* lisp/emacs-lisp/cl-generic.el (cl--generic-member-method): Fix paren typo.
[emacs.git] / src / alloc.c
blob9aa94b8a5597276046c11e51aa621864e48c5668
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2015 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
49 #include <verify.h>
50 #include <execinfo.h> /* For backtrace. */
52 #ifdef HAVE_LINUX_SYSINFO
53 #include <sys/sysinfo.h>
54 #endif
56 #ifdef MSDOS
57 #include "dosfns.h" /* For dos_memory_info. */
58 #endif
60 #if (defined ENABLE_CHECKING \
61 && defined HAVE_VALGRIND_VALGRIND_H \
62 && !defined USE_VALGRIND)
63 # define USE_VALGRIND 1
64 #endif
66 #if USE_VALGRIND
67 #include <valgrind/valgrind.h>
68 #include <valgrind/memcheck.h>
69 static bool valgrind_p;
70 #endif
72 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
73 Doable only if GC_MARK_STACK. */
74 #if ! GC_MARK_STACK
75 # undef GC_CHECK_MARKED_OBJECTS
76 #endif
78 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
79 memory. Can do this only if using gmalloc.c and if not checking
80 marked objects. */
82 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
83 || defined HYBRID_MALLOC || defined GC_CHECK_MARKED_OBJECTS)
84 #undef GC_MALLOC_CHECK
85 #endif
87 #include <unistd.h>
88 #include <fcntl.h>
90 #ifdef USE_GTK
91 # include "gtkutil.h"
92 #endif
93 #ifdef WINDOWSNT
94 #include "w32.h"
95 #include "w32heap.h" /* for sbrk */
96 #endif
98 #ifdef DOUG_LEA_MALLOC
100 #include <malloc.h>
102 /* Specify maximum number of areas to mmap. It would be nice to use a
103 value that explicitly means "no limit". */
105 #define MMAP_MAX_AREAS 100000000
107 #endif /* not DOUG_LEA_MALLOC */
109 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
110 to a struct Lisp_String. */
112 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
113 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
114 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
116 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
117 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
118 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
120 /* Default value of gc_cons_threshold (see below). */
122 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
124 /* Global variables. */
125 struct emacs_globals globals;
127 /* Number of bytes of consing done since the last gc. */
129 EMACS_INT consing_since_gc;
131 /* Similar minimum, computed from Vgc_cons_percentage. */
133 EMACS_INT gc_relative_threshold;
135 /* Minimum number of bytes of consing since GC before next GC,
136 when memory is full. */
138 EMACS_INT memory_full_cons_threshold;
140 /* True during GC. */
142 bool gc_in_progress;
144 /* True means abort if try to GC.
145 This is for code which is written on the assumption that
146 no GC will happen, so as to verify that assumption. */
148 bool abort_on_gc;
150 /* Number of live and free conses etc. */
152 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
153 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
154 static EMACS_INT total_free_floats, total_floats;
156 /* Points to memory space allocated as "spare", to be freed if we run
157 out of memory. We keep one large block, four cons-blocks, and
158 two string blocks. */
160 static char *spare_memory[7];
162 /* Amount of spare memory to keep in large reserve block, or to see
163 whether this much is available when malloc fails on a larger request. */
165 #define SPARE_MEMORY (1 << 14)
167 /* Initialize it to a nonzero value to force it into data space
168 (rather than bss space). That way unexec will remap it into text
169 space (pure), on some systems. We have not implemented the
170 remapping on more recent systems because this is less important
171 nowadays than in the days of small memories and timesharing. */
173 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
174 #define PUREBEG (char *) pure
176 /* Pointer to the pure area, and its size. */
178 static char *purebeg;
179 static ptrdiff_t pure_size;
181 /* Number of bytes of pure storage used before pure storage overflowed.
182 If this is non-zero, this implies that an overflow occurred. */
184 static ptrdiff_t pure_bytes_used_before_overflow;
186 /* True if P points into pure space. */
188 #define PURE_POINTER_P(P) \
189 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
191 /* Index in pure at which next pure Lisp object will be allocated.. */
193 static ptrdiff_t pure_bytes_used_lisp;
195 /* Number of bytes allocated for non-Lisp objects in pure storage. */
197 static ptrdiff_t pure_bytes_used_non_lisp;
199 /* If nonzero, this is a warning delivered by malloc and not yet
200 displayed. */
202 const char *pending_malloc_warning;
204 #if 0 /* Normally, pointer sanity only on request... */
205 #ifdef ENABLE_CHECKING
206 #define SUSPICIOUS_OBJECT_CHECKING 1
207 #endif
208 #endif
210 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
211 bug is unresolved. */
212 #define SUSPICIOUS_OBJECT_CHECKING 1
214 #ifdef SUSPICIOUS_OBJECT_CHECKING
215 struct suspicious_free_record
217 void *suspicious_object;
218 void *backtrace[128];
220 static void *suspicious_objects[32];
221 static int suspicious_object_index;
222 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
223 static int suspicious_free_history_index;
224 /* Find the first currently-monitored suspicious pointer in range
225 [begin,end) or NULL if no such pointer exists. */
226 static void *find_suspicious_object_in_range (void *begin, void *end);
227 static void detect_suspicious_free (void *ptr);
228 #else
229 # define find_suspicious_object_in_range(begin, end) NULL
230 # define detect_suspicious_free(ptr) (void)
231 #endif
233 /* Maximum amount of C stack to save when a GC happens. */
235 #ifndef MAX_SAVE_STACK
236 #define MAX_SAVE_STACK 16000
237 #endif
239 /* Buffer in which we save a copy of the C stack at each GC. */
241 #if MAX_SAVE_STACK > 0
242 static char *stack_copy;
243 static ptrdiff_t stack_copy_size;
245 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
246 avoiding any address sanitization. */
248 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
249 no_sanitize_memcpy (void *dest, void const *src, size_t size)
251 if (! ADDRESS_SANITIZER)
252 return memcpy (dest, src, size);
253 else
255 size_t i;
256 char *d = dest;
257 char const *s = src;
258 for (i = 0; i < size; i++)
259 d[i] = s[i];
260 return dest;
264 #endif /* MAX_SAVE_STACK > 0 */
266 static void mark_terminals (void);
267 static void gc_sweep (void);
268 static Lisp_Object make_pure_vector (ptrdiff_t);
269 static void mark_buffer (struct buffer *);
271 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
272 static void refill_memory_reserve (void);
273 #endif
274 static void compact_small_strings (void);
275 static void free_large_strings (void);
276 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
278 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
279 what memory allocated via lisp_malloc and lisp_align_malloc is intended
280 for what purpose. This enumeration specifies the type of memory. */
282 enum mem_type
284 MEM_TYPE_NON_LISP,
285 MEM_TYPE_BUFFER,
286 MEM_TYPE_CONS,
287 MEM_TYPE_STRING,
288 MEM_TYPE_MISC,
289 MEM_TYPE_SYMBOL,
290 MEM_TYPE_FLOAT,
291 /* Since all non-bool pseudovectors are small enough to be
292 allocated from vector blocks, this memory type denotes
293 large regular vectors and large bool pseudovectors. */
294 MEM_TYPE_VECTORLIKE,
295 /* Special type to denote vector blocks. */
296 MEM_TYPE_VECTOR_BLOCK,
297 /* Special type to denote reserved memory. */
298 MEM_TYPE_SPARE
301 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
303 /* A unique object in pure space used to make some Lisp objects
304 on free lists recognizable in O(1). */
306 static Lisp_Object Vdead;
307 #define DEADP(x) EQ (x, Vdead)
309 #ifdef GC_MALLOC_CHECK
311 enum mem_type allocated_mem_type;
313 #endif /* GC_MALLOC_CHECK */
315 /* A node in the red-black tree describing allocated memory containing
316 Lisp data. Each such block is recorded with its start and end
317 address when it is allocated, and removed from the tree when it
318 is freed.
320 A red-black tree is a balanced binary tree with the following
321 properties:
323 1. Every node is either red or black.
324 2. Every leaf is black.
325 3. If a node is red, then both of its children are black.
326 4. Every simple path from a node to a descendant leaf contains
327 the same number of black nodes.
328 5. The root is always black.
330 When nodes are inserted into the tree, or deleted from the tree,
331 the tree is "fixed" so that these properties are always true.
333 A red-black tree with N internal nodes has height at most 2
334 log(N+1). Searches, insertions and deletions are done in O(log N).
335 Please see a text book about data structures for a detailed
336 description of red-black trees. Any book worth its salt should
337 describe them. */
339 struct mem_node
341 /* Children of this node. These pointers are never NULL. When there
342 is no child, the value is MEM_NIL, which points to a dummy node. */
343 struct mem_node *left, *right;
345 /* The parent of this node. In the root node, this is NULL. */
346 struct mem_node *parent;
348 /* Start and end of allocated region. */
349 void *start, *end;
351 /* Node color. */
352 enum {MEM_BLACK, MEM_RED} color;
354 /* Memory type. */
355 enum mem_type type;
358 /* Base address of stack. Set in main. */
360 Lisp_Object *stack_base;
362 /* Root of the tree describing allocated Lisp memory. */
364 static struct mem_node *mem_root;
366 /* Lowest and highest known address in the heap. */
368 static void *min_heap_address, *max_heap_address;
370 /* Sentinel node of the tree. */
372 static struct mem_node mem_z;
373 #define MEM_NIL &mem_z
375 static struct mem_node *mem_insert (void *, void *, enum mem_type);
376 static void mem_insert_fixup (struct mem_node *);
377 static void mem_rotate_left (struct mem_node *);
378 static void mem_rotate_right (struct mem_node *);
379 static void mem_delete (struct mem_node *);
380 static void mem_delete_fixup (struct mem_node *);
381 static struct mem_node *mem_find (void *);
383 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
385 #ifndef DEADP
386 # define DEADP(x) 0
387 #endif
389 /* Recording what needs to be marked for gc. */
391 struct gcpro *gcprolist;
393 /* Addresses of staticpro'd variables. Initialize it to a nonzero
394 value; otherwise some compilers put it into BSS. */
396 enum { NSTATICS = 2048 };
397 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
399 /* Index of next unused slot in staticvec. */
401 static int staticidx;
403 static void *pure_alloc (size_t, int);
405 /* Return X rounded to the next multiple of Y. Arguments should not
406 have side effects, as they are evaluated more than once. Assume X
407 + Y - 1 does not overflow. Tune for Y being a power of 2. */
409 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
410 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
411 : ((x) + (y) - 1) & ~ ((y) - 1))
413 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
415 static void *
416 ALIGN (void *ptr, int alignment)
418 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
421 static void
422 XFLOAT_INIT (Lisp_Object f, double n)
424 XFLOAT (f)->u.data = n;
427 static bool
428 pointers_fit_in_lispobj_p (void)
430 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
433 static bool
434 mmap_lisp_allowed_p (void)
436 /* If we can't store all memory addresses in our lisp objects, it's
437 risky to let the heap use mmap and give us addresses from all
438 over our address space. We also can't use mmap for lisp objects
439 if we might dump: unexec doesn't preserve the contents of mmapped
440 regions. */
441 return pointers_fit_in_lispobj_p () && !might_dump;
445 /************************************************************************
446 Malloc
447 ************************************************************************/
449 /* Function malloc calls this if it finds we are near exhausting storage. */
451 void
452 malloc_warning (const char *str)
454 pending_malloc_warning = str;
458 /* Display an already-pending malloc warning. */
460 void
461 display_malloc_warning (void)
463 call3 (intern ("display-warning"),
464 intern ("alloc"),
465 build_string (pending_malloc_warning),
466 intern ("emergency"));
467 pending_malloc_warning = 0;
470 /* Called if we can't allocate relocatable space for a buffer. */
472 void
473 buffer_memory_full (ptrdiff_t nbytes)
475 /* If buffers use the relocating allocator, no need to free
476 spare_memory, because we may have plenty of malloc space left
477 that we could get, and if we don't, the malloc that fails will
478 itself cause spare_memory to be freed. If buffers don't use the
479 relocating allocator, treat this like any other failing
480 malloc. */
482 #ifndef REL_ALLOC
483 memory_full (nbytes);
484 #else
485 /* This used to call error, but if we've run out of memory, we could
486 get infinite recursion trying to build the string. */
487 xsignal (Qnil, Vmemory_signal_data);
488 #endif
491 /* A common multiple of the positive integers A and B. Ideally this
492 would be the least common multiple, but there's no way to do that
493 as a constant expression in C, so do the best that we can easily do. */
494 #define COMMON_MULTIPLE(a, b) \
495 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
497 #ifndef XMALLOC_OVERRUN_CHECK
498 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
499 #else
501 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
502 around each block.
504 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
505 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
506 block size in little-endian order. The trailer consists of
507 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
509 The header is used to detect whether this block has been allocated
510 through these functions, as some low-level libc functions may
511 bypass the malloc hooks. */
513 #define XMALLOC_OVERRUN_CHECK_SIZE 16
514 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
515 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
517 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
518 hold a size_t value and (2) the header size is a multiple of the
519 alignment that Emacs needs for C types and for USE_LSB_TAG. */
520 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
522 #if USE_LSB_TAG
523 # define XMALLOC_HEADER_ALIGNMENT \
524 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
525 #else
526 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
527 #endif
528 #define XMALLOC_OVERRUN_SIZE_SIZE \
529 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
530 + XMALLOC_HEADER_ALIGNMENT - 1) \
531 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
532 - XMALLOC_OVERRUN_CHECK_SIZE)
534 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
535 { '\x9a', '\x9b', '\xae', '\xaf',
536 '\xbf', '\xbe', '\xce', '\xcf',
537 '\xea', '\xeb', '\xec', '\xed',
538 '\xdf', '\xde', '\x9c', '\x9d' };
540 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
541 { '\xaa', '\xab', '\xac', '\xad',
542 '\xba', '\xbb', '\xbc', '\xbd',
543 '\xca', '\xcb', '\xcc', '\xcd',
544 '\xda', '\xdb', '\xdc', '\xdd' };
546 /* Insert and extract the block size in the header. */
548 static void
549 xmalloc_put_size (unsigned char *ptr, size_t size)
551 int i;
552 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
554 *--ptr = size & ((1 << CHAR_BIT) - 1);
555 size >>= CHAR_BIT;
559 static size_t
560 xmalloc_get_size (unsigned char *ptr)
562 size_t size = 0;
563 int i;
564 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
565 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
567 size <<= CHAR_BIT;
568 size += *ptr++;
570 return size;
574 /* Like malloc, but wraps allocated block with header and trailer. */
576 static void *
577 overrun_check_malloc (size_t size)
579 register unsigned char *val;
580 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
581 emacs_abort ();
583 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584 if (val)
586 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
587 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
588 xmalloc_put_size (val, size);
589 memcpy (val + size, xmalloc_overrun_check_trailer,
590 XMALLOC_OVERRUN_CHECK_SIZE);
592 return val;
596 /* Like realloc, but checks old block for overrun, and wraps new block
597 with header and trailer. */
599 static void *
600 overrun_check_realloc (void *block, size_t size)
602 register unsigned char *val = (unsigned char *) block;
603 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
604 emacs_abort ();
606 if (val
607 && memcmp (xmalloc_overrun_check_header,
608 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
609 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
611 size_t osize = xmalloc_get_size (val);
612 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
613 XMALLOC_OVERRUN_CHECK_SIZE))
614 emacs_abort ();
615 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
616 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
617 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
620 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
622 if (val)
624 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
625 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
626 xmalloc_put_size (val, size);
627 memcpy (val + size, xmalloc_overrun_check_trailer,
628 XMALLOC_OVERRUN_CHECK_SIZE);
630 return val;
633 /* Like free, but checks block for overrun. */
635 static void
636 overrun_check_free (void *block)
638 unsigned char *val = (unsigned char *) block;
640 if (val
641 && memcmp (xmalloc_overrun_check_header,
642 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
643 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
645 size_t osize = xmalloc_get_size (val);
646 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
647 XMALLOC_OVERRUN_CHECK_SIZE))
648 emacs_abort ();
649 #ifdef XMALLOC_CLEAR_FREE_MEMORY
650 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
651 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
652 #else
653 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
654 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
655 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
656 #endif
659 free (val);
662 #undef malloc
663 #undef realloc
664 #undef free
665 #define malloc overrun_check_malloc
666 #define realloc overrun_check_realloc
667 #define free overrun_check_free
668 #endif
670 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
671 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
672 If that variable is set, block input while in one of Emacs's memory
673 allocation functions. There should be no need for this debugging
674 option, since signal handlers do not allocate memory, but Emacs
675 formerly allocated memory in signal handlers and this compile-time
676 option remains as a way to help debug the issue should it rear its
677 ugly head again. */
678 #ifdef XMALLOC_BLOCK_INPUT_CHECK
679 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
680 static void
681 malloc_block_input (void)
683 if (block_input_in_memory_allocators)
684 block_input ();
686 static void
687 malloc_unblock_input (void)
689 if (block_input_in_memory_allocators)
690 unblock_input ();
692 # define MALLOC_BLOCK_INPUT malloc_block_input ()
693 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
694 #else
695 # define MALLOC_BLOCK_INPUT ((void) 0)
696 # define MALLOC_UNBLOCK_INPUT ((void) 0)
697 #endif
699 #define MALLOC_PROBE(size) \
700 do { \
701 if (profiler_memory_running) \
702 malloc_probe (size); \
703 } while (0)
706 /* Like malloc but check for no memory and block interrupt input.. */
708 void *
709 xmalloc (size_t size)
711 void *val;
713 MALLOC_BLOCK_INPUT;
714 val = malloc (size);
715 MALLOC_UNBLOCK_INPUT;
717 if (!val && size)
718 memory_full (size);
719 MALLOC_PROBE (size);
720 return val;
723 /* Like the above, but zeroes out the memory just allocated. */
725 void *
726 xzalloc (size_t size)
728 void *val;
730 MALLOC_BLOCK_INPUT;
731 val = malloc (size);
732 MALLOC_UNBLOCK_INPUT;
734 if (!val && size)
735 memory_full (size);
736 memset (val, 0, size);
737 MALLOC_PROBE (size);
738 return val;
741 /* Like realloc but check for no memory and block interrupt input.. */
743 void *
744 xrealloc (void *block, size_t size)
746 void *val;
748 MALLOC_BLOCK_INPUT;
749 /* We must call malloc explicitly when BLOCK is 0, since some
750 reallocs don't do this. */
751 if (! block)
752 val = malloc (size);
753 else
754 val = realloc (block, size);
755 MALLOC_UNBLOCK_INPUT;
757 if (!val && size)
758 memory_full (size);
759 MALLOC_PROBE (size);
760 return val;
764 /* Like free but block interrupt input. */
766 void
767 xfree (void *block)
769 if (!block)
770 return;
771 MALLOC_BLOCK_INPUT;
772 free (block);
773 MALLOC_UNBLOCK_INPUT;
774 /* We don't call refill_memory_reserve here
775 because in practice the call in r_alloc_free seems to suffice. */
779 /* Other parts of Emacs pass large int values to allocator functions
780 expecting ptrdiff_t. This is portable in practice, but check it to
781 be safe. */
782 verify (INT_MAX <= PTRDIFF_MAX);
785 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
786 Signal an error on memory exhaustion, and block interrupt input. */
788 void *
789 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
791 eassert (0 <= nitems && 0 < item_size);
792 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
793 memory_full (SIZE_MAX);
794 return xmalloc (nitems * item_size);
798 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
799 Signal an error on memory exhaustion, and block interrupt input. */
801 void *
802 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
804 eassert (0 <= nitems && 0 < item_size);
805 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
806 memory_full (SIZE_MAX);
807 return xrealloc (pa, nitems * item_size);
811 /* Grow PA, which points to an array of *NITEMS items, and return the
812 location of the reallocated array, updating *NITEMS to reflect its
813 new size. The new array will contain at least NITEMS_INCR_MIN more
814 items, but will not contain more than NITEMS_MAX items total.
815 ITEM_SIZE is the size of each item, in bytes.
817 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
818 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
819 infinity.
821 If PA is null, then allocate a new array instead of reallocating
822 the old one.
824 Block interrupt input as needed. If memory exhaustion occurs, set
825 *NITEMS to zero if PA is null, and signal an error (i.e., do not
826 return).
828 Thus, to grow an array A without saving its old contents, do
829 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
830 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
831 and signals an error, and later this code is reexecuted and
832 attempts to free A. */
834 void *
835 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
836 ptrdiff_t nitems_max, ptrdiff_t item_size)
838 /* The approximate size to use for initial small allocation
839 requests. This is the largest "small" request for the GNU C
840 library malloc. */
841 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
843 /* If the array is tiny, grow it to about (but no greater than)
844 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
845 ptrdiff_t n = *nitems;
846 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
847 ptrdiff_t half_again = n >> 1;
848 ptrdiff_t incr_estimate = max (tiny_max, half_again);
850 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
851 NITEMS_MAX, and what the C language can represent safely. */
852 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
853 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
854 ? nitems_max : C_language_max);
855 ptrdiff_t nitems_incr_max = n_max - n;
856 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
858 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
859 if (! pa)
860 *nitems = 0;
861 if (nitems_incr_max < incr)
862 memory_full (SIZE_MAX);
863 n += incr;
864 pa = xrealloc (pa, n * item_size);
865 *nitems = n;
866 return pa;
870 /* Like strdup, but uses xmalloc. */
872 char *
873 xstrdup (const char *s)
875 ptrdiff_t size;
876 eassert (s);
877 size = strlen (s) + 1;
878 return memcpy (xmalloc (size), s, size);
881 /* Like above, but duplicates Lisp string to C string. */
883 char *
884 xlispstrdup (Lisp_Object string)
886 ptrdiff_t size = SBYTES (string) + 1;
887 return memcpy (xmalloc (size), SSDATA (string), size);
890 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
891 pointed to. If STRING is null, assign it without copying anything.
892 Allocate before freeing, to avoid a dangling pointer if allocation
893 fails. */
895 void
896 dupstring (char **ptr, char const *string)
898 char *old = *ptr;
899 *ptr = string ? xstrdup (string) : 0;
900 xfree (old);
904 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
905 argument is a const pointer. */
907 void
908 xputenv (char const *string)
910 if (putenv ((char *) string) != 0)
911 memory_full (0);
914 /* Return a newly allocated memory block of SIZE bytes, remembering
915 to free it when unwinding. */
916 void *
917 record_xmalloc (size_t size)
919 void *p = xmalloc (size);
920 record_unwind_protect_ptr (xfree, p);
921 return p;
925 /* Like malloc but used for allocating Lisp data. NBYTES is the
926 number of bytes to allocate, TYPE describes the intended use of the
927 allocated memory block (for strings, for conses, ...). */
929 #if ! USE_LSB_TAG
930 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
931 #endif
933 static void *
934 lisp_malloc (size_t nbytes, enum mem_type type)
936 register void *val;
938 MALLOC_BLOCK_INPUT;
940 #ifdef GC_MALLOC_CHECK
941 allocated_mem_type = type;
942 #endif
944 val = malloc (nbytes);
946 #if ! USE_LSB_TAG
947 /* If the memory just allocated cannot be addressed thru a Lisp
948 object's pointer, and it needs to be,
949 that's equivalent to running out of memory. */
950 if (val && type != MEM_TYPE_NON_LISP)
952 Lisp_Object tem;
953 XSETCONS (tem, (char *) val + nbytes - 1);
954 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
956 lisp_malloc_loser = val;
957 free (val);
958 val = 0;
961 #endif
963 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
964 if (val && type != MEM_TYPE_NON_LISP)
965 mem_insert (val, (char *) val + nbytes, type);
966 #endif
968 MALLOC_UNBLOCK_INPUT;
969 if (!val && nbytes)
970 memory_full (nbytes);
971 MALLOC_PROBE (nbytes);
972 return val;
975 /* Free BLOCK. This must be called to free memory allocated with a
976 call to lisp_malloc. */
978 static void
979 lisp_free (void *block)
981 MALLOC_BLOCK_INPUT;
982 free (block);
983 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
984 mem_delete (mem_find (block));
985 #endif
986 MALLOC_UNBLOCK_INPUT;
989 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
991 /* The entry point is lisp_align_malloc which returns blocks of at most
992 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
994 /* Use aligned_alloc if it or a simple substitute is available.
995 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
996 clang 3.3 anyway. */
998 #if ! ADDRESS_SANITIZER
999 # if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC && !defined HYBRID_MALLOC
1000 # define USE_ALIGNED_ALLOC 1
1001 /* Defined in gmalloc.c. */
1002 void *aligned_alloc (size_t, size_t);
1003 # elif defined HYBRID_MALLOC
1004 # if defined ALIGNED_ALLOC || defined HAVE_POSIX_MEMALIGN
1005 # define USE_ALIGNED_ALLOC 1
1006 # define aligned_alloc hybrid_aligned_alloc
1007 /* Defined in gmalloc.c. */
1008 void *aligned_alloc (size_t, size_t);
1009 # endif
1010 # elif defined HAVE_ALIGNED_ALLOC
1011 # define USE_ALIGNED_ALLOC 1
1012 # elif defined HAVE_POSIX_MEMALIGN
1013 # define USE_ALIGNED_ALLOC 1
1014 static void *
1015 aligned_alloc (size_t alignment, size_t size)
1017 void *p;
1018 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1020 # endif
1021 #endif
1023 /* BLOCK_ALIGN has to be a power of 2. */
1024 #define BLOCK_ALIGN (1 << 10)
1026 /* Padding to leave at the end of a malloc'd block. This is to give
1027 malloc a chance to minimize the amount of memory wasted to alignment.
1028 It should be tuned to the particular malloc library used.
1029 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1030 aligned_alloc on the other hand would ideally prefer a value of 4
1031 because otherwise, there's 1020 bytes wasted between each ablocks.
1032 In Emacs, testing shows that those 1020 can most of the time be
1033 efficiently used by malloc to place other objects, so a value of 0 can
1034 still preferable unless you have a lot of aligned blocks and virtually
1035 nothing else. */
1036 #define BLOCK_PADDING 0
1037 #define BLOCK_BYTES \
1038 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1040 /* Internal data structures and constants. */
1042 #define ABLOCKS_SIZE 16
1044 /* An aligned block of memory. */
1045 struct ablock
1047 union
1049 char payload[BLOCK_BYTES];
1050 struct ablock *next_free;
1051 } x;
1052 /* `abase' is the aligned base of the ablocks. */
1053 /* It is overloaded to hold the virtual `busy' field that counts
1054 the number of used ablock in the parent ablocks.
1055 The first ablock has the `busy' field, the others have the `abase'
1056 field. To tell the difference, we assume that pointers will have
1057 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1058 is used to tell whether the real base of the parent ablocks is `abase'
1059 (if not, the word before the first ablock holds a pointer to the
1060 real base). */
1061 struct ablocks *abase;
1062 /* The padding of all but the last ablock is unused. The padding of
1063 the last ablock in an ablocks is not allocated. */
1064 #if BLOCK_PADDING
1065 char padding[BLOCK_PADDING];
1066 #endif
1069 /* A bunch of consecutive aligned blocks. */
1070 struct ablocks
1072 struct ablock blocks[ABLOCKS_SIZE];
1075 /* Size of the block requested from malloc or aligned_alloc. */
1076 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1078 #define ABLOCK_ABASE(block) \
1079 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1080 ? (struct ablocks *)(block) \
1081 : (block)->abase)
1083 /* Virtual `busy' field. */
1084 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1086 /* Pointer to the (not necessarily aligned) malloc block. */
1087 #ifdef USE_ALIGNED_ALLOC
1088 #define ABLOCKS_BASE(abase) (abase)
1089 #else
1090 #define ABLOCKS_BASE(abase) \
1091 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1092 #endif
1094 /* The list of free ablock. */
1095 static struct ablock *free_ablock;
1097 /* Allocate an aligned block of nbytes.
1098 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1099 smaller or equal to BLOCK_BYTES. */
1100 static void *
1101 lisp_align_malloc (size_t nbytes, enum mem_type type)
1103 void *base, *val;
1104 struct ablocks *abase;
1106 eassert (nbytes <= BLOCK_BYTES);
1108 MALLOC_BLOCK_INPUT;
1110 #ifdef GC_MALLOC_CHECK
1111 allocated_mem_type = type;
1112 #endif
1114 if (!free_ablock)
1116 int i;
1117 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1119 #ifdef DOUG_LEA_MALLOC
1120 if (!mmap_lisp_allowed_p ())
1121 mallopt (M_MMAP_MAX, 0);
1122 #endif
1124 #ifdef USE_ALIGNED_ALLOC
1125 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1126 #else
1127 base = malloc (ABLOCKS_BYTES);
1128 abase = ALIGN (base, BLOCK_ALIGN);
1129 #endif
1131 if (base == 0)
1133 MALLOC_UNBLOCK_INPUT;
1134 memory_full (ABLOCKS_BYTES);
1137 aligned = (base == abase);
1138 if (!aligned)
1139 ((void **) abase)[-1] = base;
1141 #ifdef DOUG_LEA_MALLOC
1142 if (!mmap_lisp_allowed_p ())
1143 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1144 #endif
1146 #if ! USE_LSB_TAG
1147 /* If the memory just allocated cannot be addressed thru a Lisp
1148 object's pointer, and it needs to be, that's equivalent to
1149 running out of memory. */
1150 if (type != MEM_TYPE_NON_LISP)
1152 Lisp_Object tem;
1153 char *end = (char *) base + ABLOCKS_BYTES - 1;
1154 XSETCONS (tem, end);
1155 if ((char *) XCONS (tem) != end)
1157 lisp_malloc_loser = base;
1158 free (base);
1159 MALLOC_UNBLOCK_INPUT;
1160 memory_full (SIZE_MAX);
1163 #endif
1165 /* Initialize the blocks and put them on the free list.
1166 If `base' was not properly aligned, we can't use the last block. */
1167 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1169 abase->blocks[i].abase = abase;
1170 abase->blocks[i].x.next_free = free_ablock;
1171 free_ablock = &abase->blocks[i];
1173 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1175 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1176 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1177 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1178 eassert (ABLOCKS_BASE (abase) == base);
1179 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1182 abase = ABLOCK_ABASE (free_ablock);
1183 ABLOCKS_BUSY (abase)
1184 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1185 val = free_ablock;
1186 free_ablock = free_ablock->x.next_free;
1188 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1189 if (type != MEM_TYPE_NON_LISP)
1190 mem_insert (val, (char *) val + nbytes, type);
1191 #endif
1193 MALLOC_UNBLOCK_INPUT;
1195 MALLOC_PROBE (nbytes);
1197 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1198 return val;
1201 static void
1202 lisp_align_free (void *block)
1204 struct ablock *ablock = block;
1205 struct ablocks *abase = ABLOCK_ABASE (ablock);
1207 MALLOC_BLOCK_INPUT;
1208 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1209 mem_delete (mem_find (block));
1210 #endif
1211 /* Put on free list. */
1212 ablock->x.next_free = free_ablock;
1213 free_ablock = ablock;
1214 /* Update busy count. */
1215 ABLOCKS_BUSY (abase)
1216 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1218 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1219 { /* All the blocks are free. */
1220 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1221 struct ablock **tem = &free_ablock;
1222 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1224 while (*tem)
1226 if (*tem >= (struct ablock *) abase && *tem < atop)
1228 i++;
1229 *tem = (*tem)->x.next_free;
1231 else
1232 tem = &(*tem)->x.next_free;
1234 eassert ((aligned & 1) == aligned);
1235 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1236 #ifdef USE_POSIX_MEMALIGN
1237 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1238 #endif
1239 free (ABLOCKS_BASE (abase));
1241 MALLOC_UNBLOCK_INPUT;
1245 /***********************************************************************
1246 Interval Allocation
1247 ***********************************************************************/
1249 /* Number of intervals allocated in an interval_block structure.
1250 The 1020 is 1024 minus malloc overhead. */
1252 #define INTERVAL_BLOCK_SIZE \
1253 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1255 /* Intervals are allocated in chunks in the form of an interval_block
1256 structure. */
1258 struct interval_block
1260 /* Place `intervals' first, to preserve alignment. */
1261 struct interval intervals[INTERVAL_BLOCK_SIZE];
1262 struct interval_block *next;
1265 /* Current interval block. Its `next' pointer points to older
1266 blocks. */
1268 static struct interval_block *interval_block;
1270 /* Index in interval_block above of the next unused interval
1271 structure. */
1273 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1275 /* Number of free and live intervals. */
1277 static EMACS_INT total_free_intervals, total_intervals;
1279 /* List of free intervals. */
1281 static INTERVAL interval_free_list;
1283 /* Return a new interval. */
1285 INTERVAL
1286 make_interval (void)
1288 INTERVAL val;
1290 MALLOC_BLOCK_INPUT;
1292 if (interval_free_list)
1294 val = interval_free_list;
1295 interval_free_list = INTERVAL_PARENT (interval_free_list);
1297 else
1299 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1301 struct interval_block *newi
1302 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1304 newi->next = interval_block;
1305 interval_block = newi;
1306 interval_block_index = 0;
1307 total_free_intervals += INTERVAL_BLOCK_SIZE;
1309 val = &interval_block->intervals[interval_block_index++];
1312 MALLOC_UNBLOCK_INPUT;
1314 consing_since_gc += sizeof (struct interval);
1315 intervals_consed++;
1316 total_free_intervals--;
1317 RESET_INTERVAL (val);
1318 val->gcmarkbit = 0;
1319 return val;
1323 /* Mark Lisp objects in interval I. */
1325 static void
1326 mark_interval (register INTERVAL i, Lisp_Object dummy)
1328 /* Intervals should never be shared. So, if extra internal checking is
1329 enabled, GC aborts if it seems to have visited an interval twice. */
1330 eassert (!i->gcmarkbit);
1331 i->gcmarkbit = 1;
1332 mark_object (i->plist);
1335 /* Mark the interval tree rooted in I. */
1337 #define MARK_INTERVAL_TREE(i) \
1338 do { \
1339 if (i && !i->gcmarkbit) \
1340 traverse_intervals_noorder (i, mark_interval, Qnil); \
1341 } while (0)
1343 /***********************************************************************
1344 String Allocation
1345 ***********************************************************************/
1347 /* Lisp_Strings are allocated in string_block structures. When a new
1348 string_block is allocated, all the Lisp_Strings it contains are
1349 added to a free-list string_free_list. When a new Lisp_String is
1350 needed, it is taken from that list. During the sweep phase of GC,
1351 string_blocks that are entirely free are freed, except two which
1352 we keep.
1354 String data is allocated from sblock structures. Strings larger
1355 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1356 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1358 Sblocks consist internally of sdata structures, one for each
1359 Lisp_String. The sdata structure points to the Lisp_String it
1360 belongs to. The Lisp_String points back to the `u.data' member of
1361 its sdata structure.
1363 When a Lisp_String is freed during GC, it is put back on
1364 string_free_list, and its `data' member and its sdata's `string'
1365 pointer is set to null. The size of the string is recorded in the
1366 `n.nbytes' member of the sdata. So, sdata structures that are no
1367 longer used, can be easily recognized, and it's easy to compact the
1368 sblocks of small strings which we do in compact_small_strings. */
1370 /* Size in bytes of an sblock structure used for small strings. This
1371 is 8192 minus malloc overhead. */
1373 #define SBLOCK_SIZE 8188
1375 /* Strings larger than this are considered large strings. String data
1376 for large strings is allocated from individual sblocks. */
1378 #define LARGE_STRING_BYTES 1024
1380 /* The SDATA typedef is a struct or union describing string memory
1381 sub-allocated from an sblock. This is where the contents of Lisp
1382 strings are stored. */
1384 struct sdata
1386 /* Back-pointer to the string this sdata belongs to. If null, this
1387 structure is free, and NBYTES (in this structure or in the union below)
1388 contains the string's byte size (the same value that STRING_BYTES
1389 would return if STRING were non-null). If non-null, STRING_BYTES
1390 (STRING) is the size of the data, and DATA contains the string's
1391 contents. */
1392 struct Lisp_String *string;
1394 #ifdef GC_CHECK_STRING_BYTES
1395 ptrdiff_t nbytes;
1396 #endif
1398 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1401 #ifdef GC_CHECK_STRING_BYTES
1403 typedef struct sdata sdata;
1404 #define SDATA_NBYTES(S) (S)->nbytes
1405 #define SDATA_DATA(S) (S)->data
1407 #else
1409 typedef union
1411 struct Lisp_String *string;
1413 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1414 which has a flexible array member. However, if implemented by
1415 giving this union a member of type 'struct sdata', the union
1416 could not be the last (flexible) member of 'struct sblock',
1417 because C99 prohibits a flexible array member from having a type
1418 that is itself a flexible array. So, comment this member out here,
1419 but remember that the option's there when using this union. */
1420 #if 0
1421 struct sdata u;
1422 #endif
1424 /* When STRING is null. */
1425 struct
1427 struct Lisp_String *string;
1428 ptrdiff_t nbytes;
1429 } n;
1430 } sdata;
1432 #define SDATA_NBYTES(S) (S)->n.nbytes
1433 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1435 #endif /* not GC_CHECK_STRING_BYTES */
1437 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1439 /* Structure describing a block of memory which is sub-allocated to
1440 obtain string data memory for strings. Blocks for small strings
1441 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1442 as large as needed. */
1444 struct sblock
1446 /* Next in list. */
1447 struct sblock *next;
1449 /* Pointer to the next free sdata block. This points past the end
1450 of the sblock if there isn't any space left in this block. */
1451 sdata *next_free;
1453 /* String data. */
1454 sdata data[FLEXIBLE_ARRAY_MEMBER];
1457 /* Number of Lisp strings in a string_block structure. The 1020 is
1458 1024 minus malloc overhead. */
1460 #define STRING_BLOCK_SIZE \
1461 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1463 /* Structure describing a block from which Lisp_String structures
1464 are allocated. */
1466 struct string_block
1468 /* Place `strings' first, to preserve alignment. */
1469 struct Lisp_String strings[STRING_BLOCK_SIZE];
1470 struct string_block *next;
1473 /* Head and tail of the list of sblock structures holding Lisp string
1474 data. We always allocate from current_sblock. The NEXT pointers
1475 in the sblock structures go from oldest_sblock to current_sblock. */
1477 static struct sblock *oldest_sblock, *current_sblock;
1479 /* List of sblocks for large strings. */
1481 static struct sblock *large_sblocks;
1483 /* List of string_block structures. */
1485 static struct string_block *string_blocks;
1487 /* Free-list of Lisp_Strings. */
1489 static struct Lisp_String *string_free_list;
1491 /* Number of live and free Lisp_Strings. */
1493 static EMACS_INT total_strings, total_free_strings;
1495 /* Number of bytes used by live strings. */
1497 static EMACS_INT total_string_bytes;
1499 /* Given a pointer to a Lisp_String S which is on the free-list
1500 string_free_list, return a pointer to its successor in the
1501 free-list. */
1503 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1505 /* Return a pointer to the sdata structure belonging to Lisp string S.
1506 S must be live, i.e. S->data must not be null. S->data is actually
1507 a pointer to the `u.data' member of its sdata structure; the
1508 structure starts at a constant offset in front of that. */
1510 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1513 #ifdef GC_CHECK_STRING_OVERRUN
1515 /* We check for overrun in string data blocks by appending a small
1516 "cookie" after each allocated string data block, and check for the
1517 presence of this cookie during GC. */
1519 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1520 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1521 { '\xde', '\xad', '\xbe', '\xef' };
1523 #else
1524 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1525 #endif
1527 /* Value is the size of an sdata structure large enough to hold NBYTES
1528 bytes of string data. The value returned includes a terminating
1529 NUL byte, the size of the sdata structure, and padding. */
1531 #ifdef GC_CHECK_STRING_BYTES
1533 #define SDATA_SIZE(NBYTES) \
1534 ((SDATA_DATA_OFFSET \
1535 + (NBYTES) + 1 \
1536 + sizeof (ptrdiff_t) - 1) \
1537 & ~(sizeof (ptrdiff_t) - 1))
1539 #else /* not GC_CHECK_STRING_BYTES */
1541 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1542 less than the size of that member. The 'max' is not needed when
1543 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1544 alignment code reserves enough space. */
1546 #define SDATA_SIZE(NBYTES) \
1547 ((SDATA_DATA_OFFSET \
1548 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1549 ? NBYTES \
1550 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1551 + 1 \
1552 + sizeof (ptrdiff_t) - 1) \
1553 & ~(sizeof (ptrdiff_t) - 1))
1555 #endif /* not GC_CHECK_STRING_BYTES */
1557 /* Extra bytes to allocate for each string. */
1559 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1561 /* Exact bound on the number of bytes in a string, not counting the
1562 terminating null. A string cannot contain more bytes than
1563 STRING_BYTES_BOUND, nor can it be so long that the size_t
1564 arithmetic in allocate_string_data would overflow while it is
1565 calculating a value to be passed to malloc. */
1566 static ptrdiff_t const STRING_BYTES_MAX =
1567 min (STRING_BYTES_BOUND,
1568 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1569 - GC_STRING_EXTRA
1570 - offsetof (struct sblock, data)
1571 - SDATA_DATA_OFFSET)
1572 & ~(sizeof (EMACS_INT) - 1)));
1574 /* Initialize string allocation. Called from init_alloc_once. */
1576 static void
1577 init_strings (void)
1579 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1580 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1584 #ifdef GC_CHECK_STRING_BYTES
1586 static int check_string_bytes_count;
1588 /* Like STRING_BYTES, but with debugging check. Can be
1589 called during GC, so pay attention to the mark bit. */
1591 ptrdiff_t
1592 string_bytes (struct Lisp_String *s)
1594 ptrdiff_t nbytes =
1595 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1597 if (!PURE_POINTER_P (s)
1598 && s->data
1599 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1600 emacs_abort ();
1601 return nbytes;
1604 /* Check validity of Lisp strings' string_bytes member in B. */
1606 static void
1607 check_sblock (struct sblock *b)
1609 sdata *from, *end, *from_end;
1611 end = b->next_free;
1613 for (from = b->data; from < end; from = from_end)
1615 /* Compute the next FROM here because copying below may
1616 overwrite data we need to compute it. */
1617 ptrdiff_t nbytes;
1619 /* Check that the string size recorded in the string is the
1620 same as the one recorded in the sdata structure. */
1621 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1622 : SDATA_NBYTES (from));
1623 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1628 /* Check validity of Lisp strings' string_bytes member. ALL_P
1629 means check all strings, otherwise check only most
1630 recently allocated strings. Used for hunting a bug. */
1632 static void
1633 check_string_bytes (bool all_p)
1635 if (all_p)
1637 struct sblock *b;
1639 for (b = large_sblocks; b; b = b->next)
1641 struct Lisp_String *s = b->data[0].string;
1642 if (s)
1643 string_bytes (s);
1646 for (b = oldest_sblock; b; b = b->next)
1647 check_sblock (b);
1649 else if (current_sblock)
1650 check_sblock (current_sblock);
1653 #else /* not GC_CHECK_STRING_BYTES */
1655 #define check_string_bytes(all) ((void) 0)
1657 #endif /* GC_CHECK_STRING_BYTES */
1659 #ifdef GC_CHECK_STRING_FREE_LIST
1661 /* Walk through the string free list looking for bogus next pointers.
1662 This may catch buffer overrun from a previous string. */
1664 static void
1665 check_string_free_list (void)
1667 struct Lisp_String *s;
1669 /* Pop a Lisp_String off the free-list. */
1670 s = string_free_list;
1671 while (s != NULL)
1673 if ((uintptr_t) s < 1024)
1674 emacs_abort ();
1675 s = NEXT_FREE_LISP_STRING (s);
1678 #else
1679 #define check_string_free_list()
1680 #endif
1682 /* Return a new Lisp_String. */
1684 static struct Lisp_String *
1685 allocate_string (void)
1687 struct Lisp_String *s;
1689 MALLOC_BLOCK_INPUT;
1691 /* If the free-list is empty, allocate a new string_block, and
1692 add all the Lisp_Strings in it to the free-list. */
1693 if (string_free_list == NULL)
1695 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1696 int i;
1698 b->next = string_blocks;
1699 string_blocks = b;
1701 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1703 s = b->strings + i;
1704 /* Every string on a free list should have NULL data pointer. */
1705 s->data = NULL;
1706 NEXT_FREE_LISP_STRING (s) = string_free_list;
1707 string_free_list = s;
1710 total_free_strings += STRING_BLOCK_SIZE;
1713 check_string_free_list ();
1715 /* Pop a Lisp_String off the free-list. */
1716 s = string_free_list;
1717 string_free_list = NEXT_FREE_LISP_STRING (s);
1719 MALLOC_UNBLOCK_INPUT;
1721 --total_free_strings;
1722 ++total_strings;
1723 ++strings_consed;
1724 consing_since_gc += sizeof *s;
1726 #ifdef GC_CHECK_STRING_BYTES
1727 if (!noninteractive)
1729 if (++check_string_bytes_count == 200)
1731 check_string_bytes_count = 0;
1732 check_string_bytes (1);
1734 else
1735 check_string_bytes (0);
1737 #endif /* GC_CHECK_STRING_BYTES */
1739 return s;
1743 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1744 plus a NUL byte at the end. Allocate an sdata structure for S, and
1745 set S->data to its `u.data' member. Store a NUL byte at the end of
1746 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1747 S->data if it was initially non-null. */
1749 void
1750 allocate_string_data (struct Lisp_String *s,
1751 EMACS_INT nchars, EMACS_INT nbytes)
1753 sdata *data, *old_data;
1754 struct sblock *b;
1755 ptrdiff_t needed, old_nbytes;
1757 if (STRING_BYTES_MAX < nbytes)
1758 string_overflow ();
1760 /* Determine the number of bytes needed to store NBYTES bytes
1761 of string data. */
1762 needed = SDATA_SIZE (nbytes);
1763 if (s->data)
1765 old_data = SDATA_OF_STRING (s);
1766 old_nbytes = STRING_BYTES (s);
1768 else
1769 old_data = NULL;
1771 MALLOC_BLOCK_INPUT;
1773 if (nbytes > LARGE_STRING_BYTES)
1775 size_t size = offsetof (struct sblock, data) + needed;
1777 #ifdef DOUG_LEA_MALLOC
1778 if (!mmap_lisp_allowed_p ())
1779 mallopt (M_MMAP_MAX, 0);
1780 #endif
1782 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1784 #ifdef DOUG_LEA_MALLOC
1785 if (!mmap_lisp_allowed_p ())
1786 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1787 #endif
1789 b->next_free = b->data;
1790 b->data[0].string = NULL;
1791 b->next = large_sblocks;
1792 large_sblocks = b;
1794 else if (current_sblock == NULL
1795 || (((char *) current_sblock + SBLOCK_SIZE
1796 - (char *) current_sblock->next_free)
1797 < (needed + GC_STRING_EXTRA)))
1799 /* Not enough room in the current sblock. */
1800 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1801 b->next_free = b->data;
1802 b->data[0].string = NULL;
1803 b->next = NULL;
1805 if (current_sblock)
1806 current_sblock->next = b;
1807 else
1808 oldest_sblock = b;
1809 current_sblock = b;
1811 else
1812 b = current_sblock;
1814 data = b->next_free;
1815 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1817 MALLOC_UNBLOCK_INPUT;
1819 data->string = s;
1820 s->data = SDATA_DATA (data);
1821 #ifdef GC_CHECK_STRING_BYTES
1822 SDATA_NBYTES (data) = nbytes;
1823 #endif
1824 s->size = nchars;
1825 s->size_byte = nbytes;
1826 s->data[nbytes] = '\0';
1827 #ifdef GC_CHECK_STRING_OVERRUN
1828 memcpy ((char *) data + needed, string_overrun_cookie,
1829 GC_STRING_OVERRUN_COOKIE_SIZE);
1830 #endif
1832 /* Note that Faset may call to this function when S has already data
1833 assigned. In this case, mark data as free by setting it's string
1834 back-pointer to null, and record the size of the data in it. */
1835 if (old_data)
1837 SDATA_NBYTES (old_data) = old_nbytes;
1838 old_data->string = NULL;
1841 consing_since_gc += needed;
1845 /* Sweep and compact strings. */
1847 NO_INLINE /* For better stack traces */
1848 static void
1849 sweep_strings (void)
1851 struct string_block *b, *next;
1852 struct string_block *live_blocks = NULL;
1854 string_free_list = NULL;
1855 total_strings = total_free_strings = 0;
1856 total_string_bytes = 0;
1858 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1859 for (b = string_blocks; b; b = next)
1861 int i, nfree = 0;
1862 struct Lisp_String *free_list_before = string_free_list;
1864 next = b->next;
1866 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1868 struct Lisp_String *s = b->strings + i;
1870 if (s->data)
1872 /* String was not on free-list before. */
1873 if (STRING_MARKED_P (s))
1875 /* String is live; unmark it and its intervals. */
1876 UNMARK_STRING (s);
1878 /* Do not use string_(set|get)_intervals here. */
1879 s->intervals = balance_intervals (s->intervals);
1881 ++total_strings;
1882 total_string_bytes += STRING_BYTES (s);
1884 else
1886 /* String is dead. Put it on the free-list. */
1887 sdata *data = SDATA_OF_STRING (s);
1889 /* Save the size of S in its sdata so that we know
1890 how large that is. Reset the sdata's string
1891 back-pointer so that we know it's free. */
1892 #ifdef GC_CHECK_STRING_BYTES
1893 if (string_bytes (s) != SDATA_NBYTES (data))
1894 emacs_abort ();
1895 #else
1896 data->n.nbytes = STRING_BYTES (s);
1897 #endif
1898 data->string = NULL;
1900 /* Reset the strings's `data' member so that we
1901 know it's free. */
1902 s->data = NULL;
1904 /* Put the string on the free-list. */
1905 NEXT_FREE_LISP_STRING (s) = string_free_list;
1906 string_free_list = s;
1907 ++nfree;
1910 else
1912 /* S was on the free-list before. Put it there again. */
1913 NEXT_FREE_LISP_STRING (s) = string_free_list;
1914 string_free_list = s;
1915 ++nfree;
1919 /* Free blocks that contain free Lisp_Strings only, except
1920 the first two of them. */
1921 if (nfree == STRING_BLOCK_SIZE
1922 && total_free_strings > STRING_BLOCK_SIZE)
1924 lisp_free (b);
1925 string_free_list = free_list_before;
1927 else
1929 total_free_strings += nfree;
1930 b->next = live_blocks;
1931 live_blocks = b;
1935 check_string_free_list ();
1937 string_blocks = live_blocks;
1938 free_large_strings ();
1939 compact_small_strings ();
1941 check_string_free_list ();
1945 /* Free dead large strings. */
1947 static void
1948 free_large_strings (void)
1950 struct sblock *b, *next;
1951 struct sblock *live_blocks = NULL;
1953 for (b = large_sblocks; b; b = next)
1955 next = b->next;
1957 if (b->data[0].string == NULL)
1958 lisp_free (b);
1959 else
1961 b->next = live_blocks;
1962 live_blocks = b;
1966 large_sblocks = live_blocks;
1970 /* Compact data of small strings. Free sblocks that don't contain
1971 data of live strings after compaction. */
1973 static void
1974 compact_small_strings (void)
1976 struct sblock *b, *tb, *next;
1977 sdata *from, *to, *end, *tb_end;
1978 sdata *to_end, *from_end;
1980 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1981 to, and TB_END is the end of TB. */
1982 tb = oldest_sblock;
1983 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1984 to = tb->data;
1986 /* Step through the blocks from the oldest to the youngest. We
1987 expect that old blocks will stabilize over time, so that less
1988 copying will happen this way. */
1989 for (b = oldest_sblock; b; b = b->next)
1991 end = b->next_free;
1992 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1994 for (from = b->data; from < end; from = from_end)
1996 /* Compute the next FROM here because copying below may
1997 overwrite data we need to compute it. */
1998 ptrdiff_t nbytes;
1999 struct Lisp_String *s = from->string;
2001 #ifdef GC_CHECK_STRING_BYTES
2002 /* Check that the string size recorded in the string is the
2003 same as the one recorded in the sdata structure. */
2004 if (s && string_bytes (s) != SDATA_NBYTES (from))
2005 emacs_abort ();
2006 #endif /* GC_CHECK_STRING_BYTES */
2008 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2009 eassert (nbytes <= LARGE_STRING_BYTES);
2011 nbytes = SDATA_SIZE (nbytes);
2012 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2014 #ifdef GC_CHECK_STRING_OVERRUN
2015 if (memcmp (string_overrun_cookie,
2016 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2017 GC_STRING_OVERRUN_COOKIE_SIZE))
2018 emacs_abort ();
2019 #endif
2021 /* Non-NULL S means it's alive. Copy its data. */
2022 if (s)
2024 /* If TB is full, proceed with the next sblock. */
2025 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2026 if (to_end > tb_end)
2028 tb->next_free = to;
2029 tb = tb->next;
2030 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2031 to = tb->data;
2032 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2035 /* Copy, and update the string's `data' pointer. */
2036 if (from != to)
2038 eassert (tb != b || to < from);
2039 memmove (to, from, nbytes + GC_STRING_EXTRA);
2040 to->string->data = SDATA_DATA (to);
2043 /* Advance past the sdata we copied to. */
2044 to = to_end;
2049 /* The rest of the sblocks following TB don't contain live data, so
2050 we can free them. */
2051 for (b = tb->next; b; b = next)
2053 next = b->next;
2054 lisp_free (b);
2057 tb->next_free = to;
2058 tb->next = NULL;
2059 current_sblock = tb;
2062 void
2063 string_overflow (void)
2065 error ("Maximum string size exceeded");
2068 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2069 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2070 LENGTH must be an integer.
2071 INIT must be an integer that represents a character. */)
2072 (Lisp_Object length, Lisp_Object init)
2074 register Lisp_Object val;
2075 int c;
2076 EMACS_INT nbytes;
2078 CHECK_NATNUM (length);
2079 CHECK_CHARACTER (init);
2081 c = XFASTINT (init);
2082 if (ASCII_CHAR_P (c))
2084 nbytes = XINT (length);
2085 val = make_uninit_string (nbytes);
2086 memset (SDATA (val), c, nbytes);
2087 SDATA (val)[nbytes] = 0;
2089 else
2091 unsigned char str[MAX_MULTIBYTE_LENGTH];
2092 ptrdiff_t len = CHAR_STRING (c, str);
2093 EMACS_INT string_len = XINT (length);
2094 unsigned char *p, *beg, *end;
2096 if (string_len > STRING_BYTES_MAX / len)
2097 string_overflow ();
2098 nbytes = len * string_len;
2099 val = make_uninit_multibyte_string (string_len, nbytes);
2100 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2102 /* First time we just copy `str' to the data of `val'. */
2103 if (p == beg)
2104 memcpy (p, str, len);
2105 else
2107 /* Next time we copy largest possible chunk from
2108 initialized to uninitialized part of `val'. */
2109 len = min (p - beg, end - p);
2110 memcpy (p, beg, len);
2113 *p = 0;
2116 return val;
2119 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2120 Return A. */
2122 Lisp_Object
2123 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2125 EMACS_INT nbits = bool_vector_size (a);
2126 if (0 < nbits)
2128 unsigned char *data = bool_vector_uchar_data (a);
2129 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2130 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2131 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2132 memset (data, pattern, nbytes - 1);
2133 data[nbytes - 1] = pattern & last_mask;
2135 return a;
2138 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2140 Lisp_Object
2141 make_uninit_bool_vector (EMACS_INT nbits)
2143 Lisp_Object val;
2144 EMACS_INT words = bool_vector_words (nbits);
2145 EMACS_INT word_bytes = words * sizeof (bits_word);
2146 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2147 + word_size - 1)
2148 / word_size);
2149 struct Lisp_Bool_Vector *p
2150 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2151 XSETVECTOR (val, p);
2152 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2153 p->size = nbits;
2155 /* Clear padding at the end. */
2156 if (words)
2157 p->data[words - 1] = 0;
2159 return val;
2162 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2163 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2164 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2165 (Lisp_Object length, Lisp_Object init)
2167 Lisp_Object val;
2169 CHECK_NATNUM (length);
2170 val = make_uninit_bool_vector (XFASTINT (length));
2171 return bool_vector_fill (val, init);
2174 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2175 doc: /* Return a new bool-vector with specified arguments as elements.
2176 Any number of arguments, even zero arguments, are allowed.
2177 usage: (bool-vector &rest OBJECTS) */)
2178 (ptrdiff_t nargs, Lisp_Object *args)
2180 ptrdiff_t i;
2181 Lisp_Object vector;
2183 vector = make_uninit_bool_vector (nargs);
2184 for (i = 0; i < nargs; i++)
2185 bool_vector_set (vector, i, !NILP (args[i]));
2187 return vector;
2190 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2191 of characters from the contents. This string may be unibyte or
2192 multibyte, depending on the contents. */
2194 Lisp_Object
2195 make_string (const char *contents, ptrdiff_t nbytes)
2197 register Lisp_Object val;
2198 ptrdiff_t nchars, multibyte_nbytes;
2200 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2201 &nchars, &multibyte_nbytes);
2202 if (nbytes == nchars || nbytes != multibyte_nbytes)
2203 /* CONTENTS contains no multibyte sequences or contains an invalid
2204 multibyte sequence. We must make unibyte string. */
2205 val = make_unibyte_string (contents, nbytes);
2206 else
2207 val = make_multibyte_string (contents, nchars, nbytes);
2208 return val;
2211 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2213 Lisp_Object
2214 make_unibyte_string (const char *contents, ptrdiff_t length)
2216 register Lisp_Object val;
2217 val = make_uninit_string (length);
2218 memcpy (SDATA (val), contents, length);
2219 return val;
2223 /* Make a multibyte string from NCHARS characters occupying NBYTES
2224 bytes at CONTENTS. */
2226 Lisp_Object
2227 make_multibyte_string (const char *contents,
2228 ptrdiff_t nchars, ptrdiff_t nbytes)
2230 register Lisp_Object val;
2231 val = make_uninit_multibyte_string (nchars, nbytes);
2232 memcpy (SDATA (val), contents, nbytes);
2233 return val;
2237 /* Make a string from NCHARS characters occupying NBYTES bytes at
2238 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2240 Lisp_Object
2241 make_string_from_bytes (const char *contents,
2242 ptrdiff_t nchars, ptrdiff_t nbytes)
2244 register Lisp_Object val;
2245 val = make_uninit_multibyte_string (nchars, nbytes);
2246 memcpy (SDATA (val), contents, nbytes);
2247 if (SBYTES (val) == SCHARS (val))
2248 STRING_SET_UNIBYTE (val);
2249 return val;
2253 /* Make a string from NCHARS characters occupying NBYTES bytes at
2254 CONTENTS. The argument MULTIBYTE controls whether to label the
2255 string as multibyte. If NCHARS is negative, it counts the number of
2256 characters by itself. */
2258 Lisp_Object
2259 make_specified_string (const char *contents,
2260 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2262 Lisp_Object val;
2264 if (nchars < 0)
2266 if (multibyte)
2267 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2268 nbytes);
2269 else
2270 nchars = nbytes;
2272 val = make_uninit_multibyte_string (nchars, nbytes);
2273 memcpy (SDATA (val), contents, nbytes);
2274 if (!multibyte)
2275 STRING_SET_UNIBYTE (val);
2276 return val;
2280 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2281 occupying LENGTH bytes. */
2283 Lisp_Object
2284 make_uninit_string (EMACS_INT length)
2286 Lisp_Object val;
2288 if (!length)
2289 return empty_unibyte_string;
2290 val = make_uninit_multibyte_string (length, length);
2291 STRING_SET_UNIBYTE (val);
2292 return val;
2296 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2297 which occupy NBYTES bytes. */
2299 Lisp_Object
2300 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2302 Lisp_Object string;
2303 struct Lisp_String *s;
2305 if (nchars < 0)
2306 emacs_abort ();
2307 if (!nbytes)
2308 return empty_multibyte_string;
2310 s = allocate_string ();
2311 s->intervals = NULL;
2312 allocate_string_data (s, nchars, nbytes);
2313 XSETSTRING (string, s);
2314 string_chars_consed += nbytes;
2315 return string;
2318 /* Print arguments to BUF according to a FORMAT, then return
2319 a Lisp_String initialized with the data from BUF. */
2321 Lisp_Object
2322 make_formatted_string (char *buf, const char *format, ...)
2324 va_list ap;
2325 int length;
2327 va_start (ap, format);
2328 length = vsprintf (buf, format, ap);
2329 va_end (ap);
2330 return make_string (buf, length);
2334 /***********************************************************************
2335 Float Allocation
2336 ***********************************************************************/
2338 /* We store float cells inside of float_blocks, allocating a new
2339 float_block with malloc whenever necessary. Float cells reclaimed
2340 by GC are put on a free list to be reallocated before allocating
2341 any new float cells from the latest float_block. */
2343 #define FLOAT_BLOCK_SIZE \
2344 (((BLOCK_BYTES - sizeof (struct float_block *) \
2345 /* The compiler might add padding at the end. */ \
2346 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2347 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2349 #define GETMARKBIT(block,n) \
2350 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2351 >> ((n) % BITS_PER_BITS_WORD)) \
2352 & 1)
2354 #define SETMARKBIT(block,n) \
2355 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2356 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2358 #define UNSETMARKBIT(block,n) \
2359 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2360 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2362 #define FLOAT_BLOCK(fptr) \
2363 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2365 #define FLOAT_INDEX(fptr) \
2366 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2368 struct float_block
2370 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2371 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2372 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2373 struct float_block *next;
2376 #define FLOAT_MARKED_P(fptr) \
2377 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2379 #define FLOAT_MARK(fptr) \
2380 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2382 #define FLOAT_UNMARK(fptr) \
2383 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2385 /* Current float_block. */
2387 static struct float_block *float_block;
2389 /* Index of first unused Lisp_Float in the current float_block. */
2391 static int float_block_index = FLOAT_BLOCK_SIZE;
2393 /* Free-list of Lisp_Floats. */
2395 static struct Lisp_Float *float_free_list;
2397 /* Return a new float object with value FLOAT_VALUE. */
2399 Lisp_Object
2400 make_float (double float_value)
2402 register Lisp_Object val;
2404 MALLOC_BLOCK_INPUT;
2406 if (float_free_list)
2408 /* We use the data field for chaining the free list
2409 so that we won't use the same field that has the mark bit. */
2410 XSETFLOAT (val, float_free_list);
2411 float_free_list = float_free_list->u.chain;
2413 else
2415 if (float_block_index == FLOAT_BLOCK_SIZE)
2417 struct float_block *new
2418 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2419 new->next = float_block;
2420 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2421 float_block = new;
2422 float_block_index = 0;
2423 total_free_floats += FLOAT_BLOCK_SIZE;
2425 XSETFLOAT (val, &float_block->floats[float_block_index]);
2426 float_block_index++;
2429 MALLOC_UNBLOCK_INPUT;
2431 XFLOAT_INIT (val, float_value);
2432 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2433 consing_since_gc += sizeof (struct Lisp_Float);
2434 floats_consed++;
2435 total_free_floats--;
2436 return val;
2441 /***********************************************************************
2442 Cons Allocation
2443 ***********************************************************************/
2445 /* We store cons cells inside of cons_blocks, allocating a new
2446 cons_block with malloc whenever necessary. Cons cells reclaimed by
2447 GC are put on a free list to be reallocated before allocating
2448 any new cons cells from the latest cons_block. */
2450 #define CONS_BLOCK_SIZE \
2451 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2452 /* The compiler might add padding at the end. */ \
2453 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2454 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2456 #define CONS_BLOCK(fptr) \
2457 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2459 #define CONS_INDEX(fptr) \
2460 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2462 struct cons_block
2464 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2465 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2466 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2467 struct cons_block *next;
2470 #define CONS_MARKED_P(fptr) \
2471 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2473 #define CONS_MARK(fptr) \
2474 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2476 #define CONS_UNMARK(fptr) \
2477 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2479 /* Current cons_block. */
2481 static struct cons_block *cons_block;
2483 /* Index of first unused Lisp_Cons in the current block. */
2485 static int cons_block_index = CONS_BLOCK_SIZE;
2487 /* Free-list of Lisp_Cons structures. */
2489 static struct Lisp_Cons *cons_free_list;
2491 /* Explicitly free a cons cell by putting it on the free-list. */
2493 void
2494 free_cons (struct Lisp_Cons *ptr)
2496 ptr->u.chain = cons_free_list;
2497 #if GC_MARK_STACK
2498 ptr->car = Vdead;
2499 #endif
2500 cons_free_list = ptr;
2501 consing_since_gc -= sizeof *ptr;
2502 total_free_conses++;
2505 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2506 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2507 (Lisp_Object car, Lisp_Object cdr)
2509 register Lisp_Object val;
2511 MALLOC_BLOCK_INPUT;
2513 if (cons_free_list)
2515 /* We use the cdr for chaining the free list
2516 so that we won't use the same field that has the mark bit. */
2517 XSETCONS (val, cons_free_list);
2518 cons_free_list = cons_free_list->u.chain;
2520 else
2522 if (cons_block_index == CONS_BLOCK_SIZE)
2524 struct cons_block *new
2525 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2526 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2527 new->next = cons_block;
2528 cons_block = new;
2529 cons_block_index = 0;
2530 total_free_conses += CONS_BLOCK_SIZE;
2532 XSETCONS (val, &cons_block->conses[cons_block_index]);
2533 cons_block_index++;
2536 MALLOC_UNBLOCK_INPUT;
2538 XSETCAR (val, car);
2539 XSETCDR (val, cdr);
2540 eassert (!CONS_MARKED_P (XCONS (val)));
2541 consing_since_gc += sizeof (struct Lisp_Cons);
2542 total_free_conses--;
2543 cons_cells_consed++;
2544 return val;
2547 #ifdef GC_CHECK_CONS_LIST
2548 /* Get an error now if there's any junk in the cons free list. */
2549 void
2550 check_cons_list (void)
2552 struct Lisp_Cons *tail = cons_free_list;
2554 while (tail)
2555 tail = tail->u.chain;
2557 #endif
2559 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2561 Lisp_Object
2562 list1 (Lisp_Object arg1)
2564 return Fcons (arg1, Qnil);
2567 Lisp_Object
2568 list2 (Lisp_Object arg1, Lisp_Object arg2)
2570 return Fcons (arg1, Fcons (arg2, Qnil));
2574 Lisp_Object
2575 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2577 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2581 Lisp_Object
2582 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2584 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2588 Lisp_Object
2589 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2591 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2592 Fcons (arg5, Qnil)))));
2595 /* Make a list of COUNT Lisp_Objects, where ARG is the
2596 first one. Allocate conses from pure space if TYPE
2597 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2599 Lisp_Object
2600 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2602 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2603 switch (type)
2605 case CONSTYPE_PURE: cons = pure_cons; break;
2606 case CONSTYPE_HEAP: cons = Fcons; break;
2607 default: emacs_abort ();
2610 eassume (0 < count);
2611 Lisp_Object val = cons (arg, Qnil);
2612 Lisp_Object tail = val;
2614 va_list ap;
2615 va_start (ap, arg);
2616 for (ptrdiff_t i = 1; i < count; i++)
2618 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2619 XSETCDR (tail, elem);
2620 tail = elem;
2622 va_end (ap);
2624 return val;
2627 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2628 doc: /* Return a newly created list with specified arguments as elements.
2629 Any number of arguments, even zero arguments, are allowed.
2630 usage: (list &rest OBJECTS) */)
2631 (ptrdiff_t nargs, Lisp_Object *args)
2633 register Lisp_Object val;
2634 val = Qnil;
2636 while (nargs > 0)
2638 nargs--;
2639 val = Fcons (args[nargs], val);
2641 return val;
2645 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2646 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2647 (register Lisp_Object length, Lisp_Object init)
2649 register Lisp_Object val;
2650 register EMACS_INT size;
2652 CHECK_NATNUM (length);
2653 size = XFASTINT (length);
2655 val = Qnil;
2656 while (size > 0)
2658 val = Fcons (init, val);
2659 --size;
2661 if (size > 0)
2663 val = Fcons (init, val);
2664 --size;
2666 if (size > 0)
2668 val = Fcons (init, val);
2669 --size;
2671 if (size > 0)
2673 val = Fcons (init, val);
2674 --size;
2676 if (size > 0)
2678 val = Fcons (init, val);
2679 --size;
2685 QUIT;
2688 return val;
2693 /***********************************************************************
2694 Vector Allocation
2695 ***********************************************************************/
2697 /* Sometimes a vector's contents are merely a pointer internally used
2698 in vector allocation code. On the rare platforms where a null
2699 pointer cannot be tagged, represent it with a Lisp 0.
2700 Usually you don't want to touch this. */
2702 static struct Lisp_Vector *
2703 next_vector (struct Lisp_Vector *v)
2705 return XUNTAG (v->contents[0], Lisp_Int0);
2708 static void
2709 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2711 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2714 /* This value is balanced well enough to avoid too much internal overhead
2715 for the most common cases; it's not required to be a power of two, but
2716 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2718 #define VECTOR_BLOCK_SIZE 4096
2720 enum
2722 /* Alignment of struct Lisp_Vector objects. */
2723 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2724 USE_LSB_TAG ? GCALIGNMENT : 1),
2726 /* Vector size requests are a multiple of this. */
2727 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2730 /* Verify assumptions described above. */
2731 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2732 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2734 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2735 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2736 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2737 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2739 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2741 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2743 /* Size of the minimal vector allocated from block. */
2745 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2747 /* Size of the largest vector allocated from block. */
2749 #define VBLOCK_BYTES_MAX \
2750 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2752 /* We maintain one free list for each possible block-allocated
2753 vector size, and this is the number of free lists we have. */
2755 #define VECTOR_MAX_FREE_LIST_INDEX \
2756 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2758 /* Common shortcut to advance vector pointer over a block data. */
2760 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2762 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2764 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2766 /* Common shortcut to setup vector on a free list. */
2768 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2769 do { \
2770 (tmp) = ((nbytes - header_size) / word_size); \
2771 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2772 eassert ((nbytes) % roundup_size == 0); \
2773 (tmp) = VINDEX (nbytes); \
2774 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2775 set_next_vector (v, vector_free_lists[tmp]); \
2776 vector_free_lists[tmp] = (v); \
2777 total_free_vector_slots += (nbytes) / word_size; \
2778 } while (0)
2780 /* This internal type is used to maintain the list of large vectors
2781 which are allocated at their own, e.g. outside of vector blocks.
2783 struct large_vector itself cannot contain a struct Lisp_Vector, as
2784 the latter contains a flexible array member and C99 does not allow
2785 such structs to be nested. Instead, each struct large_vector
2786 object LV is followed by a struct Lisp_Vector, which is at offset
2787 large_vector_offset from LV, and whose address is therefore
2788 large_vector_vec (&LV). */
2790 struct large_vector
2792 struct large_vector *next;
2795 enum
2797 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2800 static struct Lisp_Vector *
2801 large_vector_vec (struct large_vector *p)
2803 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2806 /* This internal type is used to maintain an underlying storage
2807 for small vectors. */
2809 struct vector_block
2811 char data[VECTOR_BLOCK_BYTES];
2812 struct vector_block *next;
2815 /* Chain of vector blocks. */
2817 static struct vector_block *vector_blocks;
2819 /* Vector free lists, where NTH item points to a chain of free
2820 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2822 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2824 /* Singly-linked list of large vectors. */
2826 static struct large_vector *large_vectors;
2828 /* The only vector with 0 slots, allocated from pure space. */
2830 Lisp_Object zero_vector;
2832 /* Number of live vectors. */
2834 static EMACS_INT total_vectors;
2836 /* Total size of live and free vectors, in Lisp_Object units. */
2838 static EMACS_INT total_vector_slots, total_free_vector_slots;
2840 /* Get a new vector block. */
2842 static struct vector_block *
2843 allocate_vector_block (void)
2845 struct vector_block *block = xmalloc (sizeof *block);
2847 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2848 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2849 MEM_TYPE_VECTOR_BLOCK);
2850 #endif
2852 block->next = vector_blocks;
2853 vector_blocks = block;
2854 return block;
2857 /* Called once to initialize vector allocation. */
2859 static void
2860 init_vectors (void)
2862 zero_vector = make_pure_vector (0);
2865 /* Allocate vector from a vector block. */
2867 static struct Lisp_Vector *
2868 allocate_vector_from_block (size_t nbytes)
2870 struct Lisp_Vector *vector;
2871 struct vector_block *block;
2872 size_t index, restbytes;
2874 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2875 eassert (nbytes % roundup_size == 0);
2877 /* First, try to allocate from a free list
2878 containing vectors of the requested size. */
2879 index = VINDEX (nbytes);
2880 if (vector_free_lists[index])
2882 vector = vector_free_lists[index];
2883 vector_free_lists[index] = next_vector (vector);
2884 total_free_vector_slots -= nbytes / word_size;
2885 return vector;
2888 /* Next, check free lists containing larger vectors. Since
2889 we will split the result, we should have remaining space
2890 large enough to use for one-slot vector at least. */
2891 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2892 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2893 if (vector_free_lists[index])
2895 /* This vector is larger than requested. */
2896 vector = vector_free_lists[index];
2897 vector_free_lists[index] = next_vector (vector);
2898 total_free_vector_slots -= nbytes / word_size;
2900 /* Excess bytes are used for the smaller vector,
2901 which should be set on an appropriate free list. */
2902 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2903 eassert (restbytes % roundup_size == 0);
2904 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2905 return vector;
2908 /* Finally, need a new vector block. */
2909 block = allocate_vector_block ();
2911 /* New vector will be at the beginning of this block. */
2912 vector = (struct Lisp_Vector *) block->data;
2914 /* If the rest of space from this block is large enough
2915 for one-slot vector at least, set up it on a free list. */
2916 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2917 if (restbytes >= VBLOCK_BYTES_MIN)
2919 eassert (restbytes % roundup_size == 0);
2920 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2922 return vector;
2925 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2927 #define VECTOR_IN_BLOCK(vector, block) \
2928 ((char *) (vector) <= (block)->data \
2929 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2931 /* Return the memory footprint of V in bytes. */
2933 static ptrdiff_t
2934 vector_nbytes (struct Lisp_Vector *v)
2936 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2937 ptrdiff_t nwords;
2939 if (size & PSEUDOVECTOR_FLAG)
2941 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2943 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2944 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2945 * sizeof (bits_word));
2946 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2947 verify (header_size <= bool_header_size);
2948 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2950 else
2951 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2952 + ((size & PSEUDOVECTOR_REST_MASK)
2953 >> PSEUDOVECTOR_SIZE_BITS));
2955 else
2956 nwords = size;
2957 return vroundup (header_size + word_size * nwords);
2960 /* Release extra resources still in use by VECTOR, which may be any
2961 vector-like object. For now, this is used just to free data in
2962 font objects. */
2964 static void
2965 cleanup_vector (struct Lisp_Vector *vector)
2967 detect_suspicious_free (vector);
2968 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2969 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2970 == FONT_OBJECT_MAX))
2972 struct font_driver *drv = ((struct font *) vector)->driver;
2974 /* The font driver might sometimes be NULL, e.g. if Emacs was
2975 interrupted before it had time to set it up. */
2976 if (drv)
2978 /* Attempt to catch subtle bugs like Bug#16140. */
2979 eassert (valid_font_driver (drv));
2980 drv->close ((struct font *) vector);
2985 /* Reclaim space used by unmarked vectors. */
2987 NO_INLINE /* For better stack traces */
2988 static void
2989 sweep_vectors (void)
2991 struct vector_block *block, **bprev = &vector_blocks;
2992 struct large_vector *lv, **lvprev = &large_vectors;
2993 struct Lisp_Vector *vector, *next;
2995 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2996 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2998 /* Looking through vector blocks. */
3000 for (block = vector_blocks; block; block = *bprev)
3002 bool free_this_block = 0;
3003 ptrdiff_t nbytes;
3005 for (vector = (struct Lisp_Vector *) block->data;
3006 VECTOR_IN_BLOCK (vector, block); vector = next)
3008 if (VECTOR_MARKED_P (vector))
3010 VECTOR_UNMARK (vector);
3011 total_vectors++;
3012 nbytes = vector_nbytes (vector);
3013 total_vector_slots += nbytes / word_size;
3014 next = ADVANCE (vector, nbytes);
3016 else
3018 ptrdiff_t total_bytes;
3020 cleanup_vector (vector);
3021 nbytes = vector_nbytes (vector);
3022 total_bytes = nbytes;
3023 next = ADVANCE (vector, nbytes);
3025 /* While NEXT is not marked, try to coalesce with VECTOR,
3026 thus making VECTOR of the largest possible size. */
3028 while (VECTOR_IN_BLOCK (next, block))
3030 if (VECTOR_MARKED_P (next))
3031 break;
3032 cleanup_vector (next);
3033 nbytes = vector_nbytes (next);
3034 total_bytes += nbytes;
3035 next = ADVANCE (next, nbytes);
3038 eassert (total_bytes % roundup_size == 0);
3040 if (vector == (struct Lisp_Vector *) block->data
3041 && !VECTOR_IN_BLOCK (next, block))
3042 /* This block should be freed because all of its
3043 space was coalesced into the only free vector. */
3044 free_this_block = 1;
3045 else
3047 size_t tmp;
3048 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3053 if (free_this_block)
3055 *bprev = block->next;
3056 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3057 mem_delete (mem_find (block->data));
3058 #endif
3059 xfree (block);
3061 else
3062 bprev = &block->next;
3065 /* Sweep large vectors. */
3067 for (lv = large_vectors; lv; lv = *lvprev)
3069 vector = large_vector_vec (lv);
3070 if (VECTOR_MARKED_P (vector))
3072 VECTOR_UNMARK (vector);
3073 total_vectors++;
3074 if (vector->header.size & PSEUDOVECTOR_FLAG)
3076 /* All non-bool pseudovectors are small enough to be allocated
3077 from vector blocks. This code should be redesigned if some
3078 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3079 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3080 total_vector_slots += vector_nbytes (vector) / word_size;
3082 else
3083 total_vector_slots
3084 += header_size / word_size + vector->header.size;
3085 lvprev = &lv->next;
3087 else
3089 *lvprev = lv->next;
3090 lisp_free (lv);
3095 /* Value is a pointer to a newly allocated Lisp_Vector structure
3096 with room for LEN Lisp_Objects. */
3098 static struct Lisp_Vector *
3099 allocate_vectorlike (ptrdiff_t len)
3101 struct Lisp_Vector *p;
3103 MALLOC_BLOCK_INPUT;
3105 if (len == 0)
3106 p = XVECTOR (zero_vector);
3107 else
3109 size_t nbytes = header_size + len * word_size;
3111 #ifdef DOUG_LEA_MALLOC
3112 if (!mmap_lisp_allowed_p ())
3113 mallopt (M_MMAP_MAX, 0);
3114 #endif
3116 if (nbytes <= VBLOCK_BYTES_MAX)
3117 p = allocate_vector_from_block (vroundup (nbytes));
3118 else
3120 struct large_vector *lv
3121 = lisp_malloc ((large_vector_offset + header_size
3122 + len * word_size),
3123 MEM_TYPE_VECTORLIKE);
3124 lv->next = large_vectors;
3125 large_vectors = lv;
3126 p = large_vector_vec (lv);
3129 #ifdef DOUG_LEA_MALLOC
3130 if (!mmap_lisp_allowed_p ())
3131 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3132 #endif
3134 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3135 emacs_abort ();
3137 consing_since_gc += nbytes;
3138 vector_cells_consed += len;
3141 MALLOC_UNBLOCK_INPUT;
3143 return p;
3147 /* Allocate a vector with LEN slots. */
3149 struct Lisp_Vector *
3150 allocate_vector (EMACS_INT len)
3152 struct Lisp_Vector *v;
3153 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3155 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3156 memory_full (SIZE_MAX);
3157 v = allocate_vectorlike (len);
3158 v->header.size = len;
3159 return v;
3163 /* Allocate other vector-like structures. */
3165 struct Lisp_Vector *
3166 allocate_pseudovector (int memlen, int lisplen,
3167 int zerolen, enum pvec_type tag)
3169 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3171 /* Catch bogus values. */
3172 eassert (0 <= tag && tag <= PVEC_FONT);
3173 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3174 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3175 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3177 /* Only the first LISPLEN slots will be traced normally by the GC. */
3178 memclear (v->contents, zerolen * word_size);
3179 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3180 return v;
3183 struct buffer *
3184 allocate_buffer (void)
3186 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3188 BUFFER_PVEC_INIT (b);
3189 /* Put B on the chain of all buffers including killed ones. */
3190 b->next = all_buffers;
3191 all_buffers = b;
3192 /* Note that the rest fields of B are not initialized. */
3193 return b;
3196 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3197 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3198 See also the function `vector'. */)
3199 (register Lisp_Object length, Lisp_Object init)
3201 Lisp_Object vector;
3202 register ptrdiff_t sizei;
3203 register ptrdiff_t i;
3204 register struct Lisp_Vector *p;
3206 CHECK_NATNUM (length);
3208 p = allocate_vector (XFASTINT (length));
3209 sizei = XFASTINT (length);
3210 for (i = 0; i < sizei; i++)
3211 p->contents[i] = init;
3213 XSETVECTOR (vector, p);
3214 return vector;
3217 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3218 doc: /* Return a newly created vector with specified arguments as elements.
3219 Any number of arguments, even zero arguments, are allowed.
3220 usage: (vector &rest OBJECTS) */)
3221 (ptrdiff_t nargs, Lisp_Object *args)
3223 ptrdiff_t i;
3224 register Lisp_Object val = make_uninit_vector (nargs);
3225 register struct Lisp_Vector *p = XVECTOR (val);
3227 for (i = 0; i < nargs; i++)
3228 p->contents[i] = args[i];
3229 return val;
3232 void
3233 make_byte_code (struct Lisp_Vector *v)
3235 /* Don't allow the global zero_vector to become a byte code object. */
3236 eassert (0 < v->header.size);
3238 if (v->header.size > 1 && STRINGP (v->contents[1])
3239 && STRING_MULTIBYTE (v->contents[1]))
3240 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3241 earlier because they produced a raw 8-bit string for byte-code
3242 and now such a byte-code string is loaded as multibyte while
3243 raw 8-bit characters converted to multibyte form. Thus, now we
3244 must convert them back to the original unibyte form. */
3245 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3246 XSETPVECTYPE (v, PVEC_COMPILED);
3249 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3250 doc: /* Create a byte-code object with specified arguments as elements.
3251 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3252 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3253 and (optional) INTERACTIVE-SPEC.
3254 The first four arguments are required; at most six have any
3255 significance.
3256 The ARGLIST can be either like the one of `lambda', in which case the arguments
3257 will be dynamically bound before executing the byte code, or it can be an
3258 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3259 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3260 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3261 argument to catch the left-over arguments. If such an integer is used, the
3262 arguments will not be dynamically bound but will be instead pushed on the
3263 stack before executing the byte-code.
3264 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3265 (ptrdiff_t nargs, Lisp_Object *args)
3267 ptrdiff_t i;
3268 register Lisp_Object val = make_uninit_vector (nargs);
3269 register struct Lisp_Vector *p = XVECTOR (val);
3271 /* We used to purecopy everything here, if purify-flag was set. This worked
3272 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3273 dangerous, since make-byte-code is used during execution to build
3274 closures, so any closure built during the preload phase would end up
3275 copied into pure space, including its free variables, which is sometimes
3276 just wasteful and other times plainly wrong (e.g. those free vars may want
3277 to be setcar'd). */
3279 for (i = 0; i < nargs; i++)
3280 p->contents[i] = args[i];
3281 make_byte_code (p);
3282 XSETCOMPILED (val, p);
3283 return val;
3288 /***********************************************************************
3289 Symbol Allocation
3290 ***********************************************************************/
3292 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3293 of the required alignment if LSB tags are used. */
3295 union aligned_Lisp_Symbol
3297 struct Lisp_Symbol s;
3298 #if USE_LSB_TAG
3299 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3300 & -GCALIGNMENT];
3301 #endif
3304 /* Each symbol_block is just under 1020 bytes long, since malloc
3305 really allocates in units of powers of two and uses 4 bytes for its
3306 own overhead. */
3308 #define SYMBOL_BLOCK_SIZE \
3309 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3311 struct symbol_block
3313 /* Place `symbols' first, to preserve alignment. */
3314 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3315 struct symbol_block *next;
3318 /* Current symbol block and index of first unused Lisp_Symbol
3319 structure in it. */
3321 static struct symbol_block *symbol_block;
3322 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3323 /* Pointer to the first symbol_block that contains pinned symbols.
3324 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3325 10K of which are pinned (and all but 250 of them are interned in obarray),
3326 whereas a "typical session" has in the order of 30K symbols.
3327 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3328 than 30K to find the 10K symbols we need to mark. */
3329 static struct symbol_block *symbol_block_pinned;
3331 /* List of free symbols. */
3333 static struct Lisp_Symbol *symbol_free_list;
3335 static void
3336 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3338 XSYMBOL (sym)->name = name;
3341 void
3342 init_symbol (Lisp_Object val, Lisp_Object name)
3344 struct Lisp_Symbol *p = XSYMBOL (val);
3345 set_symbol_name (val, name);
3346 set_symbol_plist (val, Qnil);
3347 p->redirect = SYMBOL_PLAINVAL;
3348 SET_SYMBOL_VAL (p, Qunbound);
3349 set_symbol_function (val, Qnil);
3350 set_symbol_next (val, NULL);
3351 p->gcmarkbit = false;
3352 p->interned = SYMBOL_UNINTERNED;
3353 p->constant = 0;
3354 p->declared_special = false;
3355 p->pinned = false;
3358 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3359 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3360 Its value is void, and its function definition and property list are nil. */)
3361 (Lisp_Object name)
3363 Lisp_Object val;
3365 CHECK_STRING (name);
3367 MALLOC_BLOCK_INPUT;
3369 if (symbol_free_list)
3371 XSETSYMBOL (val, symbol_free_list);
3372 symbol_free_list = symbol_free_list->next;
3374 else
3376 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3378 struct symbol_block *new
3379 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3380 new->next = symbol_block;
3381 symbol_block = new;
3382 symbol_block_index = 0;
3383 total_free_symbols += SYMBOL_BLOCK_SIZE;
3385 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3386 symbol_block_index++;
3389 MALLOC_UNBLOCK_INPUT;
3391 init_symbol (val, name);
3392 consing_since_gc += sizeof (struct Lisp_Symbol);
3393 symbols_consed++;
3394 total_free_symbols--;
3395 return val;
3400 /***********************************************************************
3401 Marker (Misc) Allocation
3402 ***********************************************************************/
3404 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3405 the required alignment when LSB tags are used. */
3407 union aligned_Lisp_Misc
3409 union Lisp_Misc m;
3410 #if USE_LSB_TAG
3411 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3412 & -GCALIGNMENT];
3413 #endif
3416 /* Allocation of markers and other objects that share that structure.
3417 Works like allocation of conses. */
3419 #define MARKER_BLOCK_SIZE \
3420 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3422 struct marker_block
3424 /* Place `markers' first, to preserve alignment. */
3425 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3426 struct marker_block *next;
3429 static struct marker_block *marker_block;
3430 static int marker_block_index = MARKER_BLOCK_SIZE;
3432 static union Lisp_Misc *marker_free_list;
3434 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3436 static Lisp_Object
3437 allocate_misc (enum Lisp_Misc_Type type)
3439 Lisp_Object val;
3441 MALLOC_BLOCK_INPUT;
3443 if (marker_free_list)
3445 XSETMISC (val, marker_free_list);
3446 marker_free_list = marker_free_list->u_free.chain;
3448 else
3450 if (marker_block_index == MARKER_BLOCK_SIZE)
3452 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3453 new->next = marker_block;
3454 marker_block = new;
3455 marker_block_index = 0;
3456 total_free_markers += MARKER_BLOCK_SIZE;
3458 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3459 marker_block_index++;
3462 MALLOC_UNBLOCK_INPUT;
3464 --total_free_markers;
3465 consing_since_gc += sizeof (union Lisp_Misc);
3466 misc_objects_consed++;
3467 XMISCANY (val)->type = type;
3468 XMISCANY (val)->gcmarkbit = 0;
3469 return val;
3472 /* Free a Lisp_Misc object. */
3474 void
3475 free_misc (Lisp_Object misc)
3477 XMISCANY (misc)->type = Lisp_Misc_Free;
3478 XMISC (misc)->u_free.chain = marker_free_list;
3479 marker_free_list = XMISC (misc);
3480 consing_since_gc -= sizeof (union Lisp_Misc);
3481 total_free_markers++;
3484 /* Verify properties of Lisp_Save_Value's representation
3485 that are assumed here and elsewhere. */
3487 verify (SAVE_UNUSED == 0);
3488 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3489 >> SAVE_SLOT_BITS)
3490 == 0);
3492 /* Return Lisp_Save_Value objects for the various combinations
3493 that callers need. */
3495 Lisp_Object
3496 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3498 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3499 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3500 p->save_type = SAVE_TYPE_INT_INT_INT;
3501 p->data[0].integer = a;
3502 p->data[1].integer = b;
3503 p->data[2].integer = c;
3504 return val;
3507 Lisp_Object
3508 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3509 Lisp_Object d)
3511 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3512 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3513 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3514 p->data[0].object = a;
3515 p->data[1].object = b;
3516 p->data[2].object = c;
3517 p->data[3].object = d;
3518 return val;
3521 Lisp_Object
3522 make_save_ptr (void *a)
3524 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3525 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3526 p->save_type = SAVE_POINTER;
3527 p->data[0].pointer = a;
3528 return val;
3531 Lisp_Object
3532 make_save_ptr_int (void *a, ptrdiff_t b)
3534 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3535 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3536 p->save_type = SAVE_TYPE_PTR_INT;
3537 p->data[0].pointer = a;
3538 p->data[1].integer = b;
3539 return val;
3542 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3543 Lisp_Object
3544 make_save_ptr_ptr (void *a, void *b)
3546 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3547 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3548 p->save_type = SAVE_TYPE_PTR_PTR;
3549 p->data[0].pointer = a;
3550 p->data[1].pointer = b;
3551 return val;
3553 #endif
3555 Lisp_Object
3556 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3558 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3559 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3560 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3561 p->data[0].funcpointer = a;
3562 p->data[1].pointer = b;
3563 p->data[2].object = c;
3564 return val;
3567 /* Return a Lisp_Save_Value object that represents an array A
3568 of N Lisp objects. */
3570 Lisp_Object
3571 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3573 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3574 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3575 p->save_type = SAVE_TYPE_MEMORY;
3576 p->data[0].pointer = a;
3577 p->data[1].integer = n;
3578 return val;
3581 /* Free a Lisp_Save_Value object. Do not use this function
3582 if SAVE contains pointer other than returned by xmalloc. */
3584 void
3585 free_save_value (Lisp_Object save)
3587 xfree (XSAVE_POINTER (save, 0));
3588 free_misc (save);
3591 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3593 Lisp_Object
3594 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3596 register Lisp_Object overlay;
3598 overlay = allocate_misc (Lisp_Misc_Overlay);
3599 OVERLAY_START (overlay) = start;
3600 OVERLAY_END (overlay) = end;
3601 set_overlay_plist (overlay, plist);
3602 XOVERLAY (overlay)->next = NULL;
3603 return overlay;
3606 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3607 doc: /* Return a newly allocated marker which does not point at any place. */)
3608 (void)
3610 register Lisp_Object val;
3611 register struct Lisp_Marker *p;
3613 val = allocate_misc (Lisp_Misc_Marker);
3614 p = XMARKER (val);
3615 p->buffer = 0;
3616 p->bytepos = 0;
3617 p->charpos = 0;
3618 p->next = NULL;
3619 p->insertion_type = 0;
3620 p->need_adjustment = 0;
3621 return val;
3624 /* Return a newly allocated marker which points into BUF
3625 at character position CHARPOS and byte position BYTEPOS. */
3627 Lisp_Object
3628 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3630 Lisp_Object obj;
3631 struct Lisp_Marker *m;
3633 /* No dead buffers here. */
3634 eassert (BUFFER_LIVE_P (buf));
3636 /* Every character is at least one byte. */
3637 eassert (charpos <= bytepos);
3639 obj = allocate_misc (Lisp_Misc_Marker);
3640 m = XMARKER (obj);
3641 m->buffer = buf;
3642 m->charpos = charpos;
3643 m->bytepos = bytepos;
3644 m->insertion_type = 0;
3645 m->need_adjustment = 0;
3646 m->next = BUF_MARKERS (buf);
3647 BUF_MARKERS (buf) = m;
3648 return obj;
3651 /* Put MARKER back on the free list after using it temporarily. */
3653 void
3654 free_marker (Lisp_Object marker)
3656 unchain_marker (XMARKER (marker));
3657 free_misc (marker);
3661 /* Return a newly created vector or string with specified arguments as
3662 elements. If all the arguments are characters that can fit
3663 in a string of events, make a string; otherwise, make a vector.
3665 Any number of arguments, even zero arguments, are allowed. */
3667 Lisp_Object
3668 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3670 ptrdiff_t i;
3672 for (i = 0; i < nargs; i++)
3673 /* The things that fit in a string
3674 are characters that are in 0...127,
3675 after discarding the meta bit and all the bits above it. */
3676 if (!INTEGERP (args[i])
3677 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3678 return Fvector (nargs, args);
3680 /* Since the loop exited, we know that all the things in it are
3681 characters, so we can make a string. */
3683 Lisp_Object result;
3685 result = Fmake_string (make_number (nargs), make_number (0));
3686 for (i = 0; i < nargs; i++)
3688 SSET (result, i, XINT (args[i]));
3689 /* Move the meta bit to the right place for a string char. */
3690 if (XINT (args[i]) & CHAR_META)
3691 SSET (result, i, SREF (result, i) | 0x80);
3694 return result;
3700 /************************************************************************
3701 Memory Full Handling
3702 ************************************************************************/
3705 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3706 there may have been size_t overflow so that malloc was never
3707 called, or perhaps malloc was invoked successfully but the
3708 resulting pointer had problems fitting into a tagged EMACS_INT. In
3709 either case this counts as memory being full even though malloc did
3710 not fail. */
3712 void
3713 memory_full (size_t nbytes)
3715 /* Do not go into hysterics merely because a large request failed. */
3716 bool enough_free_memory = 0;
3717 if (SPARE_MEMORY < nbytes)
3719 void *p;
3721 MALLOC_BLOCK_INPUT;
3722 p = malloc (SPARE_MEMORY);
3723 if (p)
3725 free (p);
3726 enough_free_memory = 1;
3728 MALLOC_UNBLOCK_INPUT;
3731 if (! enough_free_memory)
3733 int i;
3735 Vmemory_full = Qt;
3737 memory_full_cons_threshold = sizeof (struct cons_block);
3739 /* The first time we get here, free the spare memory. */
3740 for (i = 0; i < ARRAYELTS (spare_memory); i++)
3741 if (spare_memory[i])
3743 if (i == 0)
3744 free (spare_memory[i]);
3745 else if (i >= 1 && i <= 4)
3746 lisp_align_free (spare_memory[i]);
3747 else
3748 lisp_free (spare_memory[i]);
3749 spare_memory[i] = 0;
3753 /* This used to call error, but if we've run out of memory, we could
3754 get infinite recursion trying to build the string. */
3755 xsignal (Qnil, Vmemory_signal_data);
3758 /* If we released our reserve (due to running out of memory),
3759 and we have a fair amount free once again,
3760 try to set aside another reserve in case we run out once more.
3762 This is called when a relocatable block is freed in ralloc.c,
3763 and also directly from this file, in case we're not using ralloc.c. */
3765 void
3766 refill_memory_reserve (void)
3768 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
3769 if (spare_memory[0] == 0)
3770 spare_memory[0] = malloc (SPARE_MEMORY);
3771 if (spare_memory[1] == 0)
3772 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3773 MEM_TYPE_SPARE);
3774 if (spare_memory[2] == 0)
3775 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3776 MEM_TYPE_SPARE);
3777 if (spare_memory[3] == 0)
3778 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3779 MEM_TYPE_SPARE);
3780 if (spare_memory[4] == 0)
3781 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3782 MEM_TYPE_SPARE);
3783 if (spare_memory[5] == 0)
3784 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3785 MEM_TYPE_SPARE);
3786 if (spare_memory[6] == 0)
3787 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3788 MEM_TYPE_SPARE);
3789 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3790 Vmemory_full = Qnil;
3791 #endif
3794 /************************************************************************
3795 C Stack Marking
3796 ************************************************************************/
3798 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3800 /* Conservative C stack marking requires a method to identify possibly
3801 live Lisp objects given a pointer value. We do this by keeping
3802 track of blocks of Lisp data that are allocated in a red-black tree
3803 (see also the comment of mem_node which is the type of nodes in
3804 that tree). Function lisp_malloc adds information for an allocated
3805 block to the red-black tree with calls to mem_insert, and function
3806 lisp_free removes it with mem_delete. Functions live_string_p etc
3807 call mem_find to lookup information about a given pointer in the
3808 tree, and use that to determine if the pointer points to a Lisp
3809 object or not. */
3811 /* Initialize this part of alloc.c. */
3813 static void
3814 mem_init (void)
3816 mem_z.left = mem_z.right = MEM_NIL;
3817 mem_z.parent = NULL;
3818 mem_z.color = MEM_BLACK;
3819 mem_z.start = mem_z.end = NULL;
3820 mem_root = MEM_NIL;
3824 /* Value is a pointer to the mem_node containing START. Value is
3825 MEM_NIL if there is no node in the tree containing START. */
3827 static struct mem_node *
3828 mem_find (void *start)
3830 struct mem_node *p;
3832 if (start < min_heap_address || start > max_heap_address)
3833 return MEM_NIL;
3835 /* Make the search always successful to speed up the loop below. */
3836 mem_z.start = start;
3837 mem_z.end = (char *) start + 1;
3839 p = mem_root;
3840 while (start < p->start || start >= p->end)
3841 p = start < p->start ? p->left : p->right;
3842 return p;
3846 /* Insert a new node into the tree for a block of memory with start
3847 address START, end address END, and type TYPE. Value is a
3848 pointer to the node that was inserted. */
3850 static struct mem_node *
3851 mem_insert (void *start, void *end, enum mem_type type)
3853 struct mem_node *c, *parent, *x;
3855 if (min_heap_address == NULL || start < min_heap_address)
3856 min_heap_address = start;
3857 if (max_heap_address == NULL || end > max_heap_address)
3858 max_heap_address = end;
3860 /* See where in the tree a node for START belongs. In this
3861 particular application, it shouldn't happen that a node is already
3862 present. For debugging purposes, let's check that. */
3863 c = mem_root;
3864 parent = NULL;
3866 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3868 while (c != MEM_NIL)
3870 if (start >= c->start && start < c->end)
3871 emacs_abort ();
3872 parent = c;
3873 c = start < c->start ? c->left : c->right;
3876 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3878 while (c != MEM_NIL)
3880 parent = c;
3881 c = start < c->start ? c->left : c->right;
3884 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3886 /* Create a new node. */
3887 #ifdef GC_MALLOC_CHECK
3888 x = malloc (sizeof *x);
3889 if (x == NULL)
3890 emacs_abort ();
3891 #else
3892 x = xmalloc (sizeof *x);
3893 #endif
3894 x->start = start;
3895 x->end = end;
3896 x->type = type;
3897 x->parent = parent;
3898 x->left = x->right = MEM_NIL;
3899 x->color = MEM_RED;
3901 /* Insert it as child of PARENT or install it as root. */
3902 if (parent)
3904 if (start < parent->start)
3905 parent->left = x;
3906 else
3907 parent->right = x;
3909 else
3910 mem_root = x;
3912 /* Re-establish red-black tree properties. */
3913 mem_insert_fixup (x);
3915 return x;
3919 /* Re-establish the red-black properties of the tree, and thereby
3920 balance the tree, after node X has been inserted; X is always red. */
3922 static void
3923 mem_insert_fixup (struct mem_node *x)
3925 while (x != mem_root && x->parent->color == MEM_RED)
3927 /* X is red and its parent is red. This is a violation of
3928 red-black tree property #3. */
3930 if (x->parent == x->parent->parent->left)
3932 /* We're on the left side of our grandparent, and Y is our
3933 "uncle". */
3934 struct mem_node *y = x->parent->parent->right;
3936 if (y->color == MEM_RED)
3938 /* Uncle and parent are red but should be black because
3939 X is red. Change the colors accordingly and proceed
3940 with the grandparent. */
3941 x->parent->color = MEM_BLACK;
3942 y->color = MEM_BLACK;
3943 x->parent->parent->color = MEM_RED;
3944 x = x->parent->parent;
3946 else
3948 /* Parent and uncle have different colors; parent is
3949 red, uncle is black. */
3950 if (x == x->parent->right)
3952 x = x->parent;
3953 mem_rotate_left (x);
3956 x->parent->color = MEM_BLACK;
3957 x->parent->parent->color = MEM_RED;
3958 mem_rotate_right (x->parent->parent);
3961 else
3963 /* This is the symmetrical case of above. */
3964 struct mem_node *y = x->parent->parent->left;
3966 if (y->color == MEM_RED)
3968 x->parent->color = MEM_BLACK;
3969 y->color = MEM_BLACK;
3970 x->parent->parent->color = MEM_RED;
3971 x = x->parent->parent;
3973 else
3975 if (x == x->parent->left)
3977 x = x->parent;
3978 mem_rotate_right (x);
3981 x->parent->color = MEM_BLACK;
3982 x->parent->parent->color = MEM_RED;
3983 mem_rotate_left (x->parent->parent);
3988 /* The root may have been changed to red due to the algorithm. Set
3989 it to black so that property #5 is satisfied. */
3990 mem_root->color = MEM_BLACK;
3994 /* (x) (y)
3995 / \ / \
3996 a (y) ===> (x) c
3997 / \ / \
3998 b c a b */
4000 static void
4001 mem_rotate_left (struct mem_node *x)
4003 struct mem_node *y;
4005 /* Turn y's left sub-tree into x's right sub-tree. */
4006 y = x->right;
4007 x->right = y->left;
4008 if (y->left != MEM_NIL)
4009 y->left->parent = x;
4011 /* Y's parent was x's parent. */
4012 if (y != MEM_NIL)
4013 y->parent = x->parent;
4015 /* Get the parent to point to y instead of x. */
4016 if (x->parent)
4018 if (x == x->parent->left)
4019 x->parent->left = y;
4020 else
4021 x->parent->right = y;
4023 else
4024 mem_root = y;
4026 /* Put x on y's left. */
4027 y->left = x;
4028 if (x != MEM_NIL)
4029 x->parent = y;
4033 /* (x) (Y)
4034 / \ / \
4035 (y) c ===> a (x)
4036 / \ / \
4037 a b b c */
4039 static void
4040 mem_rotate_right (struct mem_node *x)
4042 struct mem_node *y = x->left;
4044 x->left = y->right;
4045 if (y->right != MEM_NIL)
4046 y->right->parent = x;
4048 if (y != MEM_NIL)
4049 y->parent = x->parent;
4050 if (x->parent)
4052 if (x == x->parent->right)
4053 x->parent->right = y;
4054 else
4055 x->parent->left = y;
4057 else
4058 mem_root = y;
4060 y->right = x;
4061 if (x != MEM_NIL)
4062 x->parent = y;
4066 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4068 static void
4069 mem_delete (struct mem_node *z)
4071 struct mem_node *x, *y;
4073 if (!z || z == MEM_NIL)
4074 return;
4076 if (z->left == MEM_NIL || z->right == MEM_NIL)
4077 y = z;
4078 else
4080 y = z->right;
4081 while (y->left != MEM_NIL)
4082 y = y->left;
4085 if (y->left != MEM_NIL)
4086 x = y->left;
4087 else
4088 x = y->right;
4090 x->parent = y->parent;
4091 if (y->parent)
4093 if (y == y->parent->left)
4094 y->parent->left = x;
4095 else
4096 y->parent->right = x;
4098 else
4099 mem_root = x;
4101 if (y != z)
4103 z->start = y->start;
4104 z->end = y->end;
4105 z->type = y->type;
4108 if (y->color == MEM_BLACK)
4109 mem_delete_fixup (x);
4111 #ifdef GC_MALLOC_CHECK
4112 free (y);
4113 #else
4114 xfree (y);
4115 #endif
4119 /* Re-establish the red-black properties of the tree, after a
4120 deletion. */
4122 static void
4123 mem_delete_fixup (struct mem_node *x)
4125 while (x != mem_root && x->color == MEM_BLACK)
4127 if (x == x->parent->left)
4129 struct mem_node *w = x->parent->right;
4131 if (w->color == MEM_RED)
4133 w->color = MEM_BLACK;
4134 x->parent->color = MEM_RED;
4135 mem_rotate_left (x->parent);
4136 w = x->parent->right;
4139 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4141 w->color = MEM_RED;
4142 x = x->parent;
4144 else
4146 if (w->right->color == MEM_BLACK)
4148 w->left->color = MEM_BLACK;
4149 w->color = MEM_RED;
4150 mem_rotate_right (w);
4151 w = x->parent->right;
4153 w->color = x->parent->color;
4154 x->parent->color = MEM_BLACK;
4155 w->right->color = MEM_BLACK;
4156 mem_rotate_left (x->parent);
4157 x = mem_root;
4160 else
4162 struct mem_node *w = x->parent->left;
4164 if (w->color == MEM_RED)
4166 w->color = MEM_BLACK;
4167 x->parent->color = MEM_RED;
4168 mem_rotate_right (x->parent);
4169 w = x->parent->left;
4172 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4174 w->color = MEM_RED;
4175 x = x->parent;
4177 else
4179 if (w->left->color == MEM_BLACK)
4181 w->right->color = MEM_BLACK;
4182 w->color = MEM_RED;
4183 mem_rotate_left (w);
4184 w = x->parent->left;
4187 w->color = x->parent->color;
4188 x->parent->color = MEM_BLACK;
4189 w->left->color = MEM_BLACK;
4190 mem_rotate_right (x->parent);
4191 x = mem_root;
4196 x->color = MEM_BLACK;
4200 /* Value is non-zero if P is a pointer to a live Lisp string on
4201 the heap. M is a pointer to the mem_block for P. */
4203 static bool
4204 live_string_p (struct mem_node *m, void *p)
4206 if (m->type == MEM_TYPE_STRING)
4208 struct string_block *b = m->start;
4209 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4211 /* P must point to the start of a Lisp_String structure, and it
4212 must not be on the free-list. */
4213 return (offset >= 0
4214 && offset % sizeof b->strings[0] == 0
4215 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4216 && ((struct Lisp_String *) p)->data != NULL);
4218 else
4219 return 0;
4223 /* Value is non-zero if P is a pointer to a live Lisp cons on
4224 the heap. M is a pointer to the mem_block for P. */
4226 static bool
4227 live_cons_p (struct mem_node *m, void *p)
4229 if (m->type == MEM_TYPE_CONS)
4231 struct cons_block *b = m->start;
4232 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4234 /* P must point to the start of a Lisp_Cons, not be
4235 one of the unused cells in the current cons block,
4236 and not be on the free-list. */
4237 return (offset >= 0
4238 && offset % sizeof b->conses[0] == 0
4239 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4240 && (b != cons_block
4241 || offset / sizeof b->conses[0] < cons_block_index)
4242 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4244 else
4245 return 0;
4249 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4250 the heap. M is a pointer to the mem_block for P. */
4252 static bool
4253 live_symbol_p (struct mem_node *m, void *p)
4255 if (m->type == MEM_TYPE_SYMBOL)
4257 struct symbol_block *b = m->start;
4258 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4260 /* P must point to the start of a Lisp_Symbol, not be
4261 one of the unused cells in the current symbol block,
4262 and not be on the free-list. */
4263 return (offset >= 0
4264 && offset % sizeof b->symbols[0] == 0
4265 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4266 && (b != symbol_block
4267 || offset / sizeof b->symbols[0] < symbol_block_index)
4268 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4270 else
4271 return 0;
4275 /* Value is non-zero if P is a pointer to a live Lisp float on
4276 the heap. M is a pointer to the mem_block for P. */
4278 static bool
4279 live_float_p (struct mem_node *m, void *p)
4281 if (m->type == MEM_TYPE_FLOAT)
4283 struct float_block *b = m->start;
4284 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4286 /* P must point to the start of a Lisp_Float and not be
4287 one of the unused cells in the current float block. */
4288 return (offset >= 0
4289 && offset % sizeof b->floats[0] == 0
4290 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4291 && (b != float_block
4292 || offset / sizeof b->floats[0] < float_block_index));
4294 else
4295 return 0;
4299 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4300 the heap. M is a pointer to the mem_block for P. */
4302 static bool
4303 live_misc_p (struct mem_node *m, void *p)
4305 if (m->type == MEM_TYPE_MISC)
4307 struct marker_block *b = m->start;
4308 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4310 /* P must point to the start of a Lisp_Misc, not be
4311 one of the unused cells in the current misc block,
4312 and not be on the free-list. */
4313 return (offset >= 0
4314 && offset % sizeof b->markers[0] == 0
4315 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4316 && (b != marker_block
4317 || offset / sizeof b->markers[0] < marker_block_index)
4318 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4320 else
4321 return 0;
4325 /* Value is non-zero if P is a pointer to a live vector-like object.
4326 M is a pointer to the mem_block for P. */
4328 static bool
4329 live_vector_p (struct mem_node *m, void *p)
4331 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4333 /* This memory node corresponds to a vector block. */
4334 struct vector_block *block = m->start;
4335 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4337 /* P is in the block's allocation range. Scan the block
4338 up to P and see whether P points to the start of some
4339 vector which is not on a free list. FIXME: check whether
4340 some allocation patterns (probably a lot of short vectors)
4341 may cause a substantial overhead of this loop. */
4342 while (VECTOR_IN_BLOCK (vector, block)
4343 && vector <= (struct Lisp_Vector *) p)
4345 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4346 return 1;
4347 else
4348 vector = ADVANCE (vector, vector_nbytes (vector));
4351 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4352 /* This memory node corresponds to a large vector. */
4353 return 1;
4354 return 0;
4358 /* Value is non-zero if P is a pointer to a live buffer. M is a
4359 pointer to the mem_block for P. */
4361 static bool
4362 live_buffer_p (struct mem_node *m, void *p)
4364 /* P must point to the start of the block, and the buffer
4365 must not have been killed. */
4366 return (m->type == MEM_TYPE_BUFFER
4367 && p == m->start
4368 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4371 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4373 #if GC_MARK_STACK
4375 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4377 /* Currently not used, but may be called from gdb. */
4379 void dump_zombies (void) EXTERNALLY_VISIBLE;
4381 /* Array of objects that are kept alive because the C stack contains
4382 a pattern that looks like a reference to them. */
4384 #define MAX_ZOMBIES 10
4385 static Lisp_Object zombies[MAX_ZOMBIES];
4387 /* Number of zombie objects. */
4389 static EMACS_INT nzombies;
4391 /* Number of garbage collections. */
4393 static EMACS_INT ngcs;
4395 /* Average percentage of zombies per collection. */
4397 static double avg_zombies;
4399 /* Max. number of live and zombie objects. */
4401 static EMACS_INT max_live, max_zombies;
4403 /* Average number of live objects per GC. */
4405 static double avg_live;
4407 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4408 doc: /* Show information about live and zombie objects. */)
4409 (void)
4411 Lisp_Object zombie_list = Qnil;
4412 for (int i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4413 zombie_list = Fcons (zombies[i], zombie_list);
4414 return CALLN (Fmessage,
4415 build_string ("%d GCs, avg live/zombies = %.2f/%.2f"
4416 " (%f%%), max %d/%d\nzombies: %S"),
4417 make_number (ngcs), make_float (avg_live),
4418 make_float (avg_zombies),
4419 make_float (avg_zombies / avg_live / 100),
4420 make_number (max_live), make_number (max_zombies),
4421 zombie_list);
4424 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4427 /* Mark OBJ if we can prove it's a Lisp_Object. */
4429 static void
4430 mark_maybe_object (Lisp_Object obj)
4432 void *po;
4433 struct mem_node *m;
4435 #if USE_VALGRIND
4436 if (valgrind_p)
4437 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4438 #endif
4440 if (INTEGERP (obj))
4441 return;
4443 po = (void *) XPNTR (obj);
4444 m = mem_find (po);
4446 if (m != MEM_NIL)
4448 bool mark_p = 0;
4450 switch (XTYPE (obj))
4452 case Lisp_String:
4453 mark_p = (live_string_p (m, po)
4454 && !STRING_MARKED_P ((struct Lisp_String *) po));
4455 break;
4457 case Lisp_Cons:
4458 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4459 break;
4461 case Lisp_Symbol:
4462 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4463 break;
4465 case Lisp_Float:
4466 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4467 break;
4469 case Lisp_Vectorlike:
4470 /* Note: can't check BUFFERP before we know it's a
4471 buffer because checking that dereferences the pointer
4472 PO which might point anywhere. */
4473 if (live_vector_p (m, po))
4474 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4475 else if (live_buffer_p (m, po))
4476 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4477 break;
4479 case Lisp_Misc:
4480 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4481 break;
4483 default:
4484 break;
4487 if (mark_p)
4489 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4490 if (nzombies < MAX_ZOMBIES)
4491 zombies[nzombies] = obj;
4492 ++nzombies;
4493 #endif
4494 mark_object (obj);
4499 /* Return true if P can point to Lisp data, and false otherwise.
4500 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4501 Otherwise, assume that Lisp data is aligned on even addresses. */
4503 static bool
4504 maybe_lisp_pointer (void *p)
4506 return !((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2));
4509 /* If P points to Lisp data, mark that as live if it isn't already
4510 marked. */
4512 static void
4513 mark_maybe_pointer (void *p)
4515 struct mem_node *m;
4517 #if USE_VALGRIND
4518 if (valgrind_p)
4519 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4520 #endif
4522 if (!maybe_lisp_pointer (p))
4523 return;
4525 m = mem_find (p);
4526 if (m != MEM_NIL)
4528 Lisp_Object obj = Qnil;
4530 switch (m->type)
4532 case MEM_TYPE_NON_LISP:
4533 case MEM_TYPE_SPARE:
4534 /* Nothing to do; not a pointer to Lisp memory. */
4535 break;
4537 case MEM_TYPE_BUFFER:
4538 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4539 XSETVECTOR (obj, p);
4540 break;
4542 case MEM_TYPE_CONS:
4543 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4544 XSETCONS (obj, p);
4545 break;
4547 case MEM_TYPE_STRING:
4548 if (live_string_p (m, p)
4549 && !STRING_MARKED_P ((struct Lisp_String *) p))
4550 XSETSTRING (obj, p);
4551 break;
4553 case MEM_TYPE_MISC:
4554 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4555 XSETMISC (obj, p);
4556 break;
4558 case MEM_TYPE_SYMBOL:
4559 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4560 XSETSYMBOL (obj, p);
4561 break;
4563 case MEM_TYPE_FLOAT:
4564 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4565 XSETFLOAT (obj, p);
4566 break;
4568 case MEM_TYPE_VECTORLIKE:
4569 case MEM_TYPE_VECTOR_BLOCK:
4570 if (live_vector_p (m, p))
4572 Lisp_Object tem;
4573 XSETVECTOR (tem, p);
4574 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4575 obj = tem;
4577 break;
4579 default:
4580 emacs_abort ();
4583 if (!NILP (obj))
4584 mark_object (obj);
4589 /* Alignment of pointer values. Use alignof, as it sometimes returns
4590 a smaller alignment than GCC's __alignof__ and mark_memory might
4591 miss objects if __alignof__ were used. */
4592 #define GC_POINTER_ALIGNMENT alignof (void *)
4594 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4595 not suffice, which is the typical case. A host where a Lisp_Object is
4596 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4597 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4598 suffice to widen it to to a Lisp_Object and check it that way. */
4599 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4600 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4601 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4602 nor mark_maybe_object can follow the pointers. This should not occur on
4603 any practical porting target. */
4604 # error "MSB type bits straddle pointer-word boundaries"
4605 # endif
4606 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4607 pointer words that hold pointers ORed with type bits. */
4608 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4609 #else
4610 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4611 words that hold unmodified pointers. */
4612 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4613 #endif
4615 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4616 or END+OFFSET..START. */
4618 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4619 mark_memory (void *start, void *end)
4621 void **pp;
4622 int i;
4624 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4625 nzombies = 0;
4626 #endif
4628 /* Make START the pointer to the start of the memory region,
4629 if it isn't already. */
4630 if (end < start)
4632 void *tem = start;
4633 start = end;
4634 end = tem;
4637 /* Mark Lisp data pointed to. This is necessary because, in some
4638 situations, the C compiler optimizes Lisp objects away, so that
4639 only a pointer to them remains. Example:
4641 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4644 Lisp_Object obj = build_string ("test");
4645 struct Lisp_String *s = XSTRING (obj);
4646 Fgarbage_collect ();
4647 fprintf (stderr, "test `%s'\n", s->data);
4648 return Qnil;
4651 Here, `obj' isn't really used, and the compiler optimizes it
4652 away. The only reference to the life string is through the
4653 pointer `s'. */
4655 for (pp = start; (void *) pp < end; pp++)
4656 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4658 void *p = *(void **) ((char *) pp + i);
4659 mark_maybe_pointer (p);
4660 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4661 mark_maybe_object (XIL ((intptr_t) p));
4665 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4667 static bool setjmp_tested_p;
4668 static int longjmps_done;
4670 #define SETJMP_WILL_LIKELY_WORK "\
4672 Emacs garbage collector has been changed to use conservative stack\n\
4673 marking. Emacs has determined that the method it uses to do the\n\
4674 marking will likely work on your system, but this isn't sure.\n\
4676 If you are a system-programmer, or can get the help of a local wizard\n\
4677 who is, please take a look at the function mark_stack in alloc.c, and\n\
4678 verify that the methods used are appropriate for your system.\n\
4680 Please mail the result to <emacs-devel@gnu.org>.\n\
4683 #define SETJMP_WILL_NOT_WORK "\
4685 Emacs garbage collector has been changed to use conservative stack\n\
4686 marking. Emacs has determined that the default method it uses to do the\n\
4687 marking will not work on your system. We will need a system-dependent\n\
4688 solution for your system.\n\
4690 Please take a look at the function mark_stack in alloc.c, and\n\
4691 try to find a way to make it work on your system.\n\
4693 Note that you may get false negatives, depending on the compiler.\n\
4694 In particular, you need to use -O with GCC for this test.\n\
4696 Please mail the result to <emacs-devel@gnu.org>.\n\
4700 /* Perform a quick check if it looks like setjmp saves registers in a
4701 jmp_buf. Print a message to stderr saying so. When this test
4702 succeeds, this is _not_ a proof that setjmp is sufficient for
4703 conservative stack marking. Only the sources or a disassembly
4704 can prove that. */
4706 static void
4707 test_setjmp (void)
4709 char buf[10];
4710 register int x;
4711 sys_jmp_buf jbuf;
4713 /* Arrange for X to be put in a register. */
4714 sprintf (buf, "1");
4715 x = strlen (buf);
4716 x = 2 * x - 1;
4718 sys_setjmp (jbuf);
4719 if (longjmps_done == 1)
4721 /* Came here after the longjmp at the end of the function.
4723 If x == 1, the longjmp has restored the register to its
4724 value before the setjmp, and we can hope that setjmp
4725 saves all such registers in the jmp_buf, although that
4726 isn't sure.
4728 For other values of X, either something really strange is
4729 taking place, or the setjmp just didn't save the register. */
4731 if (x == 1)
4732 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4733 else
4735 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4736 exit (1);
4740 ++longjmps_done;
4741 x = 2;
4742 if (longjmps_done == 1)
4743 sys_longjmp (jbuf, 1);
4746 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4749 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4751 /* Abort if anything GCPRO'd doesn't survive the GC. */
4753 static void
4754 check_gcpros (void)
4756 struct gcpro *p;
4757 ptrdiff_t i;
4759 for (p = gcprolist; p; p = p->next)
4760 for (i = 0; i < p->nvars; ++i)
4761 if (!survives_gc_p (p->var[i]))
4762 /* FIXME: It's not necessarily a bug. It might just be that the
4763 GCPRO is unnecessary or should release the object sooner. */
4764 emacs_abort ();
4767 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4769 void
4770 dump_zombies (void)
4772 int i;
4774 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4775 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4777 fprintf (stderr, " %d = ", i);
4778 debug_print (zombies[i]);
4782 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4785 /* Mark live Lisp objects on the C stack.
4787 There are several system-dependent problems to consider when
4788 porting this to new architectures:
4790 Processor Registers
4792 We have to mark Lisp objects in CPU registers that can hold local
4793 variables or are used to pass parameters.
4795 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4796 something that either saves relevant registers on the stack, or
4797 calls mark_maybe_object passing it each register's contents.
4799 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4800 implementation assumes that calling setjmp saves registers we need
4801 to see in a jmp_buf which itself lies on the stack. This doesn't
4802 have to be true! It must be verified for each system, possibly
4803 by taking a look at the source code of setjmp.
4805 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4806 can use it as a machine independent method to store all registers
4807 to the stack. In this case the macros described in the previous
4808 two paragraphs are not used.
4810 Stack Layout
4812 Architectures differ in the way their processor stack is organized.
4813 For example, the stack might look like this
4815 +----------------+
4816 | Lisp_Object | size = 4
4817 +----------------+
4818 | something else | size = 2
4819 +----------------+
4820 | Lisp_Object | size = 4
4821 +----------------+
4822 | ... |
4824 In such a case, not every Lisp_Object will be aligned equally. To
4825 find all Lisp_Object on the stack it won't be sufficient to walk
4826 the stack in steps of 4 bytes. Instead, two passes will be
4827 necessary, one starting at the start of the stack, and a second
4828 pass starting at the start of the stack + 2. Likewise, if the
4829 minimal alignment of Lisp_Objects on the stack is 1, four passes
4830 would be necessary, each one starting with one byte more offset
4831 from the stack start. */
4833 static void
4834 mark_stack (void *end)
4837 /* This assumes that the stack is a contiguous region in memory. If
4838 that's not the case, something has to be done here to iterate
4839 over the stack segments. */
4840 mark_memory (stack_base, end);
4842 /* Allow for marking a secondary stack, like the register stack on the
4843 ia64. */
4844 #ifdef GC_MARK_SECONDARY_STACK
4845 GC_MARK_SECONDARY_STACK ();
4846 #endif
4848 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4849 check_gcpros ();
4850 #endif
4853 #else /* GC_MARK_STACK == 0 */
4855 #define mark_maybe_object(obj) emacs_abort ()
4857 #endif /* GC_MARK_STACK != 0 */
4859 static bool
4860 c_symbol_p (struct Lisp_Symbol *sym)
4862 char *lispsym_ptr = (char *) lispsym;
4863 char *sym_ptr = (char *) sym;
4864 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
4865 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
4868 /* Determine whether it is safe to access memory at address P. */
4869 static int
4870 valid_pointer_p (void *p)
4872 #ifdef WINDOWSNT
4873 return w32_valid_pointer_p (p, 16);
4874 #else
4876 if (ADDRESS_SANITIZER)
4877 return p ? -1 : 0;
4879 int fd[2];
4881 /* Obviously, we cannot just access it (we would SEGV trying), so we
4882 trick the o/s to tell us whether p is a valid pointer.
4883 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4884 not validate p in that case. */
4886 if (emacs_pipe (fd) == 0)
4888 bool valid = emacs_write (fd[1], p, 16) == 16;
4889 emacs_close (fd[1]);
4890 emacs_close (fd[0]);
4891 return valid;
4894 return -1;
4895 #endif
4898 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4899 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4900 cannot validate OBJ. This function can be quite slow, so its primary
4901 use is the manual debugging. The only exception is print_object, where
4902 we use it to check whether the memory referenced by the pointer of
4903 Lisp_Save_Value object contains valid objects. */
4906 valid_lisp_object_p (Lisp_Object obj)
4908 void *p;
4909 #if GC_MARK_STACK
4910 struct mem_node *m;
4911 #endif
4913 if (INTEGERP (obj))
4914 return 1;
4916 p = (void *) XPNTR (obj);
4917 if (PURE_POINTER_P (p))
4918 return 1;
4920 if (SYMBOLP (obj) && c_symbol_p (p))
4921 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
4923 if (p == &buffer_defaults || p == &buffer_local_symbols)
4924 return 2;
4926 #if !GC_MARK_STACK
4927 return valid_pointer_p (p);
4928 #else
4930 m = mem_find (p);
4932 if (m == MEM_NIL)
4934 int valid = valid_pointer_p (p);
4935 if (valid <= 0)
4936 return valid;
4938 if (SUBRP (obj))
4939 return 1;
4941 return 0;
4944 switch (m->type)
4946 case MEM_TYPE_NON_LISP:
4947 case MEM_TYPE_SPARE:
4948 return 0;
4950 case MEM_TYPE_BUFFER:
4951 return live_buffer_p (m, p) ? 1 : 2;
4953 case MEM_TYPE_CONS:
4954 return live_cons_p (m, p);
4956 case MEM_TYPE_STRING:
4957 return live_string_p (m, p);
4959 case MEM_TYPE_MISC:
4960 return live_misc_p (m, p);
4962 case MEM_TYPE_SYMBOL:
4963 return live_symbol_p (m, p);
4965 case MEM_TYPE_FLOAT:
4966 return live_float_p (m, p);
4968 case MEM_TYPE_VECTORLIKE:
4969 case MEM_TYPE_VECTOR_BLOCK:
4970 return live_vector_p (m, p);
4972 default:
4973 break;
4976 return 0;
4977 #endif
4980 /* If GC_MARK_STACK, return 1 if STR is a relocatable data of Lisp_String
4981 (i.e. there is a non-pure Lisp_Object X so that SDATA (X) == STR) and 0
4982 if not. Otherwise we can't rely on valid_lisp_object_p and return -1.
4983 This function is slow and should be used for debugging purposes. */
4986 relocatable_string_data_p (const char *str)
4988 if (PURE_POINTER_P (str))
4989 return 0;
4990 #if GC_MARK_STACK
4991 if (str)
4993 struct sdata *sdata
4994 = (struct sdata *) (str - offsetof (struct sdata, data));
4996 if (0 < valid_pointer_p (sdata)
4997 && 0 < valid_pointer_p (sdata->string)
4998 && maybe_lisp_pointer (sdata->string))
4999 return (valid_lisp_object_p
5000 (make_lisp_ptr (sdata->string, Lisp_String))
5001 && (const char *) sdata->string->data == str);
5003 return 0;
5004 #endif /* GC_MARK_STACK */
5005 return -1;
5008 /***********************************************************************
5009 Pure Storage Management
5010 ***********************************************************************/
5012 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5013 pointer to it. TYPE is the Lisp type for which the memory is
5014 allocated. TYPE < 0 means it's not used for a Lisp object. */
5016 static void *
5017 pure_alloc (size_t size, int type)
5019 void *result;
5020 #if USE_LSB_TAG
5021 size_t alignment = GCALIGNMENT;
5022 #else
5023 size_t alignment = alignof (EMACS_INT);
5025 /* Give Lisp_Floats an extra alignment. */
5026 if (type == Lisp_Float)
5027 alignment = alignof (struct Lisp_Float);
5028 #endif
5030 again:
5031 if (type >= 0)
5033 /* Allocate space for a Lisp object from the beginning of the free
5034 space with taking account of alignment. */
5035 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5036 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5038 else
5040 /* Allocate space for a non-Lisp object from the end of the free
5041 space. */
5042 pure_bytes_used_non_lisp += size;
5043 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5045 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5047 if (pure_bytes_used <= pure_size)
5048 return result;
5050 /* Don't allocate a large amount here,
5051 because it might get mmap'd and then its address
5052 might not be usable. */
5053 purebeg = xmalloc (10000);
5054 pure_size = 10000;
5055 pure_bytes_used_before_overflow += pure_bytes_used - size;
5056 pure_bytes_used = 0;
5057 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5058 goto again;
5062 /* Print a warning if PURESIZE is too small. */
5064 void
5065 check_pure_size (void)
5067 if (pure_bytes_used_before_overflow)
5068 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5069 " bytes needed)"),
5070 pure_bytes_used + pure_bytes_used_before_overflow);
5074 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5075 the non-Lisp data pool of the pure storage, and return its start
5076 address. Return NULL if not found. */
5078 static char *
5079 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5081 int i;
5082 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5083 const unsigned char *p;
5084 char *non_lisp_beg;
5086 if (pure_bytes_used_non_lisp <= nbytes)
5087 return NULL;
5089 /* Set up the Boyer-Moore table. */
5090 skip = nbytes + 1;
5091 for (i = 0; i < 256; i++)
5092 bm_skip[i] = skip;
5094 p = (const unsigned char *) data;
5095 while (--skip > 0)
5096 bm_skip[*p++] = skip;
5098 last_char_skip = bm_skip['\0'];
5100 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5101 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5103 /* See the comments in the function `boyer_moore' (search.c) for the
5104 use of `infinity'. */
5105 infinity = pure_bytes_used_non_lisp + 1;
5106 bm_skip['\0'] = infinity;
5108 p = (const unsigned char *) non_lisp_beg + nbytes;
5109 start = 0;
5112 /* Check the last character (== '\0'). */
5115 start += bm_skip[*(p + start)];
5117 while (start <= start_max);
5119 if (start < infinity)
5120 /* Couldn't find the last character. */
5121 return NULL;
5123 /* No less than `infinity' means we could find the last
5124 character at `p[start - infinity]'. */
5125 start -= infinity;
5127 /* Check the remaining characters. */
5128 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5129 /* Found. */
5130 return non_lisp_beg + start;
5132 start += last_char_skip;
5134 while (start <= start_max);
5136 return NULL;
5140 /* Return a string allocated in pure space. DATA is a buffer holding
5141 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5142 means make the result string multibyte.
5144 Must get an error if pure storage is full, since if it cannot hold
5145 a large string it may be able to hold conses that point to that
5146 string; then the string is not protected from gc. */
5148 Lisp_Object
5149 make_pure_string (const char *data,
5150 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5152 Lisp_Object string;
5153 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5154 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5155 if (s->data == NULL)
5157 s->data = pure_alloc (nbytes + 1, -1);
5158 memcpy (s->data, data, nbytes);
5159 s->data[nbytes] = '\0';
5161 s->size = nchars;
5162 s->size_byte = multibyte ? nbytes : -1;
5163 s->intervals = NULL;
5164 XSETSTRING (string, s);
5165 return string;
5168 /* Return a string allocated in pure space. Do not
5169 allocate the string data, just point to DATA. */
5171 Lisp_Object
5172 make_pure_c_string (const char *data, ptrdiff_t nchars)
5174 Lisp_Object string;
5175 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5176 s->size = nchars;
5177 s->size_byte = -1;
5178 s->data = (unsigned char *) data;
5179 s->intervals = NULL;
5180 XSETSTRING (string, s);
5181 return string;
5184 static Lisp_Object purecopy (Lisp_Object obj);
5186 /* Return a cons allocated from pure space. Give it pure copies
5187 of CAR as car and CDR as cdr. */
5189 Lisp_Object
5190 pure_cons (Lisp_Object car, Lisp_Object cdr)
5192 Lisp_Object new;
5193 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5194 XSETCONS (new, p);
5195 XSETCAR (new, purecopy (car));
5196 XSETCDR (new, purecopy (cdr));
5197 return new;
5201 /* Value is a float object with value NUM allocated from pure space. */
5203 static Lisp_Object
5204 make_pure_float (double num)
5206 Lisp_Object new;
5207 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5208 XSETFLOAT (new, p);
5209 XFLOAT_INIT (new, num);
5210 return new;
5214 /* Return a vector with room for LEN Lisp_Objects allocated from
5215 pure space. */
5217 static Lisp_Object
5218 make_pure_vector (ptrdiff_t len)
5220 Lisp_Object new;
5221 size_t size = header_size + len * word_size;
5222 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5223 XSETVECTOR (new, p);
5224 XVECTOR (new)->header.size = len;
5225 return new;
5229 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5230 doc: /* Make a copy of object OBJ in pure storage.
5231 Recursively copies contents of vectors and cons cells.
5232 Does not copy symbols. Copies strings without text properties. */)
5233 (register Lisp_Object obj)
5235 if (NILP (Vpurify_flag))
5236 return obj;
5237 else if (MARKERP (obj) || OVERLAYP (obj)
5238 || HASH_TABLE_P (obj) || SYMBOLP (obj))
5239 /* Can't purify those. */
5240 return obj;
5241 else
5242 return purecopy (obj);
5245 static Lisp_Object
5246 purecopy (Lisp_Object obj)
5248 if (PURE_POINTER_P (XPNTR (obj)) || INTEGERP (obj) || SUBRP (obj))
5249 return obj; /* Already pure. */
5251 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5253 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5254 if (!NILP (tmp))
5255 return tmp;
5258 if (CONSP (obj))
5259 obj = pure_cons (XCAR (obj), XCDR (obj));
5260 else if (FLOATP (obj))
5261 obj = make_pure_float (XFLOAT_DATA (obj));
5262 else if (STRINGP (obj))
5263 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5264 SBYTES (obj),
5265 STRING_MULTIBYTE (obj));
5266 else if (COMPILEDP (obj) || VECTORP (obj))
5268 register struct Lisp_Vector *vec;
5269 register ptrdiff_t i;
5270 ptrdiff_t size;
5272 size = ASIZE (obj);
5273 if (size & PSEUDOVECTOR_FLAG)
5274 size &= PSEUDOVECTOR_SIZE_MASK;
5275 vec = XVECTOR (make_pure_vector (size));
5276 for (i = 0; i < size; i++)
5277 vec->contents[i] = purecopy (AREF (obj, i));
5278 if (COMPILEDP (obj))
5280 XSETPVECTYPE (vec, PVEC_COMPILED);
5281 XSETCOMPILED (obj, vec);
5283 else
5284 XSETVECTOR (obj, vec);
5286 else if (SYMBOLP (obj))
5288 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5289 { /* We can't purify them, but they appear in many pure objects.
5290 Mark them as `pinned' so we know to mark them at every GC cycle. */
5291 XSYMBOL (obj)->pinned = true;
5292 symbol_block_pinned = symbol_block;
5294 return obj;
5296 else
5298 Lisp_Object fmt = build_pure_c_string ("Don't know how to purify: %S");
5299 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5302 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5303 Fputhash (obj, obj, Vpurify_flag);
5305 return obj;
5310 /***********************************************************************
5311 Protection from GC
5312 ***********************************************************************/
5314 /* Put an entry in staticvec, pointing at the variable with address
5315 VARADDRESS. */
5317 void
5318 staticpro (Lisp_Object *varaddress)
5320 if (staticidx >= NSTATICS)
5321 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5322 staticvec[staticidx++] = varaddress;
5326 /***********************************************************************
5327 Protection from GC
5328 ***********************************************************************/
5330 /* Temporarily prevent garbage collection. */
5332 ptrdiff_t
5333 inhibit_garbage_collection (void)
5335 ptrdiff_t count = SPECPDL_INDEX ();
5337 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5338 return count;
5341 /* Used to avoid possible overflows when
5342 converting from C to Lisp integers. */
5344 static Lisp_Object
5345 bounded_number (EMACS_INT number)
5347 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5350 /* Calculate total bytes of live objects. */
5352 static size_t
5353 total_bytes_of_live_objects (void)
5355 size_t tot = 0;
5356 tot += total_conses * sizeof (struct Lisp_Cons);
5357 tot += total_symbols * sizeof (struct Lisp_Symbol);
5358 tot += total_markers * sizeof (union Lisp_Misc);
5359 tot += total_string_bytes;
5360 tot += total_vector_slots * word_size;
5361 tot += total_floats * sizeof (struct Lisp_Float);
5362 tot += total_intervals * sizeof (struct interval);
5363 tot += total_strings * sizeof (struct Lisp_String);
5364 return tot;
5367 #ifdef HAVE_WINDOW_SYSTEM
5369 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5371 #if !defined (HAVE_NTGUI)
5373 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5374 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5376 static Lisp_Object
5377 compact_font_cache_entry (Lisp_Object entry)
5379 Lisp_Object tail, *prev = &entry;
5381 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5383 bool drop = 0;
5384 Lisp_Object obj = XCAR (tail);
5386 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5387 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5388 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5389 && VECTORP (XCDR (obj)))
5391 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5393 /* If font-spec is not marked, most likely all font-entities
5394 are not marked too. But we must be sure that nothing is
5395 marked within OBJ before we really drop it. */
5396 for (i = 0; i < size; i++)
5397 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5398 break;
5400 if (i == size)
5401 drop = 1;
5403 if (drop)
5404 *prev = XCDR (tail);
5405 else
5406 prev = xcdr_addr (tail);
5408 return entry;
5411 #endif /* not HAVE_NTGUI */
5413 /* Compact font caches on all terminals and mark
5414 everything which is still here after compaction. */
5416 static void
5417 compact_font_caches (void)
5419 struct terminal *t;
5421 for (t = terminal_list; t; t = t->next_terminal)
5423 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5424 #if !defined (HAVE_NTGUI)
5425 if (CONSP (cache))
5427 Lisp_Object entry;
5429 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5430 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5432 #endif /* not HAVE_NTGUI */
5433 mark_object (cache);
5437 #else /* not HAVE_WINDOW_SYSTEM */
5439 #define compact_font_caches() (void)(0)
5441 #endif /* HAVE_WINDOW_SYSTEM */
5443 /* Remove (MARKER . DATA) entries with unmarked MARKER
5444 from buffer undo LIST and return changed list. */
5446 static Lisp_Object
5447 compact_undo_list (Lisp_Object list)
5449 Lisp_Object tail, *prev = &list;
5451 for (tail = list; CONSP (tail); tail = XCDR (tail))
5453 if (CONSP (XCAR (tail))
5454 && MARKERP (XCAR (XCAR (tail)))
5455 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5456 *prev = XCDR (tail);
5457 else
5458 prev = xcdr_addr (tail);
5460 return list;
5463 static void
5464 mark_pinned_symbols (void)
5466 struct symbol_block *sblk;
5467 int lim = (symbol_block_pinned == symbol_block
5468 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5470 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5472 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5473 for (; sym < end; ++sym)
5474 if (sym->s.pinned)
5475 mark_object (make_lisp_symbol (&sym->s));
5477 lim = SYMBOL_BLOCK_SIZE;
5481 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5482 separate function so that we could limit mark_stack in searching
5483 the stack frames below this function, thus avoiding the rare cases
5484 where mark_stack finds values that look like live Lisp objects on
5485 portions of stack that couldn't possibly contain such live objects.
5486 For more details of this, see the discussion at
5487 http://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5488 static Lisp_Object
5489 garbage_collect_1 (void *end)
5491 struct buffer *nextb;
5492 char stack_top_variable;
5493 ptrdiff_t i;
5494 bool message_p;
5495 ptrdiff_t count = SPECPDL_INDEX ();
5496 struct timespec start;
5497 Lisp_Object retval = Qnil;
5498 size_t tot_before = 0;
5500 if (abort_on_gc)
5501 emacs_abort ();
5503 /* Can't GC if pure storage overflowed because we can't determine
5504 if something is a pure object or not. */
5505 if (pure_bytes_used_before_overflow)
5506 return Qnil;
5508 /* Record this function, so it appears on the profiler's backtraces. */
5509 record_in_backtrace (Qautomatic_gc, 0, 0);
5511 check_cons_list ();
5513 /* Don't keep undo information around forever.
5514 Do this early on, so it is no problem if the user quits. */
5515 FOR_EACH_BUFFER (nextb)
5516 compact_buffer (nextb);
5518 if (profiler_memory_running)
5519 tot_before = total_bytes_of_live_objects ();
5521 start = current_timespec ();
5523 /* In case user calls debug_print during GC,
5524 don't let that cause a recursive GC. */
5525 consing_since_gc = 0;
5527 /* Save what's currently displayed in the echo area. */
5528 message_p = push_message ();
5529 record_unwind_protect_void (pop_message_unwind);
5531 /* Save a copy of the contents of the stack, for debugging. */
5532 #if MAX_SAVE_STACK > 0
5533 if (NILP (Vpurify_flag))
5535 char *stack;
5536 ptrdiff_t stack_size;
5537 if (&stack_top_variable < stack_bottom)
5539 stack = &stack_top_variable;
5540 stack_size = stack_bottom - &stack_top_variable;
5542 else
5544 stack = stack_bottom;
5545 stack_size = &stack_top_variable - stack_bottom;
5547 if (stack_size <= MAX_SAVE_STACK)
5549 if (stack_copy_size < stack_size)
5551 stack_copy = xrealloc (stack_copy, stack_size);
5552 stack_copy_size = stack_size;
5554 no_sanitize_memcpy (stack_copy, stack, stack_size);
5557 #endif /* MAX_SAVE_STACK > 0 */
5559 if (garbage_collection_messages)
5560 message1_nolog ("Garbage collecting...");
5562 block_input ();
5564 shrink_regexp_cache ();
5566 gc_in_progress = 1;
5568 /* Mark all the special slots that serve as the roots of accessibility. */
5570 mark_buffer (&buffer_defaults);
5571 mark_buffer (&buffer_local_symbols);
5573 for (i = 0; i < ARRAYELTS (lispsym); i++)
5574 mark_object (builtin_lisp_symbol (i));
5576 for (i = 0; i < staticidx; i++)
5577 mark_object (*staticvec[i]);
5579 mark_pinned_symbols ();
5580 mark_specpdl ();
5581 mark_terminals ();
5582 mark_kboards ();
5584 #ifdef USE_GTK
5585 xg_mark_data ();
5586 #endif
5588 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5589 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5590 mark_stack (end);
5591 #else
5593 register struct gcpro *tail;
5594 for (tail = gcprolist; tail; tail = tail->next)
5595 for (i = 0; i < tail->nvars; i++)
5596 mark_object (tail->var[i]);
5598 mark_byte_stack ();
5599 #endif
5601 struct handler *handler;
5602 for (handler = handlerlist; handler; handler = handler->next)
5604 mark_object (handler->tag_or_ch);
5605 mark_object (handler->val);
5608 #ifdef HAVE_WINDOW_SYSTEM
5609 mark_fringe_data ();
5610 #endif
5612 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5613 mark_stack (end);
5614 #endif
5616 /* Everything is now marked, except for the data in font caches
5617 and undo lists. They're compacted by removing an items which
5618 aren't reachable otherwise. */
5620 compact_font_caches ();
5622 FOR_EACH_BUFFER (nextb)
5624 if (!EQ (BVAR (nextb, undo_list), Qt))
5625 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5626 /* Now that we have stripped the elements that need not be
5627 in the undo_list any more, we can finally mark the list. */
5628 mark_object (BVAR (nextb, undo_list));
5631 gc_sweep ();
5633 /* Clear the mark bits that we set in certain root slots. */
5635 unmark_byte_stack ();
5636 VECTOR_UNMARK (&buffer_defaults);
5637 VECTOR_UNMARK (&buffer_local_symbols);
5639 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5640 dump_zombies ();
5641 #endif
5643 check_cons_list ();
5645 gc_in_progress = 0;
5647 unblock_input ();
5649 consing_since_gc = 0;
5650 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5651 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5653 gc_relative_threshold = 0;
5654 if (FLOATP (Vgc_cons_percentage))
5655 { /* Set gc_cons_combined_threshold. */
5656 double tot = total_bytes_of_live_objects ();
5658 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5659 if (0 < tot)
5661 if (tot < TYPE_MAXIMUM (EMACS_INT))
5662 gc_relative_threshold = tot;
5663 else
5664 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5668 if (garbage_collection_messages)
5670 if (message_p || minibuf_level > 0)
5671 restore_message ();
5672 else
5673 message1_nolog ("Garbage collecting...done");
5676 unbind_to (count, Qnil);
5678 Lisp_Object total[] = {
5679 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5680 bounded_number (total_conses),
5681 bounded_number (total_free_conses)),
5682 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5683 bounded_number (total_symbols),
5684 bounded_number (total_free_symbols)),
5685 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5686 bounded_number (total_markers),
5687 bounded_number (total_free_markers)),
5688 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5689 bounded_number (total_strings),
5690 bounded_number (total_free_strings)),
5691 list3 (Qstring_bytes, make_number (1),
5692 bounded_number (total_string_bytes)),
5693 list3 (Qvectors,
5694 make_number (header_size + sizeof (Lisp_Object)),
5695 bounded_number (total_vectors)),
5696 list4 (Qvector_slots, make_number (word_size),
5697 bounded_number (total_vector_slots),
5698 bounded_number (total_free_vector_slots)),
5699 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5700 bounded_number (total_floats),
5701 bounded_number (total_free_floats)),
5702 list4 (Qintervals, make_number (sizeof (struct interval)),
5703 bounded_number (total_intervals),
5704 bounded_number (total_free_intervals)),
5705 list3 (Qbuffers, make_number (sizeof (struct buffer)),
5706 bounded_number (total_buffers)),
5708 #ifdef DOUG_LEA_MALLOC
5709 list4 (Qheap, make_number (1024),
5710 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5711 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
5712 #endif
5714 retval = CALLMANY (Flist, total);
5716 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5718 /* Compute average percentage of zombies. */
5719 double nlive
5720 = (total_conses + total_symbols + total_markers + total_strings
5721 + total_vectors + total_floats + total_intervals + total_buffers);
5723 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5724 max_live = max (nlive, max_live);
5725 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5726 max_zombies = max (nzombies, max_zombies);
5727 ++ngcs;
5729 #endif
5731 if (!NILP (Vpost_gc_hook))
5733 ptrdiff_t gc_count = inhibit_garbage_collection ();
5734 safe_run_hooks (Qpost_gc_hook);
5735 unbind_to (gc_count, Qnil);
5738 /* Accumulate statistics. */
5739 if (FLOATP (Vgc_elapsed))
5741 struct timespec since_start = timespec_sub (current_timespec (), start);
5742 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5743 + timespectod (since_start));
5746 gcs_done++;
5748 /* Collect profiling data. */
5749 if (profiler_memory_running)
5751 size_t swept = 0;
5752 size_t tot_after = total_bytes_of_live_objects ();
5753 if (tot_before > tot_after)
5754 swept = tot_before - tot_after;
5755 malloc_probe (swept);
5758 return retval;
5761 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5762 doc: /* Reclaim storage for Lisp objects no longer needed.
5763 Garbage collection happens automatically if you cons more than
5764 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5765 `garbage-collect' normally returns a list with info on amount of space in use,
5766 where each entry has the form (NAME SIZE USED FREE), where:
5767 - NAME is a symbol describing the kind of objects this entry represents,
5768 - SIZE is the number of bytes used by each one,
5769 - USED is the number of those objects that were found live in the heap,
5770 - FREE is the number of those objects that are not live but that Emacs
5771 keeps around for future allocations (maybe because it does not know how
5772 to return them to the OS).
5773 However, if there was overflow in pure space, `garbage-collect'
5774 returns nil, because real GC can't be done.
5775 See Info node `(elisp)Garbage Collection'. */)
5776 (void)
5778 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5779 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS \
5780 || GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES)
5781 void *end;
5783 #ifdef HAVE___BUILTIN_UNWIND_INIT
5784 /* Force callee-saved registers and register windows onto the stack.
5785 This is the preferred method if available, obviating the need for
5786 machine dependent methods. */
5787 __builtin_unwind_init ();
5788 end = &end;
5789 #else /* not HAVE___BUILTIN_UNWIND_INIT */
5790 #ifndef GC_SAVE_REGISTERS_ON_STACK
5791 /* jmp_buf may not be aligned enough on darwin-ppc64 */
5792 union aligned_jmpbuf {
5793 Lisp_Object o;
5794 sys_jmp_buf j;
5795 } j;
5796 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
5797 #endif
5798 /* This trick flushes the register windows so that all the state of
5799 the process is contained in the stack. */
5800 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
5801 needed on ia64 too. See mach_dep.c, where it also says inline
5802 assembler doesn't work with relevant proprietary compilers. */
5803 #ifdef __sparc__
5804 #if defined (__sparc64__) && defined (__FreeBSD__)
5805 /* FreeBSD does not have a ta 3 handler. */
5806 asm ("flushw");
5807 #else
5808 asm ("ta 3");
5809 #endif
5810 #endif
5812 /* Save registers that we need to see on the stack. We need to see
5813 registers used to hold register variables and registers used to
5814 pass parameters. */
5815 #ifdef GC_SAVE_REGISTERS_ON_STACK
5816 GC_SAVE_REGISTERS_ON_STACK (end);
5817 #else /* not GC_SAVE_REGISTERS_ON_STACK */
5819 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
5820 setjmp will definitely work, test it
5821 and print a message with the result
5822 of the test. */
5823 if (!setjmp_tested_p)
5825 setjmp_tested_p = 1;
5826 test_setjmp ();
5828 #endif /* GC_SETJMP_WORKS */
5830 sys_setjmp (j.j);
5831 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
5832 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
5833 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
5834 return garbage_collect_1 (end);
5835 #elif (GC_MARK_STACK == GC_USE_GCPROS_AS_BEFORE)
5836 /* Old GCPROs-based method without stack marking. */
5837 return garbage_collect_1 (NULL);
5838 #else
5839 emacs_abort ();
5840 #endif /* GC_MARK_STACK */
5843 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5844 only interesting objects referenced from glyphs are strings. */
5846 static void
5847 mark_glyph_matrix (struct glyph_matrix *matrix)
5849 struct glyph_row *row = matrix->rows;
5850 struct glyph_row *end = row + matrix->nrows;
5852 for (; row < end; ++row)
5853 if (row->enabled_p)
5855 int area;
5856 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5858 struct glyph *glyph = row->glyphs[area];
5859 struct glyph *end_glyph = glyph + row->used[area];
5861 for (; glyph < end_glyph; ++glyph)
5862 if (STRINGP (glyph->object)
5863 && !STRING_MARKED_P (XSTRING (glyph->object)))
5864 mark_object (glyph->object);
5869 /* Mark reference to a Lisp_Object.
5870 If the object referred to has not been seen yet, recursively mark
5871 all the references contained in it. */
5873 #define LAST_MARKED_SIZE 500
5874 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5875 static int last_marked_index;
5877 /* For debugging--call abort when we cdr down this many
5878 links of a list, in mark_object. In debugging,
5879 the call to abort will hit a breakpoint.
5880 Normally this is zero and the check never goes off. */
5881 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5883 static void
5884 mark_vectorlike (struct Lisp_Vector *ptr)
5886 ptrdiff_t size = ptr->header.size;
5887 ptrdiff_t i;
5889 eassert (!VECTOR_MARKED_P (ptr));
5890 VECTOR_MARK (ptr); /* Else mark it. */
5891 if (size & PSEUDOVECTOR_FLAG)
5892 size &= PSEUDOVECTOR_SIZE_MASK;
5894 /* Note that this size is not the memory-footprint size, but only
5895 the number of Lisp_Object fields that we should trace.
5896 The distinction is used e.g. by Lisp_Process which places extra
5897 non-Lisp_Object fields at the end of the structure... */
5898 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5899 mark_object (ptr->contents[i]);
5902 /* Like mark_vectorlike but optimized for char-tables (and
5903 sub-char-tables) assuming that the contents are mostly integers or
5904 symbols. */
5906 static void
5907 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
5909 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5910 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
5911 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
5913 eassert (!VECTOR_MARKED_P (ptr));
5914 VECTOR_MARK (ptr);
5915 for (i = idx; i < size; i++)
5917 Lisp_Object val = ptr->contents[i];
5919 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5920 continue;
5921 if (SUB_CHAR_TABLE_P (val))
5923 if (! VECTOR_MARKED_P (XVECTOR (val)))
5924 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
5926 else
5927 mark_object (val);
5931 NO_INLINE /* To reduce stack depth in mark_object. */
5932 static Lisp_Object
5933 mark_compiled (struct Lisp_Vector *ptr)
5935 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5937 VECTOR_MARK (ptr);
5938 for (i = 0; i < size; i++)
5939 if (i != COMPILED_CONSTANTS)
5940 mark_object (ptr->contents[i]);
5941 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
5944 /* Mark the chain of overlays starting at PTR. */
5946 static void
5947 mark_overlay (struct Lisp_Overlay *ptr)
5949 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5951 ptr->gcmarkbit = 1;
5952 /* These two are always markers and can be marked fast. */
5953 XMARKER (ptr->start)->gcmarkbit = 1;
5954 XMARKER (ptr->end)->gcmarkbit = 1;
5955 mark_object (ptr->plist);
5959 /* Mark Lisp_Objects and special pointers in BUFFER. */
5961 static void
5962 mark_buffer (struct buffer *buffer)
5964 /* This is handled much like other pseudovectors... */
5965 mark_vectorlike ((struct Lisp_Vector *) buffer);
5967 /* ...but there are some buffer-specific things. */
5969 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5971 /* For now, we just don't mark the undo_list. It's done later in
5972 a special way just before the sweep phase, and after stripping
5973 some of its elements that are not needed any more. */
5975 mark_overlay (buffer->overlays_before);
5976 mark_overlay (buffer->overlays_after);
5978 /* If this is an indirect buffer, mark its base buffer. */
5979 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5980 mark_buffer (buffer->base_buffer);
5983 /* Mark Lisp faces in the face cache C. */
5985 NO_INLINE /* To reduce stack depth in mark_object. */
5986 static void
5987 mark_face_cache (struct face_cache *c)
5989 if (c)
5991 int i, j;
5992 for (i = 0; i < c->used; ++i)
5994 struct face *face = FACE_FROM_ID (c->f, i);
5996 if (face)
5998 if (face->font && !VECTOR_MARKED_P (face->font))
5999 mark_vectorlike ((struct Lisp_Vector *) face->font);
6001 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6002 mark_object (face->lface[j]);
6008 NO_INLINE /* To reduce stack depth in mark_object. */
6009 static void
6010 mark_localized_symbol (struct Lisp_Symbol *ptr)
6012 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6013 Lisp_Object where = blv->where;
6014 /* If the value is set up for a killed buffer or deleted
6015 frame, restore its global binding. If the value is
6016 forwarded to a C variable, either it's not a Lisp_Object
6017 var, or it's staticpro'd already. */
6018 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6019 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6020 swap_in_global_binding (ptr);
6021 mark_object (blv->where);
6022 mark_object (blv->valcell);
6023 mark_object (blv->defcell);
6026 NO_INLINE /* To reduce stack depth in mark_object. */
6027 static void
6028 mark_save_value (struct Lisp_Save_Value *ptr)
6030 /* If `save_type' is zero, `data[0].pointer' is the address
6031 of a memory area containing `data[1].integer' potential
6032 Lisp_Objects. */
6033 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6035 Lisp_Object *p = ptr->data[0].pointer;
6036 ptrdiff_t nelt;
6037 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6038 mark_maybe_object (*p);
6040 else
6042 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6043 int i;
6044 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6045 if (save_type (ptr, i) == SAVE_OBJECT)
6046 mark_object (ptr->data[i].object);
6050 /* Remove killed buffers or items whose car is a killed buffer from
6051 LIST, and mark other items. Return changed LIST, which is marked. */
6053 static Lisp_Object
6054 mark_discard_killed_buffers (Lisp_Object list)
6056 Lisp_Object tail, *prev = &list;
6058 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6059 tail = XCDR (tail))
6061 Lisp_Object tem = XCAR (tail);
6062 if (CONSP (tem))
6063 tem = XCAR (tem);
6064 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6065 *prev = XCDR (tail);
6066 else
6068 CONS_MARK (XCONS (tail));
6069 mark_object (XCAR (tail));
6070 prev = xcdr_addr (tail);
6073 mark_object (tail);
6074 return list;
6077 /* Determine type of generic Lisp_Object and mark it accordingly.
6079 This function implements a straightforward depth-first marking
6080 algorithm and so the recursion depth may be very high (a few
6081 tens of thousands is not uncommon). To minimize stack usage,
6082 a few cold paths are moved out to NO_INLINE functions above.
6083 In general, inlining them doesn't help you to gain more speed. */
6085 void
6086 mark_object (Lisp_Object arg)
6088 register Lisp_Object obj = arg;
6089 void *po;
6090 #ifdef GC_CHECK_MARKED_OBJECTS
6091 struct mem_node *m;
6092 #endif
6093 ptrdiff_t cdr_count = 0;
6095 loop:
6097 po = XPNTR (obj);
6098 if (PURE_POINTER_P (po))
6099 return;
6101 last_marked[last_marked_index++] = obj;
6102 if (last_marked_index == LAST_MARKED_SIZE)
6103 last_marked_index = 0;
6105 /* Perform some sanity checks on the objects marked here. Abort if
6106 we encounter an object we know is bogus. This increases GC time
6107 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
6108 #ifdef GC_CHECK_MARKED_OBJECTS
6110 /* Check that the object pointed to by PO is known to be a Lisp
6111 structure allocated from the heap. */
6112 #define CHECK_ALLOCATED() \
6113 do { \
6114 m = mem_find (po); \
6115 if (m == MEM_NIL) \
6116 emacs_abort (); \
6117 } while (0)
6119 /* Check that the object pointed to by PO is live, using predicate
6120 function LIVEP. */
6121 #define CHECK_LIVE(LIVEP) \
6122 do { \
6123 if (!LIVEP (m, po)) \
6124 emacs_abort (); \
6125 } while (0)
6127 /* Check both of the above conditions, for non-symbols. */
6128 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6129 do { \
6130 CHECK_ALLOCATED (); \
6131 CHECK_LIVE (LIVEP); \
6132 } while (0) \
6134 /* Check both of the above conditions, for symbols. */
6135 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6136 do { \
6137 if (!c_symbol_p (ptr)) \
6139 CHECK_ALLOCATED (); \
6140 CHECK_LIVE (live_symbol_p); \
6142 } while (0) \
6144 #else /* not GC_CHECK_MARKED_OBJECTS */
6146 #define CHECK_LIVE(LIVEP) ((void) 0)
6147 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6148 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6150 #endif /* not GC_CHECK_MARKED_OBJECTS */
6152 switch (XTYPE (obj))
6154 case Lisp_String:
6156 register struct Lisp_String *ptr = XSTRING (obj);
6157 if (STRING_MARKED_P (ptr))
6158 break;
6159 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6160 MARK_STRING (ptr);
6161 MARK_INTERVAL_TREE (ptr->intervals);
6162 #ifdef GC_CHECK_STRING_BYTES
6163 /* Check that the string size recorded in the string is the
6164 same as the one recorded in the sdata structure. */
6165 string_bytes (ptr);
6166 #endif /* GC_CHECK_STRING_BYTES */
6168 break;
6170 case Lisp_Vectorlike:
6172 register struct Lisp_Vector *ptr = XVECTOR (obj);
6173 register ptrdiff_t pvectype;
6175 if (VECTOR_MARKED_P (ptr))
6176 break;
6178 #ifdef GC_CHECK_MARKED_OBJECTS
6179 m = mem_find (po);
6180 if (m == MEM_NIL && !SUBRP (obj))
6181 emacs_abort ();
6182 #endif /* GC_CHECK_MARKED_OBJECTS */
6184 if (ptr->header.size & PSEUDOVECTOR_FLAG)
6185 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
6186 >> PSEUDOVECTOR_AREA_BITS);
6187 else
6188 pvectype = PVEC_NORMAL_VECTOR;
6190 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
6191 CHECK_LIVE (live_vector_p);
6193 switch (pvectype)
6195 case PVEC_BUFFER:
6196 #ifdef GC_CHECK_MARKED_OBJECTS
6198 struct buffer *b;
6199 FOR_EACH_BUFFER (b)
6200 if (b == po)
6201 break;
6202 if (b == NULL)
6203 emacs_abort ();
6205 #endif /* GC_CHECK_MARKED_OBJECTS */
6206 mark_buffer ((struct buffer *) ptr);
6207 break;
6209 case PVEC_COMPILED:
6210 /* Although we could treat this just like a vector, mark_compiled
6211 returns the COMPILED_CONSTANTS element, which is marked at the
6212 next iteration of goto-loop here. This is done to avoid a few
6213 recursive calls to mark_object. */
6214 obj = mark_compiled (ptr);
6215 if (!NILP (obj))
6216 goto loop;
6217 break;
6219 case PVEC_FRAME:
6221 struct frame *f = (struct frame *) ptr;
6223 mark_vectorlike (ptr);
6224 mark_face_cache (f->face_cache);
6225 #ifdef HAVE_WINDOW_SYSTEM
6226 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6228 struct font *font = FRAME_FONT (f);
6230 if (font && !VECTOR_MARKED_P (font))
6231 mark_vectorlike ((struct Lisp_Vector *) font);
6233 #endif
6235 break;
6237 case PVEC_WINDOW:
6239 struct window *w = (struct window *) ptr;
6241 mark_vectorlike (ptr);
6243 /* Mark glyph matrices, if any. Marking window
6244 matrices is sufficient because frame matrices
6245 use the same glyph memory. */
6246 if (w->current_matrix)
6248 mark_glyph_matrix (w->current_matrix);
6249 mark_glyph_matrix (w->desired_matrix);
6252 /* Filter out killed buffers from both buffer lists
6253 in attempt to help GC to reclaim killed buffers faster.
6254 We can do it elsewhere for live windows, but this is the
6255 best place to do it for dead windows. */
6256 wset_prev_buffers
6257 (w, mark_discard_killed_buffers (w->prev_buffers));
6258 wset_next_buffers
6259 (w, mark_discard_killed_buffers (w->next_buffers));
6261 break;
6263 case PVEC_HASH_TABLE:
6265 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6267 mark_vectorlike (ptr);
6268 mark_object (h->test.name);
6269 mark_object (h->test.user_hash_function);
6270 mark_object (h->test.user_cmp_function);
6271 /* If hash table is not weak, mark all keys and values.
6272 For weak tables, mark only the vector. */
6273 if (NILP (h->weak))
6274 mark_object (h->key_and_value);
6275 else
6276 VECTOR_MARK (XVECTOR (h->key_and_value));
6278 break;
6280 case PVEC_CHAR_TABLE:
6281 case PVEC_SUB_CHAR_TABLE:
6282 mark_char_table (ptr, (enum pvec_type) pvectype);
6283 break;
6285 case PVEC_BOOL_VECTOR:
6286 /* No Lisp_Objects to mark in a bool vector. */
6287 VECTOR_MARK (ptr);
6288 break;
6290 case PVEC_SUBR:
6291 break;
6293 case PVEC_FREE:
6294 emacs_abort ();
6296 default:
6297 mark_vectorlike (ptr);
6300 break;
6302 case Lisp_Symbol:
6304 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6305 nextsym:
6306 if (ptr->gcmarkbit)
6307 break;
6308 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6309 ptr->gcmarkbit = 1;
6310 /* Attempt to catch bogus objects. */
6311 eassert (valid_lisp_object_p (ptr->function));
6312 mark_object (ptr->function);
6313 mark_object (ptr->plist);
6314 switch (ptr->redirect)
6316 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6317 case SYMBOL_VARALIAS:
6319 Lisp_Object tem;
6320 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6321 mark_object (tem);
6322 break;
6324 case SYMBOL_LOCALIZED:
6325 mark_localized_symbol (ptr);
6326 break;
6327 case SYMBOL_FORWARDED:
6328 /* If the value is forwarded to a buffer or keyboard field,
6329 these are marked when we see the corresponding object.
6330 And if it's forwarded to a C variable, either it's not
6331 a Lisp_Object var, or it's staticpro'd already. */
6332 break;
6333 default: emacs_abort ();
6335 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6336 MARK_STRING (XSTRING (ptr->name));
6337 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6338 /* Inner loop to mark next symbol in this bucket, if any. */
6339 ptr = ptr->next;
6340 if (ptr)
6341 goto nextsym;
6343 break;
6345 case Lisp_Misc:
6346 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6348 if (XMISCANY (obj)->gcmarkbit)
6349 break;
6351 switch (XMISCTYPE (obj))
6353 case Lisp_Misc_Marker:
6354 /* DO NOT mark thru the marker's chain.
6355 The buffer's markers chain does not preserve markers from gc;
6356 instead, markers are removed from the chain when freed by gc. */
6357 XMISCANY (obj)->gcmarkbit = 1;
6358 break;
6360 case Lisp_Misc_Save_Value:
6361 XMISCANY (obj)->gcmarkbit = 1;
6362 mark_save_value (XSAVE_VALUE (obj));
6363 break;
6365 case Lisp_Misc_Overlay:
6366 mark_overlay (XOVERLAY (obj));
6367 break;
6369 default:
6370 emacs_abort ();
6372 break;
6374 case Lisp_Cons:
6376 register struct Lisp_Cons *ptr = XCONS (obj);
6377 if (CONS_MARKED_P (ptr))
6378 break;
6379 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6380 CONS_MARK (ptr);
6381 /* If the cdr is nil, avoid recursion for the car. */
6382 if (EQ (ptr->u.cdr, Qnil))
6384 obj = ptr->car;
6385 cdr_count = 0;
6386 goto loop;
6388 mark_object (ptr->car);
6389 obj = ptr->u.cdr;
6390 cdr_count++;
6391 if (cdr_count == mark_object_loop_halt)
6392 emacs_abort ();
6393 goto loop;
6396 case Lisp_Float:
6397 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6398 FLOAT_MARK (XFLOAT (obj));
6399 break;
6401 case_Lisp_Int:
6402 break;
6404 default:
6405 emacs_abort ();
6408 #undef CHECK_LIVE
6409 #undef CHECK_ALLOCATED
6410 #undef CHECK_ALLOCATED_AND_LIVE
6412 /* Mark the Lisp pointers in the terminal objects.
6413 Called by Fgarbage_collect. */
6415 static void
6416 mark_terminals (void)
6418 struct terminal *t;
6419 for (t = terminal_list; t; t = t->next_terminal)
6421 eassert (t->name != NULL);
6422 #ifdef HAVE_WINDOW_SYSTEM
6423 /* If a terminal object is reachable from a stacpro'ed object,
6424 it might have been marked already. Make sure the image cache
6425 gets marked. */
6426 mark_image_cache (t->image_cache);
6427 #endif /* HAVE_WINDOW_SYSTEM */
6428 if (!VECTOR_MARKED_P (t))
6429 mark_vectorlike ((struct Lisp_Vector *)t);
6435 /* Value is non-zero if OBJ will survive the current GC because it's
6436 either marked or does not need to be marked to survive. */
6438 bool
6439 survives_gc_p (Lisp_Object obj)
6441 bool survives_p;
6443 switch (XTYPE (obj))
6445 case_Lisp_Int:
6446 survives_p = 1;
6447 break;
6449 case Lisp_Symbol:
6450 survives_p = XSYMBOL (obj)->gcmarkbit;
6451 break;
6453 case Lisp_Misc:
6454 survives_p = XMISCANY (obj)->gcmarkbit;
6455 break;
6457 case Lisp_String:
6458 survives_p = STRING_MARKED_P (XSTRING (obj));
6459 break;
6461 case Lisp_Vectorlike:
6462 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6463 break;
6465 case Lisp_Cons:
6466 survives_p = CONS_MARKED_P (XCONS (obj));
6467 break;
6469 case Lisp_Float:
6470 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6471 break;
6473 default:
6474 emacs_abort ();
6477 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6483 NO_INLINE /* For better stack traces */
6484 static void
6485 sweep_conses (void)
6487 struct cons_block *cblk;
6488 struct cons_block **cprev = &cons_block;
6489 int lim = cons_block_index;
6490 EMACS_INT num_free = 0, num_used = 0;
6492 cons_free_list = 0;
6494 for (cblk = cons_block; cblk; cblk = *cprev)
6496 int i = 0;
6497 int this_free = 0;
6498 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6500 /* Scan the mark bits an int at a time. */
6501 for (i = 0; i < ilim; i++)
6503 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6505 /* Fast path - all cons cells for this int are marked. */
6506 cblk->gcmarkbits[i] = 0;
6507 num_used += BITS_PER_BITS_WORD;
6509 else
6511 /* Some cons cells for this int are not marked.
6512 Find which ones, and free them. */
6513 int start, pos, stop;
6515 start = i * BITS_PER_BITS_WORD;
6516 stop = lim - start;
6517 if (stop > BITS_PER_BITS_WORD)
6518 stop = BITS_PER_BITS_WORD;
6519 stop += start;
6521 for (pos = start; pos < stop; pos++)
6523 if (!CONS_MARKED_P (&cblk->conses[pos]))
6525 this_free++;
6526 cblk->conses[pos].u.chain = cons_free_list;
6527 cons_free_list = &cblk->conses[pos];
6528 #if GC_MARK_STACK
6529 cons_free_list->car = Vdead;
6530 #endif
6532 else
6534 num_used++;
6535 CONS_UNMARK (&cblk->conses[pos]);
6541 lim = CONS_BLOCK_SIZE;
6542 /* If this block contains only free conses and we have already
6543 seen more than two blocks worth of free conses then deallocate
6544 this block. */
6545 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6547 *cprev = cblk->next;
6548 /* Unhook from the free list. */
6549 cons_free_list = cblk->conses[0].u.chain;
6550 lisp_align_free (cblk);
6552 else
6554 num_free += this_free;
6555 cprev = &cblk->next;
6558 total_conses = num_used;
6559 total_free_conses = num_free;
6562 NO_INLINE /* For better stack traces */
6563 static void
6564 sweep_floats (void)
6566 register struct float_block *fblk;
6567 struct float_block **fprev = &float_block;
6568 register int lim = float_block_index;
6569 EMACS_INT num_free = 0, num_used = 0;
6571 float_free_list = 0;
6573 for (fblk = float_block; fblk; fblk = *fprev)
6575 register int i;
6576 int this_free = 0;
6577 for (i = 0; i < lim; i++)
6578 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6580 this_free++;
6581 fblk->floats[i].u.chain = float_free_list;
6582 float_free_list = &fblk->floats[i];
6584 else
6586 num_used++;
6587 FLOAT_UNMARK (&fblk->floats[i]);
6589 lim = FLOAT_BLOCK_SIZE;
6590 /* If this block contains only free floats and we have already
6591 seen more than two blocks worth of free floats then deallocate
6592 this block. */
6593 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6595 *fprev = fblk->next;
6596 /* Unhook from the free list. */
6597 float_free_list = fblk->floats[0].u.chain;
6598 lisp_align_free (fblk);
6600 else
6602 num_free += this_free;
6603 fprev = &fblk->next;
6606 total_floats = num_used;
6607 total_free_floats = num_free;
6610 NO_INLINE /* For better stack traces */
6611 static void
6612 sweep_intervals (void)
6614 register struct interval_block *iblk;
6615 struct interval_block **iprev = &interval_block;
6616 register int lim = interval_block_index;
6617 EMACS_INT num_free = 0, num_used = 0;
6619 interval_free_list = 0;
6621 for (iblk = interval_block; iblk; iblk = *iprev)
6623 register int i;
6624 int this_free = 0;
6626 for (i = 0; i < lim; i++)
6628 if (!iblk->intervals[i].gcmarkbit)
6630 set_interval_parent (&iblk->intervals[i], interval_free_list);
6631 interval_free_list = &iblk->intervals[i];
6632 this_free++;
6634 else
6636 num_used++;
6637 iblk->intervals[i].gcmarkbit = 0;
6640 lim = INTERVAL_BLOCK_SIZE;
6641 /* If this block contains only free intervals and we have already
6642 seen more than two blocks worth of free intervals then
6643 deallocate this block. */
6644 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6646 *iprev = iblk->next;
6647 /* Unhook from the free list. */
6648 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6649 lisp_free (iblk);
6651 else
6653 num_free += this_free;
6654 iprev = &iblk->next;
6657 total_intervals = num_used;
6658 total_free_intervals = num_free;
6661 NO_INLINE /* For better stack traces */
6662 static void
6663 sweep_symbols (void)
6665 struct symbol_block *sblk;
6666 struct symbol_block **sprev = &symbol_block;
6667 int lim = symbol_block_index;
6668 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
6670 symbol_free_list = NULL;
6672 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6673 lispsym[i].gcmarkbit = 0;
6675 for (sblk = symbol_block; sblk; sblk = *sprev)
6677 int this_free = 0;
6678 union aligned_Lisp_Symbol *sym = sblk->symbols;
6679 union aligned_Lisp_Symbol *end = sym + lim;
6681 for (; sym < end; ++sym)
6683 if (!sym->s.gcmarkbit)
6685 if (sym->s.redirect == SYMBOL_LOCALIZED)
6686 xfree (SYMBOL_BLV (&sym->s));
6687 sym->s.next = symbol_free_list;
6688 symbol_free_list = &sym->s;
6689 #if GC_MARK_STACK
6690 symbol_free_list->function = Vdead;
6691 #endif
6692 ++this_free;
6694 else
6696 ++num_used;
6697 sym->s.gcmarkbit = 0;
6698 /* Attempt to catch bogus objects. */
6699 eassert (valid_lisp_object_p (sym->s.function));
6703 lim = SYMBOL_BLOCK_SIZE;
6704 /* If this block contains only free symbols and we have already
6705 seen more than two blocks worth of free symbols then deallocate
6706 this block. */
6707 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6709 *sprev = sblk->next;
6710 /* Unhook from the free list. */
6711 symbol_free_list = sblk->symbols[0].s.next;
6712 lisp_free (sblk);
6714 else
6716 num_free += this_free;
6717 sprev = &sblk->next;
6720 total_symbols = num_used;
6721 total_free_symbols = num_free;
6724 NO_INLINE /* For better stack traces */
6725 static void
6726 sweep_misc (void)
6728 register struct marker_block *mblk;
6729 struct marker_block **mprev = &marker_block;
6730 register int lim = marker_block_index;
6731 EMACS_INT num_free = 0, num_used = 0;
6733 /* Put all unmarked misc's on free list. For a marker, first
6734 unchain it from the buffer it points into. */
6736 marker_free_list = 0;
6738 for (mblk = marker_block; mblk; mblk = *mprev)
6740 register int i;
6741 int this_free = 0;
6743 for (i = 0; i < lim; i++)
6745 if (!mblk->markers[i].m.u_any.gcmarkbit)
6747 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6748 unchain_marker (&mblk->markers[i].m.u_marker);
6749 /* Set the type of the freed object to Lisp_Misc_Free.
6750 We could leave the type alone, since nobody checks it,
6751 but this might catch bugs faster. */
6752 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6753 mblk->markers[i].m.u_free.chain = marker_free_list;
6754 marker_free_list = &mblk->markers[i].m;
6755 this_free++;
6757 else
6759 num_used++;
6760 mblk->markers[i].m.u_any.gcmarkbit = 0;
6763 lim = MARKER_BLOCK_SIZE;
6764 /* If this block contains only free markers and we have already
6765 seen more than two blocks worth of free markers then deallocate
6766 this block. */
6767 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6769 *mprev = mblk->next;
6770 /* Unhook from the free list. */
6771 marker_free_list = mblk->markers[0].m.u_free.chain;
6772 lisp_free (mblk);
6774 else
6776 num_free += this_free;
6777 mprev = &mblk->next;
6781 total_markers = num_used;
6782 total_free_markers = num_free;
6785 NO_INLINE /* For better stack traces */
6786 static void
6787 sweep_buffers (void)
6789 register struct buffer *buffer, **bprev = &all_buffers;
6791 total_buffers = 0;
6792 for (buffer = all_buffers; buffer; buffer = *bprev)
6793 if (!VECTOR_MARKED_P (buffer))
6795 *bprev = buffer->next;
6796 lisp_free (buffer);
6798 else
6800 VECTOR_UNMARK (buffer);
6801 /* Do not use buffer_(set|get)_intervals here. */
6802 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6803 total_buffers++;
6804 bprev = &buffer->next;
6808 /* Sweep: find all structures not marked, and free them. */
6809 static void
6810 gc_sweep (void)
6812 /* Remove or mark entries in weak hash tables.
6813 This must be done before any object is unmarked. */
6814 sweep_weak_hash_tables ();
6816 sweep_strings ();
6817 check_string_bytes (!noninteractive);
6818 sweep_conses ();
6819 sweep_floats ();
6820 sweep_intervals ();
6821 sweep_symbols ();
6822 sweep_misc ();
6823 sweep_buffers ();
6824 sweep_vectors ();
6825 check_string_bytes (!noninteractive);
6828 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
6829 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
6830 All values are in Kbytes. If there is no swap space,
6831 last two values are zero. If the system is not supported
6832 or memory information can't be obtained, return nil. */)
6833 (void)
6835 #if defined HAVE_LINUX_SYSINFO
6836 struct sysinfo si;
6837 uintmax_t units;
6839 if (sysinfo (&si))
6840 return Qnil;
6841 #ifdef LINUX_SYSINFO_UNIT
6842 units = si.mem_unit;
6843 #else
6844 units = 1;
6845 #endif
6846 return list4i ((uintmax_t) si.totalram * units / 1024,
6847 (uintmax_t) si.freeram * units / 1024,
6848 (uintmax_t) si.totalswap * units / 1024,
6849 (uintmax_t) si.freeswap * units / 1024);
6850 #elif defined WINDOWSNT
6851 unsigned long long totalram, freeram, totalswap, freeswap;
6853 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6854 return list4i ((uintmax_t) totalram / 1024,
6855 (uintmax_t) freeram / 1024,
6856 (uintmax_t) totalswap / 1024,
6857 (uintmax_t) freeswap / 1024);
6858 else
6859 return Qnil;
6860 #elif defined MSDOS
6861 unsigned long totalram, freeram, totalswap, freeswap;
6863 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
6864 return list4i ((uintmax_t) totalram / 1024,
6865 (uintmax_t) freeram / 1024,
6866 (uintmax_t) totalswap / 1024,
6867 (uintmax_t) freeswap / 1024);
6868 else
6869 return Qnil;
6870 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6871 /* FIXME: add more systems. */
6872 return Qnil;
6873 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
6876 /* Debugging aids. */
6878 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6879 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6880 This may be helpful in debugging Emacs's memory usage.
6881 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6882 (void)
6884 Lisp_Object end;
6886 #ifdef HAVE_NS
6887 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6888 XSETINT (end, 0);
6889 #else
6890 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6891 #endif
6893 return end;
6896 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6897 doc: /* Return a list of counters that measure how much consing there has been.
6898 Each of these counters increments for a certain kind of object.
6899 The counters wrap around from the largest positive integer to zero.
6900 Garbage collection does not decrease them.
6901 The elements of the value are as follows:
6902 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6903 All are in units of 1 = one object consed
6904 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6905 objects consed.
6906 MISCS include overlays, markers, and some internal types.
6907 Frames, windows, buffers, and subprocesses count as vectors
6908 (but the contents of a buffer's text do not count here). */)
6909 (void)
6911 return listn (CONSTYPE_HEAP, 8,
6912 bounded_number (cons_cells_consed),
6913 bounded_number (floats_consed),
6914 bounded_number (vector_cells_consed),
6915 bounded_number (symbols_consed),
6916 bounded_number (string_chars_consed),
6917 bounded_number (misc_objects_consed),
6918 bounded_number (intervals_consed),
6919 bounded_number (strings_consed));
6922 static bool
6923 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
6925 struct Lisp_Symbol *sym = XSYMBOL (symbol);
6926 Lisp_Object val = find_symbol_value (symbol);
6927 return (EQ (val, obj)
6928 || EQ (sym->function, obj)
6929 || (!NILP (sym->function)
6930 && COMPILEDP (sym->function)
6931 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6932 || (!NILP (val)
6933 && COMPILEDP (val)
6934 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
6937 /* Find at most FIND_MAX symbols which have OBJ as their value or
6938 function. This is used in gdbinit's `xwhichsymbols' command. */
6940 Lisp_Object
6941 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6943 struct symbol_block *sblk;
6944 ptrdiff_t gc_count = inhibit_garbage_collection ();
6945 Lisp_Object found = Qnil;
6947 if (! DEADP (obj))
6949 for (int i = 0; i < ARRAYELTS (lispsym); i++)
6951 Lisp_Object sym = builtin_lisp_symbol (i);
6952 if (symbol_uses_obj (sym, obj))
6954 found = Fcons (sym, found);
6955 if (--find_max == 0)
6956 goto out;
6960 for (sblk = symbol_block; sblk; sblk = sblk->next)
6962 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6963 int bn;
6965 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6967 if (sblk == symbol_block && bn >= symbol_block_index)
6968 break;
6970 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
6971 if (symbol_uses_obj (sym, obj))
6973 found = Fcons (sym, found);
6974 if (--find_max == 0)
6975 goto out;
6981 out:
6982 unbind_to (gc_count, Qnil);
6983 return found;
6986 #ifdef SUSPICIOUS_OBJECT_CHECKING
6988 static void *
6989 find_suspicious_object_in_range (void *begin, void *end)
6991 char *begin_a = begin;
6992 char *end_a = end;
6993 int i;
6995 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
6997 char *suspicious_object = suspicious_objects[i];
6998 if (begin_a <= suspicious_object && suspicious_object < end_a)
6999 return suspicious_object;
7002 return NULL;
7005 static void
7006 note_suspicious_free (void* ptr)
7008 struct suspicious_free_record* rec;
7010 rec = &suspicious_free_history[suspicious_free_history_index++];
7011 if (suspicious_free_history_index ==
7012 ARRAYELTS (suspicious_free_history))
7014 suspicious_free_history_index = 0;
7017 memset (rec, 0, sizeof (*rec));
7018 rec->suspicious_object = ptr;
7019 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7022 static void
7023 detect_suspicious_free (void* ptr)
7025 int i;
7027 eassert (ptr != NULL);
7029 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7030 if (suspicious_objects[i] == ptr)
7032 note_suspicious_free (ptr);
7033 suspicious_objects[i] = NULL;
7037 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7039 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7040 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7041 If Emacs is compiled with suspicious object checking, capture
7042 a stack trace when OBJ is freed in order to help track down
7043 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7044 (Lisp_Object obj)
7046 #ifdef SUSPICIOUS_OBJECT_CHECKING
7047 /* Right now, we care only about vectors. */
7048 if (VECTORLIKEP (obj))
7050 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7051 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7052 suspicious_object_index = 0;
7054 #endif
7055 return obj;
7058 #ifdef ENABLE_CHECKING
7060 bool suppress_checking;
7062 void
7063 die (const char *msg, const char *file, int line)
7065 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7066 file, line, msg);
7067 terminate_due_to_signal (SIGABRT, INT_MAX);
7070 #endif /* ENABLE_CHECKING */
7072 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7074 /* Debugging check whether STR is ASCII-only. */
7076 const char *
7077 verify_ascii (const char *str)
7079 const unsigned char *ptr = (unsigned char *) str, *end = ptr + strlen (str);
7080 while (ptr < end)
7082 int c = STRING_CHAR_ADVANCE (ptr);
7083 if (!ASCII_CHAR_P (c))
7084 emacs_abort ();
7086 return str;
7089 /* Stress alloca with inconveniently sized requests and check
7090 whether all allocated areas may be used for Lisp_Object. */
7092 NO_INLINE static void
7093 verify_alloca (void)
7095 int i;
7096 enum { ALLOCA_CHECK_MAX = 256 };
7097 /* Start from size of the smallest Lisp object. */
7098 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7100 void *ptr = alloca (i);
7101 make_lisp_ptr (ptr, Lisp_Cons);
7105 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7107 #define verify_alloca() ((void) 0)
7109 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7111 /* Initialization. */
7113 void
7114 init_alloc_once (void)
7116 /* Even though Qt's contents are not set up, its address is known. */
7117 Vpurify_flag = Qt;
7119 purebeg = PUREBEG;
7120 pure_size = PURESIZE;
7122 verify_alloca ();
7124 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
7125 mem_init ();
7126 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7127 #endif
7129 #ifdef DOUG_LEA_MALLOC
7130 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7131 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7132 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7133 #endif
7134 init_strings ();
7135 init_vectors ();
7137 refill_memory_reserve ();
7138 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7141 void
7142 init_alloc (void)
7144 gcprolist = 0;
7145 byte_stack_list = 0;
7146 #if GC_MARK_STACK
7147 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
7148 setjmp_tested_p = longjmps_done = 0;
7149 #endif
7150 #endif
7151 Vgc_elapsed = make_float (0.0);
7152 gcs_done = 0;
7154 #if USE_VALGRIND
7155 valgrind_p = RUNNING_ON_VALGRIND != 0;
7156 #endif
7159 void
7160 syms_of_alloc (void)
7162 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7163 doc: /* Number of bytes of consing between garbage collections.
7164 Garbage collection can happen automatically once this many bytes have been
7165 allocated since the last garbage collection. All data types count.
7167 Garbage collection happens automatically only when `eval' is called.
7169 By binding this temporarily to a large number, you can effectively
7170 prevent garbage collection during a part of the program.
7171 See also `gc-cons-percentage'. */);
7173 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7174 doc: /* Portion of the heap used for allocation.
7175 Garbage collection can happen automatically once this portion of the heap
7176 has been allocated since the last garbage collection.
7177 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7178 Vgc_cons_percentage = make_float (0.1);
7180 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7181 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7183 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7184 doc: /* Number of cons cells that have been consed so far. */);
7186 DEFVAR_INT ("floats-consed", floats_consed,
7187 doc: /* Number of floats that have been consed so far. */);
7189 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7190 doc: /* Number of vector cells that have been consed so far. */);
7192 DEFVAR_INT ("symbols-consed", symbols_consed,
7193 doc: /* Number of symbols that have been consed so far. */);
7194 symbols_consed += ARRAYELTS (lispsym);
7196 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7197 doc: /* Number of string characters that have been consed so far. */);
7199 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7200 doc: /* Number of miscellaneous objects that have been consed so far.
7201 These include markers and overlays, plus certain objects not visible
7202 to users. */);
7204 DEFVAR_INT ("intervals-consed", intervals_consed,
7205 doc: /* Number of intervals that have been consed so far. */);
7207 DEFVAR_INT ("strings-consed", strings_consed,
7208 doc: /* Number of strings that have been consed so far. */);
7210 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7211 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7212 This means that certain objects should be allocated in shared (pure) space.
7213 It can also be set to a hash-table, in which case this table is used to
7214 do hash-consing of the objects allocated to pure space. */);
7216 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7217 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7218 garbage_collection_messages = 0;
7220 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7221 doc: /* Hook run after garbage collection has finished. */);
7222 Vpost_gc_hook = Qnil;
7223 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7225 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7226 doc: /* Precomputed `signal' argument for memory-full error. */);
7227 /* We build this in advance because if we wait until we need it, we might
7228 not be able to allocate the memory to hold it. */
7229 Vmemory_signal_data
7230 = listn (CONSTYPE_PURE, 2, Qerror,
7231 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7233 DEFVAR_LISP ("memory-full", Vmemory_full,
7234 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7235 Vmemory_full = Qnil;
7237 DEFSYM (Qconses, "conses");
7238 DEFSYM (Qsymbols, "symbols");
7239 DEFSYM (Qmiscs, "miscs");
7240 DEFSYM (Qstrings, "strings");
7241 DEFSYM (Qvectors, "vectors");
7242 DEFSYM (Qfloats, "floats");
7243 DEFSYM (Qintervals, "intervals");
7244 DEFSYM (Qbuffers, "buffers");
7245 DEFSYM (Qstring_bytes, "string-bytes");
7246 DEFSYM (Qvector_slots, "vector-slots");
7247 DEFSYM (Qheap, "heap");
7248 DEFSYM (Qautomatic_gc, "Automatic GC");
7250 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7251 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7253 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7254 doc: /* Accumulated time elapsed in garbage collections.
7255 The time is in seconds as a floating point value. */);
7256 DEFVAR_INT ("gcs-done", gcs_done,
7257 doc: /* Accumulated number of garbage collections done. */);
7259 defsubr (&Scons);
7260 defsubr (&Slist);
7261 defsubr (&Svector);
7262 defsubr (&Sbool_vector);
7263 defsubr (&Smake_byte_code);
7264 defsubr (&Smake_list);
7265 defsubr (&Smake_vector);
7266 defsubr (&Smake_string);
7267 defsubr (&Smake_bool_vector);
7268 defsubr (&Smake_symbol);
7269 defsubr (&Smake_marker);
7270 defsubr (&Spurecopy);
7271 defsubr (&Sgarbage_collect);
7272 defsubr (&Smemory_limit);
7273 defsubr (&Smemory_info);
7274 defsubr (&Smemory_use_counts);
7275 defsubr (&Ssuspicious_object);
7277 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
7278 defsubr (&Sgc_status);
7279 #endif
7282 /* When compiled with GCC, GDB might say "No enum type named
7283 pvec_type" if we don't have at least one symbol with that type, and
7284 then xbacktrace could fail. Similarly for the other enums and
7285 their values. Some non-GCC compilers don't like these constructs. */
7286 #ifdef __GNUC__
7287 union
7289 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7290 enum char_table_specials char_table_specials;
7291 enum char_bits char_bits;
7292 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7293 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7294 enum Lisp_Bits Lisp_Bits;
7295 enum Lisp_Compiled Lisp_Compiled;
7296 enum maxargs maxargs;
7297 enum MAX_ALLOCA MAX_ALLOCA;
7298 enum More_Lisp_Bits More_Lisp_Bits;
7299 enum pvec_type pvec_type;
7300 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7301 #endif /* __GNUC__ */