* indent.c (current_column_bol_cache): Remove leftover which is not
[emacs.git] / doc / lispref / numbers.texi
blobeeebac6bf722dfaf06f8827916b4a467fb4d52f9
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2013 Free Software
4 @c Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Numbers
7 @chapter Numbers
8 @cindex integers
9 @cindex numbers
11   GNU Emacs supports two numeric data types: @dfn{integers} and
12 @dfn{floating point numbers}.  Integers are whole numbers such as
13 @minus{}3, 0, 7, 13, and 511.  Their values are exact.  Floating point
14 numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
15 2.71828.  They can also be expressed in exponential notation: 1.5e2
16 equals 150; in this example, @samp{e2} stands for ten to the second
17 power, and that is multiplied by 1.5.  Floating point values are not
18 exact; they have a fixed, limited amount of precision.
20 @menu
21 * Integer Basics::            Representation and range of integers.
22 * Float Basics::              Representation and range of floating point.
23 * Predicates on Numbers::     Testing for numbers.
24 * Comparison of Numbers::     Equality and inequality predicates.
25 * Numeric Conversions::       Converting float to integer and vice versa.
26 * Arithmetic Operations::     How to add, subtract, multiply and divide.
27 * Rounding Operations::       Explicitly rounding floating point numbers.
28 * Bitwise Operations::        Logical and, or, not, shifting.
29 * Math Functions::            Trig, exponential and logarithmic functions.
30 * Random Numbers::            Obtaining random integers, predictable or not.
31 @end menu
33 @node Integer Basics
34 @section Integer Basics
36   The range of values for an integer depends on the machine.  The
37 minimum range is @minus{}536870912 to 536870911 (30 bits; i.e.,
38 @ifnottex
39 -2**29
40 @end ifnottex
41 @tex
42 @math{-2^{29}}
43 @end tex
45 @ifnottex
46 2**29 @minus{} 1),
47 @end ifnottex
48 @tex
49 @math{2^{29}-1}),
50 @end tex
51 but many machines provide a wider range.  Many examples in this
52 chapter assume the minimum integer width of 30 bits.
53 @cindex overflow
55   The Lisp reader reads an integer as a sequence of digits with optional
56 initial sign and optional final period.  An integer that is out of the
57 Emacs range is treated as a floating-point number.
59 @example
60  1               ; @r{The integer 1.}
61  1.              ; @r{The integer 1.}
62 +1               ; @r{Also the integer 1.}
63 -1               ; @r{The integer @minus{}1.}
64  1073741825      ; @r{The floating point number 1073741825.0.}
65  0               ; @r{The integer 0.}
66 -0               ; @r{The integer 0.}
67 @end example
69 @cindex integers in specific radix
70 @cindex radix for reading an integer
71 @cindex base for reading an integer
72 @cindex hex numbers
73 @cindex octal numbers
74 @cindex reading numbers in hex, octal, and binary
75   The syntax for integers in bases other than 10 uses @samp{#}
76 followed by a letter that specifies the radix: @samp{b} for binary,
77 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
78 specify radix @var{radix}.  Case is not significant for the letter
79 that specifies the radix.  Thus, @samp{#b@var{integer}} reads
80 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
81 @var{integer} in radix @var{radix}.  Allowed values of @var{radix} run
82 from 2 to 36.  For example:
84 @example
85 #b101100 @result{} 44
86 #o54 @result{} 44
87 #x2c @result{} 44
88 #24r1k @result{} 44
89 @end example
91   To understand how various functions work on integers, especially the
92 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
93 view the numbers in their binary form.
95   In 30-bit binary, the decimal integer 5 looks like this:
97 @example
98 0000...000101 (30 bits total)
99 @end example
101 @noindent
102 (The @samp{...} stands for enough bits to fill out a 30-bit word; in
103 this case, @samp{...} stands for twenty 0 bits.  Later examples also
104 use the @samp{...} notation to make binary integers easier to read.)
106   The integer @minus{}1 looks like this:
108 @example
109 1111...111111 (30 bits total)
110 @end example
112 @noindent
113 @cindex two's complement
114 @minus{}1 is represented as 30 ones.  (This is called @dfn{two's
115 complement} notation.)
117   The negative integer, @minus{}5, is creating by subtracting 4 from
118 @minus{}1.  In binary, the decimal integer 4 is 100.  Consequently,
119 @minus{}5 looks like this:
121 @example
122 1111...111011 (30 bits total)
123 @end example
125   In this implementation, the largest 30-bit binary integer value is
126 536,870,911 in decimal.  In binary, it looks like this:
128 @example
129 0111...111111 (30 bits total)
130 @end example
132   Since the arithmetic functions do not check whether integers go
133 outside their range, when you add 1 to 536,870,911, the value is the
134 negative integer @minus{}536,870,912:
136 @example
137 (+ 1 536870911)
138      @result{} -536870912
139      @result{} 1000...000000 (30 bits total)
140 @end example
142   Many of the functions described in this chapter accept markers for
143 arguments in place of numbers.  (@xref{Markers}.)  Since the actual
144 arguments to such functions may be either numbers or markers, we often
145 give these arguments the name @var{number-or-marker}.  When the argument
146 value is a marker, its position value is used and its buffer is ignored.
148 @cindex largest Lisp integer number
149 @cindex maximum Lisp integer number
150 @defvar most-positive-fixnum
151 The value of this variable is the largest integer that Emacs Lisp
152 can handle.
153 @end defvar
155 @cindex smallest Lisp integer number
156 @cindex minimum Lisp integer number
157 @defvar most-negative-fixnum
158 The value of this variable is the smallest integer that Emacs Lisp can
159 handle.  It is negative.
160 @end defvar
162   In Emacs Lisp, text characters are represented by integers.  Any
163 integer between zero and the value of @code{max-char}, inclusive, is
164 considered to be valid as a character.  @xref{String Basics}.
166 @node Float Basics
167 @section Floating Point Basics
169 @cindex @acronym{IEEE} floating point
170   Floating point numbers are useful for representing numbers that are
171 not integral.  The precise range of floating point numbers is
172 machine-specific; it is the same as the range of the C data type
173 @code{double} on the machine you are using.  Emacs uses the
174 @acronym{IEEE} floating point standard, which is supported by all
175 modern computers.
177   The read syntax for floating point numbers requires either a decimal
178 point (with at least one digit following), an exponent, or both.  For
179 example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
180 @samp{.15e4} are five ways of writing a floating point number whose
181 value is 1500.  They are all equivalent.  You can also use a minus
182 sign to write negative floating point numbers, as in @samp{-1.0}.
184   Emacs Lisp treats @code{-0.0} as equal to ordinary zero (with
185 respect to @code{equal} and @code{=}), even though the two are
186 distinguishable in the @acronym{IEEE} floating point standard.
188 @cindex positive infinity
189 @cindex negative infinity
190 @cindex infinity
191 @cindex NaN
192   The @acronym{IEEE} floating point standard supports positive
193 infinity and negative infinity as floating point values.  It also
194 provides for a class of values called NaN or ``not-a-number'';
195 numerical functions return such values in cases where there is no
196 correct answer.  For example, @code{(/ 0.0 0.0)} returns a NaN@.  (NaN
197 values can also carry a sign, but for practical purposes there's no
198 significant difference between different NaN values in Emacs Lisp.)
200 When a function is documented to return a NaN, it returns an
201 implementation-defined value when Emacs is running on one of the
202 now-rare platforms that do not use @acronym{IEEE} floating point.  For
203 example, @code{(log -1.0)} typically returns a NaN, but on
204 non-@acronym{IEEE} platforms it returns an implementation-defined
205 value.
207 Here are the read syntaxes for these special floating point values:
209 @table @asis
210 @item positive infinity
211 @samp{1.0e+INF}
212 @item negative infinity
213 @samp{-1.0e+INF}
214 @item Not-a-number
215 @samp{0.0e+NaN} or @samp{-0.0e+NaN}.
216 @end table
218 @defun isnan number
219 This predicate tests whether its argument is NaN, and returns @code{t}
220 if so, @code{nil} otherwise.  The argument must be a number.
221 @end defun
223   The following functions are specialized for handling floating point
224 numbers:
226 @defun frexp x
227 This function returns a cons cell @code{(@var{sig} . @var{exp})},
228 where @var{sig} and @var{exp} are respectively the significand and
229 exponent of the floating point number @var{x}:
231 @smallexample
232 @var{x} = @var{sig} * 2^@var{exp}
233 @end smallexample
235 @var{sig} is a floating point number between 0.5 (inclusive) and 1.0
236 (exclusive).  If @var{x} is zero, the return value is @code{(0 . 0)}.
237 @end defun
239 @defun ldexp sig &optional exp
240 This function returns a floating point number corresponding to the
241 significand @var{sig} and exponent @var{exp}.
242 @end defun
244 @defun copysign x1 x2
245 This function copies the sign of @var{x2} to the value of @var{x1},
246 and returns the result.  @var{x1} and @var{x2} must be floating point
247 numbers.
248 @end defun
250 @defun logb number
251 This function returns the binary exponent of @var{number}.  More
252 precisely, the value is the logarithm of |@var{number}| base 2, rounded
253 down to an integer.
255 @example
256 (logb 10)
257      @result{} 3
258 (logb 10.0e20)
259      @result{} 69
260 @end example
261 @end defun
263 @node Predicates on Numbers
264 @section Type Predicates for Numbers
265 @cindex predicates for numbers
267   The functions in this section test for numbers, or for a specific
268 type of number.  The functions @code{integerp} and @code{floatp} can
269 take any type of Lisp object as argument (they would not be of much
270 use otherwise), but the @code{zerop} predicate requires a number as
271 its argument.  See also @code{integer-or-marker-p} and
272 @code{number-or-marker-p}, in @ref{Predicates on Markers}.
274 @defun floatp object
275 This predicate tests whether its argument is a floating point
276 number and returns @code{t} if so, @code{nil} otherwise.
277 @end defun
279 @defun integerp object
280 This predicate tests whether its argument is an integer, and returns
281 @code{t} if so, @code{nil} otherwise.
282 @end defun
284 @defun numberp object
285 This predicate tests whether its argument is a number (either integer or
286 floating point), and returns @code{t} if so, @code{nil} otherwise.
287 @end defun
289 @defun natnump object
290 @cindex natural numbers
291 This predicate (whose name comes from the phrase ``natural number'')
292 tests to see whether its argument is a nonnegative integer, and
293 returns @code{t} if so, @code{nil} otherwise.  0 is considered
294 non-negative.
296 @findex wholenump number
297 This is a synonym for @code{natnump}.
298 @end defun
300 @defun zerop number
301 This predicate tests whether its argument is zero, and returns @code{t}
302 if so, @code{nil} otherwise.  The argument must be a number.
304 @code{(zerop x)} is equivalent to @code{(= x 0)}.
305 @end defun
307 @node Comparison of Numbers
308 @section Comparison of Numbers
309 @cindex number comparison
310 @cindex comparing numbers
312   To test numbers for numerical equality, you should normally use
313 @code{=}, not @code{eq}.  There can be many distinct floating point
314 number objects with the same numeric value.  If you use @code{eq} to
315 compare them, then you test whether two values are the same
316 @emph{object}.  By contrast, @code{=} compares only the numeric values
317 of the objects.
319   In Emacs Lisp, each integer value is a unique Lisp object.
320 Therefore, @code{eq} is equivalent to @code{=} where integers are
321 concerned.  It is sometimes convenient to use @code{eq} for comparing
322 an unknown value with an integer, because @code{eq} does not report an
323 error if the unknown value is not a number---it accepts arguments of
324 any type.  By contrast, @code{=} signals an error if the arguments are
325 not numbers or markers.  However, it is better programming practice to
326 use @code{=} if you can, even for comparing integers.
328   Sometimes it is useful to compare numbers with @code{equal}, which
329 treats two numbers as equal if they have the same data type (both
330 integers, or both floating point) and the same value.  By contrast,
331 @code{=} can treat an integer and a floating point number as equal.
332 @xref{Equality Predicates}.
334   There is another wrinkle: because floating point arithmetic is not
335 exact, it is often a bad idea to check for equality of two floating
336 point values.  Usually it is better to test for approximate equality.
337 Here's a function to do this:
339 @example
340 (defvar fuzz-factor 1.0e-6)
341 (defun approx-equal (x y)
342   (or (and (= x 0) (= y 0))
343       (< (/ (abs (- x y))
344             (max (abs x) (abs y)))
345          fuzz-factor)))
346 @end example
348 @cindex CL note---integers vrs @code{eq}
349 @quotation
350 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
351 @code{=} because Common Lisp implements multi-word integers, and two
352 distinct integer objects can have the same numeric value.  Emacs Lisp
353 can have just one integer object for any given value because it has a
354 limited range of integer values.
355 @end quotation
357 @defun = number-or-marker1 number-or-marker2
358 This function tests whether its arguments are numerically equal, and
359 returns @code{t} if so, @code{nil} otherwise.
360 @end defun
362 @defun eql value1 value2
363 This function acts like @code{eq} except when both arguments are
364 numbers.  It compares numbers by type and numeric value, so that
365 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
366 @code{(eql 1 1)} both return @code{t}.
367 @end defun
369 @defun /= number-or-marker1 number-or-marker2
370 This function tests whether its arguments are numerically equal, and
371 returns @code{t} if they are not, and @code{nil} if they are.
372 @end defun
374 @defun <  number-or-marker1 number-or-marker2
375 This function tests whether its first argument is strictly less than
376 its second argument.  It returns @code{t} if so, @code{nil} otherwise.
377 @end defun
379 @defun <=  number-or-marker1 number-or-marker2
380 This function tests whether its first argument is less than or equal
381 to its second argument.  It returns @code{t} if so, @code{nil}
382 otherwise.
383 @end defun
385 @defun >  number-or-marker1 number-or-marker2
386 This function tests whether its first argument is strictly greater
387 than its second argument.  It returns @code{t} if so, @code{nil}
388 otherwise.
389 @end defun
391 @defun >=  number-or-marker1 number-or-marker2
392 This function tests whether its first argument is greater than or
393 equal to its second argument.  It returns @code{t} if so, @code{nil}
394 otherwise.
395 @end defun
397 @defun max number-or-marker &rest numbers-or-markers
398 This function returns the largest of its arguments.
399 If any of the arguments is floating-point, the value is returned
400 as floating point, even if it was given as an integer.
402 @example
403 (max 20)
404      @result{} 20
405 (max 1 2.5)
406      @result{} 2.5
407 (max 1 3 2.5)
408      @result{} 3.0
409 @end example
410 @end defun
412 @defun min number-or-marker &rest numbers-or-markers
413 This function returns the smallest of its arguments.
414 If any of the arguments is floating-point, the value is returned
415 as floating point, even if it was given as an integer.
417 @example
418 (min -4 1)
419      @result{} -4
420 @end example
421 @end defun
423 @defun abs number
424 This function returns the absolute value of @var{number}.
425 @end defun
427 @node Numeric Conversions
428 @section Numeric Conversions
429 @cindex rounding in conversions
430 @cindex number conversions
431 @cindex converting numbers
433 To convert an integer to floating point, use the function @code{float}.
435 @defun float number
436 This returns @var{number} converted to floating point.
437 If @var{number} is already a floating point number, @code{float} returns
438 it unchanged.
439 @end defun
441   There are four functions to convert floating point numbers to
442 integers; they differ in how they round.  All accept an argument
443 @var{number} and an optional argument @var{divisor}.  Both arguments
444 may be integers or floating point numbers.  @var{divisor} may also be
445 @code{nil}.  If @var{divisor} is @code{nil} or omitted, these
446 functions convert @var{number} to an integer, or return it unchanged
447 if it already is an integer.  If @var{divisor} is non-@code{nil}, they
448 divide @var{number} by @var{divisor} and convert the result to an
449 integer.  integer.  If @var{divisor} is zero (whether integer or
450 floating-point), Emacs signals an @code{arith-error} error.
452 @defun truncate number &optional divisor
453 This returns @var{number}, converted to an integer by rounding towards
454 zero.
456 @example
457 (truncate 1.2)
458      @result{} 1
459 (truncate 1.7)
460      @result{} 1
461 (truncate -1.2)
462      @result{} -1
463 (truncate -1.7)
464      @result{} -1
465 @end example
466 @end defun
468 @defun floor number &optional divisor
469 This returns @var{number}, converted to an integer by rounding downward
470 (towards negative infinity).
472 If @var{divisor} is specified, this uses the kind of division
473 operation that corresponds to @code{mod}, rounding downward.
475 @example
476 (floor 1.2)
477      @result{} 1
478 (floor 1.7)
479      @result{} 1
480 (floor -1.2)
481      @result{} -2
482 (floor -1.7)
483      @result{} -2
484 (floor 5.99 3)
485      @result{} 1
486 @end example
487 @end defun
489 @defun ceiling number &optional divisor
490 This returns @var{number}, converted to an integer by rounding upward
491 (towards positive infinity).
493 @example
494 (ceiling 1.2)
495      @result{} 2
496 (ceiling 1.7)
497      @result{} 2
498 (ceiling -1.2)
499      @result{} -1
500 (ceiling -1.7)
501      @result{} -1
502 @end example
503 @end defun
505 @defun round number &optional divisor
506 This returns @var{number}, converted to an integer by rounding towards the
507 nearest integer.  Rounding a value equidistant between two integers
508 may choose the integer closer to zero, or it may prefer an even integer,
509 depending on your machine.
511 @example
512 (round 1.2)
513      @result{} 1
514 (round 1.7)
515      @result{} 2
516 (round -1.2)
517      @result{} -1
518 (round -1.7)
519      @result{} -2
520 @end example
521 @end defun
523 @node Arithmetic Operations
524 @section Arithmetic Operations
525 @cindex arithmetic operations
527   Emacs Lisp provides the traditional four arithmetic operations
528 (addition, subtraction, multiplication, and division), as well as
529 remainder and modulus functions, and functions to add or subtract 1.
530 Except for @code{%}, each of these functions accepts both integer and
531 floating point arguments, and returns a floating point number if any
532 argument is a floating point number.
534   It is important to note that in Emacs Lisp, arithmetic functions
535 do not check for overflow.  Thus @code{(1+ 536870911)} may evaluate to
536 @minus{}536870912, depending on your hardware.
538 @defun 1+ number-or-marker
539 This function returns @var{number-or-marker} plus 1.
540 For example,
542 @example
543 (setq foo 4)
544      @result{} 4
545 (1+ foo)
546      @result{} 5
547 @end example
549 This function is not analogous to the C operator @code{++}---it does not
550 increment a variable.  It just computes a sum.  Thus, if we continue,
552 @example
554      @result{} 4
555 @end example
557 If you want to increment the variable, you must use @code{setq},
558 like this:
560 @example
561 (setq foo (1+ foo))
562      @result{} 5
563 @end example
564 @end defun
566 @defun 1- number-or-marker
567 This function returns @var{number-or-marker} minus 1.
568 @end defun
570 @defun + &rest numbers-or-markers
571 This function adds its arguments together.  When given no arguments,
572 @code{+} returns 0.
574 @example
576      @result{} 0
577 (+ 1)
578      @result{} 1
579 (+ 1 2 3 4)
580      @result{} 10
581 @end example
582 @end defun
584 @defun - &optional number-or-marker &rest more-numbers-or-markers
585 The @code{-} function serves two purposes: negation and subtraction.
586 When @code{-} has a single argument, the value is the negative of the
587 argument.  When there are multiple arguments, @code{-} subtracts each of
588 the @var{more-numbers-or-markers} from @var{number-or-marker},
589 cumulatively.  If there are no arguments, the result is 0.
591 @example
592 (- 10 1 2 3 4)
593      @result{} 0
594 (- 10)
595      @result{} -10
597      @result{} 0
598 @end example
599 @end defun
601 @defun * &rest numbers-or-markers
602 This function multiplies its arguments together, and returns the
603 product.  When given no arguments, @code{*} returns 1.
605 @example
607      @result{} 1
608 (* 1)
609      @result{} 1
610 (* 1 2 3 4)
611      @result{} 24
612 @end example
613 @end defun
615 @defun / dividend divisor &rest divisors
616 This function divides @var{dividend} by @var{divisor} and returns the
617 quotient.  If there are additional arguments @var{divisors}, then it
618 divides @var{dividend} by each divisor in turn.  Each argument may be a
619 number or a marker.
621 If all the arguments are integers, the result is an integer, obtained
622 by rounding the quotient towards zero after each division.
623 (Hypothetically, some machines may have different rounding behavior
624 for negative arguments, because @code{/} is implemented using the C
625 division operator, which permits machine-dependent rounding; but this
626 does not happen in practice.)
628 @example
629 @group
630 (/ 6 2)
631      @result{} 3
632 @end group
633 @group
634 (/ 5 2)
635      @result{} 2
636 @end group
637 @group
638 (/ 5.0 2)
639      @result{} 2.5
640 @end group
641 @group
642 (/ 5 2.0)
643      @result{} 2.5
644 @end group
645 @group
646 (/ 5.0 2.0)
647      @result{} 2.5
648 @end group
649 @group
650 (/ 25 3 2)
651      @result{} 4
652 @end group
653 @group
654 (/ -17 6)
655      @result{} -2
656 @end group
657 @end example
659 @cindex @code{arith-error} in division
660 If you divide an integer by the integer 0, Emacs signals an
661 @code{arith-error} error (@pxref{Errors}).  If you divide a floating
662 point number by 0, or divide by the floating point number 0.0, the
663 result is either positive or negative infinity (@pxref{Float Basics}).
664 @end defun
666 @defun % dividend divisor
667 @cindex remainder
668 This function returns the integer remainder after division of @var{dividend}
669 by @var{divisor}.  The arguments must be integers or markers.
671 For any two integers @var{dividend} and @var{divisor},
673 @example
674 @group
675 (+ (% @var{dividend} @var{divisor})
676    (* (/ @var{dividend} @var{divisor}) @var{divisor}))
677 @end group
678 @end example
680 @noindent
681 always equals @var{dividend}.  If @var{divisor} is zero, Emacs signals
682 an @code{arith-error} error.
684 @example
685 (% 9 4)
686      @result{} 1
687 (% -9 4)
688      @result{} -1
689 (% 9 -4)
690      @result{} 1
691 (% -9 -4)
692      @result{} -1
693 @end example
694 @end defun
696 @defun mod dividend divisor
697 @cindex modulus
698 This function returns the value of @var{dividend} modulo @var{divisor};
699 in other words, the remainder after division of @var{dividend}
700 by @var{divisor}, but with the same sign as @var{divisor}.
701 The arguments must be numbers or markers.
703 Unlike @code{%}, @code{mod} permits floating point arguments; it
704 rounds the quotient downward (towards minus infinity) to an integer,
705 and uses that quotient to compute the remainder.
707 If @var{divisor} is zero, @code{mod} signals an @code{arith-error}
708 error if both arguments are integers, and returns a NaN otherwise.
710 @example
711 @group
712 (mod 9 4)
713      @result{} 1
714 @end group
715 @group
716 (mod -9 4)
717      @result{} 3
718 @end group
719 @group
720 (mod 9 -4)
721      @result{} -3
722 @end group
723 @group
724 (mod -9 -4)
725      @result{} -1
726 @end group
727 @group
728 (mod 5.5 2.5)
729      @result{} .5
730 @end group
731 @end example
733 For any two numbers @var{dividend} and @var{divisor},
735 @example
736 @group
737 (+ (mod @var{dividend} @var{divisor})
738    (* (floor @var{dividend} @var{divisor}) @var{divisor}))
739 @end group
740 @end example
742 @noindent
743 always equals @var{dividend}, subject to rounding error if either
744 argument is floating point.  For @code{floor}, see @ref{Numeric
745 Conversions}.
746 @end defun
748 @node Rounding Operations
749 @section Rounding Operations
750 @cindex rounding without conversion
752 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
753 @code{ftruncate} take a floating point argument and return a floating
754 point result whose value is a nearby integer.  @code{ffloor} returns the
755 nearest integer below; @code{fceiling}, the nearest integer above;
756 @code{ftruncate}, the nearest integer in the direction towards zero;
757 @code{fround}, the nearest integer.
759 @defun ffloor float
760 This function rounds @var{float} to the next lower integral value, and
761 returns that value as a floating point number.
762 @end defun
764 @defun fceiling float
765 This function rounds @var{float} to the next higher integral value, and
766 returns that value as a floating point number.
767 @end defun
769 @defun ftruncate float
770 This function rounds @var{float} towards zero to an integral value, and
771 returns that value as a floating point number.
772 @end defun
774 @defun fround float
775 This function rounds @var{float} to the nearest integral value,
776 and returns that value as a floating point number.
777 @end defun
779 @node Bitwise Operations
780 @section Bitwise Operations on Integers
781 @cindex bitwise arithmetic
782 @cindex logical arithmetic
784   In a computer, an integer is represented as a binary number, a
785 sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
786 operation acts on the individual bits of such a sequence.  For example,
787 @dfn{shifting} moves the whole sequence left or right one or more places,
788 reproducing the same pattern ``moved over''.
790   The bitwise operations in Emacs Lisp apply only to integers.
792 @defun lsh integer1 count
793 @cindex logical shift
794 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
795 bits in @var{integer1} to the left @var{count} places, or to the right
796 if @var{count} is negative, bringing zeros into the vacated bits.  If
797 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
798 (most-significant) bit, producing a positive result even if
799 @var{integer1} is negative.  Contrast this with @code{ash}, below.
801 Here are two examples of @code{lsh}, shifting a pattern of bits one
802 place to the left.  We show only the low-order eight bits of the binary
803 pattern; the rest are all zero.
805 @example
806 @group
807 (lsh 5 1)
808      @result{} 10
809 ;; @r{Decimal 5 becomes decimal 10.}
810 00000101 @result{} 00001010
812 (lsh 7 1)
813      @result{} 14
814 ;; @r{Decimal 7 becomes decimal 14.}
815 00000111 @result{} 00001110
816 @end group
817 @end example
819 @noindent
820 As the examples illustrate, shifting the pattern of bits one place to
821 the left produces a number that is twice the value of the previous
822 number.
824 Shifting a pattern of bits two places to the left produces results
825 like this (with 8-bit binary numbers):
827 @example
828 @group
829 (lsh 3 2)
830      @result{} 12
831 ;; @r{Decimal 3 becomes decimal 12.}
832 00000011 @result{} 00001100
833 @end group
834 @end example
836 On the other hand, shifting one place to the right looks like this:
838 @example
839 @group
840 (lsh 6 -1)
841      @result{} 3
842 ;; @r{Decimal 6 becomes decimal 3.}
843 00000110 @result{} 00000011
844 @end group
846 @group
847 (lsh 5 -1)
848      @result{} 2
849 ;; @r{Decimal 5 becomes decimal 2.}
850 00000101 @result{} 00000010
851 @end group
852 @end example
854 @noindent
855 As the example illustrates, shifting one place to the right divides the
856 value of a positive integer by two, rounding downward.
858 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
859 not check for overflow, so shifting left can discard significant bits
860 and change the sign of the number.  For example, left shifting
861 536,870,911 produces @minus{}2 in the 30-bit implementation:
863 @example
864 (lsh 536870911 1)          ; @r{left shift}
865      @result{} -2
866 @end example
868 In binary, the argument looks like this:
870 @example
871 @group
872 ;; @r{Decimal 536,870,911}
873 0111...111111 (30 bits total)
874 @end group
875 @end example
877 @noindent
878 which becomes the following when left shifted:
880 @example
881 @group
882 ;; @r{Decimal @minus{}2}
883 1111...111110 (30 bits total)
884 @end group
885 @end example
886 @end defun
888 @defun ash integer1 count
889 @cindex arithmetic shift
890 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
891 to the left @var{count} places, or to the right if @var{count}
892 is negative.
894 @code{ash} gives the same results as @code{lsh} except when
895 @var{integer1} and @var{count} are both negative.  In that case,
896 @code{ash} puts ones in the empty bit positions on the left, while
897 @code{lsh} puts zeros in those bit positions.
899 Thus, with @code{ash}, shifting the pattern of bits one place to the right
900 looks like this:
902 @example
903 @group
904 (ash -6 -1) @result{} -3
905 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
906 1111...111010 (30 bits total)
907      @result{}
908 1111...111101 (30 bits total)
909 @end group
910 @end example
912 In contrast, shifting the pattern of bits one place to the right with
913 @code{lsh} looks like this:
915 @example
916 @group
917 (lsh -6 -1) @result{} 536870909
918 ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
919 1111...111010 (30 bits total)
920      @result{}
921 0111...111101 (30 bits total)
922 @end group
923 @end example
925 Here are other examples:
927 @c !!! Check if lined up in smallbook format!  XDVI shows problem
928 @c     with smallbook but not with regular book! --rjc 16mar92
929 @smallexample
930 @group
931                    ;  @r{       30-bit binary values}
933 (lsh 5 2)          ;   5  =  @r{0000...000101}
934      @result{} 20         ;      =  @r{0000...010100}
935 @end group
936 @group
937 (ash 5 2)
938      @result{} 20
939 (lsh -5 2)         ;  -5  =  @r{1111...111011}
940      @result{} -20        ;      =  @r{1111...101100}
941 (ash -5 2)
942      @result{} -20
943 @end group
944 @group
945 (lsh 5 -2)         ;   5  =  @r{0000...000101}
946      @result{} 1          ;      =  @r{0000...000001}
947 @end group
948 @group
949 (ash 5 -2)
950      @result{} 1
951 @end group
952 @group
953 (lsh -5 -2)        ;  -5  =  @r{1111...111011}
954      @result{} 268435454
955                    ;      =  @r{0011...111110}
956 @end group
957 @group
958 (ash -5 -2)        ;  -5  =  @r{1111...111011}
959      @result{} -2         ;      =  @r{1111...111110}
960 @end group
961 @end smallexample
962 @end defun
964 @defun logand &rest ints-or-markers
965 This function returns the ``logical and'' of the arguments: the
966 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
967 set in all the arguments.  (``Set'' means that the value of the bit is 1
968 rather than 0.)
970 For example, using 4-bit binary numbers, the ``logical and'' of 13 and
971 12 is 12: 1101 combined with 1100 produces 1100.
972 In both the binary numbers, the leftmost two bits are set (i.e., they
973 are 1's), so the leftmost two bits of the returned value are set.
974 However, for the rightmost two bits, each is zero in at least one of
975 the arguments, so the rightmost two bits of the returned value are 0's.
977 @noindent
978 Therefore,
980 @example
981 @group
982 (logand 13 12)
983      @result{} 12
984 @end group
985 @end example
987 If @code{logand} is not passed any argument, it returns a value of
988 @minus{}1.  This number is an identity element for @code{logand}
989 because its binary representation consists entirely of ones.  If
990 @code{logand} is passed just one argument, it returns that argument.
992 @smallexample
993 @group
994                    ; @r{       30-bit binary values}
996 (logand 14 13)     ; 14  =  @r{0000...001110}
997                    ; 13  =  @r{0000...001101}
998      @result{} 12         ; 12  =  @r{0000...001100}
999 @end group
1001 @group
1002 (logand 14 13 4)   ; 14  =  @r{0000...001110}
1003                    ; 13  =  @r{0000...001101}
1004                    ;  4  =  @r{0000...000100}
1005      @result{} 4          ;  4  =  @r{0000...000100}
1006 @end group
1008 @group
1009 (logand)
1010      @result{} -1         ; -1  =  @r{1111...111111}
1011 @end group
1012 @end smallexample
1013 @end defun
1015 @defun logior &rest ints-or-markers
1016 This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
1017 is set in the result if, and only if, the @var{n}th bit is set in at least
1018 one of the arguments.  If there are no arguments, the result is zero,
1019 which is an identity element for this operation.  If @code{logior} is
1020 passed just one argument, it returns that argument.
1022 @smallexample
1023 @group
1024                    ; @r{       30-bit binary values}
1026 (logior 12 5)      ; 12  =  @r{0000...001100}
1027                    ;  5  =  @r{0000...000101}
1028      @result{} 13         ; 13  =  @r{0000...001101}
1029 @end group
1031 @group
1032 (logior 12 5 7)    ; 12  =  @r{0000...001100}
1033                    ;  5  =  @r{0000...000101}
1034                    ;  7  =  @r{0000...000111}
1035      @result{} 15         ; 15  =  @r{0000...001111}
1036 @end group
1037 @end smallexample
1038 @end defun
1040 @defun logxor &rest ints-or-markers
1041 This function returns the ``exclusive or'' of its arguments: the
1042 @var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1043 set in an odd number of the arguments.  If there are no arguments, the
1044 result is 0, which is an identity element for this operation.  If
1045 @code{logxor} is passed just one argument, it returns that argument.
1047 @smallexample
1048 @group
1049                    ; @r{       30-bit binary values}
1051 (logxor 12 5)      ; 12  =  @r{0000...001100}
1052                    ;  5  =  @r{0000...000101}
1053      @result{} 9          ;  9  =  @r{0000...001001}
1054 @end group
1056 @group
1057 (logxor 12 5 7)    ; 12  =  @r{0000...001100}
1058                    ;  5  =  @r{0000...000101}
1059                    ;  7  =  @r{0000...000111}
1060      @result{} 14         ; 14  =  @r{0000...001110}
1061 @end group
1062 @end smallexample
1063 @end defun
1065 @defun lognot integer
1066 This function returns the logical complement of its argument: the @var{n}th
1067 bit is one in the result if, and only if, the @var{n}th bit is zero in
1068 @var{integer}, and vice-versa.
1070 @example
1071 (lognot 5)
1072      @result{} -6
1073 ;;  5  =  @r{0000...000101} (30 bits total)
1074 ;; @r{becomes}
1075 ;; -6  =  @r{1111...111010} (30 bits total)
1076 @end example
1077 @end defun
1079 @node Math Functions
1080 @section Standard Mathematical Functions
1081 @cindex transcendental functions
1082 @cindex mathematical functions
1083 @cindex floating-point functions
1085   These mathematical functions allow integers as well as floating point
1086 numbers as arguments.
1088 @defun sin arg
1089 @defunx cos arg
1090 @defunx tan arg
1091 These are the basic trigonometric functions, with argument @var{arg}
1092 measured in radians.
1093 @end defun
1095 @defun asin arg
1096 The value of @code{(asin @var{arg})} is a number between
1097 @ifnottex
1098 @minus{}pi/2
1099 @end ifnottex
1100 @tex
1101 @math{-\pi/2}
1102 @end tex
1104 @ifnottex
1105 pi/2
1106 @end ifnottex
1107 @tex
1108 @math{\pi/2}
1109 @end tex
1110 (inclusive) whose sine is @var{arg}.  If @var{arg} is out of range
1111 (outside [@minus{}1, 1]), @code{asin} returns a NaN.
1112 @end defun
1114 @defun acos arg
1115 The value of @code{(acos @var{arg})} is a number between 0 and
1116 @ifnottex
1118 @end ifnottex
1119 @tex
1120 @math{\pi}
1121 @end tex
1122 (inclusive) whose cosine is @var{arg}.  If @var{arg} is out of range
1123 (outside [@minus{}1, 1]), @code{acos} returns a NaN.
1124 @end defun
1126 @defun atan y &optional x
1127 The value of @code{(atan @var{y})} is a number between
1128 @ifnottex
1129 @minus{}pi/2
1130 @end ifnottex
1131 @tex
1132 @math{-\pi/2}
1133 @end tex
1135 @ifnottex
1136 pi/2
1137 @end ifnottex
1138 @tex
1139 @math{\pi/2}
1140 @end tex
1141 (exclusive) whose tangent is @var{y}.  If the optional second
1142 argument @var{x} is given, the value of @code{(atan y x)} is the
1143 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1144 @code{X} axis.
1145 @end defun
1147 @defun exp arg
1148 This is the exponential function; it returns @math{e} to the power
1149 @var{arg}.
1150 @end defun
1152 @defun log arg &optional base
1153 This function returns the logarithm of @var{arg}, with base
1154 @var{base}.  If you don't specify @var{base}, the natural base
1155 @math{e} is used.  If @var{arg} or @var{base} is negative, @code{log}
1156 returns a NaN.
1157 @end defun
1159 @defun log10 arg
1160 This function returns the logarithm of @var{arg}, with base 10:
1161 @code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}.
1162 @end defun
1164 @defun expt x y
1165 This function returns @var{x} raised to power @var{y}.  If both
1166 arguments are integers and @var{y} is positive, the result is an
1167 integer; in this case, overflow causes truncation, so watch out.
1168 If @var{x} is a finite negative number and @var{y} is a finite
1169 non-integer, @code{expt} returns a NaN.
1170 @end defun
1172 @defun sqrt arg
1173 This returns the square root of @var{arg}.  If @var{arg} is negative,
1174 @code{sqrt} returns a NaN.
1175 @end defun
1177 In addition, Emacs defines the following common mathematical
1178 constants:
1180 @defvar float-e
1181 The mathematical constant @math{e} (2.71828@dots{}).
1182 @end defvar
1184 @defvar float-pi
1185 The mathematical constant @math{pi} (3.14159@dots{}).
1186 @end defvar
1188 @node Random Numbers
1189 @section Random Numbers
1190 @cindex random numbers
1192   A deterministic computer program cannot generate true random
1193 numbers.  For most purposes, @dfn{pseudo-random numbers} suffice.  A
1194 series of pseudo-random numbers is generated in a deterministic
1195 fashion.  The numbers are not truly random, but they have certain
1196 properties that mimic a random series.  For example, all possible
1197 values occur equally often in a pseudo-random series.
1199   Pseudo-random numbers are generated from a ``seed''.  Starting from
1200 any given seed, the @code{random} function always generates the same
1201 sequence of numbers.  By default, Emacs initializes the random seed at
1202 startup, in such a way that the sequence of values of @code{random}
1203 (with overwhelming likelihood) differs in each Emacs run.
1205   Sometimes you want the random number sequence to be repeatable.  For
1206 example, when debugging a program whose behavior depends on the random
1207 number sequence, it is helpful to get the same behavior in each
1208 program run.  To make the sequence repeat, execute @code{(random "")}.
1209 This sets the seed to a constant value for your particular Emacs
1210 executable (though it may differ for other Emacs builds).  You can use
1211 other strings to choose various seed values.
1213 @defun random &optional limit
1214 This function returns a pseudo-random integer.  Repeated calls return a
1215 series of pseudo-random integers.
1217 If @var{limit} is a positive integer, the value is chosen to be
1218 nonnegative and less than @var{limit}.  Otherwise, the value might be
1219 any integer representable in Lisp, i.e., an integer between
1220 @code{most-negative-fixnum} and @code{most-positive-fixnum}
1221 (@pxref{Integer Basics}).
1223 If @var{limit} is @code{t}, it means to choose a new seed based on the
1224 current time of day and on Emacs's process @acronym{ID} number.
1226 If @var{limit} is a string, it means to choose a new seed based on the
1227 string's contents.
1229 @end defun