1 /* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992
2 Free Software Foundation, Inc.
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2, or (at your option)
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 In other words, you are welcome to use, share and improve this program.
19 You are forbidden to forbid anyone else to use, share and improve
20 what you give them. Help stamp out software-hoarding! */
24 * unexec.c - Convert a running program into an a.out file.
26 * Author: Spencer W. Thomas
27 * Computer Science Dept.
29 * Date: Tue Mar 2 1982
30 * Modified heavily since then.
33 * unexec (new_name, a_name, data_start, bss_start, entry_address)
34 * char *new_name, *a_name;
35 * unsigned data_start, bss_start, entry_address;
37 * Takes a snapshot of the program and makes an a.out format file in the
38 * file named by the string argument new_name.
39 * If a_name is non-NULL, the symbol table will be taken from the given file.
40 * On some machines, an existing a_name file is required.
42 * The boundaries within the a.out file may be adjusted with the data_start
43 * and bss_start arguments. Either or both may be given as 0 for defaults.
45 * Data_start gives the boundary between the text segment and the data
46 * segment of the program. The text segment can contain shared, read-only
47 * program code and literal data, while the data segment is always unshared
48 * and unprotected. Data_start gives the lowest unprotected address.
49 * The value you specify may be rounded down to a suitable boundary
50 * as required by the machine you are using.
52 * Specifying zero for data_start means the boundary between text and data
53 * should not be the same as when the program was loaded.
54 * If NO_REMAP is defined, the argument data_start is ignored and the
55 * segment boundaries are never changed.
57 * Bss_start indicates how much of the data segment is to be saved in the
58 * a.out file and restored when the program is executed. It gives the lowest
59 * unsaved address, and is rounded up to a page boundary. The default when 0
60 * is given assumes that the entire data segment is to be stored, including
61 * the previous data and bss as well as any additional storage allocated with
64 * The new file is set up to start at entry_address.
66 * If you make improvements I'd like to get them too.
67 * harpo!utah-cs!thomas, thomas@Utah-20
71 /* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
74 * Basic theory: the data space of the running process needs to be
75 * dumped to the output file. Normally we would just enlarge the size
76 * of .data, scooting everything down. But we can't do that in ELF,
77 * because there is often something between the .data space and the
80 * In the temacs dump below, notice that the Global Offset Table
81 * (.got) and the Dynamic link data (.dynamic) come between .data1 and
82 * .bss. It does not work to overlap .data with these fields.
84 * The solution is to create a new .data segment. This segment is
85 * filled with data from the current process. Since the contents of
86 * various sections refer to sections by index, the new .data segment
87 * is made the last in the table to avoid changing any existing index.
89 * This is an example of how the section headers are changed. "Addr"
90 * is a process virtual address. "Offset" is a file offset.
92 raid:/nfs/raid/src/dist-18.56/src> dump -h temacs
96 **** SECTION HEADER TABLE ****
97 [No] Type Flags Addr Offset Size Name
98 Link Info Adralgn Entsize
100 [1] 1 2 0x80480d4 0xd4 0x13 .interp
103 [2] 5 2 0x80480e8 0xe8 0x388 .hash
106 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
109 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
112 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
115 [6] 1 6 0x8049348 0x1348 0x3 .init
118 [7] 1 6 0x804934c 0x134c 0x680 .plt
121 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
124 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
127 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
130 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
133 [12] 1 3 0x8088330 0x3f330 0x20afc .data
136 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
139 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
142 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
145 [16] 8 3 0x80a98f4 0x608f4 0x449c .bss
148 [17] 2 0 0 0x608f4 0x9b90 .symtab
151 [18] 3 0 0 0x6a484 0x8526 .strtab
154 [19] 3 0 0 0x729aa 0x93 .shstrtab
157 [20] 1 0 0 0x72a3d 0x68b7 .comment
160 raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs
164 **** SECTION HEADER TABLE ****
165 [No] Type Flags Addr Offset Size Name
166 Link Info Adralgn Entsize
168 [1] 1 2 0x80480d4 0xd4 0x13 .interp
171 [2] 5 2 0x80480e8 0xe8 0x388 .hash
174 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
177 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
180 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
183 [6] 1 6 0x8049348 0x1348 0x3 .init
186 [7] 1 6 0x804934c 0x134c 0x680 .plt
189 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
192 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
195 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
198 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
201 [12] 1 3 0x8088330 0x3f330 0x20afc .data
204 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
207 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
210 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
213 [16] 8 3 0x80c6800 0x7d800 0 .bss
216 [17] 2 0 0 0x7d800 0x9b90 .symtab
219 [18] 3 0 0 0x87390 0x8526 .strtab
222 [19] 3 0 0 0x8f8b6 0x93 .shstrtab
225 [20] 1 0 0 0x8f949 0x68b7 .comment
228 [21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
231 * This is an example of how the file header is changed. "Shoff" is
232 * the section header offset within the file. Since that table is
233 * after the new .data section, it is moved. "Shnum" is the number of
234 * sections, which we increment.
236 * "Phoff" is the file offset to the program header. "Phentsize" and
237 * "Shentsz" are the program and section header entries sizes respectively.
238 * These can be larger than the apparent struct sizes.
240 raid:/nfs/raid/src/dist-18.56/src> dump -f temacs
245 Class Data Type Machine Version
246 Entry Phoff Shoff Flags Ehsize
247 Phentsize Phnum Shentsz Shnum Shstrndx
250 0x80499cc 0x34 0x792f4 0 0x34
253 raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs
258 Class Data Type Machine Version
259 Entry Phoff Shoff Flags Ehsize
260 Phentsize Phnum Shentsz Shnum Shstrndx
263 0x80499cc 0x34 0x96200 0 0x34
266 * These are the program headers. "Offset" is the file offset to the
267 * segment. "Vaddr" is the memory load address. "Filesz" is the
268 * segment size as it appears in the file, and "Memsz" is the size in
269 * memory. Below, the third segment is the code and the fourth is the
270 * data: the difference between Filesz and Memsz is .bss
272 raid:/nfs/raid/src/dist-18.56/src> dump -o temacs
275 ***** PROGRAM EXECUTION HEADER *****
276 Type Offset Vaddr Paddr
277 Filesz Memsz Flags Align
286 0x3f2f9 0x3f2f9 5 0x1000
288 1 0x3f330 0x8088330 0
289 0x215c4 0x25a60 7 0x1000
291 2 0x60874 0x80a9874 0
294 raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs
297 ***** PROGRAM EXECUTION HEADER *****
298 Type Offset Vaddr Paddr
299 Filesz Memsz Flags Align
308 0x3f2f9 0x3f2f9 5 0x1000
310 1 0x3f330 0x8088330 0
311 0x3e4d0 0x3e4d0 7 0x1000
313 2 0x60874 0x80a9874 0
319 /* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
321 * The above mechanism does not work if the unexeced ELF file is being
322 * re-layout by other applications (such as `strip'). All the applications
323 * that re-layout the internal of ELF will layout all sections in ascending
324 * order of their file offsets. After the re-layout, the data2 section will
325 * still be the LAST section in the section header vector, but its file offset
326 * is now being pushed far away down, and causes part of it not to be mapped
327 * in (ie. not covered by the load segment entry in PHDR vector), therefore
328 * causes the new binary to fail.
330 * The solution is to modify the unexec algorithm to insert the new data2
331 * section header right before the new bss section header, so their file
332 * offsets will be in the ascending order. Since some of the section's (all
333 * sections AFTER the bss section) indexes are now changed, we also need to
334 * modify some fields to make them point to the right sections. This is done
335 * by macro PATCH_INDEX. All the fields that need to be patched are:
337 * 1. ELF header e_shstrndx field.
338 * 2. section header sh_link and sh_info field.
339 * 3. symbol table entry st_shndx field.
341 * The above example now should look like:
343 **** SECTION HEADER TABLE ****
344 [No] Type Flags Addr Offset Size Name
345 Link Info Adralgn Entsize
347 [1] 1 2 0x80480d4 0xd4 0x13 .interp
350 [2] 5 2 0x80480e8 0xe8 0x388 .hash
353 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
356 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
359 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
362 [6] 1 6 0x8049348 0x1348 0x3 .init
365 [7] 1 6 0x804934c 0x134c 0x680 .plt
368 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
371 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
374 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
377 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
380 [12] 1 3 0x8088330 0x3f330 0x20afc .data
383 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
386 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
389 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
392 [16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
395 [17] 8 3 0x80c6800 0x7d800 0 .bss
398 [18] 2 0 0 0x7d800 0x9b90 .symtab
401 [19] 3 0 0 0x87390 0x8526 .strtab
404 [20] 3 0 0 0x8f8b6 0x93 .shstrtab
407 [21] 1 0 0 0x8f949 0x68b7 .comment
412 #include <sys/types.h>
414 #include <sys/stat.h>
421 #include <sys/mman.h>
424 #define fatal(a, b, c) fprintf(stderr, a, b, c), exit(1)
426 extern void fatal(char *, ...);
429 /* Get the address of a particular section or program header entry,
430 * accounting for the size of the entries.
433 #define OLD_SECTION_H(n) \
434 (*(Elf32_Shdr *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
435 #define NEW_SECTION_H(n) \
436 (*(Elf32_Shdr *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
437 #define OLD_PROGRAM_H(n) \
438 (*(Elf32_Phdr *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
439 #define NEW_PROGRAM_H(n) \
440 (*(Elf32_Phdr *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
442 #define PATCH_INDEX(n) \
444 if ((n) >= old_bss_index) \
446 typedef unsigned char byte
;
448 /* Round X up to a multiple of Y. */
460 /* ****************************************************************
465 * In ELF, this works by replacing the old .bss section with a new
466 * .data section, and inserting an empty .bss immediately afterwards.
470 unexec (new_name
, old_name
, data_start
, bss_start
, entry_address
)
471 char *new_name
, *old_name
;
472 unsigned data_start
, bss_start
, entry_address
;
474 extern unsigned int bss_end
;
475 int new_file
, old_file
, new_file_size
;
477 /* Pointers to the base of the image of the two files. */
478 caddr_t old_base
, new_base
;
480 /* Pointers to the file, program and section headers for the old and new
483 Elf32_Ehdr
*old_file_h
, *new_file_h
;
484 Elf32_Phdr
*old_program_h
, *new_program_h
;
485 Elf32_Shdr
*old_section_h
, *new_section_h
;
487 /* Point to the section name table in the old file */
488 char *old_section_names
;
490 Elf32_Addr old_bss_addr
, new_bss_addr
;
491 Elf32_Word old_bss_size
, new_data2_size
;
492 Elf32_Off new_data2_offset
;
493 Elf32_Addr new_data2_addr
;
495 int n
, nn
, old_bss_index
, old_data_index
, new_data2_index
;
496 struct stat stat_buf
;
498 /* Open the old file & map it into the address space. */
500 old_file
= open (old_name
, O_RDONLY
);
503 fatal ("Can't open %s for reading: errno %d\n", old_name
, errno
);
505 if (fstat (old_file
, &stat_buf
) == -1)
506 fatal ("Can't fstat(%s): errno %d\n", old_name
, errno
);
508 old_base
= mmap (0, stat_buf
.st_size
, PROT_READ
, MAP_SHARED
, old_file
, 0);
510 if (old_base
== (caddr_t
) -1)
511 fatal ("Can't mmap(%s): errno %d\n", old_name
, errno
);
514 fprintf (stderr
, "mmap(%s, %x) -> %x\n", old_name
, stat_buf
.st_size
,
518 /* Get pointers to headers & section names */
520 old_file_h
= (Elf32_Ehdr
*) old_base
;
521 old_program_h
= (Elf32_Phdr
*) ((byte
*) old_base
+ old_file_h
->e_phoff
);
522 old_section_h
= (Elf32_Shdr
*) ((byte
*) old_base
+ old_file_h
->e_shoff
);
523 old_section_names
= (char *) old_base
524 + OLD_SECTION_H(old_file_h
->e_shstrndx
).sh_offset
;
526 /* Find the old .bss section. Figure out parameters of the new
527 * data2 and bss sections.
530 for (old_bss_index
= 1; old_bss_index
< old_file_h
->e_shnum
; old_bss_index
++)
533 fprintf (stderr
, "Looking for .bss - found %s\n",
534 old_section_names
+ OLD_SECTION_H(old_bss_index
).sh_name
);
536 if (!strcmp (old_section_names
+ OLD_SECTION_H(old_bss_index
).sh_name
,
540 if (old_bss_index
== old_file_h
->e_shnum
)
541 fatal ("Can't find .bss in %s.\n", old_name
, 0);
543 old_bss_addr
= OLD_SECTION_H(old_bss_index
).sh_addr
;
544 old_bss_size
= OLD_SECTION_H(old_bss_index
).sh_size
;
545 #if defined(emacs) || !defined(DEBUG)
546 bss_end
= (unsigned int) sbrk (0);
547 new_bss_addr
= (Elf32_Addr
) bss_end
;
549 new_bss_addr
= old_bss_addr
+ old_bss_size
+ 0x1234;
551 new_data2_addr
= old_bss_addr
;
552 new_data2_size
= new_bss_addr
- old_bss_addr
;
553 new_data2_offset
= OLD_SECTION_H(old_bss_index
).sh_offset
;
556 fprintf (stderr
, "old_bss_index %d\n", old_bss_index
);
557 fprintf (stderr
, "old_bss_addr %x\n", old_bss_addr
);
558 fprintf (stderr
, "old_bss_size %x\n", old_bss_size
);
559 fprintf (stderr
, "new_bss_addr %x\n", new_bss_addr
);
560 fprintf (stderr
, "new_data2_addr %x\n", new_data2_addr
);
561 fprintf (stderr
, "new_data2_size %x\n", new_data2_size
);
562 fprintf (stderr
, "new_data2_offset %x\n", new_data2_offset
);
565 if ((unsigned) new_bss_addr
< (unsigned) old_bss_addr
+ old_bss_size
)
566 fatal (".bss shrank when undumping???\n", 0, 0);
568 /* Set the output file to the right size and mmap(2) it. Set
569 * pointers to various interesting objects. stat_buf still has
573 new_file
= open (new_name
, O_RDWR
| O_CREAT
, 0666);
575 fatal ("Can't creat(%s): errno %d\n", new_name
, errno
);
577 new_file_size
= stat_buf
.st_size
+ old_file_h
->e_shentsize
+ new_data2_size
;
579 if (ftruncate (new_file
, new_file_size
))
580 fatal ("Can't ftruncate(%s): errno %d\n", new_name
, errno
);
582 new_base
= mmap (0, new_file_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
585 if (new_base
== (caddr_t
) -1)
586 fatal ("Can't mmap(%s): errno %d\n", new_name
, errno
);
588 new_file_h
= (Elf32_Ehdr
*) new_base
;
589 new_program_h
= (Elf32_Phdr
*) ((byte
*) new_base
+ old_file_h
->e_phoff
);
590 new_section_h
= (Elf32_Shdr
*)
591 ((byte
*) new_base
+ old_file_h
->e_shoff
+ new_data2_size
);
593 /* Make our new file, program and section headers as copies of the
597 memcpy (new_file_h
, old_file_h
, old_file_h
->e_ehsize
);
598 memcpy (new_program_h
, old_program_h
,
599 old_file_h
->e_phnum
* old_file_h
->e_phentsize
);
601 /* Modify the e_shstrndx if necessary. */
602 PATCH_INDEX (new_file_h
->e_shstrndx
);
604 /* Fix up file header. We'll add one section. Section header is
608 new_file_h
->e_shoff
+= new_data2_size
;
609 new_file_h
->e_shnum
+= 1;
612 fprintf (stderr
, "Old section offset %x\n", old_file_h
->e_shoff
);
613 fprintf (stderr
, "Old section count %d\n", old_file_h
->e_shnum
);
614 fprintf (stderr
, "New section offset %x\n", new_file_h
->e_shoff
);
615 fprintf (stderr
, "New section count %d\n", new_file_h
->e_shnum
);
618 /* Fix up a new program header. Extend the writable data segment so
619 * that the bss area is covered too. Find that segment by looking
620 * for a segment that ends just before the .bss area. Make sure
621 * that no segments are above the new .data2. Put a loop at the end
622 * to adjust the offset and address of any segment that is above
623 * data2, just in case we decide to allow this later.
626 for (n
= new_file_h
->e_phnum
- 1; n
>= 0; n
--)
628 /* Compute maximum of all requirements for alignment of section. */
629 int alignment
= (NEW_PROGRAM_H (n
)).p_align
;
630 if ((OLD_SECTION_H (old_bss_index
)).sh_addralign
> alignment
)
631 alignment
= OLD_SECTION_H (old_bss_index
).sh_addralign
;
633 /* Supposedly this condition is okay for the SGI. */
635 if (NEW_PROGRAM_H(n
).p_vaddr
+ NEW_PROGRAM_H(n
).p_filesz
> old_bss_addr
)
636 fatal ("Program segment above .bss in %s\n", old_name
, 0);
639 if (NEW_PROGRAM_H(n
).p_type
== PT_LOAD
640 && (round_up ((NEW_PROGRAM_H (n
)).p_vaddr
641 + (NEW_PROGRAM_H (n
)).p_filesz
,
643 == round_up (old_bss_addr
, alignment
)))
647 fatal ("Couldn't find segment next to .bss in %s\n", old_name
, 0);
649 NEW_PROGRAM_H(n
).p_filesz
+= new_data2_size
;
650 NEW_PROGRAM_H(n
).p_memsz
= NEW_PROGRAM_H(n
).p_filesz
;
652 #if 1 /* Maybe allow section after data2 - does this ever happen? */
653 for (n
= new_file_h
->e_phnum
- 1; n
>= 0; n
--)
655 if (NEW_PROGRAM_H(n
).p_vaddr
656 && NEW_PROGRAM_H(n
).p_vaddr
>= new_data2_addr
)
657 NEW_PROGRAM_H(n
).p_vaddr
+= new_data2_size
- old_bss_size
;
659 if (NEW_PROGRAM_H(n
).p_offset
>= new_data2_offset
)
660 NEW_PROGRAM_H(n
).p_offset
+= new_data2_size
;
664 /* Fix up section headers based on new .data2 section. Any section
665 * whose offset or virtual address is after the new .data2 section
666 * gets its value adjusted. .bss size becomes zero and new address
667 * is set. data2 section header gets added by copying the existing
668 * .data header and modifying the offset, address and size.
670 for (old_data_index
= 1; old_data_index
< old_file_h
->e_shnum
;
672 if (!strcmp (old_section_names
+ OLD_SECTION_H(old_data_index
).sh_name
,
675 if (old_data_index
== old_file_h
->e_shnum
)
676 fatal ("Can't find .data in %s.\n", old_name
, 0);
678 /* Walk through all section headers, insert the new data2 section right
679 before the new bss section. */
680 for (n
= 1, nn
= 1; n
< old_file_h
->e_shnum
; n
++, nn
++)
683 /* If it is bss section, insert the new data2 section before it. */
684 if (n
== old_bss_index
)
686 /* Steal the data section header for this data2 section. */
687 memcpy (&NEW_SECTION_H(nn
), &OLD_SECTION_H(old_data_index
),
688 new_file_h
->e_shentsize
);
690 NEW_SECTION_H(nn
).sh_addr
= new_data2_addr
;
691 NEW_SECTION_H(nn
).sh_offset
= new_data2_offset
;
692 NEW_SECTION_H(nn
).sh_size
= new_data2_size
;
693 /* Use the bss section's alignment. This will assure that the
694 new data2 section always be placed in the same spot as the old
695 bss section by any other application. */
696 NEW_SECTION_H(nn
).sh_addralign
= OLD_SECTION_H(n
).sh_addralign
;
698 /* Now copy over what we have in the memory now. */
699 memcpy (NEW_SECTION_H(nn
).sh_offset
+ new_base
,
700 (caddr_t
) OLD_SECTION_H(n
).sh_addr
,
705 memcpy (&NEW_SECTION_H(nn
), &OLD_SECTION_H(n
),
706 old_file_h
->e_shentsize
);
708 /* The new bss section's size is zero, and its file offset and virtual
709 address should be off by NEW_DATA2_SIZE. */
710 if (n
== old_bss_index
)
712 /* NN should be `old_bss_index + 1' at this point. */
713 NEW_SECTION_H(nn
).sh_offset
+= new_data2_size
;
714 NEW_SECTION_H(nn
).sh_addr
+= new_data2_size
;
715 /* Let the new bss section address alignment be the same as the
716 section address alignment followed the old bss section, so
717 this section will be placed in exactly the same place. */
718 NEW_SECTION_H(nn
).sh_addralign
= OLD_SECTION_H(nn
).sh_addralign
;
719 NEW_SECTION_H(nn
).sh_size
= 0;
721 /* Any section that was original placed AFTER the bss section should now
722 be off by NEW_DATA2_SIZE. */
723 else if (NEW_SECTION_H(nn
).sh_offset
>= new_data2_offset
)
724 NEW_SECTION_H(nn
).sh_offset
+= new_data2_size
;
726 /* If any section hdr refers to the section after the new .data
727 section, make it refer to next one because we have inserted
728 a new section in between. */
730 PATCH_INDEX(NEW_SECTION_H(nn
).sh_link
);
731 PATCH_INDEX(NEW_SECTION_H(nn
).sh_info
);
733 /* Now, start to copy the content of sections. */
734 if (NEW_SECTION_H(nn
).sh_type
== SHT_NULL
735 || NEW_SECTION_H(nn
).sh_type
== SHT_NOBITS
)
738 /* Write out the sections. .data and .data1 (and data2, called
739 * ".data" in the strings table) get copied from the current process
740 * instead of the old file.
742 if (!strcmp (old_section_names
+ NEW_SECTION_H(n
).sh_name
, ".data")
743 || !strcmp ((old_section_names
+ NEW_SECTION_H(n
).sh_name
),
745 src
= (caddr_t
) OLD_SECTION_H(n
).sh_addr
;
747 src
= old_base
+ OLD_SECTION_H(n
).sh_offset
;
749 memcpy (NEW_SECTION_H(nn
).sh_offset
+ new_base
, src
,
750 NEW_SECTION_H(nn
).sh_size
);
752 /* If it is the symbol table, its st_shndx field needs to be patched. */
753 if (NEW_SECTION_H(nn
).sh_type
== SHT_SYMTAB
754 || NEW_SECTION_H(nn
).sh_type
== SHT_DYNSYM
)
756 Elf32_Shdr
*spt
= &NEW_SECTION_H(nn
);
757 unsigned int num
= spt
->sh_size
/ spt
->sh_entsize
;
758 Elf32_Sym
* sym
= (Elf32_Sym
*) (NEW_SECTION_H(nn
).sh_offset
+
762 if ((sym
->st_shndx
== SHN_UNDEF
)
763 || (sym
->st_shndx
== SHN_ABS
)
764 || (sym
->st_shndx
== SHN_COMMON
))
767 PATCH_INDEX(sym
->st_shndx
);
772 /* Close the files and make the new file executable */
774 if (close (old_file
))
775 fatal ("Can't close(%s): errno %d\n", old_name
, errno
);
777 if (close (new_file
))
778 fatal ("Can't close(%s): errno %d\n", new_name
, errno
);
780 if (stat (new_name
, &stat_buf
) == -1)
781 fatal ("Can't stat(%s): errno %d\n", new_name
, errno
);
785 stat_buf
.st_mode
|= 0111 & ~n
;
786 if (chmod (new_name
, stat_buf
.st_mode
) == -1)
787 fatal ("Can't chmod(%s): errno %d\n", new_name
, errno
);