new version
[emacs.git] / src / coding.c
blob18c641bcc409b309aeb10ac9ac82b8f9912b36bf
1 /* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /*** TABLE OF CONTENTS ***
24 1. Preamble
25 2. Emacs' internal format (emacs-mule) handlers
26 3. ISO2022 handlers
27 4. Shift-JIS and BIG5 handlers
28 5. End-of-line handlers
29 6. C library functions
30 7. Emacs Lisp library functions
31 8. Post-amble
35 /*** GENERAL NOTE on CODING SYSTEM ***
37 Coding system is an encoding mechanism of one or more character
38 sets. Here's a list of coding systems which Emacs can handle. When
39 we say "decode", it means converting some other coding system to
40 Emacs' internal format (emacs-internal), and when we say "encode",
41 it means converting the coding system emacs-mule to some other
42 coding system.
44 0. Emacs' internal format (emacs-mule)
46 Emacs itself holds a multi-lingual character in a buffer and a string
47 in a special format. Details are described in section 2.
49 1. ISO2022
51 The most famous coding system for multiple character sets. X's
52 Compound Text, various EUCs (Extended Unix Code), and coding
53 systems used in Internet communication such as ISO-2022-JP are
54 all variants of ISO2022. Details are described in section 3.
56 2. SJIS (or Shift-JIS or MS-Kanji-Code)
58 A coding system to encode character sets: ASCII, JISX0201, and
59 JISX0208. Widely used for PC's in Japan. Details are described in
60 section 4.
62 3. BIG5
64 A coding system to encode character sets: ASCII and Big5. Widely
65 used by Chinese (mainly in Taiwan and Hong Kong). Details are
66 described in section 4. In this file, when we write "BIG5"
67 (all uppercase), we mean the coding system, and when we write
68 "Big5" (capitalized), we mean the character set.
70 4. Other
72 If a user wants to read/write a text encoded in a coding system not
73 listed above, he can supply a decoder and an encoder for it in CCL
74 (Code Conversion Language) programs. Emacs executes the CCL program
75 while reading/writing.
77 Emacs represents a coding-system by a Lisp symbol that has a property
78 `coding-system'. But, before actually using the coding-system, the
79 information about it is set in a structure of type `struct
80 coding_system' for rapid processing. See section 6 for more details.
84 /*** GENERAL NOTES on END-OF-LINE FORMAT ***
86 How end-of-line of a text is encoded depends on a system. For
87 instance, Unix's format is just one byte of `line-feed' code,
88 whereas DOS's format is two-byte sequence of `carriage-return' and
89 `line-feed' codes. MacOS's format is one byte of `carriage-return'.
91 Since text characters encoding and end-of-line encoding are
92 independent, any coding system described above can take
93 any format of end-of-line. So, Emacs has information of format of
94 end-of-line in each coding-system. See section 6 for more details.
98 /*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
100 These functions check if a text between SRC and SRC_END is encoded
101 in the coding system category XXX. Each returns an integer value in
102 which appropriate flag bits for the category XXX is set. The flag
103 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
104 template of these functions. */
105 #if 0
107 detect_coding_emacs_mule (src, src_end)
108 unsigned char *src, *src_end;
112 #endif
114 /*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
116 These functions decode SRC_BYTES length text at SOURCE encoded in
117 CODING to Emacs' internal format (emacs-mule). The resulting text
118 goes to a place pointed to by DESTINATION, the length of which should
119 not exceed DST_BYTES. The number of bytes actually processed is
120 returned as *CONSUMED. The return value is the length of the decoded
121 text. Below is a template of these functions. */
122 #if 0
123 decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes, consumed)
124 struct coding_system *coding;
125 unsigned char *source, *destination;
126 int src_bytes, dst_bytes;
127 int *consumed;
131 #endif
133 /*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
135 These functions encode SRC_BYTES length text at SOURCE of Emacs'
136 internal format (emacs-mule) to CODING. The resulting text goes to
137 a place pointed to by DESTINATION, the length of which should not
138 exceed DST_BYTES. The number of bytes actually processed is
139 returned as *CONSUMED. The return value is the length of the
140 encoded text. Below is a template of these functions. */
141 #if 0
142 encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes, consumed)
143 struct coding_system *coding;
144 unsigned char *source, *destination;
145 int src_bytes, dst_bytes;
146 int *consumed;
150 #endif
152 /*** COMMONLY USED MACROS ***/
154 /* The following three macros ONE_MORE_BYTE, TWO_MORE_BYTES, and
155 THREE_MORE_BYTES safely get one, two, and three bytes from the
156 source text respectively. If there are not enough bytes in the
157 source, they jump to `label_end_of_loop'. The caller should set
158 variables `src' and `src_end' to appropriate areas in advance. */
160 #define ONE_MORE_BYTE(c1) \
161 do { \
162 if (src < src_end) \
163 c1 = *src++; \
164 else \
165 goto label_end_of_loop; \
166 } while (0)
168 #define TWO_MORE_BYTES(c1, c2) \
169 do { \
170 if (src + 1 < src_end) \
171 c1 = *src++, c2 = *src++; \
172 else \
173 goto label_end_of_loop; \
174 } while (0)
176 #define THREE_MORE_BYTES(c1, c2, c3) \
177 do { \
178 if (src + 2 < src_end) \
179 c1 = *src++, c2 = *src++, c3 = *src++; \
180 else \
181 goto label_end_of_loop; \
182 } while (0)
184 /* The following three macros DECODE_CHARACTER_ASCII,
185 DECODE_CHARACTER_DIMENSION1, and DECODE_CHARACTER_DIMENSION2 put
186 the multi-byte form of a character of each class at the place
187 pointed by `dst'. The caller should set the variable `dst' to
188 point to an appropriate area and the variable `coding' to point to
189 the coding-system of the currently decoding text in advance. */
191 /* Decode one ASCII character C. */
193 #define DECODE_CHARACTER_ASCII(c) \
194 do { \
195 if (COMPOSING_P (coding->composing)) \
196 *dst++ = 0xA0, *dst++ = (c) | 0x80; \
197 else \
198 *dst++ = (c); \
199 } while (0)
201 /* Decode one DIMENSION1 character whose charset is CHARSET and whose
202 position-code is C. */
204 #define DECODE_CHARACTER_DIMENSION1(charset, c) \
205 do { \
206 unsigned char leading_code = CHARSET_LEADING_CODE_BASE (charset); \
207 if (COMPOSING_P (coding->composing)) \
208 *dst++ = leading_code + 0x20; \
209 else \
210 *dst++ = leading_code; \
211 if (leading_code = CHARSET_LEADING_CODE_EXT (charset)) \
212 *dst++ = leading_code; \
213 *dst++ = (c) | 0x80; \
214 } while (0)
216 /* Decode one DIMENSION2 character whose charset is CHARSET and whose
217 position-codes are C1 and C2. */
219 #define DECODE_CHARACTER_DIMENSION2(charset, c1, c2) \
220 do { \
221 DECODE_CHARACTER_DIMENSION1 (charset, c1); \
222 *dst++ = (c2) | 0x80; \
223 } while (0)
226 /*** 1. Preamble ***/
228 #include <stdio.h>
230 #ifdef emacs
232 #include <config.h>
233 #include "lisp.h"
234 #include "buffer.h"
235 #include "charset.h"
236 #include "ccl.h"
237 #include "coding.h"
238 #include "window.h"
240 #else /* not emacs */
242 #include "mulelib.h"
244 #endif /* not emacs */
246 Lisp_Object Qcoding_system, Qeol_type;
247 Lisp_Object Qbuffer_file_coding_system;
248 Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
250 extern Lisp_Object Qinsert_file_contents, Qwrite_region;
251 Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
252 Lisp_Object Qstart_process, Qopen_network_stream;
253 Lisp_Object Qtarget_idx;
255 /* Mnemonic character of each format of end-of-line. */
256 int eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
257 /* Mnemonic character to indicate format of end-of-line is not yet
258 decided. */
259 int eol_mnemonic_undecided;
261 /* Format of end-of-line decided by system. This is CODING_EOL_LF on
262 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
263 int system_eol_type;
265 #ifdef emacs
267 Lisp_Object Qcoding_system_spec, Qcoding_system_p, Qcoding_system_error;
269 /* Coding system emacs-mule is for converting only end-of-line format. */
270 Lisp_Object Qemacs_mule;
272 /* Coding-systems are handed between Emacs Lisp programs and C internal
273 routines by the following three variables. */
274 /* Coding-system for reading files and receiving data from process. */
275 Lisp_Object Vcoding_system_for_read;
276 /* Coding-system for writing files and sending data to process. */
277 Lisp_Object Vcoding_system_for_write;
278 /* Coding-system actually used in the latest I/O. */
279 Lisp_Object Vlast_coding_system_used;
281 /* Flag to inhibit code conversion of end-of-line format. */
282 int inhibit_eol_conversion;
284 /* Coding-system of what terminal accept for displaying. */
285 struct coding_system terminal_coding;
287 /* Coding-system of what is sent from terminal keyboard. */
288 struct coding_system keyboard_coding;
290 Lisp_Object Vfile_coding_system_alist;
291 Lisp_Object Vprocess_coding_system_alist;
292 Lisp_Object Vnetwork_coding_system_alist;
294 #endif /* emacs */
296 Lisp_Object Qcoding_category_index;
298 /* List of symbols `coding-category-xxx' ordered by priority. */
299 Lisp_Object Vcoding_category_list;
301 /* Table of coding-systems currently assigned to each coding-category. */
302 Lisp_Object coding_category_table[CODING_CATEGORY_IDX_MAX];
304 /* Table of names of symbol for each coding-category. */
305 char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
306 "coding-category-emacs-mule",
307 "coding-category-sjis",
308 "coding-category-iso-7",
309 "coding-category-iso-8-1",
310 "coding-category-iso-8-2",
311 "coding-category-iso-7-else",
312 "coding-category-iso-8-else",
313 "coding-category-big5",
314 "coding-category-binary"
317 /* Flag to tell if we look up unification table on character code
318 conversion. */
319 Lisp_Object Venable_character_unification;
320 /* Standard unification table to look up on decoding (reading). */
321 Lisp_Object Vstandard_character_unification_table_for_decode;
322 /* Standard unification table to look up on encoding (writing). */
323 Lisp_Object Vstandard_character_unification_table_for_encode;
325 Lisp_Object Qcharacter_unification_table;
326 Lisp_Object Qcharacter_unification_table_for_decode;
327 Lisp_Object Qcharacter_unification_table_for_encode;
329 /* Alist of charsets vs revision number. */
330 Lisp_Object Vcharset_revision_alist;
332 /* Default coding systems used for process I/O. */
333 Lisp_Object Vdefault_process_coding_system;
336 /*** 2. Emacs internal format (emacs-mule) handlers ***/
338 /* Emacs' internal format for encoding multiple character sets is a
339 kind of multi-byte encoding, i.e. characters are encoded by
340 variable-length sequences of one-byte codes. ASCII characters
341 and control characters (e.g. `tab', `newline') are represented by
342 one-byte sequences which are their ASCII codes, in the range 0x00
343 through 0x7F. The other characters are represented by a sequence
344 of `base leading-code', optional `extended leading-code', and one
345 or two `position-code's. The length of the sequence is determined
346 by the base leading-code. Leading-code takes the range 0x80
347 through 0x9F, whereas extended leading-code and position-code take
348 the range 0xA0 through 0xFF. See `charset.h' for more details
349 about leading-code and position-code.
351 There's one exception to this rule. Special leading-code
352 `leading-code-composition' denotes that the following several
353 characters should be composed into one character. Leading-codes of
354 components (except for ASCII) are added 0x20. An ASCII character
355 component is represented by a 2-byte sequence of `0xA0' and
356 `ASCII-code + 0x80'. See also the comments in `charset.h' for the
357 details of composite character. Hence, we can summarize the code
358 range as follows:
360 --- CODE RANGE of Emacs' internal format ---
361 (character set) (range)
362 ASCII 0x00 .. 0x7F
363 ELSE (1st byte) 0x80 .. 0x9F
364 (rest bytes) 0xA0 .. 0xFF
365 ---------------------------------------------
369 enum emacs_code_class_type emacs_code_class[256];
371 /* Go to the next statement only if *SRC is accessible and the code is
372 greater than 0xA0. */
373 #define CHECK_CODE_RANGE_A0_FF \
374 do { \
375 if (src >= src_end) \
376 goto label_end_of_switch; \
377 else if (*src++ < 0xA0) \
378 return 0; \
379 } while (0)
381 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
382 Check if a text is encoded in Emacs' internal format. If it is,
383 return CODING_CATEGORY_MASK_EMASC_MULE, else return 0. */
386 detect_coding_emacs_mule (src, src_end)
387 unsigned char *src, *src_end;
389 unsigned char c;
390 int composing = 0;
392 while (src < src_end)
394 c = *src++;
396 if (composing)
398 if (c < 0xA0)
399 composing = 0;
400 else
401 c -= 0x20;
404 switch (emacs_code_class[c])
406 case EMACS_ascii_code:
407 case EMACS_linefeed_code:
408 break;
410 case EMACS_control_code:
411 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
412 return 0;
413 break;
415 case EMACS_invalid_code:
416 return 0;
418 case EMACS_leading_code_composition: /* c == 0x80 */
419 if (composing)
420 CHECK_CODE_RANGE_A0_FF;
421 else
422 composing = 1;
423 break;
425 case EMACS_leading_code_4:
426 CHECK_CODE_RANGE_A0_FF;
427 /* fall down to check it two more times ... */
429 case EMACS_leading_code_3:
430 CHECK_CODE_RANGE_A0_FF;
431 /* fall down to check it one more time ... */
433 case EMACS_leading_code_2:
434 CHECK_CODE_RANGE_A0_FF;
435 break;
437 default:
438 label_end_of_switch:
439 break;
442 return CODING_CATEGORY_MASK_EMACS_MULE;
446 /*** 3. ISO2022 handlers ***/
448 /* The following note describes the coding system ISO2022 briefly.
449 Since the intention of this note is to help in understanding of
450 the programs in this file, some parts are NOT ACCURATE or OVERLY
451 SIMPLIFIED. For the thorough understanding, please refer to the
452 original document of ISO2022.
454 ISO2022 provides many mechanisms to encode several character sets
455 in 7-bit and 8-bit environment. If one chooses 7-bite environment,
456 all text is encoded by codes of less than 128. This may make the
457 encoded text a little bit longer, but the text gets more stability
458 to pass through several gateways (some of them strip off the MSB).
460 There are two kinds of character set: control character set and
461 graphic character set. The former contains control characters such
462 as `newline' and `escape' to provide control functions (control
463 functions are provided also by escape sequences). The latter
464 contains graphic characters such as ' A' and '-'. Emacs recognizes
465 two control character sets and many graphic character sets.
467 Graphic character sets are classified into one of the following
468 four classes, DIMENSION1_CHARS94, DIMENSION1_CHARS96,
469 DIMENSION2_CHARS94, DIMENSION2_CHARS96 according to the number of
470 bytes (DIMENSION) and the number of characters in one dimension
471 (CHARS) of the set. In addition, each character set is assigned an
472 identification tag (called "final character" and denoted as <F>
473 here after) which is unique in each class. <F> of each character
474 set is decided by ECMA(*) when it is registered in ISO. Code range
475 of <F> is 0x30..0x7F (0x30..0x3F are for private use only).
477 Note (*): ECMA = European Computer Manufacturers Association
479 Here are examples of graphic character set [NAME(<F>)]:
480 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
481 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
482 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
483 o DIMENSION2_CHARS96 -- none for the moment
485 A code area (1byte=8bits) is divided into 4 areas, C0, GL, C1, and GR.
486 C0 [0x00..0x1F] -- control character plane 0
487 GL [0x20..0x7F] -- graphic character plane 0
488 C1 [0x80..0x9F] -- control character plane 1
489 GR [0xA0..0xFF] -- graphic character plane 1
491 A control character set is directly designated and invoked to C0 or
492 C1 by an escape sequence. The most common case is that ISO646's
493 control character set is designated/invoked to C0 and ISO6429's
494 control character set is designated/invoked to C1, and usually
495 these designations/invocations are omitted in a coded text. With
496 7-bit environment, only C0 can be used, and a control character for
497 C1 is encoded by an appropriate escape sequence to fit in the
498 environment. All control characters for C1 are defined the
499 corresponding escape sequences.
501 A graphic character set is at first designated to one of four
502 graphic registers (G0 through G3), then these graphic registers are
503 invoked to GL or GR. These designations and invocations can be
504 done independently. The most common case is that G0 is invoked to
505 GL, G1 is invoked to GR, and ASCII is designated to G0, and usually
506 these invocations and designations are omitted in a coded text.
507 With 7-bit environment, only GL can be used.
509 When a graphic character set of CHARS94 is invoked to GL, code 0x20
510 and 0x7F of GL area work as control characters SPACE and DEL
511 respectively, and code 0xA0 and 0xFF of GR area should not be used.
513 There are two ways of invocation: locking-shift and single-shift.
514 With locking-shift, the invocation lasts until the next different
515 invocation, whereas with single-shift, the invocation works only
516 for the following character and doesn't affect locking-shift.
517 Invocations are done by the following control characters or escape
518 sequences.
520 ----------------------------------------------------------------------
521 function control char escape sequence description
522 ----------------------------------------------------------------------
523 SI (shift-in) 0x0F none invoke G0 to GL
524 SI (shift-out) 0x0E none invoke G1 to GL
525 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
526 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
527 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 into GL
528 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 into GL
529 ----------------------------------------------------------------------
530 The first four are for locking-shift. Control characters for these
531 functions are defined by macros ISO_CODE_XXX in `coding.h'.
533 Designations are done by the following escape sequences.
534 ----------------------------------------------------------------------
535 escape sequence description
536 ----------------------------------------------------------------------
537 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
538 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
539 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
540 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
541 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
542 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
543 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
544 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
545 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
546 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
547 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
548 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
549 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
550 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
551 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
552 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
553 ----------------------------------------------------------------------
555 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
556 of dimension 1, chars 94, and final character <F>, and etc.
558 Note (*): Although these designations are not allowed in ISO2022,
559 Emacs accepts them on decoding, and produces them on encoding
560 CHARS96 character set in a coding system which is characterized as
561 7-bit environment, non-locking-shift, and non-single-shift.
563 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
564 '(' can be omitted. We call this as "short-form" here after.
566 Now you may notice that there are a lot of ways for encoding the
567 same multilingual text in ISO2022. Actually, there exists many
568 coding systems such as Compound Text (used in X's inter client
569 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
570 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
571 localized platforms), and all of these are variants of ISO2022.
573 In addition to the above, Emacs handles two more kinds of escape
574 sequences: ISO6429's direction specification and Emacs' private
575 sequence for specifying character composition.
577 ISO6429's direction specification takes the following format:
578 o CSI ']' -- end of the current direction
579 o CSI '0' ']' -- end of the current direction
580 o CSI '1' ']' -- start of left-to-right text
581 o CSI '2' ']' -- start of right-to-left text
582 The control character CSI (0x9B: control sequence introducer) is
583 abbreviated to the escape sequence ESC '[' in 7-bit environment.
585 Character composition specification takes the following format:
586 o ESC '0' -- start character composition
587 o ESC '1' -- end character composition
588 Since these are not standard escape sequences of any ISO, the use
589 of them for these meaning is restricted to Emacs only. */
591 enum iso_code_class_type iso_code_class[256];
593 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
594 Check if a text is encoded in ISO2022. If it is, returns an
595 integer in which appropriate flag bits any of:
596 CODING_CATEGORY_MASK_ISO_7
597 CODING_CATEGORY_MASK_ISO_8_1
598 CODING_CATEGORY_MASK_ISO_8_2
599 CODING_CATEGORY_MASK_ISO_7_ELSE
600 CODING_CATEGORY_MASK_ISO_8_ELSE
601 are set. If a code which should never appear in ISO2022 is found,
602 returns 0. */
605 detect_coding_iso2022 (src, src_end)
606 unsigned char *src, *src_end;
608 int mask = (CODING_CATEGORY_MASK_ISO_7
609 | CODING_CATEGORY_MASK_ISO_8_1
610 | CODING_CATEGORY_MASK_ISO_8_2
611 | CODING_CATEGORY_MASK_ISO_7_ELSE
612 | CODING_CATEGORY_MASK_ISO_8_ELSE
614 int g1 = 0; /* 1 iff designating to G1. */
615 int c, i;
617 while (src < src_end)
619 c = *src++;
620 switch (c)
622 case ISO_CODE_ESC:
623 if (src >= src_end)
624 break;
625 c = *src++;
626 if (src < src_end
627 && ((c >= '(' && c <= '/')
628 || c == '$' && ((*src >= '(' && *src <= '/')
629 || (*src >= '@' && *src <= 'B'))))
631 /* Valid designation sequence. */
632 if (c == ')' || (c == '$' && *src == ')'))
634 g1 = 1;
635 mask &= ~(CODING_CATEGORY_MASK_ISO_7
636 | CODING_CATEGORY_MASK_ISO_7_ELSE);
638 src++;
639 break;
641 else if (c == 'N' || c == 'O' || c == 'n' || c == 'o')
642 mask &= (CODING_CATEGORY_MASK_ISO_7_ELSE
643 | CODING_CATEGORY_MASK_ISO_8_ELSE);
644 break;
646 case ISO_CODE_SO:
647 if (g1)
648 mask &= (CODING_CATEGORY_MASK_ISO_7_ELSE
649 | CODING_CATEGORY_MASK_ISO_8_ELSE);
650 break;
652 case ISO_CODE_CSI:
653 case ISO_CODE_SS2:
654 case ISO_CODE_SS3:
655 mask &= ~(CODING_CATEGORY_MASK_ISO_7
656 | CODING_CATEGORY_MASK_ISO_7_ELSE);
657 break;
659 default:
660 if (c < 0x80)
661 break;
662 else if (c < 0xA0)
663 return 0;
664 else
666 unsigned char *src_begin = src;
668 mask &= ~(CODING_CATEGORY_MASK_ISO_7
669 | CODING_CATEGORY_MASK_ISO_7_ELSE);
670 while (src < src_end && *src >= 0xA0)
671 src++;
672 if ((src - src_begin - 1) & 1 && src < src_end)
673 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
675 break;
679 return mask;
682 /* Decode a character of which charset is CHARSET and the 1st position
683 code is C1. If dimension of CHARSET is 2, the 2nd position code is
684 fetched from SRC and set to C2. If CHARSET is negative, it means
685 that we are decoding ill formed text, and what we can do is just to
686 read C1 as is. */
688 #define DECODE_ISO_CHARACTER(charset, c1) \
689 do { \
690 int c_alt, charset_alt = (charset); \
691 if (COMPOSING_HEAD_P (coding->composing)) \
693 *dst++ = LEADING_CODE_COMPOSITION; \
694 if (COMPOSING_WITH_RULE_P (coding->composing)) \
695 /* To tell composition rules are embeded. */ \
696 *dst++ = 0xFF; \
697 coding->composing += 2; \
699 if ((charset) >= 0) \
701 if (CHARSET_DIMENSION (charset) == 2) \
702 ONE_MORE_BYTE (c2); \
703 if (!NILP (unification_table) \
704 && ((c_alt = unify_char (unification_table, \
705 -1, (charset), c1, c2)) >= 0)) \
706 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
708 if (charset_alt == CHARSET_ASCII || charset_alt < 0) \
709 DECODE_CHARACTER_ASCII (c1); \
710 else if (CHARSET_DIMENSION (charset_alt) == 1) \
711 DECODE_CHARACTER_DIMENSION1 (charset_alt, c1); \
712 else \
713 DECODE_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
714 if (COMPOSING_WITH_RULE_P (coding->composing)) \
715 /* To tell a composition rule follows. */ \
716 coding->composing = COMPOSING_WITH_RULE_RULE; \
717 } while (0)
719 /* Set designation state into CODING. */
720 #define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
721 do { \
722 int charset = ISO_CHARSET_TABLE (make_number (dimension), \
723 make_number (chars), \
724 make_number (final_char)); \
725 if (charset >= 0) \
727 if (coding->direction == 1 \
728 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
729 charset = CHARSET_REVERSE_CHARSET (charset); \
730 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
732 } while (0)
734 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
737 decode_coding_iso2022 (coding, source, destination,
738 src_bytes, dst_bytes, consumed)
739 struct coding_system *coding;
740 unsigned char *source, *destination;
741 int src_bytes, dst_bytes;
742 int *consumed;
744 unsigned char *src = source;
745 unsigned char *src_end = source + src_bytes;
746 unsigned char *dst = destination;
747 unsigned char *dst_end = destination + dst_bytes;
748 /* Since the maximum bytes produced by each loop is 7, we subtract 6
749 from DST_END to assure that overflow checking is necessary only
750 at the head of loop. */
751 unsigned char *adjusted_dst_end = dst_end - 6;
752 int charset;
753 /* Charsets invoked to graphic plane 0 and 1 respectively. */
754 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
755 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
756 Lisp_Object unification_table
757 = coding->character_unification_table_for_decode;
759 if (!NILP (Venable_character_unification) && NILP (unification_table))
760 unification_table = Vstandard_character_unification_table_for_decode;
762 while (src < src_end && dst < adjusted_dst_end)
764 /* SRC_BASE remembers the start position in source in each loop.
765 The loop will be exited when there's not enough source text
766 to analyze long escape sequence or 2-byte code (within macros
767 ONE_MORE_BYTE or TWO_MORE_BYTES). In that case, SRC is reset
768 to SRC_BASE before exiting. */
769 unsigned char *src_base = src;
770 int c1 = *src++, c2;
772 switch (iso_code_class [c1])
774 case ISO_0x20_or_0x7F:
775 if (!coding->composing
776 && (charset0 < 0 || CHARSET_CHARS (charset0) == 94))
778 /* This is SPACE or DEL. */
779 *dst++ = c1;
780 break;
782 /* This is a graphic character, we fall down ... */
784 case ISO_graphic_plane_0:
785 if (coding->composing == COMPOSING_WITH_RULE_RULE)
787 /* This is a composition rule. */
788 *dst++ = c1 | 0x80;
789 coding->composing = COMPOSING_WITH_RULE_TAIL;
791 else
792 DECODE_ISO_CHARACTER (charset0, c1);
793 break;
795 case ISO_0xA0_or_0xFF:
796 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94)
798 /* Invalid code. */
799 *dst++ = c1;
800 break;
802 /* This is a graphic character, we fall down ... */
804 case ISO_graphic_plane_1:
805 DECODE_ISO_CHARACTER (charset1, c1);
806 break;
808 case ISO_control_code:
809 /* All ISO2022 control characters in this class have the
810 same representation in Emacs internal format. */
811 *dst++ = c1;
812 break;
814 case ISO_carriage_return:
815 if (coding->eol_type == CODING_EOL_CR)
817 *dst++ = '\n';
819 else if (coding->eol_type == CODING_EOL_CRLF)
821 ONE_MORE_BYTE (c1);
822 if (c1 == ISO_CODE_LF)
823 *dst++ = '\n';
824 else
826 src--;
827 *dst++ = c1;
830 else
832 *dst++ = c1;
834 break;
836 case ISO_shift_out:
837 if (CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
838 goto label_invalid_escape_sequence;
839 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
840 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
841 break;
843 case ISO_shift_in:
844 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
845 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
846 break;
848 case ISO_single_shift_2_7:
849 case ISO_single_shift_2:
850 /* SS2 is handled as an escape sequence of ESC 'N' */
851 c1 = 'N';
852 goto label_escape_sequence;
854 case ISO_single_shift_3:
855 /* SS2 is handled as an escape sequence of ESC 'O' */
856 c1 = 'O';
857 goto label_escape_sequence;
859 case ISO_control_sequence_introducer:
860 /* CSI is handled as an escape sequence of ESC '[' ... */
861 c1 = '[';
862 goto label_escape_sequence;
864 case ISO_escape:
865 ONE_MORE_BYTE (c1);
866 label_escape_sequence:
867 /* Escape sequences handled by Emacs are invocation,
868 designation, direction specification, and character
869 composition specification. */
870 switch (c1)
872 case '&': /* revision of following character set */
873 ONE_MORE_BYTE (c1);
874 if (!(c1 >= '@' && c1 <= '~'))
875 goto label_invalid_escape_sequence;
876 ONE_MORE_BYTE (c1);
877 if (c1 != ISO_CODE_ESC)
878 goto label_invalid_escape_sequence;
879 ONE_MORE_BYTE (c1);
880 goto label_escape_sequence;
882 case '$': /* designation of 2-byte character set */
883 ONE_MORE_BYTE (c1);
884 if (c1 >= '@' && c1 <= 'B')
885 { /* designation of JISX0208.1978, GB2312.1980,
886 or JISX0208.1980 */
887 DECODE_DESIGNATION (0, 2, 94, c1);
889 else if (c1 >= 0x28 && c1 <= 0x2B)
890 { /* designation of DIMENSION2_CHARS94 character set */
891 ONE_MORE_BYTE (c2);
892 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
894 else if (c1 >= 0x2C && c1 <= 0x2F)
895 { /* designation of DIMENSION2_CHARS96 character set */
896 ONE_MORE_BYTE (c2);
897 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
899 else
900 goto label_invalid_escape_sequence;
901 break;
903 case 'n': /* invocation of locking-shift-2 */
904 if (CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
905 goto label_invalid_escape_sequence;
906 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
907 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
908 break;
910 case 'o': /* invocation of locking-shift-3 */
911 if (CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
912 goto label_invalid_escape_sequence;
913 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
914 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
915 break;
917 case 'N': /* invocation of single-shift-2 */
918 if (CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
919 goto label_invalid_escape_sequence;
920 ONE_MORE_BYTE (c1);
921 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
922 DECODE_ISO_CHARACTER (charset, c1);
923 break;
925 case 'O': /* invocation of single-shift-3 */
926 if (CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
927 goto label_invalid_escape_sequence;
928 ONE_MORE_BYTE (c1);
929 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
930 DECODE_ISO_CHARACTER (charset, c1);
931 break;
933 case '0': /* start composing without embeded rules */
934 coding->composing = COMPOSING_NO_RULE_HEAD;
935 break;
937 case '1': /* end composing */
938 coding->composing = COMPOSING_NO;
939 break;
941 case '2': /* start composing with embeded rules */
942 coding->composing = COMPOSING_WITH_RULE_HEAD;
943 break;
945 case '[': /* specification of direction */
946 /* For the moment, nested direction is not supported.
947 So, the value of `coding->direction' is 0 or 1: 0
948 means left-to-right, 1 means right-to-left. */
949 ONE_MORE_BYTE (c1);
950 switch (c1)
952 case ']': /* end of the current direction */
953 coding->direction = 0;
955 case '0': /* end of the current direction */
956 case '1': /* start of left-to-right direction */
957 ONE_MORE_BYTE (c1);
958 if (c1 == ']')
959 coding->direction = 0;
960 else
961 goto label_invalid_escape_sequence;
962 break;
964 case '2': /* start of right-to-left direction */
965 ONE_MORE_BYTE (c1);
966 if (c1 == ']')
967 coding->direction= 1;
968 else
969 goto label_invalid_escape_sequence;
970 break;
972 default:
973 goto label_invalid_escape_sequence;
975 break;
977 default:
978 if (c1 >= 0x28 && c1 <= 0x2B)
979 { /* designation of DIMENSION1_CHARS94 character set */
980 ONE_MORE_BYTE (c2);
981 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
983 else if (c1 >= 0x2C && c1 <= 0x2F)
984 { /* designation of DIMENSION1_CHARS96 character set */
985 ONE_MORE_BYTE (c2);
986 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
988 else
990 goto label_invalid_escape_sequence;
993 /* We must update these variables now. */
994 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
995 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
996 break;
998 label_invalid_escape_sequence:
1000 int length = src - src_base;
1002 bcopy (src_base, dst, length);
1003 dst += length;
1006 continue;
1008 label_end_of_loop:
1009 coding->carryover_size = src - src_base;
1010 bcopy (src_base, coding->carryover, coding->carryover_size);
1011 src = src_base;
1012 break;
1015 /* If this is the last block of the text to be decoded, we had
1016 better just flush out all remaining codes in the text although
1017 they are not valid characters. */
1018 if (coding->last_block)
1020 bcopy (src, dst, src_end - src);
1021 dst += (src_end - src);
1022 src = src_end;
1024 *consumed = src - source;
1025 return dst - destination;
1028 /* ISO2022 encoding stuff. */
1031 It is not enough to say just "ISO2022" on encoding, we have to
1032 specify more details. In Emacs, each coding-system of ISO2022
1033 variant has the following specifications:
1034 1. Initial designation to G0 thru G3.
1035 2. Allows short-form designation?
1036 3. ASCII should be designated to G0 before control characters?
1037 4. ASCII should be designated to G0 at end of line?
1038 5. 7-bit environment or 8-bit environment?
1039 6. Use locking-shift?
1040 7. Use Single-shift?
1041 And the following two are only for Japanese:
1042 8. Use ASCII in place of JIS0201-1976-Roman?
1043 9. Use JISX0208-1983 in place of JISX0208-1978?
1044 These specifications are encoded in `coding->flags' as flag bits
1045 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
1046 details.
1049 /* Produce codes (escape sequence) for designating CHARSET to graphic
1050 register REG. If <final-char> of CHARSET is '@', 'A', or 'B' and
1051 the coding system CODING allows, produce designation sequence of
1052 short-form. */
1054 #define ENCODE_DESIGNATION(charset, reg, coding) \
1055 do { \
1056 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
1057 char *intermediate_char_94 = "()*+"; \
1058 char *intermediate_char_96 = ",-./"; \
1059 Lisp_Object temp \
1060 = Fassq (make_number (charset), Vcharset_revision_alist); \
1061 if (! NILP (temp)) \
1063 *dst++ = ISO_CODE_ESC; \
1064 *dst++ = '&'; \
1065 *dst++ = XINT (XCONS (temp)->cdr) + '@'; \
1067 *dst++ = ISO_CODE_ESC; \
1068 if (CHARSET_DIMENSION (charset) == 1) \
1070 if (CHARSET_CHARS (charset) == 94) \
1071 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1072 else \
1073 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1075 else \
1077 *dst++ = '$'; \
1078 if (CHARSET_CHARS (charset) == 94) \
1080 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
1081 || reg != 0 \
1082 || final_char < '@' || final_char > 'B') \
1083 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1085 else \
1086 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1088 *dst++ = final_char; \
1089 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1090 } while (0)
1092 /* The following two macros produce codes (control character or escape
1093 sequence) for ISO2022 single-shift functions (single-shift-2 and
1094 single-shift-3). */
1096 #define ENCODE_SINGLE_SHIFT_2 \
1097 do { \
1098 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1099 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
1100 else \
1101 *dst++ = ISO_CODE_SS2; \
1102 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1103 } while (0)
1105 #define ENCODE_SINGLE_SHIFT_3 \
1106 do { \
1107 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1108 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
1109 else \
1110 *dst++ = ISO_CODE_SS3; \
1111 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1112 } while (0)
1114 /* The following four macros produce codes (control character or
1115 escape sequence) for ISO2022 locking-shift functions (shift-in,
1116 shift-out, locking-shift-2, and locking-shift-3). */
1118 #define ENCODE_SHIFT_IN \
1119 do { \
1120 *dst++ = ISO_CODE_SI; \
1121 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
1122 } while (0)
1124 #define ENCODE_SHIFT_OUT \
1125 do { \
1126 *dst++ = ISO_CODE_SO; \
1127 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
1128 } while (0)
1130 #define ENCODE_LOCKING_SHIFT_2 \
1131 do { \
1132 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
1133 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
1134 } while (0)
1136 #define ENCODE_LOCKING_SHIFT_3 \
1137 do { \
1138 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
1139 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
1140 } while (0)
1142 /* Produce codes for a DIMENSION1 character whose character set is
1143 CHARSET and whose position-code is C1. Designation and invocation
1144 sequences are also produced in advance if necessary. */
1147 #define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
1148 do { \
1149 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1151 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1152 *dst++ = c1 & 0x7F; \
1153 else \
1154 *dst++ = c1 | 0x80; \
1155 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1156 break; \
1158 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1160 *dst++ = c1 & 0x7F; \
1161 break; \
1163 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1165 *dst++ = c1 | 0x80; \
1166 break; \
1168 else \
1169 /* Since CHARSET is not yet invoked to any graphic planes, we \
1170 must invoke it, or, at first, designate it to some graphic \
1171 register. Then repeat the loop to actually produce the \
1172 character. */ \
1173 dst = encode_invocation_designation (charset, coding, dst); \
1174 } while (1)
1176 /* Produce codes for a DIMENSION2 character whose character set is
1177 CHARSET and whose position-codes are C1 and C2. Designation and
1178 invocation codes are also produced in advance if necessary. */
1180 #define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
1181 do { \
1182 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1184 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1185 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
1186 else \
1187 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
1188 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1189 break; \
1191 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1193 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
1194 break; \
1196 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1198 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
1199 break; \
1201 else \
1202 /* Since CHARSET is not yet invoked to any graphic planes, we \
1203 must invoke it, or, at first, designate it to some graphic \
1204 register. Then repeat the loop to actually produce the \
1205 character. */ \
1206 dst = encode_invocation_designation (charset, coding, dst); \
1207 } while (1)
1209 #define ENCODE_ISO_CHARACTER(charset, c1, c2) \
1210 do { \
1211 int c_alt, charset_alt; \
1212 if (!NILP (unification_table) \
1213 && ((c_alt = unify_char (unification_table, -1, charset, c1, c2)) \
1214 >= 0)) \
1215 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
1216 else \
1217 charset_alt = charset; \
1218 if (CHARSET_DIMENSION (charset_alt) == 1) \
1219 ENCODE_ISO_CHARACTER_DIMENSION1 (charset_alt, c1); \
1220 else \
1221 ENCODE_ISO_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
1222 } while (0)
1224 /* Produce designation and invocation codes at a place pointed by DST
1225 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
1226 Return new DST. */
1228 unsigned char *
1229 encode_invocation_designation (charset, coding, dst)
1230 int charset;
1231 struct coding_system *coding;
1232 unsigned char *dst;
1234 int reg; /* graphic register number */
1236 /* At first, check designations. */
1237 for (reg = 0; reg < 4; reg++)
1238 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
1239 break;
1241 if (reg >= 4)
1243 /* CHARSET is not yet designated to any graphic registers. */
1244 /* At first check the requested designation. */
1245 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
1246 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
1247 /* Since CHARSET requests no special designation, designate it
1248 to graphic register 0. */
1249 reg = 0;
1251 ENCODE_DESIGNATION (charset, reg, coding);
1254 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
1255 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
1257 /* Since the graphic register REG is not invoked to any graphic
1258 planes, invoke it to graphic plane 0. */
1259 switch (reg)
1261 case 0: /* graphic register 0 */
1262 ENCODE_SHIFT_IN;
1263 break;
1265 case 1: /* graphic register 1 */
1266 ENCODE_SHIFT_OUT;
1267 break;
1269 case 2: /* graphic register 2 */
1270 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1271 ENCODE_SINGLE_SHIFT_2;
1272 else
1273 ENCODE_LOCKING_SHIFT_2;
1274 break;
1276 case 3: /* graphic register 3 */
1277 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1278 ENCODE_SINGLE_SHIFT_3;
1279 else
1280 ENCODE_LOCKING_SHIFT_3;
1281 break;
1284 return dst;
1287 /* The following two macros produce codes for indicating composition. */
1288 #define ENCODE_COMPOSITION_NO_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '0'
1289 #define ENCODE_COMPOSITION_WITH_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '2'
1290 #define ENCODE_COMPOSITION_END *dst++ = ISO_CODE_ESC, *dst++ = '1'
1292 /* The following three macros produce codes for indicating direction
1293 of text. */
1294 #define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
1295 do { \
1296 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
1297 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
1298 else \
1299 *dst++ = ISO_CODE_CSI; \
1300 } while (0)
1302 #define ENCODE_DIRECTION_R2L \
1303 ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '2', *dst++ = ']'
1305 #define ENCODE_DIRECTION_L2R \
1306 ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '0', *dst++ = ']'
1308 /* Produce codes for designation and invocation to reset the graphic
1309 planes and registers to initial state. */
1310 #define ENCODE_RESET_PLANE_AND_REGISTER \
1311 do { \
1312 int reg; \
1313 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
1314 ENCODE_SHIFT_IN; \
1315 for (reg = 0; reg < 4; reg++) \
1316 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
1317 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
1318 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
1319 ENCODE_DESIGNATION \
1320 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
1321 } while (0)
1323 /* Produce designation sequences of charsets in the line started from
1324 *SRC to a place pointed by DSTP.
1326 If the current block ends before any end-of-line, we may fail to
1327 find all the necessary *designations. */
1328 encode_designation_at_bol (coding, table, src, src_end, dstp)
1329 struct coding_system *coding;
1330 Lisp_Object table;
1331 unsigned char *src, *src_end, **dstp;
1333 int charset, c, found = 0, reg;
1334 /* Table of charsets to be designated to each graphic register. */
1335 int r[4];
1336 unsigned char *dst = *dstp;
1338 for (reg = 0; reg < 4; reg++)
1339 r[reg] = -1;
1341 while (src < src_end && *src != '\n' && found < 4)
1343 int bytes = BYTES_BY_CHAR_HEAD (*src);
1345 if (NILP (table))
1346 charset = CHARSET_AT (src);
1347 else
1349 int c_alt, c1, c2;
1351 SPLIT_STRING(src, bytes, charset, c1, c2);
1352 if ((c_alt = unify_char (table, -1, charset, c1, c2)) >= 0)
1353 charset = CHAR_CHARSET (c_alt);
1356 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
1357 if (r[reg] == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
1359 found++;
1360 r[reg] = charset;
1363 src += bytes;
1366 if (found)
1368 for (reg = 0; reg < 4; reg++)
1369 if (r[reg] >= 0
1370 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
1371 ENCODE_DESIGNATION (r[reg], reg, coding);
1372 *dstp = dst;
1376 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
1379 encode_coding_iso2022 (coding, source, destination,
1380 src_bytes, dst_bytes, consumed)
1381 struct coding_system *coding;
1382 unsigned char *source, *destination;
1383 int src_bytes, dst_bytes;
1384 int *consumed;
1386 unsigned char *src = source;
1387 unsigned char *src_end = source + src_bytes;
1388 unsigned char *dst = destination;
1389 unsigned char *dst_end = destination + dst_bytes;
1390 /* Since the maximum bytes produced by each loop is 20, we subtract 19
1391 from DST_END to assure overflow checking is necessary only at the
1392 head of loop. */
1393 unsigned char *adjusted_dst_end = dst_end - 19;
1394 Lisp_Object unification_table
1395 = coding->character_unification_table_for_encode;
1397 if (!NILP (Venable_character_unification) && NILP (unification_table))
1398 unification_table = Vstandard_character_unification_table_for_encode;
1400 while (src < src_end && dst < adjusted_dst_end)
1402 /* SRC_BASE remembers the start position in source in each loop.
1403 The loop will be exited when there's not enough source text
1404 to analyze multi-byte codes (within macros ONE_MORE_BYTE,
1405 TWO_MORE_BYTES, and THREE_MORE_BYTES). In that case, SRC is
1406 reset to SRC_BASE before exiting. */
1407 unsigned char *src_base = src;
1408 int charset, c1, c2, c3, c4;
1410 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
1411 && CODING_SPEC_ISO_BOL (coding))
1413 /* We have to produce designation sequences if any now. */
1414 encode_designation_at_bol (coding, unification_table,
1415 src, src_end, &dst);
1416 CODING_SPEC_ISO_BOL (coding) = 0;
1419 c1 = *src++;
1420 /* If we are seeing a component of a composite character, we are
1421 seeing a leading-code specially encoded for composition, or a
1422 composition rule if composing with rule. We must set C1
1423 to a normal leading-code or an ASCII code. If we are not at
1424 a composed character, we must reset the composition state. */
1425 if (COMPOSING_P (coding->composing))
1427 if (c1 < 0xA0)
1429 /* We are not in a composite character any longer. */
1430 coding->composing = COMPOSING_NO;
1431 ENCODE_COMPOSITION_END;
1433 else
1435 if (coding->composing == COMPOSING_WITH_RULE_RULE)
1437 *dst++ = c1 & 0x7F;
1438 coding->composing = COMPOSING_WITH_RULE_HEAD;
1439 continue;
1441 else if (coding->composing == COMPOSING_WITH_RULE_HEAD)
1442 coding->composing = COMPOSING_WITH_RULE_RULE;
1443 if (c1 == 0xA0)
1445 /* This is an ASCII component. */
1446 ONE_MORE_BYTE (c1);
1447 c1 &= 0x7F;
1449 else
1450 /* This is a leading-code of non ASCII component. */
1451 c1 -= 0x20;
1455 /* Now encode one character. C1 is a control character, an
1456 ASCII character, or a leading-code of multi-byte character. */
1457 switch (emacs_code_class[c1])
1459 case EMACS_ascii_code:
1460 ENCODE_ISO_CHARACTER (CHARSET_ASCII, c1, /* dummy */ c2);
1461 break;
1463 case EMACS_control_code:
1464 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
1465 ENCODE_RESET_PLANE_AND_REGISTER;
1466 *dst++ = c1;
1467 break;
1469 case EMACS_carriage_return_code:
1470 if (!coding->selective)
1472 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
1473 ENCODE_RESET_PLANE_AND_REGISTER;
1474 *dst++ = c1;
1475 break;
1477 /* fall down to treat '\r' as '\n' ... */
1479 case EMACS_linefeed_code:
1480 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
1481 ENCODE_RESET_PLANE_AND_REGISTER;
1482 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
1483 bcopy (coding->spec.iso2022.initial_designation,
1484 coding->spec.iso2022.current_designation,
1485 sizeof coding->spec.iso2022.initial_designation);
1486 if (coding->eol_type == CODING_EOL_LF
1487 || coding->eol_type == CODING_EOL_UNDECIDED)
1488 *dst++ = ISO_CODE_LF;
1489 else if (coding->eol_type == CODING_EOL_CRLF)
1490 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
1491 else
1492 *dst++ = ISO_CODE_CR;
1493 CODING_SPEC_ISO_BOL (coding) = 1;
1494 break;
1496 case EMACS_leading_code_2:
1497 ONE_MORE_BYTE (c2);
1498 if (c2 < 0xA0)
1500 /* invalid sequence */
1501 *dst++ = c1;
1502 *dst++ = c2;
1504 else
1505 ENCODE_ISO_CHARACTER (c1, c2, /* dummy */ c3);
1506 break;
1508 case EMACS_leading_code_3:
1509 TWO_MORE_BYTES (c2, c3);
1510 if (c2 < 0xA0 || c3 < 0xA0)
1512 /* invalid sequence */
1513 *dst++ = c1;
1514 *dst++ = c2;
1515 *dst++ = c3;
1517 else if (c1 < LEADING_CODE_PRIVATE_11)
1518 ENCODE_ISO_CHARACTER (c1, c2, c3);
1519 else
1520 ENCODE_ISO_CHARACTER (c2, c3, /* dummy */ c4);
1521 break;
1523 case EMACS_leading_code_4:
1524 THREE_MORE_BYTES (c2, c3, c4);
1525 if (c2 < 0xA0 || c3 < 0xA0 || c4 < 0xA0)
1527 /* invalid sequence */
1528 *dst++ = c1;
1529 *dst++ = c2;
1530 *dst++ = c3;
1531 *dst++ = c4;
1533 else
1534 ENCODE_ISO_CHARACTER (c2, c3, c4);
1535 break;
1537 case EMACS_leading_code_composition:
1538 ONE_MORE_BYTE (c2);
1539 if (c2 < 0xA0)
1541 /* invalid sequence */
1542 *dst++ = c1;
1543 *dst++ = c2;
1545 else if (c2 == 0xFF)
1547 coding->composing = COMPOSING_WITH_RULE_HEAD;
1548 ENCODE_COMPOSITION_WITH_RULE_START;
1550 else
1552 /* Rewind one byte because it is a character code of
1553 composition elements. */
1554 src--;
1555 coding->composing = COMPOSING_NO_RULE_HEAD;
1556 ENCODE_COMPOSITION_NO_RULE_START;
1558 break;
1560 case EMACS_invalid_code:
1561 *dst++ = c1;
1562 break;
1564 continue;
1565 label_end_of_loop:
1566 /* We reach here because the source date ends not at character
1567 boundary. */
1568 coding->carryover_size = src_end - src_base;
1569 bcopy (src_base, coding->carryover, coding->carryover_size);
1570 src = src_end;
1571 break;
1574 /* If this is the last block of the text to be encoded, we must
1575 reset graphic planes and registers to the initial state. */
1576 if (src >= src_end && coding->last_block)
1578 ENCODE_RESET_PLANE_AND_REGISTER;
1579 if (coding->carryover_size > 0
1580 && coding->carryover_size < (dst_end - dst))
1582 bcopy (coding->carryover, dst, coding->carryover_size);
1583 dst += coding->carryover_size;
1584 coding->carryover_size = 0;
1587 *consumed = src - source;
1588 return dst - destination;
1592 /*** 4. SJIS and BIG5 handlers ***/
1594 /* Although SJIS and BIG5 are not ISO's coding system, they are used
1595 quite widely. So, for the moment, Emacs supports them in the bare
1596 C code. But, in the future, they may be supported only by CCL. */
1598 /* SJIS is a coding system encoding three character sets: ASCII, right
1599 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
1600 as is. A character of charset katakana-jisx0201 is encoded by
1601 "position-code + 0x80". A character of charset japanese-jisx0208
1602 is encoded in 2-byte but two position-codes are divided and shifted
1603 so that it fit in the range below.
1605 --- CODE RANGE of SJIS ---
1606 (character set) (range)
1607 ASCII 0x00 .. 0x7F
1608 KATAKANA-JISX0201 0xA0 .. 0xDF
1609 JISX0208 (1st byte) 0x80 .. 0x9F and 0xE0 .. 0xFF
1610 (2nd byte) 0x40 .. 0xFF
1611 -------------------------------
1615 /* BIG5 is a coding system encoding two character sets: ASCII and
1616 Big5. An ASCII character is encoded as is. Big5 is a two-byte
1617 character set and is encoded in two-byte.
1619 --- CODE RANGE of BIG5 ---
1620 (character set) (range)
1621 ASCII 0x00 .. 0x7F
1622 Big5 (1st byte) 0xA1 .. 0xFE
1623 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
1624 --------------------------
1626 Since the number of characters in Big5 is larger than maximum
1627 characters in Emacs' charset (96x96), it can't be handled as one
1628 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
1629 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
1630 contains frequently used characters and the latter contains less
1631 frequently used characters. */
1633 /* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
1634 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
1635 C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
1636 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
1638 /* Number of Big5 characters which have the same code in 1st byte. */
1639 #define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
1641 #define DECODE_BIG5(b1, b2, charset, c1, c2) \
1642 do { \
1643 unsigned int temp \
1644 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
1645 if (b1 < 0xC9) \
1646 charset = charset_big5_1; \
1647 else \
1649 charset = charset_big5_2; \
1650 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
1652 c1 = temp / (0xFF - 0xA1) + 0x21; \
1653 c2 = temp % (0xFF - 0xA1) + 0x21; \
1654 } while (0)
1656 #define ENCODE_BIG5(charset, c1, c2, b1, b2) \
1657 do { \
1658 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
1659 if (charset == charset_big5_2) \
1660 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
1661 b1 = temp / BIG5_SAME_ROW + 0xA1; \
1662 b2 = temp % BIG5_SAME_ROW; \
1663 b2 += b2 < 0x3F ? 0x40 : 0x62; \
1664 } while (0)
1666 #define DECODE_SJIS_BIG5_CHARACTER(charset, c1, c2) \
1667 do { \
1668 int c_alt, charset_alt = (charset); \
1669 if (!NILP (unification_table) \
1670 && ((c_alt = unify_char (unification_table, \
1671 -1, (charset), c1, c2)) >= 0)) \
1672 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
1673 if (charset_alt == CHARSET_ASCII || charset_alt < 0) \
1674 DECODE_CHARACTER_ASCII (c1); \
1675 else if (CHARSET_DIMENSION (charset_alt) == 1) \
1676 DECODE_CHARACTER_DIMENSION1 (charset_alt, c1); \
1677 else \
1678 DECODE_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
1679 } while (0)
1681 #define ENCODE_SJIS_BIG5_CHARACTER(charset, c1, c2) \
1682 do { \
1683 int c_alt, charset_alt; \
1684 if (!NILP (unification_table) \
1685 && ((c_alt = unify_char (unification_table, -1, charset, c1, c2)) \
1686 >= 0)) \
1687 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
1688 else \
1689 charset_alt = charset; \
1690 if (charset_alt == charset_ascii) \
1691 *dst++ = c1; \
1692 else if (CHARSET_DIMENSION (charset_alt) == 1) \
1694 if (sjis_p && charset_alt == charset_katakana_jisx0201) \
1695 *dst++ = c1; \
1696 else \
1697 *dst++ = charset_alt, *dst++ = c1; \
1699 else \
1701 c1 &= 0x7F, c2 &= 0x7F; \
1702 if (sjis_p && charset_alt == charset_jisx0208) \
1704 unsigned char s1, s2; \
1706 ENCODE_SJIS (c1, c2, s1, s2); \
1707 *dst++ = s1, *dst++ = s2; \
1709 else if (!sjis_p \
1710 && (charset_alt == charset_big5_1 \
1711 || charset_alt == charset_big5_2)) \
1713 unsigned char b1, b2; \
1715 ENCODE_BIG5 (charset_alt, c1, c2, b1, b2); \
1716 *dst++ = b1, *dst++ = b2; \
1718 else \
1719 *dst++ = charset_alt, *dst++ = c1, *dst++ = c2; \
1721 } while (0);
1723 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1724 Check if a text is encoded in SJIS. If it is, return
1725 CODING_CATEGORY_MASK_SJIS, else return 0. */
1728 detect_coding_sjis (src, src_end)
1729 unsigned char *src, *src_end;
1731 unsigned char c;
1733 while (src < src_end)
1735 c = *src++;
1736 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
1737 return 0;
1738 if ((c >= 0x80 && c < 0xA0) || c >= 0xE0)
1740 if (src < src_end && *src++ < 0x40)
1741 return 0;
1744 return CODING_CATEGORY_MASK_SJIS;
1747 /* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1748 Check if a text is encoded in BIG5. If it is, return
1749 CODING_CATEGORY_MASK_BIG5, else return 0. */
1752 detect_coding_big5 (src, src_end)
1753 unsigned char *src, *src_end;
1755 unsigned char c;
1757 while (src < src_end)
1759 c = *src++;
1760 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
1761 return 0;
1762 if (c >= 0xA1)
1764 if (src >= src_end)
1765 break;
1766 c = *src++;
1767 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
1768 return 0;
1771 return CODING_CATEGORY_MASK_BIG5;
1774 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
1775 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
1778 decode_coding_sjis_big5 (coding, source, destination,
1779 src_bytes, dst_bytes, consumed, sjis_p)
1780 struct coding_system *coding;
1781 unsigned char *source, *destination;
1782 int src_bytes, dst_bytes;
1783 int *consumed;
1784 int sjis_p;
1786 unsigned char *src = source;
1787 unsigned char *src_end = source + src_bytes;
1788 unsigned char *dst = destination;
1789 unsigned char *dst_end = destination + dst_bytes;
1790 /* Since the maximum bytes produced by each loop is 4, we subtract 3
1791 from DST_END to assure overflow checking is necessary only at the
1792 head of loop. */
1793 unsigned char *adjusted_dst_end = dst_end - 3;
1794 Lisp_Object unification_table
1795 = coding->character_unification_table_for_decode;
1797 if (!NILP (Venable_character_unification) && NILP (unification_table))
1798 unification_table = Vstandard_character_unification_table_for_decode;
1800 while (src < src_end && dst < adjusted_dst_end)
1802 /* SRC_BASE remembers the start position in source in each loop.
1803 The loop will be exited when there's not enough source text
1804 to analyze two-byte character (within macro ONE_MORE_BYTE).
1805 In that case, SRC is reset to SRC_BASE before exiting. */
1806 unsigned char *src_base = src;
1807 unsigned char c1 = *src++, c2, c3, c4;
1809 if (c1 == '\r')
1811 if (coding->eol_type == CODING_EOL_CRLF)
1813 ONE_MORE_BYTE (c2);
1814 if (c2 == '\n')
1815 *dst++ = c2;
1816 else
1817 /* To process C2 again, SRC is subtracted by 1. */
1818 *dst++ = c1, src--;
1820 else
1821 *dst++ = c1;
1823 else if (c1 < 0x20)
1824 *dst++ = c1;
1825 else if (c1 < 0x80)
1826 DECODE_SJIS_BIG5_CHARACTER (charset_ascii, c1, /* dummy */ c2);
1827 else if (c1 < 0xA0 || c1 >= 0xE0)
1829 /* SJIS -> JISX0208, BIG5 -> Big5 (only if 0xE0 <= c1 < 0xFF) */
1830 if (sjis_p)
1832 ONE_MORE_BYTE (c2);
1833 DECODE_SJIS (c1, c2, c3, c4);
1834 DECODE_SJIS_BIG5_CHARACTER (charset_jisx0208, c3, c4);
1836 else if (c1 >= 0xE0 && c1 < 0xFF)
1838 int charset;
1840 ONE_MORE_BYTE (c2);
1841 DECODE_BIG5 (c1, c2, charset, c3, c4);
1842 DECODE_SJIS_BIG5_CHARACTER (charset, c3, c4);
1844 else /* Invalid code */
1845 *dst++ = c1;
1847 else
1849 /* SJIS -> JISX0201-Kana, BIG5 -> Big5 */
1850 if (sjis_p)
1851 DECODE_SJIS_BIG5_CHARACTER (charset_katakana_jisx0201, c1, /* dummy */ c2);
1852 else
1854 int charset;
1856 ONE_MORE_BYTE (c2);
1857 DECODE_BIG5 (c1, c2, charset, c3, c4);
1858 DECODE_SJIS_BIG5_CHARACTER (charset, c3, c4);
1861 continue;
1863 label_end_of_loop:
1864 coding->carryover_size = src - src_base;
1865 bcopy (src_base, coding->carryover, coding->carryover_size);
1866 src = src_base;
1867 break;
1870 *consumed = src - source;
1871 return dst - destination;
1874 /* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
1875 This function can encode `charset_ascii', `charset_katakana_jisx0201',
1876 `charset_jisx0208', `charset_big5_1', and `charset_big5-2'. We are
1877 sure that all these charsets are registered as official charset
1878 (i.e. do not have extended leading-codes). Characters of other
1879 charsets are produced without any encoding. If SJIS_P is 1, encode
1880 SJIS text, else encode BIG5 text. */
1883 encode_coding_sjis_big5 (coding, source, destination,
1884 src_bytes, dst_bytes, consumed, sjis_p)
1885 struct coding_system *coding;
1886 unsigned char *source, *destination;
1887 int src_bytes, dst_bytes;
1888 int *consumed;
1889 int sjis_p;
1891 unsigned char *src = source;
1892 unsigned char *src_end = source + src_bytes;
1893 unsigned char *dst = destination;
1894 unsigned char *dst_end = destination + dst_bytes;
1895 /* Since the maximum bytes produced by each loop is 2, we subtract 1
1896 from DST_END to assure overflow checking is necessary only at the
1897 head of loop. */
1898 unsigned char *adjusted_dst_end = dst_end - 1;
1899 Lisp_Object unification_table
1900 = coding->character_unification_table_for_encode;
1902 if (!NILP (Venable_character_unification) && NILP (unification_table))
1903 unification_table = Vstandard_character_unification_table_for_encode;
1905 while (src < src_end && dst < adjusted_dst_end)
1907 /* SRC_BASE remembers the start position in source in each loop.
1908 The loop will be exited when there's not enough source text
1909 to analyze multi-byte codes (within macros ONE_MORE_BYTE and
1910 TWO_MORE_BYTES). In that case, SRC is reset to SRC_BASE
1911 before exiting. */
1912 unsigned char *src_base = src;
1913 unsigned char c1 = *src++, c2, c3, c4;
1915 if (coding->composing)
1917 if (c1 == 0xA0)
1919 ONE_MORE_BYTE (c1);
1920 c1 &= 0x7F;
1922 else if (c1 >= 0xA0)
1923 c1 -= 0x20;
1924 else
1925 coding->composing = 0;
1928 switch (emacs_code_class[c1])
1930 case EMACS_ascii_code:
1931 ENCODE_SJIS_BIG5_CHARACTER (charset_ascii, c1, /* dummy */ c2);
1932 break;
1934 case EMACS_control_code:
1935 *dst++ = c1;
1936 break;
1938 case EMACS_carriage_return_code:
1939 if (!coding->selective)
1941 *dst++ = c1;
1942 break;
1944 /* fall down to treat '\r' as '\n' ... */
1946 case EMACS_linefeed_code:
1947 if (coding->eol_type == CODING_EOL_LF
1948 || coding->eol_type == CODING_EOL_UNDECIDED)
1949 *dst++ = '\n';
1950 else if (coding->eol_type == CODING_EOL_CRLF)
1951 *dst++ = '\r', *dst++ = '\n';
1952 else
1953 *dst++ = '\r';
1954 break;
1956 case EMACS_leading_code_2:
1957 ONE_MORE_BYTE (c2);
1958 ENCODE_SJIS_BIG5_CHARACTER (c1, c2, /* dummy */ c3);
1959 break;
1961 case EMACS_leading_code_3:
1962 TWO_MORE_BYTES (c2, c3);
1963 ENCODE_SJIS_BIG5_CHARACTER (c1, c2, c3);
1964 break;
1966 case EMACS_leading_code_4:
1967 THREE_MORE_BYTES (c2, c3, c4);
1968 ENCODE_SJIS_BIG5_CHARACTER (c2, c3, c4);
1969 break;
1971 case EMACS_leading_code_composition:
1972 coding->composing = 1;
1973 break;
1975 default: /* i.e. case EMACS_invalid_code: */
1976 *dst++ = c1;
1978 continue;
1980 label_end_of_loop:
1981 coding->carryover_size = src_end - src_base;
1982 bcopy (src_base, coding->carryover, coding->carryover_size);
1983 src = src_end;
1984 break;
1987 *consumed = src - source;
1988 return dst - destination;
1992 /*** 5. End-of-line handlers ***/
1994 /* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
1995 This function is called only when `coding->eol_type' is
1996 CODING_EOL_CRLF or CODING_EOL_CR. */
1998 decode_eol (coding, source, destination, src_bytes, dst_bytes, consumed)
1999 struct coding_system *coding;
2000 unsigned char *source, *destination;
2001 int src_bytes, dst_bytes;
2002 int *consumed;
2004 unsigned char *src = source;
2005 unsigned char *src_end = source + src_bytes;
2006 unsigned char *dst = destination;
2007 unsigned char *dst_end = destination + dst_bytes;
2008 int produced;
2010 switch (coding->eol_type)
2012 case CODING_EOL_CRLF:
2014 /* Since the maximum bytes produced by each loop is 2, we
2015 subtract 1 from DST_END to assure overflow checking is
2016 necessary only at the head of loop. */
2017 unsigned char *adjusted_dst_end = dst_end - 1;
2019 while (src < src_end && dst < adjusted_dst_end)
2021 unsigned char *src_base = src;
2022 unsigned char c = *src++;
2023 if (c == '\r')
2025 ONE_MORE_BYTE (c);
2026 if (c != '\n')
2027 *dst++ = '\r';
2028 *dst++ = c;
2030 else
2031 *dst++ = c;
2032 continue;
2034 label_end_of_loop:
2035 coding->carryover_size = src - src_base;
2036 bcopy (src_base, coding->carryover, coding->carryover_size);
2037 src = src_base;
2038 break;
2040 *consumed = src - source;
2041 produced = dst - destination;
2042 break;
2045 case CODING_EOL_CR:
2046 produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
2047 bcopy (source, destination, produced);
2048 dst_end = destination + produced;
2049 while (dst < dst_end)
2050 if (*dst++ == '\r') dst[-1] = '\n';
2051 *consumed = produced;
2052 break;
2054 default: /* i.e. case: CODING_EOL_LF */
2055 produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
2056 bcopy (source, destination, produced);
2057 *consumed = produced;
2058 break;
2061 return produced;
2064 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
2065 format of end-of-line according to `coding->eol_type'. If
2066 `coding->selective' is 1, code '\r' in source text also means
2067 end-of-line. */
2069 encode_eol (coding, source, destination, src_bytes, dst_bytes, consumed)
2070 struct coding_system *coding;
2071 unsigned char *source, *destination;
2072 int src_bytes, dst_bytes;
2073 int *consumed;
2075 unsigned char *src = source;
2076 unsigned char *dst = destination;
2077 int produced;
2079 if (src_bytes <= 0)
2080 return 0;
2082 switch (coding->eol_type)
2084 case CODING_EOL_LF:
2085 case CODING_EOL_UNDECIDED:
2086 produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
2087 bcopy (source, destination, produced);
2088 if (coding->selective)
2090 int i = produced;
2091 while (i--)
2092 if (*dst++ == '\r') dst[-1] = '\n';
2094 *consumed = produced;
2096 case CODING_EOL_CRLF:
2098 unsigned char c;
2099 unsigned char *src_end = source + src_bytes;
2100 unsigned char *dst_end = destination + dst_bytes;
2101 /* Since the maximum bytes produced by each loop is 2, we
2102 subtract 1 from DST_END to assure overflow checking is
2103 necessary only at the head of loop. */
2104 unsigned char *adjusted_dst_end = dst_end - 1;
2106 while (src < src_end && dst < adjusted_dst_end)
2108 c = *src++;
2109 if (c == '\n' || (c == '\r' && coding->selective))
2110 *dst++ = '\r', *dst++ = '\n';
2111 else
2112 *dst++ = c;
2114 produced = dst - destination;
2115 *consumed = src - source;
2116 break;
2119 default: /* i.e. case CODING_EOL_CR: */
2120 produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
2121 bcopy (source, destination, produced);
2123 int i = produced;
2124 while (i--)
2125 if (*dst++ == '\n') dst[-1] = '\r';
2127 *consumed = produced;
2130 return produced;
2134 /*** 6. C library functions ***/
2136 /* In Emacs Lisp, coding system is represented by a Lisp symbol which
2137 has a property `coding-system'. The value of this property is a
2138 vector of length 5 (called as coding-vector). Among elements of
2139 this vector, the first (element[0]) and the fifth (element[4])
2140 carry important information for decoding/encoding. Before
2141 decoding/encoding, this information should be set in fields of a
2142 structure of type `coding_system'.
2144 A value of property `coding-system' can be a symbol of another
2145 subsidiary coding-system. In that case, Emacs gets coding-vector
2146 from that symbol.
2148 `element[0]' contains information to be set in `coding->type'. The
2149 value and its meaning is as follows:
2151 0 -- coding_type_emacs_mule
2152 1 -- coding_type_sjis
2153 2 -- coding_type_iso2022
2154 3 -- coding_type_big5
2155 4 -- coding_type_ccl encoder/decoder written in CCL
2156 nil -- coding_type_no_conversion
2157 t -- coding_type_undecided (automatic conversion on decoding,
2158 no-conversion on encoding)
2160 `element[4]' contains information to be set in `coding->flags' and
2161 `coding->spec'. The meaning varies by `coding->type'.
2163 If `coding->type' is `coding_type_iso2022', element[4] is a vector
2164 of length 32 (of which the first 13 sub-elements are used now).
2165 Meanings of these sub-elements are:
2167 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
2168 If the value is an integer of valid charset, the charset is
2169 assumed to be designated to graphic register N initially.
2171 If the value is minus, it is a minus value of charset which
2172 reserves graphic register N, which means that the charset is
2173 not designated initially but should be designated to graphic
2174 register N just before encoding a character in that charset.
2176 If the value is nil, graphic register N is never used on
2177 encoding.
2179 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
2180 Each value takes t or nil. See the section ISO2022 of
2181 `coding.h' for more information.
2183 If `coding->type' is `coding_type_big5', element[4] is t to denote
2184 BIG5-ETen or nil to denote BIG5-HKU.
2186 If `coding->type' takes the other value, element[4] is ignored.
2188 Emacs Lisp's coding system also carries information about format of
2189 end-of-line in a value of property `eol-type'. If the value is
2190 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
2191 means CODING_EOL_CR. If it is not integer, it should be a vector
2192 of subsidiary coding systems of which property `eol-type' has one
2193 of above values.
2197 /* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
2198 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
2199 is setup so that no conversion is necessary and return -1, else
2200 return 0. */
2203 setup_coding_system (coding_system, coding)
2204 Lisp_Object coding_system;
2205 struct coding_system *coding;
2207 Lisp_Object type, eol_type;
2209 /* At first, set several fields to default values. */
2210 coding->require_flushing = 0;
2211 coding->last_block = 0;
2212 coding->selective = 0;
2213 coding->composing = 0;
2214 coding->direction = 0;
2215 coding->carryover_size = 0;
2216 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
2217 coding->character_unification_table_for_decode = Qnil;
2218 coding->character_unification_table_for_encode = Qnil;
2220 Vlast_coding_system_used = coding->symbol = coding_system;
2221 eol_type = Qnil;
2222 /* Get value of property `coding-system' until we get a vector.
2223 While doing that, also get values of properties
2224 `post-read-conversion', `pre-write-conversion',
2225 `character-unification-table-for-decode',
2226 `character-unification-table-for-encode' and `eol-type'. */
2227 while (!NILP (coding_system) && SYMBOLP (coding_system))
2229 if (NILP (coding->post_read_conversion))
2230 coding->post_read_conversion = Fget (coding_system,
2231 Qpost_read_conversion);
2232 if (NILP (coding->pre_write_conversion))
2233 coding->pre_write_conversion = Fget (coding_system,
2234 Qpre_write_conversion);
2235 if (!inhibit_eol_conversion && NILP (eol_type))
2236 eol_type = Fget (coding_system, Qeol_type);
2238 if (NILP (coding->character_unification_table_for_decode))
2239 coding->character_unification_table_for_decode
2240 = Fget (coding_system, Qcharacter_unification_table_for_decode);
2242 if (NILP (coding->character_unification_table_for_encode))
2243 coding->character_unification_table_for_encode
2244 = Fget (coding_system, Qcharacter_unification_table_for_encode);
2246 coding_system = Fget (coding_system, Qcoding_system);
2249 while (!NILP (coding->character_unification_table_for_decode)
2250 && SYMBOLP (coding->character_unification_table_for_decode))
2251 coding->character_unification_table_for_decode
2252 = Fget (coding->character_unification_table_for_decode,
2253 Qcharacter_unification_table_for_decode);
2254 if (!NILP (coding->character_unification_table_for_decode)
2255 && !CHAR_TABLE_P (coding->character_unification_table_for_decode))
2256 coding->character_unification_table_for_decode = Qnil;
2258 while (!NILP (coding->character_unification_table_for_encode)
2259 && SYMBOLP (coding->character_unification_table_for_encode))
2260 coding->character_unification_table_for_encode
2261 = Fget (coding->character_unification_table_for_encode,
2262 Qcharacter_unification_table_for_encode);
2263 if (!NILP (coding->character_unification_table_for_encode)
2264 && !CHAR_TABLE_P (coding->character_unification_table_for_encode))
2265 coding->character_unification_table_for_encode = Qnil;
2267 if (!VECTORP (coding_system)
2268 || XVECTOR (coding_system)->size != 5)
2269 goto label_invalid_coding_system;
2271 if (VECTORP (eol_type))
2272 coding->eol_type = CODING_EOL_UNDECIDED;
2273 else if (XFASTINT (eol_type) == 1)
2274 coding->eol_type = CODING_EOL_CRLF;
2275 else if (XFASTINT (eol_type) == 2)
2276 coding->eol_type = CODING_EOL_CR;
2277 else
2278 coding->eol_type = CODING_EOL_LF;
2280 type = XVECTOR (coding_system)->contents[0];
2281 switch (XFASTINT (type))
2283 case 0:
2284 coding->type = coding_type_emacs_mule;
2285 break;
2287 case 1:
2288 coding->type = coding_type_sjis;
2289 break;
2291 case 2:
2292 coding->type = coding_type_iso2022;
2294 Lisp_Object val = XVECTOR (coding_system)->contents[4];
2295 Lisp_Object *flags;
2296 int i, charset, default_reg_bits = 0;
2298 if (!VECTORP (val) || XVECTOR (val)->size != 32)
2299 goto label_invalid_coding_system;
2301 flags = XVECTOR (val)->contents;
2302 coding->flags
2303 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
2304 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
2305 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
2306 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
2307 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
2308 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
2309 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
2310 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
2311 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
2312 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
2313 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL));
2315 /* Invoke graphic register 0 to plane 0. */
2316 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
2317 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
2318 CODING_SPEC_ISO_INVOCATION (coding, 1)
2319 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
2320 /* Not single shifting at first. */
2321 CODING_SPEC_ISO_SINGLE_SHIFTING(coding) = 0;
2322 /* Beginning of buffer should also be regarded as bol. */
2323 CODING_SPEC_ISO_BOL(coding) = 1;
2325 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
2326 FLAGS[REG] can be one of below:
2327 integer CHARSET: CHARSET occupies register I,
2328 t: designate nothing to REG initially, but can be used
2329 by any charsets,
2330 list of integer, nil, or t: designate the first
2331 element (if integer) to REG initially, the remaining
2332 elements (if integer) is designated to REG on request,
2333 if an element is t, REG can be used by any charset,
2334 nil: REG is never used. */
2335 for (charset = 0; charset <= MAX_CHARSET; charset++)
2336 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
2337 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
2338 for (i = 0; i < 4; i++)
2340 if (INTEGERP (flags[i])
2341 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset))
2342 || (charset = get_charset_id (flags[i])) >= 0)
2344 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
2345 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
2347 else if (EQ (flags[i], Qt))
2349 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
2350 default_reg_bits |= 1 << i;
2352 else if (CONSP (flags[i]))
2354 Lisp_Object tail = flags[i];
2356 if (INTEGERP (XCONS (tail)->car)
2357 && (charset = XINT (XCONS (tail)->car),
2358 CHARSET_VALID_P (charset))
2359 || (charset = get_charset_id (XCONS (tail)->car)) >= 0)
2361 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
2362 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
2364 else
2365 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
2366 tail = XCONS (tail)->cdr;
2367 while (CONSP (tail))
2369 if (INTEGERP (XCONS (tail)->car)
2370 && (charset = XINT (XCONS (tail)->car),
2371 CHARSET_VALID_P (charset))
2372 || (charset = get_charset_id (XCONS (tail)->car)) >= 0)
2373 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
2374 = i;
2375 else if (EQ (XCONS (tail)->car, Qt))
2376 default_reg_bits |= 1 << i;
2377 tail = XCONS (tail)->cdr;
2380 else
2381 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
2383 CODING_SPEC_ISO_DESIGNATION (coding, i)
2384 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
2387 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
2389 /* REG 1 can be used only by locking shift in 7-bit env. */
2390 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
2391 default_reg_bits &= ~2;
2392 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
2393 /* Without any shifting, only REG 0 and 1 can be used. */
2394 default_reg_bits &= 3;
2397 for (charset = 0; charset <= MAX_CHARSET; charset++)
2398 if (CHARSET_VALID_P (charset)
2399 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
2400 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
2402 /* We have not yet decided where to designate CHARSET. */
2403 int reg_bits = default_reg_bits;
2405 if (CHARSET_CHARS (charset) == 96)
2406 /* A charset of CHARS96 can't be designated to REG 0. */
2407 reg_bits &= ~1;
2409 if (reg_bits)
2410 /* There exist some default graphic register. */
2411 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
2412 = (reg_bits & 1
2413 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
2414 else
2415 /* We anyway have to designate CHARSET to somewhere. */
2416 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
2417 = (CHARSET_CHARS (charset) == 94
2419 : ((coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT
2420 || ! coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
2422 : (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT
2423 ? 2 : 0)));
2426 coding->require_flushing = 1;
2427 break;
2429 case 3:
2430 coding->type = coding_type_big5;
2431 coding->flags
2432 = (NILP (XVECTOR (coding_system)->contents[4])
2433 ? CODING_FLAG_BIG5_HKU
2434 : CODING_FLAG_BIG5_ETEN);
2435 break;
2437 case 4:
2438 coding->type = coding_type_ccl;
2440 Lisp_Object val = XVECTOR (coding_system)->contents[4];
2441 if (CONSP (val)
2442 && VECTORP (XCONS (val)->car)
2443 && VECTORP (XCONS (val)->cdr))
2445 setup_ccl_program (&(coding->spec.ccl.decoder), XCONS (val)->car);
2446 setup_ccl_program (&(coding->spec.ccl.encoder), XCONS (val)->cdr);
2448 else
2449 goto label_invalid_coding_system;
2451 coding->require_flushing = 1;
2452 break;
2454 default:
2455 if (EQ (type, Qt))
2456 coding->type = coding_type_undecided;
2457 else
2458 coding->type = coding_type_no_conversion;
2459 break;
2461 return 0;
2463 label_invalid_coding_system:
2464 coding->type = coding_type_no_conversion;
2465 coding->eol_type = CODING_EOL_LF;
2466 coding->symbol = coding->pre_write_conversion = coding->post_read_conversion
2467 = Qnil;
2468 return -1;
2471 /* Emacs has a mechanism to automatically detect a coding system if it
2472 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
2473 it's impossible to distinguish some coding systems accurately
2474 because they use the same range of codes. So, at first, coding
2475 systems are categorized into 7, those are:
2477 o coding-category-emacs-mule
2479 The category for a coding system which has the same code range
2480 as Emacs' internal format. Assigned the coding-system (Lisp
2481 symbol) `emacs-mule' by default.
2483 o coding-category-sjis
2485 The category for a coding system which has the same code range
2486 as SJIS. Assigned the coding-system (Lisp
2487 symbol) `japanese-shift-jis' by default.
2489 o coding-category-iso-7
2491 The category for a coding system which has the same code range
2492 as ISO2022 of 7-bit environment. This doesn't use any locking
2493 shift and single shift functions. Assigned the coding-system
2494 (Lisp symbol) `iso-2022-7bit' by default.
2496 o coding-category-iso-8-1
2498 The category for a coding system which has the same code range
2499 as ISO2022 of 8-bit environment and graphic plane 1 used only
2500 for DIMENSION1 charset. This doesn't use any locking shift
2501 and single shift functions. Assigned the coding-system (Lisp
2502 symbol) `iso-latin-1' by default.
2504 o coding-category-iso-8-2
2506 The category for a coding system which has the same code range
2507 as ISO2022 of 8-bit environment and graphic plane 1 used only
2508 for DIMENSION2 charset. This doesn't use any locking shift
2509 and single shift functions. Assigned the coding-system (Lisp
2510 symbol) `japanese-iso-8bit' by default.
2512 o coding-category-iso-7-else
2514 The category for a coding system which has the same code range
2515 as ISO2022 of 7-bit environemnt but uses locking shift or
2516 single shift functions. Assigned the coding-system (Lisp
2517 symbol) `iso-2022-7bit-lock' by default.
2519 o coding-category-iso-8-else
2521 The category for a coding system which has the same code range
2522 as ISO2022 of 8-bit environemnt but uses locking shift or
2523 single shift functions. Assigned the coding-system (Lisp
2524 symbol) `iso-2022-8bit-ss2' by default.
2526 o coding-category-big5
2528 The category for a coding system which has the same code range
2529 as BIG5. Assigned the coding-system (Lisp symbol)
2530 `cn-big5' by default.
2532 o coding-category-binary
2534 The category for a coding system not categorized in any of the
2535 above. Assigned the coding-system (Lisp symbol)
2536 `no-conversion' by default.
2538 Each of them is a Lisp symbol and the value is an actual
2539 `coding-system's (this is also a Lisp symbol) assigned by a user.
2540 What Emacs does actually is to detect a category of coding system.
2541 Then, it uses a `coding-system' assigned to it. If Emacs can't
2542 decide only one possible category, it selects a category of the
2543 highest priority. Priorities of categories are also specified by a
2544 user in a Lisp variable `coding-category-list'.
2548 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
2549 If it detects possible coding systems, return an integer in which
2550 appropriate flag bits are set. Flag bits are defined by macros
2551 CODING_CATEGORY_MASK_XXX in `coding.h'. */
2554 detect_coding_mask (src, src_bytes)
2555 unsigned char *src;
2556 int src_bytes;
2558 register unsigned char c;
2559 unsigned char *src_end = src + src_bytes;
2560 int mask;
2562 /* At first, skip all ASCII characters and control characters except
2563 for three ISO2022 specific control characters. */
2564 label_loop_detect_coding:
2565 while (src < src_end)
2567 c = *src;
2568 if (c >= 0x80
2569 || (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO))
2570 break;
2571 src++;
2574 if (src >= src_end)
2575 /* We found nothing other than ASCII. There's nothing to do. */
2576 return CODING_CATEGORY_MASK_ANY;
2578 /* The text seems to be encoded in some multilingual coding system.
2579 Now, try to find in which coding system the text is encoded. */
2580 if (c < 0x80)
2582 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
2583 /* C is an ISO2022 specific control code of C0. */
2584 mask = detect_coding_iso2022 (src, src_end);
2585 src++;
2586 if (mask == CODING_CATEGORY_MASK_ANY)
2587 /* No valid ISO2022 code follows C. Try again. */
2588 goto label_loop_detect_coding;
2590 else if (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
2591 /* C is an ISO2022 specific control code of C1,
2592 or the first byte of SJIS's 2-byte character code,
2593 or a leading code of Emacs. */
2594 mask = (detect_coding_iso2022 (src, src_end)
2595 | detect_coding_sjis (src, src_end)
2596 | detect_coding_emacs_mule (src, src_end));
2598 else if (c == ISO_CODE_CSI
2599 && (src < src_end
2600 && (*src == ']'
2601 || (src + 1 < src_end
2602 && src[1] == ']'
2603 && (*src == '0' || *src == '1' || *src == '2')))))
2604 /* C is an ISO2022's control-sequence-introducer. */
2605 mask = (detect_coding_iso2022 (src, src_end)
2606 | detect_coding_sjis (src, src_end)
2607 | detect_coding_emacs_mule (src, src_end));
2609 else if (c < 0xA0)
2610 /* C is the first byte of SJIS character code,
2611 or a leading-code of Emacs. */
2612 mask = (detect_coding_sjis (src, src_end)
2613 | detect_coding_emacs_mule (src, src_end));
2615 else
2616 /* C is a character of ISO2022 in graphic plane right,
2617 or a SJIS's 1-byte character code (i.e. JISX0201),
2618 or the first byte of BIG5's 2-byte code. */
2619 mask = (detect_coding_iso2022 (src, src_end)
2620 | detect_coding_sjis (src, src_end)
2621 | detect_coding_big5 (src, src_end));
2623 return mask;
2626 /* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
2627 The information of the detected coding system is set in CODING. */
2629 void
2630 detect_coding (coding, src, src_bytes)
2631 struct coding_system *coding;
2632 unsigned char *src;
2633 int src_bytes;
2635 int mask = detect_coding_mask (src, src_bytes);
2636 int idx;
2638 if (mask == CODING_CATEGORY_MASK_ANY)
2639 /* We found nothing other than ASCII. There's nothing to do. */
2640 return;
2642 if (!mask)
2643 /* The source text seems to be encoded in unknown coding system.
2644 Emacs regards the category of such a kind of coding system as
2645 `coding-category-binary'. We assume that a user has assigned
2646 an appropriate coding system for a `coding-category-binary'. */
2647 idx = CODING_CATEGORY_IDX_BINARY;
2648 else
2650 /* We found some plausible coding systems. Let's use a coding
2651 system of the highest priority. */
2652 Lisp_Object val = Vcoding_category_list;
2654 if (CONSP (val))
2655 while (!NILP (val))
2657 idx = XFASTINT (Fget (XCONS (val)->car, Qcoding_category_index));
2658 if ((idx < CODING_CATEGORY_IDX_MAX) && (mask & (1 << idx)))
2659 break;
2660 val = XCONS (val)->cdr;
2662 else
2663 val = Qnil;
2665 if (NILP (val))
2667 /* For unknown reason, `Vcoding_category_list' contains none
2668 of found categories. Let's use any of them. */
2669 for (idx = 0; idx < CODING_CATEGORY_IDX_MAX; idx++)
2670 if (mask & (1 << idx))
2671 break;
2674 setup_coding_system (XSYMBOL (coding_category_table[idx])->value, coding);
2677 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
2678 is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
2679 CODING_EOL_CR, and CODING_EOL_UNDECIDED. */
2682 detect_eol_type (src, src_bytes)
2683 unsigned char *src;
2684 int src_bytes;
2686 unsigned char *src_end = src + src_bytes;
2687 unsigned char c;
2689 while (src < src_end)
2691 c = *src++;
2692 if (c == '\n')
2693 return CODING_EOL_LF;
2694 else if (c == '\r')
2696 if (src < src_end && *src == '\n')
2697 return CODING_EOL_CRLF;
2698 else
2699 return CODING_EOL_CR;
2702 return CODING_EOL_UNDECIDED;
2705 /* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
2706 is encoded. If it detects an appropriate format of end-of-line, it
2707 sets the information in *CODING. */
2709 void
2710 detect_eol (coding, src, src_bytes)
2711 struct coding_system *coding;
2712 unsigned char *src;
2713 int src_bytes;
2715 Lisp_Object val;
2716 int eol_type = detect_eol_type (src, src_bytes);
2718 if (eol_type == CODING_EOL_UNDECIDED)
2719 /* We found no end-of-line in the source text. */
2720 return;
2722 val = Fget (coding->symbol, Qeol_type);
2723 if (VECTORP (val) && XVECTOR (val)->size == 3)
2724 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
2727 /* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
2728 decoding, it may detect coding system and format of end-of-line if
2729 those are not yet decided. */
2732 decode_coding (coding, source, destination, src_bytes, dst_bytes, consumed)
2733 struct coding_system *coding;
2734 unsigned char *source, *destination;
2735 int src_bytes, dst_bytes;
2736 int *consumed;
2738 int produced;
2740 if (src_bytes <= 0)
2742 *consumed = 0;
2743 return 0;
2746 if (coding->type == coding_type_undecided)
2747 detect_coding (coding, source, src_bytes);
2749 if (coding->eol_type == CODING_EOL_UNDECIDED)
2750 detect_eol (coding, source, src_bytes);
2752 coding->carryover_size = 0;
2753 switch (coding->type)
2755 case coding_type_no_conversion:
2756 label_no_conversion:
2757 produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
2758 bcopy (source, destination, produced);
2759 *consumed = produced;
2760 break;
2762 case coding_type_emacs_mule:
2763 case coding_type_undecided:
2764 if (coding->eol_type == CODING_EOL_LF
2765 || coding->eol_type == CODING_EOL_UNDECIDED)
2766 goto label_no_conversion;
2767 produced = decode_eol (coding, source, destination,
2768 src_bytes, dst_bytes, consumed);
2769 break;
2771 case coding_type_sjis:
2772 produced = decode_coding_sjis_big5 (coding, source, destination,
2773 src_bytes, dst_bytes, consumed,
2775 break;
2777 case coding_type_iso2022:
2778 produced = decode_coding_iso2022 (coding, source, destination,
2779 src_bytes, dst_bytes, consumed);
2780 break;
2782 case coding_type_big5:
2783 produced = decode_coding_sjis_big5 (coding, source, destination,
2784 src_bytes, dst_bytes, consumed,
2786 break;
2788 case coding_type_ccl:
2789 produced = ccl_driver (&coding->spec.ccl.decoder, source, destination,
2790 src_bytes, dst_bytes, consumed);
2791 break;
2794 return produced;
2797 /* See "GENERAL NOTES about `encode_coding_XXX ()' functions". */
2800 encode_coding (coding, source, destination, src_bytes, dst_bytes, consumed)
2801 struct coding_system *coding;
2802 unsigned char *source, *destination;
2803 int src_bytes, dst_bytes;
2804 int *consumed;
2806 int produced;
2808 switch (coding->type)
2810 case coding_type_no_conversion:
2811 label_no_conversion:
2812 produced = (src_bytes > dst_bytes) ? dst_bytes : src_bytes;
2813 if (produced > 0)
2815 bcopy (source, destination, produced);
2816 if (coding->selective)
2818 unsigned char *p = destination, *pend = destination + produced;
2819 while (p < pend)
2820 if (*p++ == '\015') p[-1] = '\n';
2823 *consumed = produced;
2824 break;
2826 case coding_type_emacs_mule:
2827 case coding_type_undecided:
2828 if (coding->eol_type == CODING_EOL_LF
2829 || coding->eol_type == CODING_EOL_UNDECIDED)
2830 goto label_no_conversion;
2831 produced = encode_eol (coding, source, destination,
2832 src_bytes, dst_bytes, consumed);
2833 break;
2835 case coding_type_sjis:
2836 produced = encode_coding_sjis_big5 (coding, source, destination,
2837 src_bytes, dst_bytes, consumed,
2839 break;
2841 case coding_type_iso2022:
2842 produced = encode_coding_iso2022 (coding, source, destination,
2843 src_bytes, dst_bytes, consumed);
2844 break;
2846 case coding_type_big5:
2847 produced = encode_coding_sjis_big5 (coding, source, destination,
2848 src_bytes, dst_bytes, consumed,
2850 break;
2852 case coding_type_ccl:
2853 produced = ccl_driver (&coding->spec.ccl.encoder, source, destination,
2854 src_bytes, dst_bytes, consumed);
2855 break;
2858 return produced;
2861 #define CONVERSION_BUFFER_EXTRA_ROOM 256
2863 /* Return maximum size (bytes) of a buffer enough for decoding
2864 SRC_BYTES of text encoded in CODING. */
2867 decoding_buffer_size (coding, src_bytes)
2868 struct coding_system *coding;
2869 int src_bytes;
2871 int magnification;
2873 if (coding->type == coding_type_iso2022)
2874 magnification = 3;
2875 else if (coding->type == coding_type_ccl)
2876 magnification = coding->spec.ccl.decoder.buf_magnification;
2877 else
2878 magnification = 2;
2880 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
2883 /* Return maximum size (bytes) of a buffer enough for encoding
2884 SRC_BYTES of text to CODING. */
2887 encoding_buffer_size (coding, src_bytes)
2888 struct coding_system *coding;
2889 int src_bytes;
2891 int magnification;
2893 if (coding->type == coding_type_ccl)
2894 magnification = coding->spec.ccl.encoder.buf_magnification;
2895 else
2896 magnification = 3;
2898 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
2901 #ifndef MINIMUM_CONVERSION_BUFFER_SIZE
2902 #define MINIMUM_CONVERSION_BUFFER_SIZE 1024
2903 #endif
2905 char *conversion_buffer;
2906 int conversion_buffer_size;
2908 /* Return a pointer to a SIZE bytes of buffer to be used for encoding
2909 or decoding. Sufficient memory is allocated automatically. If we
2910 run out of memory, return NULL. */
2912 char *
2913 get_conversion_buffer (size)
2914 int size;
2916 if (size > conversion_buffer_size)
2918 char *buf;
2919 int real_size = conversion_buffer_size * 2;
2921 while (real_size < size) real_size *= 2;
2922 buf = (char *) xmalloc (real_size);
2923 xfree (conversion_buffer);
2924 conversion_buffer = buf;
2925 conversion_buffer_size = real_size;
2927 return conversion_buffer;
2931 #ifdef emacs
2932 /*** 7. Emacs Lisp library functions ***/
2934 DEFUN ("coding-system-spec", Fcoding_system_spec, Scoding_system_spec,
2935 1, 1, 0,
2936 "Return coding-spec of CODING-SYSTEM.\n\
2937 If CODING-SYSTEM is not a valid coding-system, return nil.")
2938 (obj)
2939 Lisp_Object obj;
2941 while (SYMBOLP (obj) && !NILP (obj))
2942 obj = Fget (obj, Qcoding_system);
2943 return ((NILP (obj) || !VECTORP (obj) || XVECTOR (obj)->size != 5)
2944 ? Qnil : obj);
2947 DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
2948 "Return t if OBJECT is nil or a coding-system.\n\
2949 See document of make-coding-system for coding-system object.")
2950 (obj)
2951 Lisp_Object obj;
2953 return ((NILP (obj) || !NILP (Fcoding_system_spec (obj))) ? Qt : Qnil);
2956 DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
2957 Sread_non_nil_coding_system, 1, 1, 0,
2958 "Read a coding system from the minibuffer, prompting with string PROMPT.")
2959 (prompt)
2960 Lisp_Object prompt;
2962 Lisp_Object val;
2965 val = Fcompleting_read (prompt, Vobarray, Qcoding_system_spec,
2966 Qt, Qnil, Qnil, Qnil);
2968 while (XSTRING (val)->size == 0);
2969 return (Fintern (val, Qnil));
2972 DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 1, 0,
2973 "Read a coding system or nil from the minibuffer, prompting with string PROMPT.")
2974 (prompt)
2975 Lisp_Object prompt;
2977 Lisp_Object val = Fcompleting_read (prompt, Vobarray, Qcoding_system_p,
2978 Qt, Qnil, Qnil, Qnil);
2979 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
2982 DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
2983 1, 1, 0,
2984 "Check validity of CODING-SYSTEM.\n\
2985 If valid, return CODING-SYSTEM, else `coding-system-error' is signaled.\n\
2986 CODING-SYSTEM is valid if it is a symbol and has \"coding-system\" property.\n\
2987 The value of property should be a vector of length 5.")
2988 (coding_system)
2989 Lisp_Object coding_system;
2991 CHECK_SYMBOL (coding_system, 0);
2992 if (!NILP (Fcoding_system_p (coding_system)))
2993 return coding_system;
2994 while (1)
2995 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
2998 DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
2999 2, 2, 0,
3000 "Detect coding-system of the text in the region between START and END.\n\
3001 Return a list of possible coding-systems ordered by priority.\n\
3002 If only ASCII characters are found, it returns `undecided'\n\
3003 or its subsidiary coding-system according to a detected end-of-line format.")
3004 (b, e)
3005 Lisp_Object b, e;
3007 int coding_mask, eol_type;
3008 Lisp_Object val;
3009 int beg, end;
3011 validate_region (&b, &e);
3012 beg = XINT (b), end = XINT (e);
3013 if (beg < GPT && end >= GPT) move_gap (end);
3015 coding_mask = detect_coding_mask (POS_ADDR (beg), end - beg);
3016 eol_type = detect_eol_type (POS_ADDR (beg), end - beg);
3018 if (coding_mask == CODING_CATEGORY_MASK_ANY)
3020 val = intern ("undecided");
3021 if (eol_type != CODING_EOL_UNDECIDED)
3023 Lisp_Object val2 = Fget (val, Qeol_type);
3024 if (VECTORP (val2))
3025 val = XVECTOR (val2)->contents[eol_type];
3028 else
3030 Lisp_Object val2;
3032 /* At first, gather possible coding-systems in VAL in a reverse
3033 order. */
3034 val = Qnil;
3035 for (val2 = Vcoding_category_list;
3036 !NILP (val2);
3037 val2 = XCONS (val2)->cdr)
3039 int idx
3040 = XFASTINT (Fget (XCONS (val2)->car, Qcoding_category_index));
3041 if (coding_mask & (1 << idx))
3042 val = Fcons (Fsymbol_value (XCONS (val2)->car), val);
3045 /* Then, change the order of the list, while getting subsidiary
3046 coding-systems. */
3047 val2 = val;
3048 val = Qnil;
3049 for (; !NILP (val2); val2 = XCONS (val2)->cdr)
3051 if (eol_type == CODING_EOL_UNDECIDED)
3052 val = Fcons (XCONS (val2)->car, val);
3053 else
3055 Lisp_Object val3 = Fget (XCONS (val2)->car, Qeol_type);
3056 if (VECTORP (val3))
3057 val = Fcons (XVECTOR (val3)->contents[eol_type], val);
3058 else
3059 val = Fcons (XCONS (val2)->car, val);
3064 return val;
3067 /* Scan text in the region between *BEGP and *ENDP, skip characters
3068 which we never have to encode to (iff ENCODEP is 1) or decode from
3069 coding system CODING at the head and tail, then set BEGP and ENDP
3070 to the addresses of start and end of the text we actually convert. */
3072 void
3073 shrink_conversion_area (begp, endp, coding, encodep)
3074 unsigned char **begp, **endp;
3075 struct coding_system *coding;
3076 int encodep;
3078 register unsigned char *beg_addr = *begp, *end_addr = *endp;
3080 if (coding->eol_type != CODING_EOL_LF
3081 && coding->eol_type != CODING_EOL_UNDECIDED)
3082 /* Since we anyway have to convert end-of-line format, it is not
3083 worth skipping at most 100 bytes or so. */
3084 return;
3086 if (encodep) /* for encoding */
3088 switch (coding->type)
3090 case coding_type_no_conversion:
3091 case coding_type_emacs_mule:
3092 case coding_type_undecided:
3093 /* We need no conversion. */
3094 *begp = *endp;
3095 return;
3096 case coding_type_ccl:
3097 /* We can't skip any data. */
3098 return;
3099 case coding_type_iso2022:
3100 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3102 unsigned char *bol = beg_addr;
3103 while (beg_addr < end_addr && *beg_addr < 0x80)
3105 beg_addr++;
3106 if (*(beg_addr - 1) == '\n')
3107 bol = beg_addr;
3109 beg_addr = bol;
3110 goto label_skip_tail;
3112 /* fall down ... */
3113 default:
3114 /* We can skip all ASCII characters at the head and tail. */
3115 while (beg_addr < end_addr && *beg_addr < 0x80) beg_addr++;
3116 label_skip_tail:
3117 while (beg_addr < end_addr && *(end_addr - 1) < 0x80) end_addr--;
3118 break;
3121 else /* for decoding */
3123 switch (coding->type)
3125 case coding_type_no_conversion:
3126 /* We need no conversion. */
3127 *begp = *endp;
3128 return;
3129 case coding_type_emacs_mule:
3130 if (coding->eol_type == CODING_EOL_LF)
3132 /* We need no conversion. */
3133 *begp = *endp;
3134 return;
3136 /* We can skip all but carriage-return. */
3137 while (beg_addr < end_addr && *beg_addr != '\r') beg_addr++;
3138 while (beg_addr < end_addr && *(end_addr - 1) != '\r') end_addr--;
3139 break;
3140 case coding_type_sjis:
3141 case coding_type_big5:
3142 /* We can skip all ASCII characters at the head. */
3143 while (beg_addr < end_addr && *beg_addr < 0x80) beg_addr++;
3144 /* We can skip all ASCII characters at the tail except for
3145 the second byte of SJIS or BIG5 code. */
3146 while (beg_addr < end_addr && *(end_addr - 1) < 0x80) end_addr--;
3147 if (end_addr != *endp)
3148 end_addr++;
3149 break;
3150 case coding_type_ccl:
3151 /* We can't skip any data. */
3152 return;
3153 default: /* i.e. case coding_type_iso2022: */
3155 unsigned char c;
3157 /* We can skip all ASCII characters except for a few
3158 control codes at the head. */
3159 while (beg_addr < end_addr && (c = *beg_addr) < 0x80
3160 && c != ISO_CODE_CR && c != ISO_CODE_SO
3161 && c != ISO_CODE_SI && c != ISO_CODE_ESC)
3162 beg_addr++;
3164 break;
3167 *begp = beg_addr;
3168 *endp = end_addr;
3169 return;
3172 /* Encode to (iff ENCODEP is 1) or decode form coding system CODING a
3173 text between B and E. B and E are buffer position. */
3175 Lisp_Object
3176 code_convert_region (b, e, coding, encodep)
3177 Lisp_Object b, e;
3178 struct coding_system *coding;
3179 int encodep;
3181 int beg, end, len, consumed, produced;
3182 char *buf;
3183 unsigned char *begp, *endp;
3184 int pos = PT;
3186 validate_region (&b, &e);
3187 beg = XINT (b), end = XINT (e);
3188 if (beg < GPT && end >= GPT)
3189 move_gap (end);
3191 if (encodep && !NILP (coding->pre_write_conversion))
3193 /* We must call a pre-conversion function which may put a new
3194 text to be converted in a new buffer. */
3195 struct buffer *old = current_buffer, *new;
3197 TEMP_SET_PT (beg);
3198 call2 (coding->pre_write_conversion, b, e);
3199 if (old != current_buffer)
3201 /* Replace the original text by the text just generated. */
3202 len = ZV - BEGV;
3203 new = current_buffer;
3204 set_buffer_internal (old);
3205 del_range (beg, end);
3206 insert_from_buffer (new, 1, len, 0);
3207 end = beg + len;
3211 /* We may be able to shrink the conversion region. */
3212 begp = POS_ADDR (beg); endp = begp + (end - beg);
3213 shrink_conversion_area (&begp, &endp, coding, encodep);
3215 if (begp == endp)
3216 /* We need no conversion. */
3217 len = end - beg;
3218 else
3220 beg += begp - POS_ADDR (beg);
3221 end = beg + (endp - begp);
3223 if (encodep)
3224 len = encoding_buffer_size (coding, end - beg);
3225 else
3226 len = decoding_buffer_size (coding, end - beg);
3227 buf = get_conversion_buffer (len);
3229 coding->last_block = 1;
3230 produced = (encodep
3231 ? encode_coding (coding, POS_ADDR (beg), buf, end - beg, len,
3232 &consumed)
3233 : decode_coding (coding, POS_ADDR (beg), buf, end - beg, len,
3234 &consumed));
3236 len = produced + (beg - XINT (b)) + (XINT (e) - end);
3238 TEMP_SET_PT (beg);
3239 insert (buf, produced);
3240 del_range (PT, PT + end - beg);
3241 if (pos >= end)
3242 pos = PT + (pos - end);
3243 else if (pos > beg)
3244 pos = beg;
3245 TEMP_SET_PT (pos);
3248 if (!encodep && !NILP (coding->post_read_conversion))
3250 /* We must call a post-conversion function which may alter
3251 the text just converted. */
3252 Lisp_Object insval;
3254 beg = XINT (b);
3255 TEMP_SET_PT (beg);
3256 insval = call1 (coding->post_read_conversion, make_number (len));
3257 CHECK_NUMBER (insval, 0);
3258 len = XINT (insval);
3261 return make_number (len);
3264 Lisp_Object
3265 code_convert_string (str, coding, encodep, nocopy)
3266 Lisp_Object str, nocopy;
3267 struct coding_system *coding;
3268 int encodep;
3270 int len, consumed, produced;
3271 char *buf;
3272 unsigned char *begp, *endp;
3273 int head_skip, tail_skip;
3274 struct gcpro gcpro1;
3276 if (encodep && !NILP (coding->pre_write_conversion)
3277 || !encodep && !NILP (coding->post_read_conversion))
3279 /* Since we have to call Lisp functions which assume target text
3280 is in a buffer, after setting a temporary buffer, call
3281 code_convert_region. */
3282 int count = specpdl_ptr - specpdl;
3283 int len = XSTRING (str)->size;
3284 Lisp_Object result;
3285 struct buffer *old = current_buffer;
3287 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
3288 temp_output_buffer_setup (" *code-converting-work*");
3289 set_buffer_internal (XBUFFER (Vstandard_output));
3290 insert_from_string (str, 0, len, 0);
3291 code_convert_region (make_number (BEGV), make_number (ZV),
3292 coding, encodep);
3293 result = make_buffer_string (BEGV, ZV, 0);
3294 set_buffer_internal (old);
3295 return unbind_to (count, result);
3298 /* We may be able to shrink the conversion region. */
3299 begp = XSTRING (str)->data;
3300 endp = begp + XSTRING (str)->size;
3301 shrink_conversion_area (&begp, &endp, coding, encodep);
3303 if (begp == endp)
3304 /* We need no conversion. */
3305 return (NILP (nocopy) ? Fcopy_sequence (str) : str);
3307 head_skip = begp - XSTRING (str)->data;
3308 tail_skip = XSTRING (str)->size - head_skip - (endp - begp);
3310 GCPRO1 (str);
3312 if (encodep)
3313 len = encoding_buffer_size (coding, endp - begp);
3314 else
3315 len = decoding_buffer_size (coding, endp - begp);
3316 buf = get_conversion_buffer (len + head_skip + tail_skip);
3318 bcopy (XSTRING (str)->data, buf, head_skip);
3319 coding->last_block = 1;
3320 produced = (encodep
3321 ? encode_coding (coding, XSTRING (str)->data + head_skip,
3322 buf + head_skip, endp - begp, len, &consumed)
3323 : decode_coding (coding, XSTRING (str)->data + head_skip,
3324 buf + head_skip, endp - begp, len, &consumed));
3325 bcopy (XSTRING (str)->data + head_skip + (endp - begp),
3326 buf + head_skip + produced,
3327 tail_skip);
3329 UNGCPRO;
3331 return make_string (buf, head_skip + produced + tail_skip);
3334 DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
3335 3, 3, "r\nzCoding system: ",
3336 "Decode current region by specified coding system.\n\
3337 When called from a program, takes three arguments:\n\
3338 START, END, and CODING-SYSTEM. START END are buffer positions.\n\
3339 Return length of decoded text.")
3340 (b, e, coding_system)
3341 Lisp_Object b, e, coding_system;
3343 struct coding_system coding;
3345 CHECK_NUMBER_COERCE_MARKER (b, 0);
3346 CHECK_NUMBER_COERCE_MARKER (e, 1);
3347 CHECK_SYMBOL (coding_system, 2);
3349 if (NILP (coding_system))
3350 return make_number (XFASTINT (e) - XFASTINT (b));
3351 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
3352 error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);
3354 return code_convert_region (b, e, &coding, 0);
3357 DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
3358 3, 3, "r\nzCoding system: ",
3359 "Encode current region by specified coding system.\n\
3360 When called from a program, takes three arguments:\n\
3361 START, END, and CODING-SYSTEM. START END are buffer positions.\n\
3362 Return length of encoded text.")
3363 (b, e, coding_system)
3364 Lisp_Object b, e, coding_system;
3366 struct coding_system coding;
3368 CHECK_NUMBER_COERCE_MARKER (b, 0);
3369 CHECK_NUMBER_COERCE_MARKER (e, 1);
3370 CHECK_SYMBOL (coding_system, 2);
3372 if (NILP (coding_system))
3373 return make_number (XFASTINT (e) - XFASTINT (b));
3374 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
3375 error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);
3377 return code_convert_region (b, e, &coding, 1);
3380 DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
3381 2, 3, 0,
3382 "Decode STRING which is encoded in CODING-SYSTEM, and return the result.\n\
3383 Optional arg NOCOPY non-nil means return STRING itself if there's no need\n\
3384 of decoding.")
3385 (string, coding_system, nocopy)
3386 Lisp_Object string, coding_system, nocopy;
3388 struct coding_system coding;
3390 CHECK_STRING (string, 0);
3391 CHECK_SYMBOL (coding_system, 1);
3393 if (NILP (coding_system))
3394 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
3395 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
3396 error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);
3398 return code_convert_string (string, &coding, 0, nocopy);
3401 DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
3402 2, 3, 0,
3403 "Encode STRING to CODING-SYSTEM, and return the result.\n\
3404 Optional arg NOCOPY non-nil means return STRING itself if there's no need\n\
3405 of encoding.")
3406 (string, coding_system, nocopy)
3407 Lisp_Object string, coding_system, nocopy;
3409 struct coding_system coding;
3411 CHECK_STRING (string, 0);
3412 CHECK_SYMBOL (coding_system, 1);
3414 if (NILP (coding_system))
3415 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
3416 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
3417 error ("Invalid coding-system: %s", XSYMBOL (coding_system)->name->data);
3419 return code_convert_string (string, &coding, 1, nocopy);
3422 DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
3423 "Decode a JISX0208 character of shift-jis encoding.\n\
3424 CODE is the character code in SJIS.\n\
3425 Return the corresponding character.")
3426 (code)
3427 Lisp_Object code;
3429 unsigned char c1, c2, s1, s2;
3430 Lisp_Object val;
3432 CHECK_NUMBER (code, 0);
3433 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
3434 DECODE_SJIS (s1, s2, c1, c2);
3435 XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset_jisx0208, c1, c2));
3436 return val;
3439 DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
3440 "Encode a JISX0208 character CHAR to SJIS coding-system.\n\
3441 Return the corresponding character code in SJIS.")
3442 (ch)
3443 Lisp_Object ch;
3445 int charset, c1, c2, s1, s2;
3446 Lisp_Object val;
3448 CHECK_NUMBER (ch, 0);
3449 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
3450 if (charset == charset_jisx0208)
3452 ENCODE_SJIS (c1, c2, s1, s2);
3453 XSETFASTINT (val, (s1 << 8) | s2);
3455 else
3456 XSETFASTINT (val, 0);
3457 return val;
3460 DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
3461 "Decode a Big5 character CODE of BIG5 coding-system.\n\
3462 CODE is the character code in BIG5.\n\
3463 Return the corresponding character.")
3464 (code)
3465 Lisp_Object code;
3467 int charset;
3468 unsigned char b1, b2, c1, c2;
3469 Lisp_Object val;
3471 CHECK_NUMBER (code, 0);
3472 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
3473 DECODE_BIG5 (b1, b2, charset, c1, c2);
3474 XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset, c1, c2));
3475 return val;
3478 DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
3479 "Encode the Big5 character CHAR to BIG5 coding-system.\n\
3480 Return the corresponding character code in Big5.")
3481 (ch)
3482 Lisp_Object ch;
3484 int charset, c1, c2, b1, b2;
3485 Lisp_Object val;
3487 CHECK_NUMBER (ch, 0);
3488 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
3489 if (charset == charset_big5_1 || charset == charset_big5_2)
3491 ENCODE_BIG5 (charset, c1, c2, b1, b2);
3492 XSETFASTINT (val, (b1 << 8) | b2);
3494 else
3495 XSETFASTINT (val, 0);
3496 return val;
3499 DEFUN ("set-terminal-coding-system-internal",
3500 Fset_terminal_coding_system_internal,
3501 Sset_terminal_coding_system_internal, 1, 1, 0, "")
3502 (coding_system)
3503 Lisp_Object coding_system;
3505 CHECK_SYMBOL (coding_system, 0);
3506 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
3507 return Qnil;
3510 DEFUN ("terminal-coding-system",
3511 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
3512 "Return coding-system of your terminal.")
3515 return terminal_coding.symbol;
3518 DEFUN ("set-keyboard-coding-system-internal",
3519 Fset_keyboard_coding_system_internal,
3520 Sset_keyboard_coding_system_internal, 1, 1, 0, "")
3521 (coding_system)
3522 Lisp_Object coding_system;
3524 CHECK_SYMBOL (coding_system, 0);
3525 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
3526 return Qnil;
3529 DEFUN ("keyboard-coding-system",
3530 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
3531 "Return coding-system of what is sent from terminal keyboard.")
3534 return keyboard_coding.symbol;
3538 DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
3539 Sfind_operation_coding_system, 1, MANY, 0,
3540 "Choose a coding system for an operation based on the target name.\n\
3541 The value names a pair of coding systems: (DECODING-SYSTEM ENCODING-SYSTEM).\n\
3542 DECODING-SYSTEM is the coding system to use for decoding\n\
3543 \(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system\n\
3544 for encoding (in case OPERATION does encoding).\n\
3546 The first argument OPERATION specifies an I/O primitive:\n\
3547 For file I/O, `insert-file-contents' or `write-region'.\n\
3548 For process I/O, `call-process', `call-process-region', or `start-process'.\n\
3549 For network I/O, `open-network-stream'.\n\
3551 The remaining arguments should be the same arguments that were passed\n\
3552 to the primitive. Depending on which primitive, one of those arguments\n\
3553 is selected as the TARGET. For example, if OPERATION does file I/O,\n\
3554 whichever argument specifies the file name is TARGET.\n\
3556 TARGET has a meaning which depends on OPERATION:\n\
3557 For file I/O, TARGET is a file name.\n\
3558 For process I/O, TARGET is a process name.\n\
3559 For network I/O, TARGET is a service name or a port number\n\
3561 This function looks up what specified for TARGET in,\n\
3562 `file-coding-system-alist', `process-coding-system-alist',\n\
3563 or `network-coding-system-alist' depending on OPERATION.\n\
3564 They may specify a coding system, a cons of coding systems,\n\
3565 or a function symbol to call.\n\
3566 In the last case, we call the function with one argument,\n\
3567 which is a list of all the arguments given to this function.")
3568 (nargs, args)
3569 int nargs;
3570 Lisp_Object *args;
3572 Lisp_Object operation, target_idx, target, val;
3573 register Lisp_Object chain;
3575 if (nargs < 2)
3576 error ("Too few arguments");
3577 operation = args[0];
3578 if (!SYMBOLP (operation)
3579 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
3580 error ("Invalid first arguement");
3581 if (nargs < 1 + XINT (target_idx))
3582 error ("Too few arguments for operation: %s",
3583 XSYMBOL (operation)->name->data);
3584 target = args[XINT (target_idx) + 1];
3585 if (!(STRINGP (target)
3586 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
3587 error ("Invalid %dth argument", XINT (target_idx) + 1);
3589 chain = ((EQ (operation, Qinsert_file_contents)
3590 || EQ (operation, Qwrite_region))
3591 ? Vfile_coding_system_alist
3592 : (EQ (operation, Qopen_network_stream)
3593 ? Vnetwork_coding_system_alist
3594 : Vprocess_coding_system_alist));
3595 if (NILP (chain))
3596 return Qnil;
3598 for (; CONSP (chain); chain = XCONS (chain)->cdr)
3600 Lisp_Object elt = XCONS (chain)->car;
3602 if (CONSP (elt)
3603 && ((STRINGP (target)
3604 && STRINGP (XCONS (elt)->car)
3605 && fast_string_match (XCONS (elt)->car, target) >= 0)
3606 || (INTEGERP (target) && EQ (target, XCONS (elt)->car))))
3608 val = XCONS (elt)->cdr;
3609 if (CONSP (val))
3610 return val;
3611 if (! SYMBOLP (val))
3612 return Qnil;
3613 if (! NILP (Fcoding_system_p (val)))
3614 return Fcons (val, val);
3615 if (!NILP (Ffboundp (val)))
3616 return call1 (val, Flist (nargs, args));
3617 return Qnil;
3620 return Qnil;
3623 #endif /* emacs */
3626 /*** 8. Post-amble ***/
3628 init_coding_once ()
3630 int i;
3632 /* Emacs' internal format specific initialize routine. */
3633 for (i = 0; i <= 0x20; i++)
3634 emacs_code_class[i] = EMACS_control_code;
3635 emacs_code_class[0x0A] = EMACS_linefeed_code;
3636 emacs_code_class[0x0D] = EMACS_carriage_return_code;
3637 for (i = 0x21 ; i < 0x7F; i++)
3638 emacs_code_class[i] = EMACS_ascii_code;
3639 emacs_code_class[0x7F] = EMACS_control_code;
3640 emacs_code_class[0x80] = EMACS_leading_code_composition;
3641 for (i = 0x81; i < 0xFF; i++)
3642 emacs_code_class[i] = EMACS_invalid_code;
3643 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
3644 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
3645 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
3646 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
3648 /* ISO2022 specific initialize routine. */
3649 for (i = 0; i < 0x20; i++)
3650 iso_code_class[i] = ISO_control_code;
3651 for (i = 0x21; i < 0x7F; i++)
3652 iso_code_class[i] = ISO_graphic_plane_0;
3653 for (i = 0x80; i < 0xA0; i++)
3654 iso_code_class[i] = ISO_control_code;
3655 for (i = 0xA1; i < 0xFF; i++)
3656 iso_code_class[i] = ISO_graphic_plane_1;
3657 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
3658 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
3659 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
3660 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
3661 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
3662 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
3663 iso_code_class[ISO_CODE_ESC] = ISO_escape;
3664 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
3665 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
3666 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
3668 conversion_buffer_size = MINIMUM_CONVERSION_BUFFER_SIZE;
3669 conversion_buffer = (char *) xmalloc (MINIMUM_CONVERSION_BUFFER_SIZE);
3671 setup_coding_system (Qnil, &keyboard_coding);
3672 setup_coding_system (Qnil, &terminal_coding);
3674 #if defined (MSDOS) || defined (WINDOWSNT)
3675 system_eol_type = CODING_EOL_CRLF;
3676 #else
3677 system_eol_type = CODING_EOL_LF;
3678 #endif
3681 #ifdef emacs
3683 syms_of_coding ()
3685 Qtarget_idx = intern ("target-idx");
3686 staticpro (&Qtarget_idx);
3688 /* Target FILENAME is the first argument. */
3689 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
3690 /* Target FILENAME is the third argument. */
3691 Fput (Qwrite_region, Qtarget_idx, make_number (2));
3693 Qcall_process = intern ("call-process");
3694 staticpro (&Qcall_process);
3695 /* Target PROGRAM is the first argument. */
3696 Fput (Qcall_process, Qtarget_idx, make_number (0));
3698 Qcall_process_region = intern ("call-process-region");
3699 staticpro (&Qcall_process_region);
3700 /* Target PROGRAM is the third argument. */
3701 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
3703 Qstart_process = intern ("start-process");
3704 staticpro (&Qstart_process);
3705 /* Target PROGRAM is the third argument. */
3706 Fput (Qstart_process, Qtarget_idx, make_number (2));
3708 Qopen_network_stream = intern ("open-network-stream");
3709 staticpro (&Qopen_network_stream);
3710 /* Target SERVICE is the fourth argument. */
3711 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
3713 Qcoding_system = intern ("coding-system");
3714 staticpro (&Qcoding_system);
3716 Qeol_type = intern ("eol-type");
3717 staticpro (&Qeol_type);
3719 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
3720 staticpro (&Qbuffer_file_coding_system);
3722 Qpost_read_conversion = intern ("post-read-conversion");
3723 staticpro (&Qpost_read_conversion);
3725 Qpre_write_conversion = intern ("pre-write-conversion");
3726 staticpro (&Qpre_write_conversion);
3728 Qcoding_system_spec = intern ("coding-system-spec");
3729 staticpro (&Qcoding_system_spec);
3731 Qcoding_system_p = intern ("coding-system-p");
3732 staticpro (&Qcoding_system_p);
3734 Qcoding_system_error = intern ("coding-system-error");
3735 staticpro (&Qcoding_system_error);
3737 Fput (Qcoding_system_error, Qerror_conditions,
3738 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
3739 Fput (Qcoding_system_error, Qerror_message,
3740 build_string ("Invalid coding system"));
3742 Qcoding_category_index = intern ("coding-category-index");
3743 staticpro (&Qcoding_category_index);
3746 int i;
3747 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3749 coding_category_table[i] = intern (coding_category_name[i]);
3750 staticpro (&coding_category_table[i]);
3751 Fput (coding_category_table[i], Qcoding_category_index,
3752 make_number (i));
3756 Qcharacter_unification_table = intern ("character-unification-table");
3757 staticpro (&Qcharacter_unification_table);
3758 Fput (Qcharacter_unification_table, Qchar_table_extra_slots,
3759 make_number (0));
3761 Qcharacter_unification_table_for_decode
3762 = intern ("character-unification-table-for-decode");
3763 staticpro (&Qcharacter_unification_table_for_decode);
3765 Qcharacter_unification_table_for_encode
3766 = intern ("character-unification-table-for-encode");
3767 staticpro (&Qcharacter_unification_table_for_encode);
3769 Qemacs_mule = intern ("emacs-mule");
3770 staticpro (&Qemacs_mule);
3772 defsubr (&Scoding_system_spec);
3773 defsubr (&Scoding_system_p);
3774 defsubr (&Sread_coding_system);
3775 defsubr (&Sread_non_nil_coding_system);
3776 defsubr (&Scheck_coding_system);
3777 defsubr (&Sdetect_coding_region);
3778 defsubr (&Sdecode_coding_region);
3779 defsubr (&Sencode_coding_region);
3780 defsubr (&Sdecode_coding_string);
3781 defsubr (&Sencode_coding_string);
3782 defsubr (&Sdecode_sjis_char);
3783 defsubr (&Sencode_sjis_char);
3784 defsubr (&Sdecode_big5_char);
3785 defsubr (&Sencode_big5_char);
3786 defsubr (&Sset_terminal_coding_system_internal);
3787 defsubr (&Sterminal_coding_system);
3788 defsubr (&Sset_keyboard_coding_system_internal);
3789 defsubr (&Skeyboard_coding_system);
3790 defsubr (&Sfind_operation_coding_system);
3792 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
3793 "List of coding-categories (symbols) ordered by priority.");
3795 int i;
3797 Vcoding_category_list = Qnil;
3798 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
3799 Vcoding_category_list
3800 = Fcons (coding_category_table[i], Vcoding_category_list);
3803 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
3804 "A variable of internal use only.\n\
3805 If the value is a coding system, it is used for decoding on read operation.\n\
3806 If not, an appropriate element is used from one of the coding system alists:\n\
3807 There are three of such tables, `file-coding-system-alist',\n\
3808 `process-coding-system-alist', and `network-coding-system-alist'.");
3809 Vcoding_system_for_read = Qnil;
3811 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
3812 "A variable of internal use only.\n\
3813 If the value is a coding system, it is used for encoding on write operation.\n\
3814 If not, an appropriate element is used from one of the coding system alists:\n\
3815 There are three of such tables, `file-coding-system-alist',\n\
3816 `process-coding-system-alist', and `network-coding-system-alist'.");
3817 Vcoding_system_for_write = Qnil;
3819 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
3820 "Coding system used in the latest file or process I/O.");
3821 Vlast_coding_system_used = Qnil;
3823 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
3824 "*Non-nil inhibit code conversion of end-of-line format in any cases.");
3825 inhibit_eol_conversion = 0;
3827 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
3828 "Alist to decide a coding system to use for a file I/O operation.\n\
3829 The format is ((PATTERN . VAL) ...),\n\
3830 where PATTERN is a regular expression matching a file name,\n\
3831 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
3832 If VAL is a coding system, it is used for both decoding and encoding\n\
3833 the file contents.\n\
3834 If VAL is a cons of coding systems, the car part is used for decoding,\n\
3835 and the cdr part is used for encoding.\n\
3836 If VAL is a function symbol, the function must return a coding system\n\
3837 or a cons of coding systems which are used as above.\n\
3839 See also the function `find-operation-coding-system'.");
3840 Vfile_coding_system_alist = Qnil;
3842 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
3843 "Alist to decide a coding system to use for a process I/O operation.\n\
3844 The format is ((PATTERN . VAL) ...),\n\
3845 where PATTERN is a regular expression matching a program name,\n\
3846 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
3847 If VAL is a coding system, it is used for both decoding what received\n\
3848 from the program and encoding what sent to the program.\n\
3849 If VAL is a cons of coding systems, the car part is used for decoding,\n\
3850 and the cdr part is used for encoding.\n\
3851 If VAL is a function symbol, the function must return a coding system\n\
3852 or a cons of coding systems which are used as above.\n\
3854 See also the function `find-operation-coding-system'.");
3855 Vprocess_coding_system_alist = Qnil;
3857 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
3858 "Alist to decide a coding system to use for a network I/O operation.\n\
3859 The format is ((PATTERN . VAL) ...),\n\
3860 where PATTERN is a regular expression matching a network service name\n\
3861 or is a port number to connect to,\n\
3862 VAL is a coding system, a cons of coding systems, or a function symbol.\n\
3863 If VAL is a coding system, it is used for both decoding what received\n\
3864 from the network stream and encoding what sent to the network stream.\n\
3865 If VAL is a cons of coding systems, the car part is used for decoding,\n\
3866 and the cdr part is used for encoding.\n\
3867 If VAL is a function symbol, the function must return a coding system\n\
3868 or a cons of coding systems which are used as above.\n\
3870 See also the function `find-operation-coding-system'.");
3871 Vnetwork_coding_system_alist = Qnil;
3873 DEFVAR_INT ("eol-mnemonic-unix", &eol_mnemonic_unix,
3874 "Mnemonic character indicating UNIX-like end-of-line format (i.e. LF) .");
3875 eol_mnemonic_unix = ':';
3877 DEFVAR_INT ("eol-mnemonic-dos", &eol_mnemonic_dos,
3878 "Mnemonic character indicating DOS-like end-of-line format (i.e. CRLF).");
3879 eol_mnemonic_dos = '\\';
3881 DEFVAR_INT ("eol-mnemonic-mac", &eol_mnemonic_mac,
3882 "Mnemonic character indicating MAC-like end-of-line format (i.e. CR).");
3883 eol_mnemonic_mac = '/';
3885 DEFVAR_INT ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
3886 "Mnemonic character indicating end-of-line format is not yet decided.");
3887 eol_mnemonic_undecided = ':';
3889 DEFVAR_LISP ("enable-character-unification", &Venable_character_unification,
3890 "Non-nil means ISO 2022 encoder/decoder do character unification.");
3891 Venable_character_unification = Qt;
3893 DEFVAR_LISP ("standard-character-unification-table-for-decode",
3894 &Vstandard_character_unification_table_for_decode,
3895 "Table for unifying characters when reading.");
3896 Vstandard_character_unification_table_for_decode = Qnil;
3898 DEFVAR_LISP ("standard-character-unification-table-for-encode",
3899 &Vstandard_character_unification_table_for_encode,
3900 "Table for unifying characters when writing.");
3901 Vstandard_character_unification_table_for_encode = Qnil;
3903 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
3904 "Alist of charsets vs revision numbers.\n\
3905 While encoding, if a charset (car part of an element) is found,\n\
3906 designate it with the escape sequence identifing revision (cdr part of the element).");
3907 Vcharset_revision_alist = Qnil;
3909 DEFVAR_LISP ("default-process-coding-system",
3910 &Vdefault_process_coding_system,
3911 "Cons of coding systems used for process I/O by default.\n\
3912 The car part is used for decoding a process output,\n\
3913 the cdr part is used for encoding a text to be sent to a process.");
3914 Vdefault_process_coding_system = Qnil;
3917 #endif /* emacs */