(kill-comment): Fixed by rewriting it with syntax-tables rather than regexps
[emacs.git] / src / search.c
blobdf7b825edcbe4c0910ef19be41d765fd9e0999ca
1 /* String search routines for GNU Emacs.
2 Copyright (C) 1985, 86,87,93,94,97,98, 1999 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
22 #include <config.h>
23 #include "lisp.h"
24 #include "syntax.h"
25 #include "category.h"
26 #include "buffer.h"
27 #include "charset.h"
28 #include "region-cache.h"
29 #include "commands.h"
30 #include "blockinput.h"
31 #include "intervals.h"
33 #include <sys/types.h>
34 #include "regex.h"
36 #define min(a, b) ((a) < (b) ? (a) : (b))
37 #define max(a, b) ((a) > (b) ? (a) : (b))
39 #define REGEXP_CACHE_SIZE 20
41 /* If the regexp is non-nil, then the buffer contains the compiled form
42 of that regexp, suitable for searching. */
43 struct regexp_cache
45 struct regexp_cache *next;
46 Lisp_Object regexp;
47 struct re_pattern_buffer buf;
48 char fastmap[0400];
49 /* Nonzero means regexp was compiled to do full POSIX backtracking. */
50 char posix;
53 /* The instances of that struct. */
54 struct regexp_cache searchbufs[REGEXP_CACHE_SIZE];
56 /* The head of the linked list; points to the most recently used buffer. */
57 struct regexp_cache *searchbuf_head;
60 /* Every call to re_match, etc., must pass &search_regs as the regs
61 argument unless you can show it is unnecessary (i.e., if re_match
62 is certainly going to be called again before region-around-match
63 can be called).
65 Since the registers are now dynamically allocated, we need to make
66 sure not to refer to the Nth register before checking that it has
67 been allocated by checking search_regs.num_regs.
69 The regex code keeps track of whether it has allocated the search
70 buffer using bits in the re_pattern_buffer. This means that whenever
71 you compile a new pattern, it completely forgets whether it has
72 allocated any registers, and will allocate new registers the next
73 time you call a searching or matching function. Therefore, we need
74 to call re_set_registers after compiling a new pattern or after
75 setting the match registers, so that the regex functions will be
76 able to free or re-allocate it properly. */
77 static struct re_registers search_regs;
79 /* The buffer in which the last search was performed, or
80 Qt if the last search was done in a string;
81 Qnil if no searching has been done yet. */
82 static Lisp_Object last_thing_searched;
84 /* error condition signaled when regexp compile_pattern fails */
86 Lisp_Object Qinvalid_regexp;
88 static void set_search_regs ();
89 static void save_search_regs ();
90 static int simple_search ();
91 static int boyer_moore ();
92 static int search_buffer ();
94 static void
95 matcher_overflow ()
97 error ("Stack overflow in regexp matcher");
100 #ifdef __STDC__
101 #define CONST const
102 #else
103 #define CONST
104 #endif
106 /* Compile a regexp and signal a Lisp error if anything goes wrong.
107 PATTERN is the pattern to compile.
108 CP is the place to put the result.
109 TRANSLATE is a translation table for ignoring case, or nil for none.
110 REGP is the structure that says where to store the "register"
111 values that will result from matching this pattern.
112 If it is 0, we should compile the pattern not to record any
113 subexpression bounds.
114 POSIX is nonzero if we want full backtracking (POSIX style)
115 for this pattern. 0 means backtrack only enough to get a valid match.
116 MULTIBYTE is nonzero if we want to handle multibyte characters in
117 PATTERN. 0 means all multibyte characters are recognized just as
118 sequences of binary data. */
120 static void
121 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte)
122 struct regexp_cache *cp;
123 Lisp_Object pattern;
124 Lisp_Object translate;
125 struct re_registers *regp;
126 int posix;
127 int multibyte;
129 unsigned char *raw_pattern;
130 int raw_pattern_size;
131 char *val;
132 reg_syntax_t old;
134 /* MULTIBYTE says whether the text to be searched is multibyte.
135 We must convert PATTERN to match that, or we will not really
136 find things right. */
138 if (multibyte == STRING_MULTIBYTE (pattern))
140 raw_pattern = (unsigned char *) XSTRING (pattern)->data;
141 raw_pattern_size = STRING_BYTES (XSTRING (pattern));
143 else if (multibyte)
145 raw_pattern_size = count_size_as_multibyte (XSTRING (pattern)->data,
146 XSTRING (pattern)->size);
147 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
148 copy_text (XSTRING (pattern)->data, raw_pattern,
149 XSTRING (pattern)->size, 0, 1);
151 else
153 /* Converting multibyte to single-byte.
155 ??? Perhaps this conversion should be done in a special way
156 by subtracting nonascii-insert-offset from each non-ASCII char,
157 so that only the multibyte chars which really correspond to
158 the chosen single-byte character set can possibly match. */
159 raw_pattern_size = XSTRING (pattern)->size;
160 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
161 copy_text (XSTRING (pattern)->data, raw_pattern,
162 STRING_BYTES (XSTRING (pattern)), 1, 0);
165 cp->regexp = Qnil;
166 cp->buf.translate = (! NILP (translate) ? translate : make_number (0));
167 cp->posix = posix;
168 cp->buf.multibyte = multibyte;
169 BLOCK_INPUT;
170 old = re_set_syntax (RE_SYNTAX_EMACS | RE_CHAR_CLASSES
171 | (posix ? 0 : RE_NO_POSIX_BACKTRACKING));
172 val = (char *) re_compile_pattern ((char *)raw_pattern,
173 raw_pattern_size, &cp->buf);
174 re_set_syntax (old);
175 UNBLOCK_INPUT;
176 if (val)
177 Fsignal (Qinvalid_regexp, Fcons (build_string (val), Qnil));
179 cp->regexp = Fcopy_sequence (pattern);
182 /* Shrink each compiled regexp buffer in the cache
183 to the size actually used right now.
184 This is called from garbage collection. */
186 void
187 shrink_regexp_cache ()
189 struct regexp_cache *cp, **cpp;
191 for (cp = searchbuf_head; cp != 0; cp = cp->next)
193 cp->buf.allocated = cp->buf.used;
194 cp->buf.buffer
195 = (unsigned char *) realloc (cp->buf.buffer, cp->buf.used);
199 /* Compile a regexp if necessary, but first check to see if there's one in
200 the cache.
201 PATTERN is the pattern to compile.
202 TRANSLATE is a translation table for ignoring case, or nil for none.
203 REGP is the structure that says where to store the "register"
204 values that will result from matching this pattern.
205 If it is 0, we should compile the pattern not to record any
206 subexpression bounds.
207 POSIX is nonzero if we want full backtracking (POSIX style)
208 for this pattern. 0 means backtrack only enough to get a valid match. */
210 struct re_pattern_buffer *
211 compile_pattern (pattern, regp, translate, posix, multibyte)
212 Lisp_Object pattern;
213 struct re_registers *regp;
214 Lisp_Object translate;
215 int posix, multibyte;
217 struct regexp_cache *cp, **cpp;
219 for (cpp = &searchbuf_head; ; cpp = &cp->next)
221 cp = *cpp;
222 if (XSTRING (cp->regexp)->size == XSTRING (pattern)->size
223 && !NILP (Fstring_equal (cp->regexp, pattern))
224 && EQ (cp->buf.translate, (! NILP (translate) ? translate : make_number (0)))
225 && cp->posix == posix
226 && cp->buf.multibyte == multibyte)
227 break;
229 /* If we're at the end of the cache, compile into the last cell. */
230 if (cp->next == 0)
232 compile_pattern_1 (cp, pattern, translate, regp, posix, multibyte);
233 break;
237 /* When we get here, cp (aka *cpp) contains the compiled pattern,
238 either because we found it in the cache or because we just compiled it.
239 Move it to the front of the queue to mark it as most recently used. */
240 *cpp = cp->next;
241 cp->next = searchbuf_head;
242 searchbuf_head = cp;
244 /* Advise the searching functions about the space we have allocated
245 for register data. */
246 if (regp)
247 re_set_registers (&cp->buf, regp, regp->num_regs, regp->start, regp->end);
249 return &cp->buf;
252 /* Error condition used for failing searches */
253 Lisp_Object Qsearch_failed;
255 Lisp_Object
256 signal_failure (arg)
257 Lisp_Object arg;
259 Fsignal (Qsearch_failed, Fcons (arg, Qnil));
260 return Qnil;
263 static Lisp_Object
264 looking_at_1 (string, posix)
265 Lisp_Object string;
266 int posix;
268 Lisp_Object val;
269 unsigned char *p1, *p2;
270 int s1, s2;
271 register int i;
272 struct re_pattern_buffer *bufp;
274 if (running_asynch_code)
275 save_search_regs ();
277 CHECK_STRING (string, 0);
278 bufp = compile_pattern (string, &search_regs,
279 (!NILP (current_buffer->case_fold_search)
280 ? DOWNCASE_TABLE : Qnil),
281 posix,
282 !NILP (current_buffer->enable_multibyte_characters));
284 immediate_quit = 1;
285 QUIT; /* Do a pending quit right away, to avoid paradoxical behavior */
287 /* Get pointers and sizes of the two strings
288 that make up the visible portion of the buffer. */
290 p1 = BEGV_ADDR;
291 s1 = GPT_BYTE - BEGV_BYTE;
292 p2 = GAP_END_ADDR;
293 s2 = ZV_BYTE - GPT_BYTE;
294 if (s1 < 0)
296 p2 = p1;
297 s2 = ZV_BYTE - BEGV_BYTE;
298 s1 = 0;
300 if (s2 < 0)
302 s1 = ZV_BYTE - BEGV_BYTE;
303 s2 = 0;
306 re_match_object = Qnil;
308 i = re_match_2 (bufp, (char *) p1, s1, (char *) p2, s2,
309 PT_BYTE - BEGV_BYTE, &search_regs,
310 ZV_BYTE - BEGV_BYTE);
311 if (i == -2)
312 matcher_overflow ();
314 val = (0 <= i ? Qt : Qnil);
315 if (i >= 0)
316 for (i = 0; i < search_regs.num_regs; i++)
317 if (search_regs.start[i] >= 0)
319 search_regs.start[i]
320 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
321 search_regs.end[i]
322 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
324 XSETBUFFER (last_thing_searched, current_buffer);
325 immediate_quit = 0;
326 return val;
329 DEFUN ("looking-at", Flooking_at, Slooking_at, 1, 1, 0,
330 "Return t if text after point matches regular expression REGEXP.\n\
331 This function modifies the match data that `match-beginning',\n\
332 `match-end' and `match-data' access; save and restore the match\n\
333 data if you want to preserve them.")
334 (regexp)
335 Lisp_Object regexp;
337 return looking_at_1 (regexp, 0);
340 DEFUN ("posix-looking-at", Fposix_looking_at, Sposix_looking_at, 1, 1, 0,
341 "Return t if text after point matches regular expression REGEXP.\n\
342 Find the longest match, in accord with Posix regular expression rules.\n\
343 This function modifies the match data that `match-beginning',\n\
344 `match-end' and `match-data' access; save and restore the match\n\
345 data if you want to preserve them.")
346 (regexp)
347 Lisp_Object regexp;
349 return looking_at_1 (regexp, 1);
352 static Lisp_Object
353 string_match_1 (regexp, string, start, posix)
354 Lisp_Object regexp, string, start;
355 int posix;
357 int val;
358 struct re_pattern_buffer *bufp;
359 int pos, pos_byte;
360 int i;
362 if (running_asynch_code)
363 save_search_regs ();
365 CHECK_STRING (regexp, 0);
366 CHECK_STRING (string, 1);
368 if (NILP (start))
369 pos = 0, pos_byte = 0;
370 else
372 int len = XSTRING (string)->size;
374 CHECK_NUMBER (start, 2);
375 pos = XINT (start);
376 if (pos < 0 && -pos <= len)
377 pos = len + pos;
378 else if (0 > pos || pos > len)
379 args_out_of_range (string, start);
380 pos_byte = string_char_to_byte (string, pos);
383 bufp = compile_pattern (regexp, &search_regs,
384 (!NILP (current_buffer->case_fold_search)
385 ? DOWNCASE_TABLE : Qnil),
386 posix,
387 STRING_MULTIBYTE (string));
388 immediate_quit = 1;
389 re_match_object = string;
391 val = re_search (bufp, (char *) XSTRING (string)->data,
392 STRING_BYTES (XSTRING (string)), pos_byte,
393 STRING_BYTES (XSTRING (string)) - pos_byte,
394 &search_regs);
395 immediate_quit = 0;
396 last_thing_searched = Qt;
397 if (val == -2)
398 matcher_overflow ();
399 if (val < 0) return Qnil;
401 for (i = 0; i < search_regs.num_regs; i++)
402 if (search_regs.start[i] >= 0)
404 search_regs.start[i]
405 = string_byte_to_char (string, search_regs.start[i]);
406 search_regs.end[i]
407 = string_byte_to_char (string, search_regs.end[i]);
410 return make_number (string_byte_to_char (string, val));
413 DEFUN ("string-match", Fstring_match, Sstring_match, 2, 3, 0,
414 "Return index of start of first match for REGEXP in STRING, or nil.\n\
415 Case is ignored if `case-fold-search' is non-nil in the current buffer.\n\
416 If third arg START is non-nil, start search at that index in STRING.\n\
417 For index of first char beyond the match, do (match-end 0).\n\
418 `match-end' and `match-beginning' also give indices of substrings\n\
419 matched by parenthesis constructs in the pattern.")
420 (regexp, string, start)
421 Lisp_Object regexp, string, start;
423 return string_match_1 (regexp, string, start, 0);
426 DEFUN ("posix-string-match", Fposix_string_match, Sposix_string_match, 2, 3, 0,
427 "Return index of start of first match for REGEXP in STRING, or nil.\n\
428 Find the longest match, in accord with Posix regular expression rules.\n\
429 Case is ignored if `case-fold-search' is non-nil in the current buffer.\n\
430 If third arg START is non-nil, start search at that index in STRING.\n\
431 For index of first char beyond the match, do (match-end 0).\n\
432 `match-end' and `match-beginning' also give indices of substrings\n\
433 matched by parenthesis constructs in the pattern.")
434 (regexp, string, start)
435 Lisp_Object regexp, string, start;
437 return string_match_1 (regexp, string, start, 1);
440 /* Match REGEXP against STRING, searching all of STRING,
441 and return the index of the match, or negative on failure.
442 This does not clobber the match data. */
445 fast_string_match (regexp, string)
446 Lisp_Object regexp, string;
448 int val;
449 struct re_pattern_buffer *bufp;
451 bufp = compile_pattern (regexp, 0, Qnil,
452 0, STRING_MULTIBYTE (string));
453 immediate_quit = 1;
454 re_match_object = string;
456 val = re_search (bufp, (char *) XSTRING (string)->data,
457 STRING_BYTES (XSTRING (string)), 0,
458 STRING_BYTES (XSTRING (string)), 0);
459 immediate_quit = 0;
460 return val;
463 /* Match REGEXP against STRING, searching all of STRING ignoring case,
464 and return the index of the match, or negative on failure.
465 This does not clobber the match data.
466 We assume that STRING contains single-byte characters. */
468 extern Lisp_Object Vascii_downcase_table;
471 fast_c_string_match_ignore_case (regexp, string)
472 Lisp_Object regexp;
473 char *string;
475 int val;
476 struct re_pattern_buffer *bufp;
477 int len = strlen (string);
479 regexp = string_make_unibyte (regexp);
480 re_match_object = Qt;
481 bufp = compile_pattern (regexp, 0,
482 Vascii_downcase_table, 0,
484 immediate_quit = 1;
485 val = re_search (bufp, string, len, 0, len, 0);
486 immediate_quit = 0;
487 return val;
490 /* The newline cache: remembering which sections of text have no newlines. */
492 /* If the user has requested newline caching, make sure it's on.
493 Otherwise, make sure it's off.
494 This is our cheezy way of associating an action with the change of
495 state of a buffer-local variable. */
496 static void
497 newline_cache_on_off (buf)
498 struct buffer *buf;
500 if (NILP (buf->cache_long_line_scans))
502 /* It should be off. */
503 if (buf->newline_cache)
505 free_region_cache (buf->newline_cache);
506 buf->newline_cache = 0;
509 else
511 /* It should be on. */
512 if (buf->newline_cache == 0)
513 buf->newline_cache = new_region_cache ();
518 /* Search for COUNT instances of the character TARGET between START and END.
520 If COUNT is positive, search forwards; END must be >= START.
521 If COUNT is negative, search backwards for the -COUNTth instance;
522 END must be <= START.
523 If COUNT is zero, do anything you please; run rogue, for all I care.
525 If END is zero, use BEGV or ZV instead, as appropriate for the
526 direction indicated by COUNT.
528 If we find COUNT instances, set *SHORTAGE to zero, and return the
529 position after the COUNTth match. Note that for reverse motion
530 this is not the same as the usual convention for Emacs motion commands.
532 If we don't find COUNT instances before reaching END, set *SHORTAGE
533 to the number of TARGETs left unfound, and return END.
535 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
536 except when inside redisplay. */
539 scan_buffer (target, start, end, count, shortage, allow_quit)
540 register int target;
541 int start, end;
542 int count;
543 int *shortage;
544 int allow_quit;
546 struct region_cache *newline_cache;
547 int direction;
549 if (count > 0)
551 direction = 1;
552 if (! end) end = ZV;
554 else
556 direction = -1;
557 if (! end) end = BEGV;
560 newline_cache_on_off (current_buffer);
561 newline_cache = current_buffer->newline_cache;
563 if (shortage != 0)
564 *shortage = 0;
566 immediate_quit = allow_quit;
568 if (count > 0)
569 while (start != end)
571 /* Our innermost scanning loop is very simple; it doesn't know
572 about gaps, buffer ends, or the newline cache. ceiling is
573 the position of the last character before the next such
574 obstacle --- the last character the dumb search loop should
575 examine. */
576 int ceiling_byte = CHAR_TO_BYTE (end) - 1;
577 int start_byte = CHAR_TO_BYTE (start);
578 int tem;
580 /* If we're looking for a newline, consult the newline cache
581 to see where we can avoid some scanning. */
582 if (target == '\n' && newline_cache)
584 int next_change;
585 immediate_quit = 0;
586 while (region_cache_forward
587 (current_buffer, newline_cache, start_byte, &next_change))
588 start_byte = next_change;
589 immediate_quit = allow_quit;
591 /* START should never be after END. */
592 if (start_byte > ceiling_byte)
593 start_byte = ceiling_byte;
595 /* Now the text after start is an unknown region, and
596 next_change is the position of the next known region. */
597 ceiling_byte = min (next_change - 1, ceiling_byte);
600 /* The dumb loop can only scan text stored in contiguous
601 bytes. BUFFER_CEILING_OF returns the last character
602 position that is contiguous, so the ceiling is the
603 position after that. */
604 tem = BUFFER_CEILING_OF (start_byte);
605 ceiling_byte = min (tem, ceiling_byte);
608 /* The termination address of the dumb loop. */
609 register unsigned char *ceiling_addr
610 = BYTE_POS_ADDR (ceiling_byte) + 1;
611 register unsigned char *cursor
612 = BYTE_POS_ADDR (start_byte);
613 unsigned char *base = cursor;
615 while (cursor < ceiling_addr)
617 unsigned char *scan_start = cursor;
619 /* The dumb loop. */
620 while (*cursor != target && ++cursor < ceiling_addr)
623 /* If we're looking for newlines, cache the fact that
624 the region from start to cursor is free of them. */
625 if (target == '\n' && newline_cache)
626 know_region_cache (current_buffer, newline_cache,
627 start_byte + scan_start - base,
628 start_byte + cursor - base);
630 /* Did we find the target character? */
631 if (cursor < ceiling_addr)
633 if (--count == 0)
635 immediate_quit = 0;
636 return BYTE_TO_CHAR (start_byte + cursor - base + 1);
638 cursor++;
642 start = BYTE_TO_CHAR (start_byte + cursor - base);
645 else
646 while (start > end)
648 /* The last character to check before the next obstacle. */
649 int ceiling_byte = CHAR_TO_BYTE (end);
650 int start_byte = CHAR_TO_BYTE (start);
651 int tem;
653 /* Consult the newline cache, if appropriate. */
654 if (target == '\n' && newline_cache)
656 int next_change;
657 immediate_quit = 0;
658 while (region_cache_backward
659 (current_buffer, newline_cache, start_byte, &next_change))
660 start_byte = next_change;
661 immediate_quit = allow_quit;
663 /* Start should never be at or before end. */
664 if (start_byte <= ceiling_byte)
665 start_byte = ceiling_byte + 1;
667 /* Now the text before start is an unknown region, and
668 next_change is the position of the next known region. */
669 ceiling_byte = max (next_change, ceiling_byte);
672 /* Stop scanning before the gap. */
673 tem = BUFFER_FLOOR_OF (start_byte - 1);
674 ceiling_byte = max (tem, ceiling_byte);
677 /* The termination address of the dumb loop. */
678 register unsigned char *ceiling_addr = BYTE_POS_ADDR (ceiling_byte);
679 register unsigned char *cursor = BYTE_POS_ADDR (start_byte - 1);
680 unsigned char *base = cursor;
682 while (cursor >= ceiling_addr)
684 unsigned char *scan_start = cursor;
686 while (*cursor != target && --cursor >= ceiling_addr)
689 /* If we're looking for newlines, cache the fact that
690 the region from after the cursor to start is free of them. */
691 if (target == '\n' && newline_cache)
692 know_region_cache (current_buffer, newline_cache,
693 start_byte + cursor - base,
694 start_byte + scan_start - base);
696 /* Did we find the target character? */
697 if (cursor >= ceiling_addr)
699 if (++count >= 0)
701 immediate_quit = 0;
702 return BYTE_TO_CHAR (start_byte + cursor - base);
704 cursor--;
708 start = BYTE_TO_CHAR (start_byte + cursor - base);
712 immediate_quit = 0;
713 if (shortage != 0)
714 *shortage = count * direction;
715 return start;
718 /* Search for COUNT instances of a line boundary, which means either a
719 newline or (if selective display enabled) a carriage return.
720 Start at START. If COUNT is negative, search backwards.
722 We report the resulting position by calling TEMP_SET_PT_BOTH.
724 If we find COUNT instances. we position after (always after,
725 even if scanning backwards) the COUNTth match, and return 0.
727 If we don't find COUNT instances before reaching the end of the
728 buffer (or the beginning, if scanning backwards), we return
729 the number of line boundaries left unfound, and position at
730 the limit we bumped up against.
732 If ALLOW_QUIT is non-zero, set immediate_quit. That's good to do
733 except in special cases. */
736 scan_newline (start, start_byte, limit, limit_byte, count, allow_quit)
737 int start, start_byte;
738 int limit, limit_byte;
739 register int count;
740 int allow_quit;
742 int direction = ((count > 0) ? 1 : -1);
744 register unsigned char *cursor;
745 unsigned char *base;
747 register int ceiling;
748 register unsigned char *ceiling_addr;
750 int old_immediate_quit = immediate_quit;
752 /* If we are not in selective display mode,
753 check only for newlines. */
754 int selective_display = (!NILP (current_buffer->selective_display)
755 && !INTEGERP (current_buffer->selective_display));
757 /* The code that follows is like scan_buffer
758 but checks for either newline or carriage return. */
760 if (allow_quit)
761 immediate_quit++;
763 start_byte = CHAR_TO_BYTE (start);
765 if (count > 0)
767 while (start_byte < limit_byte)
769 ceiling = BUFFER_CEILING_OF (start_byte);
770 ceiling = min (limit_byte - 1, ceiling);
771 ceiling_addr = BYTE_POS_ADDR (ceiling) + 1;
772 base = (cursor = BYTE_POS_ADDR (start_byte));
773 while (1)
775 while (*cursor != '\n' && ++cursor != ceiling_addr)
778 if (cursor != ceiling_addr)
780 if (--count == 0)
782 immediate_quit = old_immediate_quit;
783 start_byte = start_byte + cursor - base + 1;
784 start = BYTE_TO_CHAR (start_byte);
785 TEMP_SET_PT_BOTH (start, start_byte);
786 return 0;
788 else
789 if (++cursor == ceiling_addr)
790 break;
792 else
793 break;
795 start_byte += cursor - base;
798 else
800 while (start_byte > limit_byte)
802 ceiling = BUFFER_FLOOR_OF (start_byte - 1);
803 ceiling = max (limit_byte, ceiling);
804 ceiling_addr = BYTE_POS_ADDR (ceiling) - 1;
805 base = (cursor = BYTE_POS_ADDR (start_byte - 1) + 1);
806 while (1)
808 while (--cursor != ceiling_addr && *cursor != '\n')
811 if (cursor != ceiling_addr)
813 if (++count == 0)
815 immediate_quit = old_immediate_quit;
816 /* Return the position AFTER the match we found. */
817 start_byte = start_byte + cursor - base + 1;
818 start = BYTE_TO_CHAR (start_byte);
819 TEMP_SET_PT_BOTH (start, start_byte);
820 return 0;
823 else
824 break;
826 /* Here we add 1 to compensate for the last decrement
827 of CURSOR, which took it past the valid range. */
828 start_byte += cursor - base + 1;
832 TEMP_SET_PT_BOTH (limit, limit_byte);
833 immediate_quit = old_immediate_quit;
835 return count * direction;
839 find_next_newline_no_quit (from, cnt)
840 register int from, cnt;
842 return scan_buffer ('\n', from, 0, cnt, (int *) 0, 0);
845 /* Like find_next_newline, but returns position before the newline,
846 not after, and only search up to TO. This isn't just
847 find_next_newline (...)-1, because you might hit TO. */
850 find_before_next_newline (from, to, cnt)
851 int from, to, cnt;
853 int shortage;
854 int pos = scan_buffer ('\n', from, to, cnt, &shortage, 1);
856 if (shortage == 0)
857 pos--;
859 return pos;
862 /* Subroutines of Lisp buffer search functions. */
864 static Lisp_Object
865 search_command (string, bound, noerror, count, direction, RE, posix)
866 Lisp_Object string, bound, noerror, count;
867 int direction;
868 int RE;
869 int posix;
871 register int np;
872 int lim, lim_byte;
873 int n = direction;
875 if (!NILP (count))
877 CHECK_NUMBER (count, 3);
878 n *= XINT (count);
881 CHECK_STRING (string, 0);
882 if (NILP (bound))
884 if (n > 0)
885 lim = ZV, lim_byte = ZV_BYTE;
886 else
887 lim = BEGV, lim_byte = BEGV_BYTE;
889 else
891 CHECK_NUMBER_COERCE_MARKER (bound, 1);
892 lim = XINT (bound);
893 if (n > 0 ? lim < PT : lim > PT)
894 error ("Invalid search bound (wrong side of point)");
895 if (lim > ZV)
896 lim = ZV, lim_byte = ZV_BYTE;
897 else if (lim < BEGV)
898 lim = BEGV, lim_byte = BEGV_BYTE;
899 else
900 lim_byte = CHAR_TO_BYTE (lim);
903 np = search_buffer (string, PT, PT_BYTE, lim, lim_byte, n, RE,
904 (!NILP (current_buffer->case_fold_search)
905 ? current_buffer->case_canon_table
906 : Qnil),
907 (!NILP (current_buffer->case_fold_search)
908 ? current_buffer->case_eqv_table
909 : Qnil),
910 posix);
911 if (np <= 0)
913 if (NILP (noerror))
914 return signal_failure (string);
915 if (!EQ (noerror, Qt))
917 if (lim < BEGV || lim > ZV)
918 abort ();
919 SET_PT_BOTH (lim, lim_byte);
920 return Qnil;
921 #if 0 /* This would be clean, but maybe programs depend on
922 a value of nil here. */
923 np = lim;
924 #endif
926 else
927 return Qnil;
930 if (np < BEGV || np > ZV)
931 abort ();
933 SET_PT (np);
935 return make_number (np);
938 /* Return 1 if REGEXP it matches just one constant string. */
940 static int
941 trivial_regexp_p (regexp)
942 Lisp_Object regexp;
944 int len = STRING_BYTES (XSTRING (regexp));
945 unsigned char *s = XSTRING (regexp)->data;
946 unsigned char c;
947 while (--len >= 0)
949 switch (*s++)
951 case '.': case '*': case '+': case '?': case '[': case '^': case '$':
952 return 0;
953 case '\\':
954 if (--len < 0)
955 return 0;
956 switch (*s++)
958 case '|': case '(': case ')': case '`': case '\'': case 'b':
959 case 'B': case '<': case '>': case 'w': case 'W': case 's':
960 case 'S': case '=':
961 case 'c': case 'C': /* for categoryspec and notcategoryspec */
962 case '1': case '2': case '3': case '4': case '5':
963 case '6': case '7': case '8': case '9':
964 return 0;
968 return 1;
971 /* Search for the n'th occurrence of STRING in the current buffer,
972 starting at position POS and stopping at position LIM,
973 treating STRING as a literal string if RE is false or as
974 a regular expression if RE is true.
976 If N is positive, searching is forward and LIM must be greater than POS.
977 If N is negative, searching is backward and LIM must be less than POS.
979 Returns -x if x occurrences remain to be found (x > 0),
980 or else the position at the beginning of the Nth occurrence
981 (if searching backward) or the end (if searching forward).
983 POSIX is nonzero if we want full backtracking (POSIX style)
984 for this pattern. 0 means backtrack only enough to get a valid match. */
986 #define TRANSLATE(out, trt, d) \
987 do \
989 if (! NILP (trt)) \
991 Lisp_Object temp; \
992 temp = Faref (trt, make_number (d)); \
993 if (INTEGERP (temp)) \
994 out = XINT (temp); \
995 else \
996 out = d; \
998 else \
999 out = d; \
1001 while (0)
1003 static int
1004 search_buffer (string, pos, pos_byte, lim, lim_byte, n,
1005 RE, trt, inverse_trt, posix)
1006 Lisp_Object string;
1007 int pos;
1008 int pos_byte;
1009 int lim;
1010 int lim_byte;
1011 int n;
1012 int RE;
1013 Lisp_Object trt;
1014 Lisp_Object inverse_trt;
1015 int posix;
1017 int len = XSTRING (string)->size;
1018 int len_byte = STRING_BYTES (XSTRING (string));
1019 register int i;
1021 if (running_asynch_code)
1022 save_search_regs ();
1024 /* Searching 0 times means don't move. */
1025 /* Null string is found at starting position. */
1026 if (len == 0 || n == 0)
1028 set_search_regs (pos, 0);
1029 return pos;
1032 if (RE && !trivial_regexp_p (string))
1034 unsigned char *p1, *p2;
1035 int s1, s2;
1036 struct re_pattern_buffer *bufp;
1038 bufp = compile_pattern (string, &search_regs, trt, posix,
1039 !NILP (current_buffer->enable_multibyte_characters));
1041 immediate_quit = 1; /* Quit immediately if user types ^G,
1042 because letting this function finish
1043 can take too long. */
1044 QUIT; /* Do a pending quit right away,
1045 to avoid paradoxical behavior */
1046 /* Get pointers and sizes of the two strings
1047 that make up the visible portion of the buffer. */
1049 p1 = BEGV_ADDR;
1050 s1 = GPT_BYTE - BEGV_BYTE;
1051 p2 = GAP_END_ADDR;
1052 s2 = ZV_BYTE - GPT_BYTE;
1053 if (s1 < 0)
1055 p2 = p1;
1056 s2 = ZV_BYTE - BEGV_BYTE;
1057 s1 = 0;
1059 if (s2 < 0)
1061 s1 = ZV_BYTE - BEGV_BYTE;
1062 s2 = 0;
1064 re_match_object = Qnil;
1066 while (n < 0)
1068 int val;
1069 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1070 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1071 &search_regs,
1072 /* Don't allow match past current point */
1073 pos_byte - BEGV_BYTE);
1074 if (val == -2)
1076 matcher_overflow ();
1078 if (val >= 0)
1080 pos_byte = search_regs.start[0] + BEGV_BYTE;
1081 for (i = 0; i < search_regs.num_regs; i++)
1082 if (search_regs.start[i] >= 0)
1084 search_regs.start[i]
1085 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1086 search_regs.end[i]
1087 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1089 XSETBUFFER (last_thing_searched, current_buffer);
1090 /* Set pos to the new position. */
1091 pos = search_regs.start[0];
1093 else
1095 immediate_quit = 0;
1096 return (n);
1098 n++;
1100 while (n > 0)
1102 int val;
1103 val = re_search_2 (bufp, (char *) p1, s1, (char *) p2, s2,
1104 pos_byte - BEGV_BYTE, lim_byte - pos_byte,
1105 &search_regs,
1106 lim_byte - BEGV_BYTE);
1107 if (val == -2)
1109 matcher_overflow ();
1111 if (val >= 0)
1113 pos_byte = search_regs.end[0] + BEGV_BYTE;
1114 for (i = 0; i < search_regs.num_regs; i++)
1115 if (search_regs.start[i] >= 0)
1117 search_regs.start[i]
1118 = BYTE_TO_CHAR (search_regs.start[i] + BEGV_BYTE);
1119 search_regs.end[i]
1120 = BYTE_TO_CHAR (search_regs.end[i] + BEGV_BYTE);
1122 XSETBUFFER (last_thing_searched, current_buffer);
1123 pos = search_regs.end[0];
1125 else
1127 immediate_quit = 0;
1128 return (0 - n);
1130 n--;
1132 immediate_quit = 0;
1133 return (pos);
1135 else /* non-RE case */
1137 unsigned char *raw_pattern, *pat;
1138 int raw_pattern_size;
1139 int raw_pattern_size_byte;
1140 unsigned char *patbuf;
1141 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
1142 unsigned char *base_pat = XSTRING (string)->data;
1143 int charset_base = -1;
1144 int boyer_moore_ok = 1;
1146 /* MULTIBYTE says whether the text to be searched is multibyte.
1147 We must convert PATTERN to match that, or we will not really
1148 find things right. */
1150 if (multibyte == STRING_MULTIBYTE (string))
1152 raw_pattern = (unsigned char *) XSTRING (string)->data;
1153 raw_pattern_size = XSTRING (string)->size;
1154 raw_pattern_size_byte = STRING_BYTES (XSTRING (string));
1156 else if (multibyte)
1158 raw_pattern_size = XSTRING (string)->size;
1159 raw_pattern_size_byte
1160 = count_size_as_multibyte (XSTRING (string)->data,
1161 raw_pattern_size);
1162 raw_pattern = (unsigned char *) alloca (raw_pattern_size_byte + 1);
1163 copy_text (XSTRING (string)->data, raw_pattern,
1164 XSTRING (string)->size, 0, 1);
1166 else
1168 /* Converting multibyte to single-byte.
1170 ??? Perhaps this conversion should be done in a special way
1171 by subtracting nonascii-insert-offset from each non-ASCII char,
1172 so that only the multibyte chars which really correspond to
1173 the chosen single-byte character set can possibly match. */
1174 raw_pattern_size = XSTRING (string)->size;
1175 raw_pattern_size_byte = XSTRING (string)->size;
1176 raw_pattern = (unsigned char *) alloca (raw_pattern_size + 1);
1177 copy_text (XSTRING (string)->data, raw_pattern,
1178 STRING_BYTES (XSTRING (string)), 1, 0);
1181 /* Copy and optionally translate the pattern. */
1182 len = raw_pattern_size;
1183 len_byte = raw_pattern_size_byte;
1184 patbuf = (unsigned char *) alloca (len_byte);
1185 pat = patbuf;
1186 base_pat = raw_pattern;
1187 if (multibyte)
1189 while (--len >= 0)
1191 unsigned char workbuf[4], *str;
1192 int c, translated, inverse;
1193 int in_charlen, charlen;
1195 /* If we got here and the RE flag is set, it's because we're
1196 dealing with a regexp known to be trivial, so the backslash
1197 just quotes the next character. */
1198 if (RE && *base_pat == '\\')
1200 len--;
1201 len_byte--;
1202 base_pat++;
1205 c = STRING_CHAR_AND_LENGTH (base_pat, len_byte, in_charlen);
1207 /* Translate the character, if requested. */
1208 TRANSLATE (translated, trt, c);
1209 /* If translation changed the byte-length, go back
1210 to the original character. */
1211 charlen = CHAR_STRING (translated, workbuf, str);
1212 if (in_charlen != charlen)
1214 translated = c;
1215 charlen = CHAR_STRING (c, workbuf, str);
1218 /* If we are searching for something strange,
1219 an invalid multibyte code, don't use boyer-moore. */
1220 if (! ASCII_BYTE_P (translated)
1221 && (charlen == 1 /* 8bit code */
1222 || charlen != in_charlen /* invalid multibyte code */
1224 boyer_moore_ok = 0;
1226 TRANSLATE (inverse, inverse_trt, c);
1228 /* Did this char actually get translated?
1229 Would any other char get translated into it? */
1230 if (translated != c || inverse != c)
1232 /* Keep track of which character set row
1233 contains the characters that need translation. */
1234 int charset_base_code = c & ~CHAR_FIELD3_MASK;
1235 if (charset_base == -1)
1236 charset_base = charset_base_code;
1237 else if (charset_base != charset_base_code)
1238 /* If two different rows appear, needing translation,
1239 then we cannot use boyer_moore search. */
1240 boyer_moore_ok = 0;
1241 /* ??? Handa: this must do boyer_moore_ok = 0
1242 if c is a composite character. */
1245 /* Store this character into the translated pattern. */
1246 bcopy (str, pat, charlen);
1247 pat += charlen;
1248 base_pat += in_charlen;
1249 len_byte -= in_charlen;
1252 else
1254 /* Unibyte buffer. */
1255 charset_base = 0;
1256 while (--len >= 0)
1258 int c, translated;
1260 /* If we got here and the RE flag is set, it's because we're
1261 dealing with a regexp known to be trivial, so the backslash
1262 just quotes the next character. */
1263 if (RE && *base_pat == '\\')
1265 len--;
1266 base_pat++;
1268 c = *base_pat++;
1269 TRANSLATE (translated, trt, c);
1270 *pat++ = translated;
1274 len_byte = pat - patbuf;
1275 len = raw_pattern_size;
1276 pat = base_pat = patbuf;
1278 if (boyer_moore_ok)
1279 return boyer_moore (n, pat, len, len_byte, trt, inverse_trt,
1280 pos, pos_byte, lim, lim_byte,
1281 charset_base);
1282 else
1283 return simple_search (n, pat, len, len_byte, trt,
1284 pos, pos_byte, lim, lim_byte);
1288 /* Do a simple string search N times for the string PAT,
1289 whose length is LEN/LEN_BYTE,
1290 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1291 TRT is the translation table.
1293 Return the character position where the match is found.
1294 Otherwise, if M matches remained to be found, return -M.
1296 This kind of search works regardless of what is in PAT and
1297 regardless of what is in TRT. It is used in cases where
1298 boyer_moore cannot work. */
1300 static int
1301 simple_search (n, pat, len, len_byte, trt, pos, pos_byte, lim, lim_byte)
1302 int n;
1303 unsigned char *pat;
1304 int len, len_byte;
1305 Lisp_Object trt;
1306 int pos, pos_byte;
1307 int lim, lim_byte;
1309 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1310 int forward = n > 0;
1312 if (lim > pos && multibyte)
1313 while (n > 0)
1315 while (1)
1317 /* Try matching at position POS. */
1318 int this_pos = pos;
1319 int this_pos_byte = pos_byte;
1320 int this_len = len;
1321 int this_len_byte = len_byte;
1322 unsigned char *p = pat;
1323 if (pos + len > lim)
1324 goto stop;
1326 while (this_len > 0)
1328 int charlen, buf_charlen;
1329 int pat_ch, buf_ch;
1331 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1332 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1333 ZV_BYTE - this_pos_byte,
1334 buf_charlen);
1335 TRANSLATE (buf_ch, trt, buf_ch);
1337 if (buf_ch != pat_ch)
1338 break;
1340 this_len_byte -= charlen;
1341 this_len--;
1342 p += charlen;
1344 this_pos_byte += buf_charlen;
1345 this_pos++;
1348 if (this_len == 0)
1350 pos += len;
1351 pos_byte += len_byte;
1352 break;
1355 INC_BOTH (pos, pos_byte);
1358 n--;
1360 else if (lim > pos)
1361 while (n > 0)
1363 while (1)
1365 /* Try matching at position POS. */
1366 int this_pos = pos;
1367 int this_len = len;
1368 unsigned char *p = pat;
1370 if (pos + len > lim)
1371 goto stop;
1373 while (this_len > 0)
1375 int pat_ch = *p++;
1376 int buf_ch = FETCH_BYTE (this_pos);
1377 TRANSLATE (buf_ch, trt, buf_ch);
1379 if (buf_ch != pat_ch)
1380 break;
1382 this_len--;
1383 this_pos++;
1386 if (this_len == 0)
1388 pos += len;
1389 break;
1392 pos++;
1395 n--;
1397 /* Backwards search. */
1398 else if (lim < pos && multibyte)
1399 while (n < 0)
1401 while (1)
1403 /* Try matching at position POS. */
1404 int this_pos = pos - len;
1405 int this_pos_byte = pos_byte - len_byte;
1406 int this_len = len;
1407 int this_len_byte = len_byte;
1408 unsigned char *p = pat;
1410 if (pos - len < lim)
1411 goto stop;
1413 while (this_len > 0)
1415 int charlen, buf_charlen;
1416 int pat_ch, buf_ch;
1418 pat_ch = STRING_CHAR_AND_LENGTH (p, this_len_byte, charlen);
1419 buf_ch = STRING_CHAR_AND_LENGTH (BYTE_POS_ADDR (this_pos_byte),
1420 ZV_BYTE - this_pos_byte,
1421 buf_charlen);
1422 TRANSLATE (buf_ch, trt, buf_ch);
1424 if (buf_ch != pat_ch)
1425 break;
1427 this_len_byte -= charlen;
1428 this_len--;
1429 p += charlen;
1430 this_pos_byte += buf_charlen;
1431 this_pos++;
1434 if (this_len == 0)
1436 pos -= len;
1437 pos_byte -= len_byte;
1438 break;
1441 DEC_BOTH (pos, pos_byte);
1444 n++;
1446 else if (lim < pos)
1447 while (n < 0)
1449 while (1)
1451 /* Try matching at position POS. */
1452 int this_pos = pos - len;
1453 int this_len = len;
1454 unsigned char *p = pat;
1456 if (pos - len < lim)
1457 goto stop;
1459 while (this_len > 0)
1461 int pat_ch = *p++;
1462 int buf_ch = FETCH_BYTE (this_pos);
1463 TRANSLATE (buf_ch, trt, buf_ch);
1465 if (buf_ch != pat_ch)
1466 break;
1467 this_len--;
1468 this_pos++;
1471 if (this_len == 0)
1473 pos -= len;
1474 break;
1477 pos--;
1480 n++;
1483 stop:
1484 if (n == 0)
1486 if (forward)
1487 set_search_regs ((multibyte ? pos_byte : pos) - len_byte, len_byte);
1488 else
1489 set_search_regs (multibyte ? pos_byte : pos, len_byte);
1491 return pos;
1493 else if (n > 0)
1494 return -n;
1495 else
1496 return n;
1499 /* Do Boyer-Moore search N times for the string PAT,
1500 whose length is LEN/LEN_BYTE,
1501 from buffer position POS/POS_BYTE until LIM/LIM_BYTE.
1502 DIRECTION says which direction we search in.
1503 TRT and INVERSE_TRT are translation tables.
1505 This kind of search works if all the characters in PAT that have
1506 nontrivial translation are the same aside from the last byte. This
1507 makes it possible to translate just the last byte of a character,
1508 and do so after just a simple test of the context.
1510 If that criterion is not satisfied, do not call this function. */
1512 static int
1513 boyer_moore (n, base_pat, len, len_byte, trt, inverse_trt,
1514 pos, pos_byte, lim, lim_byte, charset_base)
1515 int n;
1516 unsigned char *base_pat;
1517 int len, len_byte;
1518 Lisp_Object trt;
1519 Lisp_Object inverse_trt;
1520 int pos, pos_byte;
1521 int lim, lim_byte;
1522 int charset_base;
1524 int direction = ((n > 0) ? 1 : -1);
1525 register int dirlen;
1526 int infinity, limit, k, stride_for_teases;
1527 register int *BM_tab;
1528 int *BM_tab_base;
1529 register unsigned char *cursor, *p_limit;
1530 register int i, j;
1531 unsigned char *pat, *pat_end;
1532 int multibyte = ! NILP (current_buffer->enable_multibyte_characters);
1534 unsigned char simple_translate[0400];
1535 int translate_prev_byte;
1536 int translate_anteprev_byte;
1538 #ifdef C_ALLOCA
1539 int BM_tab_space[0400];
1540 BM_tab = &BM_tab_space[0];
1541 #else
1542 BM_tab = (int *) alloca (0400 * sizeof (int));
1543 #endif
1544 /* The general approach is that we are going to maintain that we know */
1545 /* the first (closest to the present position, in whatever direction */
1546 /* we're searching) character that could possibly be the last */
1547 /* (furthest from present position) character of a valid match. We */
1548 /* advance the state of our knowledge by looking at that character */
1549 /* and seeing whether it indeed matches the last character of the */
1550 /* pattern. If it does, we take a closer look. If it does not, we */
1551 /* move our pointer (to putative last characters) as far as is */
1552 /* logically possible. This amount of movement, which I call a */
1553 /* stride, will be the length of the pattern if the actual character */
1554 /* appears nowhere in the pattern, otherwise it will be the distance */
1555 /* from the last occurrence of that character to the end of the */
1556 /* pattern. */
1557 /* As a coding trick, an enormous stride is coded into the table for */
1558 /* characters that match the last character. This allows use of only */
1559 /* a single test, a test for having gone past the end of the */
1560 /* permissible match region, to test for both possible matches (when */
1561 /* the stride goes past the end immediately) and failure to */
1562 /* match (where you get nudged past the end one stride at a time). */
1564 /* Here we make a "mickey mouse" BM table. The stride of the search */
1565 /* is determined only by the last character of the putative match. */
1566 /* If that character does not match, we will stride the proper */
1567 /* distance to propose a match that superimposes it on the last */
1568 /* instance of a character that matches it (per trt), or misses */
1569 /* it entirely if there is none. */
1571 dirlen = len_byte * direction;
1572 infinity = dirlen - (lim_byte + pos_byte + len_byte + len_byte) * direction;
1574 /* Record position after the end of the pattern. */
1575 pat_end = base_pat + len_byte;
1576 /* BASE_PAT points to a character that we start scanning from.
1577 It is the first character in a forward search,
1578 the last character in a backward search. */
1579 if (direction < 0)
1580 base_pat = pat_end - 1;
1582 BM_tab_base = BM_tab;
1583 BM_tab += 0400;
1584 j = dirlen; /* to get it in a register */
1585 /* A character that does not appear in the pattern induces a */
1586 /* stride equal to the pattern length. */
1587 while (BM_tab_base != BM_tab)
1589 *--BM_tab = j;
1590 *--BM_tab = j;
1591 *--BM_tab = j;
1592 *--BM_tab = j;
1595 /* We use this for translation, instead of TRT itself.
1596 We fill this in to handle the characters that actually
1597 occur in the pattern. Others don't matter anyway! */
1598 bzero (simple_translate, sizeof simple_translate);
1599 for (i = 0; i < 0400; i++)
1600 simple_translate[i] = i;
1602 i = 0;
1603 while (i != infinity)
1605 unsigned char *ptr = base_pat + i;
1606 i += direction;
1607 if (i == dirlen)
1608 i = infinity;
1609 if (! NILP (trt))
1611 int ch;
1612 int untranslated;
1613 int this_translated = 1;
1615 if (multibyte
1616 /* Is *PTR the last byte of a character? */
1617 && (pat_end - ptr == 1 || CHAR_HEAD_P (ptr[1])))
1619 unsigned char *charstart = ptr;
1620 while (! CHAR_HEAD_P (*charstart))
1621 charstart--;
1622 untranslated = STRING_CHAR (charstart, ptr - charstart + 1);
1623 if (charset_base == (untranslated & ~CHAR_FIELD3_MASK))
1625 TRANSLATE (ch, trt, untranslated);
1626 if (! CHAR_HEAD_P (*ptr))
1628 translate_prev_byte = ptr[-1];
1629 if (! CHAR_HEAD_P (translate_prev_byte))
1630 translate_anteprev_byte = ptr[-2];
1633 else
1635 this_translated = 0;
1636 ch = *ptr;
1639 else if (!multibyte)
1640 TRANSLATE (ch, trt, *ptr);
1641 else
1643 ch = *ptr;
1644 this_translated = 0;
1647 if (ch > 0400)
1648 j = ((unsigned char) ch) | 0200;
1649 else
1650 j = (unsigned char) ch;
1652 if (i == infinity)
1653 stride_for_teases = BM_tab[j];
1655 BM_tab[j] = dirlen - i;
1656 /* A translation table is accompanied by its inverse -- see */
1657 /* comment following downcase_table for details */
1658 if (this_translated)
1660 int starting_ch = ch;
1661 int starting_j = j;
1662 while (1)
1664 TRANSLATE (ch, inverse_trt, ch);
1665 if (ch > 0400)
1666 j = ((unsigned char) ch) | 0200;
1667 else
1668 j = (unsigned char) ch;
1670 /* For all the characters that map into CH,
1671 set up simple_translate to map the last byte
1672 into STARTING_J. */
1673 simple_translate[j] = starting_j;
1674 if (ch == starting_ch)
1675 break;
1676 BM_tab[j] = dirlen - i;
1680 else
1682 j = *ptr;
1684 if (i == infinity)
1685 stride_for_teases = BM_tab[j];
1686 BM_tab[j] = dirlen - i;
1688 /* stride_for_teases tells how much to stride if we get a */
1689 /* match on the far character but are subsequently */
1690 /* disappointed, by recording what the stride would have been */
1691 /* for that character if the last character had been */
1692 /* different. */
1694 infinity = dirlen - infinity;
1695 pos_byte += dirlen - ((direction > 0) ? direction : 0);
1696 /* loop invariant - POS_BYTE points at where last char (first
1697 char if reverse) of pattern would align in a possible match. */
1698 while (n != 0)
1700 int tail_end;
1701 unsigned char *tail_end_ptr;
1703 /* It's been reported that some (broken) compiler thinks that
1704 Boolean expressions in an arithmetic context are unsigned.
1705 Using an explicit ?1:0 prevents this. */
1706 if ((lim_byte - pos_byte - ((direction > 0) ? 1 : 0)) * direction
1707 < 0)
1708 return (n * (0 - direction));
1709 /* First we do the part we can by pointers (maybe nothing) */
1710 QUIT;
1711 pat = base_pat;
1712 limit = pos_byte - dirlen + direction;
1713 if (direction > 0)
1715 limit = BUFFER_CEILING_OF (limit);
1716 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1717 can take on without hitting edge of buffer or the gap. */
1718 limit = min (limit, pos_byte + 20000);
1719 limit = min (limit, lim_byte - 1);
1721 else
1723 limit = BUFFER_FLOOR_OF (limit);
1724 /* LIMIT is now the last (not beyond-last!) value POS_BYTE
1725 can take on without hitting edge of buffer or the gap. */
1726 limit = max (limit, pos_byte - 20000);
1727 limit = max (limit, lim_byte);
1729 tail_end = BUFFER_CEILING_OF (pos_byte) + 1;
1730 tail_end_ptr = BYTE_POS_ADDR (tail_end);
1732 if ((limit - pos_byte) * direction > 20)
1734 unsigned char *p2;
1736 p_limit = BYTE_POS_ADDR (limit);
1737 p2 = (cursor = BYTE_POS_ADDR (pos_byte));
1738 /* In this loop, pos + cursor - p2 is the surrogate for pos */
1739 while (1) /* use one cursor setting as long as i can */
1741 if (direction > 0) /* worth duplicating */
1743 /* Use signed comparison if appropriate
1744 to make cursor+infinity sure to be > p_limit.
1745 Assuming that the buffer lies in a range of addresses
1746 that are all "positive" (as ints) or all "negative",
1747 either kind of comparison will work as long
1748 as we don't step by infinity. So pick the kind
1749 that works when we do step by infinity. */
1750 if ((EMACS_INT) (p_limit + infinity) > (EMACS_INT) p_limit)
1751 while ((EMACS_INT) cursor <= (EMACS_INT) p_limit)
1752 cursor += BM_tab[*cursor];
1753 else
1754 while ((EMACS_UINT) cursor <= (EMACS_UINT) p_limit)
1755 cursor += BM_tab[*cursor];
1757 else
1759 if ((EMACS_INT) (p_limit + infinity) < (EMACS_INT) p_limit)
1760 while ((EMACS_INT) cursor >= (EMACS_INT) p_limit)
1761 cursor += BM_tab[*cursor];
1762 else
1763 while ((EMACS_UINT) cursor >= (EMACS_UINT) p_limit)
1764 cursor += BM_tab[*cursor];
1766 /* If you are here, cursor is beyond the end of the searched region. */
1767 /* This can happen if you match on the far character of the pattern, */
1768 /* because the "stride" of that character is infinity, a number able */
1769 /* to throw you well beyond the end of the search. It can also */
1770 /* happen if you fail to match within the permitted region and would */
1771 /* otherwise try a character beyond that region */
1772 if ((cursor - p_limit) * direction <= len_byte)
1773 break; /* a small overrun is genuine */
1774 cursor -= infinity; /* large overrun = hit */
1775 i = dirlen - direction;
1776 if (! NILP (trt))
1778 while ((i -= direction) + direction != 0)
1780 int ch;
1781 cursor -= direction;
1782 /* Translate only the last byte of a character. */
1783 if (! multibyte
1784 || ((cursor == tail_end_ptr
1785 || CHAR_HEAD_P (cursor[1]))
1786 && (CHAR_HEAD_P (cursor[0])
1787 || (translate_prev_byte == cursor[-1]
1788 && (CHAR_HEAD_P (translate_prev_byte)
1789 || translate_anteprev_byte == cursor[-2])))))
1790 ch = simple_translate[*cursor];
1791 else
1792 ch = *cursor;
1793 if (pat[i] != ch)
1794 break;
1797 else
1799 while ((i -= direction) + direction != 0)
1801 cursor -= direction;
1802 if (pat[i] != *cursor)
1803 break;
1806 cursor += dirlen - i - direction; /* fix cursor */
1807 if (i + direction == 0)
1809 int position;
1811 cursor -= direction;
1813 position = pos_byte + cursor - p2 + ((direction > 0)
1814 ? 1 - len_byte : 0);
1815 set_search_regs (position, len_byte);
1817 if ((n -= direction) != 0)
1818 cursor += dirlen; /* to resume search */
1819 else
1820 return ((direction > 0)
1821 ? search_regs.end[0] : search_regs.start[0]);
1823 else
1824 cursor += stride_for_teases; /* <sigh> we lose - */
1826 pos_byte += cursor - p2;
1828 else
1829 /* Now we'll pick up a clump that has to be done the hard */
1830 /* way because it covers a discontinuity */
1832 limit = ((direction > 0)
1833 ? BUFFER_CEILING_OF (pos_byte - dirlen + 1)
1834 : BUFFER_FLOOR_OF (pos_byte - dirlen - 1));
1835 limit = ((direction > 0)
1836 ? min (limit + len_byte, lim_byte - 1)
1837 : max (limit - len_byte, lim_byte));
1838 /* LIMIT is now the last value POS_BYTE can have
1839 and still be valid for a possible match. */
1840 while (1)
1842 /* This loop can be coded for space rather than */
1843 /* speed because it will usually run only once. */
1844 /* (the reach is at most len + 21, and typically */
1845 /* does not exceed len) */
1846 while ((limit - pos_byte) * direction >= 0)
1847 pos_byte += BM_tab[FETCH_BYTE (pos_byte)];
1848 /* now run the same tests to distinguish going off the */
1849 /* end, a match or a phony match. */
1850 if ((pos_byte - limit) * direction <= len_byte)
1851 break; /* ran off the end */
1852 /* Found what might be a match.
1853 Set POS_BYTE back to last (first if reverse) pos. */
1854 pos_byte -= infinity;
1855 i = dirlen - direction;
1856 while ((i -= direction) + direction != 0)
1858 int ch;
1859 unsigned char *ptr;
1860 pos_byte -= direction;
1861 ptr = BYTE_POS_ADDR (pos_byte);
1862 /* Translate only the last byte of a character. */
1863 if (! multibyte
1864 || ((ptr == tail_end_ptr
1865 || CHAR_HEAD_P (ptr[1]))
1866 && (CHAR_HEAD_P (ptr[0])
1867 || (translate_prev_byte == ptr[-1]
1868 && (CHAR_HEAD_P (translate_prev_byte)
1869 || translate_anteprev_byte == ptr[-2])))))
1870 ch = simple_translate[*ptr];
1871 else
1872 ch = *ptr;
1873 if (pat[i] != ch)
1874 break;
1876 /* Above loop has moved POS_BYTE part or all the way
1877 back to the first pos (last pos if reverse).
1878 Set it once again at the last (first if reverse) char. */
1879 pos_byte += dirlen - i- direction;
1880 if (i + direction == 0)
1882 int position;
1883 pos_byte -= direction;
1885 position = pos_byte + ((direction > 0) ? 1 - len_byte : 0);
1887 set_search_regs (position, len_byte);
1889 if ((n -= direction) != 0)
1890 pos_byte += dirlen; /* to resume search */
1891 else
1892 return ((direction > 0)
1893 ? search_regs.end[0] : search_regs.start[0]);
1895 else
1896 pos_byte += stride_for_teases;
1899 /* We have done one clump. Can we continue? */
1900 if ((lim_byte - pos_byte) * direction < 0)
1901 return ((0 - n) * direction);
1903 return BYTE_TO_CHAR (pos_byte);
1906 /* Record beginning BEG_BYTE and end BEG_BYTE + NBYTES
1907 for the overall match just found in the current buffer.
1908 Also clear out the match data for registers 1 and up. */
1910 static void
1911 set_search_regs (beg_byte, nbytes)
1912 int beg_byte, nbytes;
1914 int i;
1916 /* Make sure we have registers in which to store
1917 the match position. */
1918 if (search_regs.num_regs == 0)
1920 search_regs.start = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1921 search_regs.end = (regoff_t *) xmalloc (2 * sizeof (regoff_t));
1922 search_regs.num_regs = 2;
1925 /* Clear out the other registers. */
1926 for (i = 1; i < search_regs.num_regs; i++)
1928 search_regs.start[i] = -1;
1929 search_regs.end[i] = -1;
1932 search_regs.start[0] = BYTE_TO_CHAR (beg_byte);
1933 search_regs.end[0] = BYTE_TO_CHAR (beg_byte + nbytes);
1934 XSETBUFFER (last_thing_searched, current_buffer);
1937 /* Given a string of words separated by word delimiters,
1938 compute a regexp that matches those exact words
1939 separated by arbitrary punctuation. */
1941 static Lisp_Object
1942 wordify (string)
1943 Lisp_Object string;
1945 register unsigned char *p, *o;
1946 register int i, i_byte, len, punct_count = 0, word_count = 0;
1947 Lisp_Object val;
1948 int prev_c = 0;
1949 int adjust;
1951 CHECK_STRING (string, 0);
1952 p = XSTRING (string)->data;
1953 len = XSTRING (string)->size;
1955 for (i = 0, i_byte = 0; i < len; )
1957 int c;
1959 if (STRING_MULTIBYTE (string))
1960 FETCH_STRING_CHAR_ADVANCE (c, string, i, i_byte);
1961 else
1962 c = XSTRING (string)->data[i++];
1964 if (SYNTAX (c) != Sword)
1966 punct_count++;
1967 if (i > 0 && SYNTAX (prev_c) == Sword)
1968 word_count++;
1971 prev_c = c;
1974 if (SYNTAX (prev_c) == Sword)
1975 word_count++;
1976 if (!word_count)
1977 return build_string ("");
1979 adjust = - punct_count + 5 * (word_count - 1) + 4;
1980 if (STRING_MULTIBYTE (string))
1981 val = make_uninit_multibyte_string (len + adjust,
1982 STRING_BYTES (XSTRING (string))
1983 + adjust);
1984 else
1985 val = make_uninit_string (len + adjust);
1987 o = XSTRING (val)->data;
1988 *o++ = '\\';
1989 *o++ = 'b';
1990 prev_c = 0;
1992 for (i = 0, i_byte = 0; i < len; )
1994 int c;
1995 int i_byte_orig = i_byte;
1997 if (STRING_MULTIBYTE (string))
1998 FETCH_STRING_CHAR_ADVANCE (c, string, i, i_byte);
1999 else
2001 c = XSTRING (string)->data[i++];
2002 i_byte++;
2005 if (SYNTAX (c) == Sword)
2007 bcopy (&XSTRING (string)->data[i_byte_orig], o,
2008 i_byte - i_byte_orig);
2009 o += i_byte - i_byte_orig;
2011 else if (i > 0 && SYNTAX (prev_c) == Sword && --word_count)
2013 *o++ = '\\';
2014 *o++ = 'W';
2015 *o++ = '\\';
2016 *o++ = 'W';
2017 *o++ = '*';
2020 prev_c = c;
2023 *o++ = '\\';
2024 *o++ = 'b';
2026 return val;
2029 DEFUN ("search-backward", Fsearch_backward, Ssearch_backward, 1, 4,
2030 "MSearch backward: ",
2031 "Search backward from point for STRING.\n\
2032 Set point to the beginning of the occurrence found, and return point.\n\
2033 An optional second argument bounds the search; it is a buffer position.\n\
2034 The match found must not extend before that position.\n\
2035 Optional third argument, if t, means if fail just return nil (no error).\n\
2036 If not nil and not t, position at limit of search and return nil.\n\
2037 Optional fourth argument is repeat count--search for successive occurrences.\n\
2038 See also the functions `match-beginning', `match-end' and `replace-match'.")
2039 (string, bound, noerror, count)
2040 Lisp_Object string, bound, noerror, count;
2042 return search_command (string, bound, noerror, count, -1, 0, 0);
2045 DEFUN ("search-forward", Fsearch_forward, Ssearch_forward, 1, 4, "MSearch: ",
2046 "Search forward from point for STRING.\n\
2047 Set point to the end of the occurrence found, and return point.\n\
2048 An optional second argument bounds the search; it is a buffer position.\n\
2049 The match found must not extend after that position. nil is equivalent\n\
2050 to (point-max).\n\
2051 Optional third argument, if t, means if fail just return nil (no error).\n\
2052 If not nil and not t, move to limit of search and return nil.\n\
2053 Optional fourth argument is repeat count--search for successive occurrences.\n\
2054 See also the functions `match-beginning', `match-end' and `replace-match'.")
2055 (string, bound, noerror, count)
2056 Lisp_Object string, bound, noerror, count;
2058 return search_command (string, bound, noerror, count, 1, 0, 0);
2061 DEFUN ("word-search-backward", Fword_search_backward, Sword_search_backward, 1, 4,
2062 "sWord search backward: ",
2063 "Search backward from point for STRING, ignoring differences in punctuation.\n\
2064 Set point to the beginning of the occurrence found, and return point.\n\
2065 An optional second argument bounds the search; it is a buffer position.\n\
2066 The match found must not extend before that position.\n\
2067 Optional third argument, if t, means if fail just return nil (no error).\n\
2068 If not nil and not t, move to limit of search and return nil.\n\
2069 Optional fourth argument is repeat count--search for successive occurrences.")
2070 (string, bound, noerror, count)
2071 Lisp_Object string, bound, noerror, count;
2073 return search_command (wordify (string), bound, noerror, count, -1, 1, 0);
2076 DEFUN ("word-search-forward", Fword_search_forward, Sword_search_forward, 1, 4,
2077 "sWord search: ",
2078 "Search forward from point for STRING, ignoring differences in punctuation.\n\
2079 Set point to the end of the occurrence found, and return point.\n\
2080 An optional second argument bounds the search; it is a buffer position.\n\
2081 The match found must not extend after that position.\n\
2082 Optional third argument, if t, means if fail just return nil (no error).\n\
2083 If not nil and not t, move to limit of search and return nil.\n\
2084 Optional fourth argument is repeat count--search for successive occurrences.")
2085 (string, bound, noerror, count)
2086 Lisp_Object string, bound, noerror, count;
2088 return search_command (wordify (string), bound, noerror, count, 1, 1, 0);
2091 DEFUN ("re-search-backward", Fre_search_backward, Sre_search_backward, 1, 4,
2092 "sRE search backward: ",
2093 "Search backward from point for match for regular expression REGEXP.\n\
2094 Set point to the beginning of the match, and return point.\n\
2095 The match found is the one starting last in the buffer\n\
2096 and yet ending before the origin of the search.\n\
2097 An optional second argument bounds the search; it is a buffer position.\n\
2098 The match found must start at or after that position.\n\
2099 Optional third argument, if t, means if fail just return nil (no error).\n\
2100 If not nil and not t, move to limit of search and return nil.\n\
2101 Optional fourth argument is repeat count--search for successive occurrences.\n\
2102 See also the functions `match-beginning', `match-end' and `replace-match'.")
2103 (regexp, bound, noerror, count)
2104 Lisp_Object regexp, bound, noerror, count;
2106 return search_command (regexp, bound, noerror, count, -1, 1, 0);
2109 DEFUN ("re-search-forward", Fre_search_forward, Sre_search_forward, 1, 4,
2110 "sRE search: ",
2111 "Search forward from point for regular expression REGEXP.\n\
2112 Set point to the end of the occurrence found, and return point.\n\
2113 An optional second argument bounds the search; it is a buffer position.\n\
2114 The match found must not extend after that position.\n\
2115 Optional third argument, if t, means if fail just return nil (no error).\n\
2116 If not nil and not t, move to limit of search and return nil.\n\
2117 Optional fourth argument is repeat count--search for successive occurrences.\n\
2118 See also the functions `match-beginning', `match-end' and `replace-match'.")
2119 (regexp, bound, noerror, count)
2120 Lisp_Object regexp, bound, noerror, count;
2122 return search_command (regexp, bound, noerror, count, 1, 1, 0);
2125 DEFUN ("posix-search-backward", Fposix_search_backward, Sposix_search_backward, 1, 4,
2126 "sPosix search backward: ",
2127 "Search backward from point for match for regular expression REGEXP.\n\
2128 Find the longest match in accord with Posix regular expression rules.\n\
2129 Set point to the beginning of the match, and return point.\n\
2130 The match found is the one starting last in the buffer\n\
2131 and yet ending before the origin of the search.\n\
2132 An optional second argument bounds the search; it is a buffer position.\n\
2133 The match found must start at or after that position.\n\
2134 Optional third argument, if t, means if fail just return nil (no error).\n\
2135 If not nil and not t, move to limit of search and return nil.\n\
2136 Optional fourth argument is repeat count--search for successive occurrences.\n\
2137 See also the functions `match-beginning', `match-end' and `replace-match'.")
2138 (regexp, bound, noerror, count)
2139 Lisp_Object regexp, bound, noerror, count;
2141 return search_command (regexp, bound, noerror, count, -1, 1, 1);
2144 DEFUN ("posix-search-forward", Fposix_search_forward, Sposix_search_forward, 1, 4,
2145 "sPosix search: ",
2146 "Search forward from point for regular expression REGEXP.\n\
2147 Find the longest match in accord with Posix regular expression rules.\n\
2148 Set point to the end of the occurrence found, and return point.\n\
2149 An optional second argument bounds the search; it is a buffer position.\n\
2150 The match found must not extend after that position.\n\
2151 Optional third argument, if t, means if fail just return nil (no error).\n\
2152 If not nil and not t, move to limit of search and return nil.\n\
2153 Optional fourth argument is repeat count--search for successive occurrences.\n\
2154 See also the functions `match-beginning', `match-end' and `replace-match'.")
2155 (regexp, bound, noerror, count)
2156 Lisp_Object regexp, bound, noerror, count;
2158 return search_command (regexp, bound, noerror, count, 1, 1, 1);
2161 DEFUN ("replace-match", Freplace_match, Sreplace_match, 1, 5, 0,
2162 "Replace text matched by last search with NEWTEXT.\n\
2163 If second arg FIXEDCASE is non-nil, do not alter case of replacement text.\n\
2164 Otherwise maybe capitalize the whole text, or maybe just word initials,\n\
2165 based on the replaced text.\n\
2166 If the replaced text has only capital letters\n\
2167 and has at least one multiletter word, convert NEWTEXT to all caps.\n\
2168 If the replaced text has at least one word starting with a capital letter,\n\
2169 then capitalize each word in NEWTEXT.\n\n\
2170 If third arg LITERAL is non-nil, insert NEWTEXT literally.\n\
2171 Otherwise treat `\\' as special:\n\
2172 `\\&' in NEWTEXT means substitute original matched text.\n\
2173 `\\N' means substitute what matched the Nth `\\(...\\)'.\n\
2174 If Nth parens didn't match, substitute nothing.\n\
2175 `\\\\' means insert one `\\'.\n\
2176 FIXEDCASE and LITERAL are optional arguments.\n\
2177 Leaves point at end of replacement text.\n\
2179 The optional fourth argument STRING can be a string to modify.\n\
2180 In that case, this function creates and returns a new string\n\
2181 which is made by replacing the part of STRING that was matched.\n\
2183 The optional fifth argument SUBEXP specifies a subexpression of the match.\n\
2184 It says to replace just that subexpression instead of the whole match.\n\
2185 This is useful only after a regular expression search or match\n\
2186 since only regular expressions have distinguished subexpressions.")
2187 (newtext, fixedcase, literal, string, subexp)
2188 Lisp_Object newtext, fixedcase, literal, string, subexp;
2190 enum { nochange, all_caps, cap_initial } case_action;
2191 register int pos, pos_byte;
2192 int some_multiletter_word;
2193 int some_lowercase;
2194 int some_uppercase;
2195 int some_nonuppercase_initial;
2196 register int c, prevc;
2197 int inslen;
2198 int sub;
2199 int opoint, newpoint;
2201 CHECK_STRING (newtext, 0);
2203 if (! NILP (string))
2204 CHECK_STRING (string, 4);
2206 case_action = nochange; /* We tried an initialization */
2207 /* but some C compilers blew it */
2209 if (search_regs.num_regs <= 0)
2210 error ("replace-match called before any match found");
2212 if (NILP (subexp))
2213 sub = 0;
2214 else
2216 CHECK_NUMBER (subexp, 3);
2217 sub = XINT (subexp);
2218 if (sub < 0 || sub >= search_regs.num_regs)
2219 args_out_of_range (subexp, make_number (search_regs.num_regs));
2222 if (NILP (string))
2224 if (search_regs.start[sub] < BEGV
2225 || search_regs.start[sub] > search_regs.end[sub]
2226 || search_regs.end[sub] > ZV)
2227 args_out_of_range (make_number (search_regs.start[sub]),
2228 make_number (search_regs.end[sub]));
2230 else
2232 if (search_regs.start[sub] < 0
2233 || search_regs.start[sub] > search_regs.end[sub]
2234 || search_regs.end[sub] > XSTRING (string)->size)
2235 args_out_of_range (make_number (search_regs.start[sub]),
2236 make_number (search_regs.end[sub]));
2239 if (NILP (fixedcase))
2241 /* Decide how to casify by examining the matched text. */
2242 int last;
2244 pos = search_regs.start[sub];
2245 last = search_regs.end[sub];
2247 if (NILP (string))
2248 pos_byte = CHAR_TO_BYTE (pos);
2249 else
2250 pos_byte = string_char_to_byte (string, pos);
2252 prevc = '\n';
2253 case_action = all_caps;
2255 /* some_multiletter_word is set nonzero if any original word
2256 is more than one letter long. */
2257 some_multiletter_word = 0;
2258 some_lowercase = 0;
2259 some_nonuppercase_initial = 0;
2260 some_uppercase = 0;
2262 while (pos < last)
2264 if (NILP (string))
2266 c = FETCH_CHAR (pos_byte);
2267 INC_BOTH (pos, pos_byte);
2269 else
2270 FETCH_STRING_CHAR_ADVANCE (c, string, pos, pos_byte);
2272 if (LOWERCASEP (c))
2274 /* Cannot be all caps if any original char is lower case */
2276 some_lowercase = 1;
2277 if (SYNTAX (prevc) != Sword)
2278 some_nonuppercase_initial = 1;
2279 else
2280 some_multiletter_word = 1;
2282 else if (!NOCASEP (c))
2284 some_uppercase = 1;
2285 if (SYNTAX (prevc) != Sword)
2287 else
2288 some_multiletter_word = 1;
2290 else
2292 /* If the initial is a caseless word constituent,
2293 treat that like a lowercase initial. */
2294 if (SYNTAX (prevc) != Sword)
2295 some_nonuppercase_initial = 1;
2298 prevc = c;
2301 /* Convert to all caps if the old text is all caps
2302 and has at least one multiletter word. */
2303 if (! some_lowercase && some_multiletter_word)
2304 case_action = all_caps;
2305 /* Capitalize each word, if the old text has all capitalized words. */
2306 else if (!some_nonuppercase_initial && some_multiletter_word)
2307 case_action = cap_initial;
2308 else if (!some_nonuppercase_initial && some_uppercase)
2309 /* Should x -> yz, operating on X, give Yz or YZ?
2310 We'll assume the latter. */
2311 case_action = all_caps;
2312 else
2313 case_action = nochange;
2316 /* Do replacement in a string. */
2317 if (!NILP (string))
2319 Lisp_Object before, after;
2321 before = Fsubstring (string, make_number (0),
2322 make_number (search_regs.start[sub]));
2323 after = Fsubstring (string, make_number (search_regs.end[sub]), Qnil);
2325 /* Substitute parts of the match into NEWTEXT
2326 if desired. */
2327 if (NILP (literal))
2329 int lastpos = 0;
2330 int lastpos_byte = 0;
2331 /* We build up the substituted string in ACCUM. */
2332 Lisp_Object accum;
2333 Lisp_Object middle;
2334 int length = STRING_BYTES (XSTRING (newtext));
2336 accum = Qnil;
2338 for (pos_byte = 0, pos = 0; pos_byte < length;)
2340 int substart = -1;
2341 int subend;
2342 int delbackslash = 0;
2344 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2346 if (c == '\\')
2348 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2349 if (c == '&')
2351 substart = search_regs.start[sub];
2352 subend = search_regs.end[sub];
2354 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2356 if (search_regs.start[c - '0'] >= 0)
2358 substart = search_regs.start[c - '0'];
2359 subend = search_regs.end[c - '0'];
2362 else if (c == '\\')
2363 delbackslash = 1;
2364 else
2365 error ("Invalid use of `\\' in replacement text");
2367 if (substart >= 0)
2369 if (pos - 2 != lastpos)
2370 middle = substring_both (newtext, lastpos,
2371 lastpos_byte,
2372 pos - 2, pos_byte - 2);
2373 else
2374 middle = Qnil;
2375 accum = concat3 (accum, middle,
2376 Fsubstring (string,
2377 make_number (substart),
2378 make_number (subend)));
2379 lastpos = pos;
2380 lastpos_byte = pos_byte;
2382 else if (delbackslash)
2384 middle = substring_both (newtext, lastpos,
2385 lastpos_byte,
2386 pos - 1, pos_byte - 1);
2388 accum = concat2 (accum, middle);
2389 lastpos = pos;
2390 lastpos_byte = pos_byte;
2394 if (pos != lastpos)
2395 middle = substring_both (newtext, lastpos,
2396 lastpos_byte,
2397 pos, pos_byte);
2398 else
2399 middle = Qnil;
2401 newtext = concat2 (accum, middle);
2404 /* Do case substitution in NEWTEXT if desired. */
2405 if (case_action == all_caps)
2406 newtext = Fupcase (newtext);
2407 else if (case_action == cap_initial)
2408 newtext = Fupcase_initials (newtext);
2410 return concat3 (before, newtext, after);
2413 /* Record point, the move (quietly) to the start of the match. */
2414 if (PT >= search_regs.end[sub])
2415 opoint = PT - ZV;
2416 else if (PT > search_regs.start[sub])
2417 opoint = search_regs.end[sub] - ZV;
2418 else
2419 opoint = PT;
2421 TEMP_SET_PT (search_regs.start[sub]);
2423 /* We insert the replacement text before the old text, and then
2424 delete the original text. This means that markers at the
2425 beginning or end of the original will float to the corresponding
2426 position in the replacement. */
2427 if (!NILP (literal))
2428 Finsert_and_inherit (1, &newtext);
2429 else
2431 struct gcpro gcpro1;
2432 int length = STRING_BYTES (XSTRING (newtext));
2434 GCPRO1 (newtext);
2436 for (pos_byte = 0, pos = 0; pos_byte < length;)
2438 int offset = PT - search_regs.start[sub];
2440 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2442 if (c == '\\')
2444 FETCH_STRING_CHAR_ADVANCE (c, newtext, pos, pos_byte);
2445 if (c == '&')
2446 Finsert_buffer_substring
2447 (Fcurrent_buffer (),
2448 make_number (search_regs.start[sub] + offset),
2449 make_number (search_regs.end[sub] + offset));
2450 else if (c >= '1' && c <= '9' && c <= search_regs.num_regs + '0')
2452 if (search_regs.start[c - '0'] >= 1)
2453 Finsert_buffer_substring
2454 (Fcurrent_buffer (),
2455 make_number (search_regs.start[c - '0'] + offset),
2456 make_number (search_regs.end[c - '0'] + offset));
2458 else if (c == '\\')
2459 insert_char (c);
2460 else
2461 error ("Invalid use of `\\' in replacement text");
2463 else
2464 insert_char (c);
2466 UNGCPRO;
2469 inslen = PT - (search_regs.start[sub]);
2470 del_range (search_regs.start[sub] + inslen, search_regs.end[sub] + inslen);
2472 if (case_action == all_caps)
2473 Fupcase_region (make_number (PT - inslen), make_number (PT));
2474 else if (case_action == cap_initial)
2475 Fupcase_initials_region (make_number (PT - inslen), make_number (PT));
2477 newpoint = PT;
2479 /* Put point back where it was in the text. */
2480 if (opoint <= 0)
2481 TEMP_SET_PT (opoint + ZV);
2482 else
2483 TEMP_SET_PT (opoint);
2485 /* Now move point "officially" to the start of the inserted replacement. */
2486 move_if_not_intangible (newpoint);
2488 return Qnil;
2491 static Lisp_Object
2492 match_limit (num, beginningp)
2493 Lisp_Object num;
2494 int beginningp;
2496 register int n;
2498 CHECK_NUMBER (num, 0);
2499 n = XINT (num);
2500 if (n < 0 || n >= search_regs.num_regs)
2501 args_out_of_range (num, make_number (search_regs.num_regs));
2502 if (search_regs.num_regs <= 0
2503 || search_regs.start[n] < 0)
2504 return Qnil;
2505 return (make_number ((beginningp) ? search_regs.start[n]
2506 : search_regs.end[n]));
2509 DEFUN ("match-beginning", Fmatch_beginning, Smatch_beginning, 1, 1, 0,
2510 "Return position of start of text matched by last search.\n\
2511 SUBEXP, a number, specifies which parenthesized expression in the last\n\
2512 regexp.\n\
2513 Value is nil if SUBEXPth pair didn't match, or there were less than\n\
2514 SUBEXP pairs.\n\
2515 Zero means the entire text matched by the whole regexp or whole string.")
2516 (subexp)
2517 Lisp_Object subexp;
2519 return match_limit (subexp, 1);
2522 DEFUN ("match-end", Fmatch_end, Smatch_end, 1, 1, 0,
2523 "Return position of end of text matched by last search.\n\
2524 SUBEXP, a number, specifies which parenthesized expression in the last\n\
2525 regexp.\n\
2526 Value is nil if SUBEXPth pair didn't match, or there were less than\n\
2527 SUBEXP pairs.\n\
2528 Zero means the entire text matched by the whole regexp or whole string.")
2529 (subexp)
2530 Lisp_Object subexp;
2532 return match_limit (subexp, 0);
2535 DEFUN ("match-data", Fmatch_data, Smatch_data, 0, 2, 0,
2536 "Return a list containing all info on what the last search matched.\n\
2537 Element 2N is `(match-beginning N)'; element 2N + 1 is `(match-end N)'.\n\
2538 All the elements are markers or nil (nil if the Nth pair didn't match)\n\
2539 if the last match was on a buffer; integers or nil if a string was matched.\n\
2540 Use `store-match-data' to reinstate the data in this list.\n\
2542 If INTEGERS (the optional first argument) is non-nil, always use integers\n\
2543 \(rather than markers) to represent buffer positions.\n\
2544 If REUSE is a list, reuse it as part of the value. If REUSE is long enough\n\
2545 to hold all the values, and if INTEGERS is non-nil, no consing is done.")
2546 (integers, reuse)
2547 Lisp_Object integers, reuse;
2549 Lisp_Object tail, prev;
2550 Lisp_Object *data;
2551 int i, len;
2553 if (NILP (last_thing_searched))
2554 return Qnil;
2556 data = (Lisp_Object *) alloca ((2 * search_regs.num_regs)
2557 * sizeof (Lisp_Object));
2559 len = -1;
2560 for (i = 0; i < search_regs.num_regs; i++)
2562 int start = search_regs.start[i];
2563 if (start >= 0)
2565 if (EQ (last_thing_searched, Qt)
2566 || ! NILP (integers))
2568 XSETFASTINT (data[2 * i], start);
2569 XSETFASTINT (data[2 * i + 1], search_regs.end[i]);
2571 else if (BUFFERP (last_thing_searched))
2573 data[2 * i] = Fmake_marker ();
2574 Fset_marker (data[2 * i],
2575 make_number (start),
2576 last_thing_searched);
2577 data[2 * i + 1] = Fmake_marker ();
2578 Fset_marker (data[2 * i + 1],
2579 make_number (search_regs.end[i]),
2580 last_thing_searched);
2582 else
2583 /* last_thing_searched must always be Qt, a buffer, or Qnil. */
2584 abort ();
2586 len = i;
2588 else
2589 data[2 * i] = data [2 * i + 1] = Qnil;
2592 /* If REUSE is not usable, cons up the values and return them. */
2593 if (! CONSP (reuse))
2594 return Flist (2 * len + 2, data);
2596 /* If REUSE is a list, store as many value elements as will fit
2597 into the elements of REUSE. */
2598 for (i = 0, tail = reuse; CONSP (tail);
2599 i++, tail = XCDR (tail))
2601 if (i < 2 * len + 2)
2602 XCAR (tail) = data[i];
2603 else
2604 XCAR (tail) = Qnil;
2605 prev = tail;
2608 /* If we couldn't fit all value elements into REUSE,
2609 cons up the rest of them and add them to the end of REUSE. */
2610 if (i < 2 * len + 2)
2611 XCDR (prev) = Flist (2 * len + 2 - i, data + i);
2613 return reuse;
2617 DEFUN ("set-match-data", Fset_match_data, Sset_match_data, 1, 1, 0,
2618 "Set internal data on last search match from elements of LIST.\n\
2619 LIST should have been created by calling `match-data' previously.")
2620 (list)
2621 register Lisp_Object list;
2623 register int i;
2624 register Lisp_Object marker;
2626 if (running_asynch_code)
2627 save_search_regs ();
2629 if (!CONSP (list) && !NILP (list))
2630 list = wrong_type_argument (Qconsp, list);
2632 /* Unless we find a marker with a buffer in LIST, assume that this
2633 match data came from a string. */
2634 last_thing_searched = Qt;
2636 /* Allocate registers if they don't already exist. */
2638 int length = XFASTINT (Flength (list)) / 2;
2640 if (length > search_regs.num_regs)
2642 if (search_regs.num_regs == 0)
2644 search_regs.start
2645 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2646 search_regs.end
2647 = (regoff_t *) xmalloc (length * sizeof (regoff_t));
2649 else
2651 search_regs.start
2652 = (regoff_t *) xrealloc (search_regs.start,
2653 length * sizeof (regoff_t));
2654 search_regs.end
2655 = (regoff_t *) xrealloc (search_regs.end,
2656 length * sizeof (regoff_t));
2659 search_regs.num_regs = length;
2663 for (i = 0; i < search_regs.num_regs; i++)
2665 marker = Fcar (list);
2666 if (NILP (marker))
2668 search_regs.start[i] = -1;
2669 list = Fcdr (list);
2671 else
2673 if (MARKERP (marker))
2675 if (XMARKER (marker)->buffer == 0)
2676 XSETFASTINT (marker, 0);
2677 else
2678 XSETBUFFER (last_thing_searched, XMARKER (marker)->buffer);
2681 CHECK_NUMBER_COERCE_MARKER (marker, 0);
2682 search_regs.start[i] = XINT (marker);
2683 list = Fcdr (list);
2685 marker = Fcar (list);
2686 if (MARKERP (marker) && XMARKER (marker)->buffer == 0)
2687 XSETFASTINT (marker, 0);
2689 CHECK_NUMBER_COERCE_MARKER (marker, 0);
2690 search_regs.end[i] = XINT (marker);
2692 list = Fcdr (list);
2695 return Qnil;
2698 /* If non-zero the match data have been saved in saved_search_regs
2699 during the execution of a sentinel or filter. */
2700 static int search_regs_saved;
2701 static struct re_registers saved_search_regs;
2703 /* Called from Flooking_at, Fstring_match, search_buffer, Fstore_match_data
2704 if asynchronous code (filter or sentinel) is running. */
2705 static void
2706 save_search_regs ()
2708 if (!search_regs_saved)
2710 saved_search_regs.num_regs = search_regs.num_regs;
2711 saved_search_regs.start = search_regs.start;
2712 saved_search_regs.end = search_regs.end;
2713 search_regs.num_regs = 0;
2714 search_regs.start = 0;
2715 search_regs.end = 0;
2717 search_regs_saved = 1;
2721 /* Called upon exit from filters and sentinels. */
2722 void
2723 restore_match_data ()
2725 if (search_regs_saved)
2727 if (search_regs.num_regs > 0)
2729 xfree (search_regs.start);
2730 xfree (search_regs.end);
2732 search_regs.num_regs = saved_search_regs.num_regs;
2733 search_regs.start = saved_search_regs.start;
2734 search_regs.end = saved_search_regs.end;
2736 search_regs_saved = 0;
2740 /* Quote a string to inactivate reg-expr chars */
2742 DEFUN ("regexp-quote", Fregexp_quote, Sregexp_quote, 1, 1, 0,
2743 "Return a regexp string which matches exactly STRING and nothing else.")
2744 (string)
2745 Lisp_Object string;
2747 register unsigned char *in, *out, *end;
2748 register unsigned char *temp;
2749 int backslashes_added = 0;
2751 CHECK_STRING (string, 0);
2753 temp = (unsigned char *) alloca (STRING_BYTES (XSTRING (string)) * 2);
2755 /* Now copy the data into the new string, inserting escapes. */
2757 in = XSTRING (string)->data;
2758 end = in + STRING_BYTES (XSTRING (string));
2759 out = temp;
2761 for (; in != end; in++)
2763 if (*in == '[' || *in == ']'
2764 || *in == '*' || *in == '.' || *in == '\\'
2765 || *in == '?' || *in == '+'
2766 || *in == '^' || *in == '$')
2767 *out++ = '\\', backslashes_added++;
2768 *out++ = *in;
2771 return make_specified_string (temp,
2772 XSTRING (string)->size + backslashes_added,
2773 out - temp,
2774 STRING_MULTIBYTE (string));
2777 void
2778 syms_of_search ()
2780 register int i;
2782 for (i = 0; i < REGEXP_CACHE_SIZE; ++i)
2784 searchbufs[i].buf.allocated = 100;
2785 searchbufs[i].buf.buffer = (unsigned char *) malloc (100);
2786 searchbufs[i].buf.fastmap = searchbufs[i].fastmap;
2787 searchbufs[i].regexp = Qnil;
2788 staticpro (&searchbufs[i].regexp);
2789 searchbufs[i].next = (i == REGEXP_CACHE_SIZE-1 ? 0 : &searchbufs[i+1]);
2791 searchbuf_head = &searchbufs[0];
2793 Qsearch_failed = intern ("search-failed");
2794 staticpro (&Qsearch_failed);
2795 Qinvalid_regexp = intern ("invalid-regexp");
2796 staticpro (&Qinvalid_regexp);
2798 Fput (Qsearch_failed, Qerror_conditions,
2799 Fcons (Qsearch_failed, Fcons (Qerror, Qnil)));
2800 Fput (Qsearch_failed, Qerror_message,
2801 build_string ("Search failed"));
2803 Fput (Qinvalid_regexp, Qerror_conditions,
2804 Fcons (Qinvalid_regexp, Fcons (Qerror, Qnil)));
2805 Fput (Qinvalid_regexp, Qerror_message,
2806 build_string ("Invalid regexp"));
2808 last_thing_searched = Qnil;
2809 staticpro (&last_thing_searched);
2811 defsubr (&Slooking_at);
2812 defsubr (&Sposix_looking_at);
2813 defsubr (&Sstring_match);
2814 defsubr (&Sposix_string_match);
2815 defsubr (&Ssearch_forward);
2816 defsubr (&Ssearch_backward);
2817 defsubr (&Sword_search_forward);
2818 defsubr (&Sword_search_backward);
2819 defsubr (&Sre_search_forward);
2820 defsubr (&Sre_search_backward);
2821 defsubr (&Sposix_search_forward);
2822 defsubr (&Sposix_search_backward);
2823 defsubr (&Sreplace_match);
2824 defsubr (&Smatch_beginning);
2825 defsubr (&Smatch_end);
2826 defsubr (&Smatch_data);
2827 defsubr (&Sset_match_data);
2828 defsubr (&Sregexp_quote);