 needed:@: one to simplify the formula, and another to verify that no
33436 further simplifications were possible.
33437 @end defun
33439 @defun simplify-extended expr
33440 Simplify the expression @var{expr}, with additional rules enabled that
33441 help do a more thorough job, while not being entirely ``safe'' in all
33442 circumstances.  (For example, this mode will simplify @samp{sqrt(x^2)}
33443 to @samp{x}, which is only valid when @var{x} is positive.)  This is
33444 implemented by temporarily binding the variable @code{math-living-dangerously}
33445 to @code{t} (using a @code{let} form) and calling @code{simplify}.
33446 Dangerous simplification rules are written to check this variable
33447 before taking any action.@refill
33448 @end defun
33450 @defun simplify-units expr
33451 Simplify the expression @var{expr}, treating variable names as units
33452 whenever possible.  This works by binding the variable
33453 @code{math-simplifying-units} to @code{t} while calling @code{simplify}.
33454 @end defun
33456 @defmac math-defsimplify funcs body
33457 Register a new simplification rule; this is normally called as a top-level
33458 form, like @code{defun} or @code{defmath}.  If @var{funcs} is a symbol
33459 (like @code{+} or @code{calcFunc-sqrt}), this simplification rule is
33460 applied to the formulas which are calls to the specified function.  Or,
33461 @var{funcs} can be a list of such symbols; the rule applies to all
33462 functions on the list.  The @var{body} is written like the body of a
33463 function with a single argument called @code{expr}.  The body will be
33464 executed with @code{expr} bound to a formula which is a call to one of
33465 the functions @var{funcs}.  If the function body returns @code{nil}, or
33466 if it returns a result @code{equal} to the original @code{expr}, it is
33467 ignored and Calc goes on to try the next simplification rule that applies.
33468 If the function body returns something different, that new formula is
33469 substituted for @var{expr} in the original formula.@refill
33471 At each point in the formula, rules are tried in the order of the
33472 original calls to @code{math-defsimplify}; the search stops after the
33473 first rule that makes a change.  Thus later rules for that same
33474 function will not have a chance to trigger until the next iteration
33475 of the main @code{simplify} loop.
33477 Note that, since @code{defmath} is not being used here, @var{body} must
33478 be written in true Lisp code without the conveniences that @code{defmath}
33479 provides.  If you prefer, you can have @var{body} simply call another
33480 function (defined with @code{defmath}) which does the real work.
33482 The arguments of a function call will already have been simplified
33483 before any rules for the call itself are invoked.  Since a new argument
33484 list is consed up when this happens, this means that the rule's body is
33485 allowed to rearrange the function's arguments destructively if that is
33486 convenient.  Here is a typical example of a simplification rule:
33488 @smallexample
33489 (math-defsimplify calcFunc-arcsinh
33490   (or (and (math-looks-negp (nth 1 expr))
33491            (math-neg (list 'calcFunc-arcsinh
33492                            (math-neg (nth 1 expr)))))
33493       (and (eq (car-safe (nth 1 expr)) 'calcFunc-sinh)
33494            (or math-living-dangerously
33495                (math-known-realp (nth 1 (nth 1 expr))))
33496            (nth 1 (nth 1 expr)))))
33497 @end smallexample
33499 This is really a pair of rules written with one @code{math-defsimplify}
33500 for convenience; the first replaces @samp{arcsinh(-x)} with
33501 @samp{-arcsinh(x)}, and the second, which is safe only for real @samp{x},
33502 replaces @samp{arcsinh(sinh(x))} with @samp{x}.@refill
33503 @end defmac
33505 @defun common-constant-factor expr
33506 Check @var{expr} to see if it is a sum of terms all multiplied by the
33507 same rational value.  If so, return this value.  If not, return @code{nil}.
33508 For example, if called on @samp{6x + 9y + 12z}, it would return 3, since
33509 3 is a common factor of all the terms.
33510 @end defun
33512 @defun cancel-common-factor expr factor
33513 Assuming @var{expr} is a sum with @var{factor} as a common factor,
33514 divide each term of the sum by @var{factor}.  This is done by
33515 destructively modifying parts of @var{expr}, on the assumption that
33516 it is being used by a simplification rule (where such things are
33517 allowed; see above).  For example, consider this built-in rule for
33518 square roots:
33520 @smallexample
33521 (math-defsimplify calcFunc-sqrt
33522   (let ((fac (math-common-constant-factor (nth 1 expr))))
33523     (and fac (not (eq fac 1))
33524          (math-mul (math-normalize (list 'calcFunc-sqrt fac))
33525                    (math-normalize
33526                     (list 'calcFunc-sqrt
33527                           (math-cancel-common-factor
33528                            (nth 1 expr) fac)))))))
33529 @end smallexample
33530 @end defun
33532 @defun frac-gcd a b
33533 Compute a ``rational GCD'' of @var{a} and @var{b}, which must both be
33534 rational numbers.  This is the fraction composed of the GCD of the
33535 numerators of @var{a} and @var{b}, over the GCD of the denominators.
33536 It is used by @code{common-constant-factor}.  Note that the standard
33537 @code{gcd} function uses the LCM to combine the denominators.@refill
33538 @end defun
33540 @defun map-tree func expr many
33541 Try applying Lisp function @var{func} to various sub-expressions of
33542 @var{expr}.  Initially, call @var{func} with @var{expr} itself as an
33543 argument.  If this returns an expression which is not @code{equal} to
33544 @var{expr}, apply @var{func} again until eventually it does return
33545 @var{expr} with no changes.  Then, if @var{expr} is a function call,
33546 recursively apply @var{func} to each of the arguments.  This keeps going
33547 until no changes occur anywhere in the expression; this final expression
33548 is returned by @code{map-tree}.  Note that, unlike simplification rules,
33549 @var{func} functions may @emph{not} make destructive changes to
33550 @var{expr}.  If a third argument @var{many} is provided, it is an
33551 integer which says how many times @var{func} may be applied; the
33552 default, as described above, is infinitely many times.@refill
33553 @end defun
33555 @defun compile-rewrites rules
33556 Compile the rewrite rule set specified by @var{rules}, which should
33557 be a formula that is either a vector or a variable name.  If the latter,
33558 the compiled rules are saved so that later @code{compile-rules} calls
33559 for that same variable can return immediately.  If there are problems
33560 with the rules, this function calls @code{error} with a suitable
33561 message.
33562 @end defun
33564 @defun apply-rewrites expr crules heads
33565 Apply the compiled rewrite rule set @var{crules} to the expression
33566 @var{expr}.  This will make only one rewrite and only checks at the
33567 top level of the expression.  The result @code{nil} if no rules
33568 matched, or if the only rules that matched did not actually change
33569 the expression.  The @var{heads} argument is optional; if is given,
33570 it should be a list of all function names that (may) appear in
33571 @var{expr}.  The rewrite compiler tags each rule with the
33572 rarest-looking function name in the rule; if you specify @var{heads},
33573 @code{apply-rewrites} can use this information to narrow its search
33574 down to just a few rules in the rule set.
33575 @end defun
33577 @defun rewrite-heads expr
33578 Compute a @var{heads} list for @var{expr} suitable for use with
33579 @code{apply-rewrites}, as discussed above.
33580 @end defun
33582 @defun rewrite expr rules many
33583 This is an all-in-one rewrite function.  It compiles the rule set
33584 specified by @var{rules}, then uses @code{map-tree} to apply the
33585 rules throughout @var{expr} up to @var{many} (default infinity)
33586 times.
33587 @end defun
33589 @defun match-patterns pat vec not-flag
33590 Given a Calc vector @var{vec} and an uncompiled pattern set or
33591 pattern set variable @var{pat}, this function returns a new vector
33592 of all elements of @var{vec} which do (or don't, if @var{not-flag} is
33593 non-@code{nil}) match any of the patterns in @var{pat}.
33594 @end defun
33596 @defun deriv expr var value symb
33597 Compute the derivative of @var{expr} with respect to variable @var{var}
33598 (which may actually be any sub-expression).  If @var{value} is specified,
33599 the derivative is evaluated at the value of @var{var}; otherwise, the
33600 derivative is left in terms of @var{var}.  If the expression contains
33601 functions for which no derivative formula is known, new derivative
33602 functions are invented by adding primes to the names; @pxref{Calculus}.
33603 However, if @var{symb} is non-@code{nil}, the presence of undifferentiable
33604 functions in @var{expr} instead cancels the whole differentiation, and
33605 @code{deriv} returns @code{nil} instead.
33607 Derivatives of an @var{n}-argument function can be defined by
33608 adding a @code{math-derivative-@var{n}} property to the property list
33609 of the symbol for the function's derivative, which will be the
33610 function name followed by an apostrophe.  The value of the property
33611 should be a Lisp function; it is called with the same arguments as the
33612 original function call that is being differentiated.  It should return
33613 a formula for the derivative.  For example, the derivative of @code{ln}
33614 is defined by
33616 @smallexample
33617 (put 'calcFunc-ln\' 'math-derivative-1
33618      (function (lambda (u) (math-div 1 u))))
33619 @end smallexample
33621 The two-argument @code{log} function has two derivatives,
33622 @smallexample
33623 (put 'calcFunc-log\' 'math-derivative-2     ; d(log(x,b)) / dx
33624      (function (lambda (x b) ... )))
33625 (put 'calcFunc-log\'2 'math-derivative-2    ; d(log(x,b)) / db
33626      (function (lambda (x b) ... )))
33627 @end smallexample
33628 @end defun
33630 @defun tderiv expr var value symb
33631 Compute the total derivative of @var{expr}.  This is the same as
33632 @code{deriv}, except that variables other than @var{var} are not
33633 assumed to be constant with respect to @var{var}.
33634 @end defun
33636 @defun integ expr var low high
33637 Compute the integral of @var{expr} with respect to @var{var}.
33638 @xref{Calculus}, for further details.
33639 @end defun
33641 @defmac math-defintegral funcs body
33642 Define a rule for integrating a function or functions of one argument;
33643 this macro is very similar in format to @code{math-defsimplify}.
33644 The main difference is that here @var{body} is the body of a function
33645 with a single argument @code{u} which is bound to the argument to the
33646 function being integrated, not the function call itself.  Also, the
33647 variable of integration is available as @code{math-integ-var}.  If
33648 evaluation of the integral requires doing further integrals, the body
33649 should call @samp{(math-integral @var{x})} to find the integral of
33650 @var{x} with respect to @code{math-integ-var}; this function returns
33651 @code{nil} if the integral could not be done.  Some examples:
33653 @smallexample
33654 (math-defintegral calcFunc-conj
33655   (let ((int (math-integral u)))
33656     (and int
33657          (list 'calcFunc-conj int))))
33659 (math-defintegral calcFunc-cos
33660   (and (equal u math-integ-var)
33661        (math-from-radians-2 (list 'calcFunc-sin u))))
33662 @end smallexample
33664 In the @code{cos} example, we define only the integral of @samp{cos(x) dx},
33665 relying on the general integration-by-substitution facility to handle
33666 cosines of more complicated arguments.  An integration rule should return
33667 @code{nil} if it can't do the integral; if several rules are defined for
33668 the same function, they are tried in order until one returns a non-@code{nil}
33669 result.@refill
33670 @end defmac
33672 @defmac math-defintegral-2 funcs body
33673 Define a rule for integrating a function or functions of two arguments.
33674 This is exactly analogous to @code{math-defintegral}, except that @var{body}
33675 is written as the body of a function with two arguments, @var{u} and
33676 @var{v}.@refill
33677 @end defmac
33679 @defun solve-for lhs rhs var full
33680 Attempt to solve the equation @samp{@var{lhs} = @var{rhs}} by isolating
33681 the variable @var{var} on the lefthand side; return the resulting righthand
33682 side, or @code{nil} if the equation cannot be solved.  The variable
33683 @var{var} must appear at least once in @var{lhs} or @var{rhs}.  Note that
33684 the return value is a formula which does not contain @var{var}; this is
33685 different from the user-level @code{solve} and @code{finv} functions,
33686 which return a rearranged equation or a functional inverse, respectively.
33687 If @var{full} is non-@code{nil}, a full solution including dummy signs
33688 and dummy integers will be produced.  User-defined inverses are provided
33689 as properties in a manner similar to derivatives:@refill
33691 @smallexample
33692 (put 'calcFunc-ln 'math-inverse
33693      (function (lambda (x) (list 'calcFunc-exp x))))
33694 @end smallexample
33696 This function can call @samp{(math-solve-get-sign @var{x})} to create
33697 a new arbitrary sign variable, returning @var{x} times that sign, and
33698 @samp{(math-solve-get-int @var{x})} to create a new arbitrary integer
33699 variable multiplied by @var{x}.  These functions simply return @var{x}
33700 if the caller requested a non-``full'' solution.
33701 @end defun
33703 @defun solve-eqn expr var full
33704 This version of @code{solve-for} takes an expression which will
33705 typically be an equation or inequality.  (If it is not, it will be
33706 interpreted as the equation @samp{@var{expr} = 0}.)  It returns an
33707 equation or inequality, or @code{nil} if no solution could be found.
33708 @end defun
33710 @defun solve-system exprs vars full
33711 This function solves a system of equations.  Generally, @var{exprs}
33712 and @var{vars} will be vectors of equal length.
33713 @xref{Solving Systems of Equations}, for other options.
33714 @end defun
33716 @defun expr-contains expr var
33717 Returns a non-@code{nil} value if @var{var} occurs as a subexpression
33718 of @var{expr}.
33720 This function might seem at first to be identical to
33721 @code{calc-find-sub-formula}.  The key difference is that
33722 @code{expr-contains} uses @code{equal} to test for matches, whereas
33723 @code{calc-find-sub-formula} uses @code{eq}.  In the formula
33724 @samp{f(a, a)}, the two @samp{a}s will be @code{equal} but not
33725 @code{eq} to each other.@refill
33726 @end defun
33728 @defun expr-contains-count expr var
33729 Returns the number of occurrences of @var{var} as a subexpression
33730 of @var{expr}, or @code{nil} if there are no occurrences.@refill
33731 @end defun
33733 @defun expr-depends expr var
33734 Returns true if @var{expr} refers to any variable the occurs in @var{var}.
33735 In other words, it checks if @var{expr} and @var{var} have any variables
33736 in common.
33737 @end defun
33739 @defun expr-contains-vars expr
33740 Return true if @var{expr} contains any variables, or @code{nil} if @var{expr}
33741 contains only constants and functions with constant arguments.
33742 @end defun
33744 @defun expr-subst expr old new
33745 Returns a copy of @var{expr}, with all occurrences of @var{old} replaced
33746 by @var{new}.  This treats @code{lambda} forms specially with respect
33747 to the dummy argument variables, so that the effect is always to return
33748 @var{expr} evaluated at @var{old} = @var{new}.@refill
33749 @end defun
33751 @defun multi-subst expr old new
33752 This is like @code{expr-subst}, except that @var{old} and @var{new}
33753 are lists of expressions to be substituted simultaneously.  If one
33754 list is shorter than the other, trailing elements of the longer list
33755 are ignored.
33756 @end defun
33758 @defun expr-weight expr
33759 Returns the ``weight'' of @var{expr}, basically a count of the total
33760 number of objects and function calls that appear in @var{expr}.  For
33761 ``primitive'' objects, this will be one.
33762 @end defun
33764 @defun expr-height expr
33765 Returns the ``height'' of @var{expr}, which is the deepest level to
33766 which function calls are nested.  (Note that @samp{@var{a} + @var{b}}
33767 counts as a function call.)  For primitive objects, this returns zero.@refill
33768 @end defun
33770 @defun polynomial-p expr var
33771 Check if @var{expr} is a polynomial in variable (or sub-expression)
33772 @var{var}.  If so, return the degree of the polynomial, that is, the
33773 highest power of @var{var} that appears in @var{expr}.  For example,
33774 for @samp{(x^2 + 3)^3 + 4} this would return 6.  This function returns
33775 @code{nil} unless @var{expr}, when expanded out by @kbd{a x}
33776 (@code{calc-expand}), would consist of a sum of terms in which @var{var}
33777 appears only raised to nonnegative integer powers.  Note that if
33778 @var{var} does not occur in @var{expr}, then @var{expr} is considered
33779 a polynomial of degree 0.@refill
33780 @end defun
33782 @defun is-polynomial expr var degree loose
33783 Check if @var{expr} is a polynomial in variable or sub-expression
33784 @var{var}, and, if so, return a list representation of the polynomial
33785 where the elements of the list are coefficients of successive powers of
33786 @var{var}: @samp{@var{a} + @var{b} x + @var{c} x^3} would produce the
33787 list @samp{(@var{a} @var{b} 0 @var{c})}, and @samp{(x + 1)^2} would
33788 produce the list @samp{(1 2 1)}.  The highest element of the list will
33789 be non-zero, with the special exception that if @var{expr} is the
33790 constant zero, the returned value will be @samp{(0)}.  Return @code{nil}
33791 if @var{expr} is not a polynomial in @var{var}.  If @var{degree} is
33792 specified, this will not consider polynomials of degree higher than that
33793 value.  This is a good precaution because otherwise an input of
33794 @samp{(x+1)^1000} will cause a huge coefficient list to be built.  If
33795 @var{loose} is non-@code{nil}, then a looser definition of a polynomial
33796 is used in which coefficients are no longer required not to depend on
33797 @var{var}, but are only required not to take the form of polynomials
33798 themselves.  For example, @samp{sin(x) x^2 + cos(x)} is a loose
33799 polynomial with coefficients @samp{((calcFunc-cos x) 0 (calcFunc-sin
33800 x))}.  The result will never be @code{nil} in loose mode, since any
33801 expression can be interpreted as a ``constant'' loose polynomial.@refill
33802 @end defun
33804 @defun polynomial-base expr pred
33805 Check if @var{expr} is a polynomial in any variable that occurs in it;
33806 if so, return that variable.  (If @var{expr} is a multivariate polynomial,
33807 this chooses one variable arbitrarily.)  If @var{pred} is specified, it should
33808 be a Lisp function which is called as @samp{(@var{pred} @var{subexpr})},
33809 and which should return true if @code{mpb-top-expr} (a global name for
33810 the original @var{expr}) is a suitable polynomial in @var{subexpr}.
33811 The default predicate uses @samp{(polynomial-p mpb-top-expr @var{subexpr})};
33812 you can use @var{pred} to specify additional conditions.  Or, you could
33813 have @var{pred} build up a list of every suitable @var{subexpr} that
33814 is found.@refill
33815 @end defun
33817 @defun poly-simplify poly
33818 Simplify polynomial coefficient list @var{poly} by (destructively)
33819 clipping off trailing zeros.
33820 @end defun
33822 @defun poly-mix a ac b bc
33823 Mix two polynomial lists @var{a} and @var{b} (in the form returned by
33824 @code{is-polynomial}) in a linear combination with coefficient expressions
33825 @var{ac} and @var{bc}.  The result is a (not necessarily simplified)
33826 polynomial list representing @samp{@var{ac} @var{a} + @var{bc} @var{b}}.@refill
33827 @end defun
33829 @defun poly-mul a b
33830 Multiply two polynomial coefficient lists @var{a} and @var{b}.  The
33831 result will be in simplified form if the inputs were simplified.
33832 @end defun
33834 @defun build-polynomial-expr poly var
33835 Construct a Calc formula which represents the polynomial coefficient
33836 list @var{poly} applied to variable @var{var}.  The @kbd{a c}
33837 (@code{calc-collect}) command uses @code{is-polynomial} to turn an
33838 expression into a coefficient list, then @code{build-polynomial-expr}
33839 to turn the list back into an expression in regular form.@refill
33840 @end defun
33842 @defun check-unit-name var
33843 Check if @var{var} is a variable which can be interpreted as a unit
33844 name.  If so, return the units table entry for that unit.  This
33845 will be a list whose first element is the unit name (not counting
33846 prefix characters) as a symbol and whose second element is the
33847 Calc expression which defines the unit.  (Refer to the Calc sources
33848 for details on the remaining elements of this list.)  If @var{var}
33849 is not a variable or is not a unit name, return @code{nil}.
33850 @end defun
33852 @defun units-in-expr-p expr sub-exprs
33853 Return true if @var{expr} contains any variables which can be
33854 interpreted as units.  If @var{sub-exprs} is @code{t}, the entire
33855 expression is searched.  If @var{sub-exprs} is @code{nil}, this
33856 checks whether @var{expr} is directly a units expression.@refill
33857 @end defun
33859 @defun single-units-in-expr-p expr
33860 Check whether @var{expr} contains exactly one units variable.  If so,
33861 return the units table entry for the variable.  If @var{expr} does
33862 not contain any units, return @code{nil}.  If @var{expr} contains
33863 two or more units, return the symbol @code{wrong}.
33864 @end defun
33866 @defun to-standard-units expr which
33867 Convert units expression @var{expr} to base units.  If @var{which}
33868 is @code{nil}, use Calc's native base units.  Otherwise, @var{which}
33869 can specify a units system, which is a list of two-element lists,
33870 where the first element is a Calc base symbol name and the second
33871 is an expression to substitute for it.@refill
33872 @end defun
33874 @defun remove-units expr
33875 Return a copy of @var{expr} with all units variables replaced by ones.
33876 This expression is generally normalized before use.
33877 @end defun
33879 @defun extract-units expr
33880 Return a copy of @var{expr} with everything but units variables replaced
33881 by ones.
33882 @end defun
33884 @node Formatting Lisp Functions, Hooks, Symbolic Lisp Functions, Internals
33885 @subsubsection I/O and Formatting Functions
33887 @noindent
33888 The functions described here are responsible for parsing and formatting
33889 Calc numbers and formulas.
33891 @defun calc-eval str sep arg1 arg2 @dots{}
33892 This is the simplest interface to the Calculator from another Lisp program.
33893 @xref{Calling Calc from Your Programs}.
33894 @end defun
33896 @defun read-number str
33897 If string @var{str} contains a valid Calc number, either integer,
33898 fraction, float, or HMS form, this function parses and returns that
33899 number.  Otherwise, it returns @code{nil}.
33900 @end defun
33902 @defun read-expr str
33903 Read an algebraic expression from string @var{str}.  If @var{str} does
33904 not have the form of a valid expression, return a list of the form
33905 @samp{(error @var{pos} @var{msg})} where @var{pos} is an integer index
33906 into @var{str} of the general location of the error, and @var{msg} is
33907 a string describing the problem.@refill
33908 @end defun
33910 @defun read-exprs str
33911 Read a list of expressions separated by commas, and return it as a
33912 Lisp list.  If an error occurs in any expressions, an error list as
33913 shown above is returned instead.
33914 @end defun
33916 @defun calc-do-alg-entry initial prompt no-norm
33917 Read an algebraic formula or formulas using the minibuffer.  All
33918 conventions of regular algebraic entry are observed.  The return value
33919 is a list of Calc formulas; there will be more than one if the user
33920 entered a list of values separated by commas.  The result is @code{nil}
33921 if the user presses Return with a blank line.  If @var{initial} is
33922 given, it is a string which the minibuffer will initially contain.
33923 If @var{prompt} is given, it is the prompt string to use; the default
33924 is ``Algebraic:''.  If @var{no-norm} is @code{t}, the formulas will
33925 be returned exactly as parsed; otherwise, they will be passed through
33926 @code{calc-normalize} first.@refill
33928 To support the use of @kbd{$} characters in the algebraic entry, use
33929 @code{let} to bind @code{calc-dollar-values} to a list of the values
33930 to be substituted for @kbd{$}, @kbd{$$}, and so on, and bind
33931 @code{calc-dollar-used} to 0.  Upon return, @code{calc-dollar-used}
33932 will have been changed to the highest number of consecutive @kbd{$}s
33933 that actually appeared in the input.@refill
33934 @end defun
33936 @defun format-number a
33937 Convert the real or complex number or HMS form @var{a} to string form.
33938 @end defun
33940 @defun format-flat-expr a prec
33941 Convert the arbitrary Calc number or formula @var{a} to string form,
33942 in the style used by the trail buffer and the @code{calc-edit} command.
33943 This is a simple format designed
33944 mostly to guarantee the string is of a form that can be re-parsed by
33945 @code{read-expr}.  Most formatting modes, such as digit grouping,
33946 complex number format, and point character, are ignored to ensure the
33947 result will be re-readable.  The @var{prec} parameter is normally 0; if
33948 you pass a large integer like 1000 instead, the expression will be
33949 surrounded by parentheses unless it is a plain number or variable name.@refill
33950 @end defun
33952 @defun format-nice-expr a width
33953 This is like @code{format-flat-expr} (with @var{prec} equal to 0),
33954 except that newlines will be inserted to keep lines down to the
33955 specified @var{width}, and vectors that look like matrices or rewrite
33956 rules are written in a pseudo-matrix format.  The @code{calc-edit}
33957 command uses this when only one stack entry is being edited.
33958 @end defun
33960 @defun format-value a width
33961 Convert the Calc number or formula @var{a} to string form, using the
33962 format seen in the stack buffer.  Beware the string returned may
33963 not be re-readable by @code{read-expr}, for example, because of digit
33964 grouping.  Multi-line objects like matrices produce strings that
33965 contain newline characters to separate the lines.  The @var{w}
33966 parameter, if given, is the target window size for which to format
33967 the expressions.  If @var{w} is omitted, the width of the Calculator
33968 window is used.@refill
33969 @end defun
33971 @defun compose-expr a prec
33972 Format the Calc number or formula @var{a} according to the current
33973 language mode, returning a ``composition.''  To learn about the
33974 structure of compositions, see the comments in the Calc source code.
33975 You can specify the format of a given type of function call by putting
33976 a @code{math-compose-@var{lang}} property on the function's symbol,
33977 whose value is a Lisp function that takes @var{a} and @var{prec} as
33978 arguments and returns a composition.  Here @var{lang} is a language
33979 mode name, one of @code{normal}, @code{big}, @code{c}, @code{pascal},
33980 @code{fortran}, @code{tex}, @code{eqn}, @code{math}, or @code{maple}.
33981 In Big mode, Calc actually tries @code{math-compose-big} first, then
33982 tries @code{math-compose-normal}.  If this property does not exist,
33983 or if the function returns @code{nil}, the function is written in the
33984 normal function-call notation for that language.
33985 @end defun
33987 @defun composition-to-string c w
33988 Convert a composition structure returned by @code{compose-expr} into
33989 a string.  Multi-line compositions convert to strings containing
33990 newline characters.  The target window size is given by @var{w}.
33991 The @code{format-value} function basically calls @code{compose-expr}
33992 followed by @code{composition-to-string}.
33993 @end defun
33995 @defun comp-width c
33996 Compute the width in characters of composition @var{c}.
33997 @end defun
33999 @defun comp-height c
34000 Compute the height in lines of composition @var{c}.
34001 @end defun
34003 @defun comp-ascent c
34004 Compute the portion of the height of composition @var{c} which is on or
34005 above the baseline.  For a one-line composition, this will be one.
34006 @end defun
34008 @defun comp-descent c
34009 Compute the portion of the height of composition @var{c} which is below
34010 the baseline.  For a one-line composition, this will be zero.
34011 @end defun
34013 @defun comp-first-char c
34014 If composition @var{c} is a ``flat'' composition, return the first
34015 (leftmost) character of the composition as an integer.  Otherwise,
34016 return @code{nil}.@refill
34017 @end defun
34019 @defun comp-last-char c
34020 If composition @var{c} is a ``flat'' composition, return the last
34021 (rightmost) character, otherwise return @code{nil}.
34022 @end defun
34024 @comment @node Lisp Variables, Hooks, Formatting Lisp Functions, Internals
34025 @comment @subsubsection Lisp Variables
34026 @comment 
34027 @comment @noindent
34028 @comment (This section is currently unfinished.)
34030 @node Hooks, , Formatting Lisp Functions, Internals
34031 @subsubsection Hooks
34033 @noindent
34034 Hooks are variables which contain Lisp functions (or lists of functions)
34035 which are called at various times.  Calc defines a number of hooks
34036 that help you to customize it in various ways.  Calc uses the Lisp
34037 function @code{run-hooks} to invoke the hooks shown below.  Several
34038 other customization-related variables are also described here.
34040 @defvar calc-load-hook
34041 This hook is called at the end of @file{calc.el}, after the file has
34042 been loaded, before any functions in it have been called, but after
34043 @code{calc-mode-map} and similar variables have been set up.
34044 @end defvar
34046 @defvar calc-ext-load-hook
34047 This hook is called at the end of @file{calc-ext.el}.
34048 @end defvar
34050 @defvar calc-start-hook
34051 This hook is called as the last step in a @kbd{M-x calc} command.
34052 At this point, the Calc buffer has been created and initialized if
34053 necessary, the Calc window and trail window have been created,
34054 and the ``Welcome to Calc'' message has been displayed.
34055 @end defvar
34057 @defvar calc-mode-hook
34058 This hook is called when the Calc buffer is being created.  Usually
34059 this will only happen once per Emacs session.  The hook is called
34060 after Emacs has switched to the new buffer, the mode-settings file
34061 has been read if necessary, and all other buffer-local variables
34062 have been set up.  After this hook returns, Calc will perform a
34063 @code{calc-refresh} operation, set up the mode line display, then
34064 evaluate any deferred @code{calc-define} properties that have not
34065 been evaluated yet.
34066 @end defvar
34068 @defvar calc-trail-mode-hook
34069 This hook is called when the Calc Trail buffer is being created.
34070 It is called as the very last step of setting up the Trail buffer.
34071 Like @code{calc-mode-hook}, this will normally happen only once
34072 per Emacs session.
34073 @end defvar
34075 @defvar calc-end-hook
34076 This hook is called by @code{calc-quit}, generally because the user
34077 presses @kbd{q} or @kbd{M-# c} while in Calc.  The Calc buffer will
34078 be the current buffer.  The hook is called as the very first
34079 step, before the Calc window is destroyed.
34080 @end defvar
34082 @defvar calc-window-hook
34083 If this hook exists, it is called to create the Calc window.
34084 Upon return, this new Calc window should be the current window.
34085 (The Calc buffer will already be the current buffer when the
34086 hook is called.)  If the hook is not defined, Calc will
34087 generally use @code{split-window}, @code{set-window-buffer},
34088 and @code{select-window} to create the Calc window.
34089 @end defvar
34091 @defvar calc-trail-window-hook
34092 If this hook exists, it is called to create the Calc Trail window.
34093 The variable @code{calc-trail-buffer} will contain the buffer
34094 which the window should use.  Unlike @code{calc-window-hook},
34095 this hook must @emph{not} switch into the new window.
34096 @end defvar
34098 @defvar calc-edit-mode-hook
34099 This hook is called by @code{calc-edit} (and the other ``edit''
34100 commands) when the temporary editing buffer is being created.
34101 The buffer will have been selected and set up to be in
34102 @code{calc-edit-mode}, but will not yet have been filled with
34103 text.  (In fact it may still have leftover text from a previous
34104 @code{calc-edit} command.)
34105 @end defvar
34107 @defvar calc-mode-save-hook
34108 This hook is called by the @code{calc-save-modes} command,
34109 after Calc's own mode features have been inserted into the
34110 @file{.emacs} buffer and just before the ``End of mode settings''
34111 message is inserted.
34112 @end defvar
34114 @defvar calc-reset-hook
34115 This hook is called after @kbd{M-# 0} (@code{calc-reset}) has
34116 reset all modes.  The Calc buffer will be the current buffer.
34117 @end defvar
34119 @defvar calc-other-modes
34120 This variable contains a list of strings.  The strings are
34121 concatenated at the end of the modes portion of the Calc
34122 mode line (after standard modes such as ``Deg'', ``Inv'' and
34123 ``Hyp'').  Each string should be a short, single word followed
34124 by a space.  The variable is @code{nil} by default.
34125 @end defvar
34127 @defvar calc-mode-map
34128 This is the keymap that is used by Calc mode.  The best time
34129 to adjust it is probably in a @code{calc-mode-hook}.  If the
34130 Calc extensions package (@file{calc-ext.el}) has not yet been
34131 loaded, many of these keys will be bound to @code{calc-missing-key},
34132 which is a command that loads the extensions package and
34133 ``retypes'' the key.  If your @code{calc-mode-hook} rebinds
34134 one of these keys, it will probably be overridden when the
34135 extensions are loaded.
34136 @end defvar
34138 @defvar calc-digit-map
34139 This is the keymap that is used during numeric entry.  Numeric
34140 entry uses the minibuffer, but this map binds every non-numeric
34141 key to @code{calcDigit-nondigit} which generally calls
34142 @code{exit-minibuffer} and ``retypes'' the key.
34143 @end defvar
34145 @defvar calc-alg-ent-map
34146 This is the keymap that is used during algebraic entry.  This is
34147 mostly a copy of @code{minibuffer-local-map}.
34148 @end defvar
34150 @defvar calc-store-var-map
34151 This is the keymap that is used during entry of variable names for
34152 commands like @code{calc-store} and @code{calc-recall}.  This is
34153 mostly a copy of @code{minibuffer-local-completion-map}.
34154 @end defvar
34156 @defvar calc-edit-mode-map
34157 This is the (sparse) keymap used by @code{calc-edit} and other
34158 temporary editing commands.  It binds @key{RET}, @key{LFD},
34159 and @kbd{C-c C-c} to @code{calc-edit-finish}.
34160 @end defvar
34162 @defvar calc-mode-var-list
34163 This is a list of variables which are saved by @code{calc-save-modes}.
34164 Each entry is a list of two items, the variable (as a Lisp symbol)
34165 and its default value.  When modes are being saved, each variable
34166 is compared with its default value (using @code{equal}) and any
34167 non-default variables are written out.
34168 @end defvar
34170 @defvar calc-local-var-list
34171 This is a list of variables which should be buffer-local to the
34172 Calc buffer.  Each entry is a variable name (as a Lisp symbol).
34173 These variables also have their default values manipulated by
34174 the @code{calc} and @code{calc-quit} commands; @pxref{Multiple Calculators}.
34175 Since @code{calc-mode-hook} is called after this list has been
34176 used the first time, your hook should add a variable to the
34177 list and also call @code{make-local-variable} itself.
34178 @end defvar
34180 @node Installation, Reporting Bugs, Programming, Top
34181 @appendix Installation
34183 @noindent
34184 As of Calc 2.02g, Calc is integrated with GNU Emacs, and thus requires
34185 no separate installation of its Lisp files and this manual.
34187 @appendixsec The GNUPLOT Program
34189 @noindent
34190 Calc's graphing commands use the GNUPLOT program.  If you have GNUPLOT
34191 but you must type some command other than @file{gnuplot} to get it,
34192 you should add a command to set the Lisp variable @code{calc-gnuplot-name}
34193 to the appropriate file name.  You may also need to change the variables
34194 @code{calc-gnuplot-plot-command} and @code{calc-gnuplot-print-command} in
34195 order to get correct displays and hardcopies, respectively, of your
34196 plots.@refill
34198 @ifinfo
34199 @example
34201 @end example
34202 @end ifinfo
34203 @appendixsec Printed Documentation
34205 @noindent
34206 Because the Calc manual is so large, you should only make a printed
34207 copy if you really need it.  To print the manual, you will need the
34208 @TeX{} typesetting program (this is a free program by Donald Knuth
34209 at Stanford University) as well as the @file{texindex} program and
34210 @file{texinfo.tex} file, both of which can be obtained from the FSF
34211 as part of the @code{texinfo} package.@refill
34213 To print the Calc manual in one huge 470 page tome, you will need the
34214 source code to this manual, @file{calc.texi}, available as part of the
34215 Emacs source.  Once you have this file, type @kbd{texi2dvi calc.texi}.
34216 Alternatively, change to the @file{man} subdirectory of the Emacs
34217 source distribution, and type @kbd{make calc.dvi}. (Don't worry if you
34218 get some ``overfull box'' warnings while @TeX{} runs.)
34220 The result will be a device-independent output file called
34221 @file{calc.dvi}, which you must print in whatever way is right
34222 for your system.  On many systems, the command is
34224 @example
34225 lpr -d calc.dvi
34226 @end example
34228 @noindent
34231 @example
34232 dvips calc.dvi
34233 @end example
34235 @c the bumpoddpages macro was deleted
34236 @ignore
34237 @cindex Marginal notes, adjusting
34238 Marginal notes for each function and key sequence normally alternate
34239 between the left and right sides of the page, which is correct if the
34240 manual is going to be bound as double-sided pages.  Near the top of
34241 the file @file{calc.texi} you will find alternate definitions of
34242 the @code{\bumpoddpages} macro that put the marginal notes always on
34243 the same side, best if you plan to be binding single-sided pages.
34244 @end ignore
34246 @appendixsec Settings File
34248 @noindent
34249 @vindex calc-settings-file
34250 Another variable you might want to set is @code{calc-settings-file},
34251 which holds the file name in which commands like @kbd{m m} and @kbd{Z P}
34252 store ``permanent'' definitions.  The default value for this variable
34253 is @code{"~/.emacs"}.  If @code{calc-settings-file} does not contain
34254 @code{".emacs"} as a substring, and if the variable
34255 @code{calc-loaded-settings-file} is @code{nil}, then Calc will
34256 automatically load your settings file (if it exists) the first time
34257 Calc is invoked.@refill
34259 @ifinfo
34260 @example
34262 @end example
34263 @end ifinfo
34264 @appendixsec Testing the Installation
34266 @noindent
34267 To test your installation of Calc, start a new Emacs and type @kbd{M-# c}
34268 to make sure the autoloads and key bindings work.  Type @kbd{M-# i}
34269 to make sure Calc can find its Info documentation.  Press @kbd{q} to
34270 exit the Info system and @kbd{M-# c} to re-enter the Calculator.
34271 Type @kbd{20 S} to compute the sine of 20 degrees; this will test the
34272 autoloading of the extensions modules.  The result should be
34273 0.342020143326.  Finally, press @kbd{M-# c} again to make sure the
34274 Calculator can exit.
34276 You may also wish to test the GNUPLOT interface; to plot a sine wave,
34277 type @kbd{' [0 ..@: 360], sin(x) @key{RET} g f}.  Type @kbd{g q} when you
34278 are done viewing the plot.
34280 Calc is now ready to use.  If you wish to go through the Calc Tutorial,
34281 press @kbd{M-# t} to begin.
34282 @example
34284 @end example
34285 @node Reporting Bugs, Summary, Installation, Top
34286 @appendix Reporting Bugs
34288 @noindent
34289 If you find a bug in Calc, send e-mail to Colin Walters,
34291 @example
34292 walters@@debian.org           @r{or}
34293 walters@@verbum.org
34294 @end example
34296 @noindent
34297 (In the following text, ``I'' refers to the original Calc author, Dave
34298 Gillespie).
34300 While I cannot guarantee that I will have time to work on your bug,
34301 I do try to fix bugs quickly whenever I can.
34303 The latest version of Calc is available from Savannah, in the Emacs
34304 CVS tree.  See @uref{http://savannah.gnu.org/projects/emacs}.
34306 There is an automatic command @kbd{M-x report-calc-bug} which helps
34307 you to report bugs.  This command prompts you for a brief subject
34308 line, then leaves you in a mail editing buffer.  Type @kbd{C-c C-c} to
34309 send your mail.  Make sure your subject line indicates that you are
34310 reporting a Calc bug; this command sends mail to the maintainer's
34311 regular mailbox.
34313 If you have suggestions for additional features for Calc, I would
34314 love to hear them.  Some have dared to suggest that Calc is already
34315 top-heavy with features; I really don't see what they're talking
34316 about, so, if you have ideas, send them right in.  (I may even have
34317 time to implement them!)
34319 At the front of the source file, @file{calc.el}, is a list of ideas for
34320 future work which I have not had time to do.  If any enthusiastic souls
34321 wish to take it upon themselves to work on these, I would be delighted.
34322 Please let me know if you plan to contribute to Calc so I can coordinate
34323 your efforts with mine and those of others.  I will do my best to help
34324 you in whatever way I can.
34326 @c [summary]
34327 @node Summary, Key Index, Reporting Bugs, Top
34328 @appendix Calc Summary
34330 @noindent
34331 This section includes a complete list of Calc 2.02 keystroke commands.
34332 Each line lists the stack entries used by the command (top-of-stack
34333 last), the keystrokes themselves, the prompts asked by the command,
34334 and the result of the command (also with top-of-stack last).
34335 The result is expressed using the equivalent algebraic function.
34336 Commands which put no results on the stack show the full @kbd{M-x}
34337 command name in that position.  Numbers preceding the result or
34338 command name refer to notes at the end.
34340 Algebraic functions and @kbd{M-x} commands that don't have corresponding
34341 keystrokes are not listed in this summary.
34342 @xref{Command Index}.  @xref{Function Index}.
34344 @iftex
34345 @begingroup
34346 @tex
34347 \vskip-2\baselineskip \null
34348 \gdef\sumrow#1{\sumrowx#1\relax}%
34349 \gdef\sumrowx#1\:#2\:#3\:#4\:#5\:#6\relax{%
34350 \leavevmode%
34351 {\smallfonts
34352 \hbox to5em{\sl\hss#1}%
34353 \hbox to5em{\tt#2\hss}%
34354 \hbox to4em{\sl#3\hss}%
34355 \hbox to5em{\rm\hss#4}%
34356 \thinspace%
34357 {\tt#5}%
34358 {\sl#6}%
34360 \gdef\sumlpar{{\rm(}}%
34361 \gdef\sumrpar{{\rm)}}%
34362 \gdef\sumcomma{{\rm,\thinspace}}%
34363 \gdef\sumexcl{{\rm!}}%
34364 \gdef\sumbreak{\vskip-2.5\baselineskip\goodbreak}%
34365 \gdef\minus#1{{\tt-}}%
34366 @end tex
34367 @let@:=@sumsep
34368 @let@r=@sumrow
34369 @catcode`@(=@active @let(=@sumlpar
34370 @catcode`@)=@active @let)=@sumrpar
34371 @catcode`@,=@active @let,=@sumcomma
34372 @catcode`@!=@active @let!=@sumexcl
34373 @end iftex
34374 @format
34375 @iftex
34376 @advance@baselineskip-2.5pt
34377 @let@c@sumbreak
34378 @end iftex
34379 @r{       @:     M-# a  @:             @:    33  @:calc-embedded-activate@:}
34380 @r{       @:     M-# b  @:             @:        @:calc-big-or-small@:}
34381 @r{       @:     M-# c  @:             @:        @:calc@:}
34382 @r{       @:     M-# d  @:             @:        @:calc-embedded-duplicate@:}
34383 @r{       @:     M-# e  @:             @:    34  @:calc-embedded@:}
34384 @r{       @:     M-# f  @:formula      @:        @:calc-embedded-new-formula@:}
34385 @r{       @:     M-# g  @:             @:    35  @:calc-grab-region@:}
34386 @r{       @:     M-# i  @:             @:        @:calc-info@:}
34387 @r{       @:     M-# j  @:             @:        @:calc-embedded-select@:}
34388 @r{       @:     M-# k  @:             @:        @:calc-keypad@:}
34389 @r{       @:     M-# l  @:             @:        @:calc-load-everything@:}
34390 @r{       @:     M-# m  @:             @:        @:read-kbd-macro@:}
34391 @r{       @:     M-# n  @:             @:     4  @:calc-embedded-next@:}
34392 @r{       @:     M-# o  @:             @:        @:calc-other-window@:}
34393 @r{       @:     M-# p  @:             @:     4  @:calc-embedded-previous@:}
34394 @r{       @:     M-# q  @:formula      @:        @:quick-calc@:}
34395 @r{       @:     M-# r  @:             @:    36  @:calc-grab-rectangle@:}
34396 @r{       @:     M-# s  @:             @:        @:calc-info-summary@:}
34397 @r{       @:     M-# t  @:             @:        @:calc-tutorial@:}
34398 @r{       @:     M-# u  @:             @:        @:calc-embedded-update@:}
34399 @r{       @:     M-# w  @:             @:        @:calc-embedded-word@:}
34400 @r{       @:     M-# x  @:             @:        @:calc-quit@:}
34401 @r{       @:     M-# y  @:            @:1,28,49  @:calc-copy-to-buffer@:}
34402 @r{       @:     M-# z  @:             @:        @:calc-user-invocation@:}
34403 @r{       @:     M-# :  @:             @:    36  @:calc-grab-sum-down@:}
34404 @r{       @:     M-# _  @:             @:    36  @:calc-grab-sum-across@:}
34405 @r{       @:     M-# `  @:editing      @:    30  @:calc-embedded-edit@:}
34406 @r{       @:     M-# 0  @:(zero)       @:        @:calc-reset@:}
34408 @c 
34409 @r{       @:      0-9   @:number       @:        @:@:number}
34410 @r{       @:      .     @:number       @:        @:@:0.number}
34411 @r{       @:      _     @:number       @:        @:-@:number}
34412 @r{       @:      e     @:number       @:        @:@:1e number}
34413 @r{       @:      #     @:number       @:        @:@:current-radix@t{#}number}
34414 @r{       @:      P     @:(in number)  @:        @:+/-@:}
34415 @r{       @:      M     @:(in number)  @:        @:mod@:}
34416 @r{       @:      @@ ' " @:  (in number)@:        @:@:HMS form}
34417 @r{       @:      h m s @:  (in number)@:        @:@:HMS form}
34419 @c 
34420 @r{       @:      '     @:formula      @: 37,46  @:@:formula}
34421 @r{       @:      $     @:formula      @: 37,46  @:$@:formula}
34422 @r{       @:      "     @:string       @: 37,46  @:@:string}
34424 @c 
34425 @r{    a b@:      +     @:             @:     2  @:add@:(a,b)  a+b}
34426 @r{    a b@:      -     @:             @:     2  @:sub@:(a,b)  a@minus{}b}
34427 @r{    a b@:      *     @:             @:     2  @:mul@:(a,b)  a b, a*b}
34428 @r{    a b@:      /     @:             @:     2  @:div@:(a,b)  a/b}
34429 @r{    a b@:      ^     @:             @:     2  @:pow@:(a,b)  a^b}
34430 @r{    a b@:    I ^     @:             @:     2  @:nroot@:(a,b)  a^(1/b)}
34431 @r{    a b@:      %     @:             @:     2  @:mod@:(a,b)  a%b}
34432 @r{    a b@:      \     @:             @:     2  @:idiv@:(a,b)  a\b}
34433 @r{    a b@:      :     @:             @:     2  @:fdiv@:(a,b)}
34434 @r{    a b@:      |     @:             @:     2  @:vconcat@:(a,b)  a|b}
34435 @r{    a b@:    I |     @:             @:        @:vconcat@:(b,a)  b|a}
34436 @r{    a b@:    H |     @:             @:     2  @:append@:(a,b)}
34437 @r{    a b@:  I H |     @:             @:        @:append@:(b,a)}
34438 @r{      a@:      &     @:             @:     1  @:inv@:(a)  1/a}
34439 @r{      a@:      !     @:             @:     1  @:fact@:(a)  a!}
34440 @r{      a@:      =     @:             @:     1  @:evalv@:(a)}
34441 @r{      a@:      M-%   @:             @:        @:percent@:(a)  a%}
34443 @c 
34444 @r{  ... a@:      @key{RET}   @:             @:     1  @:@:... a a}
34445 @r{  ... a@:      @key{SPC}   @:             @:     1  @:@:... a a}
34446 @r{... a b@:      @key{TAB}   @:             @:     3  @:@:... b a}
34447 @r{. a b c@:      M-@key{TAB} @:             @:     3  @:@:... b c a}
34448 @r{... a b@:      @key{LFD}   @:             @:     1  @:@:... a b a}
34449 @r{  ... a@:      @key{DEL}   @:             @:     1  @:@:...}
34450 @r{... a b@:      M-@key{DEL} @:             @:     1  @:@:... b}
34451 @r{       @:      M-@key{RET} @:             @:     4  @:calc-last-args@:}
34452 @r{      a@:      `     @:editing      @:  1,30  @:calc-edit@:}
34454 @c 
34455 @r{  ... a@:      C-d   @:             @:     1  @:@:...}
34456 @r{       @:      C-k   @:             @:    27  @:calc-kill@:}
34457 @r{       @:      C-w   @:             @:    27  @:calc-kill-region@:}
34458 @r{       @:      C-y   @:             @:        @:calc-yank@:}
34459 @r{       @:      C-_   @:             @:     4  @:calc-undo@:}
34460 @r{       @:      M-k   @:             @:    27  @:calc-copy-as-kill@:}
34461 @r{       @:      M-w   @:             @:    27  @:calc-copy-region-as-kill@:}
34463 @c 
34464 @r{       @:      [     @:             @:        @:@:[...}
34465 @r{[.. a b@:      ]     @:             @:        @:@:[a,b]}
34466 @r{       @:      (     @:             @:        @:@:(...}
34467 @r{(.. a b@:      )     @:             @:        @:@:(a,b)}
34468 @r{       @:      ,     @:             @:        @:@:vector or rect complex}
34469 @r{       @:      ;     @:             @:        @:@:matrix or polar complex}
34470 @r{       @:      ..    @:             @:        @:@:interval}
34472 @c 
34473 @r{       @:      ~     @:             @:        @:calc-num-prefix@:}
34474 @r{       @:      <     @:             @:     4  @:calc-scroll-left@:}
34475 @r{       @:      >     @:             @:     4  @:calc-scroll-right@:}
34476 @r{       @:      @{     @:             @:     4  @:calc-scroll-down@:}
34477 @r{       @:      @}     @:             @:     4  @:calc-scroll-up@:}
34478 @r{       @:      ?     @:             @:        @:calc-help@:}
34480 @c 
34481 @r{      a@:      n     @:             @:     1  @:neg@:(a)  @minus{}a}
34482 @r{       @:      o     @:             @:     4  @:calc-realign@:}
34483 @r{       @:      p     @:precision    @:    31  @:calc-precision@:}
34484 @r{       @:      q     @:             @:        @:calc-quit@:}
34485 @r{       @:      w     @:             @:        @:calc-why@:}
34486 @r{       @:      x     @:command      @:        @:M-x calc-@:command}
34487 @r{      a@:      y     @:            @:1,28,49  @:calc-copy-to-buffer@:}
34489 @c 
34490 @r{      a@:      A     @:             @:     1  @:abs@:(a)}
34491 @r{    a b@:      B     @:             @:     2  @:log@:(a,b)}
34492 @r{    a b@:    I B     @:             @:     2  @:alog@:(a,b)  b^a}
34493 @r{      a@:      C     @:             @:     1  @:cos@:(a)}
34494 @r{      a@:    I C     @:             @:     1  @:arccos@:(a)}
34495 @r{      a@:    H C     @:             @:     1  @:cosh@:(a)}
34496 @r{      a@:  I H C     @:             @:     1  @:arccosh@:(a)}
34497 @r{       @:      D     @:             @:     4  @:calc-redo@:}
34498 @r{      a@:      E     @:             @:     1  @:exp@:(a)}
34499 @r{      a@:    H E     @:             @:     1  @:exp10@:(a)  10.^a}
34500 @r{      a@:      F     @:             @:  1,11  @:floor@:(a,d)}
34501 @r{      a@:    I F     @:             @:  1,11  @:ceil@:(a,d)}
34502 @r{      a@:    H F     @:             @:  1,11  @:ffloor@:(a,d)}
34503 @r{      a@:  I H F     @:             @:  1,11  @:fceil@:(a,d)}
34504 @r{      a@:      G     @:             @:     1  @:arg@:(a)}
34505 @r{       @:      H     @:command      @:    32  @:@:Hyperbolic}
34506 @r{       @:      I     @:command      @:    32  @:@:Inverse}
34507 @r{      a@:      J     @:             @:     1  @:conj@:(a)}
34508 @r{       @:      K     @:command      @:    32  @:@:Keep-args}
34509 @r{      a@:      L     @:             @:     1  @:ln@:(a)}
34510 @r{      a@:    H L     @:             @:     1  @:log10@:(a)}
34511 @r{       @:      M     @:             @:        @:calc-more-recursion-depth@:}
34512 @r{       @:    I M     @:             @:        @:calc-less-recursion-depth@:}
34513 @r{      a@:      N     @:             @:     5  @:evalvn@:(a)}
34514 @r{       @:      P     @:             @:        @:@:pi}
34515 @r{       @:    I P     @:             @:        @:@:gamma}
34516 @r{       @:    H P     @:             @:        @:@:e}
34517 @r{       @:  I H P     @:             @:        @:@:phi}
34518 @r{      a@:      Q     @:             @:     1  @:sqrt@:(a)}
34519 @r{      a@:    I Q     @:             @:     1  @:sqr@:(a)  a^2}
34520 @r{      a@:      R     @:             @:  1,11  @:round@:(a,d)}
34521 @r{      a@:    I R     @:             @:  1,11  @:trunc@:(a,d)}
34522 @r{      a@:    H R     @:             @:  1,11  @:fround@:(a,d)}
34523 @r{      a@:  I H R     @:             @:  1,11  @:ftrunc@:(a,d)}
34524 @r{      a@:      S     @:             @:     1  @:sin@:(a)}
34525 @r{      a@:    I S     @:             @:     1  @:arcsin@:(a)}
34526 @r{      a@:    H S     @:             @:     1  @:sinh@:(a)}
34527 @r{      a@:  I H S     @:             @:     1  @:arcsinh@:(a)}
34528 @r{      a@:      T     @:             @:     1  @:tan@:(a)}
34529 @r{      a@:    I T     @:             @:     1  @:arctan@:(a)}
34530 @r{      a@:    H T     @:             @:     1  @:tanh@:(a)}
34531 @r{      a@:  I H T     @:             @:     1  @:arctanh@:(a)}
34532 @r{       @:      U     @:             @:     4  @:calc-undo@:}
34533 @r{       @:      X     @:             @:     4  @:calc-call-last-kbd-macro@:}
34535 @c 
34536 @r{    a b@:      a =   @:             @:     2  @:eq@:(a,b)  a=b}
34537 @r{    a b@:      a #   @:             @:     2  @:neq@:(a,b)  a!=b}
34538 @r{    a b@:      a <   @:             @:     2  @:lt@:(a,b)  a<b}
34539 @r{    a b@:      a >   @:             @:     2  @:gt@:(a,b)  a>b}
34540 @r{    a b@:      a [   @:             @:     2  @:leq@:(a,b)  a<=b}
34541 @r{    a b@:      a ]   @:             @:     2  @:geq@:(a,b)  a>=b}
34542 @r{    a b@:      a @{   @:             @:     2  @:in@:(a,b)}
34543 @r{    a b@:      a &   @:             @:  2,45  @:land@:(a,b)  a&&b}
34544 @r{    a b@:      a |   @:             @:  2,45  @:lor@:(a,b)  a||b}
34545 @r{      a@:      a !   @:             @:  1,45  @:lnot@:(a)  !a}
34546 @r{  a b c@:      a :   @:             @:    45  @:if@:(a,b,c)  a?b:c}
34547 @r{      a@:      a .   @:             @:     1  @:rmeq@:(a)}
34548 @r{      a@:      a "   @:             @:   7,8  @:calc-expand-formula@:}
34550 @c 
34551 @r{      a@:      a +   @:i, l, h      @:  6,38  @:sum@:(a,i,l,h)}
34552 @r{      a@:      a -   @:i, l, h      @:  6,38  @:asum@:(a,i,l,h)}
34553 @r{      a@:      a *   @:i, l, h      @:  6,38  @:prod@:(a,i,l,h)}
34554 @r{    a b@:      a _   @:             @:     2  @:subscr@:(a,b)  a_b}
34556 @c 
34557 @r{    a b@:      a \   @:             @:     2  @:pdiv@:(a,b)}
34558 @r{    a b@:      a %   @:             @:     2  @:prem@:(a,b)}
34559 @r{    a b@:      a /   @:             @:     2  @:pdivrem@:(a,b)  [q,r]}
34560 @r{    a b@:    H a /   @:             @:     2  @:pdivide@:(a,b)  q+r/b}
34562 @c 
34563 @r{      a@:      a a   @:             @:     1  @:apart@:(a)}
34564 @r{      a@:      a b   @:old, new     @:    38  @:subst@:(a,old,new)}
34565 @r{      a@:      a c   @:v            @:    38  @:collect@:(a,v)}
34566 @r{      a@:      a d   @:v            @:  4,38  @:deriv@:(a,v)}
34567 @r{      a@:    H a d   @:v            @:  4,38  @:tderiv@:(a,v)}
34568 @r{      a@:      a e   @:             @:        @:esimplify@:(a)}
34569 @r{      a@:      a f   @:             @:     1  @:factor@:(a)}
34570 @r{      a@:    H a f   @:             @:     1  @:factors@:(a)}
34571 @r{    a b@:      a g   @:             @:     2  @:pgcd@:(a,b)}
34572 @r{      a@:      a i   @:v            @:    38  @:integ@:(a,v)}
34573 @r{      a@:      a m   @:pats         @:    38  @:match@:(a,pats)}
34574 @r{      a@:    I a m   @:pats         @:    38  @:matchnot@:(a,pats)}
34575 @r{ data x@:      a p   @:             @:    28  @:polint@:(data,x)}
34576 @r{ data x@:    H a p   @:             @:    28  @:ratint@:(data,x)}
34577 @r{      a@:      a n   @:             @:     1  @:nrat@:(a)}
34578 @r{      a@:      a r   @:rules        @:4,8,38  @:rewrite@:(a,rules,n)}
34579 @r{      a@:      a s   @:             @:        @:simplify@:(a)}
34580 @r{      a@:      a t   @:v, n         @: 31,39  @:taylor@:(a,v,n)}
34581 @r{      a@:      a v   @:             @:   7,8  @:calc-alg-evaluate@:}
34582 @r{      a@:      a x   @:             @:   4,8  @:expand@:(a)}
34584 @c 
34585 @r{   data@:      a F   @:model, vars  @:    48  @:fit@:(m,iv,pv,data)}
34586 @r{   data@:    I a F   @:model, vars  @:    48  @:xfit@:(m,iv,pv,data)}
34587 @r{   data@:    H a F   @:model, vars  @:    48  @:efit@:(m,iv,pv,data)}
34588 @r{      a@:      a I   @:v, l, h      @:    38  @:ninteg@:(a,v,l,h)}
34589 @r{    a b@:      a M   @:op           @:    22  @:mapeq@:(op,a,b)}
34590 @r{    a b@:    I a M   @:op           @:    22  @:mapeqr@:(op,a,b)}
34591 @r{    a b@:    H a M   @:op           @:    22  @:mapeqp@:(op,a,b)}
34592 @r{    a g@:      a N   @:v            @:    38  @:minimize@:(a,v,g)}
34593 @r{    a g@:    H a N   @:v            @:    38  @:wminimize@:(a,v,g)}
34594 @r{      a@:      a P   @:v            @:    38  @:roots@:(a,v)}
34595 @r{    a g@:      a R   @:v            @:    38  @:root@:(a,v,g)}
34596 @r{    a g@:    H a R   @:v            @:    38  @:wroot@:(a,v,g)}
34597 @r{      a@:      a S   @:v            @:    38  @:solve@:(a,v)}
34598 @r{      a@:    I a S   @:v            @:    38  @:finv@:(a,v)}
34599 @r{      a@:    H a S   @:v            @:    38  @:fsolve@:(a,v)}
34600 @r{      a@:  I H a S   @:v            @:    38  @:ffinv@:(a,v)}
34601 @r{      a@:      a T   @:i, l, h      @:  6,38  @:table@:(a,i,l,h)}
34602 @r{    a g@:      a X   @:v            @:    38  @:maximize@:(a,v,g)}
34603 @r{    a g@:    H a X   @:v            @:    38  @:wmaximize@:(a,v,g)}
34605 @c 
34606 @r{    a b@:      b a   @:             @:     9  @:and@:(a,b,w)}
34607 @r{      a@:      b c   @:             @:     9  @:clip@:(a,w)}
34608 @r{    a b@:      b d   @:             @:     9  @:diff@:(a,b,w)}
34609 @r{      a@:      b l   @:             @:    10  @:lsh@:(a,n,w)}
34610 @r{    a n@:    H b l   @:             @:     9  @:lsh@:(a,n,w)}
34611 @r{      a@:      b n   @:             @:     9  @:not@:(a,w)}
34612 @r{    a b@:      b o   @:             @:     9  @:or@:(a,b,w)}
34613 @r{      v@:      b p   @:             @:     1  @:vpack@:(v)}
34614 @r{      a@:      b r   @:             @:    10  @:rsh@:(a,n,w)}
34615 @r{    a n@:    H b r   @:             @:     9  @:rsh@:(a,n,w)}
34616 @r{      a@:      b t   @:             @:    10  @:rot@:(a,n,w)}
34617 @r{    a n@:    H b t   @:             @:     9  @:rot@:(a,n,w)}
34618 @r{      a@:      b u   @:             @:     1  @:vunpack@:(a)}
34619 @r{       @:      b w   @:w            @:  9,50  @:calc-word-size@:}
34620 @r{    a b@:      b x   @:             @:     9  @:xor@:(a,b,w)}
34622 @c 
34623 @r{c s l p@:      b D   @:             @:        @:ddb@:(c,s,l,p)}
34624 @r{  r n p@:      b F   @:             @:        @:fv@:(r,n,p)}
34625 @r{  r n p@:    I b F   @:             @:        @:fvb@:(r,n,p)}
34626 @r{  r n p@:    H b F   @:             @:        @:fvl@:(r,n,p)}
34627 @r{      v@:      b I   @:             @:    19  @:irr@:(v)}
34628 @r{      v@:    I b I   @:             @:    19  @:irrb@:(v)}
34629 @r{      a@:      b L   @:             @:    10  @:ash@:(a,n,w)}
34630 @r{    a n@:    H b L   @:             @:     9  @:ash@:(a,n,w)}
34631 @r{  r n a@:      b M   @:             @:        @:pmt@:(r,n,a)}
34632 @r{  r n a@:    I b M   @:             @:        @:pmtb@:(r,n,a)}
34633 @r{  r n a@:    H b M   @:             @:        @:pmtl@:(r,n,a)}
34634 @r{    r v@:      b N   @:             @:    19  @:npv@:(r,v)}
34635 @r{    r v@:    I b N   @:             @:    19  @:npvb@:(r,v)}
34636 @r{  r n p@:      b P   @:             @:        @:pv@:(r,n,p)}
34637 @r{  r n p@:    I b P   @:             @:        @:pvb@:(r,n,p)}
34638 @r{  r n p@:    H b P   @:             @:        @:pvl@:(r,n,p)}
34639 @r{      a@:      b R   @:             @:    10  @:rash@:(a,n,w)}
34640 @r{    a n@:    H b R   @:             @:     9  @:rash@:(a,n,w)}
34641 @r{  c s l@:      b S   @:             @:        @:sln@:(c,s,l)}
34642 @r{  n p a@:      b T   @:             @:        @:rate@:(n,p,a)}
34643 @r{  n p a@:    I b T   @:             @:        @:rateb@:(n,p,a)}
34644 @r{  n p a@:    H b T   @:             @:        @:ratel@:(n,p,a)}
34645 @r{c s l p@:      b Y   @:             @:        @:syd@:(c,s,l,p)}
34647 @r{  r p a@:      b #   @:             @:        @:nper@:(r,p,a)}
34648 @r{  r p a@:    I b #   @:             @:        @:nperb@:(r,p,a)}
34649 @r{  r p a@:    H b #   @:             @:        @:nperl@:(r,p,a)}
34650 @r{    a b@:      b %   @:             @:        @:relch@:(a,b)}
34652 @c 
34653 @r{      a@:      c c   @:             @:     5  @:pclean@:(a,p)}
34654 @r{      a@:      c 0-9 @:             @:        @:pclean@:(a,p)}
34655 @r{      a@:    H c c   @:             @:     5  @:clean@:(a,p)}
34656 @r{      a@:    H c 0-9 @:             @:        @:clean@:(a,p)}
34657 @r{      a@:      c d   @:             @:     1  @:deg@:(a)}
34658 @r{      a@:      c f   @:             @:     1  @:pfloat@:(a)}
34659 @r{      a@:    H c f   @:             @:     1  @:float@:(a)}
34660 @r{      a@:      c h   @:             @:     1  @:hms@:(a)}
34661 @r{      a@:      c p   @:             @:        @:polar@:(a)}
34662 @r{      a@:    I c p   @:             @:        @:rect@:(a)}
34663 @r{      a@:      c r   @:             @:     1  @:rad@:(a)}
34665 @c 
34666 @r{      a@:      c F   @:             @:     5  @:pfrac@:(a,p)}
34667 @r{      a@:    H c F   @:             @:     5  @:frac@:(a,p)}
34669 @c 
34670 @r{      a@:      c %   @:             @:        @:percent@:(a*100)}
34672 @c 
34673 @r{       @:      d .   @:char         @:    50  @:calc-point-char@:}
34674 @r{       @:      d ,   @:char         @:    50  @:calc-group-char@:}
34675 @r{       @:      d <   @:             @: 13,50  @:calc-left-justify@:}
34676 @r{       @:      d =   @:             @: 13,50  @:calc-center-justify@:}
34677 @r{       @:      d >   @:             @: 13,50  @:calc-right-justify@:}
34678 @r{       @:      d @{   @:label        @:    50  @:calc-left-label@:}
34679 @r{       @:      d @}   @:label        @:    50  @:calc-right-label@:}
34680 @r{       @:      d [   @:             @:     4  @:calc-truncate-up@:}
34681 @r{       @:      d ]   @:             @:     4  @:calc-truncate-down@:}
34682 @r{       @:      d "   @:             @: 12,50  @:calc-display-strings@:}
34683 @r{       @:      d @key{SPC} @:             @:        @:calc-refresh@:}
34684 @r{       @:      d @key{RET} @:             @:     1  @:calc-refresh-top@:}
34686 @c 
34687 @r{       @:      d 0   @:             @:    50  @:calc-decimal-radix@:}
34688 @r{       @:      d 2   @:             @:    50  @:calc-binary-radix@:}
34689 @r{       @:      d 6   @:             @:    50  @:calc-hex-radix@:}
34690 @r{       @:      d 8   @:             @:    50  @:calc-octal-radix@:}
34692 @c 
34693 @r{       @:      d b   @:           @:12,13,50  @:calc-line-breaking@:}
34694 @r{       @:      d c   @:             @:    50  @:calc-complex-notation@:}
34695 @r{       @:      d d   @:format       @:    50  @:calc-date-notation@:}
34696 @r{       @:      d e   @:             @:  5,50  @:calc-eng-notation@:}
34697 @r{       @:      d f   @:num          @: 31,50  @:calc-fix-notation@:}
34698 @r{       @:      d g   @:           @:12,13,50  @:calc-group-digits@:}
34699 @r{       @:      d h   @:format       @:    50  @:calc-hms-notation@:}
34700 @r{       @:      d i   @:             @:    50  @:calc-i-notation@:}
34701 @r{       @:      d j   @:             @:    50  @:calc-j-notation@:}
34702 @r{       @:      d l   @:             @: 12,50  @:calc-line-numbering@:}
34703 @r{       @:      d n   @:             @:  5,50  @:calc-normal-notation@:}
34704 @r{       @:      d o   @:format       @:    50  @:calc-over-notation@:}
34705 @r{       @:      d p   @:             @: 12,50  @:calc-show-plain@:}
34706 @r{       @:      d r   @:radix        @: 31,50  @:calc-radix@:}
34707 @r{       @:      d s   @:             @:  5,50  @:calc-sci-notation@:}
34708 @r{       @:      d t   @:             @:    27  @:calc-truncate-stack@:}
34709 @r{       @:      d w   @:             @: 12,13  @:calc-auto-why@:}
34710 @r{       @:      d z   @:             @: 12,50  @:calc-leading-zeros@:}
34712 @c 
34713 @r{       @:      d B   @:             @:    50  @:calc-big-language@:}
34714 @r{       @:      d C   @:             @:    50  @:calc-c-language@:}
34715 @r{       @:      d E   @:             @:    50  @:calc-eqn-language@:}
34716 @r{       @:      d F   @:             @:    50  @:calc-fortran-language@:}
34717 @r{       @:      d M   @:             @:    50  @:calc-mathematica-language@:}
34718 @r{       @:      d N   @:             @:    50  @:calc-normal-language@:}
34719 @r{       @:      d O   @:             @:    50  @:calc-flat-language@:}
34720 @r{       @:      d P   @:             @:    50  @:calc-pascal-language@:}
34721 @r{       @:      d T   @:             @:    50  @:calc-tex-language@:}
34722 @r{       @:      d U   @:             @:    50  @:calc-unformatted-language@:}
34723 @r{       @:      d W   @:             @:    50  @:calc-maple-language@:}
34725 @c 
34726 @r{      a@:      f [   @:             @:     4  @:decr@:(a,n)}
34727 @r{      a@:      f ]   @:             @:     4  @:incr@:(a,n)}
34729 @c 
34730 @r{    a b@:      f b   @:             @:     2  @:beta@:(a,b)}
34731 @r{      a@:      f e   @:             @:     1  @:erf@:(a)}
34732 @r{      a@:    I f e   @:             @:     1  @:erfc@:(a)}
34733 @r{      a@:      f g   @:             @:     1  @:gamma@:(a)}
34734 @r{    a b@:      f h   @:             @:     2  @:hypot@:(a,b)}
34735 @r{      a@:      f i   @:             @:     1  @:im@:(a)}
34736 @r{    n a@:      f j   @:             @:     2  @:besJ@:(n,a)}
34737 @r{    a b@:      f n   @:             @:     2  @:min@:(a,b)}
34738 @r{      a@:      f r   @:             @:     1  @:re@:(a)}
34739 @r{      a@:      f s   @:             @:     1  @:sign@:(a)}
34740 @r{    a b@:      f x   @:             @:     2  @:max@:(a,b)}
34741 @r{    n a@:      f y   @:             @:     2  @:besY@:(n,a)}
34743 @c 
34744 @r{      a@:      f A   @:             @:     1  @:abssqr@:(a)}
34745 @r{  x a b@:      f B   @:             @:        @:betaI@:(x,a,b)}
34746 @r{  x a b@:    H f B   @:             @:        @:betaB@:(x,a,b)}
34747 @r{      a@:      f E   @:             @:     1  @:expm1@:(a)}
34748 @r{    a x@:      f G   @:             @:     2  @:gammaP@:(a,x)}
34749 @r{    a x@:    I f G   @:             @:     2  @:gammaQ@:(a,x)}
34750 @r{    a x@:    H f G   @:             @:     2  @:gammag@:(a,x)}
34751 @r{    a x@:  I H f G   @:             @:     2  @:gammaG@:(a,x)}
34752 @r{    a b@:      f I   @:             @:     2  @:ilog@:(a,b)}
34753 @r{    a b@:    I f I   @:             @:     2  @:alog@:(a,b)  b^a}
34754 @r{      a@:      f L   @:             @:     1  @:lnp1@:(a)}
34755 @r{      a@:      f M   @:             @:     1  @:mant@:(a)}
34756 @r{      a@:      f Q   @:             @:     1  @:isqrt@:(a)}
34757 @r{      a@:    I f Q   @:             @:     1  @:sqr@:(a)  a^2}
34758 @r{    a n@:      f S   @:             @:     2  @:scf@:(a,n)}
34759 @r{    y x@:      f T   @:             @:        @:arctan2@:(y,x)}
34760 @r{      a@:      f X   @:             @:     1  @:xpon@:(a)}
34762 @c 
34763 @r{    x y@:      g a   @:             @: 28,40  @:calc-graph-add@:}
34764 @r{       @:      g b   @:             @:    12  @:calc-graph-border@:}
34765 @r{       @:      g c   @:             @:        @:calc-graph-clear@:}
34766 @r{       @:      g d   @:             @:    41  @:calc-graph-delete@:}
34767 @r{    x y@:      g f   @:             @: 28,40  @:calc-graph-fast@:}
34768 @r{       @:      g g   @:             @:    12  @:calc-graph-grid@:}
34769 @r{       @:      g h   @:title        @:        @:calc-graph-header@:}
34770 @r{       @:      g j   @:             @:     4  @:calc-graph-juggle@:}
34771 @r{       @:      g k   @:             @:    12  @:calc-graph-key@:}
34772 @r{       @:      g l   @:             @:    12  @:calc-graph-log-x@:}
34773 @r{       @:      g n   @:name         @:        @:calc-graph-name@:}
34774 @r{       @:      g p   @:             @:    42  @:calc-graph-plot@:}
34775 @r{       @:      g q   @:             @:        @:calc-graph-quit@:}
34776 @r{       @:      g r   @:range        @:        @:calc-graph-range-x@:}
34777 @r{       @:      g s   @:             @: 12,13  @:calc-graph-line-style@:}
34778 @r{       @:      g t   @:title        @:        @:calc-graph-title-x@:}
34779 @r{       @:      g v   @:             @:        @:calc-graph-view-commands@:}
34780 @r{       @:      g x   @:display      @:        @:calc-graph-display@:}
34781 @r{       @:      g z   @:             @:    12  @:calc-graph-zero-x@:}
34783 @c 
34784 @r{  x y z@:      g A   @:             @: 28,40  @:calc-graph-add-3d@:}
34785 @r{       @:      g C   @:command      @:        @:calc-graph-command@:}
34786 @r{       @:      g D   @:device       @: 43,44  @:calc-graph-device@:}
34787 @r{  x y z@:      g F   @:             @: 28,40  @:calc-graph-fast-3d@:}
34788 @r{       @:      g H   @:             @:    12  @:calc-graph-hide@:}
34789 @r{       @:      g K   @:             @:        @:calc-graph-kill@:}
34790 @r{       @:      g L   @:             @:    12  @:calc-graph-log-y@:}
34791 @r{       @:      g N   @:number       @: 43,51  @:calc-graph-num-points@:}
34792 @r{       @:      g O   @:filename     @: 43,44  @:calc-graph-output@:}
34793 @r{       @:      g P   @:             @:    42  @:calc-graph-print@:}
34794 @r{       @:      g R   @:range        @:        @:calc-graph-range-y@:}
34795 @r{       @:      g S   @:             @: 12,13  @:calc-graph-point-style@:}
34796 @r{       @:      g T   @:title        @:        @:calc-graph-title-y@:}
34797 @r{       @:      g V   @:             @:        @:calc-graph-view-trail@:}
34798 @r{       @:      g X   @:format       @:        @:calc-graph-geometry@:}
34799 @r{       @:      g Z   @:             @:    12  @:calc-graph-zero-y@:}
34801 @c 
34802 @r{       @:      g C-l @:             @:    12  @:calc-graph-log-z@:}
34803 @r{       @:      g C-r @:range        @:        @:calc-graph-range-z@:}
34804 @r{       @:      g C-t @:title        @:        @:calc-graph-title-z@:}
34806 @c 
34807 @r{       @:      h b   @:             @:        @:calc-describe-bindings@:}
34808 @r{       @:      h c   @:key          @:        @:calc-describe-key-briefly@:}
34809 @r{       @:      h f   @:function     @:        @:calc-describe-function@:}
34810 @r{       @:      h h   @:             @:        @:calc-full-help@:}
34811 @r{       @:      h i   @:             @:        @:calc-info@:}
34812 @r{       @:      h k   @:key          @:        @:calc-describe-key@:}
34813 @r{       @:      h n   @:             @:        @:calc-view-news@:}
34814 @r{       @:      h s   @:             @:        @:calc-info-summary@:}
34815 @r{       @:      h t   @:             @:        @:calc-tutorial@:}
34816 @r{       @:      h v   @:var          @:        @:calc-describe-variable@:}
34818 @c 
34819 @r{       @:      j 1-9 @:             @:        @:calc-select-part@:}
34820 @r{       @:      j @key{RET} @:             @:    27  @:calc-copy-selection@:}
34821 @r{       @:      j @key{DEL} @:             @:    27  @:calc-del-selection@:}
34822 @r{       @:      j '   @:formula      @:    27  @:calc-enter-selection@:}
34823 @r{       @:      j `   @:editing      @: 27,30  @:calc-edit-selection@:}
34824 @r{       @:      j "   @:             @:  7,27  @:calc-sel-expand-formula@:}
34826 @c 
34827 @r{       @:      j +   @:formula      @:    27  @:calc-sel-add-both-sides@:}
34828 @r{       @:      j -   @:formula      @:    27  @:calc-sel-sub-both-sides@:}
34829 @r{       @:      j *   @:formula      @:    27  @:calc-sel-mul-both-sides@:}
34830 @r{       @:      j /   @:formula      @:    27  @:calc-sel-div-both-sides@:}
34831 @r{       @:      j &   @:             @:    27  @:calc-sel-invert@:}
34833 @c 
34834 @r{       @:      j a   @:             @:    27  @:calc-select-additional@:}
34835 @r{       @:      j b   @:             @:    12  @:calc-break-selections@:}
34836 @r{       @:      j c   @:             @:        @:calc-clear-selections@:}
34837 @r{       @:      j d   @:             @: 12,50  @:calc-show-selections@:}
34838 @r{       @:      j e   @:             @:    12  @:calc-enable-selections@:}
34839 @r{       @:      j l   @:             @:  4,27  @:calc-select-less@:}
34840 @r{       @:      j m   @:             @:  4,27  @:calc-select-more@:}
34841 @r{       @:      j n   @:             @:     4  @:calc-select-next@:}
34842 @r{       @:      j o   @:             @:  4,27  @:calc-select-once@:}
34843 @r{       @:      j p   @:             @:     4  @:calc-select-previous@:}
34844 @r{       @:      j r   @:rules        @:4,8,27  @:calc-rewrite-selection@:}
34845 @r{       @:      j s   @:             @:  4,27  @:calc-select-here@:}
34846 @r{       @:      j u   @:             @:    27  @:calc-unselect@:}
34847 @r{       @:      j v   @:             @:  7,27  @:calc-sel-evaluate@:}
34849 @c 
34850 @r{       @:      j C   @:             @:    27  @:calc-sel-commute@:}
34851 @r{       @:      j D   @:             @:  4,27  @:calc-sel-distribute@:}
34852 @r{       @:      j E   @:             @:    27  @:calc-sel-jump-equals@:}
34853 @r{       @:      j I   @:             @:    27  @:calc-sel-isolate@:}
34854 @r{       @:    H j I   @:             @:    27  @:calc-sel-isolate@: (full)}
34855 @r{       @:      j L   @:             @:  4,27  @:calc-commute-left@:}
34856 @r{       @:      j M   @:             @:    27  @:calc-sel-merge@:}
34857 @r{       @:      j N   @:             @:    27  @:calc-sel-negate@:}
34858 @r{       @:      j O   @:             @:  4,27  @:calc-select-once-maybe@:}
34859 @r{       @:      j R   @:             @:  4,27  @:calc-commute-right@:}
34860 @r{       @:      j S   @:             @:  4,27  @:calc-select-here-maybe@:}
34861 @r{       @:      j U   @:             @:    27  @:calc-sel-unpack@:}
34863 @c 
34864 @r{       @:      k a   @:             @:        @:calc-random-again@:}
34865 @r{      n@:      k b   @:             @:     1  @:bern@:(n)}
34866 @r{    n x@:    H k b   @:             @:     2  @:bern@:(n,x)}
34867 @r{    n m@:      k c   @:             @:     2  @:choose@:(n,m)}
34868 @r{    n m@:    H k c   @:             @:     2  @:perm@:(n,m)}
34869 @r{      n@:      k d   @:             @:     1  @:dfact@:(n)  n!!}
34870 @r{      n@:      k e   @:             @:     1  @:euler@:(n)}
34871 @r{    n x@:    H k e   @:             @:     2  @:euler@:(n,x)}
34872 @r{      n@:      k f   @:             @:     4  @:prfac@:(n)}
34873 @r{    n m@:      k g   @:             @:     2  @:gcd@:(n,m)}
34874 @r{    m n@:      k h   @:             @:    14  @:shuffle@:(n,m)}
34875 @r{    n m@:      k l   @:             @:     2  @:lcm@:(n,m)}
34876 @r{      n@:      k m   @:             @:     1  @:moebius@:(n)}
34877 @r{      n@:      k n   @:             @:     4  @:nextprime@:(n)}
34878 @r{      n@:    I k n   @:             @:     4  @:prevprime@:(n)}
34879 @r{      n@:      k p   @:             @:  4,28  @:calc-prime-test@:}
34880 @r{      m@:      k r   @:             @:    14  @:random@:(m)}
34881 @r{    n m@:      k s   @:             @:     2  @:stir1@:(n,m)}
34882 @r{    n m@:    H k s   @:             @:     2  @:stir2@:(n,m)}
34883 @r{      n@:      k t   @:             @:     1  @:totient@:(n)}
34885 @c 
34886 @r{  n p x@:      k B   @:             @:        @:utpb@:(x,n,p)}
34887 @r{  n p x@:    I k B   @:             @:        @:ltpb@:(x,n,p)}
34888 @r{    v x@:      k C   @:             @:        @:utpc@:(x,v)}
34889 @r{    v x@:    I k C   @:             @:        @:ltpc@:(x,v)}
34890 @r{    n m@:      k E   @:             @:        @:egcd@:(n,m)}
34891 @r{v1 v2 x@:      k F   @:             @:        @:utpf@:(x,v1,v2)}
34892 @r{v1 v2 x@:    I k F   @:             @:        @:ltpf@:(x,v1,v2)}
34893 @r{  m s x@:      k N   @:             @:        @:utpn@:(x,m,s)}
34894 @r{  m s x@:    I k N   @:             @:        @:ltpn@:(x,m,s)}
34895 @r{    m x@:      k P   @:             @:        @:utpp@:(x,m)}
34896 @r{    m x@:    I k P   @:             @:        @:ltpp@:(x,m)}
34897 @r{    v x@:      k T   @:             @:        @:utpt@:(x,v)}
34898 @r{    v x@:    I k T   @:             @:        @:ltpt@:(x,v)}
34900 @c 
34901 @r{       @:      m a   @:             @: 12,13  @:calc-algebraic-mode@:}
34902 @r{       @:      m d   @:             @:        @:calc-degrees-mode@:}
34903 @r{       @:      m f   @:             @:    12  @:calc-frac-mode@:}
34904 @r{       @:      m g   @:             @:    52  @:calc-get-modes@:}
34905 @r{       @:      m h   @:             @:        @:calc-hms-mode@:}
34906 @r{       @:      m i   @:             @: 12,13  @:calc-infinite-mode@:}
34907 @r{       @:      m m   @:             @:        @:calc-save-modes@:}
34908 @r{       @:      m p   @:             @:    12  @:calc-polar-mode@:}
34909 @r{       @:      m r   @:             @:        @:calc-radians-mode@:}
34910 @r{       @:      m s   @:             @:    12  @:calc-symbolic-mode@:}
34911 @r{       @:      m t   @:             @:    12  @:calc-total-algebraic-mode@:}
34912 @r{       @:      m v   @:             @: 12,13  @:calc-matrix-mode@:}
34913 @r{       @:      m w   @:             @:    13  @:calc-working@:}
34914 @r{       @:      m x   @:             @:        @:calc-always-load-extensions@:}
34916 @c 
34917 @r{       @:      m A   @:             @:    12  @:calc-alg-simplify-mode@:}
34918 @r{       @:      m B   @:             @:    12  @:calc-bin-simplify-mode@:}
34919 @r{       @:      m C   @:             @:    12  @:calc-auto-recompute@:}
34920 @r{       @:      m D   @:             @:        @:calc-default-simplify-mode@:}
34921 @r{       @:      m E   @:             @:    12  @:calc-ext-simplify-mode@:}
34922 @r{       @:      m F   @:filename     @:    13  @:calc-settings-file-name@:}
34923 @r{       @:      m N   @:             @:    12  @:calc-num-simplify-mode@:}
34924 @r{       @:      m O   @:             @:    12  @:calc-no-simplify-mode@:}
34925 @r{       @:      m R   @:             @: 12,13  @:calc-mode-record-mode@:}
34926 @r{       @:      m S   @:             @:    12  @:calc-shift-prefix@:}
34927 @r{       @:      m U   @:             @:    12  @:calc-units-simplify-mode@:}
34929 @c 
34930 @r{       @:      s c   @:var1, var2   @:    29  @:calc-copy-variable@:}
34931 @r{       @:      s d   @:var, decl    @:        @:calc-declare-variable@:}
34932 @r{       @:      s e   @:var, editing @: 29,30  @:calc-edit-variable@:}
34933 @r{       @:      s i   @:buffer       @:        @:calc-insert-variables@:}
34934 @r{    a b@:      s l   @:var          @:    29  @:@:a  (letting var=b)}
34935 @r{  a ...@:      s m   @:op, var      @: 22,29  @:calc-store-map@:}
34936 @r{       @:      s n   @:var          @: 29,47  @:calc-store-neg@:  (v/-1)}
34937 @r{       @:      s p   @:var          @:    29  @:calc-permanent-variable@:}
34938 @r{       @:      s r   @:var          @:    29  @:@:v  (recalled value)}
34939 @r{       @:      r 0-9 @:             @:        @:calc-recall-quick@:}
34940 @r{      a@:      s s   @:var          @: 28,29  @:calc-store@:}
34941 @r{      a@:      s 0-9 @:             @:        @:calc-store-quick@:}
34942 @r{      a@:      s t   @:var          @:    29  @:calc-store-into@:}
34943 @r{      a@:      t 0-9 @:             @:        @:calc-store-into-quick@:}
34944 @r{       @:      s u   @:var          @:    29  @:calc-unstore@:}
34945 @r{      a@:      s x   @:var          @:    29  @:calc-store-exchange@:}
34947 @c 
34948 @r{       @:      s A   @:editing      @:    30  @:calc-edit-AlgSimpRules@:}
34949 @r{       @:      s D   @:editing      @:    30  @:calc-edit-Decls@:}
34950 @r{       @:      s E   @:editing      @:    30  @:calc-edit-EvalRules@:}
34951 @r{       @:      s F   @:editing      @:    30  @:calc-edit-FitRules@:}
34952 @r{       @:      s G   @:editing      @:    30  @:calc-edit-GenCount@:}
34953 @r{       @:      s H   @:editing      @:    30  @:calc-edit-Holidays@:}
34954 @r{       @:      s I   @:editing      @:    30  @:calc-edit-IntegLimit@:}
34955 @r{       @:      s L   @:editing      @:    30  @:calc-edit-LineStyles@:}
34956 @r{       @:      s P   @:editing      @:    30  @:calc-edit-PointStyles@:}
34957 @r{       @:      s R   @:editing      @:    30  @:calc-edit-PlotRejects@:}
34958 @r{       @:      s T   @:editing      @:    30  @:calc-edit-TimeZone@:}
34959 @r{       @:      s U   @:editing      @:    30  @:calc-edit-Units@:}
34960 @r{       @:      s X   @:editing      @:    30  @:calc-edit-ExtSimpRules@:}
34962 @c 
34963 @r{      a@:      s +   @:var          @: 29,47  @:calc-store-plus@:  (v+a)}
34964 @r{      a@:      s -   @:var          @: 29,47  @:calc-store-minus@:  (v-a)}
34965 @r{      a@:      s *   @:var          @: 29,47  @:calc-store-times@:  (v*a)}
34966 @r{      a@:      s /   @:var          @: 29,47  @:calc-store-div@:  (v/a)}
34967 @r{      a@:      s ^   @:var          @: 29,47  @:calc-store-power@:  (v^a)}
34968 @r{      a@:      s |   @:var          @: 29,47  @:calc-store-concat@:  (v|a)}
34969 @r{       @:      s &   @:var          @: 29,47  @:calc-store-inv@:  (v^-1)}
34970 @r{       @:      s [   @:var          @: 29,47  @:calc-store-decr@:  (v-1)}
34971 @r{       @:      s ]   @:var          @: 29,47  @:calc-store-incr@:  (v-(-1))}
34972 @r{    a b@:      s :   @:             @:     2  @:assign@:(a,b)  a @t{:=} b}
34973 @r{      a@:      s =   @:             @:     1  @:evalto@:(a,b)  a @t{=>}}
34975 @c 
34976 @r{       @:      t [   @:             @:     4  @:calc-trail-first@:}
34977 @r{       @:      t ]   @:             @:     4  @:calc-trail-last@:}
34978 @r{       @:      t <   @:             @:     4  @:calc-trail-scroll-left@:}
34979 @r{       @:      t >   @:             @:     4  @:calc-trail-scroll-right@:}
34980 @r{       @:      t .   @:             @:    12  @:calc-full-trail-vectors@:}
34982 @c 
34983 @r{       @:      t b   @:             @:     4  @:calc-trail-backward@:}
34984 @r{       @:      t d   @:             @: 12,50  @:calc-trail-display@:}
34985 @r{       @:      t f   @:             @:     4  @:calc-trail-forward@:}
34986 @r{       @:      t h   @:             @:        @:calc-trail-here@:}
34987 @r{       @:      t i   @:             @:        @:calc-trail-in@:}
34988 @r{       @:      t k   @:             @:     4  @:calc-trail-kill@:}
34989 @r{       @:      t m   @:string       @:        @:calc-trail-marker@:}
34990 @r{       @:      t n   @:             @:     4  @:calc-trail-next@:}
34991 @r{       @:      t o   @:             @:        @:calc-trail-out@:}
34992 @r{       @:      t p   @:             @:     4  @:calc-trail-previous@:}
34993 @r{       @:      t r   @:string       @:        @:calc-trail-isearch-backward@:}
34994 @r{       @:      t s   @:string       @:        @:calc-trail-isearch-forward@:}
34995 @r{       @:      t y   @:             @:     4  @:calc-trail-yank@:}
34997 @c 
34998 @r{      d@:      t C   @:oz, nz       @:        @:tzconv@:(d,oz,nz)}
34999 @r{d oz nz@:      t C   @:$            @:        @:tzconv@:(d,oz,nz)}
35000 @r{      d@:      t D   @:             @:    15  @:date@:(d)}
35001 @r{      d@:      t I   @:             @:     4  @:incmonth@:(d,n)}
35002 @r{      d@:      t J   @:             @:    16  @:julian@:(d,z)}
35003 @r{      d@:      t M   @:             @:    17  @:newmonth@:(d,n)}
35004 @r{       @:      t N   @:             @:    16  @:now@:(z)}
35005 @r{      d@:      t P   @:1            @:    31  @:year@:(d)}
35006 @r{      d@:      t P   @:2            @:    31  @:month@:(d)}
35007 @r{      d@:      t P   @:3            @:    31  @:day@:(d)}
35008 @r{      d@:      t P   @:4            @:    31  @:hour@:(d)}
35009 @r{      d@:      t P   @:5            @:    31  @:minute@:(d)}
35010 @r{      d@:      t P   @:6            @:    31  @:second@:(d)}
35011 @r{      d@:      t P   @:7            @:    31  @:weekday@:(d)}
35012 @r{      d@:      t P   @:8            @:    31  @:yearday@:(d)}
35013 @r{      d@:      t P   @:9            @:    31  @:time@:(d)}
35014 @r{      d@:      t U   @:             @:    16  @:unixtime@:(d,z)}
35015 @r{      d@:      t W   @:             @:    17  @:newweek@:(d,w)}
35016 @r{      d@:      t Y   @:             @:    17  @:newyear@:(d,n)}
35018 @c 
35019 @r{    a b@:      t +   @:             @:     2  @:badd@:(a,b)}
35020 @r{    a b@:      t -   @:             @:     2  @:bsub@:(a,b)}
35022 @c 
35023 @r{       @:      u a   @:             @:    12  @:calc-autorange-units@:}
35024 @r{      a@:      u b   @:             @:        @:calc-base-units@:}
35025 @r{      a@:      u c   @:units        @:    18  @:calc-convert-units@:}
35026 @r{   defn@:      u d   @:unit, descr  @:        @:calc-define-unit@:}
35027 @r{       @:      u e   @:             @:        @:calc-explain-units@:}
35028 @r{       @:      u g   @:unit         @:        @:calc-get-unit-definition@:}
35029 @r{       @:      u p   @:             @:        @:calc-permanent-units@:}
35030 @r{      a@:      u r   @:             @:        @:calc-remove-units@:}
35031 @r{      a@:      u s   @:             @:        @:usimplify@:(a)}
35032 @r{      a@:      u t   @:units        @:    18  @:calc-convert-temperature@:}
35033 @r{       @:      u u   @:unit         @:        @:calc-undefine-unit@:}
35034 @r{       @:      u v   @:             @:        @:calc-enter-units-table@:}
35035 @r{      a@:      u x   @:             @:        @:calc-extract-units@:}
35036 @r{      a@:      u 0-9 @:             @:        @:calc-quick-units@:}
35038 @c 
35039 @r{  v1 v2@:      u C   @:             @:    20  @:vcov@:(v1,v2)}
35040 @r{  v1 v2@:    I u C   @:             @:    20  @:vpcov@:(v1,v2)}
35041 @r{  v1 v2@:    H u C   @:             @:    20  @:vcorr@:(v1,v2)}
35042 @r{      v@:      u G   @:             @:    19  @:vgmean@:(v)}
35043 @r{    a b@:    H u G   @:             @:     2  @:agmean@:(a,b)}
35044 @r{      v@:      u M   @:             @:    19  @:vmean@:(v)}
35045 @r{      v@:    I u M   @:             @:    19  @:vmeane@:(v)}
35046 @r{      v@:    H u M   @:             @:    19  @:vmedian@:(v)}
35047 @r{      v@:  I H u M   @:             @:    19  @:vhmean@:(v)}
35048 @r{      v@:      u N   @:             @:    19  @:vmin@:(v)}
35049 @r{      v@:      u S   @:             @:    19  @:vsdev@:(v)}
35050 @r{      v@:    I u S   @:             @:    19  @:vpsdev@:(v)}
35051 @r{      v@:    H u S   @:             @:    19  @:vvar@:(v)}
35052 @r{      v@:  I H u S   @:             @:    19  @:vpvar@:(v)}
35053 @r{       @:      u V   @:             @:        @:calc-view-units-table@:}
35054 @r{      v@:      u X   @:             @:    19  @:vmax@:(v)}
35056 @c 
35057 @r{      v@:      u +   @:             @:    19  @:vsum@:(v)}
35058 @r{      v@:      u *   @:             @:    19  @:vprod@:(v)}
35059 @r{      v@:      u #   @:             @:    19  @:vcount@:(v)}
35061 @c 
35062 @r{       @:      V (   @:             @:    50  @:calc-vector-parens@:}
35063 @r{       @:      V @{   @:             @:    50  @:calc-vector-braces@:}
35064 @r{       @:      V [   @:             @:    50  @:calc-vector-brackets@:}
35065 @r{       @:      V ]   @:ROCP         @:    50  @:calc-matrix-brackets@:}
35066 @r{       @:      V ,   @:             @:    50  @:calc-vector-commas@:}
35067 @r{       @:      V <   @:             @:    50  @:calc-matrix-left-justify@:}
35068 @r{       @:      V =   @:             @:    50  @:calc-matrix-center-justify@:}
35069 @r{       @:      V >   @:             @:    50  @:calc-matrix-right-justify@:}
35070 @r{       @:      V /   @:             @: 12,50  @:calc-break-vectors@:}
35071 @r{       @:      V .   @:             @: 12,50  @:calc-full-vectors@:}
35073 @c 
35074 @r{    s t@:      V ^   @:             @:     2  @:vint@:(s,t)}
35075 @r{    s t@:      V -   @:             @:     2  @:vdiff@:(s,t)}
35076 @r{      s@:      V ~   @:             @:     1  @:vcompl@:(s)}
35077 @r{      s@:      V #   @:             @:     1  @:vcard@:(s)}
35078 @r{      s@:      V :   @:             @:     1  @:vspan@:(s)}
35079 @r{      s@:      V +   @:             @:     1  @:rdup@:(s)}
35081 @c 
35082 @r{      m@:      V &   @:             @:     1  @:inv@:(m)  1/m}
35084 @c 
35085 @r{      v@:      v a   @:n            @:        @:arrange@:(v,n)}
35086 @r{      a@:      v b   @:n            @:        @:cvec@:(a,n)}
35087 @r{      v@:      v c   @:n >0         @: 21,31  @:mcol@:(v,n)}
35088 @r{      v@:      v c   @:n <0         @:    31  @:mrcol@:(v,-n)}
35089 @r{      m@:      v c   @:0            @:    31  @:getdiag@:(m)}
35090 @r{      v@:      v d   @:             @:    25  @:diag@:(v,n)}
35091 @r{    v m@:      v e   @:             @:     2  @:vexp@:(v,m)}
35092 @r{  v m f@:    H v e   @:             @:     2  @:vexp@:(v,m,f)}
35093 @r{    v a@:      v f   @:             @:    26  @:find@:(v,a,n)}
35094 @r{      v@:      v h   @:             @:     1  @:head@:(v)}
35095 @r{      v@:    I v h   @:             @:     1  @:tail@:(v)}
35096 @r{      v@:    H v h   @:             @:     1  @:rhead@:(v)}
35097 @r{      v@:  I H v h   @:             @:     1  @:rtail@:(v)}
35098 @r{       @:      v i   @:n            @:    31  @:idn@:(1,n)}
35099 @r{       @:      v i   @:0            @:    31  @:idn@:(1)}
35100 @r{    h t@:      v k   @:             @:     2  @:cons@:(h,t)}
35101 @r{    h t@:    H v k   @:             @:     2  @:rcons@:(h,t)}
35102 @r{      v@:      v l   @:             @:     1  @:vlen@:(v)}
35103 @r{      v@:    H v l   @:             @:     1  @:mdims@:(v)}
35104 @r{    v m@:      v m   @:             @:     2  @:vmask@:(v,m)}
35105 @r{      v@:      v n   @:             @:     1  @:rnorm@:(v)}
35106 @r{  a b c@:      v p   @:             @:    24  @:calc-pack@:}
35107 @r{      v@:      v r   @:n >0         @: 21,31  @:mrow@:(v,n)}
35108 @r{      v@:      v r   @:n <0         @:    31  @:mrrow@:(v,-n)}
35109 @r{      m@:      v r   @:0            @:    31  @:getdiag@:(m)}
35110 @r{  v i j@:      v s   @:             @:        @:subvec@:(v,i,j)}
35111 @r{  v i j@:    I v s   @:             @:        @:rsubvec@:(v,i,j)}
35112 @r{      m@:      v t   @:             @:     1  @:trn@:(m)}
35113 @r{      v@:      v u   @:             @:    24  @:calc-unpack@:}
35114 @r{      v@:      v v   @:             @:     1  @:rev@:(v)}
35115 @r{       @:      v x   @:n            @:    31  @:index@:(n)}
35116 @r{  n s i@:  C-u v x   @:             @:        @:index@:(n,s,i)}
35118 @c 
35119 @r{      v@:      V A   @:op           @:    22  @:apply@:(op,v)}
35120 @r{  v1 v2@:      V C   @:             @:     2  @:cross@:(v1,v2)}
35121 @r{      m@:      V D   @:             @:     1  @:det@:(m)}
35122 @r{      s@:      V E   @:             @:     1  @:venum@:(s)}
35123 @r{      s@:      V F   @:             @:     1  @:vfloor@:(s)}
35124 @r{      v@:      V G   @:             @:        @:grade@:(v)}
35125 @r{      v@:    I V G   @:             @:        @:rgrade@:(v)}
35126 @r{      v@:      V H   @:n            @:    31  @:histogram@:(v,n)}
35127 @r{    v w@:    H V H   @:n            @:    31  @:histogram@:(v,w,n)}
35128 @r{  v1 v2@:      V I   @:mop aop      @:    22  @:inner@:(mop,aop,v1,v2)}
35129 @r{      m@:      V J   @:             @:     1  @:ctrn@:(m)}
35130 @r{      m@:      V L   @:             @:     1  @:lud@:(m)}
35131 @r{      v@:      V M   @:op           @: 22,23  @:map@:(op,v)}
35132 @r{      v@:      V N   @:             @:     1  @:cnorm@:(v)}
35133 @r{  v1 v2@:      V O   @:op           @:    22  @:outer@:(op,v1,v2)}
35134 @r{      v@:      V R   @:op           @: 22,23  @:reduce@:(op,v)}
35135 @r{      v@:    I V R   @:op           @: 22,23  @:rreduce@:(op,v)}
35136 @r{    a n@:    H V R   @:op           @:    22  @:nest@:(op,a,n)}
35137 @r{      a@:  I H V R   @:op           @:    22  @:fixp@:(op,a)}
35138 @r{      v@:      V S   @:             @:        @:sort@:(v)}
35139 @r{      v@:    I V S   @:             @:        @:rsort@:(v)}
35140 @r{      m@:      V T   @:             @:     1  @:tr@:(m)}
35141 @r{      v@:      V U   @:op           @:    22  @:accum@:(op,v)}
35142 @r{      v@:    I V U   @:op           @:    22  @:raccum@:(op,v)}
35143 @r{    a n@:    H V U   @:op           @:    22  @:anest@:(op,a,n)}
35144 @r{      a@:  I H V U   @:op           @:    22  @:afixp@:(op,a)}
35145 @r{    s t@:      V V   @:             @:     2  @:vunion@:(s,t)}
35146 @r{    s t@:      V X   @:             @:     2  @:vxor@:(s,t)}
35148 @c 
35149 @r{       @:      Y     @:             @:        @:@:user commands}
35151 @c 
35152 @r{       @:      z     @:             @:        @:@:user commands}
35154 @c 
35155 @r{      c@:      Z [   @:             @:    45  @:calc-kbd-if@:}
35156 @r{      c@:      Z |   @:             @:    45  @:calc-kbd-else-if@:}
35157 @r{       @:      Z :   @:             @:        @:calc-kbd-else@:}
35158 @r{       @:      Z ]   @:             @:        @:calc-kbd-end-if@:}
35160 @c 
35161 @r{       @:      Z @{   @:             @:     4  @:calc-kbd-loop@:}
35162 @r{      c@:      Z /   @:             @:    45  @:calc-kbd-break@:}
35163 @r{       @:      Z @}   @:             @:        @:calc-kbd-end-loop@:}
35164 @r{      n@:      Z <   @:             @:        @:calc-kbd-repeat@:}
35165 @r{       @:      Z >   @:             @:        @:calc-kbd-end-repeat@:}
35166 @r{    n m@:      Z (   @:             @:        @:calc-kbd-for@:}
35167 @r{      s@:      Z )   @:             @:        @:calc-kbd-end-for@:}
35169 @c 
35170 @r{       @:      Z C-g @:             @:        @:@:cancel if/loop command}
35172 @c 
35173 @r{       @:      Z `   @:             @:        @:calc-kbd-push@:}
35174 @r{       @:      Z '   @:             @:        @:calc-kbd-pop@:}
35175 @r{      a@:      Z =   @:message      @:    28  @:calc-kbd-report@:}
35176 @r{       @:      Z #   @:prompt       @:        @:calc-kbd-query@:}
35178 @c 
35179 @r{   comp@:      Z C   @:func, args   @:    50  @:calc-user-define-composition@:}
35180 @r{       @:      Z D   @:key, command @:        @:calc-user-define@:}
35181 @r{       @:      Z E   @:key, editing @:    30  @:calc-user-define-edit@:}
35182 @r{   defn@:      Z F   @:k, c, f, a, n@:    28  @:calc-user-define-formula@:}
35183 @r{       @:      Z G   @:key          @:        @:calc-get-user-defn@:}
35184 @r{       @:      Z I   @:             @:        @:calc-user-define-invocation@:}
35185 @r{       @:      Z K   @:key, command @:        @:calc-user-define-kbd-macro@:}
35186 @r{       @:      Z P   @:key          @:        @:calc-user-define-permanent@:}
35187 @r{       @:      Z S   @:             @:    30  @:calc-edit-user-syntax@:}
35188 @r{       @:      Z T   @:             @:    12  @:calc-timing@:}
35189 @r{       @:      Z U   @:key          @:        @:calc-user-undefine@:}
35191 @end format
35193 @noindent
35194 NOTES
35196 @enumerate
35197 @c 1
35198 @item
35199 Positive prefix arguments apply to @cite{n} stack entries.
35200 Negative prefix arguments apply to the @cite{-n}th stack entry.
35201 A prefix of zero applies to the entire stack.  (For @key{LFD} and
35202 @kbd{M-@key{DEL}}, the meaning of the sign is reversed.)
35204 @c 2
35205 @item
35206 Positive prefix arguments apply to @cite{n} stack entries.
35207 Negative prefix arguments apply to the top stack entry
35208 and the next @cite{-n} stack entries.
35210 @c 3
35211 @item
35212 Positive prefix arguments rotate top @cite{n} stack entries by one.
35213 Negative prefix arguments rotate the entire stack by @cite{-n}.
35214 A prefix of zero reverses the entire stack.
35216 @c 4
35217 @item
35218 Prefix argument specifies a repeat count or distance.
35220 @c 5
35221 @item
35222 Positive prefix arguments specify a precision @cite{p}.
35223 Negative prefix arguments reduce the current precision by @cite{-p}.
35225 @c 6
35226 @item
35227 A prefix argument is interpreted as an additional step-size parameter.
35228 A plain @kbd{C-u} prefix means to prompt for the step size.
35230 @c 7
35231 @item
35232 A prefix argument specifies simplification level and depth.
35233 1=Default, 2=like @kbd{a s}, 3=like @kbd{a e}.
35235 @c 8
35236 @item
35237 A negative prefix operates only on the top level of the input formula.
35239 @c 9
35240 @item
35241 Positive prefix arguments specify a word size of @cite{w} bits, unsigned.
35242 Negative prefix arguments specify a word size of @cite{w} bits, signed.
35244 @c 10
35245 @item
35246 Prefix arguments specify the shift amount @cite{n}.  The @cite{w} argument
35247 cannot be specified in the keyboard version of this command.
35249 @c 11
35250 @item
35251 From the keyboard, @cite{d} is omitted and defaults to zero.
35253 @c 12
35254 @item
35255 Mode is toggled; a positive prefix always sets the mode, and a negative
35256 prefix always clears the mode.
35258 @c 13
35259 @item
35260 Some prefix argument values provide special variations of the mode.
35262 @c 14
35263 @item
35264 A prefix argument, if any, is used for @cite{m} instead of taking
35265 @cite{m} from the stack.  @cite{M} may take any of these values:
35266 @iftex
35267 {@advance@tableindent10pt
35268 @end iftex
35269 @table @asis
35270 @item Integer
35271 Random integer in the interval @cite{[0 .. m)}.
35272 @item Float
35273 Random floating-point number in the interval @cite{[0 .. m)}.
35274 @item 0.0
35275 Gaussian with mean 1 and standard deviation 0.
35276 @item Error form
35277 Gaussian with specified mean and standard deviation.
35278 @item Interval
35279 Random integer or floating-point number in that interval.
35280 @item Vector
35281 Random element from the vector.
35282 @end table
35283 @iftex
35285 @end iftex
35287 @c 15
35288 @item
35289 A prefix argument from 1 to 6 specifies number of date components
35290 to remove from the stack.  @xref{Date Conversions}.
35292 @c 16
35293 @item
35294 A prefix argument specifies a time zone; @kbd{C-u} says to take the
35295 time zone number or name from the top of the stack.  @xref{Time Zones}.
35297 @c 17
35298 @item
35299 A prefix argument specifies a day number (0-6, 0-31, or 0-366).
35301 @c 18
35302 @item
35303 If the input has no units, you will be prompted for both the old and
35304 the new units.
35306 @c 19
35307 @item
35308 With a prefix argument, collect that many stack entries to form the
35309 input data set.  Each entry may be a single value or a vector of values.
35311 @c 20
35312 @item
35313 With a prefix argument of 1, take a single @c{$@var{n}\times2$}
35314 @i{@var{N}x2} matrix from the
35315 stack instead of two separate data vectors.
35317 @c 21
35318 @item
35319 The row or column number @cite{n} may be given as a numeric prefix
35320 argument instead.  A plain @kbd{C-u} prefix says to take @cite{n}
35321 from the top of the stack.  If @cite{n} is a vector or interval,
35322 a subvector/submatrix of the input is created.
35324 @c 22
35325 @item
35326 The @cite{op} prompt can be answered with the key sequence for the
35327 desired function, or with @kbd{x} or @kbd{z} followed by a function name,
35328 or with @kbd{$} to take a formula from the top of the stack, or with
35329 @kbd{'} and a typed formula.  In the last two cases, the formula may
35330 be a nameless function like @samp{<#1+#2>} or @samp{<x, y : x+y>}, or it
35331 may include @kbd{$}, @kbd{$$}, etc. (where @kbd{$} will correspond to the
35332 last argument of the created function), or otherwise you will be
35333 prompted for an argument list.  The number of vectors popped from the
35334 stack by @kbd{V M} depends on the number of arguments of the function.
35336 @c 23
35337 @item
35338 One of the mapping direction keys @kbd{_} (horizontal, i.e., map
35339 by rows or reduce across), @kbd{:} (vertical, i.e., map by columns or
35340 reduce down), or @kbd{=} (map or reduce by rows) may be used before
35341 entering @cite{op}; these modify the function name by adding the letter
35342 @code{r} for ``rows,'' @code{c} for ``columns,'' @code{a} for ``across,''
35343 or @code{d} for ``down.''
35345 @c 24
35346 @item
35347 The prefix argument specifies a packing mode.  A nonnegative mode
35348 is the number of items (for @kbd{v p}) or the number of levels
35349 (for @kbd{v u}).  A negative mode is as described below.  With no
35350 prefix argument, the mode is taken from the top of the stack and
35351 may be an integer or a vector of integers.
35352 @iftex
35353 {@advance@tableindent-20pt
35354 @end iftex
35355 @table @cite
35356 @item -1
35357 (@var{2})  Rectangular complex number.
35358 @item -2
35359 (@var{2})  Polar complex number.
35360 @item -3
35361 (@var{3})  HMS form.
35362 @item -4
35363 (@var{2})  Error form.
35364 @item -5
35365 (@var{2})  Modulo form.
35366 @item -6
35367 (@var{2})  Closed interval.
35368 @item -7
35369 (@var{2})  Closed .. open interval.
35370 @item -8
35371 (@var{2})  Open .. closed interval.
35372 @item -9
35373 (@var{2})  Open interval.
35374 @item -10
35375 (@var{2})  Fraction.
35376 @item -11
35377 (@var{2})  Float with integer mantissa.
35378 @item -12
35379 (@var{2})  Float with mantissa in @cite{[1 .. 10)}.
35380 @item -13
35381 (@var{1})  Date form (using date numbers).
35382 @item -14
35383 (@var{3})  Date form (using year, month, day).
35384 @item -15
35385 (@var{6})  Date form (using year, month, day, hour, minute, second).
35386 @end table
35387 @iftex
35389 @end iftex
35391 @c 25
35392 @item
35393 A prefix argument specifies the size @cite{n} of the matrix.  With no
35394 prefix argument, @cite{n} is omitted and the size is inferred from
35395 the input vector.
35397 @c 26
35398 @item
35399 The prefix argument specifies the starting position @cite{n} (default 1).
35401 @c 27
35402 @item
35403 Cursor position within stack buffer affects this command.
35405 @c 28
35406 @item
35407 Arguments are not actually removed from the stack by this command.
35409 @c 29
35410 @item
35411 Variable name may be a single digit or a full name.
35413 @c 30
35414 @item
35415 Editing occurs in a separate buffer.  Press @kbd{M-# M-#} (or @kbd{C-c C-c},
35416 @key{LFD}, or in some cases @key{RET}) to finish the edit, or press
35417 @kbd{M-# x} to cancel the edit.  The @key{LFD} key prevents evaluation
35418 of the result of the edit.
35420 @c 31
35421 @item
35422 The number prompted for can also be provided as a prefix argument.
35424 @c 32
35425 @item
35426 Press this key a second time to cancel the prefix.
35428 @c 33
35429 @item
35430 With a negative prefix, deactivate all formulas.  With a positive
35431 prefix, deactivate and then reactivate from scratch.
35433 @c 34
35434 @item
35435 Default is to scan for nearest formula delimiter symbols.  With a
35436 prefix of zero, formula is delimited by mark and point.  With a
35437 non-zero prefix, formula is delimited by scanning forward or
35438 backward by that many lines.
35440 @c 35
35441 @item
35442 Parse the region between point and mark as a vector.  A nonzero prefix
35443 parses @var{n} lines before or after point as a vector.  A zero prefix
35444 parses the current line as a vector.  A @kbd{C-u} prefix parses the
35445 region between point and mark as a single formula.
35447 @c 36
35448 @item
35449 Parse the rectangle defined by point and mark as a matrix.  A positive
35450 prefix @var{n} divides the rectangle into columns of width @var{n}.
35451 A zero or @kbd{C-u} prefix parses each line as one formula.  A negative
35452 prefix suppresses special treatment of bracketed portions of a line.
35454 @c 37
35455 @item
35456 A numeric prefix causes the current language mode to be ignored.
35458 @c 38
35459 @item
35460 Responding to a prompt with a blank line answers that and all
35461 later prompts by popping additional stack entries.
35463 @c 39
35464 @item
35465 Answer for @cite{v} may also be of the form @cite{v = v_0} or
35466 @cite{v - v_0}.
35468 @c 40
35469 @item
35470 With a positive prefix argument, stack contains many @cite{y}'s and one
35471 common @cite{x}.  With a zero prefix, stack contains a vector of
35472 @cite{y}s and a common @cite{x}.  With a negative prefix, stack
35473 contains many @cite{[x,y]} vectors.  (For 3D plots, substitute
35474 @cite{z} for @cite{y} and @cite{x,y} for @cite{x}.)
35476 @c 41
35477 @item
35478 With any prefix argument, all curves in the graph are deleted.
35480 @c 42
35481 @item
35482 With a positive prefix, refines an existing plot with more data points.
35483 With a negative prefix, forces recomputation of the plot data.
35485 @c 43
35486 @item
35487 With any prefix argument, set the default value instead of the
35488 value for this graph.
35490 @c 44
35491 @item
35492 With a negative prefix argument, set the value for the printer.
35494 @c 45
35495 @item
35496 Condition is considered ``true'' if it is a nonzero real or complex
35497 number, or a formula whose value is known to be nonzero; it is ``false''
35498 otherwise.
35500 @c 46
35501 @item
35502 Several formulas separated by commas are pushed as multiple stack
35503 entries.  Trailing @kbd{)}, @kbd{]}, @kbd{@}}, @kbd{>}, and @kbd{"}
35504 delimiters may be omitted.  The notation @kbd{$$$} refers to the value
35505 in stack level three, and causes the formula to replace the top three
35506 stack levels.  The notation @kbd{$3} refers to stack level three without
35507 causing that value to be removed from the stack.  Use @key{LFD} in place
35508 of @key{RET} to prevent evaluation; use @kbd{M-=} in place of @key{RET}
35509 to evaluate variables.@refill
35511 @c 47
35512 @item
35513 The variable is replaced by the formula shown on the right.  The
35514 Inverse flag reverses the order of the operands, e.g., @kbd{I s - x}
35515 assigns @c{$x \coloneq a-x$}
35516 @cite{x := a-x}.
35518 @c 48
35519 @item
35520 Press @kbd{?} repeatedly to see how to choose a model.  Answer the
35521 variables prompt with @cite{iv} or @cite{iv;pv} to specify
35522 independent and parameter variables.  A positive prefix argument
35523 takes @i{@var{n}+1} vectors from the stack; a zero prefix takes a matrix
35524 and a vector from the stack.
35526 @c 49
35527 @item
35528 With a plain @kbd{C-u} prefix, replace the current region of the
35529 destination buffer with the yanked text instead of inserting.
35531 @c 50
35532 @item
35533 All stack entries are reformatted; the @kbd{H} prefix inhibits this.
35534 The @kbd{I} prefix sets the mode temporarily, redraws the top stack
35535 entry, then restores the original setting of the mode.
35537 @c 51
35538 @item
35539 A negative prefix sets the default 3D resolution instead of the
35540 default 2D resolution.
35542 @c 52
35543 @item
35544 This grabs a vector of the form [@var{prec}, @var{wsize}, @var{ssize},
35545 @var{radix}, @var{flfmt}, @var{ang}, @var{frac}, @var{symb}, @var{polar},
35546 @var{matrix}, @var{simp}, @var{inf}].  A prefix argument from 1 to 12
35547 grabs the @var{n}th mode value only.
35548 @end enumerate
35550 @iftex
35551 (Space is provided below for you to keep your own written notes.)
35552 @page
35553 @endgroup
35554 @end iftex
35557 @c [end-summary]
35559 @node Key Index, Command Index, Summary, Top
35560 @unnumbered Index of Key Sequences
35562 @printindex ky
35564 @node Command Index, Function Index, Key Index, Top
35565 @unnumbered Index of Calculator Commands
35567 Since all Calculator commands begin with the prefix @samp{calc-}, the
35568 @kbd{x} key has been provided as a variant of @kbd{M-x} which automatically
35569 types @samp{calc-} for you.  Thus, @kbd{x last-args} is short for
35570 @kbd{M-x calc-last-args}.
35572 @printindex pg
35574 @node Function Index, Concept Index, Command Index, Top
35575 @unnumbered Index of Algebraic Functions
35577 This is a list of built-in functions and operators usable in algebraic
35578 expressions.  Their full Lisp names are derived by adding the prefix
35579 @samp{calcFunc-}, as in @code{calcFunc-sqrt}.
35580 @iftex
35581 All functions except those noted with ``*'' have corresponding
35582 Calc keystrokes and can also be found in the Calc Summary.
35583 @end iftex
35585 @printindex tp
35587 @node Concept Index, Variable Index, Function Index, Top
35588 @unnumbered Concept Index
35590 @printindex cp
35592 @node Variable Index, Lisp Function Index, Concept Index, Top
35593 @unnumbered Index of Variables
35595 The variables in this list that do not contain dashes are accessible
35596 as Calc variables.  Add a @samp{var-} prefix to get the name of the
35597 corresponding Lisp variable.
35599 The remaining variables are Lisp variables suitable for @code{setq}ing
35600 in your @file{.emacs} file.
35602 @printindex vr
35604 @node Lisp Function Index, , Variable Index, Top
35605 @unnumbered Index of Lisp Math Functions
35607 The following functions are meant to be used with @code{defmath}, not
35608 @code{defun} definitions.  For names that do not start with @samp{calc-},
35609 the corresponding full Lisp name is derived by adding a prefix of
35610 @samp{math-}.
35612 @printindex fn
35614 @summarycontents
35616 @c [end]
35618 @contents
35619 @bye