1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2015 Free Software
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
36 #include "intervals.h"
38 #include "character.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
47 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <execinfo.h> /* For backtrace. */
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
57 #include "dosfns.h" /* For dos_memory_info. */
60 #if (defined ENABLE_CHECKING \
61 && defined HAVE_VALGRIND_VALGRIND_H \
62 && !defined USE_VALGRIND)
63 # define USE_VALGRIND 1
67 #include <valgrind/valgrind.h>
68 #include <valgrind/memcheck.h>
69 static bool valgrind_p
;
72 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
73 Doable only if GC_MARK_STACK. */
75 # undef GC_CHECK_MARKED_OBJECTS
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
95 #include "w32heap.h" /* for sbrk */
98 #ifdef DOUG_LEA_MALLOC
102 /* Specify maximum number of areas to mmap. It would be nice to use a
103 value that explicitly means "no limit". */
105 #define MMAP_MAX_AREAS 100000000
107 #endif /* not DOUG_LEA_MALLOC */
109 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
110 to a struct Lisp_String. */
112 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
113 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
114 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
116 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
117 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
118 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
120 /* Default value of gc_cons_threshold (see below). */
122 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
124 /* Global variables. */
125 struct emacs_globals globals
;
127 /* Number of bytes of consing done since the last gc. */
129 EMACS_INT consing_since_gc
;
131 /* Similar minimum, computed from Vgc_cons_percentage. */
133 EMACS_INT gc_relative_threshold
;
135 /* Minimum number of bytes of consing since GC before next GC,
136 when memory is full. */
138 EMACS_INT memory_full_cons_threshold
;
140 /* True during GC. */
144 /* True means abort if try to GC.
145 This is for code which is written on the assumption that
146 no GC will happen, so as to verify that assumption. */
150 /* Number of live and free conses etc. */
152 static EMACS_INT total_conses
, total_markers
, total_symbols
, total_buffers
;
153 static EMACS_INT total_free_conses
, total_free_markers
, total_free_symbols
;
154 static EMACS_INT total_free_floats
, total_floats
;
156 /* Points to memory space allocated as "spare", to be freed if we run
157 out of memory. We keep one large block, four cons-blocks, and
158 two string blocks. */
160 static char *spare_memory
[7];
162 /* Amount of spare memory to keep in large reserve block, or to see
163 whether this much is available when malloc fails on a larger request. */
165 #define SPARE_MEMORY (1 << 14)
167 /* Initialize it to a nonzero value to force it into data space
168 (rather than bss space). That way unexec will remap it into text
169 space (pure), on some systems. We have not implemented the
170 remapping on more recent systems because this is less important
171 nowadays than in the days of small memories and timesharing. */
173 EMACS_INT pure
[(PURESIZE
+ sizeof (EMACS_INT
) - 1) / sizeof (EMACS_INT
)] = {1,};
174 #define PUREBEG (char *) pure
176 /* Pointer to the pure area, and its size. */
178 static char *purebeg
;
179 static ptrdiff_t pure_size
;
181 /* Number of bytes of pure storage used before pure storage overflowed.
182 If this is non-zero, this implies that an overflow occurred. */
184 static ptrdiff_t pure_bytes_used_before_overflow
;
186 /* True if P points into pure space. */
188 #define PURE_POINTER_P(P) \
189 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
191 /* Index in pure at which next pure Lisp object will be allocated.. */
193 static ptrdiff_t pure_bytes_used_lisp
;
195 /* Number of bytes allocated for non-Lisp objects in pure storage. */
197 static ptrdiff_t pure_bytes_used_non_lisp
;
199 /* If nonzero, this is a warning delivered by malloc and not yet
202 const char *pending_malloc_warning
;
204 #if 0 /* Normally, pointer sanity only on request... */
205 #ifdef ENABLE_CHECKING
206 #define SUSPICIOUS_OBJECT_CHECKING 1
210 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
211 bug is unresolved. */
212 #define SUSPICIOUS_OBJECT_CHECKING 1
214 #ifdef SUSPICIOUS_OBJECT_CHECKING
215 struct suspicious_free_record
217 void *suspicious_object
;
218 void *backtrace
[128];
220 static void *suspicious_objects
[32];
221 static int suspicious_object_index
;
222 struct suspicious_free_record suspicious_free_history
[64] EXTERNALLY_VISIBLE
;
223 static int suspicious_free_history_index
;
224 /* Find the first currently-monitored suspicious pointer in range
225 [begin,end) or NULL if no such pointer exists. */
226 static void *find_suspicious_object_in_range (void *begin
, void *end
);
227 static void detect_suspicious_free (void *ptr
);
229 # define find_suspicious_object_in_range(begin, end) NULL
230 # define detect_suspicious_free(ptr) (void)
233 /* Maximum amount of C stack to save when a GC happens. */
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
239 /* Buffer in which we save a copy of the C stack at each GC. */
241 #if MAX_SAVE_STACK > 0
242 static char *stack_copy
;
243 static ptrdiff_t stack_copy_size
;
245 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
246 avoiding any address sanitization. */
248 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
249 no_sanitize_memcpy (void *dest
, void const *src
, size_t size
)
251 if (! ADDRESS_SANITIZER
)
252 return memcpy (dest
, src
, size
);
258 for (i
= 0; i
< size
; i
++)
264 #endif /* MAX_SAVE_STACK > 0 */
266 static void mark_terminals (void);
267 static void gc_sweep (void);
268 static Lisp_Object
make_pure_vector (ptrdiff_t);
269 static void mark_buffer (struct buffer
*);
271 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
272 static void refill_memory_reserve (void);
274 static void compact_small_strings (void);
275 static void free_large_strings (void);
276 extern Lisp_Object
which_symbols (Lisp_Object
, EMACS_INT
) EXTERNALLY_VISIBLE
;
278 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
279 what memory allocated via lisp_malloc and lisp_align_malloc is intended
280 for what purpose. This enumeration specifies the type of memory. */
291 /* Since all non-bool pseudovectors are small enough to be
292 allocated from vector blocks, this memory type denotes
293 large regular vectors and large bool pseudovectors. */
295 /* Special type to denote vector blocks. */
296 MEM_TYPE_VECTOR_BLOCK
,
297 /* Special type to denote reserved memory. */
301 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
303 /* A unique object in pure space used to make some Lisp objects
304 on free lists recognizable in O(1). */
306 static Lisp_Object Vdead
;
307 #define DEADP(x) EQ (x, Vdead)
309 #ifdef GC_MALLOC_CHECK
311 enum mem_type allocated_mem_type
;
313 #endif /* GC_MALLOC_CHECK */
315 /* A node in the red-black tree describing allocated memory containing
316 Lisp data. Each such block is recorded with its start and end
317 address when it is allocated, and removed from the tree when it
320 A red-black tree is a balanced binary tree with the following
323 1. Every node is either red or black.
324 2. Every leaf is black.
325 3. If a node is red, then both of its children are black.
326 4. Every simple path from a node to a descendant leaf contains
327 the same number of black nodes.
328 5. The root is always black.
330 When nodes are inserted into the tree, or deleted from the tree,
331 the tree is "fixed" so that these properties are always true.
333 A red-black tree with N internal nodes has height at most 2
334 log(N+1). Searches, insertions and deletions are done in O(log N).
335 Please see a text book about data structures for a detailed
336 description of red-black trees. Any book worth its salt should
341 /* Children of this node. These pointers are never NULL. When there
342 is no child, the value is MEM_NIL, which points to a dummy node. */
343 struct mem_node
*left
, *right
;
345 /* The parent of this node. In the root node, this is NULL. */
346 struct mem_node
*parent
;
348 /* Start and end of allocated region. */
352 enum {MEM_BLACK
, MEM_RED
} color
;
358 /* Base address of stack. Set in main. */
360 Lisp_Object
*stack_base
;
362 /* Root of the tree describing allocated Lisp memory. */
364 static struct mem_node
*mem_root
;
366 /* Lowest and highest known address in the heap. */
368 static void *min_heap_address
, *max_heap_address
;
370 /* Sentinel node of the tree. */
372 static struct mem_node mem_z
;
373 #define MEM_NIL &mem_z
375 static struct mem_node
*mem_insert (void *, void *, enum mem_type
);
376 static void mem_insert_fixup (struct mem_node
*);
377 static void mem_rotate_left (struct mem_node
*);
378 static void mem_rotate_right (struct mem_node
*);
379 static void mem_delete (struct mem_node
*);
380 static void mem_delete_fixup (struct mem_node
*);
381 static struct mem_node
*mem_find (void *);
383 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
389 /* Recording what needs to be marked for gc. */
391 struct gcpro
*gcprolist
;
393 /* Addresses of staticpro'd variables. Initialize it to a nonzero
394 value; otherwise some compilers put it into BSS. */
396 enum { NSTATICS
= 2048 };
397 static Lisp_Object
*staticvec
[NSTATICS
] = {&Vpurify_flag
};
399 /* Index of next unused slot in staticvec. */
401 static int staticidx
;
403 static void *pure_alloc (size_t, int);
405 /* Return X rounded to the next multiple of Y. Arguments should not
406 have side effects, as they are evaluated more than once. Assume X
407 + Y - 1 does not overflow. Tune for Y being a power of 2. */
409 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
410 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
411 : ((x) + (y) - 1) & ~ ((y) - 1))
413 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
416 ALIGN (void *ptr
, int alignment
)
418 return (void *) ROUNDUP ((uintptr_t) ptr
, alignment
);
422 XFLOAT_INIT (Lisp_Object f
, double n
)
424 XFLOAT (f
)->u
.data
= n
;
428 pointers_fit_in_lispobj_p (void)
430 return (UINTPTR_MAX
<= VAL_MAX
) || USE_LSB_TAG
;
434 mmap_lisp_allowed_p (void)
436 /* If we can't store all memory addresses in our lisp objects, it's
437 risky to let the heap use mmap and give us addresses from all
438 over our address space. We also can't use mmap for lisp objects
439 if we might dump: unexec doesn't preserve the contents of mmapped
441 return pointers_fit_in_lispobj_p () && !might_dump
;
445 /************************************************************************
447 ************************************************************************/
449 /* Function malloc calls this if it finds we are near exhausting storage. */
452 malloc_warning (const char *str
)
454 pending_malloc_warning
= str
;
458 /* Display an already-pending malloc warning. */
461 display_malloc_warning (void)
463 call3 (intern ("display-warning"),
465 build_string (pending_malloc_warning
),
466 intern ("emergency"));
467 pending_malloc_warning
= 0;
470 /* Called if we can't allocate relocatable space for a buffer. */
473 buffer_memory_full (ptrdiff_t nbytes
)
475 /* If buffers use the relocating allocator, no need to free
476 spare_memory, because we may have plenty of malloc space left
477 that we could get, and if we don't, the malloc that fails will
478 itself cause spare_memory to be freed. If buffers don't use the
479 relocating allocator, treat this like any other failing
483 memory_full (nbytes
);
485 /* This used to call error, but if we've run out of memory, we could
486 get infinite recursion trying to build the string. */
487 xsignal (Qnil
, Vmemory_signal_data
);
491 /* A common multiple of the positive integers A and B. Ideally this
492 would be the least common multiple, but there's no way to do that
493 as a constant expression in C, so do the best that we can easily do. */
494 #define COMMON_MULTIPLE(a, b) \
495 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
497 #ifndef XMALLOC_OVERRUN_CHECK
498 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
501 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
504 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
505 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
506 block size in little-endian order. The trailer consists of
507 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
509 The header is used to detect whether this block has been allocated
510 through these functions, as some low-level libc functions may
511 bypass the malloc hooks. */
513 #define XMALLOC_OVERRUN_CHECK_SIZE 16
514 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
515 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
517 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
518 hold a size_t value and (2) the header size is a multiple of the
519 alignment that Emacs needs for C types and for USE_LSB_TAG. */
520 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
523 # define XMALLOC_HEADER_ALIGNMENT \
524 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
526 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
528 #define XMALLOC_OVERRUN_SIZE_SIZE \
529 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
530 + XMALLOC_HEADER_ALIGNMENT - 1) \
531 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
532 - XMALLOC_OVERRUN_CHECK_SIZE)
534 static char const xmalloc_overrun_check_header
[XMALLOC_OVERRUN_CHECK_SIZE
] =
535 { '\x9a', '\x9b', '\xae', '\xaf',
536 '\xbf', '\xbe', '\xce', '\xcf',
537 '\xea', '\xeb', '\xec', '\xed',
538 '\xdf', '\xde', '\x9c', '\x9d' };
540 static char const xmalloc_overrun_check_trailer
[XMALLOC_OVERRUN_CHECK_SIZE
] =
541 { '\xaa', '\xab', '\xac', '\xad',
542 '\xba', '\xbb', '\xbc', '\xbd',
543 '\xca', '\xcb', '\xcc', '\xcd',
544 '\xda', '\xdb', '\xdc', '\xdd' };
546 /* Insert and extract the block size in the header. */
549 xmalloc_put_size (unsigned char *ptr
, size_t size
)
552 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
554 *--ptr
= size
& ((1 << CHAR_BIT
) - 1);
560 xmalloc_get_size (unsigned char *ptr
)
564 ptr
-= XMALLOC_OVERRUN_SIZE_SIZE
;
565 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
574 /* Like malloc, but wraps allocated block with header and trailer. */
577 overrun_check_malloc (size_t size
)
579 register unsigned char *val
;
580 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
583 val
= malloc (size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
586 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
587 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
588 xmalloc_put_size (val
, size
);
589 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
590 XMALLOC_OVERRUN_CHECK_SIZE
);
596 /* Like realloc, but checks old block for overrun, and wraps new block
597 with header and trailer. */
600 overrun_check_realloc (void *block
, size_t size
)
602 register unsigned char *val
= (unsigned char *) block
;
603 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
607 && memcmp (xmalloc_overrun_check_header
,
608 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
609 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
611 size_t osize
= xmalloc_get_size (val
);
612 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
613 XMALLOC_OVERRUN_CHECK_SIZE
))
615 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
616 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
617 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
620 val
= realloc (val
, size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
624 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
625 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
626 xmalloc_put_size (val
, size
);
627 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
628 XMALLOC_OVERRUN_CHECK_SIZE
);
633 /* Like free, but checks block for overrun. */
636 overrun_check_free (void *block
)
638 unsigned char *val
= (unsigned char *) block
;
641 && memcmp (xmalloc_overrun_check_header
,
642 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
643 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
645 size_t osize
= xmalloc_get_size (val
);
646 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
647 XMALLOC_OVERRUN_CHECK_SIZE
))
649 #ifdef XMALLOC_CLEAR_FREE_MEMORY
650 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
651 memset (val
, 0xff, osize
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
653 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
654 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
655 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
670 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
671 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
672 If that variable is set, block input while in one of Emacs's memory
673 allocation functions. There should be no need for this debugging
674 option, since signal handlers do not allocate memory, but Emacs
675 formerly allocated memory in signal handlers and this compile-time
676 option remains as a way to help debug the issue should it rear its
678 #ifdef XMALLOC_BLOCK_INPUT_CHECK
679 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE
;
681 malloc_block_input (void)
683 if (block_input_in_memory_allocators
)
687 malloc_unblock_input (void)
689 if (block_input_in_memory_allocators
)
692 # define MALLOC_BLOCK_INPUT malloc_block_input ()
693 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
695 # define MALLOC_BLOCK_INPUT ((void) 0)
696 # define MALLOC_UNBLOCK_INPUT ((void) 0)
699 #define MALLOC_PROBE(size) \
701 if (profiler_memory_running) \
702 malloc_probe (size); \
706 /* Like malloc but check for no memory and block interrupt input.. */
709 xmalloc (size_t size
)
715 MALLOC_UNBLOCK_INPUT
;
723 /* Like the above, but zeroes out the memory just allocated. */
726 xzalloc (size_t size
)
732 MALLOC_UNBLOCK_INPUT
;
736 memset (val
, 0, size
);
741 /* Like realloc but check for no memory and block interrupt input.. */
744 xrealloc (void *block
, size_t size
)
749 /* We must call malloc explicitly when BLOCK is 0, since some
750 reallocs don't do this. */
754 val
= realloc (block
, size
);
755 MALLOC_UNBLOCK_INPUT
;
764 /* Like free but block interrupt input. */
773 MALLOC_UNBLOCK_INPUT
;
774 /* We don't call refill_memory_reserve here
775 because in practice the call in r_alloc_free seems to suffice. */
779 /* Other parts of Emacs pass large int values to allocator functions
780 expecting ptrdiff_t. This is portable in practice, but check it to
782 verify (INT_MAX
<= PTRDIFF_MAX
);
785 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
786 Signal an error on memory exhaustion, and block interrupt input. */
789 xnmalloc (ptrdiff_t nitems
, ptrdiff_t item_size
)
791 eassert (0 <= nitems
&& 0 < item_size
);
792 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
793 memory_full (SIZE_MAX
);
794 return xmalloc (nitems
* item_size
);
798 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
799 Signal an error on memory exhaustion, and block interrupt input. */
802 xnrealloc (void *pa
, ptrdiff_t nitems
, ptrdiff_t item_size
)
804 eassert (0 <= nitems
&& 0 < item_size
);
805 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
806 memory_full (SIZE_MAX
);
807 return xrealloc (pa
, nitems
* item_size
);
811 /* Grow PA, which points to an array of *NITEMS items, and return the
812 location of the reallocated array, updating *NITEMS to reflect its
813 new size. The new array will contain at least NITEMS_INCR_MIN more
814 items, but will not contain more than NITEMS_MAX items total.
815 ITEM_SIZE is the size of each item, in bytes.
817 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
818 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
821 If PA is null, then allocate a new array instead of reallocating
824 Block interrupt input as needed. If memory exhaustion occurs, set
825 *NITEMS to zero if PA is null, and signal an error (i.e., do not
828 Thus, to grow an array A without saving its old contents, do
829 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
830 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
831 and signals an error, and later this code is reexecuted and
832 attempts to free A. */
835 xpalloc (void *pa
, ptrdiff_t *nitems
, ptrdiff_t nitems_incr_min
,
836 ptrdiff_t nitems_max
, ptrdiff_t item_size
)
838 /* The approximate size to use for initial small allocation
839 requests. This is the largest "small" request for the GNU C
841 enum { DEFAULT_MXFAST
= 64 * sizeof (size_t) / 4 };
843 /* If the array is tiny, grow it to about (but no greater than)
844 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
845 ptrdiff_t n
= *nitems
;
846 ptrdiff_t tiny_max
= DEFAULT_MXFAST
/ item_size
- n
;
847 ptrdiff_t half_again
= n
>> 1;
848 ptrdiff_t incr_estimate
= max (tiny_max
, half_again
);
850 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
851 NITEMS_MAX, and what the C language can represent safely. */
852 ptrdiff_t C_language_max
= min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
;
853 ptrdiff_t n_max
= (0 <= nitems_max
&& nitems_max
< C_language_max
854 ? nitems_max
: C_language_max
);
855 ptrdiff_t nitems_incr_max
= n_max
- n
;
856 ptrdiff_t incr
= max (nitems_incr_min
, min (incr_estimate
, nitems_incr_max
));
858 eassert (0 < item_size
&& 0 < nitems_incr_min
&& 0 <= n
&& -1 <= nitems_max
);
861 if (nitems_incr_max
< incr
)
862 memory_full (SIZE_MAX
);
864 pa
= xrealloc (pa
, n
* item_size
);
870 /* Like strdup, but uses xmalloc. */
873 xstrdup (const char *s
)
877 size
= strlen (s
) + 1;
878 return memcpy (xmalloc (size
), s
, size
);
881 /* Like above, but duplicates Lisp string to C string. */
884 xlispstrdup (Lisp_Object string
)
886 ptrdiff_t size
= SBYTES (string
) + 1;
887 return memcpy (xmalloc (size
), SSDATA (string
), size
);
890 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
891 pointed to. If STRING is null, assign it without copying anything.
892 Allocate before freeing, to avoid a dangling pointer if allocation
896 dupstring (char **ptr
, char const *string
)
899 *ptr
= string
? xstrdup (string
) : 0;
904 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
905 argument is a const pointer. */
908 xputenv (char const *string
)
910 if (putenv ((char *) string
) != 0)
914 /* Return a newly allocated memory block of SIZE bytes, remembering
915 to free it when unwinding. */
917 record_xmalloc (size_t size
)
919 void *p
= xmalloc (size
);
920 record_unwind_protect_ptr (xfree
, p
);
925 /* Like malloc but used for allocating Lisp data. NBYTES is the
926 number of bytes to allocate, TYPE describes the intended use of the
927 allocated memory block (for strings, for conses, ...). */
930 void *lisp_malloc_loser EXTERNALLY_VISIBLE
;
934 lisp_malloc (size_t nbytes
, enum mem_type type
)
940 #ifdef GC_MALLOC_CHECK
941 allocated_mem_type
= type
;
944 val
= malloc (nbytes
);
947 /* If the memory just allocated cannot be addressed thru a Lisp
948 object's pointer, and it needs to be,
949 that's equivalent to running out of memory. */
950 if (val
&& type
!= MEM_TYPE_NON_LISP
)
953 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
954 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
956 lisp_malloc_loser
= val
;
963 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
964 if (val
&& type
!= MEM_TYPE_NON_LISP
)
965 mem_insert (val
, (char *) val
+ nbytes
, type
);
968 MALLOC_UNBLOCK_INPUT
;
970 memory_full (nbytes
);
971 MALLOC_PROBE (nbytes
);
975 /* Free BLOCK. This must be called to free memory allocated with a
976 call to lisp_malloc. */
979 lisp_free (void *block
)
983 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
984 mem_delete (mem_find (block
));
986 MALLOC_UNBLOCK_INPUT
;
989 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
991 /* The entry point is lisp_align_malloc which returns blocks of at most
992 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
994 /* Use aligned_alloc if it or a simple substitute is available.
995 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
998 #if ! ADDRESS_SANITIZER
999 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1000 # define USE_ALIGNED_ALLOC 1
1001 /* Defined in gmalloc.c. */
1002 void *aligned_alloc (size_t, size_t);
1003 # elif defined HYBRID_MALLOC
1004 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1005 # define USE_ALIGNED_ALLOC 1
1006 # define aligned_alloc hybrid_aligned_alloc
1007 /* Defined in gmalloc.c. */
1008 void *aligned_alloc (size_t, size_t);
1010 # elif defined HAVE_ALIGNED_ALLOC
1011 # define USE_ALIGNED_ALLOC 1
1012 # elif defined HAVE_POSIX_MEMALIGN
1013 # define USE_ALIGNED_ALLOC 1
1015 aligned_alloc (size_t alignment
, size_t size
)
1018 return posix_memalign (&p
, alignment
, size
) == 0 ? p
: 0;
1023 /* BLOCK_ALIGN has to be a power of 2. */
1024 #define BLOCK_ALIGN (1 << 10)
1026 /* Padding to leave at the end of a malloc'd block. This is to give
1027 malloc a chance to minimize the amount of memory wasted to alignment.
1028 It should be tuned to the particular malloc library used.
1029 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1030 aligned_alloc on the other hand would ideally prefer a value of 4
1031 because otherwise, there's 1020 bytes wasted between each ablocks.
1032 In Emacs, testing shows that those 1020 can most of the time be
1033 efficiently used by malloc to place other objects, so a value of 0 can
1034 still preferable unless you have a lot of aligned blocks and virtually
1036 #define BLOCK_PADDING 0
1037 #define BLOCK_BYTES \
1038 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1040 /* Internal data structures and constants. */
1042 #define ABLOCKS_SIZE 16
1044 /* An aligned block of memory. */
1049 char payload
[BLOCK_BYTES
];
1050 struct ablock
*next_free
;
1052 /* `abase' is the aligned base of the ablocks. */
1053 /* It is overloaded to hold the virtual `busy' field that counts
1054 the number of used ablock in the parent ablocks.
1055 The first ablock has the `busy' field, the others have the `abase'
1056 field. To tell the difference, we assume that pointers will have
1057 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1058 is used to tell whether the real base of the parent ablocks is `abase'
1059 (if not, the word before the first ablock holds a pointer to the
1061 struct ablocks
*abase
;
1062 /* The padding of all but the last ablock is unused. The padding of
1063 the last ablock in an ablocks is not allocated. */
1065 char padding
[BLOCK_PADDING
];
1069 /* A bunch of consecutive aligned blocks. */
1072 struct ablock blocks
[ABLOCKS_SIZE
];
1075 /* Size of the block requested from malloc or aligned_alloc. */
1076 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1078 #define ABLOCK_ABASE(block) \
1079 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1080 ? (struct ablocks *)(block) \
1083 /* Virtual `busy' field. */
1084 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1086 /* Pointer to the (not necessarily aligned) malloc block. */
1087 #ifdef USE_ALIGNED_ALLOC
1088 #define ABLOCKS_BASE(abase) (abase)
1090 #define ABLOCKS_BASE(abase) \
1091 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1094 /* The list of free ablock. */
1095 static struct ablock
*free_ablock
;
1097 /* Allocate an aligned block of nbytes.
1098 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1099 smaller or equal to BLOCK_BYTES. */
1101 lisp_align_malloc (size_t nbytes
, enum mem_type type
)
1104 struct ablocks
*abase
;
1106 eassert (nbytes
<= BLOCK_BYTES
);
1110 #ifdef GC_MALLOC_CHECK
1111 allocated_mem_type
= type
;
1117 intptr_t aligned
; /* int gets warning casting to 64-bit pointer. */
1119 #ifdef DOUG_LEA_MALLOC
1120 if (!mmap_lisp_allowed_p ())
1121 mallopt (M_MMAP_MAX
, 0);
1124 #ifdef USE_ALIGNED_ALLOC
1125 abase
= base
= aligned_alloc (BLOCK_ALIGN
, ABLOCKS_BYTES
);
1127 base
= malloc (ABLOCKS_BYTES
);
1128 abase
= ALIGN (base
, BLOCK_ALIGN
);
1133 MALLOC_UNBLOCK_INPUT
;
1134 memory_full (ABLOCKS_BYTES
);
1137 aligned
= (base
== abase
);
1139 ((void **) abase
)[-1] = base
;
1141 #ifdef DOUG_LEA_MALLOC
1142 if (!mmap_lisp_allowed_p ())
1143 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1147 /* If the memory just allocated cannot be addressed thru a Lisp
1148 object's pointer, and it needs to be, that's equivalent to
1149 running out of memory. */
1150 if (type
!= MEM_TYPE_NON_LISP
)
1153 char *end
= (char *) base
+ ABLOCKS_BYTES
- 1;
1154 XSETCONS (tem
, end
);
1155 if ((char *) XCONS (tem
) != end
)
1157 lisp_malloc_loser
= base
;
1159 MALLOC_UNBLOCK_INPUT
;
1160 memory_full (SIZE_MAX
);
1165 /* Initialize the blocks and put them on the free list.
1166 If `base' was not properly aligned, we can't use the last block. */
1167 for (i
= 0; i
< (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1); i
++)
1169 abase
->blocks
[i
].abase
= abase
;
1170 abase
->blocks
[i
].x
.next_free
= free_ablock
;
1171 free_ablock
= &abase
->blocks
[i
];
1173 ABLOCKS_BUSY (abase
) = (struct ablocks
*) aligned
;
1175 eassert (0 == ((uintptr_t) abase
) % BLOCK_ALIGN
);
1176 eassert (ABLOCK_ABASE (&abase
->blocks
[3]) == abase
); /* 3 is arbitrary */
1177 eassert (ABLOCK_ABASE (&abase
->blocks
[0]) == abase
);
1178 eassert (ABLOCKS_BASE (abase
) == base
);
1179 eassert (aligned
== (intptr_t) ABLOCKS_BUSY (abase
));
1182 abase
= ABLOCK_ABASE (free_ablock
);
1183 ABLOCKS_BUSY (abase
)
1184 = (struct ablocks
*) (2 + (intptr_t) ABLOCKS_BUSY (abase
));
1186 free_ablock
= free_ablock
->x
.next_free
;
1188 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1189 if (type
!= MEM_TYPE_NON_LISP
)
1190 mem_insert (val
, (char *) val
+ nbytes
, type
);
1193 MALLOC_UNBLOCK_INPUT
;
1195 MALLOC_PROBE (nbytes
);
1197 eassert (0 == ((uintptr_t) val
) % BLOCK_ALIGN
);
1202 lisp_align_free (void *block
)
1204 struct ablock
*ablock
= block
;
1205 struct ablocks
*abase
= ABLOCK_ABASE (ablock
);
1208 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1209 mem_delete (mem_find (block
));
1211 /* Put on free list. */
1212 ablock
->x
.next_free
= free_ablock
;
1213 free_ablock
= ablock
;
1214 /* Update busy count. */
1215 ABLOCKS_BUSY (abase
)
1216 = (struct ablocks
*) (-2 + (intptr_t) ABLOCKS_BUSY (abase
));
1218 if (2 > (intptr_t) ABLOCKS_BUSY (abase
))
1219 { /* All the blocks are free. */
1220 int i
= 0, aligned
= (intptr_t) ABLOCKS_BUSY (abase
);
1221 struct ablock
**tem
= &free_ablock
;
1222 struct ablock
*atop
= &abase
->blocks
[aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1];
1226 if (*tem
>= (struct ablock
*) abase
&& *tem
< atop
)
1229 *tem
= (*tem
)->x
.next_free
;
1232 tem
= &(*tem
)->x
.next_free
;
1234 eassert ((aligned
& 1) == aligned
);
1235 eassert (i
== (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1));
1236 #ifdef USE_POSIX_MEMALIGN
1237 eassert ((uintptr_t) ABLOCKS_BASE (abase
) % BLOCK_ALIGN
== 0);
1239 free (ABLOCKS_BASE (abase
));
1241 MALLOC_UNBLOCK_INPUT
;
1245 /***********************************************************************
1247 ***********************************************************************/
1249 /* Number of intervals allocated in an interval_block structure.
1250 The 1020 is 1024 minus malloc overhead. */
1252 #define INTERVAL_BLOCK_SIZE \
1253 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1255 /* Intervals are allocated in chunks in the form of an interval_block
1258 struct interval_block
1260 /* Place `intervals' first, to preserve alignment. */
1261 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
1262 struct interval_block
*next
;
1265 /* Current interval block. Its `next' pointer points to older
1268 static struct interval_block
*interval_block
;
1270 /* Index in interval_block above of the next unused interval
1273 static int interval_block_index
= INTERVAL_BLOCK_SIZE
;
1275 /* Number of free and live intervals. */
1277 static EMACS_INT total_free_intervals
, total_intervals
;
1279 /* List of free intervals. */
1281 static INTERVAL interval_free_list
;
1283 /* Return a new interval. */
1286 make_interval (void)
1292 if (interval_free_list
)
1294 val
= interval_free_list
;
1295 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
1299 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
1301 struct interval_block
*newi
1302 = lisp_malloc (sizeof *newi
, MEM_TYPE_NON_LISP
);
1304 newi
->next
= interval_block
;
1305 interval_block
= newi
;
1306 interval_block_index
= 0;
1307 total_free_intervals
+= INTERVAL_BLOCK_SIZE
;
1309 val
= &interval_block
->intervals
[interval_block_index
++];
1312 MALLOC_UNBLOCK_INPUT
;
1314 consing_since_gc
+= sizeof (struct interval
);
1316 total_free_intervals
--;
1317 RESET_INTERVAL (val
);
1323 /* Mark Lisp objects in interval I. */
1326 mark_interval (register INTERVAL i
, Lisp_Object dummy
)
1328 /* Intervals should never be shared. So, if extra internal checking is
1329 enabled, GC aborts if it seems to have visited an interval twice. */
1330 eassert (!i
->gcmarkbit
);
1332 mark_object (i
->plist
);
1335 /* Mark the interval tree rooted in I. */
1337 #define MARK_INTERVAL_TREE(i) \
1339 if (i && !i->gcmarkbit) \
1340 traverse_intervals_noorder (i, mark_interval, Qnil); \
1343 /***********************************************************************
1345 ***********************************************************************/
1347 /* Lisp_Strings are allocated in string_block structures. When a new
1348 string_block is allocated, all the Lisp_Strings it contains are
1349 added to a free-list string_free_list. When a new Lisp_String is
1350 needed, it is taken from that list. During the sweep phase of GC,
1351 string_blocks that are entirely free are freed, except two which
1354 String data is allocated from sblock structures. Strings larger
1355 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1356 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1358 Sblocks consist internally of sdata structures, one for each
1359 Lisp_String. The sdata structure points to the Lisp_String it
1360 belongs to. The Lisp_String points back to the `u.data' member of
1361 its sdata structure.
1363 When a Lisp_String is freed during GC, it is put back on
1364 string_free_list, and its `data' member and its sdata's `string'
1365 pointer is set to null. The size of the string is recorded in the
1366 `n.nbytes' member of the sdata. So, sdata structures that are no
1367 longer used, can be easily recognized, and it's easy to compact the
1368 sblocks of small strings which we do in compact_small_strings. */
1370 /* Size in bytes of an sblock structure used for small strings. This
1371 is 8192 minus malloc overhead. */
1373 #define SBLOCK_SIZE 8188
1375 /* Strings larger than this are considered large strings. String data
1376 for large strings is allocated from individual sblocks. */
1378 #define LARGE_STRING_BYTES 1024
1380 /* The SDATA typedef is a struct or union describing string memory
1381 sub-allocated from an sblock. This is where the contents of Lisp
1382 strings are stored. */
1386 /* Back-pointer to the string this sdata belongs to. If null, this
1387 structure is free, and NBYTES (in this structure or in the union below)
1388 contains the string's byte size (the same value that STRING_BYTES
1389 would return if STRING were non-null). If non-null, STRING_BYTES
1390 (STRING) is the size of the data, and DATA contains the string's
1392 struct Lisp_String
*string
;
1394 #ifdef GC_CHECK_STRING_BYTES
1398 unsigned char data
[FLEXIBLE_ARRAY_MEMBER
];
1401 #ifdef GC_CHECK_STRING_BYTES
1403 typedef struct sdata sdata
;
1404 #define SDATA_NBYTES(S) (S)->nbytes
1405 #define SDATA_DATA(S) (S)->data
1411 struct Lisp_String
*string
;
1413 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1414 which has a flexible array member. However, if implemented by
1415 giving this union a member of type 'struct sdata', the union
1416 could not be the last (flexible) member of 'struct sblock',
1417 because C99 prohibits a flexible array member from having a type
1418 that is itself a flexible array. So, comment this member out here,
1419 but remember that the option's there when using this union. */
1424 /* When STRING is null. */
1427 struct Lisp_String
*string
;
1432 #define SDATA_NBYTES(S) (S)->n.nbytes
1433 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1435 #endif /* not GC_CHECK_STRING_BYTES */
1437 enum { SDATA_DATA_OFFSET
= offsetof (struct sdata
, data
) };
1439 /* Structure describing a block of memory which is sub-allocated to
1440 obtain string data memory for strings. Blocks for small strings
1441 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1442 as large as needed. */
1447 struct sblock
*next
;
1449 /* Pointer to the next free sdata block. This points past the end
1450 of the sblock if there isn't any space left in this block. */
1454 sdata data
[FLEXIBLE_ARRAY_MEMBER
];
1457 /* Number of Lisp strings in a string_block structure. The 1020 is
1458 1024 minus malloc overhead. */
1460 #define STRING_BLOCK_SIZE \
1461 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1463 /* Structure describing a block from which Lisp_String structures
1468 /* Place `strings' first, to preserve alignment. */
1469 struct Lisp_String strings
[STRING_BLOCK_SIZE
];
1470 struct string_block
*next
;
1473 /* Head and tail of the list of sblock structures holding Lisp string
1474 data. We always allocate from current_sblock. The NEXT pointers
1475 in the sblock structures go from oldest_sblock to current_sblock. */
1477 static struct sblock
*oldest_sblock
, *current_sblock
;
1479 /* List of sblocks for large strings. */
1481 static struct sblock
*large_sblocks
;
1483 /* List of string_block structures. */
1485 static struct string_block
*string_blocks
;
1487 /* Free-list of Lisp_Strings. */
1489 static struct Lisp_String
*string_free_list
;
1491 /* Number of live and free Lisp_Strings. */
1493 static EMACS_INT total_strings
, total_free_strings
;
1495 /* Number of bytes used by live strings. */
1497 static EMACS_INT total_string_bytes
;
1499 /* Given a pointer to a Lisp_String S which is on the free-list
1500 string_free_list, return a pointer to its successor in the
1503 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1505 /* Return a pointer to the sdata structure belonging to Lisp string S.
1506 S must be live, i.e. S->data must not be null. S->data is actually
1507 a pointer to the `u.data' member of its sdata structure; the
1508 structure starts at a constant offset in front of that. */
1510 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1513 #ifdef GC_CHECK_STRING_OVERRUN
1515 /* We check for overrun in string data blocks by appending a small
1516 "cookie" after each allocated string data block, and check for the
1517 presence of this cookie during GC. */
1519 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1520 static char const string_overrun_cookie
[GC_STRING_OVERRUN_COOKIE_SIZE
] =
1521 { '\xde', '\xad', '\xbe', '\xef' };
1524 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1527 /* Value is the size of an sdata structure large enough to hold NBYTES
1528 bytes of string data. The value returned includes a terminating
1529 NUL byte, the size of the sdata structure, and padding. */
1531 #ifdef GC_CHECK_STRING_BYTES
1533 #define SDATA_SIZE(NBYTES) \
1534 ((SDATA_DATA_OFFSET \
1536 + sizeof (ptrdiff_t) - 1) \
1537 & ~(sizeof (ptrdiff_t) - 1))
1539 #else /* not GC_CHECK_STRING_BYTES */
1541 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1542 less than the size of that member. The 'max' is not needed when
1543 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1544 alignment code reserves enough space. */
1546 #define SDATA_SIZE(NBYTES) \
1547 ((SDATA_DATA_OFFSET \
1548 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1550 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1552 + sizeof (ptrdiff_t) - 1) \
1553 & ~(sizeof (ptrdiff_t) - 1))
1555 #endif /* not GC_CHECK_STRING_BYTES */
1557 /* Extra bytes to allocate for each string. */
1559 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1561 /* Exact bound on the number of bytes in a string, not counting the
1562 terminating null. A string cannot contain more bytes than
1563 STRING_BYTES_BOUND, nor can it be so long that the size_t
1564 arithmetic in allocate_string_data would overflow while it is
1565 calculating a value to be passed to malloc. */
1566 static ptrdiff_t const STRING_BYTES_MAX
=
1567 min (STRING_BYTES_BOUND
,
1568 ((SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
1570 - offsetof (struct sblock
, data
)
1571 - SDATA_DATA_OFFSET
)
1572 & ~(sizeof (EMACS_INT
) - 1)));
1574 /* Initialize string allocation. Called from init_alloc_once. */
1579 empty_unibyte_string
= make_pure_string ("", 0, 0, 0);
1580 empty_multibyte_string
= make_pure_string ("", 0, 0, 1);
1584 #ifdef GC_CHECK_STRING_BYTES
1586 static int check_string_bytes_count
;
1588 /* Like STRING_BYTES, but with debugging check. Can be
1589 called during GC, so pay attention to the mark bit. */
1592 string_bytes (struct Lisp_String
*s
)
1595 (s
->size_byte
< 0 ? s
->size
& ~ARRAY_MARK_FLAG
: s
->size_byte
);
1597 if (!PURE_POINTER_P (s
)
1599 && nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1604 /* Check validity of Lisp strings' string_bytes member in B. */
1607 check_sblock (struct sblock
*b
)
1609 sdata
*from
, *end
, *from_end
;
1613 for (from
= b
->data
; from
< end
; from
= from_end
)
1615 /* Compute the next FROM here because copying below may
1616 overwrite data we need to compute it. */
1619 /* Check that the string size recorded in the string is the
1620 same as the one recorded in the sdata structure. */
1621 nbytes
= SDATA_SIZE (from
->string
? string_bytes (from
->string
)
1622 : SDATA_NBYTES (from
));
1623 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1628 /* Check validity of Lisp strings' string_bytes member. ALL_P
1629 means check all strings, otherwise check only most
1630 recently allocated strings. Used for hunting a bug. */
1633 check_string_bytes (bool all_p
)
1639 for (b
= large_sblocks
; b
; b
= b
->next
)
1641 struct Lisp_String
*s
= b
->data
[0].string
;
1646 for (b
= oldest_sblock
; b
; b
= b
->next
)
1649 else if (current_sblock
)
1650 check_sblock (current_sblock
);
1653 #else /* not GC_CHECK_STRING_BYTES */
1655 #define check_string_bytes(all) ((void) 0)
1657 #endif /* GC_CHECK_STRING_BYTES */
1659 #ifdef GC_CHECK_STRING_FREE_LIST
1661 /* Walk through the string free list looking for bogus next pointers.
1662 This may catch buffer overrun from a previous string. */
1665 check_string_free_list (void)
1667 struct Lisp_String
*s
;
1669 /* Pop a Lisp_String off the free-list. */
1670 s
= string_free_list
;
1673 if ((uintptr_t) s
< 1024)
1675 s
= NEXT_FREE_LISP_STRING (s
);
1679 #define check_string_free_list()
1682 /* Return a new Lisp_String. */
1684 static struct Lisp_String
*
1685 allocate_string (void)
1687 struct Lisp_String
*s
;
1691 /* If the free-list is empty, allocate a new string_block, and
1692 add all the Lisp_Strings in it to the free-list. */
1693 if (string_free_list
== NULL
)
1695 struct string_block
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1698 b
->next
= string_blocks
;
1701 for (i
= STRING_BLOCK_SIZE
- 1; i
>= 0; --i
)
1704 /* Every string on a free list should have NULL data pointer. */
1706 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1707 string_free_list
= s
;
1710 total_free_strings
+= STRING_BLOCK_SIZE
;
1713 check_string_free_list ();
1715 /* Pop a Lisp_String off the free-list. */
1716 s
= string_free_list
;
1717 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1719 MALLOC_UNBLOCK_INPUT
;
1721 --total_free_strings
;
1724 consing_since_gc
+= sizeof *s
;
1726 #ifdef GC_CHECK_STRING_BYTES
1727 if (!noninteractive
)
1729 if (++check_string_bytes_count
== 200)
1731 check_string_bytes_count
= 0;
1732 check_string_bytes (1);
1735 check_string_bytes (0);
1737 #endif /* GC_CHECK_STRING_BYTES */
1743 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1744 plus a NUL byte at the end. Allocate an sdata structure for S, and
1745 set S->data to its `u.data' member. Store a NUL byte at the end of
1746 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1747 S->data if it was initially non-null. */
1750 allocate_string_data (struct Lisp_String
*s
,
1751 EMACS_INT nchars
, EMACS_INT nbytes
)
1753 sdata
*data
, *old_data
;
1755 ptrdiff_t needed
, old_nbytes
;
1757 if (STRING_BYTES_MAX
< nbytes
)
1760 /* Determine the number of bytes needed to store NBYTES bytes
1762 needed
= SDATA_SIZE (nbytes
);
1765 old_data
= SDATA_OF_STRING (s
);
1766 old_nbytes
= STRING_BYTES (s
);
1773 if (nbytes
> LARGE_STRING_BYTES
)
1775 size_t size
= offsetof (struct sblock
, data
) + needed
;
1777 #ifdef DOUG_LEA_MALLOC
1778 if (!mmap_lisp_allowed_p ())
1779 mallopt (M_MMAP_MAX
, 0);
1782 b
= lisp_malloc (size
+ GC_STRING_EXTRA
, MEM_TYPE_NON_LISP
);
1784 #ifdef DOUG_LEA_MALLOC
1785 if (!mmap_lisp_allowed_p ())
1786 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1789 b
->next_free
= b
->data
;
1790 b
->data
[0].string
= NULL
;
1791 b
->next
= large_sblocks
;
1794 else if (current_sblock
== NULL
1795 || (((char *) current_sblock
+ SBLOCK_SIZE
1796 - (char *) current_sblock
->next_free
)
1797 < (needed
+ GC_STRING_EXTRA
)))
1799 /* Not enough room in the current sblock. */
1800 b
= lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
1801 b
->next_free
= b
->data
;
1802 b
->data
[0].string
= NULL
;
1806 current_sblock
->next
= b
;
1814 data
= b
->next_free
;
1815 b
->next_free
= (sdata
*) ((char *) data
+ needed
+ GC_STRING_EXTRA
);
1817 MALLOC_UNBLOCK_INPUT
;
1820 s
->data
= SDATA_DATA (data
);
1821 #ifdef GC_CHECK_STRING_BYTES
1822 SDATA_NBYTES (data
) = nbytes
;
1825 s
->size_byte
= nbytes
;
1826 s
->data
[nbytes
] = '\0';
1827 #ifdef GC_CHECK_STRING_OVERRUN
1828 memcpy ((char *) data
+ needed
, string_overrun_cookie
,
1829 GC_STRING_OVERRUN_COOKIE_SIZE
);
1832 /* Note that Faset may call to this function when S has already data
1833 assigned. In this case, mark data as free by setting it's string
1834 back-pointer to null, and record the size of the data in it. */
1837 SDATA_NBYTES (old_data
) = old_nbytes
;
1838 old_data
->string
= NULL
;
1841 consing_since_gc
+= needed
;
1845 /* Sweep and compact strings. */
1847 NO_INLINE
/* For better stack traces */
1849 sweep_strings (void)
1851 struct string_block
*b
, *next
;
1852 struct string_block
*live_blocks
= NULL
;
1854 string_free_list
= NULL
;
1855 total_strings
= total_free_strings
= 0;
1856 total_string_bytes
= 0;
1858 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1859 for (b
= string_blocks
; b
; b
= next
)
1862 struct Lisp_String
*free_list_before
= string_free_list
;
1866 for (i
= 0; i
< STRING_BLOCK_SIZE
; ++i
)
1868 struct Lisp_String
*s
= b
->strings
+ i
;
1872 /* String was not on free-list before. */
1873 if (STRING_MARKED_P (s
))
1875 /* String is live; unmark it and its intervals. */
1878 /* Do not use string_(set|get)_intervals here. */
1879 s
->intervals
= balance_intervals (s
->intervals
);
1882 total_string_bytes
+= STRING_BYTES (s
);
1886 /* String is dead. Put it on the free-list. */
1887 sdata
*data
= SDATA_OF_STRING (s
);
1889 /* Save the size of S in its sdata so that we know
1890 how large that is. Reset the sdata's string
1891 back-pointer so that we know it's free. */
1892 #ifdef GC_CHECK_STRING_BYTES
1893 if (string_bytes (s
) != SDATA_NBYTES (data
))
1896 data
->n
.nbytes
= STRING_BYTES (s
);
1898 data
->string
= NULL
;
1900 /* Reset the strings's `data' member so that we
1904 /* Put the string on the free-list. */
1905 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1906 string_free_list
= s
;
1912 /* S was on the free-list before. Put it there again. */
1913 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1914 string_free_list
= s
;
1919 /* Free blocks that contain free Lisp_Strings only, except
1920 the first two of them. */
1921 if (nfree
== STRING_BLOCK_SIZE
1922 && total_free_strings
> STRING_BLOCK_SIZE
)
1925 string_free_list
= free_list_before
;
1929 total_free_strings
+= nfree
;
1930 b
->next
= live_blocks
;
1935 check_string_free_list ();
1937 string_blocks
= live_blocks
;
1938 free_large_strings ();
1939 compact_small_strings ();
1941 check_string_free_list ();
1945 /* Free dead large strings. */
1948 free_large_strings (void)
1950 struct sblock
*b
, *next
;
1951 struct sblock
*live_blocks
= NULL
;
1953 for (b
= large_sblocks
; b
; b
= next
)
1957 if (b
->data
[0].string
== NULL
)
1961 b
->next
= live_blocks
;
1966 large_sblocks
= live_blocks
;
1970 /* Compact data of small strings. Free sblocks that don't contain
1971 data of live strings after compaction. */
1974 compact_small_strings (void)
1976 struct sblock
*b
, *tb
, *next
;
1977 sdata
*from
, *to
, *end
, *tb_end
;
1978 sdata
*to_end
, *from_end
;
1980 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1981 to, and TB_END is the end of TB. */
1983 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1986 /* Step through the blocks from the oldest to the youngest. We
1987 expect that old blocks will stabilize over time, so that less
1988 copying will happen this way. */
1989 for (b
= oldest_sblock
; b
; b
= b
->next
)
1992 eassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
1994 for (from
= b
->data
; from
< end
; from
= from_end
)
1996 /* Compute the next FROM here because copying below may
1997 overwrite data we need to compute it. */
1999 struct Lisp_String
*s
= from
->string
;
2001 #ifdef GC_CHECK_STRING_BYTES
2002 /* Check that the string size recorded in the string is the
2003 same as the one recorded in the sdata structure. */
2004 if (s
&& string_bytes (s
) != SDATA_NBYTES (from
))
2006 #endif /* GC_CHECK_STRING_BYTES */
2008 nbytes
= s
? STRING_BYTES (s
) : SDATA_NBYTES (from
);
2009 eassert (nbytes
<= LARGE_STRING_BYTES
);
2011 nbytes
= SDATA_SIZE (nbytes
);
2012 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
2014 #ifdef GC_CHECK_STRING_OVERRUN
2015 if (memcmp (string_overrun_cookie
,
2016 (char *) from_end
- GC_STRING_OVERRUN_COOKIE_SIZE
,
2017 GC_STRING_OVERRUN_COOKIE_SIZE
))
2021 /* Non-NULL S means it's alive. Copy its data. */
2024 /* If TB is full, proceed with the next sblock. */
2025 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
2026 if (to_end
> tb_end
)
2030 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
2032 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
2035 /* Copy, and update the string's `data' pointer. */
2038 eassert (tb
!= b
|| to
< from
);
2039 memmove (to
, from
, nbytes
+ GC_STRING_EXTRA
);
2040 to
->string
->data
= SDATA_DATA (to
);
2043 /* Advance past the sdata we copied to. */
2049 /* The rest of the sblocks following TB don't contain live data, so
2050 we can free them. */
2051 for (b
= tb
->next
; b
; b
= next
)
2059 current_sblock
= tb
;
2063 string_overflow (void)
2065 error ("Maximum string size exceeded");
2068 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
2069 doc
: /* Return a newly created string of length LENGTH, with INIT in each element.
2070 LENGTH must be an integer.
2071 INIT must be an integer that represents a character. */)
2072 (Lisp_Object length
, Lisp_Object init
)
2074 register Lisp_Object val
;
2078 CHECK_NATNUM (length
);
2079 CHECK_CHARACTER (init
);
2081 c
= XFASTINT (init
);
2082 if (ASCII_CHAR_P (c
))
2084 nbytes
= XINT (length
);
2085 val
= make_uninit_string (nbytes
);
2086 memset (SDATA (val
), c
, nbytes
);
2087 SDATA (val
)[nbytes
] = 0;
2091 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2092 ptrdiff_t len
= CHAR_STRING (c
, str
);
2093 EMACS_INT string_len
= XINT (length
);
2094 unsigned char *p
, *beg
, *end
;
2096 if (string_len
> STRING_BYTES_MAX
/ len
)
2098 nbytes
= len
* string_len
;
2099 val
= make_uninit_multibyte_string (string_len
, nbytes
);
2100 for (beg
= SDATA (val
), p
= beg
, end
= beg
+ nbytes
; p
< end
; p
+= len
)
2102 /* First time we just copy `str' to the data of `val'. */
2104 memcpy (p
, str
, len
);
2107 /* Next time we copy largest possible chunk from
2108 initialized to uninitialized part of `val'. */
2109 len
= min (p
- beg
, end
- p
);
2110 memcpy (p
, beg
, len
);
2119 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2123 bool_vector_fill (Lisp_Object a
, Lisp_Object init
)
2125 EMACS_INT nbits
= bool_vector_size (a
);
2128 unsigned char *data
= bool_vector_uchar_data (a
);
2129 int pattern
= NILP (init
) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR
) - 1;
2130 ptrdiff_t nbytes
= bool_vector_bytes (nbits
);
2131 int last_mask
= ~ (~0u << ((nbits
- 1) % BOOL_VECTOR_BITS_PER_CHAR
+ 1));
2132 memset (data
, pattern
, nbytes
- 1);
2133 data
[nbytes
- 1] = pattern
& last_mask
;
2138 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2141 make_uninit_bool_vector (EMACS_INT nbits
)
2144 EMACS_INT words
= bool_vector_words (nbits
);
2145 EMACS_INT word_bytes
= words
* sizeof (bits_word
);
2146 EMACS_INT needed_elements
= ((bool_header_size
- header_size
+ word_bytes
2149 struct Lisp_Bool_Vector
*p
2150 = (struct Lisp_Bool_Vector
*) allocate_vector (needed_elements
);
2151 XSETVECTOR (val
, p
);
2152 XSETPVECTYPESIZE (XVECTOR (val
), PVEC_BOOL_VECTOR
, 0, 0);
2155 /* Clear padding at the end. */
2157 p
->data
[words
- 1] = 0;
2162 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
2163 doc
: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2164 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2165 (Lisp_Object length
, Lisp_Object init
)
2169 CHECK_NATNUM (length
);
2170 val
= make_uninit_bool_vector (XFASTINT (length
));
2171 return bool_vector_fill (val
, init
);
2174 DEFUN ("bool-vector", Fbool_vector
, Sbool_vector
, 0, MANY
, 0,
2175 doc
: /* Return a new bool-vector with specified arguments as elements.
2176 Any number of arguments, even zero arguments, are allowed.
2177 usage: (bool-vector &rest OBJECTS) */)
2178 (ptrdiff_t nargs
, Lisp_Object
*args
)
2183 vector
= make_uninit_bool_vector (nargs
);
2184 for (i
= 0; i
< nargs
; i
++)
2185 bool_vector_set (vector
, i
, !NILP (args
[i
]));
2190 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2191 of characters from the contents. This string may be unibyte or
2192 multibyte, depending on the contents. */
2195 make_string (const char *contents
, ptrdiff_t nbytes
)
2197 register Lisp_Object val
;
2198 ptrdiff_t nchars
, multibyte_nbytes
;
2200 parse_str_as_multibyte ((const unsigned char *) contents
, nbytes
,
2201 &nchars
, &multibyte_nbytes
);
2202 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
2203 /* CONTENTS contains no multibyte sequences or contains an invalid
2204 multibyte sequence. We must make unibyte string. */
2205 val
= make_unibyte_string (contents
, nbytes
);
2207 val
= make_multibyte_string (contents
, nchars
, nbytes
);
2211 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2214 make_unibyte_string (const char *contents
, ptrdiff_t length
)
2216 register Lisp_Object val
;
2217 val
= make_uninit_string (length
);
2218 memcpy (SDATA (val
), contents
, length
);
2223 /* Make a multibyte string from NCHARS characters occupying NBYTES
2224 bytes at CONTENTS. */
2227 make_multibyte_string (const char *contents
,
2228 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2230 register Lisp_Object val
;
2231 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2232 memcpy (SDATA (val
), contents
, nbytes
);
2237 /* Make a string from NCHARS characters occupying NBYTES bytes at
2238 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2241 make_string_from_bytes (const char *contents
,
2242 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2244 register Lisp_Object val
;
2245 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2246 memcpy (SDATA (val
), contents
, nbytes
);
2247 if (SBYTES (val
) == SCHARS (val
))
2248 STRING_SET_UNIBYTE (val
);
2253 /* Make a string from NCHARS characters occupying NBYTES bytes at
2254 CONTENTS. The argument MULTIBYTE controls whether to label the
2255 string as multibyte. If NCHARS is negative, it counts the number of
2256 characters by itself. */
2259 make_specified_string (const char *contents
,
2260 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
2267 nchars
= multibyte_chars_in_text ((const unsigned char *) contents
,
2272 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2273 memcpy (SDATA (val
), contents
, nbytes
);
2275 STRING_SET_UNIBYTE (val
);
2280 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2281 occupying LENGTH bytes. */
2284 make_uninit_string (EMACS_INT length
)
2289 return empty_unibyte_string
;
2290 val
= make_uninit_multibyte_string (length
, length
);
2291 STRING_SET_UNIBYTE (val
);
2296 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2297 which occupy NBYTES bytes. */
2300 make_uninit_multibyte_string (EMACS_INT nchars
, EMACS_INT nbytes
)
2303 struct Lisp_String
*s
;
2308 return empty_multibyte_string
;
2310 s
= allocate_string ();
2311 s
->intervals
= NULL
;
2312 allocate_string_data (s
, nchars
, nbytes
);
2313 XSETSTRING (string
, s
);
2314 string_chars_consed
+= nbytes
;
2318 /* Print arguments to BUF according to a FORMAT, then return
2319 a Lisp_String initialized with the data from BUF. */
2322 make_formatted_string (char *buf
, const char *format
, ...)
2327 va_start (ap
, format
);
2328 length
= vsprintf (buf
, format
, ap
);
2330 return make_string (buf
, length
);
2334 /***********************************************************************
2336 ***********************************************************************/
2338 /* We store float cells inside of float_blocks, allocating a new
2339 float_block with malloc whenever necessary. Float cells reclaimed
2340 by GC are put on a free list to be reallocated before allocating
2341 any new float cells from the latest float_block. */
2343 #define FLOAT_BLOCK_SIZE \
2344 (((BLOCK_BYTES - sizeof (struct float_block *) \
2345 /* The compiler might add padding at the end. */ \
2346 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2347 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2349 #define GETMARKBIT(block,n) \
2350 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2351 >> ((n) % BITS_PER_BITS_WORD)) \
2354 #define SETMARKBIT(block,n) \
2355 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2356 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2358 #define UNSETMARKBIT(block,n) \
2359 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2360 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2362 #define FLOAT_BLOCK(fptr) \
2363 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2365 #define FLOAT_INDEX(fptr) \
2366 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2370 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2371 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
2372 bits_word gcmarkbits
[1 + FLOAT_BLOCK_SIZE
/ BITS_PER_BITS_WORD
];
2373 struct float_block
*next
;
2376 #define FLOAT_MARKED_P(fptr) \
2377 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2379 #define FLOAT_MARK(fptr) \
2380 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2382 #define FLOAT_UNMARK(fptr) \
2383 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2385 /* Current float_block. */
2387 static struct float_block
*float_block
;
2389 /* Index of first unused Lisp_Float in the current float_block. */
2391 static int float_block_index
= FLOAT_BLOCK_SIZE
;
2393 /* Free-list of Lisp_Floats. */
2395 static struct Lisp_Float
*float_free_list
;
2397 /* Return a new float object with value FLOAT_VALUE. */
2400 make_float (double float_value
)
2402 register Lisp_Object val
;
2406 if (float_free_list
)
2408 /* We use the data field for chaining the free list
2409 so that we won't use the same field that has the mark bit. */
2410 XSETFLOAT (val
, float_free_list
);
2411 float_free_list
= float_free_list
->u
.chain
;
2415 if (float_block_index
== FLOAT_BLOCK_SIZE
)
2417 struct float_block
*new
2418 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT
);
2419 new->next
= float_block
;
2420 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2422 float_block_index
= 0;
2423 total_free_floats
+= FLOAT_BLOCK_SIZE
;
2425 XSETFLOAT (val
, &float_block
->floats
[float_block_index
]);
2426 float_block_index
++;
2429 MALLOC_UNBLOCK_INPUT
;
2431 XFLOAT_INIT (val
, float_value
);
2432 eassert (!FLOAT_MARKED_P (XFLOAT (val
)));
2433 consing_since_gc
+= sizeof (struct Lisp_Float
);
2435 total_free_floats
--;
2441 /***********************************************************************
2443 ***********************************************************************/
2445 /* We store cons cells inside of cons_blocks, allocating a new
2446 cons_block with malloc whenever necessary. Cons cells reclaimed by
2447 GC are put on a free list to be reallocated before allocating
2448 any new cons cells from the latest cons_block. */
2450 #define CONS_BLOCK_SIZE \
2451 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2452 /* The compiler might add padding at the end. */ \
2453 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2454 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2456 #define CONS_BLOCK(fptr) \
2457 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2459 #define CONS_INDEX(fptr) \
2460 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2464 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2465 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2466 bits_word gcmarkbits
[1 + CONS_BLOCK_SIZE
/ BITS_PER_BITS_WORD
];
2467 struct cons_block
*next
;
2470 #define CONS_MARKED_P(fptr) \
2471 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2473 #define CONS_MARK(fptr) \
2474 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2476 #define CONS_UNMARK(fptr) \
2477 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2479 /* Current cons_block. */
2481 static struct cons_block
*cons_block
;
2483 /* Index of first unused Lisp_Cons in the current block. */
2485 static int cons_block_index
= CONS_BLOCK_SIZE
;
2487 /* Free-list of Lisp_Cons structures. */
2489 static struct Lisp_Cons
*cons_free_list
;
2491 /* Explicitly free a cons cell by putting it on the free-list. */
2494 free_cons (struct Lisp_Cons
*ptr
)
2496 ptr
->u
.chain
= cons_free_list
;
2500 cons_free_list
= ptr
;
2501 consing_since_gc
-= sizeof *ptr
;
2502 total_free_conses
++;
2505 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2506 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2507 (Lisp_Object car
, Lisp_Object cdr
)
2509 register Lisp_Object val
;
2515 /* We use the cdr for chaining the free list
2516 so that we won't use the same field that has the mark bit. */
2517 XSETCONS (val
, cons_free_list
);
2518 cons_free_list
= cons_free_list
->u
.chain
;
2522 if (cons_block_index
== CONS_BLOCK_SIZE
)
2524 struct cons_block
*new
2525 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS
);
2526 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2527 new->next
= cons_block
;
2529 cons_block_index
= 0;
2530 total_free_conses
+= CONS_BLOCK_SIZE
;
2532 XSETCONS (val
, &cons_block
->conses
[cons_block_index
]);
2536 MALLOC_UNBLOCK_INPUT
;
2540 eassert (!CONS_MARKED_P (XCONS (val
)));
2541 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2542 total_free_conses
--;
2543 cons_cells_consed
++;
2547 #ifdef GC_CHECK_CONS_LIST
2548 /* Get an error now if there's any junk in the cons free list. */
2550 check_cons_list (void)
2552 struct Lisp_Cons
*tail
= cons_free_list
;
2555 tail
= tail
->u
.chain
;
2559 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2562 list1 (Lisp_Object arg1
)
2564 return Fcons (arg1
, Qnil
);
2568 list2 (Lisp_Object arg1
, Lisp_Object arg2
)
2570 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2575 list3 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
)
2577 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2582 list4 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
)
2584 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2589 list5 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
, Lisp_Object arg5
)
2591 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2592 Fcons (arg5
, Qnil
)))));
2595 /* Make a list of COUNT Lisp_Objects, where ARG is the
2596 first one. Allocate conses from pure space if TYPE
2597 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2600 listn (enum constype type
, ptrdiff_t count
, Lisp_Object arg
, ...)
2602 Lisp_Object (*cons
) (Lisp_Object
, Lisp_Object
);
2605 case CONSTYPE_PURE
: cons
= pure_cons
; break;
2606 case CONSTYPE_HEAP
: cons
= Fcons
; break;
2607 default: emacs_abort ();
2610 eassume (0 < count
);
2611 Lisp_Object val
= cons (arg
, Qnil
);
2612 Lisp_Object tail
= val
;
2616 for (ptrdiff_t i
= 1; i
< count
; i
++)
2618 Lisp_Object elem
= cons (va_arg (ap
, Lisp_Object
), Qnil
);
2619 XSETCDR (tail
, elem
);
2627 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2628 doc
: /* Return a newly created list with specified arguments as elements.
2629 Any number of arguments, even zero arguments, are allowed.
2630 usage: (list &rest OBJECTS) */)
2631 (ptrdiff_t nargs
, Lisp_Object
*args
)
2633 register Lisp_Object val
;
2639 val
= Fcons (args
[nargs
], val
);
2645 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2646 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2647 (register Lisp_Object length
, Lisp_Object init
)
2649 register Lisp_Object val
;
2650 register EMACS_INT size
;
2652 CHECK_NATNUM (length
);
2653 size
= XFASTINT (length
);
2658 val
= Fcons (init
, val
);
2663 val
= Fcons (init
, val
);
2668 val
= Fcons (init
, val
);
2673 val
= Fcons (init
, val
);
2678 val
= Fcons (init
, val
);
2693 /***********************************************************************
2695 ***********************************************************************/
2697 /* Sometimes a vector's contents are merely a pointer internally used
2698 in vector allocation code. On the rare platforms where a null
2699 pointer cannot be tagged, represent it with a Lisp 0.
2700 Usually you don't want to touch this. */
2702 static struct Lisp_Vector
*
2703 next_vector (struct Lisp_Vector
*v
)
2705 return XUNTAG (v
->contents
[0], Lisp_Int0
);
2709 set_next_vector (struct Lisp_Vector
*v
, struct Lisp_Vector
*p
)
2711 v
->contents
[0] = make_lisp_ptr (p
, Lisp_Int0
);
2714 /* This value is balanced well enough to avoid too much internal overhead
2715 for the most common cases; it's not required to be a power of two, but
2716 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2718 #define VECTOR_BLOCK_SIZE 4096
2722 /* Alignment of struct Lisp_Vector objects. */
2723 vector_alignment
= COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR
,
2724 USE_LSB_TAG
? GCALIGNMENT
: 1),
2726 /* Vector size requests are a multiple of this. */
2727 roundup_size
= COMMON_MULTIPLE (vector_alignment
, word_size
)
2730 /* Verify assumptions described above. */
2731 verify ((VECTOR_BLOCK_SIZE
% roundup_size
) == 0);
2732 verify (VECTOR_BLOCK_SIZE
<= (1 << PSEUDOVECTOR_SIZE_BITS
));
2734 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2735 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2736 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2737 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2739 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2741 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2743 /* Size of the minimal vector allocated from block. */
2745 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2747 /* Size of the largest vector allocated from block. */
2749 #define VBLOCK_BYTES_MAX \
2750 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2752 /* We maintain one free list for each possible block-allocated
2753 vector size, and this is the number of free lists we have. */
2755 #define VECTOR_MAX_FREE_LIST_INDEX \
2756 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2758 /* Common shortcut to advance vector pointer over a block data. */
2760 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2762 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2764 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2766 /* Common shortcut to setup vector on a free list. */
2768 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2770 (tmp) = ((nbytes - header_size) / word_size); \
2771 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2772 eassert ((nbytes) % roundup_size == 0); \
2773 (tmp) = VINDEX (nbytes); \
2774 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2775 set_next_vector (v, vector_free_lists[tmp]); \
2776 vector_free_lists[tmp] = (v); \
2777 total_free_vector_slots += (nbytes) / word_size; \
2780 /* This internal type is used to maintain the list of large vectors
2781 which are allocated at their own, e.g. outside of vector blocks.
2783 struct large_vector itself cannot contain a struct Lisp_Vector, as
2784 the latter contains a flexible array member and C99 does not allow
2785 such structs to be nested. Instead, each struct large_vector
2786 object LV is followed by a struct Lisp_Vector, which is at offset
2787 large_vector_offset from LV, and whose address is therefore
2788 large_vector_vec (&LV). */
2792 struct large_vector
*next
;
2797 large_vector_offset
= ROUNDUP (sizeof (struct large_vector
), vector_alignment
)
2800 static struct Lisp_Vector
*
2801 large_vector_vec (struct large_vector
*p
)
2803 return (struct Lisp_Vector
*) ((char *) p
+ large_vector_offset
);
2806 /* This internal type is used to maintain an underlying storage
2807 for small vectors. */
2811 char data
[VECTOR_BLOCK_BYTES
];
2812 struct vector_block
*next
;
2815 /* Chain of vector blocks. */
2817 static struct vector_block
*vector_blocks
;
2819 /* Vector free lists, where NTH item points to a chain of free
2820 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2822 static struct Lisp_Vector
*vector_free_lists
[VECTOR_MAX_FREE_LIST_INDEX
];
2824 /* Singly-linked list of large vectors. */
2826 static struct large_vector
*large_vectors
;
2828 /* The only vector with 0 slots, allocated from pure space. */
2830 Lisp_Object zero_vector
;
2832 /* Number of live vectors. */
2834 static EMACS_INT total_vectors
;
2836 /* Total size of live and free vectors, in Lisp_Object units. */
2838 static EMACS_INT total_vector_slots
, total_free_vector_slots
;
2840 /* Get a new vector block. */
2842 static struct vector_block
*
2843 allocate_vector_block (void)
2845 struct vector_block
*block
= xmalloc (sizeof *block
);
2847 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2848 mem_insert (block
->data
, block
->data
+ VECTOR_BLOCK_BYTES
,
2849 MEM_TYPE_VECTOR_BLOCK
);
2852 block
->next
= vector_blocks
;
2853 vector_blocks
= block
;
2857 /* Called once to initialize vector allocation. */
2862 zero_vector
= make_pure_vector (0);
2865 /* Allocate vector from a vector block. */
2867 static struct Lisp_Vector
*
2868 allocate_vector_from_block (size_t nbytes
)
2870 struct Lisp_Vector
*vector
;
2871 struct vector_block
*block
;
2872 size_t index
, restbytes
;
2874 eassert (VBLOCK_BYTES_MIN
<= nbytes
&& nbytes
<= VBLOCK_BYTES_MAX
);
2875 eassert (nbytes
% roundup_size
== 0);
2877 /* First, try to allocate from a free list
2878 containing vectors of the requested size. */
2879 index
= VINDEX (nbytes
);
2880 if (vector_free_lists
[index
])
2882 vector
= vector_free_lists
[index
];
2883 vector_free_lists
[index
] = next_vector (vector
);
2884 total_free_vector_slots
-= nbytes
/ word_size
;
2888 /* Next, check free lists containing larger vectors. Since
2889 we will split the result, we should have remaining space
2890 large enough to use for one-slot vector at least. */
2891 for (index
= VINDEX (nbytes
+ VBLOCK_BYTES_MIN
);
2892 index
< VECTOR_MAX_FREE_LIST_INDEX
; index
++)
2893 if (vector_free_lists
[index
])
2895 /* This vector is larger than requested. */
2896 vector
= vector_free_lists
[index
];
2897 vector_free_lists
[index
] = next_vector (vector
);
2898 total_free_vector_slots
-= nbytes
/ word_size
;
2900 /* Excess bytes are used for the smaller vector,
2901 which should be set on an appropriate free list. */
2902 restbytes
= index
* roundup_size
+ VBLOCK_BYTES_MIN
- nbytes
;
2903 eassert (restbytes
% roundup_size
== 0);
2904 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2908 /* Finally, need a new vector block. */
2909 block
= allocate_vector_block ();
2911 /* New vector will be at the beginning of this block. */
2912 vector
= (struct Lisp_Vector
*) block
->data
;
2914 /* If the rest of space from this block is large enough
2915 for one-slot vector at least, set up it on a free list. */
2916 restbytes
= VECTOR_BLOCK_BYTES
- nbytes
;
2917 if (restbytes
>= VBLOCK_BYTES_MIN
)
2919 eassert (restbytes
% roundup_size
== 0);
2920 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2925 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2927 #define VECTOR_IN_BLOCK(vector, block) \
2928 ((char *) (vector) <= (block)->data \
2929 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2931 /* Return the memory footprint of V in bytes. */
2934 vector_nbytes (struct Lisp_Vector
*v
)
2936 ptrdiff_t size
= v
->header
.size
& ~ARRAY_MARK_FLAG
;
2939 if (size
& PSEUDOVECTOR_FLAG
)
2941 if (PSEUDOVECTOR_TYPEP (&v
->header
, PVEC_BOOL_VECTOR
))
2943 struct Lisp_Bool_Vector
*bv
= (struct Lisp_Bool_Vector
*) v
;
2944 ptrdiff_t word_bytes
= (bool_vector_words (bv
->size
)
2945 * sizeof (bits_word
));
2946 ptrdiff_t boolvec_bytes
= bool_header_size
+ word_bytes
;
2947 verify (header_size
<= bool_header_size
);
2948 nwords
= (boolvec_bytes
- header_size
+ word_size
- 1) / word_size
;
2951 nwords
= ((size
& PSEUDOVECTOR_SIZE_MASK
)
2952 + ((size
& PSEUDOVECTOR_REST_MASK
)
2953 >> PSEUDOVECTOR_SIZE_BITS
));
2957 return vroundup (header_size
+ word_size
* nwords
);
2960 /* Release extra resources still in use by VECTOR, which may be any
2961 vector-like object. For now, this is used just to free data in
2965 cleanup_vector (struct Lisp_Vector
*vector
)
2967 detect_suspicious_free (vector
);
2968 if (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FONT
)
2969 && ((vector
->header
.size
& PSEUDOVECTOR_SIZE_MASK
)
2970 == FONT_OBJECT_MAX
))
2972 struct font_driver
*drv
= ((struct font
*) vector
)->driver
;
2974 /* The font driver might sometimes be NULL, e.g. if Emacs was
2975 interrupted before it had time to set it up. */
2978 /* Attempt to catch subtle bugs like Bug#16140. */
2979 eassert (valid_font_driver (drv
));
2980 drv
->close ((struct font
*) vector
);
2985 /* Reclaim space used by unmarked vectors. */
2987 NO_INLINE
/* For better stack traces */
2989 sweep_vectors (void)
2991 struct vector_block
*block
, **bprev
= &vector_blocks
;
2992 struct large_vector
*lv
, **lvprev
= &large_vectors
;
2993 struct Lisp_Vector
*vector
, *next
;
2995 total_vectors
= total_vector_slots
= total_free_vector_slots
= 0;
2996 memset (vector_free_lists
, 0, sizeof (vector_free_lists
));
2998 /* Looking through vector blocks. */
3000 for (block
= vector_blocks
; block
; block
= *bprev
)
3002 bool free_this_block
= 0;
3005 for (vector
= (struct Lisp_Vector
*) block
->data
;
3006 VECTOR_IN_BLOCK (vector
, block
); vector
= next
)
3008 if (VECTOR_MARKED_P (vector
))
3010 VECTOR_UNMARK (vector
);
3012 nbytes
= vector_nbytes (vector
);
3013 total_vector_slots
+= nbytes
/ word_size
;
3014 next
= ADVANCE (vector
, nbytes
);
3018 ptrdiff_t total_bytes
;
3020 cleanup_vector (vector
);
3021 nbytes
= vector_nbytes (vector
);
3022 total_bytes
= nbytes
;
3023 next
= ADVANCE (vector
, nbytes
);
3025 /* While NEXT is not marked, try to coalesce with VECTOR,
3026 thus making VECTOR of the largest possible size. */
3028 while (VECTOR_IN_BLOCK (next
, block
))
3030 if (VECTOR_MARKED_P (next
))
3032 cleanup_vector (next
);
3033 nbytes
= vector_nbytes (next
);
3034 total_bytes
+= nbytes
;
3035 next
= ADVANCE (next
, nbytes
);
3038 eassert (total_bytes
% roundup_size
== 0);
3040 if (vector
== (struct Lisp_Vector
*) block
->data
3041 && !VECTOR_IN_BLOCK (next
, block
))
3042 /* This block should be freed because all of its
3043 space was coalesced into the only free vector. */
3044 free_this_block
= 1;
3048 SETUP_ON_FREE_LIST (vector
, total_bytes
, tmp
);
3053 if (free_this_block
)
3055 *bprev
= block
->next
;
3056 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3057 mem_delete (mem_find (block
->data
));
3062 bprev
= &block
->next
;
3065 /* Sweep large vectors. */
3067 for (lv
= large_vectors
; lv
; lv
= *lvprev
)
3069 vector
= large_vector_vec (lv
);
3070 if (VECTOR_MARKED_P (vector
))
3072 VECTOR_UNMARK (vector
);
3074 if (vector
->header
.size
& PSEUDOVECTOR_FLAG
)
3076 /* All non-bool pseudovectors are small enough to be allocated
3077 from vector blocks. This code should be redesigned if some
3078 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3079 eassert (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_BOOL_VECTOR
));
3080 total_vector_slots
+= vector_nbytes (vector
) / word_size
;
3084 += header_size
/ word_size
+ vector
->header
.size
;
3095 /* Value is a pointer to a newly allocated Lisp_Vector structure
3096 with room for LEN Lisp_Objects. */
3098 static struct Lisp_Vector
*
3099 allocate_vectorlike (ptrdiff_t len
)
3101 struct Lisp_Vector
*p
;
3106 p
= XVECTOR (zero_vector
);
3109 size_t nbytes
= header_size
+ len
* word_size
;
3111 #ifdef DOUG_LEA_MALLOC
3112 if (!mmap_lisp_allowed_p ())
3113 mallopt (M_MMAP_MAX
, 0);
3116 if (nbytes
<= VBLOCK_BYTES_MAX
)
3117 p
= allocate_vector_from_block (vroundup (nbytes
));
3120 struct large_vector
*lv
3121 = lisp_malloc ((large_vector_offset
+ header_size
3123 MEM_TYPE_VECTORLIKE
);
3124 lv
->next
= large_vectors
;
3126 p
= large_vector_vec (lv
);
3129 #ifdef DOUG_LEA_MALLOC
3130 if (!mmap_lisp_allowed_p ())
3131 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
3134 if (find_suspicious_object_in_range (p
, (char *) p
+ nbytes
))
3137 consing_since_gc
+= nbytes
;
3138 vector_cells_consed
+= len
;
3141 MALLOC_UNBLOCK_INPUT
;
3147 /* Allocate a vector with LEN slots. */
3149 struct Lisp_Vector
*
3150 allocate_vector (EMACS_INT len
)
3152 struct Lisp_Vector
*v
;
3153 ptrdiff_t nbytes_max
= min (PTRDIFF_MAX
, SIZE_MAX
);
3155 if (min ((nbytes_max
- header_size
) / word_size
, MOST_POSITIVE_FIXNUM
) < len
)
3156 memory_full (SIZE_MAX
);
3157 v
= allocate_vectorlike (len
);
3158 v
->header
.size
= len
;
3163 /* Allocate other vector-like structures. */
3165 struct Lisp_Vector
*
3166 allocate_pseudovector (int memlen
, int lisplen
,
3167 int zerolen
, enum pvec_type tag
)
3169 struct Lisp_Vector
*v
= allocate_vectorlike (memlen
);
3171 /* Catch bogus values. */
3172 eassert (0 <= tag
&& tag
<= PVEC_FONT
);
3173 eassert (0 <= lisplen
&& lisplen
<= zerolen
&& zerolen
<= memlen
);
3174 eassert (memlen
- lisplen
<= (1 << PSEUDOVECTOR_REST_BITS
) - 1);
3175 eassert (lisplen
<= (1 << PSEUDOVECTOR_SIZE_BITS
) - 1);
3177 /* Only the first LISPLEN slots will be traced normally by the GC. */
3178 memclear (v
->contents
, zerolen
* word_size
);
3179 XSETPVECTYPESIZE (v
, tag
, lisplen
, memlen
- lisplen
);
3184 allocate_buffer (void)
3186 struct buffer
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_BUFFER
);
3188 BUFFER_PVEC_INIT (b
);
3189 /* Put B on the chain of all buffers including killed ones. */
3190 b
->next
= all_buffers
;
3192 /* Note that the rest fields of B are not initialized. */
3196 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
3197 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
3198 See also the function `vector'. */)
3199 (register Lisp_Object length
, Lisp_Object init
)
3202 register ptrdiff_t sizei
;
3203 register ptrdiff_t i
;
3204 register struct Lisp_Vector
*p
;
3206 CHECK_NATNUM (length
);
3208 p
= allocate_vector (XFASTINT (length
));
3209 sizei
= XFASTINT (length
);
3210 for (i
= 0; i
< sizei
; i
++)
3211 p
->contents
[i
] = init
;
3213 XSETVECTOR (vector
, p
);
3217 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
3218 doc
: /* Return a newly created vector with specified arguments as elements.
3219 Any number of arguments, even zero arguments, are allowed.
3220 usage: (vector &rest OBJECTS) */)
3221 (ptrdiff_t nargs
, Lisp_Object
*args
)
3224 register Lisp_Object val
= make_uninit_vector (nargs
);
3225 register struct Lisp_Vector
*p
= XVECTOR (val
);
3227 for (i
= 0; i
< nargs
; i
++)
3228 p
->contents
[i
] = args
[i
];
3233 make_byte_code (struct Lisp_Vector
*v
)
3235 /* Don't allow the global zero_vector to become a byte code object. */
3236 eassert (0 < v
->header
.size
);
3238 if (v
->header
.size
> 1 && STRINGP (v
->contents
[1])
3239 && STRING_MULTIBYTE (v
->contents
[1]))
3240 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3241 earlier because they produced a raw 8-bit string for byte-code
3242 and now such a byte-code string is loaded as multibyte while
3243 raw 8-bit characters converted to multibyte form. Thus, now we
3244 must convert them back to the original unibyte form. */
3245 v
->contents
[1] = Fstring_as_unibyte (v
->contents
[1]);
3246 XSETPVECTYPE (v
, PVEC_COMPILED
);
3249 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
3250 doc
: /* Create a byte-code object with specified arguments as elements.
3251 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3252 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3253 and (optional) INTERACTIVE-SPEC.
3254 The first four arguments are required; at most six have any
3256 The ARGLIST can be either like the one of `lambda', in which case the arguments
3257 will be dynamically bound before executing the byte code, or it can be an
3258 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3259 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3260 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3261 argument to catch the left-over arguments. If such an integer is used, the
3262 arguments will not be dynamically bound but will be instead pushed on the
3263 stack before executing the byte-code.
3264 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3265 (ptrdiff_t nargs
, Lisp_Object
*args
)
3268 register Lisp_Object val
= make_uninit_vector (nargs
);
3269 register struct Lisp_Vector
*p
= XVECTOR (val
);
3271 /* We used to purecopy everything here, if purify-flag was set. This worked
3272 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3273 dangerous, since make-byte-code is used during execution to build
3274 closures, so any closure built during the preload phase would end up
3275 copied into pure space, including its free variables, which is sometimes
3276 just wasteful and other times plainly wrong (e.g. those free vars may want
3279 for (i
= 0; i
< nargs
; i
++)
3280 p
->contents
[i
] = args
[i
];
3282 XSETCOMPILED (val
, p
);
3288 /***********************************************************************
3290 ***********************************************************************/
3292 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3293 of the required alignment if LSB tags are used. */
3295 union aligned_Lisp_Symbol
3297 struct Lisp_Symbol s
;
3299 unsigned char c
[(sizeof (struct Lisp_Symbol
) + GCALIGNMENT
- 1)
3304 /* Each symbol_block is just under 1020 bytes long, since malloc
3305 really allocates in units of powers of two and uses 4 bytes for its
3308 #define SYMBOL_BLOCK_SIZE \
3309 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3313 /* Place `symbols' first, to preserve alignment. */
3314 union aligned_Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
3315 struct symbol_block
*next
;
3318 /* Current symbol block and index of first unused Lisp_Symbol
3321 static struct symbol_block
*symbol_block
;
3322 static int symbol_block_index
= SYMBOL_BLOCK_SIZE
;
3323 /* Pointer to the first symbol_block that contains pinned symbols.
3324 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3325 10K of which are pinned (and all but 250 of them are interned in obarray),
3326 whereas a "typical session" has in the order of 30K symbols.
3327 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3328 than 30K to find the 10K symbols we need to mark. */
3329 static struct symbol_block
*symbol_block_pinned
;
3331 /* List of free symbols. */
3333 static struct Lisp_Symbol
*symbol_free_list
;
3336 set_symbol_name (Lisp_Object sym
, Lisp_Object name
)
3338 XSYMBOL (sym
)->name
= name
;
3342 init_symbol (Lisp_Object val
, Lisp_Object name
)
3344 struct Lisp_Symbol
*p
= XSYMBOL (val
);
3345 set_symbol_name (val
, name
);
3346 set_symbol_plist (val
, Qnil
);
3347 p
->redirect
= SYMBOL_PLAINVAL
;
3348 SET_SYMBOL_VAL (p
, Qunbound
);
3349 set_symbol_function (val
, Qnil
);
3350 set_symbol_next (val
, NULL
);
3351 p
->gcmarkbit
= false;
3352 p
->interned
= SYMBOL_UNINTERNED
;
3354 p
->declared_special
= false;
3358 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
3359 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
3360 Its value is void, and its function definition and property list are nil. */)
3365 CHECK_STRING (name
);
3369 if (symbol_free_list
)
3371 XSETSYMBOL (val
, symbol_free_list
);
3372 symbol_free_list
= symbol_free_list
->next
;
3376 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
3378 struct symbol_block
*new
3379 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL
);
3380 new->next
= symbol_block
;
3382 symbol_block_index
= 0;
3383 total_free_symbols
+= SYMBOL_BLOCK_SIZE
;
3385 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
].s
);
3386 symbol_block_index
++;
3389 MALLOC_UNBLOCK_INPUT
;
3391 init_symbol (val
, name
);
3392 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
3394 total_free_symbols
--;
3400 /***********************************************************************
3401 Marker (Misc) Allocation
3402 ***********************************************************************/
3404 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3405 the required alignment when LSB tags are used. */
3407 union aligned_Lisp_Misc
3411 unsigned char c
[(sizeof (union Lisp_Misc
) + GCALIGNMENT
- 1)
3416 /* Allocation of markers and other objects that share that structure.
3417 Works like allocation of conses. */
3419 #define MARKER_BLOCK_SIZE \
3420 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3424 /* Place `markers' first, to preserve alignment. */
3425 union aligned_Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
3426 struct marker_block
*next
;
3429 static struct marker_block
*marker_block
;
3430 static int marker_block_index
= MARKER_BLOCK_SIZE
;
3432 static union Lisp_Misc
*marker_free_list
;
3434 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3437 allocate_misc (enum Lisp_Misc_Type type
)
3443 if (marker_free_list
)
3445 XSETMISC (val
, marker_free_list
);
3446 marker_free_list
= marker_free_list
->u_free
.chain
;
3450 if (marker_block_index
== MARKER_BLOCK_SIZE
)
3452 struct marker_block
*new = lisp_malloc (sizeof *new, MEM_TYPE_MISC
);
3453 new->next
= marker_block
;
3455 marker_block_index
= 0;
3456 total_free_markers
+= MARKER_BLOCK_SIZE
;
3458 XSETMISC (val
, &marker_block
->markers
[marker_block_index
].m
);
3459 marker_block_index
++;
3462 MALLOC_UNBLOCK_INPUT
;
3464 --total_free_markers
;
3465 consing_since_gc
+= sizeof (union Lisp_Misc
);
3466 misc_objects_consed
++;
3467 XMISCANY (val
)->type
= type
;
3468 XMISCANY (val
)->gcmarkbit
= 0;
3472 /* Free a Lisp_Misc object. */
3475 free_misc (Lisp_Object misc
)
3477 XMISCANY (misc
)->type
= Lisp_Misc_Free
;
3478 XMISC (misc
)->u_free
.chain
= marker_free_list
;
3479 marker_free_list
= XMISC (misc
);
3480 consing_since_gc
-= sizeof (union Lisp_Misc
);
3481 total_free_markers
++;
3484 /* Verify properties of Lisp_Save_Value's representation
3485 that are assumed here and elsewhere. */
3487 verify (SAVE_UNUSED
== 0);
3488 verify (((SAVE_INTEGER
| SAVE_POINTER
| SAVE_FUNCPOINTER
| SAVE_OBJECT
)
3492 /* Return Lisp_Save_Value objects for the various combinations
3493 that callers need. */
3496 make_save_int_int_int (ptrdiff_t a
, ptrdiff_t b
, ptrdiff_t c
)
3498 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3499 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3500 p
->save_type
= SAVE_TYPE_INT_INT_INT
;
3501 p
->data
[0].integer
= a
;
3502 p
->data
[1].integer
= b
;
3503 p
->data
[2].integer
= c
;
3508 make_save_obj_obj_obj_obj (Lisp_Object a
, Lisp_Object b
, Lisp_Object c
,
3511 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3512 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3513 p
->save_type
= SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
;
3514 p
->data
[0].object
= a
;
3515 p
->data
[1].object
= b
;
3516 p
->data
[2].object
= c
;
3517 p
->data
[3].object
= d
;
3522 make_save_ptr (void *a
)
3524 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3525 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3526 p
->save_type
= SAVE_POINTER
;
3527 p
->data
[0].pointer
= a
;
3532 make_save_ptr_int (void *a
, ptrdiff_t b
)
3534 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3535 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3536 p
->save_type
= SAVE_TYPE_PTR_INT
;
3537 p
->data
[0].pointer
= a
;
3538 p
->data
[1].integer
= b
;
3542 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3544 make_save_ptr_ptr (void *a
, void *b
)
3546 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3547 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3548 p
->save_type
= SAVE_TYPE_PTR_PTR
;
3549 p
->data
[0].pointer
= a
;
3550 p
->data
[1].pointer
= b
;
3556 make_save_funcptr_ptr_obj (void (*a
) (void), void *b
, Lisp_Object c
)
3558 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3559 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3560 p
->save_type
= SAVE_TYPE_FUNCPTR_PTR_OBJ
;
3561 p
->data
[0].funcpointer
= a
;
3562 p
->data
[1].pointer
= b
;
3563 p
->data
[2].object
= c
;
3567 /* Return a Lisp_Save_Value object that represents an array A
3568 of N Lisp objects. */
3571 make_save_memory (Lisp_Object
*a
, ptrdiff_t n
)
3573 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3574 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3575 p
->save_type
= SAVE_TYPE_MEMORY
;
3576 p
->data
[0].pointer
= a
;
3577 p
->data
[1].integer
= n
;
3581 /* Free a Lisp_Save_Value object. Do not use this function
3582 if SAVE contains pointer other than returned by xmalloc. */
3585 free_save_value (Lisp_Object save
)
3587 xfree (XSAVE_POINTER (save
, 0));
3591 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3594 build_overlay (Lisp_Object start
, Lisp_Object end
, Lisp_Object plist
)
3596 register Lisp_Object overlay
;
3598 overlay
= allocate_misc (Lisp_Misc_Overlay
);
3599 OVERLAY_START (overlay
) = start
;
3600 OVERLAY_END (overlay
) = end
;
3601 set_overlay_plist (overlay
, plist
);
3602 XOVERLAY (overlay
)->next
= NULL
;
3606 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
3607 doc
: /* Return a newly allocated marker which does not point at any place. */)
3610 register Lisp_Object val
;
3611 register struct Lisp_Marker
*p
;
3613 val
= allocate_misc (Lisp_Misc_Marker
);
3619 p
->insertion_type
= 0;
3620 p
->need_adjustment
= 0;
3624 /* Return a newly allocated marker which points into BUF
3625 at character position CHARPOS and byte position BYTEPOS. */
3628 build_marker (struct buffer
*buf
, ptrdiff_t charpos
, ptrdiff_t bytepos
)
3631 struct Lisp_Marker
*m
;
3633 /* No dead buffers here. */
3634 eassert (BUFFER_LIVE_P (buf
));
3636 /* Every character is at least one byte. */
3637 eassert (charpos
<= bytepos
);
3639 obj
= allocate_misc (Lisp_Misc_Marker
);
3642 m
->charpos
= charpos
;
3643 m
->bytepos
= bytepos
;
3644 m
->insertion_type
= 0;
3645 m
->need_adjustment
= 0;
3646 m
->next
= BUF_MARKERS (buf
);
3647 BUF_MARKERS (buf
) = m
;
3651 /* Put MARKER back on the free list after using it temporarily. */
3654 free_marker (Lisp_Object marker
)
3656 unchain_marker (XMARKER (marker
));
3661 /* Return a newly created vector or string with specified arguments as
3662 elements. If all the arguments are characters that can fit
3663 in a string of events, make a string; otherwise, make a vector.
3665 Any number of arguments, even zero arguments, are allowed. */
3668 make_event_array (ptrdiff_t nargs
, Lisp_Object
*args
)
3672 for (i
= 0; i
< nargs
; i
++)
3673 /* The things that fit in a string
3674 are characters that are in 0...127,
3675 after discarding the meta bit and all the bits above it. */
3676 if (!INTEGERP (args
[i
])
3677 || (XINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
3678 return Fvector (nargs
, args
);
3680 /* Since the loop exited, we know that all the things in it are
3681 characters, so we can make a string. */
3685 result
= Fmake_string (make_number (nargs
), make_number (0));
3686 for (i
= 0; i
< nargs
; i
++)
3688 SSET (result
, i
, XINT (args
[i
]));
3689 /* Move the meta bit to the right place for a string char. */
3690 if (XINT (args
[i
]) & CHAR_META
)
3691 SSET (result
, i
, SREF (result
, i
) | 0x80);
3700 /************************************************************************
3701 Memory Full Handling
3702 ************************************************************************/
3705 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3706 there may have been size_t overflow so that malloc was never
3707 called, or perhaps malloc was invoked successfully but the
3708 resulting pointer had problems fitting into a tagged EMACS_INT. In
3709 either case this counts as memory being full even though malloc did
3713 memory_full (size_t nbytes
)
3715 /* Do not go into hysterics merely because a large request failed. */
3716 bool enough_free_memory
= 0;
3717 if (SPARE_MEMORY
< nbytes
)
3722 p
= malloc (SPARE_MEMORY
);
3726 enough_free_memory
= 1;
3728 MALLOC_UNBLOCK_INPUT
;
3731 if (! enough_free_memory
)
3737 memory_full_cons_threshold
= sizeof (struct cons_block
);
3739 /* The first time we get here, free the spare memory. */
3740 for (i
= 0; i
< ARRAYELTS (spare_memory
); i
++)
3741 if (spare_memory
[i
])
3744 free (spare_memory
[i
]);
3745 else if (i
>= 1 && i
<= 4)
3746 lisp_align_free (spare_memory
[i
]);
3748 lisp_free (spare_memory
[i
]);
3749 spare_memory
[i
] = 0;
3753 /* This used to call error, but if we've run out of memory, we could
3754 get infinite recursion trying to build the string. */
3755 xsignal (Qnil
, Vmemory_signal_data
);
3758 /* If we released our reserve (due to running out of memory),
3759 and we have a fair amount free once again,
3760 try to set aside another reserve in case we run out once more.
3762 This is called when a relocatable block is freed in ralloc.c,
3763 and also directly from this file, in case we're not using ralloc.c. */
3766 refill_memory_reserve (void)
3768 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3769 if (spare_memory
[0] == 0)
3770 spare_memory
[0] = malloc (SPARE_MEMORY
);
3771 if (spare_memory
[1] == 0)
3772 spare_memory
[1] = lisp_align_malloc (sizeof (struct cons_block
),
3774 if (spare_memory
[2] == 0)
3775 spare_memory
[2] = lisp_align_malloc (sizeof (struct cons_block
),
3777 if (spare_memory
[3] == 0)
3778 spare_memory
[3] = lisp_align_malloc (sizeof (struct cons_block
),
3780 if (spare_memory
[4] == 0)
3781 spare_memory
[4] = lisp_align_malloc (sizeof (struct cons_block
),
3783 if (spare_memory
[5] == 0)
3784 spare_memory
[5] = lisp_malloc (sizeof (struct string_block
),
3786 if (spare_memory
[6] == 0)
3787 spare_memory
[6] = lisp_malloc (sizeof (struct string_block
),
3789 if (spare_memory
[0] && spare_memory
[1] && spare_memory
[5])
3790 Vmemory_full
= Qnil
;
3794 /************************************************************************
3796 ************************************************************************/
3798 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3800 /* Conservative C stack marking requires a method to identify possibly
3801 live Lisp objects given a pointer value. We do this by keeping
3802 track of blocks of Lisp data that are allocated in a red-black tree
3803 (see also the comment of mem_node which is the type of nodes in
3804 that tree). Function lisp_malloc adds information for an allocated
3805 block to the red-black tree with calls to mem_insert, and function
3806 lisp_free removes it with mem_delete. Functions live_string_p etc
3807 call mem_find to lookup information about a given pointer in the
3808 tree, and use that to determine if the pointer points to a Lisp
3811 /* Initialize this part of alloc.c. */
3816 mem_z
.left
= mem_z
.right
= MEM_NIL
;
3817 mem_z
.parent
= NULL
;
3818 mem_z
.color
= MEM_BLACK
;
3819 mem_z
.start
= mem_z
.end
= NULL
;
3824 /* Value is a pointer to the mem_node containing START. Value is
3825 MEM_NIL if there is no node in the tree containing START. */
3827 static struct mem_node
*
3828 mem_find (void *start
)
3832 if (start
< min_heap_address
|| start
> max_heap_address
)
3835 /* Make the search always successful to speed up the loop below. */
3836 mem_z
.start
= start
;
3837 mem_z
.end
= (char *) start
+ 1;
3840 while (start
< p
->start
|| start
>= p
->end
)
3841 p
= start
< p
->start
? p
->left
: p
->right
;
3846 /* Insert a new node into the tree for a block of memory with start
3847 address START, end address END, and type TYPE. Value is a
3848 pointer to the node that was inserted. */
3850 static struct mem_node
*
3851 mem_insert (void *start
, void *end
, enum mem_type type
)
3853 struct mem_node
*c
, *parent
, *x
;
3855 if (min_heap_address
== NULL
|| start
< min_heap_address
)
3856 min_heap_address
= start
;
3857 if (max_heap_address
== NULL
|| end
> max_heap_address
)
3858 max_heap_address
= end
;
3860 /* See where in the tree a node for START belongs. In this
3861 particular application, it shouldn't happen that a node is already
3862 present. For debugging purposes, let's check that. */
3866 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3868 while (c
!= MEM_NIL
)
3870 if (start
>= c
->start
&& start
< c
->end
)
3873 c
= start
< c
->start
? c
->left
: c
->right
;
3876 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3878 while (c
!= MEM_NIL
)
3881 c
= start
< c
->start
? c
->left
: c
->right
;
3884 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3886 /* Create a new node. */
3887 #ifdef GC_MALLOC_CHECK
3888 x
= malloc (sizeof *x
);
3892 x
= xmalloc (sizeof *x
);
3898 x
->left
= x
->right
= MEM_NIL
;
3901 /* Insert it as child of PARENT or install it as root. */
3904 if (start
< parent
->start
)
3912 /* Re-establish red-black tree properties. */
3913 mem_insert_fixup (x
);
3919 /* Re-establish the red-black properties of the tree, and thereby
3920 balance the tree, after node X has been inserted; X is always red. */
3923 mem_insert_fixup (struct mem_node
*x
)
3925 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
3927 /* X is red and its parent is red. This is a violation of
3928 red-black tree property #3. */
3930 if (x
->parent
== x
->parent
->parent
->left
)
3932 /* We're on the left side of our grandparent, and Y is our
3934 struct mem_node
*y
= x
->parent
->parent
->right
;
3936 if (y
->color
== MEM_RED
)
3938 /* Uncle and parent are red but should be black because
3939 X is red. Change the colors accordingly and proceed
3940 with the grandparent. */
3941 x
->parent
->color
= MEM_BLACK
;
3942 y
->color
= MEM_BLACK
;
3943 x
->parent
->parent
->color
= MEM_RED
;
3944 x
= x
->parent
->parent
;
3948 /* Parent and uncle have different colors; parent is
3949 red, uncle is black. */
3950 if (x
== x
->parent
->right
)
3953 mem_rotate_left (x
);
3956 x
->parent
->color
= MEM_BLACK
;
3957 x
->parent
->parent
->color
= MEM_RED
;
3958 mem_rotate_right (x
->parent
->parent
);
3963 /* This is the symmetrical case of above. */
3964 struct mem_node
*y
= x
->parent
->parent
->left
;
3966 if (y
->color
== MEM_RED
)
3968 x
->parent
->color
= MEM_BLACK
;
3969 y
->color
= MEM_BLACK
;
3970 x
->parent
->parent
->color
= MEM_RED
;
3971 x
= x
->parent
->parent
;
3975 if (x
== x
->parent
->left
)
3978 mem_rotate_right (x
);
3981 x
->parent
->color
= MEM_BLACK
;
3982 x
->parent
->parent
->color
= MEM_RED
;
3983 mem_rotate_left (x
->parent
->parent
);
3988 /* The root may have been changed to red due to the algorithm. Set
3989 it to black so that property #5 is satisfied. */
3990 mem_root
->color
= MEM_BLACK
;
4001 mem_rotate_left (struct mem_node
*x
)
4005 /* Turn y's left sub-tree into x's right sub-tree. */
4008 if (y
->left
!= MEM_NIL
)
4009 y
->left
->parent
= x
;
4011 /* Y's parent was x's parent. */
4013 y
->parent
= x
->parent
;
4015 /* Get the parent to point to y instead of x. */
4018 if (x
== x
->parent
->left
)
4019 x
->parent
->left
= y
;
4021 x
->parent
->right
= y
;
4026 /* Put x on y's left. */
4040 mem_rotate_right (struct mem_node
*x
)
4042 struct mem_node
*y
= x
->left
;
4045 if (y
->right
!= MEM_NIL
)
4046 y
->right
->parent
= x
;
4049 y
->parent
= x
->parent
;
4052 if (x
== x
->parent
->right
)
4053 x
->parent
->right
= y
;
4055 x
->parent
->left
= y
;
4066 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4069 mem_delete (struct mem_node
*z
)
4071 struct mem_node
*x
, *y
;
4073 if (!z
|| z
== MEM_NIL
)
4076 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
4081 while (y
->left
!= MEM_NIL
)
4085 if (y
->left
!= MEM_NIL
)
4090 x
->parent
= y
->parent
;
4093 if (y
== y
->parent
->left
)
4094 y
->parent
->left
= x
;
4096 y
->parent
->right
= x
;
4103 z
->start
= y
->start
;
4108 if (y
->color
== MEM_BLACK
)
4109 mem_delete_fixup (x
);
4111 #ifdef GC_MALLOC_CHECK
4119 /* Re-establish the red-black properties of the tree, after a
4123 mem_delete_fixup (struct mem_node
*x
)
4125 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
4127 if (x
== x
->parent
->left
)
4129 struct mem_node
*w
= x
->parent
->right
;
4131 if (w
->color
== MEM_RED
)
4133 w
->color
= MEM_BLACK
;
4134 x
->parent
->color
= MEM_RED
;
4135 mem_rotate_left (x
->parent
);
4136 w
= x
->parent
->right
;
4139 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
4146 if (w
->right
->color
== MEM_BLACK
)
4148 w
->left
->color
= MEM_BLACK
;
4150 mem_rotate_right (w
);
4151 w
= x
->parent
->right
;
4153 w
->color
= x
->parent
->color
;
4154 x
->parent
->color
= MEM_BLACK
;
4155 w
->right
->color
= MEM_BLACK
;
4156 mem_rotate_left (x
->parent
);
4162 struct mem_node
*w
= x
->parent
->left
;
4164 if (w
->color
== MEM_RED
)
4166 w
->color
= MEM_BLACK
;
4167 x
->parent
->color
= MEM_RED
;
4168 mem_rotate_right (x
->parent
);
4169 w
= x
->parent
->left
;
4172 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
4179 if (w
->left
->color
== MEM_BLACK
)
4181 w
->right
->color
= MEM_BLACK
;
4183 mem_rotate_left (w
);
4184 w
= x
->parent
->left
;
4187 w
->color
= x
->parent
->color
;
4188 x
->parent
->color
= MEM_BLACK
;
4189 w
->left
->color
= MEM_BLACK
;
4190 mem_rotate_right (x
->parent
);
4196 x
->color
= MEM_BLACK
;
4200 /* Value is non-zero if P is a pointer to a live Lisp string on
4201 the heap. M is a pointer to the mem_block for P. */
4204 live_string_p (struct mem_node
*m
, void *p
)
4206 if (m
->type
== MEM_TYPE_STRING
)
4208 struct string_block
*b
= m
->start
;
4209 ptrdiff_t offset
= (char *) p
- (char *) &b
->strings
[0];
4211 /* P must point to the start of a Lisp_String structure, and it
4212 must not be on the free-list. */
4214 && offset
% sizeof b
->strings
[0] == 0
4215 && offset
< (STRING_BLOCK_SIZE
* sizeof b
->strings
[0])
4216 && ((struct Lisp_String
*) p
)->data
!= NULL
);
4223 /* Value is non-zero if P is a pointer to a live Lisp cons on
4224 the heap. M is a pointer to the mem_block for P. */
4227 live_cons_p (struct mem_node
*m
, void *p
)
4229 if (m
->type
== MEM_TYPE_CONS
)
4231 struct cons_block
*b
= m
->start
;
4232 ptrdiff_t offset
= (char *) p
- (char *) &b
->conses
[0];
4234 /* P must point to the start of a Lisp_Cons, not be
4235 one of the unused cells in the current cons block,
4236 and not be on the free-list. */
4238 && offset
% sizeof b
->conses
[0] == 0
4239 && offset
< (CONS_BLOCK_SIZE
* sizeof b
->conses
[0])
4241 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
4242 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
4249 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4250 the heap. M is a pointer to the mem_block for P. */
4253 live_symbol_p (struct mem_node
*m
, void *p
)
4255 if (m
->type
== MEM_TYPE_SYMBOL
)
4257 struct symbol_block
*b
= m
->start
;
4258 ptrdiff_t offset
= (char *) p
- (char *) &b
->symbols
[0];
4260 /* P must point to the start of a Lisp_Symbol, not be
4261 one of the unused cells in the current symbol block,
4262 and not be on the free-list. */
4264 && offset
% sizeof b
->symbols
[0] == 0
4265 && offset
< (SYMBOL_BLOCK_SIZE
* sizeof b
->symbols
[0])
4266 && (b
!= symbol_block
4267 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
4268 && !EQ (((struct Lisp_Symbol
*)p
)->function
, Vdead
));
4275 /* Value is non-zero if P is a pointer to a live Lisp float on
4276 the heap. M is a pointer to the mem_block for P. */
4279 live_float_p (struct mem_node
*m
, void *p
)
4281 if (m
->type
== MEM_TYPE_FLOAT
)
4283 struct float_block
*b
= m
->start
;
4284 ptrdiff_t offset
= (char *) p
- (char *) &b
->floats
[0];
4286 /* P must point to the start of a Lisp_Float and not be
4287 one of the unused cells in the current float block. */
4289 && offset
% sizeof b
->floats
[0] == 0
4290 && offset
< (FLOAT_BLOCK_SIZE
* sizeof b
->floats
[0])
4291 && (b
!= float_block
4292 || offset
/ sizeof b
->floats
[0] < float_block_index
));
4299 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4300 the heap. M is a pointer to the mem_block for P. */
4303 live_misc_p (struct mem_node
*m
, void *p
)
4305 if (m
->type
== MEM_TYPE_MISC
)
4307 struct marker_block
*b
= m
->start
;
4308 ptrdiff_t offset
= (char *) p
- (char *) &b
->markers
[0];
4310 /* P must point to the start of a Lisp_Misc, not be
4311 one of the unused cells in the current misc block,
4312 and not be on the free-list. */
4314 && offset
% sizeof b
->markers
[0] == 0
4315 && offset
< (MARKER_BLOCK_SIZE
* sizeof b
->markers
[0])
4316 && (b
!= marker_block
4317 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
4318 && ((union Lisp_Misc
*) p
)->u_any
.type
!= Lisp_Misc_Free
);
4325 /* Value is non-zero if P is a pointer to a live vector-like object.
4326 M is a pointer to the mem_block for P. */
4329 live_vector_p (struct mem_node
*m
, void *p
)
4331 if (m
->type
== MEM_TYPE_VECTOR_BLOCK
)
4333 /* This memory node corresponds to a vector block. */
4334 struct vector_block
*block
= m
->start
;
4335 struct Lisp_Vector
*vector
= (struct Lisp_Vector
*) block
->data
;
4337 /* P is in the block's allocation range. Scan the block
4338 up to P and see whether P points to the start of some
4339 vector which is not on a free list. FIXME: check whether
4340 some allocation patterns (probably a lot of short vectors)
4341 may cause a substantial overhead of this loop. */
4342 while (VECTOR_IN_BLOCK (vector
, block
)
4343 && vector
<= (struct Lisp_Vector
*) p
)
4345 if (!PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FREE
) && vector
== p
)
4348 vector
= ADVANCE (vector
, vector_nbytes (vector
));
4351 else if (m
->type
== MEM_TYPE_VECTORLIKE
&& p
== large_vector_vec (m
->start
))
4352 /* This memory node corresponds to a large vector. */
4358 /* Value is non-zero if P is a pointer to a live buffer. M is a
4359 pointer to the mem_block for P. */
4362 live_buffer_p (struct mem_node
*m
, void *p
)
4364 /* P must point to the start of the block, and the buffer
4365 must not have been killed. */
4366 return (m
->type
== MEM_TYPE_BUFFER
4368 && !NILP (((struct buffer
*) p
)->INTERNAL_FIELD (name
)));
4371 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4375 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4377 /* Currently not used, but may be called from gdb. */
4379 void dump_zombies (void) EXTERNALLY_VISIBLE
;
4381 /* Array of objects that are kept alive because the C stack contains
4382 a pattern that looks like a reference to them. */
4384 #define MAX_ZOMBIES 10
4385 static Lisp_Object zombies
[MAX_ZOMBIES
];
4387 /* Number of zombie objects. */
4389 static EMACS_INT nzombies
;
4391 /* Number of garbage collections. */
4393 static EMACS_INT ngcs
;
4395 /* Average percentage of zombies per collection. */
4397 static double avg_zombies
;
4399 /* Max. number of live and zombie objects. */
4401 static EMACS_INT max_live
, max_zombies
;
4403 /* Average number of live objects per GC. */
4405 static double avg_live
;
4407 DEFUN ("gc-status", Fgc_status
, Sgc_status
, 0, 0, "",
4408 doc
: /* Show information about live and zombie objects. */)
4411 Lisp_Object zombie_list
= Qnil
;
4412 for (int i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); i
++)
4413 zombie_list
= Fcons (zombies
[i
], zombie_list
);
4414 return CALLN (Fmessage
,
4415 build_string ("%d GCs, avg live/zombies = %.2f/%.2f"
4416 " (%f%%), max %d/%d\nzombies: %S"),
4417 make_number (ngcs
), make_float (avg_live
),
4418 make_float (avg_zombies
),
4419 make_float (avg_zombies
/ avg_live
/ 100),
4420 make_number (max_live
), make_number (max_zombies
),
4424 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4427 /* Mark OBJ if we can prove it's a Lisp_Object. */
4430 mark_maybe_object (Lisp_Object obj
)
4437 VALGRIND_MAKE_MEM_DEFINED (&obj
, sizeof (obj
));
4443 po
= (void *) XPNTR (obj
);
4450 switch (XTYPE (obj
))
4453 mark_p
= (live_string_p (m
, po
)
4454 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
4458 mark_p
= (live_cons_p (m
, po
) && !CONS_MARKED_P (XCONS (obj
)));
4462 mark_p
= (live_symbol_p (m
, po
) && !XSYMBOL (obj
)->gcmarkbit
);
4466 mark_p
= (live_float_p (m
, po
) && !FLOAT_MARKED_P (XFLOAT (obj
)));
4469 case Lisp_Vectorlike
:
4470 /* Note: can't check BUFFERP before we know it's a
4471 buffer because checking that dereferences the pointer
4472 PO which might point anywhere. */
4473 if (live_vector_p (m
, po
))
4474 mark_p
= !SUBRP (obj
) && !VECTOR_MARKED_P (XVECTOR (obj
));
4475 else if (live_buffer_p (m
, po
))
4476 mark_p
= BUFFERP (obj
) && !VECTOR_MARKED_P (XBUFFER (obj
));
4480 mark_p
= (live_misc_p (m
, po
) && !XMISCANY (obj
)->gcmarkbit
);
4489 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4490 if (nzombies
< MAX_ZOMBIES
)
4491 zombies
[nzombies
] = obj
;
4499 /* Return true if P can point to Lisp data, and false otherwise.
4500 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4501 Otherwise, assume that Lisp data is aligned on even addresses. */
4504 maybe_lisp_pointer (void *p
)
4506 return !((intptr_t) p
% (USE_LSB_TAG
? GCALIGNMENT
: 2));
4509 /* If P points to Lisp data, mark that as live if it isn't already
4513 mark_maybe_pointer (void *p
)
4519 VALGRIND_MAKE_MEM_DEFINED (&p
, sizeof (p
));
4522 if (!maybe_lisp_pointer (p
))
4528 Lisp_Object obj
= Qnil
;
4532 case MEM_TYPE_NON_LISP
:
4533 case MEM_TYPE_SPARE
:
4534 /* Nothing to do; not a pointer to Lisp memory. */
4537 case MEM_TYPE_BUFFER
:
4538 if (live_buffer_p (m
, p
) && !VECTOR_MARKED_P ((struct buffer
*)p
))
4539 XSETVECTOR (obj
, p
);
4543 if (live_cons_p (m
, p
) && !CONS_MARKED_P ((struct Lisp_Cons
*) p
))
4547 case MEM_TYPE_STRING
:
4548 if (live_string_p (m
, p
)
4549 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
4550 XSETSTRING (obj
, p
);
4554 if (live_misc_p (m
, p
) && !((struct Lisp_Free
*) p
)->gcmarkbit
)
4558 case MEM_TYPE_SYMBOL
:
4559 if (live_symbol_p (m
, p
) && !((struct Lisp_Symbol
*) p
)->gcmarkbit
)
4560 XSETSYMBOL (obj
, p
);
4563 case MEM_TYPE_FLOAT
:
4564 if (live_float_p (m
, p
) && !FLOAT_MARKED_P (p
))
4568 case MEM_TYPE_VECTORLIKE
:
4569 case MEM_TYPE_VECTOR_BLOCK
:
4570 if (live_vector_p (m
, p
))
4573 XSETVECTOR (tem
, p
);
4574 if (!SUBRP (tem
) && !VECTOR_MARKED_P (XVECTOR (tem
)))
4589 /* Alignment of pointer values. Use alignof, as it sometimes returns
4590 a smaller alignment than GCC's __alignof__ and mark_memory might
4591 miss objects if __alignof__ were used. */
4592 #define GC_POINTER_ALIGNMENT alignof (void *)
4594 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4595 not suffice, which is the typical case. A host where a Lisp_Object is
4596 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4597 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4598 suffice to widen it to to a Lisp_Object and check it that way. */
4599 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4600 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4601 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4602 nor mark_maybe_object can follow the pointers. This should not occur on
4603 any practical porting target. */
4604 # error "MSB type bits straddle pointer-word boundaries"
4606 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4607 pointer words that hold pointers ORed with type bits. */
4608 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4610 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4611 words that hold unmodified pointers. */
4612 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4615 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4616 or END+OFFSET..START. */
4618 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4619 mark_memory (void *start
, void *end
)
4624 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4628 /* Make START the pointer to the start of the memory region,
4629 if it isn't already. */
4637 /* Mark Lisp data pointed to. This is necessary because, in some
4638 situations, the C compiler optimizes Lisp objects away, so that
4639 only a pointer to them remains. Example:
4641 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4644 Lisp_Object obj = build_string ("test");
4645 struct Lisp_String *s = XSTRING (obj);
4646 Fgarbage_collect ();
4647 fprintf (stderr, "test `%s'\n", s->data);
4651 Here, `obj' isn't really used, and the compiler optimizes it
4652 away. The only reference to the life string is through the
4655 for (pp
= start
; (void *) pp
< end
; pp
++)
4656 for (i
= 0; i
< sizeof *pp
; i
+= GC_POINTER_ALIGNMENT
)
4658 void *p
= *(void **) ((char *) pp
+ i
);
4659 mark_maybe_pointer (p
);
4660 if (POINTERS_MIGHT_HIDE_IN_OBJECTS
)
4661 mark_maybe_object (XIL ((intptr_t) p
));
4665 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4667 static bool setjmp_tested_p
;
4668 static int longjmps_done
;
4670 #define SETJMP_WILL_LIKELY_WORK "\
4672 Emacs garbage collector has been changed to use conservative stack\n\
4673 marking. Emacs has determined that the method it uses to do the\n\
4674 marking will likely work on your system, but this isn't sure.\n\
4676 If you are a system-programmer, or can get the help of a local wizard\n\
4677 who is, please take a look at the function mark_stack in alloc.c, and\n\
4678 verify that the methods used are appropriate for your system.\n\
4680 Please mail the result to <emacs-devel@gnu.org>.\n\
4683 #define SETJMP_WILL_NOT_WORK "\
4685 Emacs garbage collector has been changed to use conservative stack\n\
4686 marking. Emacs has determined that the default method it uses to do the\n\
4687 marking will not work on your system. We will need a system-dependent\n\
4688 solution for your system.\n\
4690 Please take a look at the function mark_stack in alloc.c, and\n\
4691 try to find a way to make it work on your system.\n\
4693 Note that you may get false negatives, depending on the compiler.\n\
4694 In particular, you need to use -O with GCC for this test.\n\
4696 Please mail the result to <emacs-devel@gnu.org>.\n\
4700 /* Perform a quick check if it looks like setjmp saves registers in a
4701 jmp_buf. Print a message to stderr saying so. When this test
4702 succeeds, this is _not_ a proof that setjmp is sufficient for
4703 conservative stack marking. Only the sources or a disassembly
4713 /* Arrange for X to be put in a register. */
4719 if (longjmps_done
== 1)
4721 /* Came here after the longjmp at the end of the function.
4723 If x == 1, the longjmp has restored the register to its
4724 value before the setjmp, and we can hope that setjmp
4725 saves all such registers in the jmp_buf, although that
4728 For other values of X, either something really strange is
4729 taking place, or the setjmp just didn't save the register. */
4732 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
4735 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
4742 if (longjmps_done
== 1)
4743 sys_longjmp (jbuf
, 1);
4746 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4749 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4751 /* Abort if anything GCPRO'd doesn't survive the GC. */
4759 for (p
= gcprolist
; p
; p
= p
->next
)
4760 for (i
= 0; i
< p
->nvars
; ++i
)
4761 if (!survives_gc_p (p
->var
[i
]))
4762 /* FIXME: It's not necessarily a bug. It might just be that the
4763 GCPRO is unnecessary or should release the object sooner. */
4767 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4774 fprintf (stderr
, "\nZombies kept alive = %"pI
"d:\n", nzombies
);
4775 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); ++i
)
4777 fprintf (stderr
, " %d = ", i
);
4778 debug_print (zombies
[i
]);
4782 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4785 /* Mark live Lisp objects on the C stack.
4787 There are several system-dependent problems to consider when
4788 porting this to new architectures:
4792 We have to mark Lisp objects in CPU registers that can hold local
4793 variables or are used to pass parameters.
4795 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4796 something that either saves relevant registers on the stack, or
4797 calls mark_maybe_object passing it each register's contents.
4799 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4800 implementation assumes that calling setjmp saves registers we need
4801 to see in a jmp_buf which itself lies on the stack. This doesn't
4802 have to be true! It must be verified for each system, possibly
4803 by taking a look at the source code of setjmp.
4805 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4806 can use it as a machine independent method to store all registers
4807 to the stack. In this case the macros described in the previous
4808 two paragraphs are not used.
4812 Architectures differ in the way their processor stack is organized.
4813 For example, the stack might look like this
4816 | Lisp_Object | size = 4
4818 | something else | size = 2
4820 | Lisp_Object | size = 4
4824 In such a case, not every Lisp_Object will be aligned equally. To
4825 find all Lisp_Object on the stack it won't be sufficient to walk
4826 the stack in steps of 4 bytes. Instead, two passes will be
4827 necessary, one starting at the start of the stack, and a second
4828 pass starting at the start of the stack + 2. Likewise, if the
4829 minimal alignment of Lisp_Objects on the stack is 1, four passes
4830 would be necessary, each one starting with one byte more offset
4831 from the stack start. */
4834 mark_stack (void *end
)
4837 /* This assumes that the stack is a contiguous region in memory. If
4838 that's not the case, something has to be done here to iterate
4839 over the stack segments. */
4840 mark_memory (stack_base
, end
);
4842 /* Allow for marking a secondary stack, like the register stack on the
4844 #ifdef GC_MARK_SECONDARY_STACK
4845 GC_MARK_SECONDARY_STACK ();
4848 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4853 #else /* GC_MARK_STACK == 0 */
4855 #define mark_maybe_object(obj) emacs_abort ()
4857 #endif /* GC_MARK_STACK != 0 */
4860 c_symbol_p (struct Lisp_Symbol
*sym
)
4862 char *lispsym_ptr
= (char *) lispsym
;
4863 char *sym_ptr
= (char *) sym
;
4864 ptrdiff_t lispsym_offset
= sym_ptr
- lispsym_ptr
;
4865 return 0 <= lispsym_offset
&& lispsym_offset
< sizeof lispsym
;
4868 /* Determine whether it is safe to access memory at address P. */
4870 valid_pointer_p (void *p
)
4873 return w32_valid_pointer_p (p
, 16);
4876 if (ADDRESS_SANITIZER
)
4881 /* Obviously, we cannot just access it (we would SEGV trying), so we
4882 trick the o/s to tell us whether p is a valid pointer.
4883 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4884 not validate p in that case. */
4886 if (emacs_pipe (fd
) == 0)
4888 bool valid
= emacs_write (fd
[1], p
, 16) == 16;
4889 emacs_close (fd
[1]);
4890 emacs_close (fd
[0]);
4898 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4899 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4900 cannot validate OBJ. This function can be quite slow, so its primary
4901 use is the manual debugging. The only exception is print_object, where
4902 we use it to check whether the memory referenced by the pointer of
4903 Lisp_Save_Value object contains valid objects. */
4906 valid_lisp_object_p (Lisp_Object obj
)
4916 p
= (void *) XPNTR (obj
);
4917 if (PURE_POINTER_P (p
))
4920 if (SYMBOLP (obj
) && c_symbol_p (p
))
4921 return ((char *) p
- (char *) lispsym
) % sizeof lispsym
[0] == 0;
4923 if (p
== &buffer_defaults
|| p
== &buffer_local_symbols
)
4927 return valid_pointer_p (p
);
4934 int valid
= valid_pointer_p (p
);
4946 case MEM_TYPE_NON_LISP
:
4947 case MEM_TYPE_SPARE
:
4950 case MEM_TYPE_BUFFER
:
4951 return live_buffer_p (m
, p
) ? 1 : 2;
4954 return live_cons_p (m
, p
);
4956 case MEM_TYPE_STRING
:
4957 return live_string_p (m
, p
);
4960 return live_misc_p (m
, p
);
4962 case MEM_TYPE_SYMBOL
:
4963 return live_symbol_p (m
, p
);
4965 case MEM_TYPE_FLOAT
:
4966 return live_float_p (m
, p
);
4968 case MEM_TYPE_VECTORLIKE
:
4969 case MEM_TYPE_VECTOR_BLOCK
:
4970 return live_vector_p (m
, p
);
4980 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
4981 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
4982 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
4983 This function is slow and should be used for debugging purposes. */
4986 relocatable_string_data_p (const char *str
)
4988 if (PURE_POINTER_P (str
))
4994 = (struct sdata
*) (str
- offsetof (struct sdata
, data
));
4996 if (0 < valid_pointer_p (sdata
)
4997 && 0 < valid_pointer_p (sdata
->string
)
4998 && maybe_lisp_pointer (sdata
->string
))
4999 return (valid_lisp_object_p
5000 (make_lisp_ptr (sdata
->string
, Lisp_String
))
5001 && (const char *) sdata
->string
->data
== str
);
5004 #endif /* GC_MARK_STACK */
5008 /***********************************************************************
5009 Pure Storage Management
5010 ***********************************************************************/
5012 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5013 pointer to it. TYPE is the Lisp type for which the memory is
5014 allocated. TYPE < 0 means it's not used for a Lisp object. */
5017 pure_alloc (size_t size
, int type
)
5021 size_t alignment
= GCALIGNMENT
;
5023 size_t alignment
= alignof (EMACS_INT
);
5025 /* Give Lisp_Floats an extra alignment. */
5026 if (type
== Lisp_Float
)
5027 alignment
= alignof (struct Lisp_Float
);
5033 /* Allocate space for a Lisp object from the beginning of the free
5034 space with taking account of alignment. */
5035 result
= ALIGN (purebeg
+ pure_bytes_used_lisp
, alignment
);
5036 pure_bytes_used_lisp
= ((char *)result
- (char *)purebeg
) + size
;
5040 /* Allocate space for a non-Lisp object from the end of the free
5042 pure_bytes_used_non_lisp
+= size
;
5043 result
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5045 pure_bytes_used
= pure_bytes_used_lisp
+ pure_bytes_used_non_lisp
;
5047 if (pure_bytes_used
<= pure_size
)
5050 /* Don't allocate a large amount here,
5051 because it might get mmap'd and then its address
5052 might not be usable. */
5053 purebeg
= xmalloc (10000);
5055 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
5056 pure_bytes_used
= 0;
5057 pure_bytes_used_lisp
= pure_bytes_used_non_lisp
= 0;
5062 /* Print a warning if PURESIZE is too small. */
5065 check_pure_size (void)
5067 if (pure_bytes_used_before_overflow
)
5068 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI
"d"
5070 pure_bytes_used
+ pure_bytes_used_before_overflow
);
5074 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5075 the non-Lisp data pool of the pure storage, and return its start
5076 address. Return NULL if not found. */
5079 find_string_data_in_pure (const char *data
, ptrdiff_t nbytes
)
5082 ptrdiff_t skip
, bm_skip
[256], last_char_skip
, infinity
, start
, start_max
;
5083 const unsigned char *p
;
5086 if (pure_bytes_used_non_lisp
<= nbytes
)
5089 /* Set up the Boyer-Moore table. */
5091 for (i
= 0; i
< 256; i
++)
5094 p
= (const unsigned char *) data
;
5096 bm_skip
[*p
++] = skip
;
5098 last_char_skip
= bm_skip
['\0'];
5100 non_lisp_beg
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5101 start_max
= pure_bytes_used_non_lisp
- (nbytes
+ 1);
5103 /* See the comments in the function `boyer_moore' (search.c) for the
5104 use of `infinity'. */
5105 infinity
= pure_bytes_used_non_lisp
+ 1;
5106 bm_skip
['\0'] = infinity
;
5108 p
= (const unsigned char *) non_lisp_beg
+ nbytes
;
5112 /* Check the last character (== '\0'). */
5115 start
+= bm_skip
[*(p
+ start
)];
5117 while (start
<= start_max
);
5119 if (start
< infinity
)
5120 /* Couldn't find the last character. */
5123 /* No less than `infinity' means we could find the last
5124 character at `p[start - infinity]'. */
5127 /* Check the remaining characters. */
5128 if (memcmp (data
, non_lisp_beg
+ start
, nbytes
) == 0)
5130 return non_lisp_beg
+ start
;
5132 start
+= last_char_skip
;
5134 while (start
<= start_max
);
5140 /* Return a string allocated in pure space. DATA is a buffer holding
5141 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5142 means make the result string multibyte.
5144 Must get an error if pure storage is full, since if it cannot hold
5145 a large string it may be able to hold conses that point to that
5146 string; then the string is not protected from gc. */
5149 make_pure_string (const char *data
,
5150 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
5153 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5154 s
->data
= (unsigned char *) find_string_data_in_pure (data
, nbytes
);
5155 if (s
->data
== NULL
)
5157 s
->data
= pure_alloc (nbytes
+ 1, -1);
5158 memcpy (s
->data
, data
, nbytes
);
5159 s
->data
[nbytes
] = '\0';
5162 s
->size_byte
= multibyte
? nbytes
: -1;
5163 s
->intervals
= NULL
;
5164 XSETSTRING (string
, s
);
5168 /* Return a string allocated in pure space. Do not
5169 allocate the string data, just point to DATA. */
5172 make_pure_c_string (const char *data
, ptrdiff_t nchars
)
5175 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5178 s
->data
= (unsigned char *) data
;
5179 s
->intervals
= NULL
;
5180 XSETSTRING (string
, s
);
5184 static Lisp_Object
purecopy (Lisp_Object obj
);
5186 /* Return a cons allocated from pure space. Give it pure copies
5187 of CAR as car and CDR as cdr. */
5190 pure_cons (Lisp_Object car
, Lisp_Object cdr
)
5193 struct Lisp_Cons
*p
= pure_alloc (sizeof *p
, Lisp_Cons
);
5195 XSETCAR (new, purecopy (car
));
5196 XSETCDR (new, purecopy (cdr
));
5201 /* Value is a float object with value NUM allocated from pure space. */
5204 make_pure_float (double num
)
5207 struct Lisp_Float
*p
= pure_alloc (sizeof *p
, Lisp_Float
);
5209 XFLOAT_INIT (new, num
);
5214 /* Return a vector with room for LEN Lisp_Objects allocated from
5218 make_pure_vector (ptrdiff_t len
)
5221 size_t size
= header_size
+ len
* word_size
;
5222 struct Lisp_Vector
*p
= pure_alloc (size
, Lisp_Vectorlike
);
5223 XSETVECTOR (new, p
);
5224 XVECTOR (new)->header
.size
= len
;
5229 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
5230 doc
: /* Make a copy of object OBJ in pure storage.
5231 Recursively copies contents of vectors and cons cells.
5232 Does not copy symbols. Copies strings without text properties. */)
5233 (register Lisp_Object obj
)
5235 if (NILP (Vpurify_flag
))
5237 else if (MARKERP (obj
) || OVERLAYP (obj
)
5238 || HASH_TABLE_P (obj
) || SYMBOLP (obj
))
5239 /* Can't purify those. */
5242 return purecopy (obj
);
5246 purecopy (Lisp_Object obj
)
5248 if (PURE_POINTER_P (XPNTR (obj
)) || INTEGERP (obj
) || SUBRP (obj
))
5249 return obj
; /* Already pure. */
5251 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5253 Lisp_Object tmp
= Fgethash (obj
, Vpurify_flag
, Qnil
);
5259 obj
= pure_cons (XCAR (obj
), XCDR (obj
));
5260 else if (FLOATP (obj
))
5261 obj
= make_pure_float (XFLOAT_DATA (obj
));
5262 else if (STRINGP (obj
))
5263 obj
= make_pure_string (SSDATA (obj
), SCHARS (obj
),
5265 STRING_MULTIBYTE (obj
));
5266 else if (COMPILEDP (obj
) || VECTORP (obj
))
5268 register struct Lisp_Vector
*vec
;
5269 register ptrdiff_t i
;
5273 if (size
& PSEUDOVECTOR_FLAG
)
5274 size
&= PSEUDOVECTOR_SIZE_MASK
;
5275 vec
= XVECTOR (make_pure_vector (size
));
5276 for (i
= 0; i
< size
; i
++)
5277 vec
->contents
[i
] = purecopy (AREF (obj
, i
));
5278 if (COMPILEDP (obj
))
5280 XSETPVECTYPE (vec
, PVEC_COMPILED
);
5281 XSETCOMPILED (obj
, vec
);
5284 XSETVECTOR (obj
, vec
);
5286 else if (SYMBOLP (obj
))
5288 if (!XSYMBOL (obj
)->pinned
&& !c_symbol_p (XSYMBOL (obj
)))
5289 { /* We can't purify them, but they appear in many pure objects.
5290 Mark them as `pinned' so we know to mark them at every GC cycle. */
5291 XSYMBOL (obj
)->pinned
= true;
5292 symbol_block_pinned
= symbol_block
;
5298 Lisp_Object fmt
= build_pure_c_string ("Don't know how to purify: %S");
5299 Fsignal (Qerror
, list1 (CALLN (Fformat
, fmt
, obj
)));
5302 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5303 Fputhash (obj
, obj
, Vpurify_flag
);
5310 /***********************************************************************
5312 ***********************************************************************/
5314 /* Put an entry in staticvec, pointing at the variable with address
5318 staticpro (Lisp_Object
*varaddress
)
5320 if (staticidx
>= NSTATICS
)
5321 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5322 staticvec
[staticidx
++] = varaddress
;
5326 /***********************************************************************
5328 ***********************************************************************/
5330 /* Temporarily prevent garbage collection. */
5333 inhibit_garbage_collection (void)
5335 ptrdiff_t count
= SPECPDL_INDEX ();
5337 specbind (Qgc_cons_threshold
, make_number (MOST_POSITIVE_FIXNUM
));
5341 /* Used to avoid possible overflows when
5342 converting from C to Lisp integers. */
5345 bounded_number (EMACS_INT number
)
5347 return make_number (min (MOST_POSITIVE_FIXNUM
, number
));
5350 /* Calculate total bytes of live objects. */
5353 total_bytes_of_live_objects (void)
5356 tot
+= total_conses
* sizeof (struct Lisp_Cons
);
5357 tot
+= total_symbols
* sizeof (struct Lisp_Symbol
);
5358 tot
+= total_markers
* sizeof (union Lisp_Misc
);
5359 tot
+= total_string_bytes
;
5360 tot
+= total_vector_slots
* word_size
;
5361 tot
+= total_floats
* sizeof (struct Lisp_Float
);
5362 tot
+= total_intervals
* sizeof (struct interval
);
5363 tot
+= total_strings
* sizeof (struct Lisp_String
);
5367 #ifdef HAVE_WINDOW_SYSTEM
5369 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5371 #if !defined (HAVE_NTGUI)
5373 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5374 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5377 compact_font_cache_entry (Lisp_Object entry
)
5379 Lisp_Object tail
, *prev
= &entry
;
5381 for (tail
= entry
; CONSP (tail
); tail
= XCDR (tail
))
5384 Lisp_Object obj
= XCAR (tail
);
5386 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5387 if (CONSP (obj
) && FONT_SPEC_P (XCAR (obj
))
5388 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj
)))
5389 && VECTORP (XCDR (obj
)))
5391 ptrdiff_t i
, size
= ASIZE (XCDR (obj
)) & ~ARRAY_MARK_FLAG
;
5393 /* If font-spec is not marked, most likely all font-entities
5394 are not marked too. But we must be sure that nothing is
5395 marked within OBJ before we really drop it. */
5396 for (i
= 0; i
< size
; i
++)
5397 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj
), i
))))
5404 *prev
= XCDR (tail
);
5406 prev
= xcdr_addr (tail
);
5411 #endif /* not HAVE_NTGUI */
5413 /* Compact font caches on all terminals and mark
5414 everything which is still here after compaction. */
5417 compact_font_caches (void)
5421 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
5423 Lisp_Object cache
= TERMINAL_FONT_CACHE (t
);
5424 #if !defined (HAVE_NTGUI)
5429 for (entry
= XCDR (cache
); CONSP (entry
); entry
= XCDR (entry
))
5430 XSETCAR (entry
, compact_font_cache_entry (XCAR (entry
)));
5432 #endif /* not HAVE_NTGUI */
5433 mark_object (cache
);
5437 #else /* not HAVE_WINDOW_SYSTEM */
5439 #define compact_font_caches() (void)(0)
5441 #endif /* HAVE_WINDOW_SYSTEM */
5443 /* Remove (MARKER . DATA) entries with unmarked MARKER
5444 from buffer undo LIST and return changed list. */
5447 compact_undo_list (Lisp_Object list
)
5449 Lisp_Object tail
, *prev
= &list
;
5451 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
5453 if (CONSP (XCAR (tail
))
5454 && MARKERP (XCAR (XCAR (tail
)))
5455 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
5456 *prev
= XCDR (tail
);
5458 prev
= xcdr_addr (tail
);
5464 mark_pinned_symbols (void)
5466 struct symbol_block
*sblk
;
5467 int lim
= (symbol_block_pinned
== symbol_block
5468 ? symbol_block_index
: SYMBOL_BLOCK_SIZE
);
5470 for (sblk
= symbol_block_pinned
; sblk
; sblk
= sblk
->next
)
5472 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
, *end
= sym
+ lim
;
5473 for (; sym
< end
; ++sym
)
5475 mark_object (make_lisp_symbol (&sym
->s
));
5477 lim
= SYMBOL_BLOCK_SIZE
;
5481 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5482 separate function so that we could limit mark_stack in searching
5483 the stack frames below this function, thus avoiding the rare cases
5484 where mark_stack finds values that look like live Lisp objects on
5485 portions of stack that couldn't possibly contain such live objects.
5486 For more details of this, see the discussion at
5487 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5489 garbage_collect_1 (void *end
)
5491 struct buffer
*nextb
;
5492 char stack_top_variable
;
5495 ptrdiff_t count
= SPECPDL_INDEX ();
5496 struct timespec start
;
5497 Lisp_Object retval
= Qnil
;
5498 size_t tot_before
= 0;
5503 /* Can't GC if pure storage overflowed because we can't determine
5504 if something is a pure object or not. */
5505 if (pure_bytes_used_before_overflow
)
5508 /* Record this function, so it appears on the profiler's backtraces. */
5509 record_in_backtrace (Qautomatic_gc
, 0, 0);
5513 /* Don't keep undo information around forever.
5514 Do this early on, so it is no problem if the user quits. */
5515 FOR_EACH_BUFFER (nextb
)
5516 compact_buffer (nextb
);
5518 if (profiler_memory_running
)
5519 tot_before
= total_bytes_of_live_objects ();
5521 start
= current_timespec ();
5523 /* In case user calls debug_print during GC,
5524 don't let that cause a recursive GC. */
5525 consing_since_gc
= 0;
5527 /* Save what's currently displayed in the echo area. */
5528 message_p
= push_message ();
5529 record_unwind_protect_void (pop_message_unwind
);
5531 /* Save a copy of the contents of the stack, for debugging. */
5532 #if MAX_SAVE_STACK > 0
5533 if (NILP (Vpurify_flag
))
5536 ptrdiff_t stack_size
;
5537 if (&stack_top_variable
< stack_bottom
)
5539 stack
= &stack_top_variable
;
5540 stack_size
= stack_bottom
- &stack_top_variable
;
5544 stack
= stack_bottom
;
5545 stack_size
= &stack_top_variable
- stack_bottom
;
5547 if (stack_size
<= MAX_SAVE_STACK
)
5549 if (stack_copy_size
< stack_size
)
5551 stack_copy
= xrealloc (stack_copy
, stack_size
);
5552 stack_copy_size
= stack_size
;
5554 no_sanitize_memcpy (stack_copy
, stack
, stack_size
);
5557 #endif /* MAX_SAVE_STACK > 0 */
5559 if (garbage_collection_messages
)
5560 message1_nolog ("Garbage collecting...");
5564 shrink_regexp_cache ();
5568 /* Mark all the special slots that serve as the roots of accessibility. */
5570 mark_buffer (&buffer_defaults
);
5571 mark_buffer (&buffer_local_symbols
);
5573 for (i
= 0; i
< ARRAYELTS (lispsym
); i
++)
5574 mark_object (builtin_lisp_symbol (i
));
5576 for (i
= 0; i
< staticidx
; i
++)
5577 mark_object (*staticvec
[i
]);
5579 mark_pinned_symbols ();
5588 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5589 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5593 register struct gcpro
*tail
;
5594 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
5595 for (i
= 0; i
< tail
->nvars
; i
++)
5596 mark_object (tail
->var
[i
]);
5601 struct handler
*handler
;
5602 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
5604 mark_object (handler
->tag_or_ch
);
5605 mark_object (handler
->val
);
5608 #ifdef HAVE_WINDOW_SYSTEM
5609 mark_fringe_data ();
5612 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5616 /* Everything is now marked, except for the data in font caches
5617 and undo lists. They're compacted by removing an items which
5618 aren't reachable otherwise. */
5620 compact_font_caches ();
5622 FOR_EACH_BUFFER (nextb
)
5624 if (!EQ (BVAR (nextb
, undo_list
), Qt
))
5625 bset_undo_list (nextb
, compact_undo_list (BVAR (nextb
, undo_list
)));
5626 /* Now that we have stripped the elements that need not be
5627 in the undo_list any more, we can finally mark the list. */
5628 mark_object (BVAR (nextb
, undo_list
));
5633 /* Clear the mark bits that we set in certain root slots. */
5635 unmark_byte_stack ();
5636 VECTOR_UNMARK (&buffer_defaults
);
5637 VECTOR_UNMARK (&buffer_local_symbols
);
5639 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5649 consing_since_gc
= 0;
5650 if (gc_cons_threshold
< GC_DEFAULT_THRESHOLD
/ 10)
5651 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
/ 10;
5653 gc_relative_threshold
= 0;
5654 if (FLOATP (Vgc_cons_percentage
))
5655 { /* Set gc_cons_combined_threshold. */
5656 double tot
= total_bytes_of_live_objects ();
5658 tot
*= XFLOAT_DATA (Vgc_cons_percentage
);
5661 if (tot
< TYPE_MAXIMUM (EMACS_INT
))
5662 gc_relative_threshold
= tot
;
5664 gc_relative_threshold
= TYPE_MAXIMUM (EMACS_INT
);
5668 if (garbage_collection_messages
)
5670 if (message_p
|| minibuf_level
> 0)
5673 message1_nolog ("Garbage collecting...done");
5676 unbind_to (count
, Qnil
);
5678 Lisp_Object total
[] = {
5679 list4 (Qconses
, make_number (sizeof (struct Lisp_Cons
)),
5680 bounded_number (total_conses
),
5681 bounded_number (total_free_conses
)),
5682 list4 (Qsymbols
, make_number (sizeof (struct Lisp_Symbol
)),
5683 bounded_number (total_symbols
),
5684 bounded_number (total_free_symbols
)),
5685 list4 (Qmiscs
, make_number (sizeof (union Lisp_Misc
)),
5686 bounded_number (total_markers
),
5687 bounded_number (total_free_markers
)),
5688 list4 (Qstrings
, make_number (sizeof (struct Lisp_String
)),
5689 bounded_number (total_strings
),
5690 bounded_number (total_free_strings
)),
5691 list3 (Qstring_bytes
, make_number (1),
5692 bounded_number (total_string_bytes
)),
5694 make_number (header_size
+ sizeof (Lisp_Object
)),
5695 bounded_number (total_vectors
)),
5696 list4 (Qvector_slots
, make_number (word_size
),
5697 bounded_number (total_vector_slots
),
5698 bounded_number (total_free_vector_slots
)),
5699 list4 (Qfloats
, make_number (sizeof (struct Lisp_Float
)),
5700 bounded_number (total_floats
),
5701 bounded_number (total_free_floats
)),
5702 list4 (Qintervals
, make_number (sizeof (struct interval
)),
5703 bounded_number (total_intervals
),
5704 bounded_number (total_free_intervals
)),
5705 list3 (Qbuffers
, make_number (sizeof (struct buffer
)),
5706 bounded_number (total_buffers
)),
5708 #ifdef DOUG_LEA_MALLOC
5709 list4 (Qheap
, make_number (1024),
5710 bounded_number ((mallinfo ().uordblks
+ 1023) >> 10),
5711 bounded_number ((mallinfo ().fordblks
+ 1023) >> 10)),
5714 retval
= CALLMANY (Flist
, total
);
5716 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5718 /* Compute average percentage of zombies. */
5720 = (total_conses
+ total_symbols
+ total_markers
+ total_strings
5721 + total_vectors
+ total_floats
+ total_intervals
+ total_buffers
);
5723 avg_live
= (avg_live
* ngcs
+ nlive
) / (ngcs
+ 1);
5724 max_live
= max (nlive
, max_live
);
5725 avg_zombies
= (avg_zombies
* ngcs
+ nzombies
) / (ngcs
+ 1);
5726 max_zombies
= max (nzombies
, max_zombies
);
5731 if (!NILP (Vpost_gc_hook
))
5733 ptrdiff_t gc_count
= inhibit_garbage_collection ();
5734 safe_run_hooks (Qpost_gc_hook
);
5735 unbind_to (gc_count
, Qnil
);
5738 /* Accumulate statistics. */
5739 if (FLOATP (Vgc_elapsed
))
5741 struct timespec since_start
= timespec_sub (current_timespec (), start
);
5742 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
)
5743 + timespectod (since_start
));
5748 /* Collect profiling data. */
5749 if (profiler_memory_running
)
5752 size_t tot_after
= total_bytes_of_live_objects ();
5753 if (tot_before
> tot_after
)
5754 swept
= tot_before
- tot_after
;
5755 malloc_probe (swept
);
5761 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
5762 doc
: /* Reclaim storage for Lisp objects no longer needed.
5763 Garbage collection happens automatically if you cons more than
5764 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5765 `garbage-collect' normally returns a list with info on amount of space in use,
5766 where each entry has the form (NAME SIZE USED FREE), where:
5767 - NAME is a symbol describing the kind of objects this entry represents,
5768 - SIZE is the number of bytes used by each one,
5769 - USED is the number of those objects that were found live in the heap,
5770 - FREE is the number of those objects that are not live but that Emacs
5771 keeps around for future allocations (maybe because it does not know how
5772 to return them to the OS).
5773 However, if there was overflow in pure space, `garbage-collect'
5774 returns nil, because real GC can't be done.
5775 See Info node `(elisp)Garbage Collection'. */)
5778 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5779 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5780 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5783 #ifdef HAVE___BUILTIN_UNWIND_INIT
5784 /* Force callee-saved registers and register windows onto the stack.
5785 This is the preferred method if available, obviating the need for
5786 machine dependent methods. */
5787 __builtin_unwind_init ();
5789 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5790 #ifndef GC_SAVE_REGISTERS_ON_STACK
5791 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5792 union aligned_jmpbuf
{
5796 volatile bool stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
5798 /* This trick flushes the register windows so that all the state of
5799 the process is contained in the stack. */
5800 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5801 needed on ia64 too. See mach_dep.c, where it also says inline
5802 assembler doesn't work with relevant proprietary compilers. */
5804 #if defined (__sparc64__) && defined (__FreeBSD__)
5805 /* FreeBSD does not have a ta 3 handler. */
5812 /* Save registers that we need to see on the stack. We need to see
5813 registers used to hold register variables and registers used to
5815 #ifdef GC_SAVE_REGISTERS_ON_STACK
5816 GC_SAVE_REGISTERS_ON_STACK (end
);
5817 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5819 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5820 setjmp will definitely work, test it
5821 and print a message with the result
5823 if (!setjmp_tested_p
)
5825 setjmp_tested_p
= 1;
5828 #endif /* GC_SETJMP_WORKS */
5831 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
5832 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5833 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5834 return garbage_collect_1 (end
);
5835 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5836 /* Old GCPROs-based method without stack marking. */
5837 return garbage_collect_1 (NULL
);
5840 #endif /* GC_MARK_STACK */
5843 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5844 only interesting objects referenced from glyphs are strings. */
5847 mark_glyph_matrix (struct glyph_matrix
*matrix
)
5849 struct glyph_row
*row
= matrix
->rows
;
5850 struct glyph_row
*end
= row
+ matrix
->nrows
;
5852 for (; row
< end
; ++row
)
5856 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
5858 struct glyph
*glyph
= row
->glyphs
[area
];
5859 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
5861 for (; glyph
< end_glyph
; ++glyph
)
5862 if (STRINGP (glyph
->object
)
5863 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
5864 mark_object (glyph
->object
);
5869 /* Mark reference to a Lisp_Object.
5870 If the object referred to has not been seen yet, recursively mark
5871 all the references contained in it. */
5873 #define LAST_MARKED_SIZE 500
5874 static Lisp_Object last_marked
[LAST_MARKED_SIZE
];
5875 static int last_marked_index
;
5877 /* For debugging--call abort when we cdr down this many
5878 links of a list, in mark_object. In debugging,
5879 the call to abort will hit a breakpoint.
5880 Normally this is zero and the check never goes off. */
5881 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE
;
5884 mark_vectorlike (struct Lisp_Vector
*ptr
)
5886 ptrdiff_t size
= ptr
->header
.size
;
5889 eassert (!VECTOR_MARKED_P (ptr
));
5890 VECTOR_MARK (ptr
); /* Else mark it. */
5891 if (size
& PSEUDOVECTOR_FLAG
)
5892 size
&= PSEUDOVECTOR_SIZE_MASK
;
5894 /* Note that this size is not the memory-footprint size, but only
5895 the number of Lisp_Object fields that we should trace.
5896 The distinction is used e.g. by Lisp_Process which places extra
5897 non-Lisp_Object fields at the end of the structure... */
5898 for (i
= 0; i
< size
; i
++) /* ...and then mark its elements. */
5899 mark_object (ptr
->contents
[i
]);
5902 /* Like mark_vectorlike but optimized for char-tables (and
5903 sub-char-tables) assuming that the contents are mostly integers or
5907 mark_char_table (struct Lisp_Vector
*ptr
, enum pvec_type pvectype
)
5909 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5910 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5911 int i
, idx
= (pvectype
== PVEC_SUB_CHAR_TABLE
? SUB_CHAR_TABLE_OFFSET
: 0);
5913 eassert (!VECTOR_MARKED_P (ptr
));
5915 for (i
= idx
; i
< size
; i
++)
5917 Lisp_Object val
= ptr
->contents
[i
];
5919 if (INTEGERP (val
) || (SYMBOLP (val
) && XSYMBOL (val
)->gcmarkbit
))
5921 if (SUB_CHAR_TABLE_P (val
))
5923 if (! VECTOR_MARKED_P (XVECTOR (val
)))
5924 mark_char_table (XVECTOR (val
), PVEC_SUB_CHAR_TABLE
);
5931 NO_INLINE
/* To reduce stack depth in mark_object. */
5933 mark_compiled (struct Lisp_Vector
*ptr
)
5935 int i
, size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5938 for (i
= 0; i
< size
; i
++)
5939 if (i
!= COMPILED_CONSTANTS
)
5940 mark_object (ptr
->contents
[i
]);
5941 return size
> COMPILED_CONSTANTS
? ptr
->contents
[COMPILED_CONSTANTS
] : Qnil
;
5944 /* Mark the chain of overlays starting at PTR. */
5947 mark_overlay (struct Lisp_Overlay
*ptr
)
5949 for (; ptr
&& !ptr
->gcmarkbit
; ptr
= ptr
->next
)
5952 /* These two are always markers and can be marked fast. */
5953 XMARKER (ptr
->start
)->gcmarkbit
= 1;
5954 XMARKER (ptr
->end
)->gcmarkbit
= 1;
5955 mark_object (ptr
->plist
);
5959 /* Mark Lisp_Objects and special pointers in BUFFER. */
5962 mark_buffer (struct buffer
*buffer
)
5964 /* This is handled much like other pseudovectors... */
5965 mark_vectorlike ((struct Lisp_Vector
*) buffer
);
5967 /* ...but there are some buffer-specific things. */
5969 MARK_INTERVAL_TREE (buffer_intervals (buffer
));
5971 /* For now, we just don't mark the undo_list. It's done later in
5972 a special way just before the sweep phase, and after stripping
5973 some of its elements that are not needed any more. */
5975 mark_overlay (buffer
->overlays_before
);
5976 mark_overlay (buffer
->overlays_after
);
5978 /* If this is an indirect buffer, mark its base buffer. */
5979 if (buffer
->base_buffer
&& !VECTOR_MARKED_P (buffer
->base_buffer
))
5980 mark_buffer (buffer
->base_buffer
);
5983 /* Mark Lisp faces in the face cache C. */
5985 NO_INLINE
/* To reduce stack depth in mark_object. */
5987 mark_face_cache (struct face_cache
*c
)
5992 for (i
= 0; i
< c
->used
; ++i
)
5994 struct face
*face
= FACE_FROM_ID (c
->f
, i
);
5998 if (face
->font
&& !VECTOR_MARKED_P (face
->font
))
5999 mark_vectorlike ((struct Lisp_Vector
*) face
->font
);
6001 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
6002 mark_object (face
->lface
[j
]);
6008 NO_INLINE
/* To reduce stack depth in mark_object. */
6010 mark_localized_symbol (struct Lisp_Symbol
*ptr
)
6012 struct Lisp_Buffer_Local_Value
*blv
= SYMBOL_BLV (ptr
);
6013 Lisp_Object where
= blv
->where
;
6014 /* If the value is set up for a killed buffer or deleted
6015 frame, restore its global binding. If the value is
6016 forwarded to a C variable, either it's not a Lisp_Object
6017 var, or it's staticpro'd already. */
6018 if ((BUFFERP (where
) && !BUFFER_LIVE_P (XBUFFER (where
)))
6019 || (FRAMEP (where
) && !FRAME_LIVE_P (XFRAME (where
))))
6020 swap_in_global_binding (ptr
);
6021 mark_object (blv
->where
);
6022 mark_object (blv
->valcell
);
6023 mark_object (blv
->defcell
);
6026 NO_INLINE
/* To reduce stack depth in mark_object. */
6028 mark_save_value (struct Lisp_Save_Value
*ptr
)
6030 /* If `save_type' is zero, `data[0].pointer' is the address
6031 of a memory area containing `data[1].integer' potential
6033 if (GC_MARK_STACK
&& ptr
->save_type
== SAVE_TYPE_MEMORY
)
6035 Lisp_Object
*p
= ptr
->data
[0].pointer
;
6037 for (nelt
= ptr
->data
[1].integer
; nelt
> 0; nelt
--, p
++)
6038 mark_maybe_object (*p
);
6042 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6044 for (i
= 0; i
< SAVE_VALUE_SLOTS
; i
++)
6045 if (save_type (ptr
, i
) == SAVE_OBJECT
)
6046 mark_object (ptr
->data
[i
].object
);
6050 /* Remove killed buffers or items whose car is a killed buffer from
6051 LIST, and mark other items. Return changed LIST, which is marked. */
6054 mark_discard_killed_buffers (Lisp_Object list
)
6056 Lisp_Object tail
, *prev
= &list
;
6058 for (tail
= list
; CONSP (tail
) && !CONS_MARKED_P (XCONS (tail
));
6061 Lisp_Object tem
= XCAR (tail
);
6064 if (BUFFERP (tem
) && !BUFFER_LIVE_P (XBUFFER (tem
)))
6065 *prev
= XCDR (tail
);
6068 CONS_MARK (XCONS (tail
));
6069 mark_object (XCAR (tail
));
6070 prev
= xcdr_addr (tail
);
6077 /* Determine type of generic Lisp_Object and mark it accordingly.
6079 This function implements a straightforward depth-first marking
6080 algorithm and so the recursion depth may be very high (a few
6081 tens of thousands is not uncommon). To minimize stack usage,
6082 a few cold paths are moved out to NO_INLINE functions above.
6083 In general, inlining them doesn't help you to gain more speed. */
6086 mark_object (Lisp_Object arg
)
6088 register Lisp_Object obj
= arg
;
6090 #ifdef GC_CHECK_MARKED_OBJECTS
6093 ptrdiff_t cdr_count
= 0;
6098 if (PURE_POINTER_P (po
))
6101 last_marked
[last_marked_index
++] = obj
;
6102 if (last_marked_index
== LAST_MARKED_SIZE
)
6103 last_marked_index
= 0;
6105 /* Perform some sanity checks on the objects marked here. Abort if
6106 we encounter an object we know is bogus. This increases GC time
6107 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6108 #ifdef GC_CHECK_MARKED_OBJECTS
6110 /* Check that the object pointed to by PO is known to be a Lisp
6111 structure allocated from the heap. */
6112 #define CHECK_ALLOCATED() \
6114 m = mem_find (po); \
6119 /* Check that the object pointed to by PO is live, using predicate
6121 #define CHECK_LIVE(LIVEP) \
6123 if (!LIVEP (m, po)) \
6127 /* Check both of the above conditions, for non-symbols. */
6128 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6130 CHECK_ALLOCATED (); \
6131 CHECK_LIVE (LIVEP); \
6134 /* Check both of the above conditions, for symbols. */
6135 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6137 if (!c_symbol_p (ptr)) \
6139 CHECK_ALLOCATED (); \
6140 CHECK_LIVE (live_symbol_p); \
6144 #else /* not GC_CHECK_MARKED_OBJECTS */
6146 #define CHECK_LIVE(LIVEP) ((void) 0)
6147 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6148 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6150 #endif /* not GC_CHECK_MARKED_OBJECTS */
6152 switch (XTYPE (obj
))
6156 register struct Lisp_String
*ptr
= XSTRING (obj
);
6157 if (STRING_MARKED_P (ptr
))
6159 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
6161 MARK_INTERVAL_TREE (ptr
->intervals
);
6162 #ifdef GC_CHECK_STRING_BYTES
6163 /* Check that the string size recorded in the string is the
6164 same as the one recorded in the sdata structure. */
6166 #endif /* GC_CHECK_STRING_BYTES */
6170 case Lisp_Vectorlike
:
6172 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
6173 register ptrdiff_t pvectype
;
6175 if (VECTOR_MARKED_P (ptr
))
6178 #ifdef GC_CHECK_MARKED_OBJECTS
6180 if (m
== MEM_NIL
&& !SUBRP (obj
))
6182 #endif /* GC_CHECK_MARKED_OBJECTS */
6184 if (ptr
->header
.size
& PSEUDOVECTOR_FLAG
)
6185 pvectype
= ((ptr
->header
.size
& PVEC_TYPE_MASK
)
6186 >> PSEUDOVECTOR_AREA_BITS
);
6188 pvectype
= PVEC_NORMAL_VECTOR
;
6190 if (pvectype
!= PVEC_SUBR
&& pvectype
!= PVEC_BUFFER
)
6191 CHECK_LIVE (live_vector_p
);
6196 #ifdef GC_CHECK_MARKED_OBJECTS
6205 #endif /* GC_CHECK_MARKED_OBJECTS */
6206 mark_buffer ((struct buffer
*) ptr
);
6210 /* Although we could treat this just like a vector, mark_compiled
6211 returns the COMPILED_CONSTANTS element, which is marked at the
6212 next iteration of goto-loop here. This is done to avoid a few
6213 recursive calls to mark_object. */
6214 obj
= mark_compiled (ptr
);
6221 struct frame
*f
= (struct frame
*) ptr
;
6223 mark_vectorlike (ptr
);
6224 mark_face_cache (f
->face_cache
);
6225 #ifdef HAVE_WINDOW_SYSTEM
6226 if (FRAME_WINDOW_P (f
) && FRAME_X_OUTPUT (f
))
6228 struct font
*font
= FRAME_FONT (f
);
6230 if (font
&& !VECTOR_MARKED_P (font
))
6231 mark_vectorlike ((struct Lisp_Vector
*) font
);
6239 struct window
*w
= (struct window
*) ptr
;
6241 mark_vectorlike (ptr
);
6243 /* Mark glyph matrices, if any. Marking window
6244 matrices is sufficient because frame matrices
6245 use the same glyph memory. */
6246 if (w
->current_matrix
)
6248 mark_glyph_matrix (w
->current_matrix
);
6249 mark_glyph_matrix (w
->desired_matrix
);
6252 /* Filter out killed buffers from both buffer lists
6253 in attempt to help GC to reclaim killed buffers faster.
6254 We can do it elsewhere for live windows, but this is the
6255 best place to do it for dead windows. */
6257 (w
, mark_discard_killed_buffers (w
->prev_buffers
));
6259 (w
, mark_discard_killed_buffers (w
->next_buffers
));
6263 case PVEC_HASH_TABLE
:
6265 struct Lisp_Hash_Table
*h
= (struct Lisp_Hash_Table
*) ptr
;
6267 mark_vectorlike (ptr
);
6268 mark_object (h
->test
.name
);
6269 mark_object (h
->test
.user_hash_function
);
6270 mark_object (h
->test
.user_cmp_function
);
6271 /* If hash table is not weak, mark all keys and values.
6272 For weak tables, mark only the vector. */
6274 mark_object (h
->key_and_value
);
6276 VECTOR_MARK (XVECTOR (h
->key_and_value
));
6280 case PVEC_CHAR_TABLE
:
6281 case PVEC_SUB_CHAR_TABLE
:
6282 mark_char_table (ptr
, (enum pvec_type
) pvectype
);
6285 case PVEC_BOOL_VECTOR
:
6286 /* No Lisp_Objects to mark in a bool vector. */
6297 mark_vectorlike (ptr
);
6304 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
6308 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6310 /* Attempt to catch bogus objects. */
6311 eassert (valid_lisp_object_p (ptr
->function
));
6312 mark_object (ptr
->function
);
6313 mark_object (ptr
->plist
);
6314 switch (ptr
->redirect
)
6316 case SYMBOL_PLAINVAL
: mark_object (SYMBOL_VAL (ptr
)); break;
6317 case SYMBOL_VARALIAS
:
6320 XSETSYMBOL (tem
, SYMBOL_ALIAS (ptr
));
6324 case SYMBOL_LOCALIZED
:
6325 mark_localized_symbol (ptr
);
6327 case SYMBOL_FORWARDED
:
6328 /* If the value is forwarded to a buffer or keyboard field,
6329 these are marked when we see the corresponding object.
6330 And if it's forwarded to a C variable, either it's not
6331 a Lisp_Object var, or it's staticpro'd already. */
6333 default: emacs_abort ();
6335 if (!PURE_POINTER_P (XSTRING (ptr
->name
)))
6336 MARK_STRING (XSTRING (ptr
->name
));
6337 MARK_INTERVAL_TREE (string_intervals (ptr
->name
));
6338 /* Inner loop to mark next symbol in this bucket, if any. */
6346 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
6348 if (XMISCANY (obj
)->gcmarkbit
)
6351 switch (XMISCTYPE (obj
))
6353 case Lisp_Misc_Marker
:
6354 /* DO NOT mark thru the marker's chain.
6355 The buffer's markers chain does not preserve markers from gc;
6356 instead, markers are removed from the chain when freed by gc. */
6357 XMISCANY (obj
)->gcmarkbit
= 1;
6360 case Lisp_Misc_Save_Value
:
6361 XMISCANY (obj
)->gcmarkbit
= 1;
6362 mark_save_value (XSAVE_VALUE (obj
));
6365 case Lisp_Misc_Overlay
:
6366 mark_overlay (XOVERLAY (obj
));
6376 register struct Lisp_Cons
*ptr
= XCONS (obj
);
6377 if (CONS_MARKED_P (ptr
))
6379 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
6381 /* If the cdr is nil, avoid recursion for the car. */
6382 if (EQ (ptr
->u
.cdr
, Qnil
))
6388 mark_object (ptr
->car
);
6391 if (cdr_count
== mark_object_loop_halt
)
6397 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
6398 FLOAT_MARK (XFLOAT (obj
));
6409 #undef CHECK_ALLOCATED
6410 #undef CHECK_ALLOCATED_AND_LIVE
6412 /* Mark the Lisp pointers in the terminal objects.
6413 Called by Fgarbage_collect. */
6416 mark_terminals (void)
6419 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
6421 eassert (t
->name
!= NULL
);
6422 #ifdef HAVE_WINDOW_SYSTEM
6423 /* If a terminal object is reachable from a stacpro'ed object,
6424 it might have been marked already. Make sure the image cache
6426 mark_image_cache (t
->image_cache
);
6427 #endif /* HAVE_WINDOW_SYSTEM */
6428 if (!VECTOR_MARKED_P (t
))
6429 mark_vectorlike ((struct Lisp_Vector
*)t
);
6435 /* Value is non-zero if OBJ will survive the current GC because it's
6436 either marked or does not need to be marked to survive. */
6439 survives_gc_p (Lisp_Object obj
)
6443 switch (XTYPE (obj
))
6450 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
6454 survives_p
= XMISCANY (obj
)->gcmarkbit
;
6458 survives_p
= STRING_MARKED_P (XSTRING (obj
));
6461 case Lisp_Vectorlike
:
6462 survives_p
= SUBRP (obj
) || VECTOR_MARKED_P (XVECTOR (obj
));
6466 survives_p
= CONS_MARKED_P (XCONS (obj
));
6470 survives_p
= FLOAT_MARKED_P (XFLOAT (obj
));
6477 return survives_p
|| PURE_POINTER_P ((void *) XPNTR (obj
));
6483 NO_INLINE
/* For better stack traces */
6487 struct cons_block
*cblk
;
6488 struct cons_block
**cprev
= &cons_block
;
6489 int lim
= cons_block_index
;
6490 EMACS_INT num_free
= 0, num_used
= 0;
6494 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
6498 int ilim
= (lim
+ BITS_PER_BITS_WORD
- 1) / BITS_PER_BITS_WORD
;
6500 /* Scan the mark bits an int at a time. */
6501 for (i
= 0; i
< ilim
; i
++)
6503 if (cblk
->gcmarkbits
[i
] == BITS_WORD_MAX
)
6505 /* Fast path - all cons cells for this int are marked. */
6506 cblk
->gcmarkbits
[i
] = 0;
6507 num_used
+= BITS_PER_BITS_WORD
;
6511 /* Some cons cells for this int are not marked.
6512 Find which ones, and free them. */
6513 int start
, pos
, stop
;
6515 start
= i
* BITS_PER_BITS_WORD
;
6517 if (stop
> BITS_PER_BITS_WORD
)
6518 stop
= BITS_PER_BITS_WORD
;
6521 for (pos
= start
; pos
< stop
; pos
++)
6523 if (!CONS_MARKED_P (&cblk
->conses
[pos
]))
6526 cblk
->conses
[pos
].u
.chain
= cons_free_list
;
6527 cons_free_list
= &cblk
->conses
[pos
];
6529 cons_free_list
->car
= Vdead
;
6535 CONS_UNMARK (&cblk
->conses
[pos
]);
6541 lim
= CONS_BLOCK_SIZE
;
6542 /* If this block contains only free conses and we have already
6543 seen more than two blocks worth of free conses then deallocate
6545 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
6547 *cprev
= cblk
->next
;
6548 /* Unhook from the free list. */
6549 cons_free_list
= cblk
->conses
[0].u
.chain
;
6550 lisp_align_free (cblk
);
6554 num_free
+= this_free
;
6555 cprev
= &cblk
->next
;
6558 total_conses
= num_used
;
6559 total_free_conses
= num_free
;
6562 NO_INLINE
/* For better stack traces */
6566 register struct float_block
*fblk
;
6567 struct float_block
**fprev
= &float_block
;
6568 register int lim
= float_block_index
;
6569 EMACS_INT num_free
= 0, num_used
= 0;
6571 float_free_list
= 0;
6573 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
6577 for (i
= 0; i
< lim
; i
++)
6578 if (!FLOAT_MARKED_P (&fblk
->floats
[i
]))
6581 fblk
->floats
[i
].u
.chain
= float_free_list
;
6582 float_free_list
= &fblk
->floats
[i
];
6587 FLOAT_UNMARK (&fblk
->floats
[i
]);
6589 lim
= FLOAT_BLOCK_SIZE
;
6590 /* If this block contains only free floats and we have already
6591 seen more than two blocks worth of free floats then deallocate
6593 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
6595 *fprev
= fblk
->next
;
6596 /* Unhook from the free list. */
6597 float_free_list
= fblk
->floats
[0].u
.chain
;
6598 lisp_align_free (fblk
);
6602 num_free
+= this_free
;
6603 fprev
= &fblk
->next
;
6606 total_floats
= num_used
;
6607 total_free_floats
= num_free
;
6610 NO_INLINE
/* For better stack traces */
6612 sweep_intervals (void)
6614 register struct interval_block
*iblk
;
6615 struct interval_block
**iprev
= &interval_block
;
6616 register int lim
= interval_block_index
;
6617 EMACS_INT num_free
= 0, num_used
= 0;
6619 interval_free_list
= 0;
6621 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
6626 for (i
= 0; i
< lim
; i
++)
6628 if (!iblk
->intervals
[i
].gcmarkbit
)
6630 set_interval_parent (&iblk
->intervals
[i
], interval_free_list
);
6631 interval_free_list
= &iblk
->intervals
[i
];
6637 iblk
->intervals
[i
].gcmarkbit
= 0;
6640 lim
= INTERVAL_BLOCK_SIZE
;
6641 /* If this block contains only free intervals and we have already
6642 seen more than two blocks worth of free intervals then
6643 deallocate this block. */
6644 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
6646 *iprev
= iblk
->next
;
6647 /* Unhook from the free list. */
6648 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
6653 num_free
+= this_free
;
6654 iprev
= &iblk
->next
;
6657 total_intervals
= num_used
;
6658 total_free_intervals
= num_free
;
6661 NO_INLINE
/* For better stack traces */
6663 sweep_symbols (void)
6665 struct symbol_block
*sblk
;
6666 struct symbol_block
**sprev
= &symbol_block
;
6667 int lim
= symbol_block_index
;
6668 EMACS_INT num_free
= 0, num_used
= ARRAYELTS (lispsym
);
6670 symbol_free_list
= NULL
;
6672 for (int i
= 0; i
< ARRAYELTS (lispsym
); i
++)
6673 lispsym
[i
].gcmarkbit
= 0;
6675 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
6678 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
;
6679 union aligned_Lisp_Symbol
*end
= sym
+ lim
;
6681 for (; sym
< end
; ++sym
)
6683 if (!sym
->s
.gcmarkbit
)
6685 if (sym
->s
.redirect
== SYMBOL_LOCALIZED
)
6686 xfree (SYMBOL_BLV (&sym
->s
));
6687 sym
->s
.next
= symbol_free_list
;
6688 symbol_free_list
= &sym
->s
;
6690 symbol_free_list
->function
= Vdead
;
6697 sym
->s
.gcmarkbit
= 0;
6698 /* Attempt to catch bogus objects. */
6699 eassert (valid_lisp_object_p (sym
->s
.function
));
6703 lim
= SYMBOL_BLOCK_SIZE
;
6704 /* If this block contains only free symbols and we have already
6705 seen more than two blocks worth of free symbols then deallocate
6707 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
6709 *sprev
= sblk
->next
;
6710 /* Unhook from the free list. */
6711 symbol_free_list
= sblk
->symbols
[0].s
.next
;
6716 num_free
+= this_free
;
6717 sprev
= &sblk
->next
;
6720 total_symbols
= num_used
;
6721 total_free_symbols
= num_free
;
6724 NO_INLINE
/* For better stack traces */
6728 register struct marker_block
*mblk
;
6729 struct marker_block
**mprev
= &marker_block
;
6730 register int lim
= marker_block_index
;
6731 EMACS_INT num_free
= 0, num_used
= 0;
6733 /* Put all unmarked misc's on free list. For a marker, first
6734 unchain it from the buffer it points into. */
6736 marker_free_list
= 0;
6738 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
6743 for (i
= 0; i
< lim
; i
++)
6745 if (!mblk
->markers
[i
].m
.u_any
.gcmarkbit
)
6747 if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Marker
)
6748 unchain_marker (&mblk
->markers
[i
].m
.u_marker
);
6749 /* Set the type of the freed object to Lisp_Misc_Free.
6750 We could leave the type alone, since nobody checks it,
6751 but this might catch bugs faster. */
6752 mblk
->markers
[i
].m
.u_marker
.type
= Lisp_Misc_Free
;
6753 mblk
->markers
[i
].m
.u_free
.chain
= marker_free_list
;
6754 marker_free_list
= &mblk
->markers
[i
].m
;
6760 mblk
->markers
[i
].m
.u_any
.gcmarkbit
= 0;
6763 lim
= MARKER_BLOCK_SIZE
;
6764 /* If this block contains only free markers and we have already
6765 seen more than two blocks worth of free markers then deallocate
6767 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
6769 *mprev
= mblk
->next
;
6770 /* Unhook from the free list. */
6771 marker_free_list
= mblk
->markers
[0].m
.u_free
.chain
;
6776 num_free
+= this_free
;
6777 mprev
= &mblk
->next
;
6781 total_markers
= num_used
;
6782 total_free_markers
= num_free
;
6785 NO_INLINE
/* For better stack traces */
6787 sweep_buffers (void)
6789 register struct buffer
*buffer
, **bprev
= &all_buffers
;
6792 for (buffer
= all_buffers
; buffer
; buffer
= *bprev
)
6793 if (!VECTOR_MARKED_P (buffer
))
6795 *bprev
= buffer
->next
;
6800 VECTOR_UNMARK (buffer
);
6801 /* Do not use buffer_(set|get)_intervals here. */
6802 buffer
->text
->intervals
= balance_intervals (buffer
->text
->intervals
);
6804 bprev
= &buffer
->next
;
6808 /* Sweep: find all structures not marked, and free them. */
6812 /* Remove or mark entries in weak hash tables.
6813 This must be done before any object is unmarked. */
6814 sweep_weak_hash_tables ();
6817 check_string_bytes (!noninteractive
);
6825 check_string_bytes (!noninteractive
);
6828 DEFUN ("memory-info", Fmemory_info
, Smemory_info
, 0, 0, 0,
6829 doc
: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6830 All values are in Kbytes. If there is no swap space,
6831 last two values are zero. If the system is not supported
6832 or memory information can't be obtained, return nil. */)
6835 #if defined HAVE_LINUX_SYSINFO
6841 #ifdef LINUX_SYSINFO_UNIT
6842 units
= si
.mem_unit
;
6846 return list4i ((uintmax_t) si
.totalram
* units
/ 1024,
6847 (uintmax_t) si
.freeram
* units
/ 1024,
6848 (uintmax_t) si
.totalswap
* units
/ 1024,
6849 (uintmax_t) si
.freeswap
* units
/ 1024);
6850 #elif defined WINDOWSNT
6851 unsigned long long totalram
, freeram
, totalswap
, freeswap
;
6853 if (w32_memory_info (&totalram
, &freeram
, &totalswap
, &freeswap
) == 0)
6854 return list4i ((uintmax_t) totalram
/ 1024,
6855 (uintmax_t) freeram
/ 1024,
6856 (uintmax_t) totalswap
/ 1024,
6857 (uintmax_t) freeswap
/ 1024);
6861 unsigned long totalram
, freeram
, totalswap
, freeswap
;
6863 if (dos_memory_info (&totalram
, &freeram
, &totalswap
, &freeswap
) == 0)
6864 return list4i ((uintmax_t) totalram
/ 1024,
6865 (uintmax_t) freeram
/ 1024,
6866 (uintmax_t) totalswap
/ 1024,
6867 (uintmax_t) freeswap
/ 1024);
6870 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6871 /* FIXME: add more systems. */
6873 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6876 /* Debugging aids. */
6878 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
6879 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6880 This may be helpful in debugging Emacs's memory usage.
6881 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6887 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6890 XSETINT (end
, (intptr_t) (char *) sbrk (0) / 1024);
6896 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
6897 doc
: /* Return a list of counters that measure how much consing there has been.
6898 Each of these counters increments for a certain kind of object.
6899 The counters wrap around from the largest positive integer to zero.
6900 Garbage collection does not decrease them.
6901 The elements of the value are as follows:
6902 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6903 All are in units of 1 = one object consed
6904 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6906 MISCS include overlays, markers, and some internal types.
6907 Frames, windows, buffers, and subprocesses count as vectors
6908 (but the contents of a buffer's text do not count here). */)
6911 return listn (CONSTYPE_HEAP
, 8,
6912 bounded_number (cons_cells_consed
),
6913 bounded_number (floats_consed
),
6914 bounded_number (vector_cells_consed
),
6915 bounded_number (symbols_consed
),
6916 bounded_number (string_chars_consed
),
6917 bounded_number (misc_objects_consed
),
6918 bounded_number (intervals_consed
),
6919 bounded_number (strings_consed
));
6923 symbol_uses_obj (Lisp_Object symbol
, Lisp_Object obj
)
6925 struct Lisp_Symbol
*sym
= XSYMBOL (symbol
);
6926 Lisp_Object val
= find_symbol_value (symbol
);
6927 return (EQ (val
, obj
)
6928 || EQ (sym
->function
, obj
)
6929 || (!NILP (sym
->function
)
6930 && COMPILEDP (sym
->function
)
6931 && EQ (AREF (sym
->function
, COMPILED_BYTECODE
), obj
))
6934 && EQ (AREF (val
, COMPILED_BYTECODE
), obj
)));
6937 /* Find at most FIND_MAX symbols which have OBJ as their value or
6938 function. This is used in gdbinit's `xwhichsymbols' command. */
6941 which_symbols (Lisp_Object obj
, EMACS_INT find_max
)
6943 struct symbol_block
*sblk
;
6944 ptrdiff_t gc_count
= inhibit_garbage_collection ();
6945 Lisp_Object found
= Qnil
;
6949 for (int i
= 0; i
< ARRAYELTS (lispsym
); i
++)
6951 Lisp_Object sym
= builtin_lisp_symbol (i
);
6952 if (symbol_uses_obj (sym
, obj
))
6954 found
= Fcons (sym
, found
);
6955 if (--find_max
== 0)
6960 for (sblk
= symbol_block
; sblk
; sblk
= sblk
->next
)
6962 union aligned_Lisp_Symbol
*aligned_sym
= sblk
->symbols
;
6965 for (bn
= 0; bn
< SYMBOL_BLOCK_SIZE
; bn
++, aligned_sym
++)
6967 if (sblk
== symbol_block
&& bn
>= symbol_block_index
)
6970 Lisp_Object sym
= make_lisp_symbol (&aligned_sym
->s
);
6971 if (symbol_uses_obj (sym
, obj
))
6973 found
= Fcons (sym
, found
);
6974 if (--find_max
== 0)
6982 unbind_to (gc_count
, Qnil
);
6986 #ifdef SUSPICIOUS_OBJECT_CHECKING
6989 find_suspicious_object_in_range (void *begin
, void *end
)
6991 char *begin_a
= begin
;
6995 for (i
= 0; i
< ARRAYELTS (suspicious_objects
); ++i
)
6997 char *suspicious_object
= suspicious_objects
[i
];
6998 if (begin_a
<= suspicious_object
&& suspicious_object
< end_a
)
6999 return suspicious_object
;
7006 note_suspicious_free (void* ptr
)
7008 struct suspicious_free_record
* rec
;
7010 rec
= &suspicious_free_history
[suspicious_free_history_index
++];
7011 if (suspicious_free_history_index
==
7012 ARRAYELTS (suspicious_free_history
))
7014 suspicious_free_history_index
= 0;
7017 memset (rec
, 0, sizeof (*rec
));
7018 rec
->suspicious_object
= ptr
;
7019 backtrace (&rec
->backtrace
[0], ARRAYELTS (rec
->backtrace
));
7023 detect_suspicious_free (void* ptr
)
7027 eassert (ptr
!= NULL
);
7029 for (i
= 0; i
< ARRAYELTS (suspicious_objects
); ++i
)
7030 if (suspicious_objects
[i
] == ptr
)
7032 note_suspicious_free (ptr
);
7033 suspicious_objects
[i
] = NULL
;
7037 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7039 DEFUN ("suspicious-object", Fsuspicious_object
, Ssuspicious_object
, 1, 1, 0,
7040 doc
: /* Return OBJ, maybe marking it for extra scrutiny.
7041 If Emacs is compiled with suspicious object checking, capture
7042 a stack trace when OBJ is freed in order to help track down
7043 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7046 #ifdef SUSPICIOUS_OBJECT_CHECKING
7047 /* Right now, we care only about vectors. */
7048 if (VECTORLIKEP (obj
))
7050 suspicious_objects
[suspicious_object_index
++] = XVECTOR (obj
);
7051 if (suspicious_object_index
== ARRAYELTS (suspicious_objects
))
7052 suspicious_object_index
= 0;
7058 #ifdef ENABLE_CHECKING
7060 bool suppress_checking
;
7063 die (const char *msg
, const char *file
, int line
)
7065 fprintf (stderr
, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7067 terminate_due_to_signal (SIGABRT
, INT_MAX
);
7070 #endif /* ENABLE_CHECKING */
7072 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7074 /* Debugging check whether STR is ASCII-only. */
7077 verify_ascii (const char *str
)
7079 const unsigned char *ptr
= (unsigned char *) str
, *end
= ptr
+ strlen (str
);
7082 int c
= STRING_CHAR_ADVANCE (ptr
);
7083 if (!ASCII_CHAR_P (c
))
7089 /* Stress alloca with inconveniently sized requests and check
7090 whether all allocated areas may be used for Lisp_Object. */
7092 NO_INLINE
static void
7093 verify_alloca (void)
7096 enum { ALLOCA_CHECK_MAX
= 256 };
7097 /* Start from size of the smallest Lisp object. */
7098 for (i
= sizeof (struct Lisp_Cons
); i
<= ALLOCA_CHECK_MAX
; i
++)
7100 void *ptr
= alloca (i
);
7101 make_lisp_ptr (ptr
, Lisp_Cons
);
7105 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7107 #define verify_alloca() ((void) 0)
7109 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7111 /* Initialization. */
7114 init_alloc_once (void)
7116 /* Even though Qt's contents are not set up, its address is known. */
7120 pure_size
= PURESIZE
;
7124 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7126 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
7129 #ifdef DOUG_LEA_MALLOC
7130 mallopt (M_TRIM_THRESHOLD
, 128 * 1024); /* Trim threshold. */
7131 mallopt (M_MMAP_THRESHOLD
, 64 * 1024); /* Mmap threshold. */
7132 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* Max. number of mmap'ed areas. */
7137 refill_memory_reserve ();
7138 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
;
7145 byte_stack_list
= 0;
7147 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7148 setjmp_tested_p
= longjmps_done
= 0;
7151 Vgc_elapsed
= make_float (0.0);
7155 valgrind_p
= RUNNING_ON_VALGRIND
!= 0;
7160 syms_of_alloc (void)
7162 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold
,
7163 doc
: /* Number of bytes of consing between garbage collections.
7164 Garbage collection can happen automatically once this many bytes have been
7165 allocated since the last garbage collection. All data types count.
7167 Garbage collection happens automatically only when `eval' is called.
7169 By binding this temporarily to a large number, you can effectively
7170 prevent garbage collection during a part of the program.
7171 See also `gc-cons-percentage'. */);
7173 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage
,
7174 doc
: /* Portion of the heap used for allocation.
7175 Garbage collection can happen automatically once this portion of the heap
7176 has been allocated since the last garbage collection.
7177 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7178 Vgc_cons_percentage
= make_float (0.1);
7180 DEFVAR_INT ("pure-bytes-used", pure_bytes_used
,
7181 doc
: /* Number of bytes of shareable Lisp data allocated so far. */);
7183 DEFVAR_INT ("cons-cells-consed", cons_cells_consed
,
7184 doc
: /* Number of cons cells that have been consed so far. */);
7186 DEFVAR_INT ("floats-consed", floats_consed
,
7187 doc
: /* Number of floats that have been consed so far. */);
7189 DEFVAR_INT ("vector-cells-consed", vector_cells_consed
,
7190 doc
: /* Number of vector cells that have been consed so far. */);
7192 DEFVAR_INT ("symbols-consed", symbols_consed
,
7193 doc
: /* Number of symbols that have been consed so far. */);
7194 symbols_consed
+= ARRAYELTS (lispsym
);
7196 DEFVAR_INT ("string-chars-consed", string_chars_consed
,
7197 doc
: /* Number of string characters that have been consed so far. */);
7199 DEFVAR_INT ("misc-objects-consed", misc_objects_consed
,
7200 doc
: /* Number of miscellaneous objects that have been consed so far.
7201 These include markers and overlays, plus certain objects not visible
7204 DEFVAR_INT ("intervals-consed", intervals_consed
,
7205 doc
: /* Number of intervals that have been consed so far. */);
7207 DEFVAR_INT ("strings-consed", strings_consed
,
7208 doc
: /* Number of strings that have been consed so far. */);
7210 DEFVAR_LISP ("purify-flag", Vpurify_flag
,
7211 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
7212 This means that certain objects should be allocated in shared (pure) space.
7213 It can also be set to a hash-table, in which case this table is used to
7214 do hash-consing of the objects allocated to pure space. */);
7216 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages
,
7217 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
7218 garbage_collection_messages
= 0;
7220 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook
,
7221 doc
: /* Hook run after garbage collection has finished. */);
7222 Vpost_gc_hook
= Qnil
;
7223 DEFSYM (Qpost_gc_hook
, "post-gc-hook");
7225 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data
,
7226 doc
: /* Precomputed `signal' argument for memory-full error. */);
7227 /* We build this in advance because if we wait until we need it, we might
7228 not be able to allocate the memory to hold it. */
7230 = listn (CONSTYPE_PURE
, 2, Qerror
,
7231 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7233 DEFVAR_LISP ("memory-full", Vmemory_full
,
7234 doc
: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7235 Vmemory_full
= Qnil
;
7237 DEFSYM (Qconses
, "conses");
7238 DEFSYM (Qsymbols
, "symbols");
7239 DEFSYM (Qmiscs
, "miscs");
7240 DEFSYM (Qstrings
, "strings");
7241 DEFSYM (Qvectors
, "vectors");
7242 DEFSYM (Qfloats
, "floats");
7243 DEFSYM (Qintervals
, "intervals");
7244 DEFSYM (Qbuffers
, "buffers");
7245 DEFSYM (Qstring_bytes
, "string-bytes");
7246 DEFSYM (Qvector_slots
, "vector-slots");
7247 DEFSYM (Qheap
, "heap");
7248 DEFSYM (Qautomatic_gc
, "Automatic GC");
7250 DEFSYM (Qgc_cons_threshold
, "gc-cons-threshold");
7251 DEFSYM (Qchar_table_extra_slots
, "char-table-extra-slots");
7253 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed
,
7254 doc
: /* Accumulated time elapsed in garbage collections.
7255 The time is in seconds as a floating point value. */);
7256 DEFVAR_INT ("gcs-done", gcs_done
,
7257 doc
: /* Accumulated number of garbage collections done. */);
7262 defsubr (&Sbool_vector
);
7263 defsubr (&Smake_byte_code
);
7264 defsubr (&Smake_list
);
7265 defsubr (&Smake_vector
);
7266 defsubr (&Smake_string
);
7267 defsubr (&Smake_bool_vector
);
7268 defsubr (&Smake_symbol
);
7269 defsubr (&Smake_marker
);
7270 defsubr (&Spurecopy
);
7271 defsubr (&Sgarbage_collect
);
7272 defsubr (&Smemory_limit
);
7273 defsubr (&Smemory_info
);
7274 defsubr (&Smemory_use_counts
);
7275 defsubr (&Ssuspicious_object
);
7277 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7278 defsubr (&Sgc_status
);
7282 /* When compiled with GCC, GDB might say "No enum type named
7283 pvec_type" if we don't have at least one symbol with that type, and
7284 then xbacktrace could fail. Similarly for the other enums and
7285 their values. Some non-GCC compilers don't like these constructs. */
7289 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS
;
7290 enum char_table_specials char_table_specials
;
7291 enum char_bits char_bits
;
7292 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE
;
7293 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE
;
7294 enum Lisp_Bits Lisp_Bits
;
7295 enum Lisp_Compiled Lisp_Compiled
;
7296 enum maxargs maxargs
;
7297 enum MAX_ALLOCA MAX_ALLOCA
;
7298 enum More_Lisp_Bits More_Lisp_Bits
;
7299 enum pvec_type pvec_type
;
7300 } const EXTERNALLY_VISIBLE gdb_make_enums_visible
= {0};
7301 #endif /* __GNUC__ */