1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
3 Copyright (C) 1988, 1993-1994, 1999, 2001-2011
4 Free Software Foundation, Inc.
6 Author: Wolfgang Rupprecht
7 (according to ack.texi)
9 This file is part of GNU Emacs.
11 GNU Emacs is free software: you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation, either version 3 of the License, or
14 (at your option) any later version.
16 GNU Emacs is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
21 You should have received a copy of the GNU General Public License
22 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
25 /* ANSI C requires only these float functions:
26 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
27 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
29 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
30 Define HAVE_CBRT if you have cbrt.
31 Define HAVE_RINT if you have a working rint.
32 If you don't define these, then the appropriate routines will be simulated.
34 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
35 (This should happen automatically.)
37 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
38 This has no effect if HAVE_MATHERR is defined.
40 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
41 (What systems actually do this? Please let us know.)
43 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
44 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
45 range checking will happen before calling the float routines. This has
46 no effect if HAVE_MATHERR is defined (since matherr will be called when
47 a domain error occurs.)
54 #include "syssignal.h"
60 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
61 #ifndef IEEE_FLOATING_POINT
62 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
63 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
64 #define IEEE_FLOATING_POINT 1
66 #define IEEE_FLOATING_POINT 0
72 /* This declaration is omitted on some systems, like Ultrix. */
73 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
74 extern double logb (double);
75 #endif /* not HPUX and HAVE_LOGB and no logb macro */
77 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
78 /* If those are defined, then this is probably a `matherr' machine. */
89 # ifdef FLOAT_CHECK_ERRNO
90 # undef FLOAT_CHECK_ERRNO
92 # ifdef FLOAT_CHECK_DOMAIN
93 # undef FLOAT_CHECK_DOMAIN
97 #ifndef NO_FLOAT_CHECK_ERRNO
98 #define FLOAT_CHECK_ERRNO
101 #ifdef FLOAT_CHECK_ERRNO
105 #ifdef FLOAT_CATCH_SIGILL
106 static SIGTYPE
float_error ();
109 /* Nonzero while executing in floating point.
110 This tells float_error what to do. */
114 /* If an argument is out of range for a mathematical function,
115 here is the actual argument value to use in the error message.
116 These variables are used only across the floating point library call
117 so there is no need to staticpro them. */
119 static Lisp_Object float_error_arg
, float_error_arg2
;
121 static const char *float_error_fn_name
;
123 /* Evaluate the floating point expression D, recording NUM
124 as the original argument for error messages.
125 D is normally an assignment expression.
126 Handle errors which may result in signals or may set errno.
128 Note that float_error may be declared to return void, so you can't
129 just cast the zero after the colon to (SIGTYPE) to make the types
132 #ifdef FLOAT_CHECK_ERRNO
133 #define IN_FLOAT(d, name, num) \
135 float_error_arg = num; \
136 float_error_fn_name = name; \
137 in_float = 1; errno = 0; (d); in_float = 0; \
140 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
141 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
142 default: arith_error (float_error_fn_name, float_error_arg); \
145 #define IN_FLOAT2(d, name, num, num2) \
147 float_error_arg = num; \
148 float_error_arg2 = num2; \
149 float_error_fn_name = name; \
150 in_float = 1; errno = 0; (d); in_float = 0; \
153 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
154 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
155 default: arith_error (float_error_fn_name, float_error_arg); \
159 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
160 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
163 /* Convert float to Lisp_Int if it fits, else signal a range error
164 using the given arguments. */
165 #define FLOAT_TO_INT(x, i, name, num) \
168 if (FIXNUM_OVERFLOW_P (x)) \
169 range_error (name, num); \
170 XSETINT (i, (EMACS_INT)(x)); \
173 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
176 if (FIXNUM_OVERFLOW_P (x)) \
177 range_error2 (name, num1, num2); \
178 XSETINT (i, (EMACS_INT)(x)); \
182 #define arith_error(op,arg) \
183 xsignal2 (Qarith_error, build_string ((op)), (arg))
184 #define range_error(op,arg) \
185 xsignal2 (Qrange_error, build_string ((op)), (arg))
186 #define range_error2(op,a1,a2) \
187 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
188 #define domain_error(op,arg) \
189 xsignal2 (Qdomain_error, build_string ((op)), (arg))
190 #define domain_error2(op,a1,a2) \
191 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
193 /* Extract a Lisp number as a `double', or signal an error. */
196 extract_float (Lisp_Object num
)
198 CHECK_NUMBER_OR_FLOAT (num
);
201 return XFLOAT_DATA (num
);
202 return (double) XINT (num
);
205 /* Trig functions. */
207 DEFUN ("acos", Facos
, Sacos
, 1, 1, 0,
208 doc
: /* Return the inverse cosine of ARG. */)
209 (register Lisp_Object arg
)
211 double d
= extract_float (arg
);
212 #ifdef FLOAT_CHECK_DOMAIN
213 if (d
> 1.0 || d
< -1.0)
214 domain_error ("acos", arg
);
216 IN_FLOAT (d
= acos (d
), "acos", arg
);
217 return make_float (d
);
220 DEFUN ("asin", Fasin
, Sasin
, 1, 1, 0,
221 doc
: /* Return the inverse sine of ARG. */)
222 (register Lisp_Object arg
)
224 double d
= extract_float (arg
);
225 #ifdef FLOAT_CHECK_DOMAIN
226 if (d
> 1.0 || d
< -1.0)
227 domain_error ("asin", arg
);
229 IN_FLOAT (d
= asin (d
), "asin", arg
);
230 return make_float (d
);
233 DEFUN ("atan", Fatan
, Satan
, 1, 2, 0,
234 doc
: /* Return the inverse tangent of the arguments.
235 If only one argument Y is given, return the inverse tangent of Y.
236 If two arguments Y and X are given, return the inverse tangent of Y
237 divided by X, i.e. the angle in radians between the vector (X, Y)
239 (register Lisp_Object y
, Lisp_Object x
)
241 double d
= extract_float (y
);
244 IN_FLOAT (d
= atan (d
), "atan", y
);
247 double d2
= extract_float (x
);
249 IN_FLOAT2 (d
= atan2 (d
, d2
), "atan", y
, x
);
251 return make_float (d
);
254 DEFUN ("cos", Fcos
, Scos
, 1, 1, 0,
255 doc
: /* Return the cosine of ARG. */)
256 (register Lisp_Object arg
)
258 double d
= extract_float (arg
);
259 IN_FLOAT (d
= cos (d
), "cos", arg
);
260 return make_float (d
);
263 DEFUN ("sin", Fsin
, Ssin
, 1, 1, 0,
264 doc
: /* Return the sine of ARG. */)
265 (register Lisp_Object arg
)
267 double d
= extract_float (arg
);
268 IN_FLOAT (d
= sin (d
), "sin", arg
);
269 return make_float (d
);
272 DEFUN ("tan", Ftan
, Stan
, 1, 1, 0,
273 doc
: /* Return the tangent of ARG. */)
274 (register Lisp_Object arg
)
276 double d
= extract_float (arg
);
278 #ifdef FLOAT_CHECK_DOMAIN
280 domain_error ("tan", arg
);
282 IN_FLOAT (d
= sin (d
) / c
, "tan", arg
);
283 return make_float (d
);
286 #if defined HAVE_ISNAN && defined HAVE_COPYSIGN
287 DEFUN ("isnan", Fisnan
, Sisnan
, 1, 1, 0,
288 doc
: /* Return non nil iff argument X is a NaN. */)
292 return isnan (XFLOAT_DATA (x
)) ? Qt
: Qnil
;
295 DEFUN ("copysign", Fcopysign
, Scopysign
, 1, 2, 0,
296 doc
: /* Copy sign of X2 to value of X1, and return the result.
297 Cause an error if X1 or X2 is not a float. */)
298 (Lisp_Object x1
, Lisp_Object x2
)
305 f1
= XFLOAT_DATA (x1
);
306 f2
= XFLOAT_DATA (x2
);
308 return make_float (copysign (f1
, f2
));
311 DEFUN ("frexp", Ffrexp
, Sfrexp
, 1, 1, 0,
312 doc
: /* Get significand and exponent of a floating point number.
313 Breaks the floating point number X into its binary significand SGNFCAND
314 \(a floating point value between 0.5 (included) and 1.0 (excluded))
315 and an integral exponent EXP for 2, such that:
319 The function returns the cons cell (SGNFCAND . EXP).
320 If X is zero, both parts (SGNFCAND and EXP) are zero. */)
323 double f
= XFLOATINT (x
);
326 return Fcons (make_float (0.0), make_number (0));
330 double sgnfcand
= frexp (f
, &exp
);
331 return Fcons (make_float (sgnfcand
), make_number (exp
));
335 DEFUN ("ldexp", Fldexp
, Sldexp
, 1, 2, 0,
336 doc
: /* Construct number X from significand SGNFCAND and exponent EXP.
337 Returns the floating point value resulting from multiplying SGNFCAND
338 (the significand) by 2 raised to the power of EXP (the exponent). */)
339 (Lisp_Object sgnfcand
, Lisp_Object exp
)
342 return make_float (ldexp (XFLOATINT (sgnfcand
), XINT (exp
)));
346 #if 0 /* Leave these out unless we find there's a reason for them. */
348 DEFUN ("bessel-j0", Fbessel_j0
, Sbessel_j0
, 1, 1, 0,
349 doc
: /* Return the bessel function j0 of ARG. */)
350 (register Lisp_Object arg
)
352 double d
= extract_float (arg
);
353 IN_FLOAT (d
= j0 (d
), "bessel-j0", arg
);
354 return make_float (d
);
357 DEFUN ("bessel-j1", Fbessel_j1
, Sbessel_j1
, 1, 1, 0,
358 doc
: /* Return the bessel function j1 of ARG. */)
359 (register Lisp_Object arg
)
361 double d
= extract_float (arg
);
362 IN_FLOAT (d
= j1 (d
), "bessel-j1", arg
);
363 return make_float (d
);
366 DEFUN ("bessel-jn", Fbessel_jn
, Sbessel_jn
, 2, 2, 0,
367 doc
: /* Return the order N bessel function output jn of ARG.
368 The first arg (the order) is truncated to an integer. */)
369 (register Lisp_Object n
, Lisp_Object arg
)
371 int i1
= extract_float (n
);
372 double f2
= extract_float (arg
);
374 IN_FLOAT (f2
= jn (i1
, f2
), "bessel-jn", n
);
375 return make_float (f2
);
378 DEFUN ("bessel-y0", Fbessel_y0
, Sbessel_y0
, 1, 1, 0,
379 doc
: /* Return the bessel function y0 of ARG. */)
380 (register Lisp_Object arg
)
382 double d
= extract_float (arg
);
383 IN_FLOAT (d
= y0 (d
), "bessel-y0", arg
);
384 return make_float (d
);
387 DEFUN ("bessel-y1", Fbessel_y1
, Sbessel_y1
, 1, 1, 0,
388 doc
: /* Return the bessel function y1 of ARG. */)
389 (register Lisp_Object arg
)
391 double d
= extract_float (arg
);
392 IN_FLOAT (d
= y1 (d
), "bessel-y0", arg
);
393 return make_float (d
);
396 DEFUN ("bessel-yn", Fbessel_yn
, Sbessel_yn
, 2, 2, 0,
397 doc
: /* Return the order N bessel function output yn of ARG.
398 The first arg (the order) is truncated to an integer. */)
399 (register Lisp_Object n
, Lisp_Object arg
)
401 int i1
= extract_float (n
);
402 double f2
= extract_float (arg
);
404 IN_FLOAT (f2
= yn (i1
, f2
), "bessel-yn", n
);
405 return make_float (f2
);
410 #if 0 /* Leave these out unless we see they are worth having. */
412 DEFUN ("erf", Ferf
, Serf
, 1, 1, 0,
413 doc
: /* Return the mathematical error function of ARG. */)
414 (register Lisp_Object arg
)
416 double d
= extract_float (arg
);
417 IN_FLOAT (d
= erf (d
), "erf", arg
);
418 return make_float (d
);
421 DEFUN ("erfc", Ferfc
, Serfc
, 1, 1, 0,
422 doc
: /* Return the complementary error function of ARG. */)
423 (register Lisp_Object arg
)
425 double d
= extract_float (arg
);
426 IN_FLOAT (d
= erfc (d
), "erfc", arg
);
427 return make_float (d
);
430 DEFUN ("log-gamma", Flog_gamma
, Slog_gamma
, 1, 1, 0,
431 doc
: /* Return the log gamma of ARG. */)
432 (register Lisp_Object arg
)
434 double d
= extract_float (arg
);
435 IN_FLOAT (d
= lgamma (d
), "log-gamma", arg
);
436 return make_float (d
);
439 DEFUN ("cube-root", Fcube_root
, Scube_root
, 1, 1, 0,
440 doc
: /* Return the cube root of ARG. */)
441 (register Lisp_Object arg
)
443 double d
= extract_float (arg
);
445 IN_FLOAT (d
= cbrt (d
), "cube-root", arg
);
448 IN_FLOAT (d
= pow (d
, 1.0/3.0), "cube-root", arg
);
450 IN_FLOAT (d
= -pow (-d
, 1.0/3.0), "cube-root", arg
);
452 return make_float (d
);
457 DEFUN ("exp", Fexp
, Sexp
, 1, 1, 0,
458 doc
: /* Return the exponential base e of ARG. */)
459 (register Lisp_Object arg
)
461 double d
= extract_float (arg
);
462 #ifdef FLOAT_CHECK_DOMAIN
463 if (d
> 709.7827) /* Assume IEEE doubles here */
464 range_error ("exp", arg
);
466 return make_float (0.0);
469 IN_FLOAT (d
= exp (d
), "exp", arg
);
470 return make_float (d
);
473 DEFUN ("expt", Fexpt
, Sexpt
, 2, 2, 0,
474 doc
: /* Return the exponential ARG1 ** ARG2. */)
475 (register Lisp_Object arg1
, Lisp_Object arg2
)
479 CHECK_NUMBER_OR_FLOAT (arg1
);
480 CHECK_NUMBER_OR_FLOAT (arg2
);
481 if (INTEGERP (arg1
) /* common lisp spec */
482 && INTEGERP (arg2
) /* don't promote, if both are ints, and */
483 && 0 <= XINT (arg2
)) /* we are sure the result is not fractional */
484 { /* this can be improved by pre-calculating */
485 EMACS_INT acc
, x
, y
; /* some binary powers of x then accumulating */
497 acc
= (y
& 1) ? -1 : 1;
508 y
= (unsigned)y
>> 1;
514 f1
= FLOATP (arg1
) ? XFLOAT_DATA (arg1
) : XINT (arg1
);
515 f2
= FLOATP (arg2
) ? XFLOAT_DATA (arg2
) : XINT (arg2
);
516 /* Really should check for overflow, too */
517 if (f1
== 0.0 && f2
== 0.0)
519 #ifdef FLOAT_CHECK_DOMAIN
520 else if ((f1
== 0.0 && f2
< 0.0) || (f1
< 0 && f2
!= floor(f2
)))
521 domain_error2 ("expt", arg1
, arg2
);
523 IN_FLOAT2 (f3
= pow (f1
, f2
), "expt", arg1
, arg2
);
524 /* Check for overflow in the result. */
525 if (f1
!= 0.0 && f3
== 0.0)
526 range_error ("expt", arg1
);
527 return make_float (f3
);
530 DEFUN ("log", Flog
, Slog
, 1, 2, 0,
531 doc
: /* Return the natural logarithm of ARG.
532 If the optional argument BASE is given, return log ARG using that base. */)
533 (register Lisp_Object arg
, Lisp_Object base
)
535 double d
= extract_float (arg
);
537 #ifdef FLOAT_CHECK_DOMAIN
539 domain_error2 ("log", arg
, base
);
542 IN_FLOAT (d
= log (d
), "log", arg
);
545 double b
= extract_float (base
);
547 #ifdef FLOAT_CHECK_DOMAIN
548 if (b
<= 0.0 || b
== 1.0)
549 domain_error2 ("log", arg
, base
);
552 IN_FLOAT2 (d
= log10 (d
), "log", arg
, base
);
554 IN_FLOAT2 (d
= log (d
) / log (b
), "log", arg
, base
);
556 return make_float (d
);
559 DEFUN ("log10", Flog10
, Slog10
, 1, 1, 0,
560 doc
: /* Return the logarithm base 10 of ARG. */)
561 (register Lisp_Object arg
)
563 double d
= extract_float (arg
);
564 #ifdef FLOAT_CHECK_DOMAIN
566 domain_error ("log10", arg
);
568 IN_FLOAT (d
= log10 (d
), "log10", arg
);
569 return make_float (d
);
572 DEFUN ("sqrt", Fsqrt
, Ssqrt
, 1, 1, 0,
573 doc
: /* Return the square root of ARG. */)
574 (register Lisp_Object arg
)
576 double d
= extract_float (arg
);
577 #ifdef FLOAT_CHECK_DOMAIN
579 domain_error ("sqrt", arg
);
581 IN_FLOAT (d
= sqrt (d
), "sqrt", arg
);
582 return make_float (d
);
585 #if 0 /* Not clearly worth adding. */
587 DEFUN ("acosh", Facosh
, Sacosh
, 1, 1, 0,
588 doc
: /* Return the inverse hyperbolic cosine of ARG. */)
589 (register Lisp_Object arg
)
591 double d
= extract_float (arg
);
592 #ifdef FLOAT_CHECK_DOMAIN
594 domain_error ("acosh", arg
);
596 #ifdef HAVE_INVERSE_HYPERBOLIC
597 IN_FLOAT (d
= acosh (d
), "acosh", arg
);
599 IN_FLOAT (d
= log (d
+ sqrt (d
*d
- 1.0)), "acosh", arg
);
601 return make_float (d
);
604 DEFUN ("asinh", Fasinh
, Sasinh
, 1, 1, 0,
605 doc
: /* Return the inverse hyperbolic sine of ARG. */)
606 (register Lisp_Object arg
)
608 double d
= extract_float (arg
);
609 #ifdef HAVE_INVERSE_HYPERBOLIC
610 IN_FLOAT (d
= asinh (d
), "asinh", arg
);
612 IN_FLOAT (d
= log (d
+ sqrt (d
*d
+ 1.0)), "asinh", arg
);
614 return make_float (d
);
617 DEFUN ("atanh", Fatanh
, Satanh
, 1, 1, 0,
618 doc
: /* Return the inverse hyperbolic tangent of ARG. */)
619 (register Lisp_Object arg
)
621 double d
= extract_float (arg
);
622 #ifdef FLOAT_CHECK_DOMAIN
623 if (d
>= 1.0 || d
<= -1.0)
624 domain_error ("atanh", arg
);
626 #ifdef HAVE_INVERSE_HYPERBOLIC
627 IN_FLOAT (d
= atanh (d
), "atanh", arg
);
629 IN_FLOAT (d
= 0.5 * log ((1.0 + d
) / (1.0 - d
)), "atanh", arg
);
631 return make_float (d
);
634 DEFUN ("cosh", Fcosh
, Scosh
, 1, 1, 0,
635 doc
: /* Return the hyperbolic cosine of ARG. */)
636 (register Lisp_Object arg
)
638 double d
= extract_float (arg
);
639 #ifdef FLOAT_CHECK_DOMAIN
640 if (d
> 710.0 || d
< -710.0)
641 range_error ("cosh", arg
);
643 IN_FLOAT (d
= cosh (d
), "cosh", arg
);
644 return make_float (d
);
647 DEFUN ("sinh", Fsinh
, Ssinh
, 1, 1, 0,
648 doc
: /* Return the hyperbolic sine of ARG. */)
649 (register Lisp_Object arg
)
651 double d
= extract_float (arg
);
652 #ifdef FLOAT_CHECK_DOMAIN
653 if (d
> 710.0 || d
< -710.0)
654 range_error ("sinh", arg
);
656 IN_FLOAT (d
= sinh (d
), "sinh", arg
);
657 return make_float (d
);
660 DEFUN ("tanh", Ftanh
, Stanh
, 1, 1, 0,
661 doc
: /* Return the hyperbolic tangent of ARG. */)
662 (register Lisp_Object arg
)
664 double d
= extract_float (arg
);
665 IN_FLOAT (d
= tanh (d
), "tanh", arg
);
666 return make_float (d
);
670 DEFUN ("abs", Fabs
, Sabs
, 1, 1, 0,
671 doc
: /* Return the absolute value of ARG. */)
672 (register Lisp_Object arg
)
674 CHECK_NUMBER_OR_FLOAT (arg
);
677 IN_FLOAT (arg
= make_float (fabs (XFLOAT_DATA (arg
))), "abs", arg
);
678 else if (XINT (arg
) < 0)
679 XSETINT (arg
, - XINT (arg
));
684 DEFUN ("float", Ffloat
, Sfloat
, 1, 1, 0,
685 doc
: /* Return the floating point number equal to ARG. */)
686 (register Lisp_Object arg
)
688 CHECK_NUMBER_OR_FLOAT (arg
);
691 return make_float ((double) XINT (arg
));
692 else /* give 'em the same float back */
696 DEFUN ("logb", Flogb
, Slogb
, 1, 1, 0,
697 doc
: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
698 This is the same as the exponent of a float. */)
703 double f
= extract_float (arg
);
706 value
= MOST_NEGATIVE_FIXNUM
;
710 IN_FLOAT (value
= logb (f
), "logb", arg
);
714 IN_FLOAT (frexp (f
, &ivalue
), "logb", arg
);
724 for (i
= 1, d
= 0.5; d
* d
>= f
; i
+= i
)
731 for (i
= 1, d
= 2.0; d
* d
<= f
; i
+= i
)
739 XSETINT (val
, value
);
744 /* the rounding functions */
747 rounding_driver (Lisp_Object arg
, Lisp_Object divisor
,
748 double (*double_round
) (double),
749 EMACS_INT (*int_round2
) (EMACS_INT
, EMACS_INT
),
752 CHECK_NUMBER_OR_FLOAT (arg
);
754 if (! NILP (divisor
))
758 CHECK_NUMBER_OR_FLOAT (divisor
);
760 if (FLOATP (arg
) || FLOATP (divisor
))
764 f1
= FLOATP (arg
) ? XFLOAT_DATA (arg
) : XINT (arg
);
765 f2
= (FLOATP (divisor
) ? XFLOAT_DATA (divisor
) : XINT (divisor
));
766 if (! IEEE_FLOATING_POINT
&& f2
== 0)
767 xsignal0 (Qarith_error
);
769 IN_FLOAT2 (f1
= (*double_round
) (f1
/ f2
), name
, arg
, divisor
);
770 FLOAT_TO_INT2 (f1
, arg
, name
, arg
, divisor
);
778 xsignal0 (Qarith_error
);
780 XSETINT (arg
, (*int_round2
) (i1
, i2
));
788 IN_FLOAT (d
= (*double_round
) (XFLOAT_DATA (arg
)), name
, arg
);
789 FLOAT_TO_INT (d
, arg
, name
, arg
);
795 /* With C's /, the result is implementation-defined if either operand
796 is negative, so take care with negative operands in the following
797 integer functions. */
800 ceiling2 (EMACS_INT i1
, EMACS_INT i2
)
803 ? (i1
< 0 ? ((-1 - i1
) / -i2
) + 1 : - (i1
/ -i2
))
804 : (i1
<= 0 ? - (-i1
/ i2
) : ((i1
- 1) / i2
) + 1));
808 floor2 (EMACS_INT i1
, EMACS_INT i2
)
811 ? (i1
<= 0 ? -i1
/ -i2
: -1 - ((i1
- 1) / -i2
))
812 : (i1
< 0 ? -1 - ((-1 - i1
) / i2
) : i1
/ i2
));
816 truncate2 (EMACS_INT i1
, EMACS_INT i2
)
819 ? (i1
< 0 ? -i1
/ -i2
: - (i1
/ -i2
))
820 : (i1
< 0 ? - (-i1
/ i2
) : i1
/ i2
));
824 round2 (EMACS_INT i1
, EMACS_INT i2
)
826 /* The C language's division operator gives us one remainder R, but
827 we want the remainder R1 on the other side of 0 if R1 is closer
828 to 0 than R is; because we want to round to even, we also want R1
829 if R and R1 are the same distance from 0 and if C's quotient is
831 EMACS_INT q
= i1
/ i2
;
832 EMACS_INT r
= i1
% i2
;
833 EMACS_INT abs_r
= r
< 0 ? -r
: r
;
834 EMACS_INT abs_r1
= (i2
< 0 ? -i2
: i2
) - abs_r
;
835 return q
+ (abs_r
+ (q
& 1) <= abs_r1
? 0 : (i2
^ r
) < 0 ? -1 : 1);
838 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
839 if `rint' exists but does not work right. */
841 #define emacs_rint rint
844 emacs_rint (double d
)
846 return floor (d
+ 0.5);
851 double_identity (double d
)
856 DEFUN ("ceiling", Fceiling
, Sceiling
, 1, 2, 0,
857 doc
: /* Return the smallest integer no less than ARG.
858 This rounds the value towards +inf.
859 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
860 (Lisp_Object arg
, Lisp_Object divisor
)
862 return rounding_driver (arg
, divisor
, ceil
, ceiling2
, "ceiling");
865 DEFUN ("floor", Ffloor
, Sfloor
, 1, 2, 0,
866 doc
: /* Return the largest integer no greater than ARG.
867 This rounds the value towards -inf.
868 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
869 (Lisp_Object arg
, Lisp_Object divisor
)
871 return rounding_driver (arg
, divisor
, floor
, floor2
, "floor");
874 DEFUN ("round", Fround
, Sround
, 1, 2, 0,
875 doc
: /* Return the nearest integer to ARG.
876 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
878 Rounding a value equidistant between two integers may choose the
879 integer closer to zero, or it may prefer an even integer, depending on
880 your machine. For example, \(round 2.5\) can return 3 on some
881 systems, but 2 on others. */)
882 (Lisp_Object arg
, Lisp_Object divisor
)
884 return rounding_driver (arg
, divisor
, emacs_rint
, round2
, "round");
887 DEFUN ("truncate", Ftruncate
, Struncate
, 1, 2, 0,
888 doc
: /* Truncate a floating point number to an int.
889 Rounds ARG toward zero.
890 With optional DIVISOR, truncate ARG/DIVISOR. */)
891 (Lisp_Object arg
, Lisp_Object divisor
)
893 return rounding_driver (arg
, divisor
, double_identity
, truncate2
,
899 fmod_float (Lisp_Object x
, Lisp_Object y
)
903 f1
= FLOATP (x
) ? XFLOAT_DATA (x
) : XINT (x
);
904 f2
= FLOATP (y
) ? XFLOAT_DATA (y
) : XINT (y
);
906 if (! IEEE_FLOATING_POINT
&& f2
== 0)
907 xsignal0 (Qarith_error
);
909 /* If the "remainder" comes out with the wrong sign, fix it. */
910 IN_FLOAT2 ((f1
= fmod (f1
, f2
),
911 f1
= (f2
< 0 ? f1
> 0 : f1
< 0) ? f1
+ f2
: f1
),
913 return make_float (f1
);
916 /* It's not clear these are worth adding. */
918 DEFUN ("fceiling", Ffceiling
, Sfceiling
, 1, 1, 0,
919 doc
: /* Return the smallest integer no less than ARG, as a float.
920 \(Round toward +inf.\) */)
921 (register Lisp_Object arg
)
923 double d
= extract_float (arg
);
924 IN_FLOAT (d
= ceil (d
), "fceiling", arg
);
925 return make_float (d
);
928 DEFUN ("ffloor", Fffloor
, Sffloor
, 1, 1, 0,
929 doc
: /* Return the largest integer no greater than ARG, as a float.
930 \(Round towards -inf.\) */)
931 (register Lisp_Object arg
)
933 double d
= extract_float (arg
);
934 IN_FLOAT (d
= floor (d
), "ffloor", arg
);
935 return make_float (d
);
938 DEFUN ("fround", Ffround
, Sfround
, 1, 1, 0,
939 doc
: /* Return the nearest integer to ARG, as a float. */)
940 (register Lisp_Object arg
)
942 double d
= extract_float (arg
);
943 IN_FLOAT (d
= emacs_rint (d
), "fround", arg
);
944 return make_float (d
);
947 DEFUN ("ftruncate", Fftruncate
, Sftruncate
, 1, 1, 0,
948 doc
: /* Truncate a floating point number to an integral float value.
949 Rounds the value toward zero. */)
950 (register Lisp_Object arg
)
952 double d
= extract_float (arg
);
954 IN_FLOAT (d
= floor (d
), "ftruncate", arg
);
956 IN_FLOAT (d
= ceil (d
), "ftruncate", arg
);
957 return make_float (d
);
960 #ifdef FLOAT_CATCH_SIGILL
966 fatal_error_signal (signo
);
969 sigsetmask (SIGEMPTYMASK
);
971 /* Must reestablish handler each time it is called. */
972 signal (SIGILL
, float_error
);
973 #endif /* BSD_SYSTEM */
975 SIGNAL_THREAD_CHECK (signo
);
978 xsignal1 (Qarith_error
, float_error_arg
);
981 /* Another idea was to replace the library function `infnan'
982 where SIGILL is signaled. */
984 #endif /* FLOAT_CATCH_SIGILL */
988 matherr (struct exception
*x
)
991 const char *name
= x
->name
;
994 /* Not called from emacs-lisp float routines; do the default thing. */
996 if (!strcmp (x
->name
, "pow"))
1000 = Fcons (build_string (name
),
1001 Fcons (make_float (x
->arg1
),
1002 ((!strcmp (name
, "log") || !strcmp (name
, "pow"))
1003 ? Fcons (make_float (x
->arg2
), Qnil
)
1007 case DOMAIN
: xsignal (Qdomain_error
, args
); break;
1008 case SING
: xsignal (Qsingularity_error
, args
); break;
1009 case OVERFLOW
: xsignal (Qoverflow_error
, args
); break;
1010 case UNDERFLOW
: xsignal (Qunderflow_error
, args
); break;
1011 default: xsignal (Qarith_error
, args
); break;
1013 return (1); /* don't set errno or print a message */
1015 #endif /* HAVE_MATHERR */
1018 init_floatfns (void)
1020 #ifdef FLOAT_CATCH_SIGILL
1021 signal (SIGILL
, float_error
);
1027 syms_of_floatfns (void)
1035 #if defined HAVE_ISNAN && defined HAVE_COPYSIGN
1037 defsubr (&Scopysign
);
1048 defsubr (&Sbessel_y0
);
1049 defsubr (&Sbessel_y1
);
1050 defsubr (&Sbessel_yn
);
1051 defsubr (&Sbessel_j0
);
1052 defsubr (&Sbessel_j1
);
1053 defsubr (&Sbessel_jn
);
1056 defsubr (&Slog_gamma
);
1057 defsubr (&Scube_root
);
1059 defsubr (&Sfceiling
);
1062 defsubr (&Sftruncate
);
1072 defsubr (&Sceiling
);
1075 defsubr (&Struncate
);