* src/eval.c (Fcalled_interactively_p): Doc fix. (Bug#11747)
[emacs.git] / doc / lispref / numbers.texi
blob7019fdde17267364ef0bddd6f64b91a62d6ead8c
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2012
4 @c   Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../../info/numbers
7 @node Numbers, Strings and Characters, Lisp Data Types, Top
8 @chapter Numbers
9 @cindex integers
10 @cindex numbers
12   GNU Emacs supports two numeric data types: @dfn{integers} and
13 @dfn{floating point numbers}.  Integers are whole numbers such as
14 @minus{}3, 0, 7, 13, and 511.  Their values are exact.  Floating point
15 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
16 2.71828.  They can also be expressed in exponential notation: 1.5e2
17 equals 150; in this example, @samp{e2} stands for ten to the second
18 power, and that is multiplied by 1.5.  Floating point values are not
19 exact; they have a fixed, limited amount of precision.
21 @menu
22 * Integer Basics::            Representation and range of integers.
23 * Float Basics::              Representation and range of floating point.
24 * Predicates on Numbers::     Testing for numbers.
25 * Comparison of Numbers::     Equality and inequality predicates.
26 * Numeric Conversions::       Converting float to integer and vice versa.
27 * Arithmetic Operations::     How to add, subtract, multiply and divide.
28 * Rounding Operations::       Explicitly rounding floating point numbers.
29 * Bitwise Operations::        Logical and, or, not, shifting.
30 * Math Functions::            Trig, exponential and logarithmic functions.
31 * Random Numbers::            Obtaining random integers, predictable or not.
32 @end menu
34 @node Integer Basics
35 @comment  node-name,  next,  previous,  up
36 @section Integer Basics
38   The range of values for an integer depends on the machine.  The
39 minimum range is @minus{}536870912 to 536870911 (30 bits; i.e.,
40 @ifnottex
41 -2**29
42 @end ifnottex
43 @tex
44 @math{-2^{29}}
45 @end tex
47 @ifnottex
48 2**29 - 1),
49 @end ifnottex
50 @tex
51 @math{2^{29}-1}),
52 @end tex
53 but some machines provide a wider range.  Many examples in this
54 chapter assume that an integer has 30 bits and that floating point
55 numbers are IEEE double precision.
56 @cindex overflow
58   The Lisp reader reads an integer as a sequence of digits with optional
59 initial sign and optional final period.  An integer that is out of the
60 Emacs range is treated as a floating-point number.
62 @example
63  1               ; @r{The integer 1.}
64  1.              ; @r{The integer 1.}
65 +1               ; @r{Also the integer 1.}
66 -1               ; @r{The integer @minus{}1.}
67  1073741825      ; @r{The floating point number 1073741825.0.}
68  0               ; @r{The integer 0.}
69 -0               ; @r{The integer 0.}
70 @end example
72 @cindex integers in specific radix
73 @cindex radix for reading an integer
74 @cindex base for reading an integer
75 @cindex hex numbers
76 @cindex octal numbers
77 @cindex reading numbers in hex, octal, and binary
78   The syntax for integers in bases other than 10 uses @samp{#}
79 followed by a letter that specifies the radix: @samp{b} for binary,
80 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
81 specify radix @var{radix}.  Case is not significant for the letter
82 that specifies the radix.  Thus, @samp{#b@var{integer}} reads
83 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
84 @var{integer} in radix @var{radix}.  Allowed values of @var{radix} run
85 from 2 to 36.  For example:
87 @example
88 #b101100 @result{} 44
89 #o54 @result{} 44
90 #x2c @result{} 44
91 #24r1k @result{} 44
92 @end example
94   To understand how various functions work on integers, especially the
95 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
96 view the numbers in their binary form.
98   In 30-bit binary, the decimal integer 5 looks like this:
100 @example
101 0000...000101 (30 bits total)
102 @end example
104 @noindent
105 (The @samp{...} stands for enough bits to fill out a 30-bit word; in
106 this case, @samp{...} stands for twenty 0 bits.  Later examples also
107 use the @samp{...} notation to make binary integers easier to read.)
109   The integer @minus{}1 looks like this:
111 @example
112 1111...111111 (30 bits total)
113 @end example
115 @noindent
116 @cindex two's complement
117 @minus{}1 is represented as 30 ones.  (This is called @dfn{two's
118 complement} notation.)
120   The negative integer, @minus{}5, is creating by subtracting 4 from
121 @minus{}1.  In binary, the decimal integer 4 is 100.  Consequently,
122 @minus{}5 looks like this:
124 @example
125 1111...111011 (30 bits total)
126 @end example
128   In this implementation, the largest 30-bit binary integer value is
129 536,870,911 in decimal.  In binary, it looks like this:
131 @example
132 0111...111111 (30 bits total)
133 @end example
135   Since the arithmetic functions do not check whether integers go
136 outside their range, when you add 1 to 536,870,911, the value is the
137 negative integer @minus{}536,870,912:
139 @example
140 (+ 1 536870911)
141      @result{} -536870912
142      @result{} 1000...000000 (30 bits total)
143 @end example
145   Many of the functions described in this chapter accept markers for
146 arguments in place of numbers.  (@xref{Markers}.)  Since the actual
147 arguments to such functions may be either numbers or markers, we often
148 give these arguments the name @var{number-or-marker}.  When the argument
149 value is a marker, its position value is used and its buffer is ignored.
151 @cindex largest Lisp integer number
152 @cindex maximum Lisp integer number
153 @defvar most-positive-fixnum
154 The value of this variable is the largest integer that Emacs Lisp
155 can handle.
156 @end defvar
158 @cindex smallest Lisp integer number
159 @cindex minimum Lisp integer number
160 @defvar most-negative-fixnum
161 The value of this variable is the smallest integer that Emacs Lisp can
162 handle.  It is negative.
163 @end defvar
165   @xref{Character Codes, max-char}, for the maximum value of a valid
166 character codepoint.
168 @node Float Basics
169 @section Floating Point Basics
171 @cindex @acronym{IEEE} floating point
172   Floating point numbers are useful for representing numbers that are
173 not integral.  The precise range of floating point numbers is
174 machine-specific; it is the same as the range of the C data type
175 @code{double} on the machine you are using.  Emacs uses the
176 @acronym{IEEE} floating point standard where possible (the standard is
177 supported by most modern computers).
179   The read syntax for floating point numbers requires either a decimal
180 point (with at least one digit following), an exponent, or both.  For
181 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
182 @samp{.15e4} are five ways of writing a floating point number whose
183 value is 1500.  They are all equivalent.  You can also use a minus
184 sign to write negative floating point numbers, as in @samp{-1.0}.
186   Emacs Lisp treats @code{-0.0} as equal to ordinary zero (with
187 respect to @code{equal} and @code{=}), even though the two are
188 distinguishable in the @acronym{IEEE} floating point standard.
190 @cindex positive infinity
191 @cindex negative infinity
192 @cindex infinity
193 @cindex NaN
194   The @acronym{IEEE} floating point standard supports positive
195 infinity and negative infinity as floating point values.  It also
196 provides for a class of values called NaN or ``not-a-number'';
197 numerical functions return such values in cases where there is no
198 correct answer.  For example, @code{(/ 0.0 0.0)} returns a NaN.  (NaN
199 values can also carry a sign, but for practical purposes there's no
200 significant difference between different NaN values in Emacs Lisp.)
201 Here are the read syntaxes for these special floating point values:
203 @table @asis
204 @item positive infinity
205 @samp{1.0e+INF}
206 @item negative infinity
207 @samp{-1.0e+INF}
208 @item Not-a-number
209 @samp{0.0e+NaN} or @samp{-0.0e+NaN}.
210 @end table
212 @defun isnan number
213 This predicate tests whether its argument is NaN, and returns @code{t}
214 if so, @code{nil} otherwise.  The argument must be a number.
215 @end defun
217   The following functions are specialized for handling floating point
218 numbers:
220 @defun frexp x
221 This function returns a cons cell @code{(@var{sig} . @var{exp})},
222 where @var{sig} and @var{exp} are respectively the significand and
223 exponent of the floating point number @var{x}:
225 @smallexample
226 @var{x} = @var{sig} * 2^@var{exp}
227 @end smallexample
229 @var{sig} is a floating point number between 0.5 (inclusive) and 1.0
230 (exclusive).  If @var{x} is zero, the return value is @code{(0 . 0)}.
231 @end defun
233 @defun ldexp sig &optional exp
234 This function returns a floating point number corresponding to the
235 significand @var{sig} and exponent @var{exp}.
236 @end defun
238 @defun copysign x1 x2
239 This function copies the sign of @var{x2} to the value of @var{x1},
240 and returns the result.  @var{x1} and @var{x2} must be floating point
241 numbers.
242 @end defun
244 @defun logb number
245 This function returns the binary exponent of @var{number}.  More
246 precisely, the value is the logarithm of @var{number} base 2, rounded
247 down to an integer.
249 @example
250 (logb 10)
251      @result{} 3
252 (logb 10.0e20)
253      @result{} 69
254 @end example
255 @end defun
257 @node Predicates on Numbers
258 @section Type Predicates for Numbers
259 @cindex predicates for numbers
261   The functions in this section test for numbers, or for a specific
262 type of number.  The functions @code{integerp} and @code{floatp} can
263 take any type of Lisp object as argument (they would not be of much
264 use otherwise), but the @code{zerop} predicate requires a number as
265 its argument.  See also @code{integer-or-marker-p} and
266 @code{number-or-marker-p}, in @ref{Predicates on Markers}.
268 @defun floatp object
269 This predicate tests whether its argument is a floating point
270 number and returns @code{t} if so, @code{nil} otherwise.
271 @end defun
273 @defun integerp object
274 This predicate tests whether its argument is an integer, and returns
275 @code{t} if so, @code{nil} otherwise.
276 @end defun
278 @defun numberp object
279 This predicate tests whether its argument is a number (either integer or
280 floating point), and returns @code{t} if so, @code{nil} otherwise.
281 @end defun
283 @defun natnump object
284 @cindex natural numbers
285 This predicate (whose name comes from the phrase ``natural number'')
286 tests to see whether its argument is a nonnegative integer, and
287 returns @code{t} if so, @code{nil} otherwise.  0 is considered
288 non-negative.
290 @findex wholenump number
291 This is a synonym for @code{natnump}.
292 @end defun
294 @defun zerop number
295 This predicate tests whether its argument is zero, and returns @code{t}
296 if so, @code{nil} otherwise.  The argument must be a number.
298 @code{(zerop x)} is equivalent to @code{(= x 0)}.
299 @end defun
301 @node Comparison of Numbers
302 @section Comparison of Numbers
303 @cindex number comparison
304 @cindex comparing numbers
306   To test numbers for numerical equality, you should normally use
307 @code{=}, not @code{eq}.  There can be many distinct floating point
308 number objects with the same numeric value.  If you use @code{eq} to
309 compare them, then you test whether two values are the same
310 @emph{object}.  By contrast, @code{=} compares only the numeric values
311 of the objects.
313   At present, each integer value has a unique Lisp object in Emacs Lisp.
314 Therefore, @code{eq} is equivalent to @code{=} where integers are
315 concerned.  It is sometimes convenient to use @code{eq} for comparing an
316 unknown value with an integer, because @code{eq} does not report an
317 error if the unknown value is not a number---it accepts arguments of any
318 type.  By contrast, @code{=} signals an error if the arguments are not
319 numbers or markers.  However, it is a good idea to use @code{=} if you
320 can, even for comparing integers, just in case we change the
321 representation of integers in a future Emacs version.
323   Sometimes it is useful to compare numbers with @code{equal}; it
324 treats two numbers as equal if they have the same data type (both
325 integers, or both floating point) and the same value.  By contrast,
326 @code{=} can treat an integer and a floating point number as equal.
327 @xref{Equality Predicates}.
329   There is another wrinkle: because floating point arithmetic is not
330 exact, it is often a bad idea to check for equality of two floating
331 point values.  Usually it is better to test for approximate equality.
332 Here's a function to do this:
334 @example
335 (defvar fuzz-factor 1.0e-6)
336 (defun approx-equal (x y)
337   (or (and (= x 0) (= y 0))
338       (< (/ (abs (- x y))
339             (max (abs x) (abs y)))
340          fuzz-factor)))
341 @end example
343 @cindex CL note---integers vrs @code{eq}
344 @quotation
345 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
346 @code{=} because Common Lisp implements multi-word integers, and two
347 distinct integer objects can have the same numeric value.  Emacs Lisp
348 can have just one integer object for any given value because it has a
349 limited range of integer values.
350 @end quotation
352 @defun = number-or-marker1 number-or-marker2
353 This function tests whether its arguments are numerically equal, and
354 returns @code{t} if so, @code{nil} otherwise.
355 @end defun
357 @defun eql value1 value2
358 This function acts like @code{eq} except when both arguments are
359 numbers.  It compares numbers by type and numeric value, so that
360 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
361 @code{(eql 1 1)} both return @code{t}.
362 @end defun
364 @defun /= number-or-marker1 number-or-marker2
365 This function tests whether its arguments are numerically equal, and
366 returns @code{t} if they are not, and @code{nil} if they are.
367 @end defun
369 @defun <  number-or-marker1 number-or-marker2
370 This function tests whether its first argument is strictly less than
371 its second argument.  It returns @code{t} if so, @code{nil} otherwise.
372 @end defun
374 @defun <=  number-or-marker1 number-or-marker2
375 This function tests whether its first argument is less than or equal
376 to its second argument.  It returns @code{t} if so, @code{nil}
377 otherwise.
378 @end defun
380 @defun >  number-or-marker1 number-or-marker2
381 This function tests whether its first argument is strictly greater
382 than its second argument.  It returns @code{t} if so, @code{nil}
383 otherwise.
384 @end defun
386 @defun >=  number-or-marker1 number-or-marker2
387 This function tests whether its first argument is greater than or
388 equal to its second argument.  It returns @code{t} if so, @code{nil}
389 otherwise.
390 @end defun
392 @defun max number-or-marker &rest numbers-or-markers
393 This function returns the largest of its arguments.
394 If any of the arguments is floating-point, the value is returned
395 as floating point, even if it was given as an integer.
397 @example
398 (max 20)
399      @result{} 20
400 (max 1 2.5)
401      @result{} 2.5
402 (max 1 3 2.5)
403      @result{} 3.0
404 @end example
405 @end defun
407 @defun min number-or-marker &rest numbers-or-markers
408 This function returns the smallest of its arguments.
409 If any of the arguments is floating-point, the value is returned
410 as floating point, even if it was given as an integer.
412 @example
413 (min -4 1)
414      @result{} -4
415 @end example
416 @end defun
418 @defun abs number
419 This function returns the absolute value of @var{number}.
420 @end defun
422 @node Numeric Conversions
423 @section Numeric Conversions
424 @cindex rounding in conversions
425 @cindex number conversions
426 @cindex converting numbers
428 To convert an integer to floating point, use the function @code{float}.
430 @defun float number
431 This returns @var{number} converted to floating point.
432 If @var{number} is already a floating point number, @code{float} returns
433 it unchanged.
434 @end defun
436 There are four functions to convert floating point numbers to integers;
437 they differ in how they round.  All accept an argument @var{number}
438 and an optional argument @var{divisor}.  Both arguments may be
439 integers or floating point numbers.  @var{divisor} may also be
440 @code{nil}.  If @var{divisor} is @code{nil} or omitted, these
441 functions convert @var{number} to an integer, or return it unchanged
442 if it already is an integer.  If @var{divisor} is non-@code{nil}, they
443 divide @var{number} by @var{divisor} and convert the result to an
444 integer.  An @code{arith-error} results if @var{divisor} is 0.
446 @defun truncate number &optional divisor
447 This returns @var{number}, converted to an integer by rounding towards
448 zero.
450 @example
451 (truncate 1.2)
452      @result{} 1
453 (truncate 1.7)
454      @result{} 1
455 (truncate -1.2)
456      @result{} -1
457 (truncate -1.7)
458      @result{} -1
459 @end example
460 @end defun
462 @defun floor number &optional divisor
463 This returns @var{number}, converted to an integer by rounding downward
464 (towards negative infinity).
466 If @var{divisor} is specified, this uses the kind of division
467 operation that corresponds to @code{mod}, rounding downward.
469 @example
470 (floor 1.2)
471      @result{} 1
472 (floor 1.7)
473      @result{} 1
474 (floor -1.2)
475      @result{} -2
476 (floor -1.7)
477      @result{} -2
478 (floor 5.99 3)
479      @result{} 1
480 @end example
481 @end defun
483 @defun ceiling number &optional divisor
484 This returns @var{number}, converted to an integer by rounding upward
485 (towards positive infinity).
487 @example
488 (ceiling 1.2)
489      @result{} 2
490 (ceiling 1.7)
491      @result{} 2
492 (ceiling -1.2)
493      @result{} -1
494 (ceiling -1.7)
495      @result{} -1
496 @end example
497 @end defun
499 @defun round number &optional divisor
500 This returns @var{number}, converted to an integer by rounding towards the
501 nearest integer.  Rounding a value equidistant between two integers
502 may choose the integer closer to zero, or it may prefer an even integer,
503 depending on your machine.
505 @example
506 (round 1.2)
507      @result{} 1
508 (round 1.7)
509      @result{} 2
510 (round -1.2)
511      @result{} -1
512 (round -1.7)
513      @result{} -2
514 @end example
515 @end defun
517 @node Arithmetic Operations
518 @section Arithmetic Operations
519 @cindex arithmetic operations
521   Emacs Lisp provides the traditional four arithmetic operations:
522 addition, subtraction, multiplication, and division.  Remainder and modulus
523 functions supplement the division functions.  The functions to
524 add or subtract 1 are provided because they are traditional in Lisp and
525 commonly used.
527   All of these functions except @code{%} return a floating point value
528 if any argument is floating.
530   It is important to note that in Emacs Lisp, arithmetic functions
531 do not check for overflow.  Thus @code{(1+ 536870911)} may evaluate to
532 @minus{}536870912, depending on your hardware.
534 @defun 1+ number-or-marker
535 This function returns @var{number-or-marker} plus 1.
536 For example,
538 @example
539 (setq foo 4)
540      @result{} 4
541 (1+ foo)
542      @result{} 5
543 @end example
545 This function is not analogous to the C operator @code{++}---it does not
546 increment a variable.  It just computes a sum.  Thus, if we continue,
548 @example
550      @result{} 4
551 @end example
553 If you want to increment the variable, you must use @code{setq},
554 like this:
556 @example
557 (setq foo (1+ foo))
558      @result{} 5
559 @end example
560 @end defun
562 @defun 1- number-or-marker
563 This function returns @var{number-or-marker} minus 1.
564 @end defun
566 @defun + &rest numbers-or-markers
567 This function adds its arguments together.  When given no arguments,
568 @code{+} returns 0.
570 @example
572      @result{} 0
573 (+ 1)
574      @result{} 1
575 (+ 1 2 3 4)
576      @result{} 10
577 @end example
578 @end defun
580 @defun - &optional number-or-marker &rest more-numbers-or-markers
581 The @code{-} function serves two purposes: negation and subtraction.
582 When @code{-} has a single argument, the value is the negative of the
583 argument.  When there are multiple arguments, @code{-} subtracts each of
584 the @var{more-numbers-or-markers} from @var{number-or-marker},
585 cumulatively.  If there are no arguments, the result is 0.
587 @example
588 (- 10 1 2 3 4)
589      @result{} 0
590 (- 10)
591      @result{} -10
593      @result{} 0
594 @end example
595 @end defun
597 @defun * &rest numbers-or-markers
598 This function multiplies its arguments together, and returns the
599 product.  When given no arguments, @code{*} returns 1.
601 @example
603      @result{} 1
604 (* 1)
605      @result{} 1
606 (* 1 2 3 4)
607      @result{} 24
608 @end example
609 @end defun
611 @defun / dividend divisor &rest divisors
612 This function divides @var{dividend} by @var{divisor} and returns the
613 quotient.  If there are additional arguments @var{divisors}, then it
614 divides @var{dividend} by each divisor in turn.  Each argument may be a
615 number or a marker.
617 If all the arguments are integers, then the result is an integer too.
618 This means the result has to be rounded.  On most machines, the result
619 is rounded towards zero after each division, but some machines may round
620 differently with negative arguments.  This is because the Lisp function
621 @code{/} is implemented using the C division operator, which also
622 permits machine-dependent rounding.  As a practical matter, all known
623 machines round in the standard fashion.
625 @cindex @code{arith-error} in division
626 If you divide an integer by 0, an @code{arith-error} error is signaled.
627 (@xref{Errors}.)  Floating point division by zero returns either
628 infinity or a NaN if your machine supports @acronym{IEEE} floating point;
629 otherwise, it signals an @code{arith-error} error.
631 @example
632 @group
633 (/ 6 2)
634      @result{} 3
635 @end group
636 (/ 5 2)
637      @result{} 2
638 (/ 5.0 2)
639      @result{} 2.5
640 (/ 5 2.0)
641      @result{} 2.5
642 (/ 5.0 2.0)
643      @result{} 2.5
644 (/ 25 3 2)
645      @result{} 4
646 @group
647 (/ -17 6)
648      @result{} -2   @r{(could in theory be @minus{}3 on some machines)}
649 @end group
650 @end example
651 @end defun
653 @defun % dividend divisor
654 @cindex remainder
655 This function returns the integer remainder after division of @var{dividend}
656 by @var{divisor}.  The arguments must be integers or markers.
658 For negative arguments, the remainder is in principle machine-dependent
659 since the quotient is; but in practice, all known machines behave alike.
661 An @code{arith-error} results if @var{divisor} is 0.
663 @example
664 (% 9 4)
665      @result{} 1
666 (% -9 4)
667      @result{} -1
668 (% 9 -4)
669      @result{} 1
670 (% -9 -4)
671      @result{} -1
672 @end example
674 For any two integers @var{dividend} and @var{divisor},
676 @example
677 @group
678 (+ (% @var{dividend} @var{divisor})
679    (* (/ @var{dividend} @var{divisor}) @var{divisor}))
680 @end group
681 @end example
683 @noindent
684 always equals @var{dividend}.
685 @end defun
687 @defun mod dividend divisor
688 @cindex modulus
689 This function returns the value of @var{dividend} modulo @var{divisor};
690 in other words, the remainder after division of @var{dividend}
691 by @var{divisor}, but with the same sign as @var{divisor}.
692 The arguments must be numbers or markers.
694 Unlike @code{%}, @code{mod} returns a well-defined result for negative
695 arguments.  It also permits floating point arguments; it rounds the
696 quotient downward (towards minus infinity) to an integer, and uses that
697 quotient to compute the remainder.
699 An @code{arith-error} results if @var{divisor} is 0.
701 @example
702 @group
703 (mod 9 4)
704      @result{} 1
705 @end group
706 @group
707 (mod -9 4)
708      @result{} 3
709 @end group
710 @group
711 (mod 9 -4)
712      @result{} -3
713 @end group
714 @group
715 (mod -9 -4)
716      @result{} -1
717 @end group
718 @group
719 (mod 5.5 2.5)
720      @result{} .5
721 @end group
722 @end example
724 For any two numbers @var{dividend} and @var{divisor},
726 @example
727 @group
728 (+ (mod @var{dividend} @var{divisor})
729    (* (floor @var{dividend} @var{divisor}) @var{divisor}))
730 @end group
731 @end example
733 @noindent
734 always equals @var{dividend}, subject to rounding error if either
735 argument is floating point.  For @code{floor}, see @ref{Numeric
736 Conversions}.
737 @end defun
739 @node Rounding Operations
740 @section Rounding Operations
741 @cindex rounding without conversion
743 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
744 @code{ftruncate} take a floating point argument and return a floating
745 point result whose value is a nearby integer.  @code{ffloor} returns the
746 nearest integer below; @code{fceiling}, the nearest integer above;
747 @code{ftruncate}, the nearest integer in the direction towards zero;
748 @code{fround}, the nearest integer.
750 @defun ffloor float
751 This function rounds @var{float} to the next lower integral value, and
752 returns that value as a floating point number.
753 @end defun
755 @defun fceiling float
756 This function rounds @var{float} to the next higher integral value, and
757 returns that value as a floating point number.
758 @end defun
760 @defun ftruncate float
761 This function rounds @var{float} towards zero to an integral value, and
762 returns that value as a floating point number.
763 @end defun
765 @defun fround float
766 This function rounds @var{float} to the nearest integral value,
767 and returns that value as a floating point number.
768 @end defun
770 @node Bitwise Operations
771 @section Bitwise Operations on Integers
772 @cindex bitwise arithmetic
773 @cindex logical arithmetic
775   In a computer, an integer is represented as a binary number, a
776 sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
777 operation acts on the individual bits of such a sequence.  For example,
778 @dfn{shifting} moves the whole sequence left or right one or more places,
779 reproducing the same pattern ``moved over''.
781   The bitwise operations in Emacs Lisp apply only to integers.
783 @defun lsh integer1 count
784 @cindex logical shift
785 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
786 bits in @var{integer1} to the left @var{count} places, or to the right
787 if @var{count} is negative, bringing zeros into the vacated bits.  If
788 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
789 (most-significant) bit, producing a positive result even if
790 @var{integer1} is negative.  Contrast this with @code{ash}, below.
792 Here are two examples of @code{lsh}, shifting a pattern of bits one
793 place to the left.  We show only the low-order eight bits of the binary
794 pattern; the rest are all zero.
796 @example
797 @group
798 (lsh 5 1)
799      @result{} 10
800 ;; @r{Decimal 5 becomes decimal 10.}
801 00000101 @result{} 00001010
803 (lsh 7 1)
804      @result{} 14
805 ;; @r{Decimal 7 becomes decimal 14.}
806 00000111 @result{} 00001110
807 @end group
808 @end example
810 @noindent
811 As the examples illustrate, shifting the pattern of bits one place to
812 the left produces a number that is twice the value of the previous
813 number.
815 Shifting a pattern of bits two places to the left produces results
816 like this (with 8-bit binary numbers):
818 @example
819 @group
820 (lsh 3 2)
821      @result{} 12
822 ;; @r{Decimal 3 becomes decimal 12.}
823 00000011 @result{} 00001100
824 @end group
825 @end example
827 On the other hand, shifting one place to the right looks like this:
829 @example
830 @group
831 (lsh 6 -1)
832      @result{} 3
833 ;; @r{Decimal 6 becomes decimal 3.}
834 00000110 @result{} 00000011
835 @end group
837 @group
838 (lsh 5 -1)
839      @result{} 2
840 ;; @r{Decimal 5 becomes decimal 2.}
841 00000101 @result{} 00000010
842 @end group
843 @end example
845 @noindent
846 As the example illustrates, shifting one place to the right divides the
847 value of a positive integer by two, rounding downward.
849 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
850 not check for overflow, so shifting left can discard significant bits
851 and change the sign of the number.  For example, left shifting
852 536,870,911 produces @minus{}2 in the 30-bit implementation:
854 @example
855 (lsh 536870911 1)          ; @r{left shift}
856      @result{} -2
857 @end example
859 In binary, the argument looks like this:
861 @example
862 @group
863 ;; @r{Decimal 536,870,911}
864 0111...111111 (30 bits total)
865 @end group
866 @end example
868 @noindent
869 which becomes the following when left shifted:
871 @example
872 @group
873 ;; @r{Decimal @minus{}2}
874 1111...111110 (30 bits total)
875 @end group
876 @end example
877 @end defun
879 @defun ash integer1 count
880 @cindex arithmetic shift
881 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
882 to the left @var{count} places, or to the right if @var{count}
883 is negative.
885 @code{ash} gives the same results as @code{lsh} except when
886 @var{integer1} and @var{count} are both negative.  In that case,
887 @code{ash} puts ones in the empty bit positions on the left, while
888 @code{lsh} puts zeros in those bit positions.
890 Thus, with @code{ash}, shifting the pattern of bits one place to the right
891 looks like this:
893 @example
894 @group
895 (ash -6 -1) @result{} -3
896 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
897 1111...111010 (30 bits total)
898      @result{}
899 1111...111101 (30 bits total)
900 @end group
901 @end example
903 In contrast, shifting the pattern of bits one place to the right with
904 @code{lsh} looks like this:
906 @example
907 @group
908 (lsh -6 -1) @result{} 536870909
909 ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
910 1111...111010 (30 bits total)
911      @result{}
912 0111...111101 (30 bits total)
913 @end group
914 @end example
916 Here are other examples:
918 @c !!! Check if lined up in smallbook format!  XDVI shows problem
919 @c     with smallbook but not with regular book! --rjc 16mar92
920 @smallexample
921 @group
922                    ;  @r{       30-bit binary values}
924 (lsh 5 2)          ;   5  =  @r{0000...000101}
925      @result{} 20         ;      =  @r{0000...010100}
926 @end group
927 @group
928 (ash 5 2)
929      @result{} 20
930 (lsh -5 2)         ;  -5  =  @r{1111...111011}
931      @result{} -20        ;      =  @r{1111...101100}
932 (ash -5 2)
933      @result{} -20
934 @end group
935 @group
936 (lsh 5 -2)         ;   5  =  @r{0000...000101}
937      @result{} 1          ;      =  @r{0000...000001}
938 @end group
939 @group
940 (ash 5 -2)
941      @result{} 1
942 @end group
943 @group
944 (lsh -5 -2)        ;  -5  =  @r{1111...111011}
945      @result{} 268435454
946                    ;      =  @r{0011...111110}
947 @end group
948 @group
949 (ash -5 -2)        ;  -5  =  @r{1111...111011}
950      @result{} -2         ;      =  @r{1111...111110}
951 @end group
952 @end smallexample
953 @end defun
955 @defun logand &rest ints-or-markers
956 This function returns the ``logical and'' of the arguments: the
957 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
958 set in all the arguments.  (``Set'' means that the value of the bit is 1
959 rather than 0.)
961 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
962 12 is 12: 1101 combined with 1100 produces 1100.
963 In both the binary numbers, the leftmost two bits are set (i.e., they
964 are 1's), so the leftmost two bits of the returned value are set.
965 However, for the rightmost two bits, each is zero in at least one of
966 the arguments, so the rightmost two bits of the returned value are 0's.
968 @noindent
969 Therefore,
971 @example
972 @group
973 (logand 13 12)
974      @result{} 12
975 @end group
976 @end example
978 If @code{logand} is not passed any argument, it returns a value of
979 @minus{}1.  This number is an identity element for @code{logand}
980 because its binary representation consists entirely of ones.  If
981 @code{logand} is passed just one argument, it returns that argument.
983 @smallexample
984 @group
985                    ; @r{       30-bit binary values}
987 (logand 14 13)     ; 14  =  @r{0000...001110}
988                    ; 13  =  @r{0000...001101}
989      @result{} 12         ; 12  =  @r{0000...001100}
990 @end group
992 @group
993 (logand 14 13 4)   ; 14  =  @r{0000...001110}
994                    ; 13  =  @r{0000...001101}
995                    ;  4  =  @r{0000...000100}
996      @result{} 4          ;  4  =  @r{0000...000100}
997 @end group
999 @group
1000 (logand)
1001      @result{} -1         ; -1  =  @r{1111...111111}
1002 @end group
1003 @end smallexample
1004 @end defun
1006 @defun logior &rest ints-or-markers
1007 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
1008 is set in the result if, and only if, the @var{n}th bit is set in at least
1009 one of the arguments.  If there are no arguments, the result is zero,
1010 which is an identity element for this operation.  If @code{logior} is
1011 passed just one argument, it returns that argument.
1013 @smallexample
1014 @group
1015                    ; @r{       30-bit binary values}
1017 (logior 12 5)      ; 12  =  @r{0000...001100}
1018                    ;  5  =  @r{0000...000101}
1019      @result{} 13         ; 13  =  @r{0000...001101}
1020 @end group
1022 @group
1023 (logior 12 5 7)    ; 12  =  @r{0000...001100}
1024                    ;  5  =  @r{0000...000101}
1025                    ;  7  =  @r{0000...000111}
1026      @result{} 15         ; 15  =  @r{0000...001111}
1027 @end group
1028 @end smallexample
1029 @end defun
1031 @defun logxor &rest ints-or-markers
1032 This function returns the ``exclusive or'' of its arguments: the
1033 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1034 set in an odd number of the arguments.  If there are no arguments, the
1035 result is 0, which is an identity element for this operation.  If
1036 @code{logxor} is passed just one argument, it returns that argument.
1038 @smallexample
1039 @group
1040                    ; @r{       30-bit binary values}
1042 (logxor 12 5)      ; 12  =  @r{0000...001100}
1043                    ;  5  =  @r{0000...000101}
1044      @result{} 9          ;  9  =  @r{0000...001001}
1045 @end group
1047 @group
1048 (logxor 12 5 7)    ; 12  =  @r{0000...001100}
1049                    ;  5  =  @r{0000...000101}
1050                    ;  7  =  @r{0000...000111}
1051      @result{} 14         ; 14  =  @r{0000...001110}
1052 @end group
1053 @end smallexample
1054 @end defun
1056 @defun lognot integer
1057 This function returns the logical complement of its argument: the @var{n}th
1058 bit is one in the result if, and only if, the @var{n}th bit is zero in
1059 @var{integer}, and vice-versa.
1061 @example
1062 (lognot 5)
1063      @result{} -6
1064 ;;  5  =  @r{0000...000101} (30 bits total)
1065 ;; @r{becomes}
1066 ;; -6  =  @r{1111...111010} (30 bits total)
1067 @end example
1068 @end defun
1070 @node Math Functions
1071 @section Standard Mathematical Functions
1072 @cindex transcendental functions
1073 @cindex mathematical functions
1074 @cindex floating-point functions
1076   These mathematical functions allow integers as well as floating point
1077 numbers as arguments.
1079 @defun sin arg
1080 @defunx cos arg
1081 @defunx tan arg
1082 These are the ordinary trigonometric functions, with argument measured
1083 in radians.
1084 @end defun
1086 @defun asin arg
1087 The value of @code{(asin @var{arg})} is a number between
1088 @ifnottex
1089 @minus{}pi/2
1090 @end ifnottex
1091 @tex
1092 @math{-\pi/2}
1093 @end tex
1095 @ifnottex
1096 pi/2
1097 @end ifnottex
1098 @tex
1099 @math{\pi/2}
1100 @end tex
1101 (inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of
1102 range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1103 @end defun
1105 @defun acos arg
1106 The value of @code{(acos @var{arg})} is a number between 0 and
1107 @ifnottex
1109 @end ifnottex
1110 @tex
1111 @math{\pi}
1112 @end tex
1113 (inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out
1114 of range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1115 @end defun
1117 @defun atan y &optional x
1118 The value of @code{(atan @var{y})} is a number between
1119 @ifnottex
1120 @minus{}pi/2
1121 @end ifnottex
1122 @tex
1123 @math{-\pi/2}
1124 @end tex
1126 @ifnottex
1127 pi/2
1128 @end ifnottex
1129 @tex
1130 @math{\pi/2}
1131 @end tex
1132 (exclusive) whose tangent is @var{y}.  If the optional second
1133 argument @var{x} is given, the value of @code{(atan y x)} is the
1134 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1135 @code{X} axis.
1136 @end defun
1138 @defun exp arg
1139 This is the exponential function; it returns @math{e} to the power
1140 @var{arg}.
1141 @end defun
1143 @defun log arg &optional base
1144 This function returns the logarithm of @var{arg}, with base
1145 @var{base}.  If you don't specify @var{base}, the natural base
1146 @math{e} is used.  If @var{arg} is negative, it signals a
1147 @code{domain-error} error.
1148 @end defun
1150 @ignore
1151 @defun expm1 arg
1152 This function returns @code{(1- (exp @var{arg}))}, but it is more
1153 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1154 is close to 1.
1155 @end defun
1157 @defun log1p arg
1158 This function returns @code{(log (1+ @var{arg}))}, but it is more
1159 accurate than that when @var{arg} is so small that adding 1 to it would
1160 lose accuracy.
1161 @end defun
1162 @end ignore
1164 @defun log10 arg
1165 This function returns the logarithm of @var{arg}, with base 10.  If
1166 @var{arg} is negative, it signals a @code{domain-error} error.
1167 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least
1168 approximately.
1169 @end defun
1171 @defun expt x y
1172 This function returns @var{x} raised to power @var{y}.  If both
1173 arguments are integers and @var{y} is positive, the result is an
1174 integer; in this case, overflow causes truncation, so watch out.
1175 @end defun
1177 @defun sqrt arg
1178 This returns the square root of @var{arg}.  If @var{arg} is negative,
1179 it signals a @code{domain-error} error.
1180 @end defun
1182 In addition, Emacs defines the following common mathematical
1183 constants:
1185 @defvar float-e
1186 The mathematical constant @math{e} (2.71828@dots{}).
1187 @end defvar
1189 @defvar float-pi
1190 The mathematical constant @math{pi} (3.14159@dots{}).
1191 @end defvar
1193 @node Random Numbers
1194 @section Random Numbers
1195 @cindex random numbers
1197 A deterministic computer program cannot generate true random numbers.
1198 For most purposes, @dfn{pseudo-random numbers} suffice.  A series of
1199 pseudo-random numbers is generated in a deterministic fashion.  The
1200 numbers are not truly random, but they have certain properties that
1201 mimic a random series.  For example, all possible values occur equally
1202 often in a pseudo-random series.
1204 In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1205 Starting from any given seed, the @code{random} function always
1206 generates the same sequence of numbers.  Emacs always starts with the
1207 same seed value, so the sequence of values of @code{random} is actually
1208 the same in each Emacs run!  For example, in one operating system, the
1209 first call to @code{(random)} after you start Emacs always returns
1210 @minus{}1457731, and the second one always returns @minus{}7692030.  This
1211 repeatability is helpful for debugging.
1213 If you want random numbers that don't always come out the same, execute
1214 @code{(random t)}.  This chooses a new seed based on the current time of
1215 day and on Emacs's process @acronym{ID} number.
1217 @defun random &optional limit
1218 This function returns a pseudo-random integer.  Repeated calls return a
1219 series of pseudo-random integers.
1221 If @var{limit} is a positive integer, the value is chosen to be
1222 nonnegative and less than @var{limit}.
1224 If @var{limit} is @code{t}, it means to choose a new seed based on the
1225 current time of day and on Emacs's process @acronym{ID} number.
1227 On some machines, any integer representable in Lisp may be the result
1228 of @code{random}.  On other machines, the result can never be larger
1229 than a certain maximum or less than a certain (negative) minimum.
1230 @end defun