1 ;;; cl-macs.el --- Common Lisp macros -*- lexical-binding: t; coding: utf-8 -*-
3 ;; Copyright (C) 1993, 2001-2015 Free Software Foundation, Inc.
5 ;; Author: Dave Gillespie <daveg@synaptics.com>
7 ;; Keywords: extensions
10 ;; This file is part of GNU Emacs.
12 ;; GNU Emacs is free software: you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation, either version 3 of the License, or
15 ;; (at your option) any later version.
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
27 ;; These are extensions to Emacs Lisp that provide a degree of
28 ;; Common Lisp compatibility, beyond what is already built-in
31 ;; This package was written by Dave Gillespie; it is a complete
32 ;; rewrite of Cesar Quiroz's original cl.el package of December 1986.
34 ;; Bug reports, comments, and suggestions are welcome!
36 ;; This file contains the portions of the Common Lisp extensions
37 ;; package which should be autoloaded, but need only be present
38 ;; if the compiler or interpreter is used---this file is not
39 ;; necessary for executing compiled code.
41 ;; See cl.el for Change Log.
48 ;; `gv' is required here because cl-macs can be loaded before loaddefs.el.
51 (defmacro cl--pop2
(place)
52 (declare (debug edebug-sexps
))
53 `(prog1 (car (cdr ,place
))
54 (setq ,place
(cdr (cdr ,place
)))))
56 (defvar cl--optimize-safety
)
57 (defvar cl--optimize-speed
)
61 ;; Place compiler macros at the beginning, otherwise uses of the corresponding
62 ;; functions can lead to recursive-loads that prevent the calls from
66 (defun cl--compiler-macro-list* (_form arg
&rest others
)
67 (let* ((args (reverse (cons arg others
)))
69 (while (setq args
(cdr args
))
70 (setq form
`(cons ,(car args
) ,form
)))
74 (defun cl--compiler-macro-cXXr (form x
)
75 (let* ((head (car form
))
76 (n (symbol-name (car form
)))
78 (if (not (string-match "c[ad]+r\\'" n
))
79 (if (and (fboundp head
) (symbolp (symbol-function head
)))
80 (cl--compiler-macro-cXXr (cons (symbol-function head
) (cdr form
))
82 (error "Compiler macro for cXXr applied to non-cXXr form"))
83 (while (> i
(match-beginning 0))
84 (setq x
(list (if (eq (aref n i
) ?a
) 'car
'cdr
) x
))
88 ;;; Some predicates for analyzing Lisp forms.
89 ;; These are used by various
90 ;; macro expanders to optimize the results in certain common cases.
92 (defconst cl--simple-funcs
'(car cdr nth aref elt if and or
+ -
1+ 1- min max
93 car-safe cdr-safe progn prog1 prog2
))
94 (defconst cl--safe-funcs
'(* / % length memq list vector vectorp
97 (defun cl--simple-expr-p (x &optional size
)
98 "Check if no side effects, and executes quickly."
99 (or size
(setq size
10))
100 (if (and (consp x
) (not (memq (car x
) '(quote function cl-function
))))
101 (and (symbolp (car x
))
102 (or (memq (car x
) cl--simple-funcs
)
103 (get (car x
) 'side-effect-free
))
105 (setq size
(1- size
))
106 (while (and (setq x
(cdr x
))
107 (setq size
(cl--simple-expr-p (car x
) size
))))
108 (and (null x
) (>= size
0) size
)))
109 (and (> size
0) (1- size
))))
111 (defun cl--simple-exprs-p (xs)
112 (while (and xs
(cl--simple-expr-p (car xs
)))
116 (defun cl--safe-expr-p (x)
117 "Check if no side effects."
118 (or (not (and (consp x
) (not (memq (car x
) '(quote function cl-function
)))))
119 (and (symbolp (car x
))
120 (or (memq (car x
) cl--simple-funcs
)
121 (memq (car x
) cl--safe-funcs
)
122 (get (car x
) 'side-effect-free
))
124 (while (and (setq x
(cdr x
)) (cl--safe-expr-p (car x
))))
127 ;;; Check if constant (i.e., no side effects or dependencies).
128 (defun cl--const-expr-p (x)
130 (or (eq (car x
) 'quote
)
131 (and (memq (car x
) '(function cl-function
))
132 (or (symbolp (nth 1 x
))
133 (and (eq (car-safe (nth 1 x
)) 'lambda
) 'func
)))))
134 ((symbolp x
) (and (memq x
'(nil t
)) t
))
137 (defun cl--const-expr-val (x)
138 "Return the value of X known at compile-time.
139 If X is not known at compile time, return nil. Before testing
140 whether X is known at compile time, macroexpand it completely in
141 `macroexpand-all-environment'."
142 (let ((x (macroexpand-all x macroexpand-all-environment
)))
143 (if (macroexp-const-p x
)
144 (if (consp x
) (nth 1 x
) x
))))
146 (defun cl--expr-contains (x y
)
147 "Count number of times X refers to Y. Return nil for 0 times."
148 ;; FIXME: This is naive, and it will cl-count Y as referred twice in
149 ;; (let ((Y 1)) Y) even though it should be 0. Also it is often called on
150 ;; non-macroexpanded code, so it may also miss some occurrences that would
151 ;; only appear in the expanded code.
152 (cond ((equal y x
) 1)
153 ((and (consp x
) (not (memq (car x
) '(quote function cl-function
))))
156 (setq sum
(+ sum
(or (cl--expr-contains (pop x
) y
) 0))))
157 (setq sum
(+ sum
(or (cl--expr-contains x y
) 0)))
158 (and (> sum
0) sum
)))
161 (defun cl--expr-contains-any (x y
)
162 (while (and y
(not (cl--expr-contains x
(car y
)))) (pop y
))
165 (defun cl--expr-depends-p (x y
)
166 "Check whether X may depend on any of the symbols in Y."
167 (and (not (macroexp-const-p x
))
168 (or (not (cl--safe-expr-p x
)) (cl--expr-contains-any x y
))))
172 (defvar cl--gensym-counter
)
174 (defun cl-gensym (&optional prefix
)
175 "Generate a new uninterned symbol.
176 The name is made by appending a number to PREFIX, default \"G\"."
177 (let ((pfix (if (stringp prefix
) prefix
"G"))
178 (num (if (integerp prefix
) prefix
179 (prog1 cl--gensym-counter
180 (setq cl--gensym-counter
(1+ cl--gensym-counter
))))))
181 (make-symbol (format "%s%d" pfix num
))))
184 (defun cl-gentemp (&optional prefix
)
185 "Generate a new interned symbol with a unique name.
186 The name is made by appending a number to PREFIX, default \"G\"."
187 (let ((pfix (if (stringp prefix
) prefix
"G"))
189 (while (intern-soft (setq name
(format "%s%d" pfix cl--gensym-counter
)))
190 (setq cl--gensym-counter
(1+ cl--gensym-counter
)))
194 ;;; Program structure.
196 (def-edebug-spec cl-declarations
197 (&rest
("cl-declare" &rest sexp
)))
199 (def-edebug-spec cl-declarations-or-string
200 (&or stringp cl-declarations
))
202 (def-edebug-spec cl-lambda-list
204 [&optional
["&optional" cl-
&optional-arg
&rest cl-
&optional-arg
]]
205 [&optional
["&rest" arg
]]
206 [&optional
["&key" [cl-
&key-arg
&rest cl-
&key-arg
]
207 &optional
"&allow-other-keys"]]
208 [&optional
["&aux" &rest
209 &or
(symbolp &optional def-form
) symbolp
]]
212 (def-edebug-spec cl-
&optional-arg
213 (&or
(arg &optional def-form arg
) arg
))
215 (def-edebug-spec cl-
&key-arg
216 (&or
([&or
(symbolp arg
) arg
] &optional def-form arg
) arg
))
218 (def-edebug-spec cl-type-spec sexp
)
220 (defconst cl--lambda-list-keywords
221 '(&optional
&rest
&key
&allow-other-keys
&aux
&whole
&body
&environment
))
223 (defvar cl--bind-block
) (defvar cl--bind-defs
) (defvar cl--bind-enquote
)
224 (defvar cl--bind-lets
) (defvar cl--bind-forms
)
226 (defun cl--transform-lambda (form bind-block
)
227 "Transform a function form FORM of name BIND-BLOCK.
228 BIND-BLOCK is the name of the symbol to which the function will be bound,
229 and which will be used for the name of the `cl-block' surrounding the
231 FORM is of the form (ARGS . BODY)."
232 ;; FIXME: (lambda (a &aux b) 1) expands to (lambda (a &rest --cl-rest--) ...)
233 ;; where the --cl-rest-- is clearly undesired.
234 (let* ((args (car form
)) (body (cdr form
)) (orig-args args
)
235 (cl--bind-block bind-block
) (cl--bind-defs nil
) (cl--bind-enquote nil
)
236 (cl--bind-lets nil
) (cl--bind-forms nil
)
237 (header nil
) (simple-args nil
))
238 (while (or (stringp (car body
))
239 (memq (car-safe (car body
)) '(interactive declare cl-declare
)))
240 (push (pop body
) header
))
241 (setq args
(if (listp args
) (cl-copy-list args
) (list '&rest args
)))
242 (let ((p (last args
))) (if (cdr p
) (setcdr p
(list '&rest
(cdr p
)))))
243 (if (setq cl--bind-defs
(cadr (memq '&cl-defs args
)))
244 (setq args
(delq '&cl-defs
(delq cl--bind-defs args
))
245 cl--bind-defs
(cadr cl--bind-defs
)))
246 (if (setq cl--bind-enquote
(memq '&cl-quote args
))
247 (setq args
(delq '&cl-quote args
)))
248 (if (memq '&whole args
) (error "&whole not currently implemented"))
249 (let* ((p (memq '&environment args
))
251 (if p
(setq args
(nconc (delq (car p
) (delq v args
))
252 `(&aux
(,v macroexpand-all-environment
))))))
253 (while (and args
(symbolp (car args
))
254 (not (memq (car args
) '(nil &rest
&body
&key
&aux
)))
255 (not (and (eq (car args
) '&optional
)
256 (or cl--bind-defs
(consp (cadr args
))))))
257 (push (pop args
) simple-args
))
258 (or (eq cl--bind-block
'cl-none
)
259 (setq body
(list `(cl-block ,cl--bind-block
,@body
))))
261 (cl-list* nil
(nreverse simple-args
) (nconc (nreverse header
) body
))
262 (if (memq '&optional simple-args
) (push '&optional args
))
263 (cl--do-arglist args nil
(- (length simple-args
)
264 (if (memq '&optional simple-args
) 1 0)))
265 (setq cl--bind-lets
(nreverse cl--bind-lets
))
267 (nconc (nreverse simple-args
)
268 (list '&rest
(car (pop cl--bind-lets
))))
269 (nconc (let ((hdr (nreverse header
)))
270 ;; Macro expansion can take place in the middle of
271 ;; apparently harmless computation, so it should not
272 ;; touch the match-data.
275 (cons (help-add-fundoc-usage
276 (if (stringp (car hdr
)) (pop hdr
))
277 ;; Be careful with make-symbol and (back)quote,
279 (let ((print-gensym nil
) (print-quoted t
))
280 (format "%S" (cons 'fn
(cl--make-usage-args
283 (list `(let* ,cl--bind-lets
284 ,@(nreverse cl--bind-forms
)
288 (defmacro cl-defun
(name args
&rest body
)
289 "Define NAME as a function.
290 Like normal `defun', except ARGLIST allows full Common Lisp conventions,
291 and BODY is implicitly surrounded by (cl-block NAME ...).
293 \(fn NAME ARGLIST [DOCSTRING] BODY...)"
295 ;; Same as defun but use cl-lambda-list.
296 (&define
[&or name
("setf" :name setf name
)]
298 cl-declarations-or-string
299 [&optional
("interactive" interactive
)]
303 (let* ((res (cl--transform-lambda (cons args body
) name
))
304 (form `(defun ,name
,@(cdr res
))))
305 (if (car res
) `(progn ,(car res
) ,form
) form
)))
307 ;; The lambda list for macros is different from that of normal lambdas.
308 ;; Note that &environment is only allowed as first or last items in the
311 (def-edebug-spec cl-macro-list
312 (([&optional
"&environment" arg
]
314 [&optional
["&optional" &rest
315 &or
(cl-macro-arg &optional def-form cl-macro-arg
) arg
]]
316 [&optional
[[&or
"&rest" "&body"] cl-macro-arg
]]
317 [&optional
["&key" [&rest
318 [&or
([&or
(symbolp cl-macro-arg
) arg
]
319 &optional def-form cl-macro-arg
)
321 &optional
"&allow-other-keys"]]
322 [&optional
["&aux" &rest
323 &or
(symbolp &optional def-form
) symbolp
]]
324 [&optional
"&environment" arg
]
327 (def-edebug-spec cl-macro-arg
328 (&or arg cl-macro-list1
))
330 (def-edebug-spec cl-macro-list1
331 (([&optional
"&whole" arg
] ;; only allowed at lower levels
333 [&optional
["&optional" &rest
334 &or
(cl-macro-arg &optional def-form cl-macro-arg
) arg
]]
335 [&optional
[[&or
"&rest" "&body"] cl-macro-arg
]]
336 [&optional
["&key" [&rest
337 [&or
([&or
(symbolp cl-macro-arg
) arg
]
338 &optional def-form cl-macro-arg
)
340 &optional
"&allow-other-keys"]]
341 [&optional
["&aux" &rest
342 &or
(symbolp &optional def-form
) symbolp
]]
346 (defmacro cl-defmacro
(name args
&rest body
)
347 "Define NAME as a macro.
348 Like normal `defmacro', except ARGLIST allows full Common Lisp conventions,
349 and BODY is implicitly surrounded by (cl-block NAME ...).
351 \(fn NAME ARGLIST [DOCSTRING] BODY...)"
353 (&define name cl-macro-list cl-declarations-or-string def-body
))
356 (let* ((res (cl--transform-lambda (cons args body
) name
))
357 (form `(defmacro ,name
,@(cdr res
))))
358 (if (car res
) `(progn ,(car res
) ,form
) form
)))
360 (def-edebug-spec cl-lambda-expr
361 (&define
("lambda" cl-lambda-list
362 ;;cl-declarations-or-string
363 ;;[&optional ("interactive" interactive)]
366 ;; Redefine function-form to also match cl-function
367 (def-edebug-spec function-form
368 ;; form at the end could also handle "function",
369 ;; but recognize it specially to avoid wrapping function forms.
370 (&or
([&or
"quote" "function"] &or symbolp lambda-expr
)
371 ("cl-function" cl-function
)
375 (defmacro cl-function
(func)
376 "Introduce a function.
377 Like normal `function', except that if argument is a lambda form,
378 its argument list allows full Common Lisp conventions."
379 (declare (debug (&or symbolp cl-lambda-expr
)))
380 (if (eq (car-safe func
) 'lambda
)
381 (let* ((res (cl--transform-lambda (cdr func
) 'cl-none
))
382 (form `(function (lambda .
,(cdr res
)))))
383 (if (car res
) `(progn ,(car res
) ,form
) form
))
386 (defun cl--make-usage-var (x)
387 "X can be a var or a (destructuring) lambda-list."
389 ((symbolp x
) (make-symbol (upcase (symbol-name x
))))
390 ((consp x
) (cl--make-usage-args x
))
393 (defun cl--make-usage-args (arglist)
394 (let ((aux (ignore-errors (cl-position '&aux arglist
))))
396 ;; `&aux' args aren't arguments, so let's just drop them from the
398 (setq arglist
(cl-subseq arglist
0 aux
))))
399 (if (cdr-safe (last arglist
)) ;Not a proper list.
400 (let* ((last (last arglist
))
405 (nconc (cl--make-usage-args arglist
) (cl--make-usage-var tail
)))
407 ;; `orig-args' can contain &cl-defs (an internal
408 ;; CL thingy I don't understand), so remove it.
409 (let ((x (memq '&cl-defs arglist
)))
410 (when x
(setq arglist
(delq (car x
) (remq (cadr x
) arglist
)))))
415 (let ((first (aref (symbol-name x
) 0)))
418 ;; Strip a leading underscore, since it only
419 ;; means that this argument is unused.
420 (make-symbol (upcase (if (eq ?_ first
)
421 (substring (symbol-name x
) 1)
422 (symbol-name x
)))))))
424 ((memq state
'(nil &rest
)) (cl--make-usage-args x
))
425 (t ;(VAR INITFORM SVAR) or ((KEYWORD VAR) INITFORM SVAR).
427 (if (and (consp (car x
)) (eq state
'&key
))
428 (list (caar x
) (cl--make-usage-var (nth 1 (car x
))))
429 (cl--make-usage-var (car x
)))
431 (cl--make-usage-args (nthcdr 2 x
)) ;SVAR.
435 (defun cl--do-arglist (args expr
&optional num
) ; uses cl--bind-*
437 (if (or (memq args cl--lambda-list-keywords
) (not (symbolp args
)))
438 (error "Invalid argument name: %s" args
)
439 (push (list args expr
) cl--bind-lets
))
440 (setq args
(cl-copy-list args
))
441 (let ((p (last args
))) (if (cdr p
) (setcdr p
(list '&rest
(cdr p
)))))
442 (let ((p (memq '&body args
))) (if p
(setcar p
'&rest
)))
443 (if (memq '&environment args
) (error "&environment used incorrectly"))
444 (let ((save-args args
)
445 (restarg (memq '&rest args
))
446 (safety (if (cl--compiling-file) cl--optimize-safety
3))
448 (laterarg nil
) (exactarg nil
) minarg
)
449 (or num
(setq num
0))
450 (setq restarg
(if (listp (cadr restarg
))
451 (make-symbol "--cl-rest--")
453 (push (list restarg expr
) cl--bind-lets
)
454 (if (eq (car args
) '&whole
)
455 (push (list (cl--pop2 args
) restarg
) cl--bind-lets
))
457 (setq minarg restarg
)
458 (while (and p
(not (memq (car p
) cl--lambda-list-keywords
)))
459 (or (eq p args
) (setq minarg
(list 'cdr minarg
)))
461 (if (memq (car p
) '(nil &aux
))
462 (setq minarg
`(= (length ,restarg
)
463 ,(length (cl-ldiff args p
)))
464 exactarg
(not (eq args p
)))))
465 (while (and args
(not (memq (car args
) cl--lambda-list-keywords
)))
466 (let ((poparg (list (if (or (cdr args
) (not exactarg
)) 'pop
'car
)
470 (if (or laterarg
(= safety
0)) poparg
472 (signal 'wrong-number-of-arguments
473 (list ,(and (not (eq cl--bind-block
'cl-none
))
475 (length ,restarg
)))))))
476 (setq num
(1+ num
) laterarg t
))
477 (while (and (eq (car args
) '&optional
) (pop args
))
478 (while (and args
(not (memq (car args
) cl--lambda-list-keywords
)))
479 (let ((arg (pop args
)))
480 (or (consp arg
) (setq arg
(list arg
)))
481 (if (cddr arg
) (cl--do-arglist (nth 2 arg
) `(and ,restarg t
)))
482 (let ((def (if (cdr arg
) (nth 1 arg
)
483 (or (car cl--bind-defs
)
484 (nth 1 (assq (car arg
) cl--bind-defs
)))))
485 (poparg `(pop ,restarg
)))
486 (and def cl--bind-enquote
(setq def
`',def
))
487 (cl--do-arglist (car arg
)
488 (if def
`(if ,restarg
,poparg
,def
) poparg
))
489 (setq num
(1+ num
))))))
490 (if (eq (car args
) '&rest
)
491 (let ((arg (cl--pop2 args
)))
492 (if (consp arg
) (cl--do-arglist arg restarg
)))
493 (or (eq (car args
) '&key
) (= safety
0) exactarg
495 (signal 'wrong-number-of-arguments
497 ,(and (not (eq cl--bind-block
'cl-none
))
499 (+ ,num
(length ,restarg
)))))
501 (while (and (eq (car args
) '&key
) (pop args
))
502 (while (and args
(not (memq (car args
) cl--lambda-list-keywords
)))
503 (let ((arg (pop args
)))
504 (or (consp arg
) (setq arg
(list arg
)))
505 (let* ((karg (if (consp (car arg
)) (caar arg
)
506 (let ((name (symbol-name (car arg
))))
507 ;; Strip a leading underscore, since it only
508 ;; means that this argument is unused, but
509 ;; shouldn't affect the key's name (bug#12367).
510 (if (eq ?_
(aref name
0))
511 (setq name
(substring name
1)))
512 (intern (format ":%s" name
)))))
513 (varg (if (consp (car arg
)) (cl-cadar arg
) (car arg
)))
514 (def (if (cdr arg
) (cadr arg
)
515 (or (car cl--bind-defs
) (cadr (assq varg cl--bind-defs
)))))
516 (look `(plist-member ,restarg
',karg
)))
517 (and def cl--bind-enquote
(setq def
`',def
))
519 (let* ((temp (or (nth 2 arg
) (make-symbol "--cl-var--")))
520 (val `(car (cdr ,temp
))))
521 (cl--do-arglist temp look
)
524 (prog1 ,val
(setq ,temp t
))
528 `(car (cdr ,(if (null def
)
531 ,(if (eq (cl--const-expr-p def
) t
)
532 `'(nil ,(cl--const-expr-val def
))
533 `(list nil
,def
))))))))
535 (setq keys
(nreverse keys
))
536 (or (and (eq (car args
) '&allow-other-keys
) (pop args
))
537 (null keys
) (= safety
0)
538 (let* ((var (make-symbol "--cl-keys--"))
539 (allow '(:allow-other-keys
))
542 ((memq (car ,var
) ',(append keys allow
))
543 (setq ,var
(cdr (cdr ,var
))))
544 ((car (cdr (memq (quote ,@allow
) ,restarg
)))
548 ,(format "Keyword argument %%s not one of %s"
551 (push `(let ((,var
,restarg
)) ,check
) cl--bind-forms
)))
552 (while (and (eq (car args
) '&aux
) (pop args
))
553 (while (and args
(not (memq (car args
) cl--lambda-list-keywords
)))
554 (if (consp (car args
))
555 (if (and cl--bind-enquote
(cl-cadar args
))
556 (cl--do-arglist (caar args
)
557 `',(cadr (pop args
)))
558 (cl--do-arglist (caar args
) (cadr (pop args
))))
559 (cl--do-arglist (pop args
) nil
))))
560 (if args
(error "Malformed argument list %s" save-args
)))))
562 (defun cl--arglist-args (args)
563 (if (nlistp args
) (list args
)
564 (let ((res nil
) (kind nil
) arg
)
566 (setq arg
(pop args
))
567 (if (memq arg cl--lambda-list-keywords
) (setq kind arg
)
568 (if (eq arg
'&cl-defs
) (pop args
)
569 (and (consp arg
) kind
(setq arg
(car arg
)))
570 (and (consp arg
) (cdr arg
) (eq kind
'&key
) (setq arg
(cadr arg
)))
571 (setq res
(nconc res
(cl--arglist-args arg
))))))
572 (nconc res
(and args
(list args
))))))
575 (defmacro cl-destructuring-bind
(args expr
&rest body
)
576 "Bind the variables in ARGS to the result of EXPR and execute BODY."
578 (debug (&define cl-macro-list def-form cl-declarations def-body
)))
579 (let* ((cl--bind-lets nil
) (cl--bind-forms nil
)
580 (cl--bind-defs nil
) (cl--bind-block 'cl-none
) (cl--bind-enquote nil
))
581 (cl--do-arglist (or args
'(&aux
)) expr
)
582 (macroexp-let* (nreverse cl--bind-lets
)
583 (macroexp-progn (append (nreverse cl--bind-forms
) body
)))))
586 ;;; The `cl-eval-when' form.
588 (defvar cl--not-toplevel nil
)
591 (defmacro cl-eval-when
(when &rest body
)
592 "Control when BODY is evaluated.
593 If `compile' is in WHEN, BODY is evaluated when compiled at top-level.
594 If `load' is in WHEN, BODY is evaluated when loaded after top-level compile.
595 If `eval' is in WHEN, BODY is evaluated when interpreted or at non-top-level.
597 \(fn (WHEN...) BODY...)"
598 (declare (indent 1) (debug (sexp body
)))
599 (if (and (fboundp 'cl--compiling-file
) (cl--compiling-file)
600 (not cl--not-toplevel
) (not (boundp 'for-effect
))) ;Horrible kludge.
601 (let ((comp (or (memq 'compile when
) (memq :compile-toplevel when
)))
602 (cl--not-toplevel t
))
603 (if (or (memq 'load when
) (memq :load-toplevel when
))
604 (if comp
(cons 'progn
(mapcar 'cl--compile-time-too body
))
605 `(if nil nil
,@body
))
606 (progn (if comp
(eval (cons 'progn body
))) nil
)))
607 (and (or (memq 'eval when
) (memq :execute when
))
608 (cons 'progn body
))))
610 (defun cl--compile-time-too (form)
611 (or (and (symbolp (car-safe form
)) (get (car-safe form
) 'byte-hunk-handler
))
612 (setq form
(macroexpand
613 form
(cons '(cl-eval-when) byte-compile-macro-environment
))))
614 (cond ((eq (car-safe form
) 'progn
)
615 (cons 'progn
(mapcar 'cl--compile-time-too
(cdr form
))))
616 ((eq (car-safe form
) 'cl-eval-when
)
617 (let ((when (nth 1 form
)))
618 (if (or (memq 'eval when
) (memq :execute when
))
619 `(cl-eval-when (compile ,@when
) ,@(cddr form
))
621 (t (eval form
) form
)))
624 (defmacro cl-load-time-value
(form &optional _read-only
)
625 "Like `progn', but evaluates the body at load time.
626 The result of the body appears to the compiler as a quoted constant."
627 (declare (debug (form &optional sexp
)))
628 (if (cl--compiling-file)
629 (let* ((temp (cl-gentemp "--cl-load-time--"))
630 (set `(setq ,temp
,form
)))
631 (if (and (fboundp 'byte-compile-file-form-defmumble
)
632 (boundp 'this-kind
) (boundp 'that-one
))
633 ;; Else, we can't output right away, so we have to delay it to the
634 ;; next time we're at the top-level.
635 ;; FIXME: Use advice-add/remove.
636 (fset 'byte-compile-file-form
637 (let ((old (symbol-function 'byte-compile-file-form
)))
639 (fset 'byte-compile-file-form old
)
640 (byte-compile-file-form set
)
641 (byte-compile-file-form form
))))
642 ;; If we're not in the middle of compiling something, we can
643 ;; output directly to byte-compile-outbuffer, to make sure
644 ;; temp is set before we use it.
645 (print set byte-compile--outbuffer
))
650 ;;; Conditional control structures.
653 (defmacro cl-case
(expr &rest clauses
)
654 "Eval EXPR and choose among clauses on that value.
655 Each clause looks like (KEYLIST BODY...). EXPR is evaluated and compared
656 against each key in each KEYLIST; the corresponding BODY is evaluated.
657 If no clause succeeds, cl-case returns nil. A single atom may be used in
658 place of a KEYLIST of one atom. A KEYLIST of t or `otherwise' is
659 allowed only in the final clause, and matches if no other keys match.
660 Key values are compared by `eql'.
661 \n(fn EXPR (KEYLIST BODY...)...)"
662 (declare (indent 1) (debug (form &rest
(sexp body
))))
663 (macroexp-let2 macroexp-copyable-p temp expr
664 (let* ((head-list nil
))
668 (cons (cond ((memq (car c
) '(t otherwise
)) t
)
669 ((eq (car c
) 'cl--ecase-error-flag
)
670 `(error "cl-ecase failed: %s, %s"
671 ,temp
',(reverse head-list
)))
673 (setq head-list
(append (car c
) head-list
))
674 `(cl-member ,temp
',(car c
)))
676 (if (memq (car c
) head-list
)
677 (error "Duplicate key in case: %s"
679 (push (car c
) head-list
)
680 `(eql ,temp
',(car c
))))
681 (or (cdr c
) '(nil))))
685 (defmacro cl-ecase
(expr &rest clauses
)
686 "Like `cl-case', but error if no case fits.
687 `otherwise'-clauses are not allowed.
688 \n(fn EXPR (KEYLIST BODY...)...)"
689 (declare (indent 1) (debug cl-case
))
690 `(cl-case ,expr
,@clauses
(cl--ecase-error-flag)))
693 (defmacro cl-typecase
(expr &rest clauses
)
694 "Evals EXPR, chooses among clauses on that value.
695 Each clause looks like (TYPE BODY...). EXPR is evaluated and, if it
696 satisfies TYPE, the corresponding BODY is evaluated. If no clause succeeds,
697 cl-typecase returns nil. A TYPE of t or `otherwise' is allowed only in the
698 final clause, and matches if no other keys match.
699 \n(fn EXPR (TYPE BODY...)...)"
701 (debug (form &rest
([&or cl-type-spec
"otherwise"] body
))))
702 (macroexp-let2 macroexp-copyable-p temp expr
703 (let* ((type-list nil
))
709 (cons (cond ((eq (car c
) 'otherwise
) t
)
710 ((eq (car c
) 'cl--ecase-error-flag
)
711 `(error "cl-etypecase failed: %s, %s"
712 ,temp
',(reverse type-list
)))
714 (push (car c
) type-list
)
715 `(cl-typep ,temp
',(car c
))))
716 (or (cdr c
) '(nil)))))
720 (defmacro cl-etypecase
(expr &rest clauses
)
721 "Like `cl-typecase', but error if no case fits.
722 `otherwise'-clauses are not allowed.
723 \n(fn EXPR (TYPE BODY...)...)"
724 (declare (indent 1) (debug cl-typecase
))
725 `(cl-typecase ,expr
,@clauses
(cl--ecase-error-flag)))
728 ;;; Blocks and exits.
731 (defmacro cl-block
(name &rest body
)
732 "Define a lexically-scoped block named NAME.
733 NAME may be any symbol. Code inside the BODY forms can call `cl-return-from'
734 to jump prematurely out of the block. This differs from `catch' and `throw'
735 in two respects: First, the NAME is an unevaluated symbol rather than a
736 quoted symbol or other form; and second, NAME is lexically rather than
737 dynamically scoped: Only references to it within BODY will work. These
738 references may appear inside macro expansions, but not inside functions
740 (declare (indent 1) (debug (symbolp body
)))
741 (if (cl--safe-expr-p `(progn ,@body
)) `(progn ,@body
)
743 (catch ',(intern (format "--cl-block-%s--" name
))
747 (defmacro cl-return
(&optional result
)
748 "Return from the block named nil.
749 This is equivalent to `(cl-return-from nil RESULT)'."
750 (declare (debug (&optional form
)))
751 `(cl-return-from nil
,result
))
754 (defmacro cl-return-from
(name &optional result
)
755 "Return from the block named NAME.
756 This jumps out to the innermost enclosing `(cl-block NAME ...)' form,
757 returning RESULT from that form (or nil if RESULT is omitted).
758 This is compatible with Common Lisp, but note that `defun' and
759 `defmacro' do not create implicit blocks as they do in Common Lisp."
760 (declare (indent 1) (debug (symbolp &optional form
)))
761 (let ((name2 (intern (format "--cl-block-%s--" name
))))
762 `(cl--block-throw ',name2
,result
)))
765 ;;; The "cl-loop" macro.
767 (defvar cl--loop-args
) (defvar cl--loop-accum-var
) (defvar cl--loop-accum-vars
)
768 (defvar cl--loop-bindings
) (defvar cl--loop-body
)
769 (defvar cl--loop-finally
)
770 (defvar cl--loop-finish-flag
) ;Symbol set to nil to exit the loop?
771 (defvar cl--loop-first-flag
)
772 (defvar cl--loop-initially
) (defvar cl--loop-iterator-function
)
773 (defvar cl--loop-name
)
774 (defvar cl--loop-result
) (defvar cl--loop-result-explicit
)
775 (defvar cl--loop-result-var
) (defvar cl--loop-steps
)
776 (defvar cl--loop-symbol-macs
)
778 (defun cl--loop-set-iterator-function (kind iterator
)
779 (if cl--loop-iterator-function
780 ;; FIXME: Of course, we could make it work, but why bother.
781 (error "Iteration on %S does not support this combination" kind
)
782 (setq cl--loop-iterator-function iterator
)))
785 (defmacro cl-loop
(&rest loop-args
)
786 "The Common Lisp `loop' macro.
787 Valid clauses include:
789 for VAR from/upfrom/downfrom EXPR1 to/upto/downto/above/below EXPR2 by EXPR3
790 for VAR = EXPR1 then EXPR2
791 for VAR in/on/in-ref LIST by FUNC
792 for VAR across/across-ref ARRAY
794 the elements of/of-ref SEQUENCE [using (index VAR2)]
795 the symbols [of OBARRAY]
796 the hash-keys/hash-values of HASH-TABLE [using (hash-values/hash-keys V2)]
797 the key-codes/key-bindings/key-seqs of KEYMAP [using (key-bindings VAR2)]
798 the overlays/intervals [of BUFFER] [from POS1] [to POS2]
800 the windows [of FRAME]
803 while/until/always/never/thereis CONDITION
804 Accumulation clauses:
805 collect/append/nconc/concat/vconcat/count/sum/maximize/minimize FORM
807 Miscellaneous clauses:
809 if/when/unless COND CLAUSE [and CLAUSE]... else CLAUSE [and CLAUSE...]
811 initially/finally [do] EXPRS...
813 [finally] return EXPR
815 For more details, see Info node `(cl)Loop Facility'.
818 (declare (debug (&rest
&or
819 ;; These are usually followed by a symbol, but it can
820 ;; actually be any destructuring-bind pattern, which
821 ;; would erroneously match `form'.
822 [[&or
"for" "as" "with" "and"] sexp
]
823 ;; These are followed by expressions which could
824 ;; erroneously match `symbolp'.
825 [[&or
"from" "upfrom" "downfrom" "to" "upto" "downto"
826 "above" "below" "by" "in" "on" "=" "across"
827 "repeat" "while" "until" "always" "never"
828 "thereis" "collect" "append" "nconc" "sum"
829 "count" "maximize" "minimize" "if" "unless"
832 ;; Simple default, which covers 99% of the cases.
834 (if (not (memq t
(mapcar #'symbolp
835 (delq nil
(delq t
(cl-copy-list loop-args
))))))
836 `(cl-block nil
(while t
,@loop-args
))
837 (let ((cl--loop-args loop-args
) (cl--loop-name nil
) (cl--loop-bindings nil
)
838 (cl--loop-body nil
) (cl--loop-steps nil
)
839 (cl--loop-result nil
) (cl--loop-result-explicit nil
)
840 (cl--loop-result-var nil
) (cl--loop-finish-flag nil
)
841 (cl--loop-accum-var nil
) (cl--loop-accum-vars nil
)
842 (cl--loop-initially nil
) (cl--loop-finally nil
)
843 (cl--loop-iterator-function nil
) (cl--loop-first-flag nil
)
844 (cl--loop-symbol-macs nil
))
845 ;; Here is more or less how those dynbind vars are used after looping
846 ;; over cl--parse-loop-clause:
848 ;; (cl-block ,cl--loop-name
849 ;; (cl-symbol-macrolet ,cl--loop-symbol-macs
850 ;; (foldl #'cl--loop-let
851 ;; `((,cl--loop-result-var)
852 ;; ((,cl--loop-first-flag t))
853 ;; ((,cl--loop-finish-flag t))
854 ;; ,@cl--loop-bindings)
855 ;; ,@(nreverse cl--loop-initially)
856 ;; (while ;(well: cl--loop-iterator-function)
857 ;; ,(car (cl--loop-build-ands (nreverse cl--loop-body)))
858 ;; ,@(cadr (cl--loop-build-ands (nreverse cl--loop-body)))
859 ;; ,@(nreverse cl--loop-steps)
860 ;; (setq ,cl--loop-first-flag nil))
861 ;; (if (not ,cl--loop-finish-flag) ;FIXME: Why `if' vs `progn'?
862 ;; ,cl--loop-result-var
863 ;; ,@(nreverse cl--loop-finally)
864 ;; ,(or cl--loop-result-explicit
865 ;; cl--loop-result)))))
867 (setq cl--loop-args
(append cl--loop-args
'(cl-end-loop)))
868 (while (not (eq (car cl--loop-args
) 'cl-end-loop
))
869 (cl--parse-loop-clause))
870 (if cl--loop-finish-flag
871 (push `((,cl--loop-finish-flag t
)) cl--loop-bindings
))
872 (if cl--loop-first-flag
873 (progn (push `((,cl--loop-first-flag t
)) cl--loop-bindings
)
874 (push `(setq ,cl--loop-first-flag nil
) cl--loop-steps
)))
875 (let* ((epilogue (nconc (nreverse cl--loop-finally
)
876 (list (or cl--loop-result-explicit
878 (ands (cl--loop-build-ands (nreverse cl--loop-body
)))
879 (while-body (nconc (cadr ands
) (nreverse cl--loop-steps
)))
881 (nreverse cl--loop-initially
)
882 (list (if cl--loop-iterator-function
883 `(cl-block --cl-finish--
884 ,(funcall cl--loop-iterator-function
885 (if (eq (car ands
) t
) while-body
886 (cons `(or ,(car ands
)
891 `(while ,(car ands
) ,@while-body
)))
892 (if cl--loop-finish-flag
893 (if (equal epilogue
'(nil)) (list cl--loop-result-var
)
894 `((if ,cl--loop-finish-flag
895 (progn ,@epilogue
) ,cl--loop-result-var
)))
897 (if cl--loop-result-var
898 (push (list cl--loop-result-var
) cl--loop-bindings
))
899 (while cl--loop-bindings
900 (if (cdar cl--loop-bindings
)
901 (setq body
(list (cl--loop-let (pop cl--loop-bindings
) body t
)))
903 (while (and cl--loop-bindings
904 (not (cdar cl--loop-bindings
)))
905 (push (car (pop cl--loop-bindings
)) lets
))
906 (setq body
(list (cl--loop-let lets body nil
))))))
907 (if cl--loop-symbol-macs
909 (list `(cl-symbol-macrolet ,cl--loop-symbol-macs
,@body
))))
910 `(cl-block ,cl--loop-name
,@body
)))))
912 ;; Below is a complete spec for cl-loop, in several parts that correspond
913 ;; to the syntax given in CLtL2. The specs do more than specify where
914 ;; the forms are; it also specifies, as much as Edebug allows, all the
915 ;; syntactically valid cl-loop clauses. The disadvantage of this
916 ;; completeness is rigidity, but the "for ... being" clause allows
917 ;; arbitrary extensions of the form: [symbolp &rest &or symbolp form].
919 ;; (def-edebug-spec cl-loop
920 ;; ([&optional ["named" symbolp]]
926 ;; loop-initial-final]
927 ;; [&rest loop-clause]
930 ;; (def-edebug-spec loop-with
933 ;; [&optional ["=" form]]
934 ;; &rest ["and" loop-var
936 ;; [&optional ["=" form]]]))
938 ;; (def-edebug-spec loop-for-as
939 ;; ([&or "for" "as"] loop-for-as-subclause
940 ;; &rest ["and" loop-for-as-subclause]))
942 ;; (def-edebug-spec loop-for-as-subclause
946 ;; [[&or "in" "on" "in-ref" "across-ref"]
947 ;; form &optional ["by" function-form]]
949 ;; ["=" form &optional ["then" form]]
952 ;; [&or "the" "each"]
954 ;; [[&or "element" "elements"]
955 ;; [&or "of" "in" "of-ref"] form
956 ;; &optional "using" ["index" symbolp]];; is this right?
957 ;; [[&or "hash-key" "hash-keys"
958 ;; "hash-value" "hash-values"]
960 ;; hash-table-p &optional ["using" ([&or "hash-value" "hash-values"
961 ;; "hash-key" "hash-keys"] sexp)]]
963 ;; [[&or "symbol" "present-symbol" "external-symbol"
964 ;; "symbols" "present-symbols" "external-symbols"]
965 ;; [&or "in" "of"] package-p]
967 ;; ;; Extensions for Emacs Lisp, including Lucid Emacs.
968 ;; [[&or "frame" "frames"
969 ;; "screen" "screens"
970 ;; "buffer" "buffers"]]
972 ;; [[&or "window" "windows"]
973 ;; [&or "of" "in"] form]
975 ;; [[&or "overlay" "overlays"
976 ;; "extent" "extents"]
977 ;; [&or "of" "in"] form
978 ;; &optional [[&or "from" "to"] form]]
980 ;; [[&or "interval" "intervals"]
981 ;; [&or "in" "of"] form
982 ;; &optional [[&or "from" "to"] form]
983 ;; ["property" form]]
985 ;; [[&or "key-code" "key-codes"
986 ;; "key-seq" "key-seqs"
987 ;; "key-binding" "key-bindings"]
988 ;; [&or "in" "of"] form
989 ;; &optional ["using" ([&or "key-code" "key-codes"
990 ;; "key-seq" "key-seqs"
991 ;; "key-binding" "key-bindings"]
993 ;; ;; For arbitrary extensions, recognize anything else.
994 ;; [symbolp &rest &or symbolp form]
997 ;; ;; arithmetic - must be last since all parts are optional.
998 ;; [[&optional [[&or "from" "downfrom" "upfrom"] form]]
999 ;; [&optional [[&or "to" "downto" "upto" "below" "above"] form]]
1000 ;; [&optional ["by" form]]
1003 ;; (def-edebug-spec loop-initial-final
1004 ;; (&or ["initially"
1005 ;; ;; [&optional &or "do" "doing"] ;; CLtL2 doesn't allow this.
1006 ;; &rest loop-non-atomic-expr]
1008 ;; [[&optional &or "do" "doing"] &rest loop-non-atomic-expr]
1009 ;; ["return" form]]))
1011 ;; (def-edebug-spec loop-and-clause
1012 ;; (loop-clause &rest ["and" loop-clause]))
1014 ;; (def-edebug-spec loop-clause
1016 ;; [[&or "while" "until" "always" "never" "thereis"] form]
1018 ;; [[&or "collect" "collecting"
1019 ;; "append" "appending"
1020 ;; "nconc" "nconcing"
1021 ;; "concat" "vconcat"] form
1022 ;; [&optional ["into" loop-var]]]
1024 ;; [[&or "count" "counting"
1026 ;; "maximize" "maximizing"
1027 ;; "minimize" "minimizing"] form
1028 ;; [&optional ["into" loop-var]]
1031 ;; [[&or "if" "when" "unless"]
1032 ;; form loop-and-clause
1033 ;; [&optional ["else" loop-and-clause]]
1034 ;; [&optional "end"]]
1036 ;; [[&or "do" "doing"] &rest loop-non-atomic-expr]
1039 ;; loop-initial-final
1042 ;; (def-edebug-spec loop-non-atomic-expr
1043 ;; ([¬ atom] form))
1045 ;; (def-edebug-spec loop-var
1046 ;; ;; The symbolp must be last alternative to recognize e.g. (a b . c)
1048 ;; ;; (loop-var . [&or nil loop-var])
1049 ;; ;; (symbolp . [&or nil loop-var])
1050 ;; ;; (symbolp . loop-var)
1051 ;; ;; (symbolp . (symbolp . [&or nil loop-var]))
1052 ;; ;; (symbolp . (symbolp . loop-var))
1053 ;; ;; (symbolp . (symbolp . symbolp)) == (symbolp symbolp . symbolp)
1054 ;; (&or (loop-var . [&or nil loop-var]) [gate symbolp]))
1056 ;; (def-edebug-spec loop-type-spec
1057 ;; (&optional ["of-type" loop-d-type-spec]))
1059 ;; (def-edebug-spec loop-d-type-spec
1060 ;; (&or (loop-d-type-spec . [&or nil loop-d-type-spec]) cl-type-spec))
1064 (defun cl--parse-loop-clause () ; uses loop-*
1065 (let ((word (pop cl--loop-args
))
1066 (hash-types '(hash-key hash-keys hash-value hash-values
))
1067 (key-types '(key-code key-codes key-seq key-seqs
1068 key-binding key-bindings
)))
1071 ((null cl--loop-args
)
1072 (error "Malformed `cl-loop' macro"))
1075 (setq cl--loop-name
(pop cl--loop-args
)))
1077 ((eq word
'initially
)
1078 (if (memq (car cl--loop-args
) '(do doing
)) (pop cl--loop-args
))
1079 (or (consp (car cl--loop-args
))
1080 (error "Syntax error on `initially' clause"))
1081 (while (consp (car cl--loop-args
))
1082 (push (pop cl--loop-args
) cl--loop-initially
)))
1085 (if (eq (car cl--loop-args
) 'return
)
1086 (setq cl--loop-result-explicit
1087 (or (cl--pop2 cl--loop-args
) '(quote nil
)))
1088 (if (memq (car cl--loop-args
) '(do doing
)) (pop cl--loop-args
))
1089 (or (consp (car cl--loop-args
))
1090 (error "Syntax error on `finally' clause"))
1091 (if (and (eq (caar cl--loop-args
) 'return
) (null cl--loop-name
))
1092 (setq cl--loop-result-explicit
1093 (or (nth 1 (pop cl--loop-args
)) '(quote nil
)))
1094 (while (consp (car cl--loop-args
))
1095 (push (pop cl--loop-args
) cl--loop-finally
)))))
1097 ((memq word
'(for as
))
1098 (let ((loop-for-bindings nil
) (loop-for-sets nil
) (loop-for-steps nil
)
1101 ;; Use `cl-gensym' rather than `make-symbol'. It's important that
1102 ;; (not (eq (symbol-name var1) (symbol-name var2))) because
1103 ;; these vars get added to the macro-environment.
1104 (let ((var (or (pop cl--loop-args
) (cl-gensym "--cl-var--"))))
1105 (setq word
(pop cl--loop-args
))
1106 (if (eq word
'being
) (setq word
(pop cl--loop-args
)))
1107 (if (memq word
'(the each
)) (setq word
(pop cl--loop-args
)))
1108 (if (memq word
'(buffer buffers
))
1110 cl--loop-args
(cons '(buffer-list) cl--loop-args
)))
1113 ((memq word
'(from downfrom upfrom to downto upto
1115 (push word cl--loop-args
)
1116 (if (memq (car cl--loop-args
) '(downto above
))
1117 (error "Must specify `from' value for downward cl-loop"))
1118 (let* ((down (or (eq (car cl--loop-args
) 'downfrom
)
1119 (memq (cl-caddr cl--loop-args
)
1121 (excl (or (memq (car cl--loop-args
) '(above below
))
1122 (memq (cl-caddr cl--loop-args
)
1124 (start (and (memq (car cl--loop-args
)
1125 '(from upfrom downfrom
))
1126 (cl--pop2 cl--loop-args
)))
1127 (end (and (memq (car cl--loop-args
)
1128 '(to upto downto above below
))
1129 (cl--pop2 cl--loop-args
)))
1130 (step (and (eq (car cl--loop-args
) 'by
)
1131 (cl--pop2 cl--loop-args
)))
1132 (end-var (and (not (macroexp-const-p end
))
1133 (make-symbol "--cl-var--")))
1134 (step-var (and (not (macroexp-const-p step
))
1135 (make-symbol "--cl-var--"))))
1136 (and step
(numberp step
) (<= step
0)
1137 (error "Loop `by' value is not positive: %s" step
))
1138 (push (list var
(or start
0)) loop-for-bindings
)
1139 (if end-var
(push (list end-var end
) loop-for-bindings
))
1140 (if step-var
(push (list step-var step
)
1144 (if down
(if excl
'> '>=) (if excl
'< '<=))
1145 var
(or end-var end
))
1147 (push (list var
(list (if down
'-
'+) var
1148 (or step-var step
1)))
1151 ((memq word
'(in in-ref on
))
1152 (let* ((on (eq word
'on
))
1153 (temp (if (and on
(symbolp var
))
1154 var
(make-symbol "--cl-var--"))))
1155 (push (list temp
(pop cl--loop-args
)) loop-for-bindings
)
1156 (push `(consp ,temp
) cl--loop-body
)
1157 (if (eq word
'in-ref
)
1158 (push (list var
`(car ,temp
)) cl--loop-symbol-macs
)
1161 (push (list var nil
) loop-for-bindings
)
1162 (push (list var
(if on temp
`(car ,temp
)))
1165 (if (eq (car cl--loop-args
) 'by
)
1166 (let ((step (cl--pop2 cl--loop-args
)))
1167 (if (and (memq (car-safe step
)
1170 (symbolp (nth 1 step
)))
1171 (list (nth 1 step
) temp
)
1172 `(funcall ,step
,temp
)))
1177 (let* ((start (pop cl--loop-args
))
1178 (then (if (eq (car cl--loop-args
) 'then
)
1179 (cl--pop2 cl--loop-args
) start
)))
1180 (push (list var nil
) loop-for-bindings
)
1181 (if (or ands
(eq (car cl--loop-args
) 'and
))
1184 (if ,(or cl--loop-first-flag
1185 (setq cl--loop-first-flag
1186 (make-symbol "--cl-var--")))
1189 (push (list var then
) loop-for-steps
))
1191 (if (eq start then
) start
1192 `(if ,(or cl--loop-first-flag
1193 (setq cl--loop-first-flag
1194 (make-symbol "--cl-var--")))
1198 ((memq word
'(across across-ref
))
1199 (let ((temp-vec (make-symbol "--cl-vec--"))
1200 (temp-idx (make-symbol "--cl-idx--")))
1201 (push (list temp-vec
(pop cl--loop-args
)) loop-for-bindings
)
1202 (push (list temp-idx -
1) loop-for-bindings
)
1203 (push `(< (setq ,temp-idx
(1+ ,temp-idx
))
1206 (if (eq word
'across-ref
)
1207 (push (list var
`(aref ,temp-vec
,temp-idx
))
1208 cl--loop-symbol-macs
)
1209 (push (list var nil
) loop-for-bindings
)
1210 (push (list var
`(aref ,temp-vec
,temp-idx
))
1213 ((memq word
'(element elements
))
1214 (let ((ref (or (memq (car cl--loop-args
) '(in-ref of-ref
))
1215 (and (not (memq (car cl--loop-args
) '(in of
)))
1216 (error "Expected `of'"))))
1217 (seq (cl--pop2 cl--loop-args
))
1218 (temp-seq (make-symbol "--cl-seq--"))
1220 (if (eq (car cl--loop-args
) 'using
)
1221 (if (and (= (length (cadr cl--loop-args
)) 2)
1222 (eq (cl-caadr cl--loop-args
) 'index
))
1223 (cadr (cl--pop2 cl--loop-args
))
1224 (error "Bad `using' clause"))
1225 (make-symbol "--cl-idx--"))))
1226 (push (list temp-seq seq
) loop-for-bindings
)
1227 (push (list temp-idx
0) loop-for-bindings
)
1229 (let ((temp-len (make-symbol "--cl-len--")))
1230 (push (list temp-len
`(length ,temp-seq
))
1232 (push (list var
`(elt ,temp-seq
,temp-idx
))
1233 cl--loop-symbol-macs
)
1234 (push `(< ,temp-idx
,temp-len
) cl--loop-body
))
1235 (push (list var nil
) loop-for-bindings
)
1236 (push `(and ,temp-seq
1237 (or (consp ,temp-seq
)
1238 (< ,temp-idx
(length ,temp-seq
))))
1240 (push (list var
`(if (consp ,temp-seq
)
1242 (aref ,temp-seq
,temp-idx
)))
1244 (push (list temp-idx
`(1+ ,temp-idx
))
1247 ((memq word hash-types
)
1248 (or (memq (car cl--loop-args
) '(in of
))
1249 (error "Expected `of'"))
1250 (let* ((table (cl--pop2 cl--loop-args
))
1252 (if (eq (car cl--loop-args
) 'using
)
1253 (if (and (= (length (cadr cl--loop-args
)) 2)
1254 (memq (cl-caadr cl--loop-args
) hash-types
)
1255 (not (eq (cl-caadr cl--loop-args
) word
)))
1256 (cadr (cl--pop2 cl--loop-args
))
1257 (error "Bad `using' clause"))
1258 (make-symbol "--cl-var--"))))
1259 (if (memq word
'(hash-value hash-values
))
1260 (setq var
(prog1 other
(setq other var
))))
1261 (cl--loop-set-iterator-function
1262 'hash-tables
(lambda (body)
1263 `(maphash (lambda (,var
,other
) .
,body
)
1266 ((memq word
'(symbol present-symbol external-symbol
1267 symbols present-symbols external-symbols
))
1268 (let ((ob (and (memq (car cl--loop-args
) '(in of
))
1269 (cl--pop2 cl--loop-args
))))
1270 (cl--loop-set-iterator-function
1271 'symbols
(lambda (body)
1272 `(mapatoms (lambda (,var
) .
,body
) ,ob
)))))
1274 ((memq word
'(overlay overlays extent extents
))
1275 (let ((buf nil
) (from nil
) (to nil
))
1276 (while (memq (car cl--loop-args
) '(in of from to
))
1277 (cond ((eq (car cl--loop-args
) 'from
)
1278 (setq from
(cl--pop2 cl--loop-args
)))
1279 ((eq (car cl--loop-args
) 'to
)
1280 (setq to
(cl--pop2 cl--loop-args
)))
1281 (t (setq buf
(cl--pop2 cl--loop-args
)))))
1282 (cl--loop-set-iterator-function
1283 'overlays
(lambda (body)
1285 (lambda (,var
,(make-symbol "--cl-var--"))
1286 (progn .
,body
) nil
)
1289 ((memq word
'(interval intervals
))
1290 (let ((buf nil
) (prop nil
) (from nil
) (to nil
)
1291 (var1 (make-symbol "--cl-var1--"))
1292 (var2 (make-symbol "--cl-var2--")))
1293 (while (memq (car cl--loop-args
) '(in of property from to
))
1294 (cond ((eq (car cl--loop-args
) 'from
)
1295 (setq from
(cl--pop2 cl--loop-args
)))
1296 ((eq (car cl--loop-args
) 'to
)
1297 (setq to
(cl--pop2 cl--loop-args
)))
1298 ((eq (car cl--loop-args
) 'property
)
1299 (setq prop
(cl--pop2 cl--loop-args
)))
1300 (t (setq buf
(cl--pop2 cl--loop-args
)))))
1301 (if (and (consp var
) (symbolp (car var
)) (symbolp (cdr var
)))
1302 (setq var1
(car var
) var2
(cdr var
))
1303 (push (list var
`(cons ,var1
,var2
)) loop-for-sets
))
1304 (cl--loop-set-iterator-function
1305 'intervals
(lambda (body)
1307 (lambda (,var1
,var2
) .
,body
)
1308 ,buf
,prop
,from
,to
)))))
1310 ((memq word key-types
)
1311 (or (memq (car cl--loop-args
) '(in of
))
1312 (error "Expected `of'"))
1313 (let ((cl-map (cl--pop2 cl--loop-args
))
1315 (if (eq (car cl--loop-args
) 'using
)
1316 (if (and (= (length (cadr cl--loop-args
)) 2)
1317 (memq (cl-caadr cl--loop-args
) key-types
)
1318 (not (eq (cl-caadr cl--loop-args
) word
)))
1319 (cadr (cl--pop2 cl--loop-args
))
1320 (error "Bad `using' clause"))
1321 (make-symbol "--cl-var--"))))
1322 (if (memq word
'(key-binding key-bindings
))
1323 (setq var
(prog1 other
(setq other var
))))
1324 (cl--loop-set-iterator-function
1325 'keys
(lambda (body)
1326 `(,(if (memq word
'(key-seq key-seqs
))
1327 'cl--map-keymap-recursively
'map-keymap
)
1328 (lambda (,var
,other
) .
,body
) ,cl-map
)))))
1330 ((memq word
'(frame frames screen screens
))
1331 (let ((temp (make-symbol "--cl-var--")))
1332 (push (list var
'(selected-frame))
1334 (push (list temp nil
) loop-for-bindings
)
1335 (push `(prog1 (not (eq ,var
,temp
))
1336 (or ,temp
(setq ,temp
,var
)))
1338 (push (list var
`(next-frame ,var
))
1341 ((memq word
'(window windows
))
1342 (let ((scr (and (memq (car cl--loop-args
) '(in of
))
1343 (cl--pop2 cl--loop-args
)))
1344 (temp (make-symbol "--cl-var--"))
1345 (minip (make-symbol "--cl-minip--")))
1346 (push (list var
(if scr
1347 `(frame-selected-window ,scr
)
1348 '(selected-window)))
1350 ;; If we started in the minibuffer, we need to
1351 ;; ensure that next-window will bring us back there
1352 ;; at some point. (Bug#7492).
1353 ;; (Consider using walk-windows instead of cl-loop if
1354 ;; you care about such things.)
1355 (push (list minip
`(minibufferp (window-buffer ,var
)))
1357 (push (list temp nil
) loop-for-bindings
)
1358 (push `(prog1 (not (eq ,var
,temp
))
1359 (or ,temp
(setq ,temp
,var
)))
1361 (push (list var
`(next-window ,var
,minip
))
1365 ;; This is an advertised interface: (info "(cl)Other Clauses").
1366 (let ((handler (and (symbolp word
)
1367 (get word
'cl-loop-for-handler
))))
1369 (funcall handler var
)
1370 (error "Expected a `for' preposition, found %s" word
)))))
1371 (eq (car cl--loop-args
) 'and
))
1373 (pop cl--loop-args
))
1374 (if (and ands loop-for-bindings
)
1375 (push (nreverse loop-for-bindings
) cl--loop-bindings
)
1376 (setq cl--loop-bindings
(nconc (mapcar 'list loop-for-bindings
)
1377 cl--loop-bindings
)))
1380 ,(cl--loop-let (nreverse loop-for-sets
) 'setq ands
)
1384 (push (cons (if ands
'cl-psetq
'setq
)
1385 (apply 'append
(nreverse loop-for-steps
)))
1389 (let ((temp (make-symbol "--cl-var--")))
1390 (push (list (list temp
(pop cl--loop-args
))) cl--loop-bindings
)
1391 (push `(>= (setq ,temp
(1- ,temp
)) 0) cl--loop-body
)))
1393 ((memq word
'(collect collecting
))
1394 (let ((what (pop cl--loop-args
))
1395 (var (cl--loop-handle-accum nil
'nreverse
)))
1396 (if (eq var cl--loop-accum-var
)
1397 (push `(progn (push ,what
,var
) t
) cl--loop-body
)
1399 (setq ,var
(nconc ,var
(list ,what
)))
1403 ((memq word
'(nconc nconcing append appending
))
1404 (let ((what (pop cl--loop-args
))
1405 (var (cl--loop-handle-accum nil
'nreverse
)))
1408 ,(if (eq var cl--loop-accum-var
)
1410 (,(if (memq word
'(nconc nconcing
))
1411 #'nreverse
#'reverse
)
1414 `(,(if (memq word
'(nconc nconcing
))
1420 ((memq word
'(concat concating
))
1421 (let ((what (pop cl--loop-args
))
1422 (var (cl--loop-handle-accum "")))
1423 (push `(progn (cl-callf concat
,var
,what
) t
) cl--loop-body
)))
1425 ((memq word
'(vconcat vconcating
))
1426 (let ((what (pop cl--loop-args
))
1427 (var (cl--loop-handle-accum [])))
1428 (push `(progn (cl-callf vconcat
,var
,what
) t
) cl--loop-body
)))
1430 ((memq word
'(sum summing
))
1431 (let ((what (pop cl--loop-args
))
1432 (var (cl--loop-handle-accum 0)))
1433 (push `(progn (cl-incf ,var
,what
) t
) cl--loop-body
)))
1435 ((memq word
'(count counting
))
1436 (let ((what (pop cl--loop-args
))
1437 (var (cl--loop-handle-accum 0)))
1438 (push `(progn (if ,what
(cl-incf ,var
)) t
) cl--loop-body
)))
1440 ((memq word
'(minimize minimizing maximize maximizing
))
1441 (push `(progn ,(macroexp-let2 macroexp-copyable-p temp
1443 (let* ((var (cl--loop-handle-accum nil
))
1444 (func (intern (substring (symbol-name word
)
1446 `(setq ,var
(if ,var
(,func
,var
,temp
) ,temp
))))
1451 (let ((bindings nil
))
1452 (while (progn (push (list (pop cl--loop-args
)
1453 (and (eq (car cl--loop-args
) '=)
1454 (cl--pop2 cl--loop-args
)))
1456 (eq (car cl--loop-args
) 'and
))
1457 (pop cl--loop-args
))
1458 (push (nreverse bindings
) cl--loop-bindings
)))
1461 (push (pop cl--loop-args
) cl--loop-body
))
1464 (push `(not ,(pop cl--loop-args
)) cl--loop-body
))
1467 (or cl--loop-finish-flag
1468 (setq cl--loop-finish-flag
(make-symbol "--cl-flag--")))
1469 (push `(setq ,cl--loop-finish-flag
,(pop cl--loop-args
)) cl--loop-body
)
1470 (setq cl--loop-result t
))
1473 (or cl--loop-finish-flag
1474 (setq cl--loop-finish-flag
(make-symbol "--cl-flag--")))
1475 (push `(setq ,cl--loop-finish-flag
(not ,(pop cl--loop-args
)))
1477 (setq cl--loop-result t
))
1480 (or cl--loop-finish-flag
1481 (setq cl--loop-finish-flag
(make-symbol "--cl-flag--")))
1482 (or cl--loop-result-var
1483 (setq cl--loop-result-var
(make-symbol "--cl-var--")))
1484 (push `(setq ,cl--loop-finish-flag
1485 (not (setq ,cl--loop-result-var
,(pop cl--loop-args
))))
1488 ((memq word
'(if when unless
))
1489 (let* ((cond (pop cl--loop-args
))
1490 (then (let ((cl--loop-body nil
))
1491 (cl--parse-loop-clause)
1492 (cl--loop-build-ands (nreverse cl--loop-body
))))
1493 (else (let ((cl--loop-body nil
))
1494 (if (eq (car cl--loop-args
) 'else
)
1495 (progn (pop cl--loop-args
) (cl--parse-loop-clause)))
1496 (cl--loop-build-ands (nreverse cl--loop-body
))))
1497 (simple (and (eq (car then
) t
) (eq (car else
) t
))))
1498 (if (eq (car cl--loop-args
) 'end
) (pop cl--loop-args
))
1499 (if (eq word
'unless
) (setq then
(prog1 else
(setq else then
))))
1500 (let ((form (cons (if simple
(cons 'progn
(nth 1 then
)) (nth 2 then
))
1501 (if simple
(nth 1 else
) (list (nth 2 else
))))))
1502 (setq form
(if (cl--expr-contains form
'it
)
1503 `(let ((it ,cond
)) (if it
,@form
))
1504 `(if ,cond
,@form
)))
1505 (push (if simple
`(progn ,form t
) form
) cl--loop-body
))))
1507 ((memq word
'(do doing
))
1509 (or (consp (car cl--loop-args
)) (error "Syntax error on `do' clause"))
1510 (while (consp (car cl--loop-args
)) (push (pop cl--loop-args
) body
))
1511 (push (cons 'progn
(nreverse (cons t body
))) cl--loop-body
)))
1514 (or cl--loop-finish-flag
1515 (setq cl--loop-finish-flag
(make-symbol "--cl-var--")))
1516 (or cl--loop-result-var
1517 (setq cl--loop-result-var
(make-symbol "--cl-var--")))
1518 (push `(setq ,cl--loop-result-var
,(pop cl--loop-args
)
1519 ,cl--loop-finish-flag nil
)
1523 ;; This is an advertised interface: (info "(cl)Other Clauses").
1524 (let ((handler (and (symbolp word
) (get word
'cl-loop-handler
))))
1525 (or handler
(error "Expected a cl-loop keyword, found %s" word
))
1526 (funcall handler
))))
1527 (if (eq (car cl--loop-args
) 'and
)
1528 (progn (pop cl--loop-args
) (cl--parse-loop-clause)))))
1530 (defun cl--unused-var-p (sym)
1531 (or (null sym
) (eq ?_
(aref (symbol-name sym
) 0))))
1533 (defun cl--loop-let (specs body par
) ; modifies cl--loop-bindings
1534 "Build an expression equivalent to (let SPECS BODY).
1535 SPECS can include bindings using `cl-loop's destructuring (not to be
1536 confused with the patterns of `cl-destructuring-bind').
1537 If PAR is nil, do the bindings step by step, like `let*'.
1538 If BODY is `setq', then use SPECS for assignments rather than for bindings."
1539 (let ((temps nil
) (new nil
))
1542 (while (and p
(or (symbolp (car-safe (car p
))) (null (cl-cadar p
))))
1546 (dolist (spec specs
)
1547 (or (macroexp-const-p (cadr spec
))
1548 (let ((temp (make-symbol "--cl-var--")))
1549 (push (list temp
(cadr spec
)) temps
)
1550 (setcar (cdr spec
) temp
)))))))
1552 (let* ((binding (pop specs
))
1553 (spec (car-safe binding
)))
1554 (if (and (consp binding
) (or (consp spec
) (cl--unused-var-p spec
)))
1556 (expr (car (cdr-safe binding
)))
1557 (temp (last spec
0)))
1558 (if (and (cl--unused-var-p temp
) (null expr
))
1559 nil
;; Don't bother declaring/setting `temp' since it won't
1560 ;; be used when `expr' is nil, anyway.
1561 (when (or (null temp
)
1562 (and (eq body
'setq
) (cl--unused-var-p temp
)))
1563 ;; Prefer a fresh uninterned symbol over "_to", to avoid
1564 ;; warnings that we set an unused variable.
1565 (setq temp
(make-symbol "--cl-var--"))
1566 ;; Make sure this temp variable is locally declared.
1567 (when (eq body
'setq
)
1568 (push (list (list temp
)) cl--loop-bindings
)))
1569 (push (list temp expr
) new
))
1571 (push (list (pop spec
)
1572 (and expr
(list (if spec
'pop
'car
) temp
)))
1574 (setq specs
(nconc (nreverse nspecs
) specs
)))
1575 (push binding new
))))
1577 (let ((set (cons (if par
'cl-psetq
'setq
)
1578 (apply 'nconc
(nreverse new
)))))
1579 (if temps
`(let* ,(nreverse temps
) ,set
) set
))
1580 `(,(if par
'let
'let
*)
1581 ,(nconc (nreverse temps
) (nreverse new
)) ,@body
))))
1583 (defun cl--loop-handle-accum (def &optional func
) ; uses loop-*
1584 (if (eq (car cl--loop-args
) 'into
)
1585 (let ((var (cl--pop2 cl--loop-args
)))
1586 (or (memq var cl--loop-accum-vars
)
1587 (progn (push (list (list var def
)) cl--loop-bindings
)
1588 (push var cl--loop-accum-vars
)))
1590 (or cl--loop-accum-var
1593 (setq cl--loop-accum-var
(make-symbol "--cl-var--"))
1596 (setq cl--loop-result
(if func
(list func cl--loop-accum-var
)
1597 cl--loop-accum-var
))
1598 cl--loop-accum-var
))))
1600 (defun cl--loop-build-ands (clauses)
1601 "Return various representations of (and . CLAUSES).
1602 CLAUSES is a list of Elisp expressions, where clauses of the form
1603 \(progn E1 E2 E3 .. t) are the focus of particular optimizations.
1604 The return value has shape (COND BODY COMBO)
1605 such that COMBO is equivalent to (and . CLAUSES)."
1608 ;; Look through `clauses', trying to optimize (progn ,@A t) (progn ,@B) ,@C
1609 ;; into (progn ,@A ,@B) ,@C.
1611 (if (and (eq (car-safe (car clauses
)) 'progn
)
1612 (eq (car (last (car clauses
))) t
))
1614 (setq clauses
(cons (nconc (butlast (car clauses
))
1615 (if (eq (car-safe (cadr clauses
))
1618 (list (cadr clauses
))))
1620 ;; A final (progn ,@A t) is moved outside of the `and'.
1621 (setq body
(cdr (butlast (pop clauses
)))))
1622 (push (pop clauses
) ands
)))
1623 (setq ands
(or (nreverse ands
) (list t
)))
1624 (list (if (cdr ands
) (cons 'and ands
) (car ands
))
1626 (let ((full (if body
1627 (append ands
(list (cons 'progn
(append body
'(t)))))
1629 (if (cdr full
) (cons 'and full
) (car full
))))))
1632 ;;; Other iteration control structures.
1635 (defmacro cl-do
(steps endtest
&rest body
)
1636 "The Common Lisp `do' loop.
1638 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)"
1641 ((&rest
&or symbolp
(symbolp &optional form form
))
1643 cl-declarations body
)))
1644 (cl--expand-do-loop steps endtest body nil
))
1647 (defmacro cl-do
* (steps endtest
&rest body
)
1648 "The Common Lisp `do*' loop.
1650 \(fn ((VAR INIT [STEP])...) (END-TEST [RESULT...]) BODY...)"
1651 (declare (indent 2) (debug cl-do
))
1652 (cl--expand-do-loop steps endtest body t
))
1654 (defun cl--expand-do-loop (steps endtest body star
)
1656 (,(if star
'let
* 'let
)
1657 ,(mapcar (lambda (c) (if (consp c
) (list (car c
) (nth 1 c
)) c
))
1659 (while (not ,(car endtest
))
1661 ,@(let ((sets (mapcar (lambda (c)
1662 (and (consp c
) (cdr (cdr c
))
1663 (list (car c
) (nth 2 c
))))
1665 (setq sets
(delq nil sets
))
1667 (list (cons (if (or star
(not (cdr sets
)))
1669 (apply 'append sets
))))))
1670 ,@(or (cdr endtest
) '(nil)))))
1673 (defmacro cl-dolist
(spec &rest body
)
1675 Evaluate BODY with VAR bound to each `car' from LIST, in turn.
1676 Then evaluate RESULT to get return value, default nil.
1677 An implicit nil block is established around the loop.
1679 \(fn (VAR LIST [RESULT]) BODY...)"
1680 (declare (debug ((symbolp form
&optional form
) cl-declarations body
))
1682 (let ((loop `(dolist ,spec
,@body
)))
1683 (if (advice-member-p #'cl--wrap-in-nil-block
'dolist
)
1684 loop
`(cl-block nil
,loop
))))
1687 (defmacro cl-dotimes
(spec &rest body
)
1688 "Loop a certain number of times.
1689 Evaluate BODY with VAR bound to successive integers from 0, inclusive,
1690 to COUNT, exclusive. Then evaluate RESULT to get return value, default
1693 \(fn (VAR COUNT [RESULT]) BODY...)"
1694 (declare (debug cl-dolist
) (indent 1))
1695 (let ((loop `(dotimes ,spec
,@body
)))
1696 (if (advice-member-p #'cl--wrap-in-nil-block
'dotimes
)
1697 loop
`(cl-block nil
,loop
))))
1699 (defvar cl--tagbody-alist nil
)
1702 (defmacro cl-tagbody
(&rest labels-or-stmts
)
1703 "Execute statements while providing for control transfers to labels.
1704 Each element of LABELS-OR-STMTS can be either a label (integer or symbol)
1705 or a `cons' cell, in which case it's taken to be a statement.
1706 This distinction is made before performing macroexpansion.
1707 Statements are executed in sequence left to right, discarding any return value,
1708 stopping only when reaching the end of LABELS-OR-STMTS.
1709 Any statement can transfer control at any time to the statements that follow
1710 one of the labels with the special form (go LABEL).
1711 Labels have lexical scope and dynamic extent."
1713 (first-label (if (consp (car labels-or-stmts
))
1714 'cl--preamble
(pop labels-or-stmts
))))
1715 (let ((block (list first-label
)))
1716 (dolist (label-or-stmt labels-or-stmts
)
1717 (if (consp label-or-stmt
) (push label-or-stmt block
)
1718 ;; Add a "go to next block" to implement the fallthrough.
1719 (unless (eq 'go
(car-safe (car-safe block
)))
1720 (push `(go ,label-or-stmt
) block
))
1721 (push (nreverse block
) blocks
)
1722 (setq block
(list label-or-stmt
))))
1723 (unless (eq 'go
(car-safe (car-safe block
)))
1724 (push `(go cl--exit
) block
))
1725 (push (nreverse block
) blocks
))
1726 (let ((catch-tag (make-symbol "cl--tagbody-tag")))
1727 (push (cons 'cl--exit catch-tag
) cl--tagbody-alist
)
1728 (dolist (block blocks
)
1729 (push (cons (car block
) catch-tag
) cl--tagbody-alist
))
1731 `(let ((next-label ',first-label
))
1733 (not (eq (setq next-label
1738 `((go .
,(lambda (label)
1739 (let ((catch-tag (cdr (assq label cl--tagbody-alist
))))
1741 (error "Unknown cl-tagbody go label `%S'" label
))
1742 `(throw ',catch-tag
',label
))))
1743 ,@macroexpand-all-environment
)))))
1746 (defmacro cl-do-symbols
(spec &rest body
)
1747 "Loop over all symbols.
1748 Evaluate BODY with VAR bound to each interned symbol, or to each symbol
1751 \(fn (VAR [OBARRAY [RESULT]]) BODY...)"
1753 (debug ((symbolp &optional form form
) cl-declarations body
)))
1754 ;; Apparently this doesn't have an implicit block.
1757 (mapatoms #'(lambda (,(car spec
)) ,@body
)
1758 ,@(and (cadr spec
) (list (cadr spec
))))
1762 (defmacro cl-do-all-symbols
(spec &rest body
)
1763 "Like `cl-do-symbols', but use the default obarray.
1765 \(fn (VAR [RESULT]) BODY...)"
1766 (declare (indent 1) (debug ((symbolp &optional form
) cl-declarations body
)))
1767 `(cl-do-symbols (,(car spec
) nil
,(cadr spec
)) ,@body
))
1773 (defmacro cl-psetq
(&rest args
)
1774 "Set SYMs to the values VALs in parallel.
1775 This is like `setq', except that all VAL forms are evaluated (in order)
1776 before assigning any symbols SYM to the corresponding values.
1778 \(fn SYM VAL SYM VAL ...)"
1779 (declare (debug setq
))
1780 (cons 'cl-psetf args
))
1783 ;;; Binding control structures.
1786 (defmacro cl-progv
(symbols values
&rest body
)
1787 "Bind SYMBOLS to VALUES dynamically in BODY.
1788 The forms SYMBOLS and VALUES are evaluated, and must evaluate to lists.
1789 Each symbol in the first list is bound to the corresponding value in the
1790 second list (or to nil if VALUES is shorter than SYMBOLS); then the
1791 BODY forms are executed and their result is returned. This is much like
1792 a `let' form, except that the list of symbols can be computed at run-time."
1793 (declare (indent 2) (debug (form form body
)))
1794 (let ((bodyfun (make-symbol "body"))
1795 (binds (make-symbol "binds"))
1796 (syms (make-symbol "syms"))
1797 (vals (make-symbol "vals")))
1799 (let* ((,syms
,symbols
)
1801 (,bodyfun
(lambda () ,@body
))
1804 (push (list (pop ,syms
) (list 'quote
(pop ,vals
))) ,binds
))
1805 (eval (list 'let
,binds
(list 'funcall
(list 'quote
,bodyfun
))))))))
1807 (defconst cl--labels-magic
(make-symbol "cl--labels-magic"))
1809 (defvar cl--labels-convert-cache nil
)
1811 (defun cl--labels-convert (f)
1812 "Special macro-expander to rename (function F) references in `cl-labels'."
1814 ;; ¡¡Big Ugly Hack!! We can't use a compiler-macro because those are checked
1815 ;; *after* handling `function', but we want to stop macroexpansion from
1816 ;; being applied infinitely, so we use a cache to return the exact `form'
1817 ;; being expanded even though we don't receive it.
1818 ((eq f
(car cl--labels-convert-cache
)) (cdr cl--labels-convert-cache
))
1820 (let* ((found (assq f macroexpand-all-environment
))
1821 (replacement (and found
1823 (funcall (cdr found
) cl--labels-magic
)))))
1824 (if (and replacement
(eq cl--labels-magic
(car replacement
)))
1826 (let ((res `(function ,f
)))
1827 (setq cl--labels-convert-cache
(cons f res
))
1831 (defmacro cl-flet
(bindings &rest body
)
1832 "Make local function definitions.
1833 Like `cl-labels' but the definitions are not recursive.
1834 Each binding can take the form (FUNC EXP) where
1835 FUNC is the function name, and EXP is an expression that returns the
1836 function value to which it should be bound, or it can take the more common
1837 form \(FUNC ARGLIST BODY...) which is a shorthand
1838 for (FUNC (lambda ARGLIST BODY)).
1840 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)"
1841 (declare (indent 1) (debug ((&rest
(cl-defun)) cl-declarations body
)))
1842 (let ((binds ()) (newenv macroexpand-all-environment
))
1843 (dolist (binding bindings
)
1844 (let ((var (make-symbol (format "--cl-%s--" (car binding
))))
1845 (args-and-body (cdr binding
)))
1846 (if (and (= (length args-and-body
) 1) (symbolp (car args-and-body
)))
1847 ;; Optimize (cl-flet ((fun var)) body).
1848 (setq var
(car args-and-body
))
1849 (push (list var
(if (= (length args-and-body
) 1)
1851 `(cl-function (lambda .
,args-and-body
))))
1853 (push (cons (car binding
)
1854 (lambda (&rest args
)
1855 (if (eq (car args
) cl--labels-magic
)
1856 (list cl--labels-magic var
)
1857 `(funcall ,var
,@args
))))
1859 ;; FIXME: Eliminate those functions which aren't referenced.
1860 (macroexp-let* (nreverse binds
)
1863 ;; Don't override lexical-let's macro-expander.
1864 (if (assq 'function newenv
) newenv
1865 (cons (cons 'function
#'cl--labels-convert
) newenv
))))))
1868 (defmacro cl-flet
* (bindings &rest body
)
1869 "Make local function definitions.
1870 Like `cl-flet' but the definitions can refer to previous ones.
1872 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)"
1873 (declare (indent 1) (debug cl-flet
))
1875 ((null bindings
) (macroexp-progn body
))
1876 ((null (cdr bindings
)) `(cl-flet ,bindings
,@body
))
1877 (t `(cl-flet (,(pop bindings
)) (cl-flet* ,bindings
,@body
)))))
1880 (defmacro cl-labels
(bindings &rest body
)
1881 "Make temporary function bindings.
1882 The bindings can be recursive and the scoping is lexical, but capturing them
1883 in closures will only work if `lexical-binding' is in use.
1885 \(fn ((FUNC ARGLIST BODY...) ...) FORM...)"
1886 (declare (indent 1) (debug cl-flet
))
1887 (let ((binds ()) (newenv macroexpand-all-environment
))
1888 (dolist (binding bindings
)
1889 (let ((var (make-symbol (format "--cl-%s--" (car binding
)))))
1890 (push (list var
`(cl-function (lambda .
,(cdr binding
)))) binds
)
1891 (push (cons (car binding
)
1892 (lambda (&rest args
)
1893 (if (eq (car args
) cl--labels-magic
)
1894 (list cl--labels-magic var
)
1895 (cl-list* 'funcall var args
))))
1897 (macroexpand-all `(letrec ,(nreverse binds
) ,@body
)
1898 ;; Don't override lexical-let's macro-expander.
1899 (if (assq 'function newenv
) newenv
1900 (cons (cons 'function
#'cl--labels-convert
) newenv
)))))
1902 ;; The following ought to have a better definition for use with newer
1905 (defmacro cl-macrolet
(bindings &rest body
)
1906 "Make temporary macro definitions.
1907 This is like `cl-flet', but for macros instead of functions.
1909 \(fn ((NAME ARGLIST BODY...) ...) FORM...)"
1912 ((&rest
(&define name
(&rest arg
) cl-declarations-or-string
1914 cl-declarations body
)))
1916 `(cl-macrolet (,(car bindings
)) (cl-macrolet ,(cdr bindings
) ,@body
))
1917 (if (null bindings
) (macroexp-progn body
)
1918 (let* ((name (caar bindings
))
1919 (res (cl--transform-lambda (cdar bindings
) name
)))
1921 (macroexpand-all (macroexp-progn body
)
1923 (eval `(cl-function (lambda ,@(cdr res
))) t
))
1924 macroexpand-all-environment
))))))
1926 (defconst cl--old-macroexpand
1927 (if (and (boundp 'cl--old-macroexpand
)
1928 (eq (symbol-function 'macroexpand
)
1929 #'cl--sm-macroexpand
))
1931 (symbol-function 'macroexpand
)))
1933 (defun cl--sm-macroexpand (exp &optional env
)
1934 "Special macro expander used inside `cl-symbol-macrolet'.
1935 This function replaces `macroexpand' during macro expansion
1936 of `cl-symbol-macrolet', and does the same thing as `macroexpand'
1937 except that it additionally expands symbol macros."
1938 (let ((macroexpand-all-environment env
))
1941 (setq exp
(funcall cl--old-macroexpand exp env
))
1944 ;; Perform symbol-macro expansion.
1945 (when (cdr (assq (symbol-name exp
) env
))
1946 (setq exp
(cadr (assq (symbol-name exp
) env
)))))
1948 ;; Convert setq to setf if required by symbol-macro expansion.
1949 (let* ((args (mapcar (lambda (f) (cl--sm-macroexpand f env
))
1952 (while (and p
(symbolp (car p
))) (setq p
(cddr p
)))
1953 (if p
(setq exp
(cons 'setf args
))
1954 (setq exp
(cons 'setq args
))
1955 ;; Don't loop further.
1957 (`(,(or `let
`let
*) .
,(or `(,bindings .
,body
) dontcare
))
1958 ;; CL's symbol-macrolet treats re-bindings as candidates for
1959 ;; expansion (turning the let into a letf if needed), contrary to
1960 ;; Common-Lisp where such re-bindings hide the symbol-macro.
1961 (let ((letf nil
) (found nil
) (nbs ()))
1962 (dolist (binding bindings
)
1963 (let* ((var (if (symbolp binding
) binding
(car binding
)))
1964 (sm (assq (symbol-name var
) env
)))
1965 (push (if (not (cdr sm
))
1967 (let ((nexp (cadr sm
)))
1969 (unless (symbolp nexp
) (setq letf t
))
1970 (cons nexp
(cdr-safe binding
))))
1973 (setq exp
`(,(if letf
1974 (if (eq (car exp
) 'let
) 'cl-letf
'cl-letf
*)
1978 ;; FIXME: The behavior of CL made sense in a dynamically scoped
1979 ;; language, but for lexical scoping, Common-Lisp's behavior might
1980 ;; make more sense (and indeed, CL behaves like Common-Lisp w.r.t
1981 ;; lexical-let), so maybe we should adjust the behavior based on
1982 ;; the use of lexical-binding.
1983 ;; (`(,(or `let `let*) . ,(or `(,bindings . ,body) dontcare))
1984 ;; (let ((nbs ()) (found nil))
1985 ;; (dolist (binding bindings)
1986 ;; (let* ((var (if (symbolp binding) binding (car binding)))
1987 ;; (name (symbol-name var))
1988 ;; (val (and found (consp binding) (eq 'let* (car exp))
1989 ;; (list (macroexpand-all (cadr binding)
1991 ;; (push (if (assq name env)
1992 ;; ;; This binding should hide its symbol-macro,
1993 ;; ;; but given the way macroexpand-all works, we
1994 ;; ;; can't prevent application of `env' to the
1995 ;; ;; sub-expressions, so we need to α-rename this
1996 ;; ;; variable instead.
1997 ;; (let ((nvar (make-symbol
1998 ;; (copy-sequence name))))
2000 ;; (push (list name nvar) env)
2001 ;; (cons nvar (or val (cdr-safe binding))))
2002 ;; (if val (cons var val) binding))
2005 ;; (setq exp `(,(car exp)
2007 ;; ,@(macroexp-unprogn
2008 ;; (macroexpand-all (macroexp-progn body)
2015 (defmacro cl-symbol-macrolet
(bindings &rest body
)
2016 "Make symbol macro definitions.
2017 Within the body FORMs, references to the variable NAME will be replaced
2018 by EXPANSION, and (setq NAME ...) will act like (setf EXPANSION ...).
2020 \(fn ((NAME EXPANSION) ...) FORM...)"
2021 (declare (indent 1) (debug ((&rest
(symbol sexp
)) cl-declarations body
)))
2024 `(cl-symbol-macrolet (,(car bindings
))
2025 (cl-symbol-macrolet ,(cdr bindings
) ,@body
)))
2026 ((null bindings
) (macroexp-progn body
))
2028 (let ((previous-macroexpand (symbol-function 'macroexpand
)))
2031 (fset 'macroexpand
#'cl--sm-macroexpand
)
2033 ;; FIXME: For N bindings, this will traverse `body' N times!
2034 (macroexpand-all (macroexp-progn body
)
2035 (cons (list (symbol-name (caar bindings
))
2036 (cl-cadar bindings
))
2037 macroexpand-all-environment
))))
2038 (if (or (null (cdar bindings
)) (cl-cddar bindings
))
2039 (macroexp--warn-and-return
2040 (format "Malformed `cl-symbol-macrolet' binding: %S"
2044 (fset 'macroexpand previous-macroexpand
))))))
2046 ;;; Multiple values.
2049 (defmacro cl-multiple-value-bind
(vars form
&rest body
)
2050 "Collect multiple return values.
2051 FORM must return a list; the BODY is then executed with the first N elements
2052 of this list bound (`let'-style) to each of the symbols SYM in turn. This
2053 is analogous to the Common Lisp `multiple-value-bind' macro, using lists to
2054 simulate true multiple return values. For compatibility, (cl-values A B C) is
2055 a synonym for (list A B C).
2057 \(fn (SYM...) FORM BODY)"
2058 (declare (indent 2) (debug ((&rest symbolp
) form body
)))
2059 (let ((temp (make-symbol "--cl-var--")) (n -
1))
2060 `(let* ((,temp
,form
)
2061 ,@(mapcar (lambda (v)
2062 (list v
`(nth ,(setq n
(1+ n
)) ,temp
)))
2067 (defmacro cl-multiple-value-setq
(vars form
)
2068 "Collect multiple return values.
2069 FORM must return a list; the first N elements of this list are stored in
2070 each of the symbols SYM in turn. This is analogous to the Common Lisp
2071 `multiple-value-setq' macro, using lists to simulate true multiple return
2072 values. For compatibility, (cl-values A B C) is a synonym for (list A B C).
2074 \(fn (SYM...) FORM)"
2075 (declare (indent 1) (debug ((&rest symbolp
) form
)))
2076 (cond ((null vars
) `(progn ,form nil
))
2077 ((null (cdr vars
)) `(setq ,(car vars
) (car ,form
)))
2079 (let* ((temp (make-symbol "--cl-var--")) (n 0))
2080 `(let ((,temp
,form
))
2081 (prog1 (setq ,(pop vars
) (car ,temp
))
2082 (setq ,@(apply #'nconc
2084 (list v
`(nth ,(setq n
(1+ n
))
2092 (defmacro cl-locally
(&rest body
)
2093 "Equivalent to `progn'."
2097 (defmacro cl-the
(type form
)
2098 "Return FORM. If type-checking is enabled, assert that it is of TYPE."
2099 (declare (indent 1) (debug (cl-type-spec form
)))
2100 (if (not (or (not (cl--compiling-file))
2101 (< cl--optimize-speed
3)
2102 (= cl--optimize-safety
3)))
2104 (macroexp-let2 macroexp-copyable-p temp form
2105 `(progn (unless (cl-typep ,temp
',type
)
2106 (signal 'wrong-type-argument
2107 (list ',type
,temp
',form
)))
2110 (defvar cl--proclaim-history t
) ; for future compilers
2111 (defvar cl--declare-stack t
) ; for future compilers
2113 (defun cl--do-proclaim (spec hist
)
2114 (and hist
(listp cl--proclaim-history
) (push spec cl--proclaim-history
))
2115 (cond ((eq (car-safe spec
) 'special
)
2116 (if (boundp 'byte-compile-bound-variables
)
2117 (setq byte-compile-bound-variables
2118 (append (cdr spec
) byte-compile-bound-variables
))))
2120 ((eq (car-safe spec
) 'inline
)
2121 (while (setq spec
(cdr spec
))
2122 (or (memq (get (car spec
) 'byte-optimizer
)
2123 '(nil byte-compile-inline-expand
))
2124 (error "%s already has a byte-optimizer, can't make it inline"
2126 (put (car spec
) 'byte-optimizer
'byte-compile-inline-expand
)))
2128 ((eq (car-safe spec
) 'notinline
)
2129 (while (setq spec
(cdr spec
))
2130 (if (eq (get (car spec
) 'byte-optimizer
)
2131 'byte-compile-inline-expand
)
2132 (put (car spec
) 'byte-optimizer nil
))))
2134 ((eq (car-safe spec
) 'optimize
)
2135 (let ((speed (assq (nth 1 (assq 'speed
(cdr spec
)))
2136 '((0 nil
) (1 t
) (2 t
) (3 t
))))
2137 (safety (assq (nth 1 (assq 'safety
(cdr spec
)))
2138 '((0 t
) (1 t
) (2 t
) (3 nil
)))))
2139 (if speed
(setq cl--optimize-speed
(car speed
)
2140 byte-optimize
(nth 1 speed
)))
2141 (if safety
(setq cl--optimize-safety
(car safety
)
2142 byte-compile-delete-errors
(nth 1 safety
)))))
2144 ((and (eq (car-safe spec
) 'warn
) (boundp 'byte-compile-warnings
))
2145 (while (setq spec
(cdr spec
))
2146 (if (consp (car spec
))
2147 (if (eq (cl-cadar spec
) 0)
2148 (byte-compile-disable-warning (caar spec
))
2149 (byte-compile-enable-warning (caar spec
)))))))
2152 ;;; Process any proclamations made before cl-macs was loaded.
2153 (defvar cl--proclaims-deferred
)
2154 (let ((p (reverse cl--proclaims-deferred
)))
2155 (while p
(cl--do-proclaim (pop p
) t
))
2156 (setq cl--proclaims-deferred nil
))
2159 (defmacro cl-declare
(&rest specs
)
2160 "Declare SPECS about the current function while compiling.
2163 (cl-declare (warn 0))
2165 will turn off byte-compile warnings in the function.
2166 See Info node `(cl)Declarations' for details."
2167 (if (cl--compiling-file)
2169 (if (listp cl--declare-stack
) (push (car specs
) cl--declare-stack
))
2170 (cl--do-proclaim (pop specs
) nil
)))
2173 ;;; The standard modify macros.
2175 ;; `setf' is now part of core Elisp, defined in gv.el.
2178 (defmacro cl-psetf
(&rest args
)
2179 "Set PLACEs to the values VALs in parallel.
2180 This is like `setf', except that all VAL forms are evaluated (in order)
2181 before assigning any PLACEs to the corresponding values.
2183 \(fn PLACE VAL PLACE VAL ...)"
2184 (declare (debug setf
))
2185 (let ((p args
) (simple t
) (vars nil
))
2187 (if (or (not (symbolp (car p
))) (cl--expr-depends-p (nth 1 p
) vars
))
2189 (if (memq (car p
) vars
)
2190 (error "Destination duplicated in psetf: %s" (car p
)))
2192 (or p
(error "Odd number of arguments to cl-psetf"))
2195 `(progn (setq ,@args
) nil
)
2196 (setq args
(reverse args
))
2197 (let ((expr `(setf ,(cadr args
) ,(car args
))))
2198 (while (setq args
(cddr args
))
2199 (setq expr
`(setf ,(cadr args
) (prog1 ,(car args
) ,expr
))))
2200 `(progn ,expr nil
)))))
2203 (defmacro cl-remf
(place tag
)
2204 "Remove TAG from property list PLACE.
2205 PLACE may be a symbol, or any generalized variable allowed by `setf'.
2206 The form returns true if TAG was found and removed, nil otherwise."
2207 (declare (debug (place form
)))
2208 (gv-letplace (tval setter
) place
2209 (macroexp-let2 macroexp-copyable-p ttag tag
2210 `(if (eq ,ttag
(car ,tval
))
2211 (progn ,(funcall setter
`(cddr ,tval
))
2213 (cl--do-remf ,tval
,ttag
)))))
2216 (defmacro cl-shiftf
(place &rest args
)
2217 "Shift left among PLACEs.
2218 Example: (cl-shiftf A B C) sets A to B, B to C, and returns the old A.
2219 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
2222 (declare (debug (&rest place
)))
2225 ((symbolp place
) `(prog1 ,place
(setq ,place
(cl-shiftf ,@args
))))
2227 (gv-letplace (getter setter
) place
2229 ,(funcall setter
`(cl-shiftf ,@args
)))))))
2232 (defmacro cl-rotatef
(&rest args
)
2233 "Rotate left among PLACEs.
2234 Example: (cl-rotatef A B C) sets A to B, B to C, and C to A. It returns nil.
2235 Each PLACE may be a symbol, or any generalized variable allowed by `setf'.
2238 (declare (debug (&rest place
)))
2239 (if (not (memq nil
(mapcar 'symbolp args
)))
2244 (setq sets
(nconc sets
(list (pop args
) (car args
)))))
2245 `(cl-psetf ,@sets
,(car args
) ,first
)))
2246 (let* ((places (reverse args
))
2247 (temp (make-symbol "--cl-rotatef--"))
2251 (gv-letplace (getter setter
) (pop places
)
2252 `(prog1 ,getter
,(funcall setter form
)))))
2253 (gv-letplace (getter setter
) (car places
)
2254 (macroexp-let* `((,temp
,getter
))
2255 `(progn ,(funcall setter form
) nil
))))))
2257 ;; FIXME: `letf' is unsatisfactory because it does not really "restore" the
2258 ;; previous state. If the getter/setter loses information, that info is
2261 (defun cl--letf (bindings simplebinds binds body
)
2262 ;; It's not quite clear what the semantics of cl-letf should be.
2263 ;; E.g. in (cl-letf ((PLACE1 VAL1) (PLACE2 VAL2)) BODY), while it's clear
2264 ;; that the actual assignments ("bindings") should only happen after
2265 ;; evaluating VAL1 and VAL2, it's not clear when the sub-expressions of
2266 ;; PLACE1 and PLACE2 should be evaluated. Should we have
2267 ;; PLACE1; VAL1; PLACE2; VAL2; bind1; bind2
2269 ;; VAL1; VAL2; PLACE1; PLACE2; bind1; bind2
2271 ;; VAL1; VAL2; PLACE1; bind1; PLACE2; bind2
2272 ;; Common-Lisp's `psetf' does the first, so we'll do the same.
2274 (if (and (null binds
) (null simplebinds
)) (macroexp-progn body
)
2275 `(let* (,@(mapcar (lambda (x)
2276 (pcase-let ((`(,vold
,getter
,_setter
,_vnew
) x
))
2277 (list vold getter
)))
2286 ;; If there's no vnew, do nothing.
2287 (`(,_vold
,_getter
,setter
,vnew
)
2288 (funcall setter vnew
))))
2291 ,@(mapcar (lambda (x)
2292 (pcase-let ((`(,vold
,_getter
,setter
,_vnew
) x
))
2293 (funcall setter vold
)))
2295 (let ((binding (car bindings
)))
2296 (gv-letplace (getter setter
) (car binding
)
2297 (macroexp-let2 nil vnew
(cadr binding
)
2298 (if (symbolp (car binding
))
2299 ;; Special-case for simple variables.
2300 (cl--letf (cdr bindings
)
2301 (cons `(,getter
,(if (cdr binding
) vnew getter
))
2304 (cl--letf (cdr bindings
) simplebinds
2305 (cons `(,(make-symbol "old") ,getter
,setter
2306 ,@(if (cdr binding
) (list vnew
)))
2311 (defmacro cl-letf
(bindings &rest body
)
2312 "Temporarily bind to PLACEs.
2313 This is the analogue of `let', but with generalized variables (in the
2314 sense of `setf') for the PLACEs. Each PLACE is set to the corresponding
2315 VALUE, then the BODY forms are executed. On exit, either normally or
2316 because of a `throw' or error, the PLACEs are set back to their original
2317 values. Note that this macro is *not* available in Common Lisp.
2318 As a special case, if `(PLACE)' is used instead of `(PLACE VALUE)',
2319 the PLACE is not modified before executing BODY.
2321 \(fn ((PLACE VALUE) ...) BODY...)"
2322 (declare (indent 1) (debug ((&rest
(gate gv-place
&optional form
)) body
)))
2323 (if (and (not (cdr bindings
)) (cdar bindings
) (symbolp (caar bindings
)))
2324 `(let ,bindings
,@body
)
2325 (cl--letf bindings
() () body
)))
2328 (defmacro cl-letf
* (bindings &rest body
)
2329 "Temporarily bind to PLACEs.
2330 Like `cl-letf' but where the bindings are performed one at a time,
2331 rather than all at the end (i.e. like `let*' rather than like `let')."
2332 (declare (indent 1) (debug cl-letf
))
2333 (dolist (binding (reverse bindings
))
2334 (setq body
(list `(cl-letf (,binding
) ,@body
))))
2335 (macroexp-progn body
))
2338 (defmacro cl-callf
(func place
&rest args
)
2339 "Set PLACE to (FUNC PLACE ARGS...).
2340 FUNC should be an unquoted function name. PLACE may be a symbol,
2341 or any generalized variable allowed by `setf'."
2342 (declare (indent 2) (debug (cl-function place
&rest form
)))
2343 (gv-letplace (getter setter
) place
2344 (let* ((rargs (cons getter args
)))
2346 (if (symbolp func
) (cons func rargs
)
2347 `(funcall #',func
,@rargs
))))))
2350 (defmacro cl-callf2
(func arg1 place
&rest args
)
2351 "Set PLACE to (FUNC ARG1 PLACE ARGS...).
2352 Like `cl-callf', but PLACE is the second argument of FUNC, not the first.
2354 \(fn FUNC ARG1 PLACE ARGS...)"
2355 (declare (indent 3) (debug (cl-function form place
&rest form
)))
2356 (if (and (cl--safe-expr-p arg1
) (cl--simple-expr-p place
) (symbolp func
))
2357 `(setf ,place
(,func
,arg1
,place
,@args
))
2358 (macroexp-let2 nil a1 arg1
2359 (gv-letplace (getter setter
) place
2360 (let* ((rargs (cl-list* a1 getter args
)))
2362 (if (symbolp func
) (cons func rargs
)
2363 `(funcall #',func
,@rargs
))))))))
2368 (defmacro cl-defstruct
(struct &rest descs
)
2369 "Define a struct type.
2370 This macro defines a new data type called NAME that stores data
2371 in SLOTs. It defines a `make-NAME' constructor, a `copy-NAME'
2372 copier, a `NAME-p' predicate, and slot accessors named `NAME-SLOT'.
2373 You can use the accessors to set the corresponding slots, via `setf'.
2375 NAME may instead take the form (NAME OPTIONS...), where each
2376 OPTION is either a single keyword or (KEYWORD VALUE) where
2377 KEYWORD can be one of :conc-name, :constructor, :copier, :predicate,
2378 :type, :named, :initial-offset, :print-function, or :include.
2380 Each SLOT may instead take the form (SNAME SDEFAULT SOPTIONS...), where
2381 SDEFAULT is the default value of that slot and SOPTIONS are keyword-value
2382 pairs for that slot.
2383 Currently, only one keyword is supported, `:read-only'. If this has a
2384 non-nil value, that slot cannot be set via `setf'.
2386 \(fn NAME SLOTS...)"
2387 (declare (doc-string 2) (indent 1)
2389 (&define
;Makes top-level form not be wrapped.
2393 (&or
[":conc-name" symbolp
]
2394 [":constructor" symbolp
&optional cl-lambda-list
]
2396 [":predicate" symbolp
]
2397 [":include" symbolp
&rest sexp
] ;; Not finished.
2398 ;; The following are not supported.
2399 ;; [":print-function" ...]
2401 ;; [":initial-offset" ...]
2404 ;; All the above is for the following def-form.
2405 &rest
&or symbolp
(symbolp def-form
2406 &optional
":read-only" sexp
))))
2407 (let* ((name (if (consp struct
) (car struct
) struct
))
2408 (opts (cdr-safe struct
))
2411 (conc-name (concat (symbol-name name
) "-"))
2412 (constructor (intern (format "make-%s" name
)))
2414 (copier (intern (format "copy-%s" name
)))
2415 (predicate (intern (format "%s-p" name
)))
2416 (print-func nil
) (print-auto nil
)
2417 (safety (if (cl--compiling-file) cl--optimize-safety
3))
2419 (tag (intern (format "cl-struct-%s" name
)))
2420 (tag-symbol (intern (format "cl-struct-%s-tags" name
)))
2425 (docstring (if (stringp (car descs
)) (pop descs
)))
2426 pred-form pred-check
)
2427 (setq descs
(cons '(cl-tag-slot)
2428 (mapcar (function (lambda (x) (if (consp x
) x
(list x
))))
2431 (let ((opt (if (consp (car opts
)) (caar opts
) (car opts
)))
2432 (args (cdr-safe (pop opts
))))
2433 (cond ((eq opt
:conc-name
)
2435 (setq conc-name
(if (car args
)
2436 (symbol-name (car args
)) ""))))
2437 ((eq opt
:constructor
)
2440 ;; If this defines a constructor of the same name as
2441 ;; the default one, don't define the default.
2442 (if (eq (car args
) constructor
)
2443 (setq constructor nil
))
2444 (push args constrs
))
2445 (if args
(setq constructor
(car args
)))))
2447 (if args
(setq copier
(car args
))))
2448 ((eq opt
:predicate
)
2449 (if args
(setq predicate
(car args
))))
2451 (when include
(error "Can't :include more than once"))
2452 (setq include
(car args
)
2453 include-descs
(mapcar (function
2455 (if (consp x
) x
(list x
))))
2457 ((eq opt
:print-function
)
2458 (setq print-func
(car args
)))
2460 (setq type
(car args
)))
2463 ((eq opt
:initial-offset
)
2464 (setq descs
(nconc (make-list (car args
) '(cl-skip-slot))
2467 (error "Slot option %s unrecognized" opt
)))))
2470 `(progn (funcall #',print-func cl-x cl-s cl-n
) t
))
2471 (or type
(and include
(not (get include
'cl-struct-print
)))
2473 print-func
(and (or (not (or include type
)) (null print-func
))
2475 (princ ,(format "#S(%s" name
) cl-s
))))))
2477 (let ((inc-type (get include
'cl-struct-type
))
2478 (old-descs (get include
'cl-struct-slots
)))
2479 (or inc-type
(error "%s is not a struct name" include
))
2480 (and type
(not (eq (car inc-type
) type
))
2481 (error ":type disagrees with :include for %s" name
))
2482 (while include-descs
2483 (setcar (memq (or (assq (caar include-descs
) old-descs
)
2484 (error "No slot %s in included struct %s"
2485 (caar include-descs
) include
))
2487 (pop include-descs
)))
2488 (setq descs
(append old-descs
(delq (assq 'cl-tag-slot descs
) descs
))
2490 named
(assq 'cl-tag-slot descs
))
2491 (if (cadr inc-type
) (setq tag name named t
))
2492 (let ((incl include
))
2494 (push `(cl-pushnew ',tag
2495 ,(intern (format "cl-struct-%s-tags" incl
)))
2497 (setq incl
(get incl
'cl-struct-include
)))))
2500 (or (memq type
'(vector list
))
2501 (error "Invalid :type specifier: %s" type
))
2502 (if named
(setq tag name
)))
2503 (setq type
'vector named
'true
)))
2504 (or named
(setq descs
(delq (assq 'cl-tag-slot descs
) descs
)))
2505 (when (and (null predicate
) named
)
2506 (setq predicate
(intern (format "cl--struct-%s-p" name
))))
2507 (setq pred-form
(and named
2508 (let ((pos (- (length descs
)
2509 (length (memq (assq 'cl-tag-slot descs
)
2513 `(and (vectorp cl-x
)
2514 (>= (length cl-x
) ,(length descs
))
2515 (memq (aref cl-x
,pos
) ,tag-symbol
)))
2516 ((= pos
0) `(memq (car-safe cl-x
) ,tag-symbol
))
2517 (t `(and (consp cl-x
)
2518 (memq (nth ,pos cl-x
) ,tag-symbol
))))))
2519 pred-check
(and pred-form
(> safety
0)
2520 (if (and (eq (cl-caadr pred-form
) 'vectorp
)
2522 (cons 'and
(cl-cdddr pred-form
))
2523 `(,predicate cl-x
))))
2524 (let ((pos 0) (descp descs
))
2526 (let* ((desc (pop descp
))
2528 (if (memq slot
'(cl-tag-slot cl-skip-slot
))
2531 (push (and (eq slot
'cl-tag-slot
) `',tag
)
2533 (if (assq slot descp
)
2534 (error "Duplicate slots named %s in %s" slot name
))
2535 (let ((accessor (intern (format "%s%s" conc-name slot
))))
2537 (push (nth 1 desc
) defaults
)
2538 (push `(cl-defsubst ,accessor
(cl-x)
2539 (declare (side-effect-free t
))
2541 (list `(or ,pred-check
2542 (error "%s accessing a non-%s"
2543 ',accessor
',name
))))
2544 ,(if (eq type
'vector
) `(aref cl-x
,pos
)
2545 (if (= pos
0) '(car cl-x
)
2548 (if (cadr (memq :read-only
(cddr desc
)))
2549 (push `(gv-define-expander ,accessor
2550 (lambda (_cl-do _cl-x
)
2551 (error "%s is a read-only slot" ',accessor
)))
2553 ;; For normal slots, we don't need to define a setf-expander,
2554 ;; since gv-get can use the compiler macro to get the
2556 ;; (push `(gv-define-setter ,accessor (cl-val cl-x)
2557 ;; ;; If cl is loaded only for compilation,
2558 ;; ;; the call to cl--struct-setf-expander would
2559 ;; ;; cause a warning because it may not be
2560 ;; ;; defined at run time. Suppress that warning.
2562 ;; (declare-function
2563 ;; cl--struct-setf-expander "cl-macs"
2564 ;; (x name accessor pred-form pos))
2565 ;; (cl--struct-setf-expander
2566 ;; cl-val cl-x ',name ',accessor
2567 ;; ,(and pred-check `',pred-check)
2573 (list `(princ ,(format " %s" slot
) cl-s
)
2574 `(prin1 (,accessor cl-x
) cl-s
)))))))
2575 (setq pos
(1+ pos
))))
2576 (setq slots
(nreverse slots
)
2577 defaults
(nreverse defaults
))
2579 (push `(cl-defsubst ,predicate
(cl-x)
2580 (declare (side-effect-free error-free
))
2581 ,(if (eq (car pred-form
) 'and
)
2582 (append pred-form
'(t))
2583 `(and ,pred-form t
)))
2585 (push `(put ',name
'cl-deftype-satisfies
',predicate
) forms
))
2587 (push `(defalias ',copier
#'copy-sequence
) forms
))
2589 (push (list constructor
2590 (cons '&key
(delq nil
(copy-sequence slots
))))
2593 (let* ((name (caar constrs
))
2594 (args (cadr (pop constrs
)))
2595 (anames (cl--arglist-args args
))
2596 (make (cl-mapcar (function (lambda (s d
) (if (memq s anames
) s d
)))
2598 (push `(cl-defsubst ,name
2599 (&cl-defs
'(nil ,@descs
) ,@args
)
2600 ,@(if (cl--safe-expr-p `(progn ,@(mapcar #'cl-second descs
)))
2601 '((declare (side-effect-free t
))))
2604 (if print-auto
(nconc print-func
(list '(princ ")" cl-s
) t
)))
2605 ;; Don't bother adding to cl-custom-print-functions since it's not used
2606 ;; by anything anyway!
2608 ;; (push `(if (boundp 'cl-custom-print-functions)
2610 ;; ;; The auto-generated function does not pay attention to
2611 ;; ;; the depth argument cl-n.
2612 ;; (lambda (cl-x cl-s ,(if print-auto '_cl-n 'cl-n))
2613 ;; (and ,pred-form ,print-func))
2614 ;; cl-custom-print-functions))
2617 (defvar ,tag-symbol
)
2620 (cl-struct-define ',name
,docstring
',include
2621 ',type
,(eq named t
) ',descs
',tag-symbol
',tag
2625 (defun cl-struct-sequence-type (struct-type)
2626 "Return the sequence used to build STRUCT-TYPE.
2627 STRUCT-TYPE is a symbol naming a struct type. Return 'vector or
2628 'list, or nil if STRUCT-TYPE is not a struct type. "
2629 (declare (side-effect-free t
) (pure t
))
2630 (car (get struct-type
'cl-struct-type
)))
2632 (defun cl-struct-slot-info (struct-type)
2633 "Return a list of slot names of struct STRUCT-TYPE.
2634 Each entry is a list (SLOT-NAME . OPTS), where SLOT-NAME is a
2635 slot name symbol and OPTS is a list of slot options given to
2636 `cl-defstruct'. Dummy slots that represent the struct name and
2637 slots skipped by :initial-offset may appear in the list."
2638 (declare (side-effect-free t
) (pure t
))
2639 (get struct-type
'cl-struct-slots
))
2641 (defun cl-struct-slot-offset (struct-type slot-name
)
2642 "Return the offset of slot SLOT-NAME in STRUCT-TYPE.
2643 The returned zero-based slot index is relative to the start of
2644 the structure data type and is adjusted for any structure name
2645 and :initial-offset slots. Signal error if struct STRUCT-TYPE
2646 does not contain SLOT-NAME."
2647 (declare (side-effect-free t
) (pure t
))
2648 (or (cl-position slot-name
2649 (cl-struct-slot-info struct-type
)
2650 :key
#'car
:test
#'eq
)
2651 (error "struct %s has no slot %s" struct-type slot-name
)))
2653 (defvar byte-compile-function-environment
)
2654 (defvar byte-compile-macro-environment
)
2656 (defun cl--macroexp-fboundp (sym)
2657 "Return non-nil if SYM will be bound when we run the code.
2658 Of course, we really can't know that for sure, so it's just a heuristic."
2660 (and (cl--compiling-file)
2661 (or (cdr (assq sym byte-compile-function-environment
))
2662 (cdr (assq sym byte-compile-macro-environment
))))))
2664 (defun cl--make-type-test (val type
)
2666 ((and `(,name .
,args
) (guard (get name
'cl-deftype-handler
)))
2667 (cl--make-type-test val
(apply (get name
'cl-deftype-handler
)
2669 (`(,(and name
(or 'integer
'float
'real
'number
))
2670 .
,(or `(,min
,max
) pcase--dontcare
))
2671 `(and ,(cl--make-type-test val name
)
2672 ,(if (memq min
'(* nil
)) t
2673 (if (consp min
) `(> ,val
,(car min
))
2675 ,(if (memq max
'(* nil
)) t
2677 `(< ,val
,(car max
))
2679 (`(,(and name
(or 'and
'or
'not
)) .
,args
)
2680 (cons name
(mapcar (lambda (x) (cl--make-type-test val x
)) args
)))
2682 `(and (cl-member ,val
',args
) t
))
2683 (`(satisfies ,pred
) `(funcall #',pred
,val
))
2684 ((and (pred symbolp
) (guard (get type
'cl-deftype-handler
)))
2685 (cl--make-type-test val
(funcall (get type
'cl-deftype-handler
))))
2686 ((and (pred symbolp
) (guard (get type
'cl-deftype-satisfies
)))
2687 `(funcall #',(get type
'cl-deftype-satisfies
) ,val
))
2689 ('null
`(null ,val
))
2690 ('atom
`(atom ,val
))
2691 ('float
`(floatp ,val
))
2692 ('real
`(numberp ,val
))
2693 ('fixnum
`(integerp ,val
))
2694 ;; FIXME: Implement `base-char' and `extended-char'.
2695 ('character
`(characterp ,val
))
2697 (let* ((name (symbol-name type
))
2698 (namep (intern (concat name
"p"))))
2700 ((cl--macroexp-fboundp namep
) (list namep val
))
2701 ((cl--macroexp-fboundp
2702 (setq namep
(intern (concat name
"-p"))))
2704 ((cl--macroexp-fboundp type
) (list type val
))
2705 (t (error "Unknown type %S" type
)))))
2706 (_ (error "Bad type spec: %s" type
))))
2710 (defun cl-typep (object type
) ; See compiler macro below.
2711 "Check that OBJECT is of type TYPE.
2712 TYPE is a Common Lisp-style type specifier."
2713 (declare (compiler-macro cl--compiler-macro-typep
))
2714 (let ((cl--object object
)) ;; Yuck!!
2715 (eval (cl--make-type-test 'cl--object type
))))
2717 (defun cl--compiler-macro-typep (form val type
)
2718 (if (macroexp-const-p type
)
2719 (macroexp-let2 macroexp-copyable-p temp val
2720 (cl--make-type-test temp
(cl--const-expr-val type
)))
2724 (defmacro cl-check-type
(form type
&optional string
)
2725 "Verify that FORM is of type TYPE; signal an error if not.
2726 STRING is an optional description of the desired type."
2727 (declare (debug (place cl-type-spec
&optional stringp
)))
2728 (and (or (not (cl--compiling-file))
2729 (< cl--optimize-speed
3) (= cl--optimize-safety
3))
2730 (macroexp-let2 macroexp-copyable-p temp form
2731 `(progn (or (cl-typep ,temp
',type
)
2732 (signal 'wrong-type-argument
2733 (list ,(or string
`',type
) ,temp
',form
)))
2737 (defmacro cl-assert
(form &optional show-args string
&rest args
)
2738 ;; FIXME: This is actually not compatible with Common-Lisp's `assert'.
2739 "Verify that FORM returns non-nil; signal an error if not.
2740 Second arg SHOW-ARGS means to include arguments of FORM in message.
2741 Other args STRING and ARGS... are arguments to be passed to `error'.
2742 They are not evaluated unless the assertion fails. If STRING is
2743 omitted, a default message listing FORM itself is used."
2744 (declare (debug (form &rest form
)))
2745 (and (or (not (cl--compiling-file))
2746 (< cl--optimize-speed
3) (= cl--optimize-safety
3))
2747 (let ((sargs (and show-args
2748 (delq nil
(mapcar (lambda (x)
2749 (unless (macroexp-const-p x
)
2755 `(error ,string
,@sargs
,@args
)
2756 `(signal 'cl-assertion-failed
2757 (list ',form
,@sargs
))))
2760 ;;; Compiler macros.
2763 (defmacro cl-define-compiler-macro
(func args
&rest body
)
2764 "Define a compiler-only macro.
2765 This is like `defmacro', but macro expansion occurs only if the call to
2766 FUNC is compiled (i.e., not interpreted). Compiler macros should be used
2767 for optimizing the way calls to FUNC are compiled; the form returned by
2768 BODY should do the same thing as a call to the normal function called
2769 FUNC, though possibly more efficiently. Note that, like regular macros,
2770 compiler macros are expanded repeatedly until no further expansions are
2771 possible. Unlike regular macros, BODY can decide to \"punt\" and leave the
2772 original function call alone by declaring an initial `&whole foo' parameter
2773 and then returning foo."
2774 (declare (debug cl-defmacro
) (indent 2))
2775 (let ((p args
) (res nil
))
2776 (while (consp p
) (push (pop p
) res
))
2777 (setq args
(nconc (nreverse res
) (and p
(list '&rest p
)))))
2778 ;; FIXME: The code in bytecomp mishandles top-level expressions that define
2779 ;; uninterned functions. E.g. it would generate code like:
2780 ;; (defalias '#1=#:foo--cmacro #[514 ...])
2781 ;; (put 'foo 'compiler-macro '#:foo--cmacro)
2782 ;; So we circumvent this by using an interned name.
2783 (let ((fname (intern (concat (symbol-name func
) "--cmacro"))))
2785 ;; Name the compiler-macro function, so that `symbol-file' can find it.
2786 (cl-defun ,fname
,(if (memq '&whole args
) (delq '&whole args
)
2787 (cons '_cl-whole-arg args
))
2789 (put ',func
'compiler-macro
#',fname
))))
2792 (defun cl-compiler-macroexpand (form)
2793 "Like `macroexpand', but for compiler macros.
2794 Expands FORM repeatedly until no further expansion is possible.
2795 Returns FORM unchanged if it has no compiler macro, or if it has a
2796 macro that returns its `&whole' argument."
2798 (let ((func (car-safe form
)) (handler nil
))
2799 (while (and (symbolp func
)
2800 (not (setq handler
(get func
'compiler-macro
)))
2802 (or (not (autoloadp (symbol-function func
)))
2803 (autoload-do-load (symbol-function func
) func
)))
2804 (setq func
(symbol-function func
)))
2806 (not (eq form
(setq form
(apply handler form
(cdr form
))))))))
2809 ;; Optimize away unused block-wrappers.
2811 (defvar cl--active-block-names nil
)
2813 (cl-define-compiler-macro cl--block-wrapper
(cl-form)
2814 (let* ((cl-entry (cons (nth 1 (nth 1 cl-form
)) nil
))
2815 (cl--active-block-names (cons cl-entry cl--active-block-names
))
2816 (cl-body (macroexpand-all ;Performs compiler-macro expansions.
2817 (macroexp-progn (cddr cl-form
))
2818 macroexpand-all-environment
)))
2819 ;; FIXME: To avoid re-applying macroexpand-all, we'd like to be able
2820 ;; to indicate that this return value is already fully expanded.
2822 `(catch ,(nth 1 cl-form
) ,@(macroexp-unprogn cl-body
))
2825 (cl-define-compiler-macro cl--block-throw
(cl-tag cl-value
)
2826 (let ((cl-found (assq (nth 1 cl-tag
) cl--active-block-names
)))
2827 (if cl-found
(setcdr cl-found t
)))
2828 `(throw ,cl-tag
,cl-value
))
2831 (defmacro cl-defsubst
(name args
&rest body
)
2832 "Define NAME as a function.
2833 Like `defun', except the function is automatically declared `inline' and
2834 the arguments are immutable.
2835 ARGLIST allows full Common Lisp conventions, and BODY is implicitly
2836 surrounded by (cl-block NAME ...).
2837 The function's arguments should be treated as immutable.
2839 \(fn NAME ARGLIST [DOCSTRING] BODY...)"
2840 (declare (debug cl-defun
) (indent 2))
2841 (let* ((argns (cl--arglist-args args
))
2843 ;; (pbody (cons 'progn body))
2845 (while (and p
(eq (cl--expr-contains args
(car p
)) 1)) (pop p
))
2847 ,(if p nil
; give up if defaults refer to earlier args
2848 `(cl-define-compiler-macro ,name
2849 ,(if (memq '&key args
)
2850 `(&whole cl-whole
&cl-quote
,@args
)
2851 (cons '&cl-quote args
))
2852 (cl--defsubst-expand
2853 ',argns
'(cl-block ,name
,@body
)
2854 ;; We used to pass `simple' as
2855 ;; (not (or unsafe (cl-expr-access-order pbody argns)))
2856 ;; But this is much too simplistic since it
2857 ;; does not pay attention to the argvs (and
2858 ;; cl-expr-access-order itself is also too naive).
2860 ,(and (memq '&key args
) 'cl-whole
) nil
,@argns
)))
2861 (cl-defun ,name
,args
,@body
))))
2863 (defun cl--defsubst-expand (argns body simple whole _unsafe
&rest argvs
)
2864 (if (and whole
(not (cl--safe-expr-p (cons 'progn argvs
)))) whole
2865 (if (cl--simple-exprs-p argvs
) (setq simple t
))
2868 (cl-mapcar (lambda (argn argv
)
2869 (if (or simple
(macroexp-const-p argv
))
2870 (progn (push (cons argn argv
) substs
)
2874 ;; FIXME: `sublis/subst' will happily substitute the symbol
2875 ;; `argn' in places where it's not used as a reference
2877 ;; FIXME: `sublis/subst' will happily copy `argv' to a different
2878 ;; scope, leading to name capture.
2879 (setq body
(cond ((null substs
) body
)
2880 ((null (cdr substs
))
2881 (cl-subst (cdar substs
) (caar substs
) body
))
2882 (t (cl--sublis substs body
))))
2883 (if lets
`(let ,lets
,body
) body
))))
2885 (defun cl--sublis (alist tree
)
2886 "Perform substitutions indicated by ALIST in TREE (non-destructively)."
2887 (let ((x (assq tree alist
)))
2891 (cons (cl--sublis alist
(car tree
)) (cl--sublis alist
(cdr tree
))))
2894 ;; Compile-time optimizations for some functions defined in this package.
2896 (defun cl--compiler-macro-member (form a list
&rest keys
)
2897 (let ((test (and (= (length keys
) 2) (eq (car keys
) :test
)
2898 (cl--const-expr-val (nth 1 keys
)))))
2899 (cond ((eq test
'eq
) `(memq ,a
,list
))
2900 ((eq test
'equal
) `(member ,a
,list
))
2901 ((or (null keys
) (eq test
'eql
)) `(memql ,a
,list
))
2904 (defun cl--compiler-macro-assoc (form a list
&rest keys
)
2905 (let ((test (and (= (length keys
) 2) (eq (car keys
) :test
)
2906 (cl--const-expr-val (nth 1 keys
)))))
2907 (cond ((eq test
'eq
) `(assq ,a
,list
))
2908 ((eq test
'equal
) `(assoc ,a
,list
))
2909 ((and (macroexp-const-p a
) (or (null keys
) (eq test
'eql
)))
2910 (if (floatp (cl--const-expr-val a
))
2911 `(assoc ,a
,list
) `(assq ,a
,list
)))
2915 (defun cl--compiler-macro-adjoin (form a list
&rest keys
)
2916 (if (memq :key keys
) form
2917 (macroexp-let2* macroexp-copyable-p
((va a
) (vlist list
))
2918 `(if (cl-member ,va
,vlist
,@keys
) ,vlist
(cons ,va
,vlist
)))))
2920 (defun cl--compiler-macro-get (_form sym prop
&optional def
)
2922 `(cl-getf (symbol-plist ,sym
) ,prop
,def
)
2925 (dolist (y '(cl-first cl-second cl-third cl-fourth
2926 cl-fifth cl-sixth cl-seventh
2927 cl-eighth cl-ninth cl-tenth
2928 cl-rest cl-endp cl-plusp cl-minusp
2929 cl-caaar cl-caadr cl-cadar
2930 cl-caddr cl-cdaar cl-cdadr
2931 cl-cddar cl-cdddr cl-caaaar
2932 cl-caaadr cl-caadar cl-caaddr
2933 cl-cadaar cl-cadadr cl-caddar
2934 cl-cadddr cl-cdaaar cl-cdaadr
2935 cl-cdadar cl-cdaddr cl-cddaar
2936 cl-cddadr cl-cdddar cl-cddddr
))
2937 (put y
'side-effect-free t
))
2939 ;;; Things that are inline.
2940 (cl-proclaim '(inline cl-acons cl-map cl-concatenate cl-notany
2941 cl-notevery cl-revappend cl-nreconc gethash
))
2943 ;;; Things that are side-effect-free.
2944 (mapc (lambda (x) (function-put x
'side-effect-free t
))
2945 '(cl-oddp cl-evenp cl-signum last butlast cl-ldiff cl-pairlis cl-gcd
2946 cl-lcm cl-isqrt cl-floor cl-ceiling cl-truncate cl-round cl-mod cl-rem
2947 cl-subseq cl-list-length cl-get cl-getf
))
2949 ;;; Things that are side-effect-and-error-free.
2950 (mapc (lambda (x) (function-put x
'side-effect-free
'error-free
))
2951 '(eql cl-list
* cl-subst cl-acons cl-equalp
2952 cl-random-state-p copy-tree cl-sublis
))
2954 ;;; Types and assertions.
2957 (defmacro cl-deftype
(name arglist
&rest body
)
2958 "Define NAME as a new data type.
2959 The type name can then be used in `cl-typecase', `cl-check-type', etc."
2960 (declare (debug cl-defmacro
) (doc-string 3) (indent 2))
2961 `(cl-eval-when (compile load eval
)
2962 (put ',name
'cl-deftype-handler
2963 (cl-function (lambda (&cl-defs
'('*) ,@arglist
) ,@body
)))))
2965 ;;; Additional functions that we can now define because we've defined
2966 ;;; `cl-defsubst' and `cl-typep'.
2968 (cl-defsubst cl-struct-slot-value
(struct-type slot-name inst
)
2969 ;; The use of `cl-defsubst' here gives us both a compiler-macro
2970 ;; and a gv-expander "for free".
2971 "Return the value of slot SLOT-NAME in INST of STRUCT-TYPE.
2972 STRUCT and SLOT-NAME are symbols. INST is a structure instance."
2973 (declare (side-effect-free t
))
2974 (unless (cl-typep inst struct-type
)
2975 (signal 'wrong-type-argument
(list struct-type inst
)))
2976 ;; We could use `elt', but since the byte compiler will resolve the
2977 ;; branch below at compile time, it's more efficient to use the
2978 ;; type-specific accessor.
2979 (if (eq (cl-struct-sequence-type struct-type
) 'vector
)
2980 (aref inst
(cl-struct-slot-offset struct-type slot-name
))
2981 (nth (cl-struct-slot-offset struct-type slot-name
) inst
)))
2983 (run-hooks 'cl-macs-load-hook
)
2986 ;; byte-compile-dynamic: t
2987 ;; generated-autoload-file: "cl-loaddefs.el"
2992 ;;; cl-macs.el ends here