1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2 Copyright (C) 1988, 1993, 1994, 1999, 2001, 2002, 2003, 2004,
3 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
23 /* ANSI C requires only these float functions:
24 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
25 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
27 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
28 Define HAVE_CBRT if you have cbrt.
29 Define HAVE_RINT if you have a working rint.
30 If you don't define these, then the appropriate routines will be simulated.
32 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
33 (This should happen automatically.)
35 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
36 This has no effect if HAVE_MATHERR is defined.
38 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
39 (What systems actually do this? Please let us know.)
41 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
42 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
43 range checking will happen before calling the float routines. This has
44 no effect if HAVE_MATHERR is defined (since matherr will be called when
45 a domain error occurs.)
51 #include "syssignal.h"
57 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
58 #ifndef IEEE_FLOATING_POINT
59 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
60 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
61 #define IEEE_FLOATING_POINT 1
63 #define IEEE_FLOATING_POINT 0
67 /* Work around a problem that happens because math.h on hpux 7
68 defines two static variables--which, in Emacs, are not really static,
69 because `static' is defined as nothing. The problem is that they are
70 defined both here and in lread.c.
71 These macros prevent the name conflict. */
72 #if defined (HPUX) && !defined (HPUX8)
73 #define _MAXLDBL floatfns_maxldbl
74 #define _NMAXLDBL floatfns_nmaxldbl
79 /* This declaration is omitted on some systems, like Ultrix. */
80 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
81 extern double logb ();
82 #endif /* not HPUX and HAVE_LOGB and no logb macro */
84 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
85 /* If those are defined, then this is probably a `matherr' machine. */
96 # ifdef FLOAT_CHECK_ERRNO
97 # undef FLOAT_CHECK_ERRNO
99 # ifdef FLOAT_CHECK_DOMAIN
100 # undef FLOAT_CHECK_DOMAIN
104 #ifndef NO_FLOAT_CHECK_ERRNO
105 #define FLOAT_CHECK_ERRNO
108 #ifdef FLOAT_CHECK_ERRNO
116 /* Avoid traps on VMS from sinh and cosh.
117 All the other functions set errno instead. */
122 #define cosh(x) ((exp(x)+exp(-x))*0.5)
123 #define sinh(x) ((exp(x)-exp(-x))*0.5)
126 #ifdef FLOAT_CATCH_SIGILL
127 static SIGTYPE
float_error ();
130 /* Nonzero while executing in floating point.
131 This tells float_error what to do. */
135 /* If an argument is out of range for a mathematical function,
136 here is the actual argument value to use in the error message.
137 These variables are used only across the floating point library call
138 so there is no need to staticpro them. */
140 static Lisp_Object float_error_arg
, float_error_arg2
;
142 static char *float_error_fn_name
;
144 /* Evaluate the floating point expression D, recording NUM
145 as the original argument for error messages.
146 D is normally an assignment expression.
147 Handle errors which may result in signals or may set errno.
149 Note that float_error may be declared to return void, so you can't
150 just cast the zero after the colon to (SIGTYPE) to make the types
153 #ifdef FLOAT_CHECK_ERRNO
154 #define IN_FLOAT(d, name, num) \
156 float_error_arg = num; \
157 float_error_fn_name = name; \
158 in_float = 1; errno = 0; (d); in_float = 0; \
161 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
162 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
163 default: arith_error (float_error_fn_name, float_error_arg); \
166 #define IN_FLOAT2(d, name, num, num2) \
168 float_error_arg = num; \
169 float_error_arg2 = num2; \
170 float_error_fn_name = name; \
171 in_float = 1; errno = 0; (d); in_float = 0; \
174 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
175 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
176 default: arith_error (float_error_fn_name, float_error_arg); \
180 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
181 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
184 /* Convert float to Lisp_Int if it fits, else signal a range error
185 using the given arguments. */
186 #define FLOAT_TO_INT(x, i, name, num) \
189 if (FIXNUM_OVERFLOW_P (x)) \
190 range_error (name, num); \
191 XSETINT (i, (EMACS_INT)(x)); \
194 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
197 if (FIXNUM_OVERFLOW_P (x)) \
198 range_error2 (name, num1, num2); \
199 XSETINT (i, (EMACS_INT)(x)); \
203 #define arith_error(op,arg) \
204 xsignal2 (Qarith_error, build_string ((op)), (arg))
205 #define range_error(op,arg) \
206 xsignal2 (Qrange_error, build_string ((op)), (arg))
207 #define range_error2(op,a1,a2) \
208 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
209 #define domain_error(op,arg) \
210 xsignal2 (Qdomain_error, build_string ((op)), (arg))
211 #define domain_error2(op,a1,a2) \
212 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
214 /* Extract a Lisp number as a `double', or signal an error. */
220 CHECK_NUMBER_OR_FLOAT (num
);
223 return XFLOAT_DATA (num
);
224 return (double) XINT (num
);
227 /* Trig functions. */
229 DEFUN ("acos", Facos
, Sacos
, 1, 1, 0,
230 doc
: /* Return the inverse cosine of ARG. */)
232 register Lisp_Object arg
;
234 double d
= extract_float (arg
);
235 #ifdef FLOAT_CHECK_DOMAIN
236 if (d
> 1.0 || d
< -1.0)
237 domain_error ("acos", arg
);
239 IN_FLOAT (d
= acos (d
), "acos", arg
);
240 return make_float (d
);
243 DEFUN ("asin", Fasin
, Sasin
, 1, 1, 0,
244 doc
: /* Return the inverse sine of ARG. */)
246 register Lisp_Object arg
;
248 double d
= extract_float (arg
);
249 #ifdef FLOAT_CHECK_DOMAIN
250 if (d
> 1.0 || d
< -1.0)
251 domain_error ("asin", arg
);
253 IN_FLOAT (d
= asin (d
), "asin", arg
);
254 return make_float (d
);
257 DEFUN ("atan", Fatan
, Satan
, 1, 2, 0,
258 doc
: /* Return the inverse tangent of the arguments.
259 If only one argument Y is given, return the inverse tangent of Y.
260 If two arguments Y and X are given, return the inverse tangent of Y
261 divided by X, i.e. the angle in radians between the vector (X, Y)
264 register Lisp_Object y
, x
;
266 double d
= extract_float (y
);
269 IN_FLOAT (d
= atan (d
), "atan", y
);
272 double d2
= extract_float (x
);
274 IN_FLOAT2 (d
= atan2 (d
, d2
), "atan", y
, x
);
276 return make_float (d
);
279 DEFUN ("cos", Fcos
, Scos
, 1, 1, 0,
280 doc
: /* Return the cosine of ARG. */)
282 register Lisp_Object arg
;
284 double d
= extract_float (arg
);
285 IN_FLOAT (d
= cos (d
), "cos", arg
);
286 return make_float (d
);
289 DEFUN ("sin", Fsin
, Ssin
, 1, 1, 0,
290 doc
: /* Return the sine of ARG. */)
292 register Lisp_Object arg
;
294 double d
= extract_float (arg
);
295 IN_FLOAT (d
= sin (d
), "sin", arg
);
296 return make_float (d
);
299 DEFUN ("tan", Ftan
, Stan
, 1, 1, 0,
300 doc
: /* Return the tangent of ARG. */)
302 register Lisp_Object arg
;
304 double d
= extract_float (arg
);
306 #ifdef FLOAT_CHECK_DOMAIN
308 domain_error ("tan", arg
);
310 IN_FLOAT (d
= sin (d
) / c
, "tan", arg
);
311 return make_float (d
);
314 #if 0 /* Leave these out unless we find there's a reason for them. */
316 DEFUN ("bessel-j0", Fbessel_j0
, Sbessel_j0
, 1, 1, 0,
317 doc
: /* Return the bessel function j0 of ARG. */)
319 register Lisp_Object arg
;
321 double d
= extract_float (arg
);
322 IN_FLOAT (d
= j0 (d
), "bessel-j0", arg
);
323 return make_float (d
);
326 DEFUN ("bessel-j1", Fbessel_j1
, Sbessel_j1
, 1, 1, 0,
327 doc
: /* Return the bessel function j1 of ARG. */)
329 register Lisp_Object arg
;
331 double d
= extract_float (arg
);
332 IN_FLOAT (d
= j1 (d
), "bessel-j1", arg
);
333 return make_float (d
);
336 DEFUN ("bessel-jn", Fbessel_jn
, Sbessel_jn
, 2, 2, 0,
337 doc
: /* Return the order N bessel function output jn of ARG.
338 The first arg (the order) is truncated to an integer. */)
340 register Lisp_Object n
, arg
;
342 int i1
= extract_float (n
);
343 double f2
= extract_float (arg
);
345 IN_FLOAT (f2
= jn (i1
, f2
), "bessel-jn", n
);
346 return make_float (f2
);
349 DEFUN ("bessel-y0", Fbessel_y0
, Sbessel_y0
, 1, 1, 0,
350 doc
: /* Return the bessel function y0 of ARG. */)
352 register Lisp_Object arg
;
354 double d
= extract_float (arg
);
355 IN_FLOAT (d
= y0 (d
), "bessel-y0", arg
);
356 return make_float (d
);
359 DEFUN ("bessel-y1", Fbessel_y1
, Sbessel_y1
, 1, 1, 0,
360 doc
: /* Return the bessel function y1 of ARG. */)
362 register Lisp_Object arg
;
364 double d
= extract_float (arg
);
365 IN_FLOAT (d
= y1 (d
), "bessel-y0", arg
);
366 return make_float (d
);
369 DEFUN ("bessel-yn", Fbessel_yn
, Sbessel_yn
, 2, 2, 0,
370 doc
: /* Return the order N bessel function output yn of ARG.
371 The first arg (the order) is truncated to an integer. */)
373 register Lisp_Object n
, arg
;
375 int i1
= extract_float (n
);
376 double f2
= extract_float (arg
);
378 IN_FLOAT (f2
= yn (i1
, f2
), "bessel-yn", n
);
379 return make_float (f2
);
384 #if 0 /* Leave these out unless we see they are worth having. */
386 DEFUN ("erf", Ferf
, Serf
, 1, 1, 0,
387 doc
: /* Return the mathematical error function of ARG. */)
389 register Lisp_Object arg
;
391 double d
= extract_float (arg
);
392 IN_FLOAT (d
= erf (d
), "erf", arg
);
393 return make_float (d
);
396 DEFUN ("erfc", Ferfc
, Serfc
, 1, 1, 0,
397 doc
: /* Return the complementary error function of ARG. */)
399 register Lisp_Object arg
;
401 double d
= extract_float (arg
);
402 IN_FLOAT (d
= erfc (d
), "erfc", arg
);
403 return make_float (d
);
406 DEFUN ("log-gamma", Flog_gamma
, Slog_gamma
, 1, 1, 0,
407 doc
: /* Return the log gamma of ARG. */)
409 register Lisp_Object arg
;
411 double d
= extract_float (arg
);
412 IN_FLOAT (d
= lgamma (d
), "log-gamma", arg
);
413 return make_float (d
);
416 DEFUN ("cube-root", Fcube_root
, Scube_root
, 1, 1, 0,
417 doc
: /* Return the cube root of ARG. */)
419 register Lisp_Object arg
;
421 double d
= extract_float (arg
);
423 IN_FLOAT (d
= cbrt (d
), "cube-root", arg
);
426 IN_FLOAT (d
= pow (d
, 1.0/3.0), "cube-root", arg
);
428 IN_FLOAT (d
= -pow (-d
, 1.0/3.0), "cube-root", arg
);
430 return make_float (d
);
435 DEFUN ("exp", Fexp
, Sexp
, 1, 1, 0,
436 doc
: /* Return the exponential base e of ARG. */)
438 register Lisp_Object arg
;
440 double d
= extract_float (arg
);
441 #ifdef FLOAT_CHECK_DOMAIN
442 if (d
> 709.7827) /* Assume IEEE doubles here */
443 range_error ("exp", arg
);
445 return make_float (0.0);
448 IN_FLOAT (d
= exp (d
), "exp", arg
);
449 return make_float (d
);
452 DEFUN ("expt", Fexpt
, Sexpt
, 2, 2, 0,
453 doc
: /* Return the exponential ARG1 ** ARG2. */)
455 register Lisp_Object arg1
, arg2
;
459 CHECK_NUMBER_OR_FLOAT (arg1
);
460 CHECK_NUMBER_OR_FLOAT (arg2
);
461 if (INTEGERP (arg1
) /* common lisp spec */
462 && INTEGERP (arg2
) /* don't promote, if both are ints, and */
463 && 0 <= XINT (arg2
)) /* we are sure the result is not fractional */
464 { /* this can be improved by pre-calculating */
465 EMACS_INT acc
, x
, y
; /* some binary powers of x then accumulating */
477 acc
= (y
& 1) ? -1 : 1;
488 y
= (unsigned)y
>> 1;
494 f1
= FLOATP (arg1
) ? XFLOAT_DATA (arg1
) : XINT (arg1
);
495 f2
= FLOATP (arg2
) ? XFLOAT_DATA (arg2
) : XINT (arg2
);
496 /* Really should check for overflow, too */
497 if (f1
== 0.0 && f2
== 0.0)
499 #ifdef FLOAT_CHECK_DOMAIN
500 else if ((f1
== 0.0 && f2
< 0.0) || (f1
< 0 && f2
!= floor(f2
)))
501 domain_error2 ("expt", arg1
, arg2
);
503 IN_FLOAT2 (f1
= pow (f1
, f2
), "expt", arg1
, arg2
);
504 return make_float (f1
);
507 DEFUN ("log", Flog
, Slog
, 1, 2, 0,
508 doc
: /* Return the natural logarithm of ARG.
509 If the optional argument BASE is given, return log ARG using that base. */)
511 register Lisp_Object arg
, base
;
513 double d
= extract_float (arg
);
515 #ifdef FLOAT_CHECK_DOMAIN
517 domain_error2 ("log", arg
, base
);
520 IN_FLOAT (d
= log (d
), "log", arg
);
523 double b
= extract_float (base
);
525 #ifdef FLOAT_CHECK_DOMAIN
526 if (b
<= 0.0 || b
== 1.0)
527 domain_error2 ("log", arg
, base
);
530 IN_FLOAT2 (d
= log10 (d
), "log", arg
, base
);
532 IN_FLOAT2 (d
= log (d
) / log (b
), "log", arg
, base
);
534 return make_float (d
);
537 DEFUN ("log10", Flog10
, Slog10
, 1, 1, 0,
538 doc
: /* Return the logarithm base 10 of ARG. */)
540 register Lisp_Object arg
;
542 double d
= extract_float (arg
);
543 #ifdef FLOAT_CHECK_DOMAIN
545 domain_error ("log10", arg
);
547 IN_FLOAT (d
= log10 (d
), "log10", arg
);
548 return make_float (d
);
551 DEFUN ("sqrt", Fsqrt
, Ssqrt
, 1, 1, 0,
552 doc
: /* Return the square root of ARG. */)
554 register Lisp_Object arg
;
556 double d
= extract_float (arg
);
557 #ifdef FLOAT_CHECK_DOMAIN
559 domain_error ("sqrt", arg
);
561 IN_FLOAT (d
= sqrt (d
), "sqrt", arg
);
562 return make_float (d
);
565 #if 0 /* Not clearly worth adding. */
567 DEFUN ("acosh", Facosh
, Sacosh
, 1, 1, 0,
568 doc
: /* Return the inverse hyperbolic cosine of ARG. */)
570 register Lisp_Object arg
;
572 double d
= extract_float (arg
);
573 #ifdef FLOAT_CHECK_DOMAIN
575 domain_error ("acosh", arg
);
577 #ifdef HAVE_INVERSE_HYPERBOLIC
578 IN_FLOAT (d
= acosh (d
), "acosh", arg
);
580 IN_FLOAT (d
= log (d
+ sqrt (d
*d
- 1.0)), "acosh", arg
);
582 return make_float (d
);
585 DEFUN ("asinh", Fasinh
, Sasinh
, 1, 1, 0,
586 doc
: /* Return the inverse hyperbolic sine of ARG. */)
588 register Lisp_Object arg
;
590 double d
= extract_float (arg
);
591 #ifdef HAVE_INVERSE_HYPERBOLIC
592 IN_FLOAT (d
= asinh (d
), "asinh", arg
);
594 IN_FLOAT (d
= log (d
+ sqrt (d
*d
+ 1.0)), "asinh", arg
);
596 return make_float (d
);
599 DEFUN ("atanh", Fatanh
, Satanh
, 1, 1, 0,
600 doc
: /* Return the inverse hyperbolic tangent of ARG. */)
602 register Lisp_Object arg
;
604 double d
= extract_float (arg
);
605 #ifdef FLOAT_CHECK_DOMAIN
606 if (d
>= 1.0 || d
<= -1.0)
607 domain_error ("atanh", arg
);
609 #ifdef HAVE_INVERSE_HYPERBOLIC
610 IN_FLOAT (d
= atanh (d
), "atanh", arg
);
612 IN_FLOAT (d
= 0.5 * log ((1.0 + d
) / (1.0 - d
)), "atanh", arg
);
614 return make_float (d
);
617 DEFUN ("cosh", Fcosh
, Scosh
, 1, 1, 0,
618 doc
: /* Return the hyperbolic cosine of ARG. */)
620 register Lisp_Object arg
;
622 double d
= extract_float (arg
);
623 #ifdef FLOAT_CHECK_DOMAIN
624 if (d
> 710.0 || d
< -710.0)
625 range_error ("cosh", arg
);
627 IN_FLOAT (d
= cosh (d
), "cosh", arg
);
628 return make_float (d
);
631 DEFUN ("sinh", Fsinh
, Ssinh
, 1, 1, 0,
632 doc
: /* Return the hyperbolic sine of ARG. */)
634 register Lisp_Object arg
;
636 double d
= extract_float (arg
);
637 #ifdef FLOAT_CHECK_DOMAIN
638 if (d
> 710.0 || d
< -710.0)
639 range_error ("sinh", arg
);
641 IN_FLOAT (d
= sinh (d
), "sinh", arg
);
642 return make_float (d
);
645 DEFUN ("tanh", Ftanh
, Stanh
, 1, 1, 0,
646 doc
: /* Return the hyperbolic tangent of ARG. */)
648 register Lisp_Object arg
;
650 double d
= extract_float (arg
);
651 IN_FLOAT (d
= tanh (d
), "tanh", arg
);
652 return make_float (d
);
656 DEFUN ("abs", Fabs
, Sabs
, 1, 1, 0,
657 doc
: /* Return the absolute value of ARG. */)
659 register Lisp_Object arg
;
661 CHECK_NUMBER_OR_FLOAT (arg
);
664 IN_FLOAT (arg
= make_float (fabs (XFLOAT_DATA (arg
))), "abs", arg
);
665 else if (XINT (arg
) < 0)
666 XSETINT (arg
, - XINT (arg
));
671 DEFUN ("float", Ffloat
, Sfloat
, 1, 1, 0,
672 doc
: /* Return the floating point number equal to ARG. */)
674 register Lisp_Object arg
;
676 CHECK_NUMBER_OR_FLOAT (arg
);
679 return make_float ((double) XINT (arg
));
680 else /* give 'em the same float back */
684 DEFUN ("logb", Flogb
, Slogb
, 1, 1, 0,
685 doc
: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
686 This is the same as the exponent of a float. */)
692 double f
= extract_float (arg
);
695 value
= MOST_NEGATIVE_FIXNUM
;
699 IN_FLOAT (value
= logb (f
), "logb", arg
);
703 IN_FLOAT (frexp (f
, &ivalue
), "logb", arg
);
713 for (i
= 1, d
= 0.5; d
* d
>= f
; i
+= i
)
720 for (i
= 1, d
= 2.0; d
* d
<= f
; i
+= i
)
728 XSETINT (val
, value
);
733 /* the rounding functions */
736 rounding_driver (arg
, divisor
, double_round
, int_round2
, name
)
737 register Lisp_Object arg
, divisor
;
738 double (*double_round
) ();
739 EMACS_INT (*int_round2
) ();
742 CHECK_NUMBER_OR_FLOAT (arg
);
744 if (! NILP (divisor
))
748 CHECK_NUMBER_OR_FLOAT (divisor
);
750 if (FLOATP (arg
) || FLOATP (divisor
))
754 f1
= FLOATP (arg
) ? XFLOAT_DATA (arg
) : XINT (arg
);
755 f2
= (FLOATP (divisor
) ? XFLOAT_DATA (divisor
) : XINT (divisor
));
756 if (! IEEE_FLOATING_POINT
&& f2
== 0)
757 xsignal0 (Qarith_error
);
759 IN_FLOAT2 (f1
= (*double_round
) (f1
/ f2
), name
, arg
, divisor
);
760 FLOAT_TO_INT2 (f1
, arg
, name
, arg
, divisor
);
768 xsignal0 (Qarith_error
);
770 XSETINT (arg
, (*int_round2
) (i1
, i2
));
778 IN_FLOAT (d
= (*double_round
) (XFLOAT_DATA (arg
)), name
, arg
);
779 FLOAT_TO_INT (d
, arg
, name
, arg
);
785 /* With C's /, the result is implementation-defined if either operand
786 is negative, so take care with negative operands in the following
787 integer functions. */
794 ? (i1
< 0 ? ((-1 - i1
) / -i2
) + 1 : - (i1
/ -i2
))
795 : (i1
<= 0 ? - (-i1
/ i2
) : ((i1
- 1) / i2
) + 1));
803 ? (i1
<= 0 ? -i1
/ -i2
: -1 - ((i1
- 1) / -i2
))
804 : (i1
< 0 ? -1 - ((-1 - i1
) / i2
) : i1
/ i2
));
812 ? (i1
< 0 ? -i1
/ -i2
: - (i1
/ -i2
))
813 : (i1
< 0 ? - (-i1
/ i2
) : i1
/ i2
));
820 /* The C language's division operator gives us one remainder R, but
821 we want the remainder R1 on the other side of 0 if R1 is closer
822 to 0 than R is; because we want to round to even, we also want R1
823 if R and R1 are the same distance from 0 and if C's quotient is
825 EMACS_INT q
= i1
/ i2
;
826 EMACS_INT r
= i1
% i2
;
827 EMACS_INT abs_r
= r
< 0 ? -r
: r
;
828 EMACS_INT abs_r1
= (i2
< 0 ? -i2
: i2
) - abs_r
;
829 return q
+ (abs_r
+ (q
& 1) <= abs_r1
? 0 : (i2
^ r
) < 0 ? -1 : 1);
832 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
833 if `rint' exists but does not work right. */
835 #define emacs_rint rint
841 return floor (d
+ 0.5);
852 DEFUN ("ceiling", Fceiling
, Sceiling
, 1, 2, 0,
853 doc
: /* Return the smallest integer no less than ARG.
854 This rounds the value towards +inf.
855 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
857 Lisp_Object arg
, divisor
;
859 return rounding_driver (arg
, divisor
, ceil
, ceiling2
, "ceiling");
862 DEFUN ("floor", Ffloor
, Sfloor
, 1, 2, 0,
863 doc
: /* Return the largest integer no greater than ARG.
864 This rounds the value towards -inf.
865 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
867 Lisp_Object arg
, divisor
;
869 return rounding_driver (arg
, divisor
, floor
, floor2
, "floor");
872 DEFUN ("round", Fround
, Sround
, 1, 2, 0,
873 doc
: /* Return the nearest integer to ARG.
874 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
876 Rounding a value equidistant between two integers may choose the
877 integer closer to zero, or it may prefer an even integer, depending on
878 your machine. For example, \(round 2.5\) can return 3 on some
879 systems, but 2 on others. */)
881 Lisp_Object arg
, divisor
;
883 return rounding_driver (arg
, divisor
, emacs_rint
, round2
, "round");
886 DEFUN ("truncate", Ftruncate
, Struncate
, 1, 2, 0,
887 doc
: /* Truncate a floating point number to an int.
888 Rounds ARG toward zero.
889 With optional DIVISOR, truncate ARG/DIVISOR. */)
891 Lisp_Object arg
, divisor
;
893 return rounding_driver (arg
, divisor
, double_identity
, truncate2
,
900 register Lisp_Object x
, y
;
904 f1
= FLOATP (x
) ? XFLOAT_DATA (x
) : XINT (x
);
905 f2
= FLOATP (y
) ? XFLOAT_DATA (y
) : XINT (y
);
907 if (! IEEE_FLOATING_POINT
&& f2
== 0)
908 xsignal0 (Qarith_error
);
910 /* If the "remainder" comes out with the wrong sign, fix it. */
911 IN_FLOAT2 ((f1
= fmod (f1
, f2
),
912 f1
= (f2
< 0 ? f1
> 0 : f1
< 0) ? f1
+ f2
: f1
),
914 return make_float (f1
);
917 /* It's not clear these are worth adding. */
919 DEFUN ("fceiling", Ffceiling
, Sfceiling
, 1, 1, 0,
920 doc
: /* Return the smallest integer no less than ARG, as a float.
921 \(Round toward +inf.\) */)
923 register Lisp_Object arg
;
925 double d
= extract_float (arg
);
926 IN_FLOAT (d
= ceil (d
), "fceiling", arg
);
927 return make_float (d
);
930 DEFUN ("ffloor", Fffloor
, Sffloor
, 1, 1, 0,
931 doc
: /* Return the largest integer no greater than ARG, as a float.
932 \(Round towards -inf.\) */)
934 register Lisp_Object arg
;
936 double d
= extract_float (arg
);
937 IN_FLOAT (d
= floor (d
), "ffloor", arg
);
938 return make_float (d
);
941 DEFUN ("fround", Ffround
, Sfround
, 1, 1, 0,
942 doc
: /* Return the nearest integer to ARG, as a float. */)
944 register Lisp_Object arg
;
946 double d
= extract_float (arg
);
947 IN_FLOAT (d
= emacs_rint (d
), "fround", arg
);
948 return make_float (d
);
951 DEFUN ("ftruncate", Fftruncate
, Sftruncate
, 1, 1, 0,
952 doc
: /* Truncate a floating point number to an integral float value.
953 Rounds the value toward zero. */)
955 register Lisp_Object arg
;
957 double d
= extract_float (arg
);
959 IN_FLOAT (d
= floor (d
), "ftruncate", arg
);
961 IN_FLOAT (d
= ceil (d
), "ftruncate", arg
);
962 return make_float (d
);
965 #ifdef FLOAT_CATCH_SIGILL
971 fatal_error_signal (signo
);
976 #else /* not BSD4_1 */
977 sigsetmask (SIGEMPTYMASK
);
978 #endif /* not BSD4_1 */
980 /* Must reestablish handler each time it is called. */
981 signal (SIGILL
, float_error
);
982 #endif /* BSD_SYSTEM */
984 SIGNAL_THREAD_CHECK (signo
);
987 xsignal1 (Qarith_error
, float_error_arg
);
990 /* Another idea was to replace the library function `infnan'
991 where SIGILL is signaled. */
993 #endif /* FLOAT_CATCH_SIGILL */
1002 /* Not called from emacs-lisp float routines; do the default thing. */
1004 if (!strcmp (x
->name
, "pow"))
1008 = Fcons (build_string (x
->name
),
1009 Fcons (make_float (x
->arg1
),
1010 ((!strcmp (x
->name
, "log") || !strcmp (x
->name
, "pow"))
1011 ? Fcons (make_float (x
->arg2
), Qnil
)
1015 case DOMAIN
: xsignal (Qdomain_error
, args
); break;
1016 case SING
: xsignal (Qsingularity_error
, args
); break;
1017 case OVERFLOW
: xsignal (Qoverflow_error
, args
); break;
1018 case UNDERFLOW
: xsignal (Qunderflow_error
, args
); break;
1019 default: xsignal (Qarith_error
, args
); break;
1021 return (1); /* don't set errno or print a message */
1023 #endif /* HAVE_MATHERR */
1028 #ifdef FLOAT_CATCH_SIGILL
1029 signal (SIGILL
, float_error
);
1050 defsubr (&Sbessel_y0
);
1051 defsubr (&Sbessel_y1
);
1052 defsubr (&Sbessel_yn
);
1053 defsubr (&Sbessel_j0
);
1054 defsubr (&Sbessel_j1
);
1055 defsubr (&Sbessel_jn
);
1058 defsubr (&Slog_gamma
);
1059 defsubr (&Scube_root
);
1061 defsubr (&Sfceiling
);
1064 defsubr (&Sftruncate
);
1074 defsubr (&Sceiling
);
1077 defsubr (&Struncate
);
1080 /* arch-tag: be05bf9d-049e-4e31-91b9-e6153d483ae7
1081 (do not change this comment) */