1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993-2012 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
36 /* Ignore some GCC warnings for now. This section should go away
37 once the Emacs and Gnulib regex code is merged. */
38 #if (__GNUC__ == 4 && 5 <= __GNUC_MINOR__) || 4 < __GNUC__
39 # pragma GCC diagnostic ignored "-Wstrict-overflow"
41 # pragma GCC diagnostic ignored "-Wunused-but-set-variable"
42 # pragma GCC diagnostic ignored "-Wunused-function"
43 # pragma GCC diagnostic ignored "-Wunused-macros"
44 # pragma GCC diagnostic ignored "-Wunused-result"
45 # pragma GCC diagnostic ignored "-Wunused-variable"
54 /* We need this for `regex.h', and perhaps for the Emacs include files. */
55 # include <sys/types.h>
58 /* Whether to use ISO C Amendment 1 wide char functions.
59 Those should not be used for Emacs since it uses its own. */
61 #define WIDE_CHAR_SUPPORT 1
63 #define WIDE_CHAR_SUPPORT \
64 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
67 /* For platform which support the ISO C amendment 1 functionality we
68 support user defined character classes. */
70 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
76 /* We have to keep the namespace clean. */
77 # define regfree(preg) __regfree (preg)
78 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
79 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
80 # define regerror(err_code, preg, errbuf, errbuf_size) \
81 __regerror (err_code, preg, errbuf, errbuf_size)
82 # define re_set_registers(bu, re, nu, st, en) \
83 __re_set_registers (bu, re, nu, st, en)
84 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
85 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
86 # define re_match(bufp, string, size, pos, regs) \
87 __re_match (bufp, string, size, pos, regs)
88 # define re_search(bufp, string, size, startpos, range, regs) \
89 __re_search (bufp, string, size, startpos, range, regs)
90 # define re_compile_pattern(pattern, length, bufp) \
91 __re_compile_pattern (pattern, length, bufp)
92 # define re_set_syntax(syntax) __re_set_syntax (syntax)
93 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
94 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
95 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
97 /* Make sure we call libc's function even if the user overrides them. */
98 # define btowc __btowc
99 # define iswctype __iswctype
100 # define wctype __wctype
102 # define WEAK_ALIAS(a,b) weak_alias (a, b)
104 /* We are also using some library internals. */
105 # include <locale/localeinfo.h>
106 # include <locale/elem-hash.h>
107 # include <langinfo.h>
109 # define WEAK_ALIAS(a,b)
112 /* This is for other GNU distributions with internationalized messages. */
113 #if HAVE_LIBINTL_H || defined _LIBC
114 # include <libintl.h>
116 # define gettext(msgid) (msgid)
120 /* This define is so xgettext can find the internationalizable
122 # define gettext_noop(String) String
125 /* The `emacs' switch turns on certain matching commands
126 that make sense only in Emacs. */
131 # include "character.h"
134 /* Make syntax table lookup grant data in gl_state. */
135 # define SYNTAX_ENTRY_VIA_PROPERTY
138 # include "category.h"
143 # define malloc xmalloc
147 # define realloc xrealloc
153 /* Converts the pointer to the char to BEG-based offset from the start. */
154 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
155 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
157 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
158 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
159 # define RE_STRING_CHAR(p, multibyte) \
160 (multibyte ? (STRING_CHAR (p)) : (*(p)))
161 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
162 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
164 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
166 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
168 /* Set C a (possibly converted to multibyte) character before P. P
169 points into a string which is the virtual concatenation of STR1
170 (which ends at END1) or STR2 (which ends at END2). */
171 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
173 if (target_multibyte) \
175 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
176 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
177 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
178 c = STRING_CHAR (dtemp); \
182 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
183 (c) = RE_CHAR_TO_MULTIBYTE (c); \
187 /* Set C a (possibly converted to multibyte) character at P, and set
188 LEN to the byte length of that character. */
189 # define GET_CHAR_AFTER(c, p, len) \
191 if (target_multibyte) \
192 (c) = STRING_CHAR_AND_LENGTH (p, len); \
197 (c) = RE_CHAR_TO_MULTIBYTE (c); \
201 #else /* not emacs */
203 /* If we are not linking with Emacs proper,
204 we can't use the relocating allocator
205 even if config.h says that we can. */
210 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
213 xmalloc (size_t size
)
215 void *val
= malloc (size
);
218 write (2, "virtual memory exhausted\n", 25);
225 xrealloc (void *block
, size_t size
)
228 /* We must call malloc explicitly when BLOCK is 0, since some
229 reallocs don't do this. */
233 val
= realloc (block
, size
);
236 write (2, "virtual memory exhausted\n", 25);
245 # define malloc xmalloc
249 # define realloc xrealloc
253 /* Define the syntax stuff for \<, \>, etc. */
255 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
256 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
258 /* Dummy macros for non-Emacs environments. */
259 # define CHAR_CHARSET(c) 0
260 # define CHARSET_LEADING_CODE_BASE(c) 0
261 # define MAX_MULTIBYTE_LENGTH 1
262 # define RE_MULTIBYTE_P(x) 0
263 # define RE_TARGET_MULTIBYTE_P(x) 0
264 # define WORD_BOUNDARY_P(c1, c2) (0)
265 # define CHAR_HEAD_P(p) (1)
266 # define SINGLE_BYTE_CHAR_P(c) (1)
267 # define SAME_CHARSET_P(c1, c2) (1)
268 # define BYTES_BY_CHAR_HEAD(p) (1)
269 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
270 # define STRING_CHAR(p) (*(p))
271 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
272 # define CHAR_STRING(c, s) (*(s) = (c), 1)
273 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
274 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
275 # define RE_CHAR_TO_MULTIBYTE(c) (c)
276 # define RE_CHAR_TO_UNIBYTE(c) (c)
277 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
278 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
279 # define GET_CHAR_AFTER(c, p, len) \
281 # define MAKE_CHAR(charset, c1, c2) (c1)
282 # define BYTE8_TO_CHAR(c) (c)
283 # define CHAR_BYTE8_P(c) (0)
284 # define CHAR_LEADING_CODE(c) (c)
286 #endif /* not emacs */
289 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
290 # define RE_TRANSLATE_P(TBL) (TBL)
293 /* Get the interface, including the syntax bits. */
296 /* isalpha etc. are used for the character classes. */
301 /* 1 if C is an ASCII character. */
302 # define IS_REAL_ASCII(c) ((c) < 0200)
304 /* 1 if C is a unibyte character. */
305 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
307 /* The Emacs definitions should not be directly affected by locales. */
309 /* In Emacs, these are only used for single-byte characters. */
310 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
311 # define ISCNTRL(c) ((c) < ' ')
312 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
313 || ((c) >= 'a' && (c) <= 'f') \
314 || ((c) >= 'A' && (c) <= 'F'))
316 /* This is only used for single-byte characters. */
317 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
319 /* The rest must handle multibyte characters. */
321 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
322 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
325 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
326 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
329 # define ISALNUM(c) (IS_REAL_ASCII (c) \
330 ? (((c) >= 'a' && (c) <= 'z') \
331 || ((c) >= 'A' && (c) <= 'Z') \
332 || ((c) >= '0' && (c) <= '9')) \
333 : SYNTAX (c) == Sword)
335 # define ISALPHA(c) (IS_REAL_ASCII (c) \
336 ? (((c) >= 'a' && (c) <= 'z') \
337 || ((c) >= 'A' && (c) <= 'Z')) \
338 : SYNTAX (c) == Sword)
340 # define ISLOWER(c) lowercasep (c)
342 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
343 ? ((c) > ' ' && (c) < 0177 \
344 && !(((c) >= 'a' && (c) <= 'z') \
345 || ((c) >= 'A' && (c) <= 'Z') \
346 || ((c) >= '0' && (c) <= '9'))) \
347 : SYNTAX (c) != Sword)
349 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
351 # define ISUPPER(c) uppercasep (c)
353 # define ISWORD(c) (SYNTAX (c) == Sword)
355 #else /* not emacs */
357 /* 1 if C is an ASCII character. */
358 # define IS_REAL_ASCII(c) ((c) < 0200)
360 /* This distinction is not meaningful, except in Emacs. */
361 # define ISUNIBYTE(c) 1
364 # define ISBLANK(c) isblank (c)
366 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
369 # define ISGRAPH(c) isgraph (c)
371 # define ISGRAPH(c) (isprint (c) && !isspace (c))
374 /* Solaris defines ISPRINT so we must undefine it first. */
376 # define ISPRINT(c) isprint (c)
377 # define ISDIGIT(c) isdigit (c)
378 # define ISALNUM(c) isalnum (c)
379 # define ISALPHA(c) isalpha (c)
380 # define ISCNTRL(c) iscntrl (c)
381 # define ISLOWER(c) islower (c)
382 # define ISPUNCT(c) ispunct (c)
383 # define ISSPACE(c) isspace (c)
384 # define ISUPPER(c) isupper (c)
385 # define ISXDIGIT(c) isxdigit (c)
387 # define ISWORD(c) ISALPHA (c)
390 # define TOLOWER(c) _tolower (c)
392 # define TOLOWER(c) tolower (c)
395 /* How many characters in the character set. */
396 # define CHAR_SET_SIZE 256
400 extern char *re_syntax_table
;
402 # else /* not SYNTAX_TABLE */
404 static char re_syntax_table
[CHAR_SET_SIZE
];
407 init_syntax_once (void)
415 memset (re_syntax_table
, 0, sizeof re_syntax_table
);
417 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
419 re_syntax_table
[c
] = Sword
;
421 re_syntax_table
['_'] = Ssymbol
;
426 # endif /* not SYNTAX_TABLE */
428 # define SYNTAX(c) re_syntax_table[(c)]
430 #endif /* not emacs */
432 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
434 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
435 use `alloca' instead of `malloc'. This is because using malloc in
436 re_search* or re_match* could cause memory leaks when C-g is used in
437 Emacs; also, malloc is slower and causes storage fragmentation. On
438 the other hand, malloc is more portable, and easier to debug.
440 Because we sometimes use alloca, some routines have to be macros,
441 not functions -- `alloca'-allocated space disappears at the end of the
442 function it is called in. */
446 # define REGEX_ALLOCATE malloc
447 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
448 # define REGEX_FREE free
450 #else /* not REGEX_MALLOC */
452 /* Emacs already defines alloca, sometimes. */
455 /* Make alloca work the best possible way. */
457 # define alloca __builtin_alloca
458 # else /* not __GNUC__ */
459 # ifdef HAVE_ALLOCA_H
461 # endif /* HAVE_ALLOCA_H */
462 # endif /* not __GNUC__ */
464 # endif /* not alloca */
466 # define REGEX_ALLOCATE alloca
468 /* Assumes a `char *destination' variable. */
469 # define REGEX_REALLOCATE(source, osize, nsize) \
470 (destination = (char *) alloca (nsize), \
471 memcpy (destination, source, osize))
473 /* No need to do anything to free, after alloca. */
474 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
476 #endif /* not REGEX_MALLOC */
478 /* Define how to allocate the failure stack. */
480 #if defined REL_ALLOC && defined REGEX_MALLOC
482 # define REGEX_ALLOCATE_STACK(size) \
483 r_alloc (&failure_stack_ptr, (size))
484 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
485 r_re_alloc (&failure_stack_ptr, (nsize))
486 # define REGEX_FREE_STACK(ptr) \
487 r_alloc_free (&failure_stack_ptr)
489 #else /* not using relocating allocator */
493 # define REGEX_ALLOCATE_STACK malloc
494 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
495 # define REGEX_FREE_STACK free
497 # else /* not REGEX_MALLOC */
499 # define REGEX_ALLOCATE_STACK alloca
501 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
502 REGEX_REALLOCATE (source, osize, nsize)
503 /* No need to explicitly free anything. */
504 # define REGEX_FREE_STACK(arg) ((void)0)
506 # endif /* not REGEX_MALLOC */
507 #endif /* not using relocating allocator */
510 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
511 `string1' or just past its end. This works if PTR is NULL, which is
513 #define FIRST_STRING_P(ptr) \
514 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
516 /* (Re)Allocate N items of type T using malloc, or fail. */
517 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
518 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
519 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
521 #define BYTEWIDTH 8 /* In bits. */
523 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
527 #define MAX(a, b) ((a) > (b) ? (a) : (b))
528 #define MIN(a, b) ((a) < (b) ? (a) : (b))
530 /* Type of source-pattern and string chars. */
532 typedef unsigned char re_char
;
534 typedef const unsigned char re_char
;
537 typedef char boolean
;
541 static regoff_t
re_match_2_internal (struct re_pattern_buffer
*bufp
,
542 re_char
*string1
, size_t size1
,
543 re_char
*string2
, size_t size2
,
545 struct re_registers
*regs
,
548 /* These are the command codes that appear in compiled regular
549 expressions. Some opcodes are followed by argument bytes. A
550 command code can specify any interpretation whatsoever for its
551 arguments. Zero bytes may appear in the compiled regular expression. */
557 /* Succeed right away--no more backtracking. */
560 /* Followed by one byte giving n, then by n literal bytes. */
563 /* Matches any (more or less) character. */
566 /* Matches any one char belonging to specified set. First
567 following byte is number of bitmap bytes. Then come bytes
568 for a bitmap saying which chars are in. Bits in each byte
569 are ordered low-bit-first. A character is in the set if its
570 bit is 1. A character too large to have a bit in the map is
571 automatically not in the set.
573 If the length byte has the 0x80 bit set, then that stuff
574 is followed by a range table:
575 2 bytes of flags for character sets (low 8 bits, high 8 bits)
576 See RANGE_TABLE_WORK_BITS below.
577 2 bytes, the number of pairs that follow (upto 32767)
578 pairs, each 2 multibyte characters,
579 each multibyte character represented as 3 bytes. */
582 /* Same parameters as charset, but match any character that is
583 not one of those specified. */
586 /* Start remembering the text that is matched, for storing in a
587 register. Followed by one byte with the register number, in
588 the range 0 to one less than the pattern buffer's re_nsub
592 /* Stop remembering the text that is matched and store it in a
593 memory register. Followed by one byte with the register
594 number, in the range 0 to one less than `re_nsub' in the
598 /* Match a duplicate of something remembered. Followed by one
599 byte containing the register number. */
602 /* Fail unless at beginning of line. */
605 /* Fail unless at end of line. */
608 /* Succeeds if at beginning of buffer (if emacs) or at beginning
609 of string to be matched (if not). */
612 /* Analogously, for end of buffer/string. */
615 /* Followed by two byte relative address to which to jump. */
618 /* Followed by two-byte relative address of place to resume at
619 in case of failure. */
622 /* Like on_failure_jump, but pushes a placeholder instead of the
623 current string position when executed. */
624 on_failure_keep_string_jump
,
626 /* Just like `on_failure_jump', except that it checks that we
627 don't get stuck in an infinite loop (matching an empty string
629 on_failure_jump_loop
,
631 /* Just like `on_failure_jump_loop', except that it checks for
632 a different kind of loop (the kind that shows up with non-greedy
633 operators). This operation has to be immediately preceded
635 on_failure_jump_nastyloop
,
637 /* A smart `on_failure_jump' used for greedy * and + operators.
638 It analyzes the loop before which it is put and if the
639 loop does not require backtracking, it changes itself to
640 `on_failure_keep_string_jump' and short-circuits the loop,
641 else it just defaults to changing itself into `on_failure_jump'.
642 It assumes that it is pointing to just past a `jump'. */
643 on_failure_jump_smart
,
645 /* Followed by two-byte relative address and two-byte number n.
646 After matching N times, jump to the address upon failure.
647 Does not work if N starts at 0: use on_failure_jump_loop
651 /* Followed by two-byte relative address, and two-byte number n.
652 Jump to the address N times, then fail. */
655 /* Set the following two-byte relative address to the
656 subsequent two-byte number. The address *includes* the two
660 wordbeg
, /* Succeeds if at word beginning. */
661 wordend
, /* Succeeds if at word end. */
663 wordbound
, /* Succeeds if at a word boundary. */
664 notwordbound
, /* Succeeds if not at a word boundary. */
666 symbeg
, /* Succeeds if at symbol beginning. */
667 symend
, /* Succeeds if at symbol end. */
669 /* Matches any character whose syntax is specified. Followed by
670 a byte which contains a syntax code, e.g., Sword. */
673 /* Matches any character whose syntax is not that specified. */
677 ,before_dot
, /* Succeeds if before point. */
678 at_dot
, /* Succeeds if at point. */
679 after_dot
, /* Succeeds if after point. */
681 /* Matches any character whose category-set contains the specified
682 category. The operator is followed by a byte which contains a
683 category code (mnemonic ASCII character). */
686 /* Matches any character whose category-set does not contain the
687 specified category. The operator is followed by a byte which
688 contains the category code (mnemonic ASCII character). */
693 /* Common operations on the compiled pattern. */
695 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
697 #define STORE_NUMBER(destination, number) \
699 (destination)[0] = (number) & 0377; \
700 (destination)[1] = (number) >> 8; \
703 /* Same as STORE_NUMBER, except increment DESTINATION to
704 the byte after where the number is stored. Therefore, DESTINATION
705 must be an lvalue. */
707 #define STORE_NUMBER_AND_INCR(destination, number) \
709 STORE_NUMBER (destination, number); \
710 (destination) += 2; \
713 /* Put into DESTINATION a number stored in two contiguous bytes starting
716 #define EXTRACT_NUMBER(destination, source) \
718 (destination) = *(source) & 0377; \
719 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
724 extract_number (int *dest
, re_char
*source
)
726 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
727 *dest
= *source
& 0377;
731 # ifndef EXTRACT_MACROS /* To debug the macros. */
732 # undef EXTRACT_NUMBER
733 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
734 # endif /* not EXTRACT_MACROS */
738 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
739 SOURCE must be an lvalue. */
741 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
743 EXTRACT_NUMBER (destination, source); \
749 extract_number_and_incr (int *destination
, re_char
**source
)
751 extract_number (destination
, *source
);
755 # ifndef EXTRACT_MACROS
756 # undef EXTRACT_NUMBER_AND_INCR
757 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
758 extract_number_and_incr (&dest, &src)
759 # endif /* not EXTRACT_MACROS */
763 /* Store a multibyte character in three contiguous bytes starting
764 DESTINATION, and increment DESTINATION to the byte after where the
765 character is stored. Therefore, DESTINATION must be an lvalue. */
767 #define STORE_CHARACTER_AND_INCR(destination, character) \
769 (destination)[0] = (character) & 0377; \
770 (destination)[1] = ((character) >> 8) & 0377; \
771 (destination)[2] = (character) >> 16; \
772 (destination) += 3; \
775 /* Put into DESTINATION a character stored in three contiguous bytes
776 starting at SOURCE. */
778 #define EXTRACT_CHARACTER(destination, source) \
780 (destination) = ((source)[0] \
781 | ((source)[1] << 8) \
782 | ((source)[2] << 16)); \
786 /* Macros for charset. */
788 /* Size of bitmap of charset P in bytes. P is a start of charset,
789 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
790 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
792 /* Nonzero if charset P has range table. */
793 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
795 /* Return the address of range table of charset P. But not the start
796 of table itself, but the before where the number of ranges is
797 stored. `2 +' means to skip re_opcode_t and size of bitmap,
798 and the 2 bytes of flags at the start of the range table. */
799 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
801 /* Extract the bit flags that start a range table. */
802 #define CHARSET_RANGE_TABLE_BITS(p) \
803 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
804 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
806 /* Return the address of end of RANGE_TABLE. COUNT is number of
807 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
808 is start of range and end of range. `* 3' is size of each start
810 #define CHARSET_RANGE_TABLE_END(range_table, count) \
811 ((range_table) + (count) * 2 * 3)
813 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
814 COUNT is number of ranges in RANGE_TABLE. */
815 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
818 re_wchar_t range_start, range_end; \
820 re_char *range_table_end \
821 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
823 for (rtp = (range_table); rtp < range_table_end; rtp += 2 * 3) \
825 EXTRACT_CHARACTER (range_start, rtp); \
826 EXTRACT_CHARACTER (range_end, rtp + 3); \
828 if (range_start <= (c) && (c) <= range_end) \
837 /* Test if C is in range table of CHARSET. The flag NOT is negated if
838 C is listed in it. */
839 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
842 /* Number of ranges in range table. */ \
844 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
846 EXTRACT_NUMBER_AND_INCR (count, range_table); \
847 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
851 /* If DEBUG is defined, Regex prints many voluminous messages about what
852 it is doing (if the variable `debug' is nonzero). If linked with the
853 main program in `iregex.c', you can enter patterns and strings
854 interactively. And if linked with the main program in `main.c' and
855 the other test files, you can run the already-written tests. */
859 /* We use standard I/O for debugging. */
862 /* It is useful to test things that ``must'' be true when debugging. */
865 static int debug
= -100000;
867 # define DEBUG_STATEMENT(e) e
868 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
869 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
870 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
871 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
872 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
873 if (debug > 0) print_partial_compiled_pattern (s, e)
874 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
875 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
878 /* Print the fastmap in human-readable form. */
881 print_fastmap (fastmap
)
884 unsigned was_a_range
= 0;
887 while (i
< (1 << BYTEWIDTH
))
893 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
909 /* Print a compiled pattern string in human-readable form, starting at
910 the START pointer into it and ending just before the pointer END. */
913 print_partial_compiled_pattern (start
, end
)
923 fprintf (stderr
, "(null)\n");
927 /* Loop over pattern commands. */
930 fprintf (stderr
, "%d:\t", p
- start
);
932 switch ((re_opcode_t
) *p
++)
935 fprintf (stderr
, "/no_op");
939 fprintf (stderr
, "/succeed");
944 fprintf (stderr
, "/exactn/%d", mcnt
);
947 fprintf (stderr
, "/%c", *p
++);
953 fprintf (stderr
, "/start_memory/%d", *p
++);
957 fprintf (stderr
, "/stop_memory/%d", *p
++);
961 fprintf (stderr
, "/duplicate/%d", *p
++);
965 fprintf (stderr
, "/anychar");
971 register int c
, last
= -100;
972 register int in_range
= 0;
973 int length
= CHARSET_BITMAP_SIZE (p
- 1);
974 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
976 fprintf (stderr
, "/charset [%s",
977 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
980 fprintf (stderr
, " !extends past end of pattern! ");
982 for (c
= 0; c
< 256; c
++)
984 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
986 /* Are we starting a range? */
987 if (last
+ 1 == c
&& ! in_range
)
989 fprintf (stderr
, "-");
992 /* Have we broken a range? */
993 else if (last
+ 1 != c
&& in_range
)
995 fprintf (stderr
, "%c", last
);
1000 fprintf (stderr
, "%c", c
);
1006 fprintf (stderr
, "%c", last
);
1008 fprintf (stderr
, "]");
1012 if (has_range_table
)
1015 fprintf (stderr
, "has-range-table");
1017 /* ??? Should print the range table; for now, just skip it. */
1018 p
+= 2; /* skip range table bits */
1019 EXTRACT_NUMBER_AND_INCR (count
, p
);
1020 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1026 fprintf (stderr
, "/begline");
1030 fprintf (stderr
, "/endline");
1033 case on_failure_jump
:
1034 extract_number_and_incr (&mcnt
, &p
);
1035 fprintf (stderr
, "/on_failure_jump to %d", p
+ mcnt
- start
);
1038 case on_failure_keep_string_jump
:
1039 extract_number_and_incr (&mcnt
, &p
);
1040 fprintf (stderr
, "/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1043 case on_failure_jump_nastyloop
:
1044 extract_number_and_incr (&mcnt
, &p
);
1045 fprintf (stderr
, "/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1048 case on_failure_jump_loop
:
1049 extract_number_and_incr (&mcnt
, &p
);
1050 fprintf (stderr
, "/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1053 case on_failure_jump_smart
:
1054 extract_number_and_incr (&mcnt
, &p
);
1055 fprintf (stderr
, "/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1059 extract_number_and_incr (&mcnt
, &p
);
1060 fprintf (stderr
, "/jump to %d", p
+ mcnt
- start
);
1064 extract_number_and_incr (&mcnt
, &p
);
1065 extract_number_and_incr (&mcnt2
, &p
);
1066 fprintf (stderr
, "/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1070 extract_number_and_incr (&mcnt
, &p
);
1071 extract_number_and_incr (&mcnt2
, &p
);
1072 fprintf (stderr
, "/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1076 extract_number_and_incr (&mcnt
, &p
);
1077 extract_number_and_incr (&mcnt2
, &p
);
1078 fprintf (stderr
, "/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1082 fprintf (stderr
, "/wordbound");
1086 fprintf (stderr
, "/notwordbound");
1090 fprintf (stderr
, "/wordbeg");
1094 fprintf (stderr
, "/wordend");
1098 fprintf (stderr
, "/symbeg");
1102 fprintf (stderr
, "/symend");
1106 fprintf (stderr
, "/syntaxspec");
1108 fprintf (stderr
, "/%d", mcnt
);
1112 fprintf (stderr
, "/notsyntaxspec");
1114 fprintf (stderr
, "/%d", mcnt
);
1119 fprintf (stderr
, "/before_dot");
1123 fprintf (stderr
, "/at_dot");
1127 fprintf (stderr
, "/after_dot");
1131 fprintf (stderr
, "/categoryspec");
1133 fprintf (stderr
, "/%d", mcnt
);
1136 case notcategoryspec
:
1137 fprintf (stderr
, "/notcategoryspec");
1139 fprintf (stderr
, "/%d", mcnt
);
1144 fprintf (stderr
, "/begbuf");
1148 fprintf (stderr
, "/endbuf");
1152 fprintf (stderr
, "?%d", *(p
-1));
1155 fprintf (stderr
, "\n");
1158 fprintf (stderr
, "%d:\tend of pattern.\n", p
- start
);
1163 print_compiled_pattern (bufp
)
1164 struct re_pattern_buffer
*bufp
;
1166 re_char
*buffer
= bufp
->buffer
;
1168 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1169 printf ("%ld bytes used/%ld bytes allocated.\n",
1170 bufp
->used
, bufp
->allocated
);
1172 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1174 printf ("fastmap: ");
1175 print_fastmap (bufp
->fastmap
);
1178 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1179 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1180 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1181 printf ("no_sub: %d\t", bufp
->no_sub
);
1182 printf ("not_bol: %d\t", bufp
->not_bol
);
1183 printf ("not_eol: %d\t", bufp
->not_eol
);
1184 printf ("syntax: %lx\n", bufp
->syntax
);
1186 /* Perhaps we should print the translate table? */
1191 print_double_string (where
, string1
, size1
, string2
, size2
)
1204 if (FIRST_STRING_P (where
))
1206 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1207 putchar (string1
[this_char
]);
1212 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1213 putchar (string2
[this_char
]);
1217 #else /* not DEBUG */
1222 # define DEBUG_STATEMENT(e)
1223 # define DEBUG_PRINT1(x)
1224 # define DEBUG_PRINT2(x1, x2)
1225 # define DEBUG_PRINT3(x1, x2, x3)
1226 # define DEBUG_PRINT4(x1, x2, x3, x4)
1227 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1228 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1230 #endif /* not DEBUG */
1232 /* Use this to suppress gcc's `...may be used before initialized' warnings. */
1234 # define IF_LINT(Code) Code
1236 # define IF_LINT(Code) /* empty */
1239 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1240 also be assigned to arbitrarily: each pattern buffer stores its own
1241 syntax, so it can be changed between regex compilations. */
1242 /* This has no initializer because initialized variables in Emacs
1243 become read-only after dumping. */
1244 reg_syntax_t re_syntax_options
;
1247 /* Specify the precise syntax of regexps for compilation. This provides
1248 for compatibility for various utilities which historically have
1249 different, incompatible syntaxes.
1251 The argument SYNTAX is a bit mask comprised of the various bits
1252 defined in regex.h. We return the old syntax. */
1255 re_set_syntax (reg_syntax_t syntax
)
1257 reg_syntax_t ret
= re_syntax_options
;
1259 re_syntax_options
= syntax
;
1262 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1264 /* Regexp to use to replace spaces, or NULL meaning don't. */
1265 static re_char
*whitespace_regexp
;
1268 re_set_whitespace_regexp (const char *regexp
)
1270 whitespace_regexp
= (re_char
*) regexp
;
1272 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1274 /* This table gives an error message for each of the error codes listed
1275 in regex.h. Obviously the order here has to be same as there.
1276 POSIX doesn't require that we do anything for REG_NOERROR,
1277 but why not be nice? */
1279 static const char *re_error_msgid
[] =
1281 gettext_noop ("Success"), /* REG_NOERROR */
1282 gettext_noop ("No match"), /* REG_NOMATCH */
1283 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1284 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1285 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1286 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1287 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1288 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1289 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1290 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1291 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1292 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1293 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1294 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1295 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1296 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1297 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1298 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1301 /* Avoiding alloca during matching, to placate r_alloc. */
1303 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1304 searching and matching functions should not call alloca. On some
1305 systems, alloca is implemented in terms of malloc, and if we're
1306 using the relocating allocator routines, then malloc could cause a
1307 relocation, which might (if the strings being searched are in the
1308 ralloc heap) shift the data out from underneath the regexp
1311 Here's another reason to avoid allocation: Emacs
1312 processes input from X in a signal handler; processing X input may
1313 call malloc; if input arrives while a matching routine is calling
1314 malloc, then we're scrod. But Emacs can't just block input while
1315 calling matching routines; then we don't notice interrupts when
1316 they come in. So, Emacs blocks input around all regexp calls
1317 except the matching calls, which it leaves unprotected, in the
1318 faith that they will not malloc. */
1320 /* Normally, this is fine. */
1321 #define MATCH_MAY_ALLOCATE
1323 /* The match routines may not allocate if (1) they would do it with malloc
1324 and (2) it's not safe for them to use malloc.
1325 Note that if REL_ALLOC is defined, matching would not use malloc for the
1326 failure stack, but we would still use it for the register vectors;
1327 so REL_ALLOC should not affect this. */
1328 #if defined REGEX_MALLOC && defined emacs
1329 # undef MATCH_MAY_ALLOCATE
1333 /* Failure stack declarations and macros; both re_compile_fastmap and
1334 re_match_2 use a failure stack. These have to be macros because of
1335 REGEX_ALLOCATE_STACK. */
1338 /* Approximate number of failure points for which to initially allocate space
1339 when matching. If this number is exceeded, we allocate more
1340 space, so it is not a hard limit. */
1341 #ifndef INIT_FAILURE_ALLOC
1342 # define INIT_FAILURE_ALLOC 20
1345 /* Roughly the maximum number of failure points on the stack. Would be
1346 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1347 This is a variable only so users of regex can assign to it; we never
1348 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1349 before using it, so it should probably be a byte-count instead. */
1350 # if defined MATCH_MAY_ALLOCATE
1351 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1352 whose default stack limit is 2mb. In order for a larger
1353 value to work reliably, you have to try to make it accord
1354 with the process stack limit. */
1355 size_t re_max_failures
= 40000;
1357 size_t re_max_failures
= 4000;
1360 union fail_stack_elt
1363 /* This should be the biggest `int' that's no bigger than a pointer. */
1367 typedef union fail_stack_elt fail_stack_elt_t
;
1371 fail_stack_elt_t
*stack
;
1373 size_t avail
; /* Offset of next open position. */
1374 size_t frame
; /* Offset of the cur constructed frame. */
1377 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1380 /* Define macros to initialize and free the failure stack.
1381 Do `return -2' if the alloc fails. */
1383 #ifdef MATCH_MAY_ALLOCATE
1384 # define INIT_FAIL_STACK() \
1386 fail_stack.stack = \
1387 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1388 * sizeof (fail_stack_elt_t)); \
1390 if (fail_stack.stack == NULL) \
1393 fail_stack.size = INIT_FAILURE_ALLOC; \
1394 fail_stack.avail = 0; \
1395 fail_stack.frame = 0; \
1398 # define INIT_FAIL_STACK() \
1400 fail_stack.avail = 0; \
1401 fail_stack.frame = 0; \
1404 # define RETALLOC_IF(addr, n, t) \
1405 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
1409 /* Double the size of FAIL_STACK, up to a limit
1410 which allows approximately `re_max_failures' items.
1412 Return 1 if succeeds, and 0 if either ran out of memory
1413 allocating space for it or it was already too large.
1415 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1417 /* Factor to increase the failure stack size by
1418 when we increase it.
1419 This used to be 2, but 2 was too wasteful
1420 because the old discarded stacks added up to as much space
1421 were as ultimate, maximum-size stack. */
1422 #define FAIL_STACK_GROWTH_FACTOR 4
1424 #define GROW_FAIL_STACK(fail_stack) \
1425 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1426 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1428 : ((fail_stack).stack \
1429 = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1430 (fail_stack).size * sizeof (fail_stack_elt_t), \
1431 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1432 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1433 * FAIL_STACK_GROWTH_FACTOR))), \
1435 (fail_stack).stack == NULL \
1437 : ((fail_stack).size \
1438 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1439 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1440 * FAIL_STACK_GROWTH_FACTOR)) \
1441 / sizeof (fail_stack_elt_t)), \
1445 /* Push a pointer value onto the failure stack.
1446 Assumes the variable `fail_stack'. Probably should only
1447 be called from within `PUSH_FAILURE_POINT'. */
1448 #define PUSH_FAILURE_POINTER(item) \
1449 fail_stack.stack[fail_stack.avail++].pointer = (item)
1451 /* This pushes an integer-valued item onto the failure stack.
1452 Assumes the variable `fail_stack'. Probably should only
1453 be called from within `PUSH_FAILURE_POINT'. */
1454 #define PUSH_FAILURE_INT(item) \
1455 fail_stack.stack[fail_stack.avail++].integer = (item)
1457 /* These POP... operations complement the PUSH... operations.
1458 All assume that `fail_stack' is nonempty. */
1459 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1460 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1462 /* Individual items aside from the registers. */
1463 #define NUM_NONREG_ITEMS 3
1465 /* Used to examine the stack (to detect infinite loops). */
1466 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1467 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1468 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1469 #define TOP_FAILURE_HANDLE() fail_stack.frame
1472 #define ENSURE_FAIL_STACK(space) \
1473 while (REMAINING_AVAIL_SLOTS <= space) { \
1474 if (!GROW_FAIL_STACK (fail_stack)) \
1476 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1477 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1480 /* Push register NUM onto the stack. */
1481 #define PUSH_FAILURE_REG(num) \
1483 char *destination; \
1484 ENSURE_FAIL_STACK(3); \
1485 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1486 num, regstart[num], regend[num]); \
1487 PUSH_FAILURE_POINTER (regstart[num]); \
1488 PUSH_FAILURE_POINTER (regend[num]); \
1489 PUSH_FAILURE_INT (num); \
1492 /* Change the counter's value to VAL, but make sure that it will
1493 be reset when backtracking. */
1494 #define PUSH_NUMBER(ptr,val) \
1496 char *destination; \
1498 ENSURE_FAIL_STACK(3); \
1499 EXTRACT_NUMBER (c, ptr); \
1500 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1501 PUSH_FAILURE_INT (c); \
1502 PUSH_FAILURE_POINTER (ptr); \
1503 PUSH_FAILURE_INT (-1); \
1504 STORE_NUMBER (ptr, val); \
1507 /* Pop a saved register off the stack. */
1508 #define POP_FAILURE_REG_OR_COUNT() \
1510 long pfreg = POP_FAILURE_INT (); \
1513 /* It's a counter. */ \
1514 /* Here, we discard `const', making re_match non-reentrant. */ \
1515 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1516 pfreg = POP_FAILURE_INT (); \
1517 STORE_NUMBER (ptr, pfreg); \
1518 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, pfreg); \
1522 regend[pfreg] = POP_FAILURE_POINTER (); \
1523 regstart[pfreg] = POP_FAILURE_POINTER (); \
1524 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1525 pfreg, regstart[pfreg], regend[pfreg]); \
1529 /* Check that we are not stuck in an infinite loop. */
1530 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1532 ssize_t failure = TOP_FAILURE_HANDLE (); \
1533 /* Check for infinite matching loops */ \
1534 while (failure > 0 \
1535 && (FAILURE_STR (failure) == string_place \
1536 || FAILURE_STR (failure) == NULL)) \
1538 assert (FAILURE_PAT (failure) >= bufp->buffer \
1539 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1540 if (FAILURE_PAT (failure) == pat_cur) \
1545 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1546 failure = NEXT_FAILURE_HANDLE(failure); \
1548 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1551 /* Push the information about the state we will need
1552 if we ever fail back to it.
1554 Requires variables fail_stack, regstart, regend and
1555 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1558 Does `return FAILURE_CODE' if runs out of memory. */
1560 #define PUSH_FAILURE_POINT(pattern, string_place) \
1562 char *destination; \
1563 /* Must be int, so when we don't save any registers, the arithmetic \
1564 of 0 + -1 isn't done as unsigned. */ \
1566 DEBUG_STATEMENT (nfailure_points_pushed++); \
1567 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1568 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1569 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1571 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1573 DEBUG_PRINT1 ("\n"); \
1575 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1576 PUSH_FAILURE_INT (fail_stack.frame); \
1578 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1579 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1580 DEBUG_PRINT1 ("'\n"); \
1581 PUSH_FAILURE_POINTER (string_place); \
1583 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1584 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1585 PUSH_FAILURE_POINTER (pattern); \
1587 /* Close the frame by moving the frame pointer past it. */ \
1588 fail_stack.frame = fail_stack.avail; \
1591 /* Estimate the size of data pushed by a typical failure stack entry.
1592 An estimate is all we need, because all we use this for
1593 is to choose a limit for how big to make the failure stack. */
1594 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1595 #define TYPICAL_FAILURE_SIZE 20
1597 /* How many items can still be added to the stack without overflowing it. */
1598 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1601 /* Pops what PUSH_FAIL_STACK pushes.
1603 We restore into the parameters, all of which should be lvalues:
1604 STR -- the saved data position.
1605 PAT -- the saved pattern position.
1606 REGSTART, REGEND -- arrays of string positions.
1608 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1609 `pend', `string1', `size1', `string2', and `size2'. */
1611 #define POP_FAILURE_POINT(str, pat) \
1613 assert (!FAIL_STACK_EMPTY ()); \
1615 /* Remove failure points and point to how many regs pushed. */ \
1616 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1617 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1618 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1620 /* Pop the saved registers. */ \
1621 while (fail_stack.frame < fail_stack.avail) \
1622 POP_FAILURE_REG_OR_COUNT (); \
1624 pat = POP_FAILURE_POINTER (); \
1625 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1626 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1628 /* If the saved string location is NULL, it came from an \
1629 on_failure_keep_string_jump opcode, and we want to throw away the \
1630 saved NULL, thus retaining our current position in the string. */ \
1631 str = POP_FAILURE_POINTER (); \
1632 DEBUG_PRINT2 (" Popping string %p: `", str); \
1633 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1634 DEBUG_PRINT1 ("'\n"); \
1636 fail_stack.frame = POP_FAILURE_INT (); \
1637 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1639 assert (fail_stack.avail >= 0); \
1640 assert (fail_stack.frame <= fail_stack.avail); \
1642 DEBUG_STATEMENT (nfailure_points_popped++); \
1643 } while (0) /* POP_FAILURE_POINT */
1647 /* Registers are set to a sentinel when they haven't yet matched. */
1648 #define REG_UNSET(e) ((e) == NULL)
1650 /* Subroutine declarations and macros for regex_compile. */
1652 static reg_errcode_t
regex_compile (re_char
*pattern
, size_t size
,
1653 reg_syntax_t syntax
,
1654 struct re_pattern_buffer
*bufp
);
1655 static void store_op1 (re_opcode_t op
, unsigned char *loc
, int arg
);
1656 static void store_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
);
1657 static void insert_op1 (re_opcode_t op
, unsigned char *loc
,
1658 int arg
, unsigned char *end
);
1659 static void insert_op2 (re_opcode_t op
, unsigned char *loc
,
1660 int arg1
, int arg2
, unsigned char *end
);
1661 static boolean
at_begline_loc_p (re_char
*pattern
, re_char
*p
,
1662 reg_syntax_t syntax
);
1663 static boolean
at_endline_loc_p (re_char
*p
, re_char
*pend
,
1664 reg_syntax_t syntax
);
1665 static re_char
*skip_one_char (re_char
*p
);
1666 static int analyse_first (re_char
*p
, re_char
*pend
,
1667 char *fastmap
, const int multibyte
);
1669 /* Fetch the next character in the uncompiled pattern, with no
1671 #define PATFETCH(c) \
1674 if (p == pend) return REG_EEND; \
1675 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1680 /* If `translate' is non-null, return translate[D], else just D. We
1681 cast the subscript to translate because some data is declared as
1682 `char *', to avoid warnings when a string constant is passed. But
1683 when we use a character as a subscript we must make it unsigned. */
1685 # define TRANSLATE(d) \
1686 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1690 /* Macros for outputting the compiled pattern into `buffer'. */
1692 /* If the buffer isn't allocated when it comes in, use this. */
1693 #define INIT_BUF_SIZE 32
1695 /* Make sure we have at least N more bytes of space in buffer. */
1696 #define GET_BUFFER_SPACE(n) \
1697 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1700 /* Make sure we have one more byte of buffer space and then add C to it. */
1701 #define BUF_PUSH(c) \
1703 GET_BUFFER_SPACE (1); \
1704 *b++ = (unsigned char) (c); \
1708 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1709 #define BUF_PUSH_2(c1, c2) \
1711 GET_BUFFER_SPACE (2); \
1712 *b++ = (unsigned char) (c1); \
1713 *b++ = (unsigned char) (c2); \
1717 /* Store a jump with opcode OP at LOC to location TO. We store a
1718 relative address offset by the three bytes the jump itself occupies. */
1719 #define STORE_JUMP(op, loc, to) \
1720 store_op1 (op, loc, (to) - (loc) - 3)
1722 /* Likewise, for a two-argument jump. */
1723 #define STORE_JUMP2(op, loc, to, arg) \
1724 store_op2 (op, loc, (to) - (loc) - 3, arg)
1726 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1727 #define INSERT_JUMP(op, loc, to) \
1728 insert_op1 (op, loc, (to) - (loc) - 3, b)
1730 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1731 #define INSERT_JUMP2(op, loc, to, arg) \
1732 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1735 /* This is not an arbitrary limit: the arguments which represent offsets
1736 into the pattern are two bytes long. So if 2^15 bytes turns out to
1737 be too small, many things would have to change. */
1738 # define MAX_BUF_SIZE (1L << 15)
1740 /* Extend the buffer by twice its current size via realloc and
1741 reset the pointers that pointed into the old block to point to the
1742 correct places in the new one. If extending the buffer results in it
1743 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1744 #if __BOUNDED_POINTERS__
1745 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1746 # define MOVE_BUFFER_POINTER(P) \
1747 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1748 SET_HIGH_BOUND (P), \
1749 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
1750 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1753 SET_HIGH_BOUND (b); \
1754 SET_HIGH_BOUND (begalt); \
1755 if (fixup_alt_jump) \
1756 SET_HIGH_BOUND (fixup_alt_jump); \
1758 SET_HIGH_BOUND (laststart); \
1759 if (pending_exact) \
1760 SET_HIGH_BOUND (pending_exact); \
1763 # define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
1764 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1766 #define EXTEND_BUFFER() \
1768 unsigned char *old_buffer = bufp->buffer; \
1769 if (bufp->allocated == MAX_BUF_SIZE) \
1771 bufp->allocated <<= 1; \
1772 if (bufp->allocated > MAX_BUF_SIZE) \
1773 bufp->allocated = MAX_BUF_SIZE; \
1774 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1775 if (bufp->buffer == NULL) \
1776 return REG_ESPACE; \
1777 /* If the buffer moved, move all the pointers into it. */ \
1778 if (old_buffer != bufp->buffer) \
1780 unsigned char *new_buffer = bufp->buffer; \
1781 MOVE_BUFFER_POINTER (b); \
1782 MOVE_BUFFER_POINTER (begalt); \
1783 if (fixup_alt_jump) \
1784 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1786 MOVE_BUFFER_POINTER (laststart); \
1787 if (pending_exact) \
1788 MOVE_BUFFER_POINTER (pending_exact); \
1790 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1794 /* Since we have one byte reserved for the register number argument to
1795 {start,stop}_memory, the maximum number of groups we can report
1796 things about is what fits in that byte. */
1797 #define MAX_REGNUM 255
1799 /* But patterns can have more than `MAX_REGNUM' registers. We just
1800 ignore the excess. */
1801 typedef int regnum_t
;
1804 /* Macros for the compile stack. */
1806 /* Since offsets can go either forwards or backwards, this type needs to
1807 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1808 /* int may be not enough when sizeof(int) == 2. */
1809 typedef long pattern_offset_t
;
1813 pattern_offset_t begalt_offset
;
1814 pattern_offset_t fixup_alt_jump
;
1815 pattern_offset_t laststart_offset
;
1817 } compile_stack_elt_t
;
1822 compile_stack_elt_t
*stack
;
1824 size_t avail
; /* Offset of next open position. */
1825 } compile_stack_type
;
1828 #define INIT_COMPILE_STACK_SIZE 32
1830 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1831 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1833 /* The next available element. */
1834 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1836 /* Explicit quit checking is only used on NTemacs and whenever we
1837 use polling to process input events. */
1838 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1839 extern int immediate_quit
;
1840 # define IMMEDIATE_QUIT_CHECK \
1842 if (immediate_quit) QUIT; \
1845 # define IMMEDIATE_QUIT_CHECK ((void)0)
1848 /* Structure to manage work area for range table. */
1849 struct range_table_work_area
1851 int *table
; /* actual work area. */
1852 int allocated
; /* allocated size for work area in bytes. */
1853 int used
; /* actually used size in words. */
1854 int bits
; /* flag to record character classes */
1857 /* Make sure that WORK_AREA can hold more N multibyte characters.
1858 This is used only in set_image_of_range and set_image_of_range_1.
1859 It expects WORK_AREA to be a pointer.
1860 If it can't get the space, it returns from the surrounding function. */
1862 #define EXTEND_RANGE_TABLE(work_area, n) \
1864 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1866 extend_range_table_work_area (&work_area); \
1867 if ((work_area).table == 0) \
1868 return (REG_ESPACE); \
1872 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1873 (work_area).bits |= (bit)
1875 /* Bits used to implement the multibyte-part of the various character classes
1876 such as [:alnum:] in a charset's range table. */
1877 #define BIT_WORD 0x1
1878 #define BIT_LOWER 0x2
1879 #define BIT_PUNCT 0x4
1880 #define BIT_SPACE 0x8
1881 #define BIT_UPPER 0x10
1882 #define BIT_MULTIBYTE 0x20
1884 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1885 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1887 EXTEND_RANGE_TABLE ((work_area), 2); \
1888 (work_area).table[(work_area).used++] = (range_start); \
1889 (work_area).table[(work_area).used++] = (range_end); \
1892 /* Free allocated memory for WORK_AREA. */
1893 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1895 if ((work_area).table) \
1896 free ((work_area).table); \
1899 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1900 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1901 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1902 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1905 /* Set the bit for character C in a list. */
1906 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1911 /* Store characters in the range FROM to TO in the bitmap at B (for
1912 ASCII and unibyte characters) and WORK_AREA (for multibyte
1913 characters) while translating them and paying attention to the
1914 continuity of translated characters.
1916 Implementation note: It is better to implement these fairly big
1917 macros by a function, but it's not that easy because macros called
1918 in this macro assume various local variables already declared. */
1920 /* Both FROM and TO are ASCII characters. */
1922 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1926 for (C0 = (FROM); C0 <= (TO); C0++) \
1928 C1 = TRANSLATE (C0); \
1929 if (! ASCII_CHAR_P (C1)) \
1931 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1932 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1935 SET_LIST_BIT (C1); \
1940 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
1942 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1944 int C0, C1, C2, I; \
1945 int USED = RANGE_TABLE_WORK_USED (work_area); \
1947 for (C0 = (FROM); C0 <= (TO); C0++) \
1949 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
1950 if (CHAR_BYTE8_P (C1)) \
1951 SET_LIST_BIT (C0); \
1954 C2 = TRANSLATE (C1); \
1956 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
1958 SET_LIST_BIT (C1); \
1959 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1961 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1962 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1964 if (C2 >= from - 1 && C2 <= to + 1) \
1966 if (C2 == from - 1) \
1967 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1968 else if (C2 == to + 1) \
1969 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1974 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
1980 /* Both FROM and TO are multibyte characters. */
1982 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
1984 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
1986 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
1987 for (C0 = (FROM); C0 <= (TO); C0++) \
1989 C1 = TRANSLATE (C0); \
1990 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
1991 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
1992 SET_LIST_BIT (C2); \
1993 if (C1 >= (FROM) && C1 <= (TO)) \
1995 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1997 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1998 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
2000 if (C1 >= from - 1 && C1 <= to + 1) \
2002 if (C1 == from - 1) \
2003 RANGE_TABLE_WORK_ELT (work_area, I)--; \
2004 else if (C1 == to + 1) \
2005 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
2010 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
2016 /* Get the next unsigned number in the uncompiled pattern. */
2017 #define GET_UNSIGNED_NUMBER(num) \
2020 FREE_STACK_RETURN (REG_EBRACE); \
2024 while ('0' <= c && c <= '9') \
2030 num = num * 10 + c - '0'; \
2031 if (num / 10 != prev) \
2032 FREE_STACK_RETURN (REG_BADBR); \
2034 FREE_STACK_RETURN (REG_EBRACE); \
2040 #if ! WIDE_CHAR_SUPPORT
2042 /* Map a string to the char class it names (if any). */
2044 re_wctype (const re_char
*str
)
2046 const char *string
= (const char *) str
;
2047 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
2048 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
2049 else if (STREQ (string
, "word")) return RECC_WORD
;
2050 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
2051 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
2052 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
2053 else if (STREQ (string
, "lower")) return RECC_LOWER
;
2054 else if (STREQ (string
, "print")) return RECC_PRINT
;
2055 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2056 else if (STREQ (string
, "space")) return RECC_SPACE
;
2057 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2058 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2059 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2060 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2061 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2062 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2063 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2067 /* True if CH is in the char class CC. */
2069 re_iswctype (int ch
, re_wctype_t cc
)
2073 case RECC_ALNUM
: return ISALNUM (ch
) != 0;
2074 case RECC_ALPHA
: return ISALPHA (ch
) != 0;
2075 case RECC_BLANK
: return ISBLANK (ch
) != 0;
2076 case RECC_CNTRL
: return ISCNTRL (ch
) != 0;
2077 case RECC_DIGIT
: return ISDIGIT (ch
) != 0;
2078 case RECC_GRAPH
: return ISGRAPH (ch
) != 0;
2079 case RECC_LOWER
: return ISLOWER (ch
) != 0;
2080 case RECC_PRINT
: return ISPRINT (ch
) != 0;
2081 case RECC_PUNCT
: return ISPUNCT (ch
) != 0;
2082 case RECC_SPACE
: return ISSPACE (ch
) != 0;
2083 case RECC_UPPER
: return ISUPPER (ch
) != 0;
2084 case RECC_XDIGIT
: return ISXDIGIT (ch
) != 0;
2085 case RECC_ASCII
: return IS_REAL_ASCII (ch
) != 0;
2086 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2087 case RECC_UNIBYTE
: return ISUNIBYTE (ch
) != 0;
2088 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2089 case RECC_WORD
: return ISWORD (ch
) != 0;
2090 case RECC_ERROR
: return false;
2096 /* Return a bit-pattern to use in the range-table bits to match multibyte
2097 chars of class CC. */
2099 re_wctype_to_bit (re_wctype_t cc
)
2103 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2104 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2105 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2106 case RECC_LOWER
: return BIT_LOWER
;
2107 case RECC_UPPER
: return BIT_UPPER
;
2108 case RECC_PUNCT
: return BIT_PUNCT
;
2109 case RECC_SPACE
: return BIT_SPACE
;
2110 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2111 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2118 /* Filling in the work area of a range. */
2120 /* Actually extend the space in WORK_AREA. */
2123 extend_range_table_work_area (struct range_table_work_area
*work_area
)
2125 work_area
->allocated
+= 16 * sizeof (int);
2126 work_area
->table
= realloc (work_area
->table
, work_area
->allocated
);
2132 /* Carefully find the ranges of codes that are equivalent
2133 under case conversion to the range start..end when passed through
2134 TRANSLATE. Handle the case where non-letters can come in between
2135 two upper-case letters (which happens in Latin-1).
2136 Also handle the case of groups of more than 2 case-equivalent chars.
2138 The basic method is to look at consecutive characters and see
2139 if they can form a run that can be handled as one.
2141 Returns -1 if successful, REG_ESPACE if ran out of space. */
2144 set_image_of_range_1 (struct range_table_work_area
*work_area
,
2145 re_wchar_t start
, re_wchar_t end
,
2146 RE_TRANSLATE_TYPE translate
)
2148 /* `one_case' indicates a character, or a run of characters,
2149 each of which is an isolate (no case-equivalents).
2150 This includes all ASCII non-letters.
2152 `two_case' indicates a character, or a run of characters,
2153 each of which has two case-equivalent forms.
2154 This includes all ASCII letters.
2156 `strange' indicates a character that has more than one
2159 enum case_type
{one_case
, two_case
, strange
};
2161 /* Describe the run that is in progress,
2162 which the next character can try to extend.
2163 If run_type is strange, that means there really is no run.
2164 If run_type is one_case, then run_start...run_end is the run.
2165 If run_type is two_case, then the run is run_start...run_end,
2166 and the case-equivalents end at run_eqv_end. */
2168 enum case_type run_type
= strange
;
2169 int run_start
, run_end
, run_eqv_end
;
2171 Lisp_Object eqv_table
;
2173 if (!RE_TRANSLATE_P (translate
))
2175 EXTEND_RANGE_TABLE (work_area
, 2);
2176 work_area
->table
[work_area
->used
++] = (start
);
2177 work_area
->table
[work_area
->used
++] = (end
);
2181 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2183 for (; start
<= end
; start
++)
2185 enum case_type this_type
;
2186 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2187 int minchar
, maxchar
;
2189 /* Classify this character */
2191 this_type
= one_case
;
2192 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2193 this_type
= two_case
;
2195 this_type
= strange
;
2198 minchar
= start
, maxchar
= eqv
;
2200 minchar
= eqv
, maxchar
= start
;
2202 /* Can this character extend the run in progress? */
2203 if (this_type
== strange
|| this_type
!= run_type
2204 || !(minchar
== run_end
+ 1
2205 && (run_type
== two_case
2206 ? maxchar
== run_eqv_end
+ 1 : 1)))
2209 Record each of its equivalent ranges. */
2210 if (run_type
== one_case
)
2212 EXTEND_RANGE_TABLE (work_area
, 2);
2213 work_area
->table
[work_area
->used
++] = run_start
;
2214 work_area
->table
[work_area
->used
++] = run_end
;
2216 else if (run_type
== two_case
)
2218 EXTEND_RANGE_TABLE (work_area
, 4);
2219 work_area
->table
[work_area
->used
++] = run_start
;
2220 work_area
->table
[work_area
->used
++] = run_end
;
2221 work_area
->table
[work_area
->used
++]
2222 = RE_TRANSLATE (eqv_table
, run_start
);
2223 work_area
->table
[work_area
->used
++]
2224 = RE_TRANSLATE (eqv_table
, run_end
);
2229 if (this_type
== strange
)
2231 /* For a strange character, add each of its equivalents, one
2232 by one. Don't start a range. */
2235 EXTEND_RANGE_TABLE (work_area
, 2);
2236 work_area
->table
[work_area
->used
++] = eqv
;
2237 work_area
->table
[work_area
->used
++] = eqv
;
2238 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2240 while (eqv
!= start
);
2243 /* Add this char to the run, or start a new run. */
2244 else if (run_type
== strange
)
2246 /* Initialize a new range. */
2247 run_type
= this_type
;
2250 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2254 /* Extend a running range. */
2256 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2260 /* If a run is still in progress at the end, finish it now
2261 by recording its equivalent ranges. */
2262 if (run_type
== one_case
)
2264 EXTEND_RANGE_TABLE (work_area
, 2);
2265 work_area
->table
[work_area
->used
++] = run_start
;
2266 work_area
->table
[work_area
->used
++] = run_end
;
2268 else if (run_type
== two_case
)
2270 EXTEND_RANGE_TABLE (work_area
, 4);
2271 work_area
->table
[work_area
->used
++] = run_start
;
2272 work_area
->table
[work_area
->used
++] = run_end
;
2273 work_area
->table
[work_area
->used
++]
2274 = RE_TRANSLATE (eqv_table
, run_start
);
2275 work_area
->table
[work_area
->used
++]
2276 = RE_TRANSLATE (eqv_table
, run_end
);
2284 /* Record the image of the range start..end when passed through
2285 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2286 and is not even necessarily contiguous.
2287 Normally we approximate it with the smallest contiguous range that contains
2288 all the chars we need. However, for Latin-1 we go to extra effort
2291 This function is not called for ASCII ranges.
2293 Returns -1 if successful, REG_ESPACE if ran out of space. */
2296 set_image_of_range (struct range_table_work_area
*work_area
,
2297 re_wchar_t start
, re_wchar_t end
,
2298 RE_TRANSLATE_TYPE translate
)
2300 re_wchar_t cmin
, cmax
;
2303 /* For Latin-1 ranges, use set_image_of_range_1
2304 to get proper handling of ranges that include letters and nonletters.
2305 For a range that includes the whole of Latin-1, this is not necessary.
2306 For other character sets, we don't bother to get this right. */
2307 if (RE_TRANSLATE_P (translate
) && start
< 04400
2308 && !(start
< 04200 && end
>= 04377))
2315 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2325 EXTEND_RANGE_TABLE (work_area
, 2);
2326 work_area
->table
[work_area
->used
++] = (start
);
2327 work_area
->table
[work_area
->used
++] = (end
);
2329 cmin
= -1, cmax
= -1;
2331 if (RE_TRANSLATE_P (translate
))
2335 for (ch
= start
; ch
<= end
; ch
++)
2337 re_wchar_t c
= TRANSLATE (ch
);
2338 if (! (start
<= c
&& c
<= end
))
2344 cmin
= MIN (cmin
, c
);
2345 cmax
= MAX (cmax
, c
);
2352 EXTEND_RANGE_TABLE (work_area
, 2);
2353 work_area
->table
[work_area
->used
++] = (cmin
);
2354 work_area
->table
[work_area
->used
++] = (cmax
);
2362 #ifndef MATCH_MAY_ALLOCATE
2364 /* If we cannot allocate large objects within re_match_2_internal,
2365 we make the fail stack and register vectors global.
2366 The fail stack, we grow to the maximum size when a regexp
2368 The register vectors, we adjust in size each time we
2369 compile a regexp, according to the number of registers it needs. */
2371 static fail_stack_type fail_stack
;
2373 /* Size with which the following vectors are currently allocated.
2374 That is so we can make them bigger as needed,
2375 but never make them smaller. */
2376 static int regs_allocated_size
;
2378 static re_char
** regstart
, ** regend
;
2379 static re_char
**best_regstart
, **best_regend
;
2381 /* Make the register vectors big enough for NUM_REGS registers,
2382 but don't make them smaller. */
2385 regex_grow_registers (int num_regs
)
2387 if (num_regs
> regs_allocated_size
)
2389 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2390 RETALLOC_IF (regend
, num_regs
, re_char
*);
2391 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2392 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2394 regs_allocated_size
= num_regs
;
2398 #endif /* not MATCH_MAY_ALLOCATE */
2400 static boolean
group_in_compile_stack (compile_stack_type compile_stack
,
2403 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2404 Returns one of error codes defined in `regex.h', or zero for success.
2406 Assumes the `allocated' (and perhaps `buffer') and `translate'
2407 fields are set in BUFP on entry.
2409 If it succeeds, results are put in BUFP (if it returns an error, the
2410 contents of BUFP are undefined):
2411 `buffer' is the compiled pattern;
2412 `syntax' is set to SYNTAX;
2413 `used' is set to the length of the compiled pattern;
2414 `fastmap_accurate' is zero;
2415 `re_nsub' is the number of subexpressions in PATTERN;
2416 `not_bol' and `not_eol' are zero;
2418 The `fastmap' field is neither examined nor set. */
2420 /* Insert the `jump' from the end of last alternative to "here".
2421 The space for the jump has already been allocated. */
2422 #define FIXUP_ALT_JUMP() \
2424 if (fixup_alt_jump) \
2425 STORE_JUMP (jump, fixup_alt_jump, b); \
2429 /* Return, freeing storage we allocated. */
2430 #define FREE_STACK_RETURN(value) \
2432 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2433 free (compile_stack.stack); \
2437 static reg_errcode_t
2438 regex_compile (const re_char
*pattern
, size_t size
, reg_syntax_t syntax
, struct re_pattern_buffer
*bufp
)
2440 /* We fetch characters from PATTERN here. */
2441 register re_wchar_t c
, c1
;
2443 /* Points to the end of the buffer, where we should append. */
2444 register unsigned char *b
;
2446 /* Keeps track of unclosed groups. */
2447 compile_stack_type compile_stack
;
2449 /* Points to the current (ending) position in the pattern. */
2451 /* `const' makes AIX compiler fail. */
2452 unsigned char *p
= pattern
;
2454 re_char
*p
= pattern
;
2456 re_char
*pend
= pattern
+ size
;
2458 /* How to translate the characters in the pattern. */
2459 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2461 /* Address of the count-byte of the most recently inserted `exactn'
2462 command. This makes it possible to tell if a new exact-match
2463 character can be added to that command or if the character requires
2464 a new `exactn' command. */
2465 unsigned char *pending_exact
= 0;
2467 /* Address of start of the most recently finished expression.
2468 This tells, e.g., postfix * where to find the start of its
2469 operand. Reset at the beginning of groups and alternatives. */
2470 unsigned char *laststart
= 0;
2472 /* Address of beginning of regexp, or inside of last group. */
2473 unsigned char *begalt
;
2475 /* Place in the uncompiled pattern (i.e., the {) to
2476 which to go back if the interval is invalid. */
2477 re_char
*beg_interval
;
2479 /* Address of the place where a forward jump should go to the end of
2480 the containing expression. Each alternative of an `or' -- except the
2481 last -- ends with a forward jump of this sort. */
2482 unsigned char *fixup_alt_jump
= 0;
2484 /* Work area for range table of charset. */
2485 struct range_table_work_area range_table_work
;
2487 /* If the object matched can contain multibyte characters. */
2488 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2490 /* Nonzero if we have pushed down into a subpattern. */
2491 int in_subpattern
= 0;
2493 /* These hold the values of p, pattern, and pend from the main
2494 pattern when we have pushed into a subpattern. */
2495 re_char
*main_p
IF_LINT (= NULL
);
2496 re_char
*main_pattern
IF_LINT (= NULL
);
2497 re_char
*main_pend
IF_LINT (= NULL
);
2501 DEBUG_PRINT1 ("\nCompiling pattern: ");
2504 unsigned debug_count
;
2506 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2507 putchar (pattern
[debug_count
]);
2512 /* Initialize the compile stack. */
2513 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2514 if (compile_stack
.stack
== NULL
)
2517 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2518 compile_stack
.avail
= 0;
2520 range_table_work
.table
= 0;
2521 range_table_work
.allocated
= 0;
2523 /* Initialize the pattern buffer. */
2524 bufp
->syntax
= syntax
;
2525 bufp
->fastmap_accurate
= 0;
2526 bufp
->not_bol
= bufp
->not_eol
= 0;
2527 bufp
->used_syntax
= 0;
2529 /* Set `used' to zero, so that if we return an error, the pattern
2530 printer (for debugging) will think there's no pattern. We reset it
2534 /* Always count groups, whether or not bufp->no_sub is set. */
2537 #if !defined emacs && !defined SYNTAX_TABLE
2538 /* Initialize the syntax table. */
2539 init_syntax_once ();
2542 if (bufp
->allocated
== 0)
2545 { /* If zero allocated, but buffer is non-null, try to realloc
2546 enough space. This loses if buffer's address is bogus, but
2547 that is the user's responsibility. */
2548 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2551 { /* Caller did not allocate a buffer. Do it for them. */
2552 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2554 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2556 bufp
->allocated
= INIT_BUF_SIZE
;
2559 begalt
= b
= bufp
->buffer
;
2561 /* Loop through the uncompiled pattern until we're at the end. */
2566 /* If this is the end of an included regexp,
2567 pop back to the main regexp and try again. */
2571 pattern
= main_pattern
;
2576 /* If this is the end of the main regexp, we are done. */
2588 /* If there's no special whitespace regexp, treat
2589 spaces normally. And don't try to do this recursively. */
2590 if (!whitespace_regexp
|| in_subpattern
)
2593 /* Peek past following spaces. */
2600 /* If the spaces are followed by a repetition op,
2601 treat them normally. */
2603 && (*p1
== '*' || *p1
== '+' || *p1
== '?'
2604 || (*p1
== '\\' && p1
+ 1 != pend
&& p1
[1] == '{')))
2607 /* Replace the spaces with the whitespace regexp. */
2611 main_pattern
= pattern
;
2612 p
= pattern
= whitespace_regexp
;
2613 pend
= p
+ strlen ((const char *) p
);
2619 if ( /* If at start of pattern, it's an operator. */
2621 /* If context independent, it's an operator. */
2622 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2623 /* Otherwise, depends on what's come before. */
2624 || at_begline_loc_p (pattern
, p
, syntax
))
2625 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2634 if ( /* If at end of pattern, it's an operator. */
2636 /* If context independent, it's an operator. */
2637 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2638 /* Otherwise, depends on what's next. */
2639 || at_endline_loc_p (p
, pend
, syntax
))
2640 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2649 if ((syntax
& RE_BK_PLUS_QM
)
2650 || (syntax
& RE_LIMITED_OPS
))
2654 /* If there is no previous pattern... */
2657 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2658 FREE_STACK_RETURN (REG_BADRPT
);
2659 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2664 /* 1 means zero (many) matches is allowed. */
2665 boolean zero_times_ok
= 0, many_times_ok
= 0;
2668 /* If there is a sequence of repetition chars, collapse it
2669 down to just one (the right one). We can't combine
2670 interval operators with these because of, e.g., `a{2}*',
2671 which should only match an even number of `a's. */
2675 if ((syntax
& RE_FRUGAL
)
2676 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2680 zero_times_ok
|= c
!= '+';
2681 many_times_ok
|= c
!= '?';
2687 || (!(syntax
& RE_BK_PLUS_QM
)
2688 && (*p
== '+' || *p
== '?')))
2690 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2693 FREE_STACK_RETURN (REG_EESCAPE
);
2694 if (p
[1] == '+' || p
[1] == '?')
2695 PATFETCH (c
); /* Gobble up the backslash. */
2701 /* If we get here, we found another repeat character. */
2705 /* Star, etc. applied to an empty pattern is equivalent
2706 to an empty pattern. */
2707 if (!laststart
|| laststart
== b
)
2710 /* Now we know whether or not zero matches is allowed
2711 and also whether or not two or more matches is allowed. */
2716 boolean simple
= skip_one_char (laststart
) == b
;
2717 size_t startoffset
= 0;
2719 /* Check if the loop can match the empty string. */
2720 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2721 ? on_failure_jump
: on_failure_jump_loop
;
2722 assert (skip_one_char (laststart
) <= b
);
2724 if (!zero_times_ok
&& simple
)
2725 { /* Since simple * loops can be made faster by using
2726 on_failure_keep_string_jump, we turn simple P+
2727 into PP* if P is simple. */
2728 unsigned char *p1
, *p2
;
2729 startoffset
= b
- laststart
;
2730 GET_BUFFER_SPACE (startoffset
);
2731 p1
= b
; p2
= laststart
;
2737 GET_BUFFER_SPACE (6);
2740 STORE_JUMP (ofj
, b
, b
+ 6);
2742 /* Simple * loops can use on_failure_keep_string_jump
2743 depending on what follows. But since we don't know
2744 that yet, we leave the decision up to
2745 on_failure_jump_smart. */
2746 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2747 laststart
+ startoffset
, b
+ 6);
2749 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2754 /* A simple ? pattern. */
2755 assert (zero_times_ok
);
2756 GET_BUFFER_SPACE (3);
2757 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2761 else /* not greedy */
2762 { /* I wish the greedy and non-greedy cases could be merged. */
2764 GET_BUFFER_SPACE (7); /* We might use less. */
2767 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2769 /* The non-greedy multiple match looks like
2770 a repeat..until: we only need a conditional jump
2771 at the end of the loop. */
2772 if (emptyp
) BUF_PUSH (no_op
);
2773 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2774 : on_failure_jump
, b
, laststart
);
2778 /* The repeat...until naturally matches one or more.
2779 To also match zero times, we need to first jump to
2780 the end of the loop (its conditional jump). */
2781 INSERT_JUMP (jump
, laststart
, b
);
2787 /* non-greedy a?? */
2788 INSERT_JUMP (jump
, laststart
, b
+ 3);
2790 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2809 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2811 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2813 /* Ensure that we have enough space to push a charset: the
2814 opcode, the length count, and the bitset; 34 bytes in all. */
2815 GET_BUFFER_SPACE (34);
2819 /* We test `*p == '^' twice, instead of using an if
2820 statement, so we only need one BUF_PUSH. */
2821 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2825 /* Remember the first position in the bracket expression. */
2828 /* Push the number of bytes in the bitmap. */
2829 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2831 /* Clear the whole map. */
2832 memset (b
, 0, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2834 /* charset_not matches newline according to a syntax bit. */
2835 if ((re_opcode_t
) b
[-2] == charset_not
2836 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2837 SET_LIST_BIT ('\n');
2839 /* Read in characters and ranges, setting map bits. */
2842 boolean escaped_char
= false;
2843 const unsigned char *p2
= p
;
2846 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2848 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2849 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2850 So the translation is done later in a loop. Example:
2851 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2854 /* \ might escape characters inside [...] and [^...]. */
2855 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2857 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2860 escaped_char
= true;
2864 /* Could be the end of the bracket expression. If it's
2865 not (i.e., when the bracket expression is `[]' so
2866 far), the ']' character bit gets set way below. */
2867 if (c
== ']' && p2
!= p1
)
2871 /* See if we're at the beginning of a possible character
2874 if (!escaped_char
&&
2875 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2877 /* Leave room for the null. */
2878 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2879 const unsigned char *class_beg
;
2885 /* If pattern is `[[:'. */
2886 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2891 if ((c
== ':' && *p
== ']') || p
== pend
)
2893 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2896 /* This is in any case an invalid class name. */
2901 /* If isn't a word bracketed by `[:' and `:]':
2902 undo the ending character, the letters, and
2903 leave the leading `:' and `[' (but set bits for
2905 if (c
== ':' && *p
== ']')
2907 re_wctype_t cc
= re_wctype (str
);
2910 FREE_STACK_RETURN (REG_ECTYPE
);
2912 /* Throw away the ] at the end of the character
2916 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2919 for (ch
= 0; ch
< (1 << BYTEWIDTH
); ++ch
)
2920 if (re_iswctype (btowc (ch
), cc
))
2923 if (c
< (1 << BYTEWIDTH
))
2927 /* Most character classes in a multibyte match
2928 just set a flag. Exceptions are is_blank,
2929 is_digit, is_cntrl, and is_xdigit, since
2930 they can only match ASCII characters. We
2931 don't need to handle them for multibyte.
2932 They are distinguished by a negative wctype. */
2934 /* Setup the gl_state object to its buffer-defined
2935 value. This hardcodes the buffer-global
2936 syntax-table for ASCII chars, while the other chars
2937 will obey syntax-table properties. It's not ideal,
2938 but it's the way it's been done until now. */
2939 SETUP_BUFFER_SYNTAX_TABLE ();
2941 for (ch
= 0; ch
< 256; ++ch
)
2943 c
= RE_CHAR_TO_MULTIBYTE (ch
);
2944 if (! CHAR_BYTE8_P (c
)
2945 && re_iswctype (c
, cc
))
2951 if (ASCII_CHAR_P (c1
))
2953 else if ((c1
= RE_CHAR_TO_UNIBYTE (c1
)) >= 0)
2957 SET_RANGE_TABLE_WORK_AREA_BIT
2958 (range_table_work
, re_wctype_to_bit (cc
));
2960 /* In most cases the matching rule for char classes
2961 only uses the syntax table for multibyte chars,
2962 so that the content of the syntax-table it is not
2963 hardcoded in the range_table. SPACE and WORD are
2964 the two exceptions. */
2965 if ((1 << cc
) & ((1 << RECC_SPACE
) | (1 << RECC_WORD
)))
2966 bufp
->used_syntax
= 1;
2968 /* Repeat the loop. */
2973 /* Go back to right after the "[:". */
2977 /* Because the `:' may starts the range, we
2978 can't simply set bit and repeat the loop.
2979 Instead, just set it to C and handle below. */
2984 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2987 /* Discard the `-'. */
2990 /* Fetch the character which ends the range. */
2993 if (CHAR_BYTE8_P (c1
)
2994 && ! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
2995 /* Treat the range from a multibyte character to
2996 raw-byte character as empty. */
3001 /* Range from C to C. */
3006 if (syntax
& RE_NO_EMPTY_RANGES
)
3007 FREE_STACK_RETURN (REG_ERANGEX
);
3008 /* Else, repeat the loop. */
3013 /* Set the range into bitmap */
3014 for (; c
<= c1
; c
++)
3017 if (ch
< (1 << BYTEWIDTH
))
3024 SETUP_ASCII_RANGE (range_table_work
, c
, ch
);
3026 if (CHAR_BYTE8_P (c1
))
3027 c
= BYTE8_TO_CHAR (128);
3031 if (CHAR_BYTE8_P (c
))
3033 c
= CHAR_TO_BYTE8 (c
);
3034 c1
= CHAR_TO_BYTE8 (c1
);
3035 for (; c
<= c1
; c
++)
3040 SETUP_MULTIBYTE_RANGE (range_table_work
, c
, c1
);
3044 SETUP_UNIBYTE_RANGE (range_table_work
, c
, c1
);
3051 /* Discard any (non)matching list bytes that are all 0 at the
3052 end of the map. Decrease the map-length byte too. */
3053 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3057 /* Build real range table from work area. */
3058 if (RANGE_TABLE_WORK_USED (range_table_work
)
3059 || RANGE_TABLE_WORK_BITS (range_table_work
))
3062 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
3064 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3065 bytes for flags, two for COUNT, and three bytes for
3067 GET_BUFFER_SPACE (4 + used
* 3);
3069 /* Indicate the existence of range table. */
3070 laststart
[1] |= 0x80;
3072 /* Store the character class flag bits into the range table.
3073 If not in emacs, these flag bits are always 0. */
3074 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
3075 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
3077 STORE_NUMBER_AND_INCR (b
, used
/ 2);
3078 for (i
= 0; i
< used
; i
++)
3079 STORE_CHARACTER_AND_INCR
3080 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
3087 if (syntax
& RE_NO_BK_PARENS
)
3094 if (syntax
& RE_NO_BK_PARENS
)
3101 if (syntax
& RE_NEWLINE_ALT
)
3108 if (syntax
& RE_NO_BK_VBAR
)
3115 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3116 goto handle_interval
;
3122 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3124 /* Do not translate the character after the \, so that we can
3125 distinguish, e.g., \B from \b, even if we normally would
3126 translate, e.g., B to b. */
3132 if (syntax
& RE_NO_BK_PARENS
)
3133 goto normal_backslash
;
3138 regnum_t regnum
= 0;
3141 /* Look for a special (?...) construct */
3142 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3144 PATFETCH (c
); /* Gobble up the '?'. */
3150 case ':': shy
= 1; break;
3152 /* An explicitly specified regnum must start
3155 FREE_STACK_RETURN (REG_BADPAT
);
3156 case '1': case '2': case '3': case '4':
3157 case '5': case '6': case '7': case '8': case '9':
3158 regnum
= 10*regnum
+ (c
- '0'); break;
3160 /* Only (?:...) is supported right now. */
3161 FREE_STACK_RETURN (REG_BADPAT
);
3168 regnum
= ++bufp
->re_nsub
;
3170 { /* It's actually not shy, but explicitly numbered. */
3172 if (regnum
> bufp
->re_nsub
)
3173 bufp
->re_nsub
= regnum
;
3174 else if (regnum
> bufp
->re_nsub
3175 /* Ideally, we'd want to check that the specified
3176 group can't have matched (i.e. all subgroups
3177 using the same regnum are in other branches of
3178 OR patterns), but we don't currently keep track
3179 of enough info to do that easily. */
3180 || group_in_compile_stack (compile_stack
, regnum
))
3181 FREE_STACK_RETURN (REG_BADPAT
);
3184 /* It's really shy. */
3185 regnum
= - bufp
->re_nsub
;
3187 if (COMPILE_STACK_FULL
)
3189 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3190 compile_stack_elt_t
);
3191 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3193 compile_stack
.size
<<= 1;
3196 /* These are the values to restore when we hit end of this
3197 group. They are all relative offsets, so that if the
3198 whole pattern moves because of realloc, they will still
3200 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3201 COMPILE_STACK_TOP
.fixup_alt_jump
3202 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3203 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3204 COMPILE_STACK_TOP
.regnum
= regnum
;
3206 /* Do not push a start_memory for groups beyond the last one
3207 we can represent in the compiled pattern. */
3208 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3209 BUF_PUSH_2 (start_memory
, regnum
);
3211 compile_stack
.avail
++;
3216 /* If we've reached MAX_REGNUM groups, then this open
3217 won't actually generate any code, so we'll have to
3218 clear pending_exact explicitly. */
3224 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3226 if (COMPILE_STACK_EMPTY
)
3228 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3229 goto normal_backslash
;
3231 FREE_STACK_RETURN (REG_ERPAREN
);
3237 /* See similar code for backslashed left paren above. */
3238 if (COMPILE_STACK_EMPTY
)
3240 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3243 FREE_STACK_RETURN (REG_ERPAREN
);
3246 /* Since we just checked for an empty stack above, this
3247 ``can't happen''. */
3248 assert (compile_stack
.avail
!= 0);
3250 /* We don't just want to restore into `regnum', because
3251 later groups should continue to be numbered higher,
3252 as in `(ab)c(de)' -- the second group is #2. */
3255 compile_stack
.avail
--;
3256 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3258 = COMPILE_STACK_TOP
.fixup_alt_jump
3259 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3261 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3262 regnum
= COMPILE_STACK_TOP
.regnum
;
3263 /* If we've reached MAX_REGNUM groups, then this open
3264 won't actually generate any code, so we'll have to
3265 clear pending_exact explicitly. */
3268 /* We're at the end of the group, so now we know how many
3269 groups were inside this one. */
3270 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3271 BUF_PUSH_2 (stop_memory
, regnum
);
3276 case '|': /* `\|'. */
3277 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3278 goto normal_backslash
;
3280 if (syntax
& RE_LIMITED_OPS
)
3283 /* Insert before the previous alternative a jump which
3284 jumps to this alternative if the former fails. */
3285 GET_BUFFER_SPACE (3);
3286 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3290 /* The alternative before this one has a jump after it
3291 which gets executed if it gets matched. Adjust that
3292 jump so it will jump to this alternative's analogous
3293 jump (put in below, which in turn will jump to the next
3294 (if any) alternative's such jump, etc.). The last such
3295 jump jumps to the correct final destination. A picture:
3301 If we are at `b', then fixup_alt_jump right now points to a
3302 three-byte space after `a'. We'll put in the jump, set
3303 fixup_alt_jump to right after `b', and leave behind three
3304 bytes which we'll fill in when we get to after `c'. */
3308 /* Mark and leave space for a jump after this alternative,
3309 to be filled in later either by next alternative or
3310 when know we're at the end of a series of alternatives. */
3312 GET_BUFFER_SPACE (3);
3321 /* If \{ is a literal. */
3322 if (!(syntax
& RE_INTERVALS
)
3323 /* If we're at `\{' and it's not the open-interval
3325 || (syntax
& RE_NO_BK_BRACES
))
3326 goto normal_backslash
;
3330 /* If got here, then the syntax allows intervals. */
3332 /* At least (most) this many matches must be made. */
3333 int lower_bound
= 0, upper_bound
= -1;
3337 GET_UNSIGNED_NUMBER (lower_bound
);
3340 GET_UNSIGNED_NUMBER (upper_bound
);
3342 /* Interval such as `{1}' => match exactly once. */
3343 upper_bound
= lower_bound
;
3345 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3346 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3347 FREE_STACK_RETURN (REG_BADBR
);
3349 if (!(syntax
& RE_NO_BK_BRACES
))
3352 FREE_STACK_RETURN (REG_BADBR
);
3354 FREE_STACK_RETURN (REG_EESCAPE
);
3359 FREE_STACK_RETURN (REG_BADBR
);
3361 /* We just parsed a valid interval. */
3363 /* If it's invalid to have no preceding re. */
3366 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3367 FREE_STACK_RETURN (REG_BADRPT
);
3368 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3371 goto unfetch_interval
;
3374 if (upper_bound
== 0)
3375 /* If the upper bound is zero, just drop the sub pattern
3378 else if (lower_bound
== 1 && upper_bound
== 1)
3379 /* Just match it once: nothing to do here. */
3382 /* Otherwise, we have a nontrivial interval. When
3383 we're all done, the pattern will look like:
3384 set_number_at <jump count> <upper bound>
3385 set_number_at <succeed_n count> <lower bound>
3386 succeed_n <after jump addr> <succeed_n count>
3388 jump_n <succeed_n addr> <jump count>
3389 (The upper bound and `jump_n' are omitted if
3390 `upper_bound' is 1, though.) */
3392 { /* If the upper bound is > 1, we need to insert
3393 more at the end of the loop. */
3394 unsigned int nbytes
= (upper_bound
< 0 ? 3
3395 : upper_bound
> 1 ? 5 : 0);
3396 unsigned int startoffset
= 0;
3398 GET_BUFFER_SPACE (20); /* We might use less. */
3400 if (lower_bound
== 0)
3402 /* A succeed_n that starts with 0 is really a
3403 a simple on_failure_jump_loop. */
3404 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3410 /* Initialize lower bound of the `succeed_n', even
3411 though it will be set during matching by its
3412 attendant `set_number_at' (inserted next),
3413 because `re_compile_fastmap' needs to know.
3414 Jump to the `jump_n' we might insert below. */
3415 INSERT_JUMP2 (succeed_n
, laststart
,
3420 /* Code to initialize the lower bound. Insert
3421 before the `succeed_n'. The `5' is the last two
3422 bytes of this `set_number_at', plus 3 bytes of
3423 the following `succeed_n'. */
3424 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3429 if (upper_bound
< 0)
3431 /* A negative upper bound stands for infinity,
3432 in which case it degenerates to a plain jump. */
3433 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3436 else if (upper_bound
> 1)
3437 { /* More than one repetition is allowed, so
3438 append a backward jump to the `succeed_n'
3439 that starts this interval.
3441 When we've reached this during matching,
3442 we'll have matched the interval once, so
3443 jump back only `upper_bound - 1' times. */
3444 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3448 /* The location we want to set is the second
3449 parameter of the `jump_n'; that is `b-2' as
3450 an absolute address. `laststart' will be
3451 the `set_number_at' we're about to insert;
3452 `laststart+3' the number to set, the source
3453 for the relative address. But we are
3454 inserting into the middle of the pattern --
3455 so everything is getting moved up by 5.
3456 Conclusion: (b - 2) - (laststart + 3) + 5,
3457 i.e., b - laststart.
3459 We insert this at the beginning of the loop
3460 so that if we fail during matching, we'll
3461 reinitialize the bounds. */
3462 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3463 upper_bound
- 1, b
);
3468 beg_interval
= NULL
;
3473 /* If an invalid interval, match the characters as literals. */
3474 assert (beg_interval
);
3476 beg_interval
= NULL
;
3478 /* normal_char and normal_backslash need `c'. */
3481 if (!(syntax
& RE_NO_BK_BRACES
))
3483 assert (p
> pattern
&& p
[-1] == '\\');
3484 goto normal_backslash
;
3490 /* There is no way to specify the before_dot and after_dot
3491 operators. rms says this is ok. --karl */
3499 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3505 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3511 BUF_PUSH_2 (categoryspec
, c
);
3517 BUF_PUSH_2 (notcategoryspec
, c
);
3523 if (syntax
& RE_NO_GNU_OPS
)
3526 BUF_PUSH_2 (syntaxspec
, Sword
);
3531 if (syntax
& RE_NO_GNU_OPS
)
3534 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3539 if (syntax
& RE_NO_GNU_OPS
)
3545 if (syntax
& RE_NO_GNU_OPS
)
3551 if (syntax
& RE_NO_GNU_OPS
)
3560 FREE_STACK_RETURN (REG_BADPAT
);
3564 if (syntax
& RE_NO_GNU_OPS
)
3566 BUF_PUSH (wordbound
);
3570 if (syntax
& RE_NO_GNU_OPS
)
3572 BUF_PUSH (notwordbound
);
3576 if (syntax
& RE_NO_GNU_OPS
)
3582 if (syntax
& RE_NO_GNU_OPS
)
3587 case '1': case '2': case '3': case '4': case '5':
3588 case '6': case '7': case '8': case '9':
3592 if (syntax
& RE_NO_BK_REFS
)
3593 goto normal_backslash
;
3597 if (reg
> bufp
->re_nsub
|| reg
< 1
3598 /* Can't back reference to a subexp before its end. */
3599 || group_in_compile_stack (compile_stack
, reg
))
3600 FREE_STACK_RETURN (REG_ESUBREG
);
3603 BUF_PUSH_2 (duplicate
, reg
);
3610 if (syntax
& RE_BK_PLUS_QM
)
3613 goto normal_backslash
;
3617 /* You might think it would be useful for \ to mean
3618 not to translate; but if we don't translate it
3619 it will never match anything. */
3626 /* Expects the character in `c'. */
3628 /* If no exactn currently being built. */
3631 /* If last exactn not at current position. */
3632 || pending_exact
+ *pending_exact
+ 1 != b
3634 /* We have only one byte following the exactn for the count. */
3635 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3637 /* If followed by a repetition operator. */
3638 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3639 || ((syntax
& RE_BK_PLUS_QM
)
3640 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3641 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3642 || ((syntax
& RE_INTERVALS
)
3643 && ((syntax
& RE_NO_BK_BRACES
)
3644 ? p
!= pend
&& *p
== '{'
3645 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3647 /* Start building a new exactn. */
3651 BUF_PUSH_2 (exactn
, 0);
3652 pending_exact
= b
- 1;
3655 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3662 len
= CHAR_STRING (c
, b
);
3667 c1
= RE_CHAR_TO_MULTIBYTE (c
);
3668 if (! CHAR_BYTE8_P (c1
))
3670 re_wchar_t c2
= TRANSLATE (c1
);
3672 if (c1
!= c2
&& (c1
= RE_CHAR_TO_UNIBYTE (c2
)) >= 0)
3678 (*pending_exact
) += len
;
3683 } /* while p != pend */
3686 /* Through the pattern now. */
3690 if (!COMPILE_STACK_EMPTY
)
3691 FREE_STACK_RETURN (REG_EPAREN
);
3693 /* If we don't want backtracking, force success
3694 the first time we reach the end of the compiled pattern. */
3695 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3698 /* We have succeeded; set the length of the buffer. */
3699 bufp
->used
= b
- bufp
->buffer
;
3704 re_compile_fastmap (bufp
);
3705 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3706 print_compiled_pattern (bufp
);
3711 #ifndef MATCH_MAY_ALLOCATE
3712 /* Initialize the failure stack to the largest possible stack. This
3713 isn't necessary unless we're trying to avoid calling alloca in
3714 the search and match routines. */
3716 int num_regs
= bufp
->re_nsub
+ 1;
3718 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3720 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3721 falk_stack
.stack
= realloc (fail_stack
.stack
,
3722 fail_stack
.size
* sizeof *falk_stack
.stack
);
3725 regex_grow_registers (num_regs
);
3727 #endif /* not MATCH_MAY_ALLOCATE */
3729 FREE_STACK_RETURN (REG_NOERROR
);
3730 } /* regex_compile */
3732 /* Subroutines for `regex_compile'. */
3734 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3737 store_op1 (re_opcode_t op
, unsigned char *loc
, int arg
)
3739 *loc
= (unsigned char) op
;
3740 STORE_NUMBER (loc
+ 1, arg
);
3744 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3747 store_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
)
3749 *loc
= (unsigned char) op
;
3750 STORE_NUMBER (loc
+ 1, arg1
);
3751 STORE_NUMBER (loc
+ 3, arg2
);
3755 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3756 for OP followed by two-byte integer parameter ARG. */
3759 insert_op1 (re_opcode_t op
, unsigned char *loc
, int arg
, unsigned char *end
)
3761 register unsigned char *pfrom
= end
;
3762 register unsigned char *pto
= end
+ 3;
3764 while (pfrom
!= loc
)
3767 store_op1 (op
, loc
, arg
);
3771 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3774 insert_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
, unsigned char *end
)
3776 register unsigned char *pfrom
= end
;
3777 register unsigned char *pto
= end
+ 5;
3779 while (pfrom
!= loc
)
3782 store_op2 (op
, loc
, arg1
, arg2
);
3786 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3787 after an alternative or a begin-subexpression. We assume there is at
3788 least one character before the ^. */
3791 at_begline_loc_p (const re_char
*pattern
, const re_char
*p
, reg_syntax_t syntax
)
3793 re_char
*prev
= p
- 2;
3794 boolean odd_backslashes
;
3796 /* After a subexpression? */
3798 odd_backslashes
= (syntax
& RE_NO_BK_PARENS
) == 0;
3800 /* After an alternative? */
3801 else if (*prev
== '|')
3802 odd_backslashes
= (syntax
& RE_NO_BK_VBAR
) == 0;
3804 /* After a shy subexpression? */
3805 else if (*prev
== ':' && (syntax
& RE_SHY_GROUPS
))
3807 /* Skip over optional regnum. */
3808 while (prev
- 1 >= pattern
&& prev
[-1] >= '0' && prev
[-1] <= '9')
3811 if (!(prev
- 2 >= pattern
3812 && prev
[-1] == '?' && prev
[-2] == '('))
3815 odd_backslashes
= (syntax
& RE_NO_BK_PARENS
) == 0;
3820 /* Count the number of preceding backslashes. */
3822 while (prev
- 1 >= pattern
&& prev
[-1] == '\\')
3824 return (p
- prev
) & odd_backslashes
;
3828 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3829 at least one character after the $, i.e., `P < PEND'. */
3832 at_endline_loc_p (const re_char
*p
, const re_char
*pend
, reg_syntax_t syntax
)
3835 boolean next_backslash
= *next
== '\\';
3836 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3839 /* Before a subexpression? */
3840 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3841 : next_backslash
&& next_next
&& *next_next
== ')')
3842 /* Before an alternative? */
3843 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3844 : next_backslash
&& next_next
&& *next_next
== '|');
3848 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3849 false if it's not. */
3852 group_in_compile_stack (compile_stack_type compile_stack
, regnum_t regnum
)
3854 ssize_t this_element
;
3856 for (this_element
= compile_stack
.avail
- 1;
3859 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3866 If fastmap is non-NULL, go through the pattern and fill fastmap
3867 with all the possible leading chars. If fastmap is NULL, don't
3868 bother filling it up (obviously) and only return whether the
3869 pattern could potentially match the empty string.
3871 Return 1 if p..pend might match the empty string.
3872 Return 0 if p..pend matches at least one char.
3873 Return -1 if fastmap was not updated accurately. */
3876 analyse_first (const re_char
*p
, const re_char
*pend
, char *fastmap
, const int multibyte
)
3881 /* If all elements for base leading-codes in fastmap is set, this
3882 flag is set true. */
3883 boolean match_any_multibyte_characters
= false;
3887 /* The loop below works as follows:
3888 - It has a working-list kept in the PATTERN_STACK and which basically
3889 starts by only containing a pointer to the first operation.
3890 - If the opcode we're looking at is a match against some set of
3891 chars, then we add those chars to the fastmap and go on to the
3892 next work element from the worklist (done via `break').
3893 - If the opcode is a control operator on the other hand, we either
3894 ignore it (if it's meaningless at this point, such as `start_memory')
3895 or execute it (if it's a jump). If the jump has several destinations
3896 (i.e. `on_failure_jump'), then we push the other destination onto the
3898 We guarantee termination by ignoring backward jumps (more or less),
3899 so that `p' is monotonically increasing. More to the point, we
3900 never set `p' (or push) anything `<= p1'. */
3904 /* `p1' is used as a marker of how far back a `on_failure_jump'
3905 can go without being ignored. It is normally equal to `p'
3906 (which prevents any backward `on_failure_jump') except right
3907 after a plain `jump', to allow patterns such as:
3910 10: on_failure_jump 3
3911 as used for the *? operator. */
3920 /* If the first character has to match a backreference, that means
3921 that the group was empty (since it already matched). Since this
3922 is the only case that interests us here, we can assume that the
3923 backreference must match the empty string. */
3928 /* Following are the cases which match a character. These end
3934 /* If multibyte is nonzero, the first byte of each
3935 character is an ASCII or a leading code. Otherwise,
3936 each byte is a character. Thus, this works in both
3941 /* For the case of matching this unibyte regex
3942 against multibyte, we must set a leading code of
3943 the corresponding multibyte character. */
3944 int c
= RE_CHAR_TO_MULTIBYTE (p
[1]);
3946 fastmap
[CHAR_LEADING_CODE (c
)] = 1;
3953 /* We could put all the chars except for \n (and maybe \0)
3954 but we don't bother since it is generally not worth it. */
3955 if (!fastmap
) break;
3960 if (!fastmap
) break;
3962 /* Chars beyond end of bitmap are possible matches. */
3963 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3964 j
< (1 << BYTEWIDTH
); j
++)
3970 if (!fastmap
) break;
3971 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3972 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3974 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3978 if (/* Any leading code can possibly start a character
3979 which doesn't match the specified set of characters. */
3982 /* If we can match a character class, we can match any
3983 multibyte characters. */
3984 (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3985 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3988 if (match_any_multibyte_characters
== false)
3990 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
3991 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
3993 match_any_multibyte_characters
= true;
3997 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3998 && match_any_multibyte_characters
== false)
4000 /* Set fastmap[I] to 1 where I is a leading code of each
4001 multibyte character in the range table. */
4003 unsigned char lc1
, lc2
;
4005 /* Make P points the range table. `+ 2' is to skip flag
4006 bits for a character class. */
4007 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
4009 /* Extract the number of ranges in range table into COUNT. */
4010 EXTRACT_NUMBER_AND_INCR (count
, p
);
4011 for (; count
> 0; count
--, p
+= 3)
4013 /* Extract the start and end of each range. */
4014 EXTRACT_CHARACTER (c
, p
);
4015 lc1
= CHAR_LEADING_CODE (c
);
4017 EXTRACT_CHARACTER (c
, p
);
4018 lc2
= CHAR_LEADING_CODE (c
);
4019 for (j
= lc1
; j
<= lc2
; j
++)
4028 if (!fastmap
) break;
4030 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
4032 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4033 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
4037 /* This match depends on text properties. These end with
4038 aborting optimizations. */
4042 case notcategoryspec
:
4043 if (!fastmap
) break;
4044 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
4046 for (j
= (1 << BYTEWIDTH
); j
>= 0; j
--)
4047 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
4050 /* Any leading code can possibly start a character which
4051 has or doesn't has the specified category. */
4052 if (match_any_multibyte_characters
== false)
4054 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
4055 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
4057 match_any_multibyte_characters
= true;
4061 /* All cases after this match the empty string. These end with
4083 EXTRACT_NUMBER_AND_INCR (j
, p
);
4085 /* Backward jumps can only go back to code that we've already
4086 visited. `re_compile' should make sure this is true. */
4091 case on_failure_jump
:
4092 case on_failure_keep_string_jump
:
4093 case on_failure_jump_loop
:
4094 case on_failure_jump_nastyloop
:
4095 case on_failure_jump_smart
:
4101 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4102 to jump back to "just after here". */
4105 case on_failure_jump
:
4106 case on_failure_keep_string_jump
:
4107 case on_failure_jump_nastyloop
:
4108 case on_failure_jump_loop
:
4109 case on_failure_jump_smart
:
4110 EXTRACT_NUMBER_AND_INCR (j
, p
);
4112 ; /* Backward jump to be ignored. */
4114 { /* We have to look down both arms.
4115 We first go down the "straight" path so as to minimize
4116 stack usage when going through alternatives. */
4117 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
4125 /* This code simply does not properly handle forward jump_n. */
4126 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
4128 /* jump_n can either jump or fall through. The (backward) jump
4129 case has already been handled, so we only need to look at the
4130 fallthrough case. */
4134 /* If N == 0, it should be an on_failure_jump_loop instead. */
4135 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
4137 /* We only care about one iteration of the loop, so we don't
4138 need to consider the case where this behaves like an
4155 abort (); /* We have listed all the cases. */
4158 /* Getting here means we have found the possible starting
4159 characters for one path of the pattern -- and that the empty
4160 string does not match. We need not follow this path further. */
4164 /* We reached the end without matching anything. */
4167 } /* analyse_first */
4169 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4170 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4171 characters can start a string that matches the pattern. This fastmap
4172 is used by re_search to skip quickly over impossible starting points.
4174 Character codes above (1 << BYTEWIDTH) are not represented in the
4175 fastmap, but the leading codes are represented. Thus, the fastmap
4176 indicates which character sets could start a match.
4178 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4179 area as BUFP->fastmap.
4181 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4184 Returns 0 if we succeed, -2 if an internal error. */
4187 re_compile_fastmap (struct re_pattern_buffer
*bufp
)
4189 char *fastmap
= bufp
->fastmap
;
4192 assert (fastmap
&& bufp
->buffer
);
4194 memset (fastmap
, 0, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4195 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4197 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4198 fastmap
, RE_MULTIBYTE_P (bufp
));
4199 bufp
->can_be_null
= (analysis
!= 0);
4201 } /* re_compile_fastmap */
4203 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4204 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4205 this memory for recording register information. STARTS and ENDS
4206 must be allocated using the malloc library routine, and must each
4207 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4209 If NUM_REGS == 0, then subsequent matches should allocate their own
4212 Unless this function is called, the first search or match using
4213 PATTERN_BUFFER will allocate its own register data, without
4214 freeing the old data. */
4217 re_set_registers (struct re_pattern_buffer
*bufp
, struct re_registers
*regs
, unsigned int num_regs
, regoff_t
*starts
, regoff_t
*ends
)
4221 bufp
->regs_allocated
= REGS_REALLOCATE
;
4222 regs
->num_regs
= num_regs
;
4223 regs
->start
= starts
;
4228 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4230 regs
->start
= regs
->end
= (regoff_t
*) 0;
4233 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4235 /* Searching routines. */
4237 /* Like re_search_2, below, but only one string is specified, and
4238 doesn't let you say where to stop matching. */
4241 re_search (struct re_pattern_buffer
*bufp
, const char *string
, size_t size
,
4242 ssize_t startpos
, ssize_t range
, struct re_registers
*regs
)
4244 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4247 WEAK_ALIAS (__re_search
, re_search
)
4249 /* Head address of virtual concatenation of string. */
4250 #define HEAD_ADDR_VSTRING(P) \
4251 (((P) >= size1 ? string2 : string1))
4253 /* Address of POS in the concatenation of virtual string. */
4254 #define POS_ADDR_VSTRING(POS) \
4255 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4257 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4258 virtual concatenation of STRING1 and STRING2, starting first at index
4259 STARTPOS, then at STARTPOS + 1, and so on.
4261 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4263 RANGE is how far to scan while trying to match. RANGE = 0 means try
4264 only at STARTPOS; in general, the last start tried is STARTPOS +
4267 In REGS, return the indices of the virtual concatenation of STRING1
4268 and STRING2 that matched the entire BUFP->buffer and its contained
4271 Do not consider matching one past the index STOP in the virtual
4272 concatenation of STRING1 and STRING2.
4274 We return either the position in the strings at which the match was
4275 found, -1 if no match, or -2 if error (such as failure
4279 re_search_2 (struct re_pattern_buffer
*bufp
, const char *str1
, size_t size1
,
4280 const char *str2
, size_t size2
, ssize_t startpos
, ssize_t range
,
4281 struct re_registers
*regs
, ssize_t stop
)
4284 re_char
*string1
= (re_char
*) str1
;
4285 re_char
*string2
= (re_char
*) str2
;
4286 register char *fastmap
= bufp
->fastmap
;
4287 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4288 size_t total_size
= size1
+ size2
;
4289 ssize_t endpos
= startpos
+ range
;
4290 boolean anchored_start
;
4291 /* Nonzero if we are searching multibyte string. */
4292 const boolean multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4294 /* Check for out-of-range STARTPOS. */
4295 if (startpos
< 0 || startpos
> total_size
)
4298 /* Fix up RANGE if it might eventually take us outside
4299 the virtual concatenation of STRING1 and STRING2.
4300 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4302 range
= 0 - startpos
;
4303 else if (endpos
> total_size
)
4304 range
= total_size
- startpos
;
4306 /* If the search isn't to be a backwards one, don't waste time in a
4307 search for a pattern anchored at beginning of buffer. */
4308 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4317 /* In a forward search for something that starts with \=.
4318 don't keep searching past point. */
4319 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4321 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4327 /* Update the fastmap now if not correct already. */
4328 if (fastmap
&& !bufp
->fastmap_accurate
)
4329 re_compile_fastmap (bufp
);
4331 /* See whether the pattern is anchored. */
4332 anchored_start
= (bufp
->buffer
[0] == begline
);
4335 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4337 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4339 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4343 /* Loop through the string, looking for a place to start matching. */
4346 /* If the pattern is anchored,
4347 skip quickly past places we cannot match.
4348 We don't bother to treat startpos == 0 specially
4349 because that case doesn't repeat. */
4350 if (anchored_start
&& startpos
> 0)
4352 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4353 : string2
[startpos
- size1
- 1])
4358 /* If a fastmap is supplied, skip quickly over characters that
4359 cannot be the start of a match. If the pattern can match the
4360 null string, however, we don't need to skip characters; we want
4361 the first null string. */
4362 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4364 register re_char
*d
;
4365 register re_wchar_t buf_ch
;
4367 d
= POS_ADDR_VSTRING (startpos
);
4369 if (range
> 0) /* Searching forwards. */
4371 register int lim
= 0;
4372 ssize_t irange
= range
;
4374 if (startpos
< size1
&& startpos
+ range
>= size1
)
4375 lim
= range
- (size1
- startpos
);
4377 /* Written out as an if-else to avoid testing `translate'
4379 if (RE_TRANSLATE_P (translate
))
4386 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4387 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4388 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4391 range
-= buf_charlen
;
4397 register re_wchar_t ch
, translated
;
4400 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4401 translated
= RE_TRANSLATE (translate
, ch
);
4402 if (translated
!= ch
4403 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4405 if (fastmap
[buf_ch
])
4418 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4419 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4421 range
-= buf_charlen
;
4425 while (range
> lim
&& !fastmap
[*d
])
4431 startpos
+= irange
- range
;
4433 else /* Searching backwards. */
4437 buf_ch
= STRING_CHAR (d
);
4438 buf_ch
= TRANSLATE (buf_ch
);
4439 if (! fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4444 register re_wchar_t ch
, translated
;
4447 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4448 translated
= TRANSLATE (ch
);
4449 if (translated
!= ch
4450 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4452 if (! fastmap
[TRANSLATE (buf_ch
)])
4458 /* If can't match the null string, and that's all we have left, fail. */
4459 if (range
>= 0 && startpos
== total_size
&& fastmap
4460 && !bufp
->can_be_null
)
4463 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4464 startpos
, regs
, stop
);
4477 /* Update STARTPOS to the next character boundary. */
4480 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4481 int len
= BYTES_BY_CHAR_HEAD (*p
);
4499 /* Update STARTPOS to the previous character boundary. */
4502 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4504 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4506 /* Find the head of multibyte form. */
4507 PREV_CHAR_BOUNDARY (p
, phead
);
4508 range
+= p0
- 1 - p
;
4512 startpos
-= p0
- 1 - p
;
4518 WEAK_ALIAS (__re_search_2
, re_search_2
)
4520 /* Declarations and macros for re_match_2. */
4522 static int bcmp_translate (re_char
*s1
, re_char
*s2
,
4523 register ssize_t len
,
4524 RE_TRANSLATE_TYPE translate
,
4525 const int multibyte
);
4527 /* This converts PTR, a pointer into one of the search strings `string1'
4528 and `string2' into an offset from the beginning of that string. */
4529 #define POINTER_TO_OFFSET(ptr) \
4530 (FIRST_STRING_P (ptr) \
4531 ? ((regoff_t) ((ptr) - string1)) \
4532 : ((regoff_t) ((ptr) - string2 + size1)))
4534 /* Call before fetching a character with *d. This switches over to
4535 string2 if necessary.
4536 Check re_match_2_internal for a discussion of why end_match_2 might
4537 not be within string2 (but be equal to end_match_1 instead). */
4538 #define PREFETCH() \
4541 /* End of string2 => fail. */ \
4542 if (dend == end_match_2) \
4544 /* End of string1 => advance to string2. */ \
4546 dend = end_match_2; \
4549 /* Call before fetching a char with *d if you already checked other limits.
4550 This is meant for use in lookahead operations like wordend, etc..
4551 where we might need to look at parts of the string that might be
4552 outside of the LIMITs (i.e past `stop'). */
4553 #define PREFETCH_NOLIMIT() \
4557 dend = end_match_2; \
4560 /* Test if at very beginning or at very end of the virtual concatenation
4561 of `string1' and `string2'. If only one string, it's `string2'. */
4562 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4563 #define AT_STRINGS_END(d) ((d) == end2)
4565 /* Disabled due to a compiler bug -- see comment at case wordbound */
4567 /* The comment at case wordbound is following one, but we don't use
4568 AT_WORD_BOUNDARY anymore to support multibyte form.
4570 The DEC Alpha C compiler 3.x generates incorrect code for the
4571 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4572 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4573 macro and introducing temporary variables works around the bug. */
4576 /* Test if D points to a character which is word-constituent. We have
4577 two special cases to check for: if past the end of string1, look at
4578 the first character in string2; and if before the beginning of
4579 string2, look at the last character in string1. */
4580 #define WORDCHAR_P(d) \
4581 (SYNTAX ((d) == end1 ? *string2 \
4582 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4585 /* Test if the character before D and the one at D differ with respect
4586 to being word-constituent. */
4587 #define AT_WORD_BOUNDARY(d) \
4588 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4589 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4592 /* Free everything we malloc. */
4593 #ifdef MATCH_MAY_ALLOCATE
4594 # define FREE_VAR(var) \
4602 # define FREE_VARIABLES() \
4604 REGEX_FREE_STACK (fail_stack.stack); \
4605 FREE_VAR (regstart); \
4606 FREE_VAR (regend); \
4607 FREE_VAR (best_regstart); \
4608 FREE_VAR (best_regend); \
4611 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4612 #endif /* not MATCH_MAY_ALLOCATE */
4615 /* Optimization routines. */
4617 /* If the operation is a match against one or more chars,
4618 return a pointer to the next operation, else return NULL. */
4620 skip_one_char (const re_char
*p
)
4633 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4636 p
= CHARSET_RANGE_TABLE (p
- 1);
4637 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4638 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4641 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4648 case notcategoryspec
:
4660 /* Jump over non-matching operations. */
4662 skip_noops (const re_char
*p
, const re_char
*pend
)
4676 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4687 /* Non-zero if "p1 matches something" implies "p2 fails". */
4689 mutually_exclusive_p (struct re_pattern_buffer
*bufp
, const re_char
*p1
, const re_char
*p2
)
4692 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4693 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4695 assert (p1
>= bufp
->buffer
&& p1
< pend
4696 && p2
>= bufp
->buffer
&& p2
<= pend
);
4698 /* Skip over open/close-group commands.
4699 If what follows this loop is a ...+ construct,
4700 look at what begins its body, since we will have to
4701 match at least one of that. */
4702 p2
= skip_noops (p2
, pend
);
4703 /* The same skip can be done for p1, except that this function
4704 is only used in the case where p1 is a simple match operator. */
4705 /* p1 = skip_noops (p1, pend); */
4707 assert (p1
>= bufp
->buffer
&& p1
< pend
4708 && p2
>= bufp
->buffer
&& p2
<= pend
);
4710 op2
= p2
== pend
? succeed
: *p2
;
4716 /* If we're at the end of the pattern, we can change. */
4717 if (skip_one_char (p1
))
4719 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4727 register re_wchar_t c
4728 = (re_opcode_t
) *p2
== endline
? '\n'
4729 : RE_STRING_CHAR (p2
+ 2, multibyte
);
4731 if ((re_opcode_t
) *p1
== exactn
)
4733 if (c
!= RE_STRING_CHAR (p1
+ 2, multibyte
))
4735 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4740 else if ((re_opcode_t
) *p1
== charset
4741 || (re_opcode_t
) *p1
== charset_not
)
4743 int not = (re_opcode_t
) *p1
== charset_not
;
4745 /* Test if C is listed in charset (or charset_not)
4747 if (! multibyte
|| IS_REAL_ASCII (c
))
4749 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4750 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4753 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4754 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4756 /* `not' is equal to 1 if c would match, which means
4757 that we can't change to pop_failure_jump. */
4760 DEBUG_PRINT1 (" No match => fast loop.\n");
4764 else if ((re_opcode_t
) *p1
== anychar
4767 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4775 if ((re_opcode_t
) *p1
== exactn
)
4776 /* Reuse the code above. */
4777 return mutually_exclusive_p (bufp
, p2
, p1
);
4779 /* It is hard to list up all the character in charset
4780 P2 if it includes multibyte character. Give up in
4782 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4784 /* Now, we are sure that P2 has no range table.
4785 So, for the size of bitmap in P2, `p2[1]' is
4786 enough. But P1 may have range table, so the
4787 size of bitmap table of P1 is extracted by
4788 using macro `CHARSET_BITMAP_SIZE'.
4790 In a multibyte case, we know that all the character
4791 listed in P2 is ASCII. In a unibyte case, P1 has only a
4792 bitmap table. So, in both cases, it is enough to test
4793 only the bitmap table of P1. */
4795 if ((re_opcode_t
) *p1
== charset
)
4798 /* We win if the charset inside the loop
4799 has no overlap with the one after the loop. */
4802 && idx
< CHARSET_BITMAP_SIZE (p1
));
4804 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4808 || idx
== CHARSET_BITMAP_SIZE (p1
))
4810 DEBUG_PRINT1 (" No match => fast loop.\n");
4814 else if ((re_opcode_t
) *p1
== charset_not
)
4817 /* We win if the charset_not inside the loop lists
4818 every character listed in the charset after. */
4819 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4820 if (! (p2
[2 + idx
] == 0
4821 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4822 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4827 DEBUG_PRINT1 (" No match => fast loop.\n");
4840 /* Reuse the code above. */
4841 return mutually_exclusive_p (bufp
, p2
, p1
);
4843 /* When we have two charset_not, it's very unlikely that
4844 they don't overlap. The union of the two sets of excluded
4845 chars should cover all possible chars, which, as a matter of
4846 fact, is virtually impossible in multibyte buffers. */
4852 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
4854 return ((re_opcode_t
) *p1
== syntaxspec
4855 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4857 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
4860 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
4862 return ((re_opcode_t
) *p1
== notsyntaxspec
4863 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4865 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
4868 return (((re_opcode_t
) *p1
== notsyntaxspec
4869 || (re_opcode_t
) *p1
== syntaxspec
)
4874 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4875 case notcategoryspec
:
4876 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4888 /* Matching routines. */
4890 #ifndef emacs /* Emacs never uses this. */
4891 /* re_match is like re_match_2 except it takes only a single string. */
4894 re_match (struct re_pattern_buffer
*bufp
, const char *string
,
4895 size_t size
, ssize_t pos
, struct re_registers
*regs
)
4897 regoff_t result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
,
4898 size
, pos
, regs
, size
);
4901 WEAK_ALIAS (__re_match
, re_match
)
4902 #endif /* not emacs */
4905 /* In Emacs, this is the string or buffer in which we
4906 are matching. It is used for looking up syntax properties. */
4907 Lisp_Object re_match_object
;
4910 /* re_match_2 matches the compiled pattern in BUFP against the
4911 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4912 and SIZE2, respectively). We start matching at POS, and stop
4915 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4916 store offsets for the substring each group matched in REGS. See the
4917 documentation for exactly how many groups we fill.
4919 We return -1 if no match, -2 if an internal error (such as the
4920 failure stack overflowing). Otherwise, we return the length of the
4921 matched substring. */
4924 re_match_2 (struct re_pattern_buffer
*bufp
, const char *string1
,
4925 size_t size1
, const char *string2
, size_t size2
, ssize_t pos
,
4926 struct re_registers
*regs
, ssize_t stop
)
4932 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4933 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4934 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4937 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4938 (re_char
*) string2
, size2
,
4942 WEAK_ALIAS (__re_match_2
, re_match_2
)
4945 /* This is a separate function so that we can force an alloca cleanup
4948 re_match_2_internal (struct re_pattern_buffer
*bufp
, const re_char
*string1
,
4949 size_t size1
, const re_char
*string2
, size_t size2
,
4950 ssize_t pos
, struct re_registers
*regs
, ssize_t stop
)
4952 /* General temporaries. */
4956 /* Just past the end of the corresponding string. */
4957 re_char
*end1
, *end2
;
4959 /* Pointers into string1 and string2, just past the last characters in
4960 each to consider matching. */
4961 re_char
*end_match_1
, *end_match_2
;
4963 /* Where we are in the data, and the end of the current string. */
4966 /* Used sometimes to remember where we were before starting matching
4967 an operator so that we can go back in case of failure. This "atomic"
4968 behavior of matching opcodes is indispensable to the correctness
4969 of the on_failure_keep_string_jump optimization. */
4972 /* Where we are in the pattern, and the end of the pattern. */
4973 re_char
*p
= bufp
->buffer
;
4974 re_char
*pend
= p
+ bufp
->used
;
4976 /* We use this to map every character in the string. */
4977 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4979 /* Nonzero if BUFP is setup from a multibyte regex. */
4980 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4982 /* Nonzero if STRING1/STRING2 are multibyte. */
4983 const boolean target_multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4985 /* Failure point stack. Each place that can handle a failure further
4986 down the line pushes a failure point on this stack. It consists of
4987 regstart, and regend for all registers corresponding to
4988 the subexpressions we're currently inside, plus the number of such
4989 registers, and, finally, two char *'s. The first char * is where
4990 to resume scanning the pattern; the second one is where to resume
4991 scanning the strings. */
4992 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4993 fail_stack_type fail_stack
;
4996 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4999 #if defined REL_ALLOC && defined REGEX_MALLOC
5000 /* This holds the pointer to the failure stack, when
5001 it is allocated relocatably. */
5002 fail_stack_elt_t
*failure_stack_ptr
;
5005 /* We fill all the registers internally, independent of what we
5006 return, for use in backreferences. The number here includes
5007 an element for register zero. */
5008 size_t num_regs
= bufp
->re_nsub
+ 1;
5010 /* Information on the contents of registers. These are pointers into
5011 the input strings; they record just what was matched (on this
5012 attempt) by a subexpression part of the pattern, that is, the
5013 regnum-th regstart pointer points to where in the pattern we began
5014 matching and the regnum-th regend points to right after where we
5015 stopped matching the regnum-th subexpression. (The zeroth register
5016 keeps track of what the whole pattern matches.) */
5017 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5018 re_char
**regstart
, **regend
;
5021 /* The following record the register info as found in the above
5022 variables when we find a match better than any we've seen before.
5023 This happens as we backtrack through the failure points, which in
5024 turn happens only if we have not yet matched the entire string. */
5025 unsigned best_regs_set
= false;
5026 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5027 re_char
**best_regstart
, **best_regend
;
5030 /* Logically, this is `best_regend[0]'. But we don't want to have to
5031 allocate space for that if we're not allocating space for anything
5032 else (see below). Also, we never need info about register 0 for
5033 any of the other register vectors, and it seems rather a kludge to
5034 treat `best_regend' differently than the rest. So we keep track of
5035 the end of the best match so far in a separate variable. We
5036 initialize this to NULL so that when we backtrack the first time
5037 and need to test it, it's not garbage. */
5038 re_char
*match_end
= NULL
;
5041 /* Counts the total number of registers pushed. */
5042 unsigned num_regs_pushed
= 0;
5045 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5049 #ifdef MATCH_MAY_ALLOCATE
5050 /* Do not bother to initialize all the register variables if there are
5051 no groups in the pattern, as it takes a fair amount of time. If
5052 there are groups, we include space for register 0 (the whole
5053 pattern), even though we never use it, since it simplifies the
5054 array indexing. We should fix this. */
5057 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5058 regend
= REGEX_TALLOC (num_regs
, re_char
*);
5059 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5060 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
5062 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
5070 /* We must initialize all our variables to NULL, so that
5071 `FREE_VARIABLES' doesn't try to free them. */
5072 regstart
= regend
= best_regstart
= best_regend
= NULL
;
5074 #endif /* MATCH_MAY_ALLOCATE */
5076 /* The starting position is bogus. */
5077 if (pos
< 0 || pos
> size1
+ size2
)
5083 /* Initialize subexpression text positions to -1 to mark ones that no
5084 start_memory/stop_memory has been seen for. Also initialize the
5085 register information struct. */
5086 for (reg
= 1; reg
< num_regs
; reg
++)
5087 regstart
[reg
] = regend
[reg
] = NULL
;
5089 /* We move `string1' into `string2' if the latter's empty -- but not if
5090 `string1' is null. */
5091 if (size2
== 0 && string1
!= NULL
)
5098 end1
= string1
+ size1
;
5099 end2
= string2
+ size2
;
5101 /* `p' scans through the pattern as `d' scans through the data.
5102 `dend' is the end of the input string that `d' points within. `d'
5103 is advanced into the following input string whenever necessary, but
5104 this happens before fetching; therefore, at the beginning of the
5105 loop, `d' can be pointing at the end of a string, but it cannot
5109 /* Only match within string2. */
5110 d
= string2
+ pos
- size1
;
5111 dend
= end_match_2
= string2
+ stop
- size1
;
5112 end_match_1
= end1
; /* Just to give it a value. */
5118 /* Only match within string1. */
5119 end_match_1
= string1
+ stop
;
5121 When we reach end_match_1, PREFETCH normally switches to string2.
5122 But in the present case, this means that just doing a PREFETCH
5123 makes us jump from `stop' to `gap' within the string.
5124 What we really want here is for the search to stop as
5125 soon as we hit end_match_1. That's why we set end_match_2
5126 to end_match_1 (since PREFETCH fails as soon as we hit
5128 end_match_2
= end_match_1
;
5131 { /* It's important to use this code when stop == size so that
5132 moving `d' from end1 to string2 will not prevent the d == dend
5133 check from catching the end of string. */
5135 end_match_2
= string2
+ stop
- size1
;
5141 DEBUG_PRINT1 ("The compiled pattern is: ");
5142 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5143 DEBUG_PRINT1 ("The string to match is: `");
5144 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5145 DEBUG_PRINT1 ("'\n");
5147 /* This loops over pattern commands. It exits by returning from the
5148 function if the match is complete, or it drops through if the match
5149 fails at this starting point in the input data. */
5152 DEBUG_PRINT2 ("\n%p: ", p
);
5155 { /* End of pattern means we might have succeeded. */
5156 DEBUG_PRINT1 ("end of pattern ... ");
5158 /* If we haven't matched the entire string, and we want the
5159 longest match, try backtracking. */
5160 if (d
!= end_match_2
)
5162 /* 1 if this match ends in the same string (string1 or string2)
5163 as the best previous match. */
5164 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5165 == FIRST_STRING_P (d
));
5166 /* 1 if this match is the best seen so far. */
5167 boolean best_match_p
;
5169 /* AIX compiler got confused when this was combined
5170 with the previous declaration. */
5172 best_match_p
= d
> match_end
;
5174 best_match_p
= !FIRST_STRING_P (d
);
5176 DEBUG_PRINT1 ("backtracking.\n");
5178 if (!FAIL_STACK_EMPTY ())
5179 { /* More failure points to try. */
5181 /* If exceeds best match so far, save it. */
5182 if (!best_regs_set
|| best_match_p
)
5184 best_regs_set
= true;
5187 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5189 for (reg
= 1; reg
< num_regs
; reg
++)
5191 best_regstart
[reg
] = regstart
[reg
];
5192 best_regend
[reg
] = regend
[reg
];
5198 /* If no failure points, don't restore garbage. And if
5199 last match is real best match, don't restore second
5201 else if (best_regs_set
&& !best_match_p
)
5204 /* Restore best match. It may happen that `dend ==
5205 end_match_1' while the restored d is in string2.
5206 For example, the pattern `x.*y.*z' against the
5207 strings `x-' and `y-z-', if the two strings are
5208 not consecutive in memory. */
5209 DEBUG_PRINT1 ("Restoring best registers.\n");
5212 dend
= ((d
>= string1
&& d
<= end1
)
5213 ? end_match_1
: end_match_2
);
5215 for (reg
= 1; reg
< num_regs
; reg
++)
5217 regstart
[reg
] = best_regstart
[reg
];
5218 regend
[reg
] = best_regend
[reg
];
5221 } /* d != end_match_2 */
5224 DEBUG_PRINT1 ("Accepting match.\n");
5226 /* If caller wants register contents data back, do it. */
5227 if (regs
&& !bufp
->no_sub
)
5229 /* Have the register data arrays been allocated? */
5230 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5231 { /* No. So allocate them with malloc. We need one
5232 extra element beyond `num_regs' for the `-1' marker
5234 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5235 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5236 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5237 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5242 bufp
->regs_allocated
= REGS_REALLOCATE
;
5244 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5245 { /* Yes. If we need more elements than were already
5246 allocated, reallocate them. If we need fewer, just
5248 if (regs
->num_regs
< num_regs
+ 1)
5250 regs
->num_regs
= num_regs
+ 1;
5251 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5252 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5253 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5262 /* These braces fend off a "empty body in an else-statement"
5263 warning under GCC when assert expands to nothing. */
5264 assert (bufp
->regs_allocated
== REGS_FIXED
);
5267 /* Convert the pointer data in `regstart' and `regend' to
5268 indices. Register zero has to be set differently,
5269 since we haven't kept track of any info for it. */
5270 if (regs
->num_regs
> 0)
5272 regs
->start
[0] = pos
;
5273 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5276 /* Go through the first `min (num_regs, regs->num_regs)'
5277 registers, since that is all we initialized. */
5278 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5280 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5281 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5285 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
5287 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
5291 /* If the regs structure we return has more elements than
5292 were in the pattern, set the extra elements to -1. If
5293 we (re)allocated the registers, this is the case,
5294 because we always allocate enough to have at least one
5296 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5297 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5298 } /* regs && !bufp->no_sub */
5300 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5301 nfailure_points_pushed
, nfailure_points_popped
,
5302 nfailure_points_pushed
- nfailure_points_popped
);
5303 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5305 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
5307 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5313 /* Otherwise match next pattern command. */
5316 /* Ignore these. Used to ignore the n of succeed_n's which
5317 currently have n == 0. */
5319 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5323 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5326 /* Match the next n pattern characters exactly. The following
5327 byte in the pattern defines n, and the n bytes after that
5328 are the characters to match. */
5331 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5333 /* Remember the start point to rollback upon failure. */
5337 /* This is written out as an if-else so we don't waste time
5338 testing `translate' inside the loop. */
5339 if (RE_TRANSLATE_P (translate
))
5343 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5363 /* The cost of testing `translate' is comparatively small. */
5364 if (target_multibyte
)
5367 int pat_charlen
, buf_charlen
;
5372 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5375 pat_ch
= RE_CHAR_TO_MULTIBYTE (*p
);
5378 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
5380 if (TRANSLATE (buf_ch
) != pat_ch
)
5388 mcnt
-= pat_charlen
;
5400 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5401 pat_ch
= RE_CHAR_TO_UNIBYTE (pat_ch
);
5408 buf_ch
= RE_CHAR_TO_MULTIBYTE (*d
);
5409 if (! CHAR_BYTE8_P (buf_ch
))
5411 buf_ch
= TRANSLATE (buf_ch
);
5412 buf_ch
= RE_CHAR_TO_UNIBYTE (buf_ch
);
5418 if (buf_ch
!= pat_ch
)
5431 /* Match any character except possibly a newline or a null. */
5437 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5440 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, buf_charlen
,
5442 buf_ch
= TRANSLATE (buf_ch
);
5444 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5446 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5447 && buf_ch
== '\000'))
5450 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5459 register unsigned int c
;
5460 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5463 /* Start of actual range_table, or end of bitmap if there is no
5465 re_char
*range_table
IF_LINT (= NULL
);
5467 /* Nonzero if there is a range table. */
5468 int range_table_exists
;
5470 /* Number of ranges of range table. This is not included
5471 in the initial byte-length of the command. */
5474 /* Whether matching against a unibyte character. */
5475 boolean unibyte_char
= false;
5477 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5479 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5481 if (range_table_exists
)
5483 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5484 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5488 c
= RE_STRING_CHAR_AND_LENGTH (d
, len
, target_multibyte
);
5489 if (target_multibyte
)
5494 c1
= RE_CHAR_TO_UNIBYTE (c
);
5497 unibyte_char
= true;
5503 int c1
= RE_CHAR_TO_MULTIBYTE (c
);
5505 if (! CHAR_BYTE8_P (c1
))
5507 c1
= TRANSLATE (c1
);
5508 c1
= RE_CHAR_TO_UNIBYTE (c1
);
5511 unibyte_char
= true;
5516 unibyte_char
= true;
5519 if (unibyte_char
&& c
< (1 << BYTEWIDTH
))
5520 { /* Lookup bitmap. */
5521 /* Cast to `unsigned' instead of `unsigned char' in
5522 case the bit list is a full 32 bytes long. */
5523 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5524 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5528 else if (range_table_exists
)
5530 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5532 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5533 | (class_bits
& BIT_MULTIBYTE
)
5534 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5535 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5536 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5537 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5540 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5544 if (range_table_exists
)
5545 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5547 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5549 if (!not) goto fail
;
5556 /* The beginning of a group is represented by start_memory.
5557 The argument is the register number. The text
5558 matched within the group is recorded (in the internal
5559 registers data structure) under the register number. */
5561 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5563 /* In case we need to undo this operation (via backtracking). */
5564 PUSH_FAILURE_REG ((unsigned int)*p
);
5567 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5568 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5570 /* Move past the register number and inner group count. */
5575 /* The stop_memory opcode represents the end of a group. Its
5576 argument is the same as start_memory's: the register number. */
5578 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5580 assert (!REG_UNSET (regstart
[*p
]));
5581 /* Strictly speaking, there should be code such as:
5583 assert (REG_UNSET (regend[*p]));
5584 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5586 But the only info to be pushed is regend[*p] and it is known to
5587 be UNSET, so there really isn't anything to push.
5588 Not pushing anything, on the other hand deprives us from the
5589 guarantee that regend[*p] is UNSET since undoing this operation
5590 will not reset its value properly. This is not important since
5591 the value will only be read on the next start_memory or at
5592 the very end and both events can only happen if this stop_memory
5596 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5598 /* Move past the register number and the inner group count. */
5603 /* \<digit> has been turned into a `duplicate' command which is
5604 followed by the numeric value of <digit> as the register number. */
5607 register re_char
*d2
, *dend2
;
5608 int regno
= *p
++; /* Get which register to match against. */
5609 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5611 /* Can't back reference a group which we've never matched. */
5612 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5615 /* Where in input to try to start matching. */
5616 d2
= regstart
[regno
];
5618 /* Remember the start point to rollback upon failure. */
5621 /* Where to stop matching; if both the place to start and
5622 the place to stop matching are in the same string, then
5623 set to the place to stop, otherwise, for now have to use
5624 the end of the first string. */
5626 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5627 == FIRST_STRING_P (regend
[regno
]))
5628 ? regend
[regno
] : end_match_1
);
5631 /* If necessary, advance to next segment in register
5635 if (dend2
== end_match_2
) break;
5636 if (dend2
== regend
[regno
]) break;
5638 /* End of string1 => advance to string2. */
5640 dend2
= regend
[regno
];
5642 /* At end of register contents => success */
5643 if (d2
== dend2
) break;
5645 /* If necessary, advance to next segment in data. */
5648 /* How many characters left in this segment to match. */
5651 /* Want how many consecutive characters we can match in
5652 one shot, so, if necessary, adjust the count. */
5653 if (mcnt
> dend2
- d2
)
5656 /* Compare that many; failure if mismatch, else move
5658 if (RE_TRANSLATE_P (translate
)
5659 ? bcmp_translate (d
, d2
, mcnt
, translate
, target_multibyte
)
5660 : memcmp (d
, d2
, mcnt
))
5665 d
+= mcnt
, d2
+= mcnt
;
5671 /* begline matches the empty string at the beginning of the string
5672 (unless `not_bol' is set in `bufp'), and after newlines. */
5674 DEBUG_PRINT1 ("EXECUTING begline.\n");
5676 if (AT_STRINGS_BEG (d
))
5678 if (!bufp
->not_bol
) break;
5683 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5687 /* In all other cases, we fail. */
5691 /* endline is the dual of begline. */
5693 DEBUG_PRINT1 ("EXECUTING endline.\n");
5695 if (AT_STRINGS_END (d
))
5697 if (!bufp
->not_eol
) break;
5701 PREFETCH_NOLIMIT ();
5708 /* Match at the very beginning of the data. */
5710 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5711 if (AT_STRINGS_BEG (d
))
5716 /* Match at the very end of the data. */
5718 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5719 if (AT_STRINGS_END (d
))
5724 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5725 pushes NULL as the value for the string on the stack. Then
5726 `POP_FAILURE_POINT' will keep the current value for the
5727 string, instead of restoring it. To see why, consider
5728 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5729 then the . fails against the \n. But the next thing we want
5730 to do is match the \n against the \n; if we restored the
5731 string value, we would be back at the foo.
5733 Because this is used only in specific cases, we don't need to
5734 check all the things that `on_failure_jump' does, to make
5735 sure the right things get saved on the stack. Hence we don't
5736 share its code. The only reason to push anything on the
5737 stack at all is that otherwise we would have to change
5738 `anychar's code to do something besides goto fail in this
5739 case; that seems worse than this. */
5740 case on_failure_keep_string_jump
:
5741 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5742 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5745 PUSH_FAILURE_POINT (p
- 3, NULL
);
5748 /* A nasty loop is introduced by the non-greedy *? and +?.
5749 With such loops, the stack only ever contains one failure point
5750 at a time, so that a plain on_failure_jump_loop kind of
5751 cycle detection cannot work. Worse yet, such a detection
5752 can not only fail to detect a cycle, but it can also wrongly
5753 detect a cycle (between different instantiations of the same
5755 So the method used for those nasty loops is a little different:
5756 We use a special cycle-detection-stack-frame which is pushed
5757 when the on_failure_jump_nastyloop failure-point is *popped*.
5758 This special frame thus marks the beginning of one iteration
5759 through the loop and we can hence easily check right here
5760 whether something matched between the beginning and the end of
5762 case on_failure_jump_nastyloop
:
5763 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5764 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5767 assert ((re_opcode_t
)p
[-4] == no_op
);
5770 CHECK_INFINITE_LOOP (p
- 4, d
);
5772 /* If there's a cycle, just continue without pushing
5773 this failure point. The failure point is the "try again"
5774 option, which shouldn't be tried.
5775 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5776 PUSH_FAILURE_POINT (p
- 3, d
);
5780 /* Simple loop detecting on_failure_jump: just check on the
5781 failure stack if the same spot was already hit earlier. */
5782 case on_failure_jump_loop
:
5784 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5785 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5789 CHECK_INFINITE_LOOP (p
- 3, d
);
5791 /* If there's a cycle, get out of the loop, as if the matching
5792 had failed. We used to just `goto fail' here, but that was
5793 aborting the search a bit too early: we want to keep the
5794 empty-loop-match and keep matching after the loop.
5795 We want (x?)*y\1z to match both xxyz and xxyxz. */
5798 PUSH_FAILURE_POINT (p
- 3, d
);
5803 /* Uses of on_failure_jump:
5805 Each alternative starts with an on_failure_jump that points
5806 to the beginning of the next alternative. Each alternative
5807 except the last ends with a jump that in effect jumps past
5808 the rest of the alternatives. (They really jump to the
5809 ending jump of the following alternative, because tensioning
5810 these jumps is a hassle.)
5812 Repeats start with an on_failure_jump that points past both
5813 the repetition text and either the following jump or
5814 pop_failure_jump back to this on_failure_jump. */
5815 case on_failure_jump
:
5816 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5817 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5820 PUSH_FAILURE_POINT (p
-3, d
);
5823 /* This operation is used for greedy *.
5824 Compare the beginning of the repeat with what in the
5825 pattern follows its end. If we can establish that there
5826 is nothing that they would both match, i.e., that we
5827 would have to backtrack because of (as in, e.g., `a*a')
5828 then we can use a non-backtracking loop based on
5829 on_failure_keep_string_jump instead of on_failure_jump. */
5830 case on_failure_jump_smart
:
5831 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5832 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5835 re_char
*p1
= p
; /* Next operation. */
5836 /* Here, we discard `const', making re_match non-reentrant. */
5837 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5838 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5840 p
-= 3; /* Reset so that we will re-execute the
5841 instruction once it's been changed. */
5843 EXTRACT_NUMBER (mcnt
, p2
- 2);
5845 /* Ensure this is a indeed the trivial kind of loop
5846 we are expecting. */
5847 assert (skip_one_char (p1
) == p2
- 3);
5848 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5849 DEBUG_STATEMENT (debug
+= 2);
5850 if (mutually_exclusive_p (bufp
, p1
, p2
))
5852 /* Use a fast `on_failure_keep_string_jump' loop. */
5853 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5854 *p3
= (unsigned char) on_failure_keep_string_jump
;
5855 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5859 /* Default to a safe `on_failure_jump' loop. */
5860 DEBUG_PRINT1 (" smart default => slow loop.\n");
5861 *p3
= (unsigned char) on_failure_jump
;
5863 DEBUG_STATEMENT (debug
-= 2);
5867 /* Unconditionally jump (without popping any failure points). */
5870 IMMEDIATE_QUIT_CHECK
;
5871 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5872 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5873 p
+= mcnt
; /* Do the jump. */
5874 DEBUG_PRINT2 ("(to %p).\n", p
);
5878 /* Have to succeed matching what follows at least n times.
5879 After that, handle like `on_failure_jump'. */
5881 /* Signedness doesn't matter since we only compare MCNT to 0. */
5882 EXTRACT_NUMBER (mcnt
, p
+ 2);
5883 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5885 /* Originally, mcnt is how many times we HAVE to succeed. */
5888 /* Here, we discard `const', making re_match non-reentrant. */
5889 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5892 PUSH_NUMBER (p2
, mcnt
);
5895 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5900 /* Signedness doesn't matter since we only compare MCNT to 0. */
5901 EXTRACT_NUMBER (mcnt
, p
+ 2);
5902 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5904 /* Originally, this is how many times we CAN jump. */
5907 /* Here, we discard `const', making re_match non-reentrant. */
5908 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5910 PUSH_NUMBER (p2
, mcnt
);
5911 goto unconditional_jump
;
5913 /* If don't have to jump any more, skip over the rest of command. */
5920 unsigned char *p2
; /* Location of the counter. */
5921 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5923 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5924 /* Here, we discard `const', making re_match non-reentrant. */
5925 p2
= (unsigned char*) p
+ mcnt
;
5926 /* Signedness doesn't matter since we only copy MCNT's bits . */
5927 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5928 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
5929 PUSH_NUMBER (p2
, mcnt
);
5936 boolean
not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5937 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5939 /* We SUCCEED (or FAIL) in one of the following cases: */
5941 /* Case 1: D is at the beginning or the end of string. */
5942 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5946 /* C1 is the character before D, S1 is the syntax of C1, C2
5947 is the character at D, and S2 is the syntax of C2. */
5952 ssize_t offset
= PTR_TO_OFFSET (d
- 1);
5953 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5954 UPDATE_SYNTAX_TABLE (charpos
);
5956 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5959 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5961 PREFETCH_NOLIMIT ();
5962 GET_CHAR_AFTER (c2
, d
, dummy
);
5965 if (/* Case 2: Only one of S1 and S2 is Sword. */
5966 ((s1
== Sword
) != (s2
== Sword
))
5967 /* Case 3: Both of S1 and S2 are Sword, and macro
5968 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5969 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5979 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5981 /* We FAIL in one of the following cases: */
5983 /* Case 1: D is at the end of string. */
5984 if (AT_STRINGS_END (d
))
5988 /* C1 is the character before D, S1 is the syntax of C1, C2
5989 is the character at D, and S2 is the syntax of C2. */
5994 ssize_t offset
= PTR_TO_OFFSET (d
);
5995 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5996 UPDATE_SYNTAX_TABLE (charpos
);
5999 GET_CHAR_AFTER (c2
, d
, dummy
);
6002 /* Case 2: S2 is not Sword. */
6006 /* Case 3: D is not at the beginning of string ... */
6007 if (!AT_STRINGS_BEG (d
))
6009 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6011 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6015 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
6017 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6024 DEBUG_PRINT1 ("EXECUTING wordend.\n");
6026 /* We FAIL in one of the following cases: */
6028 /* Case 1: D is at the beginning of string. */
6029 if (AT_STRINGS_BEG (d
))
6033 /* C1 is the character before D, S1 is the syntax of C1, C2
6034 is the character at D, and S2 is the syntax of C2. */
6039 ssize_t offset
= PTR_TO_OFFSET (d
) - 1;
6040 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6041 UPDATE_SYNTAX_TABLE (charpos
);
6043 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6046 /* Case 2: S1 is not Sword. */
6050 /* Case 3: D is not at the end of string ... */
6051 if (!AT_STRINGS_END (d
))
6053 PREFETCH_NOLIMIT ();
6054 GET_CHAR_AFTER (c2
, d
, dummy
);
6056 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
6060 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6062 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6069 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
6071 /* We FAIL in one of the following cases: */
6073 /* Case 1: D is at the end of string. */
6074 if (AT_STRINGS_END (d
))
6078 /* C1 is the character before D, S1 is the syntax of C1, C2
6079 is the character at D, and S2 is the syntax of C2. */
6083 ssize_t offset
= PTR_TO_OFFSET (d
);
6084 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6085 UPDATE_SYNTAX_TABLE (charpos
);
6088 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6091 /* Case 2: S2 is neither Sword nor Ssymbol. */
6092 if (s2
!= Sword
&& s2
!= Ssymbol
)
6095 /* Case 3: D is not at the beginning of string ... */
6096 if (!AT_STRINGS_BEG (d
))
6098 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6100 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6104 /* ... and S1 is Sword or Ssymbol. */
6105 if (s1
== Sword
|| s1
== Ssymbol
)
6112 DEBUG_PRINT1 ("EXECUTING symend.\n");
6114 /* We FAIL in one of the following cases: */
6116 /* Case 1: D is at the beginning of string. */
6117 if (AT_STRINGS_BEG (d
))
6121 /* C1 is the character before D, S1 is the syntax of C1, C2
6122 is the character at D, and S2 is the syntax of C2. */
6126 ssize_t offset
= PTR_TO_OFFSET (d
) - 1;
6127 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6128 UPDATE_SYNTAX_TABLE (charpos
);
6130 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6133 /* Case 2: S1 is neither Ssymbol nor Sword. */
6134 if (s1
!= Sword
&& s1
!= Ssymbol
)
6137 /* Case 3: D is not at the end of string ... */
6138 if (!AT_STRINGS_END (d
))
6140 PREFETCH_NOLIMIT ();
6141 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6143 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6147 /* ... and S2 is Sword or Ssymbol. */
6148 if (s2
== Sword
|| s2
== Ssymbol
)
6157 boolean
not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
6159 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
6163 ssize_t offset
= PTR_TO_OFFSET (d
);
6164 ssize_t pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6165 UPDATE_SYNTAX_TABLE (pos1
);
6172 GET_CHAR_AFTER (c
, d
, len
);
6173 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
6182 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6183 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
6188 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6189 if (PTR_BYTE_POS (d
) != PT_BYTE
)
6194 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6195 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
6200 case notcategoryspec
:
6202 boolean
not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
6204 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n",
6205 not?"not":"", mcnt
);
6211 GET_CHAR_AFTER (c
, d
, len
);
6212 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
6224 continue; /* Successfully executed one pattern command; keep going. */
6227 /* We goto here if a matching operation fails. */
6229 IMMEDIATE_QUIT_CHECK
;
6230 if (!FAIL_STACK_EMPTY ())
6233 /* A restart point is known. Restore to that state. */
6234 DEBUG_PRINT1 ("\nFAIL:\n");
6235 POP_FAILURE_POINT (str
, pat
);
6238 case on_failure_keep_string_jump
:
6239 assert (str
== NULL
);
6240 goto continue_failure_jump
;
6242 case on_failure_jump_nastyloop
:
6243 assert ((re_opcode_t
)pat
[-2] == no_op
);
6244 PUSH_FAILURE_POINT (pat
- 2, str
);
6247 case on_failure_jump_loop
:
6248 case on_failure_jump
:
6251 continue_failure_jump
:
6252 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6257 /* A special frame used for nastyloops. */
6264 assert (p
>= bufp
->buffer
&& p
<= pend
);
6266 if (d
>= string1
&& d
<= end1
)
6270 break; /* Matching at this starting point really fails. */
6274 goto restore_best_regs
;
6278 return -1; /* Failure to match. */
6281 /* Subroutine definitions for re_match_2. */
6283 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6284 bytes; nonzero otherwise. */
6287 bcmp_translate (const re_char
*s1
, const re_char
*s2
, register ssize_t len
,
6288 RE_TRANSLATE_TYPE translate
, const int target_multibyte
)
6290 register re_char
*p1
= s1
, *p2
= s2
;
6291 re_char
*p1_end
= s1
+ len
;
6292 re_char
*p2_end
= s2
+ len
;
6294 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6295 different lengths, but relying on a single `len' would break this. -sm */
6296 while (p1
< p1_end
&& p2
< p2_end
)
6298 int p1_charlen
, p2_charlen
;
6299 re_wchar_t p1_ch
, p2_ch
;
6301 GET_CHAR_AFTER (p1_ch
, p1
, p1_charlen
);
6302 GET_CHAR_AFTER (p2_ch
, p2
, p2_charlen
);
6304 if (RE_TRANSLATE (translate
, p1_ch
)
6305 != RE_TRANSLATE (translate
, p2_ch
))
6308 p1
+= p1_charlen
, p2
+= p2_charlen
;
6311 if (p1
!= p1_end
|| p2
!= p2_end
)
6317 /* Entry points for GNU code. */
6319 /* re_compile_pattern is the GNU regular expression compiler: it
6320 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6321 Returns 0 if the pattern was valid, otherwise an error string.
6323 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6324 are set in BUFP on entry.
6326 We call regex_compile to do the actual compilation. */
6329 re_compile_pattern (const char *pattern
, size_t length
,
6330 struct re_pattern_buffer
*bufp
)
6334 /* GNU code is written to assume at least RE_NREGS registers will be set
6335 (and at least one extra will be -1). */
6336 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6338 /* And GNU code determines whether or not to get register information
6339 by passing null for the REGS argument to re_match, etc., not by
6343 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6347 return gettext (re_error_msgid
[(int) ret
]);
6349 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6351 /* Entry points compatible with 4.2 BSD regex library. We don't define
6352 them unless specifically requested. */
6354 #if defined _REGEX_RE_COMP || defined _LIBC
6356 /* BSD has one and only one pattern buffer. */
6357 static struct re_pattern_buffer re_comp_buf
;
6361 /* Make these definitions weak in libc, so POSIX programs can redefine
6362 these names if they don't use our functions, and still use
6363 regcomp/regexec below without link errors. */
6366 re_comp (const char *s
)
6372 if (!re_comp_buf
.buffer
)
6373 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6374 return (char *) gettext ("No previous regular expression");
6378 if (!re_comp_buf
.buffer
)
6380 re_comp_buf
.buffer
= malloc (200);
6381 if (re_comp_buf
.buffer
== NULL
)
6382 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6383 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6384 re_comp_buf
.allocated
= 200;
6386 re_comp_buf
.fastmap
= malloc (1 << BYTEWIDTH
);
6387 if (re_comp_buf
.fastmap
== NULL
)
6388 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6389 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6392 /* Since `re_exec' always passes NULL for the `regs' argument, we
6393 don't need to initialize the pattern buffer fields which affect it. */
6395 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6400 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6401 return (char *) gettext (re_error_msgid
[(int) ret
]);
6409 re_exec (const char *s
)
6411 const size_t len
= strlen (s
);
6413 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
6415 #endif /* _REGEX_RE_COMP */
6417 /* POSIX.2 functions. Don't define these for Emacs. */
6421 /* regcomp takes a regular expression as a string and compiles it.
6423 PREG is a regex_t *. We do not expect any fields to be initialized,
6424 since POSIX says we shouldn't. Thus, we set
6426 `buffer' to the compiled pattern;
6427 `used' to the length of the compiled pattern;
6428 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6429 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6430 RE_SYNTAX_POSIX_BASIC;
6431 `fastmap' to an allocated space for the fastmap;
6432 `fastmap_accurate' to zero;
6433 `re_nsub' to the number of subexpressions in PATTERN.
6435 PATTERN is the address of the pattern string.
6437 CFLAGS is a series of bits which affect compilation.
6439 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6440 use POSIX basic syntax.
6442 If REG_NEWLINE is set, then . and [^...] don't match newline.
6443 Also, regexec will try a match beginning after every newline.
6445 If REG_ICASE is set, then we considers upper- and lowercase
6446 versions of letters to be equivalent when matching.
6448 If REG_NOSUB is set, then when PREG is passed to regexec, that
6449 routine will report only success or failure, and nothing about the
6452 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6453 the return codes and their meanings.) */
6456 regcomp (regex_t
*__restrict preg
, const char *__restrict pattern
,
6461 = (cflags
& REG_EXTENDED
) ?
6462 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6464 /* regex_compile will allocate the space for the compiled pattern. */
6466 preg
->allocated
= 0;
6469 /* Try to allocate space for the fastmap. */
6470 preg
->fastmap
= malloc (1 << BYTEWIDTH
);
6472 if (cflags
& REG_ICASE
)
6476 preg
->translate
= malloc (CHAR_SET_SIZE
* sizeof *preg
->translate
);
6477 if (preg
->translate
== NULL
)
6478 return (int) REG_ESPACE
;
6480 /* Map uppercase characters to corresponding lowercase ones. */
6481 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6482 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6485 preg
->translate
= NULL
;
6487 /* If REG_NEWLINE is set, newlines are treated differently. */
6488 if (cflags
& REG_NEWLINE
)
6489 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6490 syntax
&= ~RE_DOT_NEWLINE
;
6491 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6494 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6496 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6498 /* POSIX says a null character in the pattern terminates it, so we
6499 can use strlen here in compiling the pattern. */
6500 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6502 /* POSIX doesn't distinguish between an unmatched open-group and an
6503 unmatched close-group: both are REG_EPAREN. */
6504 if (ret
== REG_ERPAREN
)
6507 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6508 { /* Compute the fastmap now, since regexec cannot modify the pattern
6510 re_compile_fastmap (preg
);
6511 if (preg
->can_be_null
)
6512 { /* The fastmap can't be used anyway. */
6513 free (preg
->fastmap
);
6514 preg
->fastmap
= NULL
;
6519 WEAK_ALIAS (__regcomp
, regcomp
)
6522 /* regexec searches for a given pattern, specified by PREG, in the
6525 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6526 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6527 least NMATCH elements, and we set them to the offsets of the
6528 corresponding matched substrings.
6530 EFLAGS specifies `execution flags' which affect matching: if
6531 REG_NOTBOL is set, then ^ does not match at the beginning of the
6532 string; if REG_NOTEOL is set, then $ does not match at the end.
6534 We return 0 if we find a match and REG_NOMATCH if not. */
6537 regexec (const regex_t
*__restrict preg
, const char *__restrict string
,
6538 size_t nmatch
, regmatch_t pmatch
[__restrict_arr
], int eflags
)
6541 struct re_registers regs
;
6542 regex_t private_preg
;
6543 size_t len
= strlen (string
);
6544 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6546 private_preg
= *preg
;
6548 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6549 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6551 /* The user has told us exactly how many registers to return
6552 information about, via `nmatch'. We have to pass that on to the
6553 matching routines. */
6554 private_preg
.regs_allocated
= REGS_FIXED
;
6558 regs
.num_regs
= nmatch
;
6559 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6560 if (regs
.start
== NULL
)
6562 regs
.end
= regs
.start
+ nmatch
;
6565 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6566 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6567 was a little bit longer but still only matching the real part.
6568 This works because the `endline' will check for a '\n' and will find a
6569 '\0', correctly deciding that this is not the end of a line.
6570 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6571 a convenient '\0' there. For all we know, the string could be preceded
6572 by '\n' which would throw things off. */
6574 /* Perform the searching operation. */
6575 ret
= re_search (&private_preg
, string
, len
,
6576 /* start: */ 0, /* range: */ len
,
6577 want_reg_info
? ®s
: (struct re_registers
*) 0);
6579 /* Copy the register information to the POSIX structure. */
6586 for (r
= 0; r
< nmatch
; r
++)
6588 pmatch
[r
].rm_so
= regs
.start
[r
];
6589 pmatch
[r
].rm_eo
= regs
.end
[r
];
6593 /* If we needed the temporary register info, free the space now. */
6597 /* We want zero return to mean success, unlike `re_search'. */
6598 return ret
>= 0 ? REG_NOERROR
: REG_NOMATCH
;
6600 WEAK_ALIAS (__regexec
, regexec
)
6603 /* Returns a message corresponding to an error code, ERR_CODE, returned
6604 from either regcomp or regexec. We don't use PREG here.
6606 ERR_CODE was previously called ERRCODE, but that name causes an
6607 error with msvc8 compiler. */
6610 regerror (int err_code
, const regex_t
*preg
, char *errbuf
, size_t errbuf_size
)
6616 || err_code
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6617 /* Only error codes returned by the rest of the code should be passed
6618 to this routine. If we are given anything else, or if other regex
6619 code generates an invalid error code, then the program has a bug.
6620 Dump core so we can fix it. */
6623 msg
= gettext (re_error_msgid
[err_code
]);
6625 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6627 if (errbuf_size
!= 0)
6629 if (msg_size
> errbuf_size
)
6631 memcpy (errbuf
, msg
, errbuf_size
- 1);
6632 errbuf
[errbuf_size
- 1] = 0;
6635 strcpy (errbuf
, msg
);
6640 WEAK_ALIAS (__regerror
, regerror
)
6643 /* Free dynamically allocated space used by PREG. */
6646 regfree (regex_t
*preg
)
6648 free (preg
->buffer
);
6649 preg
->buffer
= NULL
;
6651 preg
->allocated
= 0;
6654 free (preg
->fastmap
);
6655 preg
->fastmap
= NULL
;
6656 preg
->fastmap_accurate
= 0;
6658 free (preg
->translate
);
6659 preg
->translate
= NULL
;
6661 WEAK_ALIAS (__regfree
, regfree
)
6663 #endif /* not emacs */