1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
23 - structure the opcode space into opcode+flag.
24 - merge with glibc's regex.[ch].
25 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
26 need to modify the compiled regexp so that re_match can be reentrant.
27 - get rid of on_failure_jump_smart by doing the optimization in re_comp
28 rather than at run-time, so that re_match can be reentrant.
31 /* AIX requires this to be the first thing in the file. */
32 #if defined _AIX && !defined REGEX_MALLOC
43 #if defined STDC_HEADERS && !defined emacs
46 /* We need this for `regex.h', and perhaps for the Emacs include files. */
47 # include <sys/types.h>
50 /* Whether to use ISO C Amendment 1 wide char functions.
51 Those should not be used for Emacs since it uses its own. */
53 #define WIDE_CHAR_SUPPORT 1
55 #define WIDE_CHAR_SUPPORT \
56 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
59 /* For platform which support the ISO C amendement 1 functionality we
60 support user defined character classes. */
62 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
68 /* We have to keep the namespace clean. */
69 # define regfree(preg) __regfree (preg)
70 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
71 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
72 # define regerror(errcode, preg, errbuf, errbuf_size) \
73 __regerror(errcode, preg, errbuf, errbuf_size)
74 # define re_set_registers(bu, re, nu, st, en) \
75 __re_set_registers (bu, re, nu, st, en)
76 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
77 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
78 # define re_match(bufp, string, size, pos, regs) \
79 __re_match (bufp, string, size, pos, regs)
80 # define re_search(bufp, string, size, startpos, range, regs) \
81 __re_search (bufp, string, size, startpos, range, regs)
82 # define re_compile_pattern(pattern, length, bufp) \
83 __re_compile_pattern (pattern, length, bufp)
84 # define re_set_syntax(syntax) __re_set_syntax (syntax)
85 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
86 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
87 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
89 /* Make sure we call libc's function even if the user overrides them. */
90 # define btowc __btowc
91 # define iswctype __iswctype
92 # define wctype __wctype
94 # define WEAK_ALIAS(a,b) weak_alias (a, b)
96 /* We are also using some library internals. */
97 # include <locale/localeinfo.h>
98 # include <locale/elem-hash.h>
99 # include <langinfo.h>
101 # define WEAK_ALIAS(a,b)
104 /* This is for other GNU distributions with internationalized messages. */
105 #if HAVE_LIBINTL_H || defined _LIBC
106 # include <libintl.h>
108 # define gettext(msgid) (msgid)
112 /* This define is so xgettext can find the internationalizable
114 # define gettext_noop(String) String
117 /* The `emacs' switch turns on certain matching commands
118 that make sense only in Emacs. */
124 /* Make syntax table lookup grant data in gl_state. */
125 # define SYNTAX_ENTRY_VIA_PROPERTY
128 # include "charset.h"
129 # include "category.h"
134 # define malloc xmalloc
138 # define realloc xrealloc
144 /* Converts the pointer to the char to BEG-based offset from the start. */
145 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
146 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
148 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
149 # define RE_STRING_CHAR(p, s) \
150 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
151 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
152 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
154 /* Set C a (possibly multibyte) character before P. P points into a
155 string which is the virtual concatenation of STR1 (which ends at
156 END1) or STR2 (which ends at END2). */
157 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
161 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
162 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
163 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
164 c = STRING_CHAR (dtemp, (p) - dtemp); \
167 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
171 #else /* not emacs */
173 /* If we are not linking with Emacs proper,
174 we can't use the relocating allocator
175 even if config.h says that we can. */
178 # if defined STDC_HEADERS || defined _LIBC
185 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
186 If nothing else has been done, use the method below. */
187 # ifdef INHIBIT_STRING_HEADER
188 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
189 # if !defined bzero && !defined bcopy
190 # undef INHIBIT_STRING_HEADER
195 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
196 This is used in most programs--a few other programs avoid this
197 by defining INHIBIT_STRING_HEADER. */
198 # ifndef INHIBIT_STRING_HEADER
199 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
203 # define bzero(s, n) (memset (s, '\0', n), (s))
205 # define bzero(s, n) __bzero (s, n)
209 # include <strings.h>
211 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
214 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
219 /* Define the syntax stuff for \<, \>, etc. */
221 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
222 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1 };
224 # ifdef SWITCH_ENUM_BUG
225 # define SWITCH_ENUM_CAST(x) ((int)(x))
227 # define SWITCH_ENUM_CAST(x) (x)
230 /* Dummy macros for non-Emacs environments. */
231 # define BASE_LEADING_CODE_P(c) (0)
232 # define CHAR_CHARSET(c) 0
233 # define CHARSET_LEADING_CODE_BASE(c) 0
234 # define MAX_MULTIBYTE_LENGTH 1
235 # define RE_MULTIBYTE_P(x) 0
236 # define WORD_BOUNDARY_P(c1, c2) (0)
237 # define CHAR_HEAD_P(p) (1)
238 # define SINGLE_BYTE_CHAR_P(c) (1)
239 # define SAME_CHARSET_P(c1, c2) (1)
240 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
241 # define STRING_CHAR(p, s) (*(p))
242 # define RE_STRING_CHAR STRING_CHAR
243 # define CHAR_STRING(c, s) (*(s) = (c), 1)
244 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
245 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
246 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
247 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
248 # define MAKE_CHAR(charset, c1, c2) (c1)
249 #endif /* not emacs */
252 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
253 # define RE_TRANSLATE_P(TBL) (TBL)
256 /* Get the interface, including the syntax bits. */
259 /* isalpha etc. are used for the character classes. */
264 /* 1 if C is an ASCII character. */
265 # define IS_REAL_ASCII(c) ((c) < 0200)
267 /* 1 if C is a unibyte character. */
268 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
270 /* The Emacs definitions should not be directly affected by locales. */
272 /* In Emacs, these are only used for single-byte characters. */
273 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
274 # define ISCNTRL(c) ((c) < ' ')
275 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
276 || ((c) >= 'a' && (c) <= 'f') \
277 || ((c) >= 'A' && (c) <= 'F'))
279 /* This is only used for single-byte characters. */
280 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
282 /* The rest must handle multibyte characters. */
284 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
285 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
288 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
289 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
292 # define ISALNUM(c) (IS_REAL_ASCII (c) \
293 ? (((c) >= 'a' && (c) <= 'z') \
294 || ((c) >= 'A' && (c) <= 'Z') \
295 || ((c) >= '0' && (c) <= '9')) \
296 : SYNTAX (c) == Sword)
298 # define ISALPHA(c) (IS_REAL_ASCII (c) \
299 ? (((c) >= 'a' && (c) <= 'z') \
300 || ((c) >= 'A' && (c) <= 'Z')) \
301 : SYNTAX (c) == Sword)
303 # define ISLOWER(c) (LOWERCASEP (c))
305 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
306 ? ((c) > ' ' && (c) < 0177 \
307 && !(((c) >= 'a' && (c) <= 'z') \
308 || ((c) >= 'A' && (c) <= 'Z') \
309 || ((c) >= '0' && (c) <= '9'))) \
310 : SYNTAX (c) != Sword)
312 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
314 # define ISUPPER(c) (UPPERCASEP (c))
316 # define ISWORD(c) (SYNTAX (c) == Sword)
318 #else /* not emacs */
320 /* Jim Meyering writes:
322 "... Some ctype macros are valid only for character codes that
323 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
324 using /bin/cc or gcc but without giving an ansi option). So, all
325 ctype uses should be through macros like ISPRINT... If
326 STDC_HEADERS is defined, then autoconf has verified that the ctype
327 macros don't need to be guarded with references to isascii. ...
328 Defining isascii to 1 should let any compiler worth its salt
329 eliminate the && through constant folding."
330 Solaris defines some of these symbols so we must undefine them first. */
333 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
334 # define ISASCII(c) 1
336 # define ISASCII(c) isascii(c)
339 /* 1 if C is an ASCII character. */
340 # define IS_REAL_ASCII(c) ((c) < 0200)
342 /* This distinction is not meaningful, except in Emacs. */
343 # define ISUNIBYTE(c) 1
346 # define ISBLANK(c) (ISASCII (c) && isblank (c))
348 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
351 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
353 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
357 # define ISPRINT(c) (ISASCII (c) && isprint (c))
358 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
359 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
360 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
361 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
362 # define ISLOWER(c) (ISASCII (c) && islower (c))
363 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
364 # define ISSPACE(c) (ISASCII (c) && isspace (c))
365 # define ISUPPER(c) (ISASCII (c) && isupper (c))
366 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
368 # define ISWORD(c) ISALPHA(c)
371 # define TOLOWER(c) _tolower(c)
373 # define TOLOWER(c) tolower(c)
376 /* How many characters in the character set. */
377 # define CHAR_SET_SIZE 256
381 extern char *re_syntax_table
;
383 # else /* not SYNTAX_TABLE */
385 static char re_syntax_table
[CHAR_SET_SIZE
];
396 bzero (re_syntax_table
, sizeof re_syntax_table
);
398 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
400 re_syntax_table
[c
] = Sword
;
402 re_syntax_table
['_'] = Sword
;
407 # endif /* not SYNTAX_TABLE */
409 # define SYNTAX(c) re_syntax_table[(c)]
411 #endif /* not emacs */
414 # define NULL (void *)0
417 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
418 since ours (we hope) works properly with all combinations of
419 machines, compilers, `char' and `unsigned char' argument types.
420 (Per Bothner suggested the basic approach.) */
421 #undef SIGN_EXTEND_CHAR
423 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
424 #else /* not __STDC__ */
425 /* As in Harbison and Steele. */
426 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
429 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
430 use `alloca' instead of `malloc'. This is because using malloc in
431 re_search* or re_match* could cause memory leaks when C-g is used in
432 Emacs; also, malloc is slower and causes storage fragmentation. On
433 the other hand, malloc is more portable, and easier to debug.
435 Because we sometimes use alloca, some routines have to be macros,
436 not functions -- `alloca'-allocated space disappears at the end of the
437 function it is called in. */
441 # define REGEX_ALLOCATE malloc
442 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
443 # define REGEX_FREE free
445 #else /* not REGEX_MALLOC */
447 /* Emacs already defines alloca, sometimes. */
450 /* Make alloca work the best possible way. */
452 # define alloca __builtin_alloca
453 # else /* not __GNUC__ */
456 # endif /* HAVE_ALLOCA_H */
457 # endif /* not __GNUC__ */
459 # endif /* not alloca */
461 # define REGEX_ALLOCATE alloca
463 /* Assumes a `char *destination' variable. */
464 # define REGEX_REALLOCATE(source, osize, nsize) \
465 (destination = (char *) alloca (nsize), \
466 memcpy (destination, source, osize))
468 /* No need to do anything to free, after alloca. */
469 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
471 #endif /* not REGEX_MALLOC */
473 /* Define how to allocate the failure stack. */
475 #if defined REL_ALLOC && defined REGEX_MALLOC
477 # define REGEX_ALLOCATE_STACK(size) \
478 r_alloc (&failure_stack_ptr, (size))
479 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
480 r_re_alloc (&failure_stack_ptr, (nsize))
481 # define REGEX_FREE_STACK(ptr) \
482 r_alloc_free (&failure_stack_ptr)
484 #else /* not using relocating allocator */
488 # define REGEX_ALLOCATE_STACK malloc
489 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
490 # define REGEX_FREE_STACK free
492 # else /* not REGEX_MALLOC */
494 # define REGEX_ALLOCATE_STACK alloca
496 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
497 REGEX_REALLOCATE (source, osize, nsize)
498 /* No need to explicitly free anything. */
499 # define REGEX_FREE_STACK(arg) ((void)0)
501 # endif /* not REGEX_MALLOC */
502 #endif /* not using relocating allocator */
505 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
506 `string1' or just past its end. This works if PTR is NULL, which is
508 #define FIRST_STRING_P(ptr) \
509 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
511 /* (Re)Allocate N items of type T using malloc, or fail. */
512 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
513 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
514 #define RETALLOC_IF(addr, n, t) \
515 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
516 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
518 #define BYTEWIDTH 8 /* In bits. */
520 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
524 #define MAX(a, b) ((a) > (b) ? (a) : (b))
525 #define MIN(a, b) ((a) < (b) ? (a) : (b))
527 /* Type of source-pattern and string chars. */
528 typedef const unsigned char re_char
;
530 typedef char boolean
;
534 static int re_match_2_internal
_RE_ARGS ((struct re_pattern_buffer
*bufp
,
535 re_char
*string1
, int size1
,
536 re_char
*string2
, int size2
,
538 struct re_registers
*regs
,
541 /* These are the command codes that appear in compiled regular
542 expressions. Some opcodes are followed by argument bytes. A
543 command code can specify any interpretation whatsoever for its
544 arguments. Zero bytes may appear in the compiled regular expression. */
550 /* Succeed right away--no more backtracking. */
553 /* Followed by one byte giving n, then by n literal bytes. */
556 /* Matches any (more or less) character. */
559 /* Matches any one char belonging to specified set. First
560 following byte is number of bitmap bytes. Then come bytes
561 for a bitmap saying which chars are in. Bits in each byte
562 are ordered low-bit-first. A character is in the set if its
563 bit is 1. A character too large to have a bit in the map is
564 automatically not in the set.
566 If the length byte has the 0x80 bit set, then that stuff
567 is followed by a range table:
568 2 bytes of flags for character sets (low 8 bits, high 8 bits)
569 See RANGE_TABLE_WORK_BITS below.
570 2 bytes, the number of pairs that follow (upto 32767)
571 pairs, each 2 multibyte characters,
572 each multibyte character represented as 3 bytes. */
575 /* Same parameters as charset, but match any character that is
576 not one of those specified. */
579 /* Start remembering the text that is matched, for storing in a
580 register. Followed by one byte with the register number, in
581 the range 0 to one less than the pattern buffer's re_nsub
585 /* Stop remembering the text that is matched and store it in a
586 memory register. Followed by one byte with the register
587 number, in the range 0 to one less than `re_nsub' in the
591 /* Match a duplicate of something remembered. Followed by one
592 byte containing the register number. */
595 /* Fail unless at beginning of line. */
598 /* Fail unless at end of line. */
601 /* Succeeds if at beginning of buffer (if emacs) or at beginning
602 of string to be matched (if not). */
605 /* Analogously, for end of buffer/string. */
608 /* Followed by two byte relative address to which to jump. */
611 /* Followed by two-byte relative address of place to resume at
612 in case of failure. */
615 /* Like on_failure_jump, but pushes a placeholder instead of the
616 current string position when executed. */
617 on_failure_keep_string_jump
,
619 /* Just like `on_failure_jump', except that it checks that we
620 don't get stuck in an infinite loop (matching an empty string
622 on_failure_jump_loop
,
624 /* Just like `on_failure_jump_loop', except that it checks for
625 a different kind of loop (the kind that shows up with non-greedy
626 operators). This operation has to be immediately preceded
628 on_failure_jump_nastyloop
,
630 /* A smart `on_failure_jump' used for greedy * and + operators.
631 It analyses the loop before which it is put and if the
632 loop does not require backtracking, it changes itself to
633 `on_failure_keep_string_jump' and short-circuits the loop,
634 else it just defaults to changing itself into `on_failure_jump'.
635 It assumes that it is pointing to just past a `jump'. */
636 on_failure_jump_smart
,
638 /* Followed by two-byte relative address and two-byte number n.
639 After matching N times, jump to the address upon failure.
640 Does not work if N starts at 0: use on_failure_jump_loop
644 /* Followed by two-byte relative address, and two-byte number n.
645 Jump to the address N times, then fail. */
648 /* Set the following two-byte relative address to the
649 subsequent two-byte number. The address *includes* the two
653 wordbeg
, /* Succeeds if at word beginning. */
654 wordend
, /* Succeeds if at word end. */
656 wordbound
, /* Succeeds if at a word boundary. */
657 notwordbound
, /* Succeeds if not at a word boundary. */
659 /* Matches any character whose syntax is specified. Followed by
660 a byte which contains a syntax code, e.g., Sword. */
663 /* Matches any character whose syntax is not that specified. */
667 ,before_dot
, /* Succeeds if before point. */
668 at_dot
, /* Succeeds if at point. */
669 after_dot
, /* Succeeds if after point. */
671 /* Matches any character whose category-set contains the specified
672 category. The operator is followed by a byte which contains a
673 category code (mnemonic ASCII character). */
676 /* Matches any character whose category-set does not contain the
677 specified category. The operator is followed by a byte which
678 contains the category code (mnemonic ASCII character). */
683 /* Common operations on the compiled pattern. */
685 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
687 #define STORE_NUMBER(destination, number) \
689 (destination)[0] = (number) & 0377; \
690 (destination)[1] = (number) >> 8; \
693 /* Same as STORE_NUMBER, except increment DESTINATION to
694 the byte after where the number is stored. Therefore, DESTINATION
695 must be an lvalue. */
697 #define STORE_NUMBER_AND_INCR(destination, number) \
699 STORE_NUMBER (destination, number); \
700 (destination) += 2; \
703 /* Put into DESTINATION a number stored in two contiguous bytes starting
706 #define EXTRACT_NUMBER(destination, source) \
708 (destination) = *(source) & 0377; \
709 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
713 static void extract_number
_RE_ARGS ((int *dest
, re_char
*source
));
715 extract_number (dest
, source
)
719 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
720 *dest
= *source
& 0377;
724 # ifndef EXTRACT_MACROS /* To debug the macros. */
725 # undef EXTRACT_NUMBER
726 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
727 # endif /* not EXTRACT_MACROS */
731 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
732 SOURCE must be an lvalue. */
734 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
736 EXTRACT_NUMBER (destination, source); \
741 static void extract_number_and_incr
_RE_ARGS ((int *destination
,
744 extract_number_and_incr (destination
, source
)
748 extract_number (destination
, *source
);
752 # ifndef EXTRACT_MACROS
753 # undef EXTRACT_NUMBER_AND_INCR
754 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
755 extract_number_and_incr (&dest, &src)
756 # endif /* not EXTRACT_MACROS */
760 /* Store a multibyte character in three contiguous bytes starting
761 DESTINATION, and increment DESTINATION to the byte after where the
762 character is stored. Therefore, DESTINATION must be an lvalue. */
764 #define STORE_CHARACTER_AND_INCR(destination, character) \
766 (destination)[0] = (character) & 0377; \
767 (destination)[1] = ((character) >> 8) & 0377; \
768 (destination)[2] = (character) >> 16; \
769 (destination) += 3; \
772 /* Put into DESTINATION a character stored in three contiguous bytes
773 starting at SOURCE. */
775 #define EXTRACT_CHARACTER(destination, source) \
777 (destination) = ((source)[0] \
778 | ((source)[1] << 8) \
779 | ((source)[2] << 16)); \
783 /* Macros for charset. */
785 /* Size of bitmap of charset P in bytes. P is a start of charset,
786 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
787 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
789 /* Nonzero if charset P has range table. */
790 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
792 /* Return the address of range table of charset P. But not the start
793 of table itself, but the before where the number of ranges is
794 stored. `2 +' means to skip re_opcode_t and size of bitmap,
795 and the 2 bytes of flags at the start of the range table. */
796 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
798 /* Extract the bit flags that start a range table. */
799 #define CHARSET_RANGE_TABLE_BITS(p) \
800 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
801 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
803 /* Test if C is listed in the bitmap of charset P. */
804 #define CHARSET_LOOKUP_BITMAP(p, c) \
805 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
806 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
808 /* Return the address of end of RANGE_TABLE. COUNT is number of
809 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
810 is start of range and end of range. `* 3' is size of each start
812 #define CHARSET_RANGE_TABLE_END(range_table, count) \
813 ((range_table) + (count) * 2 * 3)
815 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
816 COUNT is number of ranges in RANGE_TABLE. */
817 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
820 re_wchar_t range_start, range_end; \
822 re_char *range_table_end \
823 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
825 for (p = (range_table); p < range_table_end; p += 2 * 3) \
827 EXTRACT_CHARACTER (range_start, p); \
828 EXTRACT_CHARACTER (range_end, p + 3); \
830 if (range_start <= (c) && (c) <= range_end) \
839 /* Test if C is in range table of CHARSET. The flag NOT is negated if
840 C is listed in it. */
841 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
844 /* Number of ranges in range table. */ \
846 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
848 EXTRACT_NUMBER_AND_INCR (count, range_table); \
849 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
853 /* If DEBUG is defined, Regex prints many voluminous messages about what
854 it is doing (if the variable `debug' is nonzero). If linked with the
855 main program in `iregex.c', you can enter patterns and strings
856 interactively. And if linked with the main program in `main.c' and
857 the other test files, you can run the already-written tests. */
861 /* We use standard I/O for debugging. */
864 /* It is useful to test things that ``must'' be true when debugging. */
867 static int debug
= -100000;
869 # define DEBUG_STATEMENT(e) e
870 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
871 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
872 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
873 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
874 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
875 if (debug > 0) print_partial_compiled_pattern (s, e)
876 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
877 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
880 /* Print the fastmap in human-readable form. */
883 print_fastmap (fastmap
)
886 unsigned was_a_range
= 0;
889 while (i
< (1 << BYTEWIDTH
))
895 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
911 /* Print a compiled pattern string in human-readable form, starting at
912 the START pointer into it and ending just before the pointer END. */
915 print_partial_compiled_pattern (start
, end
)
929 /* Loop over pattern commands. */
932 printf ("%d:\t", p
- start
);
934 switch ((re_opcode_t
) *p
++)
946 printf ("/exactn/%d", mcnt
);
956 printf ("/start_memory/%d", *p
++);
960 printf ("/stop_memory/%d", *p
++);
964 printf ("/duplicate/%d", *p
++);
974 register int c
, last
= -100;
975 register int in_range
= 0;
976 int length
= CHARSET_BITMAP_SIZE (p
- 1);
977 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
979 printf ("/charset [%s",
980 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
982 assert (p
+ *p
< pend
);
984 for (c
= 0; c
< 256; c
++)
986 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
988 /* Are we starting a range? */
989 if (last
+ 1 == c
&& ! in_range
)
994 /* Have we broken a range? */
995 else if (last
+ 1 != c
&& in_range
)
1014 if (has_range_table
)
1017 printf ("has-range-table");
1019 /* ??? Should print the range table; for now, just skip it. */
1020 p
+= 2; /* skip range table bits */
1021 EXTRACT_NUMBER_AND_INCR (count
, p
);
1022 p
= CHARSET_RANGE_TABLE_END (p
, count
);
1028 printf ("/begline");
1032 printf ("/endline");
1035 case on_failure_jump
:
1036 extract_number_and_incr (&mcnt
, &p
);
1037 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
1040 case on_failure_keep_string_jump
:
1041 extract_number_and_incr (&mcnt
, &p
);
1042 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
1045 case on_failure_jump_nastyloop
:
1046 extract_number_and_incr (&mcnt
, &p
);
1047 printf ("/on_failure_jump_nastyloop to %d", p
+ mcnt
- start
);
1050 case on_failure_jump_loop
:
1051 extract_number_and_incr (&mcnt
, &p
);
1052 printf ("/on_failure_jump_loop to %d", p
+ mcnt
- start
);
1055 case on_failure_jump_smart
:
1056 extract_number_and_incr (&mcnt
, &p
);
1057 printf ("/on_failure_jump_smart to %d", p
+ mcnt
- start
);
1061 extract_number_and_incr (&mcnt
, &p
);
1062 printf ("/jump to %d", p
+ mcnt
- start
);
1066 extract_number_and_incr (&mcnt
, &p
);
1067 extract_number_and_incr (&mcnt2
, &p
);
1068 printf ("/succeed_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1072 extract_number_and_incr (&mcnt
, &p
);
1073 extract_number_and_incr (&mcnt2
, &p
);
1074 printf ("/jump_n to %d, %d times", p
- 2 + mcnt
- start
, mcnt2
);
1078 extract_number_and_incr (&mcnt
, &p
);
1079 extract_number_and_incr (&mcnt2
, &p
);
1080 printf ("/set_number_at location %d to %d", p
- 2 + mcnt
- start
, mcnt2
);
1084 printf ("/wordbound");
1088 printf ("/notwordbound");
1092 printf ("/wordbeg");
1096 printf ("/wordend");
1099 printf ("/syntaxspec");
1101 printf ("/%d", mcnt
);
1105 printf ("/notsyntaxspec");
1107 printf ("/%d", mcnt
);
1112 printf ("/before_dot");
1120 printf ("/after_dot");
1124 printf ("/categoryspec");
1126 printf ("/%d", mcnt
);
1129 case notcategoryspec
:
1130 printf ("/notcategoryspec");
1132 printf ("/%d", mcnt
);
1145 printf ("?%d", *(p
-1));
1151 printf ("%d:\tend of pattern.\n", p
- start
);
1156 print_compiled_pattern (bufp
)
1157 struct re_pattern_buffer
*bufp
;
1159 re_char
*buffer
= bufp
->buffer
;
1161 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1162 printf ("%ld bytes used/%ld bytes allocated.\n",
1163 bufp
->used
, bufp
->allocated
);
1165 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1167 printf ("fastmap: ");
1168 print_fastmap (bufp
->fastmap
);
1171 printf ("re_nsub: %d\t", bufp
->re_nsub
);
1172 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1173 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1174 printf ("no_sub: %d\t", bufp
->no_sub
);
1175 printf ("not_bol: %d\t", bufp
->not_bol
);
1176 printf ("not_eol: %d\t", bufp
->not_eol
);
1177 printf ("syntax: %lx\n", bufp
->syntax
);
1179 /* Perhaps we should print the translate table? */
1184 print_double_string (where
, string1
, size1
, string2
, size2
)
1197 if (FIRST_STRING_P (where
))
1199 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1200 putchar (string1
[this_char
]);
1205 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1206 putchar (string2
[this_char
]);
1210 #else /* not DEBUG */
1215 # define DEBUG_STATEMENT(e)
1216 # define DEBUG_PRINT1(x)
1217 # define DEBUG_PRINT2(x1, x2)
1218 # define DEBUG_PRINT3(x1, x2, x3)
1219 # define DEBUG_PRINT4(x1, x2, x3, x4)
1220 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1221 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1223 #endif /* not DEBUG */
1225 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1226 also be assigned to arbitrarily: each pattern buffer stores its own
1227 syntax, so it can be changed between regex compilations. */
1228 /* This has no initializer because initialized variables in Emacs
1229 become read-only after dumping. */
1230 reg_syntax_t re_syntax_options
;
1233 /* Specify the precise syntax of regexps for compilation. This provides
1234 for compatibility for various utilities which historically have
1235 different, incompatible syntaxes.
1237 The argument SYNTAX is a bit mask comprised of the various bits
1238 defined in regex.h. We return the old syntax. */
1241 re_set_syntax (syntax
)
1242 reg_syntax_t syntax
;
1244 reg_syntax_t ret
= re_syntax_options
;
1246 re_syntax_options
= syntax
;
1249 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1251 /* This table gives an error message for each of the error codes listed
1252 in regex.h. Obviously the order here has to be same as there.
1253 POSIX doesn't require that we do anything for REG_NOERROR,
1254 but why not be nice? */
1256 static const char *re_error_msgid
[] =
1258 gettext_noop ("Success"), /* REG_NOERROR */
1259 gettext_noop ("No match"), /* REG_NOMATCH */
1260 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1261 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1262 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1263 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1264 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1265 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1266 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1267 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1268 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1269 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1270 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1271 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1272 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1273 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1274 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1277 /* Avoiding alloca during matching, to placate r_alloc. */
1279 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1280 searching and matching functions should not call alloca. On some
1281 systems, alloca is implemented in terms of malloc, and if we're
1282 using the relocating allocator routines, then malloc could cause a
1283 relocation, which might (if the strings being searched are in the
1284 ralloc heap) shift the data out from underneath the regexp
1287 Here's another reason to avoid allocation: Emacs
1288 processes input from X in a signal handler; processing X input may
1289 call malloc; if input arrives while a matching routine is calling
1290 malloc, then we're scrod. But Emacs can't just block input while
1291 calling matching routines; then we don't notice interrupts when
1292 they come in. So, Emacs blocks input around all regexp calls
1293 except the matching calls, which it leaves unprotected, in the
1294 faith that they will not malloc. */
1296 /* Normally, this is fine. */
1297 #define MATCH_MAY_ALLOCATE
1299 /* When using GNU C, we are not REALLY using the C alloca, no matter
1300 what config.h may say. So don't take precautions for it. */
1305 /* The match routines may not allocate if (1) they would do it with malloc
1306 and (2) it's not safe for them to use malloc.
1307 Note that if REL_ALLOC is defined, matching would not use malloc for the
1308 failure stack, but we would still use it for the register vectors;
1309 so REL_ALLOC should not affect this. */
1310 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1311 # undef MATCH_MAY_ALLOCATE
1315 /* Failure stack declarations and macros; both re_compile_fastmap and
1316 re_match_2 use a failure stack. These have to be macros because of
1317 REGEX_ALLOCATE_STACK. */
1320 /* Approximate number of failure points for which to initially allocate space
1321 when matching. If this number is exceeded, we allocate more
1322 space, so it is not a hard limit. */
1323 #ifndef INIT_FAILURE_ALLOC
1324 # define INIT_FAILURE_ALLOC 20
1327 /* Roughly the maximum number of failure points on the stack. Would be
1328 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1329 This is a variable only so users of regex can assign to it; we never
1330 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1331 before using it, so it should probably be a byte-count instead. */
1332 # if defined MATCH_MAY_ALLOCATE
1333 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1334 whose default stack limit is 2mb. In order for a larger
1335 value to work reliably, you have to try to make it accord
1336 with the process stack limit. */
1337 size_t re_max_failures
= 40000;
1339 size_t re_max_failures
= 4000;
1342 union fail_stack_elt
1345 /* This should be the biggest `int' that's no bigger than a pointer. */
1349 typedef union fail_stack_elt fail_stack_elt_t
;
1353 fail_stack_elt_t
*stack
;
1355 size_t avail
; /* Offset of next open position. */
1356 size_t frame
; /* Offset of the cur constructed frame. */
1359 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1360 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1363 /* Define macros to initialize and free the failure stack.
1364 Do `return -2' if the alloc fails. */
1366 #ifdef MATCH_MAY_ALLOCATE
1367 # define INIT_FAIL_STACK() \
1369 fail_stack.stack = (fail_stack_elt_t *) \
1370 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1371 * sizeof (fail_stack_elt_t)); \
1373 if (fail_stack.stack == NULL) \
1376 fail_stack.size = INIT_FAILURE_ALLOC; \
1377 fail_stack.avail = 0; \
1378 fail_stack.frame = 0; \
1381 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1383 # define INIT_FAIL_STACK() \
1385 fail_stack.avail = 0; \
1386 fail_stack.frame = 0; \
1389 # define RESET_FAIL_STACK() ((void)0)
1393 /* Double the size of FAIL_STACK, up to a limit
1394 which allows approximately `re_max_failures' items.
1396 Return 1 if succeeds, and 0 if either ran out of memory
1397 allocating space for it or it was already too large.
1399 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1401 /* Factor to increase the failure stack size by
1402 when we increase it.
1403 This used to be 2, but 2 was too wasteful
1404 because the old discarded stacks added up to as much space
1405 were as ultimate, maximum-size stack. */
1406 #define FAIL_STACK_GROWTH_FACTOR 4
1408 #define GROW_FAIL_STACK(fail_stack) \
1409 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1410 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1412 : ((fail_stack).stack \
1413 = (fail_stack_elt_t *) \
1414 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1415 (fail_stack).size * sizeof (fail_stack_elt_t), \
1416 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1417 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1418 * FAIL_STACK_GROWTH_FACTOR))), \
1420 (fail_stack).stack == NULL \
1422 : ((fail_stack).size \
1423 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1424 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1425 * FAIL_STACK_GROWTH_FACTOR)) \
1426 / sizeof (fail_stack_elt_t)), \
1430 /* Push a pointer value onto the failure stack.
1431 Assumes the variable `fail_stack'. Probably should only
1432 be called from within `PUSH_FAILURE_POINT'. */
1433 #define PUSH_FAILURE_POINTER(item) \
1434 fail_stack.stack[fail_stack.avail++].pointer = (item)
1436 /* This pushes an integer-valued item onto the failure stack.
1437 Assumes the variable `fail_stack'. Probably should only
1438 be called from within `PUSH_FAILURE_POINT'. */
1439 #define PUSH_FAILURE_INT(item) \
1440 fail_stack.stack[fail_stack.avail++].integer = (item)
1442 /* Push a fail_stack_elt_t value onto the failure stack.
1443 Assumes the variable `fail_stack'. Probably should only
1444 be called from within `PUSH_FAILURE_POINT'. */
1445 #define PUSH_FAILURE_ELT(item) \
1446 fail_stack.stack[fail_stack.avail++] = (item)
1448 /* These three POP... operations complement the three PUSH... operations.
1449 All assume that `fail_stack' is nonempty. */
1450 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1451 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1452 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1454 /* Individual items aside from the registers. */
1455 #define NUM_NONREG_ITEMS 3
1457 /* Used to examine the stack (to detect infinite loops). */
1458 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1459 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1460 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1461 #define TOP_FAILURE_HANDLE() fail_stack.frame
1464 #define ENSURE_FAIL_STACK(space) \
1465 while (REMAINING_AVAIL_SLOTS <= space) { \
1466 if (!GROW_FAIL_STACK (fail_stack)) \
1468 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1469 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1472 /* Push register NUM onto the stack. */
1473 #define PUSH_FAILURE_REG(num) \
1475 char *destination; \
1476 ENSURE_FAIL_STACK(3); \
1477 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1478 num, regstart[num], regend[num]); \
1479 PUSH_FAILURE_POINTER (regstart[num]); \
1480 PUSH_FAILURE_POINTER (regend[num]); \
1481 PUSH_FAILURE_INT (num); \
1484 /* Change the counter's value to VAL, but make sure that it will
1485 be reset when backtracking. */
1486 #define PUSH_NUMBER(ptr,val) \
1488 char *destination; \
1490 ENSURE_FAIL_STACK(3); \
1491 EXTRACT_NUMBER (c, ptr); \
1492 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1493 PUSH_FAILURE_INT (c); \
1494 PUSH_FAILURE_POINTER (ptr); \
1495 PUSH_FAILURE_INT (-1); \
1496 STORE_NUMBER (ptr, val); \
1499 /* Pop a saved register off the stack. */
1500 #define POP_FAILURE_REG_OR_COUNT() \
1502 int reg = POP_FAILURE_INT (); \
1505 /* It's a counter. */ \
1506 /* Here, we discard `const', making re_match non-reentrant. */ \
1507 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1508 reg = POP_FAILURE_INT (); \
1509 STORE_NUMBER (ptr, reg); \
1510 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1514 regend[reg] = POP_FAILURE_POINTER (); \
1515 regstart[reg] = POP_FAILURE_POINTER (); \
1516 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1517 reg, regstart[reg], regend[reg]); \
1521 /* Check that we are not stuck in an infinite loop. */
1522 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1524 int failure = TOP_FAILURE_HANDLE (); \
1525 /* Check for infinite matching loops */ \
1526 while (failure > 0 \
1527 && (FAILURE_STR (failure) == string_place \
1528 || FAILURE_STR (failure) == NULL)) \
1530 assert (FAILURE_PAT (failure) >= bufp->buffer \
1531 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1532 if (FAILURE_PAT (failure) == pat_cur) \
1537 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1538 failure = NEXT_FAILURE_HANDLE(failure); \
1540 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1543 /* Push the information about the state we will need
1544 if we ever fail back to it.
1546 Requires variables fail_stack, regstart, regend and
1547 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1550 Does `return FAILURE_CODE' if runs out of memory. */
1552 #define PUSH_FAILURE_POINT(pattern, string_place) \
1554 char *destination; \
1555 /* Must be int, so when we don't save any registers, the arithmetic \
1556 of 0 + -1 isn't done as unsigned. */ \
1558 DEBUG_STATEMENT (nfailure_points_pushed++); \
1559 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1560 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1561 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1563 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1565 DEBUG_PRINT1 ("\n"); \
1567 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1568 PUSH_FAILURE_INT (fail_stack.frame); \
1570 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1571 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1572 DEBUG_PRINT1 ("'\n"); \
1573 PUSH_FAILURE_POINTER (string_place); \
1575 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1576 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1577 PUSH_FAILURE_POINTER (pattern); \
1579 /* Close the frame by moving the frame pointer past it. */ \
1580 fail_stack.frame = fail_stack.avail; \
1583 /* Estimate the size of data pushed by a typical failure stack entry.
1584 An estimate is all we need, because all we use this for
1585 is to choose a limit for how big to make the failure stack. */
1586 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1587 #define TYPICAL_FAILURE_SIZE 20
1589 /* How many items can still be added to the stack without overflowing it. */
1590 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1593 /* Pops what PUSH_FAIL_STACK pushes.
1595 We restore into the parameters, all of which should be lvalues:
1596 STR -- the saved data position.
1597 PAT -- the saved pattern position.
1598 REGSTART, REGEND -- arrays of string positions.
1600 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1601 `pend', `string1', `size1', `string2', and `size2'. */
1603 #define POP_FAILURE_POINT(str, pat) \
1605 assert (!FAIL_STACK_EMPTY ()); \
1607 /* Remove failure points and point to how many regs pushed. */ \
1608 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1609 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1610 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1612 /* Pop the saved registers. */ \
1613 while (fail_stack.frame < fail_stack.avail) \
1614 POP_FAILURE_REG_OR_COUNT (); \
1616 pat = POP_FAILURE_POINTER (); \
1617 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1618 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1620 /* If the saved string location is NULL, it came from an \
1621 on_failure_keep_string_jump opcode, and we want to throw away the \
1622 saved NULL, thus retaining our current position in the string. */ \
1623 str = POP_FAILURE_POINTER (); \
1624 DEBUG_PRINT2 (" Popping string %p: `", str); \
1625 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1626 DEBUG_PRINT1 ("'\n"); \
1628 fail_stack.frame = POP_FAILURE_INT (); \
1629 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1631 assert (fail_stack.avail >= 0); \
1632 assert (fail_stack.frame <= fail_stack.avail); \
1634 DEBUG_STATEMENT (nfailure_points_popped++); \
1635 } while (0) /* POP_FAILURE_POINT */
1639 /* Registers are set to a sentinel when they haven't yet matched. */
1640 #define REG_UNSET(e) ((e) == NULL)
1642 /* Subroutine declarations and macros for regex_compile. */
1644 static reg_errcode_t regex_compile
_RE_ARGS ((re_char
*pattern
, size_t size
,
1645 reg_syntax_t syntax
,
1646 struct re_pattern_buffer
*bufp
));
1647 static void store_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
, int arg
));
1648 static void store_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1649 int arg1
, int arg2
));
1650 static void insert_op1
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1651 int arg
, unsigned char *end
));
1652 static void insert_op2
_RE_ARGS ((re_opcode_t op
, unsigned char *loc
,
1653 int arg1
, int arg2
, unsigned char *end
));
1654 static boolean at_begline_loc_p
_RE_ARGS ((re_char
*pattern
,
1656 reg_syntax_t syntax
));
1657 static boolean at_endline_loc_p
_RE_ARGS ((re_char
*p
,
1659 reg_syntax_t syntax
));
1660 static re_char
*skip_one_char
_RE_ARGS ((re_char
*p
));
1661 static int analyse_first
_RE_ARGS ((re_char
*p
, re_char
*pend
,
1662 char *fastmap
, const int multibyte
));
1664 /* Fetch the next character in the uncompiled pattern, with no
1666 #define PATFETCH(c) \
1669 if (p == pend) return REG_EEND; \
1670 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1675 /* If `translate' is non-null, return translate[D], else just D. We
1676 cast the subscript to translate because some data is declared as
1677 `char *', to avoid warnings when a string constant is passed. But
1678 when we use a character as a subscript we must make it unsigned. */
1680 # define TRANSLATE(d) \
1681 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1685 /* Macros for outputting the compiled pattern into `buffer'. */
1687 /* If the buffer isn't allocated when it comes in, use this. */
1688 #define INIT_BUF_SIZE 32
1690 /* Make sure we have at least N more bytes of space in buffer. */
1691 #define GET_BUFFER_SPACE(n) \
1692 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1695 /* Make sure we have one more byte of buffer space and then add C to it. */
1696 #define BUF_PUSH(c) \
1698 GET_BUFFER_SPACE (1); \
1699 *b++ = (unsigned char) (c); \
1703 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1704 #define BUF_PUSH_2(c1, c2) \
1706 GET_BUFFER_SPACE (2); \
1707 *b++ = (unsigned char) (c1); \
1708 *b++ = (unsigned char) (c2); \
1712 /* As with BUF_PUSH_2, except for three bytes. */
1713 #define BUF_PUSH_3(c1, c2, c3) \
1715 GET_BUFFER_SPACE (3); \
1716 *b++ = (unsigned char) (c1); \
1717 *b++ = (unsigned char) (c2); \
1718 *b++ = (unsigned char) (c3); \
1722 /* Store a jump with opcode OP at LOC to location TO. We store a
1723 relative address offset by the three bytes the jump itself occupies. */
1724 #define STORE_JUMP(op, loc, to) \
1725 store_op1 (op, loc, (to) - (loc) - 3)
1727 /* Likewise, for a two-argument jump. */
1728 #define STORE_JUMP2(op, loc, to, arg) \
1729 store_op2 (op, loc, (to) - (loc) - 3, arg)
1731 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1732 #define INSERT_JUMP(op, loc, to) \
1733 insert_op1 (op, loc, (to) - (loc) - 3, b)
1735 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1736 #define INSERT_JUMP2(op, loc, to, arg) \
1737 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1740 /* This is not an arbitrary limit: the arguments which represent offsets
1741 into the pattern are two bytes long. So if 2^16 bytes turns out to
1742 be too small, many things would have to change. */
1743 /* Any other compiler which, like MSC, has allocation limit below 2^16
1744 bytes will have to use approach similar to what was done below for
1745 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1746 reallocating to 0 bytes. Such thing is not going to work too well.
1747 You have been warned!! */
1748 #if defined _MSC_VER && !defined WIN32
1749 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1750 # define MAX_BUF_SIZE 65500L
1752 # define MAX_BUF_SIZE (1L << 16)
1755 /* Extend the buffer by twice its current size via realloc and
1756 reset the pointers that pointed into the old block to point to the
1757 correct places in the new one. If extending the buffer results in it
1758 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1759 #if __BOUNDED_POINTERS__
1760 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1761 # define MOVE_BUFFER_POINTER(P) \
1762 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1763 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1766 SET_HIGH_BOUND (b); \
1767 SET_HIGH_BOUND (begalt); \
1768 if (fixup_alt_jump) \
1769 SET_HIGH_BOUND (fixup_alt_jump); \
1771 SET_HIGH_BOUND (laststart); \
1772 if (pending_exact) \
1773 SET_HIGH_BOUND (pending_exact); \
1776 # define MOVE_BUFFER_POINTER(P) (P) += incr
1777 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1779 #define EXTEND_BUFFER() \
1781 re_char *old_buffer = bufp->buffer; \
1782 if (bufp->allocated == MAX_BUF_SIZE) \
1784 bufp->allocated <<= 1; \
1785 if (bufp->allocated > MAX_BUF_SIZE) \
1786 bufp->allocated = MAX_BUF_SIZE; \
1787 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1788 if (bufp->buffer == NULL) \
1789 return REG_ESPACE; \
1790 /* If the buffer moved, move all the pointers into it. */ \
1791 if (old_buffer != bufp->buffer) \
1793 int incr = bufp->buffer - old_buffer; \
1794 MOVE_BUFFER_POINTER (b); \
1795 MOVE_BUFFER_POINTER (begalt); \
1796 if (fixup_alt_jump) \
1797 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1799 MOVE_BUFFER_POINTER (laststart); \
1800 if (pending_exact) \
1801 MOVE_BUFFER_POINTER (pending_exact); \
1803 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1807 /* Since we have one byte reserved for the register number argument to
1808 {start,stop}_memory, the maximum number of groups we can report
1809 things about is what fits in that byte. */
1810 #define MAX_REGNUM 255
1812 /* But patterns can have more than `MAX_REGNUM' registers. We just
1813 ignore the excess. */
1814 typedef int regnum_t
;
1817 /* Macros for the compile stack. */
1819 /* Since offsets can go either forwards or backwards, this type needs to
1820 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1821 /* int may be not enough when sizeof(int) == 2. */
1822 typedef long pattern_offset_t
;
1826 pattern_offset_t begalt_offset
;
1827 pattern_offset_t fixup_alt_jump
;
1828 pattern_offset_t laststart_offset
;
1830 } compile_stack_elt_t
;
1835 compile_stack_elt_t
*stack
;
1837 unsigned avail
; /* Offset of next open position. */
1838 } compile_stack_type
;
1841 #define INIT_COMPILE_STACK_SIZE 32
1843 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1844 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1846 /* The next available element. */
1847 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1849 /* Explicit quit checking is only used on NTemacs. */
1850 #if defined WINDOWSNT && defined emacs && defined QUIT
1851 extern int immediate_quit
;
1852 # define IMMEDIATE_QUIT_CHECK \
1854 if (immediate_quit) QUIT; \
1857 # define IMMEDIATE_QUIT_CHECK ((void)0)
1860 /* Structure to manage work area for range table. */
1861 struct range_table_work_area
1863 int *table
; /* actual work area. */
1864 int allocated
; /* allocated size for work area in bytes. */
1865 int used
; /* actually used size in words. */
1866 int bits
; /* flag to record character classes */
1869 /* Make sure that WORK_AREA can hold more N multibyte characters.
1870 This is used only in set_image_of_range and set_image_of_range_1.
1871 It expects WORK_AREA to be a pointer.
1872 If it can't get the space, it returns from the surrounding function. */
1874 #define EXTEND_RANGE_TABLE(work_area, n) \
1876 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1878 extend_range_table_work_area (work_area); \
1879 if ((work_area)->table == 0) \
1880 return (REG_ESPACE); \
1884 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1885 (work_area).bits |= (bit)
1887 /* Bits used to implement the multibyte-part of the various character classes
1888 such as [:alnum:] in a charset's range table. */
1889 #define BIT_WORD 0x1
1890 #define BIT_LOWER 0x2
1891 #define BIT_PUNCT 0x4
1892 #define BIT_SPACE 0x8
1893 #define BIT_UPPER 0x10
1894 #define BIT_MULTIBYTE 0x20
1896 /* Set a range START..END to WORK_AREA.
1897 The range is passed through TRANSLATE, so START and END
1898 should be untranslated. */
1899 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1902 tem = set_image_of_range (&work_area, start, end, translate); \
1904 FREE_STACK_RETURN (tem); \
1907 /* Free allocated memory for WORK_AREA. */
1908 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1910 if ((work_area).table) \
1911 free ((work_area).table); \
1914 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1915 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1916 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1917 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1920 /* Set the bit for character C in a list. */
1921 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1924 /* Get the next unsigned number in the uncompiled pattern. */
1925 #define GET_UNSIGNED_NUMBER(num) \
1926 do { if (p != pend) \
1930 FREE_STACK_RETURN (REG_BADBR); \
1931 while ('0' <= c && c <= '9') \
1937 num = num * 10 + c - '0'; \
1938 if (num / 10 != prev) \
1939 FREE_STACK_RETURN (REG_BADBR); \
1945 FREE_STACK_RETURN (REG_BADBR); \
1949 #if WIDE_CHAR_SUPPORT
1950 /* The GNU C library provides support for user-defined character classes
1951 and the functions from ISO C amendement 1. */
1952 # ifdef CHARCLASS_NAME_MAX
1953 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
1955 /* This shouldn't happen but some implementation might still have this
1956 problem. Use a reasonable default value. */
1957 # define CHAR_CLASS_MAX_LENGTH 256
1959 typedef wctype_t re_wctype_t
;
1960 typedef wchar_t re_wchar_t
;
1961 # define re_wctype wctype
1962 # define re_iswctype iswctype
1963 # define re_wctype_to_bit(cc) 0
1965 # define CHAR_CLASS_MAX_LENGTH 9 /* Namely, `multibyte'. */
1968 /* Character classes. */
1969 typedef enum { RECC_ERROR
= 0,
1970 RECC_ALNUM
, RECC_ALPHA
, RECC_WORD
,
1971 RECC_GRAPH
, RECC_PRINT
,
1972 RECC_LOWER
, RECC_UPPER
,
1973 RECC_PUNCT
, RECC_CNTRL
,
1974 RECC_DIGIT
, RECC_XDIGIT
,
1975 RECC_BLANK
, RECC_SPACE
,
1976 RECC_MULTIBYTE
, RECC_NONASCII
,
1977 RECC_ASCII
, RECC_UNIBYTE
1980 typedef int re_wchar_t
;
1982 /* Map a string to the char class it names (if any). */
1987 const char *string
= str
;
1988 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
1989 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
1990 else if (STREQ (string
, "word")) return RECC_WORD
;
1991 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
1992 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
1993 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
1994 else if (STREQ (string
, "lower")) return RECC_LOWER
;
1995 else if (STREQ (string
, "print")) return RECC_PRINT
;
1996 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
1997 else if (STREQ (string
, "space")) return RECC_SPACE
;
1998 else if (STREQ (string
, "upper")) return RECC_UPPER
;
1999 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2000 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2001 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2002 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2003 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2004 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2008 /* True iff CH is in the char class CC. */
2010 re_iswctype (ch
, cc
)
2016 case RECC_ALNUM
: return ISALNUM (ch
);
2017 case RECC_ALPHA
: return ISALPHA (ch
);
2018 case RECC_BLANK
: return ISBLANK (ch
);
2019 case RECC_CNTRL
: return ISCNTRL (ch
);
2020 case RECC_DIGIT
: return ISDIGIT (ch
);
2021 case RECC_GRAPH
: return ISGRAPH (ch
);
2022 case RECC_LOWER
: return ISLOWER (ch
);
2023 case RECC_PRINT
: return ISPRINT (ch
);
2024 case RECC_PUNCT
: return ISPUNCT (ch
);
2025 case RECC_SPACE
: return ISSPACE (ch
);
2026 case RECC_UPPER
: return ISUPPER (ch
);
2027 case RECC_XDIGIT
: return ISXDIGIT (ch
);
2028 case RECC_ASCII
: return IS_REAL_ASCII (ch
);
2029 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2030 case RECC_UNIBYTE
: return ISUNIBYTE (ch
);
2031 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2032 case RECC_WORD
: return ISWORD (ch
);
2033 case RECC_ERROR
: return false;
2039 /* Return a bit-pattern to use in the range-table bits to match multibyte
2040 chars of class CC. */
2042 re_wctype_to_bit (cc
)
2047 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2048 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2049 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2050 case RECC_LOWER
: return BIT_LOWER
;
2051 case RECC_UPPER
: return BIT_UPPER
;
2052 case RECC_PUNCT
: return BIT_PUNCT
;
2053 case RECC_SPACE
: return BIT_SPACE
;
2054 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2055 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2062 /* Filling in the work area of a range. */
2064 /* Actually extend the space in WORK_AREA. */
2067 extend_range_table_work_area (work_area
)
2068 struct range_table_work_area
*work_area
;
2070 work_area
->allocated
+= 16 * sizeof (int);
2071 if (work_area
->table
)
2073 = (int *) realloc (work_area
->table
, work_area
->allocated
);
2076 = (int *) malloc (work_area
->allocated
);
2081 /* Carefully find the ranges of codes that are equivalent
2082 under case conversion to the range start..end when passed through
2083 TRANSLATE. Handle the case where non-letters can come in between
2084 two upper-case letters (which happens in Latin-1).
2085 Also handle the case of groups of more than 2 case-equivalent chars.
2087 The basic method is to look at consecutive characters and see
2088 if they can form a run that can be handled as one.
2090 Returns -1 if successful, REG_ESPACE if ran out of space. */
2093 set_image_of_range_1 (work_area
, start
, end
, translate
)
2094 RE_TRANSLATE_TYPE translate
;
2095 struct range_table_work_area
*work_area
;
2096 re_wchar_t start
, end
;
2098 /* `one_case' indicates a character, or a run of characters,
2099 each of which is an isolate (no case-equivalents).
2100 This includes all ASCII non-letters.
2102 `two_case' indicates a character, or a run of characters,
2103 each of which has two case-equivalent forms.
2104 This includes all ASCII letters.
2106 `strange' indicates a character that has more than one
2109 enum case_type
{one_case
, two_case
, strange
};
2111 /* Describe the run that is in progress,
2112 which the next character can try to extend.
2113 If run_type is strange, that means there really is no run.
2114 If run_type is one_case, then run_start...run_end is the run.
2115 If run_type is two_case, then the run is run_start...run_end,
2116 and the case-equivalents end at run_eqv_end. */
2118 enum case_type run_type
= strange
;
2119 int run_start
, run_end
, run_eqv_end
;
2121 Lisp_Object eqv_table
;
2123 if (!RE_TRANSLATE_P (translate
))
2125 EXTEND_RANGE_TABLE (work_area
, 2);
2126 work_area
->table
[work_area
->used
++] = (start
);
2127 work_area
->table
[work_area
->used
++] = (end
);
2131 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2133 for (; start
<= end
; start
++)
2135 enum case_type this_type
;
2136 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2137 int minchar
, maxchar
;
2139 /* Classify this character */
2141 this_type
= one_case
;
2142 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2143 this_type
= two_case
;
2145 this_type
= strange
;
2148 minchar
= start
, maxchar
= eqv
;
2150 minchar
= eqv
, maxchar
= start
;
2152 /* Can this character extend the run in progress? */
2153 if (this_type
== strange
|| this_type
!= run_type
2154 || !(minchar
== run_end
+ 1
2155 && (run_type
== two_case
2156 ? maxchar
== run_eqv_end
+ 1 : 1)))
2159 Record each of its equivalent ranges. */
2160 if (run_type
== one_case
)
2162 EXTEND_RANGE_TABLE (work_area
, 2);
2163 work_area
->table
[work_area
->used
++] = run_start
;
2164 work_area
->table
[work_area
->used
++] = run_end
;
2166 else if (run_type
== two_case
)
2168 EXTEND_RANGE_TABLE (work_area
, 4);
2169 work_area
->table
[work_area
->used
++] = run_start
;
2170 work_area
->table
[work_area
->used
++] = run_end
;
2171 work_area
->table
[work_area
->used
++]
2172 = RE_TRANSLATE (eqv_table
, run_start
);
2173 work_area
->table
[work_area
->used
++]
2174 = RE_TRANSLATE (eqv_table
, run_end
);
2179 if (this_type
== strange
)
2181 /* For a strange character, add each of its equivalents, one
2182 by one. Don't start a range. */
2185 EXTEND_RANGE_TABLE (work_area
, 2);
2186 work_area
->table
[work_area
->used
++] = eqv
;
2187 work_area
->table
[work_area
->used
++] = eqv
;
2188 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2190 while (eqv
!= start
);
2193 /* Add this char to the run, or start a new run. */
2194 else if (run_type
== strange
)
2196 /* Initialize a new range. */
2197 run_type
= this_type
;
2200 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2204 /* Extend a running range. */
2206 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2210 /* If a run is still in progress at the end, finish it now
2211 by recording its equivalent ranges. */
2212 if (run_type
== one_case
)
2214 EXTEND_RANGE_TABLE (work_area
, 2);
2215 work_area
->table
[work_area
->used
++] = run_start
;
2216 work_area
->table
[work_area
->used
++] = run_end
;
2218 else if (run_type
== two_case
)
2220 EXTEND_RANGE_TABLE (work_area
, 4);
2221 work_area
->table
[work_area
->used
++] = run_start
;
2222 work_area
->table
[work_area
->used
++] = run_end
;
2223 work_area
->table
[work_area
->used
++]
2224 = RE_TRANSLATE (eqv_table
, run_start
);
2225 work_area
->table
[work_area
->used
++]
2226 = RE_TRANSLATE (eqv_table
, run_end
);
2234 /* Record the the image of the range start..end when passed through
2235 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2236 and is not even necessarily contiguous.
2237 Normally we approximate it with the smallest contiguous range that contains
2238 all the chars we need. However, for Latin-1 we go to extra effort
2241 This function is not called for ASCII ranges.
2243 Returns -1 if successful, REG_ESPACE if ran out of space. */
2246 set_image_of_range (work_area
, start
, end
, translate
)
2247 RE_TRANSLATE_TYPE translate
;
2248 struct range_table_work_area
*work_area
;
2249 re_wchar_t start
, end
;
2251 re_wchar_t cmin
, cmax
;
2254 /* For Latin-1 ranges, use set_image_of_range_1
2255 to get proper handling of ranges that include letters and nonletters.
2256 For a range that includes the whole of Latin-1, this is not necessary.
2257 For other character sets, we don't bother to get this right. */
2258 if (RE_TRANSLATE_P (translate
) && start
< 04400
2259 && !(start
< 04200 && end
>= 04377))
2266 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2276 EXTEND_RANGE_TABLE (work_area
, 2);
2277 work_area
->table
[work_area
->used
++] = (start
);
2278 work_area
->table
[work_area
->used
++] = (end
);
2280 cmin
= -1, cmax
= -1;
2282 if (RE_TRANSLATE_P (translate
))
2286 for (ch
= start
; ch
<= end
; ch
++)
2288 re_wchar_t c
= TRANSLATE (ch
);
2289 if (! (start
<= c
&& c
<= end
))
2295 cmin
= MIN (cmin
, c
);
2296 cmax
= MAX (cmax
, c
);
2303 EXTEND_RANGE_TABLE (work_area
, 2);
2304 work_area
->table
[work_area
->used
++] = (cmin
);
2305 work_area
->table
[work_area
->used
++] = (cmax
);
2312 #ifndef MATCH_MAY_ALLOCATE
2314 /* If we cannot allocate large objects within re_match_2_internal,
2315 we make the fail stack and register vectors global.
2316 The fail stack, we grow to the maximum size when a regexp
2318 The register vectors, we adjust in size each time we
2319 compile a regexp, according to the number of registers it needs. */
2321 static fail_stack_type fail_stack
;
2323 /* Size with which the following vectors are currently allocated.
2324 That is so we can make them bigger as needed,
2325 but never make them smaller. */
2326 static int regs_allocated_size
;
2328 static re_char
** regstart
, ** regend
;
2329 static re_char
**best_regstart
, **best_regend
;
2331 /* Make the register vectors big enough for NUM_REGS registers,
2332 but don't make them smaller. */
2335 regex_grow_registers (num_regs
)
2338 if (num_regs
> regs_allocated_size
)
2340 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2341 RETALLOC_IF (regend
, num_regs
, re_char
*);
2342 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2343 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2345 regs_allocated_size
= num_regs
;
2349 #endif /* not MATCH_MAY_ALLOCATE */
2351 static boolean group_in_compile_stack
_RE_ARGS ((compile_stack_type
2355 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2356 Returns one of error codes defined in `regex.h', or zero for success.
2358 Assumes the `allocated' (and perhaps `buffer') and `translate'
2359 fields are set in BUFP on entry.
2361 If it succeeds, results are put in BUFP (if it returns an error, the
2362 contents of BUFP are undefined):
2363 `buffer' is the compiled pattern;
2364 `syntax' is set to SYNTAX;
2365 `used' is set to the length of the compiled pattern;
2366 `fastmap_accurate' is zero;
2367 `re_nsub' is the number of subexpressions in PATTERN;
2368 `not_bol' and `not_eol' are zero;
2370 The `fastmap' field is neither examined nor set. */
2372 /* Insert the `jump' from the end of last alternative to "here".
2373 The space for the jump has already been allocated. */
2374 #define FIXUP_ALT_JUMP() \
2376 if (fixup_alt_jump) \
2377 STORE_JUMP (jump, fixup_alt_jump, b); \
2381 /* Return, freeing storage we allocated. */
2382 #define FREE_STACK_RETURN(value) \
2384 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2385 free (compile_stack.stack); \
2389 static reg_errcode_t
2390 regex_compile (pattern
, size
, syntax
, bufp
)
2393 reg_syntax_t syntax
;
2394 struct re_pattern_buffer
*bufp
;
2396 /* We fetch characters from PATTERN here. */
2397 register re_wchar_t c
, c1
;
2399 /* A random temporary spot in PATTERN. */
2402 /* Points to the end of the buffer, where we should append. */
2403 register unsigned char *b
;
2405 /* Keeps track of unclosed groups. */
2406 compile_stack_type compile_stack
;
2408 /* Points to the current (ending) position in the pattern. */
2410 /* `const' makes AIX compiler fail. */
2411 unsigned char *p
= pattern
;
2413 re_char
*p
= pattern
;
2415 re_char
*pend
= pattern
+ size
;
2417 /* How to translate the characters in the pattern. */
2418 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2420 /* Address of the count-byte of the most recently inserted `exactn'
2421 command. This makes it possible to tell if a new exact-match
2422 character can be added to that command or if the character requires
2423 a new `exactn' command. */
2424 unsigned char *pending_exact
= 0;
2426 /* Address of start of the most recently finished expression.
2427 This tells, e.g., postfix * where to find the start of its
2428 operand. Reset at the beginning of groups and alternatives. */
2429 unsigned char *laststart
= 0;
2431 /* Address of beginning of regexp, or inside of last group. */
2432 unsigned char *begalt
;
2434 /* Place in the uncompiled pattern (i.e., the {) to
2435 which to go back if the interval is invalid. */
2436 re_char
*beg_interval
;
2438 /* Address of the place where a forward jump should go to the end of
2439 the containing expression. Each alternative of an `or' -- except the
2440 last -- ends with a forward jump of this sort. */
2441 unsigned char *fixup_alt_jump
= 0;
2443 /* Counts open-groups as they are encountered. Remembered for the
2444 matching close-group on the compile stack, so the same register
2445 number is put in the stop_memory as the start_memory. */
2446 regnum_t regnum
= 0;
2448 /* Work area for range table of charset. */
2449 struct range_table_work_area range_table_work
;
2451 /* If the object matched can contain multibyte characters. */
2452 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2456 DEBUG_PRINT1 ("\nCompiling pattern: ");
2459 unsigned debug_count
;
2461 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2462 putchar (pattern
[debug_count
]);
2467 /* Initialize the compile stack. */
2468 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2469 if (compile_stack
.stack
== NULL
)
2472 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2473 compile_stack
.avail
= 0;
2475 range_table_work
.table
= 0;
2476 range_table_work
.allocated
= 0;
2478 /* Initialize the pattern buffer. */
2479 bufp
->syntax
= syntax
;
2480 bufp
->fastmap_accurate
= 0;
2481 bufp
->not_bol
= bufp
->not_eol
= 0;
2483 /* Set `used' to zero, so that if we return an error, the pattern
2484 printer (for debugging) will think there's no pattern. We reset it
2488 /* Always count groups, whether or not bufp->no_sub is set. */
2491 #if !defined emacs && !defined SYNTAX_TABLE
2492 /* Initialize the syntax table. */
2493 init_syntax_once ();
2496 if (bufp
->allocated
== 0)
2499 { /* If zero allocated, but buffer is non-null, try to realloc
2500 enough space. This loses if buffer's address is bogus, but
2501 that is the user's responsibility. */
2502 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2505 { /* Caller did not allocate a buffer. Do it for them. */
2506 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2508 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2510 bufp
->allocated
= INIT_BUF_SIZE
;
2513 begalt
= b
= bufp
->buffer
;
2515 /* Loop through the uncompiled pattern until we're at the end. */
2524 if ( /* If at start of pattern, it's an operator. */
2526 /* If context independent, it's an operator. */
2527 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2528 /* Otherwise, depends on what's come before. */
2529 || at_begline_loc_p (pattern
, p
, syntax
))
2530 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2539 if ( /* If at end of pattern, it's an operator. */
2541 /* If context independent, it's an operator. */
2542 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2543 /* Otherwise, depends on what's next. */
2544 || at_endline_loc_p (p
, pend
, syntax
))
2545 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2554 if ((syntax
& RE_BK_PLUS_QM
)
2555 || (syntax
& RE_LIMITED_OPS
))
2559 /* If there is no previous pattern... */
2562 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2563 FREE_STACK_RETURN (REG_BADRPT
);
2564 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2569 /* 1 means zero (many) matches is allowed. */
2570 boolean zero_times_ok
= 0, many_times_ok
= 0;
2573 /* If there is a sequence of repetition chars, collapse it
2574 down to just one (the right one). We can't combine
2575 interval operators with these because of, e.g., `a{2}*',
2576 which should only match an even number of `a's. */
2580 if ((syntax
& RE_FRUGAL
)
2581 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2585 zero_times_ok
|= c
!= '+';
2586 many_times_ok
|= c
!= '?';
2592 || (!(syntax
& RE_BK_PLUS_QM
)
2593 && (*p
== '+' || *p
== '?')))
2595 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2598 FREE_STACK_RETURN (REG_EESCAPE
);
2599 if (p
[1] == '+' || p
[1] == '?')
2600 PATFETCH (c
); /* Gobble up the backslash. */
2606 /* If we get here, we found another repeat character. */
2610 /* Star, etc. applied to an empty pattern is equivalent
2611 to an empty pattern. */
2612 if (!laststart
|| laststart
== b
)
2615 /* Now we know whether or not zero matches is allowed
2616 and also whether or not two or more matches is allowed. */
2621 boolean simple
= skip_one_char (laststart
) == b
;
2622 unsigned int startoffset
= 0;
2624 /* Check if the loop can match the empty string. */
2625 (simple
|| !analyse_first (laststart
, b
, NULL
, 0))
2626 ? on_failure_jump
: on_failure_jump_loop
;
2627 assert (skip_one_char (laststart
) <= b
);
2629 if (!zero_times_ok
&& simple
)
2630 { /* Since simple * loops can be made faster by using
2631 on_failure_keep_string_jump, we turn simple P+
2632 into PP* if P is simple. */
2633 unsigned char *p1
, *p2
;
2634 startoffset
= b
- laststart
;
2635 GET_BUFFER_SPACE (startoffset
);
2636 p1
= b
; p2
= laststart
;
2642 GET_BUFFER_SPACE (6);
2645 STORE_JUMP (ofj
, b
, b
+ 6);
2647 /* Simple * loops can use on_failure_keep_string_jump
2648 depending on what follows. But since we don't know
2649 that yet, we leave the decision up to
2650 on_failure_jump_smart. */
2651 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2652 laststart
+ startoffset
, b
+ 6);
2654 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2659 /* A simple ? pattern. */
2660 assert (zero_times_ok
);
2661 GET_BUFFER_SPACE (3);
2662 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2666 else /* not greedy */
2667 { /* I wish the greedy and non-greedy cases could be merged. */
2669 GET_BUFFER_SPACE (7); /* We might use less. */
2672 boolean emptyp
= analyse_first (laststart
, b
, NULL
, 0);
2674 /* The non-greedy multiple match looks like
2675 a repeat..until: we only need a conditional jump
2676 at the end of the loop. */
2677 if (emptyp
) BUF_PUSH (no_op
);
2678 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2679 : on_failure_jump
, b
, laststart
);
2683 /* The repeat...until naturally matches one or more.
2684 To also match zero times, we need to first jump to
2685 the end of the loop (its conditional jump). */
2686 INSERT_JUMP (jump
, laststart
, b
);
2692 /* non-greedy a?? */
2693 INSERT_JUMP (jump
, laststart
, b
+ 3);
2695 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2712 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2714 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2716 /* Ensure that we have enough space to push a charset: the
2717 opcode, the length count, and the bitset; 34 bytes in all. */
2718 GET_BUFFER_SPACE (34);
2722 /* We test `*p == '^' twice, instead of using an if
2723 statement, so we only need one BUF_PUSH. */
2724 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2728 /* Remember the first position in the bracket expression. */
2731 /* Push the number of bytes in the bitmap. */
2732 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2734 /* Clear the whole map. */
2735 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2737 /* charset_not matches newline according to a syntax bit. */
2738 if ((re_opcode_t
) b
[-2] == charset_not
2739 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2740 SET_LIST_BIT ('\n');
2742 /* Read in characters and ranges, setting map bits. */
2745 boolean escaped_char
= false;
2746 const unsigned char *p2
= p
;
2748 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2750 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2751 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2752 So the translation is done later in a loop. Example:
2753 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2756 /* \ might escape characters inside [...] and [^...]. */
2757 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2759 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2762 escaped_char
= true;
2766 /* Could be the end of the bracket expression. If it's
2767 not (i.e., when the bracket expression is `[]' so
2768 far), the ']' character bit gets set way below. */
2769 if (c
== ']' && p2
!= p1
)
2773 /* What should we do for the character which is
2774 greater than 0x7F, but not BASE_LEADING_CODE_P?
2777 /* See if we're at the beginning of a possible character
2780 if (!escaped_char
&&
2781 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2783 /* Leave room for the null. */
2784 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2785 const unsigned char *class_beg
;
2791 /* If pattern is `[[:'. */
2792 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2797 if ((c
== ':' && *p
== ']') || p
== pend
)
2799 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2802 /* This is in any case an invalid class name. */
2807 /* If isn't a word bracketed by `[:' and `:]':
2808 undo the ending character, the letters, and
2809 leave the leading `:' and `[' (but set bits for
2811 if (c
== ':' && *p
== ']')
2816 cc
= re_wctype (str
);
2819 FREE_STACK_RETURN (REG_ECTYPE
);
2821 /* Throw away the ] at the end of the character
2825 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2827 /* Most character classes in a multibyte match
2828 just set a flag. Exceptions are is_blank,
2829 is_digit, is_cntrl, and is_xdigit, since
2830 they can only match ASCII characters. We
2831 don't need to handle them for multibyte.
2832 They are distinguished by a negative wctype. */
2835 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work
,
2836 re_wctype_to_bit (cc
));
2838 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ++ch
)
2840 int translated
= TRANSLATE (ch
);
2841 if (re_iswctype (btowc (ch
), cc
))
2842 SET_LIST_BIT (translated
);
2845 /* Repeat the loop. */
2850 /* Go back to right after the "[:". */
2854 /* Because the `:' may starts the range, we
2855 can't simply set bit and repeat the loop.
2856 Instead, just set it to C and handle below. */
2861 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2864 /* Discard the `-'. */
2867 /* Fetch the character which ends the range. */
2870 if (SINGLE_BYTE_CHAR_P (c
))
2872 if (! SINGLE_BYTE_CHAR_P (c1
))
2874 /* Handle a range starting with a
2875 character of less than 256, and ending
2876 with a character of not less than 256.
2877 Split that into two ranges, the low one
2878 ending at 0377, and the high one
2879 starting at the smallest character in
2880 the charset of C1 and ending at C1. */
2881 int charset
= CHAR_CHARSET (c1
);
2882 re_wchar_t c2
= MAKE_CHAR (charset
, 0, 0);
2884 SET_RANGE_TABLE_WORK_AREA (range_table_work
,
2889 else if (!SAME_CHARSET_P (c
, c1
))
2890 FREE_STACK_RETURN (REG_ERANGE
);
2893 /* Range from C to C. */
2896 /* Set the range ... */
2897 if (SINGLE_BYTE_CHAR_P (c
))
2898 /* ... into bitmap. */
2900 re_wchar_t this_char
;
2901 re_wchar_t range_start
= c
, range_end
= c1
;
2903 /* If the start is after the end, the range is empty. */
2904 if (range_start
> range_end
)
2906 if (syntax
& RE_NO_EMPTY_RANGES
)
2907 FREE_STACK_RETURN (REG_ERANGE
);
2908 /* Else, repeat the loop. */
2912 for (this_char
= range_start
; this_char
<= range_end
;
2914 SET_LIST_BIT (TRANSLATE (this_char
));
2918 /* ... into range table. */
2919 SET_RANGE_TABLE_WORK_AREA (range_table_work
, c
, c1
);
2922 /* Discard any (non)matching list bytes that are all 0 at the
2923 end of the map. Decrease the map-length byte too. */
2924 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
2928 /* Build real range table from work area. */
2929 if (RANGE_TABLE_WORK_USED (range_table_work
)
2930 || RANGE_TABLE_WORK_BITS (range_table_work
))
2933 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
2935 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2936 bytes for flags, two for COUNT, and three bytes for
2938 GET_BUFFER_SPACE (4 + used
* 3);
2940 /* Indicate the existence of range table. */
2941 laststart
[1] |= 0x80;
2943 /* Store the character class flag bits into the range table.
2944 If not in emacs, these flag bits are always 0. */
2945 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
2946 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
2948 STORE_NUMBER_AND_INCR (b
, used
/ 2);
2949 for (i
= 0; i
< used
; i
++)
2950 STORE_CHARACTER_AND_INCR
2951 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
2958 if (syntax
& RE_NO_BK_PARENS
)
2965 if (syntax
& RE_NO_BK_PARENS
)
2972 if (syntax
& RE_NEWLINE_ALT
)
2979 if (syntax
& RE_NO_BK_VBAR
)
2986 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
2987 goto handle_interval
;
2993 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2995 /* Do not translate the character after the \, so that we can
2996 distinguish, e.g., \B from \b, even if we normally would
2997 translate, e.g., B to b. */
3003 if (syntax
& RE_NO_BK_PARENS
)
3004 goto normal_backslash
;
3011 /* Look for a special (?...) construct */
3012 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3014 PATFETCH (c
); /* Gobble up the '?'. */
3018 case ':': shy
= 1; break;
3020 /* Only (?:...) is supported right now. */
3021 FREE_STACK_RETURN (REG_BADPAT
);
3032 if (COMPILE_STACK_FULL
)
3034 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3035 compile_stack_elt_t
);
3036 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3038 compile_stack
.size
<<= 1;
3041 /* These are the values to restore when we hit end of this
3042 group. They are all relative offsets, so that if the
3043 whole pattern moves because of realloc, they will still
3045 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3046 COMPILE_STACK_TOP
.fixup_alt_jump
3047 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3048 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3049 COMPILE_STACK_TOP
.regnum
= shy
? -regnum
: regnum
;
3052 start_memory for groups beyond the last one we can
3053 represent in the compiled pattern. */
3054 if (regnum
<= MAX_REGNUM
&& !shy
)
3055 BUF_PUSH_2 (start_memory
, regnum
);
3057 compile_stack
.avail
++;
3062 /* If we've reached MAX_REGNUM groups, then this open
3063 won't actually generate any code, so we'll have to
3064 clear pending_exact explicitly. */
3070 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3072 if (COMPILE_STACK_EMPTY
)
3074 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3075 goto normal_backslash
;
3077 FREE_STACK_RETURN (REG_ERPAREN
);
3083 /* See similar code for backslashed left paren above. */
3084 if (COMPILE_STACK_EMPTY
)
3086 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3089 FREE_STACK_RETURN (REG_ERPAREN
);
3092 /* Since we just checked for an empty stack above, this
3093 ``can't happen''. */
3094 assert (compile_stack
.avail
!= 0);
3096 /* We don't just want to restore into `regnum', because
3097 later groups should continue to be numbered higher,
3098 as in `(ab)c(de)' -- the second group is #2. */
3099 regnum_t this_group_regnum
;
3101 compile_stack
.avail
--;
3102 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3104 = COMPILE_STACK_TOP
.fixup_alt_jump
3105 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3107 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3108 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
3109 /* If we've reached MAX_REGNUM groups, then this open
3110 won't actually generate any code, so we'll have to
3111 clear pending_exact explicitly. */
3114 /* We're at the end of the group, so now we know how many
3115 groups were inside this one. */
3116 if (this_group_regnum
<= MAX_REGNUM
&& this_group_regnum
> 0)
3117 BUF_PUSH_2 (stop_memory
, this_group_regnum
);
3122 case '|': /* `\|'. */
3123 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3124 goto normal_backslash
;
3126 if (syntax
& RE_LIMITED_OPS
)
3129 /* Insert before the previous alternative a jump which
3130 jumps to this alternative if the former fails. */
3131 GET_BUFFER_SPACE (3);
3132 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3136 /* The alternative before this one has a jump after it
3137 which gets executed if it gets matched. Adjust that
3138 jump so it will jump to this alternative's analogous
3139 jump (put in below, which in turn will jump to the next
3140 (if any) alternative's such jump, etc.). The last such
3141 jump jumps to the correct final destination. A picture:
3147 If we are at `b', then fixup_alt_jump right now points to a
3148 three-byte space after `a'. We'll put in the jump, set
3149 fixup_alt_jump to right after `b', and leave behind three
3150 bytes which we'll fill in when we get to after `c'. */
3154 /* Mark and leave space for a jump after this alternative,
3155 to be filled in later either by next alternative or
3156 when know we're at the end of a series of alternatives. */
3158 GET_BUFFER_SPACE (3);
3167 /* If \{ is a literal. */
3168 if (!(syntax
& RE_INTERVALS
)
3169 /* If we're at `\{' and it's not the open-interval
3171 || (syntax
& RE_NO_BK_BRACES
))
3172 goto normal_backslash
;
3176 /* If got here, then the syntax allows intervals. */
3178 /* At least (most) this many matches must be made. */
3179 int lower_bound
= 0, upper_bound
= -1;
3184 FREE_STACK_RETURN (REG_EBRACE
);
3186 GET_UNSIGNED_NUMBER (lower_bound
);
3189 GET_UNSIGNED_NUMBER (upper_bound
);
3191 /* Interval such as `{1}' => match exactly once. */
3192 upper_bound
= lower_bound
;
3194 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
3195 || (upper_bound
>= 0 && lower_bound
> upper_bound
))
3196 FREE_STACK_RETURN (REG_BADBR
);
3198 if (!(syntax
& RE_NO_BK_BRACES
))
3201 FREE_STACK_RETURN (REG_BADBR
);
3207 FREE_STACK_RETURN (REG_BADBR
);
3209 /* We just parsed a valid interval. */
3211 /* If it's invalid to have no preceding re. */
3214 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3215 FREE_STACK_RETURN (REG_BADRPT
);
3216 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3219 goto unfetch_interval
;
3222 if (upper_bound
== 0)
3223 /* If the upper bound is zero, just drop the sub pattern
3226 else if (lower_bound
== 1 && upper_bound
== 1)
3227 /* Just match it once: nothing to do here. */
3230 /* Otherwise, we have a nontrivial interval. When
3231 we're all done, the pattern will look like:
3232 set_number_at <jump count> <upper bound>
3233 set_number_at <succeed_n count> <lower bound>
3234 succeed_n <after jump addr> <succeed_n count>
3236 jump_n <succeed_n addr> <jump count>
3237 (The upper bound and `jump_n' are omitted if
3238 `upper_bound' is 1, though.) */
3240 { /* If the upper bound is > 1, we need to insert
3241 more at the end of the loop. */
3242 unsigned int nbytes
= (upper_bound
< 0 ? 3
3243 : upper_bound
> 1 ? 5 : 0);
3244 unsigned int startoffset
= 0;
3246 GET_BUFFER_SPACE (20); /* We might use less. */
3248 if (lower_bound
== 0)
3250 /* A succeed_n that starts with 0 is really a
3251 a simple on_failure_jump_loop. */
3252 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3258 /* Initialize lower bound of the `succeed_n', even
3259 though it will be set during matching by its
3260 attendant `set_number_at' (inserted next),
3261 because `re_compile_fastmap' needs to know.
3262 Jump to the `jump_n' we might insert below. */
3263 INSERT_JUMP2 (succeed_n
, laststart
,
3268 /* Code to initialize the lower bound. Insert
3269 before the `succeed_n'. The `5' is the last two
3270 bytes of this `set_number_at', plus 3 bytes of
3271 the following `succeed_n'. */
3272 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3277 if (upper_bound
< 0)
3279 /* A negative upper bound stands for infinity,
3280 in which case it degenerates to a plain jump. */
3281 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3284 else if (upper_bound
> 1)
3285 { /* More than one repetition is allowed, so
3286 append a backward jump to the `succeed_n'
3287 that starts this interval.
3289 When we've reached this during matching,
3290 we'll have matched the interval once, so
3291 jump back only `upper_bound - 1' times. */
3292 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3296 /* The location we want to set is the second
3297 parameter of the `jump_n'; that is `b-2' as
3298 an absolute address. `laststart' will be
3299 the `set_number_at' we're about to insert;
3300 `laststart+3' the number to set, the source
3301 for the relative address. But we are
3302 inserting into the middle of the pattern --
3303 so everything is getting moved up by 5.
3304 Conclusion: (b - 2) - (laststart + 3) + 5,
3305 i.e., b - laststart.
3307 We insert this at the beginning of the loop
3308 so that if we fail during matching, we'll
3309 reinitialize the bounds. */
3310 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3311 upper_bound
- 1, b
);
3316 beg_interval
= NULL
;
3321 /* If an invalid interval, match the characters as literals. */
3322 assert (beg_interval
);
3324 beg_interval
= NULL
;
3326 /* normal_char and normal_backslash need `c'. */
3329 if (!(syntax
& RE_NO_BK_BRACES
))
3331 assert (p
> pattern
&& p
[-1] == '\\');
3332 goto normal_backslash
;
3338 /* There is no way to specify the before_dot and after_dot
3339 operators. rms says this is ok. --karl */
3347 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3353 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3359 BUF_PUSH_2 (categoryspec
, c
);
3365 BUF_PUSH_2 (notcategoryspec
, c
);
3371 if (syntax
& RE_NO_GNU_OPS
)
3374 BUF_PUSH_2 (syntaxspec
, Sword
);
3379 if (syntax
& RE_NO_GNU_OPS
)
3382 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3387 if (syntax
& RE_NO_GNU_OPS
)
3393 if (syntax
& RE_NO_GNU_OPS
)
3399 if (syntax
& RE_NO_GNU_OPS
)
3401 BUF_PUSH (wordbound
);
3405 if (syntax
& RE_NO_GNU_OPS
)
3407 BUF_PUSH (notwordbound
);
3411 if (syntax
& RE_NO_GNU_OPS
)
3417 if (syntax
& RE_NO_GNU_OPS
)
3422 case '1': case '2': case '3': case '4': case '5':
3423 case '6': case '7': case '8': case '9':
3427 if (syntax
& RE_NO_BK_REFS
)
3428 goto normal_backslash
;
3432 /* Can't back reference to a subexpression before its end. */
3433 if (reg
> regnum
|| group_in_compile_stack (compile_stack
, reg
))
3434 FREE_STACK_RETURN (REG_ESUBREG
);
3437 BUF_PUSH_2 (duplicate
, reg
);
3444 if (syntax
& RE_BK_PLUS_QM
)
3447 goto normal_backslash
;
3451 /* You might think it would be useful for \ to mean
3452 not to translate; but if we don't translate it
3453 it will never match anything. */
3460 /* Expects the character in `c'. */
3462 /* If no exactn currently being built. */
3465 /* If last exactn not at current position. */
3466 || pending_exact
+ *pending_exact
+ 1 != b
3468 /* We have only one byte following the exactn for the count. */
3469 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3471 /* If followed by a repetition operator. */
3472 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3473 || ((syntax
& RE_BK_PLUS_QM
)
3474 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3475 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3476 || ((syntax
& RE_INTERVALS
)
3477 && ((syntax
& RE_NO_BK_BRACES
)
3478 ? p
!= pend
&& *p
== '{'
3479 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3481 /* Start building a new exactn. */
3485 BUF_PUSH_2 (exactn
, 0);
3486 pending_exact
= b
- 1;
3489 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3495 len
= CHAR_STRING (c
, b
);
3499 (*pending_exact
) += len
;
3504 } /* while p != pend */
3507 /* Through the pattern now. */
3511 if (!COMPILE_STACK_EMPTY
)
3512 FREE_STACK_RETURN (REG_EPAREN
);
3514 /* If we don't want backtracking, force success
3515 the first time we reach the end of the compiled pattern. */
3516 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3519 free (compile_stack
.stack
);
3521 /* We have succeeded; set the length of the buffer. */
3522 bufp
->used
= b
- bufp
->buffer
;
3527 re_compile_fastmap (bufp
);
3528 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3529 print_compiled_pattern (bufp
);
3534 #ifndef MATCH_MAY_ALLOCATE
3535 /* Initialize the failure stack to the largest possible stack. This
3536 isn't necessary unless we're trying to avoid calling alloca in
3537 the search and match routines. */
3539 int num_regs
= bufp
->re_nsub
+ 1;
3541 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3543 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3545 if (! fail_stack
.stack
)
3547 = (fail_stack_elt_t
*) malloc (fail_stack
.size
3548 * sizeof (fail_stack_elt_t
));
3551 = (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
3553 * sizeof (fail_stack_elt_t
)));
3556 regex_grow_registers (num_regs
);
3558 #endif /* not MATCH_MAY_ALLOCATE */
3561 } /* regex_compile */
3563 /* Subroutines for `regex_compile'. */
3565 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3568 store_op1 (op
, loc
, arg
)
3573 *loc
= (unsigned char) op
;
3574 STORE_NUMBER (loc
+ 1, arg
);
3578 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3581 store_op2 (op
, loc
, arg1
, arg2
)
3586 *loc
= (unsigned char) op
;
3587 STORE_NUMBER (loc
+ 1, arg1
);
3588 STORE_NUMBER (loc
+ 3, arg2
);
3592 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3593 for OP followed by two-byte integer parameter ARG. */
3596 insert_op1 (op
, loc
, arg
, end
)
3602 register unsigned char *pfrom
= end
;
3603 register unsigned char *pto
= end
+ 3;
3605 while (pfrom
!= loc
)
3608 store_op1 (op
, loc
, arg
);
3612 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3615 insert_op2 (op
, loc
, arg1
, arg2
, end
)
3621 register unsigned char *pfrom
= end
;
3622 register unsigned char *pto
= end
+ 5;
3624 while (pfrom
!= loc
)
3627 store_op2 (op
, loc
, arg1
, arg2
);
3631 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3632 after an alternative or a begin-subexpression. We assume there is at
3633 least one character before the ^. */
3636 at_begline_loc_p (pattern
, p
, syntax
)
3637 re_char
*pattern
, *p
;
3638 reg_syntax_t syntax
;
3640 re_char
*prev
= p
- 2;
3641 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
3644 /* After a subexpression? */
3645 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
3646 /* After an alternative? */
3647 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
))
3648 /* After a shy subexpression? */
3649 || ((syntax
& RE_SHY_GROUPS
) && prev
- 2 >= pattern
3650 && prev
[-1] == '?' && prev
[-2] == '('
3651 && (syntax
& RE_NO_BK_PARENS
3652 || (prev
- 3 >= pattern
&& prev
[-3] == '\\')));
3656 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3657 at least one character after the $, i.e., `P < PEND'. */
3660 at_endline_loc_p (p
, pend
, syntax
)
3662 reg_syntax_t syntax
;
3665 boolean next_backslash
= *next
== '\\';
3666 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3669 /* Before a subexpression? */
3670 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3671 : next_backslash
&& next_next
&& *next_next
== ')')
3672 /* Before an alternative? */
3673 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3674 : next_backslash
&& next_next
&& *next_next
== '|');
3678 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3679 false if it's not. */
3682 group_in_compile_stack (compile_stack
, regnum
)
3683 compile_stack_type compile_stack
;
3688 for (this_element
= compile_stack
.avail
- 1;
3691 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3698 If fastmap is non-NULL, go through the pattern and fill fastmap
3699 with all the possible leading chars. If fastmap is NULL, don't
3700 bother filling it up (obviously) and only return whether the
3701 pattern could potentially match the empty string.
3703 Return 1 if p..pend might match the empty string.
3704 Return 0 if p..pend matches at least one char.
3705 Return -1 if fastmap was not updated accurately. */
3708 analyse_first (p
, pend
, fastmap
, multibyte
)
3711 const int multibyte
;
3716 /* If all elements for base leading-codes in fastmap is set, this
3717 flag is set true. */
3718 boolean match_any_multibyte_characters
= false;
3722 /* The loop below works as follows:
3723 - It has a working-list kept in the PATTERN_STACK and which basically
3724 starts by only containing a pointer to the first operation.
3725 - If the opcode we're looking at is a match against some set of
3726 chars, then we add those chars to the fastmap and go on to the
3727 next work element from the worklist (done via `break').
3728 - If the opcode is a control operator on the other hand, we either
3729 ignore it (if it's meaningless at this point, such as `start_memory')
3730 or execute it (if it's a jump). If the jump has several destinations
3731 (i.e. `on_failure_jump'), then we push the other destination onto the
3733 We guarantee termination by ignoring backward jumps (more or less),
3734 so that `p' is monotonically increasing. More to the point, we
3735 never set `p' (or push) anything `<= p1'. */
3739 /* `p1' is used as a marker of how far back a `on_failure_jump'
3740 can go without being ignored. It is normally equal to `p'
3741 (which prevents any backward `on_failure_jump') except right
3742 after a plain `jump', to allow patterns such as:
3745 10: on_failure_jump 3
3746 as used for the *? operator. */
3749 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
3756 /* If the first character has to match a backreference, that means
3757 that the group was empty (since it already matched). Since this
3758 is the only case that interests us here, we can assume that the
3759 backreference must match the empty string. */
3764 /* Following are the cases which match a character. These end
3770 int c
= RE_STRING_CHAR (p
+ 1, pend
- p
);
3772 if (SINGLE_BYTE_CHAR_P (c
))
3781 /* We could put all the chars except for \n (and maybe \0)
3782 but we don't bother since it is generally not worth it. */
3783 if (!fastmap
) break;
3788 /* Chars beyond end of bitmap are possible matches.
3789 All the single-byte codes can occur in multibyte buffers.
3790 So any that are not listed in the charset
3791 are possible matches, even in multibyte buffers. */
3792 if (!fastmap
) break;
3793 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3794 j
< (1 << BYTEWIDTH
); j
++)
3798 if (!fastmap
) break;
3799 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3800 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3802 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3805 if ((not && multibyte
)
3806 /* Any character set can possibly contain a character
3807 which doesn't match the specified set of characters. */
3808 || (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3809 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3810 /* If we can match a character class, we can match
3811 any character set. */
3813 set_fastmap_for_multibyte_characters
:
3814 if (match_any_multibyte_characters
== false)
3816 for (j
= 0x80; j
< 0xA0; j
++) /* XXX */
3817 if (BASE_LEADING_CODE_P (j
))
3819 match_any_multibyte_characters
= true;
3823 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3824 && match_any_multibyte_characters
== false)
3826 /* Set fastmap[I] 1 where I is a base leading code of each
3827 multibyte character in the range table. */
3830 /* Make P points the range table. `+ 2' is to skip flag
3831 bits for a character class. */
3832 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3834 /* Extract the number of ranges in range table into COUNT. */
3835 EXTRACT_NUMBER_AND_INCR (count
, p
);
3836 for (; count
> 0; count
--, p
+= 2 * 3) /* XXX */
3838 /* Extract the start of each range. */
3839 EXTRACT_CHARACTER (c
, p
);
3840 j
= CHAR_CHARSET (c
);
3841 fastmap
[CHARSET_LEADING_CODE_BASE (j
)] = 1;
3848 if (!fastmap
) break;
3850 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
3852 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3853 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
3857 /* This match depends on text properties. These end with
3858 aborting optimizations. */
3862 case notcategoryspec
:
3863 if (!fastmap
) break;
3864 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
3866 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
3867 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
3871 /* Any character set can possibly contain a character
3872 whose category is K (or not). */
3873 goto set_fastmap_for_multibyte_characters
;
3876 /* All cases after this match the empty string. These end with
3896 EXTRACT_NUMBER_AND_INCR (j
, p
);
3898 /* Backward jumps can only go back to code that we've already
3899 visited. `re_compile' should make sure this is true. */
3902 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
3904 case on_failure_jump
:
3905 case on_failure_keep_string_jump
:
3906 case on_failure_jump_loop
:
3907 case on_failure_jump_nastyloop
:
3908 case on_failure_jump_smart
:
3914 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
3915 to jump back to "just after here". */
3918 case on_failure_jump
:
3919 case on_failure_keep_string_jump
:
3920 case on_failure_jump_nastyloop
:
3921 case on_failure_jump_loop
:
3922 case on_failure_jump_smart
:
3923 EXTRACT_NUMBER_AND_INCR (j
, p
);
3925 ; /* Backward jump to be ignored. */
3927 { /* We have to look down both arms.
3928 We first go down the "straight" path so as to minimize
3929 stack usage when going through alternatives. */
3930 int r
= analyse_first (p
, pend
, fastmap
, multibyte
);
3938 /* This code simply does not properly handle forward jump_n. */
3939 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
3941 /* jump_n can either jump or fall through. The (backward) jump
3942 case has already been handled, so we only need to look at the
3943 fallthrough case. */
3947 /* If N == 0, it should be an on_failure_jump_loop instead. */
3948 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
3950 /* We only care about one iteration of the loop, so we don't
3951 need to consider the case where this behaves like an
3968 abort (); /* We have listed all the cases. */
3971 /* Getting here means we have found the possible starting
3972 characters for one path of the pattern -- and that the empty
3973 string does not match. We need not follow this path further. */
3977 /* We reached the end without matching anything. */
3980 } /* analyse_first */
3982 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
3983 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
3984 characters can start a string that matches the pattern. This fastmap
3985 is used by re_search to skip quickly over impossible starting points.
3987 Character codes above (1 << BYTEWIDTH) are not represented in the
3988 fastmap, but the leading codes are represented. Thus, the fastmap
3989 indicates which character sets could start a match.
3991 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
3992 area as BUFP->fastmap.
3994 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
3997 Returns 0 if we succeed, -2 if an internal error. */
4000 re_compile_fastmap (bufp
)
4001 struct re_pattern_buffer
*bufp
;
4003 char *fastmap
= bufp
->fastmap
;
4006 assert (fastmap
&& bufp
->buffer
);
4008 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4009 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4011 analysis
= analyse_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4012 fastmap
, RE_MULTIBYTE_P (bufp
));
4013 bufp
->can_be_null
= (analysis
!= 0);
4015 } /* re_compile_fastmap */
4017 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4018 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4019 this memory for recording register information. STARTS and ENDS
4020 must be allocated using the malloc library routine, and must each
4021 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4023 If NUM_REGS == 0, then subsequent matches should allocate their own
4026 Unless this function is called, the first search or match using
4027 PATTERN_BUFFER will allocate its own register data, without
4028 freeing the old data. */
4031 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
4032 struct re_pattern_buffer
*bufp
;
4033 struct re_registers
*regs
;
4035 regoff_t
*starts
, *ends
;
4039 bufp
->regs_allocated
= REGS_REALLOCATE
;
4040 regs
->num_regs
= num_regs
;
4041 regs
->start
= starts
;
4046 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4048 regs
->start
= regs
->end
= (regoff_t
*) 0;
4051 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4053 /* Searching routines. */
4055 /* Like re_search_2, below, but only one string is specified, and
4056 doesn't let you say where to stop matching. */
4059 re_search (bufp
, string
, size
, startpos
, range
, regs
)
4060 struct re_pattern_buffer
*bufp
;
4062 int size
, startpos
, range
;
4063 struct re_registers
*regs
;
4065 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4068 WEAK_ALIAS (__re_search
, re_search
)
4070 /* End address of virtual concatenation of string. */
4071 #define STOP_ADDR_VSTRING(P) \
4072 (((P) >= size1 ? string2 + size2 : string1 + size1))
4074 /* Address of POS in the concatenation of virtual string. */
4075 #define POS_ADDR_VSTRING(POS) \
4076 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4078 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4079 virtual concatenation of STRING1 and STRING2, starting first at index
4080 STARTPOS, then at STARTPOS + 1, and so on.
4082 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4084 RANGE is how far to scan while trying to match. RANGE = 0 means try
4085 only at STARTPOS; in general, the last start tried is STARTPOS +
4088 In REGS, return the indices of the virtual concatenation of STRING1
4089 and STRING2 that matched the entire BUFP->buffer and its contained
4092 Do not consider matching one past the index STOP in the virtual
4093 concatenation of STRING1 and STRING2.
4095 We return either the position in the strings at which the match was
4096 found, -1 if no match, or -2 if error (such as failure
4100 re_search_2 (bufp
, str1
, size1
, str2
, size2
, startpos
, range
, regs
, stop
)
4101 struct re_pattern_buffer
*bufp
;
4102 const char *str1
, *str2
;
4106 struct re_registers
*regs
;
4110 re_char
*string1
= (re_char
*) str1
;
4111 re_char
*string2
= (re_char
*) str2
;
4112 register char *fastmap
= bufp
->fastmap
;
4113 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4114 int total_size
= size1
+ size2
;
4115 int endpos
= startpos
+ range
;
4116 boolean anchored_start
;
4118 /* Nonzero if we have to concern multibyte character. */
4119 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4121 /* Check for out-of-range STARTPOS. */
4122 if (startpos
< 0 || startpos
> total_size
)
4125 /* Fix up RANGE if it might eventually take us outside
4126 the virtual concatenation of STRING1 and STRING2.
4127 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4129 range
= 0 - startpos
;
4130 else if (endpos
> total_size
)
4131 range
= total_size
- startpos
;
4133 /* If the search isn't to be a backwards one, don't waste time in a
4134 search for a pattern anchored at beginning of buffer. */
4135 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4144 /* In a forward search for something that starts with \=.
4145 don't keep searching past point. */
4146 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4148 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4154 /* Update the fastmap now if not correct already. */
4155 if (fastmap
&& !bufp
->fastmap_accurate
)
4156 re_compile_fastmap (bufp
);
4158 /* See whether the pattern is anchored. */
4159 anchored_start
= (bufp
->buffer
[0] == begline
);
4162 gl_state
.object
= re_match_object
;
4164 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4166 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4170 /* Loop through the string, looking for a place to start matching. */
4173 /* If the pattern is anchored,
4174 skip quickly past places we cannot match.
4175 We don't bother to treat startpos == 0 specially
4176 because that case doesn't repeat. */
4177 if (anchored_start
&& startpos
> 0)
4179 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4180 : string2
[startpos
- size1
- 1])
4185 /* If a fastmap is supplied, skip quickly over characters that
4186 cannot be the start of a match. If the pattern can match the
4187 null string, however, we don't need to skip characters; we want
4188 the first null string. */
4189 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4191 register re_char
*d
;
4192 register re_wchar_t buf_ch
;
4194 d
= POS_ADDR_VSTRING (startpos
);
4196 if (range
> 0) /* Searching forwards. */
4198 register int lim
= 0;
4201 if (startpos
< size1
&& startpos
+ range
>= size1
)
4202 lim
= range
- (size1
- startpos
);
4204 /* Written out as an if-else to avoid testing `translate'
4206 if (RE_TRANSLATE_P (translate
))
4213 buf_ch
= STRING_CHAR_AND_LENGTH (d
, range
- lim
,
4216 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4221 range
-= buf_charlen
;
4226 && !fastmap
[RE_TRANSLATE (translate
, *d
)])
4233 while (range
> lim
&& !fastmap
[*d
])
4239 startpos
+= irange
- range
;
4241 else /* Searching backwards. */
4243 int room
= (startpos
>= size1
4244 ? size2
+ size1
- startpos
4245 : size1
- startpos
);
4246 buf_ch
= RE_STRING_CHAR (d
, room
);
4247 buf_ch
= TRANSLATE (buf_ch
);
4249 if (! (buf_ch
>= 0400
4250 || fastmap
[buf_ch
]))
4255 /* If can't match the null string, and that's all we have left, fail. */
4256 if (range
>= 0 && startpos
== total_size
&& fastmap
4257 && !bufp
->can_be_null
)
4260 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4261 startpos
, regs
, stop
);
4262 #ifndef REGEX_MALLOC
4279 /* Update STARTPOS to the next character boundary. */
4282 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4283 re_char
*pend
= STOP_ADDR_VSTRING (startpos
);
4284 int len
= MULTIBYTE_FORM_LENGTH (p
, pend
- p
);
4302 /* Update STARTPOS to the previous character boundary. */
4305 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4308 /* Find the head of multibyte form. */
4309 while (!CHAR_HEAD_P (*p
))
4314 if (MULTIBYTE_FORM_LENGTH (p
, len
+ 1) != (len
+ 1))
4330 WEAK_ALIAS (__re_search_2
, re_search_2
)
4332 /* Declarations and macros for re_match_2. */
4334 static int bcmp_translate
_RE_ARGS((re_char
*s1
, re_char
*s2
,
4336 RE_TRANSLATE_TYPE translate
,
4337 const int multibyte
));
4339 /* This converts PTR, a pointer into one of the search strings `string1'
4340 and `string2' into an offset from the beginning of that string. */
4341 #define POINTER_TO_OFFSET(ptr) \
4342 (FIRST_STRING_P (ptr) \
4343 ? ((regoff_t) ((ptr) - string1)) \
4344 : ((regoff_t) ((ptr) - string2 + size1)))
4346 /* Call before fetching a character with *d. This switches over to
4347 string2 if necessary.
4348 Check re_match_2_internal for a discussion of why end_match_2 might
4349 not be within string2 (but be equal to end_match_1 instead). */
4350 #define PREFETCH() \
4353 /* End of string2 => fail. */ \
4354 if (dend == end_match_2) \
4356 /* End of string1 => advance to string2. */ \
4358 dend = end_match_2; \
4361 /* Call before fetching a char with *d if you already checked other limits.
4362 This is meant for use in lookahead operations like wordend, etc..
4363 where we might need to look at parts of the string that might be
4364 outside of the LIMITs (i.e past `stop'). */
4365 #define PREFETCH_NOLIMIT() \
4369 dend = end_match_2; \
4372 /* Test if at very beginning or at very end of the virtual concatenation
4373 of `string1' and `string2'. If only one string, it's `string2'. */
4374 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4375 #define AT_STRINGS_END(d) ((d) == end2)
4378 /* Test if D points to a character which is word-constituent. We have
4379 two special cases to check for: if past the end of string1, look at
4380 the first character in string2; and if before the beginning of
4381 string2, look at the last character in string1. */
4382 #define WORDCHAR_P(d) \
4383 (SYNTAX ((d) == end1 ? *string2 \
4384 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4387 /* Disabled due to a compiler bug -- see comment at case wordbound */
4389 /* The comment at case wordbound is following one, but we don't use
4390 AT_WORD_BOUNDARY anymore to support multibyte form.
4392 The DEC Alpha C compiler 3.x generates incorrect code for the
4393 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4394 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4395 macro and introducing temporary variables works around the bug. */
4398 /* Test if the character before D and the one at D differ with respect
4399 to being word-constituent. */
4400 #define AT_WORD_BOUNDARY(d) \
4401 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4402 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4405 /* Free everything we malloc. */
4406 #ifdef MATCH_MAY_ALLOCATE
4407 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4408 # define FREE_VARIABLES() \
4410 REGEX_FREE_STACK (fail_stack.stack); \
4411 FREE_VAR (regstart); \
4412 FREE_VAR (regend); \
4413 FREE_VAR (best_regstart); \
4414 FREE_VAR (best_regend); \
4417 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4418 #endif /* not MATCH_MAY_ALLOCATE */
4421 /* Optimization routines. */
4423 /* If the operation is a match against one or more chars,
4424 return a pointer to the next operation, else return NULL. */
4429 switch (SWITCH_ENUM_CAST (*p
++))
4440 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4443 p
= CHARSET_RANGE_TABLE (p
- 1);
4444 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4445 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4448 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4455 case notcategoryspec
:
4467 /* Jump over non-matching operations. */
4468 static unsigned char *
4469 skip_noops (p
, pend
)
4470 unsigned char *p
, *pend
;
4475 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
))
4484 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4495 /* Non-zero if "p1 matches something" implies "p2 fails". */
4497 mutually_exclusive_p (bufp
, p1
, p2
)
4498 struct re_pattern_buffer
*bufp
;
4499 unsigned char *p1
, *p2
;
4502 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4503 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4505 assert (p1
>= bufp
->buffer
&& p1
< pend
4506 && p2
>= bufp
->buffer
&& p2
<= pend
);
4508 /* Skip over open/close-group commands.
4509 If what follows this loop is a ...+ construct,
4510 look at what begins its body, since we will have to
4511 match at least one of that. */
4512 p2
= skip_noops (p2
, pend
);
4513 /* The same skip can be done for p1, except that this function
4514 is only used in the case where p1 is a simple match operator. */
4515 /* p1 = skip_noops (p1, pend); */
4517 assert (p1
>= bufp
->buffer
&& p1
< pend
4518 && p2
>= bufp
->buffer
&& p2
<= pend
);
4520 op2
= p2
== pend
? succeed
: *p2
;
4522 switch (SWITCH_ENUM_CAST (op2
))
4526 /* If we're at the end of the pattern, we can change. */
4527 if (skip_one_char (p1
))
4529 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4537 register re_wchar_t c
4538 = (re_opcode_t
) *p2
== endline
? '\n'
4539 : RE_STRING_CHAR (p2
+ 2, pend
- p2
- 2);
4541 if ((re_opcode_t
) *p1
== exactn
)
4543 if (c
!= RE_STRING_CHAR (p1
+ 2, pend
- p1
- 2))
4545 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4550 else if ((re_opcode_t
) *p1
== charset
4551 || (re_opcode_t
) *p1
== charset_not
)
4553 int not = (re_opcode_t
) *p1
== charset_not
;
4555 /* Test if C is listed in charset (or charset_not)
4557 if (SINGLE_BYTE_CHAR_P (c
))
4559 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4560 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4563 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4564 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4566 /* `not' is equal to 1 if c would match, which means
4567 that we can't change to pop_failure_jump. */
4570 DEBUG_PRINT1 (" No match => fast loop.\n");
4574 else if ((re_opcode_t
) *p1
== anychar
4577 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4585 if ((re_opcode_t
) *p1
== exactn
)
4586 /* Reuse the code above. */
4587 return mutually_exclusive_p (bufp
, p2
, p1
);
4589 /* It is hard to list up all the character in charset
4590 P2 if it includes multibyte character. Give up in
4592 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4594 /* Now, we are sure that P2 has no range table.
4595 So, for the size of bitmap in P2, `p2[1]' is
4596 enough. But P1 may have range table, so the
4597 size of bitmap table of P1 is extracted by
4598 using macro `CHARSET_BITMAP_SIZE'.
4600 Since we know that all the character listed in
4601 P2 is ASCII, it is enough to test only bitmap
4604 if ((re_opcode_t
) *p1
== charset
)
4607 /* We win if the charset inside the loop
4608 has no overlap with the one after the loop. */
4611 && idx
< CHARSET_BITMAP_SIZE (p1
));
4613 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4617 || idx
== CHARSET_BITMAP_SIZE (p1
))
4619 DEBUG_PRINT1 (" No match => fast loop.\n");
4623 else if ((re_opcode_t
) *p1
== charset_not
)
4626 /* We win if the charset_not inside the loop lists
4627 every character listed in the charset after. */
4628 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4629 if (! (p2
[2 + idx
] == 0
4630 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4631 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4636 DEBUG_PRINT1 (" No match => fast loop.\n");
4645 switch (SWITCH_ENUM_CAST (*p1
))
4649 /* Reuse the code above. */
4650 return mutually_exclusive_p (bufp
, p2
, p1
);
4652 /* When we have two charset_not, it's very unlikely that
4653 they don't overlap. The union of the two sets of excluded
4654 chars should cover all possible chars, which, as a matter of
4655 fact, is virtually impossible in multibyte buffers. */
4662 return ((re_opcode_t
) *p1
== syntaxspec
4663 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4667 return ((re_opcode_t
) *p1
== notsyntaxspec
4668 && p1
[1] == (op2
== wordend
? Sword
: p2
[1]));
4671 return (((re_opcode_t
) *p1
== notsyntaxspec
4672 || (re_opcode_t
) *p1
== syntaxspec
)
4677 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4678 case notcategoryspec
:
4679 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4691 /* Matching routines. */
4693 #ifndef emacs /* Emacs never uses this. */
4694 /* re_match is like re_match_2 except it takes only a single string. */
4697 re_match (bufp
, string
, size
, pos
, regs
)
4698 struct re_pattern_buffer
*bufp
;
4701 struct re_registers
*regs
;
4703 int result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
, size
,
4705 # if defined C_ALLOCA && !defined REGEX_MALLOC
4710 WEAK_ALIAS (__re_match
, re_match
)
4711 #endif /* not emacs */
4714 /* In Emacs, this is the string or buffer in which we
4715 are matching. It is used for looking up syntax properties. */
4716 Lisp_Object re_match_object
;
4719 /* re_match_2 matches the compiled pattern in BUFP against the
4720 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4721 and SIZE2, respectively). We start matching at POS, and stop
4724 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4725 store offsets for the substring each group matched in REGS. See the
4726 documentation for exactly how many groups we fill.
4728 We return -1 if no match, -2 if an internal error (such as the
4729 failure stack overflowing). Otherwise, we return the length of the
4730 matched substring. */
4733 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4734 struct re_pattern_buffer
*bufp
;
4735 const char *string1
, *string2
;
4738 struct re_registers
*regs
;
4745 gl_state
.object
= re_match_object
;
4746 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4747 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4750 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4751 (re_char
*) string2
, size2
,
4753 #if defined C_ALLOCA && !defined REGEX_MALLOC
4758 WEAK_ALIAS (__re_match_2
, re_match_2
)
4760 /* This is a separate function so that we can force an alloca cleanup
4763 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
4764 struct re_pattern_buffer
*bufp
;
4765 re_char
*string1
, *string2
;
4768 struct re_registers
*regs
;
4771 /* General temporaries. */
4776 /* Just past the end of the corresponding string. */
4777 re_char
*end1
, *end2
;
4779 /* Pointers into string1 and string2, just past the last characters in
4780 each to consider matching. */
4781 re_char
*end_match_1
, *end_match_2
;
4783 /* Where we are in the data, and the end of the current string. */
4786 /* Used sometimes to remember where we were before starting matching
4787 an operator so that we can go back in case of failure. This "atomic"
4788 behavior of matching opcodes is indispensable to the correctness
4789 of the on_failure_keep_string_jump optimization. */
4792 /* Where we are in the pattern, and the end of the pattern. */
4793 re_char
*p
= bufp
->buffer
;
4794 re_char
*pend
= p
+ bufp
->used
;
4796 /* We use this to map every character in the string. */
4797 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4799 /* Nonzero if we have to concern multibyte character. */
4800 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4802 /* Failure point stack. Each place that can handle a failure further
4803 down the line pushes a failure point on this stack. It consists of
4804 regstart, and regend for all registers corresponding to
4805 the subexpressions we're currently inside, plus the number of such
4806 registers, and, finally, two char *'s. The first char * is where
4807 to resume scanning the pattern; the second one is where to resume
4808 scanning the strings. */
4809 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4810 fail_stack_type fail_stack
;
4813 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4816 #if defined REL_ALLOC && defined REGEX_MALLOC
4817 /* This holds the pointer to the failure stack, when
4818 it is allocated relocatably. */
4819 fail_stack_elt_t
*failure_stack_ptr
;
4822 /* We fill all the registers internally, independent of what we
4823 return, for use in backreferences. The number here includes
4824 an element for register zero. */
4825 size_t num_regs
= bufp
->re_nsub
+ 1;
4827 /* Information on the contents of registers. These are pointers into
4828 the input strings; they record just what was matched (on this
4829 attempt) by a subexpression part of the pattern, that is, the
4830 regnum-th regstart pointer points to where in the pattern we began
4831 matching and the regnum-th regend points to right after where we
4832 stopped matching the regnum-th subexpression. (The zeroth register
4833 keeps track of what the whole pattern matches.) */
4834 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4835 re_char
**regstart
, **regend
;
4838 /* The following record the register info as found in the above
4839 variables when we find a match better than any we've seen before.
4840 This happens as we backtrack through the failure points, which in
4841 turn happens only if we have not yet matched the entire string. */
4842 unsigned best_regs_set
= false;
4843 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4844 re_char
**best_regstart
, **best_regend
;
4847 /* Logically, this is `best_regend[0]'. But we don't want to have to
4848 allocate space for that if we're not allocating space for anything
4849 else (see below). Also, we never need info about register 0 for
4850 any of the other register vectors, and it seems rather a kludge to
4851 treat `best_regend' differently than the rest. So we keep track of
4852 the end of the best match so far in a separate variable. We
4853 initialize this to NULL so that when we backtrack the first time
4854 and need to test it, it's not garbage. */
4855 re_char
*match_end
= NULL
;
4858 /* Counts the total number of registers pushed. */
4859 unsigned num_regs_pushed
= 0;
4862 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
4866 #ifdef MATCH_MAY_ALLOCATE
4867 /* Do not bother to initialize all the register variables if there are
4868 no groups in the pattern, as it takes a fair amount of time. If
4869 there are groups, we include space for register 0 (the whole
4870 pattern), even though we never use it, since it simplifies the
4871 array indexing. We should fix this. */
4874 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4875 regend
= REGEX_TALLOC (num_regs
, re_char
*);
4876 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
4877 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
4879 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
4887 /* We must initialize all our variables to NULL, so that
4888 `FREE_VARIABLES' doesn't try to free them. */
4889 regstart
= regend
= best_regstart
= best_regend
= NULL
;
4891 #endif /* MATCH_MAY_ALLOCATE */
4893 /* The starting position is bogus. */
4894 if (pos
< 0 || pos
> size1
+ size2
)
4900 /* Initialize subexpression text positions to -1 to mark ones that no
4901 start_memory/stop_memory has been seen for. Also initialize the
4902 register information struct. */
4903 for (reg
= 1; reg
< num_regs
; reg
++)
4904 regstart
[reg
] = regend
[reg
] = NULL
;
4906 /* We move `string1' into `string2' if the latter's empty -- but not if
4907 `string1' is null. */
4908 if (size2
== 0 && string1
!= NULL
)
4915 end1
= string1
+ size1
;
4916 end2
= string2
+ size2
;
4918 /* `p' scans through the pattern as `d' scans through the data.
4919 `dend' is the end of the input string that `d' points within. `d'
4920 is advanced into the following input string whenever necessary, but
4921 this happens before fetching; therefore, at the beginning of the
4922 loop, `d' can be pointing at the end of a string, but it cannot
4926 /* Only match within string2. */
4927 d
= string2
+ pos
- size1
;
4928 dend
= end_match_2
= string2
+ stop
- size1
;
4929 end_match_1
= end1
; /* Just to give it a value. */
4935 /* Only match within string1. */
4936 end_match_1
= string1
+ stop
;
4938 When we reach end_match_1, PREFETCH normally switches to string2.
4939 But in the present case, this means that just doing a PREFETCH
4940 makes us jump from `stop' to `gap' within the string.
4941 What we really want here is for the search to stop as
4942 soon as we hit end_match_1. That's why we set end_match_2
4943 to end_match_1 (since PREFETCH fails as soon as we hit
4945 end_match_2
= end_match_1
;
4948 { /* It's important to use this code when stop == size so that
4949 moving `d' from end1 to string2 will not prevent the d == dend
4950 check from catching the end of string. */
4952 end_match_2
= string2
+ stop
- size1
;
4958 DEBUG_PRINT1 ("The compiled pattern is: ");
4959 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
4960 DEBUG_PRINT1 ("The string to match is: `");
4961 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
4962 DEBUG_PRINT1 ("'\n");
4964 /* This loops over pattern commands. It exits by returning from the
4965 function if the match is complete, or it drops through if the match
4966 fails at this starting point in the input data. */
4969 DEBUG_PRINT2 ("\n%p: ", p
);
4972 { /* End of pattern means we might have succeeded. */
4973 DEBUG_PRINT1 ("end of pattern ... ");
4975 /* If we haven't matched the entire string, and we want the
4976 longest match, try backtracking. */
4977 if (d
!= end_match_2
)
4979 /* 1 if this match ends in the same string (string1 or string2)
4980 as the best previous match. */
4981 boolean same_str_p
= (FIRST_STRING_P (match_end
)
4982 == FIRST_STRING_P (d
));
4983 /* 1 if this match is the best seen so far. */
4984 boolean best_match_p
;
4986 /* AIX compiler got confused when this was combined
4987 with the previous declaration. */
4989 best_match_p
= d
> match_end
;
4991 best_match_p
= !FIRST_STRING_P (d
);
4993 DEBUG_PRINT1 ("backtracking.\n");
4995 if (!FAIL_STACK_EMPTY ())
4996 { /* More failure points to try. */
4998 /* If exceeds best match so far, save it. */
4999 if (!best_regs_set
|| best_match_p
)
5001 best_regs_set
= true;
5004 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5006 for (reg
= 1; reg
< num_regs
; reg
++)
5008 best_regstart
[reg
] = regstart
[reg
];
5009 best_regend
[reg
] = regend
[reg
];
5015 /* If no failure points, don't restore garbage. And if
5016 last match is real best match, don't restore second
5018 else if (best_regs_set
&& !best_match_p
)
5021 /* Restore best match. It may happen that `dend ==
5022 end_match_1' while the restored d is in string2.
5023 For example, the pattern `x.*y.*z' against the
5024 strings `x-' and `y-z-', if the two strings are
5025 not consecutive in memory. */
5026 DEBUG_PRINT1 ("Restoring best registers.\n");
5029 dend
= ((d
>= string1
&& d
<= end1
)
5030 ? end_match_1
: end_match_2
);
5032 for (reg
= 1; reg
< num_regs
; reg
++)
5034 regstart
[reg
] = best_regstart
[reg
];
5035 regend
[reg
] = best_regend
[reg
];
5038 } /* d != end_match_2 */
5041 DEBUG_PRINT1 ("Accepting match.\n");
5043 /* If caller wants register contents data back, do it. */
5044 if (regs
&& !bufp
->no_sub
)
5046 /* Have the register data arrays been allocated? */
5047 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5048 { /* No. So allocate them with malloc. We need one
5049 extra element beyond `num_regs' for the `-1' marker
5051 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
5052 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5053 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5054 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5059 bufp
->regs_allocated
= REGS_REALLOCATE
;
5061 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5062 { /* Yes. If we need more elements than were already
5063 allocated, reallocate them. If we need fewer, just
5065 if (regs
->num_regs
< num_regs
+ 1)
5067 regs
->num_regs
= num_regs
+ 1;
5068 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5069 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5070 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5079 /* These braces fend off a "empty body in an else-statement"
5080 warning under GCC when assert expands to nothing. */
5081 assert (bufp
->regs_allocated
== REGS_FIXED
);
5084 /* Convert the pointer data in `regstart' and `regend' to
5085 indices. Register zero has to be set differently,
5086 since we haven't kept track of any info for it. */
5087 if (regs
->num_regs
> 0)
5089 regs
->start
[0] = pos
;
5090 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5093 /* Go through the first `min (num_regs, regs->num_regs)'
5094 registers, since that is all we initialized. */
5095 for (reg
= 1; reg
< MIN (num_regs
, regs
->num_regs
); reg
++)
5097 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5098 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5102 = (regoff_t
) POINTER_TO_OFFSET (regstart
[reg
]);
5104 = (regoff_t
) POINTER_TO_OFFSET (regend
[reg
]);
5108 /* If the regs structure we return has more elements than
5109 were in the pattern, set the extra elements to -1. If
5110 we (re)allocated the registers, this is the case,
5111 because we always allocate enough to have at least one
5113 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5114 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5115 } /* regs && !bufp->no_sub */
5117 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5118 nfailure_points_pushed
, nfailure_points_popped
,
5119 nfailure_points_pushed
- nfailure_points_popped
);
5120 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
5122 mcnt
= POINTER_TO_OFFSET (d
) - pos
;
5124 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
5130 /* Otherwise match next pattern command. */
5131 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *p
++))
5133 /* Ignore these. Used to ignore the n of succeed_n's which
5134 currently have n == 0. */
5136 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5140 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5143 /* Match the next n pattern characters exactly. The following
5144 byte in the pattern defines n, and the n bytes after that
5145 are the characters to match. */
5148 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
5150 /* Remember the start point to rollback upon failure. */
5153 /* This is written out as an if-else so we don't waste time
5154 testing `translate' inside the loop. */
5155 if (RE_TRANSLATE_P (translate
))
5160 int pat_charlen
, buf_charlen
;
5161 unsigned int pat_ch
, buf_ch
;
5164 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pend
- p
, pat_charlen
);
5165 buf_ch
= STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5167 if (RE_TRANSLATE (translate
, buf_ch
)
5176 mcnt
-= pat_charlen
;
5183 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5208 /* Match any character except possibly a newline or a null. */
5214 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5217 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, buf_charlen
);
5218 buf_ch
= TRANSLATE (buf_ch
);
5220 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5222 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5223 && buf_ch
== '\000'))
5226 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
5235 register unsigned int c
;
5236 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5239 /* Start of actual range_table, or end of bitmap if there is no
5241 re_char
*range_table
;
5243 /* Nonzero if there is a range table. */
5244 int range_table_exists
;
5246 /* Number of ranges of range table. This is not included
5247 in the initial byte-length of the command. */
5250 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5252 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5254 if (range_table_exists
)
5256 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5257 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5261 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5262 c
= TRANSLATE (c
); /* The character to match. */
5264 if (SINGLE_BYTE_CHAR_P (c
))
5265 { /* Lookup bitmap. */
5266 /* Cast to `unsigned' instead of `unsigned char' in
5267 case the bit list is a full 32 bytes long. */
5268 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5269 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5273 else if (range_table_exists
)
5275 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5277 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5278 | (class_bits
& BIT_MULTIBYTE
)
5279 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5280 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5281 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5282 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5285 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5289 if (range_table_exists
)
5290 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5292 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5294 if (!not) goto fail
;
5301 /* The beginning of a group is represented by start_memory.
5302 The argument is the register number. The text
5303 matched within the group is recorded (in the internal
5304 registers data structure) under the register number. */
5306 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p
);
5308 /* In case we need to undo this operation (via backtracking). */
5309 PUSH_FAILURE_REG ((unsigned int)*p
);
5312 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5313 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
5315 /* Move past the register number and inner group count. */
5320 /* The stop_memory opcode represents the end of a group. Its
5321 argument is the same as start_memory's: the register number. */
5323 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p
);
5325 assert (!REG_UNSET (regstart
[*p
]));
5326 /* Strictly speaking, there should be code such as:
5328 assert (REG_UNSET (regend[*p]));
5329 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5331 But the only info to be pushed is regend[*p] and it is known to
5332 be UNSET, so there really isn't anything to push.
5333 Not pushing anything, on the other hand deprives us from the
5334 guarantee that regend[*p] is UNSET since undoing this operation
5335 will not reset its value properly. This is not important since
5336 the value will only be read on the next start_memory or at
5337 the very end and both events can only happen if this stop_memory
5341 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
5343 /* Move past the register number and the inner group count. */
5348 /* \<digit> has been turned into a `duplicate' command which is
5349 followed by the numeric value of <digit> as the register number. */
5352 register re_char
*d2
, *dend2
;
5353 int regno
= *p
++; /* Get which register to match against. */
5354 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
5356 /* Can't back reference a group which we've never matched. */
5357 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5360 /* Where in input to try to start matching. */
5361 d2
= regstart
[regno
];
5363 /* Remember the start point to rollback upon failure. */
5366 /* Where to stop matching; if both the place to start and
5367 the place to stop matching are in the same string, then
5368 set to the place to stop, otherwise, for now have to use
5369 the end of the first string. */
5371 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5372 == FIRST_STRING_P (regend
[regno
]))
5373 ? regend
[regno
] : end_match_1
);
5376 /* If necessary, advance to next segment in register
5380 if (dend2
== end_match_2
) break;
5381 if (dend2
== regend
[regno
]) break;
5383 /* End of string1 => advance to string2. */
5385 dend2
= regend
[regno
];
5387 /* At end of register contents => success */
5388 if (d2
== dend2
) break;
5390 /* If necessary, advance to next segment in data. */
5393 /* How many characters left in this segment to match. */
5396 /* Want how many consecutive characters we can match in
5397 one shot, so, if necessary, adjust the count. */
5398 if (mcnt
> dend2
- d2
)
5401 /* Compare that many; failure if mismatch, else move
5403 if (RE_TRANSLATE_P (translate
)
5404 ? bcmp_translate (d
, d2
, mcnt
, translate
, multibyte
)
5405 : memcmp (d
, d2
, mcnt
))
5410 d
+= mcnt
, d2
+= mcnt
;
5416 /* begline matches the empty string at the beginning of the string
5417 (unless `not_bol' is set in `bufp'), and after newlines. */
5419 DEBUG_PRINT1 ("EXECUTING begline.\n");
5421 if (AT_STRINGS_BEG (d
))
5423 if (!bufp
->not_bol
) break;
5428 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5432 /* In all other cases, we fail. */
5436 /* endline is the dual of begline. */
5438 DEBUG_PRINT1 ("EXECUTING endline.\n");
5440 if (AT_STRINGS_END (d
))
5442 if (!bufp
->not_eol
) break;
5446 PREFETCH_NOLIMIT ();
5453 /* Match at the very beginning of the data. */
5455 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5456 if (AT_STRINGS_BEG (d
))
5461 /* Match at the very end of the data. */
5463 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5464 if (AT_STRINGS_END (d
))
5469 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5470 pushes NULL as the value for the string on the stack. Then
5471 `POP_FAILURE_POINT' will keep the current value for the
5472 string, instead of restoring it. To see why, consider
5473 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5474 then the . fails against the \n. But the next thing we want
5475 to do is match the \n against the \n; if we restored the
5476 string value, we would be back at the foo.
5478 Because this is used only in specific cases, we don't need to
5479 check all the things that `on_failure_jump' does, to make
5480 sure the right things get saved on the stack. Hence we don't
5481 share its code. The only reason to push anything on the
5482 stack at all is that otherwise we would have to change
5483 `anychar's code to do something besides goto fail in this
5484 case; that seems worse than this. */
5485 case on_failure_keep_string_jump
:
5486 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5487 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5490 PUSH_FAILURE_POINT (p
- 3, NULL
);
5493 /* A nasty loop is introduced by the non-greedy *? and +?.
5494 With such loops, the stack only ever contains one failure point
5495 at a time, so that a plain on_failure_jump_loop kind of
5496 cycle detection cannot work. Worse yet, such a detection
5497 can not only fail to detect a cycle, but it can also wrongly
5498 detect a cycle (between different instantiations of the same
5500 So the method used for those nasty loops is a little different:
5501 We use a special cycle-detection-stack-frame which is pushed
5502 when the on_failure_jump_nastyloop failure-point is *popped*.
5503 This special frame thus marks the beginning of one iteration
5504 through the loop and we can hence easily check right here
5505 whether something matched between the beginning and the end of
5507 case on_failure_jump_nastyloop
:
5508 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5509 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5512 assert ((re_opcode_t
)p
[-4] == no_op
);
5515 CHECK_INFINITE_LOOP (p
- 4, d
);
5517 /* If there's a cycle, just continue without pushing
5518 this failure point. The failure point is the "try again"
5519 option, which shouldn't be tried.
5520 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5521 PUSH_FAILURE_POINT (p
- 3, d
);
5525 /* Simple loop detecting on_failure_jump: just check on the
5526 failure stack if the same spot was already hit earlier. */
5527 case on_failure_jump_loop
:
5529 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5530 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5534 CHECK_INFINITE_LOOP (p
- 3, d
);
5536 /* If there's a cycle, get out of the loop, as if the matching
5537 had failed. We used to just `goto fail' here, but that was
5538 aborting the search a bit too early: we want to keep the
5539 empty-loop-match and keep matching after the loop.
5540 We want (x?)*y\1z to match both xxyz and xxyxz. */
5543 PUSH_FAILURE_POINT (p
- 3, d
);
5548 /* Uses of on_failure_jump:
5550 Each alternative starts with an on_failure_jump that points
5551 to the beginning of the next alternative. Each alternative
5552 except the last ends with a jump that in effect jumps past
5553 the rest of the alternatives. (They really jump to the
5554 ending jump of the following alternative, because tensioning
5555 these jumps is a hassle.)
5557 Repeats start with an on_failure_jump that points past both
5558 the repetition text and either the following jump or
5559 pop_failure_jump back to this on_failure_jump. */
5560 case on_failure_jump
:
5561 IMMEDIATE_QUIT_CHECK
;
5562 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5563 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5566 PUSH_FAILURE_POINT (p
-3, d
);
5569 /* This operation is used for greedy *.
5570 Compare the beginning of the repeat with what in the
5571 pattern follows its end. If we can establish that there
5572 is nothing that they would both match, i.e., that we
5573 would have to backtrack because of (as in, e.g., `a*a')
5574 then we can use a non-backtracking loop based on
5575 on_failure_keep_string_jump instead of on_failure_jump. */
5576 case on_failure_jump_smart
:
5577 IMMEDIATE_QUIT_CHECK
;
5578 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5579 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5582 re_char
*p1
= p
; /* Next operation. */
5583 /* Here, we discard `const', making re_match non-reentrant. */
5584 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5585 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5587 p
-= 3; /* Reset so that we will re-execute the
5588 instruction once it's been changed. */
5590 EXTRACT_NUMBER (mcnt
, p2
- 2);
5592 /* Ensure this is a indeed the trivial kind of loop
5593 we are expecting. */
5594 assert (skip_one_char (p1
) == p2
- 3);
5595 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5596 DEBUG_STATEMENT (debug
+= 2);
5597 if (mutually_exclusive_p (bufp
, p1
, p2
))
5599 /* Use a fast `on_failure_keep_string_jump' loop. */
5600 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5601 *p3
= (unsigned char) on_failure_keep_string_jump
;
5602 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5606 /* Default to a safe `on_failure_jump' loop. */
5607 DEBUG_PRINT1 (" smart default => slow loop.\n");
5608 *p3
= (unsigned char) on_failure_jump
;
5610 DEBUG_STATEMENT (debug
-= 2);
5614 /* Unconditionally jump (without popping any failure points). */
5617 IMMEDIATE_QUIT_CHECK
;
5618 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5619 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
5620 p
+= mcnt
; /* Do the jump. */
5621 DEBUG_PRINT2 ("(to %p).\n", p
);
5625 /* Have to succeed matching what follows at least n times.
5626 After that, handle like `on_failure_jump'. */
5628 /* Signedness doesn't matter since we only compare MCNT to 0. */
5629 EXTRACT_NUMBER (mcnt
, p
+ 2);
5630 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
5632 /* Originally, mcnt is how many times we HAVE to succeed. */
5635 /* Here, we discard `const', making re_match non-reentrant. */
5636 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5639 PUSH_NUMBER (p2
, mcnt
);
5642 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5647 /* Signedness doesn't matter since we only compare MCNT to 0. */
5648 EXTRACT_NUMBER (mcnt
, p
+ 2);
5649 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
5651 /* Originally, this is how many times we CAN jump. */
5654 /* Here, we discard `const', making re_match non-reentrant. */
5655 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5657 PUSH_NUMBER (p2
, mcnt
);
5658 goto unconditional_jump
;
5660 /* If don't have to jump any more, skip over the rest of command. */
5667 unsigned char *p2
; /* Location of the counter. */
5668 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5670 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5671 /* Here, we discard `const', making re_match non-reentrant. */
5672 p2
= (unsigned char*) p
+ mcnt
;
5673 /* Signedness doesn't matter since we only copy MCNT's bits . */
5674 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5675 DEBUG_PRINT3 (" Setting %p to %d.\n", p2
, mcnt
);
5676 PUSH_NUMBER (p2
, mcnt
);
5682 not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5683 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5685 /* We SUCCEED (or FAIL) in one of the following cases: */
5687 /* Case 1: D is at the beginning or the end of string. */
5688 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5692 /* C1 is the character before D, S1 is the syntax of C1, C2
5693 is the character at D, and S2 is the syntax of C2. */
5697 int offset
= PTR_TO_OFFSET (d
- 1);
5698 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5699 UPDATE_SYNTAX_TABLE (charpos
);
5701 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5704 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5706 PREFETCH_NOLIMIT ();
5707 c2
= RE_STRING_CHAR (d
, dend
- d
);
5710 if (/* Case 2: Only one of S1 and S2 is Sword. */
5711 ((s1
== Sword
) != (s2
== Sword
))
5712 /* Case 3: Both of S1 and S2 are Sword, and macro
5713 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5714 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5723 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5725 /* We FAIL in one of the following cases: */
5727 /* Case 1: D is at the end of string. */
5728 if (AT_STRINGS_END (d
))
5732 /* C1 is the character before D, S1 is the syntax of C1, C2
5733 is the character at D, and S2 is the syntax of C2. */
5737 int offset
= PTR_TO_OFFSET (d
);
5738 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5739 UPDATE_SYNTAX_TABLE (charpos
);
5742 c2
= RE_STRING_CHAR (d
, dend
- d
);
5745 /* Case 2: S2 is not Sword. */
5749 /* Case 3: D is not at the beginning of string ... */
5750 if (!AT_STRINGS_BEG (d
))
5752 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5754 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5758 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5760 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5767 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5769 /* We FAIL in one of the following cases: */
5771 /* Case 1: D is at the beginning of string. */
5772 if (AT_STRINGS_BEG (d
))
5776 /* C1 is the character before D, S1 is the syntax of C1, C2
5777 is the character at D, and S2 is the syntax of C2. */
5781 int offset
= PTR_TO_OFFSET (d
) - 1;
5782 int charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5783 UPDATE_SYNTAX_TABLE (charpos
);
5785 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5788 /* Case 2: S1 is not Sword. */
5792 /* Case 3: D is not at the end of string ... */
5793 if (!AT_STRINGS_END (d
))
5795 PREFETCH_NOLIMIT ();
5796 c2
= RE_STRING_CHAR (d
, dend
- d
);
5798 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
5802 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5804 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
5812 not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
5814 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt
);
5818 int offset
= PTR_TO_OFFSET (d
);
5819 int pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5820 UPDATE_SYNTAX_TABLE (pos1
);
5827 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5829 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
5837 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
5838 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
5843 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
5844 if (PTR_BYTE_POS (d
) != PT_BYTE
)
5849 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
5850 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
5855 case notcategoryspec
:
5856 not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
5858 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt
);
5864 c
= RE_STRING_CHAR_AND_LENGTH (d
, dend
- d
, len
);
5866 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
5877 continue; /* Successfully executed one pattern command; keep going. */
5880 /* We goto here if a matching operation fails. */
5882 IMMEDIATE_QUIT_CHECK
;
5883 if (!FAIL_STACK_EMPTY ())
5886 /* A restart point is known. Restore to that state. */
5887 DEBUG_PRINT1 ("\nFAIL:\n");
5888 POP_FAILURE_POINT (str
, pat
);
5889 switch (SWITCH_ENUM_CAST ((re_opcode_t
) *pat
++))
5891 case on_failure_keep_string_jump
:
5892 assert (str
== NULL
);
5893 goto continue_failure_jump
;
5895 case on_failure_jump_nastyloop
:
5896 assert ((re_opcode_t
)pat
[-2] == no_op
);
5897 PUSH_FAILURE_POINT (pat
- 2, str
);
5900 case on_failure_jump_loop
:
5901 case on_failure_jump
:
5904 continue_failure_jump
:
5905 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
5910 /* A special frame used for nastyloops. */
5917 assert (p
>= bufp
->buffer
&& p
<= pend
);
5919 if (d
>= string1
&& d
<= end1
)
5923 break; /* Matching at this starting point really fails. */
5927 goto restore_best_regs
;
5931 return -1; /* Failure to match. */
5934 /* Subroutine definitions for re_match_2. */
5936 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
5937 bytes; nonzero otherwise. */
5940 bcmp_translate (s1
, s2
, len
, translate
, multibyte
)
5943 RE_TRANSLATE_TYPE translate
;
5944 const int multibyte
;
5946 register re_char
*p1
= s1
, *p2
= s2
;
5947 re_char
*p1_end
= s1
+ len
;
5948 re_char
*p2_end
= s2
+ len
;
5950 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
5951 different lengths, but relying on a single `len' would break this. -sm */
5952 while (p1
< p1_end
&& p2
< p2_end
)
5954 int p1_charlen
, p2_charlen
;
5955 re_wchar_t p1_ch
, p2_ch
;
5957 p1_ch
= RE_STRING_CHAR_AND_LENGTH (p1
, p1_end
- p1
, p1_charlen
);
5958 p2_ch
= RE_STRING_CHAR_AND_LENGTH (p2
, p2_end
- p2
, p2_charlen
);
5960 if (RE_TRANSLATE (translate
, p1_ch
)
5961 != RE_TRANSLATE (translate
, p2_ch
))
5964 p1
+= p1_charlen
, p2
+= p2_charlen
;
5967 if (p1
!= p1_end
|| p2
!= p2_end
)
5973 /* Entry points for GNU code. */
5975 /* re_compile_pattern is the GNU regular expression compiler: it
5976 compiles PATTERN (of length SIZE) and puts the result in BUFP.
5977 Returns 0 if the pattern was valid, otherwise an error string.
5979 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
5980 are set in BUFP on entry.
5982 We call regex_compile to do the actual compilation. */
5985 re_compile_pattern (pattern
, length
, bufp
)
5986 const char *pattern
;
5988 struct re_pattern_buffer
*bufp
;
5992 /* GNU code is written to assume at least RE_NREGS registers will be set
5993 (and at least one extra will be -1). */
5994 bufp
->regs_allocated
= REGS_UNALLOCATED
;
5996 /* And GNU code determines whether or not to get register information
5997 by passing null for the REGS argument to re_match, etc., not by
6001 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6005 return gettext (re_error_msgid
[(int) ret
]);
6007 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6009 /* Entry points compatible with 4.2 BSD regex library. We don't define
6010 them unless specifically requested. */
6012 #if defined _REGEX_RE_COMP || defined _LIBC
6014 /* BSD has one and only one pattern buffer. */
6015 static struct re_pattern_buffer re_comp_buf
;
6019 /* Make these definitions weak in libc, so POSIX programs can redefine
6020 these names if they don't use our functions, and still use
6021 regcomp/regexec below without link errors. */
6031 if (!re_comp_buf
.buffer
)
6032 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6033 return (char *) gettext ("No previous regular expression");
6037 if (!re_comp_buf
.buffer
)
6039 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
6040 if (re_comp_buf
.buffer
== NULL
)
6041 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6042 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6043 re_comp_buf
.allocated
= 200;
6045 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6046 if (re_comp_buf
.fastmap
== NULL
)
6047 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6048 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6051 /* Since `re_exec' always passes NULL for the `regs' argument, we
6052 don't need to initialize the pattern buffer fields which affect it. */
6054 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6059 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6060 return (char *) gettext (re_error_msgid
[(int) ret
]);
6071 const int len
= strlen (s
);
6073 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
6075 #endif /* _REGEX_RE_COMP */
6077 /* POSIX.2 functions. Don't define these for Emacs. */
6081 /* regcomp takes a regular expression as a string and compiles it.
6083 PREG is a regex_t *. We do not expect any fields to be initialized,
6084 since POSIX says we shouldn't. Thus, we set
6086 `buffer' to the compiled pattern;
6087 `used' to the length of the compiled pattern;
6088 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6089 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6090 RE_SYNTAX_POSIX_BASIC;
6091 `fastmap' to an allocated space for the fastmap;
6092 `fastmap_accurate' to zero;
6093 `re_nsub' to the number of subexpressions in PATTERN.
6095 PATTERN is the address of the pattern string.
6097 CFLAGS is a series of bits which affect compilation.
6099 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6100 use POSIX basic syntax.
6102 If REG_NEWLINE is set, then . and [^...] don't match newline.
6103 Also, regexec will try a match beginning after every newline.
6105 If REG_ICASE is set, then we considers upper- and lowercase
6106 versions of letters to be equivalent when matching.
6108 If REG_NOSUB is set, then when PREG is passed to regexec, that
6109 routine will report only success or failure, and nothing about the
6112 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6113 the return codes and their meanings.) */
6116 regcomp (preg
, pattern
, cflags
)
6117 regex_t
*__restrict preg
;
6118 const char *__restrict pattern
;
6123 = (cflags
& REG_EXTENDED
) ?
6124 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6126 /* regex_compile will allocate the space for the compiled pattern. */
6128 preg
->allocated
= 0;
6131 /* Try to allocate space for the fastmap. */
6132 preg
->fastmap
= (char *) malloc (1 << BYTEWIDTH
);
6134 if (cflags
& REG_ICASE
)
6139 = (RE_TRANSLATE_TYPE
) malloc (CHAR_SET_SIZE
6140 * sizeof (*(RE_TRANSLATE_TYPE
)0));
6141 if (preg
->translate
== NULL
)
6142 return (int) REG_ESPACE
;
6144 /* Map uppercase characters to corresponding lowercase ones. */
6145 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6146 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6149 preg
->translate
= NULL
;
6151 /* If REG_NEWLINE is set, newlines are treated differently. */
6152 if (cflags
& REG_NEWLINE
)
6153 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6154 syntax
&= ~RE_DOT_NEWLINE
;
6155 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6158 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6160 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6162 /* POSIX says a null character in the pattern terminates it, so we
6163 can use strlen here in compiling the pattern. */
6164 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6166 /* POSIX doesn't distinguish between an unmatched open-group and an
6167 unmatched close-group: both are REG_EPAREN. */
6168 if (ret
== REG_ERPAREN
)
6171 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6172 { /* Compute the fastmap now, since regexec cannot modify the pattern
6174 re_compile_fastmap (preg
);
6175 if (preg
->can_be_null
)
6176 { /* The fastmap can't be used anyway. */
6177 free (preg
->fastmap
);
6178 preg
->fastmap
= NULL
;
6183 WEAK_ALIAS (__regcomp
, regcomp
)
6186 /* regexec searches for a given pattern, specified by PREG, in the
6189 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6190 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6191 least NMATCH elements, and we set them to the offsets of the
6192 corresponding matched substrings.
6194 EFLAGS specifies `execution flags' which affect matching: if
6195 REG_NOTBOL is set, then ^ does not match at the beginning of the
6196 string; if REG_NOTEOL is set, then $ does not match at the end.
6198 We return 0 if we find a match and REG_NOMATCH if not. */
6201 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
6202 const regex_t
*__restrict preg
;
6203 const char *__restrict string
;
6205 regmatch_t pmatch
[];
6209 struct re_registers regs
;
6210 regex_t private_preg
;
6211 int len
= strlen (string
);
6212 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6214 private_preg
= *preg
;
6216 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6217 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6219 /* The user has told us exactly how many registers to return
6220 information about, via `nmatch'. We have to pass that on to the
6221 matching routines. */
6222 private_preg
.regs_allocated
= REGS_FIXED
;
6226 regs
.num_regs
= nmatch
;
6227 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6228 if (regs
.start
== NULL
)
6229 return (int) REG_NOMATCH
;
6230 regs
.end
= regs
.start
+ nmatch
;
6233 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6234 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6235 was a little bit longer but still only matching the real part.
6236 This works because the `endline' will check for a '\n' and will find a
6237 '\0', correctly deciding that this is not the end of a line.
6238 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6239 a convenient '\0' there. For all we know, the string could be preceded
6240 by '\n' which would throw things off. */
6242 /* Perform the searching operation. */
6243 ret
= re_search (&private_preg
, string
, len
,
6244 /* start: */ 0, /* range: */ len
,
6245 want_reg_info
? ®s
: (struct re_registers
*) 0);
6247 /* Copy the register information to the POSIX structure. */
6254 for (r
= 0; r
< nmatch
; r
++)
6256 pmatch
[r
].rm_so
= regs
.start
[r
];
6257 pmatch
[r
].rm_eo
= regs
.end
[r
];
6261 /* If we needed the temporary register info, free the space now. */
6265 /* We want zero return to mean success, unlike `re_search'. */
6266 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
6268 WEAK_ALIAS (__regexec
, regexec
)
6271 /* Returns a message corresponding to an error code, ERRCODE, returned
6272 from either regcomp or regexec. We don't use PREG here. */
6275 regerror (errcode
, preg
, errbuf
, errbuf_size
)
6277 const regex_t
*preg
;
6285 || errcode
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6286 /* Only error codes returned by the rest of the code should be passed
6287 to this routine. If we are given anything else, or if other regex
6288 code generates an invalid error code, then the program has a bug.
6289 Dump core so we can fix it. */
6292 msg
= gettext (re_error_msgid
[errcode
]);
6294 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6296 if (errbuf_size
!= 0)
6298 if (msg_size
> errbuf_size
)
6300 strncpy (errbuf
, msg
, errbuf_size
- 1);
6301 errbuf
[errbuf_size
- 1] = 0;
6304 strcpy (errbuf
, msg
);
6309 WEAK_ALIAS (__regerror
, regerror
)
6312 /* Free dynamically allocated space used by PREG. */
6318 if (preg
->buffer
!= NULL
)
6319 free (preg
->buffer
);
6320 preg
->buffer
= NULL
;
6322 preg
->allocated
= 0;
6325 if (preg
->fastmap
!= NULL
)
6326 free (preg
->fastmap
);
6327 preg
->fastmap
= NULL
;
6328 preg
->fastmap_accurate
= 0;
6330 if (preg
->translate
!= NULL
)
6331 free (preg
->translate
);
6332 preg
->translate
= NULL
;
6334 WEAK_ALIAS (__regfree
, regfree
)
6336 #endif /* not emacs */