Remove some trailing white space.
[emacs.git] / lisp / calc / calc-mtx.el
blobc79904d13ea67cc63acb465abf2067b84751bc11
1 ;;; calc-mtx.el --- matrix functions for Calc
3 ;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004,
4 ;; 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6 ;; Author: David Gillespie <daveg@synaptics.com>
7 ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
9 ;; This file is part of GNU Emacs.
11 ;; GNU Emacs is free software: you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation, either version 3 of the License, or
14 ;; (at your option) any later version.
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
24 ;;; Commentary:
26 ;;; Code:
28 ;; This file is autoloaded from calc-ext.el.
30 (require 'calc-ext)
31 (require 'calc-macs)
33 (defun calc-mdet (arg)
34 (interactive "P")
35 (calc-slow-wrapper
36 (calc-unary-op "mdet" 'calcFunc-det arg)))
38 (defun calc-mtrace (arg)
39 (interactive "P")
40 (calc-slow-wrapper
41 (calc-unary-op "mtr" 'calcFunc-tr arg)))
43 (defun calc-mlud (arg)
44 (interactive "P")
45 (calc-slow-wrapper
46 (calc-unary-op "mlud" 'calcFunc-lud arg)))
49 ;;; Coerce row vector A to be a matrix. [V V]
50 (defun math-row-matrix (a)
51 (if (and (Math-vectorp a)
52 (not (math-matrixp a)))
53 (list 'vec a)
54 a))
56 ;;; Coerce column vector A to be a matrix. [V V]
57 (defun math-col-matrix (a)
58 (if (and (Math-vectorp a)
59 (not (math-matrixp a)))
60 (cons 'vec (mapcar (function (lambda (x) (list 'vec x))) (cdr a)))
61 a))
65 ;;; Multiply matrices A and B. [V V V]
66 (defun math-mul-mats (a b)
67 (let ((mat nil)
68 (cols (length (nth 1 b)))
69 row col ap bp accum)
70 (while (setq a (cdr a))
71 (setq col cols
72 row nil)
73 (while (> (setq col (1- col)) 0)
74 (setq ap (cdr (car a))
75 bp (cdr b)
76 accum (math-mul (car ap) (nth col (car bp))))
77 (while (setq ap (cdr ap) bp (cdr bp))
78 (setq accum (math-add accum (math-mul (car ap) (nth col (car bp))))))
79 (setq row (cons accum row)))
80 (setq mat (cons (cons 'vec row) mat)))
81 (cons 'vec (nreverse mat))))
83 (defun math-mul-mat-vec (a b)
84 (cons 'vec (mapcar (function (lambda (row)
85 (math-dot-product row b)))
86 (cdr a))))
90 (defun calcFunc-tr (mat) ; [Public]
91 (if (math-square-matrixp mat)
92 (math-matrix-trace-step 2 (1- (length mat)) mat (nth 1 (nth 1 mat)))
93 (math-reject-arg mat 'square-matrixp)))
95 (defun math-matrix-trace-step (n size mat sum)
96 (if (<= n size)
97 (math-matrix-trace-step (1+ n) size mat
98 (math-add sum (nth n (nth n mat))))
99 sum))
102 ;;; Matrix inverse and determinant.
103 (defun math-matrix-inv-raw (m)
104 (let ((n (1- (length m))))
105 (if (<= n 3)
106 (let ((det (math-det-raw m)))
107 (and (not (math-zerop det))
108 (math-div
109 (cond ((= n 1) 1)
110 ((= n 2)
111 (list 'vec
112 (list 'vec
113 (nth 2 (nth 2 m))
114 (math-neg (nth 2 (nth 1 m))))
115 (list 'vec
116 (math-neg (nth 1 (nth 2 m)))
117 (nth 1 (nth 1 m)))))
118 ((= n 3)
119 (list 'vec
120 (list 'vec
121 (math-sub (math-mul (nth 3 (nth 3 m))
122 (nth 2 (nth 2 m)))
123 (math-mul (nth 3 (nth 2 m))
124 (nth 2 (nth 3 m))))
125 (math-sub (math-mul (nth 3 (nth 1 m))
126 (nth 2 (nth 3 m)))
127 (math-mul (nth 3 (nth 3 m))
128 (nth 2 (nth 1 m))))
129 (math-sub (math-mul (nth 3 (nth 2 m))
130 (nth 2 (nth 1 m)))
131 (math-mul (nth 3 (nth 1 m))
132 (nth 2 (nth 2 m)))))
133 (list 'vec
134 (math-sub (math-mul (nth 3 (nth 2 m))
135 (nth 1 (nth 3 m)))
136 (math-mul (nth 3 (nth 3 m))
137 (nth 1 (nth 2 m))))
138 (math-sub (math-mul (nth 3 (nth 3 m))
139 (nth 1 (nth 1 m)))
140 (math-mul (nth 3 (nth 1 m))
141 (nth 1 (nth 3 m))))
142 (math-sub (math-mul (nth 3 (nth 1 m))
143 (nth 1 (nth 2 m)))
144 (math-mul (nth 3 (nth 2 m))
145 (nth 1 (nth 1 m)))))
146 (list 'vec
147 (math-sub (math-mul (nth 2 (nth 3 m))
148 (nth 1 (nth 2 m)))
149 (math-mul (nth 2 (nth 2 m))
150 (nth 1 (nth 3 m))))
151 (math-sub (math-mul (nth 2 (nth 1 m))
152 (nth 1 (nth 3 m)))
153 (math-mul (nth 2 (nth 3 m))
154 (nth 1 (nth 1 m))))
155 (math-sub (math-mul (nth 2 (nth 2 m))
156 (nth 1 (nth 1 m)))
157 (math-mul (nth 2 (nth 1 m))
158 (nth 1 (nth 2 m))))))))
159 det)))
160 (let ((lud (math-matrix-lud m)))
161 (and lud
162 (math-lud-solve lud (calcFunc-idn 1 n)))))))
164 (defun calcFunc-det (m)
165 (if (math-square-matrixp m)
166 (math-with-extra-prec 2 (math-det-raw m))
167 (if (and (eq (car-safe m) 'calcFunc-idn)
168 (or (math-zerop (nth 1 m))
169 (math-equal-int (nth 1 m) 1)))
170 (nth 1 m)
171 (math-reject-arg m 'square-matrixp))))
173 ;; The variable math-det-lu is local to math-det-raw, but is
174 ;; used by math-det-step, which is called by math-det-raw.
175 (defvar math-det-lu)
177 (defun math-det-raw (m)
178 (let ((n (1- (length m))))
179 (cond ((= n 1)
180 (nth 1 (nth 1 m)))
181 ((= n 2)
182 (math-sub (math-mul (nth 1 (nth 1 m))
183 (nth 2 (nth 2 m)))
184 (math-mul (nth 2 (nth 1 m))
185 (nth 1 (nth 2 m)))))
186 ((= n 3)
187 (math-sub
188 (math-sub
189 (math-sub
190 (math-add
191 (math-add
192 (math-mul (nth 1 (nth 1 m))
193 (math-mul (nth 2 (nth 2 m))
194 (nth 3 (nth 3 m))))
195 (math-mul (nth 2 (nth 1 m))
196 (math-mul (nth 3 (nth 2 m))
197 (nth 1 (nth 3 m)))))
198 (math-mul (nth 3 (nth 1 m))
199 (math-mul (nth 1 (nth 2 m))
200 (nth 2 (nth 3 m)))))
201 (math-mul (nth 3 (nth 1 m))
202 (math-mul (nth 2 (nth 2 m))
203 (nth 1 (nth 3 m)))))
204 (math-mul (nth 1 (nth 1 m))
205 (math-mul (nth 3 (nth 2 m))
206 (nth 2 (nth 3 m)))))
207 (math-mul (nth 2 (nth 1 m))
208 (math-mul (nth 1 (nth 2 m))
209 (nth 3 (nth 3 m))))))
210 (t (let ((lud (math-matrix-lud m)))
211 (if lud
212 (let ((math-det-lu (car lud)))
213 (math-det-step n (nth 2 lud)))
214 0))))))
216 (defun math-det-step (n prod)
217 (if (> n 0)
218 (math-det-step (1- n) (math-mul prod (nth n (nth n math-det-lu))))
219 prod))
221 ;;; This returns a list (LU index d), or nil if not possible.
222 ;;; Argument M must be a square matrix.
223 (defvar math-lud-cache nil)
224 (defun math-matrix-lud (m)
225 (let ((old (assoc m math-lud-cache))
226 (context (list calc-internal-prec calc-prefer-frac)))
227 (if (and old (equal (nth 1 old) context))
228 (cdr (cdr old))
229 (let* ((lud (catch 'singular (math-do-matrix-lud m)))
230 (entry (cons context lud)))
231 (if old
232 (setcdr old entry)
233 (setq math-lud-cache (cons (cons m entry) math-lud-cache)))
234 lud))))
236 ;;; Numerical Recipes section 2.3; implicit pivoting omitted.
237 (defun math-do-matrix-lud (m)
238 (let* ((lu (math-copy-matrix m))
239 (n (1- (length lu)))
240 i (j 1) k imax sum big
241 (d 1) (index nil))
242 (while (<= j n)
243 (setq i 1
244 big 0
245 imax j)
246 (while (< i j)
247 (math-working "LUD step" (format "%d/%d" j i))
248 (setq sum (nth j (nth i lu))
249 k 1)
250 (while (< k i)
251 (setq sum (math-sub sum (math-mul (nth k (nth i lu))
252 (nth j (nth k lu))))
253 k (1+ k)))
254 (setcar (nthcdr j (nth i lu)) sum)
255 (setq i (1+ i)))
256 (while (<= i n)
257 (math-working "LUD step" (format "%d/%d" j i))
258 (setq sum (nth j (nth i lu))
259 k 1)
260 (while (< k j)
261 (setq sum (math-sub sum (math-mul (nth k (nth i lu))
262 (nth j (nth k lu))))
263 k (1+ k)))
264 (setcar (nthcdr j (nth i lu)) sum)
265 (let ((dum (math-abs-approx sum)))
266 (if (Math-lessp big dum)
267 (setq big dum
268 imax i)))
269 (setq i (1+ i)))
270 (if (> imax j)
271 (setq lu (math-swap-rows lu j imax)
272 d (- d)))
273 (setq index (cons imax index))
274 (let ((pivot (nth j (nth j lu))))
275 (if (math-zerop pivot)
276 (throw 'singular nil)
277 (setq i j)
278 (while (<= (setq i (1+ i)) n)
279 (setcar (nthcdr j (nth i lu))
280 (math-div (nth j (nth i lu)) pivot)))))
281 (setq j (1+ j)))
282 (list lu (nreverse index) d)))
284 (defun math-swap-rows (m r1 r2)
285 (or (= r1 r2)
286 (let* ((r1prev (nthcdr (1- r1) m))
287 (row1 (cdr r1prev))
288 (r2prev (nthcdr (1- r2) m))
289 (row2 (cdr r2prev))
290 (r2next (cdr row2)))
291 (setcdr r2prev row1)
292 (setcdr r1prev row2)
293 (setcdr row2 (cdr row1))
294 (setcdr row1 r2next)))
298 (defun math-lud-solve (lud b &optional need)
299 (if lud
300 (let* ((x (math-copy-matrix b))
301 (n (1- (length x)))
302 (m (1- (length (nth 1 x))))
303 (lu (car lud))
304 (col 1)
305 i j ip ii index sum)
306 (while (<= col m)
307 (math-working "LUD solver step" col)
308 (setq i 1
309 ii nil
310 index (nth 1 lud))
311 (while (<= i n)
312 (setq ip (car index)
313 index (cdr index)
314 sum (nth col (nth ip x)))
315 (setcar (nthcdr col (nth ip x)) (nth col (nth i x)))
316 (if (null ii)
317 (or (math-zerop sum)
318 (setq ii i))
319 (setq j ii)
320 (while (< j i)
321 (setq sum (math-sub sum (math-mul (nth j (nth i lu))
322 (nth col (nth j x))))
323 j (1+ j))))
324 (setcar (nthcdr col (nth i x)) sum)
325 (setq i (1+ i)))
326 (while (>= (setq i (1- i)) 1)
327 (setq sum (nth col (nth i x))
328 j i)
329 (while (<= (setq j (1+ j)) n)
330 (setq sum (math-sub sum (math-mul (nth j (nth i lu))
331 (nth col (nth j x))))))
332 (setcar (nthcdr col (nth i x))
333 (math-div sum (nth i (nth i lu)))))
334 (setq col (1+ col)))
336 (and need
337 (math-reject-arg need "*Singular matrix"))))
339 (defun calcFunc-lud (m)
340 (if (math-square-matrixp m)
341 (or (math-with-extra-prec 2
342 (let ((lud (math-matrix-lud m)))
343 (and lud
344 (let* ((lmat (math-copy-matrix (car lud)))
345 (umat (math-copy-matrix (car lud)))
346 (n (1- (length (car lud))))
347 (perm (calcFunc-idn 1 n))
348 i (j 1))
349 (while (<= j n)
350 (setq i 1)
351 (while (< i j)
352 (setcar (nthcdr j (nth i lmat)) 0)
353 (setq i (1+ i)))
354 (setcar (nthcdr j (nth j lmat)) 1)
355 (while (<= (setq i (1+ i)) n)
356 (setcar (nthcdr j (nth i umat)) 0))
357 (setq j (1+ j)))
358 (while (>= (setq j (1- j)) 1)
359 (let ((pos (nth (1- j) (nth 1 lud))))
360 (or (= pos j)
361 (setq perm (math-swap-rows perm j pos)))))
362 (list 'vec perm lmat umat)))))
363 (math-reject-arg m "*Singular matrix"))
364 (math-reject-arg m 'square-matrixp)))
366 (provide 'calc-mtx)
368 ;; arch-tag: fc0947b1-90e1-4a23-8950-d8ead9c3a306
369 ;;; calc-mtx.el ends here