* lisp/xwidget.el (xwidget-query-on-exit-flag): Declare.
[emacs.git] / src / alloc.c
blobd379761c168abaa0fc5105c44cfee8efb0af3872
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2016 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
34 #include "lisp.h"
35 #include "dispextern.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <verify.h>
51 #include <execinfo.h> /* For backtrace. */
53 #ifdef HAVE_LINUX_SYSINFO
54 #include <sys/sysinfo.h>
55 #endif
57 #ifdef MSDOS
58 #include "dosfns.h" /* For dos_memory_info. */
59 #endif
61 #if (defined ENABLE_CHECKING \
62 && defined HAVE_VALGRIND_VALGRIND_H \
63 && !defined USE_VALGRIND)
64 # define USE_VALGRIND 1
65 #endif
67 #if USE_VALGRIND
68 #include <valgrind/valgrind.h>
69 #include <valgrind/memcheck.h>
70 static bool valgrind_p;
71 #endif
73 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects. */
75 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
76 memory. Can do this only if using gmalloc.c and if not checking
77 marked objects. */
79 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
80 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
81 #undef GC_MALLOC_CHECK
82 #endif
84 #include <unistd.h>
85 #include <fcntl.h>
87 #ifdef USE_GTK
88 # include "gtkutil.h"
89 #endif
90 #ifdef WINDOWSNT
91 #include "w32.h"
92 #include "w32heap.h" /* for sbrk */
93 #endif
95 #if defined DOUG_LEA_MALLOC || defined GNU_LINUX
96 /* The address where the heap starts. */
97 void *
98 my_heap_start (void)
100 static void *start;
101 if (! start)
102 start = sbrk (0);
103 return start;
105 #endif
107 #ifdef DOUG_LEA_MALLOC
109 #include <malloc.h>
111 /* Specify maximum number of areas to mmap. It would be nice to use a
112 value that explicitly means "no limit". */
114 #define MMAP_MAX_AREAS 100000000
116 /* A pointer to the memory allocated that copies that static data
117 inside glibc's malloc. */
118 static void *malloc_state_ptr;
120 /* Get and free this pointer; useful around unexec. */
121 void
122 alloc_unexec_pre (void)
124 malloc_state_ptr = malloc_get_state ();
126 void
127 alloc_unexec_post (void)
129 free (malloc_state_ptr);
132 /* Restore the dumped malloc state. Because malloc can be invoked
133 even before main (e.g. by the dynamic linker), the dumped malloc
134 state must be restored as early as possible using this special hook. */
135 static void
136 malloc_initialize_hook (void)
138 static bool malloc_using_checking;
140 if (! initialized)
142 my_heap_start ();
143 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
145 else
147 if (!malloc_using_checking)
149 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
150 ignored if the heap to be restored was constructed without
151 malloc checking. Can't use unsetenv, since that calls malloc. */
152 char **p = environ;
153 if (p)
154 for (; *p; p++)
155 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
158 *p = p[1];
159 while (*++p);
161 break;
165 malloc_set_state (malloc_state_ptr);
166 # ifndef XMALLOC_OVERRUN_CHECK
167 alloc_unexec_post ();
168 # endif
172 # ifndef __MALLOC_HOOK_VOLATILE
173 # define __MALLOC_HOOK_VOLATILE
174 # endif
175 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook
176 = malloc_initialize_hook;
178 #endif
180 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
181 to a struct Lisp_String. */
183 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
184 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
185 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
187 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
188 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
189 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
191 /* Default value of gc_cons_threshold (see below). */
193 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
195 /* Global variables. */
196 struct emacs_globals globals;
198 /* Number of bytes of consing done since the last gc. */
200 EMACS_INT consing_since_gc;
202 /* Similar minimum, computed from Vgc_cons_percentage. */
204 EMACS_INT gc_relative_threshold;
206 /* Minimum number of bytes of consing since GC before next GC,
207 when memory is full. */
209 EMACS_INT memory_full_cons_threshold;
211 /* True during GC. */
213 bool gc_in_progress;
215 /* True means abort if try to GC.
216 This is for code which is written on the assumption that
217 no GC will happen, so as to verify that assumption. */
219 bool abort_on_gc;
221 /* Number of live and free conses etc. */
223 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
224 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
225 static EMACS_INT total_free_floats, total_floats;
227 /* Points to memory space allocated as "spare", to be freed if we run
228 out of memory. We keep one large block, four cons-blocks, and
229 two string blocks. */
231 static char *spare_memory[7];
233 /* Amount of spare memory to keep in large reserve block, or to see
234 whether this much is available when malloc fails on a larger request. */
236 #define SPARE_MEMORY (1 << 14)
238 /* Initialize it to a nonzero value to force it into data space
239 (rather than bss space). That way unexec will remap it into text
240 space (pure), on some systems. We have not implemented the
241 remapping on more recent systems because this is less important
242 nowadays than in the days of small memories and timesharing. */
244 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
245 #define PUREBEG (char *) pure
247 /* Pointer to the pure area, and its size. */
249 static char *purebeg;
250 static ptrdiff_t pure_size;
252 /* Number of bytes of pure storage used before pure storage overflowed.
253 If this is non-zero, this implies that an overflow occurred. */
255 static ptrdiff_t pure_bytes_used_before_overflow;
257 /* Index in pure at which next pure Lisp object will be allocated.. */
259 static ptrdiff_t pure_bytes_used_lisp;
261 /* Number of bytes allocated for non-Lisp objects in pure storage. */
263 static ptrdiff_t pure_bytes_used_non_lisp;
265 /* If nonzero, this is a warning delivered by malloc and not yet
266 displayed. */
268 const char *pending_malloc_warning;
270 #if 0 /* Normally, pointer sanity only on request... */
271 #ifdef ENABLE_CHECKING
272 #define SUSPICIOUS_OBJECT_CHECKING 1
273 #endif
274 #endif
276 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
277 bug is unresolved. */
278 #define SUSPICIOUS_OBJECT_CHECKING 1
280 #ifdef SUSPICIOUS_OBJECT_CHECKING
281 struct suspicious_free_record
283 void *suspicious_object;
284 void *backtrace[128];
286 static void *suspicious_objects[32];
287 static int suspicious_object_index;
288 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
289 static int suspicious_free_history_index;
290 /* Find the first currently-monitored suspicious pointer in range
291 [begin,end) or NULL if no such pointer exists. */
292 static void *find_suspicious_object_in_range (void *begin, void *end);
293 static void detect_suspicious_free (void *ptr);
294 #else
295 # define find_suspicious_object_in_range(begin, end) NULL
296 # define detect_suspicious_free(ptr) (void)
297 #endif
299 /* Maximum amount of C stack to save when a GC happens. */
301 #ifndef MAX_SAVE_STACK
302 #define MAX_SAVE_STACK 16000
303 #endif
305 /* Buffer in which we save a copy of the C stack at each GC. */
307 #if MAX_SAVE_STACK > 0
308 static char *stack_copy;
309 static ptrdiff_t stack_copy_size;
311 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
312 avoiding any address sanitization. */
314 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
315 no_sanitize_memcpy (void *dest, void const *src, size_t size)
317 if (! ADDRESS_SANITIZER)
318 return memcpy (dest, src, size);
319 else
321 size_t i;
322 char *d = dest;
323 char const *s = src;
324 for (i = 0; i < size; i++)
325 d[i] = s[i];
326 return dest;
330 #endif /* MAX_SAVE_STACK > 0 */
332 static void mark_terminals (void);
333 static void gc_sweep (void);
334 static Lisp_Object make_pure_vector (ptrdiff_t);
335 static void mark_buffer (struct buffer *);
337 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
338 static void refill_memory_reserve (void);
339 #endif
340 static void compact_small_strings (void);
341 static void free_large_strings (void);
342 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
344 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
345 what memory allocated via lisp_malloc and lisp_align_malloc is intended
346 for what purpose. This enumeration specifies the type of memory. */
348 enum mem_type
350 MEM_TYPE_NON_LISP,
351 MEM_TYPE_BUFFER,
352 MEM_TYPE_CONS,
353 MEM_TYPE_STRING,
354 MEM_TYPE_MISC,
355 MEM_TYPE_SYMBOL,
356 MEM_TYPE_FLOAT,
357 /* Since all non-bool pseudovectors are small enough to be
358 allocated from vector blocks, this memory type denotes
359 large regular vectors and large bool pseudovectors. */
360 MEM_TYPE_VECTORLIKE,
361 /* Special type to denote vector blocks. */
362 MEM_TYPE_VECTOR_BLOCK,
363 /* Special type to denote reserved memory. */
364 MEM_TYPE_SPARE
367 /* A unique object in pure space used to make some Lisp objects
368 on free lists recognizable in O(1). */
370 static Lisp_Object Vdead;
371 #define DEADP(x) EQ (x, Vdead)
373 #ifdef GC_MALLOC_CHECK
375 enum mem_type allocated_mem_type;
377 #endif /* GC_MALLOC_CHECK */
379 /* A node in the red-black tree describing allocated memory containing
380 Lisp data. Each such block is recorded with its start and end
381 address when it is allocated, and removed from the tree when it
382 is freed.
384 A red-black tree is a balanced binary tree with the following
385 properties:
387 1. Every node is either red or black.
388 2. Every leaf is black.
389 3. If a node is red, then both of its children are black.
390 4. Every simple path from a node to a descendant leaf contains
391 the same number of black nodes.
392 5. The root is always black.
394 When nodes are inserted into the tree, or deleted from the tree,
395 the tree is "fixed" so that these properties are always true.
397 A red-black tree with N internal nodes has height at most 2
398 log(N+1). Searches, insertions and deletions are done in O(log N).
399 Please see a text book about data structures for a detailed
400 description of red-black trees. Any book worth its salt should
401 describe them. */
403 struct mem_node
405 /* Children of this node. These pointers are never NULL. When there
406 is no child, the value is MEM_NIL, which points to a dummy node. */
407 struct mem_node *left, *right;
409 /* The parent of this node. In the root node, this is NULL. */
410 struct mem_node *parent;
412 /* Start and end of allocated region. */
413 void *start, *end;
415 /* Node color. */
416 enum {MEM_BLACK, MEM_RED} color;
418 /* Memory type. */
419 enum mem_type type;
422 /* Base address of stack. Set in main. */
424 Lisp_Object *stack_base;
426 /* Root of the tree describing allocated Lisp memory. */
428 static struct mem_node *mem_root;
430 /* Lowest and highest known address in the heap. */
432 static void *min_heap_address, *max_heap_address;
434 /* Sentinel node of the tree. */
436 static struct mem_node mem_z;
437 #define MEM_NIL &mem_z
439 static struct mem_node *mem_insert (void *, void *, enum mem_type);
440 static void mem_insert_fixup (struct mem_node *);
441 static void mem_rotate_left (struct mem_node *);
442 static void mem_rotate_right (struct mem_node *);
443 static void mem_delete (struct mem_node *);
444 static void mem_delete_fixup (struct mem_node *);
445 static struct mem_node *mem_find (void *);
447 #ifndef DEADP
448 # define DEADP(x) 0
449 #endif
451 /* Addresses of staticpro'd variables. Initialize it to a nonzero
452 value; otherwise some compilers put it into BSS. */
454 enum { NSTATICS = 2048 };
455 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
457 /* Index of next unused slot in staticvec. */
459 static int staticidx;
461 static void *pure_alloc (size_t, int);
463 /* Return X rounded to the next multiple of Y. Arguments should not
464 have side effects, as they are evaluated more than once. Assume X
465 + Y - 1 does not overflow. Tune for Y being a power of 2. */
467 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
468 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
469 : ((x) + (y) - 1) & ~ ((y) - 1))
471 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
473 static void *
474 ALIGN (void *ptr, int alignment)
476 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
479 /* Extract the pointer hidden within A, if A is not a symbol.
480 If A is a symbol, extract the hidden pointer's offset from lispsym,
481 converted to void *. */
483 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
484 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
486 /* Extract the pointer hidden within A. */
488 #define macro_XPNTR(a) \
489 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
490 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
492 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
493 functions, as functions are cleaner and can be used in debuggers.
494 Also, define them as macros if being compiled with GCC without
495 optimization, for performance in that case. The macro_* names are
496 private to this section of code. */
498 static ATTRIBUTE_UNUSED void *
499 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
501 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
503 static ATTRIBUTE_UNUSED void *
504 XPNTR (Lisp_Object a)
506 return macro_XPNTR (a);
509 #if DEFINE_KEY_OPS_AS_MACROS
510 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
511 # define XPNTR(a) macro_XPNTR (a)
512 #endif
514 static void
515 XFLOAT_INIT (Lisp_Object f, double n)
517 XFLOAT (f)->u.data = n;
520 #ifdef DOUG_LEA_MALLOC
521 static bool
522 pointers_fit_in_lispobj_p (void)
524 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
527 static bool
528 mmap_lisp_allowed_p (void)
530 /* If we can't store all memory addresses in our lisp objects, it's
531 risky to let the heap use mmap and give us addresses from all
532 over our address space. We also can't use mmap for lisp objects
533 if we might dump: unexec doesn't preserve the contents of mmapped
534 regions. */
535 return pointers_fit_in_lispobj_p () && !might_dump;
537 #endif
539 /* Head of a circularly-linked list of extant finalizers. */
540 static struct Lisp_Finalizer finalizers;
542 /* Head of a circularly-linked list of finalizers that must be invoked
543 because we deemed them unreachable. This list must be global, and
544 not a local inside garbage_collect_1, in case we GC again while
545 running finalizers. */
546 static struct Lisp_Finalizer doomed_finalizers;
549 /************************************************************************
550 Malloc
551 ************************************************************************/
553 /* Function malloc calls this if it finds we are near exhausting storage. */
555 void
556 malloc_warning (const char *str)
558 pending_malloc_warning = str;
562 /* Display an already-pending malloc warning. */
564 void
565 display_malloc_warning (void)
567 call3 (intern ("display-warning"),
568 intern ("alloc"),
569 build_string (pending_malloc_warning),
570 intern ("emergency"));
571 pending_malloc_warning = 0;
574 /* Called if we can't allocate relocatable space for a buffer. */
576 void
577 buffer_memory_full (ptrdiff_t nbytes)
579 /* If buffers use the relocating allocator, no need to free
580 spare_memory, because we may have plenty of malloc space left
581 that we could get, and if we don't, the malloc that fails will
582 itself cause spare_memory to be freed. If buffers don't use the
583 relocating allocator, treat this like any other failing
584 malloc. */
586 #ifndef REL_ALLOC
587 memory_full (nbytes);
588 #else
589 /* This used to call error, but if we've run out of memory, we could
590 get infinite recursion trying to build the string. */
591 xsignal (Qnil, Vmemory_signal_data);
592 #endif
595 /* A common multiple of the positive integers A and B. Ideally this
596 would be the least common multiple, but there's no way to do that
597 as a constant expression in C, so do the best that we can easily do. */
598 #define COMMON_MULTIPLE(a, b) \
599 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
601 #ifndef XMALLOC_OVERRUN_CHECK
602 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
603 #else
605 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
606 around each block.
608 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
609 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
610 block size in little-endian order. The trailer consists of
611 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
613 The header is used to detect whether this block has been allocated
614 through these functions, as some low-level libc functions may
615 bypass the malloc hooks. */
617 #define XMALLOC_OVERRUN_CHECK_SIZE 16
618 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
619 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
621 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
622 hold a size_t value and (2) the header size is a multiple of the
623 alignment that Emacs needs for C types and for USE_LSB_TAG. */
624 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
626 #define XMALLOC_HEADER_ALIGNMENT \
627 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
628 #define XMALLOC_OVERRUN_SIZE_SIZE \
629 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
630 + XMALLOC_HEADER_ALIGNMENT - 1) \
631 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
632 - XMALLOC_OVERRUN_CHECK_SIZE)
634 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
635 { '\x9a', '\x9b', '\xae', '\xaf',
636 '\xbf', '\xbe', '\xce', '\xcf',
637 '\xea', '\xeb', '\xec', '\xed',
638 '\xdf', '\xde', '\x9c', '\x9d' };
640 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
641 { '\xaa', '\xab', '\xac', '\xad',
642 '\xba', '\xbb', '\xbc', '\xbd',
643 '\xca', '\xcb', '\xcc', '\xcd',
644 '\xda', '\xdb', '\xdc', '\xdd' };
646 /* Insert and extract the block size in the header. */
648 static void
649 xmalloc_put_size (unsigned char *ptr, size_t size)
651 int i;
652 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
654 *--ptr = size & ((1 << CHAR_BIT) - 1);
655 size >>= CHAR_BIT;
659 static size_t
660 xmalloc_get_size (unsigned char *ptr)
662 size_t size = 0;
663 int i;
664 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
665 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
667 size <<= CHAR_BIT;
668 size += *ptr++;
670 return size;
674 /* Like malloc, but wraps allocated block with header and trailer. */
676 static void *
677 overrun_check_malloc (size_t size)
679 register unsigned char *val;
680 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
681 emacs_abort ();
683 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
684 if (val)
686 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
687 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
688 xmalloc_put_size (val, size);
689 memcpy (val + size, xmalloc_overrun_check_trailer,
690 XMALLOC_OVERRUN_CHECK_SIZE);
692 return val;
696 /* Like realloc, but checks old block for overrun, and wraps new block
697 with header and trailer. */
699 static void *
700 overrun_check_realloc (void *block, size_t size)
702 register unsigned char *val = (unsigned char *) block;
703 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
704 emacs_abort ();
706 if (val
707 && memcmp (xmalloc_overrun_check_header,
708 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
709 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
711 size_t osize = xmalloc_get_size (val);
712 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
713 XMALLOC_OVERRUN_CHECK_SIZE))
714 emacs_abort ();
715 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
716 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
717 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
720 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
722 if (val)
724 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
725 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
726 xmalloc_put_size (val, size);
727 memcpy (val + size, xmalloc_overrun_check_trailer,
728 XMALLOC_OVERRUN_CHECK_SIZE);
730 return val;
733 /* Like free, but checks block for overrun. */
735 static void
736 overrun_check_free (void *block)
738 unsigned char *val = (unsigned char *) block;
740 if (val
741 && memcmp (xmalloc_overrun_check_header,
742 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
743 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
745 size_t osize = xmalloc_get_size (val);
746 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
747 XMALLOC_OVERRUN_CHECK_SIZE))
748 emacs_abort ();
749 #ifdef XMALLOC_CLEAR_FREE_MEMORY
750 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
751 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
752 #else
753 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
754 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
755 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
756 #endif
759 free (val);
762 #undef malloc
763 #undef realloc
764 #undef free
765 #define malloc overrun_check_malloc
766 #define realloc overrun_check_realloc
767 #define free overrun_check_free
768 #endif
770 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
771 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
772 If that variable is set, block input while in one of Emacs's memory
773 allocation functions. There should be no need for this debugging
774 option, since signal handlers do not allocate memory, but Emacs
775 formerly allocated memory in signal handlers and this compile-time
776 option remains as a way to help debug the issue should it rear its
777 ugly head again. */
778 #ifdef XMALLOC_BLOCK_INPUT_CHECK
779 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
780 static void
781 malloc_block_input (void)
783 if (block_input_in_memory_allocators)
784 block_input ();
786 static void
787 malloc_unblock_input (void)
789 if (block_input_in_memory_allocators)
790 unblock_input ();
792 # define MALLOC_BLOCK_INPUT malloc_block_input ()
793 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
794 #else
795 # define MALLOC_BLOCK_INPUT ((void) 0)
796 # define MALLOC_UNBLOCK_INPUT ((void) 0)
797 #endif
799 #define MALLOC_PROBE(size) \
800 do { \
801 if (profiler_memory_running) \
802 malloc_probe (size); \
803 } while (0)
806 /* Like malloc but check for no memory and block interrupt input.. */
808 void *
809 xmalloc (size_t size)
811 void *val;
813 MALLOC_BLOCK_INPUT;
814 val = malloc (size);
815 MALLOC_UNBLOCK_INPUT;
817 if (!val && size)
818 memory_full (size);
819 MALLOC_PROBE (size);
820 return val;
823 /* Like the above, but zeroes out the memory just allocated. */
825 void *
826 xzalloc (size_t size)
828 void *val;
830 MALLOC_BLOCK_INPUT;
831 val = malloc (size);
832 MALLOC_UNBLOCK_INPUT;
834 if (!val && size)
835 memory_full (size);
836 memset (val, 0, size);
837 MALLOC_PROBE (size);
838 return val;
841 /* Like realloc but check for no memory and block interrupt input.. */
843 void *
844 xrealloc (void *block, size_t size)
846 void *val;
848 MALLOC_BLOCK_INPUT;
849 /* We must call malloc explicitly when BLOCK is 0, since some
850 reallocs don't do this. */
851 if (! block)
852 val = malloc (size);
853 else
854 val = realloc (block, size);
855 MALLOC_UNBLOCK_INPUT;
857 if (!val && size)
858 memory_full (size);
859 MALLOC_PROBE (size);
860 return val;
864 /* Like free but block interrupt input. */
866 void
867 xfree (void *block)
869 if (!block)
870 return;
871 MALLOC_BLOCK_INPUT;
872 free (block);
873 MALLOC_UNBLOCK_INPUT;
874 /* We don't call refill_memory_reserve here
875 because in practice the call in r_alloc_free seems to suffice. */
879 /* Other parts of Emacs pass large int values to allocator functions
880 expecting ptrdiff_t. This is portable in practice, but check it to
881 be safe. */
882 verify (INT_MAX <= PTRDIFF_MAX);
885 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
886 Signal an error on memory exhaustion, and block interrupt input. */
888 void *
889 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
891 eassert (0 <= nitems && 0 < item_size);
892 ptrdiff_t nbytes;
893 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
894 memory_full (SIZE_MAX);
895 return xmalloc (nbytes);
899 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
900 Signal an error on memory exhaustion, and block interrupt input. */
902 void *
903 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
905 eassert (0 <= nitems && 0 < item_size);
906 ptrdiff_t nbytes;
907 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
908 memory_full (SIZE_MAX);
909 return xrealloc (pa, nbytes);
913 /* Grow PA, which points to an array of *NITEMS items, and return the
914 location of the reallocated array, updating *NITEMS to reflect its
915 new size. The new array will contain at least NITEMS_INCR_MIN more
916 items, but will not contain more than NITEMS_MAX items total.
917 ITEM_SIZE is the size of each item, in bytes.
919 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
920 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
921 infinity.
923 If PA is null, then allocate a new array instead of reallocating
924 the old one.
926 Block interrupt input as needed. If memory exhaustion occurs, set
927 *NITEMS to zero if PA is null, and signal an error (i.e., do not
928 return).
930 Thus, to grow an array A without saving its old contents, do
931 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
932 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
933 and signals an error, and later this code is reexecuted and
934 attempts to free A. */
936 void *
937 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
938 ptrdiff_t nitems_max, ptrdiff_t item_size)
940 ptrdiff_t n0 = *nitems;
941 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
943 /* The approximate size to use for initial small allocation
944 requests. This is the largest "small" request for the GNU C
945 library malloc. */
946 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
948 /* If the array is tiny, grow it to about (but no greater than)
949 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
950 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
951 NITEMS_MAX, and what the C language can represent safely. */
953 ptrdiff_t n, nbytes;
954 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
955 n = PTRDIFF_MAX;
956 if (0 <= nitems_max && nitems_max < n)
957 n = nitems_max;
959 ptrdiff_t adjusted_nbytes
960 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
961 ? min (PTRDIFF_MAX, SIZE_MAX)
962 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
963 if (adjusted_nbytes)
965 n = adjusted_nbytes / item_size;
966 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
969 if (! pa)
970 *nitems = 0;
971 if (n - n0 < nitems_incr_min
972 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
973 || (0 <= nitems_max && nitems_max < n)
974 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
975 memory_full (SIZE_MAX);
976 pa = xrealloc (pa, nbytes);
977 *nitems = n;
978 return pa;
982 /* Like strdup, but uses xmalloc. */
984 char *
985 xstrdup (const char *s)
987 ptrdiff_t size;
988 eassert (s);
989 size = strlen (s) + 1;
990 return memcpy (xmalloc (size), s, size);
993 /* Like above, but duplicates Lisp string to C string. */
995 char *
996 xlispstrdup (Lisp_Object string)
998 ptrdiff_t size = SBYTES (string) + 1;
999 return memcpy (xmalloc (size), SSDATA (string), size);
1002 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1003 pointed to. If STRING is null, assign it without copying anything.
1004 Allocate before freeing, to avoid a dangling pointer if allocation
1005 fails. */
1007 void
1008 dupstring (char **ptr, char const *string)
1010 char *old = *ptr;
1011 *ptr = string ? xstrdup (string) : 0;
1012 xfree (old);
1016 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1017 argument is a const pointer. */
1019 void
1020 xputenv (char const *string)
1022 if (putenv ((char *) string) != 0)
1023 memory_full (0);
1026 /* Return a newly allocated memory block of SIZE bytes, remembering
1027 to free it when unwinding. */
1028 void *
1029 record_xmalloc (size_t size)
1031 void *p = xmalloc (size);
1032 record_unwind_protect_ptr (xfree, p);
1033 return p;
1037 /* Like malloc but used for allocating Lisp data. NBYTES is the
1038 number of bytes to allocate, TYPE describes the intended use of the
1039 allocated memory block (for strings, for conses, ...). */
1041 #if ! USE_LSB_TAG
1042 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1043 #endif
1045 static void *
1046 lisp_malloc (size_t nbytes, enum mem_type type)
1048 register void *val;
1050 MALLOC_BLOCK_INPUT;
1052 #ifdef GC_MALLOC_CHECK
1053 allocated_mem_type = type;
1054 #endif
1056 val = malloc (nbytes);
1058 #if ! USE_LSB_TAG
1059 /* If the memory just allocated cannot be addressed thru a Lisp
1060 object's pointer, and it needs to be,
1061 that's equivalent to running out of memory. */
1062 if (val && type != MEM_TYPE_NON_LISP)
1064 Lisp_Object tem;
1065 XSETCONS (tem, (char *) val + nbytes - 1);
1066 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1068 lisp_malloc_loser = val;
1069 free (val);
1070 val = 0;
1073 #endif
1075 #ifndef GC_MALLOC_CHECK
1076 if (val && type != MEM_TYPE_NON_LISP)
1077 mem_insert (val, (char *) val + nbytes, type);
1078 #endif
1080 MALLOC_UNBLOCK_INPUT;
1081 if (!val && nbytes)
1082 memory_full (nbytes);
1083 MALLOC_PROBE (nbytes);
1084 return val;
1087 /* Free BLOCK. This must be called to free memory allocated with a
1088 call to lisp_malloc. */
1090 static void
1091 lisp_free (void *block)
1093 MALLOC_BLOCK_INPUT;
1094 free (block);
1095 #ifndef GC_MALLOC_CHECK
1096 mem_delete (mem_find (block));
1097 #endif
1098 MALLOC_UNBLOCK_INPUT;
1101 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1103 /* The entry point is lisp_align_malloc which returns blocks of at most
1104 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1106 /* Use aligned_alloc if it or a simple substitute is available.
1107 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1108 clang 3.3 anyway. */
1110 #if ! ADDRESS_SANITIZER
1111 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1112 # define USE_ALIGNED_ALLOC 1
1113 /* Defined in gmalloc.c. */
1114 void *aligned_alloc (size_t, size_t);
1115 # elif defined HYBRID_MALLOC
1116 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1117 # define USE_ALIGNED_ALLOC 1
1118 # define aligned_alloc hybrid_aligned_alloc
1119 /* Defined in gmalloc.c. */
1120 void *aligned_alloc (size_t, size_t);
1121 # endif
1122 # elif defined HAVE_ALIGNED_ALLOC
1123 # define USE_ALIGNED_ALLOC 1
1124 # elif defined HAVE_POSIX_MEMALIGN
1125 # define USE_ALIGNED_ALLOC 1
1126 static void *
1127 aligned_alloc (size_t alignment, size_t size)
1129 void *p;
1130 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1132 # endif
1133 #endif
1135 /* BLOCK_ALIGN has to be a power of 2. */
1136 #define BLOCK_ALIGN (1 << 10)
1138 /* Padding to leave at the end of a malloc'd block. This is to give
1139 malloc a chance to minimize the amount of memory wasted to alignment.
1140 It should be tuned to the particular malloc library used.
1141 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1142 aligned_alloc on the other hand would ideally prefer a value of 4
1143 because otherwise, there's 1020 bytes wasted between each ablocks.
1144 In Emacs, testing shows that those 1020 can most of the time be
1145 efficiently used by malloc to place other objects, so a value of 0 can
1146 still preferable unless you have a lot of aligned blocks and virtually
1147 nothing else. */
1148 #define BLOCK_PADDING 0
1149 #define BLOCK_BYTES \
1150 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1152 /* Internal data structures and constants. */
1154 #define ABLOCKS_SIZE 16
1156 /* An aligned block of memory. */
1157 struct ablock
1159 union
1161 char payload[BLOCK_BYTES];
1162 struct ablock *next_free;
1163 } x;
1164 /* `abase' is the aligned base of the ablocks. */
1165 /* It is overloaded to hold the virtual `busy' field that counts
1166 the number of used ablock in the parent ablocks.
1167 The first ablock has the `busy' field, the others have the `abase'
1168 field. To tell the difference, we assume that pointers will have
1169 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1170 is used to tell whether the real base of the parent ablocks is `abase'
1171 (if not, the word before the first ablock holds a pointer to the
1172 real base). */
1173 struct ablocks *abase;
1174 /* The padding of all but the last ablock is unused. The padding of
1175 the last ablock in an ablocks is not allocated. */
1176 #if BLOCK_PADDING
1177 char padding[BLOCK_PADDING];
1178 #endif
1181 /* A bunch of consecutive aligned blocks. */
1182 struct ablocks
1184 struct ablock blocks[ABLOCKS_SIZE];
1187 /* Size of the block requested from malloc or aligned_alloc. */
1188 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1190 #define ABLOCK_ABASE(block) \
1191 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1192 ? (struct ablocks *)(block) \
1193 : (block)->abase)
1195 /* Virtual `busy' field. */
1196 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1198 /* Pointer to the (not necessarily aligned) malloc block. */
1199 #ifdef USE_ALIGNED_ALLOC
1200 #define ABLOCKS_BASE(abase) (abase)
1201 #else
1202 #define ABLOCKS_BASE(abase) \
1203 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1204 #endif
1206 /* The list of free ablock. */
1207 static struct ablock *free_ablock;
1209 /* Allocate an aligned block of nbytes.
1210 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1211 smaller or equal to BLOCK_BYTES. */
1212 static void *
1213 lisp_align_malloc (size_t nbytes, enum mem_type type)
1215 void *base, *val;
1216 struct ablocks *abase;
1218 eassert (nbytes <= BLOCK_BYTES);
1220 MALLOC_BLOCK_INPUT;
1222 #ifdef GC_MALLOC_CHECK
1223 allocated_mem_type = type;
1224 #endif
1226 if (!free_ablock)
1228 int i;
1229 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1231 #ifdef DOUG_LEA_MALLOC
1232 if (!mmap_lisp_allowed_p ())
1233 mallopt (M_MMAP_MAX, 0);
1234 #endif
1236 #ifdef USE_ALIGNED_ALLOC
1237 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1238 #else
1239 base = malloc (ABLOCKS_BYTES);
1240 abase = ALIGN (base, BLOCK_ALIGN);
1241 #endif
1243 if (base == 0)
1245 MALLOC_UNBLOCK_INPUT;
1246 memory_full (ABLOCKS_BYTES);
1249 aligned = (base == abase);
1250 if (!aligned)
1251 ((void **) abase)[-1] = base;
1253 #ifdef DOUG_LEA_MALLOC
1254 if (!mmap_lisp_allowed_p ())
1255 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1256 #endif
1258 #if ! USE_LSB_TAG
1259 /* If the memory just allocated cannot be addressed thru a Lisp
1260 object's pointer, and it needs to be, that's equivalent to
1261 running out of memory. */
1262 if (type != MEM_TYPE_NON_LISP)
1264 Lisp_Object tem;
1265 char *end = (char *) base + ABLOCKS_BYTES - 1;
1266 XSETCONS (tem, end);
1267 if ((char *) XCONS (tem) != end)
1269 lisp_malloc_loser = base;
1270 free (base);
1271 MALLOC_UNBLOCK_INPUT;
1272 memory_full (SIZE_MAX);
1275 #endif
1277 /* Initialize the blocks and put them on the free list.
1278 If `base' was not properly aligned, we can't use the last block. */
1279 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1281 abase->blocks[i].abase = abase;
1282 abase->blocks[i].x.next_free = free_ablock;
1283 free_ablock = &abase->blocks[i];
1285 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1287 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1288 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1289 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1290 eassert (ABLOCKS_BASE (abase) == base);
1291 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1294 abase = ABLOCK_ABASE (free_ablock);
1295 ABLOCKS_BUSY (abase)
1296 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1297 val = free_ablock;
1298 free_ablock = free_ablock->x.next_free;
1300 #ifndef GC_MALLOC_CHECK
1301 if (type != MEM_TYPE_NON_LISP)
1302 mem_insert (val, (char *) val + nbytes, type);
1303 #endif
1305 MALLOC_UNBLOCK_INPUT;
1307 MALLOC_PROBE (nbytes);
1309 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1310 return val;
1313 static void
1314 lisp_align_free (void *block)
1316 struct ablock *ablock = block;
1317 struct ablocks *abase = ABLOCK_ABASE (ablock);
1319 MALLOC_BLOCK_INPUT;
1320 #ifndef GC_MALLOC_CHECK
1321 mem_delete (mem_find (block));
1322 #endif
1323 /* Put on free list. */
1324 ablock->x.next_free = free_ablock;
1325 free_ablock = ablock;
1326 /* Update busy count. */
1327 ABLOCKS_BUSY (abase)
1328 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1330 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1331 { /* All the blocks are free. */
1332 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1333 struct ablock **tem = &free_ablock;
1334 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1336 while (*tem)
1338 if (*tem >= (struct ablock *) abase && *tem < atop)
1340 i++;
1341 *tem = (*tem)->x.next_free;
1343 else
1344 tem = &(*tem)->x.next_free;
1346 eassert ((aligned & 1) == aligned);
1347 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1348 #ifdef USE_POSIX_MEMALIGN
1349 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1350 #endif
1351 free (ABLOCKS_BASE (abase));
1353 MALLOC_UNBLOCK_INPUT;
1357 /***********************************************************************
1358 Interval Allocation
1359 ***********************************************************************/
1361 /* Number of intervals allocated in an interval_block structure.
1362 The 1020 is 1024 minus malloc overhead. */
1364 #define INTERVAL_BLOCK_SIZE \
1365 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1367 /* Intervals are allocated in chunks in the form of an interval_block
1368 structure. */
1370 struct interval_block
1372 /* Place `intervals' first, to preserve alignment. */
1373 struct interval intervals[INTERVAL_BLOCK_SIZE];
1374 struct interval_block *next;
1377 /* Current interval block. Its `next' pointer points to older
1378 blocks. */
1380 static struct interval_block *interval_block;
1382 /* Index in interval_block above of the next unused interval
1383 structure. */
1385 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1387 /* Number of free and live intervals. */
1389 static EMACS_INT total_free_intervals, total_intervals;
1391 /* List of free intervals. */
1393 static INTERVAL interval_free_list;
1395 /* Return a new interval. */
1397 INTERVAL
1398 make_interval (void)
1400 INTERVAL val;
1402 MALLOC_BLOCK_INPUT;
1404 if (interval_free_list)
1406 val = interval_free_list;
1407 interval_free_list = INTERVAL_PARENT (interval_free_list);
1409 else
1411 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1413 struct interval_block *newi
1414 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1416 newi->next = interval_block;
1417 interval_block = newi;
1418 interval_block_index = 0;
1419 total_free_intervals += INTERVAL_BLOCK_SIZE;
1421 val = &interval_block->intervals[interval_block_index++];
1424 MALLOC_UNBLOCK_INPUT;
1426 consing_since_gc += sizeof (struct interval);
1427 intervals_consed++;
1428 total_free_intervals--;
1429 RESET_INTERVAL (val);
1430 val->gcmarkbit = 0;
1431 return val;
1435 /* Mark Lisp objects in interval I. */
1437 static void
1438 mark_interval (register INTERVAL i, Lisp_Object dummy)
1440 /* Intervals should never be shared. So, if extra internal checking is
1441 enabled, GC aborts if it seems to have visited an interval twice. */
1442 eassert (!i->gcmarkbit);
1443 i->gcmarkbit = 1;
1444 mark_object (i->plist);
1447 /* Mark the interval tree rooted in I. */
1449 #define MARK_INTERVAL_TREE(i) \
1450 do { \
1451 if (i && !i->gcmarkbit) \
1452 traverse_intervals_noorder (i, mark_interval, Qnil); \
1453 } while (0)
1455 /***********************************************************************
1456 String Allocation
1457 ***********************************************************************/
1459 /* Lisp_Strings are allocated in string_block structures. When a new
1460 string_block is allocated, all the Lisp_Strings it contains are
1461 added to a free-list string_free_list. When a new Lisp_String is
1462 needed, it is taken from that list. During the sweep phase of GC,
1463 string_blocks that are entirely free are freed, except two which
1464 we keep.
1466 String data is allocated from sblock structures. Strings larger
1467 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1468 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1470 Sblocks consist internally of sdata structures, one for each
1471 Lisp_String. The sdata structure points to the Lisp_String it
1472 belongs to. The Lisp_String points back to the `u.data' member of
1473 its sdata structure.
1475 When a Lisp_String is freed during GC, it is put back on
1476 string_free_list, and its `data' member and its sdata's `string'
1477 pointer is set to null. The size of the string is recorded in the
1478 `n.nbytes' member of the sdata. So, sdata structures that are no
1479 longer used, can be easily recognized, and it's easy to compact the
1480 sblocks of small strings which we do in compact_small_strings. */
1482 /* Size in bytes of an sblock structure used for small strings. This
1483 is 8192 minus malloc overhead. */
1485 #define SBLOCK_SIZE 8188
1487 /* Strings larger than this are considered large strings. String data
1488 for large strings is allocated from individual sblocks. */
1490 #define LARGE_STRING_BYTES 1024
1492 /* The SDATA typedef is a struct or union describing string memory
1493 sub-allocated from an sblock. This is where the contents of Lisp
1494 strings are stored. */
1496 struct sdata
1498 /* Back-pointer to the string this sdata belongs to. If null, this
1499 structure is free, and NBYTES (in this structure or in the union below)
1500 contains the string's byte size (the same value that STRING_BYTES
1501 would return if STRING were non-null). If non-null, STRING_BYTES
1502 (STRING) is the size of the data, and DATA contains the string's
1503 contents. */
1504 struct Lisp_String *string;
1506 #ifdef GC_CHECK_STRING_BYTES
1507 ptrdiff_t nbytes;
1508 #endif
1510 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1513 #ifdef GC_CHECK_STRING_BYTES
1515 typedef struct sdata sdata;
1516 #define SDATA_NBYTES(S) (S)->nbytes
1517 #define SDATA_DATA(S) (S)->data
1519 #else
1521 typedef union
1523 struct Lisp_String *string;
1525 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1526 which has a flexible array member. However, if implemented by
1527 giving this union a member of type 'struct sdata', the union
1528 could not be the last (flexible) member of 'struct sblock',
1529 because C99 prohibits a flexible array member from having a type
1530 that is itself a flexible array. So, comment this member out here,
1531 but remember that the option's there when using this union. */
1532 #if 0
1533 struct sdata u;
1534 #endif
1536 /* When STRING is null. */
1537 struct
1539 struct Lisp_String *string;
1540 ptrdiff_t nbytes;
1541 } n;
1542 } sdata;
1544 #define SDATA_NBYTES(S) (S)->n.nbytes
1545 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1547 #endif /* not GC_CHECK_STRING_BYTES */
1549 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1551 /* Structure describing a block of memory which is sub-allocated to
1552 obtain string data memory for strings. Blocks for small strings
1553 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1554 as large as needed. */
1556 struct sblock
1558 /* Next in list. */
1559 struct sblock *next;
1561 /* Pointer to the next free sdata block. This points past the end
1562 of the sblock if there isn't any space left in this block. */
1563 sdata *next_free;
1565 /* String data. */
1566 sdata data[FLEXIBLE_ARRAY_MEMBER];
1569 /* Number of Lisp strings in a string_block structure. The 1020 is
1570 1024 minus malloc overhead. */
1572 #define STRING_BLOCK_SIZE \
1573 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1575 /* Structure describing a block from which Lisp_String structures
1576 are allocated. */
1578 struct string_block
1580 /* Place `strings' first, to preserve alignment. */
1581 struct Lisp_String strings[STRING_BLOCK_SIZE];
1582 struct string_block *next;
1585 /* Head and tail of the list of sblock structures holding Lisp string
1586 data. We always allocate from current_sblock. The NEXT pointers
1587 in the sblock structures go from oldest_sblock to current_sblock. */
1589 static struct sblock *oldest_sblock, *current_sblock;
1591 /* List of sblocks for large strings. */
1593 static struct sblock *large_sblocks;
1595 /* List of string_block structures. */
1597 static struct string_block *string_blocks;
1599 /* Free-list of Lisp_Strings. */
1601 static struct Lisp_String *string_free_list;
1603 /* Number of live and free Lisp_Strings. */
1605 static EMACS_INT total_strings, total_free_strings;
1607 /* Number of bytes used by live strings. */
1609 static EMACS_INT total_string_bytes;
1611 /* Given a pointer to a Lisp_String S which is on the free-list
1612 string_free_list, return a pointer to its successor in the
1613 free-list. */
1615 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1617 /* Return a pointer to the sdata structure belonging to Lisp string S.
1618 S must be live, i.e. S->data must not be null. S->data is actually
1619 a pointer to the `u.data' member of its sdata structure; the
1620 structure starts at a constant offset in front of that. */
1622 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1625 #ifdef GC_CHECK_STRING_OVERRUN
1627 /* We check for overrun in string data blocks by appending a small
1628 "cookie" after each allocated string data block, and check for the
1629 presence of this cookie during GC. */
1631 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1632 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1633 { '\xde', '\xad', '\xbe', '\xef' };
1635 #else
1636 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1637 #endif
1639 /* Value is the size of an sdata structure large enough to hold NBYTES
1640 bytes of string data. The value returned includes a terminating
1641 NUL byte, the size of the sdata structure, and padding. */
1643 #ifdef GC_CHECK_STRING_BYTES
1645 #define SDATA_SIZE(NBYTES) \
1646 ((SDATA_DATA_OFFSET \
1647 + (NBYTES) + 1 \
1648 + sizeof (ptrdiff_t) - 1) \
1649 & ~(sizeof (ptrdiff_t) - 1))
1651 #else /* not GC_CHECK_STRING_BYTES */
1653 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1654 less than the size of that member. The 'max' is not needed when
1655 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1656 alignment code reserves enough space. */
1658 #define SDATA_SIZE(NBYTES) \
1659 ((SDATA_DATA_OFFSET \
1660 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1661 ? NBYTES \
1662 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1663 + 1 \
1664 + sizeof (ptrdiff_t) - 1) \
1665 & ~(sizeof (ptrdiff_t) - 1))
1667 #endif /* not GC_CHECK_STRING_BYTES */
1669 /* Extra bytes to allocate for each string. */
1671 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1673 /* Exact bound on the number of bytes in a string, not counting the
1674 terminating null. A string cannot contain more bytes than
1675 STRING_BYTES_BOUND, nor can it be so long that the size_t
1676 arithmetic in allocate_string_data would overflow while it is
1677 calculating a value to be passed to malloc. */
1678 static ptrdiff_t const STRING_BYTES_MAX =
1679 min (STRING_BYTES_BOUND,
1680 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1681 - GC_STRING_EXTRA
1682 - offsetof (struct sblock, data)
1683 - SDATA_DATA_OFFSET)
1684 & ~(sizeof (EMACS_INT) - 1)));
1686 /* Initialize string allocation. Called from init_alloc_once. */
1688 static void
1689 init_strings (void)
1691 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1692 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1696 #ifdef GC_CHECK_STRING_BYTES
1698 static int check_string_bytes_count;
1700 /* Like STRING_BYTES, but with debugging check. Can be
1701 called during GC, so pay attention to the mark bit. */
1703 ptrdiff_t
1704 string_bytes (struct Lisp_String *s)
1706 ptrdiff_t nbytes =
1707 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1709 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1710 emacs_abort ();
1711 return nbytes;
1714 /* Check validity of Lisp strings' string_bytes member in B. */
1716 static void
1717 check_sblock (struct sblock *b)
1719 sdata *from, *end, *from_end;
1721 end = b->next_free;
1723 for (from = b->data; from < end; from = from_end)
1725 /* Compute the next FROM here because copying below may
1726 overwrite data we need to compute it. */
1727 ptrdiff_t nbytes;
1729 /* Check that the string size recorded in the string is the
1730 same as the one recorded in the sdata structure. */
1731 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1732 : SDATA_NBYTES (from));
1733 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1738 /* Check validity of Lisp strings' string_bytes member. ALL_P
1739 means check all strings, otherwise check only most
1740 recently allocated strings. Used for hunting a bug. */
1742 static void
1743 check_string_bytes (bool all_p)
1745 if (all_p)
1747 struct sblock *b;
1749 for (b = large_sblocks; b; b = b->next)
1751 struct Lisp_String *s = b->data[0].string;
1752 if (s)
1753 string_bytes (s);
1756 for (b = oldest_sblock; b; b = b->next)
1757 check_sblock (b);
1759 else if (current_sblock)
1760 check_sblock (current_sblock);
1763 #else /* not GC_CHECK_STRING_BYTES */
1765 #define check_string_bytes(all) ((void) 0)
1767 #endif /* GC_CHECK_STRING_BYTES */
1769 #ifdef GC_CHECK_STRING_FREE_LIST
1771 /* Walk through the string free list looking for bogus next pointers.
1772 This may catch buffer overrun from a previous string. */
1774 static void
1775 check_string_free_list (void)
1777 struct Lisp_String *s;
1779 /* Pop a Lisp_String off the free-list. */
1780 s = string_free_list;
1781 while (s != NULL)
1783 if ((uintptr_t) s < 1024)
1784 emacs_abort ();
1785 s = NEXT_FREE_LISP_STRING (s);
1788 #else
1789 #define check_string_free_list()
1790 #endif
1792 /* Return a new Lisp_String. */
1794 static struct Lisp_String *
1795 allocate_string (void)
1797 struct Lisp_String *s;
1799 MALLOC_BLOCK_INPUT;
1801 /* If the free-list is empty, allocate a new string_block, and
1802 add all the Lisp_Strings in it to the free-list. */
1803 if (string_free_list == NULL)
1805 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1806 int i;
1808 b->next = string_blocks;
1809 string_blocks = b;
1811 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1813 s = b->strings + i;
1814 /* Every string on a free list should have NULL data pointer. */
1815 s->data = NULL;
1816 NEXT_FREE_LISP_STRING (s) = string_free_list;
1817 string_free_list = s;
1820 total_free_strings += STRING_BLOCK_SIZE;
1823 check_string_free_list ();
1825 /* Pop a Lisp_String off the free-list. */
1826 s = string_free_list;
1827 string_free_list = NEXT_FREE_LISP_STRING (s);
1829 MALLOC_UNBLOCK_INPUT;
1831 --total_free_strings;
1832 ++total_strings;
1833 ++strings_consed;
1834 consing_since_gc += sizeof *s;
1836 #ifdef GC_CHECK_STRING_BYTES
1837 if (!noninteractive)
1839 if (++check_string_bytes_count == 200)
1841 check_string_bytes_count = 0;
1842 check_string_bytes (1);
1844 else
1845 check_string_bytes (0);
1847 #endif /* GC_CHECK_STRING_BYTES */
1849 return s;
1853 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1854 plus a NUL byte at the end. Allocate an sdata structure for S, and
1855 set S->data to its `u.data' member. Store a NUL byte at the end of
1856 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1857 S->data if it was initially non-null. */
1859 void
1860 allocate_string_data (struct Lisp_String *s,
1861 EMACS_INT nchars, EMACS_INT nbytes)
1863 sdata *data, *old_data;
1864 struct sblock *b;
1865 ptrdiff_t needed, old_nbytes;
1867 if (STRING_BYTES_MAX < nbytes)
1868 string_overflow ();
1870 /* Determine the number of bytes needed to store NBYTES bytes
1871 of string data. */
1872 needed = SDATA_SIZE (nbytes);
1873 if (s->data)
1875 old_data = SDATA_OF_STRING (s);
1876 old_nbytes = STRING_BYTES (s);
1878 else
1879 old_data = NULL;
1881 MALLOC_BLOCK_INPUT;
1883 if (nbytes > LARGE_STRING_BYTES)
1885 size_t size = offsetof (struct sblock, data) + needed;
1887 #ifdef DOUG_LEA_MALLOC
1888 if (!mmap_lisp_allowed_p ())
1889 mallopt (M_MMAP_MAX, 0);
1890 #endif
1892 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1894 #ifdef DOUG_LEA_MALLOC
1895 if (!mmap_lisp_allowed_p ())
1896 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1897 #endif
1899 b->next_free = b->data;
1900 b->data[0].string = NULL;
1901 b->next = large_sblocks;
1902 large_sblocks = b;
1904 else if (current_sblock == NULL
1905 || (((char *) current_sblock + SBLOCK_SIZE
1906 - (char *) current_sblock->next_free)
1907 < (needed + GC_STRING_EXTRA)))
1909 /* Not enough room in the current sblock. */
1910 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1911 b->next_free = b->data;
1912 b->data[0].string = NULL;
1913 b->next = NULL;
1915 if (current_sblock)
1916 current_sblock->next = b;
1917 else
1918 oldest_sblock = b;
1919 current_sblock = b;
1921 else
1922 b = current_sblock;
1924 data = b->next_free;
1925 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1927 MALLOC_UNBLOCK_INPUT;
1929 data->string = s;
1930 s->data = SDATA_DATA (data);
1931 #ifdef GC_CHECK_STRING_BYTES
1932 SDATA_NBYTES (data) = nbytes;
1933 #endif
1934 s->size = nchars;
1935 s->size_byte = nbytes;
1936 s->data[nbytes] = '\0';
1937 #ifdef GC_CHECK_STRING_OVERRUN
1938 memcpy ((char *) data + needed, string_overrun_cookie,
1939 GC_STRING_OVERRUN_COOKIE_SIZE);
1940 #endif
1942 /* Note that Faset may call to this function when S has already data
1943 assigned. In this case, mark data as free by setting it's string
1944 back-pointer to null, and record the size of the data in it. */
1945 if (old_data)
1947 SDATA_NBYTES (old_data) = old_nbytes;
1948 old_data->string = NULL;
1951 consing_since_gc += needed;
1955 /* Sweep and compact strings. */
1957 NO_INLINE /* For better stack traces */
1958 static void
1959 sweep_strings (void)
1961 struct string_block *b, *next;
1962 struct string_block *live_blocks = NULL;
1964 string_free_list = NULL;
1965 total_strings = total_free_strings = 0;
1966 total_string_bytes = 0;
1968 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1969 for (b = string_blocks; b; b = next)
1971 int i, nfree = 0;
1972 struct Lisp_String *free_list_before = string_free_list;
1974 next = b->next;
1976 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1978 struct Lisp_String *s = b->strings + i;
1980 if (s->data)
1982 /* String was not on free-list before. */
1983 if (STRING_MARKED_P (s))
1985 /* String is live; unmark it and its intervals. */
1986 UNMARK_STRING (s);
1988 /* Do not use string_(set|get)_intervals here. */
1989 s->intervals = balance_intervals (s->intervals);
1991 ++total_strings;
1992 total_string_bytes += STRING_BYTES (s);
1994 else
1996 /* String is dead. Put it on the free-list. */
1997 sdata *data = SDATA_OF_STRING (s);
1999 /* Save the size of S in its sdata so that we know
2000 how large that is. Reset the sdata's string
2001 back-pointer so that we know it's free. */
2002 #ifdef GC_CHECK_STRING_BYTES
2003 if (string_bytes (s) != SDATA_NBYTES (data))
2004 emacs_abort ();
2005 #else
2006 data->n.nbytes = STRING_BYTES (s);
2007 #endif
2008 data->string = NULL;
2010 /* Reset the strings's `data' member so that we
2011 know it's free. */
2012 s->data = NULL;
2014 /* Put the string on the free-list. */
2015 NEXT_FREE_LISP_STRING (s) = string_free_list;
2016 string_free_list = s;
2017 ++nfree;
2020 else
2022 /* S was on the free-list before. Put it there again. */
2023 NEXT_FREE_LISP_STRING (s) = string_free_list;
2024 string_free_list = s;
2025 ++nfree;
2029 /* Free blocks that contain free Lisp_Strings only, except
2030 the first two of them. */
2031 if (nfree == STRING_BLOCK_SIZE
2032 && total_free_strings > STRING_BLOCK_SIZE)
2034 lisp_free (b);
2035 string_free_list = free_list_before;
2037 else
2039 total_free_strings += nfree;
2040 b->next = live_blocks;
2041 live_blocks = b;
2045 check_string_free_list ();
2047 string_blocks = live_blocks;
2048 free_large_strings ();
2049 compact_small_strings ();
2051 check_string_free_list ();
2055 /* Free dead large strings. */
2057 static void
2058 free_large_strings (void)
2060 struct sblock *b, *next;
2061 struct sblock *live_blocks = NULL;
2063 for (b = large_sblocks; b; b = next)
2065 next = b->next;
2067 if (b->data[0].string == NULL)
2068 lisp_free (b);
2069 else
2071 b->next = live_blocks;
2072 live_blocks = b;
2076 large_sblocks = live_blocks;
2080 /* Compact data of small strings. Free sblocks that don't contain
2081 data of live strings after compaction. */
2083 static void
2084 compact_small_strings (void)
2086 struct sblock *b, *tb, *next;
2087 sdata *from, *to, *end, *tb_end;
2088 sdata *to_end, *from_end;
2090 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2091 to, and TB_END is the end of TB. */
2092 tb = oldest_sblock;
2093 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2094 to = tb->data;
2096 /* Step through the blocks from the oldest to the youngest. We
2097 expect that old blocks will stabilize over time, so that less
2098 copying will happen this way. */
2099 for (b = oldest_sblock; b; b = b->next)
2101 end = b->next_free;
2102 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2104 for (from = b->data; from < end; from = from_end)
2106 /* Compute the next FROM here because copying below may
2107 overwrite data we need to compute it. */
2108 ptrdiff_t nbytes;
2109 struct Lisp_String *s = from->string;
2111 #ifdef GC_CHECK_STRING_BYTES
2112 /* Check that the string size recorded in the string is the
2113 same as the one recorded in the sdata structure. */
2114 if (s && string_bytes (s) != SDATA_NBYTES (from))
2115 emacs_abort ();
2116 #endif /* GC_CHECK_STRING_BYTES */
2118 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2119 eassert (nbytes <= LARGE_STRING_BYTES);
2121 nbytes = SDATA_SIZE (nbytes);
2122 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2124 #ifdef GC_CHECK_STRING_OVERRUN
2125 if (memcmp (string_overrun_cookie,
2126 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2127 GC_STRING_OVERRUN_COOKIE_SIZE))
2128 emacs_abort ();
2129 #endif
2131 /* Non-NULL S means it's alive. Copy its data. */
2132 if (s)
2134 /* If TB is full, proceed with the next sblock. */
2135 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2136 if (to_end > tb_end)
2138 tb->next_free = to;
2139 tb = tb->next;
2140 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2141 to = tb->data;
2142 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2145 /* Copy, and update the string's `data' pointer. */
2146 if (from != to)
2148 eassert (tb != b || to < from);
2149 memmove (to, from, nbytes + GC_STRING_EXTRA);
2150 to->string->data = SDATA_DATA (to);
2153 /* Advance past the sdata we copied to. */
2154 to = to_end;
2159 /* The rest of the sblocks following TB don't contain live data, so
2160 we can free them. */
2161 for (b = tb->next; b; b = next)
2163 next = b->next;
2164 lisp_free (b);
2167 tb->next_free = to;
2168 tb->next = NULL;
2169 current_sblock = tb;
2172 void
2173 string_overflow (void)
2175 error ("Maximum string size exceeded");
2178 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2179 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2180 LENGTH must be an integer.
2181 INIT must be an integer that represents a character. */)
2182 (Lisp_Object length, Lisp_Object init)
2184 register Lisp_Object val;
2185 int c;
2186 EMACS_INT nbytes;
2188 CHECK_NATNUM (length);
2189 CHECK_CHARACTER (init);
2191 c = XFASTINT (init);
2192 if (ASCII_CHAR_P (c))
2194 nbytes = XINT (length);
2195 val = make_uninit_string (nbytes);
2196 if (nbytes)
2198 memset (SDATA (val), c, nbytes);
2199 SDATA (val)[nbytes] = 0;
2202 else
2204 unsigned char str[MAX_MULTIBYTE_LENGTH];
2205 ptrdiff_t len = CHAR_STRING (c, str);
2206 EMACS_INT string_len = XINT (length);
2207 unsigned char *p, *beg, *end;
2209 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2210 string_overflow ();
2211 val = make_uninit_multibyte_string (string_len, nbytes);
2212 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2214 /* First time we just copy `str' to the data of `val'. */
2215 if (p == beg)
2216 memcpy (p, str, len);
2217 else
2219 /* Next time we copy largest possible chunk from
2220 initialized to uninitialized part of `val'. */
2221 len = min (p - beg, end - p);
2222 memcpy (p, beg, len);
2225 if (nbytes)
2226 *p = 0;
2229 return val;
2232 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2233 Return A. */
2235 Lisp_Object
2236 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2238 EMACS_INT nbits = bool_vector_size (a);
2239 if (0 < nbits)
2241 unsigned char *data = bool_vector_uchar_data (a);
2242 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2243 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2244 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2245 memset (data, pattern, nbytes - 1);
2246 data[nbytes - 1] = pattern & last_mask;
2248 return a;
2251 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2253 Lisp_Object
2254 make_uninit_bool_vector (EMACS_INT nbits)
2256 Lisp_Object val;
2257 EMACS_INT words = bool_vector_words (nbits);
2258 EMACS_INT word_bytes = words * sizeof (bits_word);
2259 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2260 + word_size - 1)
2261 / word_size);
2262 struct Lisp_Bool_Vector *p
2263 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2264 XSETVECTOR (val, p);
2265 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2266 p->size = nbits;
2268 /* Clear padding at the end. */
2269 if (words)
2270 p->data[words - 1] = 0;
2272 return val;
2275 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2276 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2277 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2278 (Lisp_Object length, Lisp_Object init)
2280 Lisp_Object val;
2282 CHECK_NATNUM (length);
2283 val = make_uninit_bool_vector (XFASTINT (length));
2284 return bool_vector_fill (val, init);
2287 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2288 doc: /* Return a new bool-vector with specified arguments as elements.
2289 Any number of arguments, even zero arguments, are allowed.
2290 usage: (bool-vector &rest OBJECTS) */)
2291 (ptrdiff_t nargs, Lisp_Object *args)
2293 ptrdiff_t i;
2294 Lisp_Object vector;
2296 vector = make_uninit_bool_vector (nargs);
2297 for (i = 0; i < nargs; i++)
2298 bool_vector_set (vector, i, !NILP (args[i]));
2300 return vector;
2303 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2304 of characters from the contents. This string may be unibyte or
2305 multibyte, depending on the contents. */
2307 Lisp_Object
2308 make_string (const char *contents, ptrdiff_t nbytes)
2310 register Lisp_Object val;
2311 ptrdiff_t nchars, multibyte_nbytes;
2313 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2314 &nchars, &multibyte_nbytes);
2315 if (nbytes == nchars || nbytes != multibyte_nbytes)
2316 /* CONTENTS contains no multibyte sequences or contains an invalid
2317 multibyte sequence. We must make unibyte string. */
2318 val = make_unibyte_string (contents, nbytes);
2319 else
2320 val = make_multibyte_string (contents, nchars, nbytes);
2321 return val;
2324 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2326 Lisp_Object
2327 make_unibyte_string (const char *contents, ptrdiff_t length)
2329 register Lisp_Object val;
2330 val = make_uninit_string (length);
2331 memcpy (SDATA (val), contents, length);
2332 return val;
2336 /* Make a multibyte string from NCHARS characters occupying NBYTES
2337 bytes at CONTENTS. */
2339 Lisp_Object
2340 make_multibyte_string (const char *contents,
2341 ptrdiff_t nchars, ptrdiff_t nbytes)
2343 register Lisp_Object val;
2344 val = make_uninit_multibyte_string (nchars, nbytes);
2345 memcpy (SDATA (val), contents, nbytes);
2346 return val;
2350 /* Make a string from NCHARS characters occupying NBYTES bytes at
2351 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2353 Lisp_Object
2354 make_string_from_bytes (const char *contents,
2355 ptrdiff_t nchars, ptrdiff_t nbytes)
2357 register Lisp_Object val;
2358 val = make_uninit_multibyte_string (nchars, nbytes);
2359 memcpy (SDATA (val), contents, nbytes);
2360 if (SBYTES (val) == SCHARS (val))
2361 STRING_SET_UNIBYTE (val);
2362 return val;
2366 /* Make a string from NCHARS characters occupying NBYTES bytes at
2367 CONTENTS. The argument MULTIBYTE controls whether to label the
2368 string as multibyte. If NCHARS is negative, it counts the number of
2369 characters by itself. */
2371 Lisp_Object
2372 make_specified_string (const char *contents,
2373 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2375 Lisp_Object val;
2377 if (nchars < 0)
2379 if (multibyte)
2380 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2381 nbytes);
2382 else
2383 nchars = nbytes;
2385 val = make_uninit_multibyte_string (nchars, nbytes);
2386 memcpy (SDATA (val), contents, nbytes);
2387 if (!multibyte)
2388 STRING_SET_UNIBYTE (val);
2389 return val;
2393 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2394 occupying LENGTH bytes. */
2396 Lisp_Object
2397 make_uninit_string (EMACS_INT length)
2399 Lisp_Object val;
2401 if (!length)
2402 return empty_unibyte_string;
2403 val = make_uninit_multibyte_string (length, length);
2404 STRING_SET_UNIBYTE (val);
2405 return val;
2409 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2410 which occupy NBYTES bytes. */
2412 Lisp_Object
2413 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2415 Lisp_Object string;
2416 struct Lisp_String *s;
2418 if (nchars < 0)
2419 emacs_abort ();
2420 if (!nbytes)
2421 return empty_multibyte_string;
2423 s = allocate_string ();
2424 s->intervals = NULL;
2425 allocate_string_data (s, nchars, nbytes);
2426 XSETSTRING (string, s);
2427 string_chars_consed += nbytes;
2428 return string;
2431 /* Print arguments to BUF according to a FORMAT, then return
2432 a Lisp_String initialized with the data from BUF. */
2434 Lisp_Object
2435 make_formatted_string (char *buf, const char *format, ...)
2437 va_list ap;
2438 int length;
2440 va_start (ap, format);
2441 length = vsprintf (buf, format, ap);
2442 va_end (ap);
2443 return make_string (buf, length);
2447 /***********************************************************************
2448 Float Allocation
2449 ***********************************************************************/
2451 /* We store float cells inside of float_blocks, allocating a new
2452 float_block with malloc whenever necessary. Float cells reclaimed
2453 by GC are put on a free list to be reallocated before allocating
2454 any new float cells from the latest float_block. */
2456 #define FLOAT_BLOCK_SIZE \
2457 (((BLOCK_BYTES - sizeof (struct float_block *) \
2458 /* The compiler might add padding at the end. */ \
2459 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2460 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2462 #define GETMARKBIT(block,n) \
2463 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2464 >> ((n) % BITS_PER_BITS_WORD)) \
2465 & 1)
2467 #define SETMARKBIT(block,n) \
2468 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2469 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2471 #define UNSETMARKBIT(block,n) \
2472 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2473 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2475 #define FLOAT_BLOCK(fptr) \
2476 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2478 #define FLOAT_INDEX(fptr) \
2479 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2481 struct float_block
2483 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2484 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2485 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2486 struct float_block *next;
2489 #define FLOAT_MARKED_P(fptr) \
2490 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2492 #define FLOAT_MARK(fptr) \
2493 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2495 #define FLOAT_UNMARK(fptr) \
2496 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2498 /* Current float_block. */
2500 static struct float_block *float_block;
2502 /* Index of first unused Lisp_Float in the current float_block. */
2504 static int float_block_index = FLOAT_BLOCK_SIZE;
2506 /* Free-list of Lisp_Floats. */
2508 static struct Lisp_Float *float_free_list;
2510 /* Return a new float object with value FLOAT_VALUE. */
2512 Lisp_Object
2513 make_float (double float_value)
2515 register Lisp_Object val;
2517 MALLOC_BLOCK_INPUT;
2519 if (float_free_list)
2521 /* We use the data field for chaining the free list
2522 so that we won't use the same field that has the mark bit. */
2523 XSETFLOAT (val, float_free_list);
2524 float_free_list = float_free_list->u.chain;
2526 else
2528 if (float_block_index == FLOAT_BLOCK_SIZE)
2530 struct float_block *new
2531 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2532 new->next = float_block;
2533 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2534 float_block = new;
2535 float_block_index = 0;
2536 total_free_floats += FLOAT_BLOCK_SIZE;
2538 XSETFLOAT (val, &float_block->floats[float_block_index]);
2539 float_block_index++;
2542 MALLOC_UNBLOCK_INPUT;
2544 XFLOAT_INIT (val, float_value);
2545 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2546 consing_since_gc += sizeof (struct Lisp_Float);
2547 floats_consed++;
2548 total_free_floats--;
2549 return val;
2554 /***********************************************************************
2555 Cons Allocation
2556 ***********************************************************************/
2558 /* We store cons cells inside of cons_blocks, allocating a new
2559 cons_block with malloc whenever necessary. Cons cells reclaimed by
2560 GC are put on a free list to be reallocated before allocating
2561 any new cons cells from the latest cons_block. */
2563 #define CONS_BLOCK_SIZE \
2564 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2565 /* The compiler might add padding at the end. */ \
2566 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2567 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2569 #define CONS_BLOCK(fptr) \
2570 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2572 #define CONS_INDEX(fptr) \
2573 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2575 struct cons_block
2577 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2578 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2579 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2580 struct cons_block *next;
2583 #define CONS_MARKED_P(fptr) \
2584 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2586 #define CONS_MARK(fptr) \
2587 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2589 #define CONS_UNMARK(fptr) \
2590 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2592 /* Current cons_block. */
2594 static struct cons_block *cons_block;
2596 /* Index of first unused Lisp_Cons in the current block. */
2598 static int cons_block_index = CONS_BLOCK_SIZE;
2600 /* Free-list of Lisp_Cons structures. */
2602 static struct Lisp_Cons *cons_free_list;
2604 /* Explicitly free a cons cell by putting it on the free-list. */
2606 void
2607 free_cons (struct Lisp_Cons *ptr)
2609 ptr->u.chain = cons_free_list;
2610 ptr->car = Vdead;
2611 cons_free_list = ptr;
2612 consing_since_gc -= sizeof *ptr;
2613 total_free_conses++;
2616 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2617 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2618 (Lisp_Object car, Lisp_Object cdr)
2620 register Lisp_Object val;
2622 MALLOC_BLOCK_INPUT;
2624 if (cons_free_list)
2626 /* We use the cdr for chaining the free list
2627 so that we won't use the same field that has the mark bit. */
2628 XSETCONS (val, cons_free_list);
2629 cons_free_list = cons_free_list->u.chain;
2631 else
2633 if (cons_block_index == CONS_BLOCK_SIZE)
2635 struct cons_block *new
2636 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2637 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2638 new->next = cons_block;
2639 cons_block = new;
2640 cons_block_index = 0;
2641 total_free_conses += CONS_BLOCK_SIZE;
2643 XSETCONS (val, &cons_block->conses[cons_block_index]);
2644 cons_block_index++;
2647 MALLOC_UNBLOCK_INPUT;
2649 XSETCAR (val, car);
2650 XSETCDR (val, cdr);
2651 eassert (!CONS_MARKED_P (XCONS (val)));
2652 consing_since_gc += sizeof (struct Lisp_Cons);
2653 total_free_conses--;
2654 cons_cells_consed++;
2655 return val;
2658 #ifdef GC_CHECK_CONS_LIST
2659 /* Get an error now if there's any junk in the cons free list. */
2660 void
2661 check_cons_list (void)
2663 struct Lisp_Cons *tail = cons_free_list;
2665 while (tail)
2666 tail = tail->u.chain;
2668 #endif
2670 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2672 Lisp_Object
2673 list1 (Lisp_Object arg1)
2675 return Fcons (arg1, Qnil);
2678 Lisp_Object
2679 list2 (Lisp_Object arg1, Lisp_Object arg2)
2681 return Fcons (arg1, Fcons (arg2, Qnil));
2685 Lisp_Object
2686 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2688 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2692 Lisp_Object
2693 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2695 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2699 Lisp_Object
2700 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2702 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2703 Fcons (arg5, Qnil)))));
2706 /* Make a list of COUNT Lisp_Objects, where ARG is the
2707 first one. Allocate conses from pure space if TYPE
2708 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2710 Lisp_Object
2711 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2713 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2714 switch (type)
2716 case CONSTYPE_PURE: cons = pure_cons; break;
2717 case CONSTYPE_HEAP: cons = Fcons; break;
2718 default: emacs_abort ();
2721 eassume (0 < count);
2722 Lisp_Object val = cons (arg, Qnil);
2723 Lisp_Object tail = val;
2725 va_list ap;
2726 va_start (ap, arg);
2727 for (ptrdiff_t i = 1; i < count; i++)
2729 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2730 XSETCDR (tail, elem);
2731 tail = elem;
2733 va_end (ap);
2735 return val;
2738 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2739 doc: /* Return a newly created list with specified arguments as elements.
2740 Any number of arguments, even zero arguments, are allowed.
2741 usage: (list &rest OBJECTS) */)
2742 (ptrdiff_t nargs, Lisp_Object *args)
2744 register Lisp_Object val;
2745 val = Qnil;
2747 while (nargs > 0)
2749 nargs--;
2750 val = Fcons (args[nargs], val);
2752 return val;
2756 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2757 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2758 (register Lisp_Object length, Lisp_Object init)
2760 register Lisp_Object val;
2761 register EMACS_INT size;
2763 CHECK_NATNUM (length);
2764 size = XFASTINT (length);
2766 val = Qnil;
2767 while (size > 0)
2769 val = Fcons (init, val);
2770 --size;
2772 if (size > 0)
2774 val = Fcons (init, val);
2775 --size;
2777 if (size > 0)
2779 val = Fcons (init, val);
2780 --size;
2782 if (size > 0)
2784 val = Fcons (init, val);
2785 --size;
2787 if (size > 0)
2789 val = Fcons (init, val);
2790 --size;
2796 QUIT;
2799 return val;
2804 /***********************************************************************
2805 Vector Allocation
2806 ***********************************************************************/
2808 /* Sometimes a vector's contents are merely a pointer internally used
2809 in vector allocation code. On the rare platforms where a null
2810 pointer cannot be tagged, represent it with a Lisp 0.
2811 Usually you don't want to touch this. */
2813 static struct Lisp_Vector *
2814 next_vector (struct Lisp_Vector *v)
2816 return XUNTAG (v->contents[0], Lisp_Int0);
2819 static void
2820 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2822 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2825 /* This value is balanced well enough to avoid too much internal overhead
2826 for the most common cases; it's not required to be a power of two, but
2827 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2829 #define VECTOR_BLOCK_SIZE 4096
2831 enum
2833 /* Alignment of struct Lisp_Vector objects. */
2834 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2835 GCALIGNMENT),
2837 /* Vector size requests are a multiple of this. */
2838 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2841 /* Verify assumptions described above. */
2842 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2843 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2845 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2846 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2847 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2848 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2850 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2852 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2854 /* Size of the minimal vector allocated from block. */
2856 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2858 /* Size of the largest vector allocated from block. */
2860 #define VBLOCK_BYTES_MAX \
2861 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2863 /* We maintain one free list for each possible block-allocated
2864 vector size, and this is the number of free lists we have. */
2866 #define VECTOR_MAX_FREE_LIST_INDEX \
2867 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2869 /* Common shortcut to advance vector pointer over a block data. */
2871 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2873 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2875 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2877 /* Common shortcut to setup vector on a free list. */
2879 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2880 do { \
2881 (tmp) = ((nbytes - header_size) / word_size); \
2882 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2883 eassert ((nbytes) % roundup_size == 0); \
2884 (tmp) = VINDEX (nbytes); \
2885 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2886 set_next_vector (v, vector_free_lists[tmp]); \
2887 vector_free_lists[tmp] = (v); \
2888 total_free_vector_slots += (nbytes) / word_size; \
2889 } while (0)
2891 /* This internal type is used to maintain the list of large vectors
2892 which are allocated at their own, e.g. outside of vector blocks.
2894 struct large_vector itself cannot contain a struct Lisp_Vector, as
2895 the latter contains a flexible array member and C99 does not allow
2896 such structs to be nested. Instead, each struct large_vector
2897 object LV is followed by a struct Lisp_Vector, which is at offset
2898 large_vector_offset from LV, and whose address is therefore
2899 large_vector_vec (&LV). */
2901 struct large_vector
2903 struct large_vector *next;
2906 enum
2908 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2911 static struct Lisp_Vector *
2912 large_vector_vec (struct large_vector *p)
2914 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2917 /* This internal type is used to maintain an underlying storage
2918 for small vectors. */
2920 struct vector_block
2922 char data[VECTOR_BLOCK_BYTES];
2923 struct vector_block *next;
2926 /* Chain of vector blocks. */
2928 static struct vector_block *vector_blocks;
2930 /* Vector free lists, where NTH item points to a chain of free
2931 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2933 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2935 /* Singly-linked list of large vectors. */
2937 static struct large_vector *large_vectors;
2939 /* The only vector with 0 slots, allocated from pure space. */
2941 Lisp_Object zero_vector;
2943 /* Number of live vectors. */
2945 static EMACS_INT total_vectors;
2947 /* Total size of live and free vectors, in Lisp_Object units. */
2949 static EMACS_INT total_vector_slots, total_free_vector_slots;
2951 /* Get a new vector block. */
2953 static struct vector_block *
2954 allocate_vector_block (void)
2956 struct vector_block *block = xmalloc (sizeof *block);
2958 #ifndef GC_MALLOC_CHECK
2959 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2960 MEM_TYPE_VECTOR_BLOCK);
2961 #endif
2963 block->next = vector_blocks;
2964 vector_blocks = block;
2965 return block;
2968 /* Called once to initialize vector allocation. */
2970 static void
2971 init_vectors (void)
2973 zero_vector = make_pure_vector (0);
2976 /* Allocate vector from a vector block. */
2978 static struct Lisp_Vector *
2979 allocate_vector_from_block (size_t nbytes)
2981 struct Lisp_Vector *vector;
2982 struct vector_block *block;
2983 size_t index, restbytes;
2985 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2986 eassert (nbytes % roundup_size == 0);
2988 /* First, try to allocate from a free list
2989 containing vectors of the requested size. */
2990 index = VINDEX (nbytes);
2991 if (vector_free_lists[index])
2993 vector = vector_free_lists[index];
2994 vector_free_lists[index] = next_vector (vector);
2995 total_free_vector_slots -= nbytes / word_size;
2996 return vector;
2999 /* Next, check free lists containing larger vectors. Since
3000 we will split the result, we should have remaining space
3001 large enough to use for one-slot vector at least. */
3002 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3003 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3004 if (vector_free_lists[index])
3006 /* This vector is larger than requested. */
3007 vector = vector_free_lists[index];
3008 vector_free_lists[index] = next_vector (vector);
3009 total_free_vector_slots -= nbytes / word_size;
3011 /* Excess bytes are used for the smaller vector,
3012 which should be set on an appropriate free list. */
3013 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3014 eassert (restbytes % roundup_size == 0);
3015 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3016 return vector;
3019 /* Finally, need a new vector block. */
3020 block = allocate_vector_block ();
3022 /* New vector will be at the beginning of this block. */
3023 vector = (struct Lisp_Vector *) block->data;
3025 /* If the rest of space from this block is large enough
3026 for one-slot vector at least, set up it on a free list. */
3027 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3028 if (restbytes >= VBLOCK_BYTES_MIN)
3030 eassert (restbytes % roundup_size == 0);
3031 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
3033 return vector;
3036 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3038 #define VECTOR_IN_BLOCK(vector, block) \
3039 ((char *) (vector) <= (block)->data \
3040 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3042 /* Return the memory footprint of V in bytes. */
3044 static ptrdiff_t
3045 vector_nbytes (struct Lisp_Vector *v)
3047 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3048 ptrdiff_t nwords;
3050 if (size & PSEUDOVECTOR_FLAG)
3052 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3054 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3055 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3056 * sizeof (bits_word));
3057 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3058 verify (header_size <= bool_header_size);
3059 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3061 else
3062 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3063 + ((size & PSEUDOVECTOR_REST_MASK)
3064 >> PSEUDOVECTOR_SIZE_BITS));
3066 else
3067 nwords = size;
3068 return vroundup (header_size + word_size * nwords);
3071 /* Release extra resources still in use by VECTOR, which may be any
3072 vector-like object. For now, this is used just to free data in
3073 font objects. */
3075 static void
3076 cleanup_vector (struct Lisp_Vector *vector)
3078 detect_suspicious_free (vector);
3079 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3080 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3081 == FONT_OBJECT_MAX))
3083 struct font_driver *drv = ((struct font *) vector)->driver;
3085 /* The font driver might sometimes be NULL, e.g. if Emacs was
3086 interrupted before it had time to set it up. */
3087 if (drv)
3089 /* Attempt to catch subtle bugs like Bug#16140. */
3090 eassert (valid_font_driver (drv));
3091 drv->close ((struct font *) vector);
3096 /* Reclaim space used by unmarked vectors. */
3098 NO_INLINE /* For better stack traces */
3099 static void
3100 sweep_vectors (void)
3102 struct vector_block *block, **bprev = &vector_blocks;
3103 struct large_vector *lv, **lvprev = &large_vectors;
3104 struct Lisp_Vector *vector, *next;
3106 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3107 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3109 /* Looking through vector blocks. */
3111 for (block = vector_blocks; block; block = *bprev)
3113 bool free_this_block = 0;
3114 ptrdiff_t nbytes;
3116 for (vector = (struct Lisp_Vector *) block->data;
3117 VECTOR_IN_BLOCK (vector, block); vector = next)
3119 if (VECTOR_MARKED_P (vector))
3121 VECTOR_UNMARK (vector);
3122 total_vectors++;
3123 nbytes = vector_nbytes (vector);
3124 total_vector_slots += nbytes / word_size;
3125 next = ADVANCE (vector, nbytes);
3127 else
3129 ptrdiff_t total_bytes;
3131 cleanup_vector (vector);
3132 nbytes = vector_nbytes (vector);
3133 total_bytes = nbytes;
3134 next = ADVANCE (vector, nbytes);
3136 /* While NEXT is not marked, try to coalesce with VECTOR,
3137 thus making VECTOR of the largest possible size. */
3139 while (VECTOR_IN_BLOCK (next, block))
3141 if (VECTOR_MARKED_P (next))
3142 break;
3143 cleanup_vector (next);
3144 nbytes = vector_nbytes (next);
3145 total_bytes += nbytes;
3146 next = ADVANCE (next, nbytes);
3149 eassert (total_bytes % roundup_size == 0);
3151 if (vector == (struct Lisp_Vector *) block->data
3152 && !VECTOR_IN_BLOCK (next, block))
3153 /* This block should be freed because all of its
3154 space was coalesced into the only free vector. */
3155 free_this_block = 1;
3156 else
3158 size_t tmp;
3159 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3164 if (free_this_block)
3166 *bprev = block->next;
3167 #ifndef GC_MALLOC_CHECK
3168 mem_delete (mem_find (block->data));
3169 #endif
3170 xfree (block);
3172 else
3173 bprev = &block->next;
3176 /* Sweep large vectors. */
3178 for (lv = large_vectors; lv; lv = *lvprev)
3180 vector = large_vector_vec (lv);
3181 if (VECTOR_MARKED_P (vector))
3183 VECTOR_UNMARK (vector);
3184 total_vectors++;
3185 if (vector->header.size & PSEUDOVECTOR_FLAG)
3187 /* All non-bool pseudovectors are small enough to be allocated
3188 from vector blocks. This code should be redesigned if some
3189 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3190 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3191 total_vector_slots += vector_nbytes (vector) / word_size;
3193 else
3194 total_vector_slots
3195 += header_size / word_size + vector->header.size;
3196 lvprev = &lv->next;
3198 else
3200 *lvprev = lv->next;
3201 lisp_free (lv);
3206 /* Value is a pointer to a newly allocated Lisp_Vector structure
3207 with room for LEN Lisp_Objects. */
3209 static struct Lisp_Vector *
3210 allocate_vectorlike (ptrdiff_t len)
3212 struct Lisp_Vector *p;
3214 MALLOC_BLOCK_INPUT;
3216 if (len == 0)
3217 p = XVECTOR (zero_vector);
3218 else
3220 size_t nbytes = header_size + len * word_size;
3222 #ifdef DOUG_LEA_MALLOC
3223 if (!mmap_lisp_allowed_p ())
3224 mallopt (M_MMAP_MAX, 0);
3225 #endif
3227 if (nbytes <= VBLOCK_BYTES_MAX)
3228 p = allocate_vector_from_block (vroundup (nbytes));
3229 else
3231 struct large_vector *lv
3232 = lisp_malloc ((large_vector_offset + header_size
3233 + len * word_size),
3234 MEM_TYPE_VECTORLIKE);
3235 lv->next = large_vectors;
3236 large_vectors = lv;
3237 p = large_vector_vec (lv);
3240 #ifdef DOUG_LEA_MALLOC
3241 if (!mmap_lisp_allowed_p ())
3242 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3243 #endif
3245 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3246 emacs_abort ();
3248 consing_since_gc += nbytes;
3249 vector_cells_consed += len;
3252 MALLOC_UNBLOCK_INPUT;
3254 return p;
3258 /* Allocate a vector with LEN slots. */
3260 struct Lisp_Vector *
3261 allocate_vector (EMACS_INT len)
3263 struct Lisp_Vector *v;
3264 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3266 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3267 memory_full (SIZE_MAX);
3268 v = allocate_vectorlike (len);
3269 if (len)
3270 v->header.size = len;
3271 return v;
3275 /* Allocate other vector-like structures. */
3277 struct Lisp_Vector *
3278 allocate_pseudovector (int memlen, int lisplen,
3279 int zerolen, enum pvec_type tag)
3281 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3283 /* Catch bogus values. */
3284 eassert (0 <= tag && tag <= PVEC_FONT);
3285 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3286 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3287 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3289 /* Only the first LISPLEN slots will be traced normally by the GC. */
3290 memclear (v->contents, zerolen * word_size);
3291 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3292 return v;
3295 struct buffer *
3296 allocate_buffer (void)
3298 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3300 BUFFER_PVEC_INIT (b);
3301 /* Put B on the chain of all buffers including killed ones. */
3302 b->next = all_buffers;
3303 all_buffers = b;
3304 /* Note that the rest fields of B are not initialized. */
3305 return b;
3308 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3309 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3310 See also the function `vector'. */)
3311 (register Lisp_Object length, Lisp_Object init)
3313 Lisp_Object vector;
3314 register ptrdiff_t sizei;
3315 register ptrdiff_t i;
3316 register struct Lisp_Vector *p;
3318 CHECK_NATNUM (length);
3320 p = allocate_vector (XFASTINT (length));
3321 sizei = XFASTINT (length);
3322 for (i = 0; i < sizei; i++)
3323 p->contents[i] = init;
3325 XSETVECTOR (vector, p);
3326 return vector;
3329 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3330 doc: /* Return a newly created vector with specified arguments as elements.
3331 Any number of arguments, even zero arguments, are allowed.
3332 usage: (vector &rest OBJECTS) */)
3333 (ptrdiff_t nargs, Lisp_Object *args)
3335 ptrdiff_t i;
3336 register Lisp_Object val = make_uninit_vector (nargs);
3337 register struct Lisp_Vector *p = XVECTOR (val);
3339 for (i = 0; i < nargs; i++)
3340 p->contents[i] = args[i];
3341 return val;
3344 void
3345 make_byte_code (struct Lisp_Vector *v)
3347 /* Don't allow the global zero_vector to become a byte code object. */
3348 eassert (0 < v->header.size);
3350 if (v->header.size > 1 && STRINGP (v->contents[1])
3351 && STRING_MULTIBYTE (v->contents[1]))
3352 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3353 earlier because they produced a raw 8-bit string for byte-code
3354 and now such a byte-code string is loaded as multibyte while
3355 raw 8-bit characters converted to multibyte form. Thus, now we
3356 must convert them back to the original unibyte form. */
3357 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3358 XSETPVECTYPE (v, PVEC_COMPILED);
3361 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3362 doc: /* Create a byte-code object with specified arguments as elements.
3363 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3364 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3365 and (optional) INTERACTIVE-SPEC.
3366 The first four arguments are required; at most six have any
3367 significance.
3368 The ARGLIST can be either like the one of `lambda', in which case the arguments
3369 will be dynamically bound before executing the byte code, or it can be an
3370 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3371 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3372 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3373 argument to catch the left-over arguments. If such an integer is used, the
3374 arguments will not be dynamically bound but will be instead pushed on the
3375 stack before executing the byte-code.
3376 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3377 (ptrdiff_t nargs, Lisp_Object *args)
3379 ptrdiff_t i;
3380 register Lisp_Object val = make_uninit_vector (nargs);
3381 register struct Lisp_Vector *p = XVECTOR (val);
3383 /* We used to purecopy everything here, if purify-flag was set. This worked
3384 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3385 dangerous, since make-byte-code is used during execution to build
3386 closures, so any closure built during the preload phase would end up
3387 copied into pure space, including its free variables, which is sometimes
3388 just wasteful and other times plainly wrong (e.g. those free vars may want
3389 to be setcar'd). */
3391 for (i = 0; i < nargs; i++)
3392 p->contents[i] = args[i];
3393 make_byte_code (p);
3394 XSETCOMPILED (val, p);
3395 return val;
3400 /***********************************************************************
3401 Symbol Allocation
3402 ***********************************************************************/
3404 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3405 of the required alignment. */
3407 union aligned_Lisp_Symbol
3409 struct Lisp_Symbol s;
3410 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3411 & -GCALIGNMENT];
3414 /* Each symbol_block is just under 1020 bytes long, since malloc
3415 really allocates in units of powers of two and uses 4 bytes for its
3416 own overhead. */
3418 #define SYMBOL_BLOCK_SIZE \
3419 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3421 struct symbol_block
3423 /* Place `symbols' first, to preserve alignment. */
3424 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3425 struct symbol_block *next;
3428 /* Current symbol block and index of first unused Lisp_Symbol
3429 structure in it. */
3431 static struct symbol_block *symbol_block;
3432 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3433 /* Pointer to the first symbol_block that contains pinned symbols.
3434 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3435 10K of which are pinned (and all but 250 of them are interned in obarray),
3436 whereas a "typical session" has in the order of 30K symbols.
3437 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3438 than 30K to find the 10K symbols we need to mark. */
3439 static struct symbol_block *symbol_block_pinned;
3441 /* List of free symbols. */
3443 static struct Lisp_Symbol *symbol_free_list;
3445 static void
3446 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3448 XSYMBOL (sym)->name = name;
3451 void
3452 init_symbol (Lisp_Object val, Lisp_Object name)
3454 struct Lisp_Symbol *p = XSYMBOL (val);
3455 set_symbol_name (val, name);
3456 set_symbol_plist (val, Qnil);
3457 p->redirect = SYMBOL_PLAINVAL;
3458 SET_SYMBOL_VAL (p, Qunbound);
3459 set_symbol_function (val, Qnil);
3460 set_symbol_next (val, NULL);
3461 p->gcmarkbit = false;
3462 p->interned = SYMBOL_UNINTERNED;
3463 p->constant = 0;
3464 p->declared_special = false;
3465 p->pinned = false;
3468 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3469 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3470 Its value is void, and its function definition and property list are nil. */)
3471 (Lisp_Object name)
3473 Lisp_Object val;
3475 CHECK_STRING (name);
3477 MALLOC_BLOCK_INPUT;
3479 if (symbol_free_list)
3481 XSETSYMBOL (val, symbol_free_list);
3482 symbol_free_list = symbol_free_list->next;
3484 else
3486 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3488 struct symbol_block *new
3489 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3490 new->next = symbol_block;
3491 symbol_block = new;
3492 symbol_block_index = 0;
3493 total_free_symbols += SYMBOL_BLOCK_SIZE;
3495 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3496 symbol_block_index++;
3499 MALLOC_UNBLOCK_INPUT;
3501 init_symbol (val, name);
3502 consing_since_gc += sizeof (struct Lisp_Symbol);
3503 symbols_consed++;
3504 total_free_symbols--;
3505 return val;
3510 /***********************************************************************
3511 Marker (Misc) Allocation
3512 ***********************************************************************/
3514 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3515 the required alignment. */
3517 union aligned_Lisp_Misc
3519 union Lisp_Misc m;
3520 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3521 & -GCALIGNMENT];
3524 /* Allocation of markers and other objects that share that structure.
3525 Works like allocation of conses. */
3527 #define MARKER_BLOCK_SIZE \
3528 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3530 struct marker_block
3532 /* Place `markers' first, to preserve alignment. */
3533 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3534 struct marker_block *next;
3537 static struct marker_block *marker_block;
3538 static int marker_block_index = MARKER_BLOCK_SIZE;
3540 static union Lisp_Misc *marker_free_list;
3542 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3544 static Lisp_Object
3545 allocate_misc (enum Lisp_Misc_Type type)
3547 Lisp_Object val;
3549 MALLOC_BLOCK_INPUT;
3551 if (marker_free_list)
3553 XSETMISC (val, marker_free_list);
3554 marker_free_list = marker_free_list->u_free.chain;
3556 else
3558 if (marker_block_index == MARKER_BLOCK_SIZE)
3560 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3561 new->next = marker_block;
3562 marker_block = new;
3563 marker_block_index = 0;
3564 total_free_markers += MARKER_BLOCK_SIZE;
3566 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3567 marker_block_index++;
3570 MALLOC_UNBLOCK_INPUT;
3572 --total_free_markers;
3573 consing_since_gc += sizeof (union Lisp_Misc);
3574 misc_objects_consed++;
3575 XMISCANY (val)->type = type;
3576 XMISCANY (val)->gcmarkbit = 0;
3577 return val;
3580 /* Free a Lisp_Misc object. */
3582 void
3583 free_misc (Lisp_Object misc)
3585 XMISCANY (misc)->type = Lisp_Misc_Free;
3586 XMISC (misc)->u_free.chain = marker_free_list;
3587 marker_free_list = XMISC (misc);
3588 consing_since_gc -= sizeof (union Lisp_Misc);
3589 total_free_markers++;
3592 /* Verify properties of Lisp_Save_Value's representation
3593 that are assumed here and elsewhere. */
3595 verify (SAVE_UNUSED == 0);
3596 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3597 >> SAVE_SLOT_BITS)
3598 == 0);
3600 /* Return Lisp_Save_Value objects for the various combinations
3601 that callers need. */
3603 Lisp_Object
3604 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3606 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3607 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3608 p->save_type = SAVE_TYPE_INT_INT_INT;
3609 p->data[0].integer = a;
3610 p->data[1].integer = b;
3611 p->data[2].integer = c;
3612 return val;
3615 Lisp_Object
3616 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3617 Lisp_Object d)
3619 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3620 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3621 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3622 p->data[0].object = a;
3623 p->data[1].object = b;
3624 p->data[2].object = c;
3625 p->data[3].object = d;
3626 return val;
3629 Lisp_Object
3630 make_save_ptr (void *a)
3632 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3633 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3634 p->save_type = SAVE_POINTER;
3635 p->data[0].pointer = a;
3636 return val;
3639 Lisp_Object
3640 make_save_ptr_int (void *a, ptrdiff_t b)
3642 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3643 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3644 p->save_type = SAVE_TYPE_PTR_INT;
3645 p->data[0].pointer = a;
3646 p->data[1].integer = b;
3647 return val;
3650 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3651 Lisp_Object
3652 make_save_ptr_ptr (void *a, void *b)
3654 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3655 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3656 p->save_type = SAVE_TYPE_PTR_PTR;
3657 p->data[0].pointer = a;
3658 p->data[1].pointer = b;
3659 return val;
3661 #endif
3663 Lisp_Object
3664 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3666 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3667 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3668 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3669 p->data[0].funcpointer = a;
3670 p->data[1].pointer = b;
3671 p->data[2].object = c;
3672 return val;
3675 /* Return a Lisp_Save_Value object that represents an array A
3676 of N Lisp objects. */
3678 Lisp_Object
3679 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3681 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3682 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3683 p->save_type = SAVE_TYPE_MEMORY;
3684 p->data[0].pointer = a;
3685 p->data[1].integer = n;
3686 return val;
3689 /* Free a Lisp_Save_Value object. Do not use this function
3690 if SAVE contains pointer other than returned by xmalloc. */
3692 void
3693 free_save_value (Lisp_Object save)
3695 xfree (XSAVE_POINTER (save, 0));
3696 free_misc (save);
3699 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3701 Lisp_Object
3702 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3704 register Lisp_Object overlay;
3706 overlay = allocate_misc (Lisp_Misc_Overlay);
3707 OVERLAY_START (overlay) = start;
3708 OVERLAY_END (overlay) = end;
3709 set_overlay_plist (overlay, plist);
3710 XOVERLAY (overlay)->next = NULL;
3711 return overlay;
3714 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3715 doc: /* Return a newly allocated marker which does not point at any place. */)
3716 (void)
3718 register Lisp_Object val;
3719 register struct Lisp_Marker *p;
3721 val = allocate_misc (Lisp_Misc_Marker);
3722 p = XMARKER (val);
3723 p->buffer = 0;
3724 p->bytepos = 0;
3725 p->charpos = 0;
3726 p->next = NULL;
3727 p->insertion_type = 0;
3728 p->need_adjustment = 0;
3729 return val;
3732 /* Return a newly allocated marker which points into BUF
3733 at character position CHARPOS and byte position BYTEPOS. */
3735 Lisp_Object
3736 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3738 Lisp_Object obj;
3739 struct Lisp_Marker *m;
3741 /* No dead buffers here. */
3742 eassert (BUFFER_LIVE_P (buf));
3744 /* Every character is at least one byte. */
3745 eassert (charpos <= bytepos);
3747 obj = allocate_misc (Lisp_Misc_Marker);
3748 m = XMARKER (obj);
3749 m->buffer = buf;
3750 m->charpos = charpos;
3751 m->bytepos = bytepos;
3752 m->insertion_type = 0;
3753 m->need_adjustment = 0;
3754 m->next = BUF_MARKERS (buf);
3755 BUF_MARKERS (buf) = m;
3756 return obj;
3759 /* Put MARKER back on the free list after using it temporarily. */
3761 void
3762 free_marker (Lisp_Object marker)
3764 unchain_marker (XMARKER (marker));
3765 free_misc (marker);
3769 /* Return a newly created vector or string with specified arguments as
3770 elements. If all the arguments are characters that can fit
3771 in a string of events, make a string; otherwise, make a vector.
3773 Any number of arguments, even zero arguments, are allowed. */
3775 Lisp_Object
3776 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3778 ptrdiff_t i;
3780 for (i = 0; i < nargs; i++)
3781 /* The things that fit in a string
3782 are characters that are in 0...127,
3783 after discarding the meta bit and all the bits above it. */
3784 if (!INTEGERP (args[i])
3785 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3786 return Fvector (nargs, args);
3788 /* Since the loop exited, we know that all the things in it are
3789 characters, so we can make a string. */
3791 Lisp_Object result;
3793 result = Fmake_string (make_number (nargs), make_number (0));
3794 for (i = 0; i < nargs; i++)
3796 SSET (result, i, XINT (args[i]));
3797 /* Move the meta bit to the right place for a string char. */
3798 if (XINT (args[i]) & CHAR_META)
3799 SSET (result, i, SREF (result, i) | 0x80);
3802 return result;
3806 #ifdef HAVE_MODULES
3807 /* Create a new module user ptr object. */
3808 Lisp_Object
3809 make_user_ptr (void (*finalizer) (void *), void *p)
3811 Lisp_Object obj;
3812 struct Lisp_User_Ptr *uptr;
3814 obj = allocate_misc (Lisp_Misc_User_Ptr);
3815 uptr = XUSER_PTR (obj);
3816 uptr->finalizer = finalizer;
3817 uptr->p = p;
3818 return obj;
3821 #endif
3823 static void
3824 init_finalizer_list (struct Lisp_Finalizer *head)
3826 head->prev = head->next = head;
3829 /* Insert FINALIZER before ELEMENT. */
3831 static void
3832 finalizer_insert (struct Lisp_Finalizer *element,
3833 struct Lisp_Finalizer *finalizer)
3835 eassert (finalizer->prev == NULL);
3836 eassert (finalizer->next == NULL);
3837 finalizer->next = element;
3838 finalizer->prev = element->prev;
3839 finalizer->prev->next = finalizer;
3840 element->prev = finalizer;
3843 static void
3844 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3846 if (finalizer->prev != NULL)
3848 eassert (finalizer->next != NULL);
3849 finalizer->prev->next = finalizer->next;
3850 finalizer->next->prev = finalizer->prev;
3851 finalizer->prev = finalizer->next = NULL;
3855 static void
3856 mark_finalizer_list (struct Lisp_Finalizer *head)
3858 for (struct Lisp_Finalizer *finalizer = head->next;
3859 finalizer != head;
3860 finalizer = finalizer->next)
3862 finalizer->base.gcmarkbit = true;
3863 mark_object (finalizer->function);
3867 /* Move doomed finalizers to list DEST from list SRC. A doomed
3868 finalizer is one that is not GC-reachable and whose
3869 finalizer->function is non-nil. */
3871 static void
3872 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
3873 struct Lisp_Finalizer *src)
3875 struct Lisp_Finalizer *finalizer = src->next;
3876 while (finalizer != src)
3878 struct Lisp_Finalizer *next = finalizer->next;
3879 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
3881 unchain_finalizer (finalizer);
3882 finalizer_insert (dest, finalizer);
3885 finalizer = next;
3889 static Lisp_Object
3890 run_finalizer_handler (Lisp_Object args)
3892 add_to_log ("finalizer failed: %S", args);
3893 return Qnil;
3896 static void
3897 run_finalizer_function (Lisp_Object function)
3899 ptrdiff_t count = SPECPDL_INDEX ();
3901 specbind (Qinhibit_quit, Qt);
3902 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
3903 unbind_to (count, Qnil);
3906 static void
3907 run_finalizers (struct Lisp_Finalizer *finalizers)
3909 struct Lisp_Finalizer *finalizer;
3910 Lisp_Object function;
3912 while (finalizers->next != finalizers)
3914 finalizer = finalizers->next;
3915 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
3916 unchain_finalizer (finalizer);
3917 function = finalizer->function;
3918 if (!NILP (function))
3920 finalizer->function = Qnil;
3921 run_finalizer_function (function);
3926 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
3927 doc: /* Make a finalizer that will run FUNCTION.
3928 FUNCTION will be called after garbage collection when the returned
3929 finalizer object becomes unreachable. If the finalizer object is
3930 reachable only through references from finalizer objects, it does not
3931 count as reachable for the purpose of deciding whether to run
3932 FUNCTION. FUNCTION will be run once per finalizer object. */)
3933 (Lisp_Object function)
3935 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
3936 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
3937 finalizer->function = function;
3938 finalizer->prev = finalizer->next = NULL;
3939 finalizer_insert (&finalizers, finalizer);
3940 return val;
3944 /************************************************************************
3945 Memory Full Handling
3946 ************************************************************************/
3949 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3950 there may have been size_t overflow so that malloc was never
3951 called, or perhaps malloc was invoked successfully but the
3952 resulting pointer had problems fitting into a tagged EMACS_INT. In
3953 either case this counts as memory being full even though malloc did
3954 not fail. */
3956 void
3957 memory_full (size_t nbytes)
3959 /* Do not go into hysterics merely because a large request failed. */
3960 bool enough_free_memory = 0;
3961 if (SPARE_MEMORY < nbytes)
3963 void *p;
3965 MALLOC_BLOCK_INPUT;
3966 p = malloc (SPARE_MEMORY);
3967 if (p)
3969 free (p);
3970 enough_free_memory = 1;
3972 MALLOC_UNBLOCK_INPUT;
3975 if (! enough_free_memory)
3977 int i;
3979 Vmemory_full = Qt;
3981 memory_full_cons_threshold = sizeof (struct cons_block);
3983 /* The first time we get here, free the spare memory. */
3984 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3985 if (spare_memory[i])
3987 if (i == 0)
3988 free (spare_memory[i]);
3989 else if (i >= 1 && i <= 4)
3990 lisp_align_free (spare_memory[i]);
3991 else
3992 lisp_free (spare_memory[i]);
3993 spare_memory[i] = 0;
3997 /* This used to call error, but if we've run out of memory, we could
3998 get infinite recursion trying to build the string. */
3999 xsignal (Qnil, Vmemory_signal_data);
4002 /* If we released our reserve (due to running out of memory),
4003 and we have a fair amount free once again,
4004 try to set aside another reserve in case we run out once more.
4006 This is called when a relocatable block is freed in ralloc.c,
4007 and also directly from this file, in case we're not using ralloc.c. */
4009 void
4010 refill_memory_reserve (void)
4012 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4013 if (spare_memory[0] == 0)
4014 spare_memory[0] = malloc (SPARE_MEMORY);
4015 if (spare_memory[1] == 0)
4016 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4017 MEM_TYPE_SPARE);
4018 if (spare_memory[2] == 0)
4019 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4020 MEM_TYPE_SPARE);
4021 if (spare_memory[3] == 0)
4022 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4023 MEM_TYPE_SPARE);
4024 if (spare_memory[4] == 0)
4025 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4026 MEM_TYPE_SPARE);
4027 if (spare_memory[5] == 0)
4028 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4029 MEM_TYPE_SPARE);
4030 if (spare_memory[6] == 0)
4031 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4032 MEM_TYPE_SPARE);
4033 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4034 Vmemory_full = Qnil;
4035 #endif
4038 /************************************************************************
4039 C Stack Marking
4040 ************************************************************************/
4042 /* Conservative C stack marking requires a method to identify possibly
4043 live Lisp objects given a pointer value. We do this by keeping
4044 track of blocks of Lisp data that are allocated in a red-black tree
4045 (see also the comment of mem_node which is the type of nodes in
4046 that tree). Function lisp_malloc adds information for an allocated
4047 block to the red-black tree with calls to mem_insert, and function
4048 lisp_free removes it with mem_delete. Functions live_string_p etc
4049 call mem_find to lookup information about a given pointer in the
4050 tree, and use that to determine if the pointer points to a Lisp
4051 object or not. */
4053 /* Initialize this part of alloc.c. */
4055 static void
4056 mem_init (void)
4058 mem_z.left = mem_z.right = MEM_NIL;
4059 mem_z.parent = NULL;
4060 mem_z.color = MEM_BLACK;
4061 mem_z.start = mem_z.end = NULL;
4062 mem_root = MEM_NIL;
4066 /* Value is a pointer to the mem_node containing START. Value is
4067 MEM_NIL if there is no node in the tree containing START. */
4069 static struct mem_node *
4070 mem_find (void *start)
4072 struct mem_node *p;
4074 if (start < min_heap_address || start > max_heap_address)
4075 return MEM_NIL;
4077 /* Make the search always successful to speed up the loop below. */
4078 mem_z.start = start;
4079 mem_z.end = (char *) start + 1;
4081 p = mem_root;
4082 while (start < p->start || start >= p->end)
4083 p = start < p->start ? p->left : p->right;
4084 return p;
4088 /* Insert a new node into the tree for a block of memory with start
4089 address START, end address END, and type TYPE. Value is a
4090 pointer to the node that was inserted. */
4092 static struct mem_node *
4093 mem_insert (void *start, void *end, enum mem_type type)
4095 struct mem_node *c, *parent, *x;
4097 if (min_heap_address == NULL || start < min_heap_address)
4098 min_heap_address = start;
4099 if (max_heap_address == NULL || end > max_heap_address)
4100 max_heap_address = end;
4102 /* See where in the tree a node for START belongs. In this
4103 particular application, it shouldn't happen that a node is already
4104 present. For debugging purposes, let's check that. */
4105 c = mem_root;
4106 parent = NULL;
4108 while (c != MEM_NIL)
4110 parent = c;
4111 c = start < c->start ? c->left : c->right;
4114 /* Create a new node. */
4115 #ifdef GC_MALLOC_CHECK
4116 x = malloc (sizeof *x);
4117 if (x == NULL)
4118 emacs_abort ();
4119 #else
4120 x = xmalloc (sizeof *x);
4121 #endif
4122 x->start = start;
4123 x->end = end;
4124 x->type = type;
4125 x->parent = parent;
4126 x->left = x->right = MEM_NIL;
4127 x->color = MEM_RED;
4129 /* Insert it as child of PARENT or install it as root. */
4130 if (parent)
4132 if (start < parent->start)
4133 parent->left = x;
4134 else
4135 parent->right = x;
4137 else
4138 mem_root = x;
4140 /* Re-establish red-black tree properties. */
4141 mem_insert_fixup (x);
4143 return x;
4147 /* Re-establish the red-black properties of the tree, and thereby
4148 balance the tree, after node X has been inserted; X is always red. */
4150 static void
4151 mem_insert_fixup (struct mem_node *x)
4153 while (x != mem_root && x->parent->color == MEM_RED)
4155 /* X is red and its parent is red. This is a violation of
4156 red-black tree property #3. */
4158 if (x->parent == x->parent->parent->left)
4160 /* We're on the left side of our grandparent, and Y is our
4161 "uncle". */
4162 struct mem_node *y = x->parent->parent->right;
4164 if (y->color == MEM_RED)
4166 /* Uncle and parent are red but should be black because
4167 X is red. Change the colors accordingly and proceed
4168 with the grandparent. */
4169 x->parent->color = MEM_BLACK;
4170 y->color = MEM_BLACK;
4171 x->parent->parent->color = MEM_RED;
4172 x = x->parent->parent;
4174 else
4176 /* Parent and uncle have different colors; parent is
4177 red, uncle is black. */
4178 if (x == x->parent->right)
4180 x = x->parent;
4181 mem_rotate_left (x);
4184 x->parent->color = MEM_BLACK;
4185 x->parent->parent->color = MEM_RED;
4186 mem_rotate_right (x->parent->parent);
4189 else
4191 /* This is the symmetrical case of above. */
4192 struct mem_node *y = x->parent->parent->left;
4194 if (y->color == MEM_RED)
4196 x->parent->color = MEM_BLACK;
4197 y->color = MEM_BLACK;
4198 x->parent->parent->color = MEM_RED;
4199 x = x->parent->parent;
4201 else
4203 if (x == x->parent->left)
4205 x = x->parent;
4206 mem_rotate_right (x);
4209 x->parent->color = MEM_BLACK;
4210 x->parent->parent->color = MEM_RED;
4211 mem_rotate_left (x->parent->parent);
4216 /* The root may have been changed to red due to the algorithm. Set
4217 it to black so that property #5 is satisfied. */
4218 mem_root->color = MEM_BLACK;
4222 /* (x) (y)
4223 / \ / \
4224 a (y) ===> (x) c
4225 / \ / \
4226 b c a b */
4228 static void
4229 mem_rotate_left (struct mem_node *x)
4231 struct mem_node *y;
4233 /* Turn y's left sub-tree into x's right sub-tree. */
4234 y = x->right;
4235 x->right = y->left;
4236 if (y->left != MEM_NIL)
4237 y->left->parent = x;
4239 /* Y's parent was x's parent. */
4240 if (y != MEM_NIL)
4241 y->parent = x->parent;
4243 /* Get the parent to point to y instead of x. */
4244 if (x->parent)
4246 if (x == x->parent->left)
4247 x->parent->left = y;
4248 else
4249 x->parent->right = y;
4251 else
4252 mem_root = y;
4254 /* Put x on y's left. */
4255 y->left = x;
4256 if (x != MEM_NIL)
4257 x->parent = y;
4261 /* (x) (Y)
4262 / \ / \
4263 (y) c ===> a (x)
4264 / \ / \
4265 a b b c */
4267 static void
4268 mem_rotate_right (struct mem_node *x)
4270 struct mem_node *y = x->left;
4272 x->left = y->right;
4273 if (y->right != MEM_NIL)
4274 y->right->parent = x;
4276 if (y != MEM_NIL)
4277 y->parent = x->parent;
4278 if (x->parent)
4280 if (x == x->parent->right)
4281 x->parent->right = y;
4282 else
4283 x->parent->left = y;
4285 else
4286 mem_root = y;
4288 y->right = x;
4289 if (x != MEM_NIL)
4290 x->parent = y;
4294 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4296 static void
4297 mem_delete (struct mem_node *z)
4299 struct mem_node *x, *y;
4301 if (!z || z == MEM_NIL)
4302 return;
4304 if (z->left == MEM_NIL || z->right == MEM_NIL)
4305 y = z;
4306 else
4308 y = z->right;
4309 while (y->left != MEM_NIL)
4310 y = y->left;
4313 if (y->left != MEM_NIL)
4314 x = y->left;
4315 else
4316 x = y->right;
4318 x->parent = y->parent;
4319 if (y->parent)
4321 if (y == y->parent->left)
4322 y->parent->left = x;
4323 else
4324 y->parent->right = x;
4326 else
4327 mem_root = x;
4329 if (y != z)
4331 z->start = y->start;
4332 z->end = y->end;
4333 z->type = y->type;
4336 if (y->color == MEM_BLACK)
4337 mem_delete_fixup (x);
4339 #ifdef GC_MALLOC_CHECK
4340 free (y);
4341 #else
4342 xfree (y);
4343 #endif
4347 /* Re-establish the red-black properties of the tree, after a
4348 deletion. */
4350 static void
4351 mem_delete_fixup (struct mem_node *x)
4353 while (x != mem_root && x->color == MEM_BLACK)
4355 if (x == x->parent->left)
4357 struct mem_node *w = x->parent->right;
4359 if (w->color == MEM_RED)
4361 w->color = MEM_BLACK;
4362 x->parent->color = MEM_RED;
4363 mem_rotate_left (x->parent);
4364 w = x->parent->right;
4367 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4369 w->color = MEM_RED;
4370 x = x->parent;
4372 else
4374 if (w->right->color == MEM_BLACK)
4376 w->left->color = MEM_BLACK;
4377 w->color = MEM_RED;
4378 mem_rotate_right (w);
4379 w = x->parent->right;
4381 w->color = x->parent->color;
4382 x->parent->color = MEM_BLACK;
4383 w->right->color = MEM_BLACK;
4384 mem_rotate_left (x->parent);
4385 x = mem_root;
4388 else
4390 struct mem_node *w = x->parent->left;
4392 if (w->color == MEM_RED)
4394 w->color = MEM_BLACK;
4395 x->parent->color = MEM_RED;
4396 mem_rotate_right (x->parent);
4397 w = x->parent->left;
4400 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4402 w->color = MEM_RED;
4403 x = x->parent;
4405 else
4407 if (w->left->color == MEM_BLACK)
4409 w->right->color = MEM_BLACK;
4410 w->color = MEM_RED;
4411 mem_rotate_left (w);
4412 w = x->parent->left;
4415 w->color = x->parent->color;
4416 x->parent->color = MEM_BLACK;
4417 w->left->color = MEM_BLACK;
4418 mem_rotate_right (x->parent);
4419 x = mem_root;
4424 x->color = MEM_BLACK;
4428 /* Value is non-zero if P is a pointer to a live Lisp string on
4429 the heap. M is a pointer to the mem_block for P. */
4431 static bool
4432 live_string_p (struct mem_node *m, void *p)
4434 if (m->type == MEM_TYPE_STRING)
4436 struct string_block *b = m->start;
4437 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4439 /* P must point to the start of a Lisp_String structure, and it
4440 must not be on the free-list. */
4441 return (offset >= 0
4442 && offset % sizeof b->strings[0] == 0
4443 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4444 && ((struct Lisp_String *) p)->data != NULL);
4446 else
4447 return 0;
4451 /* Value is non-zero if P is a pointer to a live Lisp cons on
4452 the heap. M is a pointer to the mem_block for P. */
4454 static bool
4455 live_cons_p (struct mem_node *m, void *p)
4457 if (m->type == MEM_TYPE_CONS)
4459 struct cons_block *b = m->start;
4460 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4462 /* P must point to the start of a Lisp_Cons, not be
4463 one of the unused cells in the current cons block,
4464 and not be on the free-list. */
4465 return (offset >= 0
4466 && offset % sizeof b->conses[0] == 0
4467 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4468 && (b != cons_block
4469 || offset / sizeof b->conses[0] < cons_block_index)
4470 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4472 else
4473 return 0;
4477 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4478 the heap. M is a pointer to the mem_block for P. */
4480 static bool
4481 live_symbol_p (struct mem_node *m, void *p)
4483 if (m->type == MEM_TYPE_SYMBOL)
4485 struct symbol_block *b = m->start;
4486 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4488 /* P must point to the start of a Lisp_Symbol, not be
4489 one of the unused cells in the current symbol block,
4490 and not be on the free-list. */
4491 return (offset >= 0
4492 && offset % sizeof b->symbols[0] == 0
4493 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4494 && (b != symbol_block
4495 || offset / sizeof b->symbols[0] < symbol_block_index)
4496 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4498 else
4499 return 0;
4503 /* Value is non-zero if P is a pointer to a live Lisp float on
4504 the heap. M is a pointer to the mem_block for P. */
4506 static bool
4507 live_float_p (struct mem_node *m, void *p)
4509 if (m->type == MEM_TYPE_FLOAT)
4511 struct float_block *b = m->start;
4512 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4514 /* P must point to the start of a Lisp_Float and not be
4515 one of the unused cells in the current float block. */
4516 return (offset >= 0
4517 && offset % sizeof b->floats[0] == 0
4518 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4519 && (b != float_block
4520 || offset / sizeof b->floats[0] < float_block_index));
4522 else
4523 return 0;
4527 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4528 the heap. M is a pointer to the mem_block for P. */
4530 static bool
4531 live_misc_p (struct mem_node *m, void *p)
4533 if (m->type == MEM_TYPE_MISC)
4535 struct marker_block *b = m->start;
4536 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4538 /* P must point to the start of a Lisp_Misc, not be
4539 one of the unused cells in the current misc block,
4540 and not be on the free-list. */
4541 return (offset >= 0
4542 && offset % sizeof b->markers[0] == 0
4543 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4544 && (b != marker_block
4545 || offset / sizeof b->markers[0] < marker_block_index)
4546 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4548 else
4549 return 0;
4553 /* Value is non-zero if P is a pointer to a live vector-like object.
4554 M is a pointer to the mem_block for P. */
4556 static bool
4557 live_vector_p (struct mem_node *m, void *p)
4559 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4561 /* This memory node corresponds to a vector block. */
4562 struct vector_block *block = m->start;
4563 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4565 /* P is in the block's allocation range. Scan the block
4566 up to P and see whether P points to the start of some
4567 vector which is not on a free list. FIXME: check whether
4568 some allocation patterns (probably a lot of short vectors)
4569 may cause a substantial overhead of this loop. */
4570 while (VECTOR_IN_BLOCK (vector, block)
4571 && vector <= (struct Lisp_Vector *) p)
4573 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4574 return 1;
4575 else
4576 vector = ADVANCE (vector, vector_nbytes (vector));
4579 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4580 /* This memory node corresponds to a large vector. */
4581 return 1;
4582 return 0;
4586 /* Value is non-zero if P is a pointer to a live buffer. M is a
4587 pointer to the mem_block for P. */
4589 static bool
4590 live_buffer_p (struct mem_node *m, void *p)
4592 /* P must point to the start of the block, and the buffer
4593 must not have been killed. */
4594 return (m->type == MEM_TYPE_BUFFER
4595 && p == m->start
4596 && !NILP (((struct buffer *) p)->name_));
4599 /* Mark OBJ if we can prove it's a Lisp_Object. */
4601 static void
4602 mark_maybe_object (Lisp_Object obj)
4604 #if USE_VALGRIND
4605 if (valgrind_p)
4606 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4607 #endif
4609 if (INTEGERP (obj))
4610 return;
4612 void *po = XPNTR (obj);
4613 struct mem_node *m = mem_find (po);
4615 if (m != MEM_NIL)
4617 bool mark_p = false;
4619 switch (XTYPE (obj))
4621 case Lisp_String:
4622 mark_p = (live_string_p (m, po)
4623 && !STRING_MARKED_P ((struct Lisp_String *) po));
4624 break;
4626 case Lisp_Cons:
4627 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4628 break;
4630 case Lisp_Symbol:
4631 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4632 break;
4634 case Lisp_Float:
4635 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4636 break;
4638 case Lisp_Vectorlike:
4639 /* Note: can't check BUFFERP before we know it's a
4640 buffer because checking that dereferences the pointer
4641 PO which might point anywhere. */
4642 if (live_vector_p (m, po))
4643 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4644 else if (live_buffer_p (m, po))
4645 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4646 break;
4648 case Lisp_Misc:
4649 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4650 break;
4652 default:
4653 break;
4656 if (mark_p)
4657 mark_object (obj);
4661 /* Return true if P can point to Lisp data, and false otherwise.
4662 Symbols are implemented via offsets not pointers, but the offsets
4663 are also multiples of GCALIGNMENT. */
4665 static bool
4666 maybe_lisp_pointer (void *p)
4668 return (uintptr_t) p % GCALIGNMENT == 0;
4671 #ifndef HAVE_MODULES
4672 enum { HAVE_MODULES = false };
4673 #endif
4675 /* If P points to Lisp data, mark that as live if it isn't already
4676 marked. */
4678 static void
4679 mark_maybe_pointer (void *p)
4681 struct mem_node *m;
4683 #if USE_VALGRIND
4684 if (valgrind_p)
4685 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4686 #endif
4688 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4690 if (!maybe_lisp_pointer (p))
4691 return;
4693 else
4695 /* For the wide-int case, also mark emacs_value tagged pointers,
4696 which can be generated by emacs-module.c's value_to_lisp. */
4697 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4700 m = mem_find (p);
4701 if (m != MEM_NIL)
4703 Lisp_Object obj = Qnil;
4705 switch (m->type)
4707 case MEM_TYPE_NON_LISP:
4708 case MEM_TYPE_SPARE:
4709 /* Nothing to do; not a pointer to Lisp memory. */
4710 break;
4712 case MEM_TYPE_BUFFER:
4713 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4714 XSETVECTOR (obj, p);
4715 break;
4717 case MEM_TYPE_CONS:
4718 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4719 XSETCONS (obj, p);
4720 break;
4722 case MEM_TYPE_STRING:
4723 if (live_string_p (m, p)
4724 && !STRING_MARKED_P ((struct Lisp_String *) p))
4725 XSETSTRING (obj, p);
4726 break;
4728 case MEM_TYPE_MISC:
4729 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4730 XSETMISC (obj, p);
4731 break;
4733 case MEM_TYPE_SYMBOL:
4734 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4735 XSETSYMBOL (obj, p);
4736 break;
4738 case MEM_TYPE_FLOAT:
4739 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4740 XSETFLOAT (obj, p);
4741 break;
4743 case MEM_TYPE_VECTORLIKE:
4744 case MEM_TYPE_VECTOR_BLOCK:
4745 if (live_vector_p (m, p))
4747 Lisp_Object tem;
4748 XSETVECTOR (tem, p);
4749 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4750 obj = tem;
4752 break;
4754 default:
4755 emacs_abort ();
4758 if (!NILP (obj))
4759 mark_object (obj);
4764 /* Alignment of pointer values. Use alignof, as it sometimes returns
4765 a smaller alignment than GCC's __alignof__ and mark_memory might
4766 miss objects if __alignof__ were used. */
4767 #define GC_POINTER_ALIGNMENT alignof (void *)
4769 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4770 or END+OFFSET..START. */
4772 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4773 mark_memory (void *start, void *end)
4775 char *pp;
4777 /* Make START the pointer to the start of the memory region,
4778 if it isn't already. */
4779 if (end < start)
4781 void *tem = start;
4782 start = end;
4783 end = tem;
4786 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4788 /* Mark Lisp data pointed to. This is necessary because, in some
4789 situations, the C compiler optimizes Lisp objects away, so that
4790 only a pointer to them remains. Example:
4792 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4795 Lisp_Object obj = build_string ("test");
4796 struct Lisp_String *s = XSTRING (obj);
4797 Fgarbage_collect ();
4798 fprintf (stderr, "test '%s'\n", s->data);
4799 return Qnil;
4802 Here, `obj' isn't really used, and the compiler optimizes it
4803 away. The only reference to the life string is through the
4804 pointer `s'. */
4806 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4808 mark_maybe_pointer (*(void **) pp);
4809 mark_maybe_object (*(Lisp_Object *) pp);
4813 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4815 static bool setjmp_tested_p;
4816 static int longjmps_done;
4818 #define SETJMP_WILL_LIKELY_WORK "\
4820 Emacs garbage collector has been changed to use conservative stack\n\
4821 marking. Emacs has determined that the method it uses to do the\n\
4822 marking will likely work on your system, but this isn't sure.\n\
4824 If you are a system-programmer, or can get the help of a local wizard\n\
4825 who is, please take a look at the function mark_stack in alloc.c, and\n\
4826 verify that the methods used are appropriate for your system.\n\
4828 Please mail the result to <emacs-devel@gnu.org>.\n\
4831 #define SETJMP_WILL_NOT_WORK "\
4833 Emacs garbage collector has been changed to use conservative stack\n\
4834 marking. Emacs has determined that the default method it uses to do the\n\
4835 marking will not work on your system. We will need a system-dependent\n\
4836 solution for your system.\n\
4838 Please take a look at the function mark_stack in alloc.c, and\n\
4839 try to find a way to make it work on your system.\n\
4841 Note that you may get false negatives, depending on the compiler.\n\
4842 In particular, you need to use -O with GCC for this test.\n\
4844 Please mail the result to <emacs-devel@gnu.org>.\n\
4848 /* Perform a quick check if it looks like setjmp saves registers in a
4849 jmp_buf. Print a message to stderr saying so. When this test
4850 succeeds, this is _not_ a proof that setjmp is sufficient for
4851 conservative stack marking. Only the sources or a disassembly
4852 can prove that. */
4854 static void
4855 test_setjmp (void)
4857 char buf[10];
4858 register int x;
4859 sys_jmp_buf jbuf;
4861 /* Arrange for X to be put in a register. */
4862 sprintf (buf, "1");
4863 x = strlen (buf);
4864 x = 2 * x - 1;
4866 sys_setjmp (jbuf);
4867 if (longjmps_done == 1)
4869 /* Came here after the longjmp at the end of the function.
4871 If x == 1, the longjmp has restored the register to its
4872 value before the setjmp, and we can hope that setjmp
4873 saves all such registers in the jmp_buf, although that
4874 isn't sure.
4876 For other values of X, either something really strange is
4877 taking place, or the setjmp just didn't save the register. */
4879 if (x == 1)
4880 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4881 else
4883 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4884 exit (1);
4888 ++longjmps_done;
4889 x = 2;
4890 if (longjmps_done == 1)
4891 sys_longjmp (jbuf, 1);
4894 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4897 /* Mark live Lisp objects on the C stack.
4899 There are several system-dependent problems to consider when
4900 porting this to new architectures:
4902 Processor Registers
4904 We have to mark Lisp objects in CPU registers that can hold local
4905 variables or are used to pass parameters.
4907 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4908 something that either saves relevant registers on the stack, or
4909 calls mark_maybe_object passing it each register's contents.
4911 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4912 implementation assumes that calling setjmp saves registers we need
4913 to see in a jmp_buf which itself lies on the stack. This doesn't
4914 have to be true! It must be verified for each system, possibly
4915 by taking a look at the source code of setjmp.
4917 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4918 can use it as a machine independent method to store all registers
4919 to the stack. In this case the macros described in the previous
4920 two paragraphs are not used.
4922 Stack Layout
4924 Architectures differ in the way their processor stack is organized.
4925 For example, the stack might look like this
4927 +----------------+
4928 | Lisp_Object | size = 4
4929 +----------------+
4930 | something else | size = 2
4931 +----------------+
4932 | Lisp_Object | size = 4
4933 +----------------+
4934 | ... |
4936 In such a case, not every Lisp_Object will be aligned equally. To
4937 find all Lisp_Object on the stack it won't be sufficient to walk
4938 the stack in steps of 4 bytes. Instead, two passes will be
4939 necessary, one starting at the start of the stack, and a second
4940 pass starting at the start of the stack + 2. Likewise, if the
4941 minimal alignment of Lisp_Objects on the stack is 1, four passes
4942 would be necessary, each one starting with one byte more offset
4943 from the stack start. */
4945 static void
4946 mark_stack (void *end)
4949 /* This assumes that the stack is a contiguous region in memory. If
4950 that's not the case, something has to be done here to iterate
4951 over the stack segments. */
4952 mark_memory (stack_base, end);
4954 /* Allow for marking a secondary stack, like the register stack on the
4955 ia64. */
4956 #ifdef GC_MARK_SECONDARY_STACK
4957 GC_MARK_SECONDARY_STACK ();
4958 #endif
4961 static bool
4962 c_symbol_p (struct Lisp_Symbol *sym)
4964 char *lispsym_ptr = (char *) lispsym;
4965 char *sym_ptr = (char *) sym;
4966 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4967 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4970 /* Determine whether it is safe to access memory at address P. */
4971 static int
4972 valid_pointer_p (void *p)
4974 #ifdef WINDOWSNT
4975 return w32_valid_pointer_p (p, 16);
4976 #else
4978 if (ADDRESS_SANITIZER)
4979 return p ? -1 : 0;
4981 int fd[2];
4983 /* Obviously, we cannot just access it (we would SEGV trying), so we
4984 trick the o/s to tell us whether p is a valid pointer.
4985 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4986 not validate p in that case. */
4988 if (emacs_pipe (fd) == 0)
4990 bool valid = emacs_write (fd[1], p, 16) == 16;
4991 emacs_close (fd[1]);
4992 emacs_close (fd[0]);
4993 return valid;
4996 return -1;
4997 #endif
5000 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5001 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5002 cannot validate OBJ. This function can be quite slow, so its primary
5003 use is the manual debugging. The only exception is print_object, where
5004 we use it to check whether the memory referenced by the pointer of
5005 Lisp_Save_Value object contains valid objects. */
5008 valid_lisp_object_p (Lisp_Object obj)
5010 if (INTEGERP (obj))
5011 return 1;
5013 void *p = XPNTR (obj);
5014 if (PURE_P (p))
5015 return 1;
5017 if (SYMBOLP (obj) && c_symbol_p (p))
5018 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5020 if (p == &buffer_defaults || p == &buffer_local_symbols)
5021 return 2;
5023 struct mem_node *m = mem_find (p);
5025 if (m == MEM_NIL)
5027 int valid = valid_pointer_p (p);
5028 if (valid <= 0)
5029 return valid;
5031 if (SUBRP (obj))
5032 return 1;
5034 return 0;
5037 switch (m->type)
5039 case MEM_TYPE_NON_LISP:
5040 case MEM_TYPE_SPARE:
5041 return 0;
5043 case MEM_TYPE_BUFFER:
5044 return live_buffer_p (m, p) ? 1 : 2;
5046 case MEM_TYPE_CONS:
5047 return live_cons_p (m, p);
5049 case MEM_TYPE_STRING:
5050 return live_string_p (m, p);
5052 case MEM_TYPE_MISC:
5053 return live_misc_p (m, p);
5055 case MEM_TYPE_SYMBOL:
5056 return live_symbol_p (m, p);
5058 case MEM_TYPE_FLOAT:
5059 return live_float_p (m, p);
5061 case MEM_TYPE_VECTORLIKE:
5062 case MEM_TYPE_VECTOR_BLOCK:
5063 return live_vector_p (m, p);
5065 default:
5066 break;
5069 return 0;
5072 /***********************************************************************
5073 Pure Storage Management
5074 ***********************************************************************/
5076 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5077 pointer to it. TYPE is the Lisp type for which the memory is
5078 allocated. TYPE < 0 means it's not used for a Lisp object. */
5080 static void *
5081 pure_alloc (size_t size, int type)
5083 void *result;
5085 again:
5086 if (type >= 0)
5088 /* Allocate space for a Lisp object from the beginning of the free
5089 space with taking account of alignment. */
5090 result = ALIGN (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5091 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5093 else
5095 /* Allocate space for a non-Lisp object from the end of the free
5096 space. */
5097 pure_bytes_used_non_lisp += size;
5098 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5100 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5102 if (pure_bytes_used <= pure_size)
5103 return result;
5105 /* Don't allocate a large amount here,
5106 because it might get mmap'd and then its address
5107 might not be usable. */
5108 purebeg = xmalloc (10000);
5109 pure_size = 10000;
5110 pure_bytes_used_before_overflow += pure_bytes_used - size;
5111 pure_bytes_used = 0;
5112 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5113 goto again;
5117 /* Print a warning if PURESIZE is too small. */
5119 void
5120 check_pure_size (void)
5122 if (pure_bytes_used_before_overflow)
5123 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5124 " bytes needed)"),
5125 pure_bytes_used + pure_bytes_used_before_overflow);
5129 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5130 the non-Lisp data pool of the pure storage, and return its start
5131 address. Return NULL if not found. */
5133 static char *
5134 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5136 int i;
5137 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5138 const unsigned char *p;
5139 char *non_lisp_beg;
5141 if (pure_bytes_used_non_lisp <= nbytes)
5142 return NULL;
5144 /* Set up the Boyer-Moore table. */
5145 skip = nbytes + 1;
5146 for (i = 0; i < 256; i++)
5147 bm_skip[i] = skip;
5149 p = (const unsigned char *) data;
5150 while (--skip > 0)
5151 bm_skip[*p++] = skip;
5153 last_char_skip = bm_skip['\0'];
5155 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5156 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5158 /* See the comments in the function `boyer_moore' (search.c) for the
5159 use of `infinity'. */
5160 infinity = pure_bytes_used_non_lisp + 1;
5161 bm_skip['\0'] = infinity;
5163 p = (const unsigned char *) non_lisp_beg + nbytes;
5164 start = 0;
5167 /* Check the last character (== '\0'). */
5170 start += bm_skip[*(p + start)];
5172 while (start <= start_max);
5174 if (start < infinity)
5175 /* Couldn't find the last character. */
5176 return NULL;
5178 /* No less than `infinity' means we could find the last
5179 character at `p[start - infinity]'. */
5180 start -= infinity;
5182 /* Check the remaining characters. */
5183 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5184 /* Found. */
5185 return non_lisp_beg + start;
5187 start += last_char_skip;
5189 while (start <= start_max);
5191 return NULL;
5195 /* Return a string allocated in pure space. DATA is a buffer holding
5196 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5197 means make the result string multibyte.
5199 Must get an error if pure storage is full, since if it cannot hold
5200 a large string it may be able to hold conses that point to that
5201 string; then the string is not protected from gc. */
5203 Lisp_Object
5204 make_pure_string (const char *data,
5205 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5207 Lisp_Object string;
5208 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5209 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5210 if (s->data == NULL)
5212 s->data = pure_alloc (nbytes + 1, -1);
5213 memcpy (s->data, data, nbytes);
5214 s->data[nbytes] = '\0';
5216 s->size = nchars;
5217 s->size_byte = multibyte ? nbytes : -1;
5218 s->intervals = NULL;
5219 XSETSTRING (string, s);
5220 return string;
5223 /* Return a string allocated in pure space. Do not
5224 allocate the string data, just point to DATA. */
5226 Lisp_Object
5227 make_pure_c_string (const char *data, ptrdiff_t nchars)
5229 Lisp_Object string;
5230 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5231 s->size = nchars;
5232 s->size_byte = -1;
5233 s->data = (unsigned char *) data;
5234 s->intervals = NULL;
5235 XSETSTRING (string, s);
5236 return string;
5239 static Lisp_Object purecopy (Lisp_Object obj);
5241 /* Return a cons allocated from pure space. Give it pure copies
5242 of CAR as car and CDR as cdr. */
5244 Lisp_Object
5245 pure_cons (Lisp_Object car, Lisp_Object cdr)
5247 Lisp_Object new;
5248 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5249 XSETCONS (new, p);
5250 XSETCAR (new, purecopy (car));
5251 XSETCDR (new, purecopy (cdr));
5252 return new;
5256 /* Value is a float object with value NUM allocated from pure space. */
5258 static Lisp_Object
5259 make_pure_float (double num)
5261 Lisp_Object new;
5262 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5263 XSETFLOAT (new, p);
5264 XFLOAT_INIT (new, num);
5265 return new;
5269 /* Return a vector with room for LEN Lisp_Objects allocated from
5270 pure space. */
5272 static Lisp_Object
5273 make_pure_vector (ptrdiff_t len)
5275 Lisp_Object new;
5276 size_t size = header_size + len * word_size;
5277 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5278 XSETVECTOR (new, p);
5279 XVECTOR (new)->header.size = len;
5280 return new;
5283 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5284 doc: /* Make a copy of object OBJ in pure storage.
5285 Recursively copies contents of vectors and cons cells.
5286 Does not copy symbols. Copies strings without text properties. */)
5287 (register Lisp_Object obj)
5289 if (NILP (Vpurify_flag))
5290 return obj;
5291 else if (MARKERP (obj) || OVERLAYP (obj)
5292 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5293 /* Can't purify those. */
5294 return obj;
5295 else
5296 return purecopy (obj);
5299 static Lisp_Object
5300 purecopy (Lisp_Object obj)
5302 if (INTEGERP (obj)
5303 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5304 || SUBRP (obj))
5305 return obj; /* Already pure. */
5307 if (STRINGP (obj) && XSTRING (obj)->intervals)
5308 message_with_string ("Dropping text-properties while making string `%s' pure",
5309 obj, true);
5311 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5313 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5314 if (!NILP (tmp))
5315 return tmp;
5318 if (CONSP (obj))
5319 obj = pure_cons (XCAR (obj), XCDR (obj));
5320 else if (FLOATP (obj))
5321 obj = make_pure_float (XFLOAT_DATA (obj));
5322 else if (STRINGP (obj))
5323 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5324 SBYTES (obj),
5325 STRING_MULTIBYTE (obj));
5326 else if (COMPILEDP (obj) || VECTORP (obj) || HASH_TABLE_P (obj))
5328 struct Lisp_Vector *objp = XVECTOR (obj);
5329 ptrdiff_t nbytes = vector_nbytes (objp);
5330 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5331 register ptrdiff_t i;
5332 ptrdiff_t size = ASIZE (obj);
5333 if (size & PSEUDOVECTOR_FLAG)
5334 size &= PSEUDOVECTOR_SIZE_MASK;
5335 memcpy (vec, objp, nbytes);
5336 for (i = 0; i < size; i++)
5337 vec->contents[i] = purecopy (vec->contents[i]);
5338 XSETVECTOR (obj, vec);
5340 else if (SYMBOLP (obj))
5342 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5343 { /* We can't purify them, but they appear in many pure objects.
5344 Mark them as `pinned' so we know to mark them at every GC cycle. */
5345 XSYMBOL (obj)->pinned = true;
5346 symbol_block_pinned = symbol_block;
5348 /* Don't hash-cons it. */
5349 return obj;
5351 else
5353 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5354 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5357 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5358 Fputhash (obj, obj, Vpurify_flag);
5360 return obj;
5365 /***********************************************************************
5366 Protection from GC
5367 ***********************************************************************/
5369 /* Put an entry in staticvec, pointing at the variable with address
5370 VARADDRESS. */
5372 void
5373 staticpro (Lisp_Object *varaddress)
5375 if (staticidx >= NSTATICS)
5376 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5377 staticvec[staticidx++] = varaddress;
5381 /***********************************************************************
5382 Protection from GC
5383 ***********************************************************************/
5385 /* Temporarily prevent garbage collection. */
5387 ptrdiff_t
5388 inhibit_garbage_collection (void)
5390 ptrdiff_t count = SPECPDL_INDEX ();
5392 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5393 return count;
5396 /* Used to avoid possible overflows when
5397 converting from C to Lisp integers. */
5399 static Lisp_Object
5400 bounded_number (EMACS_INT number)
5402 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5405 /* Calculate total bytes of live objects. */
5407 static size_t
5408 total_bytes_of_live_objects (void)
5410 size_t tot = 0;
5411 tot += total_conses * sizeof (struct Lisp_Cons);
5412 tot += total_symbols * sizeof (struct Lisp_Symbol);
5413 tot += total_markers * sizeof (union Lisp_Misc);
5414 tot += total_string_bytes;
5415 tot += total_vector_slots * word_size;
5416 tot += total_floats * sizeof (struct Lisp_Float);
5417 tot += total_intervals * sizeof (struct interval);
5418 tot += total_strings * sizeof (struct Lisp_String);
5419 return tot;
5422 #ifdef HAVE_WINDOW_SYSTEM
5424 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5425 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5427 static Lisp_Object
5428 compact_font_cache_entry (Lisp_Object entry)
5430 Lisp_Object tail, *prev = &entry;
5432 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5434 bool drop = 0;
5435 Lisp_Object obj = XCAR (tail);
5437 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5438 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5439 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5440 /* Don't use VECTORP here, as that calls ASIZE, which could
5441 hit assertion violation during GC. */
5442 && (VECTORLIKEP (XCDR (obj))
5443 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5445 ptrdiff_t i, size = gc_asize (XCDR (obj));
5446 Lisp_Object obj_cdr = XCDR (obj);
5448 /* If font-spec is not marked, most likely all font-entities
5449 are not marked too. But we must be sure that nothing is
5450 marked within OBJ before we really drop it. */
5451 for (i = 0; i < size; i++)
5453 Lisp_Object objlist;
5455 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5456 break;
5458 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5459 for (; CONSP (objlist); objlist = XCDR (objlist))
5461 Lisp_Object val = XCAR (objlist);
5462 struct font *font = GC_XFONT_OBJECT (val);
5464 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5465 && VECTOR_MARKED_P(font))
5466 break;
5468 if (CONSP (objlist))
5470 /* Found a marked font, bail out. */
5471 break;
5475 if (i == size)
5477 /* No marked fonts were found, so this entire font
5478 entity can be dropped. */
5479 drop = 1;
5482 if (drop)
5483 *prev = XCDR (tail);
5484 else
5485 prev = xcdr_addr (tail);
5487 return entry;
5490 /* Compact font caches on all terminals and mark
5491 everything which is still here after compaction. */
5493 static void
5494 compact_font_caches (void)
5496 struct terminal *t;
5498 for (t = terminal_list; t; t = t->next_terminal)
5500 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5501 if (CONSP (cache))
5503 Lisp_Object entry;
5505 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5506 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5508 mark_object (cache);
5512 #else /* not HAVE_WINDOW_SYSTEM */
5514 #define compact_font_caches() (void)(0)
5516 #endif /* HAVE_WINDOW_SYSTEM */
5518 /* Remove (MARKER . DATA) entries with unmarked MARKER
5519 from buffer undo LIST and return changed list. */
5521 static Lisp_Object
5522 compact_undo_list (Lisp_Object list)
5524 Lisp_Object tail, *prev = &list;
5526 for (tail = list; CONSP (tail); tail = XCDR (tail))
5528 if (CONSP (XCAR (tail))
5529 && MARKERP (XCAR (XCAR (tail)))
5530 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5531 *prev = XCDR (tail);
5532 else
5533 prev = xcdr_addr (tail);
5535 return list;
5538 static void
5539 mark_pinned_symbols (void)
5541 struct symbol_block *sblk;
5542 int lim = (symbol_block_pinned == symbol_block
5543 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5545 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5547 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5548 for (; sym < end; ++sym)
5549 if (sym->s.pinned)
5550 mark_object (make_lisp_symbol (&sym->s));
5552 lim = SYMBOL_BLOCK_SIZE;
5556 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5557 separate function so that we could limit mark_stack in searching
5558 the stack frames below this function, thus avoiding the rare cases
5559 where mark_stack finds values that look like live Lisp objects on
5560 portions of stack that couldn't possibly contain such live objects.
5561 For more details of this, see the discussion at
5562 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5563 static Lisp_Object
5564 garbage_collect_1 (void *end)
5566 struct buffer *nextb;
5567 char stack_top_variable;
5568 ptrdiff_t i;
5569 bool message_p;
5570 ptrdiff_t count = SPECPDL_INDEX ();
5571 struct timespec start;
5572 Lisp_Object retval = Qnil;
5573 size_t tot_before = 0;
5575 if (abort_on_gc)
5576 emacs_abort ();
5578 /* Can't GC if pure storage overflowed because we can't determine
5579 if something is a pure object or not. */
5580 if (pure_bytes_used_before_overflow)
5581 return Qnil;
5583 /* Record this function, so it appears on the profiler's backtraces. */
5584 record_in_backtrace (Qautomatic_gc, 0, 0);
5586 check_cons_list ();
5588 /* Don't keep undo information around forever.
5589 Do this early on, so it is no problem if the user quits. */
5590 FOR_EACH_BUFFER (nextb)
5591 compact_buffer (nextb);
5593 if (profiler_memory_running)
5594 tot_before = total_bytes_of_live_objects ();
5596 start = current_timespec ();
5598 /* In case user calls debug_print during GC,
5599 don't let that cause a recursive GC. */
5600 consing_since_gc = 0;
5602 /* Save what's currently displayed in the echo area. Don't do that
5603 if we are GC'ing because we've run out of memory, since
5604 push_message will cons, and we might have no memory for that. */
5605 if (NILP (Vmemory_full))
5607 message_p = push_message ();
5608 record_unwind_protect_void (pop_message_unwind);
5610 else
5611 message_p = false;
5613 /* Save a copy of the contents of the stack, for debugging. */
5614 #if MAX_SAVE_STACK > 0
5615 if (NILP (Vpurify_flag))
5617 char *stack;
5618 ptrdiff_t stack_size;
5619 if (&stack_top_variable < stack_bottom)
5621 stack = &stack_top_variable;
5622 stack_size = stack_bottom - &stack_top_variable;
5624 else
5626 stack = stack_bottom;
5627 stack_size = &stack_top_variable - stack_bottom;
5629 if (stack_size <= MAX_SAVE_STACK)
5631 if (stack_copy_size < stack_size)
5633 stack_copy = xrealloc (stack_copy, stack_size);
5634 stack_copy_size = stack_size;
5636 no_sanitize_memcpy (stack_copy, stack, stack_size);
5639 #endif /* MAX_SAVE_STACK > 0 */
5641 if (garbage_collection_messages)
5642 message1_nolog ("Garbage collecting...");
5644 block_input ();
5646 shrink_regexp_cache ();
5648 gc_in_progress = 1;
5650 /* Mark all the special slots that serve as the roots of accessibility. */
5652 mark_buffer (&buffer_defaults);
5653 mark_buffer (&buffer_local_symbols);
5655 for (i = 0; i < ARRAYELTS (lispsym); i++)
5656 mark_object (builtin_lisp_symbol (i));
5658 for (i = 0; i < staticidx; i++)
5659 mark_object (*staticvec[i]);
5661 mark_pinned_symbols ();
5662 mark_specpdl ();
5663 mark_terminals ();
5664 mark_kboards ();
5666 #ifdef USE_GTK
5667 xg_mark_data ();
5668 #endif
5670 mark_stack (end);
5673 struct handler *handler;
5674 for (handler = handlerlist; handler; handler = handler->next)
5676 mark_object (handler->tag_or_ch);
5677 mark_object (handler->val);
5680 #ifdef HAVE_WINDOW_SYSTEM
5681 mark_fringe_data ();
5682 #endif
5684 /* Everything is now marked, except for the data in font caches,
5685 undo lists, and finalizers. The first two are compacted by
5686 removing an items which aren't reachable otherwise. */
5688 compact_font_caches ();
5690 FOR_EACH_BUFFER (nextb)
5692 if (!EQ (BVAR (nextb, undo_list), Qt))
5693 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5694 /* Now that we have stripped the elements that need not be
5695 in the undo_list any more, we can finally mark the list. */
5696 mark_object (BVAR (nextb, undo_list));
5699 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
5700 to doomed_finalizers so we can run their associated functions
5701 after GC. It's important to scan finalizers at this stage so
5702 that we can be sure that unmarked finalizers are really
5703 unreachable except for references from their associated functions
5704 and from other finalizers. */
5706 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
5707 mark_finalizer_list (&doomed_finalizers);
5709 gc_sweep ();
5711 relocate_byte_stack ();
5713 /* Clear the mark bits that we set in certain root slots. */
5714 VECTOR_UNMARK (&buffer_defaults);
5715 VECTOR_UNMARK (&buffer_local_symbols);
5717 check_cons_list ();
5719 gc_in_progress = 0;
5721 unblock_input ();
5723 consing_since_gc = 0;
5724 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5725 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5727 gc_relative_threshold = 0;
5728 if (FLOATP (Vgc_cons_percentage))
5729 { /* Set gc_cons_combined_threshold. */
5730 double tot = total_bytes_of_live_objects ();
5732 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5733 if (0 < tot)
5735 if (tot < TYPE_MAXIMUM (EMACS_INT))
5736 gc_relative_threshold = tot;
5737 else
5738 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5742 if (garbage_collection_messages && NILP (Vmemory_full))
5744 if (message_p || minibuf_level > 0)
5745 restore_message ();
5746 else
5747 message1_nolog ("Garbage collecting...done");
5750 unbind_to (count, Qnil);
5752 Lisp_Object total[] = {
5753 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5754 bounded_number (total_conses),
5755 bounded_number (total_free_conses)),
5756 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5757 bounded_number (total_symbols),
5758 bounded_number (total_free_symbols)),
5759 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5760 bounded_number (total_markers),
5761 bounded_number (total_free_markers)),
5762 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5763 bounded_number (total_strings),
5764 bounded_number (total_free_strings)),
5765 list3 (Qstring_bytes, make_number (1),
5766 bounded_number (total_string_bytes)),
5767 list3 (Qvectors,
5768 make_number (header_size + sizeof (Lisp_Object)),
5769 bounded_number (total_vectors)),
5770 list4 (Qvector_slots, make_number (word_size),
5771 bounded_number (total_vector_slots),
5772 bounded_number (total_free_vector_slots)),
5773 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5774 bounded_number (total_floats),
5775 bounded_number (total_free_floats)),
5776 list4 (Qintervals, make_number (sizeof (struct interval)),
5777 bounded_number (total_intervals),
5778 bounded_number (total_free_intervals)),
5779 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5780 bounded_number (total_buffers)),
5782 #ifdef DOUG_LEA_MALLOC
5783 list4 (Qheap, make_number (1024),
5784 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5785 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5786 #endif
5788 retval = CALLMANY (Flist, total);
5790 /* GC is complete: now we can run our finalizer callbacks. */
5791 run_finalizers (&doomed_finalizers);
5793 if (!NILP (Vpost_gc_hook))
5795 ptrdiff_t gc_count = inhibit_garbage_collection ();
5796 safe_run_hooks (Qpost_gc_hook);
5797 unbind_to (gc_count, Qnil);
5800 /* Accumulate statistics. */
5801 if (FLOATP (Vgc_elapsed))
5803 struct timespec since_start = timespec_sub (current_timespec (), start);
5804 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5805 + timespectod (since_start));
5808 gcs_done++;
5810 /* Collect profiling data. */
5811 if (profiler_memory_running)
5813 size_t swept = 0;
5814 size_t tot_after = total_bytes_of_live_objects ();
5815 if (tot_before > tot_after)
5816 swept = tot_before - tot_after;
5817 malloc_probe (swept);
5820 return retval;
5823 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5824 doc: /* Reclaim storage for Lisp objects no longer needed.
5825 Garbage collection happens automatically if you cons more than
5826 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5827 `garbage-collect' normally returns a list with info on amount of space in use,
5828 where each entry has the form (NAME SIZE USED FREE), where:
5829 - NAME is a symbol describing the kind of objects this entry represents,
5830 - SIZE is the number of bytes used by each one,
5831 - USED is the number of those objects that were found live in the heap,
5832 - FREE is the number of those objects that are not live but that Emacs
5833 keeps around for future allocations (maybe because it does not know how
5834 to return them to the OS).
5835 However, if there was overflow in pure space, `garbage-collect'
5836 returns nil, because real GC can't be done.
5837 See Info node `(elisp)Garbage Collection'. */)
5838 (void)
5840 void *end;
5842 #ifdef HAVE___BUILTIN_UNWIND_INIT
5843 /* Force callee-saved registers and register windows onto the stack.
5844 This is the preferred method if available, obviating the need for
5845 machine dependent methods. */
5846 __builtin_unwind_init ();
5847 end = &end;
5848 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5849 #ifndef GC_SAVE_REGISTERS_ON_STACK
5850 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5851 union aligned_jmpbuf {
5852 Lisp_Object o;
5853 sys_jmp_buf j;
5854 } j;
5855 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5856 #endif
5857 /* This trick flushes the register windows so that all the state of
5858 the process is contained in the stack. */
5859 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5860 needed on ia64 too. See mach_dep.c, where it also says inline
5861 assembler doesn't work with relevant proprietary compilers. */
5862 #ifdef __sparc__
5863 #if defined (__sparc64__) && defined (__FreeBSD__)
5864 /* FreeBSD does not have a ta 3 handler. */
5865 asm ("flushw");
5866 #else
5867 asm ("ta 3");
5868 #endif
5869 #endif
5871 /* Save registers that we need to see on the stack. We need to see
5872 registers used to hold register variables and registers used to
5873 pass parameters. */
5874 #ifdef GC_SAVE_REGISTERS_ON_STACK
5875 GC_SAVE_REGISTERS_ON_STACK (end);
5876 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5878 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5879 setjmp will definitely work, test it
5880 and print a message with the result
5881 of the test. */
5882 if (!setjmp_tested_p)
5884 setjmp_tested_p = 1;
5885 test_setjmp ();
5887 #endif /* GC_SETJMP_WORKS */
5889 sys_setjmp (j.j);
5890 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5891 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5892 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5893 return garbage_collect_1 (end);
5896 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5897 only interesting objects referenced from glyphs are strings. */
5899 static void
5900 mark_glyph_matrix (struct glyph_matrix *matrix)
5902 struct glyph_row *row = matrix->rows;
5903 struct glyph_row *end = row + matrix->nrows;
5905 for (; row < end; ++row)
5906 if (row->enabled_p)
5908 int area;
5909 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5911 struct glyph *glyph = row->glyphs[area];
5912 struct glyph *end_glyph = glyph + row->used[area];
5914 for (; glyph < end_glyph; ++glyph)
5915 if (STRINGP (glyph->object)
5916 && !STRING_MARKED_P (XSTRING (glyph->object)))
5917 mark_object (glyph->object);
5922 /* Mark reference to a Lisp_Object.
5923 If the object referred to has not been seen yet, recursively mark
5924 all the references contained in it. */
5926 #define LAST_MARKED_SIZE 500
5927 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5928 static int last_marked_index;
5930 /* For debugging--call abort when we cdr down this many
5931 links of a list, in mark_object. In debugging,
5932 the call to abort will hit a breakpoint.
5933 Normally this is zero and the check never goes off. */
5934 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5936 static void
5937 mark_vectorlike (struct Lisp_Vector *ptr)
5939 ptrdiff_t size = ptr->header.size;
5940 ptrdiff_t i;
5942 eassert (!VECTOR_MARKED_P (ptr));
5943 VECTOR_MARK (ptr); /* Else mark it. */
5944 if (size & PSEUDOVECTOR_FLAG)
5945 size &= PSEUDOVECTOR_SIZE_MASK;
5947 /* Note that this size is not the memory-footprint size, but only
5948 the number of Lisp_Object fields that we should trace.
5949 The distinction is used e.g. by Lisp_Process which places extra
5950 non-Lisp_Object fields at the end of the structure... */
5951 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5952 mark_object (ptr->contents[i]);
5955 /* Like mark_vectorlike but optimized for char-tables (and
5956 sub-char-tables) assuming that the contents are mostly integers or
5957 symbols. */
5959 static void
5960 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5962 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5963 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5964 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5966 eassert (!VECTOR_MARKED_P (ptr));
5967 VECTOR_MARK (ptr);
5968 for (i = idx; i < size; i++)
5970 Lisp_Object val = ptr->contents[i];
5972 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5973 continue;
5974 if (SUB_CHAR_TABLE_P (val))
5976 if (! VECTOR_MARKED_P (XVECTOR (val)))
5977 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5979 else
5980 mark_object (val);
5984 NO_INLINE /* To reduce stack depth in mark_object. */
5985 static Lisp_Object
5986 mark_compiled (struct Lisp_Vector *ptr)
5988 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5990 VECTOR_MARK (ptr);
5991 for (i = 0; i < size; i++)
5992 if (i != COMPILED_CONSTANTS)
5993 mark_object (ptr->contents[i]);
5994 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
5997 /* Mark the chain of overlays starting at PTR. */
5999 static void
6000 mark_overlay (struct Lisp_Overlay *ptr)
6002 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6004 ptr->gcmarkbit = 1;
6005 /* These two are always markers and can be marked fast. */
6006 XMARKER (ptr->start)->gcmarkbit = 1;
6007 XMARKER (ptr->end)->gcmarkbit = 1;
6008 mark_object (ptr->plist);
6012 /* Mark Lisp_Objects and special pointers in BUFFER. */
6014 static void
6015 mark_buffer (struct buffer *buffer)
6017 /* This is handled much like other pseudovectors... */
6018 mark_vectorlike ((struct Lisp_Vector *) buffer);
6020 /* ...but there are some buffer-specific things. */
6022 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6024 /* For now, we just don't mark the undo_list. It's done later in
6025 a special way just before the sweep phase, and after stripping
6026 some of its elements that are not needed any more. */
6028 mark_overlay (buffer->overlays_before);
6029 mark_overlay (buffer->overlays_after);
6031 /* If this is an indirect buffer, mark its base buffer. */
6032 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6033 mark_buffer (buffer->base_buffer);
6036 /* Mark Lisp faces in the face cache C. */
6038 NO_INLINE /* To reduce stack depth in mark_object. */
6039 static void
6040 mark_face_cache (struct face_cache *c)
6042 if (c)
6044 int i, j;
6045 for (i = 0; i < c->used; ++i)
6047 struct face *face = FACE_FROM_ID (c->f, i);
6049 if (face)
6051 if (face->font && !VECTOR_MARKED_P (face->font))
6052 mark_vectorlike ((struct Lisp_Vector *) face->font);
6054 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6055 mark_object (face->lface[j]);
6061 NO_INLINE /* To reduce stack depth in mark_object. */
6062 static void
6063 mark_localized_symbol (struct Lisp_Symbol *ptr)
6065 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6066 Lisp_Object where = blv->where;
6067 /* If the value is set up for a killed buffer or deleted
6068 frame, restore its global binding. If the value is
6069 forwarded to a C variable, either it's not a Lisp_Object
6070 var, or it's staticpro'd already. */
6071 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6072 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6073 swap_in_global_binding (ptr);
6074 mark_object (blv->where);
6075 mark_object (blv->valcell);
6076 mark_object (blv->defcell);
6079 NO_INLINE /* To reduce stack depth in mark_object. */
6080 static void
6081 mark_save_value (struct Lisp_Save_Value *ptr)
6083 /* If `save_type' is zero, `data[0].pointer' is the address
6084 of a memory area containing `data[1].integer' potential
6085 Lisp_Objects. */
6086 if (ptr->save_type == SAVE_TYPE_MEMORY)
6088 Lisp_Object *p = ptr->data[0].pointer;
6089 ptrdiff_t nelt;
6090 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6091 mark_maybe_object (*p);
6093 else
6095 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6096 int i;
6097 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6098 if (save_type (ptr, i) == SAVE_OBJECT)
6099 mark_object (ptr->data[i].object);
6103 /* Remove killed buffers or items whose car is a killed buffer from
6104 LIST, and mark other items. Return changed LIST, which is marked. */
6106 static Lisp_Object
6107 mark_discard_killed_buffers (Lisp_Object list)
6109 Lisp_Object tail, *prev = &list;
6111 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6112 tail = XCDR (tail))
6114 Lisp_Object tem = XCAR (tail);
6115 if (CONSP (tem))
6116 tem = XCAR (tem);
6117 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6118 *prev = XCDR (tail);
6119 else
6121 CONS_MARK (XCONS (tail));
6122 mark_object (XCAR (tail));
6123 prev = xcdr_addr (tail);
6126 mark_object (tail);
6127 return list;
6130 /* Determine type of generic Lisp_Object and mark it accordingly.
6132 This function implements a straightforward depth-first marking
6133 algorithm and so the recursion depth may be very high (a few
6134 tens of thousands is not uncommon). To minimize stack usage,
6135 a few cold paths are moved out to NO_INLINE functions above.
6136 In general, inlining them doesn't help you to gain more speed. */
6138 void
6139 mark_object (Lisp_Object arg)
6141 register Lisp_Object obj;
6142 void *po;
6143 #ifdef GC_CHECK_MARKED_OBJECTS
6144 struct mem_node *m;
6145 #endif
6146 ptrdiff_t cdr_count = 0;
6148 obj = arg;
6149 loop:
6151 po = XPNTR (obj);
6152 if (PURE_P (po))
6153 return;
6155 last_marked[last_marked_index++] = obj;
6156 if (last_marked_index == LAST_MARKED_SIZE)
6157 last_marked_index = 0;
6159 /* Perform some sanity checks on the objects marked here. Abort if
6160 we encounter an object we know is bogus. This increases GC time
6161 by ~80%. */
6162 #ifdef GC_CHECK_MARKED_OBJECTS
6164 /* Check that the object pointed to by PO is known to be a Lisp
6165 structure allocated from the heap. */
6166 #define CHECK_ALLOCATED() \
6167 do { \
6168 m = mem_find (po); \
6169 if (m == MEM_NIL) \
6170 emacs_abort (); \
6171 } while (0)
6173 /* Check that the object pointed to by PO is live, using predicate
6174 function LIVEP. */
6175 #define CHECK_LIVE(LIVEP) \
6176 do { \
6177 if (!LIVEP (m, po)) \
6178 emacs_abort (); \
6179 } while (0)
6181 /* Check both of the above conditions, for non-symbols. */
6182 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6183 do { \
6184 CHECK_ALLOCATED (); \
6185 CHECK_LIVE (LIVEP); \
6186 } while (0) \
6188 /* Check both of the above conditions, for symbols. */
6189 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6190 do { \
6191 if (!c_symbol_p (ptr)) \
6193 CHECK_ALLOCATED (); \
6194 CHECK_LIVE (live_symbol_p); \
6196 } while (0) \
6198 #else /* not GC_CHECK_MARKED_OBJECTS */
6200 #define CHECK_LIVE(LIVEP) ((void) 0)
6201 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6202 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6204 #endif /* not GC_CHECK_MARKED_OBJECTS */
6206 switch (XTYPE (obj))
6208 case Lisp_String:
6210 register struct Lisp_String *ptr = XSTRING (obj);
6211 if (STRING_MARKED_P (ptr))
6212 break;
6213 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6214 MARK_STRING (ptr);
6215 MARK_INTERVAL_TREE (ptr->intervals);
6216 #ifdef GC_CHECK_STRING_BYTES
6217 /* Check that the string size recorded in the string is the
6218 same as the one recorded in the sdata structure. */
6219 string_bytes (ptr);
6220 #endif /* GC_CHECK_STRING_BYTES */
6222 break;
6224 case Lisp_Vectorlike:
6226 register struct Lisp_Vector *ptr = XVECTOR (obj);
6227 register ptrdiff_t pvectype;
6229 if (VECTOR_MARKED_P (ptr))
6230 break;
6232 #ifdef GC_CHECK_MARKED_OBJECTS
6233 m = mem_find (po);
6234 if (m == MEM_NIL && !SUBRP (obj))
6235 emacs_abort ();
6236 #endif /* GC_CHECK_MARKED_OBJECTS */
6238 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6239 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6240 >> PSEUDOVECTOR_AREA_BITS);
6241 else
6242 pvectype = PVEC_NORMAL_VECTOR;
6244 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6245 CHECK_LIVE (live_vector_p);
6247 switch (pvectype)
6249 case PVEC_BUFFER:
6250 #ifdef GC_CHECK_MARKED_OBJECTS
6252 struct buffer *b;
6253 FOR_EACH_BUFFER (b)
6254 if (b == po)
6255 break;
6256 if (b == NULL)
6257 emacs_abort ();
6259 #endif /* GC_CHECK_MARKED_OBJECTS */
6260 mark_buffer ((struct buffer *) ptr);
6261 break;
6263 case PVEC_COMPILED:
6264 /* Although we could treat this just like a vector, mark_compiled
6265 returns the COMPILED_CONSTANTS element, which is marked at the
6266 next iteration of goto-loop here. This is done to avoid a few
6267 recursive calls to mark_object. */
6268 obj = mark_compiled (ptr);
6269 if (!NILP (obj))
6270 goto loop;
6271 break;
6273 case PVEC_FRAME:
6275 struct frame *f = (struct frame *) ptr;
6277 mark_vectorlike (ptr);
6278 mark_face_cache (f->face_cache);
6279 #ifdef HAVE_WINDOW_SYSTEM
6280 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6282 struct font *font = FRAME_FONT (f);
6284 if (font && !VECTOR_MARKED_P (font))
6285 mark_vectorlike ((struct Lisp_Vector *) font);
6287 #endif
6289 break;
6291 case PVEC_WINDOW:
6293 struct window *w = (struct window *) ptr;
6295 mark_vectorlike (ptr);
6297 /* Mark glyph matrices, if any. Marking window
6298 matrices is sufficient because frame matrices
6299 use the same glyph memory. */
6300 if (w->current_matrix)
6302 mark_glyph_matrix (w->current_matrix);
6303 mark_glyph_matrix (w->desired_matrix);
6306 /* Filter out killed buffers from both buffer lists
6307 in attempt to help GC to reclaim killed buffers faster.
6308 We can do it elsewhere for live windows, but this is the
6309 best place to do it for dead windows. */
6310 wset_prev_buffers
6311 (w, mark_discard_killed_buffers (w->prev_buffers));
6312 wset_next_buffers
6313 (w, mark_discard_killed_buffers (w->next_buffers));
6315 break;
6317 case PVEC_HASH_TABLE:
6319 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6321 mark_vectorlike (ptr);
6322 mark_object (h->test.name);
6323 mark_object (h->test.user_hash_function);
6324 mark_object (h->test.user_cmp_function);
6325 /* If hash table is not weak, mark all keys and values.
6326 For weak tables, mark only the vector. */
6327 if (NILP (h->weak))
6328 mark_object (h->key_and_value);
6329 else
6330 VECTOR_MARK (XVECTOR (h->key_and_value));
6332 break;
6334 case PVEC_CHAR_TABLE:
6335 case PVEC_SUB_CHAR_TABLE:
6336 mark_char_table (ptr, (enum pvec_type) pvectype);
6337 break;
6339 case PVEC_BOOL_VECTOR:
6340 /* No Lisp_Objects to mark in a bool vector. */
6341 VECTOR_MARK (ptr);
6342 break;
6344 case PVEC_SUBR:
6345 break;
6347 case PVEC_FREE:
6348 emacs_abort ();
6350 default:
6351 mark_vectorlike (ptr);
6354 break;
6356 case Lisp_Symbol:
6358 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6359 nextsym:
6360 if (ptr->gcmarkbit)
6361 break;
6362 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6363 ptr->gcmarkbit = 1;
6364 /* Attempt to catch bogus objects. */
6365 eassert (valid_lisp_object_p (ptr->function));
6366 mark_object (ptr->function);
6367 mark_object (ptr->plist);
6368 switch (ptr->redirect)
6370 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6371 case SYMBOL_VARALIAS:
6373 Lisp_Object tem;
6374 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6375 mark_object (tem);
6376 break;
6378 case SYMBOL_LOCALIZED:
6379 mark_localized_symbol (ptr);
6380 break;
6381 case SYMBOL_FORWARDED:
6382 /* If the value is forwarded to a buffer or keyboard field,
6383 these are marked when we see the corresponding object.
6384 And if it's forwarded to a C variable, either it's not
6385 a Lisp_Object var, or it's staticpro'd already. */
6386 break;
6387 default: emacs_abort ();
6389 if (!PURE_P (XSTRING (ptr->name)))
6390 MARK_STRING (XSTRING (ptr->name));
6391 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6392 /* Inner loop to mark next symbol in this bucket, if any. */
6393 po = ptr = ptr->next;
6394 if (ptr)
6395 goto nextsym;
6397 break;
6399 case Lisp_Misc:
6400 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6402 if (XMISCANY (obj)->gcmarkbit)
6403 break;
6405 switch (XMISCTYPE (obj))
6407 case Lisp_Misc_Marker:
6408 /* DO NOT mark thru the marker's chain.
6409 The buffer's markers chain does not preserve markers from gc;
6410 instead, markers are removed from the chain when freed by gc. */
6411 XMISCANY (obj)->gcmarkbit = 1;
6412 break;
6414 case Lisp_Misc_Save_Value:
6415 XMISCANY (obj)->gcmarkbit = 1;
6416 mark_save_value (XSAVE_VALUE (obj));
6417 break;
6419 case Lisp_Misc_Overlay:
6420 mark_overlay (XOVERLAY (obj));
6421 break;
6423 case Lisp_Misc_Finalizer:
6424 XMISCANY (obj)->gcmarkbit = true;
6425 mark_object (XFINALIZER (obj)->function);
6426 break;
6428 #ifdef HAVE_MODULES
6429 case Lisp_Misc_User_Ptr:
6430 XMISCANY (obj)->gcmarkbit = true;
6431 break;
6432 #endif
6434 default:
6435 emacs_abort ();
6437 break;
6439 case Lisp_Cons:
6441 register struct Lisp_Cons *ptr = XCONS (obj);
6442 if (CONS_MARKED_P (ptr))
6443 break;
6444 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6445 CONS_MARK (ptr);
6446 /* If the cdr is nil, avoid recursion for the car. */
6447 if (EQ (ptr->u.cdr, Qnil))
6449 obj = ptr->car;
6450 cdr_count = 0;
6451 goto loop;
6453 mark_object (ptr->car);
6454 obj = ptr->u.cdr;
6455 cdr_count++;
6456 if (cdr_count == mark_object_loop_halt)
6457 emacs_abort ();
6458 goto loop;
6461 case Lisp_Float:
6462 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6463 FLOAT_MARK (XFLOAT (obj));
6464 break;
6466 case_Lisp_Int:
6467 break;
6469 default:
6470 emacs_abort ();
6473 #undef CHECK_LIVE
6474 #undef CHECK_ALLOCATED
6475 #undef CHECK_ALLOCATED_AND_LIVE
6477 /* Mark the Lisp pointers in the terminal objects.
6478 Called by Fgarbage_collect. */
6480 static void
6481 mark_terminals (void)
6483 struct terminal *t;
6484 for (t = terminal_list; t; t = t->next_terminal)
6486 eassert (t->name != NULL);
6487 #ifdef HAVE_WINDOW_SYSTEM
6488 /* If a terminal object is reachable from a stacpro'ed object,
6489 it might have been marked already. Make sure the image cache
6490 gets marked. */
6491 mark_image_cache (t->image_cache);
6492 #endif /* HAVE_WINDOW_SYSTEM */
6493 if (!VECTOR_MARKED_P (t))
6494 mark_vectorlike ((struct Lisp_Vector *)t);
6500 /* Value is non-zero if OBJ will survive the current GC because it's
6501 either marked or does not need to be marked to survive. */
6503 bool
6504 survives_gc_p (Lisp_Object obj)
6506 bool survives_p;
6508 switch (XTYPE (obj))
6510 case_Lisp_Int:
6511 survives_p = 1;
6512 break;
6514 case Lisp_Symbol:
6515 survives_p = XSYMBOL (obj)->gcmarkbit;
6516 break;
6518 case Lisp_Misc:
6519 survives_p = XMISCANY (obj)->gcmarkbit;
6520 break;
6522 case Lisp_String:
6523 survives_p = STRING_MARKED_P (XSTRING (obj));
6524 break;
6526 case Lisp_Vectorlike:
6527 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6528 break;
6530 case Lisp_Cons:
6531 survives_p = CONS_MARKED_P (XCONS (obj));
6532 break;
6534 case Lisp_Float:
6535 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6536 break;
6538 default:
6539 emacs_abort ();
6542 return survives_p || PURE_P (XPNTR (obj));
6548 NO_INLINE /* For better stack traces */
6549 static void
6550 sweep_conses (void)
6552 struct cons_block *cblk;
6553 struct cons_block **cprev = &cons_block;
6554 int lim = cons_block_index;
6555 EMACS_INT num_free = 0, num_used = 0;
6557 cons_free_list = 0;
6559 for (cblk = cons_block; cblk; cblk = *cprev)
6561 int i = 0;
6562 int this_free = 0;
6563 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6565 /* Scan the mark bits an int at a time. */
6566 for (i = 0; i < ilim; i++)
6568 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6570 /* Fast path - all cons cells for this int are marked. */
6571 cblk->gcmarkbits[i] = 0;
6572 num_used += BITS_PER_BITS_WORD;
6574 else
6576 /* Some cons cells for this int are not marked.
6577 Find which ones, and free them. */
6578 int start, pos, stop;
6580 start = i * BITS_PER_BITS_WORD;
6581 stop = lim - start;
6582 if (stop > BITS_PER_BITS_WORD)
6583 stop = BITS_PER_BITS_WORD;
6584 stop += start;
6586 for (pos = start; pos < stop; pos++)
6588 if (!CONS_MARKED_P (&cblk->conses[pos]))
6590 this_free++;
6591 cblk->conses[pos].u.chain = cons_free_list;
6592 cons_free_list = &cblk->conses[pos];
6593 cons_free_list->car = Vdead;
6595 else
6597 num_used++;
6598 CONS_UNMARK (&cblk->conses[pos]);
6604 lim = CONS_BLOCK_SIZE;
6605 /* If this block contains only free conses and we have already
6606 seen more than two blocks worth of free conses then deallocate
6607 this block. */
6608 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6610 *cprev = cblk->next;
6611 /* Unhook from the free list. */
6612 cons_free_list = cblk->conses[0].u.chain;
6613 lisp_align_free (cblk);
6615 else
6617 num_free += this_free;
6618 cprev = &cblk->next;
6621 total_conses = num_used;
6622 total_free_conses = num_free;
6625 NO_INLINE /* For better stack traces */
6626 static void
6627 sweep_floats (void)
6629 register struct float_block *fblk;
6630 struct float_block **fprev = &float_block;
6631 register int lim = float_block_index;
6632 EMACS_INT num_free = 0, num_used = 0;
6634 float_free_list = 0;
6636 for (fblk = float_block; fblk; fblk = *fprev)
6638 register int i;
6639 int this_free = 0;
6640 for (i = 0; i < lim; i++)
6641 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6643 this_free++;
6644 fblk->floats[i].u.chain = float_free_list;
6645 float_free_list = &fblk->floats[i];
6647 else
6649 num_used++;
6650 FLOAT_UNMARK (&fblk->floats[i]);
6652 lim = FLOAT_BLOCK_SIZE;
6653 /* If this block contains only free floats and we have already
6654 seen more than two blocks worth of free floats then deallocate
6655 this block. */
6656 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6658 *fprev = fblk->next;
6659 /* Unhook from the free list. */
6660 float_free_list = fblk->floats[0].u.chain;
6661 lisp_align_free (fblk);
6663 else
6665 num_free += this_free;
6666 fprev = &fblk->next;
6669 total_floats = num_used;
6670 total_free_floats = num_free;
6673 NO_INLINE /* For better stack traces */
6674 static void
6675 sweep_intervals (void)
6677 register struct interval_block *iblk;
6678 struct interval_block **iprev = &interval_block;
6679 register int lim = interval_block_index;
6680 EMACS_INT num_free = 0, num_used = 0;
6682 interval_free_list = 0;
6684 for (iblk = interval_block; iblk; iblk = *iprev)
6686 register int i;
6687 int this_free = 0;
6689 for (i = 0; i < lim; i++)
6691 if (!iblk->intervals[i].gcmarkbit)
6693 set_interval_parent (&iblk->intervals[i], interval_free_list);
6694 interval_free_list = &iblk->intervals[i];
6695 this_free++;
6697 else
6699 num_used++;
6700 iblk->intervals[i].gcmarkbit = 0;
6703 lim = INTERVAL_BLOCK_SIZE;
6704 /* If this block contains only free intervals and we have already
6705 seen more than two blocks worth of free intervals then
6706 deallocate this block. */
6707 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6709 *iprev = iblk->next;
6710 /* Unhook from the free list. */
6711 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6712 lisp_free (iblk);
6714 else
6716 num_free += this_free;
6717 iprev = &iblk->next;
6720 total_intervals = num_used;
6721 total_free_intervals = num_free;
6724 NO_INLINE /* For better stack traces */
6725 static void
6726 sweep_symbols (void)
6728 struct symbol_block *sblk;
6729 struct symbol_block **sprev = &symbol_block;
6730 int lim = symbol_block_index;
6731 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6733 symbol_free_list = NULL;
6735 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6736 lispsym[i].gcmarkbit = 0;
6738 for (sblk = symbol_block; sblk; sblk = *sprev)
6740 int this_free = 0;
6741 union aligned_Lisp_Symbol *sym = sblk->symbols;
6742 union aligned_Lisp_Symbol *end = sym + lim;
6744 for (; sym < end; ++sym)
6746 if (!sym->s.gcmarkbit)
6748 if (sym->s.redirect == SYMBOL_LOCALIZED)
6749 xfree (SYMBOL_BLV (&sym->s));
6750 sym->s.next = symbol_free_list;
6751 symbol_free_list = &sym->s;
6752 symbol_free_list->function = Vdead;
6753 ++this_free;
6755 else
6757 ++num_used;
6758 sym->s.gcmarkbit = 0;
6759 /* Attempt to catch bogus objects. */
6760 eassert (valid_lisp_object_p (sym->s.function));
6764 lim = SYMBOL_BLOCK_SIZE;
6765 /* If this block contains only free symbols and we have already
6766 seen more than two blocks worth of free symbols then deallocate
6767 this block. */
6768 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6770 *sprev = sblk->next;
6771 /* Unhook from the free list. */
6772 symbol_free_list = sblk->symbols[0].s.next;
6773 lisp_free (sblk);
6775 else
6777 num_free += this_free;
6778 sprev = &sblk->next;
6781 total_symbols = num_used;
6782 total_free_symbols = num_free;
6785 NO_INLINE /* For better stack traces. */
6786 static void
6787 sweep_misc (void)
6789 register struct marker_block *mblk;
6790 struct marker_block **mprev = &marker_block;
6791 register int lim = marker_block_index;
6792 EMACS_INT num_free = 0, num_used = 0;
6794 /* Put all unmarked misc's on free list. For a marker, first
6795 unchain it from the buffer it points into. */
6797 marker_free_list = 0;
6799 for (mblk = marker_block; mblk; mblk = *mprev)
6801 register int i;
6802 int this_free = 0;
6804 for (i = 0; i < lim; i++)
6806 if (!mblk->markers[i].m.u_any.gcmarkbit)
6808 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6809 unchain_marker (&mblk->markers[i].m.u_marker);
6810 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
6811 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
6812 #ifdef HAVE_MODULES
6813 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
6815 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
6816 uptr->finalizer (uptr->p);
6818 #endif
6819 /* Set the type of the freed object to Lisp_Misc_Free.
6820 We could leave the type alone, since nobody checks it,
6821 but this might catch bugs faster. */
6822 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6823 mblk->markers[i].m.u_free.chain = marker_free_list;
6824 marker_free_list = &mblk->markers[i].m;
6825 this_free++;
6827 else
6829 num_used++;
6830 mblk->markers[i].m.u_any.gcmarkbit = 0;
6833 lim = MARKER_BLOCK_SIZE;
6834 /* If this block contains only free markers and we have already
6835 seen more than two blocks worth of free markers then deallocate
6836 this block. */
6837 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6839 *mprev = mblk->next;
6840 /* Unhook from the free list. */
6841 marker_free_list = mblk->markers[0].m.u_free.chain;
6842 lisp_free (mblk);
6844 else
6846 num_free += this_free;
6847 mprev = &mblk->next;
6851 total_markers = num_used;
6852 total_free_markers = num_free;
6855 NO_INLINE /* For better stack traces */
6856 static void
6857 sweep_buffers (void)
6859 register struct buffer *buffer, **bprev = &all_buffers;
6861 total_buffers = 0;
6862 for (buffer = all_buffers; buffer; buffer = *bprev)
6863 if (!VECTOR_MARKED_P (buffer))
6865 *bprev = buffer->next;
6866 lisp_free (buffer);
6868 else
6870 VECTOR_UNMARK (buffer);
6871 /* Do not use buffer_(set|get)_intervals here. */
6872 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6873 total_buffers++;
6874 bprev = &buffer->next;
6878 /* Sweep: find all structures not marked, and free them. */
6879 static void
6880 gc_sweep (void)
6882 /* Remove or mark entries in weak hash tables.
6883 This must be done before any object is unmarked. */
6884 sweep_weak_hash_tables ();
6886 sweep_strings ();
6887 check_string_bytes (!noninteractive);
6888 sweep_conses ();
6889 sweep_floats ();
6890 sweep_intervals ();
6891 sweep_symbols ();
6892 sweep_misc ();
6893 sweep_buffers ();
6894 sweep_vectors ();
6895 check_string_bytes (!noninteractive);
6898 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6899 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6900 All values are in Kbytes. If there is no swap space,
6901 last two values are zero. If the system is not supported
6902 or memory information can't be obtained, return nil. */)
6903 (void)
6905 #if defined HAVE_LINUX_SYSINFO
6906 struct sysinfo si;
6907 uintmax_t units;
6909 if (sysinfo (&si))
6910 return Qnil;
6911 #ifdef LINUX_SYSINFO_UNIT
6912 units = si.mem_unit;
6913 #else
6914 units = 1;
6915 #endif
6916 return list4i ((uintmax_t) si.totalram * units / 1024,
6917 (uintmax_t) si.freeram * units / 1024,
6918 (uintmax_t) si.totalswap * units / 1024,
6919 (uintmax_t) si.freeswap * units / 1024);
6920 #elif defined WINDOWSNT
6921 unsigned long long totalram, freeram, totalswap, freeswap;
6923 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6924 return list4i ((uintmax_t) totalram / 1024,
6925 (uintmax_t) freeram / 1024,
6926 (uintmax_t) totalswap / 1024,
6927 (uintmax_t) freeswap / 1024);
6928 else
6929 return Qnil;
6930 #elif defined MSDOS
6931 unsigned long totalram, freeram, totalswap, freeswap;
6933 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6934 return list4i ((uintmax_t) totalram / 1024,
6935 (uintmax_t) freeram / 1024,
6936 (uintmax_t) totalswap / 1024,
6937 (uintmax_t) freeswap / 1024);
6938 else
6939 return Qnil;
6940 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6941 /* FIXME: add more systems. */
6942 return Qnil;
6943 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6946 /* Debugging aids. */
6948 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6949 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6950 This may be helpful in debugging Emacs's memory usage.
6951 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6952 (void)
6954 Lisp_Object end;
6956 #ifdef HAVE_NS
6957 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6958 XSETINT (end, 0);
6959 #else
6960 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6961 #endif
6963 return end;
6966 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6967 doc: /* Return a list of counters that measure how much consing there has been.
6968 Each of these counters increments for a certain kind of object.
6969 The counters wrap around from the largest positive integer to zero.
6970 Garbage collection does not decrease them.
6971 The elements of the value are as follows:
6972 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6973 All are in units of 1 = one object consed
6974 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6975 objects consed.
6976 MISCS include overlays, markers, and some internal types.
6977 Frames, windows, buffers, and subprocesses count as vectors
6978 (but the contents of a buffer's text do not count here). */)
6979 (void)
6981 return listn (CONSTYPE_HEAP, 8,
6982 bounded_number (cons_cells_consed),
6983 bounded_number (floats_consed),
6984 bounded_number (vector_cells_consed),
6985 bounded_number (symbols_consed),
6986 bounded_number (string_chars_consed),
6987 bounded_number (misc_objects_consed),
6988 bounded_number (intervals_consed),
6989 bounded_number (strings_consed));
6992 static bool
6993 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
6995 struct Lisp_Symbol *sym = XSYMBOL (symbol);
6996 Lisp_Object val = find_symbol_value (symbol);
6997 return (EQ (val, obj)
6998 || EQ (sym->function, obj)
6999 || (!NILP (sym->function)
7000 && COMPILEDP (sym->function)
7001 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7002 || (!NILP (val)
7003 && COMPILEDP (val)
7004 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7007 /* Find at most FIND_MAX symbols which have OBJ as their value or
7008 function. This is used in gdbinit's `xwhichsymbols' command. */
7010 Lisp_Object
7011 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7013 struct symbol_block *sblk;
7014 ptrdiff_t gc_count = inhibit_garbage_collection ();
7015 Lisp_Object found = Qnil;
7017 if (! DEADP (obj))
7019 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7021 Lisp_Object sym = builtin_lisp_symbol (i);
7022 if (symbol_uses_obj (sym, obj))
7024 found = Fcons (sym, found);
7025 if (--find_max == 0)
7026 goto out;
7030 for (sblk = symbol_block; sblk; sblk = sblk->next)
7032 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7033 int bn;
7035 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7037 if (sblk == symbol_block && bn >= symbol_block_index)
7038 break;
7040 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7041 if (symbol_uses_obj (sym, obj))
7043 found = Fcons (sym, found);
7044 if (--find_max == 0)
7045 goto out;
7051 out:
7052 unbind_to (gc_count, Qnil);
7053 return found;
7056 #ifdef SUSPICIOUS_OBJECT_CHECKING
7058 static void *
7059 find_suspicious_object_in_range (void *begin, void *end)
7061 char *begin_a = begin;
7062 char *end_a = end;
7063 int i;
7065 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7067 char *suspicious_object = suspicious_objects[i];
7068 if (begin_a <= suspicious_object && suspicious_object < end_a)
7069 return suspicious_object;
7072 return NULL;
7075 static void
7076 note_suspicious_free (void* ptr)
7078 struct suspicious_free_record* rec;
7080 rec = &suspicious_free_history[suspicious_free_history_index++];
7081 if (suspicious_free_history_index ==
7082 ARRAYELTS (suspicious_free_history))
7084 suspicious_free_history_index = 0;
7087 memset (rec, 0, sizeof (*rec));
7088 rec->suspicious_object = ptr;
7089 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7092 static void
7093 detect_suspicious_free (void* ptr)
7095 int i;
7097 eassert (ptr != NULL);
7099 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7100 if (suspicious_objects[i] == ptr)
7102 note_suspicious_free (ptr);
7103 suspicious_objects[i] = NULL;
7107 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7109 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7110 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7111 If Emacs is compiled with suspicious object checking, capture
7112 a stack trace when OBJ is freed in order to help track down
7113 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7114 (Lisp_Object obj)
7116 #ifdef SUSPICIOUS_OBJECT_CHECKING
7117 /* Right now, we care only about vectors. */
7118 if (VECTORLIKEP (obj))
7120 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7121 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7122 suspicious_object_index = 0;
7124 #endif
7125 return obj;
7128 #ifdef ENABLE_CHECKING
7130 bool suppress_checking;
7132 void
7133 die (const char *msg, const char *file, int line)
7135 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7136 file, line, msg);
7137 terminate_due_to_signal (SIGABRT, INT_MAX);
7140 #endif /* ENABLE_CHECKING */
7142 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7144 /* Debugging check whether STR is ASCII-only. */
7146 const char *
7147 verify_ascii (const char *str)
7149 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7150 while (ptr < end)
7152 int c = STRING_CHAR_ADVANCE (ptr);
7153 if (!ASCII_CHAR_P (c))
7154 emacs_abort ();
7156 return str;
7159 /* Stress alloca with inconveniently sized requests and check
7160 whether all allocated areas may be used for Lisp_Object. */
7162 NO_INLINE static void
7163 verify_alloca (void)
7165 int i;
7166 enum { ALLOCA_CHECK_MAX = 256 };
7167 /* Start from size of the smallest Lisp object. */
7168 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7170 void *ptr = alloca (i);
7171 make_lisp_ptr (ptr, Lisp_Cons);
7175 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7177 #define verify_alloca() ((void) 0)
7179 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7181 /* Initialization. */
7183 void
7184 init_alloc_once (void)
7186 /* Even though Qt's contents are not set up, its address is known. */
7187 Vpurify_flag = Qt;
7189 purebeg = PUREBEG;
7190 pure_size = PURESIZE;
7192 verify_alloca ();
7193 init_finalizer_list (&finalizers);
7194 init_finalizer_list (&doomed_finalizers);
7196 mem_init ();
7197 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7199 #ifdef DOUG_LEA_MALLOC
7200 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7201 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7202 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7203 #endif
7204 init_strings ();
7205 init_vectors ();
7207 refill_memory_reserve ();
7208 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7211 void
7212 init_alloc (void)
7214 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7215 setjmp_tested_p = longjmps_done = 0;
7216 #endif
7217 Vgc_elapsed = make_float (0.0);
7218 gcs_done = 0;
7220 #if USE_VALGRIND
7221 valgrind_p = RUNNING_ON_VALGRIND != 0;
7222 #endif
7225 void
7226 syms_of_alloc (void)
7228 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7229 doc: /* Number of bytes of consing between garbage collections.
7230 Garbage collection can happen automatically once this many bytes have been
7231 allocated since the last garbage collection. All data types count.
7233 Garbage collection happens automatically only when `eval' is called.
7235 By binding this temporarily to a large number, you can effectively
7236 prevent garbage collection during a part of the program.
7237 See also `gc-cons-percentage'. */);
7239 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7240 doc: /* Portion of the heap used for allocation.
7241 Garbage collection can happen automatically once this portion of the heap
7242 has been allocated since the last garbage collection.
7243 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7244 Vgc_cons_percentage = make_float (0.1);
7246 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7247 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7249 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7250 doc: /* Number of cons cells that have been consed so far. */);
7252 DEFVAR_INT ("floats-consed", floats_consed,
7253 doc: /* Number of floats that have been consed so far. */);
7255 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7256 doc: /* Number of vector cells that have been consed so far. */);
7258 DEFVAR_INT ("symbols-consed", symbols_consed,
7259 doc: /* Number of symbols that have been consed so far. */);
7260 symbols_consed += ARRAYELTS (lispsym);
7262 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7263 doc: /* Number of string characters that have been consed so far. */);
7265 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7266 doc: /* Number of miscellaneous objects that have been consed so far.
7267 These include markers and overlays, plus certain objects not visible
7268 to users. */);
7270 DEFVAR_INT ("intervals-consed", intervals_consed,
7271 doc: /* Number of intervals that have been consed so far. */);
7273 DEFVAR_INT ("strings-consed", strings_consed,
7274 doc: /* Number of strings that have been consed so far. */);
7276 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7277 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7278 This means that certain objects should be allocated in shared (pure) space.
7279 It can also be set to a hash-table, in which case this table is used to
7280 do hash-consing of the objects allocated to pure space. */);
7282 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7283 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7284 garbage_collection_messages = 0;
7286 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7287 doc: /* Hook run after garbage collection has finished. */);
7288 Vpost_gc_hook = Qnil;
7289 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7291 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7292 doc: /* Precomputed `signal' argument for memory-full error. */);
7293 /* We build this in advance because if we wait until we need it, we might
7294 not be able to allocate the memory to hold it. */
7295 Vmemory_signal_data
7296 = listn (CONSTYPE_PURE, 2, Qerror,
7297 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7299 DEFVAR_LISP ("memory-full", Vmemory_full,
7300 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7301 Vmemory_full = Qnil;
7303 DEFSYM (Qconses, "conses");
7304 DEFSYM (Qsymbols, "symbols");
7305 DEFSYM (Qmiscs, "miscs");
7306 DEFSYM (Qstrings, "strings");
7307 DEFSYM (Qvectors, "vectors");
7308 DEFSYM (Qfloats, "floats");
7309 DEFSYM (Qintervals, "intervals");
7310 DEFSYM (Qbuffers, "buffers");
7311 DEFSYM (Qstring_bytes, "string-bytes");
7312 DEFSYM (Qvector_slots, "vector-slots");
7313 DEFSYM (Qheap, "heap");
7314 DEFSYM (Qautomatic_gc, "Automatic GC");
7316 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7317 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7319 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7320 doc: /* Accumulated time elapsed in garbage collections.
7321 The time is in seconds as a floating point value. */);
7322 DEFVAR_INT ("gcs-done", gcs_done,
7323 doc: /* Accumulated number of garbage collections done. */);
7325 defsubr (&Scons);
7326 defsubr (&Slist);
7327 defsubr (&Svector);
7328 defsubr (&Sbool_vector);
7329 defsubr (&Smake_byte_code);
7330 defsubr (&Smake_list);
7331 defsubr (&Smake_vector);
7332 defsubr (&Smake_string);
7333 defsubr (&Smake_bool_vector);
7334 defsubr (&Smake_symbol);
7335 defsubr (&Smake_marker);
7336 defsubr (&Smake_finalizer);
7337 defsubr (&Spurecopy);
7338 defsubr (&Sgarbage_collect);
7339 defsubr (&Smemory_limit);
7340 defsubr (&Smemory_info);
7341 defsubr (&Smemory_use_counts);
7342 defsubr (&Ssuspicious_object);
7345 /* When compiled with GCC, GDB might say "No enum type named
7346 pvec_type" if we don't have at least one symbol with that type, and
7347 then xbacktrace could fail. Similarly for the other enums and
7348 their values. Some non-GCC compilers don't like these constructs. */
7349 #ifdef __GNUC__
7350 union
7352 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7353 enum char_table_specials char_table_specials;
7354 enum char_bits char_bits;
7355 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7356 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7357 enum Lisp_Bits Lisp_Bits;
7358 enum Lisp_Compiled Lisp_Compiled;
7359 enum maxargs maxargs;
7360 enum MAX_ALLOCA MAX_ALLOCA;
7361 enum More_Lisp_Bits More_Lisp_Bits;
7362 enum pvec_type pvec_type;
7363 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7364 #endif /* __GNUC__ */