1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
36 #include "intervals.h"
38 #include "character.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
47 #endif /* HAVE_WINDOW_SYSTEM */
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p
;
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
66 # undef GC_CHECK_MARKED_OBJECTS
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
86 #include "w32heap.h" /* for sbrk */
89 #ifdef DOUG_LEA_MALLOC
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
96 #define MMAP_MAX_AREAS 100000000
98 #endif /* not DOUG_LEA_MALLOC */
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111 /* Default value of gc_cons_threshold (see below). */
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115 /* Global variables. */
116 struct emacs_globals globals
;
118 /* Number of bytes of consing done since the last gc. */
120 EMACS_INT consing_since_gc
;
122 /* Similar minimum, computed from Vgc_cons_percentage. */
124 EMACS_INT gc_relative_threshold
;
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
129 EMACS_INT memory_full_cons_threshold
;
131 /* True during GC. */
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
141 /* Number of live and free conses etc. */
143 static EMACS_INT total_conses
, total_markers
, total_symbols
, total_buffers
;
144 static EMACS_INT total_free_conses
, total_free_markers
, total_free_symbols
;
145 static EMACS_INT total_free_floats
, total_floats
;
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
151 static char *spare_memory
[7];
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
156 #define SPARE_MEMORY (1 << 14)
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
164 EMACS_INT pure
[(PURESIZE
+ sizeof (EMACS_INT
) - 1) / sizeof (EMACS_INT
)] = {1,};
165 #define PUREBEG (char *) pure
167 /* Pointer to the pure area, and its size. */
169 static char *purebeg
;
170 static ptrdiff_t pure_size
;
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
175 static ptrdiff_t pure_bytes_used_before_overflow
;
177 /* True if P points into pure space. */
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182 /* Index in pure at which next pure Lisp object will be allocated.. */
184 static ptrdiff_t pure_bytes_used_lisp
;
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188 static ptrdiff_t pure_bytes_used_non_lisp
;
190 /* If nonzero, this is a warning delivered by malloc and not yet
193 const char *pending_malloc_warning
;
195 /* Maximum amount of C stack to save when a GC happens. */
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
201 /* Buffer in which we save a copy of the C stack at each GC. */
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy
;
205 static ptrdiff_t stack_copy_size
;
208 static Lisp_Object Qconses
;
209 static Lisp_Object Qsymbols
;
210 static Lisp_Object Qmiscs
;
211 static Lisp_Object Qstrings
;
212 static Lisp_Object Qvectors
;
213 static Lisp_Object Qfloats
;
214 static Lisp_Object Qintervals
;
215 static Lisp_Object Qbuffers
;
216 static Lisp_Object Qstring_bytes
, Qvector_slots
, Qheap
;
217 static Lisp_Object Qgc_cons_threshold
;
218 Lisp_Object Qautomatic_gc
;
219 Lisp_Object Qchar_table_extra_slots
;
221 /* Hook run after GC has finished. */
223 static Lisp_Object Qpost_gc_hook
;
225 static void mark_terminals (void);
226 static void gc_sweep (void);
227 static Lisp_Object
make_pure_vector (ptrdiff_t);
228 static void mark_buffer (struct buffer
*);
230 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
231 static void refill_memory_reserve (void);
233 static void compact_small_strings (void);
234 static void free_large_strings (void);
235 extern Lisp_Object
which_symbols (Lisp_Object
, EMACS_INT
) EXTERNALLY_VISIBLE
;
237 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
238 what memory allocated via lisp_malloc and lisp_align_malloc is intended
239 for what purpose. This enumeration specifies the type of memory. */
250 /* Since all non-bool pseudovectors are small enough to be
251 allocated from vector blocks, this memory type denotes
252 large regular vectors and large bool pseudovectors. */
254 /* Special type to denote vector blocks. */
255 MEM_TYPE_VECTOR_BLOCK
,
256 /* Special type to denote reserved memory. */
260 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
262 /* A unique object in pure space used to make some Lisp objects
263 on free lists recognizable in O(1). */
265 static Lisp_Object Vdead
;
266 #define DEADP(x) EQ (x, Vdead)
268 #ifdef GC_MALLOC_CHECK
270 enum mem_type allocated_mem_type
;
272 #endif /* GC_MALLOC_CHECK */
274 /* A node in the red-black tree describing allocated memory containing
275 Lisp data. Each such block is recorded with its start and end
276 address when it is allocated, and removed from the tree when it
279 A red-black tree is a balanced binary tree with the following
282 1. Every node is either red or black.
283 2. Every leaf is black.
284 3. If a node is red, then both of its children are black.
285 4. Every simple path from a node to a descendant leaf contains
286 the same number of black nodes.
287 5. The root is always black.
289 When nodes are inserted into the tree, or deleted from the tree,
290 the tree is "fixed" so that these properties are always true.
292 A red-black tree with N internal nodes has height at most 2
293 log(N+1). Searches, insertions and deletions are done in O(log N).
294 Please see a text book about data structures for a detailed
295 description of red-black trees. Any book worth its salt should
300 /* Children of this node. These pointers are never NULL. When there
301 is no child, the value is MEM_NIL, which points to a dummy node. */
302 struct mem_node
*left
, *right
;
304 /* The parent of this node. In the root node, this is NULL. */
305 struct mem_node
*parent
;
307 /* Start and end of allocated region. */
311 enum {MEM_BLACK
, MEM_RED
} color
;
317 /* Base address of stack. Set in main. */
319 Lisp_Object
*stack_base
;
321 /* Root of the tree describing allocated Lisp memory. */
323 static struct mem_node
*mem_root
;
325 /* Lowest and highest known address in the heap. */
327 static void *min_heap_address
, *max_heap_address
;
329 /* Sentinel node of the tree. */
331 static struct mem_node mem_z
;
332 #define MEM_NIL &mem_z
334 static struct mem_node
*mem_insert (void *, void *, enum mem_type
);
335 static void mem_insert_fixup (struct mem_node
*);
336 static void mem_rotate_left (struct mem_node
*);
337 static void mem_rotate_right (struct mem_node
*);
338 static void mem_delete (struct mem_node
*);
339 static void mem_delete_fixup (struct mem_node
*);
340 static struct mem_node
*mem_find (void *);
342 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
348 /* Recording what needs to be marked for gc. */
350 struct gcpro
*gcprolist
;
352 /* Addresses of staticpro'd variables. Initialize it to a nonzero
353 value; otherwise some compilers put it into BSS. */
355 enum { NSTATICS
= 2048 };
356 static Lisp_Object
*staticvec
[NSTATICS
] = {&Vpurify_flag
};
358 /* Index of next unused slot in staticvec. */
360 static int staticidx
;
362 static void *pure_alloc (size_t, int);
364 /* Return X rounded to the next multiple of Y. Arguments should not
365 have side effects, as they are evaluated more than once. Assume X
366 + Y - 1 does not overflow. Tune for Y being a power of 2. */
368 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
369 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
370 : ((x) + (y) - 1) & ~ ((y) - 1))
372 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
375 ALIGN (void *ptr
, int alignment
)
377 return (void *) ROUNDUP ((uintptr_t) ptr
, alignment
);
381 XFLOAT_INIT (Lisp_Object f
, double n
)
383 XFLOAT (f
)->u
.data
= n
;
387 /************************************************************************
389 ************************************************************************/
391 /* Function malloc calls this if it finds we are near exhausting storage. */
394 malloc_warning (const char *str
)
396 pending_malloc_warning
= str
;
400 /* Display an already-pending malloc warning. */
403 display_malloc_warning (void)
405 call3 (intern ("display-warning"),
407 build_string (pending_malloc_warning
),
408 intern ("emergency"));
409 pending_malloc_warning
= 0;
412 /* Called if we can't allocate relocatable space for a buffer. */
415 buffer_memory_full (ptrdiff_t nbytes
)
417 /* If buffers use the relocating allocator, no need to free
418 spare_memory, because we may have plenty of malloc space left
419 that we could get, and if we don't, the malloc that fails will
420 itself cause spare_memory to be freed. If buffers don't use the
421 relocating allocator, treat this like any other failing
425 memory_full (nbytes
);
427 /* This used to call error, but if we've run out of memory, we could
428 get infinite recursion trying to build the string. */
429 xsignal (Qnil
, Vmemory_signal_data
);
433 /* A common multiple of the positive integers A and B. Ideally this
434 would be the least common multiple, but there's no way to do that
435 as a constant expression in C, so do the best that we can easily do. */
436 #define COMMON_MULTIPLE(a, b) \
437 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
439 #ifndef XMALLOC_OVERRUN_CHECK
440 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
443 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
446 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
447 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
448 block size in little-endian order. The trailer consists of
449 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
451 The header is used to detect whether this block has been allocated
452 through these functions, as some low-level libc functions may
453 bypass the malloc hooks. */
455 #define XMALLOC_OVERRUN_CHECK_SIZE 16
456 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
457 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
459 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
460 hold a size_t value and (2) the header size is a multiple of the
461 alignment that Emacs needs for C types and for USE_LSB_TAG. */
462 #define XMALLOC_BASE_ALIGNMENT \
463 alignof (union { long double d; intmax_t i; void *p; })
466 # define XMALLOC_HEADER_ALIGNMENT \
467 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
469 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
471 #define XMALLOC_OVERRUN_SIZE_SIZE \
472 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
473 + XMALLOC_HEADER_ALIGNMENT - 1) \
474 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
475 - XMALLOC_OVERRUN_CHECK_SIZE)
477 static char const xmalloc_overrun_check_header
[XMALLOC_OVERRUN_CHECK_SIZE
] =
478 { '\x9a', '\x9b', '\xae', '\xaf',
479 '\xbf', '\xbe', '\xce', '\xcf',
480 '\xea', '\xeb', '\xec', '\xed',
481 '\xdf', '\xde', '\x9c', '\x9d' };
483 static char const xmalloc_overrun_check_trailer
[XMALLOC_OVERRUN_CHECK_SIZE
] =
484 { '\xaa', '\xab', '\xac', '\xad',
485 '\xba', '\xbb', '\xbc', '\xbd',
486 '\xca', '\xcb', '\xcc', '\xcd',
487 '\xda', '\xdb', '\xdc', '\xdd' };
489 /* Insert and extract the block size in the header. */
492 xmalloc_put_size (unsigned char *ptr
, size_t size
)
495 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
497 *--ptr
= size
& ((1 << CHAR_BIT
) - 1);
503 xmalloc_get_size (unsigned char *ptr
)
507 ptr
-= XMALLOC_OVERRUN_SIZE_SIZE
;
508 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
517 /* Like malloc, but wraps allocated block with header and trailer. */
520 overrun_check_malloc (size_t size
)
522 register unsigned char *val
;
523 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
526 val
= malloc (size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
529 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
530 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
531 xmalloc_put_size (val
, size
);
532 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
533 XMALLOC_OVERRUN_CHECK_SIZE
);
539 /* Like realloc, but checks old block for overrun, and wraps new block
540 with header and trailer. */
543 overrun_check_realloc (void *block
, size_t size
)
545 register unsigned char *val
= (unsigned char *) block
;
546 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
550 && memcmp (xmalloc_overrun_check_header
,
551 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
552 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
554 size_t osize
= xmalloc_get_size (val
);
555 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
556 XMALLOC_OVERRUN_CHECK_SIZE
))
558 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
559 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
560 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
563 val
= realloc (val
, size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
567 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
568 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
569 xmalloc_put_size (val
, size
);
570 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
571 XMALLOC_OVERRUN_CHECK_SIZE
);
576 /* Like free, but checks block for overrun. */
579 overrun_check_free (void *block
)
581 unsigned char *val
= (unsigned char *) block
;
584 && memcmp (xmalloc_overrun_check_header
,
585 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
586 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
588 size_t osize
= xmalloc_get_size (val
);
589 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
590 XMALLOC_OVERRUN_CHECK_SIZE
))
592 #ifdef XMALLOC_CLEAR_FREE_MEMORY
593 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
594 memset (val
, 0xff, osize
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
596 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
597 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
598 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
608 #define malloc overrun_check_malloc
609 #define realloc overrun_check_realloc
610 #define free overrun_check_free
613 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
614 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
615 If that variable is set, block input while in one of Emacs's memory
616 allocation functions. There should be no need for this debugging
617 option, since signal handlers do not allocate memory, but Emacs
618 formerly allocated memory in signal handlers and this compile-time
619 option remains as a way to help debug the issue should it rear its
621 #ifdef XMALLOC_BLOCK_INPUT_CHECK
622 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE
;
624 malloc_block_input (void)
626 if (block_input_in_memory_allocators
)
630 malloc_unblock_input (void)
632 if (block_input_in_memory_allocators
)
635 # define MALLOC_BLOCK_INPUT malloc_block_input ()
636 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
638 # define MALLOC_BLOCK_INPUT ((void) 0)
639 # define MALLOC_UNBLOCK_INPUT ((void) 0)
642 #define MALLOC_PROBE(size) \
644 if (profiler_memory_running) \
645 malloc_probe (size); \
649 /* Like malloc but check for no memory and block interrupt input.. */
652 xmalloc (size_t size
)
658 MALLOC_UNBLOCK_INPUT
;
666 /* Like the above, but zeroes out the memory just allocated. */
669 xzalloc (size_t size
)
675 MALLOC_UNBLOCK_INPUT
;
679 memset (val
, 0, size
);
684 /* Like realloc but check for no memory and block interrupt input.. */
687 xrealloc (void *block
, size_t size
)
692 /* We must call malloc explicitly when BLOCK is 0, since some
693 reallocs don't do this. */
697 val
= realloc (block
, size
);
698 MALLOC_UNBLOCK_INPUT
;
707 /* Like free but block interrupt input. */
716 MALLOC_UNBLOCK_INPUT
;
717 /* We don't call refill_memory_reserve here
718 because in practice the call in r_alloc_free seems to suffice. */
722 /* Other parts of Emacs pass large int values to allocator functions
723 expecting ptrdiff_t. This is portable in practice, but check it to
725 verify (INT_MAX
<= PTRDIFF_MAX
);
728 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
729 Signal an error on memory exhaustion, and block interrupt input. */
732 xnmalloc (ptrdiff_t nitems
, ptrdiff_t item_size
)
734 eassert (0 <= nitems
&& 0 < item_size
);
735 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
736 memory_full (SIZE_MAX
);
737 return xmalloc (nitems
* item_size
);
741 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
742 Signal an error on memory exhaustion, and block interrupt input. */
745 xnrealloc (void *pa
, ptrdiff_t nitems
, ptrdiff_t item_size
)
747 eassert (0 <= nitems
&& 0 < item_size
);
748 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
749 memory_full (SIZE_MAX
);
750 return xrealloc (pa
, nitems
* item_size
);
754 /* Grow PA, which points to an array of *NITEMS items, and return the
755 location of the reallocated array, updating *NITEMS to reflect its
756 new size. The new array will contain at least NITEMS_INCR_MIN more
757 items, but will not contain more than NITEMS_MAX items total.
758 ITEM_SIZE is the size of each item, in bytes.
760 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
761 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
764 If PA is null, then allocate a new array instead of reallocating
767 Block interrupt input as needed. If memory exhaustion occurs, set
768 *NITEMS to zero if PA is null, and signal an error (i.e., do not
771 Thus, to grow an array A without saving its old contents, do
772 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
773 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
774 and signals an error, and later this code is reexecuted and
775 attempts to free A. */
778 xpalloc (void *pa
, ptrdiff_t *nitems
, ptrdiff_t nitems_incr_min
,
779 ptrdiff_t nitems_max
, ptrdiff_t item_size
)
781 /* The approximate size to use for initial small allocation
782 requests. This is the largest "small" request for the GNU C
784 enum { DEFAULT_MXFAST
= 64 * sizeof (size_t) / 4 };
786 /* If the array is tiny, grow it to about (but no greater than)
787 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
788 ptrdiff_t n
= *nitems
;
789 ptrdiff_t tiny_max
= DEFAULT_MXFAST
/ item_size
- n
;
790 ptrdiff_t half_again
= n
>> 1;
791 ptrdiff_t incr_estimate
= max (tiny_max
, half_again
);
793 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
794 NITEMS_MAX, and what the C language can represent safely. */
795 ptrdiff_t C_language_max
= min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
;
796 ptrdiff_t n_max
= (0 <= nitems_max
&& nitems_max
< C_language_max
797 ? nitems_max
: C_language_max
);
798 ptrdiff_t nitems_incr_max
= n_max
- n
;
799 ptrdiff_t incr
= max (nitems_incr_min
, min (incr_estimate
, nitems_incr_max
));
801 eassert (0 < item_size
&& 0 < nitems_incr_min
&& 0 <= n
&& -1 <= nitems_max
);
804 if (nitems_incr_max
< incr
)
805 memory_full (SIZE_MAX
);
807 pa
= xrealloc (pa
, n
* item_size
);
813 /* Like strdup, but uses xmalloc. */
816 xstrdup (const char *s
)
820 size
= strlen (s
) + 1;
821 return memcpy (xmalloc (size
), s
, size
);
824 /* Like above, but duplicates Lisp string to C string. */
827 xlispstrdup (Lisp_Object string
)
829 ptrdiff_t size
= SBYTES (string
) + 1;
830 return memcpy (xmalloc (size
), SSDATA (string
), size
);
833 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
834 argument is a const pointer. */
837 xputenv (char const *string
)
839 if (putenv ((char *) string
) != 0)
843 /* Return a newly allocated memory block of SIZE bytes, remembering
844 to free it when unwinding. */
846 record_xmalloc (size_t size
)
848 void *p
= xmalloc (size
);
849 record_unwind_protect_ptr (xfree
, p
);
854 /* Like malloc but used for allocating Lisp data. NBYTES is the
855 number of bytes to allocate, TYPE describes the intended use of the
856 allocated memory block (for strings, for conses, ...). */
859 void *lisp_malloc_loser EXTERNALLY_VISIBLE
;
863 lisp_malloc (size_t nbytes
, enum mem_type type
)
869 #ifdef GC_MALLOC_CHECK
870 allocated_mem_type
= type
;
873 val
= malloc (nbytes
);
876 /* If the memory just allocated cannot be addressed thru a Lisp
877 object's pointer, and it needs to be,
878 that's equivalent to running out of memory. */
879 if (val
&& type
!= MEM_TYPE_NON_LISP
)
882 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
883 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
885 lisp_malloc_loser
= val
;
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 if (val
&& type
!= MEM_TYPE_NON_LISP
)
894 mem_insert (val
, (char *) val
+ nbytes
, type
);
897 MALLOC_UNBLOCK_INPUT
;
899 memory_full (nbytes
);
900 MALLOC_PROBE (nbytes
);
904 /* Free BLOCK. This must be called to free memory allocated with a
905 call to lisp_malloc. */
908 lisp_free (void *block
)
912 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
913 mem_delete (mem_find (block
));
915 MALLOC_UNBLOCK_INPUT
;
918 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
920 /* The entry point is lisp_align_malloc which returns blocks of at most
921 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
923 #if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
924 # define USE_ALIGNED_ALLOC 1
925 /* Defined in gmalloc.c. */
926 void *aligned_alloc (size_t, size_t);
927 #elif defined HAVE_ALIGNED_ALLOC
928 # define USE_ALIGNED_ALLOC 1
929 #elif defined HAVE_POSIX_MEMALIGN
930 # define USE_ALIGNED_ALLOC 1
932 aligned_alloc (size_t alignment
, size_t size
)
935 return posix_memalign (&p
, alignment
, size
) == 0 ? p
: 0;
939 /* BLOCK_ALIGN has to be a power of 2. */
940 #define BLOCK_ALIGN (1 << 10)
942 /* Padding to leave at the end of a malloc'd block. This is to give
943 malloc a chance to minimize the amount of memory wasted to alignment.
944 It should be tuned to the particular malloc library used.
945 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
946 aligned_alloc on the other hand would ideally prefer a value of 4
947 because otherwise, there's 1020 bytes wasted between each ablocks.
948 In Emacs, testing shows that those 1020 can most of the time be
949 efficiently used by malloc to place other objects, so a value of 0 can
950 still preferable unless you have a lot of aligned blocks and virtually
952 #define BLOCK_PADDING 0
953 #define BLOCK_BYTES \
954 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
956 /* Internal data structures and constants. */
958 #define ABLOCKS_SIZE 16
960 /* An aligned block of memory. */
965 char payload
[BLOCK_BYTES
];
966 struct ablock
*next_free
;
968 /* `abase' is the aligned base of the ablocks. */
969 /* It is overloaded to hold the virtual `busy' field that counts
970 the number of used ablock in the parent ablocks.
971 The first ablock has the `busy' field, the others have the `abase'
972 field. To tell the difference, we assume that pointers will have
973 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
974 is used to tell whether the real base of the parent ablocks is `abase'
975 (if not, the word before the first ablock holds a pointer to the
977 struct ablocks
*abase
;
978 /* The padding of all but the last ablock is unused. The padding of
979 the last ablock in an ablocks is not allocated. */
981 char padding
[BLOCK_PADDING
];
985 /* A bunch of consecutive aligned blocks. */
988 struct ablock blocks
[ABLOCKS_SIZE
];
991 /* Size of the block requested from malloc or aligned_alloc. */
992 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
994 #define ABLOCK_ABASE(block) \
995 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
996 ? (struct ablocks *)(block) \
999 /* Virtual `busy' field. */
1000 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1002 /* Pointer to the (not necessarily aligned) malloc block. */
1003 #ifdef USE_ALIGNED_ALLOC
1004 #define ABLOCKS_BASE(abase) (abase)
1006 #define ABLOCKS_BASE(abase) \
1007 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1010 /* The list of free ablock. */
1011 static struct ablock
*free_ablock
;
1013 /* Allocate an aligned block of nbytes.
1014 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1015 smaller or equal to BLOCK_BYTES. */
1017 lisp_align_malloc (size_t nbytes
, enum mem_type type
)
1020 struct ablocks
*abase
;
1022 eassert (nbytes
<= BLOCK_BYTES
);
1026 #ifdef GC_MALLOC_CHECK
1027 allocated_mem_type
= type
;
1033 intptr_t aligned
; /* int gets warning casting to 64-bit pointer. */
1035 #ifdef DOUG_LEA_MALLOC
1036 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1037 because mapped region contents are not preserved in
1039 mallopt (M_MMAP_MAX
, 0);
1042 #ifdef USE_ALIGNED_ALLOC
1043 abase
= base
= aligned_alloc (BLOCK_ALIGN
, ABLOCKS_BYTES
);
1045 base
= malloc (ABLOCKS_BYTES
);
1046 abase
= ALIGN (base
, BLOCK_ALIGN
);
1051 MALLOC_UNBLOCK_INPUT
;
1052 memory_full (ABLOCKS_BYTES
);
1055 aligned
= (base
== abase
);
1057 ((void **) abase
)[-1] = base
;
1059 #ifdef DOUG_LEA_MALLOC
1060 /* Back to a reasonable maximum of mmap'ed areas. */
1061 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1065 /* If the memory just allocated cannot be addressed thru a Lisp
1066 object's pointer, and it needs to be, that's equivalent to
1067 running out of memory. */
1068 if (type
!= MEM_TYPE_NON_LISP
)
1071 char *end
= (char *) base
+ ABLOCKS_BYTES
- 1;
1072 XSETCONS (tem
, end
);
1073 if ((char *) XCONS (tem
) != end
)
1075 lisp_malloc_loser
= base
;
1077 MALLOC_UNBLOCK_INPUT
;
1078 memory_full (SIZE_MAX
);
1083 /* Initialize the blocks and put them on the free list.
1084 If `base' was not properly aligned, we can't use the last block. */
1085 for (i
= 0; i
< (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1); i
++)
1087 abase
->blocks
[i
].abase
= abase
;
1088 abase
->blocks
[i
].x
.next_free
= free_ablock
;
1089 free_ablock
= &abase
->blocks
[i
];
1091 ABLOCKS_BUSY (abase
) = (struct ablocks
*) aligned
;
1093 eassert (0 == ((uintptr_t) abase
) % BLOCK_ALIGN
);
1094 eassert (ABLOCK_ABASE (&abase
->blocks
[3]) == abase
); /* 3 is arbitrary */
1095 eassert (ABLOCK_ABASE (&abase
->blocks
[0]) == abase
);
1096 eassert (ABLOCKS_BASE (abase
) == base
);
1097 eassert (aligned
== (intptr_t) ABLOCKS_BUSY (abase
));
1100 abase
= ABLOCK_ABASE (free_ablock
);
1101 ABLOCKS_BUSY (abase
) =
1102 (struct ablocks
*) (2 + (intptr_t) ABLOCKS_BUSY (abase
));
1104 free_ablock
= free_ablock
->x
.next_free
;
1106 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1107 if (type
!= MEM_TYPE_NON_LISP
)
1108 mem_insert (val
, (char *) val
+ nbytes
, type
);
1111 MALLOC_UNBLOCK_INPUT
;
1113 MALLOC_PROBE (nbytes
);
1115 eassert (0 == ((uintptr_t) val
) % BLOCK_ALIGN
);
1120 lisp_align_free (void *block
)
1122 struct ablock
*ablock
= block
;
1123 struct ablocks
*abase
= ABLOCK_ABASE (ablock
);
1126 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1127 mem_delete (mem_find (block
));
1129 /* Put on free list. */
1130 ablock
->x
.next_free
= free_ablock
;
1131 free_ablock
= ablock
;
1132 /* Update busy count. */
1133 ABLOCKS_BUSY (abase
)
1134 = (struct ablocks
*) (-2 + (intptr_t) ABLOCKS_BUSY (abase
));
1136 if (2 > (intptr_t) ABLOCKS_BUSY (abase
))
1137 { /* All the blocks are free. */
1138 int i
= 0, aligned
= (intptr_t) ABLOCKS_BUSY (abase
);
1139 struct ablock
**tem
= &free_ablock
;
1140 struct ablock
*atop
= &abase
->blocks
[aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1];
1144 if (*tem
>= (struct ablock
*) abase
&& *tem
< atop
)
1147 *tem
= (*tem
)->x
.next_free
;
1150 tem
= &(*tem
)->x
.next_free
;
1152 eassert ((aligned
& 1) == aligned
);
1153 eassert (i
== (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1));
1154 #ifdef USE_POSIX_MEMALIGN
1155 eassert ((uintptr_t) ABLOCKS_BASE (abase
) % BLOCK_ALIGN
== 0);
1157 free (ABLOCKS_BASE (abase
));
1159 MALLOC_UNBLOCK_INPUT
;
1163 /***********************************************************************
1165 ***********************************************************************/
1167 /* Number of intervals allocated in an interval_block structure.
1168 The 1020 is 1024 minus malloc overhead. */
1170 #define INTERVAL_BLOCK_SIZE \
1171 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1173 /* Intervals are allocated in chunks in the form of an interval_block
1176 struct interval_block
1178 /* Place `intervals' first, to preserve alignment. */
1179 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
1180 struct interval_block
*next
;
1183 /* Current interval block. Its `next' pointer points to older
1186 static struct interval_block
*interval_block
;
1188 /* Index in interval_block above of the next unused interval
1191 static int interval_block_index
= INTERVAL_BLOCK_SIZE
;
1193 /* Number of free and live intervals. */
1195 static EMACS_INT total_free_intervals
, total_intervals
;
1197 /* List of free intervals. */
1199 static INTERVAL interval_free_list
;
1201 /* Return a new interval. */
1204 make_interval (void)
1210 if (interval_free_list
)
1212 val
= interval_free_list
;
1213 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
1217 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
1219 struct interval_block
*newi
1220 = lisp_malloc (sizeof *newi
, MEM_TYPE_NON_LISP
);
1222 newi
->next
= interval_block
;
1223 interval_block
= newi
;
1224 interval_block_index
= 0;
1225 total_free_intervals
+= INTERVAL_BLOCK_SIZE
;
1227 val
= &interval_block
->intervals
[interval_block_index
++];
1230 MALLOC_UNBLOCK_INPUT
;
1232 consing_since_gc
+= sizeof (struct interval
);
1234 total_free_intervals
--;
1235 RESET_INTERVAL (val
);
1241 /* Mark Lisp objects in interval I. */
1244 mark_interval (register INTERVAL i
, Lisp_Object dummy
)
1246 /* Intervals should never be shared. So, if extra internal checking is
1247 enabled, GC aborts if it seems to have visited an interval twice. */
1248 eassert (!i
->gcmarkbit
);
1250 mark_object (i
->plist
);
1253 /* Mark the interval tree rooted in I. */
1255 #define MARK_INTERVAL_TREE(i) \
1257 if (i && !i->gcmarkbit) \
1258 traverse_intervals_noorder (i, mark_interval, Qnil); \
1261 /***********************************************************************
1263 ***********************************************************************/
1265 /* Lisp_Strings are allocated in string_block structures. When a new
1266 string_block is allocated, all the Lisp_Strings it contains are
1267 added to a free-list string_free_list. When a new Lisp_String is
1268 needed, it is taken from that list. During the sweep phase of GC,
1269 string_blocks that are entirely free are freed, except two which
1272 String data is allocated from sblock structures. Strings larger
1273 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1274 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1276 Sblocks consist internally of sdata structures, one for each
1277 Lisp_String. The sdata structure points to the Lisp_String it
1278 belongs to. The Lisp_String points back to the `u.data' member of
1279 its sdata structure.
1281 When a Lisp_String is freed during GC, it is put back on
1282 string_free_list, and its `data' member and its sdata's `string'
1283 pointer is set to null. The size of the string is recorded in the
1284 `n.nbytes' member of the sdata. So, sdata structures that are no
1285 longer used, can be easily recognized, and it's easy to compact the
1286 sblocks of small strings which we do in compact_small_strings. */
1288 /* Size in bytes of an sblock structure used for small strings. This
1289 is 8192 minus malloc overhead. */
1291 #define SBLOCK_SIZE 8188
1293 /* Strings larger than this are considered large strings. String data
1294 for large strings is allocated from individual sblocks. */
1296 #define LARGE_STRING_BYTES 1024
1298 /* The SDATA typedef is a struct or union describing string memory
1299 sub-allocated from an sblock. This is where the contents of Lisp
1300 strings are stored. */
1304 /* Back-pointer to the string this sdata belongs to. If null, this
1305 structure is free, and NBYTES (in this structure or in the union below)
1306 contains the string's byte size (the same value that STRING_BYTES
1307 would return if STRING were non-null). If non-null, STRING_BYTES
1308 (STRING) is the size of the data, and DATA contains the string's
1310 struct Lisp_String
*string
;
1312 #ifdef GC_CHECK_STRING_BYTES
1316 unsigned char data
[FLEXIBLE_ARRAY_MEMBER
];
1319 #ifdef GC_CHECK_STRING_BYTES
1321 typedef struct sdata sdata
;
1322 #define SDATA_NBYTES(S) (S)->nbytes
1323 #define SDATA_DATA(S) (S)->data
1329 struct Lisp_String
*string
;
1331 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1332 which has a flexible array member. However, if implemented by
1333 giving this union a member of type 'struct sdata', the union
1334 could not be the last (flexible) member of 'struct sblock',
1335 because C99 prohibits a flexible array member from having a type
1336 that is itself a flexible array. So, comment this member out here,
1337 but remember that the option's there when using this union. */
1342 /* When STRING is null. */
1345 struct Lisp_String
*string
;
1350 #define SDATA_NBYTES(S) (S)->n.nbytes
1351 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1353 #endif /* not GC_CHECK_STRING_BYTES */
1355 enum { SDATA_DATA_OFFSET
= offsetof (struct sdata
, data
) };
1357 /* Structure describing a block of memory which is sub-allocated to
1358 obtain string data memory for strings. Blocks for small strings
1359 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1360 as large as needed. */
1365 struct sblock
*next
;
1367 /* Pointer to the next free sdata block. This points past the end
1368 of the sblock if there isn't any space left in this block. */
1372 sdata data
[FLEXIBLE_ARRAY_MEMBER
];
1375 /* Number of Lisp strings in a string_block structure. The 1020 is
1376 1024 minus malloc overhead. */
1378 #define STRING_BLOCK_SIZE \
1379 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1381 /* Structure describing a block from which Lisp_String structures
1386 /* Place `strings' first, to preserve alignment. */
1387 struct Lisp_String strings
[STRING_BLOCK_SIZE
];
1388 struct string_block
*next
;
1391 /* Head and tail of the list of sblock structures holding Lisp string
1392 data. We always allocate from current_sblock. The NEXT pointers
1393 in the sblock structures go from oldest_sblock to current_sblock. */
1395 static struct sblock
*oldest_sblock
, *current_sblock
;
1397 /* List of sblocks for large strings. */
1399 static struct sblock
*large_sblocks
;
1401 /* List of string_block structures. */
1403 static struct string_block
*string_blocks
;
1405 /* Free-list of Lisp_Strings. */
1407 static struct Lisp_String
*string_free_list
;
1409 /* Number of live and free Lisp_Strings. */
1411 static EMACS_INT total_strings
, total_free_strings
;
1413 /* Number of bytes used by live strings. */
1415 static EMACS_INT total_string_bytes
;
1417 /* Given a pointer to a Lisp_String S which is on the free-list
1418 string_free_list, return a pointer to its successor in the
1421 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1423 /* Return a pointer to the sdata structure belonging to Lisp string S.
1424 S must be live, i.e. S->data must not be null. S->data is actually
1425 a pointer to the `u.data' member of its sdata structure; the
1426 structure starts at a constant offset in front of that. */
1428 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1431 #ifdef GC_CHECK_STRING_OVERRUN
1433 /* We check for overrun in string data blocks by appending a small
1434 "cookie" after each allocated string data block, and check for the
1435 presence of this cookie during GC. */
1437 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1438 static char const string_overrun_cookie
[GC_STRING_OVERRUN_COOKIE_SIZE
] =
1439 { '\xde', '\xad', '\xbe', '\xef' };
1442 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1445 /* Value is the size of an sdata structure large enough to hold NBYTES
1446 bytes of string data. The value returned includes a terminating
1447 NUL byte, the size of the sdata structure, and padding. */
1449 #ifdef GC_CHECK_STRING_BYTES
1451 #define SDATA_SIZE(NBYTES) \
1452 ((SDATA_DATA_OFFSET \
1454 + sizeof (ptrdiff_t) - 1) \
1455 & ~(sizeof (ptrdiff_t) - 1))
1457 #else /* not GC_CHECK_STRING_BYTES */
1459 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1460 less than the size of that member. The 'max' is not needed when
1461 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1462 alignment code reserves enough space. */
1464 #define SDATA_SIZE(NBYTES) \
1465 ((SDATA_DATA_OFFSET \
1466 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1468 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1470 + sizeof (ptrdiff_t) - 1) \
1471 & ~(sizeof (ptrdiff_t) - 1))
1473 #endif /* not GC_CHECK_STRING_BYTES */
1475 /* Extra bytes to allocate for each string. */
1477 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1479 /* Exact bound on the number of bytes in a string, not counting the
1480 terminating null. A string cannot contain more bytes than
1481 STRING_BYTES_BOUND, nor can it be so long that the size_t
1482 arithmetic in allocate_string_data would overflow while it is
1483 calculating a value to be passed to malloc. */
1484 static ptrdiff_t const STRING_BYTES_MAX
=
1485 min (STRING_BYTES_BOUND
,
1486 ((SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
1488 - offsetof (struct sblock
, data
)
1489 - SDATA_DATA_OFFSET
)
1490 & ~(sizeof (EMACS_INT
) - 1)));
1492 /* Initialize string allocation. Called from init_alloc_once. */
1497 empty_unibyte_string
= make_pure_string ("", 0, 0, 0);
1498 empty_multibyte_string
= make_pure_string ("", 0, 0, 1);
1502 #ifdef GC_CHECK_STRING_BYTES
1504 static int check_string_bytes_count
;
1506 /* Like STRING_BYTES, but with debugging check. Can be
1507 called during GC, so pay attention to the mark bit. */
1510 string_bytes (struct Lisp_String
*s
)
1513 (s
->size_byte
< 0 ? s
->size
& ~ARRAY_MARK_FLAG
: s
->size_byte
);
1515 if (!PURE_POINTER_P (s
)
1517 && nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1522 /* Check validity of Lisp strings' string_bytes member in B. */
1525 check_sblock (struct sblock
*b
)
1527 sdata
*from
, *end
, *from_end
;
1531 for (from
= b
->data
; from
< end
; from
= from_end
)
1533 /* Compute the next FROM here because copying below may
1534 overwrite data we need to compute it. */
1537 /* Check that the string size recorded in the string is the
1538 same as the one recorded in the sdata structure. */
1539 nbytes
= SDATA_SIZE (from
->string
? string_bytes (from
->string
)
1540 : SDATA_NBYTES (from
));
1541 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1546 /* Check validity of Lisp strings' string_bytes member. ALL_P
1547 means check all strings, otherwise check only most
1548 recently allocated strings. Used for hunting a bug. */
1551 check_string_bytes (bool all_p
)
1557 for (b
= large_sblocks
; b
; b
= b
->next
)
1559 struct Lisp_String
*s
= b
->data
[0].string
;
1564 for (b
= oldest_sblock
; b
; b
= b
->next
)
1567 else if (current_sblock
)
1568 check_sblock (current_sblock
);
1571 #else /* not GC_CHECK_STRING_BYTES */
1573 #define check_string_bytes(all) ((void) 0)
1575 #endif /* GC_CHECK_STRING_BYTES */
1577 #ifdef GC_CHECK_STRING_FREE_LIST
1579 /* Walk through the string free list looking for bogus next pointers.
1580 This may catch buffer overrun from a previous string. */
1583 check_string_free_list (void)
1585 struct Lisp_String
*s
;
1587 /* Pop a Lisp_String off the free-list. */
1588 s
= string_free_list
;
1591 if ((uintptr_t) s
< 1024)
1593 s
= NEXT_FREE_LISP_STRING (s
);
1597 #define check_string_free_list()
1600 /* Return a new Lisp_String. */
1602 static struct Lisp_String
*
1603 allocate_string (void)
1605 struct Lisp_String
*s
;
1609 /* If the free-list is empty, allocate a new string_block, and
1610 add all the Lisp_Strings in it to the free-list. */
1611 if (string_free_list
== NULL
)
1613 struct string_block
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1616 b
->next
= string_blocks
;
1619 for (i
= STRING_BLOCK_SIZE
- 1; i
>= 0; --i
)
1622 /* Every string on a free list should have NULL data pointer. */
1624 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1625 string_free_list
= s
;
1628 total_free_strings
+= STRING_BLOCK_SIZE
;
1631 check_string_free_list ();
1633 /* Pop a Lisp_String off the free-list. */
1634 s
= string_free_list
;
1635 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1637 MALLOC_UNBLOCK_INPUT
;
1639 --total_free_strings
;
1642 consing_since_gc
+= sizeof *s
;
1644 #ifdef GC_CHECK_STRING_BYTES
1645 if (!noninteractive
)
1647 if (++check_string_bytes_count
== 200)
1649 check_string_bytes_count
= 0;
1650 check_string_bytes (1);
1653 check_string_bytes (0);
1655 #endif /* GC_CHECK_STRING_BYTES */
1661 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1662 plus a NUL byte at the end. Allocate an sdata structure for S, and
1663 set S->data to its `u.data' member. Store a NUL byte at the end of
1664 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1665 S->data if it was initially non-null. */
1668 allocate_string_data (struct Lisp_String
*s
,
1669 EMACS_INT nchars
, EMACS_INT nbytes
)
1671 sdata
*data
, *old_data
;
1673 ptrdiff_t needed
, old_nbytes
;
1675 if (STRING_BYTES_MAX
< nbytes
)
1678 /* Determine the number of bytes needed to store NBYTES bytes
1680 needed
= SDATA_SIZE (nbytes
);
1683 old_data
= SDATA_OF_STRING (s
);
1684 old_nbytes
= STRING_BYTES (s
);
1691 if (nbytes
> LARGE_STRING_BYTES
)
1693 size_t size
= offsetof (struct sblock
, data
) + needed
;
1695 #ifdef DOUG_LEA_MALLOC
1696 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1697 because mapped region contents are not preserved in
1700 In case you think of allowing it in a dumped Emacs at the
1701 cost of not being able to re-dump, there's another reason:
1702 mmap'ed data typically have an address towards the top of the
1703 address space, which won't fit into an EMACS_INT (at least on
1704 32-bit systems with the current tagging scheme). --fx */
1705 mallopt (M_MMAP_MAX
, 0);
1708 b
= lisp_malloc (size
+ GC_STRING_EXTRA
, MEM_TYPE_NON_LISP
);
1710 #ifdef DOUG_LEA_MALLOC
1711 /* Back to a reasonable maximum of mmap'ed areas. */
1712 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1715 b
->next_free
= b
->data
;
1716 b
->data
[0].string
= NULL
;
1717 b
->next
= large_sblocks
;
1720 else if (current_sblock
== NULL
1721 || (((char *) current_sblock
+ SBLOCK_SIZE
1722 - (char *) current_sblock
->next_free
)
1723 < (needed
+ GC_STRING_EXTRA
)))
1725 /* Not enough room in the current sblock. */
1726 b
= lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
1727 b
->next_free
= b
->data
;
1728 b
->data
[0].string
= NULL
;
1732 current_sblock
->next
= b
;
1740 data
= b
->next_free
;
1741 b
->next_free
= (sdata
*) ((char *) data
+ needed
+ GC_STRING_EXTRA
);
1743 MALLOC_UNBLOCK_INPUT
;
1746 s
->data
= SDATA_DATA (data
);
1747 #ifdef GC_CHECK_STRING_BYTES
1748 SDATA_NBYTES (data
) = nbytes
;
1751 s
->size_byte
= nbytes
;
1752 s
->data
[nbytes
] = '\0';
1753 #ifdef GC_CHECK_STRING_OVERRUN
1754 memcpy ((char *) data
+ needed
, string_overrun_cookie
,
1755 GC_STRING_OVERRUN_COOKIE_SIZE
);
1758 /* Note that Faset may call to this function when S has already data
1759 assigned. In this case, mark data as free by setting it's string
1760 back-pointer to null, and record the size of the data in it. */
1763 SDATA_NBYTES (old_data
) = old_nbytes
;
1764 old_data
->string
= NULL
;
1767 consing_since_gc
+= needed
;
1771 /* Sweep and compact strings. */
1774 sweep_strings (void)
1776 struct string_block
*b
, *next
;
1777 struct string_block
*live_blocks
= NULL
;
1779 string_free_list
= NULL
;
1780 total_strings
= total_free_strings
= 0;
1781 total_string_bytes
= 0;
1783 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1784 for (b
= string_blocks
; b
; b
= next
)
1787 struct Lisp_String
*free_list_before
= string_free_list
;
1791 for (i
= 0; i
< STRING_BLOCK_SIZE
; ++i
)
1793 struct Lisp_String
*s
= b
->strings
+ i
;
1797 /* String was not on free-list before. */
1798 if (STRING_MARKED_P (s
))
1800 /* String is live; unmark it and its intervals. */
1803 /* Do not use string_(set|get)_intervals here. */
1804 s
->intervals
= balance_intervals (s
->intervals
);
1807 total_string_bytes
+= STRING_BYTES (s
);
1811 /* String is dead. Put it on the free-list. */
1812 sdata
*data
= SDATA_OF_STRING (s
);
1814 /* Save the size of S in its sdata so that we know
1815 how large that is. Reset the sdata's string
1816 back-pointer so that we know it's free. */
1817 #ifdef GC_CHECK_STRING_BYTES
1818 if (string_bytes (s
) != SDATA_NBYTES (data
))
1821 data
->n
.nbytes
= STRING_BYTES (s
);
1823 data
->string
= NULL
;
1825 /* Reset the strings's `data' member so that we
1829 /* Put the string on the free-list. */
1830 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1831 string_free_list
= s
;
1837 /* S was on the free-list before. Put it there again. */
1838 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1839 string_free_list
= s
;
1844 /* Free blocks that contain free Lisp_Strings only, except
1845 the first two of them. */
1846 if (nfree
== STRING_BLOCK_SIZE
1847 && total_free_strings
> STRING_BLOCK_SIZE
)
1850 string_free_list
= free_list_before
;
1854 total_free_strings
+= nfree
;
1855 b
->next
= live_blocks
;
1860 check_string_free_list ();
1862 string_blocks
= live_blocks
;
1863 free_large_strings ();
1864 compact_small_strings ();
1866 check_string_free_list ();
1870 /* Free dead large strings. */
1873 free_large_strings (void)
1875 struct sblock
*b
, *next
;
1876 struct sblock
*live_blocks
= NULL
;
1878 for (b
= large_sblocks
; b
; b
= next
)
1882 if (b
->data
[0].string
== NULL
)
1886 b
->next
= live_blocks
;
1891 large_sblocks
= live_blocks
;
1895 /* Compact data of small strings. Free sblocks that don't contain
1896 data of live strings after compaction. */
1899 compact_small_strings (void)
1901 struct sblock
*b
, *tb
, *next
;
1902 sdata
*from
, *to
, *end
, *tb_end
;
1903 sdata
*to_end
, *from_end
;
1905 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1906 to, and TB_END is the end of TB. */
1908 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1911 /* Step through the blocks from the oldest to the youngest. We
1912 expect that old blocks will stabilize over time, so that less
1913 copying will happen this way. */
1914 for (b
= oldest_sblock
; b
; b
= b
->next
)
1917 eassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
1919 for (from
= b
->data
; from
< end
; from
= from_end
)
1921 /* Compute the next FROM here because copying below may
1922 overwrite data we need to compute it. */
1924 struct Lisp_String
*s
= from
->string
;
1926 #ifdef GC_CHECK_STRING_BYTES
1927 /* Check that the string size recorded in the string is the
1928 same as the one recorded in the sdata structure. */
1929 if (s
&& string_bytes (s
) != SDATA_NBYTES (from
))
1931 #endif /* GC_CHECK_STRING_BYTES */
1933 nbytes
= s
? STRING_BYTES (s
) : SDATA_NBYTES (from
);
1934 eassert (nbytes
<= LARGE_STRING_BYTES
);
1936 nbytes
= SDATA_SIZE (nbytes
);
1937 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 if (memcmp (string_overrun_cookie
,
1941 (char *) from_end
- GC_STRING_OVERRUN_COOKIE_SIZE
,
1942 GC_STRING_OVERRUN_COOKIE_SIZE
))
1946 /* Non-NULL S means it's alive. Copy its data. */
1949 /* If TB is full, proceed with the next sblock. */
1950 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
1951 if (to_end
> tb_end
)
1955 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1957 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
1960 /* Copy, and update the string's `data' pointer. */
1963 eassert (tb
!= b
|| to
< from
);
1964 memmove (to
, from
, nbytes
+ GC_STRING_EXTRA
);
1965 to
->string
->data
= SDATA_DATA (to
);
1968 /* Advance past the sdata we copied to. */
1974 /* The rest of the sblocks following TB don't contain live data, so
1975 we can free them. */
1976 for (b
= tb
->next
; b
; b
= next
)
1984 current_sblock
= tb
;
1988 string_overflow (void)
1990 error ("Maximum string size exceeded");
1993 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
1994 doc
: /* Return a newly created string of length LENGTH, with INIT in each element.
1995 LENGTH must be an integer.
1996 INIT must be an integer that represents a character. */)
1997 (Lisp_Object length
, Lisp_Object init
)
1999 register Lisp_Object val
;
2003 CHECK_NATNUM (length
);
2004 CHECK_CHARACTER (init
);
2006 c
= XFASTINT (init
);
2007 if (ASCII_CHAR_P (c
))
2009 nbytes
= XINT (length
);
2010 val
= make_uninit_string (nbytes
);
2011 memset (SDATA (val
), c
, nbytes
);
2012 SDATA (val
)[nbytes
] = 0;
2016 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2017 ptrdiff_t len
= CHAR_STRING (c
, str
);
2018 EMACS_INT string_len
= XINT (length
);
2019 unsigned char *p
, *beg
, *end
;
2021 if (string_len
> STRING_BYTES_MAX
/ len
)
2023 nbytes
= len
* string_len
;
2024 val
= make_uninit_multibyte_string (string_len
, nbytes
);
2025 for (beg
= SDATA (val
), p
= beg
, end
= beg
+ nbytes
; p
< end
; p
+= len
)
2027 /* First time we just copy `str' to the data of `val'. */
2029 memcpy (p
, str
, len
);
2032 /* Next time we copy largest possible chunk from
2033 initialized to uninitialized part of `val'. */
2034 len
= min (p
- beg
, end
- p
);
2035 memcpy (p
, beg
, len
);
2044 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2048 bool_vector_fill (Lisp_Object a
, Lisp_Object init
)
2050 EMACS_INT nbits
= bool_vector_size (a
);
2053 unsigned char *data
= bool_vector_uchar_data (a
);
2054 int pattern
= NILP (init
) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR
) - 1;
2055 ptrdiff_t nbytes
= bool_vector_bytes (nbits
);
2056 int last_mask
= ~ (~0 << ((nbits
- 1) % BOOL_VECTOR_BITS_PER_CHAR
+ 1));
2057 memset (data
, pattern
, nbytes
- 1);
2058 data
[nbytes
- 1] = pattern
& last_mask
;
2063 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2066 make_uninit_bool_vector (EMACS_INT nbits
)
2069 EMACS_INT words0
= bool_vector_words (nbits
);
2070 EMACS_INT words
= words0
+ !words0
; /* Allocate at least one word. */
2071 EMACS_INT word_bytes
= words
* sizeof (bits_word
);
2072 EMACS_INT needed_elements
= ((bool_header_size
- header_size
+ word_bytes
2075 struct Lisp_Bool_Vector
*p
2076 = (struct Lisp_Bool_Vector
*) allocate_vector (needed_elements
);
2077 XSETVECTOR (val
, p
);
2078 XSETPVECTYPESIZE (XVECTOR (val
), PVEC_BOOL_VECTOR
, 0, 0);
2081 /* Clear padding at the end. If NBITS != 0 this initializes more
2082 than it needs to, but that's OK. */
2083 p
->data
[words
- 1] = 0;
2088 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
2089 doc
: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2090 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2091 (Lisp_Object length
, Lisp_Object init
)
2095 CHECK_NATNUM (length
);
2096 val
= make_uninit_bool_vector (XFASTINT (length
));
2097 return bool_vector_fill (val
, init
);
2101 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2102 of characters from the contents. This string may be unibyte or
2103 multibyte, depending on the contents. */
2106 make_string (const char *contents
, ptrdiff_t nbytes
)
2108 register Lisp_Object val
;
2109 ptrdiff_t nchars
, multibyte_nbytes
;
2111 parse_str_as_multibyte ((const unsigned char *) contents
, nbytes
,
2112 &nchars
, &multibyte_nbytes
);
2113 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
2114 /* CONTENTS contains no multibyte sequences or contains an invalid
2115 multibyte sequence. We must make unibyte string. */
2116 val
= make_unibyte_string (contents
, nbytes
);
2118 val
= make_multibyte_string (contents
, nchars
, nbytes
);
2123 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2126 make_unibyte_string (const char *contents
, ptrdiff_t length
)
2128 register Lisp_Object val
;
2129 val
= make_uninit_string (length
);
2130 memcpy (SDATA (val
), contents
, length
);
2135 /* Make a multibyte string from NCHARS characters occupying NBYTES
2136 bytes at CONTENTS. */
2139 make_multibyte_string (const char *contents
,
2140 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2142 register Lisp_Object val
;
2143 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2144 memcpy (SDATA (val
), contents
, nbytes
);
2149 /* Make a string from NCHARS characters occupying NBYTES bytes at
2150 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2153 make_string_from_bytes (const char *contents
,
2154 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2156 register Lisp_Object val
;
2157 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2158 memcpy (SDATA (val
), contents
, nbytes
);
2159 if (SBYTES (val
) == SCHARS (val
))
2160 STRING_SET_UNIBYTE (val
);
2165 /* Make a string from NCHARS characters occupying NBYTES bytes at
2166 CONTENTS. The argument MULTIBYTE controls whether to label the
2167 string as multibyte. If NCHARS is negative, it counts the number of
2168 characters by itself. */
2171 make_specified_string (const char *contents
,
2172 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
2179 nchars
= multibyte_chars_in_text ((const unsigned char *) contents
,
2184 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2185 memcpy (SDATA (val
), contents
, nbytes
);
2187 STRING_SET_UNIBYTE (val
);
2192 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2193 occupying LENGTH bytes. */
2196 make_uninit_string (EMACS_INT length
)
2201 return empty_unibyte_string
;
2202 val
= make_uninit_multibyte_string (length
, length
);
2203 STRING_SET_UNIBYTE (val
);
2208 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2209 which occupy NBYTES bytes. */
2212 make_uninit_multibyte_string (EMACS_INT nchars
, EMACS_INT nbytes
)
2215 struct Lisp_String
*s
;
2220 return empty_multibyte_string
;
2222 s
= allocate_string ();
2223 s
->intervals
= NULL
;
2224 allocate_string_data (s
, nchars
, nbytes
);
2225 XSETSTRING (string
, s
);
2226 string_chars_consed
+= nbytes
;
2230 /* Print arguments to BUF according to a FORMAT, then return
2231 a Lisp_String initialized with the data from BUF. */
2234 make_formatted_string (char *buf
, const char *format
, ...)
2239 va_start (ap
, format
);
2240 length
= vsprintf (buf
, format
, ap
);
2242 return make_string (buf
, length
);
2246 /***********************************************************************
2248 ***********************************************************************/
2250 /* We store float cells inside of float_blocks, allocating a new
2251 float_block with malloc whenever necessary. Float cells reclaimed
2252 by GC are put on a free list to be reallocated before allocating
2253 any new float cells from the latest float_block. */
2255 #define FLOAT_BLOCK_SIZE \
2256 (((BLOCK_BYTES - sizeof (struct float_block *) \
2257 /* The compiler might add padding at the end. */ \
2258 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2259 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2261 #define GETMARKBIT(block,n) \
2262 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2263 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2266 #define SETMARKBIT(block,n) \
2267 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2268 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2270 #define UNSETMARKBIT(block,n) \
2271 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2272 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2274 #define FLOAT_BLOCK(fptr) \
2275 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2277 #define FLOAT_INDEX(fptr) \
2278 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2282 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2283 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
2284 int gcmarkbits
[1 + FLOAT_BLOCK_SIZE
/ (sizeof (int) * CHAR_BIT
)];
2285 struct float_block
*next
;
2288 #define FLOAT_MARKED_P(fptr) \
2289 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2291 #define FLOAT_MARK(fptr) \
2292 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2294 #define FLOAT_UNMARK(fptr) \
2295 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2297 /* Current float_block. */
2299 static struct float_block
*float_block
;
2301 /* Index of first unused Lisp_Float in the current float_block. */
2303 static int float_block_index
= FLOAT_BLOCK_SIZE
;
2305 /* Free-list of Lisp_Floats. */
2307 static struct Lisp_Float
*float_free_list
;
2309 /* Return a new float object with value FLOAT_VALUE. */
2312 make_float (double float_value
)
2314 register Lisp_Object val
;
2318 if (float_free_list
)
2320 /* We use the data field for chaining the free list
2321 so that we won't use the same field that has the mark bit. */
2322 XSETFLOAT (val
, float_free_list
);
2323 float_free_list
= float_free_list
->u
.chain
;
2327 if (float_block_index
== FLOAT_BLOCK_SIZE
)
2329 struct float_block
*new
2330 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT
);
2331 new->next
= float_block
;
2332 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2334 float_block_index
= 0;
2335 total_free_floats
+= FLOAT_BLOCK_SIZE
;
2337 XSETFLOAT (val
, &float_block
->floats
[float_block_index
]);
2338 float_block_index
++;
2341 MALLOC_UNBLOCK_INPUT
;
2343 XFLOAT_INIT (val
, float_value
);
2344 eassert (!FLOAT_MARKED_P (XFLOAT (val
)));
2345 consing_since_gc
+= sizeof (struct Lisp_Float
);
2347 total_free_floats
--;
2353 /***********************************************************************
2355 ***********************************************************************/
2357 /* We store cons cells inside of cons_blocks, allocating a new
2358 cons_block with malloc whenever necessary. Cons cells reclaimed by
2359 GC are put on a free list to be reallocated before allocating
2360 any new cons cells from the latest cons_block. */
2362 #define CONS_BLOCK_SIZE \
2363 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2364 /* The compiler might add padding at the end. */ \
2365 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2366 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2368 #define CONS_BLOCK(fptr) \
2369 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2371 #define CONS_INDEX(fptr) \
2372 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2376 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2377 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2378 int gcmarkbits
[1 + CONS_BLOCK_SIZE
/ (sizeof (int) * CHAR_BIT
)];
2379 struct cons_block
*next
;
2382 #define CONS_MARKED_P(fptr) \
2383 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2385 #define CONS_MARK(fptr) \
2386 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2388 #define CONS_UNMARK(fptr) \
2389 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2391 /* Current cons_block. */
2393 static struct cons_block
*cons_block
;
2395 /* Index of first unused Lisp_Cons in the current block. */
2397 static int cons_block_index
= CONS_BLOCK_SIZE
;
2399 /* Free-list of Lisp_Cons structures. */
2401 static struct Lisp_Cons
*cons_free_list
;
2403 /* Explicitly free a cons cell by putting it on the free-list. */
2406 free_cons (struct Lisp_Cons
*ptr
)
2408 ptr
->u
.chain
= cons_free_list
;
2412 cons_free_list
= ptr
;
2413 consing_since_gc
-= sizeof *ptr
;
2414 total_free_conses
++;
2417 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2418 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2419 (Lisp_Object car
, Lisp_Object cdr
)
2421 register Lisp_Object val
;
2427 /* We use the cdr for chaining the free list
2428 so that we won't use the same field that has the mark bit. */
2429 XSETCONS (val
, cons_free_list
);
2430 cons_free_list
= cons_free_list
->u
.chain
;
2434 if (cons_block_index
== CONS_BLOCK_SIZE
)
2436 struct cons_block
*new
2437 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS
);
2438 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2439 new->next
= cons_block
;
2441 cons_block_index
= 0;
2442 total_free_conses
+= CONS_BLOCK_SIZE
;
2444 XSETCONS (val
, &cons_block
->conses
[cons_block_index
]);
2448 MALLOC_UNBLOCK_INPUT
;
2452 eassert (!CONS_MARKED_P (XCONS (val
)));
2453 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2454 total_free_conses
--;
2455 cons_cells_consed
++;
2459 #ifdef GC_CHECK_CONS_LIST
2460 /* Get an error now if there's any junk in the cons free list. */
2462 check_cons_list (void)
2464 struct Lisp_Cons
*tail
= cons_free_list
;
2467 tail
= tail
->u
.chain
;
2471 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2474 list1 (Lisp_Object arg1
)
2476 return Fcons (arg1
, Qnil
);
2480 list2 (Lisp_Object arg1
, Lisp_Object arg2
)
2482 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2487 list3 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
)
2489 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2494 list4 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
)
2496 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2501 list5 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
, Lisp_Object arg5
)
2503 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2504 Fcons (arg5
, Qnil
)))));
2507 /* Make a list of COUNT Lisp_Objects, where ARG is the
2508 first one. Allocate conses from pure space if TYPE
2509 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2512 listn (enum constype type
, ptrdiff_t count
, Lisp_Object arg
, ...)
2516 Lisp_Object val
, *objp
;
2518 /* Change to SAFE_ALLOCA if you hit this eassert. */
2519 eassert (count
<= MAX_ALLOCA
/ word_size
);
2521 objp
= alloca (count
* word_size
);
2524 for (i
= 1; i
< count
; i
++)
2525 objp
[i
] = va_arg (ap
, Lisp_Object
);
2528 for (val
= Qnil
, i
= count
- 1; i
>= 0; i
--)
2530 if (type
== CONSTYPE_PURE
)
2531 val
= pure_cons (objp
[i
], val
);
2532 else if (type
== CONSTYPE_HEAP
)
2533 val
= Fcons (objp
[i
], val
);
2540 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2541 doc
: /* Return a newly created list with specified arguments as elements.
2542 Any number of arguments, even zero arguments, are allowed.
2543 usage: (list &rest OBJECTS) */)
2544 (ptrdiff_t nargs
, Lisp_Object
*args
)
2546 register Lisp_Object val
;
2552 val
= Fcons (args
[nargs
], val
);
2558 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2559 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2560 (register Lisp_Object length
, Lisp_Object init
)
2562 register Lisp_Object val
;
2563 register EMACS_INT size
;
2565 CHECK_NATNUM (length
);
2566 size
= XFASTINT (length
);
2571 val
= Fcons (init
, val
);
2576 val
= Fcons (init
, val
);
2581 val
= Fcons (init
, val
);
2586 val
= Fcons (init
, val
);
2591 val
= Fcons (init
, val
);
2606 /***********************************************************************
2608 ***********************************************************************/
2610 /* Sometimes a vector's contents are merely a pointer internally used
2611 in vector allocation code. Usually you don't want to touch this. */
2613 static struct Lisp_Vector
*
2614 next_vector (struct Lisp_Vector
*v
)
2616 return XUNTAG (v
->contents
[0], 0);
2620 set_next_vector (struct Lisp_Vector
*v
, struct Lisp_Vector
*p
)
2622 v
->contents
[0] = make_lisp_ptr (p
, 0);
2625 /* This value is balanced well enough to avoid too much internal overhead
2626 for the most common cases; it's not required to be a power of two, but
2627 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2629 #define VECTOR_BLOCK_SIZE 4096
2633 /* Alignment of struct Lisp_Vector objects. */
2634 vector_alignment
= COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR
,
2635 USE_LSB_TAG
? GCALIGNMENT
: 1),
2637 /* Vector size requests are a multiple of this. */
2638 roundup_size
= COMMON_MULTIPLE (vector_alignment
, word_size
)
2641 /* Verify assumptions described above. */
2642 verify ((VECTOR_BLOCK_SIZE
% roundup_size
) == 0);
2643 verify (VECTOR_BLOCK_SIZE
<= (1 << PSEUDOVECTOR_SIZE_BITS
));
2645 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2646 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2647 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2648 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2650 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2652 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2654 /* Size of the minimal vector allocated from block. */
2656 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2658 /* Size of the largest vector allocated from block. */
2660 #define VBLOCK_BYTES_MAX \
2661 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2663 /* We maintain one free list for each possible block-allocated
2664 vector size, and this is the number of free lists we have. */
2666 #define VECTOR_MAX_FREE_LIST_INDEX \
2667 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2669 /* Common shortcut to advance vector pointer over a block data. */
2671 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2673 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2675 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2677 /* Common shortcut to setup vector on a free list. */
2679 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2681 (tmp) = ((nbytes - header_size) / word_size); \
2682 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2683 eassert ((nbytes) % roundup_size == 0); \
2684 (tmp) = VINDEX (nbytes); \
2685 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2686 set_next_vector (v, vector_free_lists[tmp]); \
2687 vector_free_lists[tmp] = (v); \
2688 total_free_vector_slots += (nbytes) / word_size; \
2691 /* This internal type is used to maintain the list of large vectors
2692 which are allocated at their own, e.g. outside of vector blocks.
2694 struct large_vector itself cannot contain a struct Lisp_Vector, as
2695 the latter contains a flexible array member and C99 does not allow
2696 such structs to be nested. Instead, each struct large_vector
2697 object LV is followed by a struct Lisp_Vector, which is at offset
2698 large_vector_offset from LV, and whose address is therefore
2699 large_vector_vec (&LV). */
2703 struct large_vector
*next
;
2708 large_vector_offset
= ROUNDUP (sizeof (struct large_vector
), vector_alignment
)
2711 static struct Lisp_Vector
*
2712 large_vector_vec (struct large_vector
*p
)
2714 return (struct Lisp_Vector
*) ((char *) p
+ large_vector_offset
);
2717 /* This internal type is used to maintain an underlying storage
2718 for small vectors. */
2722 char data
[VECTOR_BLOCK_BYTES
];
2723 struct vector_block
*next
;
2726 /* Chain of vector blocks. */
2728 static struct vector_block
*vector_blocks
;
2730 /* Vector free lists, where NTH item points to a chain of free
2731 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2733 static struct Lisp_Vector
*vector_free_lists
[VECTOR_MAX_FREE_LIST_INDEX
];
2735 /* Singly-linked list of large vectors. */
2737 static struct large_vector
*large_vectors
;
2739 /* The only vector with 0 slots, allocated from pure space. */
2741 Lisp_Object zero_vector
;
2743 /* Number of live vectors. */
2745 static EMACS_INT total_vectors
;
2747 /* Total size of live and free vectors, in Lisp_Object units. */
2749 static EMACS_INT total_vector_slots
, total_free_vector_slots
;
2751 /* Get a new vector block. */
2753 static struct vector_block
*
2754 allocate_vector_block (void)
2756 struct vector_block
*block
= xmalloc (sizeof *block
);
2758 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2759 mem_insert (block
->data
, block
->data
+ VECTOR_BLOCK_BYTES
,
2760 MEM_TYPE_VECTOR_BLOCK
);
2763 block
->next
= vector_blocks
;
2764 vector_blocks
= block
;
2768 /* Called once to initialize vector allocation. */
2773 zero_vector
= make_pure_vector (0);
2776 /* Allocate vector from a vector block. */
2778 static struct Lisp_Vector
*
2779 allocate_vector_from_block (size_t nbytes
)
2781 struct Lisp_Vector
*vector
;
2782 struct vector_block
*block
;
2783 size_t index
, restbytes
;
2785 eassert (VBLOCK_BYTES_MIN
<= nbytes
&& nbytes
<= VBLOCK_BYTES_MAX
);
2786 eassert (nbytes
% roundup_size
== 0);
2788 /* First, try to allocate from a free list
2789 containing vectors of the requested size. */
2790 index
= VINDEX (nbytes
);
2791 if (vector_free_lists
[index
])
2793 vector
= vector_free_lists
[index
];
2794 vector_free_lists
[index
] = next_vector (vector
);
2795 total_free_vector_slots
-= nbytes
/ word_size
;
2799 /* Next, check free lists containing larger vectors. Since
2800 we will split the result, we should have remaining space
2801 large enough to use for one-slot vector at least. */
2802 for (index
= VINDEX (nbytes
+ VBLOCK_BYTES_MIN
);
2803 index
< VECTOR_MAX_FREE_LIST_INDEX
; index
++)
2804 if (vector_free_lists
[index
])
2806 /* This vector is larger than requested. */
2807 vector
= vector_free_lists
[index
];
2808 vector_free_lists
[index
] = next_vector (vector
);
2809 total_free_vector_slots
-= nbytes
/ word_size
;
2811 /* Excess bytes are used for the smaller vector,
2812 which should be set on an appropriate free list. */
2813 restbytes
= index
* roundup_size
+ VBLOCK_BYTES_MIN
- nbytes
;
2814 eassert (restbytes
% roundup_size
== 0);
2815 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2819 /* Finally, need a new vector block. */
2820 block
= allocate_vector_block ();
2822 /* New vector will be at the beginning of this block. */
2823 vector
= (struct Lisp_Vector
*) block
->data
;
2825 /* If the rest of space from this block is large enough
2826 for one-slot vector at least, set up it on a free list. */
2827 restbytes
= VECTOR_BLOCK_BYTES
- nbytes
;
2828 if (restbytes
>= VBLOCK_BYTES_MIN
)
2830 eassert (restbytes
% roundup_size
== 0);
2831 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2836 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2838 #define VECTOR_IN_BLOCK(vector, block) \
2839 ((char *) (vector) <= (block)->data \
2840 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2842 /* Return the memory footprint of V in bytes. */
2845 vector_nbytes (struct Lisp_Vector
*v
)
2847 ptrdiff_t size
= v
->header
.size
& ~ARRAY_MARK_FLAG
;
2850 if (size
& PSEUDOVECTOR_FLAG
)
2852 if (PSEUDOVECTOR_TYPEP (&v
->header
, PVEC_BOOL_VECTOR
))
2854 struct Lisp_Bool_Vector
*bv
= (struct Lisp_Bool_Vector
*) v
;
2855 ptrdiff_t word_bytes
= (bool_vector_words (bv
->size
)
2856 * sizeof (bits_word
));
2857 ptrdiff_t boolvec_bytes
= bool_header_size
+ word_bytes
;
2858 verify (header_size
<= bool_header_size
);
2859 nwords
= (boolvec_bytes
- header_size
+ word_size
- 1) / word_size
;
2862 nwords
= ((size
& PSEUDOVECTOR_SIZE_MASK
)
2863 + ((size
& PSEUDOVECTOR_REST_MASK
)
2864 >> PSEUDOVECTOR_SIZE_BITS
));
2868 return vroundup (header_size
+ word_size
* nwords
);
2871 /* Release extra resources still in use by VECTOR, which may be any
2872 vector-like object. For now, this is used just to free data in
2876 cleanup_vector (struct Lisp_Vector
*vector
)
2878 if (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FONT
)
2879 && ((vector
->header
.size
& PSEUDOVECTOR_SIZE_MASK
)
2880 == FONT_OBJECT_MAX
))
2881 ((struct font
*) vector
)->driver
->close ((struct font
*) vector
);
2884 /* Reclaim space used by unmarked vectors. */
2887 sweep_vectors (void)
2889 struct vector_block
*block
, **bprev
= &vector_blocks
;
2890 struct large_vector
*lv
, **lvprev
= &large_vectors
;
2891 struct Lisp_Vector
*vector
, *next
;
2893 total_vectors
= total_vector_slots
= total_free_vector_slots
= 0;
2894 memset (vector_free_lists
, 0, sizeof (vector_free_lists
));
2896 /* Looking through vector blocks. */
2898 for (block
= vector_blocks
; block
; block
= *bprev
)
2900 bool free_this_block
= 0;
2903 for (vector
= (struct Lisp_Vector
*) block
->data
;
2904 VECTOR_IN_BLOCK (vector
, block
); vector
= next
)
2906 if (VECTOR_MARKED_P (vector
))
2908 VECTOR_UNMARK (vector
);
2910 nbytes
= vector_nbytes (vector
);
2911 total_vector_slots
+= nbytes
/ word_size
;
2912 next
= ADVANCE (vector
, nbytes
);
2916 ptrdiff_t total_bytes
;
2918 cleanup_vector (vector
);
2919 nbytes
= vector_nbytes (vector
);
2920 total_bytes
= nbytes
;
2921 next
= ADVANCE (vector
, nbytes
);
2923 /* While NEXT is not marked, try to coalesce with VECTOR,
2924 thus making VECTOR of the largest possible size. */
2926 while (VECTOR_IN_BLOCK (next
, block
))
2928 if (VECTOR_MARKED_P (next
))
2930 cleanup_vector (next
);
2931 nbytes
= vector_nbytes (next
);
2932 total_bytes
+= nbytes
;
2933 next
= ADVANCE (next
, nbytes
);
2936 eassert (total_bytes
% roundup_size
== 0);
2938 if (vector
== (struct Lisp_Vector
*) block
->data
2939 && !VECTOR_IN_BLOCK (next
, block
))
2940 /* This block should be freed because all of it's
2941 space was coalesced into the only free vector. */
2942 free_this_block
= 1;
2946 SETUP_ON_FREE_LIST (vector
, total_bytes
, tmp
);
2951 if (free_this_block
)
2953 *bprev
= block
->next
;
2954 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2955 mem_delete (mem_find (block
->data
));
2960 bprev
= &block
->next
;
2963 /* Sweep large vectors. */
2965 for (lv
= large_vectors
; lv
; lv
= *lvprev
)
2967 vector
= large_vector_vec (lv
);
2968 if (VECTOR_MARKED_P (vector
))
2970 VECTOR_UNMARK (vector
);
2972 if (vector
->header
.size
& PSEUDOVECTOR_FLAG
)
2974 /* All non-bool pseudovectors are small enough to be allocated
2975 from vector blocks. This code should be redesigned if some
2976 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2977 eassert (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_BOOL_VECTOR
));
2978 total_vector_slots
+= vector_nbytes (vector
) / word_size
;
2982 += header_size
/ word_size
+ vector
->header
.size
;
2993 /* Value is a pointer to a newly allocated Lisp_Vector structure
2994 with room for LEN Lisp_Objects. */
2996 static struct Lisp_Vector
*
2997 allocate_vectorlike (ptrdiff_t len
)
2999 struct Lisp_Vector
*p
;
3004 p
= XVECTOR (zero_vector
);
3007 size_t nbytes
= header_size
+ len
* word_size
;
3009 #ifdef DOUG_LEA_MALLOC
3010 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3011 because mapped region contents are not preserved in
3013 mallopt (M_MMAP_MAX
, 0);
3016 if (nbytes
<= VBLOCK_BYTES_MAX
)
3017 p
= allocate_vector_from_block (vroundup (nbytes
));
3020 struct large_vector
*lv
3021 = lisp_malloc ((large_vector_offset
+ header_size
3023 MEM_TYPE_VECTORLIKE
);
3024 lv
->next
= large_vectors
;
3026 p
= large_vector_vec (lv
);
3029 #ifdef DOUG_LEA_MALLOC
3030 /* Back to a reasonable maximum of mmap'ed areas. */
3031 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
3034 consing_since_gc
+= nbytes
;
3035 vector_cells_consed
+= len
;
3038 MALLOC_UNBLOCK_INPUT
;
3044 /* Allocate a vector with LEN slots. */
3046 struct Lisp_Vector
*
3047 allocate_vector (EMACS_INT len
)
3049 struct Lisp_Vector
*v
;
3050 ptrdiff_t nbytes_max
= min (PTRDIFF_MAX
, SIZE_MAX
);
3052 if (min ((nbytes_max
- header_size
) / word_size
, MOST_POSITIVE_FIXNUM
) < len
)
3053 memory_full (SIZE_MAX
);
3054 v
= allocate_vectorlike (len
);
3055 v
->header
.size
= len
;
3060 /* Allocate other vector-like structures. */
3062 struct Lisp_Vector
*
3063 allocate_pseudovector (int memlen
, int lisplen
, enum pvec_type tag
)
3065 struct Lisp_Vector
*v
= allocate_vectorlike (memlen
);
3068 /* Catch bogus values. */
3069 eassert (tag
<= PVEC_FONT
);
3070 eassert (memlen
- lisplen
<= (1 << PSEUDOVECTOR_REST_BITS
) - 1);
3071 eassert (lisplen
<= (1 << PSEUDOVECTOR_SIZE_BITS
) - 1);
3073 /* Only the first lisplen slots will be traced normally by the GC. */
3074 for (i
= 0; i
< lisplen
; ++i
)
3075 v
->contents
[i
] = Qnil
;
3077 XSETPVECTYPESIZE (v
, tag
, lisplen
, memlen
- lisplen
);
3082 allocate_buffer (void)
3084 struct buffer
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_BUFFER
);
3086 BUFFER_PVEC_INIT (b
);
3087 /* Put B on the chain of all buffers including killed ones. */
3088 b
->next
= all_buffers
;
3090 /* Note that the rest fields of B are not initialized. */
3094 struct Lisp_Hash_Table
*
3095 allocate_hash_table (void)
3097 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table
, count
, PVEC_HASH_TABLE
);
3101 allocate_window (void)
3105 w
= ALLOCATE_PSEUDOVECTOR (struct window
, current_matrix
, PVEC_WINDOW
);
3106 /* Users assumes that non-Lisp data is zeroed. */
3107 memset (&w
->current_matrix
, 0,
3108 sizeof (*w
) - offsetof (struct window
, current_matrix
));
3113 allocate_terminal (void)
3117 t
= ALLOCATE_PSEUDOVECTOR (struct terminal
, next_terminal
, PVEC_TERMINAL
);
3118 /* Users assumes that non-Lisp data is zeroed. */
3119 memset (&t
->next_terminal
, 0,
3120 sizeof (*t
) - offsetof (struct terminal
, next_terminal
));
3125 allocate_frame (void)
3129 f
= ALLOCATE_PSEUDOVECTOR (struct frame
, face_cache
, PVEC_FRAME
);
3130 /* Users assumes that non-Lisp data is zeroed. */
3131 memset (&f
->face_cache
, 0,
3132 sizeof (*f
) - offsetof (struct frame
, face_cache
));
3136 struct Lisp_Process
*
3137 allocate_process (void)
3139 struct Lisp_Process
*p
;
3141 p
= ALLOCATE_PSEUDOVECTOR (struct Lisp_Process
, pid
, PVEC_PROCESS
);
3142 /* Users assumes that non-Lisp data is zeroed. */
3144 sizeof (*p
) - offsetof (struct Lisp_Process
, pid
));
3148 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
3149 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
3150 See also the function `vector'. */)
3151 (register Lisp_Object length
, Lisp_Object init
)
3154 register ptrdiff_t sizei
;
3155 register ptrdiff_t i
;
3156 register struct Lisp_Vector
*p
;
3158 CHECK_NATNUM (length
);
3160 p
= allocate_vector (XFASTINT (length
));
3161 sizei
= XFASTINT (length
);
3162 for (i
= 0; i
< sizei
; i
++)
3163 p
->contents
[i
] = init
;
3165 XSETVECTOR (vector
, p
);
3170 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
3171 doc
: /* Return a newly created vector with specified arguments as elements.
3172 Any number of arguments, even zero arguments, are allowed.
3173 usage: (vector &rest OBJECTS) */)
3174 (ptrdiff_t nargs
, Lisp_Object
*args
)
3177 register Lisp_Object val
= make_uninit_vector (nargs
);
3178 register struct Lisp_Vector
*p
= XVECTOR (val
);
3180 for (i
= 0; i
< nargs
; i
++)
3181 p
->contents
[i
] = args
[i
];
3186 make_byte_code (struct Lisp_Vector
*v
)
3188 /* Don't allow the global zero_vector to become a byte code object. */
3189 eassert(0 < v
->header
.size
);
3190 if (v
->header
.size
> 1 && STRINGP (v
->contents
[1])
3191 && STRING_MULTIBYTE (v
->contents
[1]))
3192 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3193 earlier because they produced a raw 8-bit string for byte-code
3194 and now such a byte-code string is loaded as multibyte while
3195 raw 8-bit characters converted to multibyte form. Thus, now we
3196 must convert them back to the original unibyte form. */
3197 v
->contents
[1] = Fstring_as_unibyte (v
->contents
[1]);
3198 XSETPVECTYPE (v
, PVEC_COMPILED
);
3201 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
3202 doc
: /* Create a byte-code object with specified arguments as elements.
3203 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3204 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3205 and (optional) INTERACTIVE-SPEC.
3206 The first four arguments are required; at most six have any
3208 The ARGLIST can be either like the one of `lambda', in which case the arguments
3209 will be dynamically bound before executing the byte code, or it can be an
3210 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3211 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3212 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3213 argument to catch the left-over arguments. If such an integer is used, the
3214 arguments will not be dynamically bound but will be instead pushed on the
3215 stack before executing the byte-code.
3216 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3217 (ptrdiff_t nargs
, Lisp_Object
*args
)
3220 register Lisp_Object val
= make_uninit_vector (nargs
);
3221 register struct Lisp_Vector
*p
= XVECTOR (val
);
3223 /* We used to purecopy everything here, if purify-flag was set. This worked
3224 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3225 dangerous, since make-byte-code is used during execution to build
3226 closures, so any closure built during the preload phase would end up
3227 copied into pure space, including its free variables, which is sometimes
3228 just wasteful and other times plainly wrong (e.g. those free vars may want
3231 for (i
= 0; i
< nargs
; i
++)
3232 p
->contents
[i
] = args
[i
];
3234 XSETCOMPILED (val
, p
);
3240 /***********************************************************************
3242 ***********************************************************************/
3244 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3245 of the required alignment if LSB tags are used. */
3247 union aligned_Lisp_Symbol
3249 struct Lisp_Symbol s
;
3251 unsigned char c
[(sizeof (struct Lisp_Symbol
) + GCALIGNMENT
- 1)
3256 /* Each symbol_block is just under 1020 bytes long, since malloc
3257 really allocates in units of powers of two and uses 4 bytes for its
3260 #define SYMBOL_BLOCK_SIZE \
3261 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3265 /* Place `symbols' first, to preserve alignment. */
3266 union aligned_Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
3267 struct symbol_block
*next
;
3270 /* Current symbol block and index of first unused Lisp_Symbol
3273 static struct symbol_block
*symbol_block
;
3274 static int symbol_block_index
= SYMBOL_BLOCK_SIZE
;
3276 /* List of free symbols. */
3278 static struct Lisp_Symbol
*symbol_free_list
;
3281 set_symbol_name (Lisp_Object sym
, Lisp_Object name
)
3283 XSYMBOL (sym
)->name
= name
;
3286 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
3287 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
3288 Its value is void, and its function definition and property list are nil. */)
3291 register Lisp_Object val
;
3292 register struct Lisp_Symbol
*p
;
3294 CHECK_STRING (name
);
3298 if (symbol_free_list
)
3300 XSETSYMBOL (val
, symbol_free_list
);
3301 symbol_free_list
= symbol_free_list
->next
;
3305 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
3307 struct symbol_block
*new
3308 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL
);
3309 new->next
= symbol_block
;
3311 symbol_block_index
= 0;
3312 total_free_symbols
+= SYMBOL_BLOCK_SIZE
;
3314 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
].s
);
3315 symbol_block_index
++;
3318 MALLOC_UNBLOCK_INPUT
;
3321 set_symbol_name (val
, name
);
3322 set_symbol_plist (val
, Qnil
);
3323 p
->redirect
= SYMBOL_PLAINVAL
;
3324 SET_SYMBOL_VAL (p
, Qunbound
);
3325 set_symbol_function (val
, Qnil
);
3326 set_symbol_next (val
, NULL
);
3328 p
->interned
= SYMBOL_UNINTERNED
;
3330 p
->declared_special
= 0;
3331 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
3333 total_free_symbols
--;
3339 /***********************************************************************
3340 Marker (Misc) Allocation
3341 ***********************************************************************/
3343 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3344 the required alignment when LSB tags are used. */
3346 union aligned_Lisp_Misc
3350 unsigned char c
[(sizeof (union Lisp_Misc
) + GCALIGNMENT
- 1)
3355 /* Allocation of markers and other objects that share that structure.
3356 Works like allocation of conses. */
3358 #define MARKER_BLOCK_SIZE \
3359 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3363 /* Place `markers' first, to preserve alignment. */
3364 union aligned_Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
3365 struct marker_block
*next
;
3368 static struct marker_block
*marker_block
;
3369 static int marker_block_index
= MARKER_BLOCK_SIZE
;
3371 static union Lisp_Misc
*marker_free_list
;
3373 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3376 allocate_misc (enum Lisp_Misc_Type type
)
3382 if (marker_free_list
)
3384 XSETMISC (val
, marker_free_list
);
3385 marker_free_list
= marker_free_list
->u_free
.chain
;
3389 if (marker_block_index
== MARKER_BLOCK_SIZE
)
3391 struct marker_block
*new = lisp_malloc (sizeof *new, MEM_TYPE_MISC
);
3392 new->next
= marker_block
;
3394 marker_block_index
= 0;
3395 total_free_markers
+= MARKER_BLOCK_SIZE
;
3397 XSETMISC (val
, &marker_block
->markers
[marker_block_index
].m
);
3398 marker_block_index
++;
3401 MALLOC_UNBLOCK_INPUT
;
3403 --total_free_markers
;
3404 consing_since_gc
+= sizeof (union Lisp_Misc
);
3405 misc_objects_consed
++;
3406 XMISCANY (val
)->type
= type
;
3407 XMISCANY (val
)->gcmarkbit
= 0;
3411 /* Free a Lisp_Misc object. */
3414 free_misc (Lisp_Object misc
)
3416 XMISCANY (misc
)->type
= Lisp_Misc_Free
;
3417 XMISC (misc
)->u_free
.chain
= marker_free_list
;
3418 marker_free_list
= XMISC (misc
);
3419 consing_since_gc
-= sizeof (union Lisp_Misc
);
3420 total_free_markers
++;
3423 /* Verify properties of Lisp_Save_Value's representation
3424 that are assumed here and elsewhere. */
3426 verify (SAVE_UNUSED
== 0);
3427 verify (((SAVE_INTEGER
| SAVE_POINTER
| SAVE_FUNCPOINTER
| SAVE_OBJECT
)
3431 /* Return Lisp_Save_Value objects for the various combinations
3432 that callers need. */
3435 make_save_int_int_int (ptrdiff_t a
, ptrdiff_t b
, ptrdiff_t c
)
3437 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3438 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3439 p
->save_type
= SAVE_TYPE_INT_INT_INT
;
3440 p
->data
[0].integer
= a
;
3441 p
->data
[1].integer
= b
;
3442 p
->data
[2].integer
= c
;
3447 make_save_obj_obj_obj_obj (Lisp_Object a
, Lisp_Object b
, Lisp_Object c
,
3450 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3451 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3452 p
->save_type
= SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
;
3453 p
->data
[0].object
= a
;
3454 p
->data
[1].object
= b
;
3455 p
->data
[2].object
= c
;
3456 p
->data
[3].object
= d
;
3461 make_save_ptr (void *a
)
3463 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3464 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3465 p
->save_type
= SAVE_POINTER
;
3466 p
->data
[0].pointer
= a
;
3471 make_save_ptr_int (void *a
, ptrdiff_t b
)
3473 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3474 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3475 p
->save_type
= SAVE_TYPE_PTR_INT
;
3476 p
->data
[0].pointer
= a
;
3477 p
->data
[1].integer
= b
;
3481 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3483 make_save_ptr_ptr (void *a
, void *b
)
3485 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3486 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3487 p
->save_type
= SAVE_TYPE_PTR_PTR
;
3488 p
->data
[0].pointer
= a
;
3489 p
->data
[1].pointer
= b
;
3495 make_save_funcptr_ptr_obj (void (*a
) (void), void *b
, Lisp_Object c
)
3497 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3498 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3499 p
->save_type
= SAVE_TYPE_FUNCPTR_PTR_OBJ
;
3500 p
->data
[0].funcpointer
= a
;
3501 p
->data
[1].pointer
= b
;
3502 p
->data
[2].object
= c
;
3506 /* Return a Lisp_Save_Value object that represents an array A
3507 of N Lisp objects. */
3510 make_save_memory (Lisp_Object
*a
, ptrdiff_t n
)
3512 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3513 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3514 p
->save_type
= SAVE_TYPE_MEMORY
;
3515 p
->data
[0].pointer
= a
;
3516 p
->data
[1].integer
= n
;
3520 /* Free a Lisp_Save_Value object. Do not use this function
3521 if SAVE contains pointer other than returned by xmalloc. */
3524 free_save_value (Lisp_Object save
)
3526 xfree (XSAVE_POINTER (save
, 0));
3530 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3533 build_overlay (Lisp_Object start
, Lisp_Object end
, Lisp_Object plist
)
3535 register Lisp_Object overlay
;
3537 overlay
= allocate_misc (Lisp_Misc_Overlay
);
3538 OVERLAY_START (overlay
) = start
;
3539 OVERLAY_END (overlay
) = end
;
3540 set_overlay_plist (overlay
, plist
);
3541 XOVERLAY (overlay
)->next
= NULL
;
3545 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
3546 doc
: /* Return a newly allocated marker which does not point at any place. */)
3549 register Lisp_Object val
;
3550 register struct Lisp_Marker
*p
;
3552 val
= allocate_misc (Lisp_Misc_Marker
);
3558 p
->insertion_type
= 0;
3559 p
->need_adjustment
= 0;
3563 /* Return a newly allocated marker which points into BUF
3564 at character position CHARPOS and byte position BYTEPOS. */
3567 build_marker (struct buffer
*buf
, ptrdiff_t charpos
, ptrdiff_t bytepos
)
3570 struct Lisp_Marker
*m
;
3572 /* No dead buffers here. */
3573 eassert (BUFFER_LIVE_P (buf
));
3575 /* Every character is at least one byte. */
3576 eassert (charpos
<= bytepos
);
3578 obj
= allocate_misc (Lisp_Misc_Marker
);
3581 m
->charpos
= charpos
;
3582 m
->bytepos
= bytepos
;
3583 m
->insertion_type
= 0;
3584 m
->need_adjustment
= 0;
3585 m
->next
= BUF_MARKERS (buf
);
3586 BUF_MARKERS (buf
) = m
;
3590 /* Put MARKER back on the free list after using it temporarily. */
3593 free_marker (Lisp_Object marker
)
3595 unchain_marker (XMARKER (marker
));
3600 /* Return a newly created vector or string with specified arguments as
3601 elements. If all the arguments are characters that can fit
3602 in a string of events, make a string; otherwise, make a vector.
3604 Any number of arguments, even zero arguments, are allowed. */
3607 make_event_array (ptrdiff_t nargs
, Lisp_Object
*args
)
3611 for (i
= 0; i
< nargs
; i
++)
3612 /* The things that fit in a string
3613 are characters that are in 0...127,
3614 after discarding the meta bit and all the bits above it. */
3615 if (!INTEGERP (args
[i
])
3616 || (XINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
3617 return Fvector (nargs
, args
);
3619 /* Since the loop exited, we know that all the things in it are
3620 characters, so we can make a string. */
3624 result
= Fmake_string (make_number (nargs
), make_number (0));
3625 for (i
= 0; i
< nargs
; i
++)
3627 SSET (result
, i
, XINT (args
[i
]));
3628 /* Move the meta bit to the right place for a string char. */
3629 if (XINT (args
[i
]) & CHAR_META
)
3630 SSET (result
, i
, SREF (result
, i
) | 0x80);
3639 /************************************************************************
3640 Memory Full Handling
3641 ************************************************************************/
3644 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3645 there may have been size_t overflow so that malloc was never
3646 called, or perhaps malloc was invoked successfully but the
3647 resulting pointer had problems fitting into a tagged EMACS_INT. In
3648 either case this counts as memory being full even though malloc did
3652 memory_full (size_t nbytes
)
3654 /* Do not go into hysterics merely because a large request failed. */
3655 bool enough_free_memory
= 0;
3656 if (SPARE_MEMORY
< nbytes
)
3661 p
= malloc (SPARE_MEMORY
);
3665 enough_free_memory
= 1;
3667 MALLOC_UNBLOCK_INPUT
;
3670 if (! enough_free_memory
)
3676 memory_full_cons_threshold
= sizeof (struct cons_block
);
3678 /* The first time we get here, free the spare memory. */
3679 for (i
= 0; i
< sizeof (spare_memory
) / sizeof (char *); i
++)
3680 if (spare_memory
[i
])
3683 free (spare_memory
[i
]);
3684 else if (i
>= 1 && i
<= 4)
3685 lisp_align_free (spare_memory
[i
]);
3687 lisp_free (spare_memory
[i
]);
3688 spare_memory
[i
] = 0;
3692 /* This used to call error, but if we've run out of memory, we could
3693 get infinite recursion trying to build the string. */
3694 xsignal (Qnil
, Vmemory_signal_data
);
3697 /* If we released our reserve (due to running out of memory),
3698 and we have a fair amount free once again,
3699 try to set aside another reserve in case we run out once more.
3701 This is called when a relocatable block is freed in ralloc.c,
3702 and also directly from this file, in case we're not using ralloc.c. */
3705 refill_memory_reserve (void)
3707 #ifndef SYSTEM_MALLOC
3708 if (spare_memory
[0] == 0)
3709 spare_memory
[0] = malloc (SPARE_MEMORY
);
3710 if (spare_memory
[1] == 0)
3711 spare_memory
[1] = lisp_align_malloc (sizeof (struct cons_block
),
3713 if (spare_memory
[2] == 0)
3714 spare_memory
[2] = lisp_align_malloc (sizeof (struct cons_block
),
3716 if (spare_memory
[3] == 0)
3717 spare_memory
[3] = lisp_align_malloc (sizeof (struct cons_block
),
3719 if (spare_memory
[4] == 0)
3720 spare_memory
[4] = lisp_align_malloc (sizeof (struct cons_block
),
3722 if (spare_memory
[5] == 0)
3723 spare_memory
[5] = lisp_malloc (sizeof (struct string_block
),
3725 if (spare_memory
[6] == 0)
3726 spare_memory
[6] = lisp_malloc (sizeof (struct string_block
),
3728 if (spare_memory
[0] && spare_memory
[1] && spare_memory
[5])
3729 Vmemory_full
= Qnil
;
3733 /************************************************************************
3735 ************************************************************************/
3737 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3739 /* Conservative C stack marking requires a method to identify possibly
3740 live Lisp objects given a pointer value. We do this by keeping
3741 track of blocks of Lisp data that are allocated in a red-black tree
3742 (see also the comment of mem_node which is the type of nodes in
3743 that tree). Function lisp_malloc adds information for an allocated
3744 block to the red-black tree with calls to mem_insert, and function
3745 lisp_free removes it with mem_delete. Functions live_string_p etc
3746 call mem_find to lookup information about a given pointer in the
3747 tree, and use that to determine if the pointer points to a Lisp
3750 /* Initialize this part of alloc.c. */
3755 mem_z
.left
= mem_z
.right
= MEM_NIL
;
3756 mem_z
.parent
= NULL
;
3757 mem_z
.color
= MEM_BLACK
;
3758 mem_z
.start
= mem_z
.end
= NULL
;
3763 /* Value is a pointer to the mem_node containing START. Value is
3764 MEM_NIL if there is no node in the tree containing START. */
3766 static struct mem_node
*
3767 mem_find (void *start
)
3771 if (start
< min_heap_address
|| start
> max_heap_address
)
3774 /* Make the search always successful to speed up the loop below. */
3775 mem_z
.start
= start
;
3776 mem_z
.end
= (char *) start
+ 1;
3779 while (start
< p
->start
|| start
>= p
->end
)
3780 p
= start
< p
->start
? p
->left
: p
->right
;
3785 /* Insert a new node into the tree for a block of memory with start
3786 address START, end address END, and type TYPE. Value is a
3787 pointer to the node that was inserted. */
3789 static struct mem_node
*
3790 mem_insert (void *start
, void *end
, enum mem_type type
)
3792 struct mem_node
*c
, *parent
, *x
;
3794 if (min_heap_address
== NULL
|| start
< min_heap_address
)
3795 min_heap_address
= start
;
3796 if (max_heap_address
== NULL
|| end
> max_heap_address
)
3797 max_heap_address
= end
;
3799 /* See where in the tree a node for START belongs. In this
3800 particular application, it shouldn't happen that a node is already
3801 present. For debugging purposes, let's check that. */
3805 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3807 while (c
!= MEM_NIL
)
3809 if (start
>= c
->start
&& start
< c
->end
)
3812 c
= start
< c
->start
? c
->left
: c
->right
;
3815 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3817 while (c
!= MEM_NIL
)
3820 c
= start
< c
->start
? c
->left
: c
->right
;
3823 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3825 /* Create a new node. */
3826 #ifdef GC_MALLOC_CHECK
3827 x
= malloc (sizeof *x
);
3831 x
= xmalloc (sizeof *x
);
3837 x
->left
= x
->right
= MEM_NIL
;
3840 /* Insert it as child of PARENT or install it as root. */
3843 if (start
< parent
->start
)
3851 /* Re-establish red-black tree properties. */
3852 mem_insert_fixup (x
);
3858 /* Re-establish the red-black properties of the tree, and thereby
3859 balance the tree, after node X has been inserted; X is always red. */
3862 mem_insert_fixup (struct mem_node
*x
)
3864 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
3866 /* X is red and its parent is red. This is a violation of
3867 red-black tree property #3. */
3869 if (x
->parent
== x
->parent
->parent
->left
)
3871 /* We're on the left side of our grandparent, and Y is our
3873 struct mem_node
*y
= x
->parent
->parent
->right
;
3875 if (y
->color
== MEM_RED
)
3877 /* Uncle and parent are red but should be black because
3878 X is red. Change the colors accordingly and proceed
3879 with the grandparent. */
3880 x
->parent
->color
= MEM_BLACK
;
3881 y
->color
= MEM_BLACK
;
3882 x
->parent
->parent
->color
= MEM_RED
;
3883 x
= x
->parent
->parent
;
3887 /* Parent and uncle have different colors; parent is
3888 red, uncle is black. */
3889 if (x
== x
->parent
->right
)
3892 mem_rotate_left (x
);
3895 x
->parent
->color
= MEM_BLACK
;
3896 x
->parent
->parent
->color
= MEM_RED
;
3897 mem_rotate_right (x
->parent
->parent
);
3902 /* This is the symmetrical case of above. */
3903 struct mem_node
*y
= x
->parent
->parent
->left
;
3905 if (y
->color
== MEM_RED
)
3907 x
->parent
->color
= MEM_BLACK
;
3908 y
->color
= MEM_BLACK
;
3909 x
->parent
->parent
->color
= MEM_RED
;
3910 x
= x
->parent
->parent
;
3914 if (x
== x
->parent
->left
)
3917 mem_rotate_right (x
);
3920 x
->parent
->color
= MEM_BLACK
;
3921 x
->parent
->parent
->color
= MEM_RED
;
3922 mem_rotate_left (x
->parent
->parent
);
3927 /* The root may have been changed to red due to the algorithm. Set
3928 it to black so that property #5 is satisfied. */
3929 mem_root
->color
= MEM_BLACK
;
3940 mem_rotate_left (struct mem_node
*x
)
3944 /* Turn y's left sub-tree into x's right sub-tree. */
3947 if (y
->left
!= MEM_NIL
)
3948 y
->left
->parent
= x
;
3950 /* Y's parent was x's parent. */
3952 y
->parent
= x
->parent
;
3954 /* Get the parent to point to y instead of x. */
3957 if (x
== x
->parent
->left
)
3958 x
->parent
->left
= y
;
3960 x
->parent
->right
= y
;
3965 /* Put x on y's left. */
3979 mem_rotate_right (struct mem_node
*x
)
3981 struct mem_node
*y
= x
->left
;
3984 if (y
->right
!= MEM_NIL
)
3985 y
->right
->parent
= x
;
3988 y
->parent
= x
->parent
;
3991 if (x
== x
->parent
->right
)
3992 x
->parent
->right
= y
;
3994 x
->parent
->left
= y
;
4005 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4008 mem_delete (struct mem_node
*z
)
4010 struct mem_node
*x
, *y
;
4012 if (!z
|| z
== MEM_NIL
)
4015 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
4020 while (y
->left
!= MEM_NIL
)
4024 if (y
->left
!= MEM_NIL
)
4029 x
->parent
= y
->parent
;
4032 if (y
== y
->parent
->left
)
4033 y
->parent
->left
= x
;
4035 y
->parent
->right
= x
;
4042 z
->start
= y
->start
;
4047 if (y
->color
== MEM_BLACK
)
4048 mem_delete_fixup (x
);
4050 #ifdef GC_MALLOC_CHECK
4058 /* Re-establish the red-black properties of the tree, after a
4062 mem_delete_fixup (struct mem_node
*x
)
4064 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
4066 if (x
== x
->parent
->left
)
4068 struct mem_node
*w
= x
->parent
->right
;
4070 if (w
->color
== MEM_RED
)
4072 w
->color
= MEM_BLACK
;
4073 x
->parent
->color
= MEM_RED
;
4074 mem_rotate_left (x
->parent
);
4075 w
= x
->parent
->right
;
4078 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
4085 if (w
->right
->color
== MEM_BLACK
)
4087 w
->left
->color
= MEM_BLACK
;
4089 mem_rotate_right (w
);
4090 w
= x
->parent
->right
;
4092 w
->color
= x
->parent
->color
;
4093 x
->parent
->color
= MEM_BLACK
;
4094 w
->right
->color
= MEM_BLACK
;
4095 mem_rotate_left (x
->parent
);
4101 struct mem_node
*w
= x
->parent
->left
;
4103 if (w
->color
== MEM_RED
)
4105 w
->color
= MEM_BLACK
;
4106 x
->parent
->color
= MEM_RED
;
4107 mem_rotate_right (x
->parent
);
4108 w
= x
->parent
->left
;
4111 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
4118 if (w
->left
->color
== MEM_BLACK
)
4120 w
->right
->color
= MEM_BLACK
;
4122 mem_rotate_left (w
);
4123 w
= x
->parent
->left
;
4126 w
->color
= x
->parent
->color
;
4127 x
->parent
->color
= MEM_BLACK
;
4128 w
->left
->color
= MEM_BLACK
;
4129 mem_rotate_right (x
->parent
);
4135 x
->color
= MEM_BLACK
;
4139 /* Value is non-zero if P is a pointer to a live Lisp string on
4140 the heap. M is a pointer to the mem_block for P. */
4143 live_string_p (struct mem_node
*m
, void *p
)
4145 if (m
->type
== MEM_TYPE_STRING
)
4147 struct string_block
*b
= m
->start
;
4148 ptrdiff_t offset
= (char *) p
- (char *) &b
->strings
[0];
4150 /* P must point to the start of a Lisp_String structure, and it
4151 must not be on the free-list. */
4153 && offset
% sizeof b
->strings
[0] == 0
4154 && offset
< (STRING_BLOCK_SIZE
* sizeof b
->strings
[0])
4155 && ((struct Lisp_String
*) p
)->data
!= NULL
);
4162 /* Value is non-zero if P is a pointer to a live Lisp cons on
4163 the heap. M is a pointer to the mem_block for P. */
4166 live_cons_p (struct mem_node
*m
, void *p
)
4168 if (m
->type
== MEM_TYPE_CONS
)
4170 struct cons_block
*b
= m
->start
;
4171 ptrdiff_t offset
= (char *) p
- (char *) &b
->conses
[0];
4173 /* P must point to the start of a Lisp_Cons, not be
4174 one of the unused cells in the current cons block,
4175 and not be on the free-list. */
4177 && offset
% sizeof b
->conses
[0] == 0
4178 && offset
< (CONS_BLOCK_SIZE
* sizeof b
->conses
[0])
4180 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
4181 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
4188 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4189 the heap. M is a pointer to the mem_block for P. */
4192 live_symbol_p (struct mem_node
*m
, void *p
)
4194 if (m
->type
== MEM_TYPE_SYMBOL
)
4196 struct symbol_block
*b
= m
->start
;
4197 ptrdiff_t offset
= (char *) p
- (char *) &b
->symbols
[0];
4199 /* P must point to the start of a Lisp_Symbol, not be
4200 one of the unused cells in the current symbol block,
4201 and not be on the free-list. */
4203 && offset
% sizeof b
->symbols
[0] == 0
4204 && offset
< (SYMBOL_BLOCK_SIZE
* sizeof b
->symbols
[0])
4205 && (b
!= symbol_block
4206 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
4207 && !EQ (((struct Lisp_Symbol
*)p
)->function
, Vdead
));
4214 /* Value is non-zero if P is a pointer to a live Lisp float on
4215 the heap. M is a pointer to the mem_block for P. */
4218 live_float_p (struct mem_node
*m
, void *p
)
4220 if (m
->type
== MEM_TYPE_FLOAT
)
4222 struct float_block
*b
= m
->start
;
4223 ptrdiff_t offset
= (char *) p
- (char *) &b
->floats
[0];
4225 /* P must point to the start of a Lisp_Float and not be
4226 one of the unused cells in the current float block. */
4228 && offset
% sizeof b
->floats
[0] == 0
4229 && offset
< (FLOAT_BLOCK_SIZE
* sizeof b
->floats
[0])
4230 && (b
!= float_block
4231 || offset
/ sizeof b
->floats
[0] < float_block_index
));
4238 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4239 the heap. M is a pointer to the mem_block for P. */
4242 live_misc_p (struct mem_node
*m
, void *p
)
4244 if (m
->type
== MEM_TYPE_MISC
)
4246 struct marker_block
*b
= m
->start
;
4247 ptrdiff_t offset
= (char *) p
- (char *) &b
->markers
[0];
4249 /* P must point to the start of a Lisp_Misc, not be
4250 one of the unused cells in the current misc block,
4251 and not be on the free-list. */
4253 && offset
% sizeof b
->markers
[0] == 0
4254 && offset
< (MARKER_BLOCK_SIZE
* sizeof b
->markers
[0])
4255 && (b
!= marker_block
4256 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
4257 && ((union Lisp_Misc
*) p
)->u_any
.type
!= Lisp_Misc_Free
);
4264 /* Value is non-zero if P is a pointer to a live vector-like object.
4265 M is a pointer to the mem_block for P. */
4268 live_vector_p (struct mem_node
*m
, void *p
)
4270 if (m
->type
== MEM_TYPE_VECTOR_BLOCK
)
4272 /* This memory node corresponds to a vector block. */
4273 struct vector_block
*block
= m
->start
;
4274 struct Lisp_Vector
*vector
= (struct Lisp_Vector
*) block
->data
;
4276 /* P is in the block's allocation range. Scan the block
4277 up to P and see whether P points to the start of some
4278 vector which is not on a free list. FIXME: check whether
4279 some allocation patterns (probably a lot of short vectors)
4280 may cause a substantial overhead of this loop. */
4281 while (VECTOR_IN_BLOCK (vector
, block
)
4282 && vector
<= (struct Lisp_Vector
*) p
)
4284 if (!PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FREE
) && vector
== p
)
4287 vector
= ADVANCE (vector
, vector_nbytes (vector
));
4290 else if (m
->type
== MEM_TYPE_VECTORLIKE
&& p
== large_vector_vec (m
->start
))
4291 /* This memory node corresponds to a large vector. */
4297 /* Value is non-zero if P is a pointer to a live buffer. M is a
4298 pointer to the mem_block for P. */
4301 live_buffer_p (struct mem_node
*m
, void *p
)
4303 /* P must point to the start of the block, and the buffer
4304 must not have been killed. */
4305 return (m
->type
== MEM_TYPE_BUFFER
4307 && !NILP (((struct buffer
*) p
)->INTERNAL_FIELD (name
)));
4310 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4314 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4316 /* Currently not used, but may be called from gdb. */
4318 void dump_zombies (void) EXTERNALLY_VISIBLE
;
4320 /* Array of objects that are kept alive because the C stack contains
4321 a pattern that looks like a reference to them . */
4323 #define MAX_ZOMBIES 10
4324 static Lisp_Object zombies
[MAX_ZOMBIES
];
4326 /* Number of zombie objects. */
4328 static EMACS_INT nzombies
;
4330 /* Number of garbage collections. */
4332 static EMACS_INT ngcs
;
4334 /* Average percentage of zombies per collection. */
4336 static double avg_zombies
;
4338 /* Max. number of live and zombie objects. */
4340 static EMACS_INT max_live
, max_zombies
;
4342 /* Average number of live objects per GC. */
4344 static double avg_live
;
4346 DEFUN ("gc-status", Fgc_status
, Sgc_status
, 0, 0, "",
4347 doc
: /* Show information about live and zombie objects. */)
4350 Lisp_Object args
[8], zombie_list
= Qnil
;
4352 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); i
++)
4353 zombie_list
= Fcons (zombies
[i
], zombie_list
);
4354 args
[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4355 args
[1] = make_number (ngcs
);
4356 args
[2] = make_float (avg_live
);
4357 args
[3] = make_float (avg_zombies
);
4358 args
[4] = make_float (avg_zombies
/ avg_live
/ 100);
4359 args
[5] = make_number (max_live
);
4360 args
[6] = make_number (max_zombies
);
4361 args
[7] = zombie_list
;
4362 return Fmessage (8, args
);
4365 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4368 /* Mark OBJ if we can prove it's a Lisp_Object. */
4371 mark_maybe_object (Lisp_Object obj
)
4378 VALGRIND_MAKE_MEM_DEFINED (&obj
, sizeof (obj
));
4384 po
= (void *) XPNTR (obj
);
4391 switch (XTYPE (obj
))
4394 mark_p
= (live_string_p (m
, po
)
4395 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
4399 mark_p
= (live_cons_p (m
, po
) && !CONS_MARKED_P (XCONS (obj
)));
4403 mark_p
= (live_symbol_p (m
, po
) && !XSYMBOL (obj
)->gcmarkbit
);
4407 mark_p
= (live_float_p (m
, po
) && !FLOAT_MARKED_P (XFLOAT (obj
)));
4410 case Lisp_Vectorlike
:
4411 /* Note: can't check BUFFERP before we know it's a
4412 buffer because checking that dereferences the pointer
4413 PO which might point anywhere. */
4414 if (live_vector_p (m
, po
))
4415 mark_p
= !SUBRP (obj
) && !VECTOR_MARKED_P (XVECTOR (obj
));
4416 else if (live_buffer_p (m
, po
))
4417 mark_p
= BUFFERP (obj
) && !VECTOR_MARKED_P (XBUFFER (obj
));
4421 mark_p
= (live_misc_p (m
, po
) && !XMISCANY (obj
)->gcmarkbit
);
4430 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4431 if (nzombies
< MAX_ZOMBIES
)
4432 zombies
[nzombies
] = obj
;
4441 /* If P points to Lisp data, mark that as live if it isn't already
4445 mark_maybe_pointer (void *p
)
4451 VALGRIND_MAKE_MEM_DEFINED (&p
, sizeof (p
));
4454 /* Quickly rule out some values which can't point to Lisp data.
4455 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4456 Otherwise, assume that Lisp data is aligned on even addresses. */
4457 if ((intptr_t) p
% (USE_LSB_TAG
? GCALIGNMENT
: 2))
4463 Lisp_Object obj
= Qnil
;
4467 case MEM_TYPE_NON_LISP
:
4468 case MEM_TYPE_SPARE
:
4469 /* Nothing to do; not a pointer to Lisp memory. */
4472 case MEM_TYPE_BUFFER
:
4473 if (live_buffer_p (m
, p
) && !VECTOR_MARKED_P ((struct buffer
*)p
))
4474 XSETVECTOR (obj
, p
);
4478 if (live_cons_p (m
, p
) && !CONS_MARKED_P ((struct Lisp_Cons
*) p
))
4482 case MEM_TYPE_STRING
:
4483 if (live_string_p (m
, p
)
4484 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
4485 XSETSTRING (obj
, p
);
4489 if (live_misc_p (m
, p
) && !((struct Lisp_Free
*) p
)->gcmarkbit
)
4493 case MEM_TYPE_SYMBOL
:
4494 if (live_symbol_p (m
, p
) && !((struct Lisp_Symbol
*) p
)->gcmarkbit
)
4495 XSETSYMBOL (obj
, p
);
4498 case MEM_TYPE_FLOAT
:
4499 if (live_float_p (m
, p
) && !FLOAT_MARKED_P (p
))
4503 case MEM_TYPE_VECTORLIKE
:
4504 case MEM_TYPE_VECTOR_BLOCK
:
4505 if (live_vector_p (m
, p
))
4508 XSETVECTOR (tem
, p
);
4509 if (!SUBRP (tem
) && !VECTOR_MARKED_P (XVECTOR (tem
)))
4524 /* Alignment of pointer values. Use alignof, as it sometimes returns
4525 a smaller alignment than GCC's __alignof__ and mark_memory might
4526 miss objects if __alignof__ were used. */
4527 #define GC_POINTER_ALIGNMENT alignof (void *)
4529 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4530 not suffice, which is the typical case. A host where a Lisp_Object is
4531 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4532 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4533 suffice to widen it to to a Lisp_Object and check it that way. */
4534 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4535 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4536 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4537 nor mark_maybe_object can follow the pointers. This should not occur on
4538 any practical porting target. */
4539 # error "MSB type bits straddle pointer-word boundaries"
4541 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4542 pointer words that hold pointers ORed with type bits. */
4543 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4545 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4546 words that hold unmodified pointers. */
4547 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4550 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4551 or END+OFFSET..START. */
4554 mark_memory (void *start
, void *end
)
4555 #if defined (__clang__) && defined (__has_feature)
4556 #if __has_feature(address_sanitizer)
4557 /* Do not allow -faddress-sanitizer to check this function, since it
4558 crosses the function stack boundary, and thus would yield many
4560 __attribute__((no_address_safety_analysis
))
4567 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4571 /* Make START the pointer to the start of the memory region,
4572 if it isn't already. */
4580 /* Mark Lisp data pointed to. This is necessary because, in some
4581 situations, the C compiler optimizes Lisp objects away, so that
4582 only a pointer to them remains. Example:
4584 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4587 Lisp_Object obj = build_string ("test");
4588 struct Lisp_String *s = XSTRING (obj);
4589 Fgarbage_collect ();
4590 fprintf (stderr, "test `%s'\n", s->data);
4594 Here, `obj' isn't really used, and the compiler optimizes it
4595 away. The only reference to the life string is through the
4598 for (pp
= start
; (void *) pp
< end
; pp
++)
4599 for (i
= 0; i
< sizeof *pp
; i
+= GC_POINTER_ALIGNMENT
)
4601 void *p
= *(void **) ((char *) pp
+ i
);
4602 mark_maybe_pointer (p
);
4603 if (POINTERS_MIGHT_HIDE_IN_OBJECTS
)
4604 mark_maybe_object (XIL ((intptr_t) p
));
4608 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4610 static bool setjmp_tested_p
;
4611 static int longjmps_done
;
4613 #define SETJMP_WILL_LIKELY_WORK "\
4615 Emacs garbage collector has been changed to use conservative stack\n\
4616 marking. Emacs has determined that the method it uses to do the\n\
4617 marking will likely work on your system, but this isn't sure.\n\
4619 If you are a system-programmer, or can get the help of a local wizard\n\
4620 who is, please take a look at the function mark_stack in alloc.c, and\n\
4621 verify that the methods used are appropriate for your system.\n\
4623 Please mail the result to <emacs-devel@gnu.org>.\n\
4626 #define SETJMP_WILL_NOT_WORK "\
4628 Emacs garbage collector has been changed to use conservative stack\n\
4629 marking. Emacs has determined that the default method it uses to do the\n\
4630 marking will not work on your system. We will need a system-dependent\n\
4631 solution for your system.\n\
4633 Please take a look at the function mark_stack in alloc.c, and\n\
4634 try to find a way to make it work on your system.\n\
4636 Note that you may get false negatives, depending on the compiler.\n\
4637 In particular, you need to use -O with GCC for this test.\n\
4639 Please mail the result to <emacs-devel@gnu.org>.\n\
4643 /* Perform a quick check if it looks like setjmp saves registers in a
4644 jmp_buf. Print a message to stderr saying so. When this test
4645 succeeds, this is _not_ a proof that setjmp is sufficient for
4646 conservative stack marking. Only the sources or a disassembly
4656 /* Arrange for X to be put in a register. */
4662 if (longjmps_done
== 1)
4664 /* Came here after the longjmp at the end of the function.
4666 If x == 1, the longjmp has restored the register to its
4667 value before the setjmp, and we can hope that setjmp
4668 saves all such registers in the jmp_buf, although that
4671 For other values of X, either something really strange is
4672 taking place, or the setjmp just didn't save the register. */
4675 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
4678 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
4685 if (longjmps_done
== 1)
4686 sys_longjmp (jbuf
, 1);
4689 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4692 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4694 /* Abort if anything GCPRO'd doesn't survive the GC. */
4702 for (p
= gcprolist
; p
; p
= p
->next
)
4703 for (i
= 0; i
< p
->nvars
; ++i
)
4704 if (!survives_gc_p (p
->var
[i
]))
4705 /* FIXME: It's not necessarily a bug. It might just be that the
4706 GCPRO is unnecessary or should release the object sooner. */
4710 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4717 fprintf (stderr
, "\nZombies kept alive = %"pI
"d:\n", nzombies
);
4718 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); ++i
)
4720 fprintf (stderr
, " %d = ", i
);
4721 debug_print (zombies
[i
]);
4725 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4728 /* Mark live Lisp objects on the C stack.
4730 There are several system-dependent problems to consider when
4731 porting this to new architectures:
4735 We have to mark Lisp objects in CPU registers that can hold local
4736 variables or are used to pass parameters.
4738 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4739 something that either saves relevant registers on the stack, or
4740 calls mark_maybe_object passing it each register's contents.
4742 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4743 implementation assumes that calling setjmp saves registers we need
4744 to see in a jmp_buf which itself lies on the stack. This doesn't
4745 have to be true! It must be verified for each system, possibly
4746 by taking a look at the source code of setjmp.
4748 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4749 can use it as a machine independent method to store all registers
4750 to the stack. In this case the macros described in the previous
4751 two paragraphs are not used.
4755 Architectures differ in the way their processor stack is organized.
4756 For example, the stack might look like this
4759 | Lisp_Object | size = 4
4761 | something else | size = 2
4763 | Lisp_Object | size = 4
4767 In such a case, not every Lisp_Object will be aligned equally. To
4768 find all Lisp_Object on the stack it won't be sufficient to walk
4769 the stack in steps of 4 bytes. Instead, two passes will be
4770 necessary, one starting at the start of the stack, and a second
4771 pass starting at the start of the stack + 2. Likewise, if the
4772 minimal alignment of Lisp_Objects on the stack is 1, four passes
4773 would be necessary, each one starting with one byte more offset
4774 from the stack start. */
4781 #ifdef HAVE___BUILTIN_UNWIND_INIT
4782 /* Force callee-saved registers and register windows onto the stack.
4783 This is the preferred method if available, obviating the need for
4784 machine dependent methods. */
4785 __builtin_unwind_init ();
4787 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4788 #ifndef GC_SAVE_REGISTERS_ON_STACK
4789 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4790 union aligned_jmpbuf
{
4794 volatile bool stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
4796 /* This trick flushes the register windows so that all the state of
4797 the process is contained in the stack. */
4798 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4799 needed on ia64 too. See mach_dep.c, where it also says inline
4800 assembler doesn't work with relevant proprietary compilers. */
4802 #if defined (__sparc64__) && defined (__FreeBSD__)
4803 /* FreeBSD does not have a ta 3 handler. */
4810 /* Save registers that we need to see on the stack. We need to see
4811 registers used to hold register variables and registers used to
4813 #ifdef GC_SAVE_REGISTERS_ON_STACK
4814 GC_SAVE_REGISTERS_ON_STACK (end
);
4815 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4817 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4818 setjmp will definitely work, test it
4819 and print a message with the result
4821 if (!setjmp_tested_p
)
4823 setjmp_tested_p
= 1;
4826 #endif /* GC_SETJMP_WORKS */
4829 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
4830 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4831 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4833 /* This assumes that the stack is a contiguous region in memory. If
4834 that's not the case, something has to be done here to iterate
4835 over the stack segments. */
4836 mark_memory (stack_base
, end
);
4838 /* Allow for marking a secondary stack, like the register stack on the
4840 #ifdef GC_MARK_SECONDARY_STACK
4841 GC_MARK_SECONDARY_STACK ();
4844 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4849 #else /* GC_MARK_STACK == 0 */
4851 #define mark_maybe_object(obj) emacs_abort ()
4853 #endif /* GC_MARK_STACK != 0 */
4856 /* Determine whether it is safe to access memory at address P. */
4858 valid_pointer_p (void *p
)
4861 return w32_valid_pointer_p (p
, 16);
4865 /* Obviously, we cannot just access it (we would SEGV trying), so we
4866 trick the o/s to tell us whether p is a valid pointer.
4867 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4868 not validate p in that case. */
4870 if (emacs_pipe (fd
) == 0)
4872 bool valid
= emacs_write (fd
[1], p
, 16) == 16;
4873 emacs_close (fd
[1]);
4874 emacs_close (fd
[0]);
4882 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4883 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4884 cannot validate OBJ. This function can be quite slow, so its primary
4885 use is the manual debugging. The only exception is print_object, where
4886 we use it to check whether the memory referenced by the pointer of
4887 Lisp_Save_Value object contains valid objects. */
4890 valid_lisp_object_p (Lisp_Object obj
)
4900 p
= (void *) XPNTR (obj
);
4901 if (PURE_POINTER_P (p
))
4904 if (p
== &buffer_defaults
|| p
== &buffer_local_symbols
)
4908 return valid_pointer_p (p
);
4915 int valid
= valid_pointer_p (p
);
4927 case MEM_TYPE_NON_LISP
:
4928 case MEM_TYPE_SPARE
:
4931 case MEM_TYPE_BUFFER
:
4932 return live_buffer_p (m
, p
) ? 1 : 2;
4935 return live_cons_p (m
, p
);
4937 case MEM_TYPE_STRING
:
4938 return live_string_p (m
, p
);
4941 return live_misc_p (m
, p
);
4943 case MEM_TYPE_SYMBOL
:
4944 return live_symbol_p (m
, p
);
4946 case MEM_TYPE_FLOAT
:
4947 return live_float_p (m
, p
);
4949 case MEM_TYPE_VECTORLIKE
:
4950 case MEM_TYPE_VECTOR_BLOCK
:
4951 return live_vector_p (m
, p
);
4964 /***********************************************************************
4965 Pure Storage Management
4966 ***********************************************************************/
4968 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4969 pointer to it. TYPE is the Lisp type for which the memory is
4970 allocated. TYPE < 0 means it's not used for a Lisp object. */
4973 pure_alloc (size_t size
, int type
)
4977 size_t alignment
= GCALIGNMENT
;
4979 size_t alignment
= alignof (EMACS_INT
);
4981 /* Give Lisp_Floats an extra alignment. */
4982 if (type
== Lisp_Float
)
4983 alignment
= alignof (struct Lisp_Float
);
4989 /* Allocate space for a Lisp object from the beginning of the free
4990 space with taking account of alignment. */
4991 result
= ALIGN (purebeg
+ pure_bytes_used_lisp
, alignment
);
4992 pure_bytes_used_lisp
= ((char *)result
- (char *)purebeg
) + size
;
4996 /* Allocate space for a non-Lisp object from the end of the free
4998 pure_bytes_used_non_lisp
+= size
;
4999 result
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5001 pure_bytes_used
= pure_bytes_used_lisp
+ pure_bytes_used_non_lisp
;
5003 if (pure_bytes_used
<= pure_size
)
5006 /* Don't allocate a large amount here,
5007 because it might get mmap'd and then its address
5008 might not be usable. */
5009 purebeg
= xmalloc (10000);
5011 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
5012 pure_bytes_used
= 0;
5013 pure_bytes_used_lisp
= pure_bytes_used_non_lisp
= 0;
5018 /* Print a warning if PURESIZE is too small. */
5021 check_pure_size (void)
5023 if (pure_bytes_used_before_overflow
)
5024 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI
"d"
5026 pure_bytes_used
+ pure_bytes_used_before_overflow
);
5030 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5031 the non-Lisp data pool of the pure storage, and return its start
5032 address. Return NULL if not found. */
5035 find_string_data_in_pure (const char *data
, ptrdiff_t nbytes
)
5038 ptrdiff_t skip
, bm_skip
[256], last_char_skip
, infinity
, start
, start_max
;
5039 const unsigned char *p
;
5042 if (pure_bytes_used_non_lisp
<= nbytes
)
5045 /* Set up the Boyer-Moore table. */
5047 for (i
= 0; i
< 256; i
++)
5050 p
= (const unsigned char *) data
;
5052 bm_skip
[*p
++] = skip
;
5054 last_char_skip
= bm_skip
['\0'];
5056 non_lisp_beg
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5057 start_max
= pure_bytes_used_non_lisp
- (nbytes
+ 1);
5059 /* See the comments in the function `boyer_moore' (search.c) for the
5060 use of `infinity'. */
5061 infinity
= pure_bytes_used_non_lisp
+ 1;
5062 bm_skip
['\0'] = infinity
;
5064 p
= (const unsigned char *) non_lisp_beg
+ nbytes
;
5068 /* Check the last character (== '\0'). */
5071 start
+= bm_skip
[*(p
+ start
)];
5073 while (start
<= start_max
);
5075 if (start
< infinity
)
5076 /* Couldn't find the last character. */
5079 /* No less than `infinity' means we could find the last
5080 character at `p[start - infinity]'. */
5083 /* Check the remaining characters. */
5084 if (memcmp (data
, non_lisp_beg
+ start
, nbytes
) == 0)
5086 return non_lisp_beg
+ start
;
5088 start
+= last_char_skip
;
5090 while (start
<= start_max
);
5096 /* Return a string allocated in pure space. DATA is a buffer holding
5097 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5098 means make the result string multibyte.
5100 Must get an error if pure storage is full, since if it cannot hold
5101 a large string it may be able to hold conses that point to that
5102 string; then the string is not protected from gc. */
5105 make_pure_string (const char *data
,
5106 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
5109 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5110 s
->data
= (unsigned char *) find_string_data_in_pure (data
, nbytes
);
5111 if (s
->data
== NULL
)
5113 s
->data
= pure_alloc (nbytes
+ 1, -1);
5114 memcpy (s
->data
, data
, nbytes
);
5115 s
->data
[nbytes
] = '\0';
5118 s
->size_byte
= multibyte
? nbytes
: -1;
5119 s
->intervals
= NULL
;
5120 XSETSTRING (string
, s
);
5124 /* Return a string allocated in pure space. Do not
5125 allocate the string data, just point to DATA. */
5128 make_pure_c_string (const char *data
, ptrdiff_t nchars
)
5131 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5134 s
->data
= (unsigned char *) data
;
5135 s
->intervals
= NULL
;
5136 XSETSTRING (string
, s
);
5140 /* Return a cons allocated from pure space. Give it pure copies
5141 of CAR as car and CDR as cdr. */
5144 pure_cons (Lisp_Object car
, Lisp_Object cdr
)
5147 struct Lisp_Cons
*p
= pure_alloc (sizeof *p
, Lisp_Cons
);
5149 XSETCAR (new, Fpurecopy (car
));
5150 XSETCDR (new, Fpurecopy (cdr
));
5155 /* Value is a float object with value NUM allocated from pure space. */
5158 make_pure_float (double num
)
5161 struct Lisp_Float
*p
= pure_alloc (sizeof *p
, Lisp_Float
);
5163 XFLOAT_INIT (new, num
);
5168 /* Return a vector with room for LEN Lisp_Objects allocated from
5172 make_pure_vector (ptrdiff_t len
)
5175 size_t size
= header_size
+ len
* word_size
;
5176 struct Lisp_Vector
*p
= pure_alloc (size
, Lisp_Vectorlike
);
5177 XSETVECTOR (new, p
);
5178 XVECTOR (new)->header
.size
= len
;
5183 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
5184 doc
: /* Make a copy of object OBJ in pure storage.
5185 Recursively copies contents of vectors and cons cells.
5186 Does not copy symbols. Copies strings without text properties. */)
5187 (register Lisp_Object obj
)
5189 if (NILP (Vpurify_flag
))
5192 if (PURE_POINTER_P (XPNTR (obj
)))
5195 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5197 Lisp_Object tmp
= Fgethash (obj
, Vpurify_flag
, Qnil
);
5203 obj
= pure_cons (XCAR (obj
), XCDR (obj
));
5204 else if (FLOATP (obj
))
5205 obj
= make_pure_float (XFLOAT_DATA (obj
));
5206 else if (STRINGP (obj
))
5207 obj
= make_pure_string (SSDATA (obj
), SCHARS (obj
),
5209 STRING_MULTIBYTE (obj
));
5210 else if (COMPILEDP (obj
) || VECTORP (obj
))
5212 register struct Lisp_Vector
*vec
;
5213 register ptrdiff_t i
;
5217 if (size
& PSEUDOVECTOR_FLAG
)
5218 size
&= PSEUDOVECTOR_SIZE_MASK
;
5219 vec
= XVECTOR (make_pure_vector (size
));
5220 for (i
= 0; i
< size
; i
++)
5221 vec
->contents
[i
] = Fpurecopy (AREF (obj
, i
));
5222 if (COMPILEDP (obj
))
5224 XSETPVECTYPE (vec
, PVEC_COMPILED
);
5225 XSETCOMPILED (obj
, vec
);
5228 XSETVECTOR (obj
, vec
);
5230 else if (MARKERP (obj
))
5231 error ("Attempt to copy a marker to pure storage");
5233 /* Not purified, don't hash-cons. */
5236 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5237 Fputhash (obj
, obj
, Vpurify_flag
);
5244 /***********************************************************************
5246 ***********************************************************************/
5248 /* Put an entry in staticvec, pointing at the variable with address
5252 staticpro (Lisp_Object
*varaddress
)
5254 if (staticidx
>= NSTATICS
)
5255 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5256 staticvec
[staticidx
++] = varaddress
;
5260 /***********************************************************************
5262 ***********************************************************************/
5264 /* Temporarily prevent garbage collection. */
5267 inhibit_garbage_collection (void)
5269 ptrdiff_t count
= SPECPDL_INDEX ();
5271 specbind (Qgc_cons_threshold
, make_number (MOST_POSITIVE_FIXNUM
));
5275 /* Used to avoid possible overflows when
5276 converting from C to Lisp integers. */
5279 bounded_number (EMACS_INT number
)
5281 return make_number (min (MOST_POSITIVE_FIXNUM
, number
));
5284 /* Calculate total bytes of live objects. */
5287 total_bytes_of_live_objects (void)
5290 tot
+= total_conses
* sizeof (struct Lisp_Cons
);
5291 tot
+= total_symbols
* sizeof (struct Lisp_Symbol
);
5292 tot
+= total_markers
* sizeof (union Lisp_Misc
);
5293 tot
+= total_string_bytes
;
5294 tot
+= total_vector_slots
* word_size
;
5295 tot
+= total_floats
* sizeof (struct Lisp_Float
);
5296 tot
+= total_intervals
* sizeof (struct interval
);
5297 tot
+= total_strings
* sizeof (struct Lisp_String
);
5301 #ifdef HAVE_WINDOW_SYSTEM
5303 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5304 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5307 compact_font_cache_entry (Lisp_Object entry
)
5309 Lisp_Object tail
, *prev
= &entry
;
5311 for (tail
= entry
; CONSP (tail
); tail
= XCDR (tail
))
5314 Lisp_Object obj
= XCAR (tail
);
5316 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5317 if (CONSP (obj
) && FONT_SPEC_P (XCAR (obj
))
5318 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj
)))
5319 && VECTORP (XCDR (obj
)))
5321 ptrdiff_t i
, size
= ASIZE (XCDR (obj
)) & ~ARRAY_MARK_FLAG
;
5323 /* If font-spec is not marked, most likely all font-entities
5324 are not marked too. But we must be sure that nothing is
5325 marked within OBJ before we really drop it. */
5326 for (i
= 0; i
< size
; i
++)
5327 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj
), i
))))
5334 *prev
= XCDR (tail
);
5336 prev
= xcdr_addr (tail
);
5341 /* Compact font caches on all terminals and mark
5342 everything which is still here after compaction. */
5345 compact_font_caches (void)
5349 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
5351 Lisp_Object cache
= TERMINAL_FONT_CACHE (t
);
5357 for (entry
= XCDR (cache
); CONSP (entry
); entry
= XCDR (entry
))
5358 XSETCAR (entry
, compact_font_cache_entry (XCAR (entry
)));
5360 mark_object (cache
);
5364 #else /* not HAVE_WINDOW_SYSTEM */
5366 #define compact_font_caches() (void)(0)
5368 #endif /* HAVE_WINDOW_SYSTEM */
5370 /* Remove (MARKER . DATA) entries with unmarked MARKER
5371 from buffer undo LIST and return changed list. */
5374 compact_undo_list (Lisp_Object list
)
5376 Lisp_Object tail
, *prev
= &list
;
5378 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
5380 if (CONSP (XCAR (tail
))
5381 && MARKERP (XCAR (XCAR (tail
)))
5382 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
5383 *prev
= XCDR (tail
);
5385 prev
= xcdr_addr (tail
);
5390 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
5391 doc
: /* Reclaim storage for Lisp objects no longer needed.
5392 Garbage collection happens automatically if you cons more than
5393 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5394 `garbage-collect' normally returns a list with info on amount of space in use,
5395 where each entry has the form (NAME SIZE USED FREE), where:
5396 - NAME is a symbol describing the kind of objects this entry represents,
5397 - SIZE is the number of bytes used by each one,
5398 - USED is the number of those objects that were found live in the heap,
5399 - FREE is the number of those objects that are not live but that Emacs
5400 keeps around for future allocations (maybe because it does not know how
5401 to return them to the OS).
5402 However, if there was overflow in pure space, `garbage-collect'
5403 returns nil, because real GC can't be done.
5404 See Info node `(elisp)Garbage Collection'. */)
5407 struct buffer
*nextb
;
5408 char stack_top_variable
;
5411 ptrdiff_t count
= SPECPDL_INDEX ();
5412 struct timespec start
;
5413 Lisp_Object retval
= Qnil
;
5414 size_t tot_before
= 0;
5419 /* Can't GC if pure storage overflowed because we can't determine
5420 if something is a pure object or not. */
5421 if (pure_bytes_used_before_overflow
)
5424 /* Record this function, so it appears on the profiler's backtraces. */
5425 record_in_backtrace (Qautomatic_gc
, &Qnil
, 0);
5429 /* Don't keep undo information around forever.
5430 Do this early on, so it is no problem if the user quits. */
5431 FOR_EACH_BUFFER (nextb
)
5432 compact_buffer (nextb
);
5434 if (profiler_memory_running
)
5435 tot_before
= total_bytes_of_live_objects ();
5437 start
= current_timespec ();
5439 /* In case user calls debug_print during GC,
5440 don't let that cause a recursive GC. */
5441 consing_since_gc
= 0;
5443 /* Save what's currently displayed in the echo area. */
5444 message_p
= push_message ();
5445 record_unwind_protect_void (pop_message_unwind
);
5447 /* Save a copy of the contents of the stack, for debugging. */
5448 #if MAX_SAVE_STACK > 0
5449 if (NILP (Vpurify_flag
))
5452 ptrdiff_t stack_size
;
5453 if (&stack_top_variable
< stack_bottom
)
5455 stack
= &stack_top_variable
;
5456 stack_size
= stack_bottom
- &stack_top_variable
;
5460 stack
= stack_bottom
;
5461 stack_size
= &stack_top_variable
- stack_bottom
;
5463 if (stack_size
<= MAX_SAVE_STACK
)
5465 if (stack_copy_size
< stack_size
)
5467 stack_copy
= xrealloc (stack_copy
, stack_size
);
5468 stack_copy_size
= stack_size
;
5470 memcpy (stack_copy
, stack
, stack_size
);
5473 #endif /* MAX_SAVE_STACK > 0 */
5475 if (garbage_collection_messages
)
5476 message1_nolog ("Garbage collecting...");
5480 shrink_regexp_cache ();
5484 /* Mark all the special slots that serve as the roots of accessibility. */
5486 mark_buffer (&buffer_defaults
);
5487 mark_buffer (&buffer_local_symbols
);
5489 for (i
= 0; i
< staticidx
; i
++)
5490 mark_object (*staticvec
[i
]);
5500 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5501 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5505 register struct gcpro
*tail
;
5506 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
5507 for (i
= 0; i
< tail
->nvars
; i
++)
5508 mark_object (tail
->var
[i
]);
5513 struct handler
*handler
;
5514 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
5516 mark_object (handler
->tag_or_ch
);
5517 mark_object (handler
->val
);
5520 #ifdef HAVE_WINDOW_SYSTEM
5521 mark_fringe_data ();
5524 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5528 /* Everything is now marked, except for the data in font caches
5529 and undo lists. They're compacted by removing an items which
5530 aren't reachable otherwise. */
5532 compact_font_caches ();
5534 FOR_EACH_BUFFER (nextb
)
5536 if (!EQ (BVAR (nextb
, undo_list
), Qt
))
5537 bset_undo_list (nextb
, compact_undo_list (BVAR (nextb
, undo_list
)));
5538 /* Now that we have stripped the elements that need not be
5539 in the undo_list any more, we can finally mark the list. */
5540 mark_object (BVAR (nextb
, undo_list
));
5545 /* Clear the mark bits that we set in certain root slots. */
5547 unmark_byte_stack ();
5548 VECTOR_UNMARK (&buffer_defaults
);
5549 VECTOR_UNMARK (&buffer_local_symbols
);
5551 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5561 consing_since_gc
= 0;
5562 if (gc_cons_threshold
< GC_DEFAULT_THRESHOLD
/ 10)
5563 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
/ 10;
5565 gc_relative_threshold
= 0;
5566 if (FLOATP (Vgc_cons_percentage
))
5567 { /* Set gc_cons_combined_threshold. */
5568 double tot
= total_bytes_of_live_objects ();
5570 tot
*= XFLOAT_DATA (Vgc_cons_percentage
);
5573 if (tot
< TYPE_MAXIMUM (EMACS_INT
))
5574 gc_relative_threshold
= tot
;
5576 gc_relative_threshold
= TYPE_MAXIMUM (EMACS_INT
);
5580 if (garbage_collection_messages
)
5582 if (message_p
|| minibuf_level
> 0)
5585 message1_nolog ("Garbage collecting...done");
5588 unbind_to (count
, Qnil
);
5590 Lisp_Object total
[11];
5591 int total_size
= 10;
5593 total
[0] = list4 (Qconses
, make_number (sizeof (struct Lisp_Cons
)),
5594 bounded_number (total_conses
),
5595 bounded_number (total_free_conses
));
5597 total
[1] = list4 (Qsymbols
, make_number (sizeof (struct Lisp_Symbol
)),
5598 bounded_number (total_symbols
),
5599 bounded_number (total_free_symbols
));
5601 total
[2] = list4 (Qmiscs
, make_number (sizeof (union Lisp_Misc
)),
5602 bounded_number (total_markers
),
5603 bounded_number (total_free_markers
));
5605 total
[3] = list4 (Qstrings
, make_number (sizeof (struct Lisp_String
)),
5606 bounded_number (total_strings
),
5607 bounded_number (total_free_strings
));
5609 total
[4] = list3 (Qstring_bytes
, make_number (1),
5610 bounded_number (total_string_bytes
));
5612 total
[5] = list3 (Qvectors
,
5613 make_number (header_size
+ sizeof (Lisp_Object
)),
5614 bounded_number (total_vectors
));
5616 total
[6] = list4 (Qvector_slots
, make_number (word_size
),
5617 bounded_number (total_vector_slots
),
5618 bounded_number (total_free_vector_slots
));
5620 total
[7] = list4 (Qfloats
, make_number (sizeof (struct Lisp_Float
)),
5621 bounded_number (total_floats
),
5622 bounded_number (total_free_floats
));
5624 total
[8] = list4 (Qintervals
, make_number (sizeof (struct interval
)),
5625 bounded_number (total_intervals
),
5626 bounded_number (total_free_intervals
));
5628 total
[9] = list3 (Qbuffers
, make_number (sizeof (struct buffer
)),
5629 bounded_number (total_buffers
));
5631 #ifdef DOUG_LEA_MALLOC
5633 total
[10] = list4 (Qheap
, make_number (1024),
5634 bounded_number ((mallinfo ().uordblks
+ 1023) >> 10),
5635 bounded_number ((mallinfo ().fordblks
+ 1023) >> 10));
5637 retval
= Flist (total_size
, total
);
5640 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5642 /* Compute average percentage of zombies. */
5644 = (total_conses
+ total_symbols
+ total_markers
+ total_strings
5645 + total_vectors
+ total_floats
+ total_intervals
+ total_buffers
);
5647 avg_live
= (avg_live
* ngcs
+ nlive
) / (ngcs
+ 1);
5648 max_live
= max (nlive
, max_live
);
5649 avg_zombies
= (avg_zombies
* ngcs
+ nzombies
) / (ngcs
+ 1);
5650 max_zombies
= max (nzombies
, max_zombies
);
5655 if (!NILP (Vpost_gc_hook
))
5657 ptrdiff_t gc_count
= inhibit_garbage_collection ();
5658 safe_run_hooks (Qpost_gc_hook
);
5659 unbind_to (gc_count
, Qnil
);
5662 /* Accumulate statistics. */
5663 if (FLOATP (Vgc_elapsed
))
5665 struct timespec since_start
= timespec_sub (current_timespec (), start
);
5666 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
)
5667 + timespectod (since_start
));
5672 /* Collect profiling data. */
5673 if (profiler_memory_running
)
5676 size_t tot_after
= total_bytes_of_live_objects ();
5677 if (tot_before
> tot_after
)
5678 swept
= tot_before
- tot_after
;
5679 malloc_probe (swept
);
5686 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5687 only interesting objects referenced from glyphs are strings. */
5690 mark_glyph_matrix (struct glyph_matrix
*matrix
)
5692 struct glyph_row
*row
= matrix
->rows
;
5693 struct glyph_row
*end
= row
+ matrix
->nrows
;
5695 for (; row
< end
; ++row
)
5699 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
5701 struct glyph
*glyph
= row
->glyphs
[area
];
5702 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
5704 for (; glyph
< end_glyph
; ++glyph
)
5705 if (STRINGP (glyph
->object
)
5706 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
5707 mark_object (glyph
->object
);
5712 /* Mark reference to a Lisp_Object.
5713 If the object referred to has not been seen yet, recursively mark
5714 all the references contained in it. */
5716 #define LAST_MARKED_SIZE 500
5717 static Lisp_Object last_marked
[LAST_MARKED_SIZE
];
5718 static int last_marked_index
;
5720 /* For debugging--call abort when we cdr down this many
5721 links of a list, in mark_object. In debugging,
5722 the call to abort will hit a breakpoint.
5723 Normally this is zero and the check never goes off. */
5724 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE
;
5727 mark_vectorlike (struct Lisp_Vector
*ptr
)
5729 ptrdiff_t size
= ptr
->header
.size
;
5732 eassert (!VECTOR_MARKED_P (ptr
));
5733 VECTOR_MARK (ptr
); /* Else mark it. */
5734 if (size
& PSEUDOVECTOR_FLAG
)
5735 size
&= PSEUDOVECTOR_SIZE_MASK
;
5737 /* Note that this size is not the memory-footprint size, but only
5738 the number of Lisp_Object fields that we should trace.
5739 The distinction is used e.g. by Lisp_Process which places extra
5740 non-Lisp_Object fields at the end of the structure... */
5741 for (i
= 0; i
< size
; i
++) /* ...and then mark its elements. */
5742 mark_object (ptr
->contents
[i
]);
5745 /* Like mark_vectorlike but optimized for char-tables (and
5746 sub-char-tables) assuming that the contents are mostly integers or
5750 mark_char_table (struct Lisp_Vector
*ptr
)
5752 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5755 eassert (!VECTOR_MARKED_P (ptr
));
5757 for (i
= 0; i
< size
; i
++)
5759 Lisp_Object val
= ptr
->contents
[i
];
5761 if (INTEGERP (val
) || (SYMBOLP (val
) && XSYMBOL (val
)->gcmarkbit
))
5763 if (SUB_CHAR_TABLE_P (val
))
5765 if (! VECTOR_MARKED_P (XVECTOR (val
)))
5766 mark_char_table (XVECTOR (val
));
5773 /* Mark the chain of overlays starting at PTR. */
5776 mark_overlay (struct Lisp_Overlay
*ptr
)
5778 for (; ptr
&& !ptr
->gcmarkbit
; ptr
= ptr
->next
)
5781 mark_object (ptr
->start
);
5782 mark_object (ptr
->end
);
5783 mark_object (ptr
->plist
);
5787 /* Mark Lisp_Objects and special pointers in BUFFER. */
5790 mark_buffer (struct buffer
*buffer
)
5792 /* This is handled much like other pseudovectors... */
5793 mark_vectorlike ((struct Lisp_Vector
*) buffer
);
5795 /* ...but there are some buffer-specific things. */
5797 MARK_INTERVAL_TREE (buffer_intervals (buffer
));
5799 /* For now, we just don't mark the undo_list. It's done later in
5800 a special way just before the sweep phase, and after stripping
5801 some of its elements that are not needed any more. */
5803 mark_overlay (buffer
->overlays_before
);
5804 mark_overlay (buffer
->overlays_after
);
5806 /* If this is an indirect buffer, mark its base buffer. */
5807 if (buffer
->base_buffer
&& !VECTOR_MARKED_P (buffer
->base_buffer
))
5808 mark_buffer (buffer
->base_buffer
);
5811 /* Mark Lisp faces in the face cache C. */
5814 mark_face_cache (struct face_cache
*c
)
5819 for (i
= 0; i
< c
->used
; ++i
)
5821 struct face
*face
= FACE_FROM_ID (c
->f
, i
);
5825 if (face
->font
&& !VECTOR_MARKED_P (face
->font
))
5826 mark_vectorlike ((struct Lisp_Vector
*) face
->font
);
5828 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
5829 mark_object (face
->lface
[j
]);
5835 /* Remove killed buffers or items whose car is a killed buffer from
5836 LIST, and mark other items. Return changed LIST, which is marked. */
5839 mark_discard_killed_buffers (Lisp_Object list
)
5841 Lisp_Object tail
, *prev
= &list
;
5843 for (tail
= list
; CONSP (tail
) && !CONS_MARKED_P (XCONS (tail
));
5846 Lisp_Object tem
= XCAR (tail
);
5849 if (BUFFERP (tem
) && !BUFFER_LIVE_P (XBUFFER (tem
)))
5850 *prev
= XCDR (tail
);
5853 CONS_MARK (XCONS (tail
));
5854 mark_object (XCAR (tail
));
5855 prev
= xcdr_addr (tail
);
5862 /* Determine type of generic Lisp_Object and mark it accordingly. */
5865 mark_object (Lisp_Object arg
)
5867 register Lisp_Object obj
= arg
;
5868 #ifdef GC_CHECK_MARKED_OBJECTS
5872 ptrdiff_t cdr_count
= 0;
5876 if (PURE_POINTER_P (XPNTR (obj
)))
5879 last_marked
[last_marked_index
++] = obj
;
5880 if (last_marked_index
== LAST_MARKED_SIZE
)
5881 last_marked_index
= 0;
5883 /* Perform some sanity checks on the objects marked here. Abort if
5884 we encounter an object we know is bogus. This increases GC time
5885 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5886 #ifdef GC_CHECK_MARKED_OBJECTS
5888 po
= (void *) XPNTR (obj
);
5890 /* Check that the object pointed to by PO is known to be a Lisp
5891 structure allocated from the heap. */
5892 #define CHECK_ALLOCATED() \
5894 m = mem_find (po); \
5899 /* Check that the object pointed to by PO is live, using predicate
5901 #define CHECK_LIVE(LIVEP) \
5903 if (!LIVEP (m, po)) \
5907 /* Check both of the above conditions. */
5908 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5910 CHECK_ALLOCATED (); \
5911 CHECK_LIVE (LIVEP); \
5914 #else /* not GC_CHECK_MARKED_OBJECTS */
5916 #define CHECK_LIVE(LIVEP) (void) 0
5917 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5919 #endif /* not GC_CHECK_MARKED_OBJECTS */
5921 switch (XTYPE (obj
))
5925 register struct Lisp_String
*ptr
= XSTRING (obj
);
5926 if (STRING_MARKED_P (ptr
))
5928 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
5930 MARK_INTERVAL_TREE (ptr
->intervals
);
5931 #ifdef GC_CHECK_STRING_BYTES
5932 /* Check that the string size recorded in the string is the
5933 same as the one recorded in the sdata structure. */
5935 #endif /* GC_CHECK_STRING_BYTES */
5939 case Lisp_Vectorlike
:
5941 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
5942 register ptrdiff_t pvectype
;
5944 if (VECTOR_MARKED_P (ptr
))
5947 #ifdef GC_CHECK_MARKED_OBJECTS
5949 if (m
== MEM_NIL
&& !SUBRP (obj
))
5951 #endif /* GC_CHECK_MARKED_OBJECTS */
5953 if (ptr
->header
.size
& PSEUDOVECTOR_FLAG
)
5954 pvectype
= ((ptr
->header
.size
& PVEC_TYPE_MASK
)
5955 >> PSEUDOVECTOR_AREA_BITS
);
5957 pvectype
= PVEC_NORMAL_VECTOR
;
5959 if (pvectype
!= PVEC_SUBR
&& pvectype
!= PVEC_BUFFER
)
5960 CHECK_LIVE (live_vector_p
);
5965 #ifdef GC_CHECK_MARKED_OBJECTS
5974 #endif /* GC_CHECK_MARKED_OBJECTS */
5975 mark_buffer ((struct buffer
*) ptr
);
5979 { /* We could treat this just like a vector, but it is better
5980 to save the COMPILED_CONSTANTS element for last and avoid
5982 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5986 for (i
= 0; i
< size
; i
++)
5987 if (i
!= COMPILED_CONSTANTS
)
5988 mark_object (ptr
->contents
[i
]);
5989 if (size
> COMPILED_CONSTANTS
)
5991 obj
= ptr
->contents
[COMPILED_CONSTANTS
];
5999 struct frame
*f
= (struct frame
*) ptr
;
6001 mark_vectorlike (ptr
);
6002 mark_face_cache (f
->face_cache
);
6003 #ifdef HAVE_WINDOW_SYSTEM
6004 if (FRAME_WINDOW_P (f
) && FRAME_X_OUTPUT (f
))
6006 struct font
*font
= FRAME_FONT (f
);
6008 if (font
&& !VECTOR_MARKED_P (font
))
6009 mark_vectorlike ((struct Lisp_Vector
*) font
);
6017 struct window
*w
= (struct window
*) ptr
;
6019 mark_vectorlike (ptr
);
6021 /* Mark glyph matrices, if any. Marking window
6022 matrices is sufficient because frame matrices
6023 use the same glyph memory. */
6024 if (w
->current_matrix
)
6026 mark_glyph_matrix (w
->current_matrix
);
6027 mark_glyph_matrix (w
->desired_matrix
);
6030 /* Filter out killed buffers from both buffer lists
6031 in attempt to help GC to reclaim killed buffers faster.
6032 We can do it elsewhere for live windows, but this is the
6033 best place to do it for dead windows. */
6035 (w
, mark_discard_killed_buffers (w
->prev_buffers
));
6037 (w
, mark_discard_killed_buffers (w
->next_buffers
));
6041 case PVEC_HASH_TABLE
:
6043 struct Lisp_Hash_Table
*h
= (struct Lisp_Hash_Table
*) ptr
;
6045 mark_vectorlike (ptr
);
6046 mark_object (h
->test
.name
);
6047 mark_object (h
->test
.user_hash_function
);
6048 mark_object (h
->test
.user_cmp_function
);
6049 /* If hash table is not weak, mark all keys and values.
6050 For weak tables, mark only the vector. */
6052 mark_object (h
->key_and_value
);
6054 VECTOR_MARK (XVECTOR (h
->key_and_value
));
6058 case PVEC_CHAR_TABLE
:
6059 mark_char_table (ptr
);
6062 case PVEC_BOOL_VECTOR
:
6063 /* No Lisp_Objects to mark in a bool vector. */
6074 mark_vectorlike (ptr
);
6081 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
6082 struct Lisp_Symbol
*ptrx
;
6086 CHECK_ALLOCATED_AND_LIVE (live_symbol_p
);
6088 mark_object (ptr
->function
);
6089 mark_object (ptr
->plist
);
6090 switch (ptr
->redirect
)
6092 case SYMBOL_PLAINVAL
: mark_object (SYMBOL_VAL (ptr
)); break;
6093 case SYMBOL_VARALIAS
:
6096 XSETSYMBOL (tem
, SYMBOL_ALIAS (ptr
));
6100 case SYMBOL_LOCALIZED
:
6102 struct Lisp_Buffer_Local_Value
*blv
= SYMBOL_BLV (ptr
);
6103 Lisp_Object where
= blv
->where
;
6104 /* If the value is set up for a killed buffer or deleted
6105 frame, restore it's global binding. If the value is
6106 forwarded to a C variable, either it's not a Lisp_Object
6107 var, or it's staticpro'd already. */
6108 if ((BUFFERP (where
) && !BUFFER_LIVE_P (XBUFFER (where
)))
6109 || (FRAMEP (where
) && !FRAME_LIVE_P (XFRAME (where
))))
6110 swap_in_global_binding (ptr
);
6111 mark_object (blv
->where
);
6112 mark_object (blv
->valcell
);
6113 mark_object (blv
->defcell
);
6116 case SYMBOL_FORWARDED
:
6117 /* If the value is forwarded to a buffer or keyboard field,
6118 these are marked when we see the corresponding object.
6119 And if it's forwarded to a C variable, either it's not
6120 a Lisp_Object var, or it's staticpro'd already. */
6122 default: emacs_abort ();
6124 if (!PURE_POINTER_P (XSTRING (ptr
->name
)))
6125 MARK_STRING (XSTRING (ptr
->name
));
6126 MARK_INTERVAL_TREE (string_intervals (ptr
->name
));
6131 ptrx
= ptr
; /* Use of ptrx avoids compiler bug on Sun. */
6132 XSETSYMBOL (obj
, ptrx
);
6139 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
6141 if (XMISCANY (obj
)->gcmarkbit
)
6144 switch (XMISCTYPE (obj
))
6146 case Lisp_Misc_Marker
:
6147 /* DO NOT mark thru the marker's chain.
6148 The buffer's markers chain does not preserve markers from gc;
6149 instead, markers are removed from the chain when freed by gc. */
6150 XMISCANY (obj
)->gcmarkbit
= 1;
6153 case Lisp_Misc_Save_Value
:
6154 XMISCANY (obj
)->gcmarkbit
= 1;
6156 struct Lisp_Save_Value
*ptr
= XSAVE_VALUE (obj
);
6157 /* If `save_type' is zero, `data[0].pointer' is the address
6158 of a memory area containing `data[1].integer' potential
6160 if (GC_MARK_STACK
&& ptr
->save_type
== SAVE_TYPE_MEMORY
)
6162 Lisp_Object
*p
= ptr
->data
[0].pointer
;
6164 for (nelt
= ptr
->data
[1].integer
; nelt
> 0; nelt
--, p
++)
6165 mark_maybe_object (*p
);
6169 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6171 for (i
= 0; i
< SAVE_VALUE_SLOTS
; i
++)
6172 if (save_type (ptr
, i
) == SAVE_OBJECT
)
6173 mark_object (ptr
->data
[i
].object
);
6178 case Lisp_Misc_Overlay
:
6179 mark_overlay (XOVERLAY (obj
));
6189 register struct Lisp_Cons
*ptr
= XCONS (obj
);
6190 if (CONS_MARKED_P (ptr
))
6192 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
6194 /* If the cdr is nil, avoid recursion for the car. */
6195 if (EQ (ptr
->u
.cdr
, Qnil
))
6201 mark_object (ptr
->car
);
6204 if (cdr_count
== mark_object_loop_halt
)
6210 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
6211 FLOAT_MARK (XFLOAT (obj
));
6222 #undef CHECK_ALLOCATED
6223 #undef CHECK_ALLOCATED_AND_LIVE
6225 /* Mark the Lisp pointers in the terminal objects.
6226 Called by Fgarbage_collect. */
6229 mark_terminals (void)
6232 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
6234 eassert (t
->name
!= NULL
);
6235 #ifdef HAVE_WINDOW_SYSTEM
6236 /* If a terminal object is reachable from a stacpro'ed object,
6237 it might have been marked already. Make sure the image cache
6239 mark_image_cache (t
->image_cache
);
6240 #endif /* HAVE_WINDOW_SYSTEM */
6241 if (!VECTOR_MARKED_P (t
))
6242 mark_vectorlike ((struct Lisp_Vector
*)t
);
6248 /* Value is non-zero if OBJ will survive the current GC because it's
6249 either marked or does not need to be marked to survive. */
6252 survives_gc_p (Lisp_Object obj
)
6256 switch (XTYPE (obj
))
6263 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
6267 survives_p
= XMISCANY (obj
)->gcmarkbit
;
6271 survives_p
= STRING_MARKED_P (XSTRING (obj
));
6274 case Lisp_Vectorlike
:
6275 survives_p
= SUBRP (obj
) || VECTOR_MARKED_P (XVECTOR (obj
));
6279 survives_p
= CONS_MARKED_P (XCONS (obj
));
6283 survives_p
= FLOAT_MARKED_P (XFLOAT (obj
));
6290 return survives_p
|| PURE_POINTER_P ((void *) XPNTR (obj
));
6295 /* Sweep: find all structures not marked, and free them. */
6300 /* Remove or mark entries in weak hash tables.
6301 This must be done before any object is unmarked. */
6302 sweep_weak_hash_tables ();
6305 check_string_bytes (!noninteractive
);
6307 /* Put all unmarked conses on free list */
6309 register struct cons_block
*cblk
;
6310 struct cons_block
**cprev
= &cons_block
;
6311 register int lim
= cons_block_index
;
6312 EMACS_INT num_free
= 0, num_used
= 0;
6316 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
6320 int ilim
= (lim
+ BITS_PER_INT
- 1) / BITS_PER_INT
;
6322 /* Scan the mark bits an int at a time. */
6323 for (i
= 0; i
< ilim
; i
++)
6325 if (cblk
->gcmarkbits
[i
] == -1)
6327 /* Fast path - all cons cells for this int are marked. */
6328 cblk
->gcmarkbits
[i
] = 0;
6329 num_used
+= BITS_PER_INT
;
6333 /* Some cons cells for this int are not marked.
6334 Find which ones, and free them. */
6335 int start
, pos
, stop
;
6337 start
= i
* BITS_PER_INT
;
6339 if (stop
> BITS_PER_INT
)
6340 stop
= BITS_PER_INT
;
6343 for (pos
= start
; pos
< stop
; pos
++)
6345 if (!CONS_MARKED_P (&cblk
->conses
[pos
]))
6348 cblk
->conses
[pos
].u
.chain
= cons_free_list
;
6349 cons_free_list
= &cblk
->conses
[pos
];
6351 cons_free_list
->car
= Vdead
;
6357 CONS_UNMARK (&cblk
->conses
[pos
]);
6363 lim
= CONS_BLOCK_SIZE
;
6364 /* If this block contains only free conses and we have already
6365 seen more than two blocks worth of free conses then deallocate
6367 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
6369 *cprev
= cblk
->next
;
6370 /* Unhook from the free list. */
6371 cons_free_list
= cblk
->conses
[0].u
.chain
;
6372 lisp_align_free (cblk
);
6376 num_free
+= this_free
;
6377 cprev
= &cblk
->next
;
6380 total_conses
= num_used
;
6381 total_free_conses
= num_free
;
6384 /* Put all unmarked floats on free list */
6386 register struct float_block
*fblk
;
6387 struct float_block
**fprev
= &float_block
;
6388 register int lim
= float_block_index
;
6389 EMACS_INT num_free
= 0, num_used
= 0;
6391 float_free_list
= 0;
6393 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
6397 for (i
= 0; i
< lim
; i
++)
6398 if (!FLOAT_MARKED_P (&fblk
->floats
[i
]))
6401 fblk
->floats
[i
].u
.chain
= float_free_list
;
6402 float_free_list
= &fblk
->floats
[i
];
6407 FLOAT_UNMARK (&fblk
->floats
[i
]);
6409 lim
= FLOAT_BLOCK_SIZE
;
6410 /* If this block contains only free floats and we have already
6411 seen more than two blocks worth of free floats then deallocate
6413 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
6415 *fprev
= fblk
->next
;
6416 /* Unhook from the free list. */
6417 float_free_list
= fblk
->floats
[0].u
.chain
;
6418 lisp_align_free (fblk
);
6422 num_free
+= this_free
;
6423 fprev
= &fblk
->next
;
6426 total_floats
= num_used
;
6427 total_free_floats
= num_free
;
6430 /* Put all unmarked intervals on free list */
6432 register struct interval_block
*iblk
;
6433 struct interval_block
**iprev
= &interval_block
;
6434 register int lim
= interval_block_index
;
6435 EMACS_INT num_free
= 0, num_used
= 0;
6437 interval_free_list
= 0;
6439 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
6444 for (i
= 0; i
< lim
; i
++)
6446 if (!iblk
->intervals
[i
].gcmarkbit
)
6448 set_interval_parent (&iblk
->intervals
[i
], interval_free_list
);
6449 interval_free_list
= &iblk
->intervals
[i
];
6455 iblk
->intervals
[i
].gcmarkbit
= 0;
6458 lim
= INTERVAL_BLOCK_SIZE
;
6459 /* If this block contains only free intervals and we have already
6460 seen more than two blocks worth of free intervals then
6461 deallocate this block. */
6462 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
6464 *iprev
= iblk
->next
;
6465 /* Unhook from the free list. */
6466 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
6471 num_free
+= this_free
;
6472 iprev
= &iblk
->next
;
6475 total_intervals
= num_used
;
6476 total_free_intervals
= num_free
;
6479 /* Put all unmarked symbols on free list */
6481 register struct symbol_block
*sblk
;
6482 struct symbol_block
**sprev
= &symbol_block
;
6483 register int lim
= symbol_block_index
;
6484 EMACS_INT num_free
= 0, num_used
= 0;
6486 symbol_free_list
= NULL
;
6488 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
6491 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
;
6492 union aligned_Lisp_Symbol
*end
= sym
+ lim
;
6494 for (; sym
< end
; ++sym
)
6496 /* Check if the symbol was created during loadup. In such a case
6497 it might be pointed to by pure bytecode which we don't trace,
6498 so we conservatively assume that it is live. */
6499 bool pure_p
= PURE_POINTER_P (XSTRING (sym
->s
.name
));
6501 if (!sym
->s
.gcmarkbit
&& !pure_p
)
6503 if (sym
->s
.redirect
== SYMBOL_LOCALIZED
)
6504 xfree (SYMBOL_BLV (&sym
->s
));
6505 sym
->s
.next
= symbol_free_list
;
6506 symbol_free_list
= &sym
->s
;
6508 symbol_free_list
->function
= Vdead
;
6516 UNMARK_STRING (XSTRING (sym
->s
.name
));
6517 sym
->s
.gcmarkbit
= 0;
6521 lim
= SYMBOL_BLOCK_SIZE
;
6522 /* If this block contains only free symbols and we have already
6523 seen more than two blocks worth of free symbols then deallocate
6525 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
6527 *sprev
= sblk
->next
;
6528 /* Unhook from the free list. */
6529 symbol_free_list
= sblk
->symbols
[0].s
.next
;
6534 num_free
+= this_free
;
6535 sprev
= &sblk
->next
;
6538 total_symbols
= num_used
;
6539 total_free_symbols
= num_free
;
6542 /* Put all unmarked misc's on free list.
6543 For a marker, first unchain it from the buffer it points into. */
6545 register struct marker_block
*mblk
;
6546 struct marker_block
**mprev
= &marker_block
;
6547 register int lim
= marker_block_index
;
6548 EMACS_INT num_free
= 0, num_used
= 0;
6550 marker_free_list
= 0;
6552 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
6557 for (i
= 0; i
< lim
; i
++)
6559 if (!mblk
->markers
[i
].m
.u_any
.gcmarkbit
)
6561 if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Marker
)
6562 unchain_marker (&mblk
->markers
[i
].m
.u_marker
);
6563 /* Set the type of the freed object to Lisp_Misc_Free.
6564 We could leave the type alone, since nobody checks it,
6565 but this might catch bugs faster. */
6566 mblk
->markers
[i
].m
.u_marker
.type
= Lisp_Misc_Free
;
6567 mblk
->markers
[i
].m
.u_free
.chain
= marker_free_list
;
6568 marker_free_list
= &mblk
->markers
[i
].m
;
6574 mblk
->markers
[i
].m
.u_any
.gcmarkbit
= 0;
6577 lim
= MARKER_BLOCK_SIZE
;
6578 /* If this block contains only free markers and we have already
6579 seen more than two blocks worth of free markers then deallocate
6581 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
6583 *mprev
= mblk
->next
;
6584 /* Unhook from the free list. */
6585 marker_free_list
= mblk
->markers
[0].m
.u_free
.chain
;
6590 num_free
+= this_free
;
6591 mprev
= &mblk
->next
;
6595 total_markers
= num_used
;
6596 total_free_markers
= num_free
;
6599 /* Free all unmarked buffers */
6601 register struct buffer
*buffer
, **bprev
= &all_buffers
;
6604 for (buffer
= all_buffers
; buffer
; buffer
= *bprev
)
6605 if (!VECTOR_MARKED_P (buffer
))
6607 *bprev
= buffer
->next
;
6612 VECTOR_UNMARK (buffer
);
6613 /* Do not use buffer_(set|get)_intervals here. */
6614 buffer
->text
->intervals
= balance_intervals (buffer
->text
->intervals
);
6616 bprev
= &buffer
->next
;
6621 check_string_bytes (!noninteractive
);
6627 /* Debugging aids. */
6629 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
6630 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6631 This may be helpful in debugging Emacs's memory usage.
6632 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6637 XSETINT (end
, (intptr_t) (char *) sbrk (0) / 1024);
6642 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
6643 doc
: /* Return a list of counters that measure how much consing there has been.
6644 Each of these counters increments for a certain kind of object.
6645 The counters wrap around from the largest positive integer to zero.
6646 Garbage collection does not decrease them.
6647 The elements of the value are as follows:
6648 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6649 All are in units of 1 = one object consed
6650 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6652 MISCS include overlays, markers, and some internal types.
6653 Frames, windows, buffers, and subprocesses count as vectors
6654 (but the contents of a buffer's text do not count here). */)
6657 return listn (CONSTYPE_HEAP
, 8,
6658 bounded_number (cons_cells_consed
),
6659 bounded_number (floats_consed
),
6660 bounded_number (vector_cells_consed
),
6661 bounded_number (symbols_consed
),
6662 bounded_number (string_chars_consed
),
6663 bounded_number (misc_objects_consed
),
6664 bounded_number (intervals_consed
),
6665 bounded_number (strings_consed
));
6668 /* Find at most FIND_MAX symbols which have OBJ as their value or
6669 function. This is used in gdbinit's `xwhichsymbols' command. */
6672 which_symbols (Lisp_Object obj
, EMACS_INT find_max
)
6674 struct symbol_block
*sblk
;
6675 ptrdiff_t gc_count
= inhibit_garbage_collection ();
6676 Lisp_Object found
= Qnil
;
6680 for (sblk
= symbol_block
; sblk
; sblk
= sblk
->next
)
6682 union aligned_Lisp_Symbol
*aligned_sym
= sblk
->symbols
;
6685 for (bn
= 0; bn
< SYMBOL_BLOCK_SIZE
; bn
++, aligned_sym
++)
6687 struct Lisp_Symbol
*sym
= &aligned_sym
->s
;
6691 if (sblk
== symbol_block
&& bn
>= symbol_block_index
)
6694 XSETSYMBOL (tem
, sym
);
6695 val
= find_symbol_value (tem
);
6697 || EQ (sym
->function
, obj
)
6698 || (!NILP (sym
->function
)
6699 && COMPILEDP (sym
->function
)
6700 && EQ (AREF (sym
->function
, COMPILED_BYTECODE
), obj
))
6703 && EQ (AREF (val
, COMPILED_BYTECODE
), obj
)))
6705 found
= Fcons (tem
, found
);
6706 if (--find_max
== 0)
6714 unbind_to (gc_count
, Qnil
);
6718 #ifdef ENABLE_CHECKING
6720 bool suppress_checking
;
6723 die (const char *msg
, const char *file
, int line
)
6725 fprintf (stderr
, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6727 terminate_due_to_signal (SIGABRT
, INT_MAX
);
6731 /* Initialization. */
6734 init_alloc_once (void)
6736 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6738 pure_size
= PURESIZE
;
6740 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6742 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
6745 #ifdef DOUG_LEA_MALLOC
6746 mallopt (M_TRIM_THRESHOLD
, 128 * 1024); /* Trim threshold. */
6747 mallopt (M_MMAP_THRESHOLD
, 64 * 1024); /* Mmap threshold. */
6748 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* Max. number of mmap'ed areas. */
6753 refill_memory_reserve ();
6754 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
;
6761 byte_stack_list
= 0;
6763 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6764 setjmp_tested_p
= longjmps_done
= 0;
6767 Vgc_elapsed
= make_float (0.0);
6771 valgrind_p
= RUNNING_ON_VALGRIND
!= 0;
6776 syms_of_alloc (void)
6778 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold
,
6779 doc
: /* Number of bytes of consing between garbage collections.
6780 Garbage collection can happen automatically once this many bytes have been
6781 allocated since the last garbage collection. All data types count.
6783 Garbage collection happens automatically only when `eval' is called.
6785 By binding this temporarily to a large number, you can effectively
6786 prevent garbage collection during a part of the program.
6787 See also `gc-cons-percentage'. */);
6789 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage
,
6790 doc
: /* Portion of the heap used for allocation.
6791 Garbage collection can happen automatically once this portion of the heap
6792 has been allocated since the last garbage collection.
6793 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6794 Vgc_cons_percentage
= make_float (0.1);
6796 DEFVAR_INT ("pure-bytes-used", pure_bytes_used
,
6797 doc
: /* Number of bytes of shareable Lisp data allocated so far. */);
6799 DEFVAR_INT ("cons-cells-consed", cons_cells_consed
,
6800 doc
: /* Number of cons cells that have been consed so far. */);
6802 DEFVAR_INT ("floats-consed", floats_consed
,
6803 doc
: /* Number of floats that have been consed so far. */);
6805 DEFVAR_INT ("vector-cells-consed", vector_cells_consed
,
6806 doc
: /* Number of vector cells that have been consed so far. */);
6808 DEFVAR_INT ("symbols-consed", symbols_consed
,
6809 doc
: /* Number of symbols that have been consed so far. */);
6811 DEFVAR_INT ("string-chars-consed", string_chars_consed
,
6812 doc
: /* Number of string characters that have been consed so far. */);
6814 DEFVAR_INT ("misc-objects-consed", misc_objects_consed
,
6815 doc
: /* Number of miscellaneous objects that have been consed so far.
6816 These include markers and overlays, plus certain objects not visible
6819 DEFVAR_INT ("intervals-consed", intervals_consed
,
6820 doc
: /* Number of intervals that have been consed so far. */);
6822 DEFVAR_INT ("strings-consed", strings_consed
,
6823 doc
: /* Number of strings that have been consed so far. */);
6825 DEFVAR_LISP ("purify-flag", Vpurify_flag
,
6826 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
6827 This means that certain objects should be allocated in shared (pure) space.
6828 It can also be set to a hash-table, in which case this table is used to
6829 do hash-consing of the objects allocated to pure space. */);
6831 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages
,
6832 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
6833 garbage_collection_messages
= 0;
6835 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook
,
6836 doc
: /* Hook run after garbage collection has finished. */);
6837 Vpost_gc_hook
= Qnil
;
6838 DEFSYM (Qpost_gc_hook
, "post-gc-hook");
6840 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data
,
6841 doc
: /* Precomputed `signal' argument for memory-full error. */);
6842 /* We build this in advance because if we wait until we need it, we might
6843 not be able to allocate the memory to hold it. */
6845 = listn (CONSTYPE_PURE
, 2, Qerror
,
6846 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6848 DEFVAR_LISP ("memory-full", Vmemory_full
,
6849 doc
: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6850 Vmemory_full
= Qnil
;
6852 DEFSYM (Qconses
, "conses");
6853 DEFSYM (Qsymbols
, "symbols");
6854 DEFSYM (Qmiscs
, "miscs");
6855 DEFSYM (Qstrings
, "strings");
6856 DEFSYM (Qvectors
, "vectors");
6857 DEFSYM (Qfloats
, "floats");
6858 DEFSYM (Qintervals
, "intervals");
6859 DEFSYM (Qbuffers
, "buffers");
6860 DEFSYM (Qstring_bytes
, "string-bytes");
6861 DEFSYM (Qvector_slots
, "vector-slots");
6862 DEFSYM (Qheap
, "heap");
6863 DEFSYM (Qautomatic_gc
, "Automatic GC");
6865 DEFSYM (Qgc_cons_threshold
, "gc-cons-threshold");
6866 DEFSYM (Qchar_table_extra_slots
, "char-table-extra-slots");
6868 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed
,
6869 doc
: /* Accumulated time elapsed in garbage collections.
6870 The time is in seconds as a floating point value. */);
6871 DEFVAR_INT ("gcs-done", gcs_done
,
6872 doc
: /* Accumulated number of garbage collections done. */);
6877 defsubr (&Smake_byte_code
);
6878 defsubr (&Smake_list
);
6879 defsubr (&Smake_vector
);
6880 defsubr (&Smake_string
);
6881 defsubr (&Smake_bool_vector
);
6882 defsubr (&Smake_symbol
);
6883 defsubr (&Smake_marker
);
6884 defsubr (&Spurecopy
);
6885 defsubr (&Sgarbage_collect
);
6886 defsubr (&Smemory_limit
);
6887 defsubr (&Smemory_use_counts
);
6889 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6890 defsubr (&Sgc_status
);
6894 /* When compiled with GCC, GDB might say "No enum type named
6895 pvec_type" if we don't have at least one symbol with that type, and
6896 then xbacktrace could fail. Similarly for the other enums and
6897 their values. Some non-GCC compilers don't like these constructs. */
6901 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS
;
6902 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS
;
6903 enum char_bits char_bits
;
6904 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE
;
6905 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE
;
6906 enum enum_USE_LSB_TAG enum_USE_LSB_TAG
;
6907 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE
;
6908 enum Lisp_Bits Lisp_Bits
;
6909 enum Lisp_Compiled Lisp_Compiled
;
6910 enum maxargs maxargs
;
6911 enum MAX_ALLOCA MAX_ALLOCA
;
6912 enum More_Lisp_Bits More_Lisp_Bits
;
6913 enum pvec_type pvec_type
;
6914 } const EXTERNALLY_VISIBLE gdb_make_enums_visible
= {0};
6915 #endif /* __GNUC__ */