Grammer fix
[emacs.git] / src / alloc.c
blob447b465a076f7efc4288195fc488a4d3328df467
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45 #ifdef HAVE_WINDOW_SYSTEM
46 #include TERM_HEADER
47 #endif /* HAVE_WINDOW_SYSTEM */
49 #include <verify.h>
51 #if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54 # define USE_VALGRIND 1
55 #endif
57 #if USE_VALGRIND
58 #include <valgrind/valgrind.h>
59 #include <valgrind/memcheck.h>
60 static bool valgrind_p;
61 #endif
63 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65 #if ! GC_MARK_STACK
66 # undef GC_CHECK_MARKED_OBJECTS
67 #endif
69 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
73 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75 #undef GC_MALLOC_CHECK
76 #endif
78 #include <unistd.h>
79 #include <fcntl.h>
81 #ifdef USE_GTK
82 # include "gtkutil.h"
83 #endif
84 #ifdef WINDOWSNT
85 #include "w32.h"
86 #include "w32heap.h" /* for sbrk */
87 #endif
89 #ifdef DOUG_LEA_MALLOC
91 #include <malloc.h>
93 /* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
96 #define MMAP_MAX_AREAS 100000000
98 #endif /* not DOUG_LEA_MALLOC */
100 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
103 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
107 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
111 /* Default value of gc_cons_threshold (see below). */
113 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
115 /* Global variables. */
116 struct emacs_globals globals;
118 /* Number of bytes of consing done since the last gc. */
120 EMACS_INT consing_since_gc;
122 /* Similar minimum, computed from Vgc_cons_percentage. */
124 EMACS_INT gc_relative_threshold;
126 /* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
129 EMACS_INT memory_full_cons_threshold;
131 /* True during GC. */
133 bool gc_in_progress;
135 /* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
139 bool abort_on_gc;
141 /* Number of live and free conses etc. */
143 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145 static EMACS_INT total_free_floats, total_floats;
147 /* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
151 static char *spare_memory[7];
153 /* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
156 #define SPARE_MEMORY (1 << 14)
158 /* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
164 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165 #define PUREBEG (char *) pure
167 /* Pointer to the pure area, and its size. */
169 static char *purebeg;
170 static ptrdiff_t pure_size;
172 /* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
175 static ptrdiff_t pure_bytes_used_before_overflow;
177 /* True if P points into pure space. */
179 #define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
182 /* Index in pure at which next pure Lisp object will be allocated.. */
184 static ptrdiff_t pure_bytes_used_lisp;
186 /* Number of bytes allocated for non-Lisp objects in pure storage. */
188 static ptrdiff_t pure_bytes_used_non_lisp;
190 /* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
193 const char *pending_malloc_warning;
195 /* Maximum amount of C stack to save when a GC happens. */
197 #ifndef MAX_SAVE_STACK
198 #define MAX_SAVE_STACK 16000
199 #endif
201 /* Buffer in which we save a copy of the C stack at each GC. */
203 #if MAX_SAVE_STACK > 0
204 static char *stack_copy;
205 static ptrdiff_t stack_copy_size;
206 #endif
208 static Lisp_Object Qconses;
209 static Lisp_Object Qsymbols;
210 static Lisp_Object Qmiscs;
211 static Lisp_Object Qstrings;
212 static Lisp_Object Qvectors;
213 static Lisp_Object Qfloats;
214 static Lisp_Object Qintervals;
215 static Lisp_Object Qbuffers;
216 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
217 static Lisp_Object Qgc_cons_threshold;
218 Lisp_Object Qautomatic_gc;
219 Lisp_Object Qchar_table_extra_slots;
221 /* Hook run after GC has finished. */
223 static Lisp_Object Qpost_gc_hook;
225 static void mark_terminals (void);
226 static void gc_sweep (void);
227 static Lisp_Object make_pure_vector (ptrdiff_t);
228 static void mark_buffer (struct buffer *);
230 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
231 static void refill_memory_reserve (void);
232 #endif
233 static void compact_small_strings (void);
234 static void free_large_strings (void);
235 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
237 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
238 what memory allocated via lisp_malloc and lisp_align_malloc is intended
239 for what purpose. This enumeration specifies the type of memory. */
241 enum mem_type
243 MEM_TYPE_NON_LISP,
244 MEM_TYPE_BUFFER,
245 MEM_TYPE_CONS,
246 MEM_TYPE_STRING,
247 MEM_TYPE_MISC,
248 MEM_TYPE_SYMBOL,
249 MEM_TYPE_FLOAT,
250 /* Since all non-bool pseudovectors are small enough to be
251 allocated from vector blocks, this memory type denotes
252 large regular vectors and large bool pseudovectors. */
253 MEM_TYPE_VECTORLIKE,
254 /* Special type to denote vector blocks. */
255 MEM_TYPE_VECTOR_BLOCK,
256 /* Special type to denote reserved memory. */
257 MEM_TYPE_SPARE
260 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
262 /* A unique object in pure space used to make some Lisp objects
263 on free lists recognizable in O(1). */
265 static Lisp_Object Vdead;
266 #define DEADP(x) EQ (x, Vdead)
268 #ifdef GC_MALLOC_CHECK
270 enum mem_type allocated_mem_type;
272 #endif /* GC_MALLOC_CHECK */
274 /* A node in the red-black tree describing allocated memory containing
275 Lisp data. Each such block is recorded with its start and end
276 address when it is allocated, and removed from the tree when it
277 is freed.
279 A red-black tree is a balanced binary tree with the following
280 properties:
282 1. Every node is either red or black.
283 2. Every leaf is black.
284 3. If a node is red, then both of its children are black.
285 4. Every simple path from a node to a descendant leaf contains
286 the same number of black nodes.
287 5. The root is always black.
289 When nodes are inserted into the tree, or deleted from the tree,
290 the tree is "fixed" so that these properties are always true.
292 A red-black tree with N internal nodes has height at most 2
293 log(N+1). Searches, insertions and deletions are done in O(log N).
294 Please see a text book about data structures for a detailed
295 description of red-black trees. Any book worth its salt should
296 describe them. */
298 struct mem_node
300 /* Children of this node. These pointers are never NULL. When there
301 is no child, the value is MEM_NIL, which points to a dummy node. */
302 struct mem_node *left, *right;
304 /* The parent of this node. In the root node, this is NULL. */
305 struct mem_node *parent;
307 /* Start and end of allocated region. */
308 void *start, *end;
310 /* Node color. */
311 enum {MEM_BLACK, MEM_RED} color;
313 /* Memory type. */
314 enum mem_type type;
317 /* Base address of stack. Set in main. */
319 Lisp_Object *stack_base;
321 /* Root of the tree describing allocated Lisp memory. */
323 static struct mem_node *mem_root;
325 /* Lowest and highest known address in the heap. */
327 static void *min_heap_address, *max_heap_address;
329 /* Sentinel node of the tree. */
331 static struct mem_node mem_z;
332 #define MEM_NIL &mem_z
334 static struct mem_node *mem_insert (void *, void *, enum mem_type);
335 static void mem_insert_fixup (struct mem_node *);
336 static void mem_rotate_left (struct mem_node *);
337 static void mem_rotate_right (struct mem_node *);
338 static void mem_delete (struct mem_node *);
339 static void mem_delete_fixup (struct mem_node *);
340 static struct mem_node *mem_find (void *);
342 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
344 #ifndef DEADP
345 # define DEADP(x) 0
346 #endif
348 /* Recording what needs to be marked for gc. */
350 struct gcpro *gcprolist;
352 /* Addresses of staticpro'd variables. Initialize it to a nonzero
353 value; otherwise some compilers put it into BSS. */
355 enum { NSTATICS = 2048 };
356 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
358 /* Index of next unused slot in staticvec. */
360 static int staticidx;
362 static void *pure_alloc (size_t, int);
364 /* Return X rounded to the next multiple of Y. Arguments should not
365 have side effects, as they are evaluated more than once. Assume X
366 + Y - 1 does not overflow. Tune for Y being a power of 2. */
368 #define ROUNDUP(x, y) ((y) & ((y) - 1) \
369 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
370 : ((x) + (y) - 1) & ~ ((y) - 1))
372 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
374 static void *
375 ALIGN (void *ptr, int alignment)
377 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
380 static void
381 XFLOAT_INIT (Lisp_Object f, double n)
383 XFLOAT (f)->u.data = n;
387 /************************************************************************
388 Malloc
389 ************************************************************************/
391 /* Function malloc calls this if it finds we are near exhausting storage. */
393 void
394 malloc_warning (const char *str)
396 pending_malloc_warning = str;
400 /* Display an already-pending malloc warning. */
402 void
403 display_malloc_warning (void)
405 call3 (intern ("display-warning"),
406 intern ("alloc"),
407 build_string (pending_malloc_warning),
408 intern ("emergency"));
409 pending_malloc_warning = 0;
412 /* Called if we can't allocate relocatable space for a buffer. */
414 void
415 buffer_memory_full (ptrdiff_t nbytes)
417 /* If buffers use the relocating allocator, no need to free
418 spare_memory, because we may have plenty of malloc space left
419 that we could get, and if we don't, the malloc that fails will
420 itself cause spare_memory to be freed. If buffers don't use the
421 relocating allocator, treat this like any other failing
422 malloc. */
424 #ifndef REL_ALLOC
425 memory_full (nbytes);
426 #else
427 /* This used to call error, but if we've run out of memory, we could
428 get infinite recursion trying to build the string. */
429 xsignal (Qnil, Vmemory_signal_data);
430 #endif
433 /* A common multiple of the positive integers A and B. Ideally this
434 would be the least common multiple, but there's no way to do that
435 as a constant expression in C, so do the best that we can easily do. */
436 #define COMMON_MULTIPLE(a, b) \
437 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
439 #ifndef XMALLOC_OVERRUN_CHECK
440 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
441 #else
443 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
444 around each block.
446 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
447 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
448 block size in little-endian order. The trailer consists of
449 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
451 The header is used to detect whether this block has been allocated
452 through these functions, as some low-level libc functions may
453 bypass the malloc hooks. */
455 #define XMALLOC_OVERRUN_CHECK_SIZE 16
456 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
457 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
459 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
460 hold a size_t value and (2) the header size is a multiple of the
461 alignment that Emacs needs for C types and for USE_LSB_TAG. */
462 #define XMALLOC_BASE_ALIGNMENT \
463 alignof (union { long double d; intmax_t i; void *p; })
465 #if USE_LSB_TAG
466 # define XMALLOC_HEADER_ALIGNMENT \
467 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
468 #else
469 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
470 #endif
471 #define XMALLOC_OVERRUN_SIZE_SIZE \
472 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
473 + XMALLOC_HEADER_ALIGNMENT - 1) \
474 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
475 - XMALLOC_OVERRUN_CHECK_SIZE)
477 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
478 { '\x9a', '\x9b', '\xae', '\xaf',
479 '\xbf', '\xbe', '\xce', '\xcf',
480 '\xea', '\xeb', '\xec', '\xed',
481 '\xdf', '\xde', '\x9c', '\x9d' };
483 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
484 { '\xaa', '\xab', '\xac', '\xad',
485 '\xba', '\xbb', '\xbc', '\xbd',
486 '\xca', '\xcb', '\xcc', '\xcd',
487 '\xda', '\xdb', '\xdc', '\xdd' };
489 /* Insert and extract the block size in the header. */
491 static void
492 xmalloc_put_size (unsigned char *ptr, size_t size)
494 int i;
495 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
497 *--ptr = size & ((1 << CHAR_BIT) - 1);
498 size >>= CHAR_BIT;
502 static size_t
503 xmalloc_get_size (unsigned char *ptr)
505 size_t size = 0;
506 int i;
507 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
508 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
510 size <<= CHAR_BIT;
511 size += *ptr++;
513 return size;
517 /* Like malloc, but wraps allocated block with header and trailer. */
519 static void *
520 overrun_check_malloc (size_t size)
522 register unsigned char *val;
523 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
524 emacs_abort ();
526 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
527 if (val)
529 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
530 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
531 xmalloc_put_size (val, size);
532 memcpy (val + size, xmalloc_overrun_check_trailer,
533 XMALLOC_OVERRUN_CHECK_SIZE);
535 return val;
539 /* Like realloc, but checks old block for overrun, and wraps new block
540 with header and trailer. */
542 static void *
543 overrun_check_realloc (void *block, size_t size)
545 register unsigned char *val = (unsigned char *) block;
546 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
547 emacs_abort ();
549 if (val
550 && memcmp (xmalloc_overrun_check_header,
551 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
552 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
554 size_t osize = xmalloc_get_size (val);
555 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
556 XMALLOC_OVERRUN_CHECK_SIZE))
557 emacs_abort ();
558 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
559 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
560 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
563 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
565 if (val)
567 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
568 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
569 xmalloc_put_size (val, size);
570 memcpy (val + size, xmalloc_overrun_check_trailer,
571 XMALLOC_OVERRUN_CHECK_SIZE);
573 return val;
576 /* Like free, but checks block for overrun. */
578 static void
579 overrun_check_free (void *block)
581 unsigned char *val = (unsigned char *) block;
583 if (val
584 && memcmp (xmalloc_overrun_check_header,
585 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
586 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
588 size_t osize = xmalloc_get_size (val);
589 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
590 XMALLOC_OVERRUN_CHECK_SIZE))
591 emacs_abort ();
592 #ifdef XMALLOC_CLEAR_FREE_MEMORY
593 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
594 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
595 #else
596 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
597 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
598 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
599 #endif
602 free (val);
605 #undef malloc
606 #undef realloc
607 #undef free
608 #define malloc overrun_check_malloc
609 #define realloc overrun_check_realloc
610 #define free overrun_check_free
611 #endif
613 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
614 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
615 If that variable is set, block input while in one of Emacs's memory
616 allocation functions. There should be no need for this debugging
617 option, since signal handlers do not allocate memory, but Emacs
618 formerly allocated memory in signal handlers and this compile-time
619 option remains as a way to help debug the issue should it rear its
620 ugly head again. */
621 #ifdef XMALLOC_BLOCK_INPUT_CHECK
622 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
623 static void
624 malloc_block_input (void)
626 if (block_input_in_memory_allocators)
627 block_input ();
629 static void
630 malloc_unblock_input (void)
632 if (block_input_in_memory_allocators)
633 unblock_input ();
635 # define MALLOC_BLOCK_INPUT malloc_block_input ()
636 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
637 #else
638 # define MALLOC_BLOCK_INPUT ((void) 0)
639 # define MALLOC_UNBLOCK_INPUT ((void) 0)
640 #endif
642 #define MALLOC_PROBE(size) \
643 do { \
644 if (profiler_memory_running) \
645 malloc_probe (size); \
646 } while (0)
649 /* Like malloc but check for no memory and block interrupt input.. */
651 void *
652 xmalloc (size_t size)
654 void *val;
656 MALLOC_BLOCK_INPUT;
657 val = malloc (size);
658 MALLOC_UNBLOCK_INPUT;
660 if (!val && size)
661 memory_full (size);
662 MALLOC_PROBE (size);
663 return val;
666 /* Like the above, but zeroes out the memory just allocated. */
668 void *
669 xzalloc (size_t size)
671 void *val;
673 MALLOC_BLOCK_INPUT;
674 val = malloc (size);
675 MALLOC_UNBLOCK_INPUT;
677 if (!val && size)
678 memory_full (size);
679 memset (val, 0, size);
680 MALLOC_PROBE (size);
681 return val;
684 /* Like realloc but check for no memory and block interrupt input.. */
686 void *
687 xrealloc (void *block, size_t size)
689 void *val;
691 MALLOC_BLOCK_INPUT;
692 /* We must call malloc explicitly when BLOCK is 0, since some
693 reallocs don't do this. */
694 if (! block)
695 val = malloc (size);
696 else
697 val = realloc (block, size);
698 MALLOC_UNBLOCK_INPUT;
700 if (!val && size)
701 memory_full (size);
702 MALLOC_PROBE (size);
703 return val;
707 /* Like free but block interrupt input. */
709 void
710 xfree (void *block)
712 if (!block)
713 return;
714 MALLOC_BLOCK_INPUT;
715 free (block);
716 MALLOC_UNBLOCK_INPUT;
717 /* We don't call refill_memory_reserve here
718 because in practice the call in r_alloc_free seems to suffice. */
722 /* Other parts of Emacs pass large int values to allocator functions
723 expecting ptrdiff_t. This is portable in practice, but check it to
724 be safe. */
725 verify (INT_MAX <= PTRDIFF_MAX);
728 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
729 Signal an error on memory exhaustion, and block interrupt input. */
731 void *
732 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
734 eassert (0 <= nitems && 0 < item_size);
735 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
736 memory_full (SIZE_MAX);
737 return xmalloc (nitems * item_size);
741 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
742 Signal an error on memory exhaustion, and block interrupt input. */
744 void *
745 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
747 eassert (0 <= nitems && 0 < item_size);
748 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
749 memory_full (SIZE_MAX);
750 return xrealloc (pa, nitems * item_size);
754 /* Grow PA, which points to an array of *NITEMS items, and return the
755 location of the reallocated array, updating *NITEMS to reflect its
756 new size. The new array will contain at least NITEMS_INCR_MIN more
757 items, but will not contain more than NITEMS_MAX items total.
758 ITEM_SIZE is the size of each item, in bytes.
760 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
761 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
762 infinity.
764 If PA is null, then allocate a new array instead of reallocating
765 the old one.
767 Block interrupt input as needed. If memory exhaustion occurs, set
768 *NITEMS to zero if PA is null, and signal an error (i.e., do not
769 return).
771 Thus, to grow an array A without saving its old contents, do
772 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
773 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
774 and signals an error, and later this code is reexecuted and
775 attempts to free A. */
777 void *
778 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
779 ptrdiff_t nitems_max, ptrdiff_t item_size)
781 /* The approximate size to use for initial small allocation
782 requests. This is the largest "small" request for the GNU C
783 library malloc. */
784 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
786 /* If the array is tiny, grow it to about (but no greater than)
787 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
788 ptrdiff_t n = *nitems;
789 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
790 ptrdiff_t half_again = n >> 1;
791 ptrdiff_t incr_estimate = max (tiny_max, half_again);
793 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
794 NITEMS_MAX, and what the C language can represent safely. */
795 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
796 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
797 ? nitems_max : C_language_max);
798 ptrdiff_t nitems_incr_max = n_max - n;
799 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
801 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
802 if (! pa)
803 *nitems = 0;
804 if (nitems_incr_max < incr)
805 memory_full (SIZE_MAX);
806 n += incr;
807 pa = xrealloc (pa, n * item_size);
808 *nitems = n;
809 return pa;
813 /* Like strdup, but uses xmalloc. */
815 char *
816 xstrdup (const char *s)
818 ptrdiff_t size;
819 eassert (s);
820 size = strlen (s) + 1;
821 return memcpy (xmalloc (size), s, size);
824 /* Like above, but duplicates Lisp string to C string. */
826 char *
827 xlispstrdup (Lisp_Object string)
829 ptrdiff_t size = SBYTES (string) + 1;
830 return memcpy (xmalloc (size), SSDATA (string), size);
833 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
834 argument is a const pointer. */
836 void
837 xputenv (char const *string)
839 if (putenv ((char *) string) != 0)
840 memory_full (0);
843 /* Return a newly allocated memory block of SIZE bytes, remembering
844 to free it when unwinding. */
845 void *
846 record_xmalloc (size_t size)
848 void *p = xmalloc (size);
849 record_unwind_protect_ptr (xfree, p);
850 return p;
854 /* Like malloc but used for allocating Lisp data. NBYTES is the
855 number of bytes to allocate, TYPE describes the intended use of the
856 allocated memory block (for strings, for conses, ...). */
858 #if ! USE_LSB_TAG
859 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
860 #endif
862 static void *
863 lisp_malloc (size_t nbytes, enum mem_type type)
865 register void *val;
867 MALLOC_BLOCK_INPUT;
869 #ifdef GC_MALLOC_CHECK
870 allocated_mem_type = type;
871 #endif
873 val = malloc (nbytes);
875 #if ! USE_LSB_TAG
876 /* If the memory just allocated cannot be addressed thru a Lisp
877 object's pointer, and it needs to be,
878 that's equivalent to running out of memory. */
879 if (val && type != MEM_TYPE_NON_LISP)
881 Lisp_Object tem;
882 XSETCONS (tem, (char *) val + nbytes - 1);
883 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
885 lisp_malloc_loser = val;
886 free (val);
887 val = 0;
890 #endif
892 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 if (val && type != MEM_TYPE_NON_LISP)
894 mem_insert (val, (char *) val + nbytes, type);
895 #endif
897 MALLOC_UNBLOCK_INPUT;
898 if (!val && nbytes)
899 memory_full (nbytes);
900 MALLOC_PROBE (nbytes);
901 return val;
904 /* Free BLOCK. This must be called to free memory allocated with a
905 call to lisp_malloc. */
907 static void
908 lisp_free (void *block)
910 MALLOC_BLOCK_INPUT;
911 free (block);
912 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
913 mem_delete (mem_find (block));
914 #endif
915 MALLOC_UNBLOCK_INPUT;
918 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
920 /* The entry point is lisp_align_malloc which returns blocks of at most
921 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
923 #if !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC
924 # define USE_ALIGNED_ALLOC 1
925 /* Defined in gmalloc.c. */
926 void *aligned_alloc (size_t, size_t);
927 #elif defined HAVE_ALIGNED_ALLOC
928 # define USE_ALIGNED_ALLOC 1
929 #elif defined HAVE_POSIX_MEMALIGN
930 # define USE_ALIGNED_ALLOC 1
931 static void *
932 aligned_alloc (size_t alignment, size_t size)
934 void *p;
935 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
937 #endif
939 /* BLOCK_ALIGN has to be a power of 2. */
940 #define BLOCK_ALIGN (1 << 10)
942 /* Padding to leave at the end of a malloc'd block. This is to give
943 malloc a chance to minimize the amount of memory wasted to alignment.
944 It should be tuned to the particular malloc library used.
945 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
946 aligned_alloc on the other hand would ideally prefer a value of 4
947 because otherwise, there's 1020 bytes wasted between each ablocks.
948 In Emacs, testing shows that those 1020 can most of the time be
949 efficiently used by malloc to place other objects, so a value of 0 can
950 still preferable unless you have a lot of aligned blocks and virtually
951 nothing else. */
952 #define BLOCK_PADDING 0
953 #define BLOCK_BYTES \
954 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
956 /* Internal data structures and constants. */
958 #define ABLOCKS_SIZE 16
960 /* An aligned block of memory. */
961 struct ablock
963 union
965 char payload[BLOCK_BYTES];
966 struct ablock *next_free;
967 } x;
968 /* `abase' is the aligned base of the ablocks. */
969 /* It is overloaded to hold the virtual `busy' field that counts
970 the number of used ablock in the parent ablocks.
971 The first ablock has the `busy' field, the others have the `abase'
972 field. To tell the difference, we assume that pointers will have
973 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
974 is used to tell whether the real base of the parent ablocks is `abase'
975 (if not, the word before the first ablock holds a pointer to the
976 real base). */
977 struct ablocks *abase;
978 /* The padding of all but the last ablock is unused. The padding of
979 the last ablock in an ablocks is not allocated. */
980 #if BLOCK_PADDING
981 char padding[BLOCK_PADDING];
982 #endif
985 /* A bunch of consecutive aligned blocks. */
986 struct ablocks
988 struct ablock blocks[ABLOCKS_SIZE];
991 /* Size of the block requested from malloc or aligned_alloc. */
992 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
994 #define ABLOCK_ABASE(block) \
995 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
996 ? (struct ablocks *)(block) \
997 : (block)->abase)
999 /* Virtual `busy' field. */
1000 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1002 /* Pointer to the (not necessarily aligned) malloc block. */
1003 #ifdef USE_ALIGNED_ALLOC
1004 #define ABLOCKS_BASE(abase) (abase)
1005 #else
1006 #define ABLOCKS_BASE(abase) \
1007 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
1008 #endif
1010 /* The list of free ablock. */
1011 static struct ablock *free_ablock;
1013 /* Allocate an aligned block of nbytes.
1014 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1015 smaller or equal to BLOCK_BYTES. */
1016 static void *
1017 lisp_align_malloc (size_t nbytes, enum mem_type type)
1019 void *base, *val;
1020 struct ablocks *abase;
1022 eassert (nbytes <= BLOCK_BYTES);
1024 MALLOC_BLOCK_INPUT;
1026 #ifdef GC_MALLOC_CHECK
1027 allocated_mem_type = type;
1028 #endif
1030 if (!free_ablock)
1032 int i;
1033 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1035 #ifdef DOUG_LEA_MALLOC
1036 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1037 because mapped region contents are not preserved in
1038 a dumped Emacs. */
1039 mallopt (M_MMAP_MAX, 0);
1040 #endif
1042 #ifdef USE_ALIGNED_ALLOC
1043 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1044 #else
1045 base = malloc (ABLOCKS_BYTES);
1046 abase = ALIGN (base, BLOCK_ALIGN);
1047 #endif
1049 if (base == 0)
1051 MALLOC_UNBLOCK_INPUT;
1052 memory_full (ABLOCKS_BYTES);
1055 aligned = (base == abase);
1056 if (!aligned)
1057 ((void **) abase)[-1] = base;
1059 #ifdef DOUG_LEA_MALLOC
1060 /* Back to a reasonable maximum of mmap'ed areas. */
1061 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1062 #endif
1064 #if ! USE_LSB_TAG
1065 /* If the memory just allocated cannot be addressed thru a Lisp
1066 object's pointer, and it needs to be, that's equivalent to
1067 running out of memory. */
1068 if (type != MEM_TYPE_NON_LISP)
1070 Lisp_Object tem;
1071 char *end = (char *) base + ABLOCKS_BYTES - 1;
1072 XSETCONS (tem, end);
1073 if ((char *) XCONS (tem) != end)
1075 lisp_malloc_loser = base;
1076 free (base);
1077 MALLOC_UNBLOCK_INPUT;
1078 memory_full (SIZE_MAX);
1081 #endif
1083 /* Initialize the blocks and put them on the free list.
1084 If `base' was not properly aligned, we can't use the last block. */
1085 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1087 abase->blocks[i].abase = abase;
1088 abase->blocks[i].x.next_free = free_ablock;
1089 free_ablock = &abase->blocks[i];
1091 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1093 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1094 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1095 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1096 eassert (ABLOCKS_BASE (abase) == base);
1097 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1100 abase = ABLOCK_ABASE (free_ablock);
1101 ABLOCKS_BUSY (abase) =
1102 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1103 val = free_ablock;
1104 free_ablock = free_ablock->x.next_free;
1106 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1107 if (type != MEM_TYPE_NON_LISP)
1108 mem_insert (val, (char *) val + nbytes, type);
1109 #endif
1111 MALLOC_UNBLOCK_INPUT;
1113 MALLOC_PROBE (nbytes);
1115 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1116 return val;
1119 static void
1120 lisp_align_free (void *block)
1122 struct ablock *ablock = block;
1123 struct ablocks *abase = ABLOCK_ABASE (ablock);
1125 MALLOC_BLOCK_INPUT;
1126 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1127 mem_delete (mem_find (block));
1128 #endif
1129 /* Put on free list. */
1130 ablock->x.next_free = free_ablock;
1131 free_ablock = ablock;
1132 /* Update busy count. */
1133 ABLOCKS_BUSY (abase)
1134 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1136 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1137 { /* All the blocks are free. */
1138 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1139 struct ablock **tem = &free_ablock;
1140 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1142 while (*tem)
1144 if (*tem >= (struct ablock *) abase && *tem < atop)
1146 i++;
1147 *tem = (*tem)->x.next_free;
1149 else
1150 tem = &(*tem)->x.next_free;
1152 eassert ((aligned & 1) == aligned);
1153 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1154 #ifdef USE_POSIX_MEMALIGN
1155 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1156 #endif
1157 free (ABLOCKS_BASE (abase));
1159 MALLOC_UNBLOCK_INPUT;
1163 /***********************************************************************
1164 Interval Allocation
1165 ***********************************************************************/
1167 /* Number of intervals allocated in an interval_block structure.
1168 The 1020 is 1024 minus malloc overhead. */
1170 #define INTERVAL_BLOCK_SIZE \
1171 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1173 /* Intervals are allocated in chunks in the form of an interval_block
1174 structure. */
1176 struct interval_block
1178 /* Place `intervals' first, to preserve alignment. */
1179 struct interval intervals[INTERVAL_BLOCK_SIZE];
1180 struct interval_block *next;
1183 /* Current interval block. Its `next' pointer points to older
1184 blocks. */
1186 static struct interval_block *interval_block;
1188 /* Index in interval_block above of the next unused interval
1189 structure. */
1191 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1193 /* Number of free and live intervals. */
1195 static EMACS_INT total_free_intervals, total_intervals;
1197 /* List of free intervals. */
1199 static INTERVAL interval_free_list;
1201 /* Return a new interval. */
1203 INTERVAL
1204 make_interval (void)
1206 INTERVAL val;
1208 MALLOC_BLOCK_INPUT;
1210 if (interval_free_list)
1212 val = interval_free_list;
1213 interval_free_list = INTERVAL_PARENT (interval_free_list);
1215 else
1217 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1219 struct interval_block *newi
1220 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1222 newi->next = interval_block;
1223 interval_block = newi;
1224 interval_block_index = 0;
1225 total_free_intervals += INTERVAL_BLOCK_SIZE;
1227 val = &interval_block->intervals[interval_block_index++];
1230 MALLOC_UNBLOCK_INPUT;
1232 consing_since_gc += sizeof (struct interval);
1233 intervals_consed++;
1234 total_free_intervals--;
1235 RESET_INTERVAL (val);
1236 val->gcmarkbit = 0;
1237 return val;
1241 /* Mark Lisp objects in interval I. */
1243 static void
1244 mark_interval (register INTERVAL i, Lisp_Object dummy)
1246 /* Intervals should never be shared. So, if extra internal checking is
1247 enabled, GC aborts if it seems to have visited an interval twice. */
1248 eassert (!i->gcmarkbit);
1249 i->gcmarkbit = 1;
1250 mark_object (i->plist);
1253 /* Mark the interval tree rooted in I. */
1255 #define MARK_INTERVAL_TREE(i) \
1256 do { \
1257 if (i && !i->gcmarkbit) \
1258 traverse_intervals_noorder (i, mark_interval, Qnil); \
1259 } while (0)
1261 /***********************************************************************
1262 String Allocation
1263 ***********************************************************************/
1265 /* Lisp_Strings are allocated in string_block structures. When a new
1266 string_block is allocated, all the Lisp_Strings it contains are
1267 added to a free-list string_free_list. When a new Lisp_String is
1268 needed, it is taken from that list. During the sweep phase of GC,
1269 string_blocks that are entirely free are freed, except two which
1270 we keep.
1272 String data is allocated from sblock structures. Strings larger
1273 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1274 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1276 Sblocks consist internally of sdata structures, one for each
1277 Lisp_String. The sdata structure points to the Lisp_String it
1278 belongs to. The Lisp_String points back to the `u.data' member of
1279 its sdata structure.
1281 When a Lisp_String is freed during GC, it is put back on
1282 string_free_list, and its `data' member and its sdata's `string'
1283 pointer is set to null. The size of the string is recorded in the
1284 `n.nbytes' member of the sdata. So, sdata structures that are no
1285 longer used, can be easily recognized, and it's easy to compact the
1286 sblocks of small strings which we do in compact_small_strings. */
1288 /* Size in bytes of an sblock structure used for small strings. This
1289 is 8192 minus malloc overhead. */
1291 #define SBLOCK_SIZE 8188
1293 /* Strings larger than this are considered large strings. String data
1294 for large strings is allocated from individual sblocks. */
1296 #define LARGE_STRING_BYTES 1024
1298 /* The SDATA typedef is a struct or union describing string memory
1299 sub-allocated from an sblock. This is where the contents of Lisp
1300 strings are stored. */
1302 struct sdata
1304 /* Back-pointer to the string this sdata belongs to. If null, this
1305 structure is free, and NBYTES (in this structure or in the union below)
1306 contains the string's byte size (the same value that STRING_BYTES
1307 would return if STRING were non-null). If non-null, STRING_BYTES
1308 (STRING) is the size of the data, and DATA contains the string's
1309 contents. */
1310 struct Lisp_String *string;
1312 #ifdef GC_CHECK_STRING_BYTES
1313 ptrdiff_t nbytes;
1314 #endif
1316 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1319 #ifdef GC_CHECK_STRING_BYTES
1321 typedef struct sdata sdata;
1322 #define SDATA_NBYTES(S) (S)->nbytes
1323 #define SDATA_DATA(S) (S)->data
1325 #else
1327 typedef union
1329 struct Lisp_String *string;
1331 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1332 which has a flexible array member. However, if implemented by
1333 giving this union a member of type 'struct sdata', the union
1334 could not be the last (flexible) member of 'struct sblock',
1335 because C99 prohibits a flexible array member from having a type
1336 that is itself a flexible array. So, comment this member out here,
1337 but remember that the option's there when using this union. */
1338 #if 0
1339 struct sdata u;
1340 #endif
1342 /* When STRING is null. */
1343 struct
1345 struct Lisp_String *string;
1346 ptrdiff_t nbytes;
1347 } n;
1348 } sdata;
1350 #define SDATA_NBYTES(S) (S)->n.nbytes
1351 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1353 #endif /* not GC_CHECK_STRING_BYTES */
1355 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1357 /* Structure describing a block of memory which is sub-allocated to
1358 obtain string data memory for strings. Blocks for small strings
1359 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1360 as large as needed. */
1362 struct sblock
1364 /* Next in list. */
1365 struct sblock *next;
1367 /* Pointer to the next free sdata block. This points past the end
1368 of the sblock if there isn't any space left in this block. */
1369 sdata *next_free;
1371 /* String data. */
1372 sdata data[FLEXIBLE_ARRAY_MEMBER];
1375 /* Number of Lisp strings in a string_block structure. The 1020 is
1376 1024 minus malloc overhead. */
1378 #define STRING_BLOCK_SIZE \
1379 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1381 /* Structure describing a block from which Lisp_String structures
1382 are allocated. */
1384 struct string_block
1386 /* Place `strings' first, to preserve alignment. */
1387 struct Lisp_String strings[STRING_BLOCK_SIZE];
1388 struct string_block *next;
1391 /* Head and tail of the list of sblock structures holding Lisp string
1392 data. We always allocate from current_sblock. The NEXT pointers
1393 in the sblock structures go from oldest_sblock to current_sblock. */
1395 static struct sblock *oldest_sblock, *current_sblock;
1397 /* List of sblocks for large strings. */
1399 static struct sblock *large_sblocks;
1401 /* List of string_block structures. */
1403 static struct string_block *string_blocks;
1405 /* Free-list of Lisp_Strings. */
1407 static struct Lisp_String *string_free_list;
1409 /* Number of live and free Lisp_Strings. */
1411 static EMACS_INT total_strings, total_free_strings;
1413 /* Number of bytes used by live strings. */
1415 static EMACS_INT total_string_bytes;
1417 /* Given a pointer to a Lisp_String S which is on the free-list
1418 string_free_list, return a pointer to its successor in the
1419 free-list. */
1421 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1423 /* Return a pointer to the sdata structure belonging to Lisp string S.
1424 S must be live, i.e. S->data must not be null. S->data is actually
1425 a pointer to the `u.data' member of its sdata structure; the
1426 structure starts at a constant offset in front of that. */
1428 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1431 #ifdef GC_CHECK_STRING_OVERRUN
1433 /* We check for overrun in string data blocks by appending a small
1434 "cookie" after each allocated string data block, and check for the
1435 presence of this cookie during GC. */
1437 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1438 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1439 { '\xde', '\xad', '\xbe', '\xef' };
1441 #else
1442 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1443 #endif
1445 /* Value is the size of an sdata structure large enough to hold NBYTES
1446 bytes of string data. The value returned includes a terminating
1447 NUL byte, the size of the sdata structure, and padding. */
1449 #ifdef GC_CHECK_STRING_BYTES
1451 #define SDATA_SIZE(NBYTES) \
1452 ((SDATA_DATA_OFFSET \
1453 + (NBYTES) + 1 \
1454 + sizeof (ptrdiff_t) - 1) \
1455 & ~(sizeof (ptrdiff_t) - 1))
1457 #else /* not GC_CHECK_STRING_BYTES */
1459 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1460 less than the size of that member. The 'max' is not needed when
1461 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1462 alignment code reserves enough space. */
1464 #define SDATA_SIZE(NBYTES) \
1465 ((SDATA_DATA_OFFSET \
1466 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1467 ? NBYTES \
1468 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1469 + 1 \
1470 + sizeof (ptrdiff_t) - 1) \
1471 & ~(sizeof (ptrdiff_t) - 1))
1473 #endif /* not GC_CHECK_STRING_BYTES */
1475 /* Extra bytes to allocate for each string. */
1477 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1479 /* Exact bound on the number of bytes in a string, not counting the
1480 terminating null. A string cannot contain more bytes than
1481 STRING_BYTES_BOUND, nor can it be so long that the size_t
1482 arithmetic in allocate_string_data would overflow while it is
1483 calculating a value to be passed to malloc. */
1484 static ptrdiff_t const STRING_BYTES_MAX =
1485 min (STRING_BYTES_BOUND,
1486 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1487 - GC_STRING_EXTRA
1488 - offsetof (struct sblock, data)
1489 - SDATA_DATA_OFFSET)
1490 & ~(sizeof (EMACS_INT) - 1)));
1492 /* Initialize string allocation. Called from init_alloc_once. */
1494 static void
1495 init_strings (void)
1497 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1498 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1502 #ifdef GC_CHECK_STRING_BYTES
1504 static int check_string_bytes_count;
1506 /* Like STRING_BYTES, but with debugging check. Can be
1507 called during GC, so pay attention to the mark bit. */
1509 ptrdiff_t
1510 string_bytes (struct Lisp_String *s)
1512 ptrdiff_t nbytes =
1513 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1515 if (!PURE_POINTER_P (s)
1516 && s->data
1517 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1518 emacs_abort ();
1519 return nbytes;
1522 /* Check validity of Lisp strings' string_bytes member in B. */
1524 static void
1525 check_sblock (struct sblock *b)
1527 sdata *from, *end, *from_end;
1529 end = b->next_free;
1531 for (from = b->data; from < end; from = from_end)
1533 /* Compute the next FROM here because copying below may
1534 overwrite data we need to compute it. */
1535 ptrdiff_t nbytes;
1537 /* Check that the string size recorded in the string is the
1538 same as the one recorded in the sdata structure. */
1539 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1540 : SDATA_NBYTES (from));
1541 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1546 /* Check validity of Lisp strings' string_bytes member. ALL_P
1547 means check all strings, otherwise check only most
1548 recently allocated strings. Used for hunting a bug. */
1550 static void
1551 check_string_bytes (bool all_p)
1553 if (all_p)
1555 struct sblock *b;
1557 for (b = large_sblocks; b; b = b->next)
1559 struct Lisp_String *s = b->data[0].string;
1560 if (s)
1561 string_bytes (s);
1564 for (b = oldest_sblock; b; b = b->next)
1565 check_sblock (b);
1567 else if (current_sblock)
1568 check_sblock (current_sblock);
1571 #else /* not GC_CHECK_STRING_BYTES */
1573 #define check_string_bytes(all) ((void) 0)
1575 #endif /* GC_CHECK_STRING_BYTES */
1577 #ifdef GC_CHECK_STRING_FREE_LIST
1579 /* Walk through the string free list looking for bogus next pointers.
1580 This may catch buffer overrun from a previous string. */
1582 static void
1583 check_string_free_list (void)
1585 struct Lisp_String *s;
1587 /* Pop a Lisp_String off the free-list. */
1588 s = string_free_list;
1589 while (s != NULL)
1591 if ((uintptr_t) s < 1024)
1592 emacs_abort ();
1593 s = NEXT_FREE_LISP_STRING (s);
1596 #else
1597 #define check_string_free_list()
1598 #endif
1600 /* Return a new Lisp_String. */
1602 static struct Lisp_String *
1603 allocate_string (void)
1605 struct Lisp_String *s;
1607 MALLOC_BLOCK_INPUT;
1609 /* If the free-list is empty, allocate a new string_block, and
1610 add all the Lisp_Strings in it to the free-list. */
1611 if (string_free_list == NULL)
1613 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1614 int i;
1616 b->next = string_blocks;
1617 string_blocks = b;
1619 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1621 s = b->strings + i;
1622 /* Every string on a free list should have NULL data pointer. */
1623 s->data = NULL;
1624 NEXT_FREE_LISP_STRING (s) = string_free_list;
1625 string_free_list = s;
1628 total_free_strings += STRING_BLOCK_SIZE;
1631 check_string_free_list ();
1633 /* Pop a Lisp_String off the free-list. */
1634 s = string_free_list;
1635 string_free_list = NEXT_FREE_LISP_STRING (s);
1637 MALLOC_UNBLOCK_INPUT;
1639 --total_free_strings;
1640 ++total_strings;
1641 ++strings_consed;
1642 consing_since_gc += sizeof *s;
1644 #ifdef GC_CHECK_STRING_BYTES
1645 if (!noninteractive)
1647 if (++check_string_bytes_count == 200)
1649 check_string_bytes_count = 0;
1650 check_string_bytes (1);
1652 else
1653 check_string_bytes (0);
1655 #endif /* GC_CHECK_STRING_BYTES */
1657 return s;
1661 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1662 plus a NUL byte at the end. Allocate an sdata structure for S, and
1663 set S->data to its `u.data' member. Store a NUL byte at the end of
1664 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1665 S->data if it was initially non-null. */
1667 void
1668 allocate_string_data (struct Lisp_String *s,
1669 EMACS_INT nchars, EMACS_INT nbytes)
1671 sdata *data, *old_data;
1672 struct sblock *b;
1673 ptrdiff_t needed, old_nbytes;
1675 if (STRING_BYTES_MAX < nbytes)
1676 string_overflow ();
1678 /* Determine the number of bytes needed to store NBYTES bytes
1679 of string data. */
1680 needed = SDATA_SIZE (nbytes);
1681 if (s->data)
1683 old_data = SDATA_OF_STRING (s);
1684 old_nbytes = STRING_BYTES (s);
1686 else
1687 old_data = NULL;
1689 MALLOC_BLOCK_INPUT;
1691 if (nbytes > LARGE_STRING_BYTES)
1693 size_t size = offsetof (struct sblock, data) + needed;
1695 #ifdef DOUG_LEA_MALLOC
1696 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1697 because mapped region contents are not preserved in
1698 a dumped Emacs.
1700 In case you think of allowing it in a dumped Emacs at the
1701 cost of not being able to re-dump, there's another reason:
1702 mmap'ed data typically have an address towards the top of the
1703 address space, which won't fit into an EMACS_INT (at least on
1704 32-bit systems with the current tagging scheme). --fx */
1705 mallopt (M_MMAP_MAX, 0);
1706 #endif
1708 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1710 #ifdef DOUG_LEA_MALLOC
1711 /* Back to a reasonable maximum of mmap'ed areas. */
1712 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1713 #endif
1715 b->next_free = b->data;
1716 b->data[0].string = NULL;
1717 b->next = large_sblocks;
1718 large_sblocks = b;
1720 else if (current_sblock == NULL
1721 || (((char *) current_sblock + SBLOCK_SIZE
1722 - (char *) current_sblock->next_free)
1723 < (needed + GC_STRING_EXTRA)))
1725 /* Not enough room in the current sblock. */
1726 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1727 b->next_free = b->data;
1728 b->data[0].string = NULL;
1729 b->next = NULL;
1731 if (current_sblock)
1732 current_sblock->next = b;
1733 else
1734 oldest_sblock = b;
1735 current_sblock = b;
1737 else
1738 b = current_sblock;
1740 data = b->next_free;
1741 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1743 MALLOC_UNBLOCK_INPUT;
1745 data->string = s;
1746 s->data = SDATA_DATA (data);
1747 #ifdef GC_CHECK_STRING_BYTES
1748 SDATA_NBYTES (data) = nbytes;
1749 #endif
1750 s->size = nchars;
1751 s->size_byte = nbytes;
1752 s->data[nbytes] = '\0';
1753 #ifdef GC_CHECK_STRING_OVERRUN
1754 memcpy ((char *) data + needed, string_overrun_cookie,
1755 GC_STRING_OVERRUN_COOKIE_SIZE);
1756 #endif
1758 /* Note that Faset may call to this function when S has already data
1759 assigned. In this case, mark data as free by setting it's string
1760 back-pointer to null, and record the size of the data in it. */
1761 if (old_data)
1763 SDATA_NBYTES (old_data) = old_nbytes;
1764 old_data->string = NULL;
1767 consing_since_gc += needed;
1771 /* Sweep and compact strings. */
1773 static void
1774 sweep_strings (void)
1776 struct string_block *b, *next;
1777 struct string_block *live_blocks = NULL;
1779 string_free_list = NULL;
1780 total_strings = total_free_strings = 0;
1781 total_string_bytes = 0;
1783 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1784 for (b = string_blocks; b; b = next)
1786 int i, nfree = 0;
1787 struct Lisp_String *free_list_before = string_free_list;
1789 next = b->next;
1791 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1793 struct Lisp_String *s = b->strings + i;
1795 if (s->data)
1797 /* String was not on free-list before. */
1798 if (STRING_MARKED_P (s))
1800 /* String is live; unmark it and its intervals. */
1801 UNMARK_STRING (s);
1803 /* Do not use string_(set|get)_intervals here. */
1804 s->intervals = balance_intervals (s->intervals);
1806 ++total_strings;
1807 total_string_bytes += STRING_BYTES (s);
1809 else
1811 /* String is dead. Put it on the free-list. */
1812 sdata *data = SDATA_OF_STRING (s);
1814 /* Save the size of S in its sdata so that we know
1815 how large that is. Reset the sdata's string
1816 back-pointer so that we know it's free. */
1817 #ifdef GC_CHECK_STRING_BYTES
1818 if (string_bytes (s) != SDATA_NBYTES (data))
1819 emacs_abort ();
1820 #else
1821 data->n.nbytes = STRING_BYTES (s);
1822 #endif
1823 data->string = NULL;
1825 /* Reset the strings's `data' member so that we
1826 know it's free. */
1827 s->data = NULL;
1829 /* Put the string on the free-list. */
1830 NEXT_FREE_LISP_STRING (s) = string_free_list;
1831 string_free_list = s;
1832 ++nfree;
1835 else
1837 /* S was on the free-list before. Put it there again. */
1838 NEXT_FREE_LISP_STRING (s) = string_free_list;
1839 string_free_list = s;
1840 ++nfree;
1844 /* Free blocks that contain free Lisp_Strings only, except
1845 the first two of them. */
1846 if (nfree == STRING_BLOCK_SIZE
1847 && total_free_strings > STRING_BLOCK_SIZE)
1849 lisp_free (b);
1850 string_free_list = free_list_before;
1852 else
1854 total_free_strings += nfree;
1855 b->next = live_blocks;
1856 live_blocks = b;
1860 check_string_free_list ();
1862 string_blocks = live_blocks;
1863 free_large_strings ();
1864 compact_small_strings ();
1866 check_string_free_list ();
1870 /* Free dead large strings. */
1872 static void
1873 free_large_strings (void)
1875 struct sblock *b, *next;
1876 struct sblock *live_blocks = NULL;
1878 for (b = large_sblocks; b; b = next)
1880 next = b->next;
1882 if (b->data[0].string == NULL)
1883 lisp_free (b);
1884 else
1886 b->next = live_blocks;
1887 live_blocks = b;
1891 large_sblocks = live_blocks;
1895 /* Compact data of small strings. Free sblocks that don't contain
1896 data of live strings after compaction. */
1898 static void
1899 compact_small_strings (void)
1901 struct sblock *b, *tb, *next;
1902 sdata *from, *to, *end, *tb_end;
1903 sdata *to_end, *from_end;
1905 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1906 to, and TB_END is the end of TB. */
1907 tb = oldest_sblock;
1908 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1909 to = tb->data;
1911 /* Step through the blocks from the oldest to the youngest. We
1912 expect that old blocks will stabilize over time, so that less
1913 copying will happen this way. */
1914 for (b = oldest_sblock; b; b = b->next)
1916 end = b->next_free;
1917 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1919 for (from = b->data; from < end; from = from_end)
1921 /* Compute the next FROM here because copying below may
1922 overwrite data we need to compute it. */
1923 ptrdiff_t nbytes;
1924 struct Lisp_String *s = from->string;
1926 #ifdef GC_CHECK_STRING_BYTES
1927 /* Check that the string size recorded in the string is the
1928 same as the one recorded in the sdata structure. */
1929 if (s && string_bytes (s) != SDATA_NBYTES (from))
1930 emacs_abort ();
1931 #endif /* GC_CHECK_STRING_BYTES */
1933 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1934 eassert (nbytes <= LARGE_STRING_BYTES);
1936 nbytes = SDATA_SIZE (nbytes);
1937 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1939 #ifdef GC_CHECK_STRING_OVERRUN
1940 if (memcmp (string_overrun_cookie,
1941 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1942 GC_STRING_OVERRUN_COOKIE_SIZE))
1943 emacs_abort ();
1944 #endif
1946 /* Non-NULL S means it's alive. Copy its data. */
1947 if (s)
1949 /* If TB is full, proceed with the next sblock. */
1950 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1951 if (to_end > tb_end)
1953 tb->next_free = to;
1954 tb = tb->next;
1955 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1956 to = tb->data;
1957 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1960 /* Copy, and update the string's `data' pointer. */
1961 if (from != to)
1963 eassert (tb != b || to < from);
1964 memmove (to, from, nbytes + GC_STRING_EXTRA);
1965 to->string->data = SDATA_DATA (to);
1968 /* Advance past the sdata we copied to. */
1969 to = to_end;
1974 /* The rest of the sblocks following TB don't contain live data, so
1975 we can free them. */
1976 for (b = tb->next; b; b = next)
1978 next = b->next;
1979 lisp_free (b);
1982 tb->next_free = to;
1983 tb->next = NULL;
1984 current_sblock = tb;
1987 void
1988 string_overflow (void)
1990 error ("Maximum string size exceeded");
1993 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1994 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1995 LENGTH must be an integer.
1996 INIT must be an integer that represents a character. */)
1997 (Lisp_Object length, Lisp_Object init)
1999 register Lisp_Object val;
2000 int c;
2001 EMACS_INT nbytes;
2003 CHECK_NATNUM (length);
2004 CHECK_CHARACTER (init);
2006 c = XFASTINT (init);
2007 if (ASCII_CHAR_P (c))
2009 nbytes = XINT (length);
2010 val = make_uninit_string (nbytes);
2011 memset (SDATA (val), c, nbytes);
2012 SDATA (val)[nbytes] = 0;
2014 else
2016 unsigned char str[MAX_MULTIBYTE_LENGTH];
2017 ptrdiff_t len = CHAR_STRING (c, str);
2018 EMACS_INT string_len = XINT (length);
2019 unsigned char *p, *beg, *end;
2021 if (string_len > STRING_BYTES_MAX / len)
2022 string_overflow ();
2023 nbytes = len * string_len;
2024 val = make_uninit_multibyte_string (string_len, nbytes);
2025 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2027 /* First time we just copy `str' to the data of `val'. */
2028 if (p == beg)
2029 memcpy (p, str, len);
2030 else
2032 /* Next time we copy largest possible chunk from
2033 initialized to uninitialized part of `val'. */
2034 len = min (p - beg, end - p);
2035 memcpy (p, beg, len);
2038 *p = 0;
2041 return val;
2044 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2045 Return A. */
2047 Lisp_Object
2048 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2050 EMACS_INT nbits = bool_vector_size (a);
2051 if (0 < nbits)
2053 unsigned char *data = bool_vector_uchar_data (a);
2054 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2055 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2056 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2057 memset (data, pattern, nbytes - 1);
2058 data[nbytes - 1] = pattern & last_mask;
2060 return a;
2063 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2065 Lisp_Object
2066 make_uninit_bool_vector (EMACS_INT nbits)
2068 Lisp_Object val;
2069 EMACS_INT words = bool_vector_words (nbits);
2070 EMACS_INT word_bytes = words * sizeof (bits_word);
2071 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2072 + word_size - 1)
2073 / word_size);
2074 struct Lisp_Bool_Vector *p
2075 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2076 XSETVECTOR (val, p);
2077 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2078 p->size = nbits;
2080 /* Clear padding at the end. */
2081 if (words)
2082 p->data[words - 1] = 0;
2084 return val;
2087 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2088 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2089 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2090 (Lisp_Object length, Lisp_Object init)
2092 Lisp_Object val;
2094 CHECK_NATNUM (length);
2095 val = make_uninit_bool_vector (XFASTINT (length));
2096 return bool_vector_fill (val, init);
2100 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2101 of characters from the contents. This string may be unibyte or
2102 multibyte, depending on the contents. */
2104 Lisp_Object
2105 make_string (const char *contents, ptrdiff_t nbytes)
2107 register Lisp_Object val;
2108 ptrdiff_t nchars, multibyte_nbytes;
2110 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2111 &nchars, &multibyte_nbytes);
2112 if (nbytes == nchars || nbytes != multibyte_nbytes)
2113 /* CONTENTS contains no multibyte sequences or contains an invalid
2114 multibyte sequence. We must make unibyte string. */
2115 val = make_unibyte_string (contents, nbytes);
2116 else
2117 val = make_multibyte_string (contents, nchars, nbytes);
2118 return val;
2122 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2124 Lisp_Object
2125 make_unibyte_string (const char *contents, ptrdiff_t length)
2127 register Lisp_Object val;
2128 val = make_uninit_string (length);
2129 memcpy (SDATA (val), contents, length);
2130 return val;
2134 /* Make a multibyte string from NCHARS characters occupying NBYTES
2135 bytes at CONTENTS. */
2137 Lisp_Object
2138 make_multibyte_string (const char *contents,
2139 ptrdiff_t nchars, ptrdiff_t nbytes)
2141 register Lisp_Object val;
2142 val = make_uninit_multibyte_string (nchars, nbytes);
2143 memcpy (SDATA (val), contents, nbytes);
2144 return val;
2148 /* Make a string from NCHARS characters occupying NBYTES bytes at
2149 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2151 Lisp_Object
2152 make_string_from_bytes (const char *contents,
2153 ptrdiff_t nchars, ptrdiff_t nbytes)
2155 register Lisp_Object val;
2156 val = make_uninit_multibyte_string (nchars, nbytes);
2157 memcpy (SDATA (val), contents, nbytes);
2158 if (SBYTES (val) == SCHARS (val))
2159 STRING_SET_UNIBYTE (val);
2160 return val;
2164 /* Make a string from NCHARS characters occupying NBYTES bytes at
2165 CONTENTS. The argument MULTIBYTE controls whether to label the
2166 string as multibyte. If NCHARS is negative, it counts the number of
2167 characters by itself. */
2169 Lisp_Object
2170 make_specified_string (const char *contents,
2171 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2173 Lisp_Object val;
2175 if (nchars < 0)
2177 if (multibyte)
2178 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2179 nbytes);
2180 else
2181 nchars = nbytes;
2183 val = make_uninit_multibyte_string (nchars, nbytes);
2184 memcpy (SDATA (val), contents, nbytes);
2185 if (!multibyte)
2186 STRING_SET_UNIBYTE (val);
2187 return val;
2191 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2192 occupying LENGTH bytes. */
2194 Lisp_Object
2195 make_uninit_string (EMACS_INT length)
2197 Lisp_Object val;
2199 if (!length)
2200 return empty_unibyte_string;
2201 val = make_uninit_multibyte_string (length, length);
2202 STRING_SET_UNIBYTE (val);
2203 return val;
2207 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2208 which occupy NBYTES bytes. */
2210 Lisp_Object
2211 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2213 Lisp_Object string;
2214 struct Lisp_String *s;
2216 if (nchars < 0)
2217 emacs_abort ();
2218 if (!nbytes)
2219 return empty_multibyte_string;
2221 s = allocate_string ();
2222 s->intervals = NULL;
2223 allocate_string_data (s, nchars, nbytes);
2224 XSETSTRING (string, s);
2225 string_chars_consed += nbytes;
2226 return string;
2229 /* Print arguments to BUF according to a FORMAT, then return
2230 a Lisp_String initialized with the data from BUF. */
2232 Lisp_Object
2233 make_formatted_string (char *buf, const char *format, ...)
2235 va_list ap;
2236 int length;
2238 va_start (ap, format);
2239 length = vsprintf (buf, format, ap);
2240 va_end (ap);
2241 return make_string (buf, length);
2245 /***********************************************************************
2246 Float Allocation
2247 ***********************************************************************/
2249 /* We store float cells inside of float_blocks, allocating a new
2250 float_block with malloc whenever necessary. Float cells reclaimed
2251 by GC are put on a free list to be reallocated before allocating
2252 any new float cells from the latest float_block. */
2254 #define FLOAT_BLOCK_SIZE \
2255 (((BLOCK_BYTES - sizeof (struct float_block *) \
2256 /* The compiler might add padding at the end. */ \
2257 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2258 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2260 #define GETMARKBIT(block,n) \
2261 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2262 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2263 & 1)
2265 #define SETMARKBIT(block,n) \
2266 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2267 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2269 #define UNSETMARKBIT(block,n) \
2270 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2271 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2273 #define FLOAT_BLOCK(fptr) \
2274 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2276 #define FLOAT_INDEX(fptr) \
2277 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2279 struct float_block
2281 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2282 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2283 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2284 struct float_block *next;
2287 #define FLOAT_MARKED_P(fptr) \
2288 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2290 #define FLOAT_MARK(fptr) \
2291 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2293 #define FLOAT_UNMARK(fptr) \
2294 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2296 /* Current float_block. */
2298 static struct float_block *float_block;
2300 /* Index of first unused Lisp_Float in the current float_block. */
2302 static int float_block_index = FLOAT_BLOCK_SIZE;
2304 /* Free-list of Lisp_Floats. */
2306 static struct Lisp_Float *float_free_list;
2308 /* Return a new float object with value FLOAT_VALUE. */
2310 Lisp_Object
2311 make_float (double float_value)
2313 register Lisp_Object val;
2315 MALLOC_BLOCK_INPUT;
2317 if (float_free_list)
2319 /* We use the data field for chaining the free list
2320 so that we won't use the same field that has the mark bit. */
2321 XSETFLOAT (val, float_free_list);
2322 float_free_list = float_free_list->u.chain;
2324 else
2326 if (float_block_index == FLOAT_BLOCK_SIZE)
2328 struct float_block *new
2329 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2330 new->next = float_block;
2331 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2332 float_block = new;
2333 float_block_index = 0;
2334 total_free_floats += FLOAT_BLOCK_SIZE;
2336 XSETFLOAT (val, &float_block->floats[float_block_index]);
2337 float_block_index++;
2340 MALLOC_UNBLOCK_INPUT;
2342 XFLOAT_INIT (val, float_value);
2343 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2344 consing_since_gc += sizeof (struct Lisp_Float);
2345 floats_consed++;
2346 total_free_floats--;
2347 return val;
2352 /***********************************************************************
2353 Cons Allocation
2354 ***********************************************************************/
2356 /* We store cons cells inside of cons_blocks, allocating a new
2357 cons_block with malloc whenever necessary. Cons cells reclaimed by
2358 GC are put on a free list to be reallocated before allocating
2359 any new cons cells from the latest cons_block. */
2361 #define CONS_BLOCK_SIZE \
2362 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2363 /* The compiler might add padding at the end. */ \
2364 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2365 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2367 #define CONS_BLOCK(fptr) \
2368 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2370 #define CONS_INDEX(fptr) \
2371 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2373 struct cons_block
2375 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2376 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2377 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2378 struct cons_block *next;
2381 #define CONS_MARKED_P(fptr) \
2382 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2384 #define CONS_MARK(fptr) \
2385 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2387 #define CONS_UNMARK(fptr) \
2388 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2390 /* Current cons_block. */
2392 static struct cons_block *cons_block;
2394 /* Index of first unused Lisp_Cons in the current block. */
2396 static int cons_block_index = CONS_BLOCK_SIZE;
2398 /* Free-list of Lisp_Cons structures. */
2400 static struct Lisp_Cons *cons_free_list;
2402 /* Explicitly free a cons cell by putting it on the free-list. */
2404 void
2405 free_cons (struct Lisp_Cons *ptr)
2407 ptr->u.chain = cons_free_list;
2408 #if GC_MARK_STACK
2409 ptr->car = Vdead;
2410 #endif
2411 cons_free_list = ptr;
2412 consing_since_gc -= sizeof *ptr;
2413 total_free_conses++;
2416 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2417 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2418 (Lisp_Object car, Lisp_Object cdr)
2420 register Lisp_Object val;
2422 MALLOC_BLOCK_INPUT;
2424 if (cons_free_list)
2426 /* We use the cdr for chaining the free list
2427 so that we won't use the same field that has the mark bit. */
2428 XSETCONS (val, cons_free_list);
2429 cons_free_list = cons_free_list->u.chain;
2431 else
2433 if (cons_block_index == CONS_BLOCK_SIZE)
2435 struct cons_block *new
2436 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2437 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2438 new->next = cons_block;
2439 cons_block = new;
2440 cons_block_index = 0;
2441 total_free_conses += CONS_BLOCK_SIZE;
2443 XSETCONS (val, &cons_block->conses[cons_block_index]);
2444 cons_block_index++;
2447 MALLOC_UNBLOCK_INPUT;
2449 XSETCAR (val, car);
2450 XSETCDR (val, cdr);
2451 eassert (!CONS_MARKED_P (XCONS (val)));
2452 consing_since_gc += sizeof (struct Lisp_Cons);
2453 total_free_conses--;
2454 cons_cells_consed++;
2455 return val;
2458 #ifdef GC_CHECK_CONS_LIST
2459 /* Get an error now if there's any junk in the cons free list. */
2460 void
2461 check_cons_list (void)
2463 struct Lisp_Cons *tail = cons_free_list;
2465 while (tail)
2466 tail = tail->u.chain;
2468 #endif
2470 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2472 Lisp_Object
2473 list1 (Lisp_Object arg1)
2475 return Fcons (arg1, Qnil);
2478 Lisp_Object
2479 list2 (Lisp_Object arg1, Lisp_Object arg2)
2481 return Fcons (arg1, Fcons (arg2, Qnil));
2485 Lisp_Object
2486 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2488 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2492 Lisp_Object
2493 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2495 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2499 Lisp_Object
2500 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2502 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2503 Fcons (arg5, Qnil)))));
2506 /* Make a list of COUNT Lisp_Objects, where ARG is the
2507 first one. Allocate conses from pure space if TYPE
2508 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2510 Lisp_Object
2511 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2513 va_list ap;
2514 ptrdiff_t i;
2515 Lisp_Object val, *objp;
2517 /* Change to SAFE_ALLOCA if you hit this eassert. */
2518 eassert (count <= MAX_ALLOCA / word_size);
2520 objp = alloca (count * word_size);
2521 objp[0] = arg;
2522 va_start (ap, arg);
2523 for (i = 1; i < count; i++)
2524 objp[i] = va_arg (ap, Lisp_Object);
2525 va_end (ap);
2527 for (val = Qnil, i = count - 1; i >= 0; i--)
2529 if (type == CONSTYPE_PURE)
2530 val = pure_cons (objp[i], val);
2531 else if (type == CONSTYPE_HEAP)
2532 val = Fcons (objp[i], val);
2533 else
2534 emacs_abort ();
2536 return val;
2539 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2540 doc: /* Return a newly created list with specified arguments as elements.
2541 Any number of arguments, even zero arguments, are allowed.
2542 usage: (list &rest OBJECTS) */)
2543 (ptrdiff_t nargs, Lisp_Object *args)
2545 register Lisp_Object val;
2546 val = Qnil;
2548 while (nargs > 0)
2550 nargs--;
2551 val = Fcons (args[nargs], val);
2553 return val;
2557 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2558 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2559 (register Lisp_Object length, Lisp_Object init)
2561 register Lisp_Object val;
2562 register EMACS_INT size;
2564 CHECK_NATNUM (length);
2565 size = XFASTINT (length);
2567 val = Qnil;
2568 while (size > 0)
2570 val = Fcons (init, val);
2571 --size;
2573 if (size > 0)
2575 val = Fcons (init, val);
2576 --size;
2578 if (size > 0)
2580 val = Fcons (init, val);
2581 --size;
2583 if (size > 0)
2585 val = Fcons (init, val);
2586 --size;
2588 if (size > 0)
2590 val = Fcons (init, val);
2591 --size;
2597 QUIT;
2600 return val;
2605 /***********************************************************************
2606 Vector Allocation
2607 ***********************************************************************/
2609 /* Sometimes a vector's contents are merely a pointer internally used
2610 in vector allocation code. Usually you don't want to touch this. */
2612 static struct Lisp_Vector *
2613 next_vector (struct Lisp_Vector *v)
2615 return XUNTAG (v->contents[0], 0);
2618 static void
2619 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2621 v->contents[0] = make_lisp_ptr (p, 0);
2624 /* This value is balanced well enough to avoid too much internal overhead
2625 for the most common cases; it's not required to be a power of two, but
2626 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2628 #define VECTOR_BLOCK_SIZE 4096
2630 enum
2632 /* Alignment of struct Lisp_Vector objects. */
2633 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2634 USE_LSB_TAG ? GCALIGNMENT : 1),
2636 /* Vector size requests are a multiple of this. */
2637 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2640 /* Verify assumptions described above. */
2641 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2642 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2644 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2645 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2646 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2647 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2649 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2651 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2653 /* Size of the minimal vector allocated from block. */
2655 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2657 /* Size of the largest vector allocated from block. */
2659 #define VBLOCK_BYTES_MAX \
2660 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2662 /* We maintain one free list for each possible block-allocated
2663 vector size, and this is the number of free lists we have. */
2665 #define VECTOR_MAX_FREE_LIST_INDEX \
2666 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2668 /* Common shortcut to advance vector pointer over a block data. */
2670 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2672 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2674 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2676 /* Common shortcut to setup vector on a free list. */
2678 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2679 do { \
2680 (tmp) = ((nbytes - header_size) / word_size); \
2681 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2682 eassert ((nbytes) % roundup_size == 0); \
2683 (tmp) = VINDEX (nbytes); \
2684 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2685 set_next_vector (v, vector_free_lists[tmp]); \
2686 vector_free_lists[tmp] = (v); \
2687 total_free_vector_slots += (nbytes) / word_size; \
2688 } while (0)
2690 /* This internal type is used to maintain the list of large vectors
2691 which are allocated at their own, e.g. outside of vector blocks.
2693 struct large_vector itself cannot contain a struct Lisp_Vector, as
2694 the latter contains a flexible array member and C99 does not allow
2695 such structs to be nested. Instead, each struct large_vector
2696 object LV is followed by a struct Lisp_Vector, which is at offset
2697 large_vector_offset from LV, and whose address is therefore
2698 large_vector_vec (&LV). */
2700 struct large_vector
2702 struct large_vector *next;
2705 enum
2707 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2710 static struct Lisp_Vector *
2711 large_vector_vec (struct large_vector *p)
2713 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2716 /* This internal type is used to maintain an underlying storage
2717 for small vectors. */
2719 struct vector_block
2721 char data[VECTOR_BLOCK_BYTES];
2722 struct vector_block *next;
2725 /* Chain of vector blocks. */
2727 static struct vector_block *vector_blocks;
2729 /* Vector free lists, where NTH item points to a chain of free
2730 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2732 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2734 /* Singly-linked list of large vectors. */
2736 static struct large_vector *large_vectors;
2738 /* The only vector with 0 slots, allocated from pure space. */
2740 Lisp_Object zero_vector;
2742 /* Number of live vectors. */
2744 static EMACS_INT total_vectors;
2746 /* Total size of live and free vectors, in Lisp_Object units. */
2748 static EMACS_INT total_vector_slots, total_free_vector_slots;
2750 /* Get a new vector block. */
2752 static struct vector_block *
2753 allocate_vector_block (void)
2755 struct vector_block *block = xmalloc (sizeof *block);
2757 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2758 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2759 MEM_TYPE_VECTOR_BLOCK);
2760 #endif
2762 block->next = vector_blocks;
2763 vector_blocks = block;
2764 return block;
2767 /* Called once to initialize vector allocation. */
2769 static void
2770 init_vectors (void)
2772 zero_vector = make_pure_vector (0);
2775 /* Allocate vector from a vector block. */
2777 static struct Lisp_Vector *
2778 allocate_vector_from_block (size_t nbytes)
2780 struct Lisp_Vector *vector;
2781 struct vector_block *block;
2782 size_t index, restbytes;
2784 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2785 eassert (nbytes % roundup_size == 0);
2787 /* First, try to allocate from a free list
2788 containing vectors of the requested size. */
2789 index = VINDEX (nbytes);
2790 if (vector_free_lists[index])
2792 vector = vector_free_lists[index];
2793 vector_free_lists[index] = next_vector (vector);
2794 total_free_vector_slots -= nbytes / word_size;
2795 return vector;
2798 /* Next, check free lists containing larger vectors. Since
2799 we will split the result, we should have remaining space
2800 large enough to use for one-slot vector at least. */
2801 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2802 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2803 if (vector_free_lists[index])
2805 /* This vector is larger than requested. */
2806 vector = vector_free_lists[index];
2807 vector_free_lists[index] = next_vector (vector);
2808 total_free_vector_slots -= nbytes / word_size;
2810 /* Excess bytes are used for the smaller vector,
2811 which should be set on an appropriate free list. */
2812 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2813 eassert (restbytes % roundup_size == 0);
2814 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2815 return vector;
2818 /* Finally, need a new vector block. */
2819 block = allocate_vector_block ();
2821 /* New vector will be at the beginning of this block. */
2822 vector = (struct Lisp_Vector *) block->data;
2824 /* If the rest of space from this block is large enough
2825 for one-slot vector at least, set up it on a free list. */
2826 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2827 if (restbytes >= VBLOCK_BYTES_MIN)
2829 eassert (restbytes % roundup_size == 0);
2830 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2832 return vector;
2835 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2837 #define VECTOR_IN_BLOCK(vector, block) \
2838 ((char *) (vector) <= (block)->data \
2839 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2841 /* Return the memory footprint of V in bytes. */
2843 static ptrdiff_t
2844 vector_nbytes (struct Lisp_Vector *v)
2846 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2847 ptrdiff_t nwords;
2849 if (size & PSEUDOVECTOR_FLAG)
2851 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2853 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2854 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
2855 * sizeof (bits_word));
2856 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
2857 verify (header_size <= bool_header_size);
2858 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
2860 else
2861 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
2862 + ((size & PSEUDOVECTOR_REST_MASK)
2863 >> PSEUDOVECTOR_SIZE_BITS));
2865 else
2866 nwords = size;
2867 return vroundup (header_size + word_size * nwords);
2870 /* Release extra resources still in use by VECTOR, which may be any
2871 vector-like object. For now, this is used just to free data in
2872 font objects. */
2874 static void
2875 cleanup_vector (struct Lisp_Vector *vector)
2877 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2878 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2879 == FONT_OBJECT_MAX))
2881 /* Attempt to catch subtle bugs like Bug#16140. */
2882 eassert (valid_font_driver (((struct font *) vector)->driver));
2883 ((struct font *) vector)->driver->close ((struct font *) vector);
2887 /* Reclaim space used by unmarked vectors. */
2889 static void
2890 sweep_vectors (void)
2892 struct vector_block *block, **bprev = &vector_blocks;
2893 struct large_vector *lv, **lvprev = &large_vectors;
2894 struct Lisp_Vector *vector, *next;
2896 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2897 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2899 /* Looking through vector blocks. */
2901 for (block = vector_blocks; block; block = *bprev)
2903 bool free_this_block = 0;
2904 ptrdiff_t nbytes;
2906 for (vector = (struct Lisp_Vector *) block->data;
2907 VECTOR_IN_BLOCK (vector, block); vector = next)
2909 if (VECTOR_MARKED_P (vector))
2911 VECTOR_UNMARK (vector);
2912 total_vectors++;
2913 nbytes = vector_nbytes (vector);
2914 total_vector_slots += nbytes / word_size;
2915 next = ADVANCE (vector, nbytes);
2917 else
2919 ptrdiff_t total_bytes;
2921 cleanup_vector (vector);
2922 nbytes = vector_nbytes (vector);
2923 total_bytes = nbytes;
2924 next = ADVANCE (vector, nbytes);
2926 /* While NEXT is not marked, try to coalesce with VECTOR,
2927 thus making VECTOR of the largest possible size. */
2929 while (VECTOR_IN_BLOCK (next, block))
2931 if (VECTOR_MARKED_P (next))
2932 break;
2933 cleanup_vector (next);
2934 nbytes = vector_nbytes (next);
2935 total_bytes += nbytes;
2936 next = ADVANCE (next, nbytes);
2939 eassert (total_bytes % roundup_size == 0);
2941 if (vector == (struct Lisp_Vector *) block->data
2942 && !VECTOR_IN_BLOCK (next, block))
2943 /* This block should be freed because all of it's
2944 space was coalesced into the only free vector. */
2945 free_this_block = 1;
2946 else
2948 size_t tmp;
2949 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2954 if (free_this_block)
2956 *bprev = block->next;
2957 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2958 mem_delete (mem_find (block->data));
2959 #endif
2960 xfree (block);
2962 else
2963 bprev = &block->next;
2966 /* Sweep large vectors. */
2968 for (lv = large_vectors; lv; lv = *lvprev)
2970 vector = large_vector_vec (lv);
2971 if (VECTOR_MARKED_P (vector))
2973 VECTOR_UNMARK (vector);
2974 total_vectors++;
2975 if (vector->header.size & PSEUDOVECTOR_FLAG)
2977 /* All non-bool pseudovectors are small enough to be allocated
2978 from vector blocks. This code should be redesigned if some
2979 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2980 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2981 total_vector_slots += vector_nbytes (vector) / word_size;
2983 else
2984 total_vector_slots
2985 += header_size / word_size + vector->header.size;
2986 lvprev = &lv->next;
2988 else
2990 *lvprev = lv->next;
2991 lisp_free (lv);
2996 /* Value is a pointer to a newly allocated Lisp_Vector structure
2997 with room for LEN Lisp_Objects. */
2999 static struct Lisp_Vector *
3000 allocate_vectorlike (ptrdiff_t len)
3002 struct Lisp_Vector *p;
3004 MALLOC_BLOCK_INPUT;
3006 if (len == 0)
3007 p = XVECTOR (zero_vector);
3008 else
3010 size_t nbytes = header_size + len * word_size;
3012 #ifdef DOUG_LEA_MALLOC
3013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3014 because mapped region contents are not preserved in
3015 a dumped Emacs. */
3016 mallopt (M_MMAP_MAX, 0);
3017 #endif
3019 if (nbytes <= VBLOCK_BYTES_MAX)
3020 p = allocate_vector_from_block (vroundup (nbytes));
3021 else
3023 struct large_vector *lv
3024 = lisp_malloc ((large_vector_offset + header_size
3025 + len * word_size),
3026 MEM_TYPE_VECTORLIKE);
3027 lv->next = large_vectors;
3028 large_vectors = lv;
3029 p = large_vector_vec (lv);
3032 #ifdef DOUG_LEA_MALLOC
3033 /* Back to a reasonable maximum of mmap'ed areas. */
3034 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3035 #endif
3037 consing_since_gc += nbytes;
3038 vector_cells_consed += len;
3041 MALLOC_UNBLOCK_INPUT;
3043 return p;
3047 /* Allocate a vector with LEN slots. */
3049 struct Lisp_Vector *
3050 allocate_vector (EMACS_INT len)
3052 struct Lisp_Vector *v;
3053 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3055 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3056 memory_full (SIZE_MAX);
3057 v = allocate_vectorlike (len);
3058 v->header.size = len;
3059 return v;
3063 /* Allocate other vector-like structures. */
3065 struct Lisp_Vector *
3066 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3068 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3069 int i;
3071 /* Catch bogus values. */
3072 eassert (tag <= PVEC_FONT);
3073 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3074 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3076 /* Only the first lisplen slots will be traced normally by the GC. */
3077 for (i = 0; i < lisplen; ++i)
3078 v->contents[i] = Qnil;
3080 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3081 return v;
3084 struct buffer *
3085 allocate_buffer (void)
3087 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3089 BUFFER_PVEC_INIT (b);
3090 /* Put B on the chain of all buffers including killed ones. */
3091 b->next = all_buffers;
3092 all_buffers = b;
3093 /* Note that the rest fields of B are not initialized. */
3094 return b;
3097 struct Lisp_Hash_Table *
3098 allocate_hash_table (void)
3100 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3103 struct window *
3104 allocate_window (void)
3106 struct window *w;
3108 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3109 /* Users assumes that non-Lisp data is zeroed. */
3110 memset (&w->current_matrix, 0,
3111 sizeof (*w) - offsetof (struct window, current_matrix));
3112 return w;
3115 struct terminal *
3116 allocate_terminal (void)
3118 struct terminal *t;
3120 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3121 /* Users assumes that non-Lisp data is zeroed. */
3122 memset (&t->next_terminal, 0,
3123 sizeof (*t) - offsetof (struct terminal, next_terminal));
3124 return t;
3127 struct frame *
3128 allocate_frame (void)
3130 struct frame *f;
3132 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3133 /* Users assumes that non-Lisp data is zeroed. */
3134 memset (&f->face_cache, 0,
3135 sizeof (*f) - offsetof (struct frame, face_cache));
3136 return f;
3139 struct Lisp_Process *
3140 allocate_process (void)
3142 struct Lisp_Process *p;
3144 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3145 /* Users assumes that non-Lisp data is zeroed. */
3146 memset (&p->pid, 0,
3147 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3148 return p;
3151 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3152 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3153 See also the function `vector'. */)
3154 (register Lisp_Object length, Lisp_Object init)
3156 Lisp_Object vector;
3157 register ptrdiff_t sizei;
3158 register ptrdiff_t i;
3159 register struct Lisp_Vector *p;
3161 CHECK_NATNUM (length);
3163 p = allocate_vector (XFASTINT (length));
3164 sizei = XFASTINT (length);
3165 for (i = 0; i < sizei; i++)
3166 p->contents[i] = init;
3168 XSETVECTOR (vector, p);
3169 return vector;
3173 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3174 doc: /* Return a newly created vector with specified arguments as elements.
3175 Any number of arguments, even zero arguments, are allowed.
3176 usage: (vector &rest OBJECTS) */)
3177 (ptrdiff_t nargs, Lisp_Object *args)
3179 ptrdiff_t i;
3180 register Lisp_Object val = make_uninit_vector (nargs);
3181 register struct Lisp_Vector *p = XVECTOR (val);
3183 for (i = 0; i < nargs; i++)
3184 p->contents[i] = args[i];
3185 return val;
3188 void
3189 make_byte_code (struct Lisp_Vector *v)
3191 /* Don't allow the global zero_vector to become a byte code object. */
3192 eassert(0 < v->header.size);
3193 if (v->header.size > 1 && STRINGP (v->contents[1])
3194 && STRING_MULTIBYTE (v->contents[1]))
3195 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3196 earlier because they produced a raw 8-bit string for byte-code
3197 and now such a byte-code string is loaded as multibyte while
3198 raw 8-bit characters converted to multibyte form. Thus, now we
3199 must convert them back to the original unibyte form. */
3200 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3201 XSETPVECTYPE (v, PVEC_COMPILED);
3204 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3205 doc: /* Create a byte-code object with specified arguments as elements.
3206 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3207 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3208 and (optional) INTERACTIVE-SPEC.
3209 The first four arguments are required; at most six have any
3210 significance.
3211 The ARGLIST can be either like the one of `lambda', in which case the arguments
3212 will be dynamically bound before executing the byte code, or it can be an
3213 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3214 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3215 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3216 argument to catch the left-over arguments. If such an integer is used, the
3217 arguments will not be dynamically bound but will be instead pushed on the
3218 stack before executing the byte-code.
3219 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3220 (ptrdiff_t nargs, Lisp_Object *args)
3222 ptrdiff_t i;
3223 register Lisp_Object val = make_uninit_vector (nargs);
3224 register struct Lisp_Vector *p = XVECTOR (val);
3226 /* We used to purecopy everything here, if purify-flag was set. This worked
3227 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3228 dangerous, since make-byte-code is used during execution to build
3229 closures, so any closure built during the preload phase would end up
3230 copied into pure space, including its free variables, which is sometimes
3231 just wasteful and other times plainly wrong (e.g. those free vars may want
3232 to be setcar'd). */
3234 for (i = 0; i < nargs; i++)
3235 p->contents[i] = args[i];
3236 make_byte_code (p);
3237 XSETCOMPILED (val, p);
3238 return val;
3243 /***********************************************************************
3244 Symbol Allocation
3245 ***********************************************************************/
3247 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3248 of the required alignment if LSB tags are used. */
3250 union aligned_Lisp_Symbol
3252 struct Lisp_Symbol s;
3253 #if USE_LSB_TAG
3254 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3255 & -GCALIGNMENT];
3256 #endif
3259 /* Each symbol_block is just under 1020 bytes long, since malloc
3260 really allocates in units of powers of two and uses 4 bytes for its
3261 own overhead. */
3263 #define SYMBOL_BLOCK_SIZE \
3264 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3266 struct symbol_block
3268 /* Place `symbols' first, to preserve alignment. */
3269 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3270 struct symbol_block *next;
3273 /* Current symbol block and index of first unused Lisp_Symbol
3274 structure in it. */
3276 static struct symbol_block *symbol_block;
3277 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3279 /* List of free symbols. */
3281 static struct Lisp_Symbol *symbol_free_list;
3283 static void
3284 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3286 XSYMBOL (sym)->name = name;
3289 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3290 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3291 Its value is void, and its function definition and property list are nil. */)
3292 (Lisp_Object name)
3294 register Lisp_Object val;
3295 register struct Lisp_Symbol *p;
3297 CHECK_STRING (name);
3299 MALLOC_BLOCK_INPUT;
3301 if (symbol_free_list)
3303 XSETSYMBOL (val, symbol_free_list);
3304 symbol_free_list = symbol_free_list->next;
3306 else
3308 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3310 struct symbol_block *new
3311 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3312 new->next = symbol_block;
3313 symbol_block = new;
3314 symbol_block_index = 0;
3315 total_free_symbols += SYMBOL_BLOCK_SIZE;
3317 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3318 symbol_block_index++;
3321 MALLOC_UNBLOCK_INPUT;
3323 p = XSYMBOL (val);
3324 set_symbol_name (val, name);
3325 set_symbol_plist (val, Qnil);
3326 p->redirect = SYMBOL_PLAINVAL;
3327 SET_SYMBOL_VAL (p, Qunbound);
3328 set_symbol_function (val, Qnil);
3329 set_symbol_next (val, NULL);
3330 p->gcmarkbit = 0;
3331 p->interned = SYMBOL_UNINTERNED;
3332 p->constant = 0;
3333 p->declared_special = 0;
3334 consing_since_gc += sizeof (struct Lisp_Symbol);
3335 symbols_consed++;
3336 total_free_symbols--;
3337 return val;
3342 /***********************************************************************
3343 Marker (Misc) Allocation
3344 ***********************************************************************/
3346 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3347 the required alignment when LSB tags are used. */
3349 union aligned_Lisp_Misc
3351 union Lisp_Misc m;
3352 #if USE_LSB_TAG
3353 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3354 & -GCALIGNMENT];
3355 #endif
3358 /* Allocation of markers and other objects that share that structure.
3359 Works like allocation of conses. */
3361 #define MARKER_BLOCK_SIZE \
3362 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3364 struct marker_block
3366 /* Place `markers' first, to preserve alignment. */
3367 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3368 struct marker_block *next;
3371 static struct marker_block *marker_block;
3372 static int marker_block_index = MARKER_BLOCK_SIZE;
3374 static union Lisp_Misc *marker_free_list;
3376 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3378 static Lisp_Object
3379 allocate_misc (enum Lisp_Misc_Type type)
3381 Lisp_Object val;
3383 MALLOC_BLOCK_INPUT;
3385 if (marker_free_list)
3387 XSETMISC (val, marker_free_list);
3388 marker_free_list = marker_free_list->u_free.chain;
3390 else
3392 if (marker_block_index == MARKER_BLOCK_SIZE)
3394 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3395 new->next = marker_block;
3396 marker_block = new;
3397 marker_block_index = 0;
3398 total_free_markers += MARKER_BLOCK_SIZE;
3400 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3401 marker_block_index++;
3404 MALLOC_UNBLOCK_INPUT;
3406 --total_free_markers;
3407 consing_since_gc += sizeof (union Lisp_Misc);
3408 misc_objects_consed++;
3409 XMISCANY (val)->type = type;
3410 XMISCANY (val)->gcmarkbit = 0;
3411 return val;
3414 /* Free a Lisp_Misc object. */
3416 void
3417 free_misc (Lisp_Object misc)
3419 XMISCANY (misc)->type = Lisp_Misc_Free;
3420 XMISC (misc)->u_free.chain = marker_free_list;
3421 marker_free_list = XMISC (misc);
3422 consing_since_gc -= sizeof (union Lisp_Misc);
3423 total_free_markers++;
3426 /* Verify properties of Lisp_Save_Value's representation
3427 that are assumed here and elsewhere. */
3429 verify (SAVE_UNUSED == 0);
3430 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3431 >> SAVE_SLOT_BITS)
3432 == 0);
3434 /* Return Lisp_Save_Value objects for the various combinations
3435 that callers need. */
3437 Lisp_Object
3438 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3440 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3441 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3442 p->save_type = SAVE_TYPE_INT_INT_INT;
3443 p->data[0].integer = a;
3444 p->data[1].integer = b;
3445 p->data[2].integer = c;
3446 return val;
3449 Lisp_Object
3450 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3451 Lisp_Object d)
3453 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3454 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3455 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3456 p->data[0].object = a;
3457 p->data[1].object = b;
3458 p->data[2].object = c;
3459 p->data[3].object = d;
3460 return val;
3463 Lisp_Object
3464 make_save_ptr (void *a)
3466 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3467 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3468 p->save_type = SAVE_POINTER;
3469 p->data[0].pointer = a;
3470 return val;
3473 Lisp_Object
3474 make_save_ptr_int (void *a, ptrdiff_t b)
3476 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3477 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3478 p->save_type = SAVE_TYPE_PTR_INT;
3479 p->data[0].pointer = a;
3480 p->data[1].integer = b;
3481 return val;
3484 #if ! (defined USE_X_TOOLKIT || defined USE_GTK)
3485 Lisp_Object
3486 make_save_ptr_ptr (void *a, void *b)
3488 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3489 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3490 p->save_type = SAVE_TYPE_PTR_PTR;
3491 p->data[0].pointer = a;
3492 p->data[1].pointer = b;
3493 return val;
3495 #endif
3497 Lisp_Object
3498 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3500 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3501 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3502 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3503 p->data[0].funcpointer = a;
3504 p->data[1].pointer = b;
3505 p->data[2].object = c;
3506 return val;
3509 /* Return a Lisp_Save_Value object that represents an array A
3510 of N Lisp objects. */
3512 Lisp_Object
3513 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3515 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3516 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3517 p->save_type = SAVE_TYPE_MEMORY;
3518 p->data[0].pointer = a;
3519 p->data[1].integer = n;
3520 return val;
3523 /* Free a Lisp_Save_Value object. Do not use this function
3524 if SAVE contains pointer other than returned by xmalloc. */
3526 void
3527 free_save_value (Lisp_Object save)
3529 xfree (XSAVE_POINTER (save, 0));
3530 free_misc (save);
3533 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3535 Lisp_Object
3536 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3538 register Lisp_Object overlay;
3540 overlay = allocate_misc (Lisp_Misc_Overlay);
3541 OVERLAY_START (overlay) = start;
3542 OVERLAY_END (overlay) = end;
3543 set_overlay_plist (overlay, plist);
3544 XOVERLAY (overlay)->next = NULL;
3545 return overlay;
3548 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3549 doc: /* Return a newly allocated marker which does not point at any place. */)
3550 (void)
3552 register Lisp_Object val;
3553 register struct Lisp_Marker *p;
3555 val = allocate_misc (Lisp_Misc_Marker);
3556 p = XMARKER (val);
3557 p->buffer = 0;
3558 p->bytepos = 0;
3559 p->charpos = 0;
3560 p->next = NULL;
3561 p->insertion_type = 0;
3562 p->need_adjustment = 0;
3563 return val;
3566 /* Return a newly allocated marker which points into BUF
3567 at character position CHARPOS and byte position BYTEPOS. */
3569 Lisp_Object
3570 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3572 Lisp_Object obj;
3573 struct Lisp_Marker *m;
3575 /* No dead buffers here. */
3576 eassert (BUFFER_LIVE_P (buf));
3578 /* Every character is at least one byte. */
3579 eassert (charpos <= bytepos);
3581 obj = allocate_misc (Lisp_Misc_Marker);
3582 m = XMARKER (obj);
3583 m->buffer = buf;
3584 m->charpos = charpos;
3585 m->bytepos = bytepos;
3586 m->insertion_type = 0;
3587 m->need_adjustment = 0;
3588 m->next = BUF_MARKERS (buf);
3589 BUF_MARKERS (buf) = m;
3590 return obj;
3593 /* Put MARKER back on the free list after using it temporarily. */
3595 void
3596 free_marker (Lisp_Object marker)
3598 unchain_marker (XMARKER (marker));
3599 free_misc (marker);
3603 /* Return a newly created vector or string with specified arguments as
3604 elements. If all the arguments are characters that can fit
3605 in a string of events, make a string; otherwise, make a vector.
3607 Any number of arguments, even zero arguments, are allowed. */
3609 Lisp_Object
3610 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3612 ptrdiff_t i;
3614 for (i = 0; i < nargs; i++)
3615 /* The things that fit in a string
3616 are characters that are in 0...127,
3617 after discarding the meta bit and all the bits above it. */
3618 if (!INTEGERP (args[i])
3619 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3620 return Fvector (nargs, args);
3622 /* Since the loop exited, we know that all the things in it are
3623 characters, so we can make a string. */
3625 Lisp_Object result;
3627 result = Fmake_string (make_number (nargs), make_number (0));
3628 for (i = 0; i < nargs; i++)
3630 SSET (result, i, XINT (args[i]));
3631 /* Move the meta bit to the right place for a string char. */
3632 if (XINT (args[i]) & CHAR_META)
3633 SSET (result, i, SREF (result, i) | 0x80);
3636 return result;
3642 /************************************************************************
3643 Memory Full Handling
3644 ************************************************************************/
3647 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3648 there may have been size_t overflow so that malloc was never
3649 called, or perhaps malloc was invoked successfully but the
3650 resulting pointer had problems fitting into a tagged EMACS_INT. In
3651 either case this counts as memory being full even though malloc did
3652 not fail. */
3654 void
3655 memory_full (size_t nbytes)
3657 /* Do not go into hysterics merely because a large request failed. */
3658 bool enough_free_memory = 0;
3659 if (SPARE_MEMORY < nbytes)
3661 void *p;
3663 MALLOC_BLOCK_INPUT;
3664 p = malloc (SPARE_MEMORY);
3665 if (p)
3667 free (p);
3668 enough_free_memory = 1;
3670 MALLOC_UNBLOCK_INPUT;
3673 if (! enough_free_memory)
3675 int i;
3677 Vmemory_full = Qt;
3679 memory_full_cons_threshold = sizeof (struct cons_block);
3681 /* The first time we get here, free the spare memory. */
3682 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3683 if (spare_memory[i])
3685 if (i == 0)
3686 free (spare_memory[i]);
3687 else if (i >= 1 && i <= 4)
3688 lisp_align_free (spare_memory[i]);
3689 else
3690 lisp_free (spare_memory[i]);
3691 spare_memory[i] = 0;
3695 /* This used to call error, but if we've run out of memory, we could
3696 get infinite recursion trying to build the string. */
3697 xsignal (Qnil, Vmemory_signal_data);
3700 /* If we released our reserve (due to running out of memory),
3701 and we have a fair amount free once again,
3702 try to set aside another reserve in case we run out once more.
3704 This is called when a relocatable block is freed in ralloc.c,
3705 and also directly from this file, in case we're not using ralloc.c. */
3707 void
3708 refill_memory_reserve (void)
3710 #ifndef SYSTEM_MALLOC
3711 if (spare_memory[0] == 0)
3712 spare_memory[0] = malloc (SPARE_MEMORY);
3713 if (spare_memory[1] == 0)
3714 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3715 MEM_TYPE_SPARE);
3716 if (spare_memory[2] == 0)
3717 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3718 MEM_TYPE_SPARE);
3719 if (spare_memory[3] == 0)
3720 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3721 MEM_TYPE_SPARE);
3722 if (spare_memory[4] == 0)
3723 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3724 MEM_TYPE_SPARE);
3725 if (spare_memory[5] == 0)
3726 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3727 MEM_TYPE_SPARE);
3728 if (spare_memory[6] == 0)
3729 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3730 MEM_TYPE_SPARE);
3731 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3732 Vmemory_full = Qnil;
3733 #endif
3736 /************************************************************************
3737 C Stack Marking
3738 ************************************************************************/
3740 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3742 /* Conservative C stack marking requires a method to identify possibly
3743 live Lisp objects given a pointer value. We do this by keeping
3744 track of blocks of Lisp data that are allocated in a red-black tree
3745 (see also the comment of mem_node which is the type of nodes in
3746 that tree). Function lisp_malloc adds information for an allocated
3747 block to the red-black tree with calls to mem_insert, and function
3748 lisp_free removes it with mem_delete. Functions live_string_p etc
3749 call mem_find to lookup information about a given pointer in the
3750 tree, and use that to determine if the pointer points to a Lisp
3751 object or not. */
3753 /* Initialize this part of alloc.c. */
3755 static void
3756 mem_init (void)
3758 mem_z.left = mem_z.right = MEM_NIL;
3759 mem_z.parent = NULL;
3760 mem_z.color = MEM_BLACK;
3761 mem_z.start = mem_z.end = NULL;
3762 mem_root = MEM_NIL;
3766 /* Value is a pointer to the mem_node containing START. Value is
3767 MEM_NIL if there is no node in the tree containing START. */
3769 static struct mem_node *
3770 mem_find (void *start)
3772 struct mem_node *p;
3774 if (start < min_heap_address || start > max_heap_address)
3775 return MEM_NIL;
3777 /* Make the search always successful to speed up the loop below. */
3778 mem_z.start = start;
3779 mem_z.end = (char *) start + 1;
3781 p = mem_root;
3782 while (start < p->start || start >= p->end)
3783 p = start < p->start ? p->left : p->right;
3784 return p;
3788 /* Insert a new node into the tree for a block of memory with start
3789 address START, end address END, and type TYPE. Value is a
3790 pointer to the node that was inserted. */
3792 static struct mem_node *
3793 mem_insert (void *start, void *end, enum mem_type type)
3795 struct mem_node *c, *parent, *x;
3797 if (min_heap_address == NULL || start < min_heap_address)
3798 min_heap_address = start;
3799 if (max_heap_address == NULL || end > max_heap_address)
3800 max_heap_address = end;
3802 /* See where in the tree a node for START belongs. In this
3803 particular application, it shouldn't happen that a node is already
3804 present. For debugging purposes, let's check that. */
3805 c = mem_root;
3806 parent = NULL;
3808 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3810 while (c != MEM_NIL)
3812 if (start >= c->start && start < c->end)
3813 emacs_abort ();
3814 parent = c;
3815 c = start < c->start ? c->left : c->right;
3818 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3820 while (c != MEM_NIL)
3822 parent = c;
3823 c = start < c->start ? c->left : c->right;
3826 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3828 /* Create a new node. */
3829 #ifdef GC_MALLOC_CHECK
3830 x = malloc (sizeof *x);
3831 if (x == NULL)
3832 emacs_abort ();
3833 #else
3834 x = xmalloc (sizeof *x);
3835 #endif
3836 x->start = start;
3837 x->end = end;
3838 x->type = type;
3839 x->parent = parent;
3840 x->left = x->right = MEM_NIL;
3841 x->color = MEM_RED;
3843 /* Insert it as child of PARENT or install it as root. */
3844 if (parent)
3846 if (start < parent->start)
3847 parent->left = x;
3848 else
3849 parent->right = x;
3851 else
3852 mem_root = x;
3854 /* Re-establish red-black tree properties. */
3855 mem_insert_fixup (x);
3857 return x;
3861 /* Re-establish the red-black properties of the tree, and thereby
3862 balance the tree, after node X has been inserted; X is always red. */
3864 static void
3865 mem_insert_fixup (struct mem_node *x)
3867 while (x != mem_root && x->parent->color == MEM_RED)
3869 /* X is red and its parent is red. This is a violation of
3870 red-black tree property #3. */
3872 if (x->parent == x->parent->parent->left)
3874 /* We're on the left side of our grandparent, and Y is our
3875 "uncle". */
3876 struct mem_node *y = x->parent->parent->right;
3878 if (y->color == MEM_RED)
3880 /* Uncle and parent are red but should be black because
3881 X is red. Change the colors accordingly and proceed
3882 with the grandparent. */
3883 x->parent->color = MEM_BLACK;
3884 y->color = MEM_BLACK;
3885 x->parent->parent->color = MEM_RED;
3886 x = x->parent->parent;
3888 else
3890 /* Parent and uncle have different colors; parent is
3891 red, uncle is black. */
3892 if (x == x->parent->right)
3894 x = x->parent;
3895 mem_rotate_left (x);
3898 x->parent->color = MEM_BLACK;
3899 x->parent->parent->color = MEM_RED;
3900 mem_rotate_right (x->parent->parent);
3903 else
3905 /* This is the symmetrical case of above. */
3906 struct mem_node *y = x->parent->parent->left;
3908 if (y->color == MEM_RED)
3910 x->parent->color = MEM_BLACK;
3911 y->color = MEM_BLACK;
3912 x->parent->parent->color = MEM_RED;
3913 x = x->parent->parent;
3915 else
3917 if (x == x->parent->left)
3919 x = x->parent;
3920 mem_rotate_right (x);
3923 x->parent->color = MEM_BLACK;
3924 x->parent->parent->color = MEM_RED;
3925 mem_rotate_left (x->parent->parent);
3930 /* The root may have been changed to red due to the algorithm. Set
3931 it to black so that property #5 is satisfied. */
3932 mem_root->color = MEM_BLACK;
3936 /* (x) (y)
3937 / \ / \
3938 a (y) ===> (x) c
3939 / \ / \
3940 b c a b */
3942 static void
3943 mem_rotate_left (struct mem_node *x)
3945 struct mem_node *y;
3947 /* Turn y's left sub-tree into x's right sub-tree. */
3948 y = x->right;
3949 x->right = y->left;
3950 if (y->left != MEM_NIL)
3951 y->left->parent = x;
3953 /* Y's parent was x's parent. */
3954 if (y != MEM_NIL)
3955 y->parent = x->parent;
3957 /* Get the parent to point to y instead of x. */
3958 if (x->parent)
3960 if (x == x->parent->left)
3961 x->parent->left = y;
3962 else
3963 x->parent->right = y;
3965 else
3966 mem_root = y;
3968 /* Put x on y's left. */
3969 y->left = x;
3970 if (x != MEM_NIL)
3971 x->parent = y;
3975 /* (x) (Y)
3976 / \ / \
3977 (y) c ===> a (x)
3978 / \ / \
3979 a b b c */
3981 static void
3982 mem_rotate_right (struct mem_node *x)
3984 struct mem_node *y = x->left;
3986 x->left = y->right;
3987 if (y->right != MEM_NIL)
3988 y->right->parent = x;
3990 if (y != MEM_NIL)
3991 y->parent = x->parent;
3992 if (x->parent)
3994 if (x == x->parent->right)
3995 x->parent->right = y;
3996 else
3997 x->parent->left = y;
3999 else
4000 mem_root = y;
4002 y->right = x;
4003 if (x != MEM_NIL)
4004 x->parent = y;
4008 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4010 static void
4011 mem_delete (struct mem_node *z)
4013 struct mem_node *x, *y;
4015 if (!z || z == MEM_NIL)
4016 return;
4018 if (z->left == MEM_NIL || z->right == MEM_NIL)
4019 y = z;
4020 else
4022 y = z->right;
4023 while (y->left != MEM_NIL)
4024 y = y->left;
4027 if (y->left != MEM_NIL)
4028 x = y->left;
4029 else
4030 x = y->right;
4032 x->parent = y->parent;
4033 if (y->parent)
4035 if (y == y->parent->left)
4036 y->parent->left = x;
4037 else
4038 y->parent->right = x;
4040 else
4041 mem_root = x;
4043 if (y != z)
4045 z->start = y->start;
4046 z->end = y->end;
4047 z->type = y->type;
4050 if (y->color == MEM_BLACK)
4051 mem_delete_fixup (x);
4053 #ifdef GC_MALLOC_CHECK
4054 free (y);
4055 #else
4056 xfree (y);
4057 #endif
4061 /* Re-establish the red-black properties of the tree, after a
4062 deletion. */
4064 static void
4065 mem_delete_fixup (struct mem_node *x)
4067 while (x != mem_root && x->color == MEM_BLACK)
4069 if (x == x->parent->left)
4071 struct mem_node *w = x->parent->right;
4073 if (w->color == MEM_RED)
4075 w->color = MEM_BLACK;
4076 x->parent->color = MEM_RED;
4077 mem_rotate_left (x->parent);
4078 w = x->parent->right;
4081 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4083 w->color = MEM_RED;
4084 x = x->parent;
4086 else
4088 if (w->right->color == MEM_BLACK)
4090 w->left->color = MEM_BLACK;
4091 w->color = MEM_RED;
4092 mem_rotate_right (w);
4093 w = x->parent->right;
4095 w->color = x->parent->color;
4096 x->parent->color = MEM_BLACK;
4097 w->right->color = MEM_BLACK;
4098 mem_rotate_left (x->parent);
4099 x = mem_root;
4102 else
4104 struct mem_node *w = x->parent->left;
4106 if (w->color == MEM_RED)
4108 w->color = MEM_BLACK;
4109 x->parent->color = MEM_RED;
4110 mem_rotate_right (x->parent);
4111 w = x->parent->left;
4114 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4116 w->color = MEM_RED;
4117 x = x->parent;
4119 else
4121 if (w->left->color == MEM_BLACK)
4123 w->right->color = MEM_BLACK;
4124 w->color = MEM_RED;
4125 mem_rotate_left (w);
4126 w = x->parent->left;
4129 w->color = x->parent->color;
4130 x->parent->color = MEM_BLACK;
4131 w->left->color = MEM_BLACK;
4132 mem_rotate_right (x->parent);
4133 x = mem_root;
4138 x->color = MEM_BLACK;
4142 /* Value is non-zero if P is a pointer to a live Lisp string on
4143 the heap. M is a pointer to the mem_block for P. */
4145 static bool
4146 live_string_p (struct mem_node *m, void *p)
4148 if (m->type == MEM_TYPE_STRING)
4150 struct string_block *b = m->start;
4151 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4153 /* P must point to the start of a Lisp_String structure, and it
4154 must not be on the free-list. */
4155 return (offset >= 0
4156 && offset % sizeof b->strings[0] == 0
4157 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4158 && ((struct Lisp_String *) p)->data != NULL);
4160 else
4161 return 0;
4165 /* Value is non-zero if P is a pointer to a live Lisp cons on
4166 the heap. M is a pointer to the mem_block for P. */
4168 static bool
4169 live_cons_p (struct mem_node *m, void *p)
4171 if (m->type == MEM_TYPE_CONS)
4173 struct cons_block *b = m->start;
4174 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4176 /* P must point to the start of a Lisp_Cons, not be
4177 one of the unused cells in the current cons block,
4178 and not be on the free-list. */
4179 return (offset >= 0
4180 && offset % sizeof b->conses[0] == 0
4181 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4182 && (b != cons_block
4183 || offset / sizeof b->conses[0] < cons_block_index)
4184 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4186 else
4187 return 0;
4191 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4192 the heap. M is a pointer to the mem_block for P. */
4194 static bool
4195 live_symbol_p (struct mem_node *m, void *p)
4197 if (m->type == MEM_TYPE_SYMBOL)
4199 struct symbol_block *b = m->start;
4200 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4202 /* P must point to the start of a Lisp_Symbol, not be
4203 one of the unused cells in the current symbol block,
4204 and not be on the free-list. */
4205 return (offset >= 0
4206 && offset % sizeof b->symbols[0] == 0
4207 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4208 && (b != symbol_block
4209 || offset / sizeof b->symbols[0] < symbol_block_index)
4210 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4212 else
4213 return 0;
4217 /* Value is non-zero if P is a pointer to a live Lisp float on
4218 the heap. M is a pointer to the mem_block for P. */
4220 static bool
4221 live_float_p (struct mem_node *m, void *p)
4223 if (m->type == MEM_TYPE_FLOAT)
4225 struct float_block *b = m->start;
4226 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4228 /* P must point to the start of a Lisp_Float and not be
4229 one of the unused cells in the current float block. */
4230 return (offset >= 0
4231 && offset % sizeof b->floats[0] == 0
4232 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4233 && (b != float_block
4234 || offset / sizeof b->floats[0] < float_block_index));
4236 else
4237 return 0;
4241 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4242 the heap. M is a pointer to the mem_block for P. */
4244 static bool
4245 live_misc_p (struct mem_node *m, void *p)
4247 if (m->type == MEM_TYPE_MISC)
4249 struct marker_block *b = m->start;
4250 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4252 /* P must point to the start of a Lisp_Misc, not be
4253 one of the unused cells in the current misc block,
4254 and not be on the free-list. */
4255 return (offset >= 0
4256 && offset % sizeof b->markers[0] == 0
4257 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4258 && (b != marker_block
4259 || offset / sizeof b->markers[0] < marker_block_index)
4260 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4262 else
4263 return 0;
4267 /* Value is non-zero if P is a pointer to a live vector-like object.
4268 M is a pointer to the mem_block for P. */
4270 static bool
4271 live_vector_p (struct mem_node *m, void *p)
4273 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4275 /* This memory node corresponds to a vector block. */
4276 struct vector_block *block = m->start;
4277 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4279 /* P is in the block's allocation range. Scan the block
4280 up to P and see whether P points to the start of some
4281 vector which is not on a free list. FIXME: check whether
4282 some allocation patterns (probably a lot of short vectors)
4283 may cause a substantial overhead of this loop. */
4284 while (VECTOR_IN_BLOCK (vector, block)
4285 && vector <= (struct Lisp_Vector *) p)
4287 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4288 return 1;
4289 else
4290 vector = ADVANCE (vector, vector_nbytes (vector));
4293 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4294 /* This memory node corresponds to a large vector. */
4295 return 1;
4296 return 0;
4300 /* Value is non-zero if P is a pointer to a live buffer. M is a
4301 pointer to the mem_block for P. */
4303 static bool
4304 live_buffer_p (struct mem_node *m, void *p)
4306 /* P must point to the start of the block, and the buffer
4307 must not have been killed. */
4308 return (m->type == MEM_TYPE_BUFFER
4309 && p == m->start
4310 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4313 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4315 #if GC_MARK_STACK
4317 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4319 /* Currently not used, but may be called from gdb. */
4321 void dump_zombies (void) EXTERNALLY_VISIBLE;
4323 /* Array of objects that are kept alive because the C stack contains
4324 a pattern that looks like a reference to them. */
4326 #define MAX_ZOMBIES 10
4327 static Lisp_Object zombies[MAX_ZOMBIES];
4329 /* Number of zombie objects. */
4331 static EMACS_INT nzombies;
4333 /* Number of garbage collections. */
4335 static EMACS_INT ngcs;
4337 /* Average percentage of zombies per collection. */
4339 static double avg_zombies;
4341 /* Max. number of live and zombie objects. */
4343 static EMACS_INT max_live, max_zombies;
4345 /* Average number of live objects per GC. */
4347 static double avg_live;
4349 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4350 doc: /* Show information about live and zombie objects. */)
4351 (void)
4353 Lisp_Object args[8], zombie_list = Qnil;
4354 EMACS_INT i;
4355 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4356 zombie_list = Fcons (zombies[i], zombie_list);
4357 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4358 args[1] = make_number (ngcs);
4359 args[2] = make_float (avg_live);
4360 args[3] = make_float (avg_zombies);
4361 args[4] = make_float (avg_zombies / avg_live / 100);
4362 args[5] = make_number (max_live);
4363 args[6] = make_number (max_zombies);
4364 args[7] = zombie_list;
4365 return Fmessage (8, args);
4368 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4371 /* Mark OBJ if we can prove it's a Lisp_Object. */
4373 static void
4374 mark_maybe_object (Lisp_Object obj)
4376 void *po;
4377 struct mem_node *m;
4379 #if USE_VALGRIND
4380 if (valgrind_p)
4381 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4382 #endif
4384 if (INTEGERP (obj))
4385 return;
4387 po = (void *) XPNTR (obj);
4388 m = mem_find (po);
4390 if (m != MEM_NIL)
4392 bool mark_p = 0;
4394 switch (XTYPE (obj))
4396 case Lisp_String:
4397 mark_p = (live_string_p (m, po)
4398 && !STRING_MARKED_P ((struct Lisp_String *) po));
4399 break;
4401 case Lisp_Cons:
4402 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4403 break;
4405 case Lisp_Symbol:
4406 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4407 break;
4409 case Lisp_Float:
4410 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4411 break;
4413 case Lisp_Vectorlike:
4414 /* Note: can't check BUFFERP before we know it's a
4415 buffer because checking that dereferences the pointer
4416 PO which might point anywhere. */
4417 if (live_vector_p (m, po))
4418 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4419 else if (live_buffer_p (m, po))
4420 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4421 break;
4423 case Lisp_Misc:
4424 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4425 break;
4427 default:
4428 break;
4431 if (mark_p)
4433 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4434 if (nzombies < MAX_ZOMBIES)
4435 zombies[nzombies] = obj;
4436 ++nzombies;
4437 #endif
4438 mark_object (obj);
4444 /* If P points to Lisp data, mark that as live if it isn't already
4445 marked. */
4447 static void
4448 mark_maybe_pointer (void *p)
4450 struct mem_node *m;
4452 #if USE_VALGRIND
4453 if (valgrind_p)
4454 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4455 #endif
4457 /* Quickly rule out some values which can't point to Lisp data.
4458 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4459 Otherwise, assume that Lisp data is aligned on even addresses. */
4460 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4461 return;
4463 m = mem_find (p);
4464 if (m != MEM_NIL)
4466 Lisp_Object obj = Qnil;
4468 switch (m->type)
4470 case MEM_TYPE_NON_LISP:
4471 case MEM_TYPE_SPARE:
4472 /* Nothing to do; not a pointer to Lisp memory. */
4473 break;
4475 case MEM_TYPE_BUFFER:
4476 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4477 XSETVECTOR (obj, p);
4478 break;
4480 case MEM_TYPE_CONS:
4481 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4482 XSETCONS (obj, p);
4483 break;
4485 case MEM_TYPE_STRING:
4486 if (live_string_p (m, p)
4487 && !STRING_MARKED_P ((struct Lisp_String *) p))
4488 XSETSTRING (obj, p);
4489 break;
4491 case MEM_TYPE_MISC:
4492 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4493 XSETMISC (obj, p);
4494 break;
4496 case MEM_TYPE_SYMBOL:
4497 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4498 XSETSYMBOL (obj, p);
4499 break;
4501 case MEM_TYPE_FLOAT:
4502 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4503 XSETFLOAT (obj, p);
4504 break;
4506 case MEM_TYPE_VECTORLIKE:
4507 case MEM_TYPE_VECTOR_BLOCK:
4508 if (live_vector_p (m, p))
4510 Lisp_Object tem;
4511 XSETVECTOR (tem, p);
4512 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4513 obj = tem;
4515 break;
4517 default:
4518 emacs_abort ();
4521 if (!NILP (obj))
4522 mark_object (obj);
4527 /* Alignment of pointer values. Use alignof, as it sometimes returns
4528 a smaller alignment than GCC's __alignof__ and mark_memory might
4529 miss objects if __alignof__ were used. */
4530 #define GC_POINTER_ALIGNMENT alignof (void *)
4532 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4533 not suffice, which is the typical case. A host where a Lisp_Object is
4534 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4535 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4536 suffice to widen it to to a Lisp_Object and check it that way. */
4537 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4538 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4539 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4540 nor mark_maybe_object can follow the pointers. This should not occur on
4541 any practical porting target. */
4542 # error "MSB type bits straddle pointer-word boundaries"
4543 # endif
4544 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4545 pointer words that hold pointers ORed with type bits. */
4546 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4547 #else
4548 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4549 words that hold unmodified pointers. */
4550 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4551 #endif
4553 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4554 or END+OFFSET..START. */
4556 static void
4557 mark_memory (void *start, void *end)
4558 #if defined (__clang__) && defined (__has_feature)
4559 #if __has_feature(address_sanitizer)
4560 /* Do not allow -faddress-sanitizer to check this function, since it
4561 crosses the function stack boundary, and thus would yield many
4562 false positives. */
4563 __attribute__((no_address_safety_analysis))
4564 #endif
4565 #endif
4567 void **pp;
4568 int i;
4570 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4571 nzombies = 0;
4572 #endif
4574 /* Make START the pointer to the start of the memory region,
4575 if it isn't already. */
4576 if (end < start)
4578 void *tem = start;
4579 start = end;
4580 end = tem;
4583 /* Mark Lisp data pointed to. This is necessary because, in some
4584 situations, the C compiler optimizes Lisp objects away, so that
4585 only a pointer to them remains. Example:
4587 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4590 Lisp_Object obj = build_string ("test");
4591 struct Lisp_String *s = XSTRING (obj);
4592 Fgarbage_collect ();
4593 fprintf (stderr, "test `%s'\n", s->data);
4594 return Qnil;
4597 Here, `obj' isn't really used, and the compiler optimizes it
4598 away. The only reference to the life string is through the
4599 pointer `s'. */
4601 for (pp = start; (void *) pp < end; pp++)
4602 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4604 void *p = *(void **) ((char *) pp + i);
4605 mark_maybe_pointer (p);
4606 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4607 mark_maybe_object (XIL ((intptr_t) p));
4611 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4613 static bool setjmp_tested_p;
4614 static int longjmps_done;
4616 #define SETJMP_WILL_LIKELY_WORK "\
4618 Emacs garbage collector has been changed to use conservative stack\n\
4619 marking. Emacs has determined that the method it uses to do the\n\
4620 marking will likely work on your system, but this isn't sure.\n\
4622 If you are a system-programmer, or can get the help of a local wizard\n\
4623 who is, please take a look at the function mark_stack in alloc.c, and\n\
4624 verify that the methods used are appropriate for your system.\n\
4626 Please mail the result to <emacs-devel@gnu.org>.\n\
4629 #define SETJMP_WILL_NOT_WORK "\
4631 Emacs garbage collector has been changed to use conservative stack\n\
4632 marking. Emacs has determined that the default method it uses to do the\n\
4633 marking will not work on your system. We will need a system-dependent\n\
4634 solution for your system.\n\
4636 Please take a look at the function mark_stack in alloc.c, and\n\
4637 try to find a way to make it work on your system.\n\
4639 Note that you may get false negatives, depending on the compiler.\n\
4640 In particular, you need to use -O with GCC for this test.\n\
4642 Please mail the result to <emacs-devel@gnu.org>.\n\
4646 /* Perform a quick check if it looks like setjmp saves registers in a
4647 jmp_buf. Print a message to stderr saying so. When this test
4648 succeeds, this is _not_ a proof that setjmp is sufficient for
4649 conservative stack marking. Only the sources or a disassembly
4650 can prove that. */
4652 static void
4653 test_setjmp (void)
4655 char buf[10];
4656 register int x;
4657 sys_jmp_buf jbuf;
4659 /* Arrange for X to be put in a register. */
4660 sprintf (buf, "1");
4661 x = strlen (buf);
4662 x = 2 * x - 1;
4664 sys_setjmp (jbuf);
4665 if (longjmps_done == 1)
4667 /* Came here after the longjmp at the end of the function.
4669 If x == 1, the longjmp has restored the register to its
4670 value before the setjmp, and we can hope that setjmp
4671 saves all such registers in the jmp_buf, although that
4672 isn't sure.
4674 For other values of X, either something really strange is
4675 taking place, or the setjmp just didn't save the register. */
4677 if (x == 1)
4678 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4679 else
4681 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4682 exit (1);
4686 ++longjmps_done;
4687 x = 2;
4688 if (longjmps_done == 1)
4689 sys_longjmp (jbuf, 1);
4692 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4695 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4697 /* Abort if anything GCPRO'd doesn't survive the GC. */
4699 static void
4700 check_gcpros (void)
4702 struct gcpro *p;
4703 ptrdiff_t i;
4705 for (p = gcprolist; p; p = p->next)
4706 for (i = 0; i < p->nvars; ++i)
4707 if (!survives_gc_p (p->var[i]))
4708 /* FIXME: It's not necessarily a bug. It might just be that the
4709 GCPRO is unnecessary or should release the object sooner. */
4710 emacs_abort ();
4713 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4715 void
4716 dump_zombies (void)
4718 int i;
4720 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4721 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4723 fprintf (stderr, " %d = ", i);
4724 debug_print (zombies[i]);
4728 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4731 /* Mark live Lisp objects on the C stack.
4733 There are several system-dependent problems to consider when
4734 porting this to new architectures:
4736 Processor Registers
4738 We have to mark Lisp objects in CPU registers that can hold local
4739 variables or are used to pass parameters.
4741 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4742 something that either saves relevant registers on the stack, or
4743 calls mark_maybe_object passing it each register's contents.
4745 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4746 implementation assumes that calling setjmp saves registers we need
4747 to see in a jmp_buf which itself lies on the stack. This doesn't
4748 have to be true! It must be verified for each system, possibly
4749 by taking a look at the source code of setjmp.
4751 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4752 can use it as a machine independent method to store all registers
4753 to the stack. In this case the macros described in the previous
4754 two paragraphs are not used.
4756 Stack Layout
4758 Architectures differ in the way their processor stack is organized.
4759 For example, the stack might look like this
4761 +----------------+
4762 | Lisp_Object | size = 4
4763 +----------------+
4764 | something else | size = 2
4765 +----------------+
4766 | Lisp_Object | size = 4
4767 +----------------+
4768 | ... |
4770 In such a case, not every Lisp_Object will be aligned equally. To
4771 find all Lisp_Object on the stack it won't be sufficient to walk
4772 the stack in steps of 4 bytes. Instead, two passes will be
4773 necessary, one starting at the start of the stack, and a second
4774 pass starting at the start of the stack + 2. Likewise, if the
4775 minimal alignment of Lisp_Objects on the stack is 1, four passes
4776 would be necessary, each one starting with one byte more offset
4777 from the stack start. */
4779 static void
4780 mark_stack (void)
4782 void *end;
4784 #ifdef HAVE___BUILTIN_UNWIND_INIT
4785 /* Force callee-saved registers and register windows onto the stack.
4786 This is the preferred method if available, obviating the need for
4787 machine dependent methods. */
4788 __builtin_unwind_init ();
4789 end = &end;
4790 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4791 #ifndef GC_SAVE_REGISTERS_ON_STACK
4792 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4793 union aligned_jmpbuf {
4794 Lisp_Object o;
4795 sys_jmp_buf j;
4796 } j;
4797 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4798 #endif
4799 /* This trick flushes the register windows so that all the state of
4800 the process is contained in the stack. */
4801 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4802 needed on ia64 too. See mach_dep.c, where it also says inline
4803 assembler doesn't work with relevant proprietary compilers. */
4804 #ifdef __sparc__
4805 #if defined (__sparc64__) && defined (__FreeBSD__)
4806 /* FreeBSD does not have a ta 3 handler. */
4807 asm ("flushw");
4808 #else
4809 asm ("ta 3");
4810 #endif
4811 #endif
4813 /* Save registers that we need to see on the stack. We need to see
4814 registers used to hold register variables and registers used to
4815 pass parameters. */
4816 #ifdef GC_SAVE_REGISTERS_ON_STACK
4817 GC_SAVE_REGISTERS_ON_STACK (end);
4818 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4820 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4821 setjmp will definitely work, test it
4822 and print a message with the result
4823 of the test. */
4824 if (!setjmp_tested_p)
4826 setjmp_tested_p = 1;
4827 test_setjmp ();
4829 #endif /* GC_SETJMP_WORKS */
4831 sys_setjmp (j.j);
4832 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4833 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4834 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4836 /* This assumes that the stack is a contiguous region in memory. If
4837 that's not the case, something has to be done here to iterate
4838 over the stack segments. */
4839 mark_memory (stack_base, end);
4841 /* Allow for marking a secondary stack, like the register stack on the
4842 ia64. */
4843 #ifdef GC_MARK_SECONDARY_STACK
4844 GC_MARK_SECONDARY_STACK ();
4845 #endif
4847 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4848 check_gcpros ();
4849 #endif
4852 #else /* GC_MARK_STACK == 0 */
4854 #define mark_maybe_object(obj) emacs_abort ()
4856 #endif /* GC_MARK_STACK != 0 */
4859 /* Determine whether it is safe to access memory at address P. */
4860 static int
4861 valid_pointer_p (void *p)
4863 #ifdef WINDOWSNT
4864 return w32_valid_pointer_p (p, 16);
4865 #else
4866 int fd[2];
4868 /* Obviously, we cannot just access it (we would SEGV trying), so we
4869 trick the o/s to tell us whether p is a valid pointer.
4870 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4871 not validate p in that case. */
4873 if (emacs_pipe (fd) == 0)
4875 bool valid = emacs_write (fd[1], p, 16) == 16;
4876 emacs_close (fd[1]);
4877 emacs_close (fd[0]);
4878 return valid;
4881 return -1;
4882 #endif
4885 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4886 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4887 cannot validate OBJ. This function can be quite slow, so its primary
4888 use is the manual debugging. The only exception is print_object, where
4889 we use it to check whether the memory referenced by the pointer of
4890 Lisp_Save_Value object contains valid objects. */
4893 valid_lisp_object_p (Lisp_Object obj)
4895 void *p;
4896 #if GC_MARK_STACK
4897 struct mem_node *m;
4898 #endif
4900 if (INTEGERP (obj))
4901 return 1;
4903 p = (void *) XPNTR (obj);
4904 if (PURE_POINTER_P (p))
4905 return 1;
4907 if (p == &buffer_defaults || p == &buffer_local_symbols)
4908 return 2;
4910 #if !GC_MARK_STACK
4911 return valid_pointer_p (p);
4912 #else
4914 m = mem_find (p);
4916 if (m == MEM_NIL)
4918 int valid = valid_pointer_p (p);
4919 if (valid <= 0)
4920 return valid;
4922 if (SUBRP (obj))
4923 return 1;
4925 return 0;
4928 switch (m->type)
4930 case MEM_TYPE_NON_LISP:
4931 case MEM_TYPE_SPARE:
4932 return 0;
4934 case MEM_TYPE_BUFFER:
4935 return live_buffer_p (m, p) ? 1 : 2;
4937 case MEM_TYPE_CONS:
4938 return live_cons_p (m, p);
4940 case MEM_TYPE_STRING:
4941 return live_string_p (m, p);
4943 case MEM_TYPE_MISC:
4944 return live_misc_p (m, p);
4946 case MEM_TYPE_SYMBOL:
4947 return live_symbol_p (m, p);
4949 case MEM_TYPE_FLOAT:
4950 return live_float_p (m, p);
4952 case MEM_TYPE_VECTORLIKE:
4953 case MEM_TYPE_VECTOR_BLOCK:
4954 return live_vector_p (m, p);
4956 default:
4957 break;
4960 return 0;
4961 #endif
4967 /***********************************************************************
4968 Pure Storage Management
4969 ***********************************************************************/
4971 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4972 pointer to it. TYPE is the Lisp type for which the memory is
4973 allocated. TYPE < 0 means it's not used for a Lisp object. */
4975 static void *
4976 pure_alloc (size_t size, int type)
4978 void *result;
4979 #if USE_LSB_TAG
4980 size_t alignment = GCALIGNMENT;
4981 #else
4982 size_t alignment = alignof (EMACS_INT);
4984 /* Give Lisp_Floats an extra alignment. */
4985 if (type == Lisp_Float)
4986 alignment = alignof (struct Lisp_Float);
4987 #endif
4989 again:
4990 if (type >= 0)
4992 /* Allocate space for a Lisp object from the beginning of the free
4993 space with taking account of alignment. */
4994 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4995 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4997 else
4999 /* Allocate space for a non-Lisp object from the end of the free
5000 space. */
5001 pure_bytes_used_non_lisp += size;
5002 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5004 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5006 if (pure_bytes_used <= pure_size)
5007 return result;
5009 /* Don't allocate a large amount here,
5010 because it might get mmap'd and then its address
5011 might not be usable. */
5012 purebeg = xmalloc (10000);
5013 pure_size = 10000;
5014 pure_bytes_used_before_overflow += pure_bytes_used - size;
5015 pure_bytes_used = 0;
5016 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5017 goto again;
5021 /* Print a warning if PURESIZE is too small. */
5023 void
5024 check_pure_size (void)
5026 if (pure_bytes_used_before_overflow)
5027 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5028 " bytes needed)"),
5029 pure_bytes_used + pure_bytes_used_before_overflow);
5033 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5034 the non-Lisp data pool of the pure storage, and return its start
5035 address. Return NULL if not found. */
5037 static char *
5038 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5040 int i;
5041 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5042 const unsigned char *p;
5043 char *non_lisp_beg;
5045 if (pure_bytes_used_non_lisp <= nbytes)
5046 return NULL;
5048 /* Set up the Boyer-Moore table. */
5049 skip = nbytes + 1;
5050 for (i = 0; i < 256; i++)
5051 bm_skip[i] = skip;
5053 p = (const unsigned char *) data;
5054 while (--skip > 0)
5055 bm_skip[*p++] = skip;
5057 last_char_skip = bm_skip['\0'];
5059 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5060 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5062 /* See the comments in the function `boyer_moore' (search.c) for the
5063 use of `infinity'. */
5064 infinity = pure_bytes_used_non_lisp + 1;
5065 bm_skip['\0'] = infinity;
5067 p = (const unsigned char *) non_lisp_beg + nbytes;
5068 start = 0;
5071 /* Check the last character (== '\0'). */
5074 start += bm_skip[*(p + start)];
5076 while (start <= start_max);
5078 if (start < infinity)
5079 /* Couldn't find the last character. */
5080 return NULL;
5082 /* No less than `infinity' means we could find the last
5083 character at `p[start - infinity]'. */
5084 start -= infinity;
5086 /* Check the remaining characters. */
5087 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5088 /* Found. */
5089 return non_lisp_beg + start;
5091 start += last_char_skip;
5093 while (start <= start_max);
5095 return NULL;
5099 /* Return a string allocated in pure space. DATA is a buffer holding
5100 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5101 means make the result string multibyte.
5103 Must get an error if pure storage is full, since if it cannot hold
5104 a large string it may be able to hold conses that point to that
5105 string; then the string is not protected from gc. */
5107 Lisp_Object
5108 make_pure_string (const char *data,
5109 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5111 Lisp_Object string;
5112 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5113 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5114 if (s->data == NULL)
5116 s->data = pure_alloc (nbytes + 1, -1);
5117 memcpy (s->data, data, nbytes);
5118 s->data[nbytes] = '\0';
5120 s->size = nchars;
5121 s->size_byte = multibyte ? nbytes : -1;
5122 s->intervals = NULL;
5123 XSETSTRING (string, s);
5124 return string;
5127 /* Return a string allocated in pure space. Do not
5128 allocate the string data, just point to DATA. */
5130 Lisp_Object
5131 make_pure_c_string (const char *data, ptrdiff_t nchars)
5133 Lisp_Object string;
5134 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5135 s->size = nchars;
5136 s->size_byte = -1;
5137 s->data = (unsigned char *) data;
5138 s->intervals = NULL;
5139 XSETSTRING (string, s);
5140 return string;
5143 /* Return a cons allocated from pure space. Give it pure copies
5144 of CAR as car and CDR as cdr. */
5146 Lisp_Object
5147 pure_cons (Lisp_Object car, Lisp_Object cdr)
5149 Lisp_Object new;
5150 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5151 XSETCONS (new, p);
5152 XSETCAR (new, Fpurecopy (car));
5153 XSETCDR (new, Fpurecopy (cdr));
5154 return new;
5158 /* Value is a float object with value NUM allocated from pure space. */
5160 static Lisp_Object
5161 make_pure_float (double num)
5163 Lisp_Object new;
5164 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5165 XSETFLOAT (new, p);
5166 XFLOAT_INIT (new, num);
5167 return new;
5171 /* Return a vector with room for LEN Lisp_Objects allocated from
5172 pure space. */
5174 static Lisp_Object
5175 make_pure_vector (ptrdiff_t len)
5177 Lisp_Object new;
5178 size_t size = header_size + len * word_size;
5179 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5180 XSETVECTOR (new, p);
5181 XVECTOR (new)->header.size = len;
5182 return new;
5186 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5187 doc: /* Make a copy of object OBJ in pure storage.
5188 Recursively copies contents of vectors and cons cells.
5189 Does not copy symbols. Copies strings without text properties. */)
5190 (register Lisp_Object obj)
5192 if (NILP (Vpurify_flag))
5193 return obj;
5195 if (PURE_POINTER_P (XPNTR (obj)))
5196 return obj;
5198 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5200 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5201 if (!NILP (tmp))
5202 return tmp;
5205 if (CONSP (obj))
5206 obj = pure_cons (XCAR (obj), XCDR (obj));
5207 else if (FLOATP (obj))
5208 obj = make_pure_float (XFLOAT_DATA (obj));
5209 else if (STRINGP (obj))
5210 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5211 SBYTES (obj),
5212 STRING_MULTIBYTE (obj));
5213 else if (COMPILEDP (obj) || VECTORP (obj))
5215 register struct Lisp_Vector *vec;
5216 register ptrdiff_t i;
5217 ptrdiff_t size;
5219 size = ASIZE (obj);
5220 if (size & PSEUDOVECTOR_FLAG)
5221 size &= PSEUDOVECTOR_SIZE_MASK;
5222 vec = XVECTOR (make_pure_vector (size));
5223 for (i = 0; i < size; i++)
5224 vec->contents[i] = Fpurecopy (AREF (obj, i));
5225 if (COMPILEDP (obj))
5227 XSETPVECTYPE (vec, PVEC_COMPILED);
5228 XSETCOMPILED (obj, vec);
5230 else
5231 XSETVECTOR (obj, vec);
5233 else if (MARKERP (obj))
5234 error ("Attempt to copy a marker to pure storage");
5235 else
5236 /* Not purified, don't hash-cons. */
5237 return obj;
5239 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5240 Fputhash (obj, obj, Vpurify_flag);
5242 return obj;
5247 /***********************************************************************
5248 Protection from GC
5249 ***********************************************************************/
5251 /* Put an entry in staticvec, pointing at the variable with address
5252 VARADDRESS. */
5254 void
5255 staticpro (Lisp_Object *varaddress)
5257 if (staticidx >= NSTATICS)
5258 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5259 staticvec[staticidx++] = varaddress;
5263 /***********************************************************************
5264 Protection from GC
5265 ***********************************************************************/
5267 /* Temporarily prevent garbage collection. */
5269 ptrdiff_t
5270 inhibit_garbage_collection (void)
5272 ptrdiff_t count = SPECPDL_INDEX ();
5274 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5275 return count;
5278 /* Used to avoid possible overflows when
5279 converting from C to Lisp integers. */
5281 static Lisp_Object
5282 bounded_number (EMACS_INT number)
5284 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5287 /* Calculate total bytes of live objects. */
5289 static size_t
5290 total_bytes_of_live_objects (void)
5292 size_t tot = 0;
5293 tot += total_conses * sizeof (struct Lisp_Cons);
5294 tot += total_symbols * sizeof (struct Lisp_Symbol);
5295 tot += total_markers * sizeof (union Lisp_Misc);
5296 tot += total_string_bytes;
5297 tot += total_vector_slots * word_size;
5298 tot += total_floats * sizeof (struct Lisp_Float);
5299 tot += total_intervals * sizeof (struct interval);
5300 tot += total_strings * sizeof (struct Lisp_String);
5301 return tot;
5304 #ifdef HAVE_WINDOW_SYSTEM
5306 /* This code has a few issues on MS-Windows, see Bug#15876 and Bug#16140. */
5308 #if !defined (HAVE_NTGUI)
5310 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5311 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5313 static Lisp_Object
5314 compact_font_cache_entry (Lisp_Object entry)
5316 Lisp_Object tail, *prev = &entry;
5318 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5320 bool drop = 0;
5321 Lisp_Object obj = XCAR (tail);
5323 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5324 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5325 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5326 && VECTORP (XCDR (obj)))
5328 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5330 /* If font-spec is not marked, most likely all font-entities
5331 are not marked too. But we must be sure that nothing is
5332 marked within OBJ before we really drop it. */
5333 for (i = 0; i < size; i++)
5334 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5335 break;
5337 if (i == size)
5338 drop = 1;
5340 if (drop)
5341 *prev = XCDR (tail);
5342 else
5343 prev = xcdr_addr (tail);
5345 return entry;
5348 #endif /* not HAVE_NTGUI */
5350 /* Compact font caches on all terminals and mark
5351 everything which is still here after compaction. */
5353 static void
5354 compact_font_caches (void)
5356 struct terminal *t;
5358 for (t = terminal_list; t; t = t->next_terminal)
5360 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5361 #if !defined (HAVE_NTGUI)
5362 if (CONSP (cache))
5364 Lisp_Object entry;
5366 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5367 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5369 #endif /* not HAVE_NTGUI */
5370 mark_object (cache);
5374 #else /* not HAVE_WINDOW_SYSTEM */
5376 #define compact_font_caches() (void)(0)
5378 #endif /* HAVE_WINDOW_SYSTEM */
5380 /* Remove (MARKER . DATA) entries with unmarked MARKER
5381 from buffer undo LIST and return changed list. */
5383 static Lisp_Object
5384 compact_undo_list (Lisp_Object list)
5386 Lisp_Object tail, *prev = &list;
5388 for (tail = list; CONSP (tail); tail = XCDR (tail))
5390 if (CONSP (XCAR (tail))
5391 && MARKERP (XCAR (XCAR (tail)))
5392 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5393 *prev = XCDR (tail);
5394 else
5395 prev = xcdr_addr (tail);
5397 return list;
5400 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5401 doc: /* Reclaim storage for Lisp objects no longer needed.
5402 Garbage collection happens automatically if you cons more than
5403 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5404 `garbage-collect' normally returns a list with info on amount of space in use,
5405 where each entry has the form (NAME SIZE USED FREE), where:
5406 - NAME is a symbol describing the kind of objects this entry represents,
5407 - SIZE is the number of bytes used by each one,
5408 - USED is the number of those objects that were found live in the heap,
5409 - FREE is the number of those objects that are not live but that Emacs
5410 keeps around for future allocations (maybe because it does not know how
5411 to return them to the OS).
5412 However, if there was overflow in pure space, `garbage-collect'
5413 returns nil, because real GC can't be done.
5414 See Info node `(elisp)Garbage Collection'. */)
5415 (void)
5417 struct buffer *nextb;
5418 char stack_top_variable;
5419 ptrdiff_t i;
5420 bool message_p;
5421 ptrdiff_t count = SPECPDL_INDEX ();
5422 struct timespec start;
5423 Lisp_Object retval = Qnil;
5424 size_t tot_before = 0;
5426 if (abort_on_gc)
5427 emacs_abort ();
5429 /* Can't GC if pure storage overflowed because we can't determine
5430 if something is a pure object or not. */
5431 if (pure_bytes_used_before_overflow)
5432 return Qnil;
5434 /* Record this function, so it appears on the profiler's backtraces. */
5435 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5437 check_cons_list ();
5439 /* Don't keep undo information around forever.
5440 Do this early on, so it is no problem if the user quits. */
5441 FOR_EACH_BUFFER (nextb)
5442 compact_buffer (nextb);
5444 if (profiler_memory_running)
5445 tot_before = total_bytes_of_live_objects ();
5447 start = current_timespec ();
5449 /* In case user calls debug_print during GC,
5450 don't let that cause a recursive GC. */
5451 consing_since_gc = 0;
5453 /* Save what's currently displayed in the echo area. */
5454 message_p = push_message ();
5455 record_unwind_protect_void (pop_message_unwind);
5457 /* Save a copy of the contents of the stack, for debugging. */
5458 #if MAX_SAVE_STACK > 0
5459 if (NILP (Vpurify_flag))
5461 char *stack;
5462 ptrdiff_t stack_size;
5463 if (&stack_top_variable < stack_bottom)
5465 stack = &stack_top_variable;
5466 stack_size = stack_bottom - &stack_top_variable;
5468 else
5470 stack = stack_bottom;
5471 stack_size = &stack_top_variable - stack_bottom;
5473 if (stack_size <= MAX_SAVE_STACK)
5475 if (stack_copy_size < stack_size)
5477 stack_copy = xrealloc (stack_copy, stack_size);
5478 stack_copy_size = stack_size;
5480 memcpy (stack_copy, stack, stack_size);
5483 #endif /* MAX_SAVE_STACK > 0 */
5485 if (garbage_collection_messages)
5486 message1_nolog ("Garbage collecting...");
5488 block_input ();
5490 shrink_regexp_cache ();
5492 gc_in_progress = 1;
5494 /* Mark all the special slots that serve as the roots of accessibility. */
5496 mark_buffer (&buffer_defaults);
5497 mark_buffer (&buffer_local_symbols);
5499 for (i = 0; i < staticidx; i++)
5500 mark_object (*staticvec[i]);
5502 mark_specpdl ();
5503 mark_terminals ();
5504 mark_kboards ();
5506 #ifdef USE_GTK
5507 xg_mark_data ();
5508 #endif
5510 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5511 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5512 mark_stack ();
5513 #else
5515 register struct gcpro *tail;
5516 for (tail = gcprolist; tail; tail = tail->next)
5517 for (i = 0; i < tail->nvars; i++)
5518 mark_object (tail->var[i]);
5520 mark_byte_stack ();
5521 #endif
5523 struct handler *handler;
5524 for (handler = handlerlist; handler; handler = handler->next)
5526 mark_object (handler->tag_or_ch);
5527 mark_object (handler->val);
5530 #ifdef HAVE_WINDOW_SYSTEM
5531 mark_fringe_data ();
5532 #endif
5534 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5535 mark_stack ();
5536 #endif
5538 /* Everything is now marked, except for the data in font caches
5539 and undo lists. They're compacted by removing an items which
5540 aren't reachable otherwise. */
5542 compact_font_caches ();
5544 FOR_EACH_BUFFER (nextb)
5546 if (!EQ (BVAR (nextb, undo_list), Qt))
5547 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5548 /* Now that we have stripped the elements that need not be
5549 in the undo_list any more, we can finally mark the list. */
5550 mark_object (BVAR (nextb, undo_list));
5553 gc_sweep ();
5555 /* Clear the mark bits that we set in certain root slots. */
5557 unmark_byte_stack ();
5558 VECTOR_UNMARK (&buffer_defaults);
5559 VECTOR_UNMARK (&buffer_local_symbols);
5561 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5562 dump_zombies ();
5563 #endif
5565 check_cons_list ();
5567 gc_in_progress = 0;
5569 unblock_input ();
5571 consing_since_gc = 0;
5572 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5573 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5575 gc_relative_threshold = 0;
5576 if (FLOATP (Vgc_cons_percentage))
5577 { /* Set gc_cons_combined_threshold. */
5578 double tot = total_bytes_of_live_objects ();
5580 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5581 if (0 < tot)
5583 if (tot < TYPE_MAXIMUM (EMACS_INT))
5584 gc_relative_threshold = tot;
5585 else
5586 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5590 if (garbage_collection_messages)
5592 if (message_p || minibuf_level > 0)
5593 restore_message ();
5594 else
5595 message1_nolog ("Garbage collecting...done");
5598 unbind_to (count, Qnil);
5600 Lisp_Object total[11];
5601 int total_size = 10;
5603 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5604 bounded_number (total_conses),
5605 bounded_number (total_free_conses));
5607 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5608 bounded_number (total_symbols),
5609 bounded_number (total_free_symbols));
5611 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5612 bounded_number (total_markers),
5613 bounded_number (total_free_markers));
5615 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5616 bounded_number (total_strings),
5617 bounded_number (total_free_strings));
5619 total[4] = list3 (Qstring_bytes, make_number (1),
5620 bounded_number (total_string_bytes));
5622 total[5] = list3 (Qvectors,
5623 make_number (header_size + sizeof (Lisp_Object)),
5624 bounded_number (total_vectors));
5626 total[6] = list4 (Qvector_slots, make_number (word_size),
5627 bounded_number (total_vector_slots),
5628 bounded_number (total_free_vector_slots));
5630 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5631 bounded_number (total_floats),
5632 bounded_number (total_free_floats));
5634 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5635 bounded_number (total_intervals),
5636 bounded_number (total_free_intervals));
5638 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5639 bounded_number (total_buffers));
5641 #ifdef DOUG_LEA_MALLOC
5642 total_size++;
5643 total[10] = list4 (Qheap, make_number (1024),
5644 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5645 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5646 #endif
5647 retval = Flist (total_size, total);
5650 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5652 /* Compute average percentage of zombies. */
5653 double nlive
5654 = (total_conses + total_symbols + total_markers + total_strings
5655 + total_vectors + total_floats + total_intervals + total_buffers);
5657 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5658 max_live = max (nlive, max_live);
5659 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5660 max_zombies = max (nzombies, max_zombies);
5661 ++ngcs;
5663 #endif
5665 if (!NILP (Vpost_gc_hook))
5667 ptrdiff_t gc_count = inhibit_garbage_collection ();
5668 safe_run_hooks (Qpost_gc_hook);
5669 unbind_to (gc_count, Qnil);
5672 /* Accumulate statistics. */
5673 if (FLOATP (Vgc_elapsed))
5675 struct timespec since_start = timespec_sub (current_timespec (), start);
5676 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5677 + timespectod (since_start));
5680 gcs_done++;
5682 /* Collect profiling data. */
5683 if (profiler_memory_running)
5685 size_t swept = 0;
5686 size_t tot_after = total_bytes_of_live_objects ();
5687 if (tot_before > tot_after)
5688 swept = tot_before - tot_after;
5689 malloc_probe (swept);
5692 return retval;
5696 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5697 only interesting objects referenced from glyphs are strings. */
5699 static void
5700 mark_glyph_matrix (struct glyph_matrix *matrix)
5702 struct glyph_row *row = matrix->rows;
5703 struct glyph_row *end = row + matrix->nrows;
5705 for (; row < end; ++row)
5706 if (row->enabled_p)
5708 int area;
5709 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5711 struct glyph *glyph = row->glyphs[area];
5712 struct glyph *end_glyph = glyph + row->used[area];
5714 for (; glyph < end_glyph; ++glyph)
5715 if (STRINGP (glyph->object)
5716 && !STRING_MARKED_P (XSTRING (glyph->object)))
5717 mark_object (glyph->object);
5722 /* Mark reference to a Lisp_Object.
5723 If the object referred to has not been seen yet, recursively mark
5724 all the references contained in it. */
5726 #define LAST_MARKED_SIZE 500
5727 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5728 static int last_marked_index;
5730 /* For debugging--call abort when we cdr down this many
5731 links of a list, in mark_object. In debugging,
5732 the call to abort will hit a breakpoint.
5733 Normally this is zero and the check never goes off. */
5734 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5736 static void
5737 mark_vectorlike (struct Lisp_Vector *ptr)
5739 ptrdiff_t size = ptr->header.size;
5740 ptrdiff_t i;
5742 eassert (!VECTOR_MARKED_P (ptr));
5743 VECTOR_MARK (ptr); /* Else mark it. */
5744 if (size & PSEUDOVECTOR_FLAG)
5745 size &= PSEUDOVECTOR_SIZE_MASK;
5747 /* Note that this size is not the memory-footprint size, but only
5748 the number of Lisp_Object fields that we should trace.
5749 The distinction is used e.g. by Lisp_Process which places extra
5750 non-Lisp_Object fields at the end of the structure... */
5751 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5752 mark_object (ptr->contents[i]);
5755 /* Like mark_vectorlike but optimized for char-tables (and
5756 sub-char-tables) assuming that the contents are mostly integers or
5757 symbols. */
5759 static void
5760 mark_char_table (struct Lisp_Vector *ptr)
5762 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5763 int i;
5765 eassert (!VECTOR_MARKED_P (ptr));
5766 VECTOR_MARK (ptr);
5767 for (i = 0; i < size; i++)
5769 Lisp_Object val = ptr->contents[i];
5771 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5772 continue;
5773 if (SUB_CHAR_TABLE_P (val))
5775 if (! VECTOR_MARKED_P (XVECTOR (val)))
5776 mark_char_table (XVECTOR (val));
5778 else
5779 mark_object (val);
5783 /* Mark the chain of overlays starting at PTR. */
5785 static void
5786 mark_overlay (struct Lisp_Overlay *ptr)
5788 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5790 ptr->gcmarkbit = 1;
5791 mark_object (ptr->start);
5792 mark_object (ptr->end);
5793 mark_object (ptr->plist);
5797 /* Mark Lisp_Objects and special pointers in BUFFER. */
5799 static void
5800 mark_buffer (struct buffer *buffer)
5802 /* This is handled much like other pseudovectors... */
5803 mark_vectorlike ((struct Lisp_Vector *) buffer);
5805 /* ...but there are some buffer-specific things. */
5807 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5809 /* For now, we just don't mark the undo_list. It's done later in
5810 a special way just before the sweep phase, and after stripping
5811 some of its elements that are not needed any more. */
5813 mark_overlay (buffer->overlays_before);
5814 mark_overlay (buffer->overlays_after);
5816 /* If this is an indirect buffer, mark its base buffer. */
5817 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5818 mark_buffer (buffer->base_buffer);
5821 /* Mark Lisp faces in the face cache C. */
5823 static void
5824 mark_face_cache (struct face_cache *c)
5826 if (c)
5828 int i, j;
5829 for (i = 0; i < c->used; ++i)
5831 struct face *face = FACE_FROM_ID (c->f, i);
5833 if (face)
5835 if (face->font && !VECTOR_MARKED_P (face->font))
5836 mark_vectorlike ((struct Lisp_Vector *) face->font);
5838 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5839 mark_object (face->lface[j]);
5845 /* Remove killed buffers or items whose car is a killed buffer from
5846 LIST, and mark other items. Return changed LIST, which is marked. */
5848 static Lisp_Object
5849 mark_discard_killed_buffers (Lisp_Object list)
5851 Lisp_Object tail, *prev = &list;
5853 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5854 tail = XCDR (tail))
5856 Lisp_Object tem = XCAR (tail);
5857 if (CONSP (tem))
5858 tem = XCAR (tem);
5859 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5860 *prev = XCDR (tail);
5861 else
5863 CONS_MARK (XCONS (tail));
5864 mark_object (XCAR (tail));
5865 prev = xcdr_addr (tail);
5868 mark_object (tail);
5869 return list;
5872 /* Determine type of generic Lisp_Object and mark it accordingly. */
5874 void
5875 mark_object (Lisp_Object arg)
5877 register Lisp_Object obj = arg;
5878 #ifdef GC_CHECK_MARKED_OBJECTS
5879 void *po;
5880 struct mem_node *m;
5881 #endif
5882 ptrdiff_t cdr_count = 0;
5884 loop:
5886 if (PURE_POINTER_P (XPNTR (obj)))
5887 return;
5889 last_marked[last_marked_index++] = obj;
5890 if (last_marked_index == LAST_MARKED_SIZE)
5891 last_marked_index = 0;
5893 /* Perform some sanity checks on the objects marked here. Abort if
5894 we encounter an object we know is bogus. This increases GC time
5895 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5896 #ifdef GC_CHECK_MARKED_OBJECTS
5898 po = (void *) XPNTR (obj);
5900 /* Check that the object pointed to by PO is known to be a Lisp
5901 structure allocated from the heap. */
5902 #define CHECK_ALLOCATED() \
5903 do { \
5904 m = mem_find (po); \
5905 if (m == MEM_NIL) \
5906 emacs_abort (); \
5907 } while (0)
5909 /* Check that the object pointed to by PO is live, using predicate
5910 function LIVEP. */
5911 #define CHECK_LIVE(LIVEP) \
5912 do { \
5913 if (!LIVEP (m, po)) \
5914 emacs_abort (); \
5915 } while (0)
5917 /* Check both of the above conditions. */
5918 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5919 do { \
5920 CHECK_ALLOCATED (); \
5921 CHECK_LIVE (LIVEP); \
5922 } while (0) \
5924 #else /* not GC_CHECK_MARKED_OBJECTS */
5926 #define CHECK_LIVE(LIVEP) (void) 0
5927 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5929 #endif /* not GC_CHECK_MARKED_OBJECTS */
5931 switch (XTYPE (obj))
5933 case Lisp_String:
5935 register struct Lisp_String *ptr = XSTRING (obj);
5936 if (STRING_MARKED_P (ptr))
5937 break;
5938 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5939 MARK_STRING (ptr);
5940 MARK_INTERVAL_TREE (ptr->intervals);
5941 #ifdef GC_CHECK_STRING_BYTES
5942 /* Check that the string size recorded in the string is the
5943 same as the one recorded in the sdata structure. */
5944 string_bytes (ptr);
5945 #endif /* GC_CHECK_STRING_BYTES */
5947 break;
5949 case Lisp_Vectorlike:
5951 register struct Lisp_Vector *ptr = XVECTOR (obj);
5952 register ptrdiff_t pvectype;
5954 if (VECTOR_MARKED_P (ptr))
5955 break;
5957 #ifdef GC_CHECK_MARKED_OBJECTS
5958 m = mem_find (po);
5959 if (m == MEM_NIL && !SUBRP (obj))
5960 emacs_abort ();
5961 #endif /* GC_CHECK_MARKED_OBJECTS */
5963 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5964 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5965 >> PSEUDOVECTOR_AREA_BITS);
5966 else
5967 pvectype = PVEC_NORMAL_VECTOR;
5969 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5970 CHECK_LIVE (live_vector_p);
5972 switch (pvectype)
5974 case PVEC_BUFFER:
5975 #ifdef GC_CHECK_MARKED_OBJECTS
5977 struct buffer *b;
5978 FOR_EACH_BUFFER (b)
5979 if (b == po)
5980 break;
5981 if (b == NULL)
5982 emacs_abort ();
5984 #endif /* GC_CHECK_MARKED_OBJECTS */
5985 mark_buffer ((struct buffer *) ptr);
5986 break;
5988 case PVEC_COMPILED:
5989 { /* We could treat this just like a vector, but it is better
5990 to save the COMPILED_CONSTANTS element for last and avoid
5991 recursion there. */
5992 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5993 int i;
5995 VECTOR_MARK (ptr);
5996 for (i = 0; i < size; i++)
5997 if (i != COMPILED_CONSTANTS)
5998 mark_object (ptr->contents[i]);
5999 if (size > COMPILED_CONSTANTS)
6001 obj = ptr->contents[COMPILED_CONSTANTS];
6002 goto loop;
6005 break;
6007 case PVEC_FRAME:
6009 struct frame *f = (struct frame *) ptr;
6011 mark_vectorlike (ptr);
6012 mark_face_cache (f->face_cache);
6013 #ifdef HAVE_WINDOW_SYSTEM
6014 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6016 struct font *font = FRAME_FONT (f);
6018 if (font && !VECTOR_MARKED_P (font))
6019 mark_vectorlike ((struct Lisp_Vector *) font);
6021 #endif
6023 break;
6025 case PVEC_WINDOW:
6027 struct window *w = (struct window *) ptr;
6029 mark_vectorlike (ptr);
6031 /* Mark glyph matrices, if any. Marking window
6032 matrices is sufficient because frame matrices
6033 use the same glyph memory. */
6034 if (w->current_matrix)
6036 mark_glyph_matrix (w->current_matrix);
6037 mark_glyph_matrix (w->desired_matrix);
6040 /* Filter out killed buffers from both buffer lists
6041 in attempt to help GC to reclaim killed buffers faster.
6042 We can do it elsewhere for live windows, but this is the
6043 best place to do it for dead windows. */
6044 wset_prev_buffers
6045 (w, mark_discard_killed_buffers (w->prev_buffers));
6046 wset_next_buffers
6047 (w, mark_discard_killed_buffers (w->next_buffers));
6049 break;
6051 case PVEC_HASH_TABLE:
6053 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6055 mark_vectorlike (ptr);
6056 mark_object (h->test.name);
6057 mark_object (h->test.user_hash_function);
6058 mark_object (h->test.user_cmp_function);
6059 /* If hash table is not weak, mark all keys and values.
6060 For weak tables, mark only the vector. */
6061 if (NILP (h->weak))
6062 mark_object (h->key_and_value);
6063 else
6064 VECTOR_MARK (XVECTOR (h->key_and_value));
6066 break;
6068 case PVEC_CHAR_TABLE:
6069 mark_char_table (ptr);
6070 break;
6072 case PVEC_BOOL_VECTOR:
6073 /* No Lisp_Objects to mark in a bool vector. */
6074 VECTOR_MARK (ptr);
6075 break;
6077 case PVEC_SUBR:
6078 break;
6080 case PVEC_FREE:
6081 emacs_abort ();
6083 default:
6084 mark_vectorlike (ptr);
6087 break;
6089 case Lisp_Symbol:
6091 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6092 struct Lisp_Symbol *ptrx;
6094 if (ptr->gcmarkbit)
6095 break;
6096 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6097 ptr->gcmarkbit = 1;
6098 mark_object (ptr->function);
6099 mark_object (ptr->plist);
6100 switch (ptr->redirect)
6102 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6103 case SYMBOL_VARALIAS:
6105 Lisp_Object tem;
6106 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6107 mark_object (tem);
6108 break;
6110 case SYMBOL_LOCALIZED:
6112 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6113 Lisp_Object where = blv->where;
6114 /* If the value is set up for a killed buffer or deleted
6115 frame, restore it's global binding. If the value is
6116 forwarded to a C variable, either it's not a Lisp_Object
6117 var, or it's staticpro'd already. */
6118 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6119 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6120 swap_in_global_binding (ptr);
6121 mark_object (blv->where);
6122 mark_object (blv->valcell);
6123 mark_object (blv->defcell);
6124 break;
6126 case SYMBOL_FORWARDED:
6127 /* If the value is forwarded to a buffer or keyboard field,
6128 these are marked when we see the corresponding object.
6129 And if it's forwarded to a C variable, either it's not
6130 a Lisp_Object var, or it's staticpro'd already. */
6131 break;
6132 default: emacs_abort ();
6134 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6135 MARK_STRING (XSTRING (ptr->name));
6136 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6138 ptr = ptr->next;
6139 if (ptr)
6141 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6142 XSETSYMBOL (obj, ptrx);
6143 goto loop;
6146 break;
6148 case Lisp_Misc:
6149 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6151 if (XMISCANY (obj)->gcmarkbit)
6152 break;
6154 switch (XMISCTYPE (obj))
6156 case Lisp_Misc_Marker:
6157 /* DO NOT mark thru the marker's chain.
6158 The buffer's markers chain does not preserve markers from gc;
6159 instead, markers are removed from the chain when freed by gc. */
6160 XMISCANY (obj)->gcmarkbit = 1;
6161 break;
6163 case Lisp_Misc_Save_Value:
6164 XMISCANY (obj)->gcmarkbit = 1;
6166 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6167 /* If `save_type' is zero, `data[0].pointer' is the address
6168 of a memory area containing `data[1].integer' potential
6169 Lisp_Objects. */
6170 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6172 Lisp_Object *p = ptr->data[0].pointer;
6173 ptrdiff_t nelt;
6174 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6175 mark_maybe_object (*p);
6177 else
6179 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6180 int i;
6181 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6182 if (save_type (ptr, i) == SAVE_OBJECT)
6183 mark_object (ptr->data[i].object);
6186 break;
6188 case Lisp_Misc_Overlay:
6189 mark_overlay (XOVERLAY (obj));
6190 break;
6192 default:
6193 emacs_abort ();
6195 break;
6197 case Lisp_Cons:
6199 register struct Lisp_Cons *ptr = XCONS (obj);
6200 if (CONS_MARKED_P (ptr))
6201 break;
6202 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6203 CONS_MARK (ptr);
6204 /* If the cdr is nil, avoid recursion for the car. */
6205 if (EQ (ptr->u.cdr, Qnil))
6207 obj = ptr->car;
6208 cdr_count = 0;
6209 goto loop;
6211 mark_object (ptr->car);
6212 obj = ptr->u.cdr;
6213 cdr_count++;
6214 if (cdr_count == mark_object_loop_halt)
6215 emacs_abort ();
6216 goto loop;
6219 case Lisp_Float:
6220 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6221 FLOAT_MARK (XFLOAT (obj));
6222 break;
6224 case_Lisp_Int:
6225 break;
6227 default:
6228 emacs_abort ();
6231 #undef CHECK_LIVE
6232 #undef CHECK_ALLOCATED
6233 #undef CHECK_ALLOCATED_AND_LIVE
6235 /* Mark the Lisp pointers in the terminal objects.
6236 Called by Fgarbage_collect. */
6238 static void
6239 mark_terminals (void)
6241 struct terminal *t;
6242 for (t = terminal_list; t; t = t->next_terminal)
6244 eassert (t->name != NULL);
6245 #ifdef HAVE_WINDOW_SYSTEM
6246 /* If a terminal object is reachable from a stacpro'ed object,
6247 it might have been marked already. Make sure the image cache
6248 gets marked. */
6249 mark_image_cache (t->image_cache);
6250 #endif /* HAVE_WINDOW_SYSTEM */
6251 if (!VECTOR_MARKED_P (t))
6252 mark_vectorlike ((struct Lisp_Vector *)t);
6258 /* Value is non-zero if OBJ will survive the current GC because it's
6259 either marked or does not need to be marked to survive. */
6261 bool
6262 survives_gc_p (Lisp_Object obj)
6264 bool survives_p;
6266 switch (XTYPE (obj))
6268 case_Lisp_Int:
6269 survives_p = 1;
6270 break;
6272 case Lisp_Symbol:
6273 survives_p = XSYMBOL (obj)->gcmarkbit;
6274 break;
6276 case Lisp_Misc:
6277 survives_p = XMISCANY (obj)->gcmarkbit;
6278 break;
6280 case Lisp_String:
6281 survives_p = STRING_MARKED_P (XSTRING (obj));
6282 break;
6284 case Lisp_Vectorlike:
6285 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6286 break;
6288 case Lisp_Cons:
6289 survives_p = CONS_MARKED_P (XCONS (obj));
6290 break;
6292 case Lisp_Float:
6293 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6294 break;
6296 default:
6297 emacs_abort ();
6300 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6305 /* Sweep: find all structures not marked, and free them. */
6307 static void
6308 gc_sweep (void)
6310 /* Remove or mark entries in weak hash tables.
6311 This must be done before any object is unmarked. */
6312 sweep_weak_hash_tables ();
6314 sweep_strings ();
6315 check_string_bytes (!noninteractive);
6317 /* Put all unmarked conses on free list. */
6319 register struct cons_block *cblk;
6320 struct cons_block **cprev = &cons_block;
6321 register int lim = cons_block_index;
6322 EMACS_INT num_free = 0, num_used = 0;
6324 cons_free_list = 0;
6326 for (cblk = cons_block; cblk; cblk = *cprev)
6328 register int i = 0;
6329 int this_free = 0;
6330 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6332 /* Scan the mark bits an int at a time. */
6333 for (i = 0; i < ilim; i++)
6335 if (cblk->gcmarkbits[i] == -1)
6337 /* Fast path - all cons cells for this int are marked. */
6338 cblk->gcmarkbits[i] = 0;
6339 num_used += BITS_PER_INT;
6341 else
6343 /* Some cons cells for this int are not marked.
6344 Find which ones, and free them. */
6345 int start, pos, stop;
6347 start = i * BITS_PER_INT;
6348 stop = lim - start;
6349 if (stop > BITS_PER_INT)
6350 stop = BITS_PER_INT;
6351 stop += start;
6353 for (pos = start; pos < stop; pos++)
6355 if (!CONS_MARKED_P (&cblk->conses[pos]))
6357 this_free++;
6358 cblk->conses[pos].u.chain = cons_free_list;
6359 cons_free_list = &cblk->conses[pos];
6360 #if GC_MARK_STACK
6361 cons_free_list->car = Vdead;
6362 #endif
6364 else
6366 num_used++;
6367 CONS_UNMARK (&cblk->conses[pos]);
6373 lim = CONS_BLOCK_SIZE;
6374 /* If this block contains only free conses and we have already
6375 seen more than two blocks worth of free conses then deallocate
6376 this block. */
6377 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6379 *cprev = cblk->next;
6380 /* Unhook from the free list. */
6381 cons_free_list = cblk->conses[0].u.chain;
6382 lisp_align_free (cblk);
6384 else
6386 num_free += this_free;
6387 cprev = &cblk->next;
6390 total_conses = num_used;
6391 total_free_conses = num_free;
6394 /* Put all unmarked floats on free list. */
6396 register struct float_block *fblk;
6397 struct float_block **fprev = &float_block;
6398 register int lim = float_block_index;
6399 EMACS_INT num_free = 0, num_used = 0;
6401 float_free_list = 0;
6403 for (fblk = float_block; fblk; fblk = *fprev)
6405 register int i;
6406 int this_free = 0;
6407 for (i = 0; i < lim; i++)
6408 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6410 this_free++;
6411 fblk->floats[i].u.chain = float_free_list;
6412 float_free_list = &fblk->floats[i];
6414 else
6416 num_used++;
6417 FLOAT_UNMARK (&fblk->floats[i]);
6419 lim = FLOAT_BLOCK_SIZE;
6420 /* If this block contains only free floats and we have already
6421 seen more than two blocks worth of free floats then deallocate
6422 this block. */
6423 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6425 *fprev = fblk->next;
6426 /* Unhook from the free list. */
6427 float_free_list = fblk->floats[0].u.chain;
6428 lisp_align_free (fblk);
6430 else
6432 num_free += this_free;
6433 fprev = &fblk->next;
6436 total_floats = num_used;
6437 total_free_floats = num_free;
6440 /* Put all unmarked intervals on free list. */
6442 register struct interval_block *iblk;
6443 struct interval_block **iprev = &interval_block;
6444 register int lim = interval_block_index;
6445 EMACS_INT num_free = 0, num_used = 0;
6447 interval_free_list = 0;
6449 for (iblk = interval_block; iblk; iblk = *iprev)
6451 register int i;
6452 int this_free = 0;
6454 for (i = 0; i < lim; i++)
6456 if (!iblk->intervals[i].gcmarkbit)
6458 set_interval_parent (&iblk->intervals[i], interval_free_list);
6459 interval_free_list = &iblk->intervals[i];
6460 this_free++;
6462 else
6464 num_used++;
6465 iblk->intervals[i].gcmarkbit = 0;
6468 lim = INTERVAL_BLOCK_SIZE;
6469 /* If this block contains only free intervals and we have already
6470 seen more than two blocks worth of free intervals then
6471 deallocate this block. */
6472 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6474 *iprev = iblk->next;
6475 /* Unhook from the free list. */
6476 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6477 lisp_free (iblk);
6479 else
6481 num_free += this_free;
6482 iprev = &iblk->next;
6485 total_intervals = num_used;
6486 total_free_intervals = num_free;
6489 /* Put all unmarked symbols on free list. */
6491 register struct symbol_block *sblk;
6492 struct symbol_block **sprev = &symbol_block;
6493 register int lim = symbol_block_index;
6494 EMACS_INT num_free = 0, num_used = 0;
6496 symbol_free_list = NULL;
6498 for (sblk = symbol_block; sblk; sblk = *sprev)
6500 int this_free = 0;
6501 union aligned_Lisp_Symbol *sym = sblk->symbols;
6502 union aligned_Lisp_Symbol *end = sym + lim;
6504 for (; sym < end; ++sym)
6506 /* Check if the symbol was created during loadup. In such a case
6507 it might be pointed to by pure bytecode which we don't trace,
6508 so we conservatively assume that it is live. */
6509 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6511 if (!sym->s.gcmarkbit && !pure_p)
6513 if (sym->s.redirect == SYMBOL_LOCALIZED)
6514 xfree (SYMBOL_BLV (&sym->s));
6515 sym->s.next = symbol_free_list;
6516 symbol_free_list = &sym->s;
6517 #if GC_MARK_STACK
6518 symbol_free_list->function = Vdead;
6519 #endif
6520 ++this_free;
6522 else
6524 ++num_used;
6525 if (!pure_p)
6526 eassert (!STRING_MARKED_P (XSTRING (sym->s.name)));
6527 sym->s.gcmarkbit = 0;
6531 lim = SYMBOL_BLOCK_SIZE;
6532 /* If this block contains only free symbols and we have already
6533 seen more than two blocks worth of free symbols then deallocate
6534 this block. */
6535 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6537 *sprev = sblk->next;
6538 /* Unhook from the free list. */
6539 symbol_free_list = sblk->symbols[0].s.next;
6540 lisp_free (sblk);
6542 else
6544 num_free += this_free;
6545 sprev = &sblk->next;
6548 total_symbols = num_used;
6549 total_free_symbols = num_free;
6552 /* Put all unmarked misc's on free list.
6553 For a marker, first unchain it from the buffer it points into. */
6555 register struct marker_block *mblk;
6556 struct marker_block **mprev = &marker_block;
6557 register int lim = marker_block_index;
6558 EMACS_INT num_free = 0, num_used = 0;
6560 marker_free_list = 0;
6562 for (mblk = marker_block; mblk; mblk = *mprev)
6564 register int i;
6565 int this_free = 0;
6567 for (i = 0; i < lim; i++)
6569 if (!mblk->markers[i].m.u_any.gcmarkbit)
6571 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6572 unchain_marker (&mblk->markers[i].m.u_marker);
6573 /* Set the type of the freed object to Lisp_Misc_Free.
6574 We could leave the type alone, since nobody checks it,
6575 but this might catch bugs faster. */
6576 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6577 mblk->markers[i].m.u_free.chain = marker_free_list;
6578 marker_free_list = &mblk->markers[i].m;
6579 this_free++;
6581 else
6583 num_used++;
6584 mblk->markers[i].m.u_any.gcmarkbit = 0;
6587 lim = MARKER_BLOCK_SIZE;
6588 /* If this block contains only free markers and we have already
6589 seen more than two blocks worth of free markers then deallocate
6590 this block. */
6591 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6593 *mprev = mblk->next;
6594 /* Unhook from the free list. */
6595 marker_free_list = mblk->markers[0].m.u_free.chain;
6596 lisp_free (mblk);
6598 else
6600 num_free += this_free;
6601 mprev = &mblk->next;
6605 total_markers = num_used;
6606 total_free_markers = num_free;
6609 /* Free all unmarked buffers */
6611 register struct buffer *buffer, **bprev = &all_buffers;
6613 total_buffers = 0;
6614 for (buffer = all_buffers; buffer; buffer = *bprev)
6615 if (!VECTOR_MARKED_P (buffer))
6617 *bprev = buffer->next;
6618 lisp_free (buffer);
6620 else
6622 VECTOR_UNMARK (buffer);
6623 /* Do not use buffer_(set|get)_intervals here. */
6624 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6625 total_buffers++;
6626 bprev = &buffer->next;
6630 sweep_vectors ();
6631 check_string_bytes (!noninteractive);
6637 /* Debugging aids. */
6639 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6640 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6641 This may be helpful in debugging Emacs's memory usage.
6642 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6643 (void)
6645 Lisp_Object end;
6647 #ifdef HAVE_NS
6648 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
6649 XSETINT (end, 0);
6650 #else
6651 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6652 #endif
6654 return end;
6657 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6658 doc: /* Return a list of counters that measure how much consing there has been.
6659 Each of these counters increments for a certain kind of object.
6660 The counters wrap around from the largest positive integer to zero.
6661 Garbage collection does not decrease them.
6662 The elements of the value are as follows:
6663 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6664 All are in units of 1 = one object consed
6665 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6666 objects consed.
6667 MISCS include overlays, markers, and some internal types.
6668 Frames, windows, buffers, and subprocesses count as vectors
6669 (but the contents of a buffer's text do not count here). */)
6670 (void)
6672 return listn (CONSTYPE_HEAP, 8,
6673 bounded_number (cons_cells_consed),
6674 bounded_number (floats_consed),
6675 bounded_number (vector_cells_consed),
6676 bounded_number (symbols_consed),
6677 bounded_number (string_chars_consed),
6678 bounded_number (misc_objects_consed),
6679 bounded_number (intervals_consed),
6680 bounded_number (strings_consed));
6683 /* Find at most FIND_MAX symbols which have OBJ as their value or
6684 function. This is used in gdbinit's `xwhichsymbols' command. */
6686 Lisp_Object
6687 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6689 struct symbol_block *sblk;
6690 ptrdiff_t gc_count = inhibit_garbage_collection ();
6691 Lisp_Object found = Qnil;
6693 if (! DEADP (obj))
6695 for (sblk = symbol_block; sblk; sblk = sblk->next)
6697 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6698 int bn;
6700 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6702 struct Lisp_Symbol *sym = &aligned_sym->s;
6703 Lisp_Object val;
6704 Lisp_Object tem;
6706 if (sblk == symbol_block && bn >= symbol_block_index)
6707 break;
6709 XSETSYMBOL (tem, sym);
6710 val = find_symbol_value (tem);
6711 if (EQ (val, obj)
6712 || EQ (sym->function, obj)
6713 || (!NILP (sym->function)
6714 && COMPILEDP (sym->function)
6715 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6716 || (!NILP (val)
6717 && COMPILEDP (val)
6718 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6720 found = Fcons (tem, found);
6721 if (--find_max == 0)
6722 goto out;
6728 out:
6729 unbind_to (gc_count, Qnil);
6730 return found;
6733 #ifdef ENABLE_CHECKING
6735 bool suppress_checking;
6737 void
6738 die (const char *msg, const char *file, int line)
6740 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6741 file, line, msg);
6742 terminate_due_to_signal (SIGABRT, INT_MAX);
6744 #endif
6746 /* Initialization. */
6748 void
6749 init_alloc_once (void)
6751 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6752 purebeg = PUREBEG;
6753 pure_size = PURESIZE;
6755 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6756 mem_init ();
6757 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6758 #endif
6760 #ifdef DOUG_LEA_MALLOC
6761 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6762 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6763 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6764 #endif
6765 init_strings ();
6766 init_vectors ();
6768 refill_memory_reserve ();
6769 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6772 void
6773 init_alloc (void)
6775 gcprolist = 0;
6776 byte_stack_list = 0;
6777 #if GC_MARK_STACK
6778 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6779 setjmp_tested_p = longjmps_done = 0;
6780 #endif
6781 #endif
6782 Vgc_elapsed = make_float (0.0);
6783 gcs_done = 0;
6785 #if USE_VALGRIND
6786 valgrind_p = RUNNING_ON_VALGRIND != 0;
6787 #endif
6790 void
6791 syms_of_alloc (void)
6793 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6794 doc: /* Number of bytes of consing between garbage collections.
6795 Garbage collection can happen automatically once this many bytes have been
6796 allocated since the last garbage collection. All data types count.
6798 Garbage collection happens automatically only when `eval' is called.
6800 By binding this temporarily to a large number, you can effectively
6801 prevent garbage collection during a part of the program.
6802 See also `gc-cons-percentage'. */);
6804 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6805 doc: /* Portion of the heap used for allocation.
6806 Garbage collection can happen automatically once this portion of the heap
6807 has been allocated since the last garbage collection.
6808 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6809 Vgc_cons_percentage = make_float (0.1);
6811 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6812 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6814 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6815 doc: /* Number of cons cells that have been consed so far. */);
6817 DEFVAR_INT ("floats-consed", floats_consed,
6818 doc: /* Number of floats that have been consed so far. */);
6820 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6821 doc: /* Number of vector cells that have been consed so far. */);
6823 DEFVAR_INT ("symbols-consed", symbols_consed,
6824 doc: /* Number of symbols that have been consed so far. */);
6826 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6827 doc: /* Number of string characters that have been consed so far. */);
6829 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6830 doc: /* Number of miscellaneous objects that have been consed so far.
6831 These include markers and overlays, plus certain objects not visible
6832 to users. */);
6834 DEFVAR_INT ("intervals-consed", intervals_consed,
6835 doc: /* Number of intervals that have been consed so far. */);
6837 DEFVAR_INT ("strings-consed", strings_consed,
6838 doc: /* Number of strings that have been consed so far. */);
6840 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6841 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6842 This means that certain objects should be allocated in shared (pure) space.
6843 It can also be set to a hash-table, in which case this table is used to
6844 do hash-consing of the objects allocated to pure space. */);
6846 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6847 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6848 garbage_collection_messages = 0;
6850 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6851 doc: /* Hook run after garbage collection has finished. */);
6852 Vpost_gc_hook = Qnil;
6853 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6855 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6856 doc: /* Precomputed `signal' argument for memory-full error. */);
6857 /* We build this in advance because if we wait until we need it, we might
6858 not be able to allocate the memory to hold it. */
6859 Vmemory_signal_data
6860 = listn (CONSTYPE_PURE, 2, Qerror,
6861 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6863 DEFVAR_LISP ("memory-full", Vmemory_full,
6864 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6865 Vmemory_full = Qnil;
6867 DEFSYM (Qconses, "conses");
6868 DEFSYM (Qsymbols, "symbols");
6869 DEFSYM (Qmiscs, "miscs");
6870 DEFSYM (Qstrings, "strings");
6871 DEFSYM (Qvectors, "vectors");
6872 DEFSYM (Qfloats, "floats");
6873 DEFSYM (Qintervals, "intervals");
6874 DEFSYM (Qbuffers, "buffers");
6875 DEFSYM (Qstring_bytes, "string-bytes");
6876 DEFSYM (Qvector_slots, "vector-slots");
6877 DEFSYM (Qheap, "heap");
6878 DEFSYM (Qautomatic_gc, "Automatic GC");
6880 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6881 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6883 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6884 doc: /* Accumulated time elapsed in garbage collections.
6885 The time is in seconds as a floating point value. */);
6886 DEFVAR_INT ("gcs-done", gcs_done,
6887 doc: /* Accumulated number of garbage collections done. */);
6889 defsubr (&Scons);
6890 defsubr (&Slist);
6891 defsubr (&Svector);
6892 defsubr (&Smake_byte_code);
6893 defsubr (&Smake_list);
6894 defsubr (&Smake_vector);
6895 defsubr (&Smake_string);
6896 defsubr (&Smake_bool_vector);
6897 defsubr (&Smake_symbol);
6898 defsubr (&Smake_marker);
6899 defsubr (&Spurecopy);
6900 defsubr (&Sgarbage_collect);
6901 defsubr (&Smemory_limit);
6902 defsubr (&Smemory_use_counts);
6904 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6905 defsubr (&Sgc_status);
6906 #endif
6909 /* When compiled with GCC, GDB might say "No enum type named
6910 pvec_type" if we don't have at least one symbol with that type, and
6911 then xbacktrace could fail. Similarly for the other enums and
6912 their values. Some non-GCC compilers don't like these constructs. */
6913 #ifdef __GNUC__
6914 union
6916 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6917 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6918 enum char_bits char_bits;
6919 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6920 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6921 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6922 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6923 enum Lisp_Bits Lisp_Bits;
6924 enum Lisp_Compiled Lisp_Compiled;
6925 enum maxargs maxargs;
6926 enum MAX_ALLOCA MAX_ALLOCA;
6927 enum More_Lisp_Bits More_Lisp_Bits;
6928 enum pvec_type pvec_type;
6929 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6930 #endif /* __GNUC__ */