* dired.el (dired-read-dir-and-switches): Use read-file-name.
[emacs.git] / src / unexmacosx.c
blob5f2a45da7289542b0b6f26e4138cafcfdf6e2120
1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 /* Contributed by Andrew Choi (akochoi@mac.com). */
24 /* Documentation note.
26 Consult the following documents/files for a description of the
27 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
28 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
29 mach header (-h option) and the load commands (-l option) in a
30 Mach-O file. The tool nm on Mac OS X displays the symbol table in
31 a Mach-O file. For examples of unexec for the Mach-O format, see
32 the file unexnext.c in the GNU Emacs distribution, the file
33 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
34 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
35 contains the source code for malloc_freezedry and malloc_jumpstart.
36 Read that to see what they do. This file was written completely
37 from scratch, making use of information from the above sources. */
39 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
40 memory allocator. All calls to malloc, realloc, and free in Emacs
41 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
42 this file. When temacs is run, all memory requests are handled in
43 the zone EmacsZone. The Darwin memory allocator library calls
44 maintain the data structures to manage this zone. Dumping writes
45 its contents to data segments of the executable file. When emacs
46 is run, the loader recreates the contents of the zone in memory.
47 However since the initialization routine of the zone memory
48 allocator is run again, this `zone' can no longer be used as a
49 heap. That is why emacs uses the ordinary malloc system call to
50 allocate memory. Also, when a block of memory needs to be
51 reallocated and the new size is larger than the old one, a new
52 block must be obtained by malloc and the old contents copied to
53 it. */
55 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
56 (possible causes of future bugs if changed).
58 The file offset of the start of the __TEXT segment is zero. Since
59 the Mach header and load commands are located at the beginning of a
60 Mach-O file, copying the contents of the __TEXT segment from the
61 input file overwrites them in the output file. Despite this,
62 unexec works fine as written below because the segment load command
63 for __TEXT appears, and is therefore processed, before all other
64 load commands except the segment load command for __PAGEZERO, which
65 remains unchanged.
67 Although the file offset of the start of the __TEXT segment is
68 zero, none of the sections it contains actually start there. In
69 fact, the earliest one starts a few hundred bytes beyond the end of
70 the last load command. The linker option -headerpad controls the
71 minimum size of this padding. Its setting can be changed in
72 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
73 load commands for the newly created __DATA segments (at 56 bytes
74 each). Unexec fails if there is not enough room for these new
75 segments.
77 The __TEXT segment contains the sections __text, __cstring,
78 __picsymbol_stub, and __const and the __DATA segment contains the
79 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
80 and __common. The other segments do not contain any sections.
81 These sections are copied from the input file to the output file,
82 except for __data, __bss, and __common, which are dumped from
83 memory. The types of the sections __bss and __common are changed
84 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
85 their relative order in the input and output files remain
86 unchanged. Otherwise all n_sect fields in the nlist records in the
87 symbol table (specified by the LC_SYMTAB load command) will have to
88 be changed accordingly.
91 #include <stdio.h>
92 #include <stdlib.h>
93 #include <fcntl.h>
94 #include <stdarg.h>
95 #include <sys/types.h>
96 #include <unistd.h>
97 #include <mach/mach.h>
98 #include <mach-o/loader.h>
99 #include <mach-o/reloc.h>
100 #if defined (__ppc__)
101 #include <mach-o/ppc/reloc.h>
102 #endif
103 #include <config.h>
104 #undef malloc
105 #undef realloc
106 #undef free
107 #ifdef HAVE_MALLOC_MALLOC_H
108 #include <malloc/malloc.h>
109 #else
110 #include <objc/malloc.h>
111 #endif
113 #include <assert.h>
115 #ifdef _LP64
116 #define mach_header mach_header_64
117 #define segment_command segment_command_64
118 #undef VM_REGION_BASIC_INFO_COUNT
119 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
120 #undef VM_REGION_BASIC_INFO
121 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
122 #undef LC_SEGMENT
123 #define LC_SEGMENT LC_SEGMENT_64
124 #define vm_region vm_region_64
125 #define section section_64
126 #undef MH_MAGIC
127 #define MH_MAGIC MH_MAGIC_64
128 #endif
130 #define VERBOSE 1
132 /* Size of buffer used to copy data from the input file to the output
133 file in function unexec_copy. */
134 #define UNEXEC_COPY_BUFSZ 1024
136 /* Regions with memory addresses above this value are assumed to be
137 mapped to dynamically loaded libraries and will not be dumped. */
138 #define VM_DATA_TOP (20 * 1024 * 1024)
140 /* Type of an element on the list of regions to be dumped. */
141 struct region_t {
142 vm_address_t address;
143 vm_size_t size;
144 vm_prot_t protection;
145 vm_prot_t max_protection;
147 struct region_t *next;
150 /* Head and tail of the list of regions to be dumped. */
151 static struct region_t *region_list_head = 0;
152 static struct region_t *region_list_tail = 0;
154 /* Pointer to array of load commands. */
155 static struct load_command **lca;
157 /* Number of load commands. */
158 static int nlc;
160 /* The highest VM address of segments loaded by the input file.
161 Regions with addresses beyond this are assumed to be allocated
162 dynamically and thus require dumping. */
163 static vm_address_t infile_lc_highest_addr = 0;
165 /* The lowest file offset used by the all sections in the __TEXT
166 segments. This leaves room at the beginning of the file to store
167 the Mach-O header. Check this value against header size to ensure
168 the added load commands for the new __DATA segments did not
169 overwrite any of the sections in the __TEXT segment. */
170 static unsigned long text_seg_lowest_offset = 0x10000000;
172 /* Mach header. */
173 static struct mach_header mh;
175 /* Offset at which the next load command should be written. */
176 static unsigned long curr_header_offset = sizeof (struct mach_header);
178 /* Offset at which the next segment should be written. */
179 static unsigned long curr_file_offset = 0;
181 static unsigned long pagesize;
182 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
184 static int infd, outfd;
186 static int in_dumped_exec = 0;
188 static malloc_zone_t *emacs_zone;
190 /* file offset of input file's data segment */
191 static off_t data_segment_old_fileoff = 0;
193 static struct segment_command *data_segment_scp;
195 /* Read N bytes from infd into memory starting at address DEST.
196 Return true if successful, false otherwise. */
197 static int
198 unexec_read (void *dest, size_t n)
200 return n == read (infd, dest, n);
203 /* Write COUNT bytes from memory starting at address SRC to outfd
204 starting at offset DEST. Return true if successful, false
205 otherwise. */
206 static int
207 unexec_write (off_t dest, const void *src, size_t count)
209 if (lseek (outfd, dest, SEEK_SET) != dest)
210 return 0;
212 return write (outfd, src, count) == count;
215 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
216 Return true if successful, false otherwise. */
217 static int
218 unexec_write_zero (off_t dest, size_t count)
220 char buf[UNEXEC_COPY_BUFSZ];
221 ssize_t bytes;
223 bzero (buf, UNEXEC_COPY_BUFSZ);
224 if (lseek (outfd, dest, SEEK_SET) != dest)
225 return 0;
227 while (count > 0)
229 bytes = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
230 if (write (outfd, buf, bytes) != bytes)
231 return 0;
232 count -= bytes;
235 return 1;
238 /* Copy COUNT bytes from starting offset SRC in infd to starting
239 offset DEST in outfd. Return true if successful, false
240 otherwise. */
241 static int
242 unexec_copy (off_t dest, off_t src, ssize_t count)
244 ssize_t bytes_read;
245 ssize_t bytes_to_read;
247 char buf[UNEXEC_COPY_BUFSZ];
249 if (lseek (infd, src, SEEK_SET) != src)
250 return 0;
252 if (lseek (outfd, dest, SEEK_SET) != dest)
253 return 0;
255 while (count > 0)
257 bytes_to_read = count > UNEXEC_COPY_BUFSZ ? UNEXEC_COPY_BUFSZ : count;
258 bytes_read = read (infd, buf, bytes_to_read);
259 if (bytes_read <= 0)
260 return 0;
261 if (write (outfd, buf, bytes_read) != bytes_read)
262 return 0;
263 count -= bytes_read;
266 return 1;
269 /* Debugging and informational messages routines. */
271 static void
272 unexec_error (char *format, ...)
274 va_list ap;
276 va_start (ap, format);
277 fprintf (stderr, "unexec: ");
278 vfprintf (stderr, format, ap);
279 fprintf (stderr, "\n");
280 va_end (ap);
281 exit (1);
284 static void
285 print_prot (vm_prot_t prot)
287 if (prot == VM_PROT_NONE)
288 printf ("none");
289 else
291 putchar (prot & VM_PROT_READ ? 'r' : ' ');
292 putchar (prot & VM_PROT_WRITE ? 'w' : ' ');
293 putchar (prot & VM_PROT_EXECUTE ? 'x' : ' ');
294 putchar (' ');
298 static void
299 print_region (vm_address_t address, vm_size_t size, vm_prot_t prot,
300 vm_prot_t max_prot)
302 printf ("%#10lx %#8lx ", (long) address, (long) size);
303 print_prot (prot);
304 putchar (' ');
305 print_prot (max_prot);
306 putchar ('\n');
309 static void
310 print_region_list ()
312 struct region_t *r;
314 printf (" address size prot maxp\n");
316 for (r = region_list_head; r; r = r->next)
317 print_region (r->address, r->size, r->protection, r->max_protection);
320 static void
321 print_regions ()
323 task_t target_task = mach_task_self ();
324 vm_address_t address = (vm_address_t) 0;
325 vm_size_t size;
326 struct vm_region_basic_info info;
327 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
328 mach_port_t object_name;
330 printf (" address size prot maxp\n");
332 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
333 (vm_region_info_t) &info, &info_count, &object_name)
334 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
336 print_region (address, size, info.protection, info.max_protection);
338 if (object_name != MACH_PORT_NULL)
339 mach_port_deallocate (target_task, object_name);
341 address += size;
345 /* Build the list of regions that need to be dumped. Regions with
346 addresses above VM_DATA_TOP are omitted. Adjacent regions with
347 identical protection are merged. Note that non-writable regions
348 cannot be omitted because they some regions created at run time are
349 read-only. */
350 static void
351 build_region_list ()
353 task_t target_task = mach_task_self ();
354 vm_address_t address = (vm_address_t) 0;
355 vm_size_t size;
356 struct vm_region_basic_info info;
357 mach_msg_type_number_t info_count = VM_REGION_BASIC_INFO_COUNT;
358 mach_port_t object_name;
359 struct region_t *r;
361 #if VERBOSE
362 printf ("--- List of All Regions ---\n");
363 printf (" address size prot maxp\n");
364 #endif
366 while (vm_region (target_task, &address, &size, VM_REGION_BASIC_INFO,
367 (vm_region_info_t) &info, &info_count, &object_name)
368 == KERN_SUCCESS && info_count == VM_REGION_BASIC_INFO_COUNT)
370 /* Done when we reach addresses of shared libraries, which are
371 loaded in high memory. */
372 if (address >= VM_DATA_TOP)
373 break;
375 #if VERBOSE
376 print_region (address, size, info.protection, info.max_protection);
377 #endif
379 /* If a region immediately follows the previous one (the one
380 most recently added to the list) and has identical
381 protection, merge it with the latter. Otherwise create a
382 new list element for it. */
383 if (region_list_tail
384 && info.protection == region_list_tail->protection
385 && info.max_protection == region_list_tail->max_protection
386 && region_list_tail->address + region_list_tail->size == address)
388 region_list_tail->size += size;
390 else
392 r = (struct region_t *) malloc (sizeof (struct region_t));
394 if (!r)
395 unexec_error ("cannot allocate region structure");
397 r->address = address;
398 r->size = size;
399 r->protection = info.protection;
400 r->max_protection = info.max_protection;
402 r->next = 0;
403 if (region_list_head == 0)
405 region_list_head = r;
406 region_list_tail = r;
408 else
410 region_list_tail->next = r;
411 region_list_tail = r;
414 /* Deallocate (unused) object name returned by
415 vm_region. */
416 if (object_name != MACH_PORT_NULL)
417 mach_port_deallocate (target_task, object_name);
420 address += size;
423 printf ("--- List of Regions to be Dumped ---\n");
424 print_region_list ();
428 #define MAX_UNEXEC_REGIONS 400
430 static int num_unexec_regions;
431 typedef struct {
432 vm_range_t range;
433 vm_size_t filesize;
434 } unexec_region_info;
435 static unexec_region_info unexec_regions[MAX_UNEXEC_REGIONS];
437 static void
438 unexec_regions_recorder (task_t task, void *rr, unsigned type,
439 vm_range_t *ranges, unsigned num)
441 vm_address_t p;
442 vm_size_t filesize;
444 while (num && num_unexec_regions < MAX_UNEXEC_REGIONS)
446 /* Subtract the size of trailing null bytes from filesize. It
447 can be smaller than vmsize in segment commands. In such a
448 case, trailing bytes are initialized with zeros. */
449 for (p = ranges->address + ranges->size; p > ranges->address; p--)
450 if (*(((char *) p)-1))
451 break;
452 filesize = p - ranges->address;
454 unexec_regions[num_unexec_regions].filesize = filesize;
455 unexec_regions[num_unexec_regions++].range = *ranges;
456 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges->address),
457 (long) filesize, (long) (ranges->size));
458 ranges++; num--;
462 static kern_return_t
463 unexec_reader (task_t task, vm_address_t address, vm_size_t size, void **ptr)
465 *ptr = (void *) address;
466 return KERN_SUCCESS;
469 static void
470 find_emacs_zone_regions ()
472 num_unexec_regions = 0;
474 emacs_zone->introspect->enumerator (mach_task_self(), 0,
475 MALLOC_PTR_REGION_RANGE_TYPE
476 | MALLOC_ADMIN_REGION_RANGE_TYPE,
477 (vm_address_t) emacs_zone,
478 unexec_reader,
479 unexec_regions_recorder);
481 if (num_unexec_regions == MAX_UNEXEC_REGIONS)
482 unexec_error ("find_emacs_zone_regions: too many regions");
485 static int
486 unexec_regions_sort_compare (const void *a, const void *b)
488 vm_address_t aa = ((unexec_region_info *) a)->range.address;
489 vm_address_t bb = ((unexec_region_info *) b)->range.address;
491 if (aa < bb)
492 return -1;
493 else if (aa > bb)
494 return 1;
495 else
496 return 0;
499 static void
500 unexec_regions_merge ()
502 int i, n;
503 unexec_region_info r;
504 vm_size_t padsize;
506 qsort (unexec_regions, num_unexec_regions, sizeof (unexec_regions[0]),
507 &unexec_regions_sort_compare);
508 n = 0;
509 r = unexec_regions[0];
510 padsize = r.range.address & (pagesize - 1);
511 if (padsize)
513 r.range.address -= padsize;
514 r.range.size += padsize;
515 r.filesize += padsize;
517 for (i = 1; i < num_unexec_regions; i++)
519 if (r.range.address + r.range.size == unexec_regions[i].range.address
520 && r.range.size - r.filesize < 2 * pagesize)
522 r.filesize = r.range.size + unexec_regions[i].filesize;
523 r.range.size += unexec_regions[i].range.size;
525 else
527 unexec_regions[n++] = r;
528 r = unexec_regions[i];
529 padsize = r.range.address & (pagesize - 1);
530 if (padsize)
532 if ((unexec_regions[n-1].range.address
533 + unexec_regions[n-1].range.size) == r.range.address)
534 unexec_regions[n-1].range.size -= padsize;
536 r.range.address -= padsize;
537 r.range.size += padsize;
538 r.filesize += padsize;
542 unexec_regions[n++] = r;
543 num_unexec_regions = n;
547 /* More informational messages routines. */
549 static void
550 print_load_command_name (int lc)
552 switch (lc)
554 case LC_SEGMENT:
555 #ifndef _LP64
556 printf ("LC_SEGMENT ");
557 #else
558 printf ("LC_SEGMENT_64 ");
559 #endif
560 break;
561 case LC_LOAD_DYLINKER:
562 printf ("LC_LOAD_DYLINKER ");
563 break;
564 case LC_LOAD_DYLIB:
565 printf ("LC_LOAD_DYLIB ");
566 break;
567 case LC_SYMTAB:
568 printf ("LC_SYMTAB ");
569 break;
570 case LC_DYSYMTAB:
571 printf ("LC_DYSYMTAB ");
572 break;
573 case LC_UNIXTHREAD:
574 printf ("LC_UNIXTHREAD ");
575 break;
576 case LC_PREBOUND_DYLIB:
577 printf ("LC_PREBOUND_DYLIB");
578 break;
579 case LC_TWOLEVEL_HINTS:
580 printf ("LC_TWOLEVEL_HINTS");
581 break;
582 #ifdef LC_UUID
583 case LC_UUID:
584 printf ("LC_UUID ");
585 break;
586 #endif
587 default:
588 printf ("unknown ");
592 static void
593 print_load_command (struct load_command *lc)
595 print_load_command_name (lc->cmd);
596 printf ("%8d", lc->cmdsize);
598 if (lc->cmd == LC_SEGMENT)
600 struct segment_command *scp;
601 struct section *sectp;
602 int j;
604 scp = (struct segment_command *) lc;
605 printf (" %-16.16s %#10lx %#8lx\n",
606 scp->segname, (long) (scp->vmaddr), (long) (scp->vmsize));
608 sectp = (struct section *) (scp + 1);
609 for (j = 0; j < scp->nsects; j++)
611 printf (" %-16.16s %#10lx %#8lx\n",
612 sectp->sectname, (long) (sectp->addr), (long) (sectp->size));
613 sectp++;
616 else
617 printf ("\n");
620 /* Read header and load commands from input file. Store the latter in
621 the global array lca. Store the total number of load commands in
622 global variable nlc. */
623 static void
624 read_load_commands ()
626 int i;
628 if (!unexec_read (&mh, sizeof (struct mach_header)))
629 unexec_error ("cannot read mach-o header");
631 if (mh.magic != MH_MAGIC)
632 unexec_error ("input file not in Mach-O format");
634 if (mh.filetype != MH_EXECUTE)
635 unexec_error ("input Mach-O file is not an executable object file");
637 #if VERBOSE
638 printf ("--- Header Information ---\n");
639 printf ("Magic = 0x%08x\n", mh.magic);
640 printf ("CPUType = %d\n", mh.cputype);
641 printf ("CPUSubType = %d\n", mh.cpusubtype);
642 printf ("FileType = 0x%x\n", mh.filetype);
643 printf ("NCmds = %d\n", mh.ncmds);
644 printf ("SizeOfCmds = %d\n", mh.sizeofcmds);
645 printf ("Flags = 0x%08x\n", mh.flags);
646 #endif
648 nlc = mh.ncmds;
649 lca = (struct load_command **) malloc (nlc * sizeof (struct load_command *));
651 for (i = 0; i < nlc; i++)
653 struct load_command lc;
654 /* Load commands are variable-size: so read the command type and
655 size first and then read the rest. */
656 if (!unexec_read (&lc, sizeof (struct load_command)))
657 unexec_error ("cannot read load command");
658 lca[i] = (struct load_command *) malloc (lc.cmdsize);
659 memcpy (lca[i], &lc, sizeof (struct load_command));
660 if (!unexec_read (lca[i] + 1, lc.cmdsize - sizeof (struct load_command)))
661 unexec_error ("cannot read content of load command");
662 if (lc.cmd == LC_SEGMENT)
664 struct segment_command *scp = (struct segment_command *) lca[i];
666 if (scp->vmaddr + scp->vmsize > infile_lc_highest_addr)
667 infile_lc_highest_addr = scp->vmaddr + scp->vmsize;
669 if (strncmp (scp->segname, SEG_TEXT, 16) == 0)
671 struct section *sectp = (struct section *) (scp + 1);
672 int j;
674 for (j = 0; j < scp->nsects; j++)
675 if (sectp->offset < text_seg_lowest_offset)
676 text_seg_lowest_offset = sectp->offset;
681 printf ("Highest address of load commands in input file: %#8x\n",
682 infile_lc_highest_addr);
684 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
685 text_seg_lowest_offset);
687 printf ("--- List of Load Commands in Input File ---\n");
688 printf ("# cmd cmdsize name address size\n");
690 for (i = 0; i < nlc; i++)
692 printf ("%1d ", i);
693 print_load_command (lca[i]);
697 /* Copy a LC_SEGMENT load command other than the __DATA segment from
698 the input file to the output file, adjusting the file offset of the
699 segment and the file offsets of sections contained in it. */
700 static void
701 copy_segment (struct load_command *lc)
703 struct segment_command *scp = (struct segment_command *) lc;
704 unsigned long old_fileoff = scp->fileoff;
705 struct section *sectp;
706 int j;
708 scp->fileoff = curr_file_offset;
710 sectp = (struct section *) (scp + 1);
711 for (j = 0; j < scp->nsects; j++)
713 sectp->offset += curr_file_offset - old_fileoff;
714 sectp++;
717 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
718 scp->segname, (long) (scp->fileoff), (long) (scp->filesize),
719 (long) (scp->vmsize), (long) (scp->vmaddr));
721 if (!unexec_copy (scp->fileoff, old_fileoff, scp->filesize))
722 unexec_error ("cannot copy segment from input to output file");
723 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
725 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
726 unexec_error ("cannot write load command to header");
728 curr_header_offset += lc->cmdsize;
731 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
732 file to the output file. We assume that only one such segment load
733 command exists in the input file and it contains the sections
734 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
735 __dyld. The first three of these should be dumped from memory and
736 the rest should be copied from the input file. Note that the
737 sections __bss and __common contain no data in the input file
738 because their flag fields have the value S_ZEROFILL. Dumping these
739 from memory makes it necessary to adjust file offset fields in
740 subsequently dumped load commands. Then, create new __DATA segment
741 load commands for regions on the region list other than the one
742 corresponding to the __DATA segment in the input file. */
743 static void
744 copy_data_segment (struct load_command *lc)
746 struct segment_command *scp = (struct segment_command *) lc;
747 struct section *sectp;
748 int j;
749 unsigned long header_offset, old_file_offset;
751 /* The new filesize of the segment is set to its vmsize because data
752 blocks for segments must start at region boundaries. Note that
753 this may leave unused locations at the end of the segment data
754 block because the total of the sizes of all sections in the
755 segment is generally smaller than vmsize. */
756 scp->filesize = scp->vmsize;
758 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
759 scp->segname, curr_file_offset, (long)(scp->filesize),
760 (long)(scp->vmsize), (long) (scp->vmaddr));
762 /* Offsets in the output file for writing the next section structure
763 and segment data block, respectively. */
764 header_offset = curr_header_offset + sizeof (struct segment_command);
766 sectp = (struct section *) (scp + 1);
767 for (j = 0; j < scp->nsects; j++)
769 old_file_offset = sectp->offset;
770 sectp->offset = sectp->addr - scp->vmaddr + curr_file_offset;
771 /* The __data section is dumped from memory. The __bss and
772 __common sections are also dumped from memory but their flag
773 fields require changing (from S_ZEROFILL to S_REGULAR). The
774 other three kinds of sections are just copied from the input
775 file. */
776 if (strncmp (sectp->sectname, SECT_DATA, 16) == 0)
778 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
779 unexec_error ("cannot write section %s", SECT_DATA);
780 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
781 unexec_error ("cannot write section %s's header", SECT_DATA);
783 else if (strncmp (sectp->sectname, SECT_COMMON, 16) == 0)
785 sectp->flags = S_REGULAR;
786 if (!unexec_write (sectp->offset, (void *) sectp->addr, sectp->size))
787 unexec_error ("cannot write section %s", sectp->sectname);
788 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
789 unexec_error ("cannot write section %s's header", sectp->sectname);
791 else if (strncmp (sectp->sectname, SECT_BSS, 16) == 0)
793 extern char *my_endbss_static;
794 unsigned long my_size;
796 sectp->flags = S_REGULAR;
798 /* Clear uninitialized local variables in statically linked
799 libraries. In particular, function pointers stored by
800 libSystemStub.a, which is introduced in Mac OS X 10.4 for
801 binary compatibility with respect to long double, are
802 cleared so that they will be reinitialized when the
803 dumped binary is executed on other versions of OS. */
804 my_size = (unsigned long)my_endbss_static - sectp->addr;
805 if (!(sectp->addr <= (unsigned long)my_endbss_static
806 && my_size <= sectp->size))
807 unexec_error ("my_endbss_static is not in section %s",
808 sectp->sectname);
809 if (!unexec_write (sectp->offset, (void *) sectp->addr, my_size))
810 unexec_error ("cannot write section %s", sectp->sectname);
811 if (!unexec_write_zero (sectp->offset + my_size,
812 sectp->size - my_size))
813 unexec_error ("cannot write section %s", sectp->sectname);
814 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
815 unexec_error ("cannot write section %s's header", sectp->sectname);
817 else if (strncmp (sectp->sectname, "__la_symbol_ptr", 16) == 0
818 || strncmp (sectp->sectname, "__nl_symbol_ptr", 16) == 0
819 || strncmp (sectp->sectname, "__la_sym_ptr2", 16) == 0
820 || strncmp (sectp->sectname, "__dyld", 16) == 0
821 || strncmp (sectp->sectname, "__const", 16) == 0
822 || strncmp (sectp->sectname, "__cfstring", 16) == 0
823 || strncmp (sectp->sectname, "__gcc_except_tab", 16) == 0
824 || strncmp (sectp->sectname, "__objc_", 7) == 0)
826 if (!unexec_copy (sectp->offset, old_file_offset, sectp->size))
827 unexec_error ("cannot copy section %s", sectp->sectname);
828 if (!unexec_write (header_offset, sectp, sizeof (struct section)))
829 unexec_error ("cannot write section %s's header", sectp->sectname);
831 else
832 unexec_error ("unrecognized section name in __DATA segment");
834 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
835 sectp->sectname, (long) (sectp->offset),
836 (long) (sectp->offset + sectp->size), (long) (sectp->size));
838 header_offset += sizeof (struct section);
839 sectp++;
842 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (scp->filesize);
844 if (!unexec_write (curr_header_offset, scp, sizeof (struct segment_command)))
845 unexec_error ("cannot write header of __DATA segment");
846 curr_header_offset += lc->cmdsize;
848 /* Create new __DATA segment load commands for regions on the region
849 list that do not corresponding to any segment load commands in
850 the input file.
852 for (j = 0; j < num_unexec_regions; j++)
854 struct segment_command sc;
856 sc.cmd = LC_SEGMENT;
857 sc.cmdsize = sizeof (struct segment_command);
858 strncpy (sc.segname, SEG_DATA, 16);
859 sc.vmaddr = unexec_regions[j].range.address;
860 sc.vmsize = unexec_regions[j].range.size;
861 sc.fileoff = curr_file_offset;
862 sc.filesize = unexec_regions[j].filesize;
863 sc.maxprot = VM_PROT_READ | VM_PROT_WRITE;
864 sc.initprot = VM_PROT_READ | VM_PROT_WRITE;
865 sc.nsects = 0;
866 sc.flags = 0;
868 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
869 sc.segname, (long) (sc.fileoff), (long) (sc.filesize),
870 (long) (sc.vmsize), (long) (sc.vmaddr));
872 if (!unexec_write (sc.fileoff, (void *) sc.vmaddr, sc.filesize))
873 unexec_error ("cannot write new __DATA segment");
874 curr_file_offset += ROUNDUP_TO_PAGE_BOUNDARY (sc.filesize);
876 if (!unexec_write (curr_header_offset, &sc, sc.cmdsize))
877 unexec_error ("cannot write new __DATA segment's header");
878 curr_header_offset += sc.cmdsize;
879 mh.ncmds++;
883 /* Copy a LC_SYMTAB load command from the input file to the output
884 file, adjusting the file offset fields. */
885 static void
886 copy_symtab (struct load_command *lc, long delta)
888 struct symtab_command *stp = (struct symtab_command *) lc;
890 stp->symoff += delta;
891 stp->stroff += delta;
893 printf ("Writing LC_SYMTAB command\n");
895 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
896 unexec_error ("cannot write symtab command to header");
898 curr_header_offset += lc->cmdsize;
901 /* Fix up relocation entries. */
902 static void
903 unrelocate (const char *name, off_t reloff, int nrel, vm_address_t base)
905 int i, unreloc_count;
906 struct relocation_info reloc_info;
907 struct scattered_relocation_info *sc_reloc_info
908 = (struct scattered_relocation_info *) &reloc_info;
909 vm_address_t location;
911 for (unreloc_count = 0, i = 0; i < nrel; i++)
913 if (lseek (infd, reloff, L_SET) != reloff)
914 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name, i);
915 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
916 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name, i);
917 reloff += sizeof (reloc_info);
919 if (sc_reloc_info->r_scattered == 0)
920 switch (reloc_info.r_type)
922 case GENERIC_RELOC_VANILLA:
923 location = base + reloc_info.r_address;
924 if (location >= data_segment_scp->vmaddr
925 && location < (data_segment_scp->vmaddr
926 + data_segment_scp->vmsize))
928 off_t src_off = data_segment_old_fileoff
929 + (location - data_segment_scp->vmaddr);
930 off_t dst_off = data_segment_scp->fileoff
931 + (location - data_segment_scp->vmaddr);
933 if (!unexec_copy (dst_off, src_off, 1 << reloc_info.r_length))
934 unexec_error ("unrelocate: %s:%d cannot copy original value",
935 name, i);
936 unreloc_count++;
938 break;
939 default:
940 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
941 name, i, reloc_info.r_type);
943 else
944 switch (sc_reloc_info->r_type)
946 #if defined (__ppc__)
947 case PPC_RELOC_PB_LA_PTR:
948 /* nothing to do for prebound lazy pointer */
949 break;
950 #endif
951 default:
952 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
953 name, i, sc_reloc_info->r_type);
957 if (nrel > 0)
958 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
959 unreloc_count, nrel, name);
962 #if __ppc64__
963 /* Rebase r_address in the relocation table. */
964 static void
965 rebase_reloc_address (off_t reloff, int nrel, long linkedit_delta, long diff)
967 int i;
968 struct relocation_info reloc_info;
969 struct scattered_relocation_info *sc_reloc_info
970 = (struct scattered_relocation_info *) &reloc_info;
972 for (i = 0; i < nrel; i++, reloff += sizeof (reloc_info))
974 if (lseek (infd, reloff - linkedit_delta, L_SET)
975 != reloff - linkedit_delta)
976 unexec_error ("rebase_reloc_table: cannot seek to reloc_info");
977 if (!unexec_read (&reloc_info, sizeof (reloc_info)))
978 unexec_error ("rebase_reloc_table: cannot read reloc_info");
980 if (sc_reloc_info->r_scattered == 0
981 && reloc_info.r_type == GENERIC_RELOC_VANILLA)
983 reloc_info.r_address -= diff;
984 if (!unexec_write (reloff, &reloc_info, sizeof (reloc_info)))
985 unexec_error ("rebase_reloc_table: cannot write reloc_info");
989 #endif
991 /* Copy a LC_DYSYMTAB load command from the input file to the output
992 file, adjusting the file offset fields. */
993 static void
994 copy_dysymtab (struct load_command *lc, long delta)
996 struct dysymtab_command *dstp = (struct dysymtab_command *) lc;
997 vm_address_t base;
999 #ifdef _LP64
1000 #if __ppc64__
1002 int i;
1004 base = 0;
1005 for (i = 0; i < nlc; i++)
1006 if (lca[i]->cmd == LC_SEGMENT)
1008 struct segment_command *scp = (struct segment_command *) lca[i];
1010 if (scp->vmaddr + scp->vmsize > 0x100000000
1011 && (scp->initprot & VM_PROT_WRITE) != 0)
1013 base = data_segment_scp->vmaddr;
1014 break;
1018 #else
1019 /* First writable segment address. */
1020 base = data_segment_scp->vmaddr;
1021 #endif
1022 #else
1023 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1024 base = 0;
1025 #endif
1027 unrelocate ("local", dstp->locreloff, dstp->nlocrel, base);
1028 unrelocate ("external", dstp->extreloff, dstp->nextrel, base);
1030 if (dstp->nextrel > 0) {
1031 dstp->extreloff += delta;
1034 if (dstp->nlocrel > 0) {
1035 dstp->locreloff += delta;
1038 if (dstp->nindirectsyms > 0)
1039 dstp->indirectsymoff += delta;
1041 printf ("Writing LC_DYSYMTAB command\n");
1043 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1044 unexec_error ("cannot write symtab command to header");
1046 curr_header_offset += lc->cmdsize;
1048 #if __ppc64__
1049 /* Check if the relocation base needs to be changed. */
1050 if (base == 0)
1052 vm_address_t newbase = 0;
1053 int i;
1055 for (i = 0; i < num_unexec_regions; i++)
1056 if (unexec_regions[i].range.address + unexec_regions[i].range.size
1057 > 0x100000000)
1059 newbase = data_segment_scp->vmaddr;
1060 break;
1063 if (newbase)
1065 rebase_reloc_address (dstp->locreloff, dstp->nlocrel, delta, newbase);
1066 rebase_reloc_address (dstp->extreloff, dstp->nextrel, delta, newbase);
1069 #endif
1072 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1073 file, adjusting the file offset fields. */
1074 static void
1075 copy_twolevelhints (struct load_command *lc, long delta)
1077 struct twolevel_hints_command *tlhp = (struct twolevel_hints_command *) lc;
1079 if (tlhp->nhints > 0) {
1080 tlhp->offset += delta;
1083 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1085 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1086 unexec_error ("cannot write two level hint command to header");
1088 curr_header_offset += lc->cmdsize;
1091 /* Copy other kinds of load commands from the input file to the output
1092 file, ones that do not require adjustments of file offsets. */
1093 static void
1094 copy_other (struct load_command *lc)
1096 printf ("Writing ");
1097 print_load_command_name (lc->cmd);
1098 printf (" command\n");
1100 if (!unexec_write (curr_header_offset, lc, lc->cmdsize))
1101 unexec_error ("cannot write symtab command to header");
1103 curr_header_offset += lc->cmdsize;
1106 /* Loop through all load commands and dump them. Then write the Mach
1107 header. */
1108 static void
1109 dump_it ()
1111 int i;
1112 long linkedit_delta = 0;
1114 printf ("--- Load Commands written to Output File ---\n");
1116 for (i = 0; i < nlc; i++)
1117 switch (lca[i]->cmd)
1119 case LC_SEGMENT:
1121 struct segment_command *scp = (struct segment_command *) lca[i];
1122 if (strncmp (scp->segname, SEG_DATA, 16) == 0)
1124 /* save data segment file offset and segment_command for
1125 unrelocate */
1126 if (data_segment_old_fileoff)
1127 unexec_error ("cannot handle multiple DATA segments"
1128 " in input file");
1129 data_segment_old_fileoff = scp->fileoff;
1130 data_segment_scp = scp;
1132 copy_data_segment (lca[i]);
1134 else
1136 if (strncmp (scp->segname, SEG_LINKEDIT, 16) == 0)
1138 if (linkedit_delta)
1139 unexec_error ("cannot handle multiple LINKEDIT segments"
1140 " in input file");
1141 linkedit_delta = curr_file_offset - scp->fileoff;
1144 copy_segment (lca[i]);
1147 break;
1148 case LC_SYMTAB:
1149 copy_symtab (lca[i], linkedit_delta);
1150 break;
1151 case LC_DYSYMTAB:
1152 copy_dysymtab (lca[i], linkedit_delta);
1153 break;
1154 case LC_TWOLEVEL_HINTS:
1155 copy_twolevelhints (lca[i], linkedit_delta);
1156 break;
1157 default:
1158 copy_other (lca[i]);
1159 break;
1162 if (curr_header_offset > text_seg_lowest_offset)
1163 unexec_error ("not enough room for load commands for new __DATA segments");
1165 printf ("%ld unused bytes follow Mach-O header\n",
1166 text_seg_lowest_offset - curr_header_offset);
1168 mh.sizeofcmds = curr_header_offset - sizeof (struct mach_header);
1169 if (!unexec_write (0, &mh, sizeof (struct mach_header)))
1170 unexec_error ("cannot write final header contents");
1173 /* Take a snapshot of Emacs and make a Mach-O format executable file
1174 from it. The file names of the output and input files are outfile
1175 and infile, respectively. The three other parameters are
1176 ignored. */
1177 void
1178 unexec (char *outfile, char *infile, void *start_data, void *start_bss,
1179 void *entry_address)
1181 if (in_dumped_exec)
1182 unexec_error ("Unexec from a dumped executable is not supported.");
1184 pagesize = getpagesize ();
1185 infd = open (infile, O_RDONLY, 0);
1186 if (infd < 0)
1188 unexec_error ("cannot open input file `%s'", infile);
1191 outfd = open (outfile, O_WRONLY | O_TRUNC | O_CREAT, 0755);
1192 if (outfd < 0)
1194 close (infd);
1195 unexec_error ("cannot open output file `%s'", outfile);
1198 build_region_list ();
1199 read_load_commands ();
1201 find_emacs_zone_regions ();
1202 unexec_regions_merge ();
1204 in_dumped_exec = 1;
1206 dump_it ();
1208 close (outfd);
1212 void
1213 unexec_init_emacs_zone ()
1215 emacs_zone = malloc_create_zone (0, 0);
1216 malloc_set_zone_name (emacs_zone, "EmacsZone");
1219 #ifndef MACOSX_MALLOC_MULT16
1220 #define MACOSX_MALLOC_MULT16 1
1221 #endif
1223 typedef struct unexec_malloc_header {
1224 union {
1225 char c[8];
1226 size_t size;
1227 } u;
1228 } unexec_malloc_header_t;
1230 #if MACOSX_MALLOC_MULT16
1232 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1234 #else
1237 ptr_in_unexec_regions (void *ptr)
1239 int i;
1241 for (i = 0; i < num_unexec_regions; i++)
1242 if ((vm_address_t) ptr - unexec_regions[i].range.address
1243 < unexec_regions[i].range.size)
1244 return 1;
1246 return 0;
1249 #endif
1251 void *
1252 unexec_malloc (size_t size)
1254 if (in_dumped_exec)
1256 void *p;
1258 p = malloc (size);
1259 #if MACOSX_MALLOC_MULT16
1260 assert (((vm_address_t) p % 16) == 0);
1261 #endif
1262 return p;
1264 else
1266 unexec_malloc_header_t *ptr;
1268 ptr = (unexec_malloc_header_t *)
1269 malloc_zone_malloc (emacs_zone, size + sizeof (unexec_malloc_header_t));
1270 ptr->u.size = size;
1271 ptr++;
1272 #if MACOSX_MALLOC_MULT16
1273 assert (((vm_address_t) ptr % 16) == 8);
1274 #endif
1275 return (void *) ptr;
1279 void *
1280 unexec_realloc (void *old_ptr, size_t new_size)
1282 if (in_dumped_exec)
1284 void *p;
1286 if (ptr_in_unexec_regions (old_ptr))
1288 size_t old_size = ((unexec_malloc_header_t *) old_ptr)[-1].u.size;
1289 size_t size = new_size > old_size ? old_size : new_size;
1291 p = (size_t *) malloc (new_size);
1292 if (size)
1293 memcpy (p, old_ptr, size);
1295 else
1297 p = realloc (old_ptr, new_size);
1299 #if MACOSX_MALLOC_MULT16
1300 assert (((vm_address_t) p % 16) == 0);
1301 #endif
1302 return p;
1304 else
1306 unexec_malloc_header_t *ptr;
1308 ptr = (unexec_malloc_header_t *)
1309 malloc_zone_realloc (emacs_zone, (unexec_malloc_header_t *) old_ptr - 1,
1310 new_size + sizeof (unexec_malloc_header_t));
1311 ptr->u.size = new_size;
1312 ptr++;
1313 #if MACOSX_MALLOC_MULT16
1314 assert (((vm_address_t) ptr % 16) == 8);
1315 #endif
1316 return (void *) ptr;
1320 void
1321 unexec_free (void *ptr)
1323 if (in_dumped_exec)
1325 if (!ptr_in_unexec_regions (ptr))
1326 free (ptr);
1328 else
1329 malloc_zone_free (emacs_zone, (unexec_malloc_header_t *) ptr - 1);
1332 /* arch-tag: 1a784f7b-a184-4c4f-9544-da8619593d72
1333 (do not change this comment) */