(Vnext_word_boundary_function_table): New variable.
[emacs.git] / lispref / numbers.texi
blobe13bd04117a2c83a0534a041b8153eac0a2d10ec
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999
4 @c   Free Software Foundation, Inc. 
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../info/numbers
7 @node Numbers, Strings and Characters, Lisp Data Types, Top
8 @chapter Numbers
9 @cindex integers
10 @cindex numbers
12   GNU Emacs supports two numeric data types: @dfn{integers} and
13 @dfn{floating point numbers}.  Integers are whole numbers such as
14 @minus{}3, 0, 7, 13, and 511.  Their values are exact.  Floating point
15 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
16 2.71828.  They can also be expressed in exponential notation: 1.5e2
17 equals 150; in this example, @samp{e2} stands for ten to the second
18 power, and that is multiplied by 1.5.  Floating point values are not
19 exact; they have a fixed, limited amount of precision.
21 @menu
22 * Integer Basics::            Representation and range of integers.
23 * Float Basics::              Representation and range of floating point.
24 * Predicates on Numbers::     Testing for numbers.
25 * Comparison of Numbers::     Equality and inequality predicates.
26 * Numeric Conversions::       Converting float to integer and vice versa.
27 * Arithmetic Operations::     How to add, subtract, multiply and divide.
28 * Rounding Operations::       Explicitly rounding floating point numbers.
29 * Bitwise Operations::        Logical and, or, not, shifting.
30 * Math Functions::            Trig, exponential and logarithmic functions.
31 * Random Numbers::            Obtaining random integers, predictable or not.
32 @end menu
34 @node Integer Basics
35 @comment  node-name,  next,  previous,  up
36 @section Integer Basics
38   The range of values for an integer depends on the machine.  The
39 minimum range is @minus{}134217728 to 134217727 (28 bits; i.e.,
40 @ifnottex
41 -2**27
42 @end ifnottex
43 @tex 
44 @math{-2^{27}}
45 @end tex
46 to 
47 @ifnottex
48 2**27 - 1),
49 @end ifnottex
50 @tex 
51 @math{2^{27}-1}),
52 @end tex
53 but some machines may provide a wider range.  Many examples in this
54 chapter assume an integer has 28 bits.
55 @cindex overflow
57   The Lisp reader reads an integer as a sequence of digits with optional
58 initial sign and optional final period.
60 @example
61  1               ; @r{The integer 1.}
62  1.              ; @r{The integer 1.}
63 +1               ; @r{Also the integer 1.}
64 -1               ; @r{The integer @minus{}1.}
65  268435457       ; @r{Also the integer 1, due to overflow.}
66  0               ; @r{The integer 0.}
67 -0               ; @r{The integer 0.}
68 @end example
70 @cindex integers in specific radix
71 @cindex radix for reading an integer
72 @cindex base for reading an integer
73   In addition, the Lisp reader recognizes a syntax for integers in
74 bases other than 10: @samp{#B@var{integer}} reads @var{integer} in
75 binary (radix 2), @samp{#O@var{integer}} reads @var{integer} in octal
76 (radix 8), @samp{#X@var{integer}} reads @var{integer} in hexadecimal
77 (radix 16), and @samp{#@var{radix}r@var{integer}} reads @var{integer}
78 in radix @var{radix} (where @var{radix} is between 2 and 36,
79 inclusivley).  Case is not significant for the letter after @samp{#}
80 (@samp{B}, @samp{O}, etc.) that denotes the radix.
82   To understand how various functions work on integers, especially the
83 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
84 view the numbers in their binary form.
86   In 28-bit binary, the decimal integer 5 looks like this:
88 @example
89 0000  0000 0000  0000 0000  0000 0101
90 @end example
92 @noindent
93 (We have inserted spaces between groups of 4 bits, and two spaces
94 between groups of 8 bits, to make the binary integer easier to read.)
96   The integer @minus{}1 looks like this:
98 @example
99 1111  1111 1111  1111 1111  1111 1111
100 @end example
102 @noindent
103 @cindex two's complement
104 @minus{}1 is represented as 28 ones.  (This is called @dfn{two's
105 complement} notation.)
107   The negative integer, @minus{}5, is creating by subtracting 4 from
108 @minus{}1.  In binary, the decimal integer 4 is 100.  Consequently,
109 @minus{}5 looks like this:
111 @example
112 1111  1111 1111  1111 1111  1111 1011
113 @end example
115   In this implementation, the largest 28-bit binary integer value is
116 134,217,727 in decimal.  In binary, it looks like this:
118 @example
119 0111  1111 1111  1111 1111  1111 1111
120 @end example
122   Since the arithmetic functions do not check whether integers go
123 outside their range, when you add 1 to 134,217,727, the value is the
124 negative integer @minus{}134,217,728:
126 @example
127 (+ 1 134217727)
128      @result{} -134217728
129      @result{} 1000  0000 0000  0000 0000  0000 0000
130 @end example
132   Many of the functions described in this chapter accept markers for
133 arguments in place of numbers.  (@xref{Markers}.)  Since the actual
134 arguments to such functions may be either numbers or markers, we often
135 give these arguments the name @var{number-or-marker}.  When the argument
136 value is a marker, its position value is used and its buffer is ignored.
138 @node Float Basics
139 @section Floating Point Basics
141   Floating point numbers are useful for representing numbers that are
142 not integral.  The precise range of floating point numbers is
143 machine-specific; it is the same as the range of the C data type
144 @code{double} on the machine you are using.
146   The read-syntax for floating point numbers requires either a decimal
147 point (with at least one digit following), an exponent, or both.  For
148 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
149 @samp{.15e4} are five ways of writing a floating point number whose
150 value is 1500.  They are all equivalent.  You can also use a minus sign
151 to write negative floating point numbers, as in @samp{-1.0}.
153 @cindex IEEE floating point
154 @cindex positive infinity
155 @cindex negative infinity
156 @cindex infinity
157 @cindex NaN
158    Most modern computers support the IEEE floating point standard, which
159 provides for positive infinity and negative infinity as floating point
160 values.  It also provides for a class of values called NaN or
161 ``not-a-number''; numerical functions return such values in cases where
162 there is no correct answer.  For example, @code{(sqrt -1.0)} returns a
163 NaN.  For practical purposes, there's no significant difference between
164 different NaN values in Emacs Lisp, and there's no rule for precisely
165 which NaN value should be used in a particular case, so Emacs Lisp
166 doesn't try to distinguish them.  Here are the read syntaxes for
167 these special floating point values:
169 @table @asis
170 @item positive infinity
171 @samp{1.0e+INF}
172 @item negative infinity
173 @samp{-1.0e+INF}
174 @item Not-a-number
175 @samp{0.0e+NaN}.
176 @end table
178   In addition, the value @code{-0.0} is distinguishable from ordinary
179 zero in IEEE floating point (although @code{equal} and @code{=} consider
180 them equal values).
182   You can use @code{logb} to extract the binary exponent of a floating
183 point number (or estimate the logarithm of an integer):
185 @defun logb number
186 This function returns the binary exponent of @var{number}.  More
187 precisely, the value is the logarithm of @var{number} base 2, rounded
188 down to an integer.
190 @example
191 (logb 10)
192      @result{} 3
193 (logb 10.0e20)
194      @result{} 69
195 @end example
196 @end defun
198 @node Predicates on Numbers
199 @section Type Predicates for Numbers
201   The functions in this section test whether the argument is a number or
202 whether it is a certain sort of number.  The functions @code{integerp}
203 and @code{floatp} can take any type of Lisp object as argument (the
204 predicates would not be of much use otherwise); but the @code{zerop}
205 predicate requires a number as its argument.  See also
206 @code{integer-or-marker-p} and @code{number-or-marker-p}, in
207 @ref{Predicates on Markers}.
209 @defun floatp object
210 This predicate tests whether its argument is a floating point
211 number and returns @code{t} if so, @code{nil} otherwise.
213 @code{floatp} does not exist in Emacs versions 18 and earlier.
214 @end defun
216 @defun integerp object
217 This predicate tests whether its argument is an integer, and returns
218 @code{t} if so, @code{nil} otherwise.
219 @end defun
221 @defun numberp object
222 This predicate tests whether its argument is a number (either integer or
223 floating point), and returns @code{t} if so, @code{nil} otherwise.
224 @end defun
226 @defun wholenump object
227 @cindex natural numbers
228 The @code{wholenump} predicate (whose name comes from the phrase
229 ``whole-number-p'') tests to see whether its argument is a nonnegative
230 integer, and returns @code{t} if so, @code{nil} otherwise.  0 is
231 considered non-negative.
233 @findex natnump
234 @code{natnump} is an obsolete synonym for @code{wholenump}.
235 @end defun
237 @defun zerop number
238 This predicate tests whether its argument is zero, and returns @code{t}
239 if so, @code{nil} otherwise.  The argument must be a number.
241 These two forms are equivalent: @code{(zerop x)} @equiv{} @code{(= x 0)}.
242 @end defun
244 @node Comparison of Numbers
245 @section Comparison of Numbers
246 @cindex number equality
248   To test numbers for numerical equality, you should normally use
249 @code{=}, not @code{eq}.  There can be many distinct floating point
250 number objects with the same numeric value.  If you use @code{eq} to
251 compare them, then you test whether two values are the same
252 @emph{object}.  By contrast, @code{=} compares only the numeric values
253 of the objects.
255   At present, each integer value has a unique Lisp object in Emacs Lisp.
256 Therefore, @code{eq} is equivalent to @code{=} where integers are
257 concerned.  It is sometimes convenient to use @code{eq} for comparing an
258 unknown value with an integer, because @code{eq} does not report an
259 error if the unknown value is not a number---it accepts arguments of any
260 type.  By contrast, @code{=} signals an error if the arguments are not
261 numbers or markers.  However, it is a good idea to use @code{=} if you
262 can, even for comparing integers, just in case we change the
263 representation of integers in a future Emacs version.
265   Sometimes it is useful to compare numbers with @code{equal}; it treats
266 two numbers as equal if they have the same data type (both integers, or
267 both floating point) and the same value.  By contrast, @code{=} can
268 treat an integer and a floating point number as equal.
270   There is another wrinkle: because floating point arithmetic is not
271 exact, it is often a bad idea to check for equality of two floating
272 point values.  Usually it is better to test for approximate equality.
273 Here's a function to do this:
275 @example
276 (defvar fuzz-factor 1.0e-6)
277 (defun approx-equal (x y)
278   (or (and (= x 0) (= y 0))
279       (< (/ (abs (- x y))
280             (max (abs x) (abs y)))
281          fuzz-factor)))
282 @end example
284 @cindex CL note---integers vrs @code{eq}
285 @quotation
286 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
287 @code{=} because Common Lisp implements multi-word integers, and two
288 distinct integer objects can have the same numeric value.  Emacs Lisp
289 can have just one integer object for any given value because it has a
290 limited range of integer values.
291 @end quotation
293 @defun = number-or-marker1 number-or-marker2
294 This function tests whether its arguments are numerically equal, and
295 returns @code{t} if so, @code{nil} otherwise.
296 @end defun
298 @defun /= number-or-marker1 number-or-marker2
299 This function tests whether its arguments are numerically equal, and
300 returns @code{t} if they are not, and @code{nil} if they are.
301 @end defun
303 @defun <  number-or-marker1 number-or-marker2
304 This function tests whether its first argument is strictly less than
305 its second argument.  It returns @code{t} if so, @code{nil} otherwise.
306 @end defun
308 @defun <=  number-or-marker1 number-or-marker2
309 This function tests whether its first argument is less than or equal
310 to its second argument.  It returns @code{t} if so, @code{nil}
311 otherwise.
312 @end defun
314 @defun >  number-or-marker1 number-or-marker2
315 This function tests whether its first argument is strictly greater
316 than its second argument.  It returns @code{t} if so, @code{nil}
317 otherwise.
318 @end defun
320 @defun >=  number-or-marker1 number-or-marker2
321 This function tests whether its first argument is greater than or
322 equal to its second argument.  It returns @code{t} if so, @code{nil}
323 otherwise.
324 @end defun
326 @defun max number-or-marker &rest numbers-or-markers
327 This function returns the largest of its arguments.
328 If any of the argument is floating-point, the value is returned
329 as floating point, even if it was given as an integer.
331 @example
332 (max 20)
333      @result{} 20
334 (max 1 2.5)
335      @result{} 2.5
336 (max 1 3 2.5)
337      @result{} 3.0
338 @end example
339 @end defun
341 @defun min number-or-marker &rest numbers-or-markers
342 This function returns the smallest of its arguments.
343 If any of the argument is floating-point, the value is returned
344 as floating point, even if it was given as an integer.
346 @example
347 (min -4 1)
348      @result{} -4
349 @end example
350 @end defun
352 @defun abs number
353 This function returns the absolute value of @var{number}.
354 @end defun
356 @node Numeric Conversions
357 @section Numeric Conversions
358 @cindex rounding in conversions
360 To convert an integer to floating point, use the function @code{float}.
362 @defun float number
363 This returns @var{number} converted to floating point.
364 If @var{number} is already a floating point number, @code{float} returns
365 it unchanged.
366 @end defun
368 There are four functions to convert floating point numbers to integers;
369 they differ in how they round.  These functions accept integer arguments
370 also, and return such arguments unchanged.
372 @defun truncate number
373 This returns @var{number}, converted to an integer by rounding towards
374 zero.
376 @example
377 (truncate 1.2)
378      @result{} 1
379 (truncate 1.7)
380      @result{} 1
381 (truncate -1.2)
382      @result{} -1
383 (truncate -1.7)
384      @result{} -1
385 @end example
386 @end defun
388 @defun floor number &optional divisor
389 This returns @var{number}, converted to an integer by rounding downward
390 (towards negative infinity).
392 If @var{divisor} is specified, @code{floor} divides @var{number} by
393 @var{divisor} and then converts to an integer; this uses the kind of
394 division operation that corresponds to @code{mod}, rounding downward.
395 An @code{arith-error} results if @var{divisor} is 0.
397 @example
398 (floor 1.2)
399      @result{} 1
400 (floor 1.7)
401      @result{} 1
402 (floor -1.2)
403      @result{} -2
404 (floor -1.7)
405      @result{} -2
406 (floor 5.99 3)
407      @result{} 1
408 @end example
409 @end defun
411 @defun ceiling number
412 This returns @var{number}, converted to an integer by rounding upward
413 (towards positive infinity).
415 @example
416 (ceiling 1.2)
417      @result{} 2
418 (ceiling 1.7)
419      @result{} 2
420 (ceiling -1.2)
421      @result{} -1
422 (ceiling -1.7)
423      @result{} -1
424 @end example
425 @end defun
427 @defun round number
428 This returns @var{number}, converted to an integer by rounding towards the
429 nearest integer.  Rounding a value equidistant between two integers
430 may choose the integer closer to zero, or it may prefer an even integer,
431 depending on your machine.
433 @example
434 (round 1.2)
435      @result{} 1
436 (round 1.7)
437      @result{} 2
438 (round -1.2)
439      @result{} -1
440 (round -1.7)
441      @result{} -2
442 @end example
443 @end defun
445 @node Arithmetic Operations
446 @section Arithmetic Operations
448   Emacs Lisp provides the traditional four arithmetic operations:
449 addition, subtraction, multiplication, and division.  Remainder and modulus
450 functions supplement the division functions.  The functions to
451 add or subtract 1 are provided because they are traditional in Lisp and
452 commonly used.
454   All of these functions except @code{%} return a floating point value
455 if any argument is floating.
457   It is important to note that in Emacs Lisp, arithmetic functions
458 do not check for overflow.  Thus @code{(1+ 134217727)} may evaluate to
459 @minus{}134217728, depending on your hardware.
461 @defun 1+ number-or-marker
462 This function returns @var{number-or-marker} plus 1.
463 For example,
465 @example
466 (setq foo 4)
467      @result{} 4
468 (1+ foo)
469      @result{} 5
470 @end example
472 This function is not analogous to the C operator @code{++}---it does not
473 increment a variable.  It just computes a sum.  Thus, if we continue,
475 @example
477      @result{} 4
478 @end example
480 If you want to increment the variable, you must use @code{setq},
481 like this:
483 @example
484 (setq foo (1+ foo))
485      @result{} 5
486 @end example
487 @end defun
489 @defun 1- number-or-marker
490 This function returns @var{number-or-marker} minus 1.
491 @end defun
493 @defun + &rest numbers-or-markers
494 This function adds its arguments together.  When given no arguments,
495 @code{+} returns 0.
497 @example
499      @result{} 0
500 (+ 1)
501      @result{} 1
502 (+ 1 2 3 4)
503      @result{} 10
504 @end example
505 @end defun
507 @defun - &optional number-or-marker &rest more-numbers-or-markers
508 The @code{-} function serves two purposes: negation and subtraction.
509 When @code{-} has a single argument, the value is the negative of the
510 argument.  When there are multiple arguments, @code{-} subtracts each of
511 the @var{more-numbers-or-markers} from @var{number-or-marker},
512 cumulatively.  If there are no arguments, the result is 0.
514 @example
515 (- 10 1 2 3 4)
516      @result{} 0
517 (- 10)
518      @result{} -10
520      @result{} 0
521 @end example
522 @end defun
524 @defun * &rest numbers-or-markers
525 This function multiplies its arguments together, and returns the
526 product.  When given no arguments, @code{*} returns 1.
528 @example
530      @result{} 1
531 (* 1)
532      @result{} 1
533 (* 1 2 3 4)
534      @result{} 24
535 @end example
536 @end defun
538 @defun / dividend divisor &rest divisors
539 This function divides @var{dividend} by @var{divisor} and returns the
540 quotient.  If there are additional arguments @var{divisors}, then it
541 divides @var{dividend} by each divisor in turn.  Each argument may be a
542 number or a marker.
544 If all the arguments are integers, then the result is an integer too.
545 This means the result has to be rounded.  On most machines, the result
546 is rounded towards zero after each division, but some machines may round
547 differently with negative arguments.  This is because the Lisp function
548 @code{/} is implemented using the C division operator, which also
549 permits machine-dependent rounding.  As a practical matter, all known
550 machines round in the standard fashion.
552 @cindex @code{arith-error} in division
553 If you divide an integer by 0, an @code{arith-error} error is signaled.
554 (@xref{Errors}.)  Floating point division by zero returns either
555 infinity or a NaN if your machine supports IEEE floating point;
556 otherwise, it signals an @code{arith-error} error.
558 @example
559 @group
560 (/ 6 2)
561      @result{} 3
562 @end group
563 (/ 5 2)
564      @result{} 2
565 (/ 5.0 2)
566      @result{} 2.5
567 (/ 5 2.0)
568      @result{} 2.5
569 (/ 5.0 2.0)
570      @result{} 2.5
571 (/ 25 3 2)
572      @result{} 4
573 (/ -17 6)
574      @result{} -2
575 @end example
577 The result of @code{(/ -17 6)} could in principle be -3 on some
578 machines.
579 @end defun
581 @defun % dividend divisor
582 @cindex remainder
583 This function returns the integer remainder after division of @var{dividend}
584 by @var{divisor}.  The arguments must be integers or markers.
586 For negative arguments, the remainder is in principle machine-dependent
587 since the quotient is; but in practice, all known machines behave alike.
589 An @code{arith-error} results if @var{divisor} is 0.
591 @example
592 (% 9 4)
593      @result{} 1
594 (% -9 4)
595      @result{} -1
596 (% 9 -4)
597      @result{} 1
598 (% -9 -4)
599      @result{} -1
600 @end example
602 For any two integers @var{dividend} and @var{divisor},
604 @example
605 @group
606 (+ (% @var{dividend} @var{divisor})
607    (* (/ @var{dividend} @var{divisor}) @var{divisor}))
608 @end group
609 @end example
611 @noindent
612 always equals @var{dividend}.
613 @end defun
615 @defun mod dividend divisor
616 @cindex modulus
617 This function returns the value of @var{dividend} modulo @var{divisor};
618 in other words, the remainder after division of @var{dividend}
619 by @var{divisor}, but with the same sign as @var{divisor}.
620 The arguments must be numbers or markers.
622 Unlike @code{%}, @code{mod} returns a well-defined result for negative
623 arguments.  It also permits floating point arguments; it rounds the
624 quotient downward (towards minus infinity) to an integer, and uses that
625 quotient to compute the remainder.
627 An @code{arith-error} results if @var{divisor} is 0.
629 @example
630 @group
631 (mod 9 4)
632      @result{} 1
633 @end group
634 @group
635 (mod -9 4)
636      @result{} 3
637 @end group
638 @group
639 (mod 9 -4)
640      @result{} -3
641 @end group
642 @group
643 (mod -9 -4)
644      @result{} -1
645 @end group
646 @group
647 (mod 5.5 2.5)
648      @result{} .5
649 @end group
650 @end example
652 For any two numbers @var{dividend} and @var{divisor},
654 @example
655 @group
656 (+ (mod @var{dividend} @var{divisor})
657    (* (floor @var{dividend} @var{divisor}) @var{divisor}))
658 @end group
659 @end example
661 @noindent
662 always equals @var{dividend}, subject to rounding error if either
663 argument is floating point.  For @code{floor}, see @ref{Numeric
664 Conversions}.
665 @end defun
667 @node Rounding Operations
668 @section Rounding Operations
669 @cindex rounding without conversion
671 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
672 @code{ftruncate} take a floating point argument and return a floating
673 point result whose value is a nearby integer.  @code{ffloor} returns the
674 nearest integer below; @code{fceiling}, the nearest integer above;
675 @code{ftruncate}, the nearest integer in the direction towards zero;
676 @code{fround}, the nearest integer.
678 @defun ffloor float
679 This function rounds @var{float} to the next lower integral value, and
680 returns that value as a floating point number.
681 @end defun
683 @defun fceiling float
684 This function rounds @var{float} to the next higher integral value, and
685 returns that value as a floating point number.
686 @end defun
688 @defun ftruncate float
689 This function rounds @var{float} towards zero to an integral value, and
690 returns that value as a floating point number.
691 @end defun
693 @defun fround float
694 This function rounds @var{float} to the nearest integral value,
695 and returns that value as a floating point number.
696 @end defun
698 @node Bitwise Operations
699 @section Bitwise Operations on Integers
701   In a computer, an integer is represented as a binary number, a
702 sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
703 operation acts on the individual bits of such a sequence.  For example,
704 @dfn{shifting} moves the whole sequence left or right one or more places,
705 reproducing the same pattern ``moved over''.
707   The bitwise operations in Emacs Lisp apply only to integers.
709 @defun lsh integer1 count
710 @cindex logical shift
711 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
712 bits in @var{integer1} to the left @var{count} places, or to the right
713 if @var{count} is negative, bringing zeros into the vacated bits.  If
714 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
715 (most-significant) bit, producing a positive result even if
716 @var{integer1} is negative.  Contrast this with @code{ash}, below.
718 Here are two examples of @code{lsh}, shifting a pattern of bits one
719 place to the left.  We show only the low-order eight bits of the binary
720 pattern; the rest are all zero.
722 @example
723 @group
724 (lsh 5 1)
725      @result{} 10
726 ;; @r{Decimal 5 becomes decimal 10.}
727 00000101 @result{} 00001010
729 (lsh 7 1)
730      @result{} 14
731 ;; @r{Decimal 7 becomes decimal 14.}
732 00000111 @result{} 00001110
733 @end group
734 @end example
736 @noindent
737 As the examples illustrate, shifting the pattern of bits one place to
738 the left produces a number that is twice the value of the previous
739 number.
741 Shifting a pattern of bits two places to the left produces results
742 like this (with 8-bit binary numbers):
744 @example
745 @group
746 (lsh 3 2)
747      @result{} 12
748 ;; @r{Decimal 3 becomes decimal 12.}
749 00000011 @result{} 00001100       
750 @end group
751 @end example
753 On the other hand, shifting one place to the right looks like this:
755 @example
756 @group
757 (lsh 6 -1)
758      @result{} 3
759 ;; @r{Decimal 6 becomes decimal 3.}
760 00000110 @result{} 00000011       
761 @end group
763 @group
764 (lsh 5 -1)
765      @result{} 2
766 ;; @r{Decimal 5 becomes decimal 2.}
767 00000101 @result{} 00000010       
768 @end group
769 @end example
771 @noindent
772 As the example illustrates, shifting one place to the right divides the
773 value of a positive integer by two, rounding downward.
775 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
776 not check for overflow, so shifting left can discard significant bits
777 and change the sign of the number.  For example, left shifting
778 134,217,727 produces @minus{}2 on a 28-bit machine:
780 @example
781 (lsh 134217727 1)          ; @r{left shift}
782      @result{} -2
783 @end example
785 In binary, in the 28-bit implementation, the argument looks like this:
787 @example
788 @group
789 ;; @r{Decimal 134,217,727}
790 0111  1111 1111  1111 1111  1111 1111         
791 @end group
792 @end example
794 @noindent
795 which becomes the following when left shifted:
797 @example
798 @group
799 ;; @r{Decimal @minus{}2}
800 1111  1111 1111  1111 1111  1111 1110         
801 @end group
802 @end example
803 @end defun
805 @defun ash integer1 count
806 @cindex arithmetic shift
807 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
808 to the left @var{count} places, or to the right if @var{count}
809 is negative.
811 @code{ash} gives the same results as @code{lsh} except when
812 @var{integer1} and @var{count} are both negative.  In that case,
813 @code{ash} puts ones in the empty bit positions on the left, while
814 @code{lsh} puts zeros in those bit positions.
816 Thus, with @code{ash}, shifting the pattern of bits one place to the right
817 looks like this:
819 @example
820 @group
821 (ash -6 -1) @result{} -3            
822 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
823 1111  1111 1111  1111 1111  1111 1010
824      @result{} 
825 1111  1111 1111  1111 1111  1111 1101
826 @end group
827 @end example
829 In contrast, shifting the pattern of bits one place to the right with
830 @code{lsh} looks like this:
832 @example
833 @group
834 (lsh -6 -1) @result{} 134217725
835 ;; @r{Decimal @minus{}6 becomes decimal 134,217,725.}
836 1111  1111 1111  1111 1111  1111 1010
837      @result{} 
838 0111  1111 1111  1111 1111  1111 1101
839 @end group
840 @end example
842 Here are other examples:
844 @c !!! Check if lined up in smallbook format!  XDVI shows problem
845 @c     with smallbook but not with regular book! --rjc 16mar92
846 @smallexample
847 @group
848                    ;  @r{             28-bit binary values}
850 (lsh 5 2)          ;   5  =  @r{0000  0000 0000  0000 0000  0000 0101}
851      @result{} 20         ;      =  @r{0000  0000 0000  0000 0000  0001 0100}
852 @end group
853 @group
854 (ash 5 2)
855      @result{} 20
856 (lsh -5 2)         ;  -5  =  @r{1111  1111 1111  1111 1111  1111 1011}
857      @result{} -20        ;      =  @r{1111  1111 1111  1111 1111  1110 1100}
858 (ash -5 2)
859      @result{} -20
860 @end group
861 @group
862 (lsh 5 -2)         ;   5  =  @r{0000  0000 0000  0000 0000  0000 0101}
863      @result{} 1          ;      =  @r{0000  0000 0000  0000 0000  0000 0001}
864 @end group
865 @group
866 (ash 5 -2)
867      @result{} 1
868 @end group
869 @group
870 (lsh -5 -2)        ;  -5  =  @r{1111  1111 1111  1111 1111  1111 1011}
871      @result{} 4194302    ;      =  @r{0011  1111 1111  1111 1111  1111 1110}
872 @end group
873 @group
874 (ash -5 -2)        ;  -5  =  @r{1111  1111 1111  1111 1111  1111 1011}
875      @result{} -2         ;      =  @r{1111  1111 1111  1111 1111  1111 1110}
876 @end group
877 @end smallexample
878 @end defun
880 @defun logand &rest ints-or-markers
881 @cindex logical and
882 @cindex bitwise and
883 This function returns the ``logical and'' of the arguments: the
884 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
885 set in all the arguments.  (``Set'' means that the value of the bit is 1
886 rather than 0.)
888 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
889 12 is 12: 1101 combined with 1100 produces 1100.
890 In both the binary numbers, the leftmost two bits are set (i.e., they
891 are 1's), so the leftmost two bits of the returned value are set.
892 However, for the rightmost two bits, each is zero in at least one of
893 the arguments, so the rightmost two bits of the returned value are 0's.
895 @noindent
896 Therefore,
898 @example
899 @group
900 (logand 13 12)
901      @result{} 12
902 @end group
903 @end example
905 If @code{logand} is not passed any argument, it returns a value of
906 @minus{}1.  This number is an identity element for @code{logand}
907 because its binary representation consists entirely of ones.  If
908 @code{logand} is passed just one argument, it returns that argument.
910 @smallexample
911 @group
912                    ; @r{               28-bit binary values}
914 (logand 14 13)     ; 14  =  @r{0000  0000 0000  0000 0000  0000 1110}
915                    ; 13  =  @r{0000  0000 0000  0000 0000  0000 1101}
916      @result{} 12         ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
917 @end group
919 @group
920 (logand 14 13 4)   ; 14  =  @r{0000  0000 0000  0000 0000  0000 1110}
921                    ; 13  =  @r{0000  0000 0000  0000 0000  0000 1101}
922                    ;  4  =  @r{0000  0000 0000  0000 0000  0000 0100}
923      @result{} 4          ;  4  =  @r{0000  0000 0000  0000 0000  0000 0100}
924 @end group
926 @group
927 (logand)
928      @result{} -1         ; -1  =  @r{1111  1111 1111  1111 1111  1111 1111}
929 @end group
930 @end smallexample
931 @end defun
933 @defun logior &rest ints-or-markers
934 @cindex logical inclusive or
935 @cindex bitwise or
936 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
937 is set in the result if, and only if, the @var{n}th bit is set in at least
938 one of the arguments.  If there are no arguments, the result is zero,
939 which is an identity element for this operation.  If @code{logior} is
940 passed just one argument, it returns that argument.
942 @smallexample
943 @group
944                    ; @r{              28-bit binary values}
946 (logior 12 5)      ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
947                    ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
948      @result{} 13         ; 13  =  @r{0000  0000 0000  0000 0000  0000 1101}
949 @end group
951 @group
952 (logior 12 5 7)    ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
953                    ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
954                    ;  7  =  @r{0000  0000 0000  0000 0000  0000 0111}
955      @result{} 15         ; 15  =  @r{0000  0000 0000  0000 0000  0000 1111}
956 @end group
957 @end smallexample
958 @end defun
960 @defun logxor &rest ints-or-markers
961 @cindex bitwise exclusive or
962 @cindex logical exclusive or
963 This function returns the ``exclusive or'' of its arguments: the
964 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
965 set in an odd number of the arguments.  If there are no arguments, the
966 result is 0, which is an identity element for this operation.  If
967 @code{logxor} is passed just one argument, it returns that argument.
969 @smallexample
970 @group
971                    ; @r{              28-bit binary values}
973 (logxor 12 5)      ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
974                    ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
975      @result{} 9          ;  9  =  @r{0000  0000 0000  0000 0000  0000 1001}
976 @end group
978 @group
979 (logxor 12 5 7)    ; 12  =  @r{0000  0000 0000  0000 0000  0000 1100}
980                    ;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
981                    ;  7  =  @r{0000  0000 0000  0000 0000  0000 0111}
982      @result{} 14         ; 14  =  @r{0000  0000 0000  0000 0000  0000 1110}
983 @end group
984 @end smallexample
985 @end defun
987 @defun lognot integer
988 @cindex logical not
989 @cindex bitwise not
990 This function returns the logical complement of its argument: the @var{n}th
991 bit is one in the result if, and only if, the @var{n}th bit is zero in
992 @var{integer}, and vice-versa.
994 @example
995 (lognot 5)             
996      @result{} -6
997 ;;  5  =  @r{0000  0000 0000  0000 0000  0000 0101}
998 ;; @r{becomes}
999 ;; -6  =  @r{1111  1111 1111  1111 1111  1111 1010}
1000 @end example
1001 @end defun
1003 @node Math Functions
1004 @section Standard Mathematical Functions
1005 @cindex transcendental functions
1006 @cindex mathematical functions
1008   These mathematical functions allow integers as well as floating point
1009 numbers as arguments.
1011 @defun sin arg
1012 @defunx cos arg
1013 @defunx tan arg
1014 These are the ordinary trigonometric functions, with argument measured
1015 in radians.
1016 @end defun
1018 @defun asin arg
1019 The value of @code{(asin @var{arg})} is a number between
1020 @ifnottex
1021 @minus{}pi/2
1022 @end ifnottex
1023 @tex
1024 @math{-\pi/2}
1025 @end tex
1027 @ifnottex
1028 pi/2
1029 @end ifnottex
1030 @tex
1031 @math{\pi/2}
1032 @end tex
1033 (inclusive) whose sine is @var{arg}; if, however, @var{arg}
1034 is out of range (outside [-1, 1]), then the result is a NaN.
1035 @end defun
1037 @defun acos arg
1038 The value of @code{(acos @var{arg})} is a number between 0 and
1039 @ifnottex
1041 @end ifnottex
1042 @tex
1043 @math{\pi}
1044 @end tex
1045 (inclusive) whose cosine is @var{arg}; if, however, @var{arg}
1046 is out of range (outside [-1, 1]), then the result is a NaN.
1047 @end defun
1049 @defun atan y &optional x
1050 The value of @code{(atan @var{y})} is a number between
1051 @ifnottex
1052 @minus{}pi/2
1053 @end ifnottex
1054 @tex
1055 @math{-\pi/2}
1056 @end tex
1058 @ifnottex
1059 pi/2
1060 @end ifnottex
1061 @tex
1062 @math{\pi/2}
1063 @end tex
1064 (exclusive) whose tangent is @var{y}.  If the optional second
1065 argument @var{x} is given, the value of @code{(atan y x)} is the
1066 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1067 @code{X} axis.
1068 @end defun
1070 @defun exp arg
1071 This is the exponential function; it returns
1072 @tex
1073 @math{e}
1074 @end tex
1075 @ifnottex
1076 @i{e}
1077 @end ifnottex
1078 to the power @var{arg}.
1079 @tex
1080 @math{e}
1081 @end tex
1082 @ifnottex
1083 @i{e}
1084 @end ifnottex
1085 is a fundamental mathematical constant also called the base of natural
1086 logarithms.
1087 @end defun
1089 @defun log arg &optional base
1090 This function returns the logarithm of @var{arg}, with base @var{base}.
1091 If you don't specify @var{base}, the base
1092 @tex
1093 @math{e}
1094 @end tex
1095 @ifnottex
1096 @i{e}
1097 @end ifnottex
1098 is used.  If @var{arg}
1099 is negative, the result is a NaN.
1100 @end defun
1102 @ignore
1103 @defun expm1 arg
1104 This function returns @code{(1- (exp @var{arg}))}, but it is more
1105 accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1106 is close to 1.
1107 @end defun
1109 @defun log1p arg
1110 This function returns @code{(log (1+ @var{arg}))}, but it is more
1111 accurate than that when @var{arg} is so small that adding 1 to it would
1112 lose accuracy.
1113 @end defun
1114 @end ignore
1116 @defun log10 arg
1117 This function returns the logarithm of @var{arg}, with base 10.  If
1118 @var{arg} is negative, the result is a NaN.  @code{(log10 @var{x})}
1119 @equiv{} @code{(log @var{x} 10)}, at least approximately.
1120 @end defun
1122 @defun expt x y
1123 This function returns @var{x} raised to power @var{y}.  If both
1124 arguments are integers and @var{y} is positive, the result is an
1125 integer; in this case, it is truncated to fit the range of possible
1126 integer values.
1127 @end defun
1129 @defun sqrt arg
1130 This returns the square root of @var{arg}.  If @var{arg} is negative,
1131 the value is a NaN.
1132 @end defun
1134 @node Random Numbers
1135 @section Random Numbers
1136 @cindex random numbers
1138 A deterministic computer program cannot generate true random numbers.
1139 For most purposes, @dfn{pseudo-random numbers} suffice.  A series of
1140 pseudo-random numbers is generated in a deterministic fashion.  The
1141 numbers are not truly random, but they have certain properties that
1142 mimic a random series.  For example, all possible values occur equally
1143 often in a pseudo-random series.
1145 In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1146 Starting from any given seed, the @code{random} function always
1147 generates the same sequence of numbers.  Emacs always starts with the
1148 same seed value, so the sequence of values of @code{random} is actually
1149 the same in each Emacs run!  For example, in one operating system, the
1150 first call to @code{(random)} after you start Emacs always returns
1151 -1457731, and the second one always returns -7692030.  This
1152 repeatability is helpful for debugging.
1154 If you want random numbers that don't always come out the same, execute
1155 @code{(random t)}.  This chooses a new seed based on the current time of
1156 day and on Emacs's process @sc{id} number.
1158 @defun random &optional limit
1159 This function returns a pseudo-random integer.  Repeated calls return a
1160 series of pseudo-random integers.
1162 If @var{limit} is a positive integer, the value is chosen to be
1163 nonnegative and less than @var{limit}.
1165 If @var{limit} is @code{t}, it means to choose a new seed based on the
1166 current time of day and on Emacs's process @sc{id} number.
1167 @c "Emacs'" is incorrect usage!
1169 On some machines, any integer representable in Lisp may be the result
1170 of @code{random}.  On other machines, the result can never be larger
1171 than a certain maximum or less than a certain (negative) minimum.
1172 @end defun