(acons, pairlis): Add docstring.
[emacs.git] / src / alloc.c
blob68f271a8c324e4680fa39687f278fd803bd7cda3
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ALLOC_DEBUG
27 #undef INLINE
28 #endif
30 /* Note that this declares bzero on OSF/1. How dumb. */
32 #include <signal.h>
34 #ifdef HAVE_GTK_AND_PTHREAD
35 #include <pthread.h>
36 #endif
38 /* This file is part of the core Lisp implementation, and thus must
39 deal with the real data structures. If the Lisp implementation is
40 replaced, this file likely will not be used. */
42 #undef HIDE_LISP_IMPLEMENTATION
43 #include "lisp.h"
44 #include "process.h"
45 #include "intervals.h"
46 #include "puresize.h"
47 #include "buffer.h"
48 #include "window.h"
49 #include "keyboard.h"
50 #include "frame.h"
51 #include "blockinput.h"
52 #include "charset.h"
53 #include "syssignal.h"
54 #include <setjmp.h>
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c. */
59 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
60 #undef GC_MALLOC_CHECK
61 #endif
63 #ifdef HAVE_UNISTD_H
64 #include <unistd.h>
65 #else
66 extern POINTER_TYPE *sbrk ();
67 #endif
69 #ifdef DOUG_LEA_MALLOC
71 #include <malloc.h>
72 /* malloc.h #defines this as size_t, at least in glibc2. */
73 #ifndef __malloc_size_t
74 #define __malloc_size_t int
75 #endif
77 /* Specify maximum number of areas to mmap. It would be nice to use a
78 value that explicitly means "no limit". */
80 #define MMAP_MAX_AREAS 100000000
82 #else /* not DOUG_LEA_MALLOC */
84 /* The following come from gmalloc.c. */
86 #define __malloc_size_t size_t
87 extern __malloc_size_t _bytes_used;
88 extern __malloc_size_t __malloc_extra_blocks;
90 #endif /* not DOUG_LEA_MALLOC */
92 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
94 /* When GTK uses the file chooser dialog, different backends can be loaded
95 dynamically. One such a backend is the Gnome VFS backend that gets loaded
96 if you run Gnome. That backend creates several threads and also allocates
97 memory with malloc.
99 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
100 functions below are called from malloc, there is a chance that one
101 of these threads preempts the Emacs main thread and the hook variables
102 end up in an inconsistent state. So we have a mutex to prevent that (note
103 that the backend handles concurrent access to malloc within its own threads
104 but Emacs code running in the main thread is not included in that control).
106 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
107 happens in one of the backend threads we will have two threads that tries
108 to run Emacs code at once, and the code is not prepared for that.
109 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
111 static pthread_mutex_t alloc_mutex;
113 #define BLOCK_INPUT_ALLOC \
114 do \
116 pthread_mutex_lock (&alloc_mutex); \
117 if (pthread_self () == main_thread) \
118 BLOCK_INPUT; \
120 while (0)
121 #define UNBLOCK_INPUT_ALLOC \
122 do \
124 if (pthread_self () == main_thread) \
125 UNBLOCK_INPUT; \
126 pthread_mutex_unlock (&alloc_mutex); \
128 while (0)
130 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
132 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
133 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
135 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
137 /* Value of _bytes_used, when spare_memory was freed. */
139 static __malloc_size_t bytes_used_when_full;
141 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
142 to a struct Lisp_String. */
144 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
145 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
146 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
148 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
149 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
150 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
152 /* Value is the number of bytes/chars of S, a pointer to a struct
153 Lisp_String. This must be used instead of STRING_BYTES (S) or
154 S->size during GC, because S->size contains the mark bit for
155 strings. */
157 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
158 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
160 /* Number of bytes of consing done since the last gc. */
162 int consing_since_gc;
164 /* Count the amount of consing of various sorts of space. */
166 EMACS_INT cons_cells_consed;
167 EMACS_INT floats_consed;
168 EMACS_INT vector_cells_consed;
169 EMACS_INT symbols_consed;
170 EMACS_INT string_chars_consed;
171 EMACS_INT misc_objects_consed;
172 EMACS_INT intervals_consed;
173 EMACS_INT strings_consed;
175 /* Number of bytes of consing since GC before another GC should be done. */
177 EMACS_INT gc_cons_threshold;
179 /* Nonzero during GC. */
181 int gc_in_progress;
183 /* Nonzero means abort if try to GC.
184 This is for code which is written on the assumption that
185 no GC will happen, so as to verify that assumption. */
187 int abort_on_gc;
189 /* Nonzero means display messages at beginning and end of GC. */
191 int garbage_collection_messages;
193 #ifndef VIRT_ADDR_VARIES
194 extern
195 #endif /* VIRT_ADDR_VARIES */
196 int malloc_sbrk_used;
198 #ifndef VIRT_ADDR_VARIES
199 extern
200 #endif /* VIRT_ADDR_VARIES */
201 int malloc_sbrk_unused;
203 /* Number of live and free conses etc. */
205 static int total_conses, total_markers, total_symbols, total_vector_size;
206 static int total_free_conses, total_free_markers, total_free_symbols;
207 static int total_free_floats, total_floats;
209 /* Points to memory space allocated as "spare", to be freed if we run
210 out of memory. */
212 static char *spare_memory;
214 /* Amount of spare memory to keep in reserve. */
216 #define SPARE_MEMORY (1 << 14)
218 /* Number of extra blocks malloc should get when it needs more core. */
220 static int malloc_hysteresis;
222 /* Non-nil means defun should do purecopy on the function definition. */
224 Lisp_Object Vpurify_flag;
226 /* Non-nil means we are handling a memory-full error. */
228 Lisp_Object Vmemory_full;
230 #ifndef HAVE_SHM
232 /* Initialize it to a nonzero value to force it into data space
233 (rather than bss space). That way unexec will remap it into text
234 space (pure), on some systems. We have not implemented the
235 remapping on more recent systems because this is less important
236 nowadays than in the days of small memories and timesharing. */
238 EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
239 #define PUREBEG (char *) pure
241 #else /* HAVE_SHM */
243 #define pure PURE_SEG_BITS /* Use shared memory segment */
244 #define PUREBEG (char *)PURE_SEG_BITS
246 #endif /* HAVE_SHM */
248 /* Pointer to the pure area, and its size. */
250 static char *purebeg;
251 static size_t pure_size;
253 /* Number of bytes of pure storage used before pure storage overflowed.
254 If this is non-zero, this implies that an overflow occurred. */
256 static size_t pure_bytes_used_before_overflow;
258 /* Value is non-zero if P points into pure space. */
260 #define PURE_POINTER_P(P) \
261 (((PNTR_COMPARISON_TYPE) (P) \
262 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
263 && ((PNTR_COMPARISON_TYPE) (P) \
264 >= (PNTR_COMPARISON_TYPE) purebeg))
266 /* Index in pure at which next pure object will be allocated.. */
268 EMACS_INT pure_bytes_used;
270 /* If nonzero, this is a warning delivered by malloc and not yet
271 displayed. */
273 char *pending_malloc_warning;
275 /* Pre-computed signal argument for use when memory is exhausted. */
277 Lisp_Object Vmemory_signal_data;
279 /* Maximum amount of C stack to save when a GC happens. */
281 #ifndef MAX_SAVE_STACK
282 #define MAX_SAVE_STACK 16000
283 #endif
285 /* Buffer in which we save a copy of the C stack at each GC. */
287 char *stack_copy;
288 int stack_copy_size;
290 /* Non-zero means ignore malloc warnings. Set during initialization.
291 Currently not used. */
293 int ignore_warnings;
295 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
297 /* Hook run after GC has finished. */
299 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
301 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
302 EMACS_INT gcs_done; /* accumulated GCs */
304 static void mark_buffer P_ ((Lisp_Object));
305 extern void mark_kboards P_ ((void));
306 extern void mark_backtrace P_ ((void));
307 static void gc_sweep P_ ((void));
308 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
309 static void mark_face_cache P_ ((struct face_cache *));
311 #ifdef HAVE_WINDOW_SYSTEM
312 extern void mark_fringe_data P_ ((void));
313 static void mark_image P_ ((struct image *));
314 static void mark_image_cache P_ ((struct frame *));
315 #endif /* HAVE_WINDOW_SYSTEM */
317 static struct Lisp_String *allocate_string P_ ((void));
318 static void compact_small_strings P_ ((void));
319 static void free_large_strings P_ ((void));
320 static void sweep_strings P_ ((void));
322 extern int message_enable_multibyte;
324 /* When scanning the C stack for live Lisp objects, Emacs keeps track
325 of what memory allocated via lisp_malloc is intended for what
326 purpose. This enumeration specifies the type of memory. */
328 enum mem_type
330 MEM_TYPE_NON_LISP,
331 MEM_TYPE_BUFFER,
332 MEM_TYPE_CONS,
333 MEM_TYPE_STRING,
334 MEM_TYPE_MISC,
335 MEM_TYPE_SYMBOL,
336 MEM_TYPE_FLOAT,
337 /* Keep the following vector-like types together, with
338 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
339 first. Or change the code of live_vector_p, for instance. */
340 MEM_TYPE_VECTOR,
341 MEM_TYPE_PROCESS,
342 MEM_TYPE_HASH_TABLE,
343 MEM_TYPE_FRAME,
344 MEM_TYPE_WINDOW
347 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
349 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
350 #include <stdio.h> /* For fprintf. */
351 #endif
353 /* A unique object in pure space used to make some Lisp objects
354 on free lists recognizable in O(1). */
356 Lisp_Object Vdead;
358 #ifdef GC_MALLOC_CHECK
360 enum mem_type allocated_mem_type;
361 int dont_register_blocks;
363 #endif /* GC_MALLOC_CHECK */
365 /* A node in the red-black tree describing allocated memory containing
366 Lisp data. Each such block is recorded with its start and end
367 address when it is allocated, and removed from the tree when it
368 is freed.
370 A red-black tree is a balanced binary tree with the following
371 properties:
373 1. Every node is either red or black.
374 2. Every leaf is black.
375 3. If a node is red, then both of its children are black.
376 4. Every simple path from a node to a descendant leaf contains
377 the same number of black nodes.
378 5. The root is always black.
380 When nodes are inserted into the tree, or deleted from the tree,
381 the tree is "fixed" so that these properties are always true.
383 A red-black tree with N internal nodes has height at most 2
384 log(N+1). Searches, insertions and deletions are done in O(log N).
385 Please see a text book about data structures for a detailed
386 description of red-black trees. Any book worth its salt should
387 describe them. */
389 struct mem_node
391 /* Children of this node. These pointers are never NULL. When there
392 is no child, the value is MEM_NIL, which points to a dummy node. */
393 struct mem_node *left, *right;
395 /* The parent of this node. In the root node, this is NULL. */
396 struct mem_node *parent;
398 /* Start and end of allocated region. */
399 void *start, *end;
401 /* Node color. */
402 enum {MEM_BLACK, MEM_RED} color;
404 /* Memory type. */
405 enum mem_type type;
408 /* Base address of stack. Set in main. */
410 Lisp_Object *stack_base;
412 /* Root of the tree describing allocated Lisp memory. */
414 static struct mem_node *mem_root;
416 /* Lowest and highest known address in the heap. */
418 static void *min_heap_address, *max_heap_address;
420 /* Sentinel node of the tree. */
422 static struct mem_node mem_z;
423 #define MEM_NIL &mem_z
425 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
426 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
427 static void lisp_free P_ ((POINTER_TYPE *));
428 static void mark_stack P_ ((void));
429 static int live_vector_p P_ ((struct mem_node *, void *));
430 static int live_buffer_p P_ ((struct mem_node *, void *));
431 static int live_string_p P_ ((struct mem_node *, void *));
432 static int live_cons_p P_ ((struct mem_node *, void *));
433 static int live_symbol_p P_ ((struct mem_node *, void *));
434 static int live_float_p P_ ((struct mem_node *, void *));
435 static int live_misc_p P_ ((struct mem_node *, void *));
436 static void mark_maybe_object P_ ((Lisp_Object));
437 static void mark_memory P_ ((void *, void *));
438 static void mem_init P_ ((void));
439 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
440 static void mem_insert_fixup P_ ((struct mem_node *));
441 static void mem_rotate_left P_ ((struct mem_node *));
442 static void mem_rotate_right P_ ((struct mem_node *));
443 static void mem_delete P_ ((struct mem_node *));
444 static void mem_delete_fixup P_ ((struct mem_node *));
445 static INLINE struct mem_node *mem_find P_ ((void *));
447 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
448 static void check_gcpros P_ ((void));
449 #endif
451 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
453 /* Recording what needs to be marked for gc. */
455 struct gcpro *gcprolist;
457 /* Addresses of staticpro'd variables. Initialize it to a nonzero
458 value; otherwise some compilers put it into BSS. */
460 #define NSTATICS 1280
461 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
463 /* Index of next unused slot in staticvec. */
465 int staticidx = 0;
467 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
470 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
471 ALIGNMENT must be a power of 2. */
473 #define ALIGN(ptr, ALIGNMENT) \
474 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
475 & ~((ALIGNMENT) - 1)))
479 /************************************************************************
480 Malloc
481 ************************************************************************/
483 /* Function malloc calls this if it finds we are near exhausting storage. */
485 void
486 malloc_warning (str)
487 char *str;
489 pending_malloc_warning = str;
493 /* Display an already-pending malloc warning. */
495 void
496 display_malloc_warning ()
498 call3 (intern ("display-warning"),
499 intern ("alloc"),
500 build_string (pending_malloc_warning),
501 intern ("emergency"));
502 pending_malloc_warning = 0;
506 #ifdef DOUG_LEA_MALLOC
507 # define BYTES_USED (mallinfo ().arena)
508 #else
509 # define BYTES_USED _bytes_used
510 #endif
513 /* Called if malloc returns zero. */
515 void
516 memory_full ()
518 Vmemory_full = Qt;
520 #ifndef SYSTEM_MALLOC
521 bytes_used_when_full = BYTES_USED;
522 #endif
524 /* The first time we get here, free the spare memory. */
525 if (spare_memory)
527 free (spare_memory);
528 spare_memory = 0;
531 /* This used to call error, but if we've run out of memory, we could
532 get infinite recursion trying to build the string. */
533 while (1)
534 Fsignal (Qnil, Vmemory_signal_data);
537 DEFUN ("memory-full-p", Fmemory_full_p, Smemory_full_p, 0, 0, 0,
538 doc: /* t if memory is nearly full, nil otherwise. */)
541 return (spare_memory ? Qnil : Qt);
544 /* Called if we can't allocate relocatable space for a buffer. */
546 void
547 buffer_memory_full ()
549 /* If buffers use the relocating allocator, no need to free
550 spare_memory, because we may have plenty of malloc space left
551 that we could get, and if we don't, the malloc that fails will
552 itself cause spare_memory to be freed. If buffers don't use the
553 relocating allocator, treat this like any other failing
554 malloc. */
556 #ifndef REL_ALLOC
557 memory_full ();
558 #endif
560 Vmemory_full = Qt;
562 /* This used to call error, but if we've run out of memory, we could
563 get infinite recursion trying to build the string. */
564 while (1)
565 Fsignal (Qnil, Vmemory_signal_data);
569 #ifdef XMALLOC_OVERRUN_CHECK
571 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
572 and a 16 byte trailer around each block.
574 The header consists of 12 fixed bytes + a 4 byte integer contaning the
575 original block size, while the trailer consists of 16 fixed bytes.
577 The header is used to detect whether this block has been allocated
578 through these functions -- as it seems that some low-level libc
579 functions may bypass the malloc hooks.
583 #define XMALLOC_OVERRUN_CHECK_SIZE 16
585 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
586 { 0x9a, 0x9b, 0xae, 0xaf,
587 0xbf, 0xbe, 0xce, 0xcf,
588 0xea, 0xeb, 0xec, 0xed };
590 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
591 { 0xaa, 0xab, 0xac, 0xad,
592 0xba, 0xbb, 0xbc, 0xbd,
593 0xca, 0xcb, 0xcc, 0xcd,
594 0xda, 0xdb, 0xdc, 0xdd };
596 /* Macros to insert and extract the block size in the header. */
598 #define XMALLOC_PUT_SIZE(ptr, size) \
599 (ptr[-1] = (size & 0xff), \
600 ptr[-2] = ((size >> 8) & 0xff), \
601 ptr[-3] = ((size >> 16) & 0xff), \
602 ptr[-4] = ((size >> 24) & 0xff))
604 #define XMALLOC_GET_SIZE(ptr) \
605 (size_t)((unsigned)(ptr[-1]) | \
606 ((unsigned)(ptr[-2]) << 8) | \
607 ((unsigned)(ptr[-3]) << 16) | \
608 ((unsigned)(ptr[-4]) << 24))
611 /* The call depth in overrun_check functions. For example, this might happen:
612 xmalloc()
613 overrun_check_malloc()
614 -> malloc -> (via hook)_-> emacs_blocked_malloc
615 -> overrun_check_malloc
616 call malloc (hooks are NULL, so real malloc is called).
617 malloc returns 10000.
618 add overhead, return 10016.
619 <- (back in overrun_check_malloc)
620 add overhead again, return 10032
621 xmalloc returns 10032.
623 (time passes).
625 xfree(10032)
626 overrun_check_free(10032)
627 decrease overhed
628 free(10016) <- crash, because 10000 is the original pointer. */
630 static int check_depth;
632 /* Like malloc, but wraps allocated block with header and trailer. */
634 POINTER_TYPE *
635 overrun_check_malloc (size)
636 size_t size;
638 register unsigned char *val;
639 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
641 val = (unsigned char *) malloc (size + overhead);
642 if (val && check_depth == 1)
644 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
645 val += XMALLOC_OVERRUN_CHECK_SIZE;
646 XMALLOC_PUT_SIZE(val, size);
647 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
649 --check_depth;
650 return (POINTER_TYPE *)val;
654 /* Like realloc, but checks old block for overrun, and wraps new block
655 with header and trailer. */
657 POINTER_TYPE *
658 overrun_check_realloc (block, size)
659 POINTER_TYPE *block;
660 size_t size;
662 register unsigned char *val = (unsigned char *)block;
663 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
665 if (val
666 && check_depth == 1
667 && bcmp (xmalloc_overrun_check_header,
668 val - XMALLOC_OVERRUN_CHECK_SIZE,
669 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
671 size_t osize = XMALLOC_GET_SIZE (val);
672 if (bcmp (xmalloc_overrun_check_trailer,
673 val + osize,
674 XMALLOC_OVERRUN_CHECK_SIZE))
675 abort ();
676 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
677 val -= XMALLOC_OVERRUN_CHECK_SIZE;
678 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
681 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
683 if (val && check_depth == 1)
685 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
686 val += XMALLOC_OVERRUN_CHECK_SIZE;
687 XMALLOC_PUT_SIZE(val, size);
688 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
690 --check_depth;
691 return (POINTER_TYPE *)val;
694 /* Like free, but checks block for overrun. */
696 void
697 overrun_check_free (block)
698 POINTER_TYPE *block;
700 unsigned char *val = (unsigned char *)block;
702 ++check_depth;
703 if (val
704 && check_depth == 1
705 && bcmp (xmalloc_overrun_check_header,
706 val - XMALLOC_OVERRUN_CHECK_SIZE,
707 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
709 size_t osize = XMALLOC_GET_SIZE (val);
710 if (bcmp (xmalloc_overrun_check_trailer,
711 val + osize,
712 XMALLOC_OVERRUN_CHECK_SIZE))
713 abort ();
714 #ifdef XMALLOC_CLEAR_FREE_MEMORY
715 val -= XMALLOC_OVERRUN_CHECK_SIZE;
716 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
717 #else
718 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
719 val -= XMALLOC_OVERRUN_CHECK_SIZE;
720 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
721 #endif
724 free (val);
725 --check_depth;
728 #undef malloc
729 #undef realloc
730 #undef free
731 #define malloc overrun_check_malloc
732 #define realloc overrun_check_realloc
733 #define free overrun_check_free
734 #endif
737 /* Like malloc but check for no memory and block interrupt input.. */
739 POINTER_TYPE *
740 xmalloc (size)
741 size_t size;
743 register POINTER_TYPE *val;
745 BLOCK_INPUT;
746 val = (POINTER_TYPE *) malloc (size);
747 UNBLOCK_INPUT;
749 if (!val && size)
750 memory_full ();
751 return val;
755 /* Like realloc but check for no memory and block interrupt input.. */
757 POINTER_TYPE *
758 xrealloc (block, size)
759 POINTER_TYPE *block;
760 size_t size;
762 register POINTER_TYPE *val;
764 BLOCK_INPUT;
765 /* We must call malloc explicitly when BLOCK is 0, since some
766 reallocs don't do this. */
767 if (! block)
768 val = (POINTER_TYPE *) malloc (size);
769 else
770 val = (POINTER_TYPE *) realloc (block, size);
771 UNBLOCK_INPUT;
773 if (!val && size) memory_full ();
774 return val;
778 /* Like free but block interrupt input. */
780 void
781 xfree (block)
782 POINTER_TYPE *block;
784 BLOCK_INPUT;
785 free (block);
786 UNBLOCK_INPUT;
790 /* Like strdup, but uses xmalloc. */
792 char *
793 xstrdup (s)
794 const char *s;
796 size_t len = strlen (s) + 1;
797 char *p = (char *) xmalloc (len);
798 bcopy (s, p, len);
799 return p;
803 /* Unwind for SAFE_ALLOCA */
805 Lisp_Object
806 safe_alloca_unwind (arg)
807 Lisp_Object arg;
809 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
811 p->dogc = 0;
812 xfree (p->pointer);
813 p->pointer = 0;
814 free_misc (arg);
815 return Qnil;
819 /* Like malloc but used for allocating Lisp data. NBYTES is the
820 number of bytes to allocate, TYPE describes the intended use of the
821 allcated memory block (for strings, for conses, ...). */
823 #ifndef USE_LSB_TAG
824 static void *lisp_malloc_loser;
825 #endif
827 static POINTER_TYPE *
828 lisp_malloc (nbytes, type)
829 size_t nbytes;
830 enum mem_type type;
832 register void *val;
834 BLOCK_INPUT;
836 #ifdef GC_MALLOC_CHECK
837 allocated_mem_type = type;
838 #endif
840 val = (void *) malloc (nbytes);
842 #ifndef USE_LSB_TAG
843 /* If the memory just allocated cannot be addressed thru a Lisp
844 object's pointer, and it needs to be,
845 that's equivalent to running out of memory. */
846 if (val && type != MEM_TYPE_NON_LISP)
848 Lisp_Object tem;
849 XSETCONS (tem, (char *) val + nbytes - 1);
850 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
852 lisp_malloc_loser = val;
853 free (val);
854 val = 0;
857 #endif
859 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
860 if (val && type != MEM_TYPE_NON_LISP)
861 mem_insert (val, (char *) val + nbytes, type);
862 #endif
864 UNBLOCK_INPUT;
865 if (!val && nbytes)
866 memory_full ();
867 return val;
870 /* Free BLOCK. This must be called to free memory allocated with a
871 call to lisp_malloc. */
873 static void
874 lisp_free (block)
875 POINTER_TYPE *block;
877 BLOCK_INPUT;
878 free (block);
879 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
880 mem_delete (mem_find (block));
881 #endif
882 UNBLOCK_INPUT;
885 /* Allocation of aligned blocks of memory to store Lisp data. */
886 /* The entry point is lisp_align_malloc which returns blocks of at most */
887 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
890 /* BLOCK_ALIGN has to be a power of 2. */
891 #define BLOCK_ALIGN (1 << 10)
893 /* Padding to leave at the end of a malloc'd block. This is to give
894 malloc a chance to minimize the amount of memory wasted to alignment.
895 It should be tuned to the particular malloc library used.
896 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
897 posix_memalign on the other hand would ideally prefer a value of 4
898 because otherwise, there's 1020 bytes wasted between each ablocks.
899 In Emacs, testing shows that those 1020 can most of the time be
900 efficiently used by malloc to place other objects, so a value of 0 can
901 still preferable unless you have a lot of aligned blocks and virtually
902 nothing else. */
903 #define BLOCK_PADDING 0
904 #define BLOCK_BYTES \
905 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
907 /* Internal data structures and constants. */
909 #define ABLOCKS_SIZE 16
911 /* An aligned block of memory. */
912 struct ablock
914 union
916 char payload[BLOCK_BYTES];
917 struct ablock *next_free;
918 } x;
919 /* `abase' is the aligned base of the ablocks. */
920 /* It is overloaded to hold the virtual `busy' field that counts
921 the number of used ablock in the parent ablocks.
922 The first ablock has the `busy' field, the others have the `abase'
923 field. To tell the difference, we assume that pointers will have
924 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
925 is used to tell whether the real base of the parent ablocks is `abase'
926 (if not, the word before the first ablock holds a pointer to the
927 real base). */
928 struct ablocks *abase;
929 /* The padding of all but the last ablock is unused. The padding of
930 the last ablock in an ablocks is not allocated. */
931 #if BLOCK_PADDING
932 char padding[BLOCK_PADDING];
933 #endif
936 /* A bunch of consecutive aligned blocks. */
937 struct ablocks
939 struct ablock blocks[ABLOCKS_SIZE];
942 /* Size of the block requested from malloc or memalign. */
943 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
945 #define ABLOCK_ABASE(block) \
946 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
947 ? (struct ablocks *)(block) \
948 : (block)->abase)
950 /* Virtual `busy' field. */
951 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
953 /* Pointer to the (not necessarily aligned) malloc block. */
954 #ifdef HAVE_POSIX_MEMALIGN
955 #define ABLOCKS_BASE(abase) (abase)
956 #else
957 #define ABLOCKS_BASE(abase) \
958 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
959 #endif
961 /* The list of free ablock. */
962 static struct ablock *free_ablock;
964 /* Allocate an aligned block of nbytes.
965 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
966 smaller or equal to BLOCK_BYTES. */
967 static POINTER_TYPE *
968 lisp_align_malloc (nbytes, type)
969 size_t nbytes;
970 enum mem_type type;
972 void *base, *val;
973 struct ablocks *abase;
975 eassert (nbytes <= BLOCK_BYTES);
977 BLOCK_INPUT;
979 #ifdef GC_MALLOC_CHECK
980 allocated_mem_type = type;
981 #endif
983 if (!free_ablock)
985 int i;
986 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
988 #ifdef DOUG_LEA_MALLOC
989 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
990 because mapped region contents are not preserved in
991 a dumped Emacs. */
992 mallopt (M_MMAP_MAX, 0);
993 #endif
995 #ifdef HAVE_POSIX_MEMALIGN
997 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
998 if (err)
999 base = NULL;
1000 abase = base;
1002 #else
1003 base = malloc (ABLOCKS_BYTES);
1004 abase = ALIGN (base, BLOCK_ALIGN);
1005 #endif
1007 if (base == 0)
1009 UNBLOCK_INPUT;
1010 memory_full ();
1013 aligned = (base == abase);
1014 if (!aligned)
1015 ((void**)abase)[-1] = base;
1017 #ifdef DOUG_LEA_MALLOC
1018 /* Back to a reasonable maximum of mmap'ed areas. */
1019 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1020 #endif
1022 #ifndef USE_LSB_TAG
1023 /* If the memory just allocated cannot be addressed thru a Lisp
1024 object's pointer, and it needs to be, that's equivalent to
1025 running out of memory. */
1026 if (type != MEM_TYPE_NON_LISP)
1028 Lisp_Object tem;
1029 char *end = (char *) base + ABLOCKS_BYTES - 1;
1030 XSETCONS (tem, end);
1031 if ((char *) XCONS (tem) != end)
1033 lisp_malloc_loser = base;
1034 free (base);
1035 UNBLOCK_INPUT;
1036 memory_full ();
1039 #endif
1041 /* Initialize the blocks and put them on the free list.
1042 Is `base' was not properly aligned, we can't use the last block. */
1043 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1045 abase->blocks[i].abase = abase;
1046 abase->blocks[i].x.next_free = free_ablock;
1047 free_ablock = &abase->blocks[i];
1049 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1051 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1052 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1053 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1054 eassert (ABLOCKS_BASE (abase) == base);
1055 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1058 abase = ABLOCK_ABASE (free_ablock);
1059 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1060 val = free_ablock;
1061 free_ablock = free_ablock->x.next_free;
1063 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1064 if (val && type != MEM_TYPE_NON_LISP)
1065 mem_insert (val, (char *) val + nbytes, type);
1066 #endif
1068 UNBLOCK_INPUT;
1069 if (!val && nbytes)
1070 memory_full ();
1072 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1073 return val;
1076 static void
1077 lisp_align_free (block)
1078 POINTER_TYPE *block;
1080 struct ablock *ablock = block;
1081 struct ablocks *abase = ABLOCK_ABASE (ablock);
1083 BLOCK_INPUT;
1084 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1085 mem_delete (mem_find (block));
1086 #endif
1087 /* Put on free list. */
1088 ablock->x.next_free = free_ablock;
1089 free_ablock = ablock;
1090 /* Update busy count. */
1091 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1093 if (2 > (long) ABLOCKS_BUSY (abase))
1094 { /* All the blocks are free. */
1095 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1096 struct ablock **tem = &free_ablock;
1097 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1099 while (*tem)
1101 if (*tem >= (struct ablock *) abase && *tem < atop)
1103 i++;
1104 *tem = (*tem)->x.next_free;
1106 else
1107 tem = &(*tem)->x.next_free;
1109 eassert ((aligned & 1) == aligned);
1110 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1111 free (ABLOCKS_BASE (abase));
1113 UNBLOCK_INPUT;
1116 /* Return a new buffer structure allocated from the heap with
1117 a call to lisp_malloc. */
1119 struct buffer *
1120 allocate_buffer ()
1122 struct buffer *b
1123 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1124 MEM_TYPE_BUFFER);
1125 return b;
1129 #ifndef SYSTEM_MALLOC
1131 /* If we released our reserve (due to running out of memory),
1132 and we have a fair amount free once again,
1133 try to set aside another reserve in case we run out once more.
1135 This is called when a relocatable block is freed in ralloc.c. */
1137 void
1138 refill_memory_reserve ()
1140 if (spare_memory == 0)
1141 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1145 /* Arranging to disable input signals while we're in malloc.
1147 This only works with GNU malloc. To help out systems which can't
1148 use GNU malloc, all the calls to malloc, realloc, and free
1149 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1150 pair; unfortunately, we have no idea what C library functions
1151 might call malloc, so we can't really protect them unless you're
1152 using GNU malloc. Fortunately, most of the major operating systems
1153 can use GNU malloc. */
1155 #ifndef SYNC_INPUT
1157 #ifndef DOUG_LEA_MALLOC
1158 extern void * (*__malloc_hook) P_ ((size_t));
1159 extern void * (*__realloc_hook) P_ ((void *, size_t));
1160 extern void (*__free_hook) P_ ((void *));
1161 /* Else declared in malloc.h, perhaps with an extra arg. */
1162 #endif /* DOUG_LEA_MALLOC */
1163 static void * (*old_malloc_hook) ();
1164 static void * (*old_realloc_hook) ();
1165 static void (*old_free_hook) ();
1167 /* This function is used as the hook for free to call. */
1169 static void
1170 emacs_blocked_free (ptr)
1171 void *ptr;
1173 BLOCK_INPUT_ALLOC;
1175 #ifdef GC_MALLOC_CHECK
1176 if (ptr)
1178 struct mem_node *m;
1180 m = mem_find (ptr);
1181 if (m == MEM_NIL || m->start != ptr)
1183 fprintf (stderr,
1184 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1185 abort ();
1187 else
1189 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1190 mem_delete (m);
1193 #endif /* GC_MALLOC_CHECK */
1195 __free_hook = old_free_hook;
1196 free (ptr);
1198 /* If we released our reserve (due to running out of memory),
1199 and we have a fair amount free once again,
1200 try to set aside another reserve in case we run out once more. */
1201 if (spare_memory == 0
1202 /* Verify there is enough space that even with the malloc
1203 hysteresis this call won't run out again.
1204 The code here is correct as long as SPARE_MEMORY
1205 is substantially larger than the block size malloc uses. */
1206 && (bytes_used_when_full
1207 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
1208 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
1210 __free_hook = emacs_blocked_free;
1211 UNBLOCK_INPUT_ALLOC;
1215 /* This function is the malloc hook that Emacs uses. */
1217 static void *
1218 emacs_blocked_malloc (size)
1219 size_t size;
1221 void *value;
1223 BLOCK_INPUT_ALLOC;
1224 __malloc_hook = old_malloc_hook;
1225 #ifdef DOUG_LEA_MALLOC
1226 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1227 #else
1228 __malloc_extra_blocks = malloc_hysteresis;
1229 #endif
1231 value = (void *) malloc (size);
1233 #ifdef GC_MALLOC_CHECK
1235 struct mem_node *m = mem_find (value);
1236 if (m != MEM_NIL)
1238 fprintf (stderr, "Malloc returned %p which is already in use\n",
1239 value);
1240 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1241 m->start, m->end, (char *) m->end - (char *) m->start,
1242 m->type);
1243 abort ();
1246 if (!dont_register_blocks)
1248 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1249 allocated_mem_type = MEM_TYPE_NON_LISP;
1252 #endif /* GC_MALLOC_CHECK */
1254 __malloc_hook = emacs_blocked_malloc;
1255 UNBLOCK_INPUT_ALLOC;
1257 /* fprintf (stderr, "%p malloc\n", value); */
1258 return value;
1262 /* This function is the realloc hook that Emacs uses. */
1264 static void *
1265 emacs_blocked_realloc (ptr, size)
1266 void *ptr;
1267 size_t size;
1269 void *value;
1271 BLOCK_INPUT_ALLOC;
1272 __realloc_hook = old_realloc_hook;
1274 #ifdef GC_MALLOC_CHECK
1275 if (ptr)
1277 struct mem_node *m = mem_find (ptr);
1278 if (m == MEM_NIL || m->start != ptr)
1280 fprintf (stderr,
1281 "Realloc of %p which wasn't allocated with malloc\n",
1282 ptr);
1283 abort ();
1286 mem_delete (m);
1289 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1291 /* Prevent malloc from registering blocks. */
1292 dont_register_blocks = 1;
1293 #endif /* GC_MALLOC_CHECK */
1295 value = (void *) realloc (ptr, size);
1297 #ifdef GC_MALLOC_CHECK
1298 dont_register_blocks = 0;
1301 struct mem_node *m = mem_find (value);
1302 if (m != MEM_NIL)
1304 fprintf (stderr, "Realloc returns memory that is already in use\n");
1305 abort ();
1308 /* Can't handle zero size regions in the red-black tree. */
1309 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1312 /* fprintf (stderr, "%p <- realloc\n", value); */
1313 #endif /* GC_MALLOC_CHECK */
1315 __realloc_hook = emacs_blocked_realloc;
1316 UNBLOCK_INPUT_ALLOC;
1318 return value;
1322 #ifdef HAVE_GTK_AND_PTHREAD
1323 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1324 normal malloc. Some thread implementations need this as they call
1325 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1326 calls malloc because it is the first call, and we have an endless loop. */
1328 void
1329 reset_malloc_hooks ()
1331 __free_hook = 0;
1332 __malloc_hook = 0;
1333 __realloc_hook = 0;
1335 #endif /* HAVE_GTK_AND_PTHREAD */
1338 /* Called from main to set up malloc to use our hooks. */
1340 void
1341 uninterrupt_malloc ()
1343 #ifdef HAVE_GTK_AND_PTHREAD
1344 pthread_mutexattr_t attr;
1346 /* GLIBC has a faster way to do this, but lets keep it portable.
1347 This is according to the Single UNIX Specification. */
1348 pthread_mutexattr_init (&attr);
1349 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1350 pthread_mutex_init (&alloc_mutex, &attr);
1351 #endif /* HAVE_GTK_AND_PTHREAD */
1353 if (__free_hook != emacs_blocked_free)
1354 old_free_hook = __free_hook;
1355 __free_hook = emacs_blocked_free;
1357 if (__malloc_hook != emacs_blocked_malloc)
1358 old_malloc_hook = __malloc_hook;
1359 __malloc_hook = emacs_blocked_malloc;
1361 if (__realloc_hook != emacs_blocked_realloc)
1362 old_realloc_hook = __realloc_hook;
1363 __realloc_hook = emacs_blocked_realloc;
1366 #endif /* not SYNC_INPUT */
1367 #endif /* not SYSTEM_MALLOC */
1371 /***********************************************************************
1372 Interval Allocation
1373 ***********************************************************************/
1375 /* Number of intervals allocated in an interval_block structure.
1376 The 1020 is 1024 minus malloc overhead. */
1378 #define INTERVAL_BLOCK_SIZE \
1379 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1381 /* Intervals are allocated in chunks in form of an interval_block
1382 structure. */
1384 struct interval_block
1386 /* Place `intervals' first, to preserve alignment. */
1387 struct interval intervals[INTERVAL_BLOCK_SIZE];
1388 struct interval_block *next;
1391 /* Current interval block. Its `next' pointer points to older
1392 blocks. */
1394 struct interval_block *interval_block;
1396 /* Index in interval_block above of the next unused interval
1397 structure. */
1399 static int interval_block_index;
1401 /* Number of free and live intervals. */
1403 static int total_free_intervals, total_intervals;
1405 /* List of free intervals. */
1407 INTERVAL interval_free_list;
1409 /* Total number of interval blocks now in use. */
1411 int n_interval_blocks;
1414 /* Initialize interval allocation. */
1416 static void
1417 init_intervals ()
1419 interval_block = NULL;
1420 interval_block_index = INTERVAL_BLOCK_SIZE;
1421 interval_free_list = 0;
1422 n_interval_blocks = 0;
1426 /* Return a new interval. */
1428 INTERVAL
1429 make_interval ()
1431 INTERVAL val;
1433 if (interval_free_list)
1435 val = interval_free_list;
1436 interval_free_list = INTERVAL_PARENT (interval_free_list);
1438 else
1440 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1442 register struct interval_block *newi;
1444 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1445 MEM_TYPE_NON_LISP);
1447 newi->next = interval_block;
1448 interval_block = newi;
1449 interval_block_index = 0;
1450 n_interval_blocks++;
1452 val = &interval_block->intervals[interval_block_index++];
1454 consing_since_gc += sizeof (struct interval);
1455 intervals_consed++;
1456 RESET_INTERVAL (val);
1457 val->gcmarkbit = 0;
1458 return val;
1462 /* Mark Lisp objects in interval I. */
1464 static void
1465 mark_interval (i, dummy)
1466 register INTERVAL i;
1467 Lisp_Object dummy;
1469 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1470 i->gcmarkbit = 1;
1471 mark_object (i->plist);
1475 /* Mark the interval tree rooted in TREE. Don't call this directly;
1476 use the macro MARK_INTERVAL_TREE instead. */
1478 static void
1479 mark_interval_tree (tree)
1480 register INTERVAL tree;
1482 /* No need to test if this tree has been marked already; this
1483 function is always called through the MARK_INTERVAL_TREE macro,
1484 which takes care of that. */
1486 traverse_intervals_noorder (tree, mark_interval, Qnil);
1490 /* Mark the interval tree rooted in I. */
1492 #define MARK_INTERVAL_TREE(i) \
1493 do { \
1494 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1495 mark_interval_tree (i); \
1496 } while (0)
1499 #define UNMARK_BALANCE_INTERVALS(i) \
1500 do { \
1501 if (! NULL_INTERVAL_P (i)) \
1502 (i) = balance_intervals (i); \
1503 } while (0)
1506 /* Number support. If NO_UNION_TYPE isn't in effect, we
1507 can't create number objects in macros. */
1508 #ifndef make_number
1509 Lisp_Object
1510 make_number (n)
1511 EMACS_INT n;
1513 Lisp_Object obj;
1514 obj.s.val = n;
1515 obj.s.type = Lisp_Int;
1516 return obj;
1518 #endif
1520 /***********************************************************************
1521 String Allocation
1522 ***********************************************************************/
1524 /* Lisp_Strings are allocated in string_block structures. When a new
1525 string_block is allocated, all the Lisp_Strings it contains are
1526 added to a free-list string_free_list. When a new Lisp_String is
1527 needed, it is taken from that list. During the sweep phase of GC,
1528 string_blocks that are entirely free are freed, except two which
1529 we keep.
1531 String data is allocated from sblock structures. Strings larger
1532 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1533 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1535 Sblocks consist internally of sdata structures, one for each
1536 Lisp_String. The sdata structure points to the Lisp_String it
1537 belongs to. The Lisp_String points back to the `u.data' member of
1538 its sdata structure.
1540 When a Lisp_String is freed during GC, it is put back on
1541 string_free_list, and its `data' member and its sdata's `string'
1542 pointer is set to null. The size of the string is recorded in the
1543 `u.nbytes' member of the sdata. So, sdata structures that are no
1544 longer used, can be easily recognized, and it's easy to compact the
1545 sblocks of small strings which we do in compact_small_strings. */
1547 /* Size in bytes of an sblock structure used for small strings. This
1548 is 8192 minus malloc overhead. */
1550 #define SBLOCK_SIZE 8188
1552 /* Strings larger than this are considered large strings. String data
1553 for large strings is allocated from individual sblocks. */
1555 #define LARGE_STRING_BYTES 1024
1557 /* Structure describing string memory sub-allocated from an sblock.
1558 This is where the contents of Lisp strings are stored. */
1560 struct sdata
1562 /* Back-pointer to the string this sdata belongs to. If null, this
1563 structure is free, and the NBYTES member of the union below
1564 contains the string's byte size (the same value that STRING_BYTES
1565 would return if STRING were non-null). If non-null, STRING_BYTES
1566 (STRING) is the size of the data, and DATA contains the string's
1567 contents. */
1568 struct Lisp_String *string;
1570 #ifdef GC_CHECK_STRING_BYTES
1572 EMACS_INT nbytes;
1573 unsigned char data[1];
1575 #define SDATA_NBYTES(S) (S)->nbytes
1576 #define SDATA_DATA(S) (S)->data
1578 #else /* not GC_CHECK_STRING_BYTES */
1580 union
1582 /* When STRING in non-null. */
1583 unsigned char data[1];
1585 /* When STRING is null. */
1586 EMACS_INT nbytes;
1587 } u;
1590 #define SDATA_NBYTES(S) (S)->u.nbytes
1591 #define SDATA_DATA(S) (S)->u.data
1593 #endif /* not GC_CHECK_STRING_BYTES */
1597 /* Structure describing a block of memory which is sub-allocated to
1598 obtain string data memory for strings. Blocks for small strings
1599 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1600 as large as needed. */
1602 struct sblock
1604 /* Next in list. */
1605 struct sblock *next;
1607 /* Pointer to the next free sdata block. This points past the end
1608 of the sblock if there isn't any space left in this block. */
1609 struct sdata *next_free;
1611 /* Start of data. */
1612 struct sdata first_data;
1615 /* Number of Lisp strings in a string_block structure. The 1020 is
1616 1024 minus malloc overhead. */
1618 #define STRING_BLOCK_SIZE \
1619 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1621 /* Structure describing a block from which Lisp_String structures
1622 are allocated. */
1624 struct string_block
1626 /* Place `strings' first, to preserve alignment. */
1627 struct Lisp_String strings[STRING_BLOCK_SIZE];
1628 struct string_block *next;
1631 /* Head and tail of the list of sblock structures holding Lisp string
1632 data. We always allocate from current_sblock. The NEXT pointers
1633 in the sblock structures go from oldest_sblock to current_sblock. */
1635 static struct sblock *oldest_sblock, *current_sblock;
1637 /* List of sblocks for large strings. */
1639 static struct sblock *large_sblocks;
1641 /* List of string_block structures, and how many there are. */
1643 static struct string_block *string_blocks;
1644 static int n_string_blocks;
1646 /* Free-list of Lisp_Strings. */
1648 static struct Lisp_String *string_free_list;
1650 /* Number of live and free Lisp_Strings. */
1652 static int total_strings, total_free_strings;
1654 /* Number of bytes used by live strings. */
1656 static int total_string_size;
1658 /* Given a pointer to a Lisp_String S which is on the free-list
1659 string_free_list, return a pointer to its successor in the
1660 free-list. */
1662 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1664 /* Return a pointer to the sdata structure belonging to Lisp string S.
1665 S must be live, i.e. S->data must not be null. S->data is actually
1666 a pointer to the `u.data' member of its sdata structure; the
1667 structure starts at a constant offset in front of that. */
1669 #ifdef GC_CHECK_STRING_BYTES
1671 #define SDATA_OF_STRING(S) \
1672 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1673 - sizeof (EMACS_INT)))
1675 #else /* not GC_CHECK_STRING_BYTES */
1677 #define SDATA_OF_STRING(S) \
1678 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1680 #endif /* not GC_CHECK_STRING_BYTES */
1683 #ifdef GC_CHECK_STRING_OVERRUN
1685 /* We check for overrun in string data blocks by appending a small
1686 "cookie" after each allocated string data block, and check for the
1687 presense of this cookie during GC. */
1689 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1690 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1691 { 0xde, 0xad, 0xbe, 0xef };
1693 #else
1694 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1695 #endif
1697 /* Value is the size of an sdata structure large enough to hold NBYTES
1698 bytes of string data. The value returned includes a terminating
1699 NUL byte, the size of the sdata structure, and padding. */
1701 #ifdef GC_CHECK_STRING_BYTES
1703 #define SDATA_SIZE(NBYTES) \
1704 ((sizeof (struct Lisp_String *) \
1705 + (NBYTES) + 1 \
1706 + sizeof (EMACS_INT) \
1707 + sizeof (EMACS_INT) - 1) \
1708 & ~(sizeof (EMACS_INT) - 1))
1710 #else /* not GC_CHECK_STRING_BYTES */
1712 #define SDATA_SIZE(NBYTES) \
1713 ((sizeof (struct Lisp_String *) \
1714 + (NBYTES) + 1 \
1715 + sizeof (EMACS_INT) - 1) \
1716 & ~(sizeof (EMACS_INT) - 1))
1718 #endif /* not GC_CHECK_STRING_BYTES */
1720 /* Extra bytes to allocate for each string. */
1722 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1724 /* Initialize string allocation. Called from init_alloc_once. */
1726 void
1727 init_strings ()
1729 total_strings = total_free_strings = total_string_size = 0;
1730 oldest_sblock = current_sblock = large_sblocks = NULL;
1731 string_blocks = NULL;
1732 n_string_blocks = 0;
1733 string_free_list = NULL;
1737 #ifdef GC_CHECK_STRING_BYTES
1739 static int check_string_bytes_count;
1741 void check_string_bytes P_ ((int));
1742 void check_sblock P_ ((struct sblock *));
1744 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1747 /* Like GC_STRING_BYTES, but with debugging check. */
1750 string_bytes (s)
1751 struct Lisp_String *s;
1753 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1754 if (!PURE_POINTER_P (s)
1755 && s->data
1756 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1757 abort ();
1758 return nbytes;
1761 /* Check validity of Lisp strings' string_bytes member in B. */
1763 void
1764 check_sblock (b)
1765 struct sblock *b;
1767 struct sdata *from, *end, *from_end;
1769 end = b->next_free;
1771 for (from = &b->first_data; from < end; from = from_end)
1773 /* Compute the next FROM here because copying below may
1774 overwrite data we need to compute it. */
1775 int nbytes;
1777 /* Check that the string size recorded in the string is the
1778 same as the one recorded in the sdata structure. */
1779 if (from->string)
1780 CHECK_STRING_BYTES (from->string);
1782 if (from->string)
1783 nbytes = GC_STRING_BYTES (from->string);
1784 else
1785 nbytes = SDATA_NBYTES (from);
1787 nbytes = SDATA_SIZE (nbytes);
1788 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1793 /* Check validity of Lisp strings' string_bytes member. ALL_P
1794 non-zero means check all strings, otherwise check only most
1795 recently allocated strings. Used for hunting a bug. */
1797 void
1798 check_string_bytes (all_p)
1799 int all_p;
1801 if (all_p)
1803 struct sblock *b;
1805 for (b = large_sblocks; b; b = b->next)
1807 struct Lisp_String *s = b->first_data.string;
1808 if (s)
1809 CHECK_STRING_BYTES (s);
1812 for (b = oldest_sblock; b; b = b->next)
1813 check_sblock (b);
1815 else
1816 check_sblock (current_sblock);
1819 #endif /* GC_CHECK_STRING_BYTES */
1821 #ifdef GC_CHECK_STRING_FREE_LIST
1823 /* Walk through the string free list looking for bogus next pointers.
1824 This may catch buffer overrun from a previous string. */
1826 static void
1827 check_string_free_list ()
1829 struct Lisp_String *s;
1831 /* Pop a Lisp_String off the free-list. */
1832 s = string_free_list;
1833 while (s != NULL)
1835 if ((unsigned)s < 1024)
1836 abort();
1837 s = NEXT_FREE_LISP_STRING (s);
1840 #else
1841 #define check_string_free_list()
1842 #endif
1844 /* Return a new Lisp_String. */
1846 static struct Lisp_String *
1847 allocate_string ()
1849 struct Lisp_String *s;
1851 /* If the free-list is empty, allocate a new string_block, and
1852 add all the Lisp_Strings in it to the free-list. */
1853 if (string_free_list == NULL)
1855 struct string_block *b;
1856 int i;
1858 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1859 bzero (b, sizeof *b);
1860 b->next = string_blocks;
1861 string_blocks = b;
1862 ++n_string_blocks;
1864 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1866 s = b->strings + i;
1867 NEXT_FREE_LISP_STRING (s) = string_free_list;
1868 string_free_list = s;
1871 total_free_strings += STRING_BLOCK_SIZE;
1874 check_string_free_list ();
1876 /* Pop a Lisp_String off the free-list. */
1877 s = string_free_list;
1878 string_free_list = NEXT_FREE_LISP_STRING (s);
1880 /* Probably not strictly necessary, but play it safe. */
1881 bzero (s, sizeof *s);
1883 --total_free_strings;
1884 ++total_strings;
1885 ++strings_consed;
1886 consing_since_gc += sizeof *s;
1888 #ifdef GC_CHECK_STRING_BYTES
1889 if (!noninteractive
1890 #ifdef MAC_OS8
1891 && current_sblock
1892 #endif
1895 if (++check_string_bytes_count == 200)
1897 check_string_bytes_count = 0;
1898 check_string_bytes (1);
1900 else
1901 check_string_bytes (0);
1903 #endif /* GC_CHECK_STRING_BYTES */
1905 return s;
1909 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1910 plus a NUL byte at the end. Allocate an sdata structure for S, and
1911 set S->data to its `u.data' member. Store a NUL byte at the end of
1912 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1913 S->data if it was initially non-null. */
1915 void
1916 allocate_string_data (s, nchars, nbytes)
1917 struct Lisp_String *s;
1918 int nchars, nbytes;
1920 struct sdata *data, *old_data;
1921 struct sblock *b;
1922 int needed, old_nbytes;
1924 /* Determine the number of bytes needed to store NBYTES bytes
1925 of string data. */
1926 needed = SDATA_SIZE (nbytes);
1928 if (nbytes > LARGE_STRING_BYTES)
1930 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1932 #ifdef DOUG_LEA_MALLOC
1933 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1934 because mapped region contents are not preserved in
1935 a dumped Emacs.
1937 In case you think of allowing it in a dumped Emacs at the
1938 cost of not being able to re-dump, there's another reason:
1939 mmap'ed data typically have an address towards the top of the
1940 address space, which won't fit into an EMACS_INT (at least on
1941 32-bit systems with the current tagging scheme). --fx */
1942 BLOCK_INPUT;
1943 mallopt (M_MMAP_MAX, 0);
1944 UNBLOCK_INPUT;
1945 #endif
1947 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1949 #ifdef DOUG_LEA_MALLOC
1950 /* Back to a reasonable maximum of mmap'ed areas. */
1951 BLOCK_INPUT;
1952 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1953 UNBLOCK_INPUT;
1954 #endif
1956 b->next_free = &b->first_data;
1957 b->first_data.string = NULL;
1958 b->next = large_sblocks;
1959 large_sblocks = b;
1961 else if (current_sblock == NULL
1962 || (((char *) current_sblock + SBLOCK_SIZE
1963 - (char *) current_sblock->next_free)
1964 < (needed + GC_STRING_EXTRA)))
1966 /* Not enough room in the current sblock. */
1967 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1968 b->next_free = &b->first_data;
1969 b->first_data.string = NULL;
1970 b->next = NULL;
1972 if (current_sblock)
1973 current_sblock->next = b;
1974 else
1975 oldest_sblock = b;
1976 current_sblock = b;
1978 else
1979 b = current_sblock;
1981 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1982 old_nbytes = GC_STRING_BYTES (s);
1984 data = b->next_free;
1985 data->string = s;
1986 s->data = SDATA_DATA (data);
1987 #ifdef GC_CHECK_STRING_BYTES
1988 SDATA_NBYTES (data) = nbytes;
1989 #endif
1990 s->size = nchars;
1991 s->size_byte = nbytes;
1992 s->data[nbytes] = '\0';
1993 #ifdef GC_CHECK_STRING_OVERRUN
1994 bcopy (string_overrun_cookie, (char *) data + needed,
1995 GC_STRING_OVERRUN_COOKIE_SIZE);
1996 #endif
1997 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1999 /* If S had already data assigned, mark that as free by setting its
2000 string back-pointer to null, and recording the size of the data
2001 in it. */
2002 if (old_data)
2004 SDATA_NBYTES (old_data) = old_nbytes;
2005 old_data->string = NULL;
2008 consing_since_gc += needed;
2012 /* Sweep and compact strings. */
2014 static void
2015 sweep_strings ()
2017 struct string_block *b, *next;
2018 struct string_block *live_blocks = NULL;
2020 string_free_list = NULL;
2021 total_strings = total_free_strings = 0;
2022 total_string_size = 0;
2024 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2025 for (b = string_blocks; b; b = next)
2027 int i, nfree = 0;
2028 struct Lisp_String *free_list_before = string_free_list;
2030 next = b->next;
2032 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2034 struct Lisp_String *s = b->strings + i;
2036 if (s->data)
2038 /* String was not on free-list before. */
2039 if (STRING_MARKED_P (s))
2041 /* String is live; unmark it and its intervals. */
2042 UNMARK_STRING (s);
2044 if (!NULL_INTERVAL_P (s->intervals))
2045 UNMARK_BALANCE_INTERVALS (s->intervals);
2047 ++total_strings;
2048 total_string_size += STRING_BYTES (s);
2050 else
2052 /* String is dead. Put it on the free-list. */
2053 struct sdata *data = SDATA_OF_STRING (s);
2055 /* Save the size of S in its sdata so that we know
2056 how large that is. Reset the sdata's string
2057 back-pointer so that we know it's free. */
2058 #ifdef GC_CHECK_STRING_BYTES
2059 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2060 abort ();
2061 #else
2062 data->u.nbytes = GC_STRING_BYTES (s);
2063 #endif
2064 data->string = NULL;
2066 /* Reset the strings's `data' member so that we
2067 know it's free. */
2068 s->data = NULL;
2070 /* Put the string on the free-list. */
2071 NEXT_FREE_LISP_STRING (s) = string_free_list;
2072 string_free_list = s;
2073 ++nfree;
2076 else
2078 /* S was on the free-list before. Put it there again. */
2079 NEXT_FREE_LISP_STRING (s) = string_free_list;
2080 string_free_list = s;
2081 ++nfree;
2085 /* Free blocks that contain free Lisp_Strings only, except
2086 the first two of them. */
2087 if (nfree == STRING_BLOCK_SIZE
2088 && total_free_strings > STRING_BLOCK_SIZE)
2090 lisp_free (b);
2091 --n_string_blocks;
2092 string_free_list = free_list_before;
2094 else
2096 total_free_strings += nfree;
2097 b->next = live_blocks;
2098 live_blocks = b;
2102 check_string_free_list ();
2104 string_blocks = live_blocks;
2105 free_large_strings ();
2106 compact_small_strings ();
2108 check_string_free_list ();
2112 /* Free dead large strings. */
2114 static void
2115 free_large_strings ()
2117 struct sblock *b, *next;
2118 struct sblock *live_blocks = NULL;
2120 for (b = large_sblocks; b; b = next)
2122 next = b->next;
2124 if (b->first_data.string == NULL)
2125 lisp_free (b);
2126 else
2128 b->next = live_blocks;
2129 live_blocks = b;
2133 large_sblocks = live_blocks;
2137 /* Compact data of small strings. Free sblocks that don't contain
2138 data of live strings after compaction. */
2140 static void
2141 compact_small_strings ()
2143 struct sblock *b, *tb, *next;
2144 struct sdata *from, *to, *end, *tb_end;
2145 struct sdata *to_end, *from_end;
2147 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2148 to, and TB_END is the end of TB. */
2149 tb = oldest_sblock;
2150 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2151 to = &tb->first_data;
2153 /* Step through the blocks from the oldest to the youngest. We
2154 expect that old blocks will stabilize over time, so that less
2155 copying will happen this way. */
2156 for (b = oldest_sblock; b; b = b->next)
2158 end = b->next_free;
2159 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2161 for (from = &b->first_data; from < end; from = from_end)
2163 /* Compute the next FROM here because copying below may
2164 overwrite data we need to compute it. */
2165 int nbytes;
2167 #ifdef GC_CHECK_STRING_BYTES
2168 /* Check that the string size recorded in the string is the
2169 same as the one recorded in the sdata structure. */
2170 if (from->string
2171 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2172 abort ();
2173 #endif /* GC_CHECK_STRING_BYTES */
2175 if (from->string)
2176 nbytes = GC_STRING_BYTES (from->string);
2177 else
2178 nbytes = SDATA_NBYTES (from);
2180 if (nbytes > LARGE_STRING_BYTES)
2181 abort ();
2183 nbytes = SDATA_SIZE (nbytes);
2184 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2186 #ifdef GC_CHECK_STRING_OVERRUN
2187 if (bcmp (string_overrun_cookie,
2188 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2189 GC_STRING_OVERRUN_COOKIE_SIZE))
2190 abort ();
2191 #endif
2193 /* FROM->string non-null means it's alive. Copy its data. */
2194 if (from->string)
2196 /* If TB is full, proceed with the next sblock. */
2197 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2198 if (to_end > tb_end)
2200 tb->next_free = to;
2201 tb = tb->next;
2202 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2203 to = &tb->first_data;
2204 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2207 /* Copy, and update the string's `data' pointer. */
2208 if (from != to)
2210 xassert (tb != b || to <= from);
2211 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2212 to->string->data = SDATA_DATA (to);
2215 /* Advance past the sdata we copied to. */
2216 to = to_end;
2221 /* The rest of the sblocks following TB don't contain live data, so
2222 we can free them. */
2223 for (b = tb->next; b; b = next)
2225 next = b->next;
2226 lisp_free (b);
2229 tb->next_free = to;
2230 tb->next = NULL;
2231 current_sblock = tb;
2235 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2236 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2237 LENGTH must be an integer.
2238 INIT must be an integer that represents a character. */)
2239 (length, init)
2240 Lisp_Object length, init;
2242 register Lisp_Object val;
2243 register unsigned char *p, *end;
2244 int c, nbytes;
2246 CHECK_NATNUM (length);
2247 CHECK_NUMBER (init);
2249 c = XINT (init);
2250 if (SINGLE_BYTE_CHAR_P (c))
2252 nbytes = XINT (length);
2253 val = make_uninit_string (nbytes);
2254 p = SDATA (val);
2255 end = p + SCHARS (val);
2256 while (p != end)
2257 *p++ = c;
2259 else
2261 unsigned char str[MAX_MULTIBYTE_LENGTH];
2262 int len = CHAR_STRING (c, str);
2264 nbytes = len * XINT (length);
2265 val = make_uninit_multibyte_string (XINT (length), nbytes);
2266 p = SDATA (val);
2267 end = p + nbytes;
2268 while (p != end)
2270 bcopy (str, p, len);
2271 p += len;
2275 *p = 0;
2276 return val;
2280 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2281 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
2282 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2283 (length, init)
2284 Lisp_Object length, init;
2286 register Lisp_Object val;
2287 struct Lisp_Bool_Vector *p;
2288 int real_init, i;
2289 int length_in_chars, length_in_elts, bits_per_value;
2291 CHECK_NATNUM (length);
2293 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2295 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2296 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2297 / BOOL_VECTOR_BITS_PER_CHAR);
2299 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2300 slot `size' of the struct Lisp_Bool_Vector. */
2301 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2302 p = XBOOL_VECTOR (val);
2304 /* Get rid of any bits that would cause confusion. */
2305 p->vector_size = 0;
2306 XSETBOOL_VECTOR (val, p);
2307 p->size = XFASTINT (length);
2309 real_init = (NILP (init) ? 0 : -1);
2310 for (i = 0; i < length_in_chars ; i++)
2311 p->data[i] = real_init;
2313 /* Clear the extraneous bits in the last byte. */
2314 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2315 XBOOL_VECTOR (val)->data[length_in_chars - 1]
2316 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2318 return val;
2322 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2323 of characters from the contents. This string may be unibyte or
2324 multibyte, depending on the contents. */
2326 Lisp_Object
2327 make_string (contents, nbytes)
2328 const char *contents;
2329 int nbytes;
2331 register Lisp_Object val;
2332 int nchars, multibyte_nbytes;
2334 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2335 if (nbytes == nchars || nbytes != multibyte_nbytes)
2336 /* CONTENTS contains no multibyte sequences or contains an invalid
2337 multibyte sequence. We must make unibyte string. */
2338 val = make_unibyte_string (contents, nbytes);
2339 else
2340 val = make_multibyte_string (contents, nchars, nbytes);
2341 return val;
2345 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2347 Lisp_Object
2348 make_unibyte_string (contents, length)
2349 const char *contents;
2350 int length;
2352 register Lisp_Object val;
2353 val = make_uninit_string (length);
2354 bcopy (contents, SDATA (val), length);
2355 STRING_SET_UNIBYTE (val);
2356 return val;
2360 /* Make a multibyte string from NCHARS characters occupying NBYTES
2361 bytes at CONTENTS. */
2363 Lisp_Object
2364 make_multibyte_string (contents, nchars, nbytes)
2365 const char *contents;
2366 int nchars, nbytes;
2368 register Lisp_Object val;
2369 val = make_uninit_multibyte_string (nchars, nbytes);
2370 bcopy (contents, SDATA (val), nbytes);
2371 return val;
2375 /* Make a string from NCHARS characters occupying NBYTES bytes at
2376 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2378 Lisp_Object
2379 make_string_from_bytes (contents, nchars, nbytes)
2380 const char *contents;
2381 int nchars, nbytes;
2383 register Lisp_Object val;
2384 val = make_uninit_multibyte_string (nchars, nbytes);
2385 bcopy (contents, SDATA (val), nbytes);
2386 if (SBYTES (val) == SCHARS (val))
2387 STRING_SET_UNIBYTE (val);
2388 return val;
2392 /* Make a string from NCHARS characters occupying NBYTES bytes at
2393 CONTENTS. The argument MULTIBYTE controls whether to label the
2394 string as multibyte. If NCHARS is negative, it counts the number of
2395 characters by itself. */
2397 Lisp_Object
2398 make_specified_string (contents, nchars, nbytes, multibyte)
2399 const char *contents;
2400 int nchars, nbytes;
2401 int multibyte;
2403 register Lisp_Object val;
2405 if (nchars < 0)
2407 if (multibyte)
2408 nchars = multibyte_chars_in_text (contents, nbytes);
2409 else
2410 nchars = nbytes;
2412 val = make_uninit_multibyte_string (nchars, nbytes);
2413 bcopy (contents, SDATA (val), nbytes);
2414 if (!multibyte)
2415 STRING_SET_UNIBYTE (val);
2416 return val;
2420 /* Make a string from the data at STR, treating it as multibyte if the
2421 data warrants. */
2423 Lisp_Object
2424 build_string (str)
2425 const char *str;
2427 return make_string (str, strlen (str));
2431 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2432 occupying LENGTH bytes. */
2434 Lisp_Object
2435 make_uninit_string (length)
2436 int length;
2438 Lisp_Object val;
2439 val = make_uninit_multibyte_string (length, length);
2440 STRING_SET_UNIBYTE (val);
2441 return val;
2445 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2446 which occupy NBYTES bytes. */
2448 Lisp_Object
2449 make_uninit_multibyte_string (nchars, nbytes)
2450 int nchars, nbytes;
2452 Lisp_Object string;
2453 struct Lisp_String *s;
2455 if (nchars < 0)
2456 abort ();
2458 s = allocate_string ();
2459 allocate_string_data (s, nchars, nbytes);
2460 XSETSTRING (string, s);
2461 string_chars_consed += nbytes;
2462 return string;
2467 /***********************************************************************
2468 Float Allocation
2469 ***********************************************************************/
2471 /* We store float cells inside of float_blocks, allocating a new
2472 float_block with malloc whenever necessary. Float cells reclaimed
2473 by GC are put on a free list to be reallocated before allocating
2474 any new float cells from the latest float_block. */
2476 #define FLOAT_BLOCK_SIZE \
2477 (((BLOCK_BYTES - sizeof (struct float_block *) \
2478 /* The compiler might add padding at the end. */ \
2479 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2480 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2482 #define GETMARKBIT(block,n) \
2483 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2484 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2485 & 1)
2487 #define SETMARKBIT(block,n) \
2488 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2489 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2491 #define UNSETMARKBIT(block,n) \
2492 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2493 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2495 #define FLOAT_BLOCK(fptr) \
2496 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2498 #define FLOAT_INDEX(fptr) \
2499 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2501 struct float_block
2503 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2504 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2505 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2506 struct float_block *next;
2509 #define FLOAT_MARKED_P(fptr) \
2510 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2512 #define FLOAT_MARK(fptr) \
2513 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2515 #define FLOAT_UNMARK(fptr) \
2516 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2518 /* Current float_block. */
2520 struct float_block *float_block;
2522 /* Index of first unused Lisp_Float in the current float_block. */
2524 int float_block_index;
2526 /* Total number of float blocks now in use. */
2528 int n_float_blocks;
2530 /* Free-list of Lisp_Floats. */
2532 struct Lisp_Float *float_free_list;
2535 /* Initialize float allocation. */
2537 void
2538 init_float ()
2540 float_block = NULL;
2541 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2542 float_free_list = 0;
2543 n_float_blocks = 0;
2547 /* Explicitly free a float cell by putting it on the free-list. */
2549 void
2550 free_float (ptr)
2551 struct Lisp_Float *ptr;
2553 *(struct Lisp_Float **)&ptr->data = float_free_list;
2554 float_free_list = ptr;
2558 /* Return a new float object with value FLOAT_VALUE. */
2560 Lisp_Object
2561 make_float (float_value)
2562 double float_value;
2564 register Lisp_Object val;
2566 if (float_free_list)
2568 /* We use the data field for chaining the free list
2569 so that we won't use the same field that has the mark bit. */
2570 XSETFLOAT (val, float_free_list);
2571 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2573 else
2575 if (float_block_index == FLOAT_BLOCK_SIZE)
2577 register struct float_block *new;
2579 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2580 MEM_TYPE_FLOAT);
2581 new->next = float_block;
2582 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2583 float_block = new;
2584 float_block_index = 0;
2585 n_float_blocks++;
2587 XSETFLOAT (val, &float_block->floats[float_block_index]);
2588 float_block_index++;
2591 XFLOAT_DATA (val) = float_value;
2592 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2593 consing_since_gc += sizeof (struct Lisp_Float);
2594 floats_consed++;
2595 return val;
2600 /***********************************************************************
2601 Cons Allocation
2602 ***********************************************************************/
2604 /* We store cons cells inside of cons_blocks, allocating a new
2605 cons_block with malloc whenever necessary. Cons cells reclaimed by
2606 GC are put on a free list to be reallocated before allocating
2607 any new cons cells from the latest cons_block. */
2609 #define CONS_BLOCK_SIZE \
2610 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2611 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2613 #define CONS_BLOCK(fptr) \
2614 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2616 #define CONS_INDEX(fptr) \
2617 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2619 struct cons_block
2621 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2622 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2623 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2624 struct cons_block *next;
2627 #define CONS_MARKED_P(fptr) \
2628 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2630 #define CONS_MARK(fptr) \
2631 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2633 #define CONS_UNMARK(fptr) \
2634 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2636 /* Current cons_block. */
2638 struct cons_block *cons_block;
2640 /* Index of first unused Lisp_Cons in the current block. */
2642 int cons_block_index;
2644 /* Free-list of Lisp_Cons structures. */
2646 struct Lisp_Cons *cons_free_list;
2648 /* Total number of cons blocks now in use. */
2650 int n_cons_blocks;
2653 /* Initialize cons allocation. */
2655 void
2656 init_cons ()
2658 cons_block = NULL;
2659 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2660 cons_free_list = 0;
2661 n_cons_blocks = 0;
2665 /* Explicitly free a cons cell by putting it on the free-list. */
2667 void
2668 free_cons (ptr)
2669 struct Lisp_Cons *ptr;
2671 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2672 #if GC_MARK_STACK
2673 ptr->car = Vdead;
2674 #endif
2675 cons_free_list = ptr;
2678 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2679 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2680 (car, cdr)
2681 Lisp_Object car, cdr;
2683 register Lisp_Object val;
2685 if (cons_free_list)
2687 /* We use the cdr for chaining the free list
2688 so that we won't use the same field that has the mark bit. */
2689 XSETCONS (val, cons_free_list);
2690 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2692 else
2694 if (cons_block_index == CONS_BLOCK_SIZE)
2696 register struct cons_block *new;
2697 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2698 MEM_TYPE_CONS);
2699 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2700 new->next = cons_block;
2701 cons_block = new;
2702 cons_block_index = 0;
2703 n_cons_blocks++;
2705 XSETCONS (val, &cons_block->conses[cons_block_index]);
2706 cons_block_index++;
2709 XSETCAR (val, car);
2710 XSETCDR (val, cdr);
2711 eassert (!CONS_MARKED_P (XCONS (val)));
2712 consing_since_gc += sizeof (struct Lisp_Cons);
2713 cons_cells_consed++;
2714 return val;
2717 /* Get an error now if there's any junk in the cons free list. */
2718 void
2719 check_cons_list ()
2721 #ifdef GC_CHECK_CONS_LIST
2722 struct Lisp_Cons *tail = cons_free_list;
2724 while (tail)
2725 tail = *(struct Lisp_Cons **)&tail->cdr;
2726 #endif
2729 /* Make a list of 2, 3, 4 or 5 specified objects. */
2731 Lisp_Object
2732 list2 (arg1, arg2)
2733 Lisp_Object arg1, arg2;
2735 return Fcons (arg1, Fcons (arg2, Qnil));
2739 Lisp_Object
2740 list3 (arg1, arg2, arg3)
2741 Lisp_Object arg1, arg2, arg3;
2743 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2747 Lisp_Object
2748 list4 (arg1, arg2, arg3, arg4)
2749 Lisp_Object arg1, arg2, arg3, arg4;
2751 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2755 Lisp_Object
2756 list5 (arg1, arg2, arg3, arg4, arg5)
2757 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2759 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2760 Fcons (arg5, Qnil)))));
2764 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2765 doc: /* Return a newly created list with specified arguments as elements.
2766 Any number of arguments, even zero arguments, are allowed.
2767 usage: (list &rest OBJECTS) */)
2768 (nargs, args)
2769 int nargs;
2770 register Lisp_Object *args;
2772 register Lisp_Object val;
2773 val = Qnil;
2775 while (nargs > 0)
2777 nargs--;
2778 val = Fcons (args[nargs], val);
2780 return val;
2784 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2785 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2786 (length, init)
2787 register Lisp_Object length, init;
2789 register Lisp_Object val;
2790 register int size;
2792 CHECK_NATNUM (length);
2793 size = XFASTINT (length);
2795 val = Qnil;
2796 while (size > 0)
2798 val = Fcons (init, val);
2799 --size;
2801 if (size > 0)
2803 val = Fcons (init, val);
2804 --size;
2806 if (size > 0)
2808 val = Fcons (init, val);
2809 --size;
2811 if (size > 0)
2813 val = Fcons (init, val);
2814 --size;
2816 if (size > 0)
2818 val = Fcons (init, val);
2819 --size;
2825 QUIT;
2828 return val;
2833 /***********************************************************************
2834 Vector Allocation
2835 ***********************************************************************/
2837 /* Singly-linked list of all vectors. */
2839 struct Lisp_Vector *all_vectors;
2841 /* Total number of vector-like objects now in use. */
2843 int n_vectors;
2846 /* Value is a pointer to a newly allocated Lisp_Vector structure
2847 with room for LEN Lisp_Objects. */
2849 static struct Lisp_Vector *
2850 allocate_vectorlike (len, type)
2851 EMACS_INT len;
2852 enum mem_type type;
2854 struct Lisp_Vector *p;
2855 size_t nbytes;
2857 #ifdef DOUG_LEA_MALLOC
2858 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2859 because mapped region contents are not preserved in
2860 a dumped Emacs. */
2861 BLOCK_INPUT;
2862 mallopt (M_MMAP_MAX, 0);
2863 UNBLOCK_INPUT;
2864 #endif
2866 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2867 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2869 #ifdef DOUG_LEA_MALLOC
2870 /* Back to a reasonable maximum of mmap'ed areas. */
2871 BLOCK_INPUT;
2872 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2873 UNBLOCK_INPUT;
2874 #endif
2876 consing_since_gc += nbytes;
2877 vector_cells_consed += len;
2879 p->next = all_vectors;
2880 all_vectors = p;
2881 ++n_vectors;
2882 return p;
2886 /* Allocate a vector with NSLOTS slots. */
2888 struct Lisp_Vector *
2889 allocate_vector (nslots)
2890 EMACS_INT nslots;
2892 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2893 v->size = nslots;
2894 return v;
2898 /* Allocate other vector-like structures. */
2900 struct Lisp_Hash_Table *
2901 allocate_hash_table ()
2903 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2904 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2905 EMACS_INT i;
2907 v->size = len;
2908 for (i = 0; i < len; ++i)
2909 v->contents[i] = Qnil;
2911 return (struct Lisp_Hash_Table *) v;
2915 struct window *
2916 allocate_window ()
2918 EMACS_INT len = VECSIZE (struct window);
2919 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2920 EMACS_INT i;
2922 for (i = 0; i < len; ++i)
2923 v->contents[i] = Qnil;
2924 v->size = len;
2926 return (struct window *) v;
2930 struct frame *
2931 allocate_frame ()
2933 EMACS_INT len = VECSIZE (struct frame);
2934 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2935 EMACS_INT i;
2937 for (i = 0; i < len; ++i)
2938 v->contents[i] = make_number (0);
2939 v->size = len;
2940 return (struct frame *) v;
2944 struct Lisp_Process *
2945 allocate_process ()
2947 EMACS_INT len = VECSIZE (struct Lisp_Process);
2948 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2949 EMACS_INT i;
2951 for (i = 0; i < len; ++i)
2952 v->contents[i] = Qnil;
2953 v->size = len;
2955 return (struct Lisp_Process *) v;
2959 struct Lisp_Vector *
2960 allocate_other_vector (len)
2961 EMACS_INT len;
2963 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2964 EMACS_INT i;
2966 for (i = 0; i < len; ++i)
2967 v->contents[i] = Qnil;
2968 v->size = len;
2970 return v;
2974 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2975 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2976 See also the function `vector'. */)
2977 (length, init)
2978 register Lisp_Object length, init;
2980 Lisp_Object vector;
2981 register EMACS_INT sizei;
2982 register int index;
2983 register struct Lisp_Vector *p;
2985 CHECK_NATNUM (length);
2986 sizei = XFASTINT (length);
2988 p = allocate_vector (sizei);
2989 for (index = 0; index < sizei; index++)
2990 p->contents[index] = init;
2992 XSETVECTOR (vector, p);
2993 return vector;
2997 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2998 doc: /* Return a newly created char-table, with purpose PURPOSE.
2999 Each element is initialized to INIT, which defaults to nil.
3000 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3001 The property's value should be an integer between 0 and 10. */)
3002 (purpose, init)
3003 register Lisp_Object purpose, init;
3005 Lisp_Object vector;
3006 Lisp_Object n;
3007 CHECK_SYMBOL (purpose);
3008 n = Fget (purpose, Qchar_table_extra_slots);
3009 CHECK_NUMBER (n);
3010 if (XINT (n) < 0 || XINT (n) > 10)
3011 args_out_of_range (n, Qnil);
3012 /* Add 2 to the size for the defalt and parent slots. */
3013 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3014 init);
3015 XCHAR_TABLE (vector)->top = Qt;
3016 XCHAR_TABLE (vector)->parent = Qnil;
3017 XCHAR_TABLE (vector)->purpose = purpose;
3018 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3019 return vector;
3023 /* Return a newly created sub char table with slots initialized by INIT.
3024 Since a sub char table does not appear as a top level Emacs Lisp
3025 object, we don't need a Lisp interface to make it. */
3027 Lisp_Object
3028 make_sub_char_table (init)
3029 Lisp_Object init;
3031 Lisp_Object vector
3032 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3033 XCHAR_TABLE (vector)->top = Qnil;
3034 XCHAR_TABLE (vector)->defalt = Qnil;
3035 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3036 return vector;
3040 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3041 doc: /* Return a newly created vector with specified arguments as elements.
3042 Any number of arguments, even zero arguments, are allowed.
3043 usage: (vector &rest OBJECTS) */)
3044 (nargs, args)
3045 register int nargs;
3046 Lisp_Object *args;
3048 register Lisp_Object len, val;
3049 register int index;
3050 register struct Lisp_Vector *p;
3052 XSETFASTINT (len, nargs);
3053 val = Fmake_vector (len, Qnil);
3054 p = XVECTOR (val);
3055 for (index = 0; index < nargs; index++)
3056 p->contents[index] = args[index];
3057 return val;
3061 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3062 doc: /* Create a byte-code object with specified arguments as elements.
3063 The arguments should be the arglist, bytecode-string, constant vector,
3064 stack size, (optional) doc string, and (optional) interactive spec.
3065 The first four arguments are required; at most six have any
3066 significance.
3067 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3068 (nargs, args)
3069 register int nargs;
3070 Lisp_Object *args;
3072 register Lisp_Object len, val;
3073 register int index;
3074 register struct Lisp_Vector *p;
3076 XSETFASTINT (len, nargs);
3077 if (!NILP (Vpurify_flag))
3078 val = make_pure_vector ((EMACS_INT) nargs);
3079 else
3080 val = Fmake_vector (len, Qnil);
3082 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3083 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3084 earlier because they produced a raw 8-bit string for byte-code
3085 and now such a byte-code string is loaded as multibyte while
3086 raw 8-bit characters converted to multibyte form. Thus, now we
3087 must convert them back to the original unibyte form. */
3088 args[1] = Fstring_as_unibyte (args[1]);
3090 p = XVECTOR (val);
3091 for (index = 0; index < nargs; index++)
3093 if (!NILP (Vpurify_flag))
3094 args[index] = Fpurecopy (args[index]);
3095 p->contents[index] = args[index];
3097 XSETCOMPILED (val, p);
3098 return val;
3103 /***********************************************************************
3104 Symbol Allocation
3105 ***********************************************************************/
3107 /* Each symbol_block is just under 1020 bytes long, since malloc
3108 really allocates in units of powers of two and uses 4 bytes for its
3109 own overhead. */
3111 #define SYMBOL_BLOCK_SIZE \
3112 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3114 struct symbol_block
3116 /* Place `symbols' first, to preserve alignment. */
3117 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3118 struct symbol_block *next;
3121 /* Current symbol block and index of first unused Lisp_Symbol
3122 structure in it. */
3124 struct symbol_block *symbol_block;
3125 int symbol_block_index;
3127 /* List of free symbols. */
3129 struct Lisp_Symbol *symbol_free_list;
3131 /* Total number of symbol blocks now in use. */
3133 int n_symbol_blocks;
3136 /* Initialize symbol allocation. */
3138 void
3139 init_symbol ()
3141 symbol_block = NULL;
3142 symbol_block_index = SYMBOL_BLOCK_SIZE;
3143 symbol_free_list = 0;
3144 n_symbol_blocks = 0;
3148 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3149 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3150 Its value and function definition are void, and its property list is nil. */)
3151 (name)
3152 Lisp_Object name;
3154 register Lisp_Object val;
3155 register struct Lisp_Symbol *p;
3157 CHECK_STRING (name);
3159 if (symbol_free_list)
3161 XSETSYMBOL (val, symbol_free_list);
3162 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
3164 else
3166 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3168 struct symbol_block *new;
3169 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3170 MEM_TYPE_SYMBOL);
3171 new->next = symbol_block;
3172 symbol_block = new;
3173 symbol_block_index = 0;
3174 n_symbol_blocks++;
3176 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3177 symbol_block_index++;
3180 p = XSYMBOL (val);
3181 p->xname = name;
3182 p->plist = Qnil;
3183 p->value = Qunbound;
3184 p->function = Qunbound;
3185 p->next = NULL;
3186 p->gcmarkbit = 0;
3187 p->interned = SYMBOL_UNINTERNED;
3188 p->constant = 0;
3189 p->indirect_variable = 0;
3190 consing_since_gc += sizeof (struct Lisp_Symbol);
3191 symbols_consed++;
3192 return val;
3197 /***********************************************************************
3198 Marker (Misc) Allocation
3199 ***********************************************************************/
3201 /* Allocation of markers and other objects that share that structure.
3202 Works like allocation of conses. */
3204 #define MARKER_BLOCK_SIZE \
3205 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3207 struct marker_block
3209 /* Place `markers' first, to preserve alignment. */
3210 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3211 struct marker_block *next;
3214 struct marker_block *marker_block;
3215 int marker_block_index;
3217 union Lisp_Misc *marker_free_list;
3219 /* Total number of marker blocks now in use. */
3221 int n_marker_blocks;
3223 void
3224 init_marker ()
3226 marker_block = NULL;
3227 marker_block_index = MARKER_BLOCK_SIZE;
3228 marker_free_list = 0;
3229 n_marker_blocks = 0;
3232 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3234 Lisp_Object
3235 allocate_misc ()
3237 Lisp_Object val;
3239 if (marker_free_list)
3241 XSETMISC (val, marker_free_list);
3242 marker_free_list = marker_free_list->u_free.chain;
3244 else
3246 if (marker_block_index == MARKER_BLOCK_SIZE)
3248 struct marker_block *new;
3249 new = (struct marker_block *) lisp_malloc (sizeof *new,
3250 MEM_TYPE_MISC);
3251 new->next = marker_block;
3252 marker_block = new;
3253 marker_block_index = 0;
3254 n_marker_blocks++;
3255 total_free_markers += MARKER_BLOCK_SIZE;
3257 XSETMISC (val, &marker_block->markers[marker_block_index]);
3258 marker_block_index++;
3261 --total_free_markers;
3262 consing_since_gc += sizeof (union Lisp_Misc);
3263 misc_objects_consed++;
3264 XMARKER (val)->gcmarkbit = 0;
3265 return val;
3268 /* Free a Lisp_Misc object */
3270 void
3271 free_misc (misc)
3272 Lisp_Object misc;
3274 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3275 XMISC (misc)->u_free.chain = marker_free_list;
3276 marker_free_list = XMISC (misc);
3278 total_free_markers++;
3281 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3282 INTEGER. This is used to package C values to call record_unwind_protect.
3283 The unwind function can get the C values back using XSAVE_VALUE. */
3285 Lisp_Object
3286 make_save_value (pointer, integer)
3287 void *pointer;
3288 int integer;
3290 register Lisp_Object val;
3291 register struct Lisp_Save_Value *p;
3293 val = allocate_misc ();
3294 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3295 p = XSAVE_VALUE (val);
3296 p->pointer = pointer;
3297 p->integer = integer;
3298 p->dogc = 0;
3299 return val;
3302 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3303 doc: /* Return a newly allocated marker which does not point at any place. */)
3306 register Lisp_Object val;
3307 register struct Lisp_Marker *p;
3309 val = allocate_misc ();
3310 XMISCTYPE (val) = Lisp_Misc_Marker;
3311 p = XMARKER (val);
3312 p->buffer = 0;
3313 p->bytepos = 0;
3314 p->charpos = 0;
3315 p->next = NULL;
3316 p->insertion_type = 0;
3317 return val;
3320 /* Put MARKER back on the free list after using it temporarily. */
3322 void
3323 free_marker (marker)
3324 Lisp_Object marker;
3326 unchain_marker (XMARKER (marker));
3327 free_misc (marker);
3331 /* Return a newly created vector or string with specified arguments as
3332 elements. If all the arguments are characters that can fit
3333 in a string of events, make a string; otherwise, make a vector.
3335 Any number of arguments, even zero arguments, are allowed. */
3337 Lisp_Object
3338 make_event_array (nargs, args)
3339 register int nargs;
3340 Lisp_Object *args;
3342 int i;
3344 for (i = 0; i < nargs; i++)
3345 /* The things that fit in a string
3346 are characters that are in 0...127,
3347 after discarding the meta bit and all the bits above it. */
3348 if (!INTEGERP (args[i])
3349 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3350 return Fvector (nargs, args);
3352 /* Since the loop exited, we know that all the things in it are
3353 characters, so we can make a string. */
3355 Lisp_Object result;
3357 result = Fmake_string (make_number (nargs), make_number (0));
3358 for (i = 0; i < nargs; i++)
3360 SSET (result, i, XINT (args[i]));
3361 /* Move the meta bit to the right place for a string char. */
3362 if (XINT (args[i]) & CHAR_META)
3363 SSET (result, i, SREF (result, i) | 0x80);
3366 return result;
3372 /************************************************************************
3373 C Stack Marking
3374 ************************************************************************/
3376 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3378 /* Conservative C stack marking requires a method to identify possibly
3379 live Lisp objects given a pointer value. We do this by keeping
3380 track of blocks of Lisp data that are allocated in a red-black tree
3381 (see also the comment of mem_node which is the type of nodes in
3382 that tree). Function lisp_malloc adds information for an allocated
3383 block to the red-black tree with calls to mem_insert, and function
3384 lisp_free removes it with mem_delete. Functions live_string_p etc
3385 call mem_find to lookup information about a given pointer in the
3386 tree, and use that to determine if the pointer points to a Lisp
3387 object or not. */
3389 /* Initialize this part of alloc.c. */
3391 static void
3392 mem_init ()
3394 mem_z.left = mem_z.right = MEM_NIL;
3395 mem_z.parent = NULL;
3396 mem_z.color = MEM_BLACK;
3397 mem_z.start = mem_z.end = NULL;
3398 mem_root = MEM_NIL;
3402 /* Value is a pointer to the mem_node containing START. Value is
3403 MEM_NIL if there is no node in the tree containing START. */
3405 static INLINE struct mem_node *
3406 mem_find (start)
3407 void *start;
3409 struct mem_node *p;
3411 if (start < min_heap_address || start > max_heap_address)
3412 return MEM_NIL;
3414 /* Make the search always successful to speed up the loop below. */
3415 mem_z.start = start;
3416 mem_z.end = (char *) start + 1;
3418 p = mem_root;
3419 while (start < p->start || start >= p->end)
3420 p = start < p->start ? p->left : p->right;
3421 return p;
3425 /* Insert a new node into the tree for a block of memory with start
3426 address START, end address END, and type TYPE. Value is a
3427 pointer to the node that was inserted. */
3429 static struct mem_node *
3430 mem_insert (start, end, type)
3431 void *start, *end;
3432 enum mem_type type;
3434 struct mem_node *c, *parent, *x;
3436 if (start < min_heap_address)
3437 min_heap_address = start;
3438 if (end > max_heap_address)
3439 max_heap_address = end;
3441 /* See where in the tree a node for START belongs. In this
3442 particular application, it shouldn't happen that a node is already
3443 present. For debugging purposes, let's check that. */
3444 c = mem_root;
3445 parent = NULL;
3447 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3449 while (c != MEM_NIL)
3451 if (start >= c->start && start < c->end)
3452 abort ();
3453 parent = c;
3454 c = start < c->start ? c->left : c->right;
3457 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3459 while (c != MEM_NIL)
3461 parent = c;
3462 c = start < c->start ? c->left : c->right;
3465 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3467 /* Create a new node. */
3468 #ifdef GC_MALLOC_CHECK
3469 x = (struct mem_node *) _malloc_internal (sizeof *x);
3470 if (x == NULL)
3471 abort ();
3472 #else
3473 x = (struct mem_node *) xmalloc (sizeof *x);
3474 #endif
3475 x->start = start;
3476 x->end = end;
3477 x->type = type;
3478 x->parent = parent;
3479 x->left = x->right = MEM_NIL;
3480 x->color = MEM_RED;
3482 /* Insert it as child of PARENT or install it as root. */
3483 if (parent)
3485 if (start < parent->start)
3486 parent->left = x;
3487 else
3488 parent->right = x;
3490 else
3491 mem_root = x;
3493 /* Re-establish red-black tree properties. */
3494 mem_insert_fixup (x);
3496 return x;
3500 /* Re-establish the red-black properties of the tree, and thereby
3501 balance the tree, after node X has been inserted; X is always red. */
3503 static void
3504 mem_insert_fixup (x)
3505 struct mem_node *x;
3507 while (x != mem_root && x->parent->color == MEM_RED)
3509 /* X is red and its parent is red. This is a violation of
3510 red-black tree property #3. */
3512 if (x->parent == x->parent->parent->left)
3514 /* We're on the left side of our grandparent, and Y is our
3515 "uncle". */
3516 struct mem_node *y = x->parent->parent->right;
3518 if (y->color == MEM_RED)
3520 /* Uncle and parent are red but should be black because
3521 X is red. Change the colors accordingly and proceed
3522 with the grandparent. */
3523 x->parent->color = MEM_BLACK;
3524 y->color = MEM_BLACK;
3525 x->parent->parent->color = MEM_RED;
3526 x = x->parent->parent;
3528 else
3530 /* Parent and uncle have different colors; parent is
3531 red, uncle is black. */
3532 if (x == x->parent->right)
3534 x = x->parent;
3535 mem_rotate_left (x);
3538 x->parent->color = MEM_BLACK;
3539 x->parent->parent->color = MEM_RED;
3540 mem_rotate_right (x->parent->parent);
3543 else
3545 /* This is the symmetrical case of above. */
3546 struct mem_node *y = x->parent->parent->left;
3548 if (y->color == MEM_RED)
3550 x->parent->color = MEM_BLACK;
3551 y->color = MEM_BLACK;
3552 x->parent->parent->color = MEM_RED;
3553 x = x->parent->parent;
3555 else
3557 if (x == x->parent->left)
3559 x = x->parent;
3560 mem_rotate_right (x);
3563 x->parent->color = MEM_BLACK;
3564 x->parent->parent->color = MEM_RED;
3565 mem_rotate_left (x->parent->parent);
3570 /* The root may have been changed to red due to the algorithm. Set
3571 it to black so that property #5 is satisfied. */
3572 mem_root->color = MEM_BLACK;
3576 /* (x) (y)
3577 / \ / \
3578 a (y) ===> (x) c
3579 / \ / \
3580 b c a b */
3582 static void
3583 mem_rotate_left (x)
3584 struct mem_node *x;
3586 struct mem_node *y;
3588 /* Turn y's left sub-tree into x's right sub-tree. */
3589 y = x->right;
3590 x->right = y->left;
3591 if (y->left != MEM_NIL)
3592 y->left->parent = x;
3594 /* Y's parent was x's parent. */
3595 if (y != MEM_NIL)
3596 y->parent = x->parent;
3598 /* Get the parent to point to y instead of x. */
3599 if (x->parent)
3601 if (x == x->parent->left)
3602 x->parent->left = y;
3603 else
3604 x->parent->right = y;
3606 else
3607 mem_root = y;
3609 /* Put x on y's left. */
3610 y->left = x;
3611 if (x != MEM_NIL)
3612 x->parent = y;
3616 /* (x) (Y)
3617 / \ / \
3618 (y) c ===> a (x)
3619 / \ / \
3620 a b b c */
3622 static void
3623 mem_rotate_right (x)
3624 struct mem_node *x;
3626 struct mem_node *y = x->left;
3628 x->left = y->right;
3629 if (y->right != MEM_NIL)
3630 y->right->parent = x;
3632 if (y != MEM_NIL)
3633 y->parent = x->parent;
3634 if (x->parent)
3636 if (x == x->parent->right)
3637 x->parent->right = y;
3638 else
3639 x->parent->left = y;
3641 else
3642 mem_root = y;
3644 y->right = x;
3645 if (x != MEM_NIL)
3646 x->parent = y;
3650 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3652 static void
3653 mem_delete (z)
3654 struct mem_node *z;
3656 struct mem_node *x, *y;
3658 if (!z || z == MEM_NIL)
3659 return;
3661 if (z->left == MEM_NIL || z->right == MEM_NIL)
3662 y = z;
3663 else
3665 y = z->right;
3666 while (y->left != MEM_NIL)
3667 y = y->left;
3670 if (y->left != MEM_NIL)
3671 x = y->left;
3672 else
3673 x = y->right;
3675 x->parent = y->parent;
3676 if (y->parent)
3678 if (y == y->parent->left)
3679 y->parent->left = x;
3680 else
3681 y->parent->right = x;
3683 else
3684 mem_root = x;
3686 if (y != z)
3688 z->start = y->start;
3689 z->end = y->end;
3690 z->type = y->type;
3693 if (y->color == MEM_BLACK)
3694 mem_delete_fixup (x);
3696 #ifdef GC_MALLOC_CHECK
3697 _free_internal (y);
3698 #else
3699 xfree (y);
3700 #endif
3704 /* Re-establish the red-black properties of the tree, after a
3705 deletion. */
3707 static void
3708 mem_delete_fixup (x)
3709 struct mem_node *x;
3711 while (x != mem_root && x->color == MEM_BLACK)
3713 if (x == x->parent->left)
3715 struct mem_node *w = x->parent->right;
3717 if (w->color == MEM_RED)
3719 w->color = MEM_BLACK;
3720 x->parent->color = MEM_RED;
3721 mem_rotate_left (x->parent);
3722 w = x->parent->right;
3725 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3727 w->color = MEM_RED;
3728 x = x->parent;
3730 else
3732 if (w->right->color == MEM_BLACK)
3734 w->left->color = MEM_BLACK;
3735 w->color = MEM_RED;
3736 mem_rotate_right (w);
3737 w = x->parent->right;
3739 w->color = x->parent->color;
3740 x->parent->color = MEM_BLACK;
3741 w->right->color = MEM_BLACK;
3742 mem_rotate_left (x->parent);
3743 x = mem_root;
3746 else
3748 struct mem_node *w = x->parent->left;
3750 if (w->color == MEM_RED)
3752 w->color = MEM_BLACK;
3753 x->parent->color = MEM_RED;
3754 mem_rotate_right (x->parent);
3755 w = x->parent->left;
3758 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3760 w->color = MEM_RED;
3761 x = x->parent;
3763 else
3765 if (w->left->color == MEM_BLACK)
3767 w->right->color = MEM_BLACK;
3768 w->color = MEM_RED;
3769 mem_rotate_left (w);
3770 w = x->parent->left;
3773 w->color = x->parent->color;
3774 x->parent->color = MEM_BLACK;
3775 w->left->color = MEM_BLACK;
3776 mem_rotate_right (x->parent);
3777 x = mem_root;
3782 x->color = MEM_BLACK;
3786 /* Value is non-zero if P is a pointer to a live Lisp string on
3787 the heap. M is a pointer to the mem_block for P. */
3789 static INLINE int
3790 live_string_p (m, p)
3791 struct mem_node *m;
3792 void *p;
3794 if (m->type == MEM_TYPE_STRING)
3796 struct string_block *b = (struct string_block *) m->start;
3797 int offset = (char *) p - (char *) &b->strings[0];
3799 /* P must point to the start of a Lisp_String structure, and it
3800 must not be on the free-list. */
3801 return (offset >= 0
3802 && offset % sizeof b->strings[0] == 0
3803 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3804 && ((struct Lisp_String *) p)->data != NULL);
3806 else
3807 return 0;
3811 /* Value is non-zero if P is a pointer to a live Lisp cons on
3812 the heap. M is a pointer to the mem_block for P. */
3814 static INLINE int
3815 live_cons_p (m, p)
3816 struct mem_node *m;
3817 void *p;
3819 if (m->type == MEM_TYPE_CONS)
3821 struct cons_block *b = (struct cons_block *) m->start;
3822 int offset = (char *) p - (char *) &b->conses[0];
3824 /* P must point to the start of a Lisp_Cons, not be
3825 one of the unused cells in the current cons block,
3826 and not be on the free-list. */
3827 return (offset >= 0
3828 && offset % sizeof b->conses[0] == 0
3829 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3830 && (b != cons_block
3831 || offset / sizeof b->conses[0] < cons_block_index)
3832 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3834 else
3835 return 0;
3839 /* Value is non-zero if P is a pointer to a live Lisp symbol on
3840 the heap. M is a pointer to the mem_block for P. */
3842 static INLINE int
3843 live_symbol_p (m, p)
3844 struct mem_node *m;
3845 void *p;
3847 if (m->type == MEM_TYPE_SYMBOL)
3849 struct symbol_block *b = (struct symbol_block *) m->start;
3850 int offset = (char *) p - (char *) &b->symbols[0];
3852 /* P must point to the start of a Lisp_Symbol, not be
3853 one of the unused cells in the current symbol block,
3854 and not be on the free-list. */
3855 return (offset >= 0
3856 && offset % sizeof b->symbols[0] == 0
3857 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3858 && (b != symbol_block
3859 || offset / sizeof b->symbols[0] < symbol_block_index)
3860 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3862 else
3863 return 0;
3867 /* Value is non-zero if P is a pointer to a live Lisp float on
3868 the heap. M is a pointer to the mem_block for P. */
3870 static INLINE int
3871 live_float_p (m, p)
3872 struct mem_node *m;
3873 void *p;
3875 if (m->type == MEM_TYPE_FLOAT)
3877 struct float_block *b = (struct float_block *) m->start;
3878 int offset = (char *) p - (char *) &b->floats[0];
3880 /* P must point to the start of a Lisp_Float and not be
3881 one of the unused cells in the current float block. */
3882 return (offset >= 0
3883 && offset % sizeof b->floats[0] == 0
3884 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3885 && (b != float_block
3886 || offset / sizeof b->floats[0] < float_block_index));
3888 else
3889 return 0;
3893 /* Value is non-zero if P is a pointer to a live Lisp Misc on
3894 the heap. M is a pointer to the mem_block for P. */
3896 static INLINE int
3897 live_misc_p (m, p)
3898 struct mem_node *m;
3899 void *p;
3901 if (m->type == MEM_TYPE_MISC)
3903 struct marker_block *b = (struct marker_block *) m->start;
3904 int offset = (char *) p - (char *) &b->markers[0];
3906 /* P must point to the start of a Lisp_Misc, not be
3907 one of the unused cells in the current misc block,
3908 and not be on the free-list. */
3909 return (offset >= 0
3910 && offset % sizeof b->markers[0] == 0
3911 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3912 && (b != marker_block
3913 || offset / sizeof b->markers[0] < marker_block_index)
3914 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3916 else
3917 return 0;
3921 /* Value is non-zero if P is a pointer to a live vector-like object.
3922 M is a pointer to the mem_block for P. */
3924 static INLINE int
3925 live_vector_p (m, p)
3926 struct mem_node *m;
3927 void *p;
3929 return (p == m->start
3930 && m->type >= MEM_TYPE_VECTOR
3931 && m->type <= MEM_TYPE_WINDOW);
3935 /* Value is non-zero if P is a pointer to a live buffer. M is a
3936 pointer to the mem_block for P. */
3938 static INLINE int
3939 live_buffer_p (m, p)
3940 struct mem_node *m;
3941 void *p;
3943 /* P must point to the start of the block, and the buffer
3944 must not have been killed. */
3945 return (m->type == MEM_TYPE_BUFFER
3946 && p == m->start
3947 && !NILP (((struct buffer *) p)->name));
3950 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3952 #if GC_MARK_STACK
3954 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3956 /* Array of objects that are kept alive because the C stack contains
3957 a pattern that looks like a reference to them . */
3959 #define MAX_ZOMBIES 10
3960 static Lisp_Object zombies[MAX_ZOMBIES];
3962 /* Number of zombie objects. */
3964 static int nzombies;
3966 /* Number of garbage collections. */
3968 static int ngcs;
3970 /* Average percentage of zombies per collection. */
3972 static double avg_zombies;
3974 /* Max. number of live and zombie objects. */
3976 static int max_live, max_zombies;
3978 /* Average number of live objects per GC. */
3980 static double avg_live;
3982 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3983 doc: /* Show information about live and zombie objects. */)
3986 Lisp_Object args[8], zombie_list = Qnil;
3987 int i;
3988 for (i = 0; i < nzombies; i++)
3989 zombie_list = Fcons (zombies[i], zombie_list);
3990 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3991 args[1] = make_number (ngcs);
3992 args[2] = make_float (avg_live);
3993 args[3] = make_float (avg_zombies);
3994 args[4] = make_float (avg_zombies / avg_live / 100);
3995 args[5] = make_number (max_live);
3996 args[6] = make_number (max_zombies);
3997 args[7] = zombie_list;
3998 return Fmessage (8, args);
4001 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4004 /* Mark OBJ if we can prove it's a Lisp_Object. */
4006 static INLINE void
4007 mark_maybe_object (obj)
4008 Lisp_Object obj;
4010 void *po = (void *) XPNTR (obj);
4011 struct mem_node *m = mem_find (po);
4013 if (m != MEM_NIL)
4015 int mark_p = 0;
4017 switch (XGCTYPE (obj))
4019 case Lisp_String:
4020 mark_p = (live_string_p (m, po)
4021 && !STRING_MARKED_P ((struct Lisp_String *) po));
4022 break;
4024 case Lisp_Cons:
4025 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4026 break;
4028 case Lisp_Symbol:
4029 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4030 break;
4032 case Lisp_Float:
4033 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4034 break;
4036 case Lisp_Vectorlike:
4037 /* Note: can't check GC_BUFFERP before we know it's a
4038 buffer because checking that dereferences the pointer
4039 PO which might point anywhere. */
4040 if (live_vector_p (m, po))
4041 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4042 else if (live_buffer_p (m, po))
4043 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4044 break;
4046 case Lisp_Misc:
4047 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4048 break;
4050 case Lisp_Int:
4051 case Lisp_Type_Limit:
4052 break;
4055 if (mark_p)
4057 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4058 if (nzombies < MAX_ZOMBIES)
4059 zombies[nzombies] = obj;
4060 ++nzombies;
4061 #endif
4062 mark_object (obj);
4068 /* If P points to Lisp data, mark that as live if it isn't already
4069 marked. */
4071 static INLINE void
4072 mark_maybe_pointer (p)
4073 void *p;
4075 struct mem_node *m;
4077 /* Quickly rule out some values which can't point to Lisp data. We
4078 assume that Lisp data is aligned on even addresses. */
4079 if ((EMACS_INT) p & 1)
4080 return;
4082 m = mem_find (p);
4083 if (m != MEM_NIL)
4085 Lisp_Object obj = Qnil;
4087 switch (m->type)
4089 case MEM_TYPE_NON_LISP:
4090 /* Nothing to do; not a pointer to Lisp memory. */
4091 break;
4093 case MEM_TYPE_BUFFER:
4094 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4095 XSETVECTOR (obj, p);
4096 break;
4098 case MEM_TYPE_CONS:
4099 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4100 XSETCONS (obj, p);
4101 break;
4103 case MEM_TYPE_STRING:
4104 if (live_string_p (m, p)
4105 && !STRING_MARKED_P ((struct Lisp_String *) p))
4106 XSETSTRING (obj, p);
4107 break;
4109 case MEM_TYPE_MISC:
4110 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4111 XSETMISC (obj, p);
4112 break;
4114 case MEM_TYPE_SYMBOL:
4115 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4116 XSETSYMBOL (obj, p);
4117 break;
4119 case MEM_TYPE_FLOAT:
4120 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4121 XSETFLOAT (obj, p);
4122 break;
4124 case MEM_TYPE_VECTOR:
4125 case MEM_TYPE_PROCESS:
4126 case MEM_TYPE_HASH_TABLE:
4127 case MEM_TYPE_FRAME:
4128 case MEM_TYPE_WINDOW:
4129 if (live_vector_p (m, p))
4131 Lisp_Object tem;
4132 XSETVECTOR (tem, p);
4133 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4134 obj = tem;
4136 break;
4138 default:
4139 abort ();
4142 if (!GC_NILP (obj))
4143 mark_object (obj);
4148 /* Mark Lisp objects referenced from the address range START..END. */
4150 static void
4151 mark_memory (start, end)
4152 void *start, *end;
4154 Lisp_Object *p;
4155 void **pp;
4157 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4158 nzombies = 0;
4159 #endif
4161 /* Make START the pointer to the start of the memory region,
4162 if it isn't already. */
4163 if (end < start)
4165 void *tem = start;
4166 start = end;
4167 end = tem;
4170 /* Mark Lisp_Objects. */
4171 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
4172 mark_maybe_object (*p);
4174 /* Mark Lisp data pointed to. This is necessary because, in some
4175 situations, the C compiler optimizes Lisp objects away, so that
4176 only a pointer to them remains. Example:
4178 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4181 Lisp_Object obj = build_string ("test");
4182 struct Lisp_String *s = XSTRING (obj);
4183 Fgarbage_collect ();
4184 fprintf (stderr, "test `%s'\n", s->data);
4185 return Qnil;
4188 Here, `obj' isn't really used, and the compiler optimizes it
4189 away. The only reference to the life string is through the
4190 pointer `s'. */
4192 for (pp = (void **) start; (void *) pp < end; ++pp)
4193 mark_maybe_pointer (*pp);
4196 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4197 the GCC system configuration. In gcc 3.2, the only systems for
4198 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4199 by others?) and ns32k-pc532-min. */
4201 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4203 static int setjmp_tested_p, longjmps_done;
4205 #define SETJMP_WILL_LIKELY_WORK "\
4207 Emacs garbage collector has been changed to use conservative stack\n\
4208 marking. Emacs has determined that the method it uses to do the\n\
4209 marking will likely work on your system, but this isn't sure.\n\
4211 If you are a system-programmer, or can get the help of a local wizard\n\
4212 who is, please take a look at the function mark_stack in alloc.c, and\n\
4213 verify that the methods used are appropriate for your system.\n\
4215 Please mail the result to <emacs-devel@gnu.org>.\n\
4218 #define SETJMP_WILL_NOT_WORK "\
4220 Emacs garbage collector has been changed to use conservative stack\n\
4221 marking. Emacs has determined that the default method it uses to do the\n\
4222 marking will not work on your system. We will need a system-dependent\n\
4223 solution for your system.\n\
4225 Please take a look at the function mark_stack in alloc.c, and\n\
4226 try to find a way to make it work on your system.\n\
4228 Note that you may get false negatives, depending on the compiler.\n\
4229 In particular, you need to use -O with GCC for this test.\n\
4231 Please mail the result to <emacs-devel@gnu.org>.\n\
4235 /* Perform a quick check if it looks like setjmp saves registers in a
4236 jmp_buf. Print a message to stderr saying so. When this test
4237 succeeds, this is _not_ a proof that setjmp is sufficient for
4238 conservative stack marking. Only the sources or a disassembly
4239 can prove that. */
4241 static void
4242 test_setjmp ()
4244 char buf[10];
4245 register int x;
4246 jmp_buf jbuf;
4247 int result = 0;
4249 /* Arrange for X to be put in a register. */
4250 sprintf (buf, "1");
4251 x = strlen (buf);
4252 x = 2 * x - 1;
4254 setjmp (jbuf);
4255 if (longjmps_done == 1)
4257 /* Came here after the longjmp at the end of the function.
4259 If x == 1, the longjmp has restored the register to its
4260 value before the setjmp, and we can hope that setjmp
4261 saves all such registers in the jmp_buf, although that
4262 isn't sure.
4264 For other values of X, either something really strange is
4265 taking place, or the setjmp just didn't save the register. */
4267 if (x == 1)
4268 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4269 else
4271 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4272 exit (1);
4276 ++longjmps_done;
4277 x = 2;
4278 if (longjmps_done == 1)
4279 longjmp (jbuf, 1);
4282 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4285 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4287 /* Abort if anything GCPRO'd doesn't survive the GC. */
4289 static void
4290 check_gcpros ()
4292 struct gcpro *p;
4293 int i;
4295 for (p = gcprolist; p; p = p->next)
4296 for (i = 0; i < p->nvars; ++i)
4297 if (!survives_gc_p (p->var[i]))
4298 /* FIXME: It's not necessarily a bug. It might just be that the
4299 GCPRO is unnecessary or should release the object sooner. */
4300 abort ();
4303 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4305 static void
4306 dump_zombies ()
4308 int i;
4310 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4311 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4313 fprintf (stderr, " %d = ", i);
4314 debug_print (zombies[i]);
4318 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4321 /* Mark live Lisp objects on the C stack.
4323 There are several system-dependent problems to consider when
4324 porting this to new architectures:
4326 Processor Registers
4328 We have to mark Lisp objects in CPU registers that can hold local
4329 variables or are used to pass parameters.
4331 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4332 something that either saves relevant registers on the stack, or
4333 calls mark_maybe_object passing it each register's contents.
4335 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4336 implementation assumes that calling setjmp saves registers we need
4337 to see in a jmp_buf which itself lies on the stack. This doesn't
4338 have to be true! It must be verified for each system, possibly
4339 by taking a look at the source code of setjmp.
4341 Stack Layout
4343 Architectures differ in the way their processor stack is organized.
4344 For example, the stack might look like this
4346 +----------------+
4347 | Lisp_Object | size = 4
4348 +----------------+
4349 | something else | size = 2
4350 +----------------+
4351 | Lisp_Object | size = 4
4352 +----------------+
4353 | ... |
4355 In such a case, not every Lisp_Object will be aligned equally. To
4356 find all Lisp_Object on the stack it won't be sufficient to walk
4357 the stack in steps of 4 bytes. Instead, two passes will be
4358 necessary, one starting at the start of the stack, and a second
4359 pass starting at the start of the stack + 2. Likewise, if the
4360 minimal alignment of Lisp_Objects on the stack is 1, four passes
4361 would be necessary, each one starting with one byte more offset
4362 from the stack start.
4364 The current code assumes by default that Lisp_Objects are aligned
4365 equally on the stack. */
4367 static void
4368 mark_stack ()
4370 int i;
4371 jmp_buf j;
4372 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4373 void *end;
4375 /* This trick flushes the register windows so that all the state of
4376 the process is contained in the stack. */
4377 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4378 needed on ia64 too. See mach_dep.c, where it also says inline
4379 assembler doesn't work with relevant proprietary compilers. */
4380 #ifdef sparc
4381 asm ("ta 3");
4382 #endif
4384 /* Save registers that we need to see on the stack. We need to see
4385 registers used to hold register variables and registers used to
4386 pass parameters. */
4387 #ifdef GC_SAVE_REGISTERS_ON_STACK
4388 GC_SAVE_REGISTERS_ON_STACK (end);
4389 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4391 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4392 setjmp will definitely work, test it
4393 and print a message with the result
4394 of the test. */
4395 if (!setjmp_tested_p)
4397 setjmp_tested_p = 1;
4398 test_setjmp ();
4400 #endif /* GC_SETJMP_WORKS */
4402 setjmp (j);
4403 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4404 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4406 /* This assumes that the stack is a contiguous region in memory. If
4407 that's not the case, something has to be done here to iterate
4408 over the stack segments. */
4409 #ifndef GC_LISP_OBJECT_ALIGNMENT
4410 #ifdef __GNUC__
4411 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4412 #else
4413 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4414 #endif
4415 #endif
4416 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4417 mark_memory ((char *) stack_base + i, end);
4418 /* Allow for marking a secondary stack, like the register stack on the
4419 ia64. */
4420 #ifdef GC_MARK_SECONDARY_STACK
4421 GC_MARK_SECONDARY_STACK ();
4422 #endif
4424 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4425 check_gcpros ();
4426 #endif
4430 #endif /* GC_MARK_STACK != 0 */
4434 /***********************************************************************
4435 Pure Storage Management
4436 ***********************************************************************/
4438 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4439 pointer to it. TYPE is the Lisp type for which the memory is
4440 allocated. TYPE < 0 means it's not used for a Lisp object.
4442 If store_pure_type_info is set and TYPE is >= 0, the type of
4443 the allocated object is recorded in pure_types. */
4445 static POINTER_TYPE *
4446 pure_alloc (size, type)
4447 size_t size;
4448 int type;
4450 POINTER_TYPE *result;
4451 #ifdef USE_LSB_TAG
4452 size_t alignment = (1 << GCTYPEBITS);
4453 #else
4454 size_t alignment = sizeof (EMACS_INT);
4456 /* Give Lisp_Floats an extra alignment. */
4457 if (type == Lisp_Float)
4459 #if defined __GNUC__ && __GNUC__ >= 2
4460 alignment = __alignof (struct Lisp_Float);
4461 #else
4462 alignment = sizeof (struct Lisp_Float);
4463 #endif
4465 #endif
4467 again:
4468 result = ALIGN (purebeg + pure_bytes_used, alignment);
4469 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4471 if (pure_bytes_used <= pure_size)
4472 return result;
4474 /* Don't allocate a large amount here,
4475 because it might get mmap'd and then its address
4476 might not be usable. */
4477 purebeg = (char *) xmalloc (10000);
4478 pure_size = 10000;
4479 pure_bytes_used_before_overflow += pure_bytes_used - size;
4480 pure_bytes_used = 0;
4481 goto again;
4485 /* Print a warning if PURESIZE is too small. */
4487 void
4488 check_pure_size ()
4490 if (pure_bytes_used_before_overflow)
4491 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4492 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4496 /* Return a string allocated in pure space. DATA is a buffer holding
4497 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4498 non-zero means make the result string multibyte.
4500 Must get an error if pure storage is full, since if it cannot hold
4501 a large string it may be able to hold conses that point to that
4502 string; then the string is not protected from gc. */
4504 Lisp_Object
4505 make_pure_string (data, nchars, nbytes, multibyte)
4506 char *data;
4507 int nchars, nbytes;
4508 int multibyte;
4510 Lisp_Object string;
4511 struct Lisp_String *s;
4513 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4514 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4515 s->size = nchars;
4516 s->size_byte = multibyte ? nbytes : -1;
4517 bcopy (data, s->data, nbytes);
4518 s->data[nbytes] = '\0';
4519 s->intervals = NULL_INTERVAL;
4520 XSETSTRING (string, s);
4521 return string;
4525 /* Return a cons allocated from pure space. Give it pure copies
4526 of CAR as car and CDR as cdr. */
4528 Lisp_Object
4529 pure_cons (car, cdr)
4530 Lisp_Object car, cdr;
4532 register Lisp_Object new;
4533 struct Lisp_Cons *p;
4535 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4536 XSETCONS (new, p);
4537 XSETCAR (new, Fpurecopy (car));
4538 XSETCDR (new, Fpurecopy (cdr));
4539 return new;
4543 /* Value is a float object with value NUM allocated from pure space. */
4545 Lisp_Object
4546 make_pure_float (num)
4547 double num;
4549 register Lisp_Object new;
4550 struct Lisp_Float *p;
4552 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4553 XSETFLOAT (new, p);
4554 XFLOAT_DATA (new) = num;
4555 return new;
4559 /* Return a vector with room for LEN Lisp_Objects allocated from
4560 pure space. */
4562 Lisp_Object
4563 make_pure_vector (len)
4564 EMACS_INT len;
4566 Lisp_Object new;
4567 struct Lisp_Vector *p;
4568 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4570 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4571 XSETVECTOR (new, p);
4572 XVECTOR (new)->size = len;
4573 return new;
4577 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4578 doc: /* Make a copy of OBJECT in pure storage.
4579 Recursively copies contents of vectors and cons cells.
4580 Does not copy symbols. Copies strings without text properties. */)
4581 (obj)
4582 register Lisp_Object obj;
4584 if (NILP (Vpurify_flag))
4585 return obj;
4587 if (PURE_POINTER_P (XPNTR (obj)))
4588 return obj;
4590 if (CONSP (obj))
4591 return pure_cons (XCAR (obj), XCDR (obj));
4592 else if (FLOATP (obj))
4593 return make_pure_float (XFLOAT_DATA (obj));
4594 else if (STRINGP (obj))
4595 return make_pure_string (SDATA (obj), SCHARS (obj),
4596 SBYTES (obj),
4597 STRING_MULTIBYTE (obj));
4598 else if (COMPILEDP (obj) || VECTORP (obj))
4600 register struct Lisp_Vector *vec;
4601 register int i;
4602 EMACS_INT size;
4604 size = XVECTOR (obj)->size;
4605 if (size & PSEUDOVECTOR_FLAG)
4606 size &= PSEUDOVECTOR_SIZE_MASK;
4607 vec = XVECTOR (make_pure_vector (size));
4608 for (i = 0; i < size; i++)
4609 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4610 if (COMPILEDP (obj))
4611 XSETCOMPILED (obj, vec);
4612 else
4613 XSETVECTOR (obj, vec);
4614 return obj;
4616 else if (MARKERP (obj))
4617 error ("Attempt to copy a marker to pure storage");
4619 return obj;
4624 /***********************************************************************
4625 Protection from GC
4626 ***********************************************************************/
4628 /* Put an entry in staticvec, pointing at the variable with address
4629 VARADDRESS. */
4631 void
4632 staticpro (varaddress)
4633 Lisp_Object *varaddress;
4635 staticvec[staticidx++] = varaddress;
4636 if (staticidx >= NSTATICS)
4637 abort ();
4640 struct catchtag
4642 Lisp_Object tag;
4643 Lisp_Object val;
4644 struct catchtag *next;
4648 /***********************************************************************
4649 Protection from GC
4650 ***********************************************************************/
4652 /* Temporarily prevent garbage collection. */
4655 inhibit_garbage_collection ()
4657 int count = SPECPDL_INDEX ();
4658 int nbits = min (VALBITS, BITS_PER_INT);
4660 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4661 return count;
4665 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4666 doc: /* Reclaim storage for Lisp objects no longer needed.
4667 Garbage collection happens automatically if you cons more than
4668 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4669 `garbage-collect' normally returns a list with info on amount of space in use:
4670 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4671 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4672 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4673 (USED-STRINGS . FREE-STRINGS))
4674 However, if there was overflow in pure space, `garbage-collect'
4675 returns nil, because real GC can't be done. */)
4678 register struct specbinding *bind;
4679 struct catchtag *catch;
4680 struct handler *handler;
4681 char stack_top_variable;
4682 register int i;
4683 int message_p;
4684 Lisp_Object total[8];
4685 int count = SPECPDL_INDEX ();
4686 EMACS_TIME t1, t2, t3;
4688 if (abort_on_gc)
4689 abort ();
4691 /* Can't GC if pure storage overflowed because we can't determine
4692 if something is a pure object or not. */
4693 if (pure_bytes_used_before_overflow)
4694 return Qnil;
4696 CHECK_CONS_LIST ();
4698 /* Don't keep undo information around forever.
4699 Do this early on, so it is no problem if the user quits. */
4701 register struct buffer *nextb = all_buffers;
4703 while (nextb)
4705 /* If a buffer's undo list is Qt, that means that undo is
4706 turned off in that buffer. Calling truncate_undo_list on
4707 Qt tends to return NULL, which effectively turns undo back on.
4708 So don't call truncate_undo_list if undo_list is Qt. */
4709 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
4710 truncate_undo_list (nextb);
4712 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4713 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4715 /* If a buffer's gap size is more than 10% of the buffer
4716 size, or larger than 2000 bytes, then shrink it
4717 accordingly. Keep a minimum size of 20 bytes. */
4718 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4720 if (nextb->text->gap_size > size)
4722 struct buffer *save_current = current_buffer;
4723 current_buffer = nextb;
4724 make_gap (-(nextb->text->gap_size - size));
4725 current_buffer = save_current;
4729 nextb = nextb->next;
4733 EMACS_GET_TIME (t1);
4735 /* In case user calls debug_print during GC,
4736 don't let that cause a recursive GC. */
4737 consing_since_gc = 0;
4739 /* Save what's currently displayed in the echo area. */
4740 message_p = push_message ();
4741 record_unwind_protect (pop_message_unwind, Qnil);
4743 /* Save a copy of the contents of the stack, for debugging. */
4744 #if MAX_SAVE_STACK > 0
4745 if (NILP (Vpurify_flag))
4747 i = &stack_top_variable - stack_bottom;
4748 if (i < 0) i = -i;
4749 if (i < MAX_SAVE_STACK)
4751 if (stack_copy == 0)
4752 stack_copy = (char *) xmalloc (stack_copy_size = i);
4753 else if (stack_copy_size < i)
4754 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4755 if (stack_copy)
4757 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4758 bcopy (stack_bottom, stack_copy, i);
4759 else
4760 bcopy (&stack_top_variable, stack_copy, i);
4764 #endif /* MAX_SAVE_STACK > 0 */
4766 if (garbage_collection_messages)
4767 message1_nolog ("Garbage collecting...");
4769 BLOCK_INPUT;
4771 shrink_regexp_cache ();
4773 gc_in_progress = 1;
4775 /* clear_marks (); */
4777 /* Mark all the special slots that serve as the roots of accessibility. */
4779 for (i = 0; i < staticidx; i++)
4780 mark_object (*staticvec[i]);
4782 for (bind = specpdl; bind != specpdl_ptr; bind++)
4784 mark_object (bind->symbol);
4785 mark_object (bind->old_value);
4787 mark_kboards ();
4789 #ifdef USE_GTK
4791 extern void xg_mark_data ();
4792 xg_mark_data ();
4794 #endif
4796 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4797 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4798 mark_stack ();
4799 #else
4801 register struct gcpro *tail;
4802 for (tail = gcprolist; tail; tail = tail->next)
4803 for (i = 0; i < tail->nvars; i++)
4804 mark_object (tail->var[i]);
4806 #endif
4808 mark_byte_stack ();
4809 for (catch = catchlist; catch; catch = catch->next)
4811 mark_object (catch->tag);
4812 mark_object (catch->val);
4814 for (handler = handlerlist; handler; handler = handler->next)
4816 mark_object (handler->handler);
4817 mark_object (handler->var);
4819 mark_backtrace ();
4821 #ifdef HAVE_WINDOW_SYSTEM
4822 mark_fringe_data ();
4823 #endif
4825 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4826 mark_stack ();
4827 #endif
4829 /* Everything is now marked, except for the things that require special
4830 finalization, i.e. the undo_list.
4831 Look thru every buffer's undo list
4832 for elements that update markers that were not marked,
4833 and delete them. */
4835 register struct buffer *nextb = all_buffers;
4837 while (nextb)
4839 /* If a buffer's undo list is Qt, that means that undo is
4840 turned off in that buffer. Calling truncate_undo_list on
4841 Qt tends to return NULL, which effectively turns undo back on.
4842 So don't call truncate_undo_list if undo_list is Qt. */
4843 if (! EQ (nextb->undo_list, Qt))
4845 Lisp_Object tail, prev;
4846 tail = nextb->undo_list;
4847 prev = Qnil;
4848 while (CONSP (tail))
4850 if (GC_CONSP (XCAR (tail))
4851 && GC_MARKERP (XCAR (XCAR (tail)))
4852 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4854 if (NILP (prev))
4855 nextb->undo_list = tail = XCDR (tail);
4856 else
4858 tail = XCDR (tail);
4859 XSETCDR (prev, tail);
4862 else
4864 prev = tail;
4865 tail = XCDR (tail);
4869 /* Now that we have stripped the elements that need not be in the
4870 undo_list any more, we can finally mark the list. */
4871 mark_object (nextb->undo_list);
4873 nextb = nextb->next;
4877 gc_sweep ();
4879 /* Clear the mark bits that we set in certain root slots. */
4881 unmark_byte_stack ();
4882 VECTOR_UNMARK (&buffer_defaults);
4883 VECTOR_UNMARK (&buffer_local_symbols);
4885 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4886 dump_zombies ();
4887 #endif
4889 UNBLOCK_INPUT;
4891 CHECK_CONS_LIST ();
4893 /* clear_marks (); */
4894 gc_in_progress = 0;
4896 consing_since_gc = 0;
4897 if (gc_cons_threshold < 10000)
4898 gc_cons_threshold = 10000;
4900 if (garbage_collection_messages)
4902 if (message_p || minibuf_level > 0)
4903 restore_message ();
4904 else
4905 message1_nolog ("Garbage collecting...done");
4908 unbind_to (count, Qnil);
4910 total[0] = Fcons (make_number (total_conses),
4911 make_number (total_free_conses));
4912 total[1] = Fcons (make_number (total_symbols),
4913 make_number (total_free_symbols));
4914 total[2] = Fcons (make_number (total_markers),
4915 make_number (total_free_markers));
4916 total[3] = make_number (total_string_size);
4917 total[4] = make_number (total_vector_size);
4918 total[5] = Fcons (make_number (total_floats),
4919 make_number (total_free_floats));
4920 total[6] = Fcons (make_number (total_intervals),
4921 make_number (total_free_intervals));
4922 total[7] = Fcons (make_number (total_strings),
4923 make_number (total_free_strings));
4925 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4927 /* Compute average percentage of zombies. */
4928 double nlive = 0;
4930 for (i = 0; i < 7; ++i)
4931 if (CONSP (total[i]))
4932 nlive += XFASTINT (XCAR (total[i]));
4934 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4935 max_live = max (nlive, max_live);
4936 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4937 max_zombies = max (nzombies, max_zombies);
4938 ++ngcs;
4940 #endif
4942 if (!NILP (Vpost_gc_hook))
4944 int count = inhibit_garbage_collection ();
4945 safe_run_hooks (Qpost_gc_hook);
4946 unbind_to (count, Qnil);
4949 /* Accumulate statistics. */
4950 EMACS_GET_TIME (t2);
4951 EMACS_SUB_TIME (t3, t2, t1);
4952 if (FLOATP (Vgc_elapsed))
4953 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4954 EMACS_SECS (t3) +
4955 EMACS_USECS (t3) * 1.0e-6);
4956 gcs_done++;
4958 return Flist (sizeof total / sizeof *total, total);
4962 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
4963 only interesting objects referenced from glyphs are strings. */
4965 static void
4966 mark_glyph_matrix (matrix)
4967 struct glyph_matrix *matrix;
4969 struct glyph_row *row = matrix->rows;
4970 struct glyph_row *end = row + matrix->nrows;
4972 for (; row < end; ++row)
4973 if (row->enabled_p)
4975 int area;
4976 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4978 struct glyph *glyph = row->glyphs[area];
4979 struct glyph *end_glyph = glyph + row->used[area];
4981 for (; glyph < end_glyph; ++glyph)
4982 if (GC_STRINGP (glyph->object)
4983 && !STRING_MARKED_P (XSTRING (glyph->object)))
4984 mark_object (glyph->object);
4990 /* Mark Lisp faces in the face cache C. */
4992 static void
4993 mark_face_cache (c)
4994 struct face_cache *c;
4996 if (c)
4998 int i, j;
4999 for (i = 0; i < c->used; ++i)
5001 struct face *face = FACE_FROM_ID (c->f, i);
5003 if (face)
5005 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5006 mark_object (face->lface[j]);
5013 #ifdef HAVE_WINDOW_SYSTEM
5015 /* Mark Lisp objects in image IMG. */
5017 static void
5018 mark_image (img)
5019 struct image *img;
5021 mark_object (img->spec);
5023 if (!NILP (img->data.lisp_val))
5024 mark_object (img->data.lisp_val);
5028 /* Mark Lisp objects in image cache of frame F. It's done this way so
5029 that we don't have to include xterm.h here. */
5031 static void
5032 mark_image_cache (f)
5033 struct frame *f;
5035 forall_images_in_image_cache (f, mark_image);
5038 #endif /* HAVE_X_WINDOWS */
5042 /* Mark reference to a Lisp_Object.
5043 If the object referred to has not been seen yet, recursively mark
5044 all the references contained in it. */
5046 #define LAST_MARKED_SIZE 500
5047 Lisp_Object last_marked[LAST_MARKED_SIZE];
5048 int last_marked_index;
5050 /* For debugging--call abort when we cdr down this many
5051 links of a list, in mark_object. In debugging,
5052 the call to abort will hit a breakpoint.
5053 Normally this is zero and the check never goes off. */
5054 int mark_object_loop_halt;
5056 void
5057 mark_object (arg)
5058 Lisp_Object arg;
5060 register Lisp_Object obj = arg;
5061 #ifdef GC_CHECK_MARKED_OBJECTS
5062 void *po;
5063 struct mem_node *m;
5064 #endif
5065 int cdr_count = 0;
5067 loop:
5069 if (PURE_POINTER_P (XPNTR (obj)))
5070 return;
5072 last_marked[last_marked_index++] = obj;
5073 if (last_marked_index == LAST_MARKED_SIZE)
5074 last_marked_index = 0;
5076 /* Perform some sanity checks on the objects marked here. Abort if
5077 we encounter an object we know is bogus. This increases GC time
5078 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5079 #ifdef GC_CHECK_MARKED_OBJECTS
5081 po = (void *) XPNTR (obj);
5083 /* Check that the object pointed to by PO is known to be a Lisp
5084 structure allocated from the heap. */
5085 #define CHECK_ALLOCATED() \
5086 do { \
5087 m = mem_find (po); \
5088 if (m == MEM_NIL) \
5089 abort (); \
5090 } while (0)
5092 /* Check that the object pointed to by PO is live, using predicate
5093 function LIVEP. */
5094 #define CHECK_LIVE(LIVEP) \
5095 do { \
5096 if (!LIVEP (m, po)) \
5097 abort (); \
5098 } while (0)
5100 /* Check both of the above conditions. */
5101 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5102 do { \
5103 CHECK_ALLOCATED (); \
5104 CHECK_LIVE (LIVEP); \
5105 } while (0) \
5107 #else /* not GC_CHECK_MARKED_OBJECTS */
5109 #define CHECK_ALLOCATED() (void) 0
5110 #define CHECK_LIVE(LIVEP) (void) 0
5111 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5113 #endif /* not GC_CHECK_MARKED_OBJECTS */
5115 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5117 case Lisp_String:
5119 register struct Lisp_String *ptr = XSTRING (obj);
5120 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5121 MARK_INTERVAL_TREE (ptr->intervals);
5122 MARK_STRING (ptr);
5123 #ifdef GC_CHECK_STRING_BYTES
5124 /* Check that the string size recorded in the string is the
5125 same as the one recorded in the sdata structure. */
5126 CHECK_STRING_BYTES (ptr);
5127 #endif /* GC_CHECK_STRING_BYTES */
5129 break;
5131 case Lisp_Vectorlike:
5132 #ifdef GC_CHECK_MARKED_OBJECTS
5133 m = mem_find (po);
5134 if (m == MEM_NIL && !GC_SUBRP (obj)
5135 && po != &buffer_defaults
5136 && po != &buffer_local_symbols)
5137 abort ();
5138 #endif /* GC_CHECK_MARKED_OBJECTS */
5140 if (GC_BUFFERP (obj))
5142 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5144 #ifdef GC_CHECK_MARKED_OBJECTS
5145 if (po != &buffer_defaults && po != &buffer_local_symbols)
5147 struct buffer *b;
5148 for (b = all_buffers; b && b != po; b = b->next)
5150 if (b == NULL)
5151 abort ();
5153 #endif /* GC_CHECK_MARKED_OBJECTS */
5154 mark_buffer (obj);
5157 else if (GC_SUBRP (obj))
5158 break;
5159 else if (GC_COMPILEDP (obj))
5160 /* We could treat this just like a vector, but it is better to
5161 save the COMPILED_CONSTANTS element for last and avoid
5162 recursion there. */
5164 register struct Lisp_Vector *ptr = XVECTOR (obj);
5165 register EMACS_INT size = ptr->size;
5166 register int i;
5168 if (VECTOR_MARKED_P (ptr))
5169 break; /* Already marked */
5171 CHECK_LIVE (live_vector_p);
5172 VECTOR_MARK (ptr); /* Else mark it */
5173 size &= PSEUDOVECTOR_SIZE_MASK;
5174 for (i = 0; i < size; i++) /* and then mark its elements */
5176 if (i != COMPILED_CONSTANTS)
5177 mark_object (ptr->contents[i]);
5179 obj = ptr->contents[COMPILED_CONSTANTS];
5180 goto loop;
5182 else if (GC_FRAMEP (obj))
5184 register struct frame *ptr = XFRAME (obj);
5186 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5187 VECTOR_MARK (ptr); /* Else mark it */
5189 CHECK_LIVE (live_vector_p);
5190 mark_object (ptr->name);
5191 mark_object (ptr->icon_name);
5192 mark_object (ptr->title);
5193 mark_object (ptr->focus_frame);
5194 mark_object (ptr->selected_window);
5195 mark_object (ptr->minibuffer_window);
5196 mark_object (ptr->param_alist);
5197 mark_object (ptr->scroll_bars);
5198 mark_object (ptr->condemned_scroll_bars);
5199 mark_object (ptr->menu_bar_items);
5200 mark_object (ptr->face_alist);
5201 mark_object (ptr->menu_bar_vector);
5202 mark_object (ptr->buffer_predicate);
5203 mark_object (ptr->buffer_list);
5204 mark_object (ptr->menu_bar_window);
5205 mark_object (ptr->tool_bar_window);
5206 mark_face_cache (ptr->face_cache);
5207 #ifdef HAVE_WINDOW_SYSTEM
5208 mark_image_cache (ptr);
5209 mark_object (ptr->tool_bar_items);
5210 mark_object (ptr->desired_tool_bar_string);
5211 mark_object (ptr->current_tool_bar_string);
5212 #endif /* HAVE_WINDOW_SYSTEM */
5214 else if (GC_BOOL_VECTOR_P (obj))
5216 register struct Lisp_Vector *ptr = XVECTOR (obj);
5218 if (VECTOR_MARKED_P (ptr))
5219 break; /* Already marked */
5220 CHECK_LIVE (live_vector_p);
5221 VECTOR_MARK (ptr); /* Else mark it */
5223 else if (GC_WINDOWP (obj))
5225 register struct Lisp_Vector *ptr = XVECTOR (obj);
5226 struct window *w = XWINDOW (obj);
5227 register int i;
5229 /* Stop if already marked. */
5230 if (VECTOR_MARKED_P (ptr))
5231 break;
5233 /* Mark it. */
5234 CHECK_LIVE (live_vector_p);
5235 VECTOR_MARK (ptr);
5237 /* There is no Lisp data above The member CURRENT_MATRIX in
5238 struct WINDOW. Stop marking when that slot is reached. */
5239 for (i = 0;
5240 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
5241 i++)
5242 mark_object (ptr->contents[i]);
5244 /* Mark glyphs for leaf windows. Marking window matrices is
5245 sufficient because frame matrices use the same glyph
5246 memory. */
5247 if (NILP (w->hchild)
5248 && NILP (w->vchild)
5249 && w->current_matrix)
5251 mark_glyph_matrix (w->current_matrix);
5252 mark_glyph_matrix (w->desired_matrix);
5255 else if (GC_HASH_TABLE_P (obj))
5257 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5259 /* Stop if already marked. */
5260 if (VECTOR_MARKED_P (h))
5261 break;
5263 /* Mark it. */
5264 CHECK_LIVE (live_vector_p);
5265 VECTOR_MARK (h);
5267 /* Mark contents. */
5268 /* Do not mark next_free or next_weak.
5269 Being in the next_weak chain
5270 should not keep the hash table alive.
5271 No need to mark `count' since it is an integer. */
5272 mark_object (h->test);
5273 mark_object (h->weak);
5274 mark_object (h->rehash_size);
5275 mark_object (h->rehash_threshold);
5276 mark_object (h->hash);
5277 mark_object (h->next);
5278 mark_object (h->index);
5279 mark_object (h->user_hash_function);
5280 mark_object (h->user_cmp_function);
5282 /* If hash table is not weak, mark all keys and values.
5283 For weak tables, mark only the vector. */
5284 if (GC_NILP (h->weak))
5285 mark_object (h->key_and_value);
5286 else
5287 VECTOR_MARK (XVECTOR (h->key_and_value));
5289 else
5291 register struct Lisp_Vector *ptr = XVECTOR (obj);
5292 register EMACS_INT size = ptr->size;
5293 register int i;
5295 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
5296 CHECK_LIVE (live_vector_p);
5297 VECTOR_MARK (ptr); /* Else mark it */
5298 if (size & PSEUDOVECTOR_FLAG)
5299 size &= PSEUDOVECTOR_SIZE_MASK;
5301 for (i = 0; i < size; i++) /* and then mark its elements */
5302 mark_object (ptr->contents[i]);
5304 break;
5306 case Lisp_Symbol:
5308 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5309 struct Lisp_Symbol *ptrx;
5311 if (ptr->gcmarkbit) break;
5312 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5313 ptr->gcmarkbit = 1;
5314 mark_object (ptr->value);
5315 mark_object (ptr->function);
5316 mark_object (ptr->plist);
5318 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5319 MARK_STRING (XSTRING (ptr->xname));
5320 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5322 /* Note that we do not mark the obarray of the symbol.
5323 It is safe not to do so because nothing accesses that
5324 slot except to check whether it is nil. */
5325 ptr = ptr->next;
5326 if (ptr)
5328 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5329 XSETSYMBOL (obj, ptrx);
5330 goto loop;
5333 break;
5335 case Lisp_Misc:
5336 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5337 if (XMARKER (obj)->gcmarkbit)
5338 break;
5339 XMARKER (obj)->gcmarkbit = 1;
5341 switch (XMISCTYPE (obj))
5343 case Lisp_Misc_Buffer_Local_Value:
5344 case Lisp_Misc_Some_Buffer_Local_Value:
5346 register struct Lisp_Buffer_Local_Value *ptr
5347 = XBUFFER_LOCAL_VALUE (obj);
5348 /* If the cdr is nil, avoid recursion for the car. */
5349 if (EQ (ptr->cdr, Qnil))
5351 obj = ptr->realvalue;
5352 goto loop;
5354 mark_object (ptr->realvalue);
5355 mark_object (ptr->buffer);
5356 mark_object (ptr->frame);
5357 obj = ptr->cdr;
5358 goto loop;
5361 case Lisp_Misc_Marker:
5362 /* DO NOT mark thru the marker's chain.
5363 The buffer's markers chain does not preserve markers from gc;
5364 instead, markers are removed from the chain when freed by gc. */
5365 break;
5367 case Lisp_Misc_Intfwd:
5368 case Lisp_Misc_Boolfwd:
5369 case Lisp_Misc_Objfwd:
5370 case Lisp_Misc_Buffer_Objfwd:
5371 case Lisp_Misc_Kboard_Objfwd:
5372 /* Don't bother with Lisp_Buffer_Objfwd,
5373 since all markable slots in current buffer marked anyway. */
5374 /* Don't need to do Lisp_Objfwd, since the places they point
5375 are protected with staticpro. */
5376 break;
5378 case Lisp_Misc_Save_Value:
5379 #if GC_MARK_STACK
5381 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5382 /* If DOGC is set, POINTER is the address of a memory
5383 area containing INTEGER potential Lisp_Objects. */
5384 if (ptr->dogc)
5386 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5387 int nelt;
5388 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5389 mark_maybe_object (*p);
5392 #endif
5393 break;
5395 case Lisp_Misc_Overlay:
5397 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5398 mark_object (ptr->start);
5399 mark_object (ptr->end);
5400 mark_object (ptr->plist);
5401 if (ptr->next)
5403 XSETMISC (obj, ptr->next);
5404 goto loop;
5407 break;
5409 default:
5410 abort ();
5412 break;
5414 case Lisp_Cons:
5416 register struct Lisp_Cons *ptr = XCONS (obj);
5417 if (CONS_MARKED_P (ptr)) break;
5418 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5419 CONS_MARK (ptr);
5420 /* If the cdr is nil, avoid recursion for the car. */
5421 if (EQ (ptr->cdr, Qnil))
5423 obj = ptr->car;
5424 cdr_count = 0;
5425 goto loop;
5427 mark_object (ptr->car);
5428 obj = ptr->cdr;
5429 cdr_count++;
5430 if (cdr_count == mark_object_loop_halt)
5431 abort ();
5432 goto loop;
5435 case Lisp_Float:
5436 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5437 FLOAT_MARK (XFLOAT (obj));
5438 break;
5440 case Lisp_Int:
5441 break;
5443 default:
5444 abort ();
5447 #undef CHECK_LIVE
5448 #undef CHECK_ALLOCATED
5449 #undef CHECK_ALLOCATED_AND_LIVE
5452 /* Mark the pointers in a buffer structure. */
5454 static void
5455 mark_buffer (buf)
5456 Lisp_Object buf;
5458 register struct buffer *buffer = XBUFFER (buf);
5459 register Lisp_Object *ptr, tmp;
5460 Lisp_Object base_buffer;
5462 VECTOR_MARK (buffer);
5464 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5466 /* For now, we just don't mark the undo_list. It's done later in
5467 a special way just before the sweep phase, and after stripping
5468 some of its elements that are not needed any more. */
5470 if (buffer->overlays_before)
5472 XSETMISC (tmp, buffer->overlays_before);
5473 mark_object (tmp);
5475 if (buffer->overlays_after)
5477 XSETMISC (tmp, buffer->overlays_after);
5478 mark_object (tmp);
5481 for (ptr = &buffer->name;
5482 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5483 ptr++)
5484 mark_object (*ptr);
5486 /* If this is an indirect buffer, mark its base buffer. */
5487 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5489 XSETBUFFER (base_buffer, buffer->base_buffer);
5490 mark_buffer (base_buffer);
5495 /* Value is non-zero if OBJ will survive the current GC because it's
5496 either marked or does not need to be marked to survive. */
5499 survives_gc_p (obj)
5500 Lisp_Object obj;
5502 int survives_p;
5504 switch (XGCTYPE (obj))
5506 case Lisp_Int:
5507 survives_p = 1;
5508 break;
5510 case Lisp_Symbol:
5511 survives_p = XSYMBOL (obj)->gcmarkbit;
5512 break;
5514 case Lisp_Misc:
5515 survives_p = XMARKER (obj)->gcmarkbit;
5516 break;
5518 case Lisp_String:
5519 survives_p = STRING_MARKED_P (XSTRING (obj));
5520 break;
5522 case Lisp_Vectorlike:
5523 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5524 break;
5526 case Lisp_Cons:
5527 survives_p = CONS_MARKED_P (XCONS (obj));
5528 break;
5530 case Lisp_Float:
5531 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5532 break;
5534 default:
5535 abort ();
5538 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5543 /* Sweep: find all structures not marked, and free them. */
5545 static void
5546 gc_sweep ()
5548 /* Remove or mark entries in weak hash tables.
5549 This must be done before any object is unmarked. */
5550 sweep_weak_hash_tables ();
5552 sweep_strings ();
5553 #ifdef GC_CHECK_STRING_BYTES
5554 if (!noninteractive)
5555 check_string_bytes (1);
5556 #endif
5558 /* Put all unmarked conses on free list */
5560 register struct cons_block *cblk;
5561 struct cons_block **cprev = &cons_block;
5562 register int lim = cons_block_index;
5563 register int num_free = 0, num_used = 0;
5565 cons_free_list = 0;
5567 for (cblk = cons_block; cblk; cblk = *cprev)
5569 register int i;
5570 int this_free = 0;
5571 for (i = 0; i < lim; i++)
5572 if (!CONS_MARKED_P (&cblk->conses[i]))
5574 this_free++;
5575 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5576 cons_free_list = &cblk->conses[i];
5577 #if GC_MARK_STACK
5578 cons_free_list->car = Vdead;
5579 #endif
5581 else
5583 num_used++;
5584 CONS_UNMARK (&cblk->conses[i]);
5586 lim = CONS_BLOCK_SIZE;
5587 /* If this block contains only free conses and we have already
5588 seen more than two blocks worth of free conses then deallocate
5589 this block. */
5590 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5592 *cprev = cblk->next;
5593 /* Unhook from the free list. */
5594 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5595 lisp_align_free (cblk);
5596 n_cons_blocks--;
5598 else
5600 num_free += this_free;
5601 cprev = &cblk->next;
5604 total_conses = num_used;
5605 total_free_conses = num_free;
5608 /* Put all unmarked floats on free list */
5610 register struct float_block *fblk;
5611 struct float_block **fprev = &float_block;
5612 register int lim = float_block_index;
5613 register int num_free = 0, num_used = 0;
5615 float_free_list = 0;
5617 for (fblk = float_block; fblk; fblk = *fprev)
5619 register int i;
5620 int this_free = 0;
5621 for (i = 0; i < lim; i++)
5622 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5624 this_free++;
5625 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5626 float_free_list = &fblk->floats[i];
5628 else
5630 num_used++;
5631 FLOAT_UNMARK (&fblk->floats[i]);
5633 lim = FLOAT_BLOCK_SIZE;
5634 /* If this block contains only free floats and we have already
5635 seen more than two blocks worth of free floats then deallocate
5636 this block. */
5637 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5639 *fprev = fblk->next;
5640 /* Unhook from the free list. */
5641 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5642 lisp_align_free (fblk);
5643 n_float_blocks--;
5645 else
5647 num_free += this_free;
5648 fprev = &fblk->next;
5651 total_floats = num_used;
5652 total_free_floats = num_free;
5655 /* Put all unmarked intervals on free list */
5657 register struct interval_block *iblk;
5658 struct interval_block **iprev = &interval_block;
5659 register int lim = interval_block_index;
5660 register int num_free = 0, num_used = 0;
5662 interval_free_list = 0;
5664 for (iblk = interval_block; iblk; iblk = *iprev)
5666 register int i;
5667 int this_free = 0;
5669 for (i = 0; i < lim; i++)
5671 if (!iblk->intervals[i].gcmarkbit)
5673 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5674 interval_free_list = &iblk->intervals[i];
5675 this_free++;
5677 else
5679 num_used++;
5680 iblk->intervals[i].gcmarkbit = 0;
5683 lim = INTERVAL_BLOCK_SIZE;
5684 /* If this block contains only free intervals and we have already
5685 seen more than two blocks worth of free intervals then
5686 deallocate this block. */
5687 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5689 *iprev = iblk->next;
5690 /* Unhook from the free list. */
5691 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5692 lisp_free (iblk);
5693 n_interval_blocks--;
5695 else
5697 num_free += this_free;
5698 iprev = &iblk->next;
5701 total_intervals = num_used;
5702 total_free_intervals = num_free;
5705 /* Put all unmarked symbols on free list */
5707 register struct symbol_block *sblk;
5708 struct symbol_block **sprev = &symbol_block;
5709 register int lim = symbol_block_index;
5710 register int num_free = 0, num_used = 0;
5712 symbol_free_list = NULL;
5714 for (sblk = symbol_block; sblk; sblk = *sprev)
5716 int this_free = 0;
5717 struct Lisp_Symbol *sym = sblk->symbols;
5718 struct Lisp_Symbol *end = sym + lim;
5720 for (; sym < end; ++sym)
5722 /* Check if the symbol was created during loadup. In such a case
5723 it might be pointed to by pure bytecode which we don't trace,
5724 so we conservatively assume that it is live. */
5725 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5727 if (!sym->gcmarkbit && !pure_p)
5729 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5730 symbol_free_list = sym;
5731 #if GC_MARK_STACK
5732 symbol_free_list->function = Vdead;
5733 #endif
5734 ++this_free;
5736 else
5738 ++num_used;
5739 if (!pure_p)
5740 UNMARK_STRING (XSTRING (sym->xname));
5741 sym->gcmarkbit = 0;
5745 lim = SYMBOL_BLOCK_SIZE;
5746 /* If this block contains only free symbols and we have already
5747 seen more than two blocks worth of free symbols then deallocate
5748 this block. */
5749 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5751 *sprev = sblk->next;
5752 /* Unhook from the free list. */
5753 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5754 lisp_free (sblk);
5755 n_symbol_blocks--;
5757 else
5759 num_free += this_free;
5760 sprev = &sblk->next;
5763 total_symbols = num_used;
5764 total_free_symbols = num_free;
5767 /* Put all unmarked misc's on free list.
5768 For a marker, first unchain it from the buffer it points into. */
5770 register struct marker_block *mblk;
5771 struct marker_block **mprev = &marker_block;
5772 register int lim = marker_block_index;
5773 register int num_free = 0, num_used = 0;
5775 marker_free_list = 0;
5777 for (mblk = marker_block; mblk; mblk = *mprev)
5779 register int i;
5780 int this_free = 0;
5782 for (i = 0; i < lim; i++)
5784 if (!mblk->markers[i].u_marker.gcmarkbit)
5786 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5787 unchain_marker (&mblk->markers[i].u_marker);
5788 /* Set the type of the freed object to Lisp_Misc_Free.
5789 We could leave the type alone, since nobody checks it,
5790 but this might catch bugs faster. */
5791 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5792 mblk->markers[i].u_free.chain = marker_free_list;
5793 marker_free_list = &mblk->markers[i];
5794 this_free++;
5796 else
5798 num_used++;
5799 mblk->markers[i].u_marker.gcmarkbit = 0;
5802 lim = MARKER_BLOCK_SIZE;
5803 /* If this block contains only free markers and we have already
5804 seen more than two blocks worth of free markers then deallocate
5805 this block. */
5806 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5808 *mprev = mblk->next;
5809 /* Unhook from the free list. */
5810 marker_free_list = mblk->markers[0].u_free.chain;
5811 lisp_free (mblk);
5812 n_marker_blocks--;
5814 else
5816 num_free += this_free;
5817 mprev = &mblk->next;
5821 total_markers = num_used;
5822 total_free_markers = num_free;
5825 /* Free all unmarked buffers */
5827 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5829 while (buffer)
5830 if (!VECTOR_MARKED_P (buffer))
5832 if (prev)
5833 prev->next = buffer->next;
5834 else
5835 all_buffers = buffer->next;
5836 next = buffer->next;
5837 lisp_free (buffer);
5838 buffer = next;
5840 else
5842 VECTOR_UNMARK (buffer);
5843 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5844 prev = buffer, buffer = buffer->next;
5848 /* Free all unmarked vectors */
5850 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5851 total_vector_size = 0;
5853 while (vector)
5854 if (!VECTOR_MARKED_P (vector))
5856 if (prev)
5857 prev->next = vector->next;
5858 else
5859 all_vectors = vector->next;
5860 next = vector->next;
5861 lisp_free (vector);
5862 n_vectors--;
5863 vector = next;
5866 else
5868 VECTOR_UNMARK (vector);
5869 if (vector->size & PSEUDOVECTOR_FLAG)
5870 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5871 else
5872 total_vector_size += vector->size;
5873 prev = vector, vector = vector->next;
5877 #ifdef GC_CHECK_STRING_BYTES
5878 if (!noninteractive)
5879 check_string_bytes (1);
5880 #endif
5886 /* Debugging aids. */
5888 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5889 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5890 This may be helpful in debugging Emacs's memory usage.
5891 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5894 Lisp_Object end;
5896 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5898 return end;
5901 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5902 doc: /* Return a list of counters that measure how much consing there has been.
5903 Each of these counters increments for a certain kind of object.
5904 The counters wrap around from the largest positive integer to zero.
5905 Garbage collection does not decrease them.
5906 The elements of the value are as follows:
5907 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5908 All are in units of 1 = one object consed
5909 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5910 objects consed.
5911 MISCS include overlays, markers, and some internal types.
5912 Frames, windows, buffers, and subprocesses count as vectors
5913 (but the contents of a buffer's text do not count here). */)
5916 Lisp_Object consed[8];
5918 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5919 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5920 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5921 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5922 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5923 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5924 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5925 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5927 return Flist (8, consed);
5930 int suppress_checking;
5931 void
5932 die (msg, file, line)
5933 const char *msg;
5934 const char *file;
5935 int line;
5937 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5938 file, line, msg);
5939 abort ();
5942 /* Initialization */
5944 void
5945 init_alloc_once ()
5947 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5948 purebeg = PUREBEG;
5949 pure_size = PURESIZE;
5950 pure_bytes_used = 0;
5951 pure_bytes_used_before_overflow = 0;
5953 /* Initialize the list of free aligned blocks. */
5954 free_ablock = NULL;
5956 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
5957 mem_init ();
5958 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5959 #endif
5961 all_vectors = 0;
5962 ignore_warnings = 1;
5963 #ifdef DOUG_LEA_MALLOC
5964 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5965 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5966 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5967 #endif
5968 init_strings ();
5969 init_cons ();
5970 init_symbol ();
5971 init_marker ();
5972 init_float ();
5973 init_intervals ();
5975 #ifdef REL_ALLOC
5976 malloc_hysteresis = 32;
5977 #else
5978 malloc_hysteresis = 0;
5979 #endif
5981 spare_memory = (char *) malloc (SPARE_MEMORY);
5983 ignore_warnings = 0;
5984 gcprolist = 0;
5985 byte_stack_list = 0;
5986 staticidx = 0;
5987 consing_since_gc = 0;
5988 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5989 #ifdef VIRT_ADDR_VARIES
5990 malloc_sbrk_unused = 1<<22; /* A large number */
5991 malloc_sbrk_used = 100000; /* as reasonable as any number */
5992 #endif /* VIRT_ADDR_VARIES */
5995 void
5996 init_alloc ()
5998 gcprolist = 0;
5999 byte_stack_list = 0;
6000 #if GC_MARK_STACK
6001 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6002 setjmp_tested_p = longjmps_done = 0;
6003 #endif
6004 #endif
6005 Vgc_elapsed = make_float (0.0);
6006 gcs_done = 0;
6009 void
6010 syms_of_alloc ()
6012 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6013 doc: /* *Number of bytes of consing between garbage collections.
6014 Garbage collection can happen automatically once this many bytes have been
6015 allocated since the last garbage collection. All data types count.
6017 Garbage collection happens automatically only when `eval' is called.
6019 By binding this temporarily to a large number, you can effectively
6020 prevent garbage collection during a part of the program. */);
6022 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6023 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6025 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6026 doc: /* Number of cons cells that have been consed so far. */);
6028 DEFVAR_INT ("floats-consed", &floats_consed,
6029 doc: /* Number of floats that have been consed so far. */);
6031 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6032 doc: /* Number of vector cells that have been consed so far. */);
6034 DEFVAR_INT ("symbols-consed", &symbols_consed,
6035 doc: /* Number of symbols that have been consed so far. */);
6037 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6038 doc: /* Number of string characters that have been consed so far. */);
6040 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6041 doc: /* Number of miscellaneous objects that have been consed so far. */);
6043 DEFVAR_INT ("intervals-consed", &intervals_consed,
6044 doc: /* Number of intervals that have been consed so far. */);
6046 DEFVAR_INT ("strings-consed", &strings_consed,
6047 doc: /* Number of strings that have been consed so far. */);
6049 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6050 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6051 This means that certain objects should be allocated in shared (pure) space. */);
6053 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6054 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6055 garbage_collection_messages = 0;
6057 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6058 doc: /* Hook run after garbage collection has finished. */);
6059 Vpost_gc_hook = Qnil;
6060 Qpost_gc_hook = intern ("post-gc-hook");
6061 staticpro (&Qpost_gc_hook);
6063 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6064 doc: /* Precomputed `signal' argument for memory-full error. */);
6065 /* We build this in advance because if we wait until we need it, we might
6066 not be able to allocate the memory to hold it. */
6067 Vmemory_signal_data
6068 = list2 (Qerror,
6069 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6071 DEFVAR_LISP ("memory-full", &Vmemory_full,
6072 doc: /* Non-nil means we are handling a memory-full error. */);
6073 Vmemory_full = Qnil;
6075 staticpro (&Qgc_cons_threshold);
6076 Qgc_cons_threshold = intern ("gc-cons-threshold");
6078 staticpro (&Qchar_table_extra_slots);
6079 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6081 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6082 doc: /* Accumulated time elapsed in garbage collections.
6083 The time is in seconds as a floating point value. */);
6084 DEFVAR_INT ("gcs-done", &gcs_done,
6085 doc: /* Accumulated number of garbage collections done. */);
6087 defsubr (&Smemory_full_p);
6088 defsubr (&Scons);
6089 defsubr (&Slist);
6090 defsubr (&Svector);
6091 defsubr (&Smake_byte_code);
6092 defsubr (&Smake_list);
6093 defsubr (&Smake_vector);
6094 defsubr (&Smake_char_table);
6095 defsubr (&Smake_string);
6096 defsubr (&Smake_bool_vector);
6097 defsubr (&Smake_symbol);
6098 defsubr (&Smake_marker);
6099 defsubr (&Spurecopy);
6100 defsubr (&Sgarbage_collect);
6101 defsubr (&Smemory_limit);
6102 defsubr (&Smemory_use_counts);
6104 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6105 defsubr (&Sgc_status);
6106 #endif
6109 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6110 (do not change this comment) */