(speedbar-frame-parameters) Add : to custom prompt.
[emacs.git] / src / floatfns.c
blobcd1c0c4441e857f75068285512339226e2b577e9
1 /* Primitive operations on floating point for GNU Emacs Lisp interpreter.
2 Copyright (C) 1988, 1993, 1994 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 /* ANSI C requires only these float functions:
23 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
24 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
26 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
27 Define HAVE_CBRT if you have cbrt.
28 Define HAVE_RINT if you have a working rint.
29 If you don't define these, then the appropriate routines will be simulated.
31 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
32 (This should happen automatically.)
34 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
35 This has no effect if HAVE_MATHERR is defined.
37 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
38 (What systems actually do this? Please let us know.)
40 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
41 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
42 range checking will happen before calling the float routines. This has
43 no effect if HAVE_MATHERR is defined (since matherr will be called when
44 a domain error occurs.)
47 #include <signal.h>
49 #include <config.h>
50 #include "lisp.h"
51 #include "syssignal.h"
53 #ifdef LISP_FLOAT_TYPE
55 #if STDC_HEADERS
56 #include <float.h>
57 #endif
59 /* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
60 #ifndef IEEE_FLOATING_POINT
61 #if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
62 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
63 #define IEEE_FLOATING_POINT 1
64 #else
65 #define IEEE_FLOATING_POINT 0
66 #endif
67 #endif
69 /* Work around a problem that happens because math.h on hpux 7
70 defines two static variables--which, in Emacs, are not really static,
71 because `static' is defined as nothing. The problem is that they are
72 defined both here and in lread.c.
73 These macros prevent the name conflict. */
74 #if defined (HPUX) && !defined (HPUX8)
75 #define _MAXLDBL floatfns_maxldbl
76 #define _NMAXLDBL floatfns_nmaxldbl
77 #endif
79 #include <math.h>
81 /* This declaration is omitted on some systems, like Ultrix. */
82 #if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
83 extern double logb ();
84 #endif /* not HPUX and HAVE_LOGB and no logb macro */
86 #if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
87 /* If those are defined, then this is probably a `matherr' machine. */
88 # ifndef HAVE_MATHERR
89 # define HAVE_MATHERR
90 # endif
91 #endif
93 #ifdef NO_MATHERR
94 #undef HAVE_MATHERR
95 #endif
97 #ifdef HAVE_MATHERR
98 # ifdef FLOAT_CHECK_ERRNO
99 # undef FLOAT_CHECK_ERRNO
100 # endif
101 # ifdef FLOAT_CHECK_DOMAIN
102 # undef FLOAT_CHECK_DOMAIN
103 # endif
104 #endif
106 #ifndef NO_FLOAT_CHECK_ERRNO
107 #define FLOAT_CHECK_ERRNO
108 #endif
110 #ifdef FLOAT_CHECK_ERRNO
111 # include <errno.h>
113 extern int errno;
114 #endif
116 /* Avoid traps on VMS from sinh and cosh.
117 All the other functions set errno instead. */
119 #ifdef VMS
120 #undef cosh
121 #undef sinh
122 #define cosh(x) ((exp(x)+exp(-x))*0.5)
123 #define sinh(x) ((exp(x)-exp(-x))*0.5)
124 #endif /* VMS */
126 static SIGTYPE float_error ();
128 /* Nonzero while executing in floating point.
129 This tells float_error what to do. */
131 static int in_float;
133 /* If an argument is out of range for a mathematical function,
134 here is the actual argument value to use in the error message.
135 These variables are used only across the floating point library call
136 so there is no need to staticpro them. */
138 static Lisp_Object float_error_arg, float_error_arg2;
140 static char *float_error_fn_name;
142 /* Evaluate the floating point expression D, recording NUM
143 as the original argument for error messages.
144 D is normally an assignment expression.
145 Handle errors which may result in signals or may set errno.
147 Note that float_error may be declared to return void, so you can't
148 just cast the zero after the colon to (SIGTYPE) to make the types
149 check properly. */
151 #ifdef FLOAT_CHECK_ERRNO
152 #define IN_FLOAT(d, name, num) \
153 do { \
154 float_error_arg = num; \
155 float_error_fn_name = name; \
156 in_float = 1; errno = 0; (d); in_float = 0; \
157 switch (errno) { \
158 case 0: break; \
159 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
160 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
161 default: arith_error (float_error_fn_name, float_error_arg); \
163 } while (0)
164 #define IN_FLOAT2(d, name, num, num2) \
165 do { \
166 float_error_arg = num; \
167 float_error_arg2 = num2; \
168 float_error_fn_name = name; \
169 in_float = 1; errno = 0; (d); in_float = 0; \
170 switch (errno) { \
171 case 0: break; \
172 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
173 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
174 default: arith_error (float_error_fn_name, float_error_arg); \
176 } while (0)
177 #else
178 #define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
179 #define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
180 #endif
182 /* Convert float to Lisp_Int if it fits, else signal a range error
183 using the given arguments. */
184 #define FLOAT_TO_INT(x, i, name, num) \
185 do \
187 if ((x) >= (((EMACS_INT) 1) << (VALBITS-1)) || \
188 (x) <= - (((EMACS_INT) 1) << (VALBITS-1)) - 1) \
189 range_error (name, num); \
190 XSETINT (i, (EMACS_INT)(x)); \
192 while (0)
193 #define FLOAT_TO_INT2(x, i, name, num1, num2) \
194 do \
196 if ((x) >= (((EMACS_INT) 1) << (VALBITS-1)) || \
197 (x) <= - (((EMACS_INT) 1) << (VALBITS-1)) - 1) \
198 range_error2 (name, num1, num2); \
199 XSETINT (i, (EMACS_INT)(x)); \
201 while (0)
203 #define arith_error(op,arg) \
204 Fsignal (Qarith_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
205 #define range_error(op,arg) \
206 Fsignal (Qrange_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
207 #define range_error2(op,a1,a2) \
208 Fsignal (Qrange_error, Fcons (build_string ((op)), \
209 Fcons ((a1), Fcons ((a2), Qnil))))
210 #define domain_error(op,arg) \
211 Fsignal (Qdomain_error, Fcons (build_string ((op)), Fcons ((arg), Qnil)))
212 #define domain_error2(op,a1,a2) \
213 Fsignal (Qdomain_error, Fcons (build_string ((op)), \
214 Fcons ((a1), Fcons ((a2), Qnil))))
216 /* Extract a Lisp number as a `double', or signal an error. */
218 double
219 extract_float (num)
220 Lisp_Object num;
222 CHECK_NUMBER_OR_FLOAT (num, 0);
224 if (FLOATP (num))
225 return XFLOAT (num)->data;
226 return (double) XINT (num);
229 /* Trig functions. */
231 DEFUN ("acos", Facos, Sacos, 1, 1, 0,
232 "Return the inverse cosine of ARG.")
233 (arg)
234 register Lisp_Object arg;
236 double d = extract_float (arg);
237 #ifdef FLOAT_CHECK_DOMAIN
238 if (d > 1.0 || d < -1.0)
239 domain_error ("acos", arg);
240 #endif
241 IN_FLOAT (d = acos (d), "acos", arg);
242 return make_float (d);
245 DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
246 "Return the inverse sine of ARG.")
247 (arg)
248 register Lisp_Object arg;
250 double d = extract_float (arg);
251 #ifdef FLOAT_CHECK_DOMAIN
252 if (d > 1.0 || d < -1.0)
253 domain_error ("asin", arg);
254 #endif
255 IN_FLOAT (d = asin (d), "asin", arg);
256 return make_float (d);
259 DEFUN ("atan", Fatan, Satan, 1, 1, 0,
260 "Return the inverse tangent of ARG.")
261 (arg)
262 register Lisp_Object arg;
264 double d = extract_float (arg);
265 IN_FLOAT (d = atan (d), "atan", arg);
266 return make_float (d);
269 DEFUN ("cos", Fcos, Scos, 1, 1, 0,
270 "Return the cosine of ARG.")
271 (arg)
272 register Lisp_Object arg;
274 double d = extract_float (arg);
275 IN_FLOAT (d = cos (d), "cos", arg);
276 return make_float (d);
279 DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
280 "Return the sine of ARG.")
281 (arg)
282 register Lisp_Object arg;
284 double d = extract_float (arg);
285 IN_FLOAT (d = sin (d), "sin", arg);
286 return make_float (d);
289 DEFUN ("tan", Ftan, Stan, 1, 1, 0,
290 "Return the tangent of ARG.")
291 (arg)
292 register Lisp_Object arg;
294 double d = extract_float (arg);
295 double c = cos (d);
296 #ifdef FLOAT_CHECK_DOMAIN
297 if (c == 0.0)
298 domain_error ("tan", arg);
299 #endif
300 IN_FLOAT (d = sin (d) / c, "tan", arg);
301 return make_float (d);
304 #if 0 /* Leave these out unless we find there's a reason for them. */
306 DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
307 "Return the bessel function j0 of ARG.")
308 (arg)
309 register Lisp_Object arg;
311 double d = extract_float (arg);
312 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
313 return make_float (d);
316 DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
317 "Return the bessel function j1 of ARG.")
318 (arg)
319 register Lisp_Object arg;
321 double d = extract_float (arg);
322 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
323 return make_float (d);
326 DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
327 "Return the order N bessel function output jn of ARG.\n\
328 The first arg (the order) is truncated to an integer.")
329 (n, arg)
330 register Lisp_Object n, arg;
332 int i1 = extract_float (n);
333 double f2 = extract_float (arg);
335 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
336 return make_float (f2);
339 DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
340 "Return the bessel function y0 of ARG.")
341 (arg)
342 register Lisp_Object arg;
344 double d = extract_float (arg);
345 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
346 return make_float (d);
349 DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
350 "Return the bessel function y1 of ARG.")
351 (arg)
352 register Lisp_Object arg;
354 double d = extract_float (arg);
355 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
356 return make_float (d);
359 DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
360 "Return the order N bessel function output yn of ARG.\n\
361 The first arg (the order) is truncated to an integer.")
362 (n, arg)
363 register Lisp_Object n, arg;
365 int i1 = extract_float (n);
366 double f2 = extract_float (arg);
368 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
369 return make_float (f2);
372 #endif
374 #if 0 /* Leave these out unless we see they are worth having. */
376 DEFUN ("erf", Ferf, Serf, 1, 1, 0,
377 "Return the mathematical error function of ARG.")
378 (arg)
379 register Lisp_Object arg;
381 double d = extract_float (arg);
382 IN_FLOAT (d = erf (d), "erf", arg);
383 return make_float (d);
386 DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
387 "Return the complementary error function of ARG.")
388 (arg)
389 register Lisp_Object arg;
391 double d = extract_float (arg);
392 IN_FLOAT (d = erfc (d), "erfc", arg);
393 return make_float (d);
396 DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
397 "Return the log gamma of ARG.")
398 (arg)
399 register Lisp_Object arg;
401 double d = extract_float (arg);
402 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
403 return make_float (d);
406 DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
407 "Return the cube root of ARG.")
408 (arg)
409 register Lisp_Object arg;
411 double d = extract_float (arg);
412 #ifdef HAVE_CBRT
413 IN_FLOAT (d = cbrt (d), "cube-root", arg);
414 #else
415 if (d >= 0.0)
416 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
417 else
418 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
419 #endif
420 return make_float (d);
423 #endif
425 DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
426 "Return the exponential base e of ARG.")
427 (arg)
428 register Lisp_Object arg;
430 double d = extract_float (arg);
431 #ifdef FLOAT_CHECK_DOMAIN
432 if (d > 709.7827) /* Assume IEEE doubles here */
433 range_error ("exp", arg);
434 else if (d < -709.0)
435 return make_float (0.0);
436 else
437 #endif
438 IN_FLOAT (d = exp (d), "exp", arg);
439 return make_float (d);
442 DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
443 "Return the exponential ARG1 ** ARG2.")
444 (arg1, arg2)
445 register Lisp_Object arg1, arg2;
447 double f1, f2;
449 CHECK_NUMBER_OR_FLOAT (arg1, 0);
450 CHECK_NUMBER_OR_FLOAT (arg2, 0);
451 if (INTEGERP (arg1) /* common lisp spec */
452 && INTEGERP (arg2)) /* don't promote, if both are ints */
453 { /* this can be improved by pre-calculating */
454 EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
455 Lisp_Object val;
457 x = XINT (arg1);
458 y = XINT (arg2);
459 acc = 1;
461 if (y < 0)
463 if (x == 1)
464 acc = 1;
465 else if (x == -1)
466 acc = (y & 1) ? -1 : 1;
467 else
468 acc = 0;
470 else
472 while (y > 0)
474 if (y & 1)
475 acc *= x;
476 x *= x;
477 y = (unsigned)y >> 1;
480 XSETINT (val, acc);
481 return val;
483 f1 = FLOATP (arg1) ? XFLOAT (arg1)->data : XINT (arg1);
484 f2 = FLOATP (arg2) ? XFLOAT (arg2)->data : XINT (arg2);
485 /* Really should check for overflow, too */
486 if (f1 == 0.0 && f2 == 0.0)
487 f1 = 1.0;
488 #ifdef FLOAT_CHECK_DOMAIN
489 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
490 domain_error2 ("expt", arg1, arg2);
491 #endif
492 IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
493 return make_float (f1);
496 DEFUN ("log", Flog, Slog, 1, 2, 0,
497 "Return the natural logarithm of ARG.\n\
498 If second optional argument BASE is given, return log ARG using that base.")
499 (arg, base)
500 register Lisp_Object arg, base;
502 double d = extract_float (arg);
504 #ifdef FLOAT_CHECK_DOMAIN
505 if (d <= 0.0)
506 domain_error2 ("log", arg, base);
507 #endif
508 if (NILP (base))
509 IN_FLOAT (d = log (d), "log", arg);
510 else
512 double b = extract_float (base);
514 #ifdef FLOAT_CHECK_DOMAIN
515 if (b <= 0.0 || b == 1.0)
516 domain_error2 ("log", arg, base);
517 #endif
518 if (b == 10.0)
519 IN_FLOAT2 (d = log10 (d), "log", arg, base);
520 else
521 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
523 return make_float (d);
526 DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
527 "Return the logarithm base 10 of ARG.")
528 (arg)
529 register Lisp_Object arg;
531 double d = extract_float (arg);
532 #ifdef FLOAT_CHECK_DOMAIN
533 if (d <= 0.0)
534 domain_error ("log10", arg);
535 #endif
536 IN_FLOAT (d = log10 (d), "log10", arg);
537 return make_float (d);
540 DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
541 "Return the square root of ARG.")
542 (arg)
543 register Lisp_Object arg;
545 double d = extract_float (arg);
546 #ifdef FLOAT_CHECK_DOMAIN
547 if (d < 0.0)
548 domain_error ("sqrt", arg);
549 #endif
550 IN_FLOAT (d = sqrt (d), "sqrt", arg);
551 return make_float (d);
554 #if 0 /* Not clearly worth adding. */
556 DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
557 "Return the inverse hyperbolic cosine of ARG.")
558 (arg)
559 register Lisp_Object arg;
561 double d = extract_float (arg);
562 #ifdef FLOAT_CHECK_DOMAIN
563 if (d < 1.0)
564 domain_error ("acosh", arg);
565 #endif
566 #ifdef HAVE_INVERSE_HYPERBOLIC
567 IN_FLOAT (d = acosh (d), "acosh", arg);
568 #else
569 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
570 #endif
571 return make_float (d);
574 DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
575 "Return the inverse hyperbolic sine of ARG.")
576 (arg)
577 register Lisp_Object arg;
579 double d = extract_float (arg);
580 #ifdef HAVE_INVERSE_HYPERBOLIC
581 IN_FLOAT (d = asinh (d), "asinh", arg);
582 #else
583 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
584 #endif
585 return make_float (d);
588 DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
589 "Return the inverse hyperbolic tangent of ARG.")
590 (arg)
591 register Lisp_Object arg;
593 double d = extract_float (arg);
594 #ifdef FLOAT_CHECK_DOMAIN
595 if (d >= 1.0 || d <= -1.0)
596 domain_error ("atanh", arg);
597 #endif
598 #ifdef HAVE_INVERSE_HYPERBOLIC
599 IN_FLOAT (d = atanh (d), "atanh", arg);
600 #else
601 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
602 #endif
603 return make_float (d);
606 DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
607 "Return the hyperbolic cosine of ARG.")
608 (arg)
609 register Lisp_Object arg;
611 double d = extract_float (arg);
612 #ifdef FLOAT_CHECK_DOMAIN
613 if (d > 710.0 || d < -710.0)
614 range_error ("cosh", arg);
615 #endif
616 IN_FLOAT (d = cosh (d), "cosh", arg);
617 return make_float (d);
620 DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
621 "Return the hyperbolic sine of ARG.")
622 (arg)
623 register Lisp_Object arg;
625 double d = extract_float (arg);
626 #ifdef FLOAT_CHECK_DOMAIN
627 if (d > 710.0 || d < -710.0)
628 range_error ("sinh", arg);
629 #endif
630 IN_FLOAT (d = sinh (d), "sinh", arg);
631 return make_float (d);
634 DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
635 "Return the hyperbolic tangent of ARG.")
636 (arg)
637 register Lisp_Object arg;
639 double d = extract_float (arg);
640 IN_FLOAT (d = tanh (d), "tanh", arg);
641 return make_float (d);
643 #endif
645 DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
646 "Return the absolute value of ARG.")
647 (arg)
648 register Lisp_Object arg;
650 CHECK_NUMBER_OR_FLOAT (arg, 0);
652 if (FLOATP (arg))
653 IN_FLOAT (arg = make_float (fabs (XFLOAT (arg)->data)), "abs", arg);
654 else if (XINT (arg) < 0)
655 XSETINT (arg, - XINT (arg));
657 return arg;
660 DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
661 "Return the floating point number equal to ARG.")
662 (arg)
663 register Lisp_Object arg;
665 CHECK_NUMBER_OR_FLOAT (arg, 0);
667 if (INTEGERP (arg))
668 return make_float ((double) XINT (arg));
669 else /* give 'em the same float back */
670 return arg;
673 DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
674 "Returns largest integer <= the base 2 log of the magnitude of ARG.\n\
675 This is the same as the exponent of a float.")
676 (arg)
677 Lisp_Object arg;
679 Lisp_Object val;
680 EMACS_INT value;
681 double f = extract_float (arg);
683 if (f == 0.0)
684 value = -(VALMASK >> 1);
685 else
687 #ifdef HAVE_LOGB
688 IN_FLOAT (value = logb (f), "logb", arg);
689 #else
690 #ifdef HAVE_FREXP
691 int ivalue;
692 IN_FLOAT (frexp (f, &ivalue), "logb", arg);
693 value = ivalue - 1;
694 #else
695 int i;
696 double d;
697 if (f < 0.0)
698 f = -f;
699 value = -1;
700 while (f < 0.5)
702 for (i = 1, d = 0.5; d * d >= f; i += i)
703 d *= d;
704 f /= d;
705 value -= i;
707 while (f >= 1.0)
709 for (i = 1, d = 2.0; d * d <= f; i += i)
710 d *= d;
711 f /= d;
712 value += i;
714 #endif
715 #endif
717 XSETINT (val, value);
718 return val;
721 #endif /* LISP_FLOAT_TYPE */
724 /* the rounding functions */
726 static Lisp_Object
727 rounding_driver (arg, divisor, double_round, int_round2, name)
728 register Lisp_Object arg, divisor;
729 double (*double_round) ();
730 EMACS_INT (*int_round2) ();
731 char *name;
733 CHECK_NUMBER_OR_FLOAT (arg, 0);
735 if (! NILP (divisor))
737 EMACS_INT i1, i2;
739 CHECK_NUMBER_OR_FLOAT (divisor, 1);
741 #ifdef LISP_FLOAT_TYPE
742 if (FLOATP (arg) || FLOATP (divisor))
744 double f1, f2;
746 f1 = FLOATP (arg) ? XFLOAT (arg)->data : XINT (arg);
747 f2 = (FLOATP (divisor) ? XFLOAT (divisor)->data : XINT (divisor));
748 if (! IEEE_FLOATING_POINT && f2 == 0)
749 Fsignal (Qarith_error, Qnil);
751 IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
752 FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
753 return arg;
755 #endif
757 i1 = XINT (arg);
758 i2 = XINT (divisor);
760 if (i2 == 0)
761 Fsignal (Qarith_error, Qnil);
763 XSETINT (arg, (*int_round2) (i1, i2));
764 return arg;
767 #ifdef LISP_FLOAT_TYPE
768 if (FLOATP (arg))
770 double d;
772 IN_FLOAT (d = (*double_round) (XFLOAT (arg)->data), name, arg);
773 FLOAT_TO_INT (d, arg, name, arg);
775 #endif
777 return arg;
780 /* With C's /, the result is implementation-defined if either operand
781 is negative, so take care with negative operands in the following
782 integer functions. */
784 static EMACS_INT
785 ceiling2 (i1, i2)
786 EMACS_INT i1, i2;
788 return (i2 < 0
789 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
790 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
793 static EMACS_INT
794 floor2 (i1, i2)
795 EMACS_INT i1, i2;
797 return (i2 < 0
798 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
799 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
802 static EMACS_INT
803 truncate2 (i1, i2)
804 EMACS_INT i1, i2;
806 return (i2 < 0
807 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
808 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
811 static EMACS_INT
812 round2 (i1, i2)
813 EMACS_INT i1, i2;
815 /* The C language's division operator gives us one remainder R, but
816 we want the remainder R1 on the other side of 0 if R1 is closer
817 to 0 than R is; because we want to round to even, we also want R1
818 if R and R1 are the same distance from 0 and if C's quotient is
819 odd. */
820 EMACS_INT q = i1 / i2;
821 EMACS_INT r = i1 % i2;
822 EMACS_INT abs_r = r < 0 ? -r : r;
823 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
824 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
827 /* The code uses emacs_rint, so that it works to undefine HAVE_RINT
828 if `rint' exists but does not work right. */
829 #ifdef HAVE_RINT
830 #define emacs_rint rint
831 #else
832 static double
833 emacs_rint (d)
834 double d;
836 return floor (d + 0.5);
838 #endif
840 static double
841 double_identity (d)
842 double d;
844 return d;
847 DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
848 "Return the smallest integer no less than ARG. (Round toward +inf.)\n\
849 With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR.")
850 (arg, divisor)
851 Lisp_Object arg, divisor;
853 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
856 DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
857 "Return the largest integer no greater than ARG. (Round towards -inf.)\n\
858 With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR.")
859 (arg, divisor)
860 Lisp_Object arg, divisor;
862 return rounding_driver (arg, divisor, floor, floor2, "floor");
865 DEFUN ("round", Fround, Sround, 1, 2, 0,
866 "Return the nearest integer to ARG.\n\
867 With optional DIVISOR, return the nearest integer to ARG/DIVISOR.")
868 (arg, divisor)
869 Lisp_Object arg, divisor;
871 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
874 DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
875 "Truncate a floating point number to an int.\n\
876 Rounds ARG toward zero.\n\
877 With optional DIVISOR, truncate ARG/DIVISOR.")
878 (arg, divisor)
879 Lisp_Object arg, divisor;
881 return rounding_driver (arg, divisor, double_identity, truncate2,
882 "truncate");
885 #ifdef LISP_FLOAT_TYPE
887 Lisp_Object
888 fmod_float (x, y)
889 register Lisp_Object x, y;
891 double f1, f2;
893 f1 = FLOATP (x) ? XFLOAT (x)->data : XINT (x);
894 f2 = FLOATP (y) ? XFLOAT (y)->data : XINT (y);
896 if (! IEEE_FLOATING_POINT && f2 == 0)
897 Fsignal (Qarith_error, Qnil);
899 /* If the "remainder" comes out with the wrong sign, fix it. */
900 IN_FLOAT2 ((f1 = fmod (f1, f2),
901 f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
902 "mod", x, y);
903 return make_float (f1);
906 /* It's not clear these are worth adding. */
908 DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
909 "Return the smallest integer no less than ARG, as a float.\n\
910 \(Round toward +inf.\)")
911 (arg)
912 register Lisp_Object arg;
914 double d = extract_float (arg);
915 IN_FLOAT (d = ceil (d), "fceiling", arg);
916 return make_float (d);
919 DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
920 "Return the largest integer no greater than ARG, as a float.\n\
921 \(Round towards -inf.\)")
922 (arg)
923 register Lisp_Object arg;
925 double d = extract_float (arg);
926 IN_FLOAT (d = floor (d), "ffloor", arg);
927 return make_float (d);
930 DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
931 "Return the nearest integer to ARG, as a float.")
932 (arg)
933 register Lisp_Object arg;
935 double d = extract_float (arg);
936 IN_FLOAT (d = emacs_rint (d), "fround", arg);
937 return make_float (d);
940 DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
941 "Truncate a floating point number to an integral float value.\n\
942 Rounds the value toward zero.")
943 (arg)
944 register Lisp_Object arg;
946 double d = extract_float (arg);
947 if (d >= 0.0)
948 IN_FLOAT (d = floor (d), "ftruncate", arg);
949 else
950 IN_FLOAT (d = ceil (d), "ftruncate", arg);
951 return make_float (d);
954 #ifdef FLOAT_CATCH_SIGILL
955 static SIGTYPE
956 float_error (signo)
957 int signo;
959 if (! in_float)
960 fatal_error_signal (signo);
962 #ifdef BSD_SYSTEM
963 #ifdef BSD4_1
964 sigrelse (SIGILL);
965 #else /* not BSD4_1 */
966 sigsetmask (SIGEMPTYMASK);
967 #endif /* not BSD4_1 */
968 #else
969 /* Must reestablish handler each time it is called. */
970 signal (SIGILL, float_error);
971 #endif /* BSD_SYSTEM */
973 in_float = 0;
975 Fsignal (Qarith_error, Fcons (float_error_arg, Qnil));
978 /* Another idea was to replace the library function `infnan'
979 where SIGILL is signaled. */
981 #endif /* FLOAT_CATCH_SIGILL */
983 #ifdef HAVE_MATHERR
984 int
985 matherr (x)
986 struct exception *x;
988 Lisp_Object args;
989 if (! in_float)
990 /* Not called from emacs-lisp float routines; do the default thing. */
991 return 0;
992 if (!strcmp (x->name, "pow"))
993 x->name = "expt";
995 args
996 = Fcons (build_string (x->name),
997 Fcons (make_float (x->arg1),
998 ((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
999 ? Fcons (make_float (x->arg2), Qnil)
1000 : Qnil)));
1001 switch (x->type)
1003 case DOMAIN: Fsignal (Qdomain_error, args); break;
1004 case SING: Fsignal (Qsingularity_error, args); break;
1005 case OVERFLOW: Fsignal (Qoverflow_error, args); break;
1006 case UNDERFLOW: Fsignal (Qunderflow_error, args); break;
1007 default: Fsignal (Qarith_error, args); break;
1009 return (1); /* don't set errno or print a message */
1011 #endif /* HAVE_MATHERR */
1013 void
1014 init_floatfns ()
1016 #ifdef FLOAT_CATCH_SIGILL
1017 signal (SIGILL, float_error);
1018 #endif
1019 in_float = 0;
1022 #else /* not LISP_FLOAT_TYPE */
1024 init_floatfns ()
1027 #endif /* not LISP_FLOAT_TYPE */
1029 void
1030 syms_of_floatfns ()
1032 #ifdef LISP_FLOAT_TYPE
1033 defsubr (&Sacos);
1034 defsubr (&Sasin);
1035 defsubr (&Satan);
1036 defsubr (&Scos);
1037 defsubr (&Ssin);
1038 defsubr (&Stan);
1039 #if 0
1040 defsubr (&Sacosh);
1041 defsubr (&Sasinh);
1042 defsubr (&Satanh);
1043 defsubr (&Scosh);
1044 defsubr (&Ssinh);
1045 defsubr (&Stanh);
1046 defsubr (&Sbessel_y0);
1047 defsubr (&Sbessel_y1);
1048 defsubr (&Sbessel_yn);
1049 defsubr (&Sbessel_j0);
1050 defsubr (&Sbessel_j1);
1051 defsubr (&Sbessel_jn);
1052 defsubr (&Serf);
1053 defsubr (&Serfc);
1054 defsubr (&Slog_gamma);
1055 defsubr (&Scube_root);
1056 #endif
1057 defsubr (&Sfceiling);
1058 defsubr (&Sffloor);
1059 defsubr (&Sfround);
1060 defsubr (&Sftruncate);
1061 defsubr (&Sexp);
1062 defsubr (&Sexpt);
1063 defsubr (&Slog);
1064 defsubr (&Slog10);
1065 defsubr (&Ssqrt);
1067 defsubr (&Sabs);
1068 defsubr (&Sfloat);
1069 defsubr (&Slogb);
1070 #endif /* LISP_FLOAT_TYPE */
1071 defsubr (&Sceiling);
1072 defsubr (&Sfloor);
1073 defsubr (&Sround);
1074 defsubr (&Struncate);