1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
36 #include "intervals.h"
38 #include "character.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
47 #endif /* HAVE_WINDOW_SYSTEM */
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p
;
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
66 # undef GC_CHECK_MARKED_OBJECTS
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
86 #include "w32heap.h" /* for sbrk */
89 #ifdef DOUG_LEA_MALLOC
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
96 #define MMAP_MAX_AREAS 100000000
98 #endif /* not DOUG_LEA_MALLOC */
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111 /* Default value of gc_cons_threshold (see below). */
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115 /* Global variables. */
116 struct emacs_globals globals
;
118 /* Number of bytes of consing done since the last gc. */
120 EMACS_INT consing_since_gc
;
122 /* Similar minimum, computed from Vgc_cons_percentage. */
124 EMACS_INT gc_relative_threshold
;
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
129 EMACS_INT memory_full_cons_threshold
;
131 /* True during GC. */
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
141 /* Number of live and free conses etc. */
143 static EMACS_INT total_conses
, total_markers
, total_symbols
, total_buffers
;
144 static EMACS_INT total_free_conses
, total_free_markers
, total_free_symbols
;
145 static EMACS_INT total_free_floats
, total_floats
;
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
151 static char *spare_memory
[7];
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
156 #define SPARE_MEMORY (1 << 14)
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
164 EMACS_INT pure
[(PURESIZE
+ sizeof (EMACS_INT
) - 1) / sizeof (EMACS_INT
)] = {1,};
165 #define PUREBEG (char *) pure
167 /* Pointer to the pure area, and its size. */
169 static char *purebeg
;
170 static ptrdiff_t pure_size
;
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
175 static ptrdiff_t pure_bytes_used_before_overflow
;
177 /* True if P points into pure space. */
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182 /* Index in pure at which next pure Lisp object will be allocated.. */
184 static ptrdiff_t pure_bytes_used_lisp
;
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188 static ptrdiff_t pure_bytes_used_non_lisp
;
190 /* If nonzero, this is a warning delivered by malloc and not yet
193 const char *pending_malloc_warning
;
195 /* Maximum amount of C stack to save when a GC happens. */
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
201 /* Buffer in which we save a copy of the C stack at each GC. */
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy
;
205 static ptrdiff_t stack_copy_size
;
208 static Lisp_Object Qconses
;
209 static Lisp_Object Qsymbols
;
210 static Lisp_Object Qmiscs
;
211 static Lisp_Object Qstrings
;
212 static Lisp_Object Qvectors
;
213 static Lisp_Object Qfloats
;
214 static Lisp_Object Qintervals
;
215 static Lisp_Object Qbuffers
;
216 static Lisp_Object Qstring_bytes
, Qvector_slots
, Qheap
;
217 static Lisp_Object Qgc_cons_threshold
;
218 Lisp_Object Qautomatic_gc
;
219 Lisp_Object Qchar_table_extra_slots
;
221 /* Hook run after GC has finished. */
223 static Lisp_Object Qpost_gc_hook
;
225 static void mark_terminals (void);
226 static void gc_sweep (void);
227 static Lisp_Object
make_pure_vector (ptrdiff_t);
228 static void mark_buffer (struct buffer
*);
230 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
231 static void refill_memory_reserve (void);
233 static void compact_small_strings (void);
234 static void free_large_strings (void);
235 extern Lisp_Object
which_symbols (Lisp_Object
, EMACS_INT
) EXTERNALLY_VISIBLE
;
237 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
238 what memory allocated via lisp_malloc and lisp_align_malloc is intended
239 for what purpose. This enumeration specifies the type of memory. */
250 /* Since all non-bool pseudovectors are small enough to be
251 allocated from vector blocks, this memory type denotes
252 large regular vectors and large bool pseudovectors. */
254 /* Special type to denote vector blocks. */
255 MEM_TYPE_VECTOR_BLOCK
,
256 /* Special type to denote reserved memory. */
260 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
262 /* A unique object in pure space used to make some Lisp objects
263 on free lists recognizable in O(1). */
265 static Lisp_Object Vdead
;
266 #define DEADP(x) EQ (x, Vdead)
268 #ifdef GC_MALLOC_CHECK
270 enum mem_type allocated_mem_type
;
272 #endif /* GC_MALLOC_CHECK */
274 /* A node in the red-black tree describing allocated memory containing
275 Lisp data. Each such block is recorded with its start and end
276 address when it is allocated, and removed from the tree when it
279 A red-black tree is a balanced binary tree with the following
282 1. Every node is either red or black.
283 2. Every leaf is black.
284 3. If a node is red, then both of its children are black.
285 4. Every simple path from a node to a descendant leaf contains
286 the same number of black nodes.
287 5. The root is always black.
289 When nodes are inserted into the tree, or deleted from the tree,
290 the tree is "fixed" so that these properties are always true.
292 A red-black tree with N internal nodes has height at most 2
293 log(N+1). Searches, insertions and deletions are done in O(log N).
294 Please see a text book about data structures for a detailed
295 description of red-black trees. Any book worth its salt should
300 /* Children of this node. These pointers are never NULL. When there
301 is no child, the value is MEM_NIL, which points to a dummy node. */
302 struct mem_node
*left
, *right
;
304 /* The parent of this node. In the root node, this is NULL. */
305 struct mem_node
*parent
;
307 /* Start and end of allocated region. */
311 enum {MEM_BLACK
, MEM_RED
} color
;
317 /* Base address of stack. Set in main. */
319 Lisp_Object
*stack_base
;
321 /* Root of the tree describing allocated Lisp memory. */
323 static struct mem_node
*mem_root
;
325 /* Lowest and highest known address in the heap. */
327 static void *min_heap_address
, *max_heap_address
;
329 /* Sentinel node of the tree. */
331 static struct mem_node mem_z
;
332 #define MEM_NIL &mem_z
334 static struct mem_node
*mem_insert (void *, void *, enum mem_type
);
335 static void mem_insert_fixup (struct mem_node
*);
336 static void mem_rotate_left (struct mem_node
*);
337 static void mem_rotate_right (struct mem_node
*);
338 static void mem_delete (struct mem_node
*);
339 static void mem_delete_fixup (struct mem_node
*);
340 static struct mem_node
*mem_find (void *);
342 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
348 /* Recording what needs to be marked for gc. */
350 struct gcpro
*gcprolist
;
352 /* Addresses of staticpro'd variables. Initialize it to a nonzero
353 value; otherwise some compilers put it into BSS. */
355 enum { NSTATICS
= 2048 };
356 static Lisp_Object
*staticvec
[NSTATICS
] = {&Vpurify_flag
};
358 /* Index of next unused slot in staticvec. */
360 static int staticidx
;
362 static void *pure_alloc (size_t, int);
364 /* Return X rounded to the next multiple of Y. Arguments should not
365 have side effects, as they are evaluated more than once. Assume X
366 + Y - 1 does not overflow. Tune for Y being a power of 2. */
368 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
369 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
370 : ((x) + (y) - 1) & ~ ((y) - 1))
372 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
375 ALIGN (void *ptr
, int alignment
)
377 return (void *) ROUNDUP ((uintptr_t) ptr
, alignment
);
381 XFLOAT_INIT (Lisp_Object f
, double n
)
383 XFLOAT (f
)->u
.data
= n
;
387 /************************************************************************
389 ************************************************************************/
391 /* Function malloc calls this if it finds we are near exhausting storage. */
394 malloc_warning (const char *str
)
396 pending_malloc_warning
= str
;
400 /* Display an already-pending malloc warning. */
403 display_malloc_warning (void)
405 call3 (intern ("display-warning"),
407 build_string (pending_malloc_warning
),
408 intern ("emergency"));
409 pending_malloc_warning
= 0;
412 /* Called if we can't allocate relocatable space for a buffer. */
415 buffer_memory_full (ptrdiff_t nbytes
)
417 /* If buffers use the relocating allocator, no need to free
418 spare_memory, because we may have plenty of malloc space left
419 that we could get, and if we don't, the malloc that fails will
420 itself cause spare_memory to be freed. If buffers don't use the
421 relocating allocator, treat this like any other failing
425 memory_full (nbytes
);
427 /* This used to call error, but if we've run out of memory, we could
428 get infinite recursion trying to build the string. */
429 xsignal (Qnil
, Vmemory_signal_data
);
433 /* A common multiple of the positive integers A and B. Ideally this
434 would be the least common multiple, but there's no way to do that
435 as a constant expression in C, so do the best that we can easily do. */
436 #define COMMON_MULTIPLE(a, b) \
437 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
439 #ifndef XMALLOC_OVERRUN_CHECK
440 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
443 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
446 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
447 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
448 block size in little-endian order. The trailer consists of
449 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
451 The header is used to detect whether this block has been allocated
452 through these functions, as some low-level libc functions may
453 bypass the malloc hooks. */
455 #define XMALLOC_OVERRUN_CHECK_SIZE 16
456 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
457 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
459 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
460 hold a size_t value and (2) the header size is a multiple of the
461 alignment that Emacs needs for C types and for USE_LSB_TAG. */
462 #define XMALLOC_BASE_ALIGNMENT \
463 alignof (union { long double d; intmax_t i; void *p; })
466 # define XMALLOC_HEADER_ALIGNMENT \
467 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
469 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
471 #define XMALLOC_OVERRUN_SIZE_SIZE \
472 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
473 + XMALLOC_HEADER_ALIGNMENT - 1) \
474 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
475 - XMALLOC_OVERRUN_CHECK_SIZE)
477 static char const xmalloc_overrun_check_header
[XMALLOC_OVERRUN_CHECK_SIZE
] =
478 { '\x9a', '\x9b', '\xae', '\xaf',
479 '\xbf', '\xbe', '\xce', '\xcf',
480 '\xea', '\xeb', '\xec', '\xed',
481 '\xdf', '\xde', '\x9c', '\x9d' };
483 static char const xmalloc_overrun_check_trailer
[XMALLOC_OVERRUN_CHECK_SIZE
] =
484 { '\xaa', '\xab', '\xac', '\xad',
485 '\xba', '\xbb', '\xbc', '\xbd',
486 '\xca', '\xcb', '\xcc', '\xcd',
487 '\xda', '\xdb', '\xdc', '\xdd' };
489 /* Insert and extract the block size in the header. */
492 xmalloc_put_size (unsigned char *ptr
, size_t size
)
495 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
497 *--ptr
= size
& ((1 << CHAR_BIT
) - 1);
503 xmalloc_get_size (unsigned char *ptr
)
507 ptr
-= XMALLOC_OVERRUN_SIZE_SIZE
;
508 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
517 /* Like malloc, but wraps allocated block with header and trailer. */
520 overrun_check_malloc (size_t size
)
522 register unsigned char *val
;
523 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
526 val
= malloc (size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
529 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
530 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
531 xmalloc_put_size (val
, size
);
532 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
533 XMALLOC_OVERRUN_CHECK_SIZE
);
539 /* Like realloc, but checks old block for overrun, and wraps new block
540 with header and trailer. */
543 overrun_check_realloc (void *block
, size_t size
)
545 register unsigned char *val
= (unsigned char *) block
;
546 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
550 && memcmp (xmalloc_overrun_check_header
,
551 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
552 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
554 size_t osize
= xmalloc_get_size (val
);
555 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
556 XMALLOC_OVERRUN_CHECK_SIZE
))
558 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
559 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
560 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
563 val
= realloc (val
, size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
567 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
568 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
569 xmalloc_put_size (val
, size
);
570 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
571 XMALLOC_OVERRUN_CHECK_SIZE
);
576 /* Like free, but checks block for overrun. */
579 overrun_check_free (void *block
)
581 unsigned char *val
= (unsigned char *) block
;
584 && memcmp (xmalloc_overrun_check_header
,
585 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
586 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
588 size_t osize
= xmalloc_get_size (val
);
589 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
590 XMALLOC_OVERRUN_CHECK_SIZE
))
592 #ifdef XMALLOC_CLEAR_FREE_MEMORY
593 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
594 memset (val
, 0xff, osize
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
596 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
597 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
598 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
608 #define malloc overrun_check_malloc
609 #define realloc overrun_check_realloc
610 #define free overrun_check_free
613 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
614 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
615 If that variable is set, block input while in one of Emacs's memory
616 allocation functions. There should be no need for this debugging
617 option, since signal handlers do not allocate memory, but Emacs
618 formerly allocated memory in signal handlers and this compile-time
619 option remains as a way to help debug the issue should it rear its
621 #ifdef XMALLOC_BLOCK_INPUT_CHECK
622 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE
;
624 malloc_block_input (void)
626 if (block_input_in_memory_allocators
)
630 malloc_unblock_input (void)
632 if (block_input_in_memory_allocators
)
635 # define MALLOC_BLOCK_INPUT malloc_block_input ()
636 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
638 # define MALLOC_BLOCK_INPUT ((void) 0)
639 # define MALLOC_UNBLOCK_INPUT ((void) 0)
642 #define MALLOC_PROBE(size) \
644 if (profiler_memory_running) \
645 malloc_probe (size); \
649 /* Like malloc but check for no memory and block interrupt input.. */
652 xmalloc (size_t size
)
658 MALLOC_UNBLOCK_INPUT
;
666 /* Like the above, but zeroes out the memory just allocated. */
669 xzalloc (size_t size
)
675 MALLOC_UNBLOCK_INPUT
;
679 memset (val
, 0, size
);
684 /* Like realloc but check for no memory and block interrupt input.. */
687 xrealloc (void *block
, size_t size
)
692 /* We must call malloc explicitly when BLOCK is 0, since some
693 reallocs don't do this. */
697 val
= realloc (block
, size
);
698 MALLOC_UNBLOCK_INPUT
;
707 /* Like free but block interrupt input. */
716 MALLOC_UNBLOCK_INPUT
;
717 /* We don't call refill_memory_reserve here
718 because in practice the call in r_alloc_free seems to suffice. */
722 /* Other parts of Emacs pass large int values to allocator functions
723 expecting ptrdiff_t. This is portable in practice, but check it to
725 verify (INT_MAX
<= PTRDIFF_MAX
);
728 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
729 Signal an error on memory exhaustion, and block interrupt input. */
732 xnmalloc (ptrdiff_t nitems
, ptrdiff_t item_size
)
734 eassert (0 <= nitems
&& 0 < item_size
);
735 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
736 memory_full (SIZE_MAX
);
737 return xmalloc (nitems
* item_size
);
741 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
742 Signal an error on memory exhaustion, and block interrupt input. */
745 xnrealloc (void *pa
, ptrdiff_t nitems
, ptrdiff_t item_size
)
747 eassert (0 <= nitems
&& 0 < item_size
);
748 if (min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
< nitems
)
749 memory_full (SIZE_MAX
);
750 return xrealloc (pa
, nitems
* item_size
);
754 /* Grow PA, which points to an array of *NITEMS items, and return the
755 location of the reallocated array, updating *NITEMS to reflect its
756 new size. The new array will contain at least NITEMS_INCR_MIN more
757 items, but will not contain more than NITEMS_MAX items total.
758 ITEM_SIZE is the size of each item, in bytes.
760 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
761 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
764 If PA is null, then allocate a new array instead of reallocating
767 Block interrupt input as needed. If memory exhaustion occurs, set
768 *NITEMS to zero if PA is null, and signal an error (i.e., do not
771 Thus, to grow an array A without saving its old contents, do
772 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
773 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
774 and signals an error, and later this code is reexecuted and
775 attempts to free A. */
778 xpalloc (void *pa
, ptrdiff_t *nitems
, ptrdiff_t nitems_incr_min
,
779 ptrdiff_t nitems_max
, ptrdiff_t item_size
)
781 /* The approximate size to use for initial small allocation
782 requests. This is the largest "small" request for the GNU C
784 enum { DEFAULT_MXFAST
= 64 * sizeof (size_t) / 4 };
786 /* If the array is tiny, grow it to about (but no greater than)
787 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
788 ptrdiff_t n
= *nitems
;
789 ptrdiff_t tiny_max
= DEFAULT_MXFAST
/ item_size
- n
;
790 ptrdiff_t half_again
= n
>> 1;
791 ptrdiff_t incr_estimate
= max (tiny_max
, half_again
);
793 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
794 NITEMS_MAX, and what the C language can represent safely. */
795 ptrdiff_t C_language_max
= min (PTRDIFF_MAX
, SIZE_MAX
) / item_size
;
796 ptrdiff_t n_max
= (0 <= nitems_max
&& nitems_max
< C_language_max
797 ? nitems_max
: C_language_max
);
798 ptrdiff_t nitems_incr_max
= n_max
- n
;
799 ptrdiff_t incr
= max (nitems_incr_min
, min (incr_estimate
, nitems_incr_max
));
801 eassert (0 < item_size
&& 0 < nitems_incr_min
&& 0 <= n
&& -1 <= nitems_max
);
804 if (nitems_incr_max
< incr
)
805 memory_full (SIZE_MAX
);
807 pa
= xrealloc (pa
, n
* item_size
);
813 /* Like strdup, but uses xmalloc. */
816 xstrdup (const char *s
)
820 size
= strlen (s
) + 1;
821 return memcpy (xmalloc (size
), s
, size
);
824 /* Like above, but duplicates Lisp string to C string. */
827 xlispstrdup (Lisp_Object string
)
829 ptrdiff_t size
= SBYTES (string
) + 1;
830 return memcpy (xmalloc (size
), SSDATA (string
), size
);
833 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
834 argument is a const pointer. */
837 xputenv (char const *string
)
839 if (putenv ((char *) string
) != 0)
843 /* Return a newly allocated memory block of SIZE bytes, remembering
844 to free it when unwinding. */
846 record_xmalloc (size_t size
)
848 void *p
= xmalloc (size
);
849 record_unwind_protect_ptr (xfree
, p
);
854 /* Like malloc but used for allocating Lisp data. NBYTES is the
855 number of bytes to allocate, TYPE describes the intended use of the
856 allocated memory block (for strings, for conses, ...). */
859 void *lisp_malloc_loser EXTERNALLY_VISIBLE
;
863 lisp_malloc (size_t nbytes
, enum mem_type type
)
869 #ifdef GC_MALLOC_CHECK
870 allocated_mem_type
= type
;
873 val
= malloc (nbytes
);
876 /* If the memory just allocated cannot be addressed thru a Lisp
877 object's pointer, and it needs to be,
878 that's equivalent to running out of memory. */
879 if (val
&& type
!= MEM_TYPE_NON_LISP
)
882 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
883 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
885 lisp_malloc_loser
= val
;
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 if (val
&& type
!= MEM_TYPE_NON_LISP
)
894 mem_insert (val
, (char *) val
+ nbytes
, type
);
897 MALLOC_UNBLOCK_INPUT
;
899 memory_full (nbytes
);
900 MALLOC_PROBE (nbytes
);
904 /* Free BLOCK. This must be called to free memory allocated with a
905 call to lisp_malloc. */
908 lisp_free (void *block
)
912 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
913 mem_delete (mem_find (block
));
915 MALLOC_UNBLOCK_INPUT
;
918 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
920 /* The entry point is lisp_align_malloc which returns blocks of at most
921 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
923 #if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
924 # define USE_ALIGNED_ALLOC 1
925 /* Defined in gmalloc.c. */
926 void *aligned_alloc (size_t, size_t);
927 #elif defined HAVE_ALIGNED_ALLOC
928 # define USE_ALIGNED_ALLOC 1
929 #elif defined HAVE_POSIX_MEMALIGN
930 # define USE_ALIGNED_ALLOC 1
932 aligned_alloc (size_t alignment
, size_t size
)
935 return posix_memalign (&p
, alignment
, size
) == 0 ? p
: 0;
939 /* BLOCK_ALIGN has to be a power of 2. */
940 #define BLOCK_ALIGN (1 << 10)
942 /* Padding to leave at the end of a malloc'd block. This is to give
943 malloc a chance to minimize the amount of memory wasted to alignment.
944 It should be tuned to the particular malloc library used.
945 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
946 aligned_alloc on the other hand would ideally prefer a value of 4
947 because otherwise, there's 1020 bytes wasted between each ablocks.
948 In Emacs, testing shows that those 1020 can most of the time be
949 efficiently used by malloc to place other objects, so a value of 0 can
950 still preferable unless you have a lot of aligned blocks and virtually
952 #define BLOCK_PADDING 0
953 #define BLOCK_BYTES \
954 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
956 /* Internal data structures and constants. */
958 #define ABLOCKS_SIZE 16
960 /* An aligned block of memory. */
965 char payload
[BLOCK_BYTES
];
966 struct ablock
*next_free
;
968 /* `abase' is the aligned base of the ablocks. */
969 /* It is overloaded to hold the virtual `busy' field that counts
970 the number of used ablock in the parent ablocks.
971 The first ablock has the `busy' field, the others have the `abase'
972 field. To tell the difference, we assume that pointers will have
973 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
974 is used to tell whether the real base of the parent ablocks is `abase'
975 (if not, the word before the first ablock holds a pointer to the
977 struct ablocks
*abase
;
978 /* The padding of all but the last ablock is unused. The padding of
979 the last ablock in an ablocks is not allocated. */
981 char padding
[BLOCK_PADDING
];
985 /* A bunch of consecutive aligned blocks. */
988 struct ablock blocks
[ABLOCKS_SIZE
];
991 /* Size of the block requested from malloc or aligned_alloc. */
992 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
994 #define ABLOCK_ABASE(block) \
995 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
996 ? (struct ablocks *)(block) \
999 /* Virtual `busy' field. */
1000 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1002 /* Pointer to the (not necessarily aligned) malloc block. */
1003 #ifdef USE_ALIGNED_ALLOC
1004 #define ABLOCKS_BASE(abase) (abase)
1006 #define ABLOCKS_BASE(abase) \
1007 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1010 /* The list of free ablock. */
1011 static struct ablock
*free_ablock
;
1013 /* Allocate an aligned block of nbytes.
1014 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1015 smaller or equal to BLOCK_BYTES. */
1017 lisp_align_malloc (size_t nbytes
, enum mem_type type
)
1020 struct ablocks
*abase
;
1022 eassert (nbytes
<= BLOCK_BYTES
);
1026 #ifdef GC_MALLOC_CHECK
1027 allocated_mem_type
= type
;
1033 intptr_t aligned
; /* int gets warning casting to 64-bit pointer. */
1035 #ifdef DOUG_LEA_MALLOC
1036 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1037 because mapped region contents are not preserved in
1039 mallopt (M_MMAP_MAX
, 0);
1042 #ifdef USE_ALIGNED_ALLOC
1043 abase
= base
= aligned_alloc (BLOCK_ALIGN
, ABLOCKS_BYTES
);
1045 base
= malloc (ABLOCKS_BYTES
);
1046 abase
= ALIGN (base
, BLOCK_ALIGN
);
1051 MALLOC_UNBLOCK_INPUT
;
1052 memory_full (ABLOCKS_BYTES
);
1055 aligned
= (base
== abase
);
1057 ((void **) abase
)[-1] = base
;
1059 #ifdef DOUG_LEA_MALLOC
1060 /* Back to a reasonable maximum of mmap'ed areas. */
1061 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1065 /* If the memory just allocated cannot be addressed thru a Lisp
1066 object's pointer, and it needs to be, that's equivalent to
1067 running out of memory. */
1068 if (type
!= MEM_TYPE_NON_LISP
)
1071 char *end
= (char *) base
+ ABLOCKS_BYTES
- 1;
1072 XSETCONS (tem
, end
);
1073 if ((char *) XCONS (tem
) != end
)
1075 lisp_malloc_loser
= base
;
1077 MALLOC_UNBLOCK_INPUT
;
1078 memory_full (SIZE_MAX
);
1083 /* Initialize the blocks and put them on the free list.
1084 If `base' was not properly aligned, we can't use the last block. */
1085 for (i
= 0; i
< (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1); i
++)
1087 abase
->blocks
[i
].abase
= abase
;
1088 abase
->blocks
[i
].x
.next_free
= free_ablock
;
1089 free_ablock
= &abase
->blocks
[i
];
1091 ABLOCKS_BUSY (abase
) = (struct ablocks
*) aligned
;
1093 eassert (0 == ((uintptr_t) abase
) % BLOCK_ALIGN
);
1094 eassert (ABLOCK_ABASE (&abase
->blocks
[3]) == abase
); /* 3 is arbitrary */
1095 eassert (ABLOCK_ABASE (&abase
->blocks
[0]) == abase
);
1096 eassert (ABLOCKS_BASE (abase
) == base
);
1097 eassert (aligned
== (intptr_t) ABLOCKS_BUSY (abase
));
1100 abase
= ABLOCK_ABASE (free_ablock
);
1101 ABLOCKS_BUSY (abase
) =
1102 (struct ablocks
*) (2 + (intptr_t) ABLOCKS_BUSY (abase
));
1104 free_ablock
= free_ablock
->x
.next_free
;
1106 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1107 if (type
!= MEM_TYPE_NON_LISP
)
1108 mem_insert (val
, (char *) val
+ nbytes
, type
);
1111 MALLOC_UNBLOCK_INPUT
;
1113 MALLOC_PROBE (nbytes
);
1115 eassert (0 == ((uintptr_t) val
) % BLOCK_ALIGN
);
1120 lisp_align_free (void *block
)
1122 struct ablock
*ablock
= block
;
1123 struct ablocks
*abase
= ABLOCK_ABASE (ablock
);
1126 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1127 mem_delete (mem_find (block
));
1129 /* Put on free list. */
1130 ablock
->x
.next_free
= free_ablock
;
1131 free_ablock
= ablock
;
1132 /* Update busy count. */
1133 ABLOCKS_BUSY (abase
)
1134 = (struct ablocks
*) (-2 + (intptr_t) ABLOCKS_BUSY (abase
));
1136 if (2 > (intptr_t) ABLOCKS_BUSY (abase
))
1137 { /* All the blocks are free. */
1138 int i
= 0, aligned
= (intptr_t) ABLOCKS_BUSY (abase
);
1139 struct ablock
**tem
= &free_ablock
;
1140 struct ablock
*atop
= &abase
->blocks
[aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1];
1144 if (*tem
>= (struct ablock
*) abase
&& *tem
< atop
)
1147 *tem
= (*tem
)->x
.next_free
;
1150 tem
= &(*tem
)->x
.next_free
;
1152 eassert ((aligned
& 1) == aligned
);
1153 eassert (i
== (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1));
1154 #ifdef USE_POSIX_MEMALIGN
1155 eassert ((uintptr_t) ABLOCKS_BASE (abase
) % BLOCK_ALIGN
== 0);
1157 free (ABLOCKS_BASE (abase
));
1159 MALLOC_UNBLOCK_INPUT
;
1163 /***********************************************************************
1165 ***********************************************************************/
1167 /* Number of intervals allocated in an interval_block structure.
1168 The 1020 is 1024 minus malloc overhead. */
1170 #define INTERVAL_BLOCK_SIZE \
1171 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1173 /* Intervals are allocated in chunks in the form of an interval_block
1176 struct interval_block
1178 /* Place `intervals' first, to preserve alignment. */
1179 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
1180 struct interval_block
*next
;
1183 /* Current interval block. Its `next' pointer points to older
1186 static struct interval_block
*interval_block
;
1188 /* Index in interval_block above of the next unused interval
1191 static int interval_block_index
= INTERVAL_BLOCK_SIZE
;
1193 /* Number of free and live intervals. */
1195 static EMACS_INT total_free_intervals
, total_intervals
;
1197 /* List of free intervals. */
1199 static INTERVAL interval_free_list
;
1201 /* Return a new interval. */
1204 make_interval (void)
1210 if (interval_free_list
)
1212 val
= interval_free_list
;
1213 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
1217 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
1219 struct interval_block
*newi
1220 = lisp_malloc (sizeof *newi
, MEM_TYPE_NON_LISP
);
1222 newi
->next
= interval_block
;
1223 interval_block
= newi
;
1224 interval_block_index
= 0;
1225 total_free_intervals
+= INTERVAL_BLOCK_SIZE
;
1227 val
= &interval_block
->intervals
[interval_block_index
++];
1230 MALLOC_UNBLOCK_INPUT
;
1232 consing_since_gc
+= sizeof (struct interval
);
1234 total_free_intervals
--;
1235 RESET_INTERVAL (val
);
1241 /* Mark Lisp objects in interval I. */
1244 mark_interval (register INTERVAL i
, Lisp_Object dummy
)
1246 /* Intervals should never be shared. So, if extra internal checking is
1247 enabled, GC aborts if it seems to have visited an interval twice. */
1248 eassert (!i
->gcmarkbit
);
1250 mark_object (i
->plist
);
1253 /* Mark the interval tree rooted in I. */
1255 #define MARK_INTERVAL_TREE(i) \
1257 if (i && !i->gcmarkbit) \
1258 traverse_intervals_noorder (i, mark_interval, Qnil); \
1261 /***********************************************************************
1263 ***********************************************************************/
1265 /* Lisp_Strings are allocated in string_block structures. When a new
1266 string_block is allocated, all the Lisp_Strings it contains are
1267 added to a free-list string_free_list. When a new Lisp_String is
1268 needed, it is taken from that list. During the sweep phase of GC,
1269 string_blocks that are entirely free are freed, except two which
1272 String data is allocated from sblock structures. Strings larger
1273 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1274 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1276 Sblocks consist internally of sdata structures, one for each
1277 Lisp_String. The sdata structure points to the Lisp_String it
1278 belongs to. The Lisp_String points back to the `u.data' member of
1279 its sdata structure.
1281 When a Lisp_String is freed during GC, it is put back on
1282 string_free_list, and its `data' member and its sdata's `string'
1283 pointer is set to null. The size of the string is recorded in the
1284 `n.nbytes' member of the sdata. So, sdata structures that are no
1285 longer used, can be easily recognized, and it's easy to compact the
1286 sblocks of small strings which we do in compact_small_strings. */
1288 /* Size in bytes of an sblock structure used for small strings. This
1289 is 8192 minus malloc overhead. */
1291 #define SBLOCK_SIZE 8188
1293 /* Strings larger than this are considered large strings. String data
1294 for large strings is allocated from individual sblocks. */
1296 #define LARGE_STRING_BYTES 1024
1298 /* The SDATA typedef is a struct or union describing string memory
1299 sub-allocated from an sblock. This is where the contents of Lisp
1300 strings are stored. */
1304 /* Back-pointer to the string this sdata belongs to. If null, this
1305 structure is free, and NBYTES (in this structure or in the union below)
1306 contains the string's byte size (the same value that STRING_BYTES
1307 would return if STRING were non-null). If non-null, STRING_BYTES
1308 (STRING) is the size of the data, and DATA contains the string's
1310 struct Lisp_String
*string
;
1312 #ifdef GC_CHECK_STRING_BYTES
1316 unsigned char data
[FLEXIBLE_ARRAY_MEMBER
];
1319 #ifdef GC_CHECK_STRING_BYTES
1321 typedef struct sdata sdata
;
1322 #define SDATA_NBYTES(S) (S)->nbytes
1323 #define SDATA_DATA(S) (S)->data
1329 struct Lisp_String
*string
;
1331 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1332 which has a flexible array member. However, if implemented by
1333 giving this union a member of type 'struct sdata', the union
1334 could not be the last (flexible) member of 'struct sblock',
1335 because C99 prohibits a flexible array member from having a type
1336 that is itself a flexible array. So, comment this member out here,
1337 but remember that the option's there when using this union. */
1342 /* When STRING is null. */
1345 struct Lisp_String
*string
;
1350 #define SDATA_NBYTES(S) (S)->n.nbytes
1351 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1353 #endif /* not GC_CHECK_STRING_BYTES */
1355 enum { SDATA_DATA_OFFSET
= offsetof (struct sdata
, data
) };
1357 /* Structure describing a block of memory which is sub-allocated to
1358 obtain string data memory for strings. Blocks for small strings
1359 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1360 as large as needed. */
1365 struct sblock
*next
;
1367 /* Pointer to the next free sdata block. This points past the end
1368 of the sblock if there isn't any space left in this block. */
1372 sdata data
[FLEXIBLE_ARRAY_MEMBER
];
1375 /* Number of Lisp strings in a string_block structure. The 1020 is
1376 1024 minus malloc overhead. */
1378 #define STRING_BLOCK_SIZE \
1379 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1381 /* Structure describing a block from which Lisp_String structures
1386 /* Place `strings' first, to preserve alignment. */
1387 struct Lisp_String strings
[STRING_BLOCK_SIZE
];
1388 struct string_block
*next
;
1391 /* Head and tail of the list of sblock structures holding Lisp string
1392 data. We always allocate from current_sblock. The NEXT pointers
1393 in the sblock structures go from oldest_sblock to current_sblock. */
1395 static struct sblock
*oldest_sblock
, *current_sblock
;
1397 /* List of sblocks for large strings. */
1399 static struct sblock
*large_sblocks
;
1401 /* List of string_block structures. */
1403 static struct string_block
*string_blocks
;
1405 /* Free-list of Lisp_Strings. */
1407 static struct Lisp_String
*string_free_list
;
1409 /* Number of live and free Lisp_Strings. */
1411 static EMACS_INT total_strings
, total_free_strings
;
1413 /* Number of bytes used by live strings. */
1415 static EMACS_INT total_string_bytes
;
1417 /* Given a pointer to a Lisp_String S which is on the free-list
1418 string_free_list, return a pointer to its successor in the
1421 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1423 /* Return a pointer to the sdata structure belonging to Lisp string S.
1424 S must be live, i.e. S->data must not be null. S->data is actually
1425 a pointer to the `u.data' member of its sdata structure; the
1426 structure starts at a constant offset in front of that. */
1428 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1431 #ifdef GC_CHECK_STRING_OVERRUN
1433 /* We check for overrun in string data blocks by appending a small
1434 "cookie" after each allocated string data block, and check for the
1435 presence of this cookie during GC. */
1437 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1438 static char const string_overrun_cookie
[GC_STRING_OVERRUN_COOKIE_SIZE
] =
1439 { '\xde', '\xad', '\xbe', '\xef' };
1442 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1445 /* Value is the size of an sdata structure large enough to hold NBYTES
1446 bytes of string data. The value returned includes a terminating
1447 NUL byte, the size of the sdata structure, and padding. */
1449 #ifdef GC_CHECK_STRING_BYTES
1451 #define SDATA_SIZE(NBYTES) \
1452 ((SDATA_DATA_OFFSET \
1454 + sizeof (ptrdiff_t) - 1) \
1455 & ~(sizeof (ptrdiff_t) - 1))
1457 #else /* not GC_CHECK_STRING_BYTES */
1459 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1460 less than the size of that member. The 'max' is not needed when
1461 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1462 alignment code reserves enough space. */
1464 #define SDATA_SIZE(NBYTES) \
1465 ((SDATA_DATA_OFFSET \
1466 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1468 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1470 + sizeof (ptrdiff_t) - 1) \
1471 & ~(sizeof (ptrdiff_t) - 1))
1473 #endif /* not GC_CHECK_STRING_BYTES */
1475 /* Extra bytes to allocate for each string. */
1477 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1479 /* Exact bound on the number of bytes in a string, not counting the
1480 terminating null. A string cannot contain more bytes than
1481 STRING_BYTES_BOUND, nor can it be so long that the size_t
1482 arithmetic in allocate_string_data would overflow while it is
1483 calculating a value to be passed to malloc. */
1484 static ptrdiff_t const STRING_BYTES_MAX
=
1485 min (STRING_BYTES_BOUND
,
1486 ((SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
1488 - offsetof (struct sblock
, data
)
1489 - SDATA_DATA_OFFSET
)
1490 & ~(sizeof (EMACS_INT
) - 1)));
1492 /* Initialize string allocation. Called from init_alloc_once. */
1497 empty_unibyte_string
= make_pure_string ("", 0, 0, 0);
1498 empty_multibyte_string
= make_pure_string ("", 0, 0, 1);
1502 #ifdef GC_CHECK_STRING_BYTES
1504 static int check_string_bytes_count
;
1506 /* Like STRING_BYTES, but with debugging check. Can be
1507 called during GC, so pay attention to the mark bit. */
1510 string_bytes (struct Lisp_String
*s
)
1513 (s
->size_byte
< 0 ? s
->size
& ~ARRAY_MARK_FLAG
: s
->size_byte
);
1515 if (!PURE_POINTER_P (s
)
1517 && nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1522 /* Check validity of Lisp strings' string_bytes member in B. */
1525 check_sblock (struct sblock
*b
)
1527 sdata
*from
, *end
, *from_end
;
1531 for (from
= b
->data
; from
< end
; from
= from_end
)
1533 /* Compute the next FROM here because copying below may
1534 overwrite data we need to compute it. */
1537 /* Check that the string size recorded in the string is the
1538 same as the one recorded in the sdata structure. */
1539 nbytes
= SDATA_SIZE (from
->string
? string_bytes (from
->string
)
1540 : SDATA_NBYTES (from
));
1541 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1546 /* Check validity of Lisp strings' string_bytes member. ALL_P
1547 means check all strings, otherwise check only most
1548 recently allocated strings. Used for hunting a bug. */
1551 check_string_bytes (bool all_p
)
1557 for (b
= large_sblocks
; b
; b
= b
->next
)
1559 struct Lisp_String
*s
= b
->data
[0].string
;
1564 for (b
= oldest_sblock
; b
; b
= b
->next
)
1567 else if (current_sblock
)
1568 check_sblock (current_sblock
);
1571 #else /* not GC_CHECK_STRING_BYTES */
1573 #define check_string_bytes(all) ((void) 0)
1575 #endif /* GC_CHECK_STRING_BYTES */
1577 #ifdef GC_CHECK_STRING_FREE_LIST
1579 /* Walk through the string free list looking for bogus next pointers.
1580 This may catch buffer overrun from a previous string. */
1583 check_string_free_list (void)
1585 struct Lisp_String
*s
;
1587 /* Pop a Lisp_String off the free-list. */
1588 s
= string_free_list
;
1591 if ((uintptr_t) s
< 1024)
1593 s
= NEXT_FREE_LISP_STRING (s
);
1597 #define check_string_free_list()
1600 /* Return a new Lisp_String. */
1602 static struct Lisp_String
*
1603 allocate_string (void)
1605 struct Lisp_String
*s
;
1609 /* If the free-list is empty, allocate a new string_block, and
1610 add all the Lisp_Strings in it to the free-list. */
1611 if (string_free_list
== NULL
)
1613 struct string_block
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1616 b
->next
= string_blocks
;
1619 for (i
= STRING_BLOCK_SIZE
- 1; i
>= 0; --i
)
1622 /* Every string on a free list should have NULL data pointer. */
1624 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1625 string_free_list
= s
;
1628 total_free_strings
+= STRING_BLOCK_SIZE
;
1631 check_string_free_list ();
1633 /* Pop a Lisp_String off the free-list. */
1634 s
= string_free_list
;
1635 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1637 MALLOC_UNBLOCK_INPUT
;
1639 --total_free_strings
;
1642 consing_since_gc
+= sizeof *s
;
1644 #ifdef GC_CHECK_STRING_BYTES
1645 if (!noninteractive
)
1647 if (++check_string_bytes_count
== 200)
1649 check_string_bytes_count
= 0;
1650 check_string_bytes (1);
1653 check_string_bytes (0);
1655 #endif /* GC_CHECK_STRING_BYTES */
1661 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1662 plus a NUL byte at the end. Allocate an sdata structure for S, and
1663 set S->data to its `u.data' member. Store a NUL byte at the end of
1664 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1665 S->data if it was initially non-null. */
1668 allocate_string_data (struct Lisp_String
*s
,
1669 EMACS_INT nchars
, EMACS_INT nbytes
)
1671 sdata
*data
, *old_data
;
1673 ptrdiff_t needed
, old_nbytes
;
1675 if (STRING_BYTES_MAX
< nbytes
)
1678 /* Determine the number of bytes needed to store NBYTES bytes
1680 needed
= SDATA_SIZE (nbytes
);
1683 old_data
= SDATA_OF_STRING (s
);
1684 old_nbytes
= STRING_BYTES (s
);
1691 if (nbytes
> LARGE_STRING_BYTES
)
1693 size_t size
= offsetof (struct sblock
, data
) + needed
;
1695 #ifdef DOUG_LEA_MALLOC
1696 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1697 because mapped region contents are not preserved in
1700 In case you think of allowing it in a dumped Emacs at the
1701 cost of not being able to re-dump, there's another reason:
1702 mmap'ed data typically have an address towards the top of the
1703 address space, which won't fit into an EMACS_INT (at least on
1704 32-bit systems with the current tagging scheme). --fx */
1705 mallopt (M_MMAP_MAX
, 0);
1708 b
= lisp_malloc (size
+ GC_STRING_EXTRA
, MEM_TYPE_NON_LISP
);
1710 #ifdef DOUG_LEA_MALLOC
1711 /* Back to a reasonable maximum of mmap'ed areas. */
1712 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1715 b
->next_free
= b
->data
;
1716 b
->data
[0].string
= NULL
;
1717 b
->next
= large_sblocks
;
1720 else if (current_sblock
== NULL
1721 || (((char *) current_sblock
+ SBLOCK_SIZE
1722 - (char *) current_sblock
->next_free
)
1723 < (needed
+ GC_STRING_EXTRA
)))
1725 /* Not enough room in the current sblock. */
1726 b
= lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
1727 b
->next_free
= b
->data
;
1728 b
->data
[0].string
= NULL
;
1732 current_sblock
->next
= b
;
1740 data
= b
->next_free
;
1741 b
->next_free
= (sdata
*) ((char *) data
+ needed
+ GC_STRING_EXTRA
);
1743 MALLOC_UNBLOCK_INPUT
;
1746 s
->data
= SDATA_DATA (data
);
1747 #ifdef GC_CHECK_STRING_BYTES
1748 SDATA_NBYTES (data
) = nbytes
;
1751 s
->size_byte
= nbytes
;
1752 s
->data
[nbytes
] = '\0';
1753 #ifdef GC_CHECK_STRING_OVERRUN
1754 memcpy ((char *) data
+ needed
, string_overrun_cookie
,
1755 GC_STRING_OVERRUN_COOKIE_SIZE
);
1758 /* Note that Faset may call to this function when S has already data
1759 assigned. In this case, mark data as free by setting it's string
1760 back-pointer to null, and record the size of the data in it. */
1763 SDATA_NBYTES (old_data
) = old_nbytes
;
1764 old_data
->string
= NULL
;
1767 consing_since_gc
+= needed
;
1771 /* Sweep and compact strings. */
1774 sweep_strings (void)
1776 struct string_block
*b
, *next
;
1777 struct string_block
*live_blocks
= NULL
;
1779 string_free_list
= NULL
;
1780 total_strings
= total_free_strings
= 0;
1781 total_string_bytes
= 0;
1783 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1784 for (b
= string_blocks
; b
; b
= next
)
1787 struct Lisp_String
*free_list_before
= string_free_list
;
1791 for (i
= 0; i
< STRING_BLOCK_SIZE
; ++i
)
1793 struct Lisp_String
*s
= b
->strings
+ i
;
1797 /* String was not on free-list before. */
1798 if (STRING_MARKED_P (s
))
1800 /* String is live; unmark it and its intervals. */
1803 /* Do not use string_(set|get)_intervals here. */
1804 s
->intervals
= balance_intervals (s
->intervals
);
1807 total_string_bytes
+= STRING_BYTES (s
);
1811 /* String is dead. Put it on the free-list. */
1812 sdata
*data
= SDATA_OF_STRING (s
);
1814 /* Save the size of S in its sdata so that we know
1815 how large that is. Reset the sdata's string
1816 back-pointer so that we know it's free. */
1817 #ifdef GC_CHECK_STRING_BYTES
1818 if (string_bytes (s
) != SDATA_NBYTES (data
))
1821 data
->n
.nbytes
= STRING_BYTES (s
);
1823 data
->string
= NULL
;
1825 /* Reset the strings's `data' member so that we
1829 /* Put the string on the free-list. */
1830 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1831 string_free_list
= s
;
1837 /* S was on the free-list before. Put it there again. */
1838 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1839 string_free_list
= s
;
1844 /* Free blocks that contain free Lisp_Strings only, except
1845 the first two of them. */
1846 if (nfree
== STRING_BLOCK_SIZE
1847 && total_free_strings
> STRING_BLOCK_SIZE
)
1850 string_free_list
= free_list_before
;
1854 total_free_strings
+= nfree
;
1855 b
->next
= live_blocks
;
1860 check_string_free_list ();
1862 string_blocks
= live_blocks
;
1863 free_large_strings ();
1864 compact_small_strings ();
1866 check_string_free_list ();
1870 /* Free dead large strings. */
1873 free_large_strings (void)
1875 struct sblock
*b
, *next
;
1876 struct sblock
*live_blocks
= NULL
;
1878 for (b
= large_sblocks
; b
; b
= next
)
1882 if (b
->data
[0].string
== NULL
)
1886 b
->next
= live_blocks
;
1891 large_sblocks
= live_blocks
;
1895 /* Compact data of small strings. Free sblocks that don't contain
1896 data of live strings after compaction. */
1899 compact_small_strings (void)
1901 struct sblock
*b
, *tb
, *next
;
1902 sdata
*from
, *to
, *end
, *tb_end
;
1903 sdata
*to_end
, *from_end
;
1905 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1906 to, and TB_END is the end of TB. */
1908 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1911 /* Step through the blocks from the oldest to the youngest. We
1912 expect that old blocks will stabilize over time, so that less
1913 copying will happen this way. */
1914 for (b
= oldest_sblock
; b
; b
= b
->next
)
1917 eassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
1919 for (from
= b
->data
; from
< end
; from
= from_end
)
1921 /* Compute the next FROM here because copying below may
1922 overwrite data we need to compute it. */
1924 struct Lisp_String
*s
= from
->string
;
1926 #ifdef GC_CHECK_STRING_BYTES
1927 /* Check that the string size recorded in the string is the
1928 same as the one recorded in the sdata structure. */
1929 if (s
&& string_bytes (s
) != SDATA_NBYTES (from
))
1931 #endif /* GC_CHECK_STRING_BYTES */
1933 nbytes
= s
? STRING_BYTES (s
) : SDATA_NBYTES (from
);
1934 eassert (nbytes
<= LARGE_STRING_BYTES
);
1936 nbytes
= SDATA_SIZE (nbytes
);
1937 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 if (memcmp (string_overrun_cookie
,
1941 (char *) from_end
- GC_STRING_OVERRUN_COOKIE_SIZE
,
1942 GC_STRING_OVERRUN_COOKIE_SIZE
))
1946 /* Non-NULL S means it's alive. Copy its data. */
1949 /* If TB is full, proceed with the next sblock. */
1950 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
1951 if (to_end
> tb_end
)
1955 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
1957 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
1960 /* Copy, and update the string's `data' pointer. */
1963 eassert (tb
!= b
|| to
< from
);
1964 memmove (to
, from
, nbytes
+ GC_STRING_EXTRA
);
1965 to
->string
->data
= SDATA_DATA (to
);
1968 /* Advance past the sdata we copied to. */
1974 /* The rest of the sblocks following TB don't contain live data, so
1975 we can free them. */
1976 for (b
= tb
->next
; b
; b
= next
)
1984 current_sblock
= tb
;
1988 string_overflow (void)
1990 error ("Maximum string size exceeded");
1993 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
1994 doc
: /* Return a newly created string of length LENGTH, with INIT in each element.
1995 LENGTH must be an integer.
1996 INIT must be an integer that represents a character. */)
1997 (Lisp_Object length
, Lisp_Object init
)
1999 register Lisp_Object val
;
2003 CHECK_NATNUM (length
);
2004 CHECK_CHARACTER (init
);
2006 c
= XFASTINT (init
);
2007 if (ASCII_CHAR_P (c
))
2009 nbytes
= XINT (length
);
2010 val
= make_uninit_string (nbytes
);
2011 memset (SDATA (val
), c
, nbytes
);
2012 SDATA (val
)[nbytes
] = 0;
2016 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2017 ptrdiff_t len
= CHAR_STRING (c
, str
);
2018 EMACS_INT string_len
= XINT (length
);
2019 unsigned char *p
, *beg
, *end
;
2021 if (string_len
> STRING_BYTES_MAX
/ len
)
2023 nbytes
= len
* string_len
;
2024 val
= make_uninit_multibyte_string (string_len
, nbytes
);
2025 for (beg
= SDATA (val
), p
= beg
, end
= beg
+ nbytes
; p
< end
; p
+= len
)
2027 /* First time we just copy `str' to the data of `val'. */
2029 memcpy (p
, str
, len
);
2032 /* Next time we copy largest possible chunk from
2033 initialized to uninitialized part of `val'. */
2034 len
= min (p
- beg
, end
- p
);
2035 memcpy (p
, beg
, len
);
2044 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2048 bool_vector_fill (Lisp_Object a
, Lisp_Object init
)
2050 EMACS_INT nbits
= bool_vector_size (a
);
2053 unsigned char *data
= bool_vector_uchar_data (a
);
2054 int pattern
= NILP (init
) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR
) - 1;
2055 ptrdiff_t nbytes
= bool_vector_bytes (nbits
);
2056 int last_mask
= ~ (~0 << ((nbits
- 1) % BOOL_VECTOR_BITS_PER_CHAR
+ 1));
2057 memset (data
, pattern
, nbytes
- 1);
2058 data
[nbytes
- 1] = pattern
& last_mask
;
2063 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2066 make_uninit_bool_vector (EMACS_INT nbits
)
2069 EMACS_INT words
= bool_vector_words (nbits
);
2070 EMACS_INT word_bytes
= words
* sizeof (bits_word
);
2071 EMACS_INT needed_elements
= ((bool_header_size
- header_size
+ word_bytes
2074 struct Lisp_Bool_Vector
*p
2075 = (struct Lisp_Bool_Vector
*) allocate_vector (needed_elements
);
2076 XSETVECTOR (val
, p
);
2077 XSETPVECTYPESIZE (XVECTOR (val
), PVEC_BOOL_VECTOR
, 0, 0);
2080 /* Clear padding at the end. */
2082 p
->data
[words
- 1] = 0;
2087 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
2088 doc
: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2089 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2090 (Lisp_Object length
, Lisp_Object init
)
2094 CHECK_NATNUM (length
);
2095 val
= make_uninit_bool_vector (XFASTINT (length
));
2096 return bool_vector_fill (val
, init
);
2100 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2101 of characters from the contents. This string may be unibyte or
2102 multibyte, depending on the contents. */
2105 make_string (const char *contents
, ptrdiff_t nbytes
)
2107 register Lisp_Object val
;
2108 ptrdiff_t nchars
, multibyte_nbytes
;
2110 parse_str_as_multibyte ((const unsigned char *) contents
, nbytes
,
2111 &nchars
, &multibyte_nbytes
);
2112 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
2113 /* CONTENTS contains no multibyte sequences or contains an invalid
2114 multibyte sequence. We must make unibyte string. */
2115 val
= make_unibyte_string (contents
, nbytes
);
2117 val
= make_multibyte_string (contents
, nchars
, nbytes
);
2122 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2125 make_unibyte_string (const char *contents
, ptrdiff_t length
)
2127 register Lisp_Object val
;
2128 val
= make_uninit_string (length
);
2129 memcpy (SDATA (val
), contents
, length
);
2134 /* Make a multibyte string from NCHARS characters occupying NBYTES
2135 bytes at CONTENTS. */
2138 make_multibyte_string (const char *contents
,
2139 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2141 register Lisp_Object val
;
2142 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2143 memcpy (SDATA (val
), contents
, nbytes
);
2148 /* Make a string from NCHARS characters occupying NBYTES bytes at
2149 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2152 make_string_from_bytes (const char *contents
,
2153 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2155 register Lisp_Object val
;
2156 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2157 memcpy (SDATA (val
), contents
, nbytes
);
2158 if (SBYTES (val
) == SCHARS (val
))
2159 STRING_SET_UNIBYTE (val
);
2164 /* Make a string from NCHARS characters occupying NBYTES bytes at
2165 CONTENTS. The argument MULTIBYTE controls whether to label the
2166 string as multibyte. If NCHARS is negative, it counts the number of
2167 characters by itself. */
2170 make_specified_string (const char *contents
,
2171 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
2178 nchars
= multibyte_chars_in_text ((const unsigned char *) contents
,
2183 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2184 memcpy (SDATA (val
), contents
, nbytes
);
2186 STRING_SET_UNIBYTE (val
);
2191 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2192 occupying LENGTH bytes. */
2195 make_uninit_string (EMACS_INT length
)
2200 return empty_unibyte_string
;
2201 val
= make_uninit_multibyte_string (length
, length
);
2202 STRING_SET_UNIBYTE (val
);
2207 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2208 which occupy NBYTES bytes. */
2211 make_uninit_multibyte_string (EMACS_INT nchars
, EMACS_INT nbytes
)
2214 struct Lisp_String
*s
;
2219 return empty_multibyte_string
;
2221 s
= allocate_string ();
2222 s
->intervals
= NULL
;
2223 allocate_string_data (s
, nchars
, nbytes
);
2224 XSETSTRING (string
, s
);
2225 string_chars_consed
+= nbytes
;
2229 /* Print arguments to BUF according to a FORMAT, then return
2230 a Lisp_String initialized with the data from BUF. */
2233 make_formatted_string (char *buf
, const char *format
, ...)
2238 va_start (ap
, format
);
2239 length
= vsprintf (buf
, format
, ap
);
2241 return make_string (buf
, length
);
2245 /***********************************************************************
2247 ***********************************************************************/
2249 /* We store float cells inside of float_blocks, allocating a new
2250 float_block with malloc whenever necessary. Float cells reclaimed
2251 by GC are put on a free list to be reallocated before allocating
2252 any new float cells from the latest float_block. */
2254 #define FLOAT_BLOCK_SIZE \
2255 (((BLOCK_BYTES - sizeof (struct float_block *) \
2256 /* The compiler might add padding at the end. */ \
2257 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2258 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2260 #define GETMARKBIT(block,n) \
2261 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2262 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2265 #define SETMARKBIT(block,n) \
2266 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2267 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2269 #define UNSETMARKBIT(block,n) \
2270 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2271 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2273 #define FLOAT_BLOCK(fptr) \
2274 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2276 #define FLOAT_INDEX(fptr) \
2277 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2281 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2282 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
2283 int gcmarkbits
[1 + FLOAT_BLOCK_SIZE
/ (sizeof (int) * CHAR_BIT
)];
2284 struct float_block
*next
;
2287 #define FLOAT_MARKED_P(fptr) \
2288 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2290 #define FLOAT_MARK(fptr) \
2291 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2293 #define FLOAT_UNMARK(fptr) \
2294 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2296 /* Current float_block. */
2298 static struct float_block
*float_block
;
2300 /* Index of first unused Lisp_Float in the current float_block. */
2302 static int float_block_index
= FLOAT_BLOCK_SIZE
;
2304 /* Free-list of Lisp_Floats. */
2306 static struct Lisp_Float
*float_free_list
;
2308 /* Return a new float object with value FLOAT_VALUE. */
2311 make_float (double float_value
)
2313 register Lisp_Object val
;
2317 if (float_free_list
)
2319 /* We use the data field for chaining the free list
2320 so that we won't use the same field that has the mark bit. */
2321 XSETFLOAT (val
, float_free_list
);
2322 float_free_list
= float_free_list
->u
.chain
;
2326 if (float_block_index
== FLOAT_BLOCK_SIZE
)
2328 struct float_block
*new
2329 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT
);
2330 new->next
= float_block
;
2331 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2333 float_block_index
= 0;
2334 total_free_floats
+= FLOAT_BLOCK_SIZE
;
2336 XSETFLOAT (val
, &float_block
->floats
[float_block_index
]);
2337 float_block_index
++;
2340 MALLOC_UNBLOCK_INPUT
;
2342 XFLOAT_INIT (val
, float_value
);
2343 eassert (!FLOAT_MARKED_P (XFLOAT (val
)));
2344 consing_since_gc
+= sizeof (struct Lisp_Float
);
2346 total_free_floats
--;
2352 /***********************************************************************
2354 ***********************************************************************/
2356 /* We store cons cells inside of cons_blocks, allocating a new
2357 cons_block with malloc whenever necessary. Cons cells reclaimed by
2358 GC are put on a free list to be reallocated before allocating
2359 any new cons cells from the latest cons_block. */
2361 #define CONS_BLOCK_SIZE \
2362 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2363 /* The compiler might add padding at the end. */ \
2364 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2365 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2367 #define CONS_BLOCK(fptr) \
2368 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2370 #define CONS_INDEX(fptr) \
2371 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2375 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2376 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2377 int gcmarkbits
[1 + CONS_BLOCK_SIZE
/ (sizeof (int) * CHAR_BIT
)];
2378 struct cons_block
*next
;
2381 #define CONS_MARKED_P(fptr) \
2382 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2384 #define CONS_MARK(fptr) \
2385 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2387 #define CONS_UNMARK(fptr) \
2388 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2390 /* Current cons_block. */
2392 static struct cons_block
*cons_block
;
2394 /* Index of first unused Lisp_Cons in the current block. */
2396 static int cons_block_index
= CONS_BLOCK_SIZE
;
2398 /* Free-list of Lisp_Cons structures. */
2400 static struct Lisp_Cons
*cons_free_list
;
2402 /* Explicitly free a cons cell by putting it on the free-list. */
2405 free_cons (struct Lisp_Cons
*ptr
)
2407 ptr
->u
.chain
= cons_free_list
;
2411 cons_free_list
= ptr
;
2412 consing_since_gc
-= sizeof *ptr
;
2413 total_free_conses
++;
2416 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2417 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2418 (Lisp_Object car
, Lisp_Object cdr
)
2420 register Lisp_Object val
;
2426 /* We use the cdr for chaining the free list
2427 so that we won't use the same field that has the mark bit. */
2428 XSETCONS (val
, cons_free_list
);
2429 cons_free_list
= cons_free_list
->u
.chain
;
2433 if (cons_block_index
== CONS_BLOCK_SIZE
)
2435 struct cons_block
*new
2436 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS
);
2437 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2438 new->next
= cons_block
;
2440 cons_block_index
= 0;
2441 total_free_conses
+= CONS_BLOCK_SIZE
;
2443 XSETCONS (val
, &cons_block
->conses
[cons_block_index
]);
2447 MALLOC_UNBLOCK_INPUT
;
2451 eassert (!CONS_MARKED_P (XCONS (val
)));
2452 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2453 total_free_conses
--;
2454 cons_cells_consed
++;
2458 #ifdef GC_CHECK_CONS_LIST
2459 /* Get an error now if there's any junk in the cons free list. */
2461 check_cons_list (void)
2463 struct Lisp_Cons
*tail
= cons_free_list
;
2466 tail
= tail
->u
.chain
;
2470 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2473 list1 (Lisp_Object arg1
)
2475 return Fcons (arg1
, Qnil
);
2479 list2 (Lisp_Object arg1
, Lisp_Object arg2
)
2481 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2486 list3 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
)
2488 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2493 list4 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
)
2495 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2500 list5 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
, Lisp_Object arg5
)
2502 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2503 Fcons (arg5
, Qnil
)))));
2506 /* Make a list of COUNT Lisp_Objects, where ARG is the
2507 first one. Allocate conses from pure space if TYPE
2508 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2511 listn (enum constype type
, ptrdiff_t count
, Lisp_Object arg
, ...)
2515 Lisp_Object val
, *objp
;
2517 /* Change to SAFE_ALLOCA if you hit this eassert. */
2518 eassert (count
<= MAX_ALLOCA
/ word_size
);
2520 objp
= alloca (count
* word_size
);
2523 for (i
= 1; i
< count
; i
++)
2524 objp
[i
] = va_arg (ap
, Lisp_Object
);
2527 for (val
= Qnil
, i
= count
- 1; i
>= 0; i
--)
2529 if (type
== CONSTYPE_PURE
)
2530 val
= pure_cons (objp
[i
], val
);
2531 else if (type
== CONSTYPE_HEAP
)
2532 val
= Fcons (objp
[i
], val
);
2539 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2540 doc
: /* Return a newly created list with specified arguments as elements.
2541 Any number of arguments, even zero arguments, are allowed.
2542 usage: (list &rest OBJECTS) */)
2543 (ptrdiff_t nargs
, Lisp_Object
*args
)
2545 register Lisp_Object val
;
2551 val
= Fcons (args
[nargs
], val
);
2557 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2558 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2559 (register Lisp_Object length
, Lisp_Object init
)
2561 register Lisp_Object val
;
2562 register EMACS_INT size
;
2564 CHECK_NATNUM (length
);
2565 size
= XFASTINT (length
);
2570 val
= Fcons (init
, val
);
2575 val
= Fcons (init
, val
);
2580 val
= Fcons (init
, val
);
2585 val
= Fcons (init
, val
);
2590 val
= Fcons (init
, val
);
2605 /***********************************************************************
2607 ***********************************************************************/
2609 /* Sometimes a vector's contents are merely a pointer internally used
2610 in vector allocation code. Usually you don't want to touch this. */
2612 static struct Lisp_Vector
*
2613 next_vector (struct Lisp_Vector
*v
)
2615 return XUNTAG (v
->contents
[0], 0);
2619 set_next_vector (struct Lisp_Vector
*v
, struct Lisp_Vector
*p
)
2621 v
->contents
[0] = make_lisp_ptr (p
, 0);
2624 /* This value is balanced well enough to avoid too much internal overhead
2625 for the most common cases; it's not required to be a power of two, but
2626 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2628 #define VECTOR_BLOCK_SIZE 4096
2632 /* Alignment of struct Lisp_Vector objects. */
2633 vector_alignment
= COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR
,
2634 USE_LSB_TAG
? GCALIGNMENT
: 1),
2636 /* Vector size requests are a multiple of this. */
2637 roundup_size
= COMMON_MULTIPLE (vector_alignment
, word_size
)
2640 /* Verify assumptions described above. */
2641 verify ((VECTOR_BLOCK_SIZE
% roundup_size
) == 0);
2642 verify (VECTOR_BLOCK_SIZE
<= (1 << PSEUDOVECTOR_SIZE_BITS
));
2644 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2645 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2646 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2647 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2649 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2651 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2653 /* Size of the minimal vector allocated from block. */
2655 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2657 /* Size of the largest vector allocated from block. */
2659 #define VBLOCK_BYTES_MAX \
2660 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2662 /* We maintain one free list for each possible block-allocated
2663 vector size, and this is the number of free lists we have. */
2665 #define VECTOR_MAX_FREE_LIST_INDEX \
2666 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2668 /* Common shortcut to advance vector pointer over a block data. */
2670 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2672 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2674 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2676 /* Common shortcut to setup vector on a free list. */
2678 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2680 (tmp) = ((nbytes - header_size) / word_size); \
2681 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2682 eassert ((nbytes) % roundup_size == 0); \
2683 (tmp) = VINDEX (nbytes); \
2684 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2685 set_next_vector (v, vector_free_lists[tmp]); \
2686 vector_free_lists[tmp] = (v); \
2687 total_free_vector_slots += (nbytes) / word_size; \
2690 /* This internal type is used to maintain the list of large vectors
2691 which are allocated at their own, e.g. outside of vector blocks.
2693 struct large_vector itself cannot contain a struct Lisp_Vector, as
2694 the latter contains a flexible array member and C99 does not allow
2695 such structs to be nested. Instead, each struct large_vector
2696 object LV is followed by a struct Lisp_Vector, which is at offset
2697 large_vector_offset from LV, and whose address is therefore
2698 large_vector_vec (&LV). */
2702 struct large_vector
*next
;
2707 large_vector_offset
= ROUNDUP (sizeof (struct large_vector
), vector_alignment
)
2710 static struct Lisp_Vector
*
2711 large_vector_vec (struct large_vector
*p
)
2713 return (struct Lisp_Vector
*) ((char *) p
+ large_vector_offset
);
2716 /* This internal type is used to maintain an underlying storage
2717 for small vectors. */
2721 char data
[VECTOR_BLOCK_BYTES
];
2722 struct vector_block
*next
;
2725 /* Chain of vector blocks. */
2727 static struct vector_block
*vector_blocks
;
2729 /* Vector free lists, where NTH item points to a chain of free
2730 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2732 static struct Lisp_Vector
*vector_free_lists
[VECTOR_MAX_FREE_LIST_INDEX
];
2734 /* Singly-linked list of large vectors. */
2736 static struct large_vector
*large_vectors
;
2738 /* The only vector with 0 slots, allocated from pure space. */
2740 Lisp_Object zero_vector
;
2742 /* Number of live vectors. */
2744 static EMACS_INT total_vectors
;
2746 /* Total size of live and free vectors, in Lisp_Object units. */
2748 static EMACS_INT total_vector_slots
, total_free_vector_slots
;
2750 /* Get a new vector block. */
2752 static struct vector_block
*
2753 allocate_vector_block (void)
2755 struct vector_block
*block
= xmalloc (sizeof *block
);
2757 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2758 mem_insert (block
->data
, block
->data
+ VECTOR_BLOCK_BYTES
,
2759 MEM_TYPE_VECTOR_BLOCK
);
2762 block
->next
= vector_blocks
;
2763 vector_blocks
= block
;
2767 /* Called once to initialize vector allocation. */
2772 zero_vector
= make_pure_vector (0);
2775 /* Allocate vector from a vector block. */
2777 static struct Lisp_Vector
*
2778 allocate_vector_from_block (size_t nbytes
)
2780 struct Lisp_Vector
*vector
;
2781 struct vector_block
*block
;
2782 size_t index
, restbytes
;
2784 eassert (VBLOCK_BYTES_MIN
<= nbytes
&& nbytes
<= VBLOCK_BYTES_MAX
);
2785 eassert (nbytes
% roundup_size
== 0);
2787 /* First, try to allocate from a free list
2788 containing vectors of the requested size. */
2789 index
= VINDEX (nbytes
);
2790 if (vector_free_lists
[index
])
2792 vector
= vector_free_lists
[index
];
2793 vector_free_lists
[index
] = next_vector (vector
);
2794 total_free_vector_slots
-= nbytes
/ word_size
;
2798 /* Next, check free lists containing larger vectors. Since
2799 we will split the result, we should have remaining space
2800 large enough to use for one-slot vector at least. */
2801 for (index
= VINDEX (nbytes
+ VBLOCK_BYTES_MIN
);
2802 index
< VECTOR_MAX_FREE_LIST_INDEX
; index
++)
2803 if (vector_free_lists
[index
])
2805 /* This vector is larger than requested. */
2806 vector
= vector_free_lists
[index
];
2807 vector_free_lists
[index
] = next_vector (vector
);
2808 total_free_vector_slots
-= nbytes
/ word_size
;
2810 /* Excess bytes are used for the smaller vector,
2811 which should be set on an appropriate free list. */
2812 restbytes
= index
* roundup_size
+ VBLOCK_BYTES_MIN
- nbytes
;
2813 eassert (restbytes
% roundup_size
== 0);
2814 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2818 /* Finally, need a new vector block. */
2819 block
= allocate_vector_block ();
2821 /* New vector will be at the beginning of this block. */
2822 vector
= (struct Lisp_Vector
*) block
->data
;
2824 /* If the rest of space from this block is large enough
2825 for one-slot vector at least, set up it on a free list. */
2826 restbytes
= VECTOR_BLOCK_BYTES
- nbytes
;
2827 if (restbytes
>= VBLOCK_BYTES_MIN
)
2829 eassert (restbytes
% roundup_size
== 0);
2830 SETUP_ON_FREE_LIST (ADVANCE (vector
, nbytes
), restbytes
, index
);
2835 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2837 #define VECTOR_IN_BLOCK(vector, block) \
2838 ((char *) (vector) <= (block)->data \
2839 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2841 /* Return the memory footprint of V in bytes. */
2844 vector_nbytes (struct Lisp_Vector
*v
)
2846 ptrdiff_t size
= v
->header
.size
& ~ARRAY_MARK_FLAG
;
2849 if (size
& PSEUDOVECTOR_FLAG
)
2851 if (PSEUDOVECTOR_TYPEP (&v
->header
, PVEC_BOOL_VECTOR
))
2853 struct Lisp_Bool_Vector
*bv
= (struct Lisp_Bool_Vector
*) v
;
2854 ptrdiff_t word_bytes
= (bool_vector_words (bv
->size
)
2855 * sizeof (bits_word
));
2856 ptrdiff_t boolvec_bytes
= bool_header_size
+ word_bytes
;
2857 verify (header_size
<= bool_header_size
);
2858 nwords
= (boolvec_bytes
- header_size
+ word_size
- 1) / word_size
;
2861 nwords
= ((size
& PSEUDOVECTOR_SIZE_MASK
)
2862 + ((size
& PSEUDOVECTOR_REST_MASK
)
2863 >> PSEUDOVECTOR_SIZE_BITS
));
2867 return vroundup (header_size
+ word_size
* nwords
);
2870 /* Release extra resources still in use by VECTOR, which may be any
2871 vector-like object. For now, this is used just to free data in
2875 cleanup_vector (struct Lisp_Vector
*vector
)
2877 if (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FONT
)
2878 && ((vector
->header
.size
& PSEUDOVECTOR_SIZE_MASK
)
2879 == FONT_OBJECT_MAX
))
2881 /* Attempt to catch subtle bugs like Bug#16140. */
2882 eassert (valid_font_driver (((struct font
*) vector
)->driver
));
2883 ((struct font
*) vector
)->driver
->close ((struct font
*) vector
);
2887 /* Reclaim space used by unmarked vectors. */
2890 sweep_vectors (void)
2892 struct vector_block
*block
, **bprev
= &vector_blocks
;
2893 struct large_vector
*lv
, **lvprev
= &large_vectors
;
2894 struct Lisp_Vector
*vector
, *next
;
2896 total_vectors
= total_vector_slots
= total_free_vector_slots
= 0;
2897 memset (vector_free_lists
, 0, sizeof (vector_free_lists
));
2899 /* Looking through vector blocks. */
2901 for (block
= vector_blocks
; block
; block
= *bprev
)
2903 bool free_this_block
= 0;
2906 for (vector
= (struct Lisp_Vector
*) block
->data
;
2907 VECTOR_IN_BLOCK (vector
, block
); vector
= next
)
2909 if (VECTOR_MARKED_P (vector
))
2911 VECTOR_UNMARK (vector
);
2913 nbytes
= vector_nbytes (vector
);
2914 total_vector_slots
+= nbytes
/ word_size
;
2915 next
= ADVANCE (vector
, nbytes
);
2919 ptrdiff_t total_bytes
;
2921 cleanup_vector (vector
);
2922 nbytes
= vector_nbytes (vector
);
2923 total_bytes
= nbytes
;
2924 next
= ADVANCE (vector
, nbytes
);
2926 /* While NEXT is not marked, try to coalesce with VECTOR,
2927 thus making VECTOR of the largest possible size. */
2929 while (VECTOR_IN_BLOCK (next
, block
))
2931 if (VECTOR_MARKED_P (next
))
2933 cleanup_vector (next
);
2934 nbytes
= vector_nbytes (next
);
2935 total_bytes
+= nbytes
;
2936 next
= ADVANCE (next
, nbytes
);
2939 eassert (total_bytes
% roundup_size
== 0);
2941 if (vector
== (struct Lisp_Vector
*) block
->data
2942 && !VECTOR_IN_BLOCK (next
, block
))
2943 /* This block should be freed because all of it's
2944 space was coalesced into the only free vector. */
2945 free_this_block
= 1;
2949 SETUP_ON_FREE_LIST (vector
, total_bytes
, tmp
);
2954 if (free_this_block
)
2956 *bprev
= block
->next
;
2957 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2958 mem_delete (mem_find (block
->data
));
2963 bprev
= &block
->next
;
2966 /* Sweep large vectors. */
2968 for (lv
= large_vectors
; lv
; lv
= *lvprev
)
2970 vector
= large_vector_vec (lv
);
2971 if (VECTOR_MARKED_P (vector
))
2973 VECTOR_UNMARK (vector
);
2975 if (vector
->header
.size
& PSEUDOVECTOR_FLAG
)
2977 /* All non-bool pseudovectors are small enough to be allocated
2978 from vector blocks. This code should be redesigned if some
2979 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2980 eassert (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_BOOL_VECTOR
));
2981 total_vector_slots
+= vector_nbytes (vector
) / word_size
;
2985 += header_size
/ word_size
+ vector
->header
.size
;
2996 /* Value is a pointer to a newly allocated Lisp_Vector structure
2997 with room for LEN Lisp_Objects. */
2999 static struct Lisp_Vector
*
3000 allocate_vectorlike (ptrdiff_t len
)
3002 struct Lisp_Vector
*p
;
3007 p
= XVECTOR (zero_vector
);
3010 size_t nbytes
= header_size
+ len
* word_size
;
3012 #ifdef DOUG_LEA_MALLOC
3013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3014 because mapped region contents are not preserved in
3016 mallopt (M_MMAP_MAX
, 0);
3019 if (nbytes
<= VBLOCK_BYTES_MAX
)
3020 p
= allocate_vector_from_block (vroundup (nbytes
));
3023 struct large_vector
*lv
3024 = lisp_malloc ((large_vector_offset
+ header_size
3026 MEM_TYPE_VECTORLIKE
);
3027 lv
->next
= large_vectors
;
3029 p
= large_vector_vec (lv
);
3032 #ifdef DOUG_LEA_MALLOC
3033 /* Back to a reasonable maximum of mmap'ed areas. */
3034 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
3037 consing_since_gc
+= nbytes
;
3038 vector_cells_consed
+= len
;
3041 MALLOC_UNBLOCK_INPUT
;
3047 /* Allocate a vector with LEN slots. */
3049 struct Lisp_Vector
*
3050 allocate_vector (EMACS_INT len
)
3052 struct Lisp_Vector
*v
;
3053 ptrdiff_t nbytes_max
= min (PTRDIFF_MAX
, SIZE_MAX
);
3055 if (min ((nbytes_max
- header_size
) / word_size
, MOST_POSITIVE_FIXNUM
) < len
)
3056 memory_full (SIZE_MAX
);
3057 v
= allocate_vectorlike (len
);
3058 v
->header
.size
= len
;
3063 /* Allocate other vector-like structures. */
3065 struct Lisp_Vector
*
3066 allocate_pseudovector (int memlen
, int lisplen
, enum pvec_type tag
)
3068 struct Lisp_Vector
*v
= allocate_vectorlike (memlen
);
3071 /* Catch bogus values. */
3072 eassert (tag
<= PVEC_FONT
);
3073 eassert (memlen
- lisplen
<= (1 << PSEUDOVECTOR_REST_BITS
) - 1);
3074 eassert (lisplen
<= (1 << PSEUDOVECTOR_SIZE_BITS
) - 1);
3076 /* Only the first lisplen slots will be traced normally by the GC. */
3077 for (i
= 0; i
< lisplen
; ++i
)
3078 v
->contents
[i
] = Qnil
;
3080 XSETPVECTYPESIZE (v
, tag
, lisplen
, memlen
- lisplen
);
3085 allocate_buffer (void)
3087 struct buffer
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_BUFFER
);
3089 BUFFER_PVEC_INIT (b
);
3090 /* Put B on the chain of all buffers including killed ones. */
3091 b
->next
= all_buffers
;
3093 /* Note that the rest fields of B are not initialized. */
3097 struct Lisp_Hash_Table
*
3098 allocate_hash_table (void)
3100 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table
, count
, PVEC_HASH_TABLE
);
3104 allocate_window (void)
3108 w
= ALLOCATE_PSEUDOVECTOR (struct window
, current_matrix
, PVEC_WINDOW
);
3109 /* Users assumes that non-Lisp data is zeroed. */
3110 memset (&w
->current_matrix
, 0,
3111 sizeof (*w
) - offsetof (struct window
, current_matrix
));
3116 allocate_terminal (void)
3120 t
= ALLOCATE_PSEUDOVECTOR (struct terminal
, next_terminal
, PVEC_TERMINAL
);
3121 /* Users assumes that non-Lisp data is zeroed. */
3122 memset (&t
->next_terminal
, 0,
3123 sizeof (*t
) - offsetof (struct terminal
, next_terminal
));
3128 allocate_frame (void)
3132 f
= ALLOCATE_PSEUDOVECTOR (struct frame
, face_cache
, PVEC_FRAME
);
3133 /* Users assumes that non-Lisp data is zeroed. */
3134 memset (&f
->face_cache
, 0,
3135 sizeof (*f
) - offsetof (struct frame
, face_cache
));
3139 struct Lisp_Process
*
3140 allocate_process (void)
3142 struct Lisp_Process
*p
;
3144 p
= ALLOCATE_PSEUDOVECTOR (struct Lisp_Process
, pid
, PVEC_PROCESS
);
3145 /* Users assumes that non-Lisp data is zeroed. */
3147 sizeof (*p
) - offsetof (struct Lisp_Process
, pid
));
3151 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
3152 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
3153 See also the function `vector'. */)
3154 (register Lisp_Object length
, Lisp_Object init
)
3157 register ptrdiff_t sizei
;
3158 register ptrdiff_t i
;
3159 register struct Lisp_Vector
*p
;
3161 CHECK_NATNUM (length
);
3163 p
= allocate_vector (XFASTINT (length
));
3164 sizei
= XFASTINT (length
);
3165 for (i
= 0; i
< sizei
; i
++)
3166 p
->contents
[i
] = init
;
3168 XSETVECTOR (vector
, p
);
3173 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
3174 doc
: /* Return a newly created vector with specified arguments as elements.
3175 Any number of arguments, even zero arguments, are allowed.
3176 usage: (vector &rest OBJECTS) */)
3177 (ptrdiff_t nargs
, Lisp_Object
*args
)
3180 register Lisp_Object val
= make_uninit_vector (nargs
);
3181 register struct Lisp_Vector
*p
= XVECTOR (val
);
3183 for (i
= 0; i
< nargs
; i
++)
3184 p
->contents
[i
] = args
[i
];
3189 make_byte_code (struct Lisp_Vector
*v
)
3191 /* Don't allow the global zero_vector to become a byte code object. */
3192 eassert(0 < v
->header
.size
);
3193 if (v
->header
.size
> 1 && STRINGP (v
->contents
[1])
3194 && STRING_MULTIBYTE (v
->contents
[1]))
3195 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3196 earlier because they produced a raw 8-bit string for byte-code
3197 and now such a byte-code string is loaded as multibyte while
3198 raw 8-bit characters converted to multibyte form. Thus, now we
3199 must convert them back to the original unibyte form. */
3200 v
->contents
[1] = Fstring_as_unibyte (v
->contents
[1]);
3201 XSETPVECTYPE (v
, PVEC_COMPILED
);
3204 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
3205 doc
: /* Create a byte-code object with specified arguments as elements.
3206 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3207 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3208 and (optional) INTERACTIVE-SPEC.
3209 The first four arguments are required; at most six have any
3211 The ARGLIST can be either like the one of `lambda', in which case the arguments
3212 will be dynamically bound before executing the byte code, or it can be an
3213 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3214 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3215 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3216 argument to catch the left-over arguments. If such an integer is used, the
3217 arguments will not be dynamically bound but will be instead pushed on the
3218 stack before executing the byte-code.
3219 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3220 (ptrdiff_t nargs
, Lisp_Object
*args
)
3223 register Lisp_Object val
= make_uninit_vector (nargs
);
3224 register struct Lisp_Vector
*p
= XVECTOR (val
);
3226 /* We used to purecopy everything here, if purify-flag was set. This worked
3227 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3228 dangerous, since make-byte-code is used during execution to build
3229 closures, so any closure built during the preload phase would end up
3230 copied into pure space, including its free variables, which is sometimes
3231 just wasteful and other times plainly wrong (e.g. those free vars may want
3234 for (i
= 0; i
< nargs
; i
++)
3235 p
->contents
[i
] = args
[i
];
3237 XSETCOMPILED (val
, p
);
3243 /***********************************************************************
3245 ***********************************************************************/
3247 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3248 of the required alignment if LSB tags are used. */
3250 union aligned_Lisp_Symbol
3252 struct Lisp_Symbol s
;
3254 unsigned char c
[(sizeof (struct Lisp_Symbol
) + GCALIGNMENT
- 1)
3259 /* Each symbol_block is just under 1020 bytes long, since malloc
3260 really allocates in units of powers of two and uses 4 bytes for its
3263 #define SYMBOL_BLOCK_SIZE \
3264 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3268 /* Place `symbols' first, to preserve alignment. */
3269 union aligned_Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
3270 struct symbol_block
*next
;
3273 /* Current symbol block and index of first unused Lisp_Symbol
3276 static struct symbol_block
*symbol_block
;
3277 static int symbol_block_index
= SYMBOL_BLOCK_SIZE
;
3279 /* List of free symbols. */
3281 static struct Lisp_Symbol
*symbol_free_list
;
3284 set_symbol_name (Lisp_Object sym
, Lisp_Object name
)
3286 XSYMBOL (sym
)->name
= name
;
3289 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
3290 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
3291 Its value is void, and its function definition and property list are nil. */)
3294 register Lisp_Object val
;
3295 register struct Lisp_Symbol
*p
;
3297 CHECK_STRING (name
);
3301 if (symbol_free_list
)
3303 XSETSYMBOL (val
, symbol_free_list
);
3304 symbol_free_list
= symbol_free_list
->next
;
3308 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
3310 struct symbol_block
*new
3311 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL
);
3312 new->next
= symbol_block
;
3314 symbol_block_index
= 0;
3315 total_free_symbols
+= SYMBOL_BLOCK_SIZE
;
3317 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
].s
);
3318 symbol_block_index
++;
3321 MALLOC_UNBLOCK_INPUT
;
3324 set_symbol_name (val
, name
);
3325 set_symbol_plist (val
, Qnil
);
3326 p
->redirect
= SYMBOL_PLAINVAL
;
3327 SET_SYMBOL_VAL (p
, Qunbound
);
3328 set_symbol_function (val
, Qnil
);
3329 set_symbol_next (val
, NULL
);
3331 p
->interned
= SYMBOL_UNINTERNED
;
3333 p
->declared_special
= 0;
3334 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
3336 total_free_symbols
--;
3342 /***********************************************************************
3343 Marker (Misc) Allocation
3344 ***********************************************************************/
3346 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3347 the required alignment when LSB tags are used. */
3349 union aligned_Lisp_Misc
3353 unsigned char c
[(sizeof (union Lisp_Misc
) + GCALIGNMENT
- 1)
3358 /* Allocation of markers and other objects that share that structure.
3359 Works like allocation of conses. */
3361 #define MARKER_BLOCK_SIZE \
3362 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3366 /* Place `markers' first, to preserve alignment. */
3367 union aligned_Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
3368 struct marker_block
*next
;
3371 static struct marker_block
*marker_block
;
3372 static int marker_block_index
= MARKER_BLOCK_SIZE
;
3374 static union Lisp_Misc
*marker_free_list
;
3376 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3379 allocate_misc (enum Lisp_Misc_Type type
)
3385 if (marker_free_list
)
3387 XSETMISC (val
, marker_free_list
);
3388 marker_free_list
= marker_free_list
->u_free
.chain
;
3392 if (marker_block_index
== MARKER_BLOCK_SIZE
)
3394 struct marker_block
*new = lisp_malloc (sizeof *new, MEM_TYPE_MISC
);
3395 new->next
= marker_block
;
3397 marker_block_index
= 0;
3398 total_free_markers
+= MARKER_BLOCK_SIZE
;
3400 XSETMISC (val
, &marker_block
->markers
[marker_block_index
].m
);
3401 marker_block_index
++;
3404 MALLOC_UNBLOCK_INPUT
;
3406 --total_free_markers
;
3407 consing_since_gc
+= sizeof (union Lisp_Misc
);
3408 misc_objects_consed
++;
3409 XMISCANY (val
)->type
= type
;
3410 XMISCANY (val
)->gcmarkbit
= 0;
3414 /* Free a Lisp_Misc object. */
3417 free_misc (Lisp_Object misc
)
3419 XMISCANY (misc
)->type
= Lisp_Misc_Free
;
3420 XMISC (misc
)->u_free
.chain
= marker_free_list
;
3421 marker_free_list
= XMISC (misc
);
3422 consing_since_gc
-= sizeof (union Lisp_Misc
);
3423 total_free_markers
++;
3426 /* Verify properties of Lisp_Save_Value's representation
3427 that are assumed here and elsewhere. */
3429 verify (SAVE_UNUSED
== 0);
3430 verify (((SAVE_INTEGER
| SAVE_POINTER
| SAVE_FUNCPOINTER
| SAVE_OBJECT
)
3434 /* Return Lisp_Save_Value objects for the various combinations
3435 that callers need. */
3438 make_save_int_int_int (ptrdiff_t a
, ptrdiff_t b
, ptrdiff_t c
)
3440 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3441 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3442 p
->save_type
= SAVE_TYPE_INT_INT_INT
;
3443 p
->data
[0].integer
= a
;
3444 p
->data
[1].integer
= b
;
3445 p
->data
[2].integer
= c
;
3450 make_save_obj_obj_obj_obj (Lisp_Object a
, Lisp_Object b
, Lisp_Object c
,
3453 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3454 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3455 p
->save_type
= SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
;
3456 p
->data
[0].object
= a
;
3457 p
->data
[1].object
= b
;
3458 p
->data
[2].object
= c
;
3459 p
->data
[3].object
= d
;
3464 make_save_ptr (void *a
)
3466 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3467 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3468 p
->save_type
= SAVE_POINTER
;
3469 p
->data
[0].pointer
= a
;
3474 make_save_ptr_int (void *a
, ptrdiff_t b
)
3476 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3477 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3478 p
->save_type
= SAVE_TYPE_PTR_INT
;
3479 p
->data
[0].pointer
= a
;
3480 p
->data
[1].integer
= b
;
3484 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3486 make_save_ptr_ptr (void *a
, void *b
)
3488 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3489 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3490 p
->save_type
= SAVE_TYPE_PTR_PTR
;
3491 p
->data
[0].pointer
= a
;
3492 p
->data
[1].pointer
= b
;
3498 make_save_funcptr_ptr_obj (void (*a
) (void), void *b
, Lisp_Object c
)
3500 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3501 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3502 p
->save_type
= SAVE_TYPE_FUNCPTR_PTR_OBJ
;
3503 p
->data
[0].funcpointer
= a
;
3504 p
->data
[1].pointer
= b
;
3505 p
->data
[2].object
= c
;
3509 /* Return a Lisp_Save_Value object that represents an array A
3510 of N Lisp objects. */
3513 make_save_memory (Lisp_Object
*a
, ptrdiff_t n
)
3515 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3516 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3517 p
->save_type
= SAVE_TYPE_MEMORY
;
3518 p
->data
[0].pointer
= a
;
3519 p
->data
[1].integer
= n
;
3523 /* Free a Lisp_Save_Value object. Do not use this function
3524 if SAVE contains pointer other than returned by xmalloc. */
3527 free_save_value (Lisp_Object save
)
3529 xfree (XSAVE_POINTER (save
, 0));
3533 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3536 build_overlay (Lisp_Object start
, Lisp_Object end
, Lisp_Object plist
)
3538 register Lisp_Object overlay
;
3540 overlay
= allocate_misc (Lisp_Misc_Overlay
);
3541 OVERLAY_START (overlay
) = start
;
3542 OVERLAY_END (overlay
) = end
;
3543 set_overlay_plist (overlay
, plist
);
3544 XOVERLAY (overlay
)->next
= NULL
;
3548 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
3549 doc
: /* Return a newly allocated marker which does not point at any place. */)
3552 register Lisp_Object val
;
3553 register struct Lisp_Marker
*p
;
3555 val
= allocate_misc (Lisp_Misc_Marker
);
3561 p
->insertion_type
= 0;
3562 p
->need_adjustment
= 0;
3566 /* Return a newly allocated marker which points into BUF
3567 at character position CHARPOS and byte position BYTEPOS. */
3570 build_marker (struct buffer
*buf
, ptrdiff_t charpos
, ptrdiff_t bytepos
)
3573 struct Lisp_Marker
*m
;
3575 /* No dead buffers here. */
3576 eassert (BUFFER_LIVE_P (buf
));
3578 /* Every character is at least one byte. */
3579 eassert (charpos
<= bytepos
);
3581 obj
= allocate_misc (Lisp_Misc_Marker
);
3584 m
->charpos
= charpos
;
3585 m
->bytepos
= bytepos
;
3586 m
->insertion_type
= 0;
3587 m
->need_adjustment
= 0;
3588 m
->next
= BUF_MARKERS (buf
);
3589 BUF_MARKERS (buf
) = m
;
3593 /* Put MARKER back on the free list after using it temporarily. */
3596 free_marker (Lisp_Object marker
)
3598 unchain_marker (XMARKER (marker
));
3603 /* Return a newly created vector or string with specified arguments as
3604 elements. If all the arguments are characters that can fit
3605 in a string of events, make a string; otherwise, make a vector.
3607 Any number of arguments, even zero arguments, are allowed. */
3610 make_event_array (ptrdiff_t nargs
, Lisp_Object
*args
)
3614 for (i
= 0; i
< nargs
; i
++)
3615 /* The things that fit in a string
3616 are characters that are in 0...127,
3617 after discarding the meta bit and all the bits above it. */
3618 if (!INTEGERP (args
[i
])
3619 || (XINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
3620 return Fvector (nargs
, args
);
3622 /* Since the loop exited, we know that all the things in it are
3623 characters, so we can make a string. */
3627 result
= Fmake_string (make_number (nargs
), make_number (0));
3628 for (i
= 0; i
< nargs
; i
++)
3630 SSET (result
, i
, XINT (args
[i
]));
3631 /* Move the meta bit to the right place for a string char. */
3632 if (XINT (args
[i
]) & CHAR_META
)
3633 SSET (result
, i
, SREF (result
, i
) | 0x80);
3642 /************************************************************************
3643 Memory Full Handling
3644 ************************************************************************/
3647 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3648 there may have been size_t overflow so that malloc was never
3649 called, or perhaps malloc was invoked successfully but the
3650 resulting pointer had problems fitting into a tagged EMACS_INT. In
3651 either case this counts as memory being full even though malloc did
3655 memory_full (size_t nbytes
)
3657 /* Do not go into hysterics merely because a large request failed. */
3658 bool enough_free_memory
= 0;
3659 if (SPARE_MEMORY
< nbytes
)
3664 p
= malloc (SPARE_MEMORY
);
3668 enough_free_memory
= 1;
3670 MALLOC_UNBLOCK_INPUT
;
3673 if (! enough_free_memory
)
3679 memory_full_cons_threshold
= sizeof (struct cons_block
);
3681 /* The first time we get here, free the spare memory. */
3682 for (i
= 0; i
< sizeof (spare_memory
) / sizeof (char *); i
++)
3683 if (spare_memory
[i
])
3686 free (spare_memory
[i
]);
3687 else if (i
>= 1 && i
<= 4)
3688 lisp_align_free (spare_memory
[i
]);
3690 lisp_free (spare_memory
[i
]);
3691 spare_memory
[i
] = 0;
3695 /* This used to call error, but if we've run out of memory, we could
3696 get infinite recursion trying to build the string. */
3697 xsignal (Qnil
, Vmemory_signal_data
);
3700 /* If we released our reserve (due to running out of memory),
3701 and we have a fair amount free once again,
3702 try to set aside another reserve in case we run out once more.
3704 This is called when a relocatable block is freed in ralloc.c,
3705 and also directly from this file, in case we're not using ralloc.c. */
3708 refill_memory_reserve (void)
3710 #ifndef SYSTEM_MALLOC
3711 if (spare_memory
[0] == 0)
3712 spare_memory
[0] = malloc (SPARE_MEMORY
);
3713 if (spare_memory
[1] == 0)
3714 spare_memory
[1] = lisp_align_malloc (sizeof (struct cons_block
),
3716 if (spare_memory
[2] == 0)
3717 spare_memory
[2] = lisp_align_malloc (sizeof (struct cons_block
),
3719 if (spare_memory
[3] == 0)
3720 spare_memory
[3] = lisp_align_malloc (sizeof (struct cons_block
),
3722 if (spare_memory
[4] == 0)
3723 spare_memory
[4] = lisp_align_malloc (sizeof (struct cons_block
),
3725 if (spare_memory
[5] == 0)
3726 spare_memory
[5] = lisp_malloc (sizeof (struct string_block
),
3728 if (spare_memory
[6] == 0)
3729 spare_memory
[6] = lisp_malloc (sizeof (struct string_block
),
3731 if (spare_memory
[0] && spare_memory
[1] && spare_memory
[5])
3732 Vmemory_full
= Qnil
;
3736 /************************************************************************
3738 ************************************************************************/
3740 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3742 /* Conservative C stack marking requires a method to identify possibly
3743 live Lisp objects given a pointer value. We do this by keeping
3744 track of blocks of Lisp data that are allocated in a red-black tree
3745 (see also the comment of mem_node which is the type of nodes in
3746 that tree). Function lisp_malloc adds information for an allocated
3747 block to the red-black tree with calls to mem_insert, and function
3748 lisp_free removes it with mem_delete. Functions live_string_p etc
3749 call mem_find to lookup information about a given pointer in the
3750 tree, and use that to determine if the pointer points to a Lisp
3753 /* Initialize this part of alloc.c. */
3758 mem_z
.left
= mem_z
.right
= MEM_NIL
;
3759 mem_z
.parent
= NULL
;
3760 mem_z
.color
= MEM_BLACK
;
3761 mem_z
.start
= mem_z
.end
= NULL
;
3766 /* Value is a pointer to the mem_node containing START. Value is
3767 MEM_NIL if there is no node in the tree containing START. */
3769 static struct mem_node
*
3770 mem_find (void *start
)
3774 if (start
< min_heap_address
|| start
> max_heap_address
)
3777 /* Make the search always successful to speed up the loop below. */
3778 mem_z
.start
= start
;
3779 mem_z
.end
= (char *) start
+ 1;
3782 while (start
< p
->start
|| start
>= p
->end
)
3783 p
= start
< p
->start
? p
->left
: p
->right
;
3788 /* Insert a new node into the tree for a block of memory with start
3789 address START, end address END, and type TYPE. Value is a
3790 pointer to the node that was inserted. */
3792 static struct mem_node
*
3793 mem_insert (void *start
, void *end
, enum mem_type type
)
3795 struct mem_node
*c
, *parent
, *x
;
3797 if (min_heap_address
== NULL
|| start
< min_heap_address
)
3798 min_heap_address
= start
;
3799 if (max_heap_address
== NULL
|| end
> max_heap_address
)
3800 max_heap_address
= end
;
3802 /* See where in the tree a node for START belongs. In this
3803 particular application, it shouldn't happen that a node is already
3804 present. For debugging purposes, let's check that. */
3808 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3810 while (c
!= MEM_NIL
)
3812 if (start
>= c
->start
&& start
< c
->end
)
3815 c
= start
< c
->start
? c
->left
: c
->right
;
3818 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3820 while (c
!= MEM_NIL
)
3823 c
= start
< c
->start
? c
->left
: c
->right
;
3826 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3828 /* Create a new node. */
3829 #ifdef GC_MALLOC_CHECK
3830 x
= malloc (sizeof *x
);
3834 x
= xmalloc (sizeof *x
);
3840 x
->left
= x
->right
= MEM_NIL
;
3843 /* Insert it as child of PARENT or install it as root. */
3846 if (start
< parent
->start
)
3854 /* Re-establish red-black tree properties. */
3855 mem_insert_fixup (x
);
3861 /* Re-establish the red-black properties of the tree, and thereby
3862 balance the tree, after node X has been inserted; X is always red. */
3865 mem_insert_fixup (struct mem_node
*x
)
3867 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
3869 /* X is red and its parent is red. This is a violation of
3870 red-black tree property #3. */
3872 if (x
->parent
== x
->parent
->parent
->left
)
3874 /* We're on the left side of our grandparent, and Y is our
3876 struct mem_node
*y
= x
->parent
->parent
->right
;
3878 if (y
->color
== MEM_RED
)
3880 /* Uncle and parent are red but should be black because
3881 X is red. Change the colors accordingly and proceed
3882 with the grandparent. */
3883 x
->parent
->color
= MEM_BLACK
;
3884 y
->color
= MEM_BLACK
;
3885 x
->parent
->parent
->color
= MEM_RED
;
3886 x
= x
->parent
->parent
;
3890 /* Parent and uncle have different colors; parent is
3891 red, uncle is black. */
3892 if (x
== x
->parent
->right
)
3895 mem_rotate_left (x
);
3898 x
->parent
->color
= MEM_BLACK
;
3899 x
->parent
->parent
->color
= MEM_RED
;
3900 mem_rotate_right (x
->parent
->parent
);
3905 /* This is the symmetrical case of above. */
3906 struct mem_node
*y
= x
->parent
->parent
->left
;
3908 if (y
->color
== MEM_RED
)
3910 x
->parent
->color
= MEM_BLACK
;
3911 y
->color
= MEM_BLACK
;
3912 x
->parent
->parent
->color
= MEM_RED
;
3913 x
= x
->parent
->parent
;
3917 if (x
== x
->parent
->left
)
3920 mem_rotate_right (x
);
3923 x
->parent
->color
= MEM_BLACK
;
3924 x
->parent
->parent
->color
= MEM_RED
;
3925 mem_rotate_left (x
->parent
->parent
);
3930 /* The root may have been changed to red due to the algorithm. Set
3931 it to black so that property #5 is satisfied. */
3932 mem_root
->color
= MEM_BLACK
;
3943 mem_rotate_left (struct mem_node
*x
)
3947 /* Turn y's left sub-tree into x's right sub-tree. */
3950 if (y
->left
!= MEM_NIL
)
3951 y
->left
->parent
= x
;
3953 /* Y's parent was x's parent. */
3955 y
->parent
= x
->parent
;
3957 /* Get the parent to point to y instead of x. */
3960 if (x
== x
->parent
->left
)
3961 x
->parent
->left
= y
;
3963 x
->parent
->right
= y
;
3968 /* Put x on y's left. */
3982 mem_rotate_right (struct mem_node
*x
)
3984 struct mem_node
*y
= x
->left
;
3987 if (y
->right
!= MEM_NIL
)
3988 y
->right
->parent
= x
;
3991 y
->parent
= x
->parent
;
3994 if (x
== x
->parent
->right
)
3995 x
->parent
->right
= y
;
3997 x
->parent
->left
= y
;
4008 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4011 mem_delete (struct mem_node
*z
)
4013 struct mem_node
*x
, *y
;
4015 if (!z
|| z
== MEM_NIL
)
4018 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
4023 while (y
->left
!= MEM_NIL
)
4027 if (y
->left
!= MEM_NIL
)
4032 x
->parent
= y
->parent
;
4035 if (y
== y
->parent
->left
)
4036 y
->parent
->left
= x
;
4038 y
->parent
->right
= x
;
4045 z
->start
= y
->start
;
4050 if (y
->color
== MEM_BLACK
)
4051 mem_delete_fixup (x
);
4053 #ifdef GC_MALLOC_CHECK
4061 /* Re-establish the red-black properties of the tree, after a
4065 mem_delete_fixup (struct mem_node
*x
)
4067 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
4069 if (x
== x
->parent
->left
)
4071 struct mem_node
*w
= x
->parent
->right
;
4073 if (w
->color
== MEM_RED
)
4075 w
->color
= MEM_BLACK
;
4076 x
->parent
->color
= MEM_RED
;
4077 mem_rotate_left (x
->parent
);
4078 w
= x
->parent
->right
;
4081 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
4088 if (w
->right
->color
== MEM_BLACK
)
4090 w
->left
->color
= MEM_BLACK
;
4092 mem_rotate_right (w
);
4093 w
= x
->parent
->right
;
4095 w
->color
= x
->parent
->color
;
4096 x
->parent
->color
= MEM_BLACK
;
4097 w
->right
->color
= MEM_BLACK
;
4098 mem_rotate_left (x
->parent
);
4104 struct mem_node
*w
= x
->parent
->left
;
4106 if (w
->color
== MEM_RED
)
4108 w
->color
= MEM_BLACK
;
4109 x
->parent
->color
= MEM_RED
;
4110 mem_rotate_right (x
->parent
);
4111 w
= x
->parent
->left
;
4114 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
4121 if (w
->left
->color
== MEM_BLACK
)
4123 w
->right
->color
= MEM_BLACK
;
4125 mem_rotate_left (w
);
4126 w
= x
->parent
->left
;
4129 w
->color
= x
->parent
->color
;
4130 x
->parent
->color
= MEM_BLACK
;
4131 w
->left
->color
= MEM_BLACK
;
4132 mem_rotate_right (x
->parent
);
4138 x
->color
= MEM_BLACK
;
4142 /* Value is non-zero if P is a pointer to a live Lisp string on
4143 the heap. M is a pointer to the mem_block for P. */
4146 live_string_p (struct mem_node
*m
, void *p
)
4148 if (m
->type
== MEM_TYPE_STRING
)
4150 struct string_block
*b
= m
->start
;
4151 ptrdiff_t offset
= (char *) p
- (char *) &b
->strings
[0];
4153 /* P must point to the start of a Lisp_String structure, and it
4154 must not be on the free-list. */
4156 && offset
% sizeof b
->strings
[0] == 0
4157 && offset
< (STRING_BLOCK_SIZE
* sizeof b
->strings
[0])
4158 && ((struct Lisp_String
*) p
)->data
!= NULL
);
4165 /* Value is non-zero if P is a pointer to a live Lisp cons on
4166 the heap. M is a pointer to the mem_block for P. */
4169 live_cons_p (struct mem_node
*m
, void *p
)
4171 if (m
->type
== MEM_TYPE_CONS
)
4173 struct cons_block
*b
= m
->start
;
4174 ptrdiff_t offset
= (char *) p
- (char *) &b
->conses
[0];
4176 /* P must point to the start of a Lisp_Cons, not be
4177 one of the unused cells in the current cons block,
4178 and not be on the free-list. */
4180 && offset
% sizeof b
->conses
[0] == 0
4181 && offset
< (CONS_BLOCK_SIZE
* sizeof b
->conses
[0])
4183 || offset
/ sizeof b
->conses
[0] < cons_block_index
)
4184 && !EQ (((struct Lisp_Cons
*) p
)->car
, Vdead
));
4191 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4192 the heap. M is a pointer to the mem_block for P. */
4195 live_symbol_p (struct mem_node
*m
, void *p
)
4197 if (m
->type
== MEM_TYPE_SYMBOL
)
4199 struct symbol_block
*b
= m
->start
;
4200 ptrdiff_t offset
= (char *) p
- (char *) &b
->symbols
[0];
4202 /* P must point to the start of a Lisp_Symbol, not be
4203 one of the unused cells in the current symbol block,
4204 and not be on the free-list. */
4206 && offset
% sizeof b
->symbols
[0] == 0
4207 && offset
< (SYMBOL_BLOCK_SIZE
* sizeof b
->symbols
[0])
4208 && (b
!= symbol_block
4209 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
)
4210 && !EQ (((struct Lisp_Symbol
*)p
)->function
, Vdead
));
4217 /* Value is non-zero if P is a pointer to a live Lisp float on
4218 the heap. M is a pointer to the mem_block for P. */
4221 live_float_p (struct mem_node
*m
, void *p
)
4223 if (m
->type
== MEM_TYPE_FLOAT
)
4225 struct float_block
*b
= m
->start
;
4226 ptrdiff_t offset
= (char *) p
- (char *) &b
->floats
[0];
4228 /* P must point to the start of a Lisp_Float and not be
4229 one of the unused cells in the current float block. */
4231 && offset
% sizeof b
->floats
[0] == 0
4232 && offset
< (FLOAT_BLOCK_SIZE
* sizeof b
->floats
[0])
4233 && (b
!= float_block
4234 || offset
/ sizeof b
->floats
[0] < float_block_index
));
4241 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4242 the heap. M is a pointer to the mem_block for P. */
4245 live_misc_p (struct mem_node
*m
, void *p
)
4247 if (m
->type
== MEM_TYPE_MISC
)
4249 struct marker_block
*b
= m
->start
;
4250 ptrdiff_t offset
= (char *) p
- (char *) &b
->markers
[0];
4252 /* P must point to the start of a Lisp_Misc, not be
4253 one of the unused cells in the current misc block,
4254 and not be on the free-list. */
4256 && offset
% sizeof b
->markers
[0] == 0
4257 && offset
< (MARKER_BLOCK_SIZE
* sizeof b
->markers
[0])
4258 && (b
!= marker_block
4259 || offset
/ sizeof b
->markers
[0] < marker_block_index
)
4260 && ((union Lisp_Misc
*) p
)->u_any
.type
!= Lisp_Misc_Free
);
4267 /* Value is non-zero if P is a pointer to a live vector-like object.
4268 M is a pointer to the mem_block for P. */
4271 live_vector_p (struct mem_node
*m
, void *p
)
4273 if (m
->type
== MEM_TYPE_VECTOR_BLOCK
)
4275 /* This memory node corresponds to a vector block. */
4276 struct vector_block
*block
= m
->start
;
4277 struct Lisp_Vector
*vector
= (struct Lisp_Vector
*) block
->data
;
4279 /* P is in the block's allocation range. Scan the block
4280 up to P and see whether P points to the start of some
4281 vector which is not on a free list. FIXME: check whether
4282 some allocation patterns (probably a lot of short vectors)
4283 may cause a substantial overhead of this loop. */
4284 while (VECTOR_IN_BLOCK (vector
, block
)
4285 && vector
<= (struct Lisp_Vector
*) p
)
4287 if (!PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FREE
) && vector
== p
)
4290 vector
= ADVANCE (vector
, vector_nbytes (vector
));
4293 else if (m
->type
== MEM_TYPE_VECTORLIKE
&& p
== large_vector_vec (m
->start
))
4294 /* This memory node corresponds to a large vector. */
4300 /* Value is non-zero if P is a pointer to a live buffer. M is a
4301 pointer to the mem_block for P. */
4304 live_buffer_p (struct mem_node
*m
, void *p
)
4306 /* P must point to the start of the block, and the buffer
4307 must not have been killed. */
4308 return (m
->type
== MEM_TYPE_BUFFER
4310 && !NILP (((struct buffer
*) p
)->INTERNAL_FIELD (name
)));
4313 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4319 /* Currently not used, but may be called from gdb. */
4321 void dump_zombies (void) EXTERNALLY_VISIBLE
;
4323 /* Array of objects that are kept alive because the C stack contains
4324 a pattern that looks like a reference to them. */
4326 #define MAX_ZOMBIES 10
4327 static Lisp_Object zombies
[MAX_ZOMBIES
];
4329 /* Number of zombie objects. */
4331 static EMACS_INT nzombies
;
4333 /* Number of garbage collections. */
4335 static EMACS_INT ngcs
;
4337 /* Average percentage of zombies per collection. */
4339 static double avg_zombies
;
4341 /* Max. number of live and zombie objects. */
4343 static EMACS_INT max_live
, max_zombies
;
4345 /* Average number of live objects per GC. */
4347 static double avg_live
;
4349 DEFUN ("gc-status", Fgc_status
, Sgc_status
, 0, 0, "",
4350 doc
: /* Show information about live and zombie objects. */)
4353 Lisp_Object args
[8], zombie_list
= Qnil
;
4355 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); i
++)
4356 zombie_list
= Fcons (zombies
[i
], zombie_list
);
4357 args
[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4358 args
[1] = make_number (ngcs
);
4359 args
[2] = make_float (avg_live
);
4360 args
[3] = make_float (avg_zombies
);
4361 args
[4] = make_float (avg_zombies
/ avg_live
/ 100);
4362 args
[5] = make_number (max_live
);
4363 args
[6] = make_number (max_zombies
);
4364 args
[7] = zombie_list
;
4365 return Fmessage (8, args
);
4368 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4371 /* Mark OBJ if we can prove it's a Lisp_Object. */
4374 mark_maybe_object (Lisp_Object obj
)
4381 VALGRIND_MAKE_MEM_DEFINED (&obj
, sizeof (obj
));
4387 po
= (void *) XPNTR (obj
);
4394 switch (XTYPE (obj
))
4397 mark_p
= (live_string_p (m
, po
)
4398 && !STRING_MARKED_P ((struct Lisp_String
*) po
));
4402 mark_p
= (live_cons_p (m
, po
) && !CONS_MARKED_P (XCONS (obj
)));
4406 mark_p
= (live_symbol_p (m
, po
) && !XSYMBOL (obj
)->gcmarkbit
);
4410 mark_p
= (live_float_p (m
, po
) && !FLOAT_MARKED_P (XFLOAT (obj
)));
4413 case Lisp_Vectorlike
:
4414 /* Note: can't check BUFFERP before we know it's a
4415 buffer because checking that dereferences the pointer
4416 PO which might point anywhere. */
4417 if (live_vector_p (m
, po
))
4418 mark_p
= !SUBRP (obj
) && !VECTOR_MARKED_P (XVECTOR (obj
));
4419 else if (live_buffer_p (m
, po
))
4420 mark_p
= BUFFERP (obj
) && !VECTOR_MARKED_P (XBUFFER (obj
));
4424 mark_p
= (live_misc_p (m
, po
) && !XMISCANY (obj
)->gcmarkbit
);
4433 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4434 if (nzombies
< MAX_ZOMBIES
)
4435 zombies
[nzombies
] = obj
;
4444 /* If P points to Lisp data, mark that as live if it isn't already
4448 mark_maybe_pointer (void *p
)
4454 VALGRIND_MAKE_MEM_DEFINED (&p
, sizeof (p
));
4457 /* Quickly rule out some values which can't point to Lisp data.
4458 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4459 Otherwise, assume that Lisp data is aligned on even addresses. */
4460 if ((intptr_t) p
% (USE_LSB_TAG
? GCALIGNMENT
: 2))
4466 Lisp_Object obj
= Qnil
;
4470 case MEM_TYPE_NON_LISP
:
4471 case MEM_TYPE_SPARE
:
4472 /* Nothing to do; not a pointer to Lisp memory. */
4475 case MEM_TYPE_BUFFER
:
4476 if (live_buffer_p (m
, p
) && !VECTOR_MARKED_P ((struct buffer
*)p
))
4477 XSETVECTOR (obj
, p
);
4481 if (live_cons_p (m
, p
) && !CONS_MARKED_P ((struct Lisp_Cons
*) p
))
4485 case MEM_TYPE_STRING
:
4486 if (live_string_p (m
, p
)
4487 && !STRING_MARKED_P ((struct Lisp_String
*) p
))
4488 XSETSTRING (obj
, p
);
4492 if (live_misc_p (m
, p
) && !((struct Lisp_Free
*) p
)->gcmarkbit
)
4496 case MEM_TYPE_SYMBOL
:
4497 if (live_symbol_p (m
, p
) && !((struct Lisp_Symbol
*) p
)->gcmarkbit
)
4498 XSETSYMBOL (obj
, p
);
4501 case MEM_TYPE_FLOAT
:
4502 if (live_float_p (m
, p
) && !FLOAT_MARKED_P (p
))
4506 case MEM_TYPE_VECTORLIKE
:
4507 case MEM_TYPE_VECTOR_BLOCK
:
4508 if (live_vector_p (m
, p
))
4511 XSETVECTOR (tem
, p
);
4512 if (!SUBRP (tem
) && !VECTOR_MARKED_P (XVECTOR (tem
)))
4527 /* Alignment of pointer values. Use alignof, as it sometimes returns
4528 a smaller alignment than GCC's __alignof__ and mark_memory might
4529 miss objects if __alignof__ were used. */
4530 #define GC_POINTER_ALIGNMENT alignof (void *)
4532 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4533 not suffice, which is the typical case. A host where a Lisp_Object is
4534 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4535 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4536 suffice to widen it to to a Lisp_Object and check it that way. */
4537 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4538 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4539 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4540 nor mark_maybe_object can follow the pointers. This should not occur on
4541 any practical porting target. */
4542 # error "MSB type bits straddle pointer-word boundaries"
4544 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4545 pointer words that hold pointers ORed with type bits. */
4546 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4548 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4549 words that hold unmodified pointers. */
4550 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4553 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4554 or END+OFFSET..START. */
4557 mark_memory (void *start
, void *end
)
4558 #if defined (__clang__) && defined (__has_feature)
4559 #if __has_feature(address_sanitizer)
4560 /* Do not allow -faddress-sanitizer to check this function, since it
4561 crosses the function stack boundary, and thus would yield many
4563 __attribute__((no_address_safety_analysis
))
4570 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4574 /* Make START the pointer to the start of the memory region,
4575 if it isn't already. */
4583 /* Mark Lisp data pointed to. This is necessary because, in some
4584 situations, the C compiler optimizes Lisp objects away, so that
4585 only a pointer to them remains. Example:
4587 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4590 Lisp_Object obj = build_string ("test");
4591 struct Lisp_String *s = XSTRING (obj);
4592 Fgarbage_collect ();
4593 fprintf (stderr, "test `%s'\n", s->data);
4597 Here, `obj' isn't really used, and the compiler optimizes it
4598 away. The only reference to the life string is through the
4601 for (pp
= start
; (void *) pp
< end
; pp
++)
4602 for (i
= 0; i
< sizeof *pp
; i
+= GC_POINTER_ALIGNMENT
)
4604 void *p
= *(void **) ((char *) pp
+ i
);
4605 mark_maybe_pointer (p
);
4606 if (POINTERS_MIGHT_HIDE_IN_OBJECTS
)
4607 mark_maybe_object (XIL ((intptr_t) p
));
4611 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4613 static bool setjmp_tested_p
;
4614 static int longjmps_done
;
4616 #define SETJMP_WILL_LIKELY_WORK "\
4618 Emacs garbage collector has been changed to use conservative stack\n\
4619 marking. Emacs has determined that the method it uses to do the\n\
4620 marking will likely work on your system, but this isn't sure.\n\
4622 If you are a system-programmer, or can get the help of a local wizard\n\
4623 who is, please take a look at the function mark_stack in alloc.c, and\n\
4624 verify that the methods used are appropriate for your system.\n\
4626 Please mail the result to <emacs-devel@gnu.org>.\n\
4629 #define SETJMP_WILL_NOT_WORK "\
4631 Emacs garbage collector has been changed to use conservative stack\n\
4632 marking. Emacs has determined that the default method it uses to do the\n\
4633 marking will not work on your system. We will need a system-dependent\n\
4634 solution for your system.\n\
4636 Please take a look at the function mark_stack in alloc.c, and\n\
4637 try to find a way to make it work on your system.\n\
4639 Note that you may get false negatives, depending on the compiler.\n\
4640 In particular, you need to use -O with GCC for this test.\n\
4642 Please mail the result to <emacs-devel@gnu.org>.\n\
4646 /* Perform a quick check if it looks like setjmp saves registers in a
4647 jmp_buf. Print a message to stderr saying so. When this test
4648 succeeds, this is _not_ a proof that setjmp is sufficient for
4649 conservative stack marking. Only the sources or a disassembly
4659 /* Arrange for X to be put in a register. */
4665 if (longjmps_done
== 1)
4667 /* Came here after the longjmp at the end of the function.
4669 If x == 1, the longjmp has restored the register to its
4670 value before the setjmp, and we can hope that setjmp
4671 saves all such registers in the jmp_buf, although that
4674 For other values of X, either something really strange is
4675 taking place, or the setjmp just didn't save the register. */
4678 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
4681 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
4688 if (longjmps_done
== 1)
4689 sys_longjmp (jbuf
, 1);
4692 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4695 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4697 /* Abort if anything GCPRO'd doesn't survive the GC. */
4705 for (p
= gcprolist
; p
; p
= p
->next
)
4706 for (i
= 0; i
< p
->nvars
; ++i
)
4707 if (!survives_gc_p (p
->var
[i
]))
4708 /* FIXME: It's not necessarily a bug. It might just be that the
4709 GCPRO is unnecessary or should release the object sooner. */
4713 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4720 fprintf (stderr
, "\nZombies kept alive = %"pI
"d:\n", nzombies
);
4721 for (i
= 0; i
< min (MAX_ZOMBIES
, nzombies
); ++i
)
4723 fprintf (stderr
, " %d = ", i
);
4724 debug_print (zombies
[i
]);
4728 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4731 /* Mark live Lisp objects on the C stack.
4733 There are several system-dependent problems to consider when
4734 porting this to new architectures:
4738 We have to mark Lisp objects in CPU registers that can hold local
4739 variables or are used to pass parameters.
4741 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4742 something that either saves relevant registers on the stack, or
4743 calls mark_maybe_object passing it each register's contents.
4745 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4746 implementation assumes that calling setjmp saves registers we need
4747 to see in a jmp_buf which itself lies on the stack. This doesn't
4748 have to be true! It must be verified for each system, possibly
4749 by taking a look at the source code of setjmp.
4751 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4752 can use it as a machine independent method to store all registers
4753 to the stack. In this case the macros described in the previous
4754 two paragraphs are not used.
4758 Architectures differ in the way their processor stack is organized.
4759 For example, the stack might look like this
4762 | Lisp_Object | size = 4
4764 | something else | size = 2
4766 | Lisp_Object | size = 4
4770 In such a case, not every Lisp_Object will be aligned equally. To
4771 find all Lisp_Object on the stack it won't be sufficient to walk
4772 the stack in steps of 4 bytes. Instead, two passes will be
4773 necessary, one starting at the start of the stack, and a second
4774 pass starting at the start of the stack + 2. Likewise, if the
4775 minimal alignment of Lisp_Objects on the stack is 1, four passes
4776 would be necessary, each one starting with one byte more offset
4777 from the stack start. */
4784 #ifdef HAVE___BUILTIN_UNWIND_INIT
4785 /* Force callee-saved registers and register windows onto the stack.
4786 This is the preferred method if available, obviating the need for
4787 machine dependent methods. */
4788 __builtin_unwind_init ();
4790 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4791 #ifndef GC_SAVE_REGISTERS_ON_STACK
4792 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4793 union aligned_jmpbuf
{
4797 volatile bool stack_grows_down_p
= (char *) &j
> (char *) stack_base
;
4799 /* This trick flushes the register windows so that all the state of
4800 the process is contained in the stack. */
4801 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4802 needed on ia64 too. See mach_dep.c, where it also says inline
4803 assembler doesn't work with relevant proprietary compilers. */
4805 #if defined (__sparc64__) && defined (__FreeBSD__)
4806 /* FreeBSD does not have a ta 3 handler. */
4813 /* Save registers that we need to see on the stack. We need to see
4814 registers used to hold register variables and registers used to
4816 #ifdef GC_SAVE_REGISTERS_ON_STACK
4817 GC_SAVE_REGISTERS_ON_STACK (end
);
4818 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4820 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4821 setjmp will definitely work, test it
4822 and print a message with the result
4824 if (!setjmp_tested_p
)
4826 setjmp_tested_p
= 1;
4829 #endif /* GC_SETJMP_WORKS */
4832 end
= stack_grows_down_p
? (char *) &j
+ sizeof j
: (char *) &j
;
4833 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4834 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4836 /* This assumes that the stack is a contiguous region in memory. If
4837 that's not the case, something has to be done here to iterate
4838 over the stack segments. */
4839 mark_memory (stack_base
, end
);
4841 /* Allow for marking a secondary stack, like the register stack on the
4843 #ifdef GC_MARK_SECONDARY_STACK
4844 GC_MARK_SECONDARY_STACK ();
4847 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4852 #else /* GC_MARK_STACK == 0 */
4854 #define mark_maybe_object(obj) emacs_abort ()
4856 #endif /* GC_MARK_STACK != 0 */
4859 /* Determine whether it is safe to access memory at address P. */
4861 valid_pointer_p (void *p
)
4864 return w32_valid_pointer_p (p
, 16);
4868 /* Obviously, we cannot just access it (we would SEGV trying), so we
4869 trick the o/s to tell us whether p is a valid pointer.
4870 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4871 not validate p in that case. */
4873 if (emacs_pipe (fd
) == 0)
4875 bool valid
= emacs_write (fd
[1], p
, 16) == 16;
4876 emacs_close (fd
[1]);
4877 emacs_close (fd
[0]);
4885 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4886 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4887 cannot validate OBJ. This function can be quite slow, so its primary
4888 use is the manual debugging. The only exception is print_object, where
4889 we use it to check whether the memory referenced by the pointer of
4890 Lisp_Save_Value object contains valid objects. */
4893 valid_lisp_object_p (Lisp_Object obj
)
4903 p
= (void *) XPNTR (obj
);
4904 if (PURE_POINTER_P (p
))
4907 if (p
== &buffer_defaults
|| p
== &buffer_local_symbols
)
4911 return valid_pointer_p (p
);
4918 int valid
= valid_pointer_p (p
);
4930 case MEM_TYPE_NON_LISP
:
4931 case MEM_TYPE_SPARE
:
4934 case MEM_TYPE_BUFFER
:
4935 return live_buffer_p (m
, p
) ? 1 : 2;
4938 return live_cons_p (m
, p
);
4940 case MEM_TYPE_STRING
:
4941 return live_string_p (m
, p
);
4944 return live_misc_p (m
, p
);
4946 case MEM_TYPE_SYMBOL
:
4947 return live_symbol_p (m
, p
);
4949 case MEM_TYPE_FLOAT
:
4950 return live_float_p (m
, p
);
4952 case MEM_TYPE_VECTORLIKE
:
4953 case MEM_TYPE_VECTOR_BLOCK
:
4954 return live_vector_p (m
, p
);
4967 /***********************************************************************
4968 Pure Storage Management
4969 ***********************************************************************/
4971 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4972 pointer to it. TYPE is the Lisp type for which the memory is
4973 allocated. TYPE < 0 means it's not used for a Lisp object. */
4976 pure_alloc (size_t size
, int type
)
4980 size_t alignment
= GCALIGNMENT
;
4982 size_t alignment
= alignof (EMACS_INT
);
4984 /* Give Lisp_Floats an extra alignment. */
4985 if (type
== Lisp_Float
)
4986 alignment
= alignof (struct Lisp_Float
);
4992 /* Allocate space for a Lisp object from the beginning of the free
4993 space with taking account of alignment. */
4994 result
= ALIGN (purebeg
+ pure_bytes_used_lisp
, alignment
);
4995 pure_bytes_used_lisp
= ((char *)result
- (char *)purebeg
) + size
;
4999 /* Allocate space for a non-Lisp object from the end of the free
5001 pure_bytes_used_non_lisp
+= size
;
5002 result
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5004 pure_bytes_used
= pure_bytes_used_lisp
+ pure_bytes_used_non_lisp
;
5006 if (pure_bytes_used
<= pure_size
)
5009 /* Don't allocate a large amount here,
5010 because it might get mmap'd and then its address
5011 might not be usable. */
5012 purebeg
= xmalloc (10000);
5014 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
5015 pure_bytes_used
= 0;
5016 pure_bytes_used_lisp
= pure_bytes_used_non_lisp
= 0;
5021 /* Print a warning if PURESIZE is too small. */
5024 check_pure_size (void)
5026 if (pure_bytes_used_before_overflow
)
5027 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI
"d"
5029 pure_bytes_used
+ pure_bytes_used_before_overflow
);
5033 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5034 the non-Lisp data pool of the pure storage, and return its start
5035 address. Return NULL if not found. */
5038 find_string_data_in_pure (const char *data
, ptrdiff_t nbytes
)
5041 ptrdiff_t skip
, bm_skip
[256], last_char_skip
, infinity
, start
, start_max
;
5042 const unsigned char *p
;
5045 if (pure_bytes_used_non_lisp
<= nbytes
)
5048 /* Set up the Boyer-Moore table. */
5050 for (i
= 0; i
< 256; i
++)
5053 p
= (const unsigned char *) data
;
5055 bm_skip
[*p
++] = skip
;
5057 last_char_skip
= bm_skip
['\0'];
5059 non_lisp_beg
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5060 start_max
= pure_bytes_used_non_lisp
- (nbytes
+ 1);
5062 /* See the comments in the function `boyer_moore' (search.c) for the
5063 use of `infinity'. */
5064 infinity
= pure_bytes_used_non_lisp
+ 1;
5065 bm_skip
['\0'] = infinity
;
5067 p
= (const unsigned char *) non_lisp_beg
+ nbytes
;
5071 /* Check the last character (== '\0'). */
5074 start
+= bm_skip
[*(p
+ start
)];
5076 while (start
<= start_max
);
5078 if (start
< infinity
)
5079 /* Couldn't find the last character. */
5082 /* No less than `infinity' means we could find the last
5083 character at `p[start - infinity]'. */
5086 /* Check the remaining characters. */
5087 if (memcmp (data
, non_lisp_beg
+ start
, nbytes
) == 0)
5089 return non_lisp_beg
+ start
;
5091 start
+= last_char_skip
;
5093 while (start
<= start_max
);
5099 /* Return a string allocated in pure space. DATA is a buffer holding
5100 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5101 means make the result string multibyte.
5103 Must get an error if pure storage is full, since if it cannot hold
5104 a large string it may be able to hold conses that point to that
5105 string; then the string is not protected from gc. */
5108 make_pure_string (const char *data
,
5109 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
5112 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5113 s
->data
= (unsigned char *) find_string_data_in_pure (data
, nbytes
);
5114 if (s
->data
== NULL
)
5116 s
->data
= pure_alloc (nbytes
+ 1, -1);
5117 memcpy (s
->data
, data
, nbytes
);
5118 s
->data
[nbytes
] = '\0';
5121 s
->size_byte
= multibyte
? nbytes
: -1;
5122 s
->intervals
= NULL
;
5123 XSETSTRING (string
, s
);
5127 /* Return a string allocated in pure space. Do not
5128 allocate the string data, just point to DATA. */
5131 make_pure_c_string (const char *data
, ptrdiff_t nchars
)
5134 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5137 s
->data
= (unsigned char *) data
;
5138 s
->intervals
= NULL
;
5139 XSETSTRING (string
, s
);
5143 /* Return a cons allocated from pure space. Give it pure copies
5144 of CAR as car and CDR as cdr. */
5147 pure_cons (Lisp_Object car
, Lisp_Object cdr
)
5150 struct Lisp_Cons
*p
= pure_alloc (sizeof *p
, Lisp_Cons
);
5152 XSETCAR (new, Fpurecopy (car
));
5153 XSETCDR (new, Fpurecopy (cdr
));
5158 /* Value is a float object with value NUM allocated from pure space. */
5161 make_pure_float (double num
)
5164 struct Lisp_Float
*p
= pure_alloc (sizeof *p
, Lisp_Float
);
5166 XFLOAT_INIT (new, num
);
5171 /* Return a vector with room for LEN Lisp_Objects allocated from
5175 make_pure_vector (ptrdiff_t len
)
5178 size_t size
= header_size
+ len
* word_size
;
5179 struct Lisp_Vector
*p
= pure_alloc (size
, Lisp_Vectorlike
);
5180 XSETVECTOR (new, p
);
5181 XVECTOR (new)->header
.size
= len
;
5186 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
5187 doc
: /* Make a copy of object OBJ in pure storage.
5188 Recursively copies contents of vectors and cons cells.
5189 Does not copy symbols. Copies strings without text properties. */)
5190 (register Lisp_Object obj
)
5192 if (NILP (Vpurify_flag
))
5195 if (PURE_POINTER_P (XPNTR (obj
)))
5198 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5200 Lisp_Object tmp
= Fgethash (obj
, Vpurify_flag
, Qnil
);
5206 obj
= pure_cons (XCAR (obj
), XCDR (obj
));
5207 else if (FLOATP (obj
))
5208 obj
= make_pure_float (XFLOAT_DATA (obj
));
5209 else if (STRINGP (obj
))
5210 obj
= make_pure_string (SSDATA (obj
), SCHARS (obj
),
5212 STRING_MULTIBYTE (obj
));
5213 else if (COMPILEDP (obj
) || VECTORP (obj
))
5215 register struct Lisp_Vector
*vec
;
5216 register ptrdiff_t i
;
5220 if (size
& PSEUDOVECTOR_FLAG
)
5221 size
&= PSEUDOVECTOR_SIZE_MASK
;
5222 vec
= XVECTOR (make_pure_vector (size
));
5223 for (i
= 0; i
< size
; i
++)
5224 vec
->contents
[i
] = Fpurecopy (AREF (obj
, i
));
5225 if (COMPILEDP (obj
))
5227 XSETPVECTYPE (vec
, PVEC_COMPILED
);
5228 XSETCOMPILED (obj
, vec
);
5231 XSETVECTOR (obj
, vec
);
5233 else if (MARKERP (obj
))
5234 error ("Attempt to copy a marker to pure storage");
5236 /* Not purified, don't hash-cons. */
5239 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5240 Fputhash (obj
, obj
, Vpurify_flag
);
5247 /***********************************************************************
5249 ***********************************************************************/
5251 /* Put an entry in staticvec, pointing at the variable with address
5255 staticpro (Lisp_Object
*varaddress
)
5257 if (staticidx
>= NSTATICS
)
5258 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5259 staticvec
[staticidx
++] = varaddress
;
5263 /***********************************************************************
5265 ***********************************************************************/
5267 /* Temporarily prevent garbage collection. */
5270 inhibit_garbage_collection (void)
5272 ptrdiff_t count
= SPECPDL_INDEX ();
5274 specbind (Qgc_cons_threshold
, make_number (MOST_POSITIVE_FIXNUM
));
5278 /* Used to avoid possible overflows when
5279 converting from C to Lisp integers. */
5282 bounded_number (EMACS_INT number
)
5284 return make_number (min (MOST_POSITIVE_FIXNUM
, number
));
5287 /* Calculate total bytes of live objects. */
5290 total_bytes_of_live_objects (void)
5293 tot
+= total_conses
* sizeof (struct Lisp_Cons
);
5294 tot
+= total_symbols
* sizeof (struct Lisp_Symbol
);
5295 tot
+= total_markers
* sizeof (union Lisp_Misc
);
5296 tot
+= total_string_bytes
;
5297 tot
+= total_vector_slots
* word_size
;
5298 tot
+= total_floats
* sizeof (struct Lisp_Float
);
5299 tot
+= total_intervals
* sizeof (struct interval
);
5300 tot
+= total_strings
* sizeof (struct Lisp_String
);
5304 #ifdef HAVE_WINDOW_SYSTEM
5306 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5308 #if !defined (HAVE_NTGUI)
5310 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5311 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5314 compact_font_cache_entry (Lisp_Object entry
)
5316 Lisp_Object tail
, *prev
= &entry
;
5318 for (tail
= entry
; CONSP (tail
); tail
= XCDR (tail
))
5321 Lisp_Object obj
= XCAR (tail
);
5323 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5324 if (CONSP (obj
) && FONT_SPEC_P (XCAR (obj
))
5325 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj
)))
5326 && VECTORP (XCDR (obj
)))
5328 ptrdiff_t i
, size
= ASIZE (XCDR (obj
)) & ~ARRAY_MARK_FLAG
;
5330 /* If font-spec is not marked, most likely all font-entities
5331 are not marked too. But we must be sure that nothing is
5332 marked within OBJ before we really drop it. */
5333 for (i
= 0; i
< size
; i
++)
5334 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj
), i
))))
5341 *prev
= XCDR (tail
);
5343 prev
= xcdr_addr (tail
);
5348 #endif /* not HAVE_NTGUI */
5350 /* Compact font caches on all terminals and mark
5351 everything which is still here after compaction. */
5354 compact_font_caches (void)
5358 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
5360 Lisp_Object cache
= TERMINAL_FONT_CACHE (t
);
5361 #if !defined (HAVE_NTGUI)
5366 for (entry
= XCDR (cache
); CONSP (entry
); entry
= XCDR (entry
))
5367 XSETCAR (entry
, compact_font_cache_entry (XCAR (entry
)));
5369 #endif /* not HAVE_NTGUI */
5370 mark_object (cache
);
5374 #else /* not HAVE_WINDOW_SYSTEM */
5376 #define compact_font_caches() (void)(0)
5378 #endif /* HAVE_WINDOW_SYSTEM */
5380 /* Remove (MARKER . DATA) entries with unmarked MARKER
5381 from buffer undo LIST and return changed list. */
5384 compact_undo_list (Lisp_Object list
)
5386 Lisp_Object tail
, *prev
= &list
;
5388 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
5390 if (CONSP (XCAR (tail
))
5391 && MARKERP (XCAR (XCAR (tail
)))
5392 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
5393 *prev
= XCDR (tail
);
5395 prev
= xcdr_addr (tail
);
5400 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
5401 doc
: /* Reclaim storage for Lisp objects no longer needed.
5402 Garbage collection happens automatically if you cons more than
5403 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5404 `garbage-collect' normally returns a list with info on amount of space in use,
5405 where each entry has the form (NAME SIZE USED FREE), where:
5406 - NAME is a symbol describing the kind of objects this entry represents,
5407 - SIZE is the number of bytes used by each one,
5408 - USED is the number of those objects that were found live in the heap,
5409 - FREE is the number of those objects that are not live but that Emacs
5410 keeps around for future allocations (maybe because it does not know how
5411 to return them to the OS).
5412 However, if there was overflow in pure space, `garbage-collect'
5413 returns nil, because real GC can't be done.
5414 See Info node `(elisp)Garbage Collection'. */)
5417 struct buffer
*nextb
;
5418 char stack_top_variable
;
5421 ptrdiff_t count
= SPECPDL_INDEX ();
5422 struct timespec start
;
5423 Lisp_Object retval
= Qnil
;
5424 size_t tot_before
= 0;
5429 /* Can't GC if pure storage overflowed because we can't determine
5430 if something is a pure object or not. */
5431 if (pure_bytes_used_before_overflow
)
5434 /* Record this function, so it appears on the profiler's backtraces. */
5435 record_in_backtrace (Qautomatic_gc
, &Qnil
, 0);
5439 /* Don't keep undo information around forever.
5440 Do this early on, so it is no problem if the user quits. */
5441 FOR_EACH_BUFFER (nextb
)
5442 compact_buffer (nextb
);
5444 if (profiler_memory_running
)
5445 tot_before
= total_bytes_of_live_objects ();
5447 start
= current_timespec ();
5449 /* In case user calls debug_print during GC,
5450 don't let that cause a recursive GC. */
5451 consing_since_gc
= 0;
5453 /* Save what's currently displayed in the echo area. */
5454 message_p
= push_message ();
5455 record_unwind_protect_void (pop_message_unwind
);
5457 /* Save a copy of the contents of the stack, for debugging. */
5458 #if MAX_SAVE_STACK > 0
5459 if (NILP (Vpurify_flag
))
5462 ptrdiff_t stack_size
;
5463 if (&stack_top_variable
< stack_bottom
)
5465 stack
= &stack_top_variable
;
5466 stack_size
= stack_bottom
- &stack_top_variable
;
5470 stack
= stack_bottom
;
5471 stack_size
= &stack_top_variable
- stack_bottom
;
5473 if (stack_size
<= MAX_SAVE_STACK
)
5475 if (stack_copy_size
< stack_size
)
5477 stack_copy
= xrealloc (stack_copy
, stack_size
);
5478 stack_copy_size
= stack_size
;
5480 memcpy (stack_copy
, stack
, stack_size
);
5483 #endif /* MAX_SAVE_STACK > 0 */
5485 if (garbage_collection_messages
)
5486 message1_nolog ("Garbage collecting...");
5490 shrink_regexp_cache ();
5494 /* Mark all the special slots that serve as the roots of accessibility. */
5496 mark_buffer (&buffer_defaults
);
5497 mark_buffer (&buffer_local_symbols
);
5499 for (i
= 0; i
< staticidx
; i
++)
5500 mark_object (*staticvec
[i
]);
5510 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5511 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5515 register struct gcpro
*tail
;
5516 for (tail
= gcprolist
; tail
; tail
= tail
->next
)
5517 for (i
= 0; i
< tail
->nvars
; i
++)
5518 mark_object (tail
->var
[i
]);
5523 struct handler
*handler
;
5524 for (handler
= handlerlist
; handler
; handler
= handler
->next
)
5526 mark_object (handler
->tag_or_ch
);
5527 mark_object (handler
->val
);
5530 #ifdef HAVE_WINDOW_SYSTEM
5531 mark_fringe_data ();
5534 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5538 /* Everything is now marked, except for the data in font caches
5539 and undo lists. They're compacted by removing an items which
5540 aren't reachable otherwise. */
5542 compact_font_caches ();
5544 FOR_EACH_BUFFER (nextb
)
5546 if (!EQ (BVAR (nextb
, undo_list
), Qt
))
5547 bset_undo_list (nextb
, compact_undo_list (BVAR (nextb
, undo_list
)));
5548 /* Now that we have stripped the elements that need not be
5549 in the undo_list any more, we can finally mark the list. */
5550 mark_object (BVAR (nextb
, undo_list
));
5555 /* Clear the mark bits that we set in certain root slots. */
5557 unmark_byte_stack ();
5558 VECTOR_UNMARK (&buffer_defaults
);
5559 VECTOR_UNMARK (&buffer_local_symbols
);
5561 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5571 consing_since_gc
= 0;
5572 if (gc_cons_threshold
< GC_DEFAULT_THRESHOLD
/ 10)
5573 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
/ 10;
5575 gc_relative_threshold
= 0;
5576 if (FLOATP (Vgc_cons_percentage
))
5577 { /* Set gc_cons_combined_threshold. */
5578 double tot
= total_bytes_of_live_objects ();
5580 tot
*= XFLOAT_DATA (Vgc_cons_percentage
);
5583 if (tot
< TYPE_MAXIMUM (EMACS_INT
))
5584 gc_relative_threshold
= tot
;
5586 gc_relative_threshold
= TYPE_MAXIMUM (EMACS_INT
);
5590 if (garbage_collection_messages
)
5592 if (message_p
|| minibuf_level
> 0)
5595 message1_nolog ("Garbage collecting...done");
5598 unbind_to (count
, Qnil
);
5600 Lisp_Object total
[11];
5601 int total_size
= 10;
5603 total
[0] = list4 (Qconses
, make_number (sizeof (struct Lisp_Cons
)),
5604 bounded_number (total_conses
),
5605 bounded_number (total_free_conses
));
5607 total
[1] = list4 (Qsymbols
, make_number (sizeof (struct Lisp_Symbol
)),
5608 bounded_number (total_symbols
),
5609 bounded_number (total_free_symbols
));
5611 total
[2] = list4 (Qmiscs
, make_number (sizeof (union Lisp_Misc
)),
5612 bounded_number (total_markers
),
5613 bounded_number (total_free_markers
));
5615 total
[3] = list4 (Qstrings
, make_number (sizeof (struct Lisp_String
)),
5616 bounded_number (total_strings
),
5617 bounded_number (total_free_strings
));
5619 total
[4] = list3 (Qstring_bytes
, make_number (1),
5620 bounded_number (total_string_bytes
));
5622 total
[5] = list3 (Qvectors
,
5623 make_number (header_size
+ sizeof (Lisp_Object
)),
5624 bounded_number (total_vectors
));
5626 total
[6] = list4 (Qvector_slots
, make_number (word_size
),
5627 bounded_number (total_vector_slots
),
5628 bounded_number (total_free_vector_slots
));
5630 total
[7] = list4 (Qfloats
, make_number (sizeof (struct Lisp_Float
)),
5631 bounded_number (total_floats
),
5632 bounded_number (total_free_floats
));
5634 total
[8] = list4 (Qintervals
, make_number (sizeof (struct interval
)),
5635 bounded_number (total_intervals
),
5636 bounded_number (total_free_intervals
));
5638 total
[9] = list3 (Qbuffers
, make_number (sizeof (struct buffer
)),
5639 bounded_number (total_buffers
));
5641 #ifdef DOUG_LEA_MALLOC
5643 total
[10] = list4 (Qheap
, make_number (1024),
5644 bounded_number ((mallinfo ().uordblks
+ 1023) >> 10),
5645 bounded_number ((mallinfo ().fordblks
+ 1023) >> 10));
5647 retval
= Flist (total_size
, total
);
5650 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5652 /* Compute average percentage of zombies. */
5654 = (total_conses
+ total_symbols
+ total_markers
+ total_strings
5655 + total_vectors
+ total_floats
+ total_intervals
+ total_buffers
);
5657 avg_live
= (avg_live
* ngcs
+ nlive
) / (ngcs
+ 1);
5658 max_live
= max (nlive
, max_live
);
5659 avg_zombies
= (avg_zombies
* ngcs
+ nzombies
) / (ngcs
+ 1);
5660 max_zombies
= max (nzombies
, max_zombies
);
5665 if (!NILP (Vpost_gc_hook
))
5667 ptrdiff_t gc_count
= inhibit_garbage_collection ();
5668 safe_run_hooks (Qpost_gc_hook
);
5669 unbind_to (gc_count
, Qnil
);
5672 /* Accumulate statistics. */
5673 if (FLOATP (Vgc_elapsed
))
5675 struct timespec since_start
= timespec_sub (current_timespec (), start
);
5676 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
)
5677 + timespectod (since_start
));
5682 /* Collect profiling data. */
5683 if (profiler_memory_running
)
5686 size_t tot_after
= total_bytes_of_live_objects ();
5687 if (tot_before
> tot_after
)
5688 swept
= tot_before
- tot_after
;
5689 malloc_probe (swept
);
5696 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5697 only interesting objects referenced from glyphs are strings. */
5700 mark_glyph_matrix (struct glyph_matrix
*matrix
)
5702 struct glyph_row
*row
= matrix
->rows
;
5703 struct glyph_row
*end
= row
+ matrix
->nrows
;
5705 for (; row
< end
; ++row
)
5709 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
5711 struct glyph
*glyph
= row
->glyphs
[area
];
5712 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
5714 for (; glyph
< end_glyph
; ++glyph
)
5715 if (STRINGP (glyph
->object
)
5716 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
5717 mark_object (glyph
->object
);
5722 /* Mark reference to a Lisp_Object.
5723 If the object referred to has not been seen yet, recursively mark
5724 all the references contained in it. */
5726 #define LAST_MARKED_SIZE 500
5727 static Lisp_Object last_marked
[LAST_MARKED_SIZE
];
5728 static int last_marked_index
;
5730 /* For debugging--call abort when we cdr down this many
5731 links of a list, in mark_object. In debugging,
5732 the call to abort will hit a breakpoint.
5733 Normally this is zero and the check never goes off. */
5734 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE
;
5737 mark_vectorlike (struct Lisp_Vector
*ptr
)
5739 ptrdiff_t size
= ptr
->header
.size
;
5742 eassert (!VECTOR_MARKED_P (ptr
));
5743 VECTOR_MARK (ptr
); /* Else mark it. */
5744 if (size
& PSEUDOVECTOR_FLAG
)
5745 size
&= PSEUDOVECTOR_SIZE_MASK
;
5747 /* Note that this size is not the memory-footprint size, but only
5748 the number of Lisp_Object fields that we should trace.
5749 The distinction is used e.g. by Lisp_Process which places extra
5750 non-Lisp_Object fields at the end of the structure... */
5751 for (i
= 0; i
< size
; i
++) /* ...and then mark its elements. */
5752 mark_object (ptr
->contents
[i
]);
5755 /* Like mark_vectorlike but optimized for char-tables (and
5756 sub-char-tables) assuming that the contents are mostly integers or
5760 mark_char_table (struct Lisp_Vector
*ptr
)
5762 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5765 eassert (!VECTOR_MARKED_P (ptr
));
5767 for (i
= 0; i
< size
; i
++)
5769 Lisp_Object val
= ptr
->contents
[i
];
5771 if (INTEGERP (val
) || (SYMBOLP (val
) && XSYMBOL (val
)->gcmarkbit
))
5773 if (SUB_CHAR_TABLE_P (val
))
5775 if (! VECTOR_MARKED_P (XVECTOR (val
)))
5776 mark_char_table (XVECTOR (val
));
5783 /* Mark the chain of overlays starting at PTR. */
5786 mark_overlay (struct Lisp_Overlay
*ptr
)
5788 for (; ptr
&& !ptr
->gcmarkbit
; ptr
= ptr
->next
)
5791 mark_object (ptr
->start
);
5792 mark_object (ptr
->end
);
5793 mark_object (ptr
->plist
);
5797 /* Mark Lisp_Objects and special pointers in BUFFER. */
5800 mark_buffer (struct buffer
*buffer
)
5802 /* This is handled much like other pseudovectors... */
5803 mark_vectorlike ((struct Lisp_Vector
*) buffer
);
5805 /* ...but there are some buffer-specific things. */
5807 MARK_INTERVAL_TREE (buffer_intervals (buffer
));
5809 /* For now, we just don't mark the undo_list. It's done later in
5810 a special way just before the sweep phase, and after stripping
5811 some of its elements that are not needed any more. */
5813 mark_overlay (buffer
->overlays_before
);
5814 mark_overlay (buffer
->overlays_after
);
5816 /* If this is an indirect buffer, mark its base buffer. */
5817 if (buffer
->base_buffer
&& !VECTOR_MARKED_P (buffer
->base_buffer
))
5818 mark_buffer (buffer
->base_buffer
);
5821 /* Mark Lisp faces in the face cache C. */
5824 mark_face_cache (struct face_cache
*c
)
5829 for (i
= 0; i
< c
->used
; ++i
)
5831 struct face
*face
= FACE_FROM_ID (c
->f
, i
);
5835 if (face
->font
&& !VECTOR_MARKED_P (face
->font
))
5836 mark_vectorlike ((struct Lisp_Vector
*) face
->font
);
5838 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
5839 mark_object (face
->lface
[j
]);
5845 /* Remove killed buffers or items whose car is a killed buffer from
5846 LIST, and mark other items. Return changed LIST, which is marked. */
5849 mark_discard_killed_buffers (Lisp_Object list
)
5851 Lisp_Object tail
, *prev
= &list
;
5853 for (tail
= list
; CONSP (tail
) && !CONS_MARKED_P (XCONS (tail
));
5856 Lisp_Object tem
= XCAR (tail
);
5859 if (BUFFERP (tem
) && !BUFFER_LIVE_P (XBUFFER (tem
)))
5860 *prev
= XCDR (tail
);
5863 CONS_MARK (XCONS (tail
));
5864 mark_object (XCAR (tail
));
5865 prev
= xcdr_addr (tail
);
5872 /* Determine type of generic Lisp_Object and mark it accordingly. */
5875 mark_object (Lisp_Object arg
)
5877 register Lisp_Object obj
= arg
;
5878 #ifdef GC_CHECK_MARKED_OBJECTS
5882 ptrdiff_t cdr_count
= 0;
5886 if (PURE_POINTER_P (XPNTR (obj
)))
5889 last_marked
[last_marked_index
++] = obj
;
5890 if (last_marked_index
== LAST_MARKED_SIZE
)
5891 last_marked_index
= 0;
5893 /* Perform some sanity checks on the objects marked here. Abort if
5894 we encounter an object we know is bogus. This increases GC time
5895 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5896 #ifdef GC_CHECK_MARKED_OBJECTS
5898 po
= (void *) XPNTR (obj
);
5900 /* Check that the object pointed to by PO is known to be a Lisp
5901 structure allocated from the heap. */
5902 #define CHECK_ALLOCATED() \
5904 m = mem_find (po); \
5909 /* Check that the object pointed to by PO is live, using predicate
5911 #define CHECK_LIVE(LIVEP) \
5913 if (!LIVEP (m, po)) \
5917 /* Check both of the above conditions. */
5918 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5920 CHECK_ALLOCATED (); \
5921 CHECK_LIVE (LIVEP); \
5924 #else /* not GC_CHECK_MARKED_OBJECTS */
5926 #define CHECK_LIVE(LIVEP) (void) 0
5927 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5929 #endif /* not GC_CHECK_MARKED_OBJECTS */
5931 switch (XTYPE (obj
))
5935 register struct Lisp_String
*ptr
= XSTRING (obj
);
5936 if (STRING_MARKED_P (ptr
))
5938 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
5940 MARK_INTERVAL_TREE (ptr
->intervals
);
5941 #ifdef GC_CHECK_STRING_BYTES
5942 /* Check that the string size recorded in the string is the
5943 same as the one recorded in the sdata structure. */
5945 #endif /* GC_CHECK_STRING_BYTES */
5949 case Lisp_Vectorlike
:
5951 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
5952 register ptrdiff_t pvectype
;
5954 if (VECTOR_MARKED_P (ptr
))
5957 #ifdef GC_CHECK_MARKED_OBJECTS
5959 if (m
== MEM_NIL
&& !SUBRP (obj
))
5961 #endif /* GC_CHECK_MARKED_OBJECTS */
5963 if (ptr
->header
.size
& PSEUDOVECTOR_FLAG
)
5964 pvectype
= ((ptr
->header
.size
& PVEC_TYPE_MASK
)
5965 >> PSEUDOVECTOR_AREA_BITS
);
5967 pvectype
= PVEC_NORMAL_VECTOR
;
5969 if (pvectype
!= PVEC_SUBR
&& pvectype
!= PVEC_BUFFER
)
5970 CHECK_LIVE (live_vector_p
);
5975 #ifdef GC_CHECK_MARKED_OBJECTS
5984 #endif /* GC_CHECK_MARKED_OBJECTS */
5985 mark_buffer ((struct buffer
*) ptr
);
5989 { /* We could treat this just like a vector, but it is better
5990 to save the COMPILED_CONSTANTS element for last and avoid
5992 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
5996 for (i
= 0; i
< size
; i
++)
5997 if (i
!= COMPILED_CONSTANTS
)
5998 mark_object (ptr
->contents
[i
]);
5999 if (size
> COMPILED_CONSTANTS
)
6001 obj
= ptr
->contents
[COMPILED_CONSTANTS
];
6009 struct frame
*f
= (struct frame
*) ptr
;
6011 mark_vectorlike (ptr
);
6012 mark_face_cache (f
->face_cache
);
6013 #ifdef HAVE_WINDOW_SYSTEM
6014 if (FRAME_WINDOW_P (f
) && FRAME_X_OUTPUT (f
))
6016 struct font
*font
= FRAME_FONT (f
);
6018 if (font
&& !VECTOR_MARKED_P (font
))
6019 mark_vectorlike ((struct Lisp_Vector
*) font
);
6027 struct window
*w
= (struct window
*) ptr
;
6029 mark_vectorlike (ptr
);
6031 /* Mark glyph matrices, if any. Marking window
6032 matrices is sufficient because frame matrices
6033 use the same glyph memory. */
6034 if (w
->current_matrix
)
6036 mark_glyph_matrix (w
->current_matrix
);
6037 mark_glyph_matrix (w
->desired_matrix
);
6040 /* Filter out killed buffers from both buffer lists
6041 in attempt to help GC to reclaim killed buffers faster.
6042 We can do it elsewhere for live windows, but this is the
6043 best place to do it for dead windows. */
6045 (w
, mark_discard_killed_buffers (w
->prev_buffers
));
6047 (w
, mark_discard_killed_buffers (w
->next_buffers
));
6051 case PVEC_HASH_TABLE
:
6053 struct Lisp_Hash_Table
*h
= (struct Lisp_Hash_Table
*) ptr
;
6055 mark_vectorlike (ptr
);
6056 mark_object (h
->test
.name
);
6057 mark_object (h
->test
.user_hash_function
);
6058 mark_object (h
->test
.user_cmp_function
);
6059 /* If hash table is not weak, mark all keys and values.
6060 For weak tables, mark only the vector. */
6062 mark_object (h
->key_and_value
);
6064 VECTOR_MARK (XVECTOR (h
->key_and_value
));
6068 case PVEC_CHAR_TABLE
:
6069 mark_char_table (ptr
);
6072 case PVEC_BOOL_VECTOR
:
6073 /* No Lisp_Objects to mark in a bool vector. */
6084 mark_vectorlike (ptr
);
6091 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
6092 struct Lisp_Symbol
*ptrx
;
6096 CHECK_ALLOCATED_AND_LIVE (live_symbol_p
);
6098 mark_object (ptr
->function
);
6099 mark_object (ptr
->plist
);
6100 switch (ptr
->redirect
)
6102 case SYMBOL_PLAINVAL
: mark_object (SYMBOL_VAL (ptr
)); break;
6103 case SYMBOL_VARALIAS
:
6106 XSETSYMBOL (tem
, SYMBOL_ALIAS (ptr
));
6110 case SYMBOL_LOCALIZED
:
6112 struct Lisp_Buffer_Local_Value
*blv
= SYMBOL_BLV (ptr
);
6113 Lisp_Object where
= blv
->where
;
6114 /* If the value is set up for a killed buffer or deleted
6115 frame, restore it's global binding. If the value is
6116 forwarded to a C variable, either it's not a Lisp_Object
6117 var, or it's staticpro'd already. */
6118 if ((BUFFERP (where
) && !BUFFER_LIVE_P (XBUFFER (where
)))
6119 || (FRAMEP (where
) && !FRAME_LIVE_P (XFRAME (where
))))
6120 swap_in_global_binding (ptr
);
6121 mark_object (blv
->where
);
6122 mark_object (blv
->valcell
);
6123 mark_object (blv
->defcell
);
6126 case SYMBOL_FORWARDED
:
6127 /* If the value is forwarded to a buffer or keyboard field,
6128 these are marked when we see the corresponding object.
6129 And if it's forwarded to a C variable, either it's not
6130 a Lisp_Object var, or it's staticpro'd already. */
6132 default: emacs_abort ();
6134 if (!PURE_POINTER_P (XSTRING (ptr
->name
)))
6135 MARK_STRING (XSTRING (ptr
->name
));
6136 MARK_INTERVAL_TREE (string_intervals (ptr
->name
));
6141 ptrx
= ptr
; /* Use of ptrx avoids compiler bug on Sun. */
6142 XSETSYMBOL (obj
, ptrx
);
6149 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
6151 if (XMISCANY (obj
)->gcmarkbit
)
6154 switch (XMISCTYPE (obj
))
6156 case Lisp_Misc_Marker
:
6157 /* DO NOT mark thru the marker's chain.
6158 The buffer's markers chain does not preserve markers from gc;
6159 instead, markers are removed from the chain when freed by gc. */
6160 XMISCANY (obj
)->gcmarkbit
= 1;
6163 case Lisp_Misc_Save_Value
:
6164 XMISCANY (obj
)->gcmarkbit
= 1;
6166 struct Lisp_Save_Value
*ptr
= XSAVE_VALUE (obj
);
6167 /* If `save_type' is zero, `data[0].pointer' is the address
6168 of a memory area containing `data[1].integer' potential
6170 if (GC_MARK_STACK
&& ptr
->save_type
== SAVE_TYPE_MEMORY
)
6172 Lisp_Object
*p
= ptr
->data
[0].pointer
;
6174 for (nelt
= ptr
->data
[1].integer
; nelt
> 0; nelt
--, p
++)
6175 mark_maybe_object (*p
);
6179 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6181 for (i
= 0; i
< SAVE_VALUE_SLOTS
; i
++)
6182 if (save_type (ptr
, i
) == SAVE_OBJECT
)
6183 mark_object (ptr
->data
[i
].object
);
6188 case Lisp_Misc_Overlay
:
6189 mark_overlay (XOVERLAY (obj
));
6199 register struct Lisp_Cons
*ptr
= XCONS (obj
);
6200 if (CONS_MARKED_P (ptr
))
6202 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
6204 /* If the cdr is nil, avoid recursion for the car. */
6205 if (EQ (ptr
->u
.cdr
, Qnil
))
6211 mark_object (ptr
->car
);
6214 if (cdr_count
== mark_object_loop_halt
)
6220 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
6221 FLOAT_MARK (XFLOAT (obj
));
6232 #undef CHECK_ALLOCATED
6233 #undef CHECK_ALLOCATED_AND_LIVE
6235 /* Mark the Lisp pointers in the terminal objects.
6236 Called by Fgarbage_collect. */
6239 mark_terminals (void)
6242 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
6244 eassert (t
->name
!= NULL
);
6245 #ifdef HAVE_WINDOW_SYSTEM
6246 /* If a terminal object is reachable from a stacpro'ed object,
6247 it might have been marked already. Make sure the image cache
6249 mark_image_cache (t
->image_cache
);
6250 #endif /* HAVE_WINDOW_SYSTEM */
6251 if (!VECTOR_MARKED_P (t
))
6252 mark_vectorlike ((struct Lisp_Vector
*)t
);
6258 /* Value is non-zero if OBJ will survive the current GC because it's
6259 either marked or does not need to be marked to survive. */
6262 survives_gc_p (Lisp_Object obj
)
6266 switch (XTYPE (obj
))
6273 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
6277 survives_p
= XMISCANY (obj
)->gcmarkbit
;
6281 survives_p
= STRING_MARKED_P (XSTRING (obj
));
6284 case Lisp_Vectorlike
:
6285 survives_p
= SUBRP (obj
) || VECTOR_MARKED_P (XVECTOR (obj
));
6289 survives_p
= CONS_MARKED_P (XCONS (obj
));
6293 survives_p
= FLOAT_MARKED_P (XFLOAT (obj
));
6300 return survives_p
|| PURE_POINTER_P ((void *) XPNTR (obj
));
6305 /* Sweep: find all structures not marked, and free them. */
6310 /* Remove or mark entries in weak hash tables.
6311 This must be done before any object is unmarked. */
6312 sweep_weak_hash_tables ();
6315 check_string_bytes (!noninteractive
);
6317 /* Put all unmarked conses on free list. */
6319 register struct cons_block
*cblk
;
6320 struct cons_block
**cprev
= &cons_block
;
6321 register int lim
= cons_block_index
;
6322 EMACS_INT num_free
= 0, num_used
= 0;
6326 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
6330 int ilim
= (lim
+ BITS_PER_INT
- 1) / BITS_PER_INT
;
6332 /* Scan the mark bits an int at a time. */
6333 for (i
= 0; i
< ilim
; i
++)
6335 if (cblk
->gcmarkbits
[i
] == -1)
6337 /* Fast path - all cons cells for this int are marked. */
6338 cblk
->gcmarkbits
[i
] = 0;
6339 num_used
+= BITS_PER_INT
;
6343 /* Some cons cells for this int are not marked.
6344 Find which ones, and free them. */
6345 int start
, pos
, stop
;
6347 start
= i
* BITS_PER_INT
;
6349 if (stop
> BITS_PER_INT
)
6350 stop
= BITS_PER_INT
;
6353 for (pos
= start
; pos
< stop
; pos
++)
6355 if (!CONS_MARKED_P (&cblk
->conses
[pos
]))
6358 cblk
->conses
[pos
].u
.chain
= cons_free_list
;
6359 cons_free_list
= &cblk
->conses
[pos
];
6361 cons_free_list
->car
= Vdead
;
6367 CONS_UNMARK (&cblk
->conses
[pos
]);
6373 lim
= CONS_BLOCK_SIZE
;
6374 /* If this block contains only free conses and we have already
6375 seen more than two blocks worth of free conses then deallocate
6377 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
6379 *cprev
= cblk
->next
;
6380 /* Unhook from the free list. */
6381 cons_free_list
= cblk
->conses
[0].u
.chain
;
6382 lisp_align_free (cblk
);
6386 num_free
+= this_free
;
6387 cprev
= &cblk
->next
;
6390 total_conses
= num_used
;
6391 total_free_conses
= num_free
;
6394 /* Put all unmarked floats on free list. */
6396 register struct float_block
*fblk
;
6397 struct float_block
**fprev
= &float_block
;
6398 register int lim
= float_block_index
;
6399 EMACS_INT num_free
= 0, num_used
= 0;
6401 float_free_list
= 0;
6403 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
6407 for (i
= 0; i
< lim
; i
++)
6408 if (!FLOAT_MARKED_P (&fblk
->floats
[i
]))
6411 fblk
->floats
[i
].u
.chain
= float_free_list
;
6412 float_free_list
= &fblk
->floats
[i
];
6417 FLOAT_UNMARK (&fblk
->floats
[i
]);
6419 lim
= FLOAT_BLOCK_SIZE
;
6420 /* If this block contains only free floats and we have already
6421 seen more than two blocks worth of free floats then deallocate
6423 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
6425 *fprev
= fblk
->next
;
6426 /* Unhook from the free list. */
6427 float_free_list
= fblk
->floats
[0].u
.chain
;
6428 lisp_align_free (fblk
);
6432 num_free
+= this_free
;
6433 fprev
= &fblk
->next
;
6436 total_floats
= num_used
;
6437 total_free_floats
= num_free
;
6440 /* Put all unmarked intervals on free list. */
6442 register struct interval_block
*iblk
;
6443 struct interval_block
**iprev
= &interval_block
;
6444 register int lim
= interval_block_index
;
6445 EMACS_INT num_free
= 0, num_used
= 0;
6447 interval_free_list
= 0;
6449 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
6454 for (i
= 0; i
< lim
; i
++)
6456 if (!iblk
->intervals
[i
].gcmarkbit
)
6458 set_interval_parent (&iblk
->intervals
[i
], interval_free_list
);
6459 interval_free_list
= &iblk
->intervals
[i
];
6465 iblk
->intervals
[i
].gcmarkbit
= 0;
6468 lim
= INTERVAL_BLOCK_SIZE
;
6469 /* If this block contains only free intervals and we have already
6470 seen more than two blocks worth of free intervals then
6471 deallocate this block. */
6472 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
6474 *iprev
= iblk
->next
;
6475 /* Unhook from the free list. */
6476 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
6481 num_free
+= this_free
;
6482 iprev
= &iblk
->next
;
6485 total_intervals
= num_used
;
6486 total_free_intervals
= num_free
;
6489 /* Put all unmarked symbols on free list. */
6491 register struct symbol_block
*sblk
;
6492 struct symbol_block
**sprev
= &symbol_block
;
6493 register int lim
= symbol_block_index
;
6494 EMACS_INT num_free
= 0, num_used
= 0;
6496 symbol_free_list
= NULL
;
6498 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
6501 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
;
6502 union aligned_Lisp_Symbol
*end
= sym
+ lim
;
6504 for (; sym
< end
; ++sym
)
6506 /* Check if the symbol was created during loadup. In such a case
6507 it might be pointed to by pure bytecode which we don't trace,
6508 so we conservatively assume that it is live. */
6509 bool pure_p
= PURE_POINTER_P (XSTRING (sym
->s
.name
));
6511 if (!sym
->s
.gcmarkbit
&& !pure_p
)
6513 if (sym
->s
.redirect
== SYMBOL_LOCALIZED
)
6514 xfree (SYMBOL_BLV (&sym
->s
));
6515 sym
->s
.next
= symbol_free_list
;
6516 symbol_free_list
= &sym
->s
;
6518 symbol_free_list
->function
= Vdead
;
6526 eassert (!STRING_MARKED_P (XSTRING (sym
->s
.name
)));
6527 sym
->s
.gcmarkbit
= 0;
6531 lim
= SYMBOL_BLOCK_SIZE
;
6532 /* If this block contains only free symbols and we have already
6533 seen more than two blocks worth of free symbols then deallocate
6535 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
6537 *sprev
= sblk
->next
;
6538 /* Unhook from the free list. */
6539 symbol_free_list
= sblk
->symbols
[0].s
.next
;
6544 num_free
+= this_free
;
6545 sprev
= &sblk
->next
;
6548 total_symbols
= num_used
;
6549 total_free_symbols
= num_free
;
6552 /* Put all unmarked misc's on free list.
6553 For a marker, first unchain it from the buffer it points into. */
6555 register struct marker_block
*mblk
;
6556 struct marker_block
**mprev
= &marker_block
;
6557 register int lim
= marker_block_index
;
6558 EMACS_INT num_free
= 0, num_used
= 0;
6560 marker_free_list
= 0;
6562 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
6567 for (i
= 0; i
< lim
; i
++)
6569 if (!mblk
->markers
[i
].m
.u_any
.gcmarkbit
)
6571 if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Marker
)
6572 unchain_marker (&mblk
->markers
[i
].m
.u_marker
);
6573 /* Set the type of the freed object to Lisp_Misc_Free.
6574 We could leave the type alone, since nobody checks it,
6575 but this might catch bugs faster. */
6576 mblk
->markers
[i
].m
.u_marker
.type
= Lisp_Misc_Free
;
6577 mblk
->markers
[i
].m
.u_free
.chain
= marker_free_list
;
6578 marker_free_list
= &mblk
->markers
[i
].m
;
6584 mblk
->markers
[i
].m
.u_any
.gcmarkbit
= 0;
6587 lim
= MARKER_BLOCK_SIZE
;
6588 /* If this block contains only free markers and we have already
6589 seen more than two blocks worth of free markers then deallocate
6591 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
6593 *mprev
= mblk
->next
;
6594 /* Unhook from the free list. */
6595 marker_free_list
= mblk
->markers
[0].m
.u_free
.chain
;
6600 num_free
+= this_free
;
6601 mprev
= &mblk
->next
;
6605 total_markers
= num_used
;
6606 total_free_markers
= num_free
;
6609 /* Free all unmarked buffers */
6611 register struct buffer
*buffer
, **bprev
= &all_buffers
;
6614 for (buffer
= all_buffers
; buffer
; buffer
= *bprev
)
6615 if (!VECTOR_MARKED_P (buffer
))
6617 *bprev
= buffer
->next
;
6622 VECTOR_UNMARK (buffer
);
6623 /* Do not use buffer_(set|get)_intervals here. */
6624 buffer
->text
->intervals
= balance_intervals (buffer
->text
->intervals
);
6626 bprev
= &buffer
->next
;
6631 check_string_bytes (!noninteractive
);
6637 /* Debugging aids. */
6639 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
6640 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6641 This may be helpful in debugging Emacs's memory usage.
6642 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6648 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6651 XSETINT (end
, (intptr_t) (char *) sbrk (0) / 1024);
6657 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
6658 doc
: /* Return a list of counters that measure how much consing there has been.
6659 Each of these counters increments for a certain kind of object.
6660 The counters wrap around from the largest positive integer to zero.
6661 Garbage collection does not decrease them.
6662 The elements of the value are as follows:
6663 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6664 All are in units of 1 = one object consed
6665 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6667 MISCS include overlays, markers, and some internal types.
6668 Frames, windows, buffers, and subprocesses count as vectors
6669 (but the contents of a buffer's text do not count here). */)
6672 return listn (CONSTYPE_HEAP
, 8,
6673 bounded_number (cons_cells_consed
),
6674 bounded_number (floats_consed
),
6675 bounded_number (vector_cells_consed
),
6676 bounded_number (symbols_consed
),
6677 bounded_number (string_chars_consed
),
6678 bounded_number (misc_objects_consed
),
6679 bounded_number (intervals_consed
),
6680 bounded_number (strings_consed
));
6683 /* Find at most FIND_MAX symbols which have OBJ as their value or
6684 function. This is used in gdbinit's `xwhichsymbols' command. */
6687 which_symbols (Lisp_Object obj
, EMACS_INT find_max
)
6689 struct symbol_block
*sblk
;
6690 ptrdiff_t gc_count
= inhibit_garbage_collection ();
6691 Lisp_Object found
= Qnil
;
6695 for (sblk
= symbol_block
; sblk
; sblk
= sblk
->next
)
6697 union aligned_Lisp_Symbol
*aligned_sym
= sblk
->symbols
;
6700 for (bn
= 0; bn
< SYMBOL_BLOCK_SIZE
; bn
++, aligned_sym
++)
6702 struct Lisp_Symbol
*sym
= &aligned_sym
->s
;
6706 if (sblk
== symbol_block
&& bn
>= symbol_block_index
)
6709 XSETSYMBOL (tem
, sym
);
6710 val
= find_symbol_value (tem
);
6712 || EQ (sym
->function
, obj
)
6713 || (!NILP (sym
->function
)
6714 && COMPILEDP (sym
->function
)
6715 && EQ (AREF (sym
->function
, COMPILED_BYTECODE
), obj
))
6718 && EQ (AREF (val
, COMPILED_BYTECODE
), obj
)))
6720 found
= Fcons (tem
, found
);
6721 if (--find_max
== 0)
6729 unbind_to (gc_count
, Qnil
);
6733 #ifdef ENABLE_CHECKING
6735 bool suppress_checking
;
6738 die (const char *msg
, const char *file
, int line
)
6740 fprintf (stderr
, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6742 terminate_due_to_signal (SIGABRT
, INT_MAX
);
6746 /* Initialization. */
6749 init_alloc_once (void)
6751 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6753 pure_size
= PURESIZE
;
6755 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6757 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
6760 #ifdef DOUG_LEA_MALLOC
6761 mallopt (M_TRIM_THRESHOLD
, 128 * 1024); /* Trim threshold. */
6762 mallopt (M_MMAP_THRESHOLD
, 64 * 1024); /* Mmap threshold. */
6763 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* Max. number of mmap'ed areas. */
6768 refill_memory_reserve ();
6769 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
;
6776 byte_stack_list
= 0;
6778 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6779 setjmp_tested_p
= longjmps_done
= 0;
6782 Vgc_elapsed
= make_float (0.0);
6786 valgrind_p
= RUNNING_ON_VALGRIND
!= 0;
6791 syms_of_alloc (void)
6793 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold
,
6794 doc
: /* Number of bytes of consing between garbage collections.
6795 Garbage collection can happen automatically once this many bytes have been
6796 allocated since the last garbage collection. All data types count.
6798 Garbage collection happens automatically only when `eval' is called.
6800 By binding this temporarily to a large number, you can effectively
6801 prevent garbage collection during a part of the program.
6802 See also `gc-cons-percentage'. */);
6804 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage
,
6805 doc
: /* Portion of the heap used for allocation.
6806 Garbage collection can happen automatically once this portion of the heap
6807 has been allocated since the last garbage collection.
6808 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6809 Vgc_cons_percentage
= make_float (0.1);
6811 DEFVAR_INT ("pure-bytes-used", pure_bytes_used
,
6812 doc
: /* Number of bytes of shareable Lisp data allocated so far. */);
6814 DEFVAR_INT ("cons-cells-consed", cons_cells_consed
,
6815 doc
: /* Number of cons cells that have been consed so far. */);
6817 DEFVAR_INT ("floats-consed", floats_consed
,
6818 doc
: /* Number of floats that have been consed so far. */);
6820 DEFVAR_INT ("vector-cells-consed", vector_cells_consed
,
6821 doc
: /* Number of vector cells that have been consed so far. */);
6823 DEFVAR_INT ("symbols-consed", symbols_consed
,
6824 doc
: /* Number of symbols that have been consed so far. */);
6826 DEFVAR_INT ("string-chars-consed", string_chars_consed
,
6827 doc
: /* Number of string characters that have been consed so far. */);
6829 DEFVAR_INT ("misc-objects-consed", misc_objects_consed
,
6830 doc
: /* Number of miscellaneous objects that have been consed so far.
6831 These include markers and overlays, plus certain objects not visible
6834 DEFVAR_INT ("intervals-consed", intervals_consed
,
6835 doc
: /* Number of intervals that have been consed so far. */);
6837 DEFVAR_INT ("strings-consed", strings_consed
,
6838 doc
: /* Number of strings that have been consed so far. */);
6840 DEFVAR_LISP ("purify-flag", Vpurify_flag
,
6841 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
6842 This means that certain objects should be allocated in shared (pure) space.
6843 It can also be set to a hash-table, in which case this table is used to
6844 do hash-consing of the objects allocated to pure space. */);
6846 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages
,
6847 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
6848 garbage_collection_messages
= 0;
6850 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook
,
6851 doc
: /* Hook run after garbage collection has finished. */);
6852 Vpost_gc_hook
= Qnil
;
6853 DEFSYM (Qpost_gc_hook
, "post-gc-hook");
6855 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data
,
6856 doc
: /* Precomputed `signal' argument for memory-full error. */);
6857 /* We build this in advance because if we wait until we need it, we might
6858 not be able to allocate the memory to hold it. */
6860 = listn (CONSTYPE_PURE
, 2, Qerror
,
6861 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6863 DEFVAR_LISP ("memory-full", Vmemory_full
,
6864 doc
: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6865 Vmemory_full
= Qnil
;
6867 DEFSYM (Qconses
, "conses");
6868 DEFSYM (Qsymbols
, "symbols");
6869 DEFSYM (Qmiscs
, "miscs");
6870 DEFSYM (Qstrings
, "strings");
6871 DEFSYM (Qvectors
, "vectors");
6872 DEFSYM (Qfloats
, "floats");
6873 DEFSYM (Qintervals
, "intervals");
6874 DEFSYM (Qbuffers
, "buffers");
6875 DEFSYM (Qstring_bytes
, "string-bytes");
6876 DEFSYM (Qvector_slots
, "vector-slots");
6877 DEFSYM (Qheap
, "heap");
6878 DEFSYM (Qautomatic_gc
, "Automatic GC");
6880 DEFSYM (Qgc_cons_threshold
, "gc-cons-threshold");
6881 DEFSYM (Qchar_table_extra_slots
, "char-table-extra-slots");
6883 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed
,
6884 doc
: /* Accumulated time elapsed in garbage collections.
6885 The time is in seconds as a floating point value. */);
6886 DEFVAR_INT ("gcs-done", gcs_done
,
6887 doc
: /* Accumulated number of garbage collections done. */);
6892 defsubr (&Smake_byte_code
);
6893 defsubr (&Smake_list
);
6894 defsubr (&Smake_vector
);
6895 defsubr (&Smake_string
);
6896 defsubr (&Smake_bool_vector
);
6897 defsubr (&Smake_symbol
);
6898 defsubr (&Smake_marker
);
6899 defsubr (&Spurecopy
);
6900 defsubr (&Sgarbage_collect
);
6901 defsubr (&Smemory_limit
);
6902 defsubr (&Smemory_use_counts
);
6904 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6905 defsubr (&Sgc_status
);
6909 /* When compiled with GCC, GDB might say "No enum type named
6910 pvec_type" if we don't have at least one symbol with that type, and
6911 then xbacktrace could fail. Similarly for the other enums and
6912 their values. Some non-GCC compilers don't like these constructs. */
6916 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS
;
6917 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS
;
6918 enum char_bits char_bits
;
6919 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE
;
6920 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE
;
6921 enum enum_USE_LSB_TAG enum_USE_LSB_TAG
;
6922 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE
;
6923 enum Lisp_Bits Lisp_Bits
;
6924 enum Lisp_Compiled Lisp_Compiled
;
6925 enum maxargs maxargs
;
6926 enum MAX_ALLOCA MAX_ALLOCA
;
6927 enum More_Lisp_Bits More_Lisp_Bits
;
6928 enum pvec_type pvec_type
;
6929 } const EXTERNALLY_VISIBLE gdb_make_enums_visible
= {0};
6930 #endif /* __GNUC__ */