1 /* Low-level bidirectional buffer/string-scanning functions for GNU Emacs.
2 Copyright (C) 2000-2001, 2004-2005, 2009-2015 Free Software
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20 /* Written by Eli Zaretskii <eliz@gnu.org>.
22 A sequential implementation of the Unicode Bidirectional algorithm,
23 (UBA) as per UAX#9, a part of the Unicode Standard.
25 Unlike the Reference Implementation and most other implementations,
26 this one is designed to be called once for every character in the
27 buffer or string. That way, we can leave intact the design of the
28 Emacs display engine, whereby an iterator object is used to
29 traverse buffer or string text character by character, and generate
30 the necessary data for displaying each character in 'struct glyph'
31 objects. (See xdisp.c for the details of that iteration.) The
32 functions on this file replace the original linear iteration in the
33 logical order of the text with a non-linear iteration in the visual
34 order, i.e. in the order characters should be shown on display.
36 The main entry point is bidi_move_to_visually_next. Each time it
37 is called, it finds the next character in the visual order, and
38 returns its information in a special structure. The caller is then
39 expected to process this character for display or any other
40 purposes, and call bidi_move_to_visually_next for the next
41 character. See the comments in bidi_move_to_visually_next for more
42 details about its algorithm that finds the next visual-order
43 character by resolving their levels on the fly.
45 Two other entry points are bidi_paragraph_init and
46 bidi_mirror_char. The first determines the base direction of a
47 paragraph, while the second returns the mirrored version of its
50 A few auxiliary entry points are used to initialize the bidi
51 iterator for iterating an object (buffer or string), push and pop
52 the bidi iterator state, and save and restore the state of the bidi
55 If you want to understand the code, you will have to read it
56 together with the relevant portions of UAX#9. The comments include
57 references to UAX#9 rules, for that very reason.
59 A note about references to UAX#9 rules: if the reference says
60 something like "X9/Retaining", it means that you need to refer to
61 rule X9 and to its modifications described in the "Implementation
62 Notes" section of UAX#9, under "Retaining Format Codes".
64 Here's the overview of the design of the reordering engine
65 implemented by this file.
67 Basic implementation structure
68 ------------------------------
70 The sequential processing steps described by UAX#9 are implemented
71 as recursive levels of processing, all of which examine the next
72 character in the logical order. This hierarchy of processing looks
73 as follows, from the innermost (deepest) to the outermost level,
74 omitting some subroutines used by each level:
76 bidi_fetch_char -- fetch next character
77 bidi_resolve_explicit -- resolve explicit levels and directions
78 bidi_resolve_weak -- resolve weak types
79 bidi_resolve_brackets -- resolve "paired brackets" neutral types
80 bidi_resolve_neutral -- resolve neutral types
81 bidi_level_of_next_char -- resolve implicit levels
83 Each level calls the level below it, and works on the result
84 returned by the lower level, including all of its sub-levels.
86 Unlike all the levels below it, bidi_level_of_next_char can return
87 the information about either the next or previous character in the
88 logical order, depending on the current direction of scanning the
89 buffer or string. For the next character, it calls all the levels
90 below it; for the previous character, it uses the cache, described
93 Thus, the result of calling bidi_level_of_next_char is the resolved
94 level of the next or the previous character in the logical order.
95 Based on this information, the function bidi_move_to_visually_next
96 finds the next character in the visual order and updates the
97 direction in which the buffer is scanned, either forward or
98 backward, to find the next character to be displayed. (Text is
99 scanned backwards when it needs to be reversed for display, i.e. if
100 the visual order is the inverse of the logical order.) This
101 implements the last, reordering steps of the UBA, by successively
102 calling bidi_level_of_next_char until the character of the required
103 embedding level is found; the scan direction is dynamically updated
104 as a side effect. See the commentary before the 'while' loop in
105 bidi_move_to_visually_next, for the details.
110 In a nutshell, fetching the next character boils down to calling
111 STRING_CHAR_AND_LENGTH, passing it the address of a buffer or
112 string position. See bidi_fetch_char. However, if the next
113 character is "covered" by a display property of some kind,
114 bidi_fetch_char returns the u+FFFC "object replacement character"
115 that represents the entire run of text covered by the display
116 property. (The ch_len and nchars members of 'struct bidi_it'
117 reflect the length in bytes and characters of that text.) This is
118 so we reorder text on both sides of the display property as
119 appropriate for an image or embedded string. Similarly, text
120 covered by a display spec of the form '(space ...)', is replaced
121 with the u+2029 paragraph separator character, so such display
122 specs produce the same effect as a TAB under UBA. Both these
123 special characters are not actually displayed -- the display
124 property is displayed instead -- but just used to compute the
125 embedding level of the surrounding text so as to produce the
131 The UBA is highly context dependent in some of its parts,
132 i.e. results of processing a character can generally depend on
133 characters very far away. The UAX#9 description of the UBA
134 prescribes a stateful processing of each character, whereby the
135 results of this processing depend on various state variables, such
136 as the current embedding level, level stack, and directional
137 override status. In addition, the UAX#9 description includes many
138 passages like this (from rule W2 in this case):
140 Search backward from each instance of a European number until the
141 first strong type (R, L, AL, or sos) is found. If an AL is found,
142 change the type of the European number to Arabic number.
144 To support this, we use a bidi iterator object, 'struct bidi_it',
145 which is a sub-structure of 'struct it' used by xdisp.c (see
146 dispextern.h for the definition of both of these structures). The
147 bidi iterator holds the entire state of the iteration required by
148 the UBA, and is updated as the text is traversed. In particular,
149 the embedding level of the current character being resolved is
150 recorded in the iterator state. To avoid costly searches backward
151 in support of rules like W2 above, the necessary character types
152 are also recorded in the iterator state as they are found during
153 the forward scan, and then used when such rules need to be applied.
154 (Forward scans cannot be avoided in this way; they need to be
155 performed at least once, and the results recorded in the iterator
156 state, to be reused until the forward scan oversteps the recorded
159 In this manner, the iterator state acts as a mini-cache of
160 contextual information required for resolving the level of the
161 current character by various UBA rules.
163 Caching of bidi iterator states
164 -------------------------------
166 As described above, the reordering engine uses the information
167 recorded in the bidi iterator state in order to resolve the
168 embedding level of the current character. When the reordering
169 engine needs to process the next character in the logical order, it
170 fetches it and applies to it all the UBA levels, updating the
171 iterator state as it goes. But when the buffer or string is
172 scanned backwards, i.e. in the reverse order of buffer/string
173 positions, the scanned characters were already processed during the
174 preceding forward scan (see bidi_find_other_level_edge). To avoid
175 costly re-processing of characters that were already processed
176 during the forward scan, the iterator states computed while
177 scanning forward are cached.
179 The cache is just a linear array of 'struct bidi_it' objects, which
180 is dynamically allocated and reallocated as needed, since the size
181 of the cache depends on the text being processed. We only need the
182 cache while processing embedded levels higher than the base
183 paragraph embedding level, because these higher levels require
184 changes in scan direction. Therefore, as soon as we are back to
185 the base embedding level, we can free the cache; see the calls to
186 bidi_cache_reset and bidi_cache_shrink, for the conditions to do
189 The cache maintains the index of the next unused cache slot -- this
190 is where the next iterator state will be cached. The function
191 bidi_cache_iterator_state saves an instance of the state in the
192 cache and increments the unused slot index. The companion function
193 bidi_cache_find looks up a cached state that corresponds to a given
194 buffer/string position. All of the cached states must correspond
195 1:1 to the buffer or string region whose processing they reflect;
196 bidi.c will abort if it finds cache slots that violate this 1:1
199 When the parent iterator 'struct it' is pushed (see push_it in
200 xdisp.c) to pause the current iteration and start iterating over a
201 different object (e.g., a 'display' string that covers some buffer
202 text), the bidi iterator cache needs to be "pushed" as well, so
203 that a new empty cache could be used while iterating over the new
204 object. Later, when the new object is exhausted, and xdisp.c calls
205 pop_it, we need to "pop" the bidi cache as well and return to the
206 original cache. See bidi_push_it and bidi_pop_it for how this is
209 Some functions of the display engine save copies of 'struct it' in
210 local variables, and restore them later. For examples, see
211 pos_visible_p and move_it_in_display_line_to in xdisp.c, and
212 window_scroll_pixel_based in window.c. When this happens, we need
213 to save and restore the bidi cache as well, because conceptually
214 the cache is part of the 'struct it' state, and needs to be in
215 perfect sync with the portion of the buffer/string that is being
216 processed. This saving and restoring of the cache state is handled
217 by bidi_shelve_cache and bidi_unshelve_cache, and the helper macros
218 SAVE_IT and RESTORE_IT defined on xdisp.c.
220 Note that, because reordering is implemented below the level in
221 xdisp.c that breaks glyphs into screen lines, we are violating
222 paragraph 3.4 of UAX#9. which mandates that line breaking shall be
223 done before reordering each screen line separately. However,
224 following UAX#9 to the letter in this matter goes against the basic
225 design of the Emacs display engine, and so we choose here this
226 minor deviation from the UBA letter in preference to redesign of
227 the display engine. The effect of this is only seen in continued
228 lines that are broken into screen lines in the middle of a run
229 whose direction is opposite to the paragraph's base direction.
231 Important design and implementation note: when the code needs to
232 scan far ahead, be sure to avoid such scans as much as possible
233 when the buffer/string doesn't contain any RTL characters. Users
234 of left-to-right scripts will never forgive you if you introduce
235 some slow-down due to bidi in situations that don't involve any
236 bidirectional text. See the large comment near the beginning of
237 bidi_resolve_neutral, for one situation where such shortcut was
244 #include "character.h"
246 #include "dispextern.h"
247 #include "region-cache.h"
249 static bool bidi_initialized
= 0;
251 static Lisp_Object bidi_type_table
, bidi_mirror_table
, bidi_brackets_table
;
253 #define BIDI_EOB (-1)
255 /* Data type for describing the bidirectional character categories. */
264 static Lisp_Object paragraph_start_re
, paragraph_separate_re
;
267 /***********************************************************************
269 ***********************************************************************/
271 /* Return the bidi type of a character CH, subject to the current
272 directional OVERRIDE. */
274 bidi_get_type (int ch
, bidi_dir_t override
)
276 bidi_type_t default_type
;
280 if (ch
< 0 || ch
> MAX_CHAR
)
283 default_type
= (bidi_type_t
) XINT (CHAR_TABLE_REF (bidi_type_table
, ch
));
284 /* Every valid character code, even those that are unassigned by the
285 UCD, have some bidi-class property, according to
286 DerivedBidiClass.txt file. Therefore, if we ever get UNKNOWN_BT
287 (= zero) code from CHAR_TABLE_REF, that's a bug. */
288 if (default_type
== UNKNOWN_BT
)
291 switch (default_type
)
308 else if (override
== R2L
)
316 bidi_check_type (bidi_type_t type
)
318 eassert (UNKNOWN_BT
<= type
&& type
<= NEUTRAL_ON
);
321 /* Given a bidi TYPE of a character, return its category. */
322 static bidi_category_t
323 bidi_get_category (bidi_type_t type
)
355 return EXPLICIT_FORMATTING
;
362 bidi_isolate_fmt_char (bidi_type_t ch_type
)
364 return (ch_type
== LRI
|| ch_type
== RLI
|| ch_type
== PDI
|| ch_type
== FSI
);
367 /* Return the mirrored character of C, if it has one. If C has no
368 mirrored counterpart, return C.
369 Note: The conditions in UAX#9 clause L4 regarding the surrounding
370 context must be tested by the caller. */
372 bidi_mirror_char (int c
)
378 if (c
< 0 || c
> MAX_CHAR
)
381 val
= CHAR_TABLE_REF (bidi_mirror_table
, c
);
386 /* When debugging, check before assigning to V, so that the check
387 isn't broken by undefined behavior due to int overflow. */
388 eassert (CHAR_VALID_P (XINT (val
)));
392 /* Minimal test we must do in optimized builds, to prevent weird
393 crashes further down the road. */
394 if (v
< 0 || v
> MAX_CHAR
)
403 /* Return the Bidi_Paired_Bracket_Type property of the character C. */
404 static bidi_bracket_type_t
405 bidi_paired_bracket_type (int c
)
408 return BIDI_BRACKET_NONE
;
409 if (c
< 0 || c
> MAX_CHAR
)
412 return (bidi_bracket_type_t
) XINT (CHAR_TABLE_REF (bidi_brackets_table
, c
));
415 /* Determine the start-of-sequence (sos) directional type given the two
416 embedding levels on either side of the run boundary. Also, update
417 the saved info about previously seen characters, since that info is
418 generally valid for a single level run. */
420 bidi_set_sos_type (struct bidi_it
*bidi_it
, int level_before
, int level_after
)
422 int higher_level
= (level_before
> level_after
? level_before
: level_after
);
424 /* FIXME: should the default sos direction be user selectable? */
425 bidi_it
->sos
= ((higher_level
& 1) != 0 ? R2L
: L2R
); /* X10 */
427 bidi_it
->prev
.type
= UNKNOWN_BT
;
428 bidi_it
->last_strong
.type
= bidi_it
->last_strong
.orig_type
= UNKNOWN_BT
;
429 bidi_it
->prev_for_neutral
.type
= (bidi_it
->sos
== R2L
? STRONG_R
: STRONG_L
);
430 bidi_it
->prev_for_neutral
.charpos
= bidi_it
->charpos
;
431 bidi_it
->next_for_neutral
.type
432 = bidi_it
->next_for_neutral
.orig_type
= UNKNOWN_BT
;
435 #define ISOLATE_STATUS(BIDI_IT, IDX) ((BIDI_IT)->level_stack[IDX].flags & 1)
436 #define OVERRIDE(BIDI_IT, IDX) (((BIDI_IT)->level_stack[IDX].flags >> 1) & 3)
438 /* Push the current embedding level and override status; reset the
439 current level to LEVEL and the current override status to OVERRIDE. */
441 bidi_push_embedding_level (struct bidi_it
*bidi_it
,
442 int level
, bidi_dir_t override
, bool isolate_status
)
444 struct bidi_stack
*st
;
445 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
447 bidi_it
->stack_idx
++;
448 eassert (bidi_it
->stack_idx
< BIDI_MAXDEPTH
+2+1);
449 st
= &bidi_it
->level_stack
[bidi_it
->stack_idx
];
450 eassert (level
<= (1 << 7));
452 st
->flags
= (((override
& 3) << 1) | (isolate_status
!= 0));
455 st
->last_strong_type
= bidi_it
->last_strong
.type
;
456 st
->prev_for_neutral_type
= bidi_it
->prev_for_neutral
.type
;
457 st
->next_for_neutral_type
= bidi_it
->next_for_neutral
.type
;
458 st
->next_for_neutral_pos
= bidi_it
->next_for_neutral
.charpos
;
459 st
->flags
|= ((bidi_it
->sos
== L2R
? 0 : 1) << 3);
461 /* We've got a new isolating sequence, compute the directional type
462 of sos and initialize per-sequence variables (UAX#9, clause X10). */
463 bidi_set_sos_type (bidi_it
, prev_level
, level
);
466 /* Pop from the stack the embedding level, the directional override
467 status, and optionally saved information for the isolating run
468 sequence. Return the new level. */
470 bidi_pop_embedding_level (struct bidi_it
*bidi_it
)
474 /* UAX#9 says to ignore invalid PDFs (X7, last bullet)
475 and PDIs (X6a, 2nd bullet). */
476 if (bidi_it
->stack_idx
> 0)
478 bool isolate_status
= ISOLATE_STATUS (bidi_it
, bidi_it
->stack_idx
);
479 int old_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
481 struct bidi_stack st
;
483 st
= bidi_it
->level_stack
[bidi_it
->stack_idx
];
486 bidi_dir_t sos
= ((st
.flags
>> 3) & 1);
487 /* PREV is used in W1 for resolving WEAK_NSM. By the time
488 we get to an NSM, we must have gotten past at least one
489 character: the PDI that ends the isolate from which we
490 are popping here. So PREV will have been filled up by
491 the time we first use it. We initialize it here to
492 UNKNOWN_BT to be able to catch any blunders in this
494 bidi_it
->prev
.orig_type
= bidi_it
->prev
.type
= UNKNOWN_BT
;
495 bidi_it
->last_strong
.type
= st
.last_strong_type
;
496 bidi_it
->prev_for_neutral
.type
= st
.prev_for_neutral_type
;
497 bidi_it
->next_for_neutral
.type
= st
.next_for_neutral_type
;
498 bidi_it
->next_for_neutral
.charpos
= st
.next_for_neutral_pos
;
499 bidi_it
->sos
= (sos
== 0 ? L2R
: R2L
);
502 bidi_set_sos_type (bidi_it
, old_level
,
503 bidi_it
->level_stack
[bidi_it
->stack_idx
- 1].level
);
505 bidi_it
->stack_idx
--;
507 level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
508 eassert (0 <= level
&& level
<= BIDI_MAXDEPTH
+ 1);
512 /* Record in SAVED_INFO the information about the current character. */
514 bidi_remember_char (struct bidi_saved_info
*saved_info
,
515 struct bidi_it
*bidi_it
, bool from_type
)
517 saved_info
->charpos
= bidi_it
->charpos
;
519 saved_info
->type
= bidi_it
->type
;
521 saved_info
->type
= bidi_it
->type_after_wn
;
522 bidi_check_type (saved_info
->type
);
523 saved_info
->orig_type
= bidi_it
->orig_type
;
524 bidi_check_type (saved_info
->orig_type
);
527 /* Copy the bidi iterator from FROM to TO. To save cycles, this only
528 copies the part of the level stack that is actually in use. */
530 bidi_copy_it (struct bidi_it
*to
, struct bidi_it
*from
)
532 /* Copy everything from the start through the active part of
535 (offsetof (struct bidi_it
, level_stack
[1])
536 + from
->stack_idx
* sizeof from
->level_stack
[0]));
540 /***********************************************************************
541 Caching the bidi iterator states
542 ***********************************************************************/
544 /* We allocate and de-allocate the cache in chunks of this size (in
545 characters). 200 was chosen as an upper limit for reasonably-long
546 lines in a text file/buffer. */
547 #define BIDI_CACHE_CHUNK 200
548 /* Maximum size we allow the cache to become, per iterator stack slot,
549 in units of struct bidi_it size. If we allow unlimited growth, we
550 could run out of memory for pathologically long bracketed text or
551 very long text lines that need to be reordered. This is aggravated
552 when word-wrap is in effect, since then functions display_line and
553 move_it_in_display_line_to need to keep up to 4 copies of the
556 This limitation means there can be no more than that amount of
557 contiguous RTL text on any single physical line in a LTR paragraph,
558 and similarly with contiguous LTR + numeric text in a RTL
559 paragraph. (LTR text in a LTR paragraph and RTL text in a RTL
560 paragraph are not reordered, and so don't need the cache, and
561 cannot hit this limit.) More importantly, no single line can have
562 text longer than this inside paired brackets (because bracket pairs
563 resolution uses the cache). If the limit is exceeded, the fallback
564 code will produce visual order that will be incorrect if there are
565 RTL characters in the offending line of text. */
566 /* Do we need to allow customization of this limit? */
567 #define BIDI_CACHE_MAX_ELTS_PER_SLOT 50000
568 #if BIDI_CACHE_CHUNK >= BIDI_CACHE_MAX_ELTS_PER_SLOT
569 # error BIDI_CACHE_CHUNK must be less than BIDI_CACHE_MAX_ELTS_PER_SLOT
571 static ptrdiff_t bidi_cache_max_elts
= BIDI_CACHE_MAX_ELTS_PER_SLOT
;
572 static struct bidi_it
*bidi_cache
;
573 static ptrdiff_t bidi_cache_size
= 0;
574 enum { elsz
= sizeof (struct bidi_it
) };
575 static ptrdiff_t bidi_cache_idx
; /* next unused cache slot */
576 static ptrdiff_t bidi_cache_last_idx
; /* slot of last cache hit */
577 static ptrdiff_t bidi_cache_start
= 0; /* start of cache for this
580 /* 5-slot stack for saving the start of the previous level of the
581 cache. xdisp.c maintains a 5-slot stack for its iterator state,
582 and we need the same size of our stack. */
583 static ptrdiff_t bidi_cache_start_stack
[IT_STACK_SIZE
];
584 static int bidi_cache_sp
;
586 /* Size of header used by bidi_shelve_cache. */
589 bidi_shelve_header_size
590 = (sizeof (bidi_cache_idx
) + sizeof (bidi_cache_start_stack
)
591 + sizeof (bidi_cache_sp
) + sizeof (bidi_cache_start
)
592 + sizeof (bidi_cache_last_idx
) + sizeof (bidi_cache_max_elts
))
595 /* Effectively remove the cached states beyond the Nth state from the
596 part of the cache relevant to iteration of the current object
597 (buffer or string). */
599 bidi_cache_reset_to (int n
)
601 bidi_cache_idx
= bidi_cache_start
+ n
;
602 bidi_cache_last_idx
= -1;
605 /* Reset the cache state to the empty state. We only reset the part
606 of the cache relevant to iteration of the current object. Previous
607 objects, which are pushed on the display iterator's stack, are left
608 intact. This is called when the cached information is no more
609 useful for the current iteration, e.g. when we were reseated to a
610 new position on the same object. */
612 bidi_cache_reset (void)
614 bidi_cache_reset_to (0);
617 /* Shrink the cache to its minimal size. Called when we init the bidi
618 iterator for reordering a buffer or a string that does not come
619 from display properties, because that means all the previously
620 cached info is of no further use. */
622 bidi_cache_shrink (void)
624 if (bidi_cache_size
> BIDI_CACHE_CHUNK
)
626 bidi_cache
= xrealloc (bidi_cache
, BIDI_CACHE_CHUNK
* elsz
);
627 bidi_cache_size
= BIDI_CACHE_CHUNK
;
630 bidi_cache_max_elts
= BIDI_CACHE_MAX_ELTS_PER_SLOT
;
634 bidi_cache_fetch_state (ptrdiff_t idx
, struct bidi_it
*bidi_it
)
636 int current_scan_dir
= bidi_it
->scan_dir
;
638 if (idx
< bidi_cache_start
|| idx
>= bidi_cache_idx
)
641 bidi_copy_it (bidi_it
, &bidi_cache
[idx
]);
642 bidi_it
->scan_dir
= current_scan_dir
;
643 bidi_cache_last_idx
= idx
;
646 /* Find a cached state with a given CHARPOS and resolved embedding
647 level less or equal to LEVEL. If LEVEL is -1, disregard the
648 resolved levels in cached states. DIR, if non-zero, means search
649 in that direction from the last cache hit.
651 Value is the index of the cached state, or -1 if not found. */
653 bidi_cache_search (ptrdiff_t charpos
, int level
, int dir
)
655 ptrdiff_t i
, i_start
;
657 if (bidi_cache_idx
> bidi_cache_start
)
659 if (bidi_cache_last_idx
== -1)
660 bidi_cache_last_idx
= bidi_cache_idx
- 1;
661 if (charpos
< bidi_cache
[bidi_cache_last_idx
].charpos
)
664 i_start
= bidi_cache_last_idx
- 1;
666 else if (charpos
> (bidi_cache
[bidi_cache_last_idx
].charpos
667 + bidi_cache
[bidi_cache_last_idx
].nchars
- 1))
670 i_start
= bidi_cache_last_idx
+ 1;
673 i_start
= bidi_cache_last_idx
;
677 i_start
= bidi_cache_idx
- 1;
682 /* Linear search for now; FIXME! */
683 for (i
= i_start
; i
>= bidi_cache_start
; i
--)
684 if (bidi_cache
[i
].charpos
<= charpos
685 && charpos
< bidi_cache
[i
].charpos
+ bidi_cache
[i
].nchars
686 && (level
== -1 || bidi_cache
[i
].resolved_level
<= level
))
691 for (i
= i_start
; i
< bidi_cache_idx
; i
++)
692 if (bidi_cache
[i
].charpos
<= charpos
693 && charpos
< bidi_cache
[i
].charpos
+ bidi_cache
[i
].nchars
694 && (level
== -1 || bidi_cache
[i
].resolved_level
<= level
))
702 /* Find a cached state where the resolved level changes to a value
703 that is lower than LEVEL, and return its cache slot index. DIR is
704 the direction to search, starting with the last used cache slot.
705 If DIR is zero, we search backwards from the last occupied cache
706 slot. BEFORE means return the index of the slot that
707 is ``before'' the level change in the search direction. That is,
708 given the cached levels like this:
713 and assuming we are at the position cached at the slot marked with
714 C, searching backwards (DIR = -1) for LEVEL = 2 will return the
715 index of slot B or A, depending whether BEFORE is, respectively,
718 bidi_cache_find_level_change (int level
, int dir
, bool before
)
722 ptrdiff_t i
= dir
? bidi_cache_last_idx
: bidi_cache_idx
- 1;
723 int incr
= before
? 1 : 0;
725 if (i
< 0) /* cache overflowed? */
735 while (i
>= bidi_cache_start
+ incr
)
737 if (bidi_cache
[i
- incr
].resolved_level
>= 0
738 && bidi_cache
[i
- incr
].resolved_level
< level
)
745 while (i
< bidi_cache_idx
- incr
)
747 if (bidi_cache
[i
+ incr
].resolved_level
>= 0
748 && bidi_cache
[i
+ incr
].resolved_level
< level
)
759 bidi_cache_ensure_space (ptrdiff_t idx
)
761 /* Enlarge the cache as needed. */
762 if (idx
>= bidi_cache_size
)
764 ptrdiff_t chunk_size
= BIDI_CACHE_CHUNK
;
766 if (bidi_cache_size
> bidi_cache_max_elts
- chunk_size
)
767 chunk_size
= bidi_cache_max_elts
- bidi_cache_size
;
770 bidi_cache_size
+ chunk_size
) <= bidi_cache_max_elts
)
772 /* The bidi cache cannot be larger than the largest Lisp
774 ptrdiff_t string_or_buffer_bound
775 = max (BUF_BYTES_MAX
, STRING_BYTES_BOUND
);
777 /* Also, it cannot be larger than what C can represent. */
779 = (min (PTRDIFF_MAX
, SIZE_MAX
) - bidi_shelve_header_size
) / elsz
;
780 ptrdiff_t max_elts
= bidi_cache_max_elts
;
782 max_elts
= min (max_elts
, min (string_or_buffer_bound
, c_bound
));
784 /* Force xpalloc not to over-allocate by passing it MAX_ELTS
785 as its 4th argument. */
786 bidi_cache
= xpalloc (bidi_cache
, &bidi_cache_size
,
787 max (chunk_size
, idx
- bidi_cache_size
+ 1),
789 eassert (bidi_cache_size
> idx
);
795 bidi_cache_iterator_state (struct bidi_it
*bidi_it
, bool resolved
,
800 /* We should never cache on backward scans. */
801 if (bidi_it
->scan_dir
== -1)
803 idx
= bidi_cache_search (bidi_it
->charpos
, -1, 1);
805 if (idx
< 0 && update_only
)
810 idx
= bidi_cache_idx
;
811 bidi_cache_ensure_space (idx
);
812 /* Character positions should correspond to cache positions 1:1.
813 If we are outside the range of cached positions, the cache is
814 useless and must be reset. */
815 if (bidi_cache_start
< idx
&& idx
< bidi_cache_size
816 && (bidi_it
->charpos
> (bidi_cache
[idx
- 1].charpos
817 + bidi_cache
[idx
- 1].nchars
)
818 || bidi_it
->charpos
< bidi_cache
[bidi_cache_start
].charpos
))
821 idx
= bidi_cache_start
;
823 if (bidi_it
->nchars
<= 0)
825 /* Don't cache if no available space in the cache. */
826 if (bidi_cache_size
> idx
)
828 bidi_copy_it (&bidi_cache
[idx
], bidi_it
);
830 bidi_cache
[idx
].resolved_level
= -1;
835 /* Copy only the members which could have changed, to avoid
836 costly copying of the entire struct. */
837 bidi_cache
[idx
].type
= bidi_it
->type
;
838 bidi_check_type (bidi_it
->type
);
839 bidi_cache
[idx
].type_after_wn
= bidi_it
->type_after_wn
;
840 bidi_check_type (bidi_it
->type_after_wn
);
842 bidi_cache
[idx
].resolved_level
= bidi_it
->resolved_level
;
844 bidi_cache
[idx
].resolved_level
= -1;
845 bidi_cache
[idx
].invalid_levels
= bidi_it
->invalid_levels
;
846 bidi_cache
[idx
].next_for_neutral
= bidi_it
->next_for_neutral
;
847 bidi_cache
[idx
].next_for_ws
= bidi_it
->next_for_ws
;
848 bidi_cache
[idx
].disp_pos
= bidi_it
->disp_pos
;
849 bidi_cache
[idx
].disp_prop
= bidi_it
->disp_prop
;
850 bidi_cache
[idx
].bracket_pairing_pos
= bidi_it
->bracket_pairing_pos
;
851 bidi_cache
[idx
].bracket_enclosed_type
= bidi_it
->bracket_enclosed_type
;
854 if (bidi_cache_size
> idx
)
856 bidi_cache_last_idx
= idx
;
857 if (idx
>= bidi_cache_idx
)
858 bidi_cache_idx
= idx
+ 1;
863 /* The cache overflowed. */
864 bidi_cache_last_idx
= -1;
869 /* Look for a cached iterator state that corresponds to CHARPOS. If
870 found, copy the cached state into BIDI_IT and return the type of
871 the cached entry. If not found, return UNKNOWN_BT. RESOLVED_ONLY
872 zero means it is OK to return cached states that were not fully
873 resolved yet. This can happen if the state was cached before it
874 was resolved in bidi_resolve_neutral. */
876 bidi_cache_find (ptrdiff_t charpos
, bool resolved_only
, struct bidi_it
*bidi_it
)
878 ptrdiff_t i
= bidi_cache_search (charpos
, -1, bidi_it
->scan_dir
);
880 if (i
>= bidi_cache_start
882 /* Callers that want only fully resolved states (and set
883 resolved_only = true) need to be sure that there's enough
884 info in the cached state to return the state as final,
885 and if not, they don't want the cached state. */
886 || bidi_cache
[i
].resolved_level
>= 0))
888 bidi_dir_t current_scan_dir
= bidi_it
->scan_dir
;
890 bidi_copy_it (bidi_it
, &bidi_cache
[i
]);
891 bidi_cache_last_idx
= i
;
892 /* Don't let scan direction from the cached state override
893 the current scan direction. */
894 bidi_it
->scan_dir
= current_scan_dir
;
895 return bidi_it
->type
;
902 bidi_peek_at_next_level (struct bidi_it
*bidi_it
)
904 if (bidi_cache_idx
== bidi_cache_start
)
906 /* If the cache overflowed, return the level of the last cached
908 if (bidi_cache_last_idx
== -1
909 || (bidi_cache_last_idx
>= bidi_cache_idx
- 1 && bidi_it
->scan_dir
> 0))
910 return bidi_cache
[bidi_cache_idx
- 1].resolved_level
;
911 return bidi_cache
[bidi_cache_last_idx
+ bidi_it
->scan_dir
].resolved_level
;
915 /***********************************************************************
916 Pushing and popping the bidi iterator state
917 ***********************************************************************/
919 /* Push the bidi iterator state in preparation for reordering a
920 different object, e.g. display string found at certain buffer
921 position. Pushing the bidi iterator boils down to saving its
922 entire state on the cache and starting a new cache "stacked" on top
923 of the current cache. */
925 bidi_push_it (struct bidi_it
*bidi_it
)
927 /* Give this stack slot its cache room. */
928 bidi_cache_max_elts
+= BIDI_CACHE_MAX_ELTS_PER_SLOT
;
929 /* Save the current iterator state in its entirety after the last
931 bidi_cache_ensure_space (bidi_cache_idx
);
932 bidi_cache
[bidi_cache_idx
++] = *bidi_it
;
934 /* Push the current cache start onto the stack. */
935 eassert (bidi_cache_sp
< IT_STACK_SIZE
);
936 bidi_cache_start_stack
[bidi_cache_sp
++] = bidi_cache_start
;
938 /* Start a new level of cache, and make it empty. */
939 bidi_cache_start
= bidi_cache_idx
;
940 bidi_cache_last_idx
= -1;
943 /* Restore the iterator state saved by bidi_push_it and return the
944 cache to the corresponding state. */
946 bidi_pop_it (struct bidi_it
*bidi_it
)
948 if (bidi_cache_start
<= 0)
951 /* Reset the next free cache slot index to what it was before the
952 call to bidi_push_it. */
953 bidi_cache_idx
= bidi_cache_start
- 1;
955 /* Restore the bidi iterator state saved in the cache. */
956 *bidi_it
= bidi_cache
[bidi_cache_idx
];
958 /* Pop the previous cache start from the stack. */
959 if (bidi_cache_sp
<= 0)
961 bidi_cache_start
= bidi_cache_start_stack
[--bidi_cache_sp
];
963 /* Invalidate the last-used cache slot data. */
964 bidi_cache_last_idx
= -1;
966 bidi_cache_max_elts
-= BIDI_CACHE_MAX_ELTS_PER_SLOT
;
967 eassert (bidi_cache_max_elts
> 0);
970 static ptrdiff_t bidi_cache_total_alloc
;
972 /* Stash away a copy of the cache and its control variables. */
974 bidi_shelve_cache (void)
976 unsigned char *databuf
;
980 if (bidi_cache_idx
== 0)
983 alloc
= (bidi_shelve_header_size
984 + bidi_cache_idx
* sizeof (struct bidi_it
));
985 databuf
= xmalloc (alloc
);
986 bidi_cache_total_alloc
+= alloc
;
988 memcpy (databuf
, &bidi_cache_idx
, sizeof (bidi_cache_idx
));
989 memcpy (databuf
+ sizeof (bidi_cache_idx
),
990 bidi_cache
, bidi_cache_idx
* sizeof (struct bidi_it
));
991 memcpy (databuf
+ sizeof (bidi_cache_idx
)
992 + bidi_cache_idx
* sizeof (struct bidi_it
),
993 bidi_cache_start_stack
, sizeof (bidi_cache_start_stack
));
994 memcpy (databuf
+ sizeof (bidi_cache_idx
)
995 + bidi_cache_idx
* sizeof (struct bidi_it
)
996 + sizeof (bidi_cache_start_stack
),
997 &bidi_cache_sp
, sizeof (bidi_cache_sp
));
998 memcpy (databuf
+ sizeof (bidi_cache_idx
)
999 + bidi_cache_idx
* sizeof (struct bidi_it
)
1000 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
),
1001 &bidi_cache_start
, sizeof (bidi_cache_start
));
1002 memcpy (databuf
+ sizeof (bidi_cache_idx
)
1003 + bidi_cache_idx
* sizeof (struct bidi_it
)
1004 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
)
1005 + sizeof (bidi_cache_start
),
1006 &bidi_cache_last_idx
, sizeof (bidi_cache_last_idx
));
1007 memcpy (databuf
+ sizeof (bidi_cache_idx
)
1008 + bidi_cache_idx
* sizeof (struct bidi_it
)
1009 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
)
1010 + sizeof (bidi_cache_start
) + sizeof (bidi_cache_last_idx
),
1011 &bidi_cache_max_elts
, sizeof (bidi_cache_max_elts
));
1016 /* Restore the cache state from a copy stashed away by
1017 bidi_shelve_cache, and free the buffer used to stash that copy.
1018 JUST_FREE means free the buffer, but don't restore the
1019 cache; used when the corresponding iterator is discarded instead of
1022 bidi_unshelve_cache (void *databuf
, bool just_free
)
1024 unsigned char *p
= databuf
;
1030 /* A NULL pointer means an empty cache. */
1031 bidi_cache_start
= 0;
1033 bidi_cache_max_elts
= BIDI_CACHE_MAX_ELTS_PER_SLOT
;
1034 bidi_cache_reset ();
1043 memcpy (&idx
, p
, sizeof (bidi_cache_idx
));
1044 bidi_cache_total_alloc
1045 -= bidi_shelve_header_size
+ idx
* sizeof (struct bidi_it
);
1049 memcpy (&bidi_cache_idx
, p
, sizeof (bidi_cache_idx
));
1050 bidi_cache_ensure_space (bidi_cache_idx
);
1051 memcpy (bidi_cache
, p
+ sizeof (bidi_cache_idx
),
1052 bidi_cache_idx
* sizeof (struct bidi_it
));
1053 memcpy (bidi_cache_start_stack
,
1054 p
+ sizeof (bidi_cache_idx
)
1055 + bidi_cache_idx
* sizeof (struct bidi_it
),
1056 sizeof (bidi_cache_start_stack
));
1057 memcpy (&bidi_cache_sp
,
1058 p
+ sizeof (bidi_cache_idx
)
1059 + bidi_cache_idx
* sizeof (struct bidi_it
)
1060 + sizeof (bidi_cache_start_stack
),
1061 sizeof (bidi_cache_sp
));
1062 memcpy (&bidi_cache_start
,
1063 p
+ sizeof (bidi_cache_idx
)
1064 + bidi_cache_idx
* sizeof (struct bidi_it
)
1065 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
),
1066 sizeof (bidi_cache_start
));
1067 memcpy (&bidi_cache_last_idx
,
1068 p
+ sizeof (bidi_cache_idx
)
1069 + bidi_cache_idx
* sizeof (struct bidi_it
)
1070 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
)
1071 + sizeof (bidi_cache_start
),
1072 sizeof (bidi_cache_last_idx
));
1073 memcpy (&bidi_cache_max_elts
,
1074 p
+ sizeof (bidi_cache_idx
)
1075 + bidi_cache_idx
* sizeof (struct bidi_it
)
1076 + sizeof (bidi_cache_start_stack
) + sizeof (bidi_cache_sp
)
1077 + sizeof (bidi_cache_start
) + sizeof (bidi_cache_last_idx
),
1078 sizeof (bidi_cache_max_elts
));
1079 bidi_cache_total_alloc
1080 -= (bidi_shelve_header_size
1081 + bidi_cache_idx
* sizeof (struct bidi_it
));
1089 /***********************************************************************
1091 ***********************************************************************/
1093 bidi_initialize (void)
1095 bidi_type_table
= uniprop_table (intern ("bidi-class"));
1096 if (NILP (bidi_type_table
))
1098 staticpro (&bidi_type_table
);
1100 bidi_mirror_table
= uniprop_table (intern ("mirroring"));
1101 if (NILP (bidi_mirror_table
))
1103 staticpro (&bidi_mirror_table
);
1105 bidi_brackets_table
= uniprop_table (intern ("bracket-type"));
1106 if (NILP (bidi_brackets_table
))
1108 staticpro (&bidi_brackets_table
);
1110 DEFSYM (Qparagraph_start
, "paragraph-start");
1111 paragraph_start_re
= Fsymbol_value (Qparagraph_start
);
1112 if (!STRINGP (paragraph_start_re
))
1113 paragraph_start_re
= build_string ("\f\\|[ \t]*$");
1114 staticpro (¶graph_start_re
);
1115 DEFSYM (Qparagraph_separate
, "paragraph-separate");
1116 paragraph_separate_re
= Fsymbol_value (Qparagraph_separate
);
1117 if (!STRINGP (paragraph_separate_re
))
1118 paragraph_separate_re
= build_string ("[ \t\f]*$");
1119 staticpro (¶graph_separate_re
);
1122 bidi_cache_total_alloc
= 0;
1123 bidi_cache_max_elts
= BIDI_CACHE_MAX_ELTS_PER_SLOT
;
1125 bidi_initialized
= 1;
1128 /* Do whatever UAX#9 clause X8 says should be done at paragraph's
1131 bidi_set_paragraph_end (struct bidi_it
*bidi_it
)
1133 bidi_it
->invalid_levels
= 0;
1134 bidi_it
->invalid_isolates
= 0;
1135 bidi_it
->stack_idx
= 0;
1136 bidi_it
->resolved_level
= bidi_it
->level_stack
[0].level
;
1139 /* Initialize the bidi iterator from buffer/string position CHARPOS. */
1141 bidi_init_it (ptrdiff_t charpos
, ptrdiff_t bytepos
, bool frame_window_p
,
1142 struct bidi_it
*bidi_it
)
1144 if (! bidi_initialized
)
1147 bidi_it
->charpos
= charpos
;
1149 bidi_it
->bytepos
= bytepos
;
1150 bidi_it
->frame_window_p
= frame_window_p
;
1151 bidi_it
->nchars
= -1; /* to be computed in bidi_resolve_explicit */
1152 bidi_it
->first_elt
= 1;
1153 bidi_set_paragraph_end (bidi_it
);
1154 bidi_it
->new_paragraph
= 1;
1155 bidi_it
->separator_limit
= -1;
1156 bidi_it
->type
= NEUTRAL_B
;
1157 bidi_it
->type_after_wn
= NEUTRAL_B
;
1158 bidi_it
->orig_type
= NEUTRAL_B
;
1159 /* FIXME: Review this!!! */
1160 bidi_it
->prev
.type
= bidi_it
->prev
.orig_type
= UNKNOWN_BT
;
1161 bidi_it
->last_strong
.type
= bidi_it
->last_strong
.orig_type
= UNKNOWN_BT
;
1162 bidi_it
->next_for_neutral
.charpos
= -1;
1163 bidi_it
->next_for_neutral
.type
1164 = bidi_it
->next_for_neutral
.orig_type
= UNKNOWN_BT
;
1165 bidi_it
->prev_for_neutral
.charpos
= -1;
1166 bidi_it
->prev_for_neutral
.type
1167 = bidi_it
->prev_for_neutral
.orig_type
= UNKNOWN_BT
;
1168 bidi_it
->bracket_pairing_pos
= -1;
1169 bidi_it
->sos
= L2R
; /* FIXME: should it be user-selectable? */
1170 bidi_it
->disp_pos
= -1; /* invalid/unknown */
1171 bidi_it
->disp_prop
= 0;
1172 /* We can only shrink the cache if we are at the bottom level of its
1174 if (bidi_cache_start
== 0)
1175 bidi_cache_shrink ();
1177 bidi_cache_reset ();
1180 /* Perform initializations for reordering a new line of bidi text. */
1182 bidi_line_init (struct bidi_it
*bidi_it
)
1184 bidi_it
->scan_dir
= 1; /* FIXME: do we need to have control on this? */
1185 bidi_it
->stack_idx
= 0;
1186 bidi_it
->resolved_level
= bidi_it
->level_stack
[0].level
;
1187 bidi_it
->level_stack
[0].flags
= 0; /* NEUTRAL_DIR, false per X1 */
1188 bidi_it
->invalid_levels
= 0;
1189 bidi_it
->isolate_level
= 0; /* X1 */
1190 bidi_it
->invalid_isolates
= 0; /* X1 */
1191 /* Setting this to zero will force its recomputation the first time
1192 we need it for W5. */
1193 bidi_it
->next_en_pos
= 0;
1194 bidi_it
->next_en_type
= UNKNOWN_BT
;
1195 bidi_it
->next_for_ws
.charpos
= -1;
1196 bidi_it
->next_for_ws
.type
= UNKNOWN_BT
;
1197 bidi_it
->bracket_pairing_pos
= -1;
1198 bidi_set_sos_type (bidi_it
,
1199 (bidi_it
->paragraph_dir
== R2L
? 1 : 0),
1200 bidi_it
->level_stack
[0].level
); /* X10 */
1202 bidi_cache_reset ();
1206 /***********************************************************************
1208 ***********************************************************************/
1210 /* Count bytes in string S between BEG/BEGBYTE and END. BEG and END
1211 are zero-based character positions in S, BEGBYTE is byte position
1212 corresponding to BEG. UNIBYTE means S is a unibyte string. */
1214 bidi_count_bytes (const unsigned char *s
, ptrdiff_t beg
,
1215 ptrdiff_t begbyte
, ptrdiff_t end
, bool unibyte
)
1217 ptrdiff_t pos
= beg
;
1218 const unsigned char *p
= s
+ begbyte
, *start
= p
;
1224 if (!CHAR_HEAD_P (*p
))
1229 p
+= BYTES_BY_CHAR_HEAD (*p
);
1237 /* Fetch and return the character at byte position BYTEPOS. If S is
1238 non-NULL, fetch the character from string S; otherwise fetch the
1239 character from the current buffer. UNIBYTE means S is a
1242 bidi_char_at_pos (ptrdiff_t bytepos
, const unsigned char *s
, bool unibyte
)
1251 s
= BYTE_POS_ADDR (bytepos
);
1252 return STRING_CHAR (s
);
1255 /* Fetch and return the character at CHARPOS/BYTEPOS. If that
1256 character is covered by a display string, treat the entire run of
1257 covered characters as a single character, either u+2029 or u+FFFC,
1258 and return their combined length in CH_LEN and NCHARS. DISP_POS
1259 specifies the character position of the next display string, or -1
1260 if not yet computed. When the next character is at or beyond that
1261 position, the function updates DISP_POS with the position of the
1262 next display string. *DISP_PROP non-zero means that there's really
1263 a display string at DISP_POS, as opposed to when we searched till
1264 DISP_POS without finding one. If *DISP_PROP is 2, it means the
1265 display spec is of the form `(space ...)', which is replaced with
1266 u+2029 to handle it as a paragraph separator. STRING->s is the C
1267 string to iterate, or NULL if iterating over a buffer or a Lisp
1268 string; in the latter case, STRING->lstring is the Lisp string. */
1270 bidi_fetch_char (ptrdiff_t charpos
, ptrdiff_t bytepos
, ptrdiff_t *disp_pos
,
1271 int *disp_prop
, struct bidi_string_data
*string
,
1273 bool frame_window_p
, ptrdiff_t *ch_len
, ptrdiff_t *nchars
)
1277 = (string
->s
|| STRINGP (string
->lstring
)) ? string
->schars
: ZV
;
1278 struct text_pos pos
;
1281 /* If we got past the last known position of display string, compute
1282 the position of the next one. That position could be at CHARPOS. */
1283 if (charpos
< endpos
&& charpos
> *disp_pos
)
1285 SET_TEXT_POS (pos
, charpos
, bytepos
);
1286 *disp_pos
= compute_display_string_pos (&pos
, string
, w
, frame_window_p
,
1290 /* Fetch the character at BYTEPOS. */
1291 if (charpos
>= endpos
)
1299 else if (charpos
>= *disp_pos
&& *disp_prop
)
1301 ptrdiff_t disp_end_pos
;
1303 /* We don't expect to find ourselves in the middle of a display
1304 property. Hopefully, it will never be needed. */
1305 if (charpos
> *disp_pos
)
1307 /* Text covered by `display' properties and overlays with
1308 display properties or display strings is handled as a single
1309 character that represents the entire run of characters
1310 covered by the display property. */
1311 if (*disp_prop
== 2)
1313 /* `(space ...)' display specs are handled as paragraph
1314 separators for the purposes of the reordering; see UAX#9
1315 section 3 and clause HL1 in section 4.3 there. */
1320 /* All other display specs are handled as the Unicode Object
1321 Replacement Character. */
1324 disp_end_pos
= compute_display_string_end (*disp_pos
, string
);
1325 if (disp_end_pos
< 0)
1327 /* Somebody removed the display string from the buffer
1328 behind our back. Recover by processing this buffer
1329 position as if no display property were present there to
1334 *nchars
= disp_end_pos
- *disp_pos
;
1338 *ch_len
= bidi_count_bytes (string
->s
, *disp_pos
, bytepos
,
1339 disp_end_pos
, string
->unibyte
);
1340 else if (STRINGP (string
->lstring
))
1341 *ch_len
= bidi_count_bytes (SDATA (string
->lstring
), *disp_pos
,
1342 bytepos
, disp_end_pos
, string
->unibyte
);
1344 *ch_len
= CHAR_TO_BYTE (disp_end_pos
) - bytepos
;
1352 if (!string
->unibyte
)
1354 ch
= STRING_CHAR_AND_LENGTH (string
->s
+ bytepos
, len
);
1359 ch
= UNIBYTE_TO_CHAR (string
->s
[bytepos
]);
1363 else if (STRINGP (string
->lstring
))
1365 if (!string
->unibyte
)
1367 ch
= STRING_CHAR_AND_LENGTH (SDATA (string
->lstring
) + bytepos
,
1373 ch
= UNIBYTE_TO_CHAR (SREF (string
->lstring
, bytepos
));
1379 ch
= STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (bytepos
), len
);
1385 /* If we just entered a run of characters covered by a display
1386 string, compute the position of the next display string. */
1387 if (charpos
+ *nchars
<= endpos
&& charpos
+ *nchars
> *disp_pos
1390 SET_TEXT_POS (pos
, charpos
+ *nchars
, bytepos
+ *ch_len
);
1391 *disp_pos
= compute_display_string_pos (&pos
, string
, w
, frame_window_p
,
1398 /* Like bidi_fetch_char, but ignore any text between an isolate
1399 initiator and its matching PDI or, if it has no matching PDI, the
1400 end of the paragraph. If isolates were skipped, CH_LEN and NCHARS
1401 are set to the number of bytes and characters between BYTEPOS/CHARPOS
1402 and the character that was fetched after skipping the isolates. */
1404 bidi_fetch_char_skip_isolates (ptrdiff_t charpos
, ptrdiff_t bytepos
,
1405 ptrdiff_t *disp_pos
, int *disp_prop
,
1406 struct bidi_string_data
*string
,
1407 struct window
*w
, bool frame_window_p
,
1408 ptrdiff_t *ch_len
, ptrdiff_t *nchars
)
1410 ptrdiff_t orig_charpos
= charpos
, orig_bytepos
= bytepos
;
1411 int ch
= bidi_fetch_char (charpos
, bytepos
, disp_pos
, disp_prop
, string
, w
,
1412 frame_window_p
, ch_len
, nchars
);
1413 bidi_type_t ch_type
= bidi_get_type (ch
, NEUTRAL_DIR
);
1414 ptrdiff_t level
= 0;
1416 if (ch_type
== LRI
|| ch_type
== RLI
|| ch_type
== FSI
)
1419 while (level
> 0 && ch_type
!= NEUTRAL_B
)
1423 ch
= bidi_fetch_char (charpos
, bytepos
, disp_pos
, disp_prop
, string
,
1424 w
, frame_window_p
, ch_len
, nchars
);
1425 ch_type
= bidi_get_type (ch
, NEUTRAL_DIR
);
1426 /* A Note to P2 says to ignore max_depth limit. */
1427 if (ch_type
== LRI
|| ch_type
== RLI
|| ch_type
== FSI
)
1429 else if (ch_type
== PDI
)
1434 /* Communicate to the caller how much did we skip, so it could get
1435 past the last character position we examined. */
1436 *nchars
+= charpos
- orig_charpos
;
1437 *ch_len
+= bytepos
- orig_bytepos
;
1443 /***********************************************************************
1444 Determining paragraph direction
1445 ***********************************************************************/
1447 /* Check if buffer position CHARPOS/BYTEPOS is the end of a paragraph.
1448 Value is the non-negative length of the paragraph separator
1449 following the buffer position, -1 if position is at the beginning
1450 of a new paragraph, or -2 if position is neither at beginning nor
1451 at end of a paragraph. */
1453 bidi_at_paragraph_end (ptrdiff_t charpos
, ptrdiff_t bytepos
)
1456 Lisp_Object start_re
;
1459 sep_re
= paragraph_separate_re
;
1460 start_re
= paragraph_start_re
;
1462 val
= fast_looking_at (sep_re
, charpos
, bytepos
, ZV
, ZV_BYTE
, Qnil
);
1465 if (fast_looking_at (start_re
, charpos
, bytepos
, ZV
, ZV_BYTE
, Qnil
) >= 0)
1474 /* If the user has requested the long scans caching, make sure that
1475 BIDI cache is enabled. Otherwise, make sure it's disabled. */
1477 static struct region_cache
*
1478 bidi_paragraph_cache_on_off (void)
1480 struct buffer
*cache_buffer
= current_buffer
;
1481 bool indirect_p
= false;
1483 /* For indirect buffers, make sure to use the cache of their base
1485 if (cache_buffer
->base_buffer
)
1487 cache_buffer
= cache_buffer
->base_buffer
;
1491 /* Don't turn on or off the cache in the base buffer, if the value
1492 of cache-long-scans of the base buffer is inconsistent with that.
1493 This is because doing so will just make the cache pure overhead,
1494 since if we turn it on via indirect buffer, it will be
1495 immediately turned off by its base buffer. */
1496 if (NILP (BVAR (current_buffer
, cache_long_scans
)))
1499 || NILP (BVAR (cache_buffer
, cache_long_scans
)))
1501 if (cache_buffer
->bidi_paragraph_cache
)
1503 free_region_cache (cache_buffer
->bidi_paragraph_cache
);
1504 cache_buffer
->bidi_paragraph_cache
= 0;
1512 || !NILP (BVAR (cache_buffer
, cache_long_scans
)))
1514 if (!cache_buffer
->bidi_paragraph_cache
)
1515 cache_buffer
->bidi_paragraph_cache
= new_region_cache ();
1517 return cache_buffer
->bidi_paragraph_cache
;
1521 /* On my 2005-vintage machine, searching back for paragraph start
1522 takes ~1 ms per line. And bidi_paragraph_init is called 4 times
1523 when user types C-p. The number below limits each call to
1524 bidi_paragraph_init to about 10 ms. */
1525 #define MAX_PARAGRAPH_SEARCH 7500
1527 /* Find the beginning of this paragraph by looking back in the buffer.
1528 Value is the byte position of the paragraph's beginning, or
1529 BEGV_BYTE if paragraph_start_re is still not found after looking
1530 back MAX_PARAGRAPH_SEARCH lines in the buffer. */
1532 bidi_find_paragraph_start (ptrdiff_t pos
, ptrdiff_t pos_byte
)
1534 Lisp_Object re
= paragraph_start_re
;
1535 ptrdiff_t limit
= ZV
, limit_byte
= ZV_BYTE
;
1536 struct region_cache
*bpc
= bidi_paragraph_cache_on_off ();
1537 ptrdiff_t n
= 0, oldpos
= pos
, next
;
1538 struct buffer
*cache_buffer
= current_buffer
;
1540 if (cache_buffer
->base_buffer
)
1541 cache_buffer
= cache_buffer
->base_buffer
;
1543 while (pos_byte
> BEGV_BYTE
1544 && n
++ < MAX_PARAGRAPH_SEARCH
1545 && fast_looking_at (re
, pos
, pos_byte
, limit
, limit_byte
, Qnil
) < 0)
1547 /* FIXME: What if the paragraph beginning is covered by a
1548 display string? And what if a display string covering some
1549 of the text over which we scan back includes
1550 paragraph_start_re? */
1551 DEC_BOTH (pos
, pos_byte
);
1552 if (bpc
&& region_cache_backward (cache_buffer
, bpc
, pos
, &next
))
1554 pos
= next
, pos_byte
= CHAR_TO_BYTE (pos
);
1558 pos
= find_newline_no_quit (pos
, pos_byte
, -1, &pos_byte
);
1560 if (n
>= MAX_PARAGRAPH_SEARCH
)
1561 pos
= BEGV
, pos_byte
= BEGV_BYTE
;
1563 know_region_cache (cache_buffer
, bpc
, pos
, oldpos
);
1564 /* Positions returned by the region cache are not limited to
1565 BEGV..ZV range, so we limit them here. */
1566 pos_byte
= clip_to_bounds (BEGV_BYTE
, pos_byte
, ZV_BYTE
);
1570 /* On a 3.4 GHz machine, searching forward for a strong directional
1571 character in a long paragraph full of weaks or neutrals takes about
1572 1 ms for each 20K characters. The number below limits each call to
1573 bidi_paragraph_init to less than 10 ms even on slow machines. */
1574 #define MAX_STRONG_CHAR_SEARCH 100000
1576 /* Starting from POS, find the first strong (L, R, or AL) character,
1577 while skipping over any characters between an isolate initiator and
1578 its matching PDI. STOP_AT_PDI non-zero means stop at the PDI that
1579 matches the isolate initiator at POS. Return the bidi type of the
1580 character where the search stopped. Give up if after examining
1581 MAX_STRONG_CHAR_SEARCH buffer or string positions no strong
1582 character was found. */
1584 find_first_strong_char (ptrdiff_t pos
, ptrdiff_t bytepos
, ptrdiff_t end
,
1585 ptrdiff_t *disp_pos
, int *disp_prop
,
1586 struct bidi_string_data
*string
, struct window
*w
,
1587 bool string_p
, bool frame_window_p
,
1588 ptrdiff_t *ch_len
, ptrdiff_t *nchars
, bool stop_at_pdi
)
1596 /* If STOP_AT_PDI is non-zero, we must have been called with FSI
1597 at POS. Get past it. */
1598 #ifdef ENABLE_CHECKING
1599 ch
= bidi_fetch_char (pos
, bytepos
, disp_pos
, disp_prop
, string
, w
,
1600 frame_window_p
, ch_len
, nchars
);
1601 type
= bidi_get_type (ch
, NEUTRAL_DIR
);
1602 eassert (type
== FSI
/* || type == LRI || type == RLI */);
1607 ch
= bidi_fetch_char_skip_isolates (pos
, bytepos
, disp_pos
, disp_prop
, string
,
1608 w
, frame_window_p
, ch_len
, nchars
);
1609 type
= bidi_get_type (ch
, NEUTRAL_DIR
);
1612 for (pos
+= *nchars
, bytepos
+= *ch_len
;
1613 bidi_get_category (type
) != STRONG
1614 /* If requested to stop at first PDI, stop there. */
1615 && !(stop_at_pdi
&& type
== PDI
)
1616 /* Stop when searched too far into an abnormally large
1617 paragraph full of weak or neutral characters. */
1618 && pos
- pos1
< MAX_STRONG_CHAR_SEARCH
;
1619 type
= bidi_get_type (ch
, NEUTRAL_DIR
))
1623 /* Pretend there's a paragraph separator at end of
1629 && type
== NEUTRAL_B
1630 && bidi_at_paragraph_end (pos
, bytepos
) >= -1)
1632 /* Fetch next character and advance to get past it. */
1633 ch
= bidi_fetch_char_skip_isolates (pos
, bytepos
, disp_pos
, disp_prop
,
1634 string
, w
, frame_window_p
,
1642 /* Determine the base direction, a.k.a. base embedding level, of the
1643 paragraph we are about to iterate through. If DIR is either L2R or
1644 R2L, just use that. Otherwise, determine the paragraph direction
1645 from the first strong directional character of the paragraph.
1647 NO_DEFAULT_P means don't default to L2R if the paragraph
1648 has no strong directional characters and both DIR and
1649 bidi_it->paragraph_dir are NEUTRAL_DIR. In that case, search back
1650 in the buffer until a paragraph is found with a strong character,
1651 or until hitting BEGV. In the latter case, fall back to L2R. This
1652 flag is used in current-bidi-paragraph-direction.
1654 Note that this function gives the paragraph separator the same
1655 direction as the preceding paragraph, even though Emacs generally
1656 views the separator as not belonging to any paragraph. */
1658 bidi_paragraph_init (bidi_dir_t dir
, struct bidi_it
*bidi_it
, bool no_default_p
)
1660 ptrdiff_t bytepos
= bidi_it
->bytepos
;
1661 bool string_p
= bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
);
1662 ptrdiff_t pstartbyte
;
1663 /* Note that begbyte is a byte position, while end is a character
1664 position. Yes, this is ugly, but we are trying to avoid costly
1665 calls to BYTE_TO_CHAR and its ilk. */
1666 ptrdiff_t begbyte
= string_p
? 0 : BEGV_BYTE
;
1667 ptrdiff_t end
= string_p
? bidi_it
->string
.schars
: ZV
;
1669 /* Special case for an empty buffer. */
1670 if (bytepos
== begbyte
&& bidi_it
->charpos
== end
)
1672 /* We should never be called at EOB or before BEGV. */
1673 else if (bidi_it
->charpos
>= end
|| bytepos
< begbyte
)
1678 bidi_it
->paragraph_dir
= L2R
;
1679 bidi_it
->new_paragraph
= 0;
1681 else if (dir
== R2L
)
1683 bidi_it
->paragraph_dir
= R2L
;
1684 bidi_it
->new_paragraph
= 0;
1686 else if (dir
== NEUTRAL_DIR
) /* P2 */
1688 ptrdiff_t ch_len
, nchars
;
1689 ptrdiff_t pos
, disp_pos
= -1;
1692 const unsigned char *s
;
1694 if (!bidi_initialized
)
1697 /* If we are inside a paragraph separator, we are just waiting
1698 for the separator to be exhausted; use the previous paragraph
1699 direction. But don't do that if we have been just reseated,
1700 because we need to reinitialize below in that case. */
1701 if (!bidi_it
->first_elt
1702 && bidi_it
->charpos
< bidi_it
->separator_limit
)
1705 /* If we are on a newline, get past it to where the next
1706 paragraph might start. But don't do that at BEGV since then
1707 we are potentially in a new paragraph that doesn't yet
1709 pos
= bidi_it
->charpos
;
1710 s
= (STRINGP (bidi_it
->string
.lstring
)
1711 ? SDATA (bidi_it
->string
.lstring
)
1712 : bidi_it
->string
.s
);
1713 if (bytepos
> begbyte
1714 && bidi_char_at_pos (bytepos
, s
, bidi_it
->string
.unibyte
) == '\n')
1720 /* We are either at the beginning of a paragraph or in the
1721 middle of it. Find where this paragraph starts. */
1724 /* We don't support changes of paragraph direction inside a
1725 string. It is treated as a single paragraph. */
1729 pstartbyte
= bidi_find_paragraph_start (pos
, bytepos
);
1730 bidi_it
->separator_limit
= -1;
1731 bidi_it
->new_paragraph
= 0;
1733 /* The following loop is run more than once only if NO_DEFAULT_P,
1734 and only if we are iterating on a buffer. */
1736 bytepos
= pstartbyte
;
1738 pos
= BYTE_TO_CHAR (bytepos
);
1739 type
= find_first_strong_char (pos
, bytepos
, end
, &disp_pos
, &disp_prop
,
1740 &bidi_it
->string
, bidi_it
->w
,
1741 string_p
, bidi_it
->frame_window_p
,
1742 &ch_len
, &nchars
, false);
1743 if (type
== STRONG_R
|| type
== STRONG_AL
) /* P3 */
1744 bidi_it
->paragraph_dir
= R2L
;
1745 else if (type
== STRONG_L
)
1746 bidi_it
->paragraph_dir
= L2R
;
1748 && no_default_p
&& bidi_it
->paragraph_dir
== NEUTRAL_DIR
)
1750 /* If this paragraph is at BEGV, default to L2R. */
1751 if (pstartbyte
== BEGV_BYTE
)
1752 bidi_it
->paragraph_dir
= L2R
; /* P3 and HL1 */
1755 ptrdiff_t prevpbyte
= pstartbyte
;
1756 ptrdiff_t p
= BYTE_TO_CHAR (pstartbyte
), pbyte
= pstartbyte
;
1758 /* Find the beginning of the previous paragraph, if any. */
1759 while (pbyte
> BEGV_BYTE
&& prevpbyte
>= pstartbyte
)
1761 /* FXIME: What if p is covered by a display
1762 string? See also a FIXME inside
1763 bidi_find_paragraph_start. */
1764 DEC_BOTH (p
, pbyte
);
1765 prevpbyte
= bidi_find_paragraph_start (p
, pbyte
);
1767 pstartbyte
= prevpbyte
;
1771 && no_default_p
&& bidi_it
->paragraph_dir
== NEUTRAL_DIR
);
1776 /* Contrary to UAX#9 clause P3, we only default the paragraph
1777 direction to L2R if we have no previous usable paragraph
1778 direction. This is allowed by the HL1 clause. */
1779 if (bidi_it
->paragraph_dir
!= L2R
&& bidi_it
->paragraph_dir
!= R2L
)
1780 bidi_it
->paragraph_dir
= L2R
; /* P3 and HL1 ``higher-level protocols'' */
1781 if (bidi_it
->paragraph_dir
== R2L
)
1782 bidi_it
->level_stack
[0].level
= 1;
1784 bidi_it
->level_stack
[0].level
= 0;
1786 bidi_line_init (bidi_it
);
1790 /***********************************************************************
1791 Resolving explicit and implicit levels.
1792 The rest of this file constitutes the core of the UBA implementation.
1793 ***********************************************************************/
1796 bidi_explicit_dir_char (int ch
)
1798 bidi_type_t ch_type
;
1800 if (!bidi_initialized
)
1802 ch_type
= (bidi_type_t
) XINT (CHAR_TABLE_REF (bidi_type_table
, ch
));
1803 return (ch_type
== LRE
|| ch_type
== LRO
1804 || ch_type
== RLE
|| ch_type
== RLO
1808 /* Given an iterator state in BIDI_IT, advance one character position
1809 in the buffer/string to the next character (in the logical order),
1810 resolve any explicit embeddings, directional overrides, and isolate
1811 initiators and terminators, and return the embedding level of the
1812 character after resolving these explicit directives. */
1814 bidi_resolve_explicit (struct bidi_it
*bidi_it
)
1817 bidi_type_t type
, typ1
, prev_type
= UNKNOWN_BT
;
1820 bidi_dir_t override
;
1821 bool isolate_status
;
1822 bool string_p
= bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
);
1823 ptrdiff_t ch_len
, nchars
, disp_pos
, end
;
1826 = ((bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
1827 ? bidi_it
->string
.schars
: ZV
);
1829 /* Record the info about the previous character. */
1830 if (bidi_it
->type_after_wn
!= WEAK_BN
/* W1/Retaining */
1831 && bidi_it
->type
!= WEAK_BN
)
1833 /* This special case is needed in support of Unicode 8.0
1834 correction to N0, as implemented in bidi_resolve_weak/W1
1836 if (bidi_it
->type_after_wn
== NEUTRAL_ON
1837 && bidi_get_category (bidi_it
->type
) == STRONG
1838 && bidi_paired_bracket_type (bidi_it
->ch
) == BIDI_BRACKET_CLOSE
)
1839 bidi_remember_char (&bidi_it
->prev
, bidi_it
, 1);
1841 bidi_remember_char (&bidi_it
->prev
, bidi_it
, 0);
1843 if (bidi_it
->type_after_wn
== STRONG_R
1844 || bidi_it
->type_after_wn
== STRONG_L
1845 || bidi_it
->type_after_wn
== STRONG_AL
)
1846 bidi_remember_char (&bidi_it
->last_strong
, bidi_it
, 0);
1847 if (bidi_it
->type
== STRONG_R
|| bidi_it
->type
== STRONG_L
1848 || bidi_it
->type
== WEAK_EN
|| bidi_it
->type
== WEAK_AN
)
1849 bidi_remember_char (&bidi_it
->prev_for_neutral
, bidi_it
, 1);
1851 /* If we overstepped the characters used for resolving neutrals
1852 and whitespace, invalidate their info in the iterator. */
1853 if (bidi_it
->charpos
>= bidi_it
->next_for_neutral
.charpos
)
1855 bidi_it
->next_for_neutral
.type
= UNKNOWN_BT
;
1856 /* If needed, reset the "magical" value of pairing bracket
1857 position, so that bidi_resolve_brackets will resume
1858 resolution of brackets according to BPA. */
1859 if (bidi_it
->bracket_pairing_pos
== eob
)
1860 bidi_it
->bracket_pairing_pos
= -1;
1862 if (bidi_it
->next_en_pos
>= 0
1863 && bidi_it
->charpos
>= bidi_it
->next_en_pos
)
1865 bidi_it
->next_en_pos
= 0;
1866 bidi_it
->next_en_type
= UNKNOWN_BT
;
1869 /* Reset the bracket resolution info, unless we previously decided
1870 (in bidi_find_bracket_pairs) that brackets in this level run
1871 should be resolved as neutrals. */
1872 if (bidi_it
->bracket_pairing_pos
!= eob
)
1874 bidi_it
->bracket_pairing_pos
= -1;
1875 bidi_it
->bracket_enclosed_type
= UNKNOWN_BT
;
1878 /* If reseat()'ed, don't advance, so as to start iteration from the
1879 position where we were reseated. bidi_it->bytepos can be less
1880 than BEGV_BYTE after reseat to BEGV. */
1881 if (bidi_it
->bytepos
< (string_p
? 0 : BEGV_BYTE
)
1882 || bidi_it
->first_elt
)
1884 bidi_it
->first_elt
= 0;
1887 const unsigned char *p
1888 = (STRINGP (bidi_it
->string
.lstring
)
1889 ? SDATA (bidi_it
->string
.lstring
)
1890 : bidi_it
->string
.s
);
1892 if (bidi_it
->charpos
< 0)
1893 bidi_it
->charpos
= bidi_it
->bytepos
= 0;
1894 eassert (bidi_it
->bytepos
== bidi_count_bytes (p
, 0, 0,
1896 bidi_it
->string
.unibyte
));
1900 if (bidi_it
->charpos
< BEGV
)
1902 bidi_it
->charpos
= BEGV
;
1903 bidi_it
->bytepos
= BEGV_BYTE
;
1905 eassert (bidi_it
->bytepos
== CHAR_TO_BYTE (bidi_it
->charpos
));
1907 /* Determine the original bidi type of the previous character,
1908 which is needed for handling isolate initiators and PDF. The
1909 type of the previous character will be non-trivial only if
1910 our caller moved through some previous text in
1911 get_visually_first_element, in which case bidi_it->prev holds
1912 the information we want. */
1913 if (bidi_it
->first_elt
&& bidi_it
->prev
.type
!= UNKNOWN_BT
)
1915 eassert (bidi_it
->prev
.charpos
== bidi_it
->charpos
- 1);
1916 prev_type
= bidi_it
->prev
.orig_type
;
1917 if (prev_type
== FSI
)
1918 prev_type
= bidi_it
->type_after_wn
;
1921 /* Don't move at end of buffer/string. */
1922 else if (bidi_it
->charpos
< (string_p
? bidi_it
->string
.schars
: ZV
))
1924 /* Advance to the next character, skipping characters covered by
1925 display strings (nchars > 1). */
1926 if (bidi_it
->nchars
<= 0)
1928 bidi_it
->charpos
+= bidi_it
->nchars
;
1929 if (bidi_it
->ch_len
== 0)
1931 bidi_it
->bytepos
+= bidi_it
->ch_len
;
1932 prev_type
= bidi_it
->orig_type
;
1933 if (prev_type
== FSI
)
1934 prev_type
= bidi_it
->type_after_wn
;
1936 else /* EOB or end of string */
1937 prev_type
= NEUTRAL_B
;
1939 current_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
; /* X1 */
1940 isolate_status
= ISOLATE_STATUS (bidi_it
, bidi_it
->stack_idx
);
1941 override
= OVERRIDE (bidi_it
, bidi_it
->stack_idx
);
1942 new_level
= current_level
;
1944 if (bidi_it
->charpos
>= (string_p
? bidi_it
->string
.schars
: ZV
))
1947 bidi_it
->ch_len
= 1;
1948 bidi_it
->nchars
= 1;
1949 bidi_it
->disp_pos
= (string_p
? bidi_it
->string
.schars
: ZV
);
1950 bidi_it
->disp_prop
= 0;
1954 /* LRI, RLI, and FSI increment, and PDF decrements, the
1955 embedding level of the _following_ characters, so we must
1956 first look at the type of the previous character to support
1961 if (current_level
< BIDI_MAXDEPTH
1962 && bidi_it
->invalid_levels
== 0
1963 && bidi_it
->invalid_isolates
== 0)
1965 new_level
= ((current_level
+ 1) & ~1) + 1;
1966 bidi_it
->isolate_level
++;
1967 bidi_push_embedding_level (bidi_it
, new_level
,
1971 bidi_it
->invalid_isolates
++;
1974 if (current_level
< BIDI_MAXDEPTH
- 1
1975 && bidi_it
->invalid_levels
== 0
1976 && bidi_it
->invalid_isolates
== 0)
1978 new_level
= ((current_level
+ 2) & ~1);
1979 bidi_it
->isolate_level
++;
1980 bidi_push_embedding_level (bidi_it
, new_level
,
1984 bidi_it
->invalid_isolates
++;
1987 if (!bidi_it
->invalid_isolates
)
1989 if (bidi_it
->invalid_levels
)
1990 bidi_it
->invalid_levels
--;
1991 else if (!isolate_status
&& bidi_it
->stack_idx
>= 1)
1992 new_level
= bidi_pop_embedding_level (bidi_it
);
1996 eassert (prev_type
!= FSI
);
2000 /* Fetch the character at BYTEPOS. If it is covered by a
2001 display string, treat the entire run of covered characters as
2002 a single character u+FFFC. */
2003 curchar
= bidi_fetch_char (bidi_it
->charpos
, bidi_it
->bytepos
,
2004 &bidi_it
->disp_pos
, &bidi_it
->disp_prop
,
2005 &bidi_it
->string
, bidi_it
->w
,
2006 bidi_it
->frame_window_p
,
2007 &bidi_it
->ch_len
, &bidi_it
->nchars
);
2009 bidi_it
->ch
= curchar
;
2010 bidi_it
->resolved_level
= new_level
;
2012 /* Don't apply directional override here, as all the types we handle
2013 below will not be affected by the override anyway, and we need
2014 the original type unaltered. The override will be applied in
2015 bidi_resolve_weak. */
2016 type
= bidi_get_type (curchar
, NEUTRAL_DIR
);
2017 bidi_it
->orig_type
= type
;
2018 bidi_check_type (bidi_it
->orig_type
);
2020 bidi_it
->type_after_wn
= UNKNOWN_BT
;
2026 bidi_it
->type_after_wn
= type
;
2027 bidi_check_type (bidi_it
->type_after_wn
);
2028 type
= WEAK_BN
; /* X9/Retaining */
2029 if (new_level
< BIDI_MAXDEPTH
2030 && bidi_it
->invalid_levels
== 0
2031 && bidi_it
->invalid_isolates
== 0)
2033 /* Compute the least odd embedding level greater than
2034 the current level. */
2035 new_level
= ((new_level
+ 1) & ~1) + 1;
2036 if (bidi_it
->type_after_wn
== RLE
)
2037 override
= NEUTRAL_DIR
;
2040 bidi_push_embedding_level (bidi_it
, new_level
, override
, false);
2041 bidi_it
->resolved_level
= new_level
;
2045 if (bidi_it
->invalid_isolates
== 0)
2046 bidi_it
->invalid_levels
++;
2051 bidi_it
->type_after_wn
= type
;
2052 bidi_check_type (bidi_it
->type_after_wn
);
2053 type
= WEAK_BN
; /* X9/Retaining */
2054 if (new_level
< BIDI_MAXDEPTH
- 1
2055 && bidi_it
->invalid_levels
== 0
2056 && bidi_it
->invalid_isolates
== 0)
2058 /* Compute the least even embedding level greater than
2059 the current level. */
2060 new_level
= ((new_level
+ 2) & ~1);
2061 if (bidi_it
->type_after_wn
== LRE
)
2062 override
= NEUTRAL_DIR
;
2065 bidi_push_embedding_level (bidi_it
, new_level
, override
, false);
2066 bidi_it
->resolved_level
= new_level
;
2070 if (bidi_it
->invalid_isolates
== 0)
2071 bidi_it
->invalid_levels
++;
2075 end
= string_p
? bidi_it
->string
.schars
: ZV
;
2076 disp_pos
= bidi_it
->disp_pos
;
2077 disp_prop
= bidi_it
->disp_prop
;
2078 nchars
= bidi_it
->nchars
;
2079 ch_len
= bidi_it
->ch_len
;
2080 typ1
= find_first_strong_char (bidi_it
->charpos
,
2081 bidi_it
->bytepos
, end
,
2082 &disp_pos
, &disp_prop
,
2083 &bidi_it
->string
, bidi_it
->w
,
2084 string_p
, bidi_it
->frame_window_p
,
2085 &ch_len
, &nchars
, true);
2086 if (typ1
!= STRONG_R
&& typ1
!= STRONG_AL
)
2095 if (override
== NEUTRAL_DIR
)
2096 bidi_it
->type_after_wn
= type
;
2097 else /* Unicode 8.0 correction. */
2098 bidi_it
->type_after_wn
= (override
== L2R
? STRONG_L
: STRONG_R
);
2099 bidi_check_type (bidi_it
->type_after_wn
);
2103 if (override
== NEUTRAL_DIR
)
2104 bidi_it
->type_after_wn
= type
;
2105 else /* Unicode 8.0 correction. */
2106 bidi_it
->type_after_wn
= (override
== L2R
? STRONG_L
: STRONG_R
);
2107 bidi_check_type (bidi_it
->type_after_wn
);
2110 if (bidi_it
->invalid_isolates
)
2111 bidi_it
->invalid_isolates
--;
2112 else if (bidi_it
->isolate_level
> 0)
2114 bidi_it
->invalid_levels
= 0;
2115 while (!ISOLATE_STATUS (bidi_it
, bidi_it
->stack_idx
))
2116 bidi_pop_embedding_level (bidi_it
);
2117 eassert (bidi_it
->stack_idx
> 0);
2118 new_level
= bidi_pop_embedding_level (bidi_it
);
2119 bidi_it
->isolate_level
--;
2121 bidi_it
->resolved_level
= new_level
;
2122 /* Unicode 8.0 correction. */
2124 bidi_dir_t stack_override
= OVERRIDE (bidi_it
, bidi_it
->stack_idx
);
2125 if (stack_override
== L2R
)
2126 bidi_it
->type_after_wn
= STRONG_L
;
2127 else if (stack_override
== R2L
)
2128 bidi_it
->type_after_wn
= STRONG_R
;
2130 bidi_it
->type_after_wn
= type
;
2134 bidi_it
->type_after_wn
= type
;
2135 bidi_check_type (bidi_it
->type_after_wn
);
2136 type
= WEAK_BN
; /* X9/Retaining */
2143 bidi_it
->type
= type
;
2144 bidi_check_type (bidi_it
->type
);
2146 if (bidi_it
->type
== NEUTRAL_B
) /* X8 */
2148 bidi_set_paragraph_end (bidi_it
);
2149 /* This is needed by bidi_resolve_weak below, and in L1. */
2150 bidi_it
->type_after_wn
= bidi_it
->type
;
2153 eassert (bidi_it
->resolved_level
>= 0);
2154 return bidi_it
->resolved_level
;
2157 /* Advance in the buffer/string, resolve weak types and return the
2158 type of the next character after weak type resolution. */
2160 bidi_resolve_weak (struct bidi_it
*bidi_it
)
2163 bidi_dir_t override
;
2164 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2165 int new_level
= bidi_resolve_explicit (bidi_it
);
2167 bidi_type_t type_of_next
;
2168 struct bidi_it saved_it
;
2170 = ((STRINGP (bidi_it
->string
.lstring
) || bidi_it
->string
.s
)
2171 ? bidi_it
->string
.schars
: ZV
);
2173 type
= bidi_it
->type
;
2174 override
= OVERRIDE (bidi_it
, bidi_it
->stack_idx
);
2176 eassert (!(type
== UNKNOWN_BT
2183 eassert (prev_level
>= 0);
2184 if (bidi_it
->type
== NEUTRAL_B
)
2186 /* We've got a new isolating sequence, compute the directional
2187 type of sos and initialize per-run variables (UAX#9, clause
2189 bidi_set_sos_type (bidi_it
, prev_level
, new_level
);
2191 if (type
== NEUTRAL_S
|| type
== NEUTRAL_WS
2192 || type
== WEAK_BN
|| type
== STRONG_AL
)
2193 bidi_it
->type_after_wn
= type
; /* needed in L1 */
2194 bidi_check_type (bidi_it
->type_after_wn
);
2196 /* Level and directional override status are already recorded in
2197 bidi_it, and do not need any change; see X6. */
2198 if (override
== R2L
) /* X6 */
2200 else if (override
== L2R
)
2204 if (type
== WEAK_NSM
) /* W1 */
2206 /* Note that we don't need to consider the case where the
2207 prev character has its type overridden by an RLO or LRO,
2208 because then either the type of this NSM would have been
2209 also overridden, or the previous character is outside the
2210 current level run, and thus not relevant to this NSM.
2211 This is why NSM gets the type_after_wn of the previous
2213 /* bidi_set_sos_type sets type_after_wn to UNKNOWN_BT. */
2214 if (bidi_it
->prev
.type
!= UNKNOWN_BT
2215 /* If type_after_wn is NEUTRAL_B, this NSM is at sos. */
2216 && bidi_it
->prev
.type
!= NEUTRAL_B
)
2218 if (bidi_isolate_fmt_char (bidi_it
->prev
.type
))
2220 /* From W1: "Note that in an isolating run sequence,
2221 an isolate initiator followed by an NSM or any
2222 type other than PDI must be an overflow isolate
2224 eassert (bidi_it
->invalid_isolates
> 0);
2229 /* This includes the Unicode 8.0 correction for N0,
2230 due to how we set prev.type in bidi_resolve_explicit,
2232 type
= bidi_it
->prev
.type
;
2235 else if (bidi_it
->sos
== R2L
)
2237 else if (bidi_it
->sos
== L2R
)
2239 else /* shouldn't happen! */
2242 if (type
== WEAK_EN
/* W2 */
2243 && bidi_it
->last_strong
.type
== STRONG_AL
)
2245 else if (type
== STRONG_AL
) /* W3 */
2247 else if ((type
== WEAK_ES
/* W4 */
2248 && bidi_it
->prev
.type
== WEAK_EN
2249 && bidi_it
->prev
.orig_type
== WEAK_EN
)
2251 && ((bidi_it
->prev
.type
== WEAK_EN
2252 && bidi_it
->prev
.orig_type
== WEAK_EN
)
2253 || bidi_it
->prev
.type
== WEAK_AN
)))
2255 const unsigned char *s
2256 = (STRINGP (bidi_it
->string
.lstring
)
2257 ? SDATA (bidi_it
->string
.lstring
)
2258 : bidi_it
->string
.s
);
2260 next_char
= (bidi_it
->charpos
+ bidi_it
->nchars
>= eob
2262 : bidi_char_at_pos (bidi_it
->bytepos
+ bidi_it
->ch_len
,
2263 s
, bidi_it
->string
.unibyte
));
2264 type_of_next
= bidi_get_type (next_char
, override
);
2266 if (type_of_next
== WEAK_BN
2267 || bidi_explicit_dir_char (next_char
))
2269 bidi_copy_it (&saved_it
, bidi_it
);
2270 while (bidi_resolve_explicit (bidi_it
) == new_level
2271 && bidi_it
->type
== WEAK_BN
)
2272 type_of_next
= bidi_it
->type
;
2273 bidi_copy_it (bidi_it
, &saved_it
);
2276 /* If the next character is EN, but the last strong-type
2277 character is AL, that next EN will be changed to AN when
2278 we process it in W2 above. So in that case, this ES
2279 should not be changed into EN. */
2281 && type_of_next
== WEAK_EN
2282 && bidi_it
->last_strong
.type
!= STRONG_AL
)
2284 else if (type
== WEAK_CS
)
2286 if (bidi_it
->prev
.type
== WEAK_AN
2287 && (type_of_next
== WEAK_AN
2288 /* If the next character is EN, but the last
2289 strong-type character is AL, EN will be later
2290 changed to AN when we process it in W2 above.
2291 So in that case, this ES should not be
2293 || (type_of_next
== WEAK_EN
2294 && bidi_it
->last_strong
.type
== STRONG_AL
)))
2296 else if (bidi_it
->prev
.type
== WEAK_EN
2297 && type_of_next
== WEAK_EN
2298 && bidi_it
->last_strong
.type
!= STRONG_AL
)
2302 else if (type
== WEAK_ET
/* W5: ET with EN before or after it */
2303 || type
== WEAK_BN
) /* W5/Retaining */
2305 if (bidi_it
->prev
.type
== WEAK_EN
) /* ET/BN w/EN before it */
2307 else if (bidi_it
->next_en_pos
> bidi_it
->charpos
2308 && bidi_it
->next_en_type
!= WEAK_BN
)
2310 if (bidi_it
->next_en_type
== WEAK_EN
) /* ET/BN with EN after it */
2313 else if (bidi_it
->next_en_pos
>=0)
2315 /* We overstepped the last known position for ET
2316 resolution but there could be other such characters
2317 in this paragraph (when we are sure there are no more
2318 such positions, we set next_en_pos to a negative
2319 value). Try to find the next position for ET
2321 ptrdiff_t en_pos
= bidi_it
->charpos
+ bidi_it
->nchars
;
2322 const unsigned char *s
= (STRINGP (bidi_it
->string
.lstring
)
2323 ? SDATA (bidi_it
->string
.lstring
)
2324 : bidi_it
->string
.s
);
2326 if (bidi_it
->nchars
<= 0)
2329 = (bidi_it
->charpos
+ bidi_it
->nchars
>= eob
2331 : bidi_char_at_pos (bidi_it
->bytepos
+ bidi_it
->ch_len
, s
,
2332 bidi_it
->string
.unibyte
));
2333 type_of_next
= bidi_get_type (next_char
, override
);
2335 if (type_of_next
== WEAK_ET
2336 || type_of_next
== WEAK_BN
2337 || bidi_explicit_dir_char (next_char
))
2339 bidi_copy_it (&saved_it
, bidi_it
);
2340 while (bidi_resolve_explicit (bidi_it
) == new_level
2341 && (bidi_it
->type
== WEAK_BN
2342 || bidi_it
->type
== WEAK_ET
))
2343 type_of_next
= bidi_it
->type
;
2345 && bidi_it
->charpos
== saved_it
.charpos
+ saved_it
.nchars
)
2347 /* If we entered the above loop with a BN that
2348 changes the level, the type of next
2349 character, which is in a different level, is
2350 not relevant to resolving this series of ET
2352 en_pos
= saved_it
.charpos
;
2353 type_of_next
= type
;
2356 en_pos
= bidi_it
->charpos
;
2357 bidi_copy_it (bidi_it
, &saved_it
);
2359 /* Remember this position, to speed up processing of the
2361 bidi_it
->next_en_pos
= en_pos
;
2362 if (type_of_next
== WEAK_EN
)
2364 /* If the last strong character is AL, the EN we've
2365 found will become AN when we get to it (W2). */
2366 if (bidi_it
->last_strong
.type
== STRONG_AL
)
2367 type_of_next
= WEAK_AN
;
2368 else if (type
== WEAK_BN
)
2369 type
= NEUTRAL_ON
; /* W6/Retaining */
2373 else if (type_of_next
== NEUTRAL_B
)
2374 /* Record the fact that there are no more ENs from
2375 here to the end of paragraph, to avoid entering the
2376 loop above ever again in this paragraph. */
2377 bidi_it
->next_en_pos
= -1;
2378 /* Record the type of the character where we ended our search. */
2379 bidi_it
->next_en_type
= type_of_next
;
2384 if (type
== WEAK_ES
|| type
== WEAK_ET
|| type
== WEAK_CS
/* W6 */
2386 && (bidi_it
->prev
.type
== WEAK_CS
/* W6/Retaining */
2387 || bidi_it
->prev
.type
== WEAK_ES
2388 || bidi_it
->prev
.type
== WEAK_ET
)))
2391 /* Store the type we've got so far, before we clobber it with strong
2392 types in W7 and while resolving neutral types. But leave alone
2393 the original types that were recorded above, because we will need
2394 them for the L1 clause. */
2395 if (bidi_it
->type_after_wn
== UNKNOWN_BT
)
2396 bidi_it
->type_after_wn
= type
;
2397 bidi_check_type (bidi_it
->type_after_wn
);
2399 if (type
== WEAK_EN
) /* W7 */
2401 if ((bidi_it
->last_strong
.type
== STRONG_L
)
2402 || (bidi_it
->last_strong
.type
== UNKNOWN_BT
&& bidi_it
->sos
== L2R
))
2406 bidi_it
->type
= type
;
2407 bidi_check_type (bidi_it
->type
);
2411 /* Resolve the type of a neutral character according to the type of
2412 surrounding strong text and the current embedding level. */
2414 bidi_resolve_neutral_1 (bidi_type_t prev_type
, bidi_type_t next_type
, int lev
)
2416 /* N1: "European and Arabic numbers act as if they were R in terms
2417 of their influence on NIs." */
2418 if (next_type
== WEAK_EN
|| next_type
== WEAK_AN
)
2419 next_type
= STRONG_R
;
2420 if (prev_type
== WEAK_EN
|| prev_type
== WEAK_AN
)
2421 prev_type
= STRONG_R
;
2423 if (next_type
== prev_type
) /* N1 */
2425 else if ((lev
& 1) == 0) /* N2 */
2431 #define FLAG_EMBEDDING_INSIDE 1
2432 #define FLAG_OPPOSITE_INSIDE 2
2434 /* A data type used in the stack maintained by
2435 bidi_find_bracket_pairs below. */
2436 typedef struct bpa_stack_entry
{
2437 int close_bracket_char
;
2438 int open_bracket_idx
;
2439 #ifdef ENABLE_CHECKING
2440 ptrdiff_t open_bracket_pos
;
2445 /* With MAX_ALLOCA of 16KB, this should allow at least 1K slots in the
2446 BPA stack, which should be more than enough for actual bidi text. */
2447 #define MAX_BPA_STACK ((int)max (MAX_ALLOCA / sizeof (bpa_stack_entry), 1))
2449 /* UAX#9 says to match opening brackets with the matching closing
2450 brackets or their canonical equivalents. As of Unicode 7.0, there
2451 are only 2 bracket characters that have canonical equivalence
2452 decompositions: u+2329 and u+232A. So instead of accessing the
2453 table in uni-decomposition.el, we just handle these 2 characters
2454 with this simple macro. Note that ASCII characters don't have
2455 canonical equivalents by definition. */
2457 /* To find all the characters that need to be processed by
2458 CANONICAL_EQU, first find all the characters which have
2459 decompositions in UnicodeData.txt, with this Awk script:
2461 awk -F ";" " {if ($6 != \"\") print $1, $6}" UnicodeData.txt
2463 Then produce a list of all the bracket characters in BidiBrackets.txt:
2465 awk -F "[ ;]" " {if ($1 != \"#\" && $1 != \"\") print $1}" BidiBrackets.txt
2467 And finally, cross-reference these two:
2469 fgrep -w -f brackets.txt decompositions.txt
2471 where "decompositions.txt" was produced by the 1st script, and
2472 "brackets.txt" by the 2nd script. In the output of fgrep, look
2473 only for decompositions that don't begin with some compatibility
2474 formatting tag, such as "<compat>". Only decompositions that
2475 consist solely of character codepoints are relevant to bidi
2476 brackets processing. */
2478 #define CANONICAL_EQU(c) \
2479 ( ASCII_CHAR_P (c) ? c \
2480 : (c) == 0x2329 ? 0x3008 \
2481 : (c) == 0x232a ? 0x3009 \
2484 #ifdef ENABLE_CHECKING
2485 # define STORE_BRACKET_CHARPOS \
2486 bpa_stack[bpa_sp].open_bracket_pos = bidi_it->charpos
2488 # define STORE_BRACKET_CHARPOS /* nothing */
2491 #define PUSH_BPA_STACK \
2494 if (bpa_sp < MAX_BPA_STACK - 1) \
2497 ch = CANONICAL_EQU (bidi_it->ch); \
2498 bpa_stack[bpa_sp].close_bracket_char = bidi_mirror_char (ch); \
2499 bpa_stack[bpa_sp].open_bracket_idx = bidi_cache_last_idx; \
2500 bpa_stack[bpa_sp].flags = 0; \
2501 STORE_BRACKET_CHARPOS; \
2506 /* This function implements BPA, the Bidi Parenthesis Algorithm,
2507 described in BD16 and N0 of UAX#9. It finds all the bracket pairs
2508 in the current isolating sequence, and records the enclosed type
2509 and the position of the matching bracket in the cache. It returns
2510 non-zero if called with the iterator on the opening bracket which
2511 has a matching closing bracket in the current isolating sequence,
2514 bidi_find_bracket_pairs (struct bidi_it
*bidi_it
)
2516 bidi_bracket_type_t btype
;
2517 bidi_type_t type
= bidi_it
->type
;
2518 bool retval
= false;
2520 /* When scanning backwards, we don't expect any unresolved bidi
2521 bracket characters. */
2522 if (bidi_it
->scan_dir
!= 1)
2525 btype
= bidi_paired_bracket_type (bidi_it
->ch
);
2526 if (btype
== BIDI_BRACKET_OPEN
)
2528 bpa_stack_entry bpa_stack
[MAX_BPA_STACK
];
2530 struct bidi_it saved_it
;
2531 int base_level
= bidi_it
->level_stack
[0].level
;
2532 int embedding_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2533 int maxlevel
= embedding_level
;
2534 bidi_type_t embedding_type
= (embedding_level
& 1) ? STRONG_R
: STRONG_L
;
2535 struct bidi_it tem_it
;
2536 bool l2r_seen
= false, r2l_seen
= false;
2537 ptrdiff_t pairing_pos
;
2538 int idx_at_entry
= bidi_cache_idx
;
2540 eassert (MAX_BPA_STACK
>= 100);
2541 bidi_copy_it (&saved_it
, bidi_it
);
2542 /* bidi_cache_iterator_state refuses to cache on backward scans,
2543 and bidi_cache_fetch_state doesn't bring scan_dir from the
2544 cache, so we must initialize this explicitly. */
2545 tem_it
.scan_dir
= 1;
2549 int old_sidx
, new_sidx
;
2550 int current_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2552 if (maxlevel
< current_level
)
2553 maxlevel
= current_level
;
2554 /* Mark every opening bracket character we've traversed by
2555 putting its own position into bracket_pairing_pos. This
2556 is examined in bidi_resolve_brackets to distinguish
2557 brackets that were already resolved to stay NEUTRAL_ON,
2558 and those that were not yet processed by this function
2559 (because they were skipped when we skip higher embedding
2561 if (btype
== BIDI_BRACKET_OPEN
&& bidi_it
->bracket_pairing_pos
== -1)
2562 bidi_it
->bracket_pairing_pos
= bidi_it
->charpos
;
2563 if (!bidi_cache_iterator_state (bidi_it
, type
== NEUTRAL_B
, 0))
2565 /* No more space in cache -- give up and let the opening
2566 bracket that started this be processed as a
2568 bidi_cache_reset_to (idx_at_entry
- bidi_cache_start
);
2569 bidi_copy_it (bidi_it
, &saved_it
);
2572 if (btype
== BIDI_BRACKET_OPEN
)
2574 else if (btype
== BIDI_BRACKET_CLOSE
)
2577 int curchar
= CANONICAL_EQU (bidi_it
->ch
);
2580 while (sp
>= 0 && bpa_stack
[sp
].close_bracket_char
!= curchar
)
2584 /* Update and cache the corresponding opening bracket. */
2585 bidi_cache_fetch_state (bpa_stack
[sp
].open_bracket_idx
,
2587 #ifdef ENABLE_CHECKING
2588 eassert (bpa_stack
[sp
].open_bracket_pos
== tem_it
.charpos
);
2590 /* Determine the enclosed type for this bracket
2591 pair's type resolution according to N0. */
2592 if (bpa_stack
[sp
].flags
& FLAG_EMBEDDING_INSIDE
)
2593 tem_it
.bracket_enclosed_type
= embedding_type
; /* N0b */
2594 else if (bpa_stack
[sp
].flags
& FLAG_OPPOSITE_INSIDE
)
2595 tem_it
.bracket_enclosed_type
/* N0c */
2596 = (embedding_type
== STRONG_L
? STRONG_R
: STRONG_L
);
2598 tem_it
.bracket_enclosed_type
= UNKNOWN_BT
;
2600 /* Record the position of the matching closing
2601 bracket, and update the cache. */
2602 tem_it
.bracket_pairing_pos
= bidi_it
->charpos
;
2603 bidi_cache_iterator_state (&tem_it
, 0, 1);
2605 /* Pop the BPA stack. */
2614 else if (bidi_get_category (bidi_it
->type_after_wn
) != NEUTRAL
)
2619 /* Whenever we see a strong type, update the flags of
2620 all the slots on the stack. */
2621 switch (bidi_it
->type
)
2624 flag
= ((embedding_level
& 1) == 0
2625 ? FLAG_EMBEDDING_INSIDE
2626 : FLAG_OPPOSITE_INSIDE
);
2632 flag
= ((embedding_level
& 1) == 1
2633 ? FLAG_EMBEDDING_INSIDE
2634 : FLAG_OPPOSITE_INSIDE
);
2642 for (sp
= bpa_sp
; sp
>= 0; sp
--)
2643 bpa_stack
[sp
].flags
|= flag
;
2646 old_sidx
= bidi_it
->stack_idx
;
2647 type
= bidi_resolve_weak (bidi_it
);
2648 /* Skip level runs excluded from this isolating run sequence. */
2649 new_sidx
= bidi_it
->stack_idx
;
2650 if (bidi_it
->level_stack
[new_sidx
].level
> current_level
2651 && (ISOLATE_STATUS (bidi_it
, new_sidx
)
2652 || (new_sidx
> old_sidx
+ 1
2653 && ISOLATE_STATUS (bidi_it
, new_sidx
- 1))))
2655 while (bidi_it
->level_stack
[bidi_it
->stack_idx
].level
2658 if (maxlevel
< bidi_it
->level_stack
[bidi_it
->stack_idx
].level
)
2659 maxlevel
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2660 if (!bidi_cache_iterator_state (bidi_it
,
2661 type
== NEUTRAL_B
, 0))
2663 /* No more space in cache -- give up and let the
2664 opening bracket that started this be
2665 processed as any other NEUTRAL_ON. */
2666 bidi_cache_reset_to (idx_at_entry
- bidi_cache_start
);
2667 bidi_copy_it (bidi_it
, &saved_it
);
2670 type
= bidi_resolve_weak (bidi_it
);
2673 if (type
== NEUTRAL_B
2674 || (bidi_it
->level_stack
[bidi_it
->stack_idx
].level
2677 /* We've marched all the way to the end of this
2678 isolating run sequence, and didn't find matching
2679 closing brackets for some opening brackets. Leave
2680 their type unchanged. */
2681 pairing_pos
= bidi_it
->charpos
;
2684 if (bidi_it
->type_after_wn
== NEUTRAL_ON
) /* Unicode 8.0 correction */
2685 btype
= bidi_paired_bracket_type (bidi_it
->ch
);
2687 btype
= BIDI_BRACKET_NONE
;
2690 /* Restore bidi_it from the cache, which should have the bracket
2691 resolution members set as determined by the above loop. */
2692 type
= bidi_cache_find (saved_it
.charpos
, 0, bidi_it
);
2693 eassert (type
== NEUTRAL_ON
);
2695 /* The following is an optimization for bracketed text that has
2696 only one level which is equal to the paragraph's base
2697 embedding level. That is, only L2R and weak/neutral
2698 characters in a L2R paragraph, or only R2L and weak/neutral
2699 characters in a R2L paragraph. Such brackets can be resolved
2700 by bidi_resolve_neutral, which has a further shortcut for
2701 this case. So we pretend we did not resolve the brackets in
2702 this case, set up next_for_neutral for the entire bracketed
2703 text, and reset the cache to the character before the opening
2704 bracket. The upshot is to allow bidi_move_to_visually_next
2705 reset the cache when it returns this opening bracket, thus
2706 cutting significantly on the size of the cache, which is
2707 important with long lines, especially if word-wrap is non-nil
2708 (which requires the display engine to copy the cache back and
2709 forth many times). */
2710 if (maxlevel
== base_level
2711 && ((base_level
== 0 && !r2l_seen
)
2712 || (base_level
== 1 && !l2r_seen
)))
2715 = ((bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
2716 ? bidi_it
->string
.schars
: ZV
);
2719 pairing_pos
= bidi_it
->bracket_pairing_pos
;
2721 /* This special value (which cannot possibly happen when
2722 brackets are resolved, since there's no character at ZV)
2723 will be noticed by bidi_resolve_explicit, and will be
2724 copied to the following iterator states, instead of being
2726 bidi_it
->bracket_pairing_pos
= eob
;
2727 /* This type value will be used for resolving the outermost
2728 closing bracket in bidi_resolve_brackets. */
2729 bidi_it
->bracket_enclosed_type
= embedding_type
;
2730 /* bidi_cache_last_idx is set to the index of the current
2731 state, because we just called bidi_cache_find above.
2732 That state describes the outermost opening bracket, the
2733 one with which we entered this function. Force the cache
2734 to "forget" all the cached states starting from that state. */
2735 bidi_cache_reset_to (bidi_cache_last_idx
- bidi_cache_start
);
2736 /* Set up the next_for_neutral member, to help
2737 bidi_resolve_neutral. */
2738 bidi_it
->next_for_neutral
.type
= embedding_type
;
2739 bidi_it
->next_for_neutral
.charpos
= pairing_pos
;
2740 /* Pretend we didn't resolve this bracket. */
2750 bidi_record_type_for_neutral (struct bidi_saved_info
*info
, int level
,
2755 for (idx
= bidi_cache_last_idx
+ 1; idx
< bidi_cache_idx
; idx
++)
2757 int lev
= bidi_cache
[idx
].level_stack
[bidi_cache
[idx
].stack_idx
].level
;
2761 eassert (lev
== level
);
2763 bidi_cache
[idx
].next_for_neutral
= *info
;
2765 bidi_cache
[idx
].prev_for_neutral
= *info
;
2772 bidi_resolve_brackets (struct bidi_it
*bidi_it
)
2774 int prev_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2775 bool resolve_bracket
= false;
2776 bidi_type_t type
= UNKNOWN_BT
;
2778 struct bidi_saved_info prev_for_neutral
, next_for_neutral
;
2780 = ((bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
2781 ? bidi_it
->string
.schars
: ZV
);
2783 /* Record the prev_for_neutral type either from the previous
2784 character, if it was a strong or AN/EN, or from the
2785 prev_for_neutral information recorded previously. */
2786 if (bidi_it
->type
== STRONG_L
|| bidi_it
->type
== STRONG_R
2787 || bidi_it
->type
== WEAK_AN
|| bidi_it
->type
== WEAK_EN
)
2788 bidi_remember_char (&prev_for_neutral
, bidi_it
, 1);
2790 prev_for_neutral
= bidi_it
->prev_for_neutral
;
2791 /* Record the next_for_neutral type information. */
2792 if (bidi_it
->next_for_neutral
.charpos
> bidi_it
->charpos
)
2793 next_for_neutral
= bidi_it
->next_for_neutral
;
2795 next_for_neutral
.charpos
= -1;
2796 if (!bidi_it
->first_elt
)
2798 type
= bidi_cache_find (bidi_it
->charpos
+ bidi_it
->nchars
, 0, bidi_it
);
2801 if (type
== UNKNOWN_BT
)
2803 type
= bidi_resolve_weak (bidi_it
);
2804 if (type
== NEUTRAL_ON
)
2806 /* bracket_pairing_pos == eob means this bracket does not
2807 need to be resolved as a bracket, but as a neutral, see
2808 the optimization trick we play near the end of
2809 bidi_find_bracket_pairs. */
2810 if (bidi_it
->bracket_pairing_pos
== eob
)
2812 /* If this is the outermost closing bracket of a run of
2813 characters in which we decided to resolve brackets as
2814 neutrals, use the embedding level's type, recorded in
2815 bracket_enclosed_type, to resolve the bracket. */
2816 if (bidi_it
->next_for_neutral
.charpos
== bidi_it
->charpos
2817 && bidi_paired_bracket_type (bidi_it
->ch
) == BIDI_BRACKET_CLOSE
)
2818 type
= bidi_it
->bracket_enclosed_type
;
2820 else if (bidi_find_bracket_pairs (bidi_it
))
2821 resolve_bracket
= true;
2824 else if (bidi_it
->bracket_pairing_pos
!= eob
)
2826 eassert (bidi_it
->resolved_level
== -1);
2827 /* If the cached state shows an increase of embedding level due
2828 to an isolate initiator, we need to update the 1st cached
2829 state of the next run of the current isolating sequence with
2830 the prev_for_neutral and next_for_neutral information, so
2831 that it will be picked up when we advance to that next run. */
2832 if (bidi_it
->level_stack
[bidi_it
->stack_idx
].level
> prev_level
2833 && ISOLATE_STATUS (bidi_it
, bidi_it
->stack_idx
))
2835 bidi_record_type_for_neutral (&prev_for_neutral
, prev_level
, 0);
2836 bidi_record_type_for_neutral (&next_for_neutral
, prev_level
, 1);
2838 if (type
== NEUTRAL_ON
2839 && bidi_paired_bracket_type (ch
) == BIDI_BRACKET_OPEN
)
2841 if (bidi_it
->bracket_pairing_pos
> bidi_it
->charpos
)
2843 /* A cached opening bracket that wasn't completely
2845 resolve_bracket
= true;
2847 else if (bidi_it
->bracket_pairing_pos
== -1)
2849 /* Higher levels were not BPA-resolved yet, even if
2850 cached by bidi_find_bracket_pairs. Force application
2851 of BPA to the new level now. */
2852 if (bidi_find_bracket_pairs (bidi_it
))
2853 resolve_bracket
= true;
2856 /* Keep track of the prev_for_neutral and next_for_neutral
2857 types, needed for resolving brackets below and for resolving
2858 neutrals in bidi_resolve_neutral. */
2859 if (bidi_it
->level_stack
[bidi_it
->stack_idx
].level
== prev_level
)
2861 bidi_it
->prev_for_neutral
= prev_for_neutral
;
2862 if (next_for_neutral
.charpos
> 0)
2863 bidi_it
->next_for_neutral
= next_for_neutral
;
2867 /* If needed, resolve the bracket type according to N0. */
2868 if (resolve_bracket
)
2870 int embedding_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2871 bidi_type_t embedding_type
= (embedding_level
& 1) ? STRONG_R
: STRONG_L
;
2873 eassert (bidi_it
->prev_for_neutral
.type
!= UNKNOWN_BT
);
2874 eassert (bidi_it
->bracket_pairing_pos
> bidi_it
->charpos
);
2875 if (bidi_it
->bracket_enclosed_type
== embedding_type
) /* N0b */
2876 type
= embedding_type
;
2879 switch (bidi_it
->prev_for_neutral
.type
)
2885 (bidi_it
->bracket_enclosed_type
== STRONG_R
) /* N0c */
2886 ? STRONG_R
/* N0c1 */
2887 : embedding_type
; /* N0c2 */
2891 (bidi_it
->bracket_enclosed_type
== STRONG_L
) /* N0c */
2892 ? STRONG_L
/* N0c1 */
2893 : embedding_type
; /* N0c2 */
2896 /* N0d: Do not set the type for that bracket pair. */
2900 eassert (type
== STRONG_L
|| type
== STRONG_R
|| type
== NEUTRAL_ON
);
2902 /* Update the type of the paired closing bracket to the same
2903 type as for the resolved opening bracket. */
2904 if (type
!= NEUTRAL_ON
)
2906 ptrdiff_t idx
= bidi_cache_search (bidi_it
->bracket_pairing_pos
,
2909 if (idx
< bidi_cache_start
)
2911 bidi_cache
[idx
].type
= type
;
2919 bidi_resolve_neutral (struct bidi_it
*bidi_it
)
2921 bidi_type_t type
= bidi_resolve_brackets (bidi_it
);
2925 eassert (type
== STRONG_R
2930 || type
== NEUTRAL_B
2931 || type
== NEUTRAL_S
2932 || type
== NEUTRAL_WS
2933 || type
== NEUTRAL_ON
2938 current_level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
2939 eassert (current_level
>= 0);
2940 is_neutral
= bidi_get_category (type
) == NEUTRAL
;
2942 if ((type
!= NEUTRAL_B
/* Don't risk entering the long loop below if
2943 we are already at paragraph end. */
2944 && (is_neutral
|| bidi_isolate_fmt_char (type
)))
2945 /* N1-N2/Retaining */
2946 || (type
== WEAK_BN
&& bidi_explicit_dir_char (bidi_it
->ch
)))
2948 if (bidi_it
->next_for_neutral
.type
!= UNKNOWN_BT
)
2950 /* Make sure the data for resolving neutrals we are
2951 about to use is valid. */
2952 eassert (bidi_it
->next_for_neutral
.charpos
> bidi_it
->charpos
2953 /* PDI defines an eos, so it's OK for it to
2954 serve as its own next_for_neutral. */
2955 || (bidi_it
->next_for_neutral
.charpos
== bidi_it
->charpos
2956 && bidi_it
->type
== PDI
));
2957 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
2958 bidi_it
->next_for_neutral
.type
,
2961 /* The next two "else if" clauses are shortcuts for the
2962 important special case when we have a long sequence of
2963 neutral or WEAK_BN characters, such as whitespace or nulls or
2964 other control characters, on the base embedding level of the
2965 paragraph, and that sequence goes all the way to the end of
2966 the paragraph and follows a character whose resolved
2967 directionality is identical to the base embedding level.
2968 (This is what happens in a buffer with plain L2R text that
2969 happens to include long sequences of control characters.) By
2970 virtue of N1, the result of examining this long sequence will
2971 always be either STRONG_L or STRONG_R, depending on the base
2972 embedding level. So we use this fact directly instead of
2973 entering the expensive loop in the "else" clause. */
2974 else if (current_level
== 0
2975 && bidi_it
->prev_for_neutral
.type
== STRONG_L
2976 && !bidi_explicit_dir_char (bidi_it
->ch
)
2977 && !bidi_isolate_fmt_char (type
))
2978 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
2979 STRONG_L
, current_level
);
2980 else if (/* current level is 1 */
2982 /* base embedding level is also 1 */
2983 && bidi_it
->level_stack
[0].level
== 1
2984 /* previous character is one of those considered R for
2985 the purposes of W5 */
2986 && (bidi_it
->prev_for_neutral
.type
== STRONG_R
2987 || bidi_it
->prev_for_neutral
.type
== WEAK_EN
2988 || bidi_it
->prev_for_neutral
.type
== WEAK_AN
)
2989 && !bidi_explicit_dir_char (bidi_it
->ch
)
2990 && !bidi_isolate_fmt_char (type
))
2991 type
= bidi_resolve_neutral_1 (bidi_it
->prev_for_neutral
.type
,
2992 STRONG_R
, current_level
);
2995 /* Arrrgh!! The UAX#9 algorithm is too deeply entrenched in
2996 the assumption of batch-style processing; see clauses W4,
2997 W5, and especially N1, which require to look far forward
2998 (as well as back) in the buffer/string. May the fleas of
2999 a thousand camels infest the armpits of those who design
3000 supposedly general-purpose algorithms by looking at their
3001 own implementations, and fail to consider other possible
3003 struct bidi_it saved_it
;
3004 bidi_type_t next_type
;
3005 bool adjacent_to_neutrals
= is_neutral
;
3007 bidi_copy_it (&saved_it
, bidi_it
);
3008 /* Scan the text forward until we find the first non-neutral
3009 character, and then use that to resolve the neutral we
3010 are dealing with now. We also cache the scanned iterator
3011 states, to salvage some of the effort later. */
3013 int old_sidx
, new_sidx
;
3015 /* Paragraph separators have their levels fully resolved
3016 at this point, so cache them as resolved. */
3017 bidi_cache_iterator_state (bidi_it
, type
== NEUTRAL_B
, 0);
3018 old_sidx
= bidi_it
->stack_idx
;
3019 type
= bidi_resolve_brackets (bidi_it
);
3020 /* Skip level runs excluded from this isolating run sequence. */
3021 new_sidx
= bidi_it
->stack_idx
;
3022 if (bidi_it
->level_stack
[new_sidx
].level
> current_level
3023 && (ISOLATE_STATUS (bidi_it
, new_sidx
)
3024 /* This is for when we have an isolate initiator
3025 immediately followed by an embedding or
3026 override initiator, in which case we get the
3027 level stack pushed twice by the single call to
3028 bidi_resolve_weak above. */
3029 || (new_sidx
> old_sidx
+ 1
3030 && ISOLATE_STATUS (bidi_it
, new_sidx
- 1))))
3032 while (bidi_it
->level_stack
[bidi_it
->stack_idx
].level
3035 bidi_cache_iterator_state (bidi_it
, type
== NEUTRAL_B
, 0);
3036 type
= bidi_resolve_brackets (bidi_it
);
3039 if (!adjacent_to_neutrals
3040 && (bidi_get_category (type
) == NEUTRAL
3041 || bidi_isolate_fmt_char (type
)))
3042 adjacent_to_neutrals
= true;
3043 } while (!(type
== NEUTRAL_B
3045 && bidi_get_category (type
) != NEUTRAL
3046 && !bidi_isolate_fmt_char (type
))
3047 /* This is all per level run, so stop when we
3048 reach the end of this level run. */
3049 || (bidi_it
->level_stack
[bidi_it
->stack_idx
].level
3050 != current_level
)));
3052 /* Record the character we stopped at. */
3053 bidi_remember_char (&saved_it
.next_for_neutral
, bidi_it
, 1);
3055 if ((bidi_it
->level_stack
[bidi_it
->stack_idx
].level
!= current_level
)
3056 || type
== NEUTRAL_B
)
3058 /* Marched all the way to the end of this level run. We
3059 need to use the eos type, whose information is stored
3060 by bidi_set_sos_type in the prev_for_neutral
3062 if (adjacent_to_neutrals
)
3063 next_type
= bidi_it
->prev_for_neutral
.type
;
3066 /* This is a BN which does not adjoin neutrals.
3067 Leave its type alone. */
3068 bidi_copy_it (bidi_it
, &saved_it
);
3069 return bidi_it
->type
;
3079 /* Actually, STRONG_AL cannot happen here, because
3080 bidi_resolve_weak converts it to STRONG_R, per W3. */
3081 eassert (type
!= STRONG_AL
);
3086 /* N1: "European and Arabic numbers act as if they
3087 were R in terms of their influence on NIs." */
3088 next_type
= STRONG_R
;
3095 /* Resolve the type of all the NIs found during the above loop. */
3096 type
= bidi_resolve_neutral_1 (saved_it
.prev_for_neutral
.type
,
3097 next_type
, current_level
);
3098 /* Update next_for_neutral with the resolved type, so we
3099 could use it for all the other NIs up to the place where
3100 we exited the loop. */
3101 saved_it
.next_for_neutral
.type
= next_type
;
3102 bidi_check_type (type
);
3103 /* Update the character which caused us to enter the above loop. */
3104 saved_it
.type
= type
;
3105 bidi_check_type (next_type
);
3106 bidi_copy_it (bidi_it
, &saved_it
);
3112 /* Given an iterator state in BIDI_IT, advance one character position
3113 in the buffer/string to the next character (in the logical order),
3114 resolve the bidi type of that next character, and return that
3117 bidi_type_of_next_char (struct bidi_it
*bidi_it
)
3121 /* This should always be called during a forward scan. */
3122 if (bidi_it
->scan_dir
!= 1)
3125 type
= bidi_resolve_neutral (bidi_it
);
3130 /* Given an iterator state BIDI_IT, advance one character position in
3131 the buffer/string to the next character (in the current scan
3132 direction), resolve the embedding and implicit levels of that next
3133 character, and return the resulting level. */
3135 bidi_level_of_next_char (struct bidi_it
*bidi_it
)
3137 bidi_type_t type
= UNKNOWN_BT
;
3139 ptrdiff_t next_char_pos
= -2;
3141 if (bidi_it
->scan_dir
== 1)
3144 = ((bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
3145 ? bidi_it
->string
.schars
: ZV
);
3147 /* There's no sense in trying to advance if we've already hit
3149 if (bidi_it
->charpos
>= eob
)
3151 eassert (bidi_it
->resolved_level
>= 0);
3152 return bidi_it
->resolved_level
;
3156 /* Perhaps the character we want is already cached s fully resolved.
3157 If it is, the call to bidi_cache_find below will return a type
3158 other than UNKNOWN_BT. */
3159 if (bidi_cache_idx
> bidi_cache_start
&& !bidi_it
->first_elt
)
3161 int bob
= ((bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
3164 if (bidi_it
->scan_dir
> 0)
3166 if (bidi_it
->nchars
<= 0)
3168 next_char_pos
= bidi_it
->charpos
+ bidi_it
->nchars
;
3170 else if (bidi_it
->charpos
>= bob
)
3171 /* Implementation note: we allow next_char_pos to be as low as
3172 0 for buffers or -1 for strings, and that is okay because
3173 that's the "position" of the sentinel iterator state we
3174 cached at the beginning of the iteration. */
3175 next_char_pos
= bidi_it
->charpos
- 1;
3176 if (next_char_pos
>= bob
- 1)
3177 type
= bidi_cache_find (next_char_pos
, 1, bidi_it
);
3178 if (type
!= UNKNOWN_BT
)
3180 /* We asked the cache for fully resolved states. */
3181 eassert (bidi_it
->resolved_level
>= 0);
3182 return bidi_it
->resolved_level
;
3186 if (bidi_it
->scan_dir
== -1)
3187 /* If we are going backwards, the iterator state is already cached
3188 from previous scans, and should be fully resolved. */
3191 if (type
== UNKNOWN_BT
)
3192 type
= bidi_type_of_next_char (bidi_it
);
3194 if (type
== NEUTRAL_B
)
3196 eassert (bidi_it
->resolved_level
>= 0);
3197 return bidi_it
->resolved_level
;
3200 level
= bidi_it
->level_stack
[bidi_it
->stack_idx
].level
;
3202 eassert ((type
== STRONG_R
3206 || type
== WEAK_AN
));
3207 bidi_it
->type
= type
;
3208 bidi_check_type (bidi_it
->type
);
3210 /* For L1 below, we need to know, for each WS character, whether
3211 it belongs to a sequence of WS characters preceding a newline
3212 or a TAB or a paragraph separator. */
3213 if ((bidi_it
->orig_type
== NEUTRAL_WS
3214 || bidi_isolate_fmt_char (bidi_it
->orig_type
))
3215 && bidi_it
->next_for_ws
.charpos
< bidi_it
->charpos
)
3218 ptrdiff_t clen
= bidi_it
->ch_len
;
3219 ptrdiff_t bpos
= bidi_it
->bytepos
;
3220 ptrdiff_t cpos
= bidi_it
->charpos
;
3221 ptrdiff_t disp_pos
= bidi_it
->disp_pos
;
3222 ptrdiff_t nc
= bidi_it
->nchars
;
3223 struct bidi_string_data bs
= bidi_it
->string
;
3225 bool fwp
= bidi_it
->frame_window_p
;
3226 int dpp
= bidi_it
->disp_prop
;
3228 if (bidi_it
->nchars
<= 0)
3231 ch
= bidi_fetch_char (cpos
+= nc
, bpos
+= clen
, &disp_pos
, &dpp
, &bs
,
3232 bidi_it
->w
, fwp
, &clen
, &nc
);
3233 chtype
= bidi_get_type (ch
, NEUTRAL_DIR
);
3234 } while (chtype
== NEUTRAL_WS
|| chtype
== WEAK_BN
3235 || bidi_isolate_fmt_char (chtype
)
3236 || bidi_explicit_dir_char (ch
)); /* L1/Retaining */
3237 bidi_it
->next_for_ws
.type
= chtype
;
3238 bidi_check_type (bidi_it
->next_for_ws
.type
);
3239 bidi_it
->next_for_ws
.charpos
= cpos
;
3242 /* Update the cache, but only if this state was already cached. */
3243 bidi_cache_iterator_state (bidi_it
, 1, 1);
3245 /* Resolve implicit levels. */
3246 if (bidi_it
->orig_type
== NEUTRAL_B
/* L1 */
3247 || bidi_it
->orig_type
== NEUTRAL_S
3248 || bidi_it
->ch
== '\n' || bidi_it
->ch
== BIDI_EOB
3249 || (bidi_it
->orig_type
== NEUTRAL_WS
3250 && (bidi_it
->next_for_ws
.type
== NEUTRAL_B
3251 || bidi_it
->next_for_ws
.type
== NEUTRAL_S
)))
3252 level
= bidi_it
->level_stack
[0].level
;
3253 else if ((level
& 1) == 0) /* I1 */
3255 if (type
== STRONG_R
)
3257 else if (type
== WEAK_EN
|| type
== WEAK_AN
)
3262 if (type
== STRONG_L
|| type
== WEAK_EN
|| type
== WEAK_AN
)
3266 bidi_it
->resolved_level
= level
;
3270 /* Move to the other edge of a level given by LEVEL. If END_FLAG,
3271 we are at the end of a level, and we need to prepare to
3272 resume the scan of the lower level.
3274 If this level's other edge is cached, we simply jump to it, filling
3275 the iterator structure with the iterator state on the other edge.
3276 Otherwise, we walk the buffer or string until we come back to the
3277 same level as LEVEL.
3279 Note: we are not talking here about a ``level run'' in the UAX#9
3280 sense of the term, but rather about a ``level'' which includes
3281 all the levels higher than it. In other words, given the levels
3284 11111112222222333333334443343222222111111112223322111
3287 and assuming we are at point A scanning left to right, this
3288 function moves to point C, whereas the UAX#9 ``level 2 run'' ends
3291 bidi_find_other_level_edge (struct bidi_it
*bidi_it
, int level
, bool end_flag
)
3293 int dir
= end_flag
? -bidi_it
->scan_dir
: bidi_it
->scan_dir
;
3296 /* Try the cache first. */
3297 if ((idx
= bidi_cache_find_level_change (level
, dir
, end_flag
))
3298 >= bidi_cache_start
)
3299 bidi_cache_fetch_state (idx
, bidi_it
);
3304 /* If we are at end of level, its edges must be cached. */
3308 if (!bidi_cache_iterator_state (bidi_it
, 1, 0))
3310 /* Can't happen: if the cache needs to grow, it means we
3311 were at base embedding level, so the cache should have
3312 been either empty or already large enough to cover this
3313 character position. */
3317 new_level
= bidi_level_of_next_char (bidi_it
);
3318 /* If the cache is full, perform an emergency return by
3319 pretending that the level ended. */
3320 if (!bidi_cache_iterator_state (bidi_it
, 1, 0))
3322 new_level
= level
- 1;
3323 /* Since the cache should only grow when we are scanning
3324 forward looking for the edge of the level that is one
3325 above the base embedding level, we can only have this
3326 contingency when LEVEL - 1 is the base embedding
3328 eassert (new_level
== bidi_it
->level_stack
[0].level
);
3329 /* Plan B, for when the cache overflows: Back up to the
3330 previous character by fetching the last cached state,
3331 and force the resolved level of that character be the
3332 base embedding level. */
3333 bidi_cache_fetch_state (bidi_cache_idx
- 1, bidi_it
);
3334 bidi_it
->resolved_level
= new_level
;
3335 bidi_cache_iterator_state (bidi_it
, 1, 1);
3337 } while (new_level
>= level
);
3342 bidi_move_to_visually_next (struct bidi_it
*bidi_it
)
3344 int old_level
, new_level
, next_level
;
3345 struct bidi_it sentinel
;
3346 struct gcpro gcpro1
;
3348 if (bidi_it
->charpos
< 0 || bidi_it
->bytepos
< 0)
3351 if (bidi_it
->scan_dir
== 0)
3353 bidi_it
->scan_dir
= 1; /* default to logical order */
3356 /* The code below can call eval, and thus cause GC. If we are
3357 iterating a Lisp string, make sure it won't be GCed. */
3358 if (STRINGP (bidi_it
->string
.lstring
))
3359 GCPRO1 (bidi_it
->string
.lstring
);
3361 /* If we just passed a newline, initialize for the next line. */
3362 if (!bidi_it
->first_elt
3363 && (bidi_it
->ch
== '\n' || bidi_it
->ch
== BIDI_EOB
))
3364 bidi_line_init (bidi_it
);
3366 /* Prepare the sentinel iterator state, and cache it. When we bump
3367 into it, scanning backwards, we'll know that the last non-base
3368 level is exhausted. */
3369 if (bidi_cache_idx
== bidi_cache_start
)
3371 bidi_copy_it (&sentinel
, bidi_it
);
3372 if (bidi_it
->first_elt
)
3374 sentinel
.charpos
--; /* cached charpos needs to be monotonic */
3376 sentinel
.ch
= '\n'; /* doesn't matter, but why not? */
3377 sentinel
.ch_len
= 1;
3378 sentinel
.nchars
= 1;
3380 bidi_cache_iterator_state (&sentinel
, 1, 0);
3383 old_level
= bidi_it
->resolved_level
;
3384 new_level
= bidi_level_of_next_char (bidi_it
);
3386 /* Reordering of resolved levels (clause L2) is implemented by
3387 jumping to the other edge of the level and flipping direction of
3388 scanning the text whenever we find a level change. */
3389 if (new_level
!= old_level
)
3391 bool ascending
= new_level
> old_level
;
3392 int level_to_search
= ascending
? old_level
+ 1 : old_level
;
3393 int incr
= ascending
? 1 : -1;
3394 int expected_next_level
= old_level
+ incr
;
3396 /* Jump (or walk) to the other edge of this level. */
3397 bidi_find_other_level_edge (bidi_it
, level_to_search
, !ascending
);
3398 /* Switch scan direction and peek at the next character in the
3400 bidi_it
->scan_dir
= -bidi_it
->scan_dir
;
3402 /* The following loop handles the case where the resolved level
3403 jumps by more than one. This is typical for numbers inside a
3404 run of text with left-to-right embedding direction, but can
3405 also happen in other situations. In those cases the decision
3406 where to continue after a level change, and in what direction,
3407 is tricky. For example, given a text like below:
3412 (where the numbers below the text show the resolved levels),
3413 the result of reordering according to UAX#9 should be this:
3417 This is implemented by the loop below which flips direction
3418 and jumps to the other edge of the level each time it finds
3419 the new level not to be the expected one. The expected level
3420 is always one more or one less than the previous one. */
3421 next_level
= bidi_peek_at_next_level (bidi_it
);
3422 while (next_level
!= expected_next_level
)
3424 /* If next_level is -1, it means we have an unresolved level
3425 in the cache, which at this point should not happen. If
3426 it does, we will infloop. */
3427 eassert (next_level
>= 0);
3428 /* If next_level is not consistent with incr, we might
3431 ? next_level
> expected_next_level
3432 : next_level
< expected_next_level
);
3433 expected_next_level
+= incr
;
3434 level_to_search
+= incr
;
3435 bidi_find_other_level_edge (bidi_it
, level_to_search
, !ascending
);
3436 bidi_it
->scan_dir
= -bidi_it
->scan_dir
;
3437 next_level
= bidi_peek_at_next_level (bidi_it
);
3440 /* Finally, deliver the next character in the new direction. */
3441 next_level
= bidi_level_of_next_char (bidi_it
);
3444 /* Take note when we have just processed the newline that precedes
3445 the end of the paragraph. The next time we are about to be
3446 called, set_iterator_to_next will automatically reinit the
3447 paragraph direction, if needed. We do this at the newline before
3448 the paragraph separator, because the next character might not be
3449 the first character of the next paragraph, due to the bidi
3450 reordering, whereas we _must_ know the paragraph base direction
3451 _before_ we process the paragraph's text, since the base
3452 direction affects the reordering. */
3453 if (bidi_it
->scan_dir
== 1
3454 && (bidi_it
->ch
== '\n' || bidi_it
->ch
== BIDI_EOB
))
3456 /* The paragraph direction of the entire string, once
3457 determined, is in effect for the entire string. Setting the
3458 separator limit to the end of the string prevents
3459 bidi_paragraph_init from being called automatically on this
3461 if (bidi_it
->string
.s
|| STRINGP (bidi_it
->string
.lstring
))
3462 bidi_it
->separator_limit
= bidi_it
->string
.schars
;
3463 else if (bidi_it
->bytepos
< ZV_BYTE
)
3466 = bidi_at_paragraph_end (bidi_it
->charpos
+ bidi_it
->nchars
,
3467 bidi_it
->bytepos
+ bidi_it
->ch_len
);
3468 if (bidi_it
->nchars
<= 0)
3472 bidi_it
->new_paragraph
= 1;
3473 /* Record the buffer position of the last character of the
3474 paragraph separator. */
3475 bidi_it
->separator_limit
3476 = bidi_it
->charpos
+ bidi_it
->nchars
+ sep_len
;
3481 if (bidi_it
->scan_dir
== 1 && bidi_cache_idx
> bidi_cache_start
)
3483 /* If we are at paragraph's base embedding level and beyond the
3484 last cached position, the cache's job is done and we can
3486 if (bidi_it
->resolved_level
== bidi_it
->level_stack
[0].level
3487 && bidi_it
->charpos
> (bidi_cache
[bidi_cache_idx
- 1].charpos
3488 + bidi_cache
[bidi_cache_idx
- 1].nchars
- 1))
3489 bidi_cache_reset ();
3490 /* Also reset the cache if it overflowed and we have just
3491 emergency-exited using Plan B. */
3492 else if (bidi_it
->resolved_level
== bidi_it
->level_stack
[0].level
3493 && bidi_cache_idx
>= bidi_cache_size
3494 && bidi_it
->charpos
== bidi_cache
[bidi_cache_idx
- 1].charpos
)
3495 bidi_cache_reset ();
3496 /* But as long as we are caching during forward scan, we must
3497 cache each state, or else the cache integrity will be
3498 compromised: it assumes cached states correspond to buffer
3501 bidi_cache_iterator_state (bidi_it
, 1, 0);
3504 eassert (bidi_it
->resolved_level
>= 0
3505 && bidi_it
->resolved_level
<= BIDI_MAXDEPTH
+ 2);
3507 if (STRINGP (bidi_it
->string
.lstring
))
3511 /* Utility function for looking for strong directional characters
3512 whose bidi type was overridden by a directional override. */
3514 bidi_find_first_overridden (struct bidi_it
*bidi_it
)
3516 ptrdiff_t found_pos
= ZV
;
3520 /* Need to call bidi_resolve_weak, not bidi_resolve_explicit,
3521 because the directional overrides are applied by the
3523 bidi_type_t type
= bidi_resolve_weak (bidi_it
);
3525 if ((type
== STRONG_R
&& bidi_it
->orig_type
== STRONG_L
)
3526 || (type
== STRONG_L
3527 && (bidi_it
->orig_type
== STRONG_R
3528 || bidi_it
->orig_type
== STRONG_AL
)))
3529 found_pos
= bidi_it
->charpos
;
3530 } while (found_pos
== ZV
3531 && bidi_it
->charpos
< ZV
3532 && bidi_it
->ch
!= BIDI_EOB
3533 && bidi_it
->ch
!= '\n');
3538 /* This is meant to be called from within the debugger, whenever you
3539 wish to examine the cache contents. */
3540 void bidi_dump_cached_states (void) EXTERNALLY_VISIBLE
;
3542 bidi_dump_cached_states (void)
3547 if (bidi_cache_idx
== 0)
3549 fprintf (stderr
, "The cache is empty.\n");
3552 fprintf (stderr
, "Total of %"pD
"d state%s in cache:\n",
3553 bidi_cache_idx
, bidi_cache_idx
== 1 ? "" : "s");
3555 for (i
= bidi_cache
[bidi_cache_idx
- 1].charpos
; i
> 0; i
/= 10)
3557 fputs ("ch ", stderr
);
3558 for (i
= 0; i
< bidi_cache_idx
; i
++)
3559 fprintf (stderr
, "%*c", ndigits
, bidi_cache
[i
].ch
);
3560 fputs ("\n", stderr
);
3561 fputs ("lvl ", stderr
);
3562 for (i
= 0; i
< bidi_cache_idx
; i
++)
3563 fprintf (stderr
, "%*d", ndigits
, bidi_cache
[i
].resolved_level
);
3564 fputs ("\n", stderr
);
3565 fputs ("pos ", stderr
);
3566 for (i
= 0; i
< bidi_cache_idx
; i
++)
3567 fprintf (stderr
, "%*"pD
"d", ndigits
, bidi_cache
[i
].charpos
);
3568 fputs ("\n", stderr
);