1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2017 Free Software
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <signal.h> /* For SIGABRT, SIGDANGER. */
34 #include "dispextern.h"
35 #include "intervals.h"
39 #include "character.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
48 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <flexmember.h>
52 #include <execinfo.h> /* For backtrace. */
54 #ifdef HAVE_LINUX_SYSINFO
55 #include <sys/sysinfo.h>
59 #include "dosfns.h" /* For dos_memory_info. */
66 #if (defined ENABLE_CHECKING \
67 && defined HAVE_VALGRIND_VALGRIND_H \
68 && !defined USE_VALGRIND)
69 # define USE_VALGRIND 1
73 #include <valgrind/valgrind.h>
74 #include <valgrind/memcheck.h>
75 static bool valgrind_p
;
78 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
79 We turn that on by default when ENABLE_CHECKING is defined;
80 define GC_CHECK_MARKED_OBJECTS to zero to disable. */
82 #if defined ENABLE_CHECKING && !defined GC_CHECK_MARKED_OBJECTS
83 # define GC_CHECK_MARKED_OBJECTS 1
86 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
87 memory. Can do this only if using gmalloc.c and if not checking
90 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
91 || defined HYBRID_MALLOC || GC_CHECK_MARKED_OBJECTS)
92 #undef GC_MALLOC_CHECK
103 #include "w32heap.h" /* for sbrk */
107 /* The address where the heap starts. */
118 #ifdef DOUG_LEA_MALLOC
120 /* Specify maximum number of areas to mmap. It would be nice to use a
121 value that explicitly means "no limit". */
123 #define MMAP_MAX_AREAS 100000000
125 /* A pointer to the memory allocated that copies that static data
126 inside glibc's malloc. */
127 static void *malloc_state_ptr
;
129 /* Restore the dumped malloc state. Because malloc can be invoked
130 even before main (e.g. by the dynamic linker), the dumped malloc
131 state must be restored as early as possible using this special hook. */
133 malloc_initialize_hook (void)
135 static bool malloc_using_checking
;
142 malloc_using_checking
= getenv ("MALLOC_CHECK_") != NULL
;
146 if (!malloc_using_checking
)
148 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
149 ignored if the heap to be restored was constructed without
150 malloc checking. Can't use unsetenv, since that calls malloc. */
154 if (strncmp (*p
, "MALLOC_CHECK_=", 14) == 0)
164 if (malloc_set_state (malloc_state_ptr
) != 0)
166 # ifndef XMALLOC_OVERRUN_CHECK
167 alloc_unexec_post ();
172 /* Declare the malloc initialization hook, which runs before 'main' starts.
173 EXTERNALLY_VISIBLE works around Bug#22522. */
174 # ifndef __MALLOC_HOOK_VOLATILE
175 # define __MALLOC_HOOK_VOLATILE
177 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
178 = malloc_initialize_hook
;
182 #if defined DOUG_LEA_MALLOC || !defined CANNOT_DUMP
184 /* Allocator-related actions to do just before and after unexec. */
187 alloc_unexec_pre (void)
189 # ifdef DOUG_LEA_MALLOC
190 malloc_state_ptr
= malloc_get_state ();
191 if (!malloc_state_ptr
)
192 fatal ("malloc_get_state: %s", strerror (errno
));
194 # ifdef HYBRID_MALLOC
195 bss_sbrk_did_unexec
= true;
200 alloc_unexec_post (void)
202 # ifdef DOUG_LEA_MALLOC
203 free (malloc_state_ptr
);
205 # ifdef HYBRID_MALLOC
206 bss_sbrk_did_unexec
= false;
211 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
212 to a struct Lisp_String. */
214 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
215 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
216 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
218 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
219 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
220 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
222 /* Default value of gc_cons_threshold (see below). */
224 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
226 /* Global variables. */
227 struct emacs_globals globals
;
229 /* Number of bytes of consing done since the last gc. */
231 EMACS_INT consing_since_gc
;
233 /* Similar minimum, computed from Vgc_cons_percentage. */
235 EMACS_INT gc_relative_threshold
;
237 /* Minimum number of bytes of consing since GC before next GC,
238 when memory is full. */
240 EMACS_INT memory_full_cons_threshold
;
242 /* True during GC. */
246 /* Number of live and free conses etc. */
248 static EMACS_INT total_conses
, total_markers
, total_symbols
, total_buffers
;
249 static EMACS_INT total_free_conses
, total_free_markers
, total_free_symbols
;
250 static EMACS_INT total_free_floats
, total_floats
;
252 /* Points to memory space allocated as "spare", to be freed if we run
253 out of memory. We keep one large block, four cons-blocks, and
254 two string blocks. */
256 static char *spare_memory
[7];
258 /* Amount of spare memory to keep in large reserve block, or to see
259 whether this much is available when malloc fails on a larger request. */
261 #define SPARE_MEMORY (1 << 14)
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
269 EMACS_INT pure
[(PURESIZE
+ sizeof (EMACS_INT
) - 1) / sizeof (EMACS_INT
)] = {1,};
270 #define PUREBEG (char *) pure
272 /* Pointer to the pure area, and its size. */
274 static char *purebeg
;
275 static ptrdiff_t pure_size
;
277 /* Number of bytes of pure storage used before pure storage overflowed.
278 If this is non-zero, this implies that an overflow occurred. */
280 static ptrdiff_t pure_bytes_used_before_overflow
;
282 /* Index in pure at which next pure Lisp object will be allocated.. */
284 static ptrdiff_t pure_bytes_used_lisp
;
286 /* Number of bytes allocated for non-Lisp objects in pure storage. */
288 static ptrdiff_t pure_bytes_used_non_lisp
;
290 /* If nonzero, this is a warning delivered by malloc and not yet
293 const char *pending_malloc_warning
;
295 #if 0 /* Normally, pointer sanity only on request... */
296 #ifdef ENABLE_CHECKING
297 #define SUSPICIOUS_OBJECT_CHECKING 1
301 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
302 bug is unresolved. */
303 #define SUSPICIOUS_OBJECT_CHECKING 1
305 #ifdef SUSPICIOUS_OBJECT_CHECKING
306 struct suspicious_free_record
308 void *suspicious_object
;
309 void *backtrace
[128];
311 static void *suspicious_objects
[32];
312 static int suspicious_object_index
;
313 struct suspicious_free_record suspicious_free_history
[64] EXTERNALLY_VISIBLE
;
314 static int suspicious_free_history_index
;
315 /* Find the first currently-monitored suspicious pointer in range
316 [begin,end) or NULL if no such pointer exists. */
317 static void *find_suspicious_object_in_range (void *begin
, void *end
);
318 static void detect_suspicious_free (void *ptr
);
320 # define find_suspicious_object_in_range(begin, end) NULL
321 # define detect_suspicious_free(ptr) (void)
324 /* Maximum amount of C stack to save when a GC happens. */
326 #ifndef MAX_SAVE_STACK
327 #define MAX_SAVE_STACK 16000
330 /* Buffer in which we save a copy of the C stack at each GC. */
332 #if MAX_SAVE_STACK > 0
333 static char *stack_copy
;
334 static ptrdiff_t stack_copy_size
;
336 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
337 avoiding any address sanitization. */
339 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
340 no_sanitize_memcpy (void *dest
, void const *src
, size_t size
)
342 if (! ADDRESS_SANITIZER
)
343 return memcpy (dest
, src
, size
);
349 for (i
= 0; i
< size
; i
++)
355 #endif /* MAX_SAVE_STACK > 0 */
357 static void mark_terminals (void);
358 static void gc_sweep (void);
359 static Lisp_Object
make_pure_vector (ptrdiff_t);
360 static void mark_buffer (struct buffer
*);
362 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
363 static void refill_memory_reserve (void);
365 static void compact_small_strings (void);
366 static void free_large_strings (void);
367 extern Lisp_Object
which_symbols (Lisp_Object
, EMACS_INT
) EXTERNALLY_VISIBLE
;
369 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
370 what memory allocated via lisp_malloc and lisp_align_malloc is intended
371 for what purpose. This enumeration specifies the type of memory. */
382 /* Since all non-bool pseudovectors are small enough to be
383 allocated from vector blocks, this memory type denotes
384 large regular vectors and large bool pseudovectors. */
386 /* Special type to denote vector blocks. */
387 MEM_TYPE_VECTOR_BLOCK
,
388 /* Special type to denote reserved memory. */
392 /* A unique object in pure space used to make some Lisp objects
393 on free lists recognizable in O(1). */
395 static Lisp_Object Vdead
;
396 #define DEADP(x) EQ (x, Vdead)
398 #ifdef GC_MALLOC_CHECK
400 enum mem_type allocated_mem_type
;
402 #endif /* GC_MALLOC_CHECK */
404 /* A node in the red-black tree describing allocated memory containing
405 Lisp data. Each such block is recorded with its start and end
406 address when it is allocated, and removed from the tree when it
409 A red-black tree is a balanced binary tree with the following
412 1. Every node is either red or black.
413 2. Every leaf is black.
414 3. If a node is red, then both of its children are black.
415 4. Every simple path from a node to a descendant leaf contains
416 the same number of black nodes.
417 5. The root is always black.
419 When nodes are inserted into the tree, or deleted from the tree,
420 the tree is "fixed" so that these properties are always true.
422 A red-black tree with N internal nodes has height at most 2
423 log(N+1). Searches, insertions and deletions are done in O(log N).
424 Please see a text book about data structures for a detailed
425 description of red-black trees. Any book worth its salt should
430 /* Children of this node. These pointers are never NULL. When there
431 is no child, the value is MEM_NIL, which points to a dummy node. */
432 struct mem_node
*left
, *right
;
434 /* The parent of this node. In the root node, this is NULL. */
435 struct mem_node
*parent
;
437 /* Start and end of allocated region. */
441 enum {MEM_BLACK
, MEM_RED
} color
;
447 /* Root of the tree describing allocated Lisp memory. */
449 static struct mem_node
*mem_root
;
451 /* Lowest and highest known address in the heap. */
453 static void *min_heap_address
, *max_heap_address
;
455 /* Sentinel node of the tree. */
457 static struct mem_node mem_z
;
458 #define MEM_NIL &mem_z
460 static struct mem_node
*mem_insert (void *, void *, enum mem_type
);
461 static void mem_insert_fixup (struct mem_node
*);
462 static void mem_rotate_left (struct mem_node
*);
463 static void mem_rotate_right (struct mem_node
*);
464 static void mem_delete (struct mem_node
*);
465 static void mem_delete_fixup (struct mem_node
*);
466 static struct mem_node
*mem_find (void *);
472 /* Addresses of staticpro'd variables. Initialize it to a nonzero
473 value; otherwise some compilers put it into BSS. */
475 enum { NSTATICS
= 2048 };
476 static Lisp_Object
*staticvec
[NSTATICS
] = {&Vpurify_flag
};
478 /* Index of next unused slot in staticvec. */
480 static int staticidx
;
482 static void *pure_alloc (size_t, int);
484 /* True if N is a power of 2. N should be positive. */
486 #define POWER_OF_2(n) (((n) & ((n) - 1)) == 0)
488 /* Return X rounded to the next multiple of Y. Y should be positive,
489 and Y - 1 + X should not overflow. Arguments should not have side
490 effects, as they are evaluated more than once. Tune for Y being a
493 #define ROUNDUP(x, y) (POWER_OF_2 (y) \
494 ? ((y) - 1 + (x)) & ~ ((y) - 1) \
495 : ((y) - 1 + (x)) - ((y) - 1 + (x)) % (y))
497 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
500 pointer_align (void *ptr
, int alignment
)
502 return (void *) ROUNDUP ((uintptr_t) ptr
, alignment
);
505 /* Extract the pointer hidden within A, if A is not a symbol.
506 If A is a symbol, extract the hidden pointer's offset from lispsym,
507 converted to void *. */
509 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
510 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
512 /* Extract the pointer hidden within A. */
514 #define macro_XPNTR(a) \
515 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
516 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
518 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
519 functions, as functions are cleaner and can be used in debuggers.
520 Also, define them as macros if being compiled with GCC without
521 optimization, for performance in that case. The macro_* names are
522 private to this section of code. */
524 static ATTRIBUTE_UNUSED
void *
525 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a
)
527 return macro_XPNTR_OR_SYMBOL_OFFSET (a
);
529 static ATTRIBUTE_UNUSED
void *
530 XPNTR (Lisp_Object a
)
532 return macro_XPNTR (a
);
535 #if DEFINE_KEY_OPS_AS_MACROS
536 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
537 # define XPNTR(a) macro_XPNTR (a)
541 XFLOAT_INIT (Lisp_Object f
, double n
)
543 XFLOAT (f
)->u
.data
= n
;
546 #ifdef DOUG_LEA_MALLOC
548 pointers_fit_in_lispobj_p (void)
550 return (UINTPTR_MAX
<= VAL_MAX
) || USE_LSB_TAG
;
554 mmap_lisp_allowed_p (void)
556 /* If we can't store all memory addresses in our lisp objects, it's
557 risky to let the heap use mmap and give us addresses from all
558 over our address space. We also can't use mmap for lisp objects
559 if we might dump: unexec doesn't preserve the contents of mmapped
561 return pointers_fit_in_lispobj_p () && !might_dump
;
565 /* Head of a circularly-linked list of extant finalizers. */
566 static struct Lisp_Finalizer finalizers
;
568 /* Head of a circularly-linked list of finalizers that must be invoked
569 because we deemed them unreachable. This list must be global, and
570 not a local inside garbage_collect_1, in case we GC again while
571 running finalizers. */
572 static struct Lisp_Finalizer doomed_finalizers
;
575 /************************************************************************
577 ************************************************************************/
579 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
581 /* Function malloc calls this if it finds we are near exhausting storage. */
584 malloc_warning (const char *str
)
586 pending_malloc_warning
= str
;
591 /* Display an already-pending malloc warning. */
594 display_malloc_warning (void)
596 call3 (intern ("display-warning"),
598 build_string (pending_malloc_warning
),
599 intern ("emergency"));
600 pending_malloc_warning
= 0;
603 /* Called if we can't allocate relocatable space for a buffer. */
606 buffer_memory_full (ptrdiff_t nbytes
)
608 /* If buffers use the relocating allocator, no need to free
609 spare_memory, because we may have plenty of malloc space left
610 that we could get, and if we don't, the malloc that fails will
611 itself cause spare_memory to be freed. If buffers don't use the
612 relocating allocator, treat this like any other failing
616 memory_full (nbytes
);
618 /* This used to call error, but if we've run out of memory, we could
619 get infinite recursion trying to build the string. */
620 xsignal (Qnil
, Vmemory_signal_data
);
624 /* A common multiple of the positive integers A and B. Ideally this
625 would be the least common multiple, but there's no way to do that
626 as a constant expression in C, so do the best that we can easily do. */
627 #define COMMON_MULTIPLE(a, b) \
628 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
630 #ifndef XMALLOC_OVERRUN_CHECK
631 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
634 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
637 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
638 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
639 block size in little-endian order. The trailer consists of
640 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
642 The header is used to detect whether this block has been allocated
643 through these functions, as some low-level libc functions may
644 bypass the malloc hooks. */
646 #define XMALLOC_OVERRUN_CHECK_SIZE 16
647 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
648 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
650 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
652 #define XMALLOC_HEADER_ALIGNMENT \
653 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
655 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
656 hold a size_t value and (2) the header size is a multiple of the
657 alignment that Emacs needs for C types and for USE_LSB_TAG. */
658 #define XMALLOC_OVERRUN_SIZE_SIZE \
659 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
660 + XMALLOC_HEADER_ALIGNMENT - 1) \
661 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
662 - XMALLOC_OVERRUN_CHECK_SIZE)
664 static char const xmalloc_overrun_check_header
[XMALLOC_OVERRUN_CHECK_SIZE
] =
665 { '\x9a', '\x9b', '\xae', '\xaf',
666 '\xbf', '\xbe', '\xce', '\xcf',
667 '\xea', '\xeb', '\xec', '\xed',
668 '\xdf', '\xde', '\x9c', '\x9d' };
670 static char const xmalloc_overrun_check_trailer
[XMALLOC_OVERRUN_CHECK_SIZE
] =
671 { '\xaa', '\xab', '\xac', '\xad',
672 '\xba', '\xbb', '\xbc', '\xbd',
673 '\xca', '\xcb', '\xcc', '\xcd',
674 '\xda', '\xdb', '\xdc', '\xdd' };
676 /* Insert and extract the block size in the header. */
679 xmalloc_put_size (unsigned char *ptr
, size_t size
)
682 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
684 *--ptr
= size
& ((1 << CHAR_BIT
) - 1);
690 xmalloc_get_size (unsigned char *ptr
)
694 ptr
-= XMALLOC_OVERRUN_SIZE_SIZE
;
695 for (i
= 0; i
< XMALLOC_OVERRUN_SIZE_SIZE
; i
++)
704 /* Like malloc, but wraps allocated block with header and trailer. */
707 overrun_check_malloc (size_t size
)
709 register unsigned char *val
;
710 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
713 val
= malloc (size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
716 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
717 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
718 xmalloc_put_size (val
, size
);
719 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
720 XMALLOC_OVERRUN_CHECK_SIZE
);
726 /* Like realloc, but checks old block for overrun, and wraps new block
727 with header and trailer. */
730 overrun_check_realloc (void *block
, size_t size
)
732 register unsigned char *val
= (unsigned char *) block
;
733 if (SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
< size
)
737 && memcmp (xmalloc_overrun_check_header
,
738 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
739 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
741 size_t osize
= xmalloc_get_size (val
);
742 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
743 XMALLOC_OVERRUN_CHECK_SIZE
))
745 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
746 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
747 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
750 val
= realloc (val
, size
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
754 memcpy (val
, xmalloc_overrun_check_header
, XMALLOC_OVERRUN_CHECK_SIZE
);
755 val
+= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
756 xmalloc_put_size (val
, size
);
757 memcpy (val
+ size
, xmalloc_overrun_check_trailer
,
758 XMALLOC_OVERRUN_CHECK_SIZE
);
763 /* Like free, but checks block for overrun. */
766 overrun_check_free (void *block
)
768 unsigned char *val
= (unsigned char *) block
;
771 && memcmp (xmalloc_overrun_check_header
,
772 val
- XMALLOC_OVERRUN_CHECK_SIZE
- XMALLOC_OVERRUN_SIZE_SIZE
,
773 XMALLOC_OVERRUN_CHECK_SIZE
) == 0)
775 size_t osize
= xmalloc_get_size (val
);
776 if (memcmp (xmalloc_overrun_check_trailer
, val
+ osize
,
777 XMALLOC_OVERRUN_CHECK_SIZE
))
779 #ifdef XMALLOC_CLEAR_FREE_MEMORY
780 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
781 memset (val
, 0xff, osize
+ XMALLOC_OVERRUN_CHECK_OVERHEAD
);
783 memset (val
+ osize
, 0, XMALLOC_OVERRUN_CHECK_SIZE
);
784 val
-= XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
;
785 memset (val
, 0, XMALLOC_OVERRUN_CHECK_SIZE
+ XMALLOC_OVERRUN_SIZE_SIZE
);
795 #define malloc overrun_check_malloc
796 #define realloc overrun_check_realloc
797 #define free overrun_check_free
800 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
801 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
802 If that variable is set, block input while in one of Emacs's memory
803 allocation functions. There should be no need for this debugging
804 option, since signal handlers do not allocate memory, but Emacs
805 formerly allocated memory in signal handlers and this compile-time
806 option remains as a way to help debug the issue should it rear its
808 #ifdef XMALLOC_BLOCK_INPUT_CHECK
809 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE
;
811 malloc_block_input (void)
813 if (block_input_in_memory_allocators
)
817 malloc_unblock_input (void)
819 if (block_input_in_memory_allocators
)
822 # define MALLOC_BLOCK_INPUT malloc_block_input ()
823 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
825 # define MALLOC_BLOCK_INPUT ((void) 0)
826 # define MALLOC_UNBLOCK_INPUT ((void) 0)
829 #define MALLOC_PROBE(size) \
831 if (profiler_memory_running) \
832 malloc_probe (size); \
835 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
836 static void *lrealloc (void *, size_t);
838 /* Like malloc but check for no memory and block interrupt input. */
841 xmalloc (size_t size
)
846 val
= lmalloc (size
);
847 MALLOC_UNBLOCK_INPUT
;
855 /* Like the above, but zeroes out the memory just allocated. */
858 xzalloc (size_t size
)
863 val
= lmalloc (size
);
864 MALLOC_UNBLOCK_INPUT
;
868 memset (val
, 0, size
);
873 /* Like realloc but check for no memory and block interrupt input.. */
876 xrealloc (void *block
, size_t size
)
881 /* We must call malloc explicitly when BLOCK is 0, since some
882 reallocs don't do this. */
884 val
= lmalloc (size
);
886 val
= lrealloc (block
, size
);
887 MALLOC_UNBLOCK_INPUT
;
896 /* Like free but block interrupt input. */
905 MALLOC_UNBLOCK_INPUT
;
906 /* We don't call refill_memory_reserve here
907 because in practice the call in r_alloc_free seems to suffice. */
911 /* Other parts of Emacs pass large int values to allocator functions
912 expecting ptrdiff_t. This is portable in practice, but check it to
914 verify (INT_MAX
<= PTRDIFF_MAX
);
917 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
918 Signal an error on memory exhaustion, and block interrupt input. */
921 xnmalloc (ptrdiff_t nitems
, ptrdiff_t item_size
)
923 eassert (0 <= nitems
&& 0 < item_size
);
925 if (INT_MULTIPLY_WRAPV (nitems
, item_size
, &nbytes
) || SIZE_MAX
< nbytes
)
926 memory_full (SIZE_MAX
);
927 return xmalloc (nbytes
);
931 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
932 Signal an error on memory exhaustion, and block interrupt input. */
935 xnrealloc (void *pa
, ptrdiff_t nitems
, ptrdiff_t item_size
)
937 eassert (0 <= nitems
&& 0 < item_size
);
939 if (INT_MULTIPLY_WRAPV (nitems
, item_size
, &nbytes
) || SIZE_MAX
< nbytes
)
940 memory_full (SIZE_MAX
);
941 return xrealloc (pa
, nbytes
);
945 /* Grow PA, which points to an array of *NITEMS items, and return the
946 location of the reallocated array, updating *NITEMS to reflect its
947 new size. The new array will contain at least NITEMS_INCR_MIN more
948 items, but will not contain more than NITEMS_MAX items total.
949 ITEM_SIZE is the size of each item, in bytes.
951 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
952 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
955 If PA is null, then allocate a new array instead of reallocating
958 Block interrupt input as needed. If memory exhaustion occurs, set
959 *NITEMS to zero if PA is null, and signal an error (i.e., do not
962 Thus, to grow an array A without saving its old contents, do
963 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
964 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
965 and signals an error, and later this code is reexecuted and
966 attempts to free A. */
969 xpalloc (void *pa
, ptrdiff_t *nitems
, ptrdiff_t nitems_incr_min
,
970 ptrdiff_t nitems_max
, ptrdiff_t item_size
)
972 ptrdiff_t n0
= *nitems
;
973 eassume (0 < item_size
&& 0 < nitems_incr_min
&& 0 <= n0
&& -1 <= nitems_max
);
975 /* The approximate size to use for initial small allocation
976 requests. This is the largest "small" request for the GNU C
978 enum { DEFAULT_MXFAST
= 64 * sizeof (size_t) / 4 };
980 /* If the array is tiny, grow it to about (but no greater than)
981 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
982 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
983 NITEMS_MAX, and what the C language can represent safely. */
986 if (INT_ADD_WRAPV (n0
, n0
>> 1, &n
))
988 if (0 <= nitems_max
&& nitems_max
< n
)
991 ptrdiff_t adjusted_nbytes
992 = ((INT_MULTIPLY_WRAPV (n
, item_size
, &nbytes
) || SIZE_MAX
< nbytes
)
993 ? min (PTRDIFF_MAX
, SIZE_MAX
)
994 : nbytes
< DEFAULT_MXFAST
? DEFAULT_MXFAST
: 0);
997 n
= adjusted_nbytes
/ item_size
;
998 nbytes
= adjusted_nbytes
- adjusted_nbytes
% item_size
;
1003 if (n
- n0
< nitems_incr_min
1004 && (INT_ADD_WRAPV (n0
, nitems_incr_min
, &n
)
1005 || (0 <= nitems_max
&& nitems_max
< n
)
1006 || INT_MULTIPLY_WRAPV (n
, item_size
, &nbytes
)))
1007 memory_full (SIZE_MAX
);
1008 pa
= xrealloc (pa
, nbytes
);
1014 /* Like strdup, but uses xmalloc. */
1017 xstrdup (const char *s
)
1021 size
= strlen (s
) + 1;
1022 return memcpy (xmalloc (size
), s
, size
);
1025 /* Like above, but duplicates Lisp string to C string. */
1028 xlispstrdup (Lisp_Object string
)
1030 ptrdiff_t size
= SBYTES (string
) + 1;
1031 return memcpy (xmalloc (size
), SSDATA (string
), size
);
1034 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1035 pointed to. If STRING is null, assign it without copying anything.
1036 Allocate before freeing, to avoid a dangling pointer if allocation
1040 dupstring (char **ptr
, char const *string
)
1043 *ptr
= string
? xstrdup (string
) : 0;
1048 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1049 argument is a const pointer. */
1052 xputenv (char const *string
)
1054 if (putenv ((char *) string
) != 0)
1058 /* Return a newly allocated memory block of SIZE bytes, remembering
1059 to free it when unwinding. */
1061 record_xmalloc (size_t size
)
1063 void *p
= xmalloc (size
);
1064 record_unwind_protect_ptr (xfree
, p
);
1069 /* Like malloc but used for allocating Lisp data. NBYTES is the
1070 number of bytes to allocate, TYPE describes the intended use of the
1071 allocated memory block (for strings, for conses, ...). */
1074 void *lisp_malloc_loser EXTERNALLY_VISIBLE
;
1078 lisp_malloc (size_t nbytes
, enum mem_type type
)
1084 #ifdef GC_MALLOC_CHECK
1085 allocated_mem_type
= type
;
1088 val
= lmalloc (nbytes
);
1091 /* If the memory just allocated cannot be addressed thru a Lisp
1092 object's pointer, and it needs to be,
1093 that's equivalent to running out of memory. */
1094 if (val
&& type
!= MEM_TYPE_NON_LISP
)
1097 XSETCONS (tem
, (char *) val
+ nbytes
- 1);
1098 if ((char *) XCONS (tem
) != (char *) val
+ nbytes
- 1)
1100 lisp_malloc_loser
= val
;
1107 #ifndef GC_MALLOC_CHECK
1108 if (val
&& type
!= MEM_TYPE_NON_LISP
)
1109 mem_insert (val
, (char *) val
+ nbytes
, type
);
1112 MALLOC_UNBLOCK_INPUT
;
1114 memory_full (nbytes
);
1115 MALLOC_PROBE (nbytes
);
1119 /* Free BLOCK. This must be called to free memory allocated with a
1120 call to lisp_malloc. */
1123 lisp_free (void *block
)
1127 #ifndef GC_MALLOC_CHECK
1128 mem_delete (mem_find (block
));
1130 MALLOC_UNBLOCK_INPUT
;
1133 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1135 /* The entry point is lisp_align_malloc which returns blocks of at most
1136 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1138 /* Byte alignment of storage blocks. */
1139 #define BLOCK_ALIGN (1 << 10)
1140 verify (POWER_OF_2 (BLOCK_ALIGN
));
1142 /* Use aligned_alloc if it or a simple substitute is available.
1143 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1144 clang 3.3 anyway. Aligned allocation is incompatible with
1145 unexmacosx.c, so don't use it on Darwin. */
1147 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1148 # if (defined HAVE_ALIGNED_ALLOC \
1149 || (defined HYBRID_MALLOC \
1150 ? defined HAVE_POSIX_MEMALIGN \
1151 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1152 # define USE_ALIGNED_ALLOC 1
1153 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1154 # define USE_ALIGNED_ALLOC 1
1155 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1157 aligned_alloc (size_t alignment
, size_t size
)
1159 /* POSIX says the alignment must be a power-of-2 multiple of sizeof (void *).
1160 Verify this for all arguments this function is given. */
1161 verify (BLOCK_ALIGN
% sizeof (void *) == 0
1162 && POWER_OF_2 (BLOCK_ALIGN
/ sizeof (void *)));
1163 verify (GCALIGNMENT
% sizeof (void *) == 0
1164 && POWER_OF_2 (GCALIGNMENT
/ sizeof (void *)));
1165 eassert (alignment
== BLOCK_ALIGN
|| alignment
== GCALIGNMENT
);
1168 return posix_memalign (&p
, alignment
, size
) == 0 ? p
: 0;
1173 /* Padding to leave at the end of a malloc'd block. This is to give
1174 malloc a chance to minimize the amount of memory wasted to alignment.
1175 It should be tuned to the particular malloc library used.
1176 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1177 aligned_alloc on the other hand would ideally prefer a value of 4
1178 because otherwise, there's 1020 bytes wasted between each ablocks.
1179 In Emacs, testing shows that those 1020 can most of the time be
1180 efficiently used by malloc to place other objects, so a value of 0 can
1181 still preferable unless you have a lot of aligned blocks and virtually
1183 #define BLOCK_PADDING 0
1184 #define BLOCK_BYTES \
1185 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1187 /* Internal data structures and constants. */
1189 #define ABLOCKS_SIZE 16
1191 /* An aligned block of memory. */
1196 char payload
[BLOCK_BYTES
];
1197 struct ablock
*next_free
;
1200 /* ABASE is the aligned base of the ablocks. It is overloaded to
1201 hold a virtual "busy" field that counts twice the number of used
1202 ablock values in the parent ablocks, plus one if the real base of
1203 the parent ablocks is ABASE (if the "busy" field is even, the
1204 word before the first ablock holds a pointer to the real base).
1205 The first ablock has a "busy" ABASE, and the others have an
1206 ordinary pointer ABASE. To tell the difference, the code assumes
1207 that pointers, when cast to uintptr_t, are at least 2 *
1208 ABLOCKS_SIZE + 1. */
1209 struct ablocks
*abase
;
1211 /* The padding of all but the last ablock is unused. The padding of
1212 the last ablock in an ablocks is not allocated. */
1214 char padding
[BLOCK_PADDING
];
1218 /* A bunch of consecutive aligned blocks. */
1221 struct ablock blocks
[ABLOCKS_SIZE
];
1224 /* Size of the block requested from malloc or aligned_alloc. */
1225 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1227 #define ABLOCK_ABASE(block) \
1228 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1229 ? (struct ablocks *) (block) \
1232 /* Virtual `busy' field. */
1233 #define ABLOCKS_BUSY(a_base) ((a_base)->blocks[0].abase)
1235 /* Pointer to the (not necessarily aligned) malloc block. */
1236 #ifdef USE_ALIGNED_ALLOC
1237 #define ABLOCKS_BASE(abase) (abase)
1239 #define ABLOCKS_BASE(abase) \
1240 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **) (abase))[-1])
1243 /* The list of free ablock. */
1244 static struct ablock
*free_ablock
;
1246 /* Allocate an aligned block of nbytes.
1247 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1248 smaller or equal to BLOCK_BYTES. */
1250 lisp_align_malloc (size_t nbytes
, enum mem_type type
)
1253 struct ablocks
*abase
;
1255 eassert (nbytes
<= BLOCK_BYTES
);
1259 #ifdef GC_MALLOC_CHECK
1260 allocated_mem_type
= type
;
1268 #ifdef DOUG_LEA_MALLOC
1269 if (!mmap_lisp_allowed_p ())
1270 mallopt (M_MMAP_MAX
, 0);
1273 #ifdef USE_ALIGNED_ALLOC
1274 verify (ABLOCKS_BYTES
% BLOCK_ALIGN
== 0);
1275 abase
= base
= aligned_alloc (BLOCK_ALIGN
, ABLOCKS_BYTES
);
1277 base
= malloc (ABLOCKS_BYTES
);
1278 abase
= pointer_align (base
, BLOCK_ALIGN
);
1283 MALLOC_UNBLOCK_INPUT
;
1284 memory_full (ABLOCKS_BYTES
);
1287 aligned
= (base
== abase
);
1289 ((void **) abase
)[-1] = base
;
1291 #ifdef DOUG_LEA_MALLOC
1292 if (!mmap_lisp_allowed_p ())
1293 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
1297 /* If the memory just allocated cannot be addressed thru a Lisp
1298 object's pointer, and it needs to be, that's equivalent to
1299 running out of memory. */
1300 if (type
!= MEM_TYPE_NON_LISP
)
1303 char *end
= (char *) base
+ ABLOCKS_BYTES
- 1;
1304 XSETCONS (tem
, end
);
1305 if ((char *) XCONS (tem
) != end
)
1307 lisp_malloc_loser
= base
;
1309 MALLOC_UNBLOCK_INPUT
;
1310 memory_full (SIZE_MAX
);
1315 /* Initialize the blocks and put them on the free list.
1316 If `base' was not properly aligned, we can't use the last block. */
1317 for (i
= 0; i
< (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1); i
++)
1319 abase
->blocks
[i
].abase
= abase
;
1320 abase
->blocks
[i
].x
.next_free
= free_ablock
;
1321 free_ablock
= &abase
->blocks
[i
];
1323 intptr_t ialigned
= aligned
;
1324 ABLOCKS_BUSY (abase
) = (struct ablocks
*) ialigned
;
1326 eassert ((uintptr_t) abase
% BLOCK_ALIGN
== 0);
1327 eassert (ABLOCK_ABASE (&abase
->blocks
[3]) == abase
); /* 3 is arbitrary */
1328 eassert (ABLOCK_ABASE (&abase
->blocks
[0]) == abase
);
1329 eassert (ABLOCKS_BASE (abase
) == base
);
1330 eassert ((intptr_t) ABLOCKS_BUSY (abase
) == aligned
);
1333 abase
= ABLOCK_ABASE (free_ablock
);
1334 ABLOCKS_BUSY (abase
)
1335 = (struct ablocks
*) (2 + (intptr_t) ABLOCKS_BUSY (abase
));
1337 free_ablock
= free_ablock
->x
.next_free
;
1339 #ifndef GC_MALLOC_CHECK
1340 if (type
!= MEM_TYPE_NON_LISP
)
1341 mem_insert (val
, (char *) val
+ nbytes
, type
);
1344 MALLOC_UNBLOCK_INPUT
;
1346 MALLOC_PROBE (nbytes
);
1348 eassert (0 == ((uintptr_t) val
) % BLOCK_ALIGN
);
1353 lisp_align_free (void *block
)
1355 struct ablock
*ablock
= block
;
1356 struct ablocks
*abase
= ABLOCK_ABASE (ablock
);
1359 #ifndef GC_MALLOC_CHECK
1360 mem_delete (mem_find (block
));
1362 /* Put on free list. */
1363 ablock
->x
.next_free
= free_ablock
;
1364 free_ablock
= ablock
;
1365 /* Update busy count. */
1366 intptr_t busy
= (intptr_t) ABLOCKS_BUSY (abase
) - 2;
1367 eassume (0 <= busy
&& busy
<= 2 * ABLOCKS_SIZE
- 1);
1368 ABLOCKS_BUSY (abase
) = (struct ablocks
*) busy
;
1371 { /* All the blocks are free. */
1373 bool aligned
= busy
;
1374 struct ablock
**tem
= &free_ablock
;
1375 struct ablock
*atop
= &abase
->blocks
[aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1];
1379 if (*tem
>= (struct ablock
*) abase
&& *tem
< atop
)
1382 *tem
= (*tem
)->x
.next_free
;
1385 tem
= &(*tem
)->x
.next_free
;
1387 eassert ((aligned
& 1) == aligned
);
1388 eassert (i
== (aligned
? ABLOCKS_SIZE
: ABLOCKS_SIZE
- 1));
1389 #ifdef USE_POSIX_MEMALIGN
1390 eassert ((uintptr_t) ABLOCKS_BASE (abase
) % BLOCK_ALIGN
== 0);
1392 free (ABLOCKS_BASE (abase
));
1394 MALLOC_UNBLOCK_INPUT
;
1397 #if !defined __GNUC__ && !defined __alignof__
1398 # define __alignof__(type) alignof (type)
1401 /* True if malloc (N) is known to return a multiple of GCALIGNMENT
1402 whenever N is also a multiple. In practice this is true if
1403 __alignof__ (max_align_t) is a multiple as well, assuming
1404 GCALIGNMENT is 8; other values of GCALIGNMENT have not been looked
1405 into. Use __alignof__ if available, as otherwise
1406 MALLOC_IS_GC_ALIGNED would be false on GCC x86 even though the
1407 alignment is OK there.
1409 This is a macro, not an enum constant, for portability to HP-UX
1410 10.20 cc and AIX 3.2.5 xlc. */
1411 #define MALLOC_IS_GC_ALIGNED \
1412 (GCALIGNMENT == 8 && __alignof__ (max_align_t) % GCALIGNMENT == 0)
1414 /* True if a malloc-returned pointer P is suitably aligned for SIZE,
1415 where Lisp alignment may be needed if SIZE is Lisp-aligned. */
1418 laligned (void *p
, size_t size
)
1420 return (MALLOC_IS_GC_ALIGNED
|| (intptr_t) p
% GCALIGNMENT
== 0
1421 || size
% GCALIGNMENT
!= 0);
1424 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1425 sure the result is too, if necessary by reallocating (typically
1426 with larger and larger sizes) until the allocator returns a
1427 Lisp-aligned pointer. Code that needs to allocate C heap memory
1428 for a Lisp object should use one of these functions to obtain a
1429 pointer P; that way, if T is an enum Lisp_Type value and L ==
1430 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1432 On typical modern platforms these functions' loops do not iterate.
1433 On now-rare (and perhaps nonexistent) platforms, the loops in
1434 theory could repeat forever. If an infinite loop is possible on a
1435 platform, a build would surely loop and the builder can then send
1436 us a bug report. Adding a counter to try to detect any such loop
1437 would complicate the code (and possibly introduce bugs, in code
1438 that's never really exercised) for little benefit. */
1441 lmalloc (size_t size
)
1443 #if USE_ALIGNED_ALLOC
1444 if (! MALLOC_IS_GC_ALIGNED
&& size
% GCALIGNMENT
== 0)
1445 return aligned_alloc (GCALIGNMENT
, size
);
1450 void *p
= malloc (size
);
1451 if (laligned (p
, size
))
1454 size_t bigger
= size
+ GCALIGNMENT
;
1461 lrealloc (void *p
, size_t size
)
1465 p
= realloc (p
, size
);
1466 if (laligned (p
, size
))
1468 size_t bigger
= size
+ GCALIGNMENT
;
1475 /***********************************************************************
1477 ***********************************************************************/
1479 /* Number of intervals allocated in an interval_block structure.
1480 The 1020 is 1024 minus malloc overhead. */
1482 #define INTERVAL_BLOCK_SIZE \
1483 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1485 /* Intervals are allocated in chunks in the form of an interval_block
1488 struct interval_block
1490 /* Place `intervals' first, to preserve alignment. */
1491 struct interval intervals
[INTERVAL_BLOCK_SIZE
];
1492 struct interval_block
*next
;
1495 /* Current interval block. Its `next' pointer points to older
1498 static struct interval_block
*interval_block
;
1500 /* Index in interval_block above of the next unused interval
1503 static int interval_block_index
= INTERVAL_BLOCK_SIZE
;
1505 /* Number of free and live intervals. */
1507 static EMACS_INT total_free_intervals
, total_intervals
;
1509 /* List of free intervals. */
1511 static INTERVAL interval_free_list
;
1513 /* Return a new interval. */
1516 make_interval (void)
1522 if (interval_free_list
)
1524 val
= interval_free_list
;
1525 interval_free_list
= INTERVAL_PARENT (interval_free_list
);
1529 if (interval_block_index
== INTERVAL_BLOCK_SIZE
)
1531 struct interval_block
*newi
1532 = lisp_malloc (sizeof *newi
, MEM_TYPE_NON_LISP
);
1534 newi
->next
= interval_block
;
1535 interval_block
= newi
;
1536 interval_block_index
= 0;
1537 total_free_intervals
+= INTERVAL_BLOCK_SIZE
;
1539 val
= &interval_block
->intervals
[interval_block_index
++];
1542 MALLOC_UNBLOCK_INPUT
;
1544 consing_since_gc
+= sizeof (struct interval
);
1546 total_free_intervals
--;
1547 RESET_INTERVAL (val
);
1553 /* Mark Lisp objects in interval I. */
1556 mark_interval (INTERVAL i
, void *dummy
)
1558 /* Intervals should never be shared. So, if extra internal checking is
1559 enabled, GC aborts if it seems to have visited an interval twice. */
1560 eassert (!i
->gcmarkbit
);
1562 mark_object (i
->plist
);
1565 /* Mark the interval tree rooted in I. */
1567 #define MARK_INTERVAL_TREE(i) \
1569 if (i && !i->gcmarkbit) \
1570 traverse_intervals_noorder (i, mark_interval, NULL); \
1573 /***********************************************************************
1575 ***********************************************************************/
1577 /* Lisp_Strings are allocated in string_block structures. When a new
1578 string_block is allocated, all the Lisp_Strings it contains are
1579 added to a free-list string_free_list. When a new Lisp_String is
1580 needed, it is taken from that list. During the sweep phase of GC,
1581 string_blocks that are entirely free are freed, except two which
1584 String data is allocated from sblock structures. Strings larger
1585 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1586 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1588 Sblocks consist internally of sdata structures, one for each
1589 Lisp_String. The sdata structure points to the Lisp_String it
1590 belongs to. The Lisp_String points back to the `u.data' member of
1591 its sdata structure.
1593 When a Lisp_String is freed during GC, it is put back on
1594 string_free_list, and its `data' member and its sdata's `string'
1595 pointer is set to null. The size of the string is recorded in the
1596 `n.nbytes' member of the sdata. So, sdata structures that are no
1597 longer used, can be easily recognized, and it's easy to compact the
1598 sblocks of small strings which we do in compact_small_strings. */
1600 /* Size in bytes of an sblock structure used for small strings. This
1601 is 8192 minus malloc overhead. */
1603 #define SBLOCK_SIZE 8188
1605 /* Strings larger than this are considered large strings. String data
1606 for large strings is allocated from individual sblocks. */
1608 #define LARGE_STRING_BYTES 1024
1610 /* The SDATA typedef is a struct or union describing string memory
1611 sub-allocated from an sblock. This is where the contents of Lisp
1612 strings are stored. */
1616 /* Back-pointer to the string this sdata belongs to. If null, this
1617 structure is free, and NBYTES (in this structure or in the union below)
1618 contains the string's byte size (the same value that STRING_BYTES
1619 would return if STRING were non-null). If non-null, STRING_BYTES
1620 (STRING) is the size of the data, and DATA contains the string's
1622 struct Lisp_String
*string
;
1624 #ifdef GC_CHECK_STRING_BYTES
1628 unsigned char data
[FLEXIBLE_ARRAY_MEMBER
];
1631 #ifdef GC_CHECK_STRING_BYTES
1633 typedef struct sdata sdata
;
1634 #define SDATA_NBYTES(S) (S)->nbytes
1635 #define SDATA_DATA(S) (S)->data
1641 struct Lisp_String
*string
;
1643 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1644 which has a flexible array member. However, if implemented by
1645 giving this union a member of type 'struct sdata', the union
1646 could not be the last (flexible) member of 'struct sblock',
1647 because C99 prohibits a flexible array member from having a type
1648 that is itself a flexible array. So, comment this member out here,
1649 but remember that the option's there when using this union. */
1654 /* When STRING is null. */
1657 struct Lisp_String
*string
;
1662 #define SDATA_NBYTES(S) (S)->n.nbytes
1663 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1665 #endif /* not GC_CHECK_STRING_BYTES */
1667 enum { SDATA_DATA_OFFSET
= offsetof (struct sdata
, data
) };
1669 /* Structure describing a block of memory which is sub-allocated to
1670 obtain string data memory for strings. Blocks for small strings
1671 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1672 as large as needed. */
1677 struct sblock
*next
;
1679 /* Pointer to the next free sdata block. This points past the end
1680 of the sblock if there isn't any space left in this block. */
1684 sdata data
[FLEXIBLE_ARRAY_MEMBER
];
1687 /* Number of Lisp strings in a string_block structure. The 1020 is
1688 1024 minus malloc overhead. */
1690 #define STRING_BLOCK_SIZE \
1691 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1693 /* Structure describing a block from which Lisp_String structures
1698 /* Place `strings' first, to preserve alignment. */
1699 struct Lisp_String strings
[STRING_BLOCK_SIZE
];
1700 struct string_block
*next
;
1703 /* Head and tail of the list of sblock structures holding Lisp string
1704 data. We always allocate from current_sblock. The NEXT pointers
1705 in the sblock structures go from oldest_sblock to current_sblock. */
1707 static struct sblock
*oldest_sblock
, *current_sblock
;
1709 /* List of sblocks for large strings. */
1711 static struct sblock
*large_sblocks
;
1713 /* List of string_block structures. */
1715 static struct string_block
*string_blocks
;
1717 /* Free-list of Lisp_Strings. */
1719 static struct Lisp_String
*string_free_list
;
1721 /* Number of live and free Lisp_Strings. */
1723 static EMACS_INT total_strings
, total_free_strings
;
1725 /* Number of bytes used by live strings. */
1727 static EMACS_INT total_string_bytes
;
1729 /* Given a pointer to a Lisp_String S which is on the free-list
1730 string_free_list, return a pointer to its successor in the
1733 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1735 /* Return a pointer to the sdata structure belonging to Lisp string S.
1736 S must be live, i.e. S->data must not be null. S->data is actually
1737 a pointer to the `u.data' member of its sdata structure; the
1738 structure starts at a constant offset in front of that. */
1740 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1743 #ifdef GC_CHECK_STRING_OVERRUN
1745 /* We check for overrun in string data blocks by appending a small
1746 "cookie" after each allocated string data block, and check for the
1747 presence of this cookie during GC. */
1749 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1750 static char const string_overrun_cookie
[GC_STRING_OVERRUN_COOKIE_SIZE
] =
1751 { '\xde', '\xad', '\xbe', '\xef' };
1754 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1757 /* Value is the size of an sdata structure large enough to hold NBYTES
1758 bytes of string data. The value returned includes a terminating
1759 NUL byte, the size of the sdata structure, and padding. */
1761 #ifdef GC_CHECK_STRING_BYTES
1763 #define SDATA_SIZE(NBYTES) FLEXSIZEOF (struct sdata, data, (NBYTES) + 1)
1765 #else /* not GC_CHECK_STRING_BYTES */
1767 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1768 less than the size of that member. The 'max' is not needed when
1769 SDATA_DATA_OFFSET is a multiple of FLEXALIGNOF (struct sdata),
1770 because then the alignment code reserves enough space. */
1772 #define SDATA_SIZE(NBYTES) \
1773 ((SDATA_DATA_OFFSET \
1774 + (SDATA_DATA_OFFSET % FLEXALIGNOF (struct sdata) == 0 \
1776 : max (NBYTES, FLEXALIGNOF (struct sdata) - 1)) \
1778 + FLEXALIGNOF (struct sdata) - 1) \
1779 & ~(FLEXALIGNOF (struct sdata) - 1))
1781 #endif /* not GC_CHECK_STRING_BYTES */
1783 /* Extra bytes to allocate for each string. */
1785 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787 /* Exact bound on the number of bytes in a string, not counting the
1788 terminating null. A string cannot contain more bytes than
1789 STRING_BYTES_BOUND, nor can it be so long that the size_t
1790 arithmetic in allocate_string_data would overflow while it is
1791 calculating a value to be passed to malloc. */
1792 static ptrdiff_t const STRING_BYTES_MAX
=
1793 min (STRING_BYTES_BOUND
,
1794 ((SIZE_MAX
- XMALLOC_OVERRUN_CHECK_OVERHEAD
1796 - offsetof (struct sblock
, data
)
1797 - SDATA_DATA_OFFSET
)
1798 & ~(sizeof (EMACS_INT
) - 1)));
1800 /* Initialize string allocation. Called from init_alloc_once. */
1805 empty_unibyte_string
= make_pure_string ("", 0, 0, 0);
1806 empty_multibyte_string
= make_pure_string ("", 0, 0, 1);
1810 #ifdef GC_CHECK_STRING_BYTES
1812 static int check_string_bytes_count
;
1814 /* Like STRING_BYTES, but with debugging check. Can be
1815 called during GC, so pay attention to the mark bit. */
1818 string_bytes (struct Lisp_String
*s
)
1821 (s
->size_byte
< 0 ? s
->size
& ~ARRAY_MARK_FLAG
: s
->size_byte
);
1823 if (!PURE_P (s
) && s
->data
&& nbytes
!= SDATA_NBYTES (SDATA_OF_STRING (s
)))
1828 /* Check validity of Lisp strings' string_bytes member in B. */
1831 check_sblock (struct sblock
*b
)
1833 sdata
*from
, *end
, *from_end
;
1837 for (from
= b
->data
; from
< end
; from
= from_end
)
1839 /* Compute the next FROM here because copying below may
1840 overwrite data we need to compute it. */
1843 /* Check that the string size recorded in the string is the
1844 same as the one recorded in the sdata structure. */
1845 nbytes
= SDATA_SIZE (from
->string
? string_bytes (from
->string
)
1846 : SDATA_NBYTES (from
));
1847 from_end
= (sdata
*) ((char *) from
+ nbytes
+ GC_STRING_EXTRA
);
1852 /* Check validity of Lisp strings' string_bytes member. ALL_P
1853 means check all strings, otherwise check only most
1854 recently allocated strings. Used for hunting a bug. */
1857 check_string_bytes (bool all_p
)
1863 for (b
= large_sblocks
; b
; b
= b
->next
)
1865 struct Lisp_String
*s
= b
->data
[0].string
;
1870 for (b
= oldest_sblock
; b
; b
= b
->next
)
1873 else if (current_sblock
)
1874 check_sblock (current_sblock
);
1877 #else /* not GC_CHECK_STRING_BYTES */
1879 #define check_string_bytes(all) ((void) 0)
1881 #endif /* GC_CHECK_STRING_BYTES */
1883 #ifdef GC_CHECK_STRING_FREE_LIST
1885 /* Walk through the string free list looking for bogus next pointers.
1886 This may catch buffer overrun from a previous string. */
1889 check_string_free_list (void)
1891 struct Lisp_String
*s
;
1893 /* Pop a Lisp_String off the free-list. */
1894 s
= string_free_list
;
1897 if ((uintptr_t) s
< 1024)
1899 s
= NEXT_FREE_LISP_STRING (s
);
1903 #define check_string_free_list()
1906 /* Return a new Lisp_String. */
1908 static struct Lisp_String
*
1909 allocate_string (void)
1911 struct Lisp_String
*s
;
1915 /* If the free-list is empty, allocate a new string_block, and
1916 add all the Lisp_Strings in it to the free-list. */
1917 if (string_free_list
== NULL
)
1919 struct string_block
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_STRING
);
1922 b
->next
= string_blocks
;
1925 for (i
= STRING_BLOCK_SIZE
- 1; i
>= 0; --i
)
1928 /* Every string on a free list should have NULL data pointer. */
1930 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
1931 string_free_list
= s
;
1934 total_free_strings
+= STRING_BLOCK_SIZE
;
1937 check_string_free_list ();
1939 /* Pop a Lisp_String off the free-list. */
1940 s
= string_free_list
;
1941 string_free_list
= NEXT_FREE_LISP_STRING (s
);
1943 MALLOC_UNBLOCK_INPUT
;
1945 --total_free_strings
;
1948 consing_since_gc
+= sizeof *s
;
1950 #ifdef GC_CHECK_STRING_BYTES
1951 if (!noninteractive
)
1953 if (++check_string_bytes_count
== 200)
1955 check_string_bytes_count
= 0;
1956 check_string_bytes (1);
1959 check_string_bytes (0);
1961 #endif /* GC_CHECK_STRING_BYTES */
1967 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1968 plus a NUL byte at the end. Allocate an sdata structure for S, and
1969 set S->data to its `u.data' member. Store a NUL byte at the end of
1970 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1971 S->data if it was initially non-null. */
1974 allocate_string_data (struct Lisp_String
*s
,
1975 EMACS_INT nchars
, EMACS_INT nbytes
)
1977 sdata
*data
, *old_data
;
1979 ptrdiff_t needed
, old_nbytes
;
1981 if (STRING_BYTES_MAX
< nbytes
)
1984 /* Determine the number of bytes needed to store NBYTES bytes
1986 needed
= SDATA_SIZE (nbytes
);
1989 old_data
= SDATA_OF_STRING (s
);
1990 old_nbytes
= STRING_BYTES (s
);
1997 if (nbytes
> LARGE_STRING_BYTES
)
1999 size_t size
= FLEXSIZEOF (struct sblock
, data
, needed
);
2001 #ifdef DOUG_LEA_MALLOC
2002 if (!mmap_lisp_allowed_p ())
2003 mallopt (M_MMAP_MAX
, 0);
2006 b
= lisp_malloc (size
+ GC_STRING_EXTRA
, MEM_TYPE_NON_LISP
);
2008 #ifdef DOUG_LEA_MALLOC
2009 if (!mmap_lisp_allowed_p ())
2010 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
2014 b
->next
= large_sblocks
;
2015 b
->next_free
= data
;
2018 else if (current_sblock
== NULL
2019 || (((char *) current_sblock
+ SBLOCK_SIZE
2020 - (char *) current_sblock
->next_free
)
2021 < (needed
+ GC_STRING_EXTRA
)))
2023 /* Not enough room in the current sblock. */
2024 b
= lisp_malloc (SBLOCK_SIZE
, MEM_TYPE_NON_LISP
);
2027 b
->next_free
= data
;
2030 current_sblock
->next
= b
;
2038 data
= b
->next_free
;
2042 b
->next_free
= (sdata
*) ((char *) data
+ needed
+ GC_STRING_EXTRA
);
2044 MALLOC_UNBLOCK_INPUT
;
2046 s
->data
= SDATA_DATA (data
);
2047 #ifdef GC_CHECK_STRING_BYTES
2048 SDATA_NBYTES (data
) = nbytes
;
2051 s
->size_byte
= nbytes
;
2052 s
->data
[nbytes
] = '\0';
2053 #ifdef GC_CHECK_STRING_OVERRUN
2054 memcpy ((char *) data
+ needed
, string_overrun_cookie
,
2055 GC_STRING_OVERRUN_COOKIE_SIZE
);
2058 /* Note that Faset may call to this function when S has already data
2059 assigned. In this case, mark data as free by setting it's string
2060 back-pointer to null, and record the size of the data in it. */
2063 SDATA_NBYTES (old_data
) = old_nbytes
;
2064 old_data
->string
= NULL
;
2067 consing_since_gc
+= needed
;
2071 /* Sweep and compact strings. */
2073 NO_INLINE
/* For better stack traces */
2075 sweep_strings (void)
2077 struct string_block
*b
, *next
;
2078 struct string_block
*live_blocks
= NULL
;
2080 string_free_list
= NULL
;
2081 total_strings
= total_free_strings
= 0;
2082 total_string_bytes
= 0;
2084 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2085 for (b
= string_blocks
; b
; b
= next
)
2088 struct Lisp_String
*free_list_before
= string_free_list
;
2092 for (i
= 0; i
< STRING_BLOCK_SIZE
; ++i
)
2094 struct Lisp_String
*s
= b
->strings
+ i
;
2098 /* String was not on free-list before. */
2099 if (STRING_MARKED_P (s
))
2101 /* String is live; unmark it and its intervals. */
2104 /* Do not use string_(set|get)_intervals here. */
2105 s
->intervals
= balance_intervals (s
->intervals
);
2108 total_string_bytes
+= STRING_BYTES (s
);
2112 /* String is dead. Put it on the free-list. */
2113 sdata
*data
= SDATA_OF_STRING (s
);
2115 /* Save the size of S in its sdata so that we know
2116 how large that is. Reset the sdata's string
2117 back-pointer so that we know it's free. */
2118 #ifdef GC_CHECK_STRING_BYTES
2119 if (string_bytes (s
) != SDATA_NBYTES (data
))
2122 data
->n
.nbytes
= STRING_BYTES (s
);
2124 data
->string
= NULL
;
2126 /* Reset the strings's `data' member so that we
2130 /* Put the string on the free-list. */
2131 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
2132 string_free_list
= s
;
2138 /* S was on the free-list before. Put it there again. */
2139 NEXT_FREE_LISP_STRING (s
) = string_free_list
;
2140 string_free_list
= s
;
2145 /* Free blocks that contain free Lisp_Strings only, except
2146 the first two of them. */
2147 if (nfree
== STRING_BLOCK_SIZE
2148 && total_free_strings
> STRING_BLOCK_SIZE
)
2151 string_free_list
= free_list_before
;
2155 total_free_strings
+= nfree
;
2156 b
->next
= live_blocks
;
2161 check_string_free_list ();
2163 string_blocks
= live_blocks
;
2164 free_large_strings ();
2165 compact_small_strings ();
2167 check_string_free_list ();
2171 /* Free dead large strings. */
2174 free_large_strings (void)
2176 struct sblock
*b
, *next
;
2177 struct sblock
*live_blocks
= NULL
;
2179 for (b
= large_sblocks
; b
; b
= next
)
2183 if (b
->data
[0].string
== NULL
)
2187 b
->next
= live_blocks
;
2192 large_sblocks
= live_blocks
;
2196 /* Compact data of small strings. Free sblocks that don't contain
2197 data of live strings after compaction. */
2200 compact_small_strings (void)
2202 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2203 to, and TB_END is the end of TB. */
2204 struct sblock
*tb
= oldest_sblock
;
2207 sdata
*tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
2208 sdata
*to
= tb
->data
;
2210 /* Step through the blocks from the oldest to the youngest. We
2211 expect that old blocks will stabilize over time, so that less
2212 copying will happen this way. */
2213 struct sblock
*b
= tb
;
2216 sdata
*end
= b
->next_free
;
2217 eassert ((char *) end
<= (char *) b
+ SBLOCK_SIZE
);
2219 for (sdata
*from
= b
->data
; from
< end
; )
2221 /* Compute the next FROM here because copying below may
2222 overwrite data we need to compute it. */
2224 struct Lisp_String
*s
= from
->string
;
2226 #ifdef GC_CHECK_STRING_BYTES
2227 /* Check that the string size recorded in the string is the
2228 same as the one recorded in the sdata structure. */
2229 if (s
&& string_bytes (s
) != SDATA_NBYTES (from
))
2231 #endif /* GC_CHECK_STRING_BYTES */
2233 nbytes
= s
? STRING_BYTES (s
) : SDATA_NBYTES (from
);
2234 eassert (nbytes
<= LARGE_STRING_BYTES
);
2236 nbytes
= SDATA_SIZE (nbytes
);
2237 sdata
*from_end
= (sdata
*) ((char *) from
2238 + nbytes
+ GC_STRING_EXTRA
);
2240 #ifdef GC_CHECK_STRING_OVERRUN
2241 if (memcmp (string_overrun_cookie
,
2242 (char *) from_end
- GC_STRING_OVERRUN_COOKIE_SIZE
,
2243 GC_STRING_OVERRUN_COOKIE_SIZE
))
2247 /* Non-NULL S means it's alive. Copy its data. */
2250 /* If TB is full, proceed with the next sblock. */
2251 sdata
*to_end
= (sdata
*) ((char *) to
2252 + nbytes
+ GC_STRING_EXTRA
);
2253 if (to_end
> tb_end
)
2257 tb_end
= (sdata
*) ((char *) tb
+ SBLOCK_SIZE
);
2259 to_end
= (sdata
*) ((char *) to
+ nbytes
+ GC_STRING_EXTRA
);
2262 /* Copy, and update the string's `data' pointer. */
2265 eassert (tb
!= b
|| to
< from
);
2266 memmove (to
, from
, nbytes
+ GC_STRING_EXTRA
);
2267 to
->string
->data
= SDATA_DATA (to
);
2270 /* Advance past the sdata we copied to. */
2279 /* The rest of the sblocks following TB don't contain live data, so
2280 we can free them. */
2281 for (b
= tb
->next
; b
; )
2283 struct sblock
*next
= b
->next
;
2292 current_sblock
= tb
;
2296 string_overflow (void)
2298 error ("Maximum string size exceeded");
2301 DEFUN ("make-string", Fmake_string
, Smake_string
, 2, 2, 0,
2302 doc
: /* Return a newly created string of length LENGTH, with INIT in each element.
2303 LENGTH must be an integer.
2304 INIT must be an integer that represents a character. */)
2305 (Lisp_Object length
, Lisp_Object init
)
2307 register Lisp_Object val
;
2311 CHECK_NATNUM (length
);
2312 CHECK_CHARACTER (init
);
2314 c
= XFASTINT (init
);
2315 if (ASCII_CHAR_P (c
))
2317 nbytes
= XINT (length
);
2318 val
= make_uninit_string (nbytes
);
2321 memset (SDATA (val
), c
, nbytes
);
2322 SDATA (val
)[nbytes
] = 0;
2327 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2328 ptrdiff_t len
= CHAR_STRING (c
, str
);
2329 EMACS_INT string_len
= XINT (length
);
2330 unsigned char *p
, *beg
, *end
;
2332 if (INT_MULTIPLY_WRAPV (len
, string_len
, &nbytes
))
2334 val
= make_uninit_multibyte_string (string_len
, nbytes
);
2335 for (beg
= SDATA (val
), p
= beg
, end
= beg
+ nbytes
; p
< end
; p
+= len
)
2337 /* First time we just copy `str' to the data of `val'. */
2339 memcpy (p
, str
, len
);
2342 /* Next time we copy largest possible chunk from
2343 initialized to uninitialized part of `val'. */
2344 len
= min (p
- beg
, end
- p
);
2345 memcpy (p
, beg
, len
);
2355 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2359 bool_vector_fill (Lisp_Object a
, Lisp_Object init
)
2361 EMACS_INT nbits
= bool_vector_size (a
);
2364 unsigned char *data
= bool_vector_uchar_data (a
);
2365 int pattern
= NILP (init
) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR
) - 1;
2366 ptrdiff_t nbytes
= bool_vector_bytes (nbits
);
2367 int last_mask
= ~ (~0u << ((nbits
- 1) % BOOL_VECTOR_BITS_PER_CHAR
+ 1));
2368 memset (data
, pattern
, nbytes
- 1);
2369 data
[nbytes
- 1] = pattern
& last_mask
;
2374 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2377 make_uninit_bool_vector (EMACS_INT nbits
)
2380 EMACS_INT words
= bool_vector_words (nbits
);
2381 EMACS_INT word_bytes
= words
* sizeof (bits_word
);
2382 EMACS_INT needed_elements
= ((bool_header_size
- header_size
+ word_bytes
2385 struct Lisp_Bool_Vector
*p
2386 = (struct Lisp_Bool_Vector
*) allocate_vector (needed_elements
);
2387 XSETVECTOR (val
, p
);
2388 XSETPVECTYPESIZE (XVECTOR (val
), PVEC_BOOL_VECTOR
, 0, 0);
2391 /* Clear padding at the end. */
2393 p
->data
[words
- 1] = 0;
2398 DEFUN ("make-bool-vector", Fmake_bool_vector
, Smake_bool_vector
, 2, 2, 0,
2399 doc
: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2400 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2401 (Lisp_Object length
, Lisp_Object init
)
2405 CHECK_NATNUM (length
);
2406 val
= make_uninit_bool_vector (XFASTINT (length
));
2407 return bool_vector_fill (val
, init
);
2410 DEFUN ("bool-vector", Fbool_vector
, Sbool_vector
, 0, MANY
, 0,
2411 doc
: /* Return a new bool-vector with specified arguments as elements.
2412 Any number of arguments, even zero arguments, are allowed.
2413 usage: (bool-vector &rest OBJECTS) */)
2414 (ptrdiff_t nargs
, Lisp_Object
*args
)
2419 vector
= make_uninit_bool_vector (nargs
);
2420 for (i
= 0; i
< nargs
; i
++)
2421 bool_vector_set (vector
, i
, !NILP (args
[i
]));
2426 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2427 of characters from the contents. This string may be unibyte or
2428 multibyte, depending on the contents. */
2431 make_string (const char *contents
, ptrdiff_t nbytes
)
2433 register Lisp_Object val
;
2434 ptrdiff_t nchars
, multibyte_nbytes
;
2436 parse_str_as_multibyte ((const unsigned char *) contents
, nbytes
,
2437 &nchars
, &multibyte_nbytes
);
2438 if (nbytes
== nchars
|| nbytes
!= multibyte_nbytes
)
2439 /* CONTENTS contains no multibyte sequences or contains an invalid
2440 multibyte sequence. We must make unibyte string. */
2441 val
= make_unibyte_string (contents
, nbytes
);
2443 val
= make_multibyte_string (contents
, nchars
, nbytes
);
2447 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2450 make_unibyte_string (const char *contents
, ptrdiff_t length
)
2452 register Lisp_Object val
;
2453 val
= make_uninit_string (length
);
2454 memcpy (SDATA (val
), contents
, length
);
2459 /* Make a multibyte string from NCHARS characters occupying NBYTES
2460 bytes at CONTENTS. */
2463 make_multibyte_string (const char *contents
,
2464 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2466 register Lisp_Object val
;
2467 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2468 memcpy (SDATA (val
), contents
, nbytes
);
2473 /* Make a string from NCHARS characters occupying NBYTES bytes at
2474 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2477 make_string_from_bytes (const char *contents
,
2478 ptrdiff_t nchars
, ptrdiff_t nbytes
)
2480 register Lisp_Object val
;
2481 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2482 memcpy (SDATA (val
), contents
, nbytes
);
2483 if (SBYTES (val
) == SCHARS (val
))
2484 STRING_SET_UNIBYTE (val
);
2489 /* Make a string from NCHARS characters occupying NBYTES bytes at
2490 CONTENTS. The argument MULTIBYTE controls whether to label the
2491 string as multibyte. If NCHARS is negative, it counts the number of
2492 characters by itself. */
2495 make_specified_string (const char *contents
,
2496 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
2503 nchars
= multibyte_chars_in_text ((const unsigned char *) contents
,
2508 val
= make_uninit_multibyte_string (nchars
, nbytes
);
2509 memcpy (SDATA (val
), contents
, nbytes
);
2511 STRING_SET_UNIBYTE (val
);
2516 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2517 occupying LENGTH bytes. */
2520 make_uninit_string (EMACS_INT length
)
2525 return empty_unibyte_string
;
2526 val
= make_uninit_multibyte_string (length
, length
);
2527 STRING_SET_UNIBYTE (val
);
2532 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2533 which occupy NBYTES bytes. */
2536 make_uninit_multibyte_string (EMACS_INT nchars
, EMACS_INT nbytes
)
2539 struct Lisp_String
*s
;
2544 return empty_multibyte_string
;
2546 s
= allocate_string ();
2547 s
->intervals
= NULL
;
2548 allocate_string_data (s
, nchars
, nbytes
);
2549 XSETSTRING (string
, s
);
2550 string_chars_consed
+= nbytes
;
2554 /* Print arguments to BUF according to a FORMAT, then return
2555 a Lisp_String initialized with the data from BUF. */
2558 make_formatted_string (char *buf
, const char *format
, ...)
2563 va_start (ap
, format
);
2564 length
= vsprintf (buf
, format
, ap
);
2566 return make_string (buf
, length
);
2570 /***********************************************************************
2572 ***********************************************************************/
2574 /* We store float cells inside of float_blocks, allocating a new
2575 float_block with malloc whenever necessary. Float cells reclaimed
2576 by GC are put on a free list to be reallocated before allocating
2577 any new float cells from the latest float_block. */
2579 #define FLOAT_BLOCK_SIZE \
2580 (((BLOCK_BYTES - sizeof (struct float_block *) \
2581 /* The compiler might add padding at the end. */ \
2582 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2583 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2585 #define GETMARKBIT(block,n) \
2586 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2587 >> ((n) % BITS_PER_BITS_WORD)) \
2590 #define SETMARKBIT(block,n) \
2591 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2592 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2594 #define UNSETMARKBIT(block,n) \
2595 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2596 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2598 #define FLOAT_BLOCK(fptr) \
2599 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2601 #define FLOAT_INDEX(fptr) \
2602 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2606 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2607 struct Lisp_Float floats
[FLOAT_BLOCK_SIZE
];
2608 bits_word gcmarkbits
[1 + FLOAT_BLOCK_SIZE
/ BITS_PER_BITS_WORD
];
2609 struct float_block
*next
;
2612 #define FLOAT_MARKED_P(fptr) \
2613 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2615 #define FLOAT_MARK(fptr) \
2616 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2618 #define FLOAT_UNMARK(fptr) \
2619 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2621 /* Current float_block. */
2623 static struct float_block
*float_block
;
2625 /* Index of first unused Lisp_Float in the current float_block. */
2627 static int float_block_index
= FLOAT_BLOCK_SIZE
;
2629 /* Free-list of Lisp_Floats. */
2631 static struct Lisp_Float
*float_free_list
;
2633 /* Return a new float object with value FLOAT_VALUE. */
2636 make_float (double float_value
)
2638 register Lisp_Object val
;
2642 if (float_free_list
)
2644 /* We use the data field for chaining the free list
2645 so that we won't use the same field that has the mark bit. */
2646 XSETFLOAT (val
, float_free_list
);
2647 float_free_list
= float_free_list
->u
.chain
;
2651 if (float_block_index
== FLOAT_BLOCK_SIZE
)
2653 struct float_block
*new
2654 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT
);
2655 new->next
= float_block
;
2656 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2658 float_block_index
= 0;
2659 total_free_floats
+= FLOAT_BLOCK_SIZE
;
2661 XSETFLOAT (val
, &float_block
->floats
[float_block_index
]);
2662 float_block_index
++;
2665 MALLOC_UNBLOCK_INPUT
;
2667 XFLOAT_INIT (val
, float_value
);
2668 eassert (!FLOAT_MARKED_P (XFLOAT (val
)));
2669 consing_since_gc
+= sizeof (struct Lisp_Float
);
2671 total_free_floats
--;
2677 /***********************************************************************
2679 ***********************************************************************/
2681 /* We store cons cells inside of cons_blocks, allocating a new
2682 cons_block with malloc whenever necessary. Cons cells reclaimed by
2683 GC are put on a free list to be reallocated before allocating
2684 any new cons cells from the latest cons_block. */
2686 #define CONS_BLOCK_SIZE \
2687 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2688 /* The compiler might add padding at the end. */ \
2689 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2690 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2692 #define CONS_BLOCK(fptr) \
2693 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2695 #define CONS_INDEX(fptr) \
2696 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2700 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2701 struct Lisp_Cons conses
[CONS_BLOCK_SIZE
];
2702 bits_word gcmarkbits
[1 + CONS_BLOCK_SIZE
/ BITS_PER_BITS_WORD
];
2703 struct cons_block
*next
;
2706 #define CONS_MARKED_P(fptr) \
2707 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2709 #define CONS_MARK(fptr) \
2710 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2712 #define CONS_UNMARK(fptr) \
2713 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2715 /* Current cons_block. */
2717 static struct cons_block
*cons_block
;
2719 /* Index of first unused Lisp_Cons in the current block. */
2721 static int cons_block_index
= CONS_BLOCK_SIZE
;
2723 /* Free-list of Lisp_Cons structures. */
2725 static struct Lisp_Cons
*cons_free_list
;
2727 /* Explicitly free a cons cell by putting it on the free-list. */
2730 free_cons (struct Lisp_Cons
*ptr
)
2732 ptr
->u
.chain
= cons_free_list
;
2734 cons_free_list
= ptr
;
2735 consing_since_gc
-= sizeof *ptr
;
2736 total_free_conses
++;
2739 DEFUN ("cons", Fcons
, Scons
, 2, 2, 0,
2740 doc
: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2741 (Lisp_Object car
, Lisp_Object cdr
)
2743 register Lisp_Object val
;
2749 /* We use the cdr for chaining the free list
2750 so that we won't use the same field that has the mark bit. */
2751 XSETCONS (val
, cons_free_list
);
2752 cons_free_list
= cons_free_list
->u
.chain
;
2756 if (cons_block_index
== CONS_BLOCK_SIZE
)
2758 struct cons_block
*new
2759 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS
);
2760 memset (new->gcmarkbits
, 0, sizeof new->gcmarkbits
);
2761 new->next
= cons_block
;
2763 cons_block_index
= 0;
2764 total_free_conses
+= CONS_BLOCK_SIZE
;
2766 XSETCONS (val
, &cons_block
->conses
[cons_block_index
]);
2770 MALLOC_UNBLOCK_INPUT
;
2774 eassert (!CONS_MARKED_P (XCONS (val
)));
2775 consing_since_gc
+= sizeof (struct Lisp_Cons
);
2776 total_free_conses
--;
2777 cons_cells_consed
++;
2781 #ifdef GC_CHECK_CONS_LIST
2782 /* Get an error now if there's any junk in the cons free list. */
2784 check_cons_list (void)
2786 struct Lisp_Cons
*tail
= cons_free_list
;
2789 tail
= tail
->u
.chain
;
2793 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2796 list1 (Lisp_Object arg1
)
2798 return Fcons (arg1
, Qnil
);
2802 list2 (Lisp_Object arg1
, Lisp_Object arg2
)
2804 return Fcons (arg1
, Fcons (arg2
, Qnil
));
2809 list3 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
)
2811 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Qnil
)));
2816 list4 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
)
2818 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
, Qnil
))));
2823 list5 (Lisp_Object arg1
, Lisp_Object arg2
, Lisp_Object arg3
, Lisp_Object arg4
, Lisp_Object arg5
)
2825 return Fcons (arg1
, Fcons (arg2
, Fcons (arg3
, Fcons (arg4
,
2826 Fcons (arg5
, Qnil
)))));
2829 /* Make a list of COUNT Lisp_Objects, where ARG is the
2830 first one. Allocate conses from pure space if TYPE
2831 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2834 listn (enum constype type
, ptrdiff_t count
, Lisp_Object arg
, ...)
2836 Lisp_Object (*cons
) (Lisp_Object
, Lisp_Object
);
2839 case CONSTYPE_PURE
: cons
= pure_cons
; break;
2840 case CONSTYPE_HEAP
: cons
= Fcons
; break;
2841 default: emacs_abort ();
2844 eassume (0 < count
);
2845 Lisp_Object val
= cons (arg
, Qnil
);
2846 Lisp_Object tail
= val
;
2850 for (ptrdiff_t i
= 1; i
< count
; i
++)
2852 Lisp_Object elem
= cons (va_arg (ap
, Lisp_Object
), Qnil
);
2853 XSETCDR (tail
, elem
);
2861 DEFUN ("list", Flist
, Slist
, 0, MANY
, 0,
2862 doc
: /* Return a newly created list with specified arguments as elements.
2863 Any number of arguments, even zero arguments, are allowed.
2864 usage: (list &rest OBJECTS) */)
2865 (ptrdiff_t nargs
, Lisp_Object
*args
)
2867 register Lisp_Object val
;
2873 val
= Fcons (args
[nargs
], val
);
2879 DEFUN ("make-list", Fmake_list
, Smake_list
, 2, 2, 0,
2880 doc
: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2881 (Lisp_Object length
, Lisp_Object init
)
2883 Lisp_Object val
= Qnil
;
2884 CHECK_NATNUM (length
);
2886 for (EMACS_INT size
= XFASTINT (length
); 0 < size
; size
--)
2888 val
= Fcons (init
, val
);
2897 /***********************************************************************
2899 ***********************************************************************/
2901 /* Sometimes a vector's contents are merely a pointer internally used
2902 in vector allocation code. On the rare platforms where a null
2903 pointer cannot be tagged, represent it with a Lisp 0.
2904 Usually you don't want to touch this. */
2906 static struct Lisp_Vector
*
2907 next_vector (struct Lisp_Vector
*v
)
2909 return XUNTAG (v
->contents
[0], Lisp_Int0
);
2913 set_next_vector (struct Lisp_Vector
*v
, struct Lisp_Vector
*p
)
2915 v
->contents
[0] = make_lisp_ptr (p
, Lisp_Int0
);
2918 /* This value is balanced well enough to avoid too much internal overhead
2919 for the most common cases; it's not required to be a power of two, but
2920 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2922 #define VECTOR_BLOCK_SIZE 4096
2926 /* Alignment of struct Lisp_Vector objects. Because pseudovectors
2927 can contain any C type, align at least as strictly as
2928 max_align_t. On x86 and x86-64 this can waste up to 8 bytes
2929 for typical vectors, since alignof (max_align_t) is 16 but
2930 typical vectors need only an alignment of 8. However, it is
2931 not worth the hassle to avoid wasting those bytes. */
2932 vector_alignment
= COMMON_MULTIPLE (alignof (max_align_t
), GCALIGNMENT
),
2934 /* Vector size requests are a multiple of this. */
2935 roundup_size
= COMMON_MULTIPLE (vector_alignment
, word_size
)
2938 /* Verify assumptions described above. */
2939 verify (VECTOR_BLOCK_SIZE
% roundup_size
== 0);
2940 verify (VECTOR_BLOCK_SIZE
<= (1 << PSEUDOVECTOR_SIZE_BITS
));
2942 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2943 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2944 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2945 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2947 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2949 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2951 /* Size of the minimal vector allocated from block. */
2953 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2955 /* Size of the largest vector allocated from block. */
2957 #define VBLOCK_BYTES_MAX \
2958 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2960 /* We maintain one free list for each possible block-allocated
2961 vector size, and this is the number of free lists we have. */
2963 #define VECTOR_MAX_FREE_LIST_INDEX \
2964 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2966 /* Common shortcut to advance vector pointer over a block data. */
2968 static struct Lisp_Vector
*
2969 ADVANCE (struct Lisp_Vector
*v
, ptrdiff_t nbytes
)
2973 void *p
= cv
+ nbytes
;
2977 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2980 VINDEX (ptrdiff_t nbytes
)
2982 eassume (VBLOCK_BYTES_MIN
<= nbytes
);
2983 return (nbytes
- VBLOCK_BYTES_MIN
) / roundup_size
;
2986 /* This internal type is used to maintain the list of large vectors
2987 which are allocated at their own, e.g. outside of vector blocks.
2989 struct large_vector itself cannot contain a struct Lisp_Vector, as
2990 the latter contains a flexible array member and C99 does not allow
2991 such structs to be nested. Instead, each struct large_vector
2992 object LV is followed by a struct Lisp_Vector, which is at offset
2993 large_vector_offset from LV, and whose address is therefore
2994 large_vector_vec (&LV). */
2998 struct large_vector
*next
;
3003 large_vector_offset
= ROUNDUP (sizeof (struct large_vector
), vector_alignment
)
3006 static struct Lisp_Vector
*
3007 large_vector_vec (struct large_vector
*p
)
3009 return (struct Lisp_Vector
*) ((char *) p
+ large_vector_offset
);
3012 /* This internal type is used to maintain an underlying storage
3013 for small vectors. */
3017 char data
[VECTOR_BLOCK_BYTES
];
3018 struct vector_block
*next
;
3021 /* Chain of vector blocks. */
3023 static struct vector_block
*vector_blocks
;
3025 /* Vector free lists, where NTH item points to a chain of free
3026 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3028 static struct Lisp_Vector
*vector_free_lists
[VECTOR_MAX_FREE_LIST_INDEX
];
3030 /* Singly-linked list of large vectors. */
3032 static struct large_vector
*large_vectors
;
3034 /* The only vector with 0 slots, allocated from pure space. */
3036 Lisp_Object zero_vector
;
3038 /* Number of live vectors. */
3040 static EMACS_INT total_vectors
;
3042 /* Total size of live and free vectors, in Lisp_Object units. */
3044 static EMACS_INT total_vector_slots
, total_free_vector_slots
;
3046 /* Common shortcut to setup vector on a free list. */
3049 setup_on_free_list (struct Lisp_Vector
*v
, ptrdiff_t nbytes
)
3051 eassume (header_size
<= nbytes
);
3052 ptrdiff_t nwords
= (nbytes
- header_size
) / word_size
;
3053 XSETPVECTYPESIZE (v
, PVEC_FREE
, 0, nwords
);
3054 eassert (nbytes
% roundup_size
== 0);
3055 ptrdiff_t vindex
= VINDEX (nbytes
);
3056 eassert (vindex
< VECTOR_MAX_FREE_LIST_INDEX
);
3057 set_next_vector (v
, vector_free_lists
[vindex
]);
3058 vector_free_lists
[vindex
] = v
;
3059 total_free_vector_slots
+= nbytes
/ word_size
;
3062 /* Get a new vector block. */
3064 static struct vector_block
*
3065 allocate_vector_block (void)
3067 struct vector_block
*block
= xmalloc (sizeof *block
);
3069 #ifndef GC_MALLOC_CHECK
3070 mem_insert (block
->data
, block
->data
+ VECTOR_BLOCK_BYTES
,
3071 MEM_TYPE_VECTOR_BLOCK
);
3074 block
->next
= vector_blocks
;
3075 vector_blocks
= block
;
3079 /* Called once to initialize vector allocation. */
3084 zero_vector
= make_pure_vector (0);
3087 /* Allocate vector from a vector block. */
3089 static struct Lisp_Vector
*
3090 allocate_vector_from_block (size_t nbytes
)
3092 struct Lisp_Vector
*vector
;
3093 struct vector_block
*block
;
3094 size_t index
, restbytes
;
3096 eassert (VBLOCK_BYTES_MIN
<= nbytes
&& nbytes
<= VBLOCK_BYTES_MAX
);
3097 eassert (nbytes
% roundup_size
== 0);
3099 /* First, try to allocate from a free list
3100 containing vectors of the requested size. */
3101 index
= VINDEX (nbytes
);
3102 if (vector_free_lists
[index
])
3104 vector
= vector_free_lists
[index
];
3105 vector_free_lists
[index
] = next_vector (vector
);
3106 total_free_vector_slots
-= nbytes
/ word_size
;
3110 /* Next, check free lists containing larger vectors. Since
3111 we will split the result, we should have remaining space
3112 large enough to use for one-slot vector at least. */
3113 for (index
= VINDEX (nbytes
+ VBLOCK_BYTES_MIN
);
3114 index
< VECTOR_MAX_FREE_LIST_INDEX
; index
++)
3115 if (vector_free_lists
[index
])
3117 /* This vector is larger than requested. */
3118 vector
= vector_free_lists
[index
];
3119 vector_free_lists
[index
] = next_vector (vector
);
3120 total_free_vector_slots
-= nbytes
/ word_size
;
3122 /* Excess bytes are used for the smaller vector,
3123 which should be set on an appropriate free list. */
3124 restbytes
= index
* roundup_size
+ VBLOCK_BYTES_MIN
- nbytes
;
3125 eassert (restbytes
% roundup_size
== 0);
3126 setup_on_free_list (ADVANCE (vector
, nbytes
), restbytes
);
3130 /* Finally, need a new vector block. */
3131 block
= allocate_vector_block ();
3133 /* New vector will be at the beginning of this block. */
3134 vector
= (struct Lisp_Vector
*) block
->data
;
3136 /* If the rest of space from this block is large enough
3137 for one-slot vector at least, set up it on a free list. */
3138 restbytes
= VECTOR_BLOCK_BYTES
- nbytes
;
3139 if (restbytes
>= VBLOCK_BYTES_MIN
)
3141 eassert (restbytes
% roundup_size
== 0);
3142 setup_on_free_list (ADVANCE (vector
, nbytes
), restbytes
);
3147 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3149 #define VECTOR_IN_BLOCK(vector, block) \
3150 ((char *) (vector) <= (block)->data \
3151 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3153 /* Return the memory footprint of V in bytes. */
3156 vector_nbytes (struct Lisp_Vector
*v
)
3158 ptrdiff_t size
= v
->header
.size
& ~ARRAY_MARK_FLAG
;
3161 if (size
& PSEUDOVECTOR_FLAG
)
3163 if (PSEUDOVECTOR_TYPEP (&v
->header
, PVEC_BOOL_VECTOR
))
3165 struct Lisp_Bool_Vector
*bv
= (struct Lisp_Bool_Vector
*) v
;
3166 ptrdiff_t word_bytes
= (bool_vector_words (bv
->size
)
3167 * sizeof (bits_word
));
3168 ptrdiff_t boolvec_bytes
= bool_header_size
+ word_bytes
;
3169 verify (header_size
<= bool_header_size
);
3170 nwords
= (boolvec_bytes
- header_size
+ word_size
- 1) / word_size
;
3173 nwords
= ((size
& PSEUDOVECTOR_SIZE_MASK
)
3174 + ((size
& PSEUDOVECTOR_REST_MASK
)
3175 >> PSEUDOVECTOR_SIZE_BITS
));
3179 return vroundup (header_size
+ word_size
* nwords
);
3182 /* Release extra resources still in use by VECTOR, which may be any
3183 vector-like object. */
3186 cleanup_vector (struct Lisp_Vector
*vector
)
3188 detect_suspicious_free (vector
);
3189 if (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FONT
)
3190 && ((vector
->header
.size
& PSEUDOVECTOR_SIZE_MASK
)
3191 == FONT_OBJECT_MAX
))
3193 struct font_driver
const *drv
= ((struct font
*) vector
)->driver
;
3195 /* The font driver might sometimes be NULL, e.g. if Emacs was
3196 interrupted before it had time to set it up. */
3199 /* Attempt to catch subtle bugs like Bug#16140. */
3200 eassert (valid_font_driver (drv
));
3201 drv
->close ((struct font
*) vector
);
3205 if (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_THREAD
))
3206 finalize_one_thread ((struct thread_state
*) vector
);
3207 else if (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_MUTEX
))
3208 finalize_one_mutex ((struct Lisp_Mutex
*) vector
);
3209 else if (PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_CONDVAR
))
3210 finalize_one_condvar ((struct Lisp_CondVar
*) vector
);
3213 /* Reclaim space used by unmarked vectors. */
3215 NO_INLINE
/* For better stack traces */
3217 sweep_vectors (void)
3219 struct vector_block
*block
, **bprev
= &vector_blocks
;
3220 struct large_vector
*lv
, **lvprev
= &large_vectors
;
3221 struct Lisp_Vector
*vector
, *next
;
3223 total_vectors
= total_vector_slots
= total_free_vector_slots
= 0;
3224 memset (vector_free_lists
, 0, sizeof (vector_free_lists
));
3226 /* Looking through vector blocks. */
3228 for (block
= vector_blocks
; block
; block
= *bprev
)
3230 bool free_this_block
= 0;
3233 for (vector
= (struct Lisp_Vector
*) block
->data
;
3234 VECTOR_IN_BLOCK (vector
, block
); vector
= next
)
3236 if (VECTOR_MARKED_P (vector
))
3238 VECTOR_UNMARK (vector
);
3240 nbytes
= vector_nbytes (vector
);
3241 total_vector_slots
+= nbytes
/ word_size
;
3242 next
= ADVANCE (vector
, nbytes
);
3246 ptrdiff_t total_bytes
;
3248 cleanup_vector (vector
);
3249 nbytes
= vector_nbytes (vector
);
3250 total_bytes
= nbytes
;
3251 next
= ADVANCE (vector
, nbytes
);
3253 /* While NEXT is not marked, try to coalesce with VECTOR,
3254 thus making VECTOR of the largest possible size. */
3256 while (VECTOR_IN_BLOCK (next
, block
))
3258 if (VECTOR_MARKED_P (next
))
3260 cleanup_vector (next
);
3261 nbytes
= vector_nbytes (next
);
3262 total_bytes
+= nbytes
;
3263 next
= ADVANCE (next
, nbytes
);
3266 eassert (total_bytes
% roundup_size
== 0);
3268 if (vector
== (struct Lisp_Vector
*) block
->data
3269 && !VECTOR_IN_BLOCK (next
, block
))
3270 /* This block should be freed because all of its
3271 space was coalesced into the only free vector. */
3272 free_this_block
= 1;
3274 setup_on_free_list (vector
, total_bytes
);
3278 if (free_this_block
)
3280 *bprev
= block
->next
;
3281 #ifndef GC_MALLOC_CHECK
3282 mem_delete (mem_find (block
->data
));
3287 bprev
= &block
->next
;
3290 /* Sweep large vectors. */
3292 for (lv
= large_vectors
; lv
; lv
= *lvprev
)
3294 vector
= large_vector_vec (lv
);
3295 if (VECTOR_MARKED_P (vector
))
3297 VECTOR_UNMARK (vector
);
3299 if (vector
->header
.size
& PSEUDOVECTOR_FLAG
)
3300 total_vector_slots
+= vector_nbytes (vector
) / word_size
;
3303 += header_size
/ word_size
+ vector
->header
.size
;
3314 /* Value is a pointer to a newly allocated Lisp_Vector structure
3315 with room for LEN Lisp_Objects. */
3317 static struct Lisp_Vector
*
3318 allocate_vectorlike (ptrdiff_t len
)
3320 struct Lisp_Vector
*p
;
3325 p
= XVECTOR (zero_vector
);
3328 size_t nbytes
= header_size
+ len
* word_size
;
3330 #ifdef DOUG_LEA_MALLOC
3331 if (!mmap_lisp_allowed_p ())
3332 mallopt (M_MMAP_MAX
, 0);
3335 if (nbytes
<= VBLOCK_BYTES_MAX
)
3336 p
= allocate_vector_from_block (vroundup (nbytes
));
3339 struct large_vector
*lv
3340 = lisp_malloc ((large_vector_offset
+ header_size
3342 MEM_TYPE_VECTORLIKE
);
3343 lv
->next
= large_vectors
;
3345 p
= large_vector_vec (lv
);
3348 #ifdef DOUG_LEA_MALLOC
3349 if (!mmap_lisp_allowed_p ())
3350 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
);
3353 if (find_suspicious_object_in_range (p
, (char *) p
+ nbytes
))
3356 consing_since_gc
+= nbytes
;
3357 vector_cells_consed
+= len
;
3360 MALLOC_UNBLOCK_INPUT
;
3366 /* Allocate a vector with LEN slots. */
3368 struct Lisp_Vector
*
3369 allocate_vector (EMACS_INT len
)
3371 struct Lisp_Vector
*v
;
3372 ptrdiff_t nbytes_max
= min (PTRDIFF_MAX
, SIZE_MAX
);
3374 if (min ((nbytes_max
- header_size
) / word_size
, MOST_POSITIVE_FIXNUM
) < len
)
3375 memory_full (SIZE_MAX
);
3376 v
= allocate_vectorlike (len
);
3378 v
->header
.size
= len
;
3383 /* Allocate other vector-like structures. */
3385 struct Lisp_Vector
*
3386 allocate_pseudovector (int memlen
, int lisplen
,
3387 int zerolen
, enum pvec_type tag
)
3389 struct Lisp_Vector
*v
= allocate_vectorlike (memlen
);
3391 /* Catch bogus values. */
3392 eassert (0 <= tag
&& tag
<= PVEC_FONT
);
3393 eassert (0 <= lisplen
&& lisplen
<= zerolen
&& zerolen
<= memlen
);
3394 eassert (memlen
- lisplen
<= (1 << PSEUDOVECTOR_REST_BITS
) - 1);
3395 eassert (lisplen
<= PSEUDOVECTOR_SIZE_MASK
);
3397 /* Only the first LISPLEN slots will be traced normally by the GC. */
3398 memclear (v
->contents
, zerolen
* word_size
);
3399 XSETPVECTYPESIZE (v
, tag
, lisplen
, memlen
- lisplen
);
3404 allocate_buffer (void)
3406 struct buffer
*b
= lisp_malloc (sizeof *b
, MEM_TYPE_BUFFER
);
3408 BUFFER_PVEC_INIT (b
);
3409 /* Put B on the chain of all buffers including killed ones. */
3410 b
->next
= all_buffers
;
3412 /* Note that the rest fields of B are not initialized. */
3417 /* Allocate a record with COUNT slots. COUNT must be positive, and
3418 includes the type slot. */
3420 static struct Lisp_Vector
*
3421 allocate_record (EMACS_INT count
)
3423 if (count
> PSEUDOVECTOR_SIZE_MASK
)
3424 error ("Attempt to allocate a record of %"pI
"d slots; max is %d",
3425 count
, PSEUDOVECTOR_SIZE_MASK
);
3426 struct Lisp_Vector
*p
= allocate_vectorlike (count
);
3427 p
->header
.size
= count
;
3428 XSETPVECTYPE (p
, PVEC_RECORD
);
3433 DEFUN ("make-record", Fmake_record
, Smake_record
, 3, 3, 0,
3434 doc
: /* Create a new record.
3435 TYPE is its type as returned by `type-of'; it should be either a
3436 symbol or a type descriptor. SLOTS is the number of non-type slots,
3437 each initialized to INIT. */)
3438 (Lisp_Object type
, Lisp_Object slots
, Lisp_Object init
)
3440 CHECK_NATNUM (slots
);
3441 EMACS_INT size
= XFASTINT (slots
) + 1;
3442 struct Lisp_Vector
*p
= allocate_record (size
);
3443 p
->contents
[0] = type
;
3444 for (ptrdiff_t i
= 1; i
< size
; i
++)
3445 p
->contents
[i
] = init
;
3446 return make_lisp_ptr (p
, Lisp_Vectorlike
);
3450 DEFUN ("record", Frecord
, Srecord
, 1, MANY
, 0,
3451 doc
: /* Create a new record.
3452 TYPE is its type as returned by `type-of'; it should be either a
3453 symbol or a type descriptor. SLOTS is used to initialize the record
3454 slots with shallow copies of the arguments.
3455 usage: (record TYPE &rest SLOTS) */)
3456 (ptrdiff_t nargs
, Lisp_Object
*args
)
3458 struct Lisp_Vector
*p
= allocate_record (nargs
);
3459 memcpy (p
->contents
, args
, nargs
* sizeof *args
);
3460 return make_lisp_ptr (p
, Lisp_Vectorlike
);
3464 DEFUN ("make-vector", Fmake_vector
, Smake_vector
, 2, 2, 0,
3465 doc
: /* Return a newly created vector of length LENGTH, with each element being INIT.
3466 See also the function `vector'. */)
3467 (Lisp_Object length
, Lisp_Object init
)
3469 CHECK_NATNUM (length
);
3470 struct Lisp_Vector
*p
= allocate_vector (XFASTINT (length
));
3471 for (ptrdiff_t i
= 0; i
< XFASTINT (length
); i
++)
3472 p
->contents
[i
] = init
;
3473 return make_lisp_ptr (p
, Lisp_Vectorlike
);
3476 DEFUN ("vector", Fvector
, Svector
, 0, MANY
, 0,
3477 doc
: /* Return a newly created vector with specified arguments as elements.
3478 Any number of arguments, even zero arguments, are allowed.
3479 usage: (vector &rest OBJECTS) */)
3480 (ptrdiff_t nargs
, Lisp_Object
*args
)
3482 Lisp_Object val
= make_uninit_vector (nargs
);
3483 struct Lisp_Vector
*p
= XVECTOR (val
);
3484 memcpy (p
->contents
, args
, nargs
* sizeof *args
);
3489 make_byte_code (struct Lisp_Vector
*v
)
3491 /* Don't allow the global zero_vector to become a byte code object. */
3492 eassert (0 < v
->header
.size
);
3494 if (v
->header
.size
> 1 && STRINGP (v
->contents
[1])
3495 && STRING_MULTIBYTE (v
->contents
[1]))
3496 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3497 earlier because they produced a raw 8-bit string for byte-code
3498 and now such a byte-code string is loaded as multibyte while
3499 raw 8-bit characters converted to multibyte form. Thus, now we
3500 must convert them back to the original unibyte form. */
3501 v
->contents
[1] = Fstring_as_unibyte (v
->contents
[1]);
3502 XSETPVECTYPE (v
, PVEC_COMPILED
);
3505 DEFUN ("make-byte-code", Fmake_byte_code
, Smake_byte_code
, 4, MANY
, 0,
3506 doc
: /* Create a byte-code object with specified arguments as elements.
3507 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3508 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3509 and (optional) INTERACTIVE-SPEC.
3510 The first four arguments are required; at most six have any
3512 The ARGLIST can be either like the one of `lambda', in which case the arguments
3513 will be dynamically bound before executing the byte code, or it can be an
3514 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3515 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3516 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3517 argument to catch the left-over arguments. If such an integer is used, the
3518 arguments will not be dynamically bound but will be instead pushed on the
3519 stack before executing the byte-code.
3520 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3521 (ptrdiff_t nargs
, Lisp_Object
*args
)
3523 Lisp_Object val
= make_uninit_vector (nargs
);
3524 struct Lisp_Vector
*p
= XVECTOR (val
);
3526 /* We used to purecopy everything here, if purify-flag was set. This worked
3527 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3528 dangerous, since make-byte-code is used during execution to build
3529 closures, so any closure built during the preload phase would end up
3530 copied into pure space, including its free variables, which is sometimes
3531 just wasteful and other times plainly wrong (e.g. those free vars may want
3534 memcpy (p
->contents
, args
, nargs
* sizeof *args
);
3536 XSETCOMPILED (val
, p
);
3542 /***********************************************************************
3544 ***********************************************************************/
3546 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3547 of the required alignment. */
3549 union aligned_Lisp_Symbol
3551 struct Lisp_Symbol s
;
3552 unsigned char c
[(sizeof (struct Lisp_Symbol
) + GCALIGNMENT
- 1)
3556 /* Each symbol_block is just under 1020 bytes long, since malloc
3557 really allocates in units of powers of two and uses 4 bytes for its
3560 #define SYMBOL_BLOCK_SIZE \
3561 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3565 /* Place `symbols' first, to preserve alignment. */
3566 union aligned_Lisp_Symbol symbols
[SYMBOL_BLOCK_SIZE
];
3567 struct symbol_block
*next
;
3570 /* Current symbol block and index of first unused Lisp_Symbol
3573 static struct symbol_block
*symbol_block
;
3574 static int symbol_block_index
= SYMBOL_BLOCK_SIZE
;
3575 /* Pointer to the first symbol_block that contains pinned symbols.
3576 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3577 10K of which are pinned (and all but 250 of them are interned in obarray),
3578 whereas a "typical session" has in the order of 30K symbols.
3579 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3580 than 30K to find the 10K symbols we need to mark. */
3581 static struct symbol_block
*symbol_block_pinned
;
3583 /* List of free symbols. */
3585 static struct Lisp_Symbol
*symbol_free_list
;
3588 set_symbol_name (Lisp_Object sym
, Lisp_Object name
)
3590 XSYMBOL (sym
)->name
= name
;
3594 init_symbol (Lisp_Object val
, Lisp_Object name
)
3596 struct Lisp_Symbol
*p
= XSYMBOL (val
);
3597 set_symbol_name (val
, name
);
3598 set_symbol_plist (val
, Qnil
);
3599 p
->redirect
= SYMBOL_PLAINVAL
;
3600 SET_SYMBOL_VAL (p
, Qunbound
);
3601 set_symbol_function (val
, Qnil
);
3602 set_symbol_next (val
, NULL
);
3603 p
->gcmarkbit
= false;
3604 p
->interned
= SYMBOL_UNINTERNED
;
3605 p
->trapped_write
= SYMBOL_UNTRAPPED_WRITE
;
3606 p
->declared_special
= false;
3610 DEFUN ("make-symbol", Fmake_symbol
, Smake_symbol
, 1, 1, 0,
3611 doc
: /* Return a newly allocated uninterned symbol whose name is NAME.
3612 Its value is void, and its function definition and property list are nil. */)
3617 CHECK_STRING (name
);
3621 if (symbol_free_list
)
3623 XSETSYMBOL (val
, symbol_free_list
);
3624 symbol_free_list
= symbol_free_list
->next
;
3628 if (symbol_block_index
== SYMBOL_BLOCK_SIZE
)
3630 struct symbol_block
*new
3631 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL
);
3632 new->next
= symbol_block
;
3634 symbol_block_index
= 0;
3635 total_free_symbols
+= SYMBOL_BLOCK_SIZE
;
3637 XSETSYMBOL (val
, &symbol_block
->symbols
[symbol_block_index
].s
);
3638 symbol_block_index
++;
3641 MALLOC_UNBLOCK_INPUT
;
3643 init_symbol (val
, name
);
3644 consing_since_gc
+= sizeof (struct Lisp_Symbol
);
3646 total_free_symbols
--;
3652 /***********************************************************************
3653 Marker (Misc) Allocation
3654 ***********************************************************************/
3656 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3657 the required alignment. */
3659 union aligned_Lisp_Misc
3662 unsigned char c
[(sizeof (union Lisp_Misc
) + GCALIGNMENT
- 1)
3666 /* Allocation of markers and other objects that share that structure.
3667 Works like allocation of conses. */
3669 #define MARKER_BLOCK_SIZE \
3670 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3674 /* Place `markers' first, to preserve alignment. */
3675 union aligned_Lisp_Misc markers
[MARKER_BLOCK_SIZE
];
3676 struct marker_block
*next
;
3679 static struct marker_block
*marker_block
;
3680 static int marker_block_index
= MARKER_BLOCK_SIZE
;
3682 static union Lisp_Misc
*marker_free_list
;
3684 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3687 allocate_misc (enum Lisp_Misc_Type type
)
3693 if (marker_free_list
)
3695 XSETMISC (val
, marker_free_list
);
3696 marker_free_list
= marker_free_list
->u_free
.chain
;
3700 if (marker_block_index
== MARKER_BLOCK_SIZE
)
3702 struct marker_block
*new = lisp_malloc (sizeof *new, MEM_TYPE_MISC
);
3703 new->next
= marker_block
;
3705 marker_block_index
= 0;
3706 total_free_markers
+= MARKER_BLOCK_SIZE
;
3708 XSETMISC (val
, &marker_block
->markers
[marker_block_index
].m
);
3709 marker_block_index
++;
3712 MALLOC_UNBLOCK_INPUT
;
3714 --total_free_markers
;
3715 consing_since_gc
+= sizeof (union Lisp_Misc
);
3716 misc_objects_consed
++;
3717 XMISCANY (val
)->type
= type
;
3718 XMISCANY (val
)->gcmarkbit
= 0;
3722 /* Free a Lisp_Misc object. */
3725 free_misc (Lisp_Object misc
)
3727 XMISCANY (misc
)->type
= Lisp_Misc_Free
;
3728 XMISC (misc
)->u_free
.chain
= marker_free_list
;
3729 marker_free_list
= XMISC (misc
);
3730 consing_since_gc
-= sizeof (union Lisp_Misc
);
3731 total_free_markers
++;
3734 /* Verify properties of Lisp_Save_Value's representation
3735 that are assumed here and elsewhere. */
3737 verify (SAVE_UNUSED
== 0);
3738 verify (((SAVE_INTEGER
| SAVE_POINTER
| SAVE_FUNCPOINTER
| SAVE_OBJECT
)
3742 /* Return Lisp_Save_Value objects for the various combinations
3743 that callers need. */
3746 make_save_int_int_int (ptrdiff_t a
, ptrdiff_t b
, ptrdiff_t c
)
3748 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3749 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3750 p
->save_type
= SAVE_TYPE_INT_INT_INT
;
3751 p
->data
[0].integer
= a
;
3752 p
->data
[1].integer
= b
;
3753 p
->data
[2].integer
= c
;
3758 make_save_obj_obj_obj_obj (Lisp_Object a
, Lisp_Object b
, Lisp_Object c
,
3761 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3762 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3763 p
->save_type
= SAVE_TYPE_OBJ_OBJ_OBJ_OBJ
;
3764 p
->data
[0].object
= a
;
3765 p
->data
[1].object
= b
;
3766 p
->data
[2].object
= c
;
3767 p
->data
[3].object
= d
;
3772 make_save_ptr (void *a
)
3774 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3775 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3776 p
->save_type
= SAVE_POINTER
;
3777 p
->data
[0].pointer
= a
;
3782 make_save_ptr_int (void *a
, ptrdiff_t b
)
3784 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3785 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3786 p
->save_type
= SAVE_TYPE_PTR_INT
;
3787 p
->data
[0].pointer
= a
;
3788 p
->data
[1].integer
= b
;
3793 make_save_ptr_ptr (void *a
, void *b
)
3795 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3796 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3797 p
->save_type
= SAVE_TYPE_PTR_PTR
;
3798 p
->data
[0].pointer
= a
;
3799 p
->data
[1].pointer
= b
;
3804 make_save_funcptr_ptr_obj (void (*a
) (void), void *b
, Lisp_Object c
)
3806 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3807 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3808 p
->save_type
= SAVE_TYPE_FUNCPTR_PTR_OBJ
;
3809 p
->data
[0].funcpointer
= a
;
3810 p
->data
[1].pointer
= b
;
3811 p
->data
[2].object
= c
;
3815 /* Return a Lisp_Save_Value object that represents an array A
3816 of N Lisp objects. */
3819 make_save_memory (Lisp_Object
*a
, ptrdiff_t n
)
3821 Lisp_Object val
= allocate_misc (Lisp_Misc_Save_Value
);
3822 struct Lisp_Save_Value
*p
= XSAVE_VALUE (val
);
3823 p
->save_type
= SAVE_TYPE_MEMORY
;
3824 p
->data
[0].pointer
= a
;
3825 p
->data
[1].integer
= n
;
3829 /* Free a Lisp_Save_Value object. Do not use this function
3830 if SAVE contains pointer other than returned by xmalloc. */
3833 free_save_value (Lisp_Object save
)
3835 xfree (XSAVE_POINTER (save
, 0));
3839 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3842 build_overlay (Lisp_Object start
, Lisp_Object end
, Lisp_Object plist
)
3844 register Lisp_Object overlay
;
3846 overlay
= allocate_misc (Lisp_Misc_Overlay
);
3847 OVERLAY_START (overlay
) = start
;
3848 OVERLAY_END (overlay
) = end
;
3849 set_overlay_plist (overlay
, plist
);
3850 XOVERLAY (overlay
)->next
= NULL
;
3854 DEFUN ("make-marker", Fmake_marker
, Smake_marker
, 0, 0, 0,
3855 doc
: /* Return a newly allocated marker which does not point at any place. */)
3858 register Lisp_Object val
;
3859 register struct Lisp_Marker
*p
;
3861 val
= allocate_misc (Lisp_Misc_Marker
);
3867 p
->insertion_type
= 0;
3868 p
->need_adjustment
= 0;
3872 /* Return a newly allocated marker which points into BUF
3873 at character position CHARPOS and byte position BYTEPOS. */
3876 build_marker (struct buffer
*buf
, ptrdiff_t charpos
, ptrdiff_t bytepos
)
3879 struct Lisp_Marker
*m
;
3881 /* No dead buffers here. */
3882 eassert (BUFFER_LIVE_P (buf
));
3884 /* Every character is at least one byte. */
3885 eassert (charpos
<= bytepos
);
3887 obj
= allocate_misc (Lisp_Misc_Marker
);
3890 m
->charpos
= charpos
;
3891 m
->bytepos
= bytepos
;
3892 m
->insertion_type
= 0;
3893 m
->need_adjustment
= 0;
3894 m
->next
= BUF_MARKERS (buf
);
3895 BUF_MARKERS (buf
) = m
;
3899 /* Put MARKER back on the free list after using it temporarily. */
3902 free_marker (Lisp_Object marker
)
3904 unchain_marker (XMARKER (marker
));
3909 /* Return a newly created vector or string with specified arguments as
3910 elements. If all the arguments are characters that can fit
3911 in a string of events, make a string; otherwise, make a vector.
3913 Any number of arguments, even zero arguments, are allowed. */
3916 make_event_array (ptrdiff_t nargs
, Lisp_Object
*args
)
3920 for (i
= 0; i
< nargs
; i
++)
3921 /* The things that fit in a string
3922 are characters that are in 0...127,
3923 after discarding the meta bit and all the bits above it. */
3924 if (!INTEGERP (args
[i
])
3925 || (XINT (args
[i
]) & ~(-CHAR_META
)) >= 0200)
3926 return Fvector (nargs
, args
);
3928 /* Since the loop exited, we know that all the things in it are
3929 characters, so we can make a string. */
3933 result
= Fmake_string (make_number (nargs
), make_number (0));
3934 for (i
= 0; i
< nargs
; i
++)
3936 SSET (result
, i
, XINT (args
[i
]));
3937 /* Move the meta bit to the right place for a string char. */
3938 if (XINT (args
[i
]) & CHAR_META
)
3939 SSET (result
, i
, SREF (result
, i
) | 0x80);
3947 /* Create a new module user ptr object. */
3949 make_user_ptr (void (*finalizer
) (void *), void *p
)
3952 struct Lisp_User_Ptr
*uptr
;
3954 obj
= allocate_misc (Lisp_Misc_User_Ptr
);
3955 uptr
= XUSER_PTR (obj
);
3956 uptr
->finalizer
= finalizer
;
3963 init_finalizer_list (struct Lisp_Finalizer
*head
)
3965 head
->prev
= head
->next
= head
;
3968 /* Insert FINALIZER before ELEMENT. */
3971 finalizer_insert (struct Lisp_Finalizer
*element
,
3972 struct Lisp_Finalizer
*finalizer
)
3974 eassert (finalizer
->prev
== NULL
);
3975 eassert (finalizer
->next
== NULL
);
3976 finalizer
->next
= element
;
3977 finalizer
->prev
= element
->prev
;
3978 finalizer
->prev
->next
= finalizer
;
3979 element
->prev
= finalizer
;
3983 unchain_finalizer (struct Lisp_Finalizer
*finalizer
)
3985 if (finalizer
->prev
!= NULL
)
3987 eassert (finalizer
->next
!= NULL
);
3988 finalizer
->prev
->next
= finalizer
->next
;
3989 finalizer
->next
->prev
= finalizer
->prev
;
3990 finalizer
->prev
= finalizer
->next
= NULL
;
3995 mark_finalizer_list (struct Lisp_Finalizer
*head
)
3997 for (struct Lisp_Finalizer
*finalizer
= head
->next
;
3999 finalizer
= finalizer
->next
)
4001 finalizer
->base
.gcmarkbit
= true;
4002 mark_object (finalizer
->function
);
4006 /* Move doomed finalizers to list DEST from list SRC. A doomed
4007 finalizer is one that is not GC-reachable and whose
4008 finalizer->function is non-nil. */
4011 queue_doomed_finalizers (struct Lisp_Finalizer
*dest
,
4012 struct Lisp_Finalizer
*src
)
4014 struct Lisp_Finalizer
*finalizer
= src
->next
;
4015 while (finalizer
!= src
)
4017 struct Lisp_Finalizer
*next
= finalizer
->next
;
4018 if (!finalizer
->base
.gcmarkbit
&& !NILP (finalizer
->function
))
4020 unchain_finalizer (finalizer
);
4021 finalizer_insert (dest
, finalizer
);
4029 run_finalizer_handler (Lisp_Object args
)
4031 add_to_log ("finalizer failed: %S", args
);
4036 run_finalizer_function (Lisp_Object function
)
4038 ptrdiff_t count
= SPECPDL_INDEX ();
4040 specbind (Qinhibit_quit
, Qt
);
4041 internal_condition_case_1 (call0
, function
, Qt
, run_finalizer_handler
);
4042 unbind_to (count
, Qnil
);
4046 run_finalizers (struct Lisp_Finalizer
*finalizers
)
4048 struct Lisp_Finalizer
*finalizer
;
4049 Lisp_Object function
;
4051 while (finalizers
->next
!= finalizers
)
4053 finalizer
= finalizers
->next
;
4054 eassert (finalizer
->base
.type
== Lisp_Misc_Finalizer
);
4055 unchain_finalizer (finalizer
);
4056 function
= finalizer
->function
;
4057 if (!NILP (function
))
4059 finalizer
->function
= Qnil
;
4060 run_finalizer_function (function
);
4065 DEFUN ("make-finalizer", Fmake_finalizer
, Smake_finalizer
, 1, 1, 0,
4066 doc
: /* Make a finalizer that will run FUNCTION.
4067 FUNCTION will be called after garbage collection when the returned
4068 finalizer object becomes unreachable. If the finalizer object is
4069 reachable only through references from finalizer objects, it does not
4070 count as reachable for the purpose of deciding whether to run
4071 FUNCTION. FUNCTION will be run once per finalizer object. */)
4072 (Lisp_Object function
)
4074 Lisp_Object val
= allocate_misc (Lisp_Misc_Finalizer
);
4075 struct Lisp_Finalizer
*finalizer
= XFINALIZER (val
);
4076 finalizer
->function
= function
;
4077 finalizer
->prev
= finalizer
->next
= NULL
;
4078 finalizer_insert (&finalizers
, finalizer
);
4083 /************************************************************************
4084 Memory Full Handling
4085 ************************************************************************/
4088 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4089 there may have been size_t overflow so that malloc was never
4090 called, or perhaps malloc was invoked successfully but the
4091 resulting pointer had problems fitting into a tagged EMACS_INT. In
4092 either case this counts as memory being full even though malloc did
4096 memory_full (size_t nbytes
)
4098 /* Do not go into hysterics merely because a large request failed. */
4099 bool enough_free_memory
= 0;
4100 if (SPARE_MEMORY
< nbytes
)
4105 p
= malloc (SPARE_MEMORY
);
4109 enough_free_memory
= 1;
4111 MALLOC_UNBLOCK_INPUT
;
4114 if (! enough_free_memory
)
4120 memory_full_cons_threshold
= sizeof (struct cons_block
);
4122 /* The first time we get here, free the spare memory. */
4123 for (i
= 0; i
< ARRAYELTS (spare_memory
); i
++)
4124 if (spare_memory
[i
])
4127 free (spare_memory
[i
]);
4128 else if (i
>= 1 && i
<= 4)
4129 lisp_align_free (spare_memory
[i
]);
4131 lisp_free (spare_memory
[i
]);
4132 spare_memory
[i
] = 0;
4136 /* This used to call error, but if we've run out of memory, we could
4137 get infinite recursion trying to build the string. */
4138 xsignal (Qnil
, Vmemory_signal_data
);
4141 /* If we released our reserve (due to running out of memory),
4142 and we have a fair amount free once again,
4143 try to set aside another reserve in case we run out once more.
4145 This is called when a relocatable block is freed in ralloc.c,
4146 and also directly from this file, in case we're not using ralloc.c. */
4149 refill_memory_reserve (void)
4151 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4152 if (spare_memory
[0] == 0)
4153 spare_memory
[0] = malloc (SPARE_MEMORY
);
4154 if (spare_memory
[1] == 0)
4155 spare_memory
[1] = lisp_align_malloc (sizeof (struct cons_block
),
4157 if (spare_memory
[2] == 0)
4158 spare_memory
[2] = lisp_align_malloc (sizeof (struct cons_block
),
4160 if (spare_memory
[3] == 0)
4161 spare_memory
[3] = lisp_align_malloc (sizeof (struct cons_block
),
4163 if (spare_memory
[4] == 0)
4164 spare_memory
[4] = lisp_align_malloc (sizeof (struct cons_block
),
4166 if (spare_memory
[5] == 0)
4167 spare_memory
[5] = lisp_malloc (sizeof (struct string_block
),
4169 if (spare_memory
[6] == 0)
4170 spare_memory
[6] = lisp_malloc (sizeof (struct string_block
),
4172 if (spare_memory
[0] && spare_memory
[1] && spare_memory
[5])
4173 Vmemory_full
= Qnil
;
4177 /************************************************************************
4179 ************************************************************************/
4181 /* Conservative C stack marking requires a method to identify possibly
4182 live Lisp objects given a pointer value. We do this by keeping
4183 track of blocks of Lisp data that are allocated in a red-black tree
4184 (see also the comment of mem_node which is the type of nodes in
4185 that tree). Function lisp_malloc adds information for an allocated
4186 block to the red-black tree with calls to mem_insert, and function
4187 lisp_free removes it with mem_delete. Functions live_string_p etc
4188 call mem_find to lookup information about a given pointer in the
4189 tree, and use that to determine if the pointer points into a Lisp
4192 /* Initialize this part of alloc.c. */
4197 mem_z
.left
= mem_z
.right
= MEM_NIL
;
4198 mem_z
.parent
= NULL
;
4199 mem_z
.color
= MEM_BLACK
;
4200 mem_z
.start
= mem_z
.end
= NULL
;
4205 /* Value is a pointer to the mem_node containing START. Value is
4206 MEM_NIL if there is no node in the tree containing START. */
4208 static struct mem_node
*
4209 mem_find (void *start
)
4213 if (start
< min_heap_address
|| start
> max_heap_address
)
4216 /* Make the search always successful to speed up the loop below. */
4217 mem_z
.start
= start
;
4218 mem_z
.end
= (char *) start
+ 1;
4221 while (start
< p
->start
|| start
>= p
->end
)
4222 p
= start
< p
->start
? p
->left
: p
->right
;
4227 /* Insert a new node into the tree for a block of memory with start
4228 address START, end address END, and type TYPE. Value is a
4229 pointer to the node that was inserted. */
4231 static struct mem_node
*
4232 mem_insert (void *start
, void *end
, enum mem_type type
)
4234 struct mem_node
*c
, *parent
, *x
;
4236 if (min_heap_address
== NULL
|| start
< min_heap_address
)
4237 min_heap_address
= start
;
4238 if (max_heap_address
== NULL
|| end
> max_heap_address
)
4239 max_heap_address
= end
;
4241 /* See where in the tree a node for START belongs. In this
4242 particular application, it shouldn't happen that a node is already
4243 present. For debugging purposes, let's check that. */
4247 while (c
!= MEM_NIL
)
4250 c
= start
< c
->start
? c
->left
: c
->right
;
4253 /* Create a new node. */
4254 #ifdef GC_MALLOC_CHECK
4255 x
= malloc (sizeof *x
);
4259 x
= xmalloc (sizeof *x
);
4265 x
->left
= x
->right
= MEM_NIL
;
4268 /* Insert it as child of PARENT or install it as root. */
4271 if (start
< parent
->start
)
4279 /* Re-establish red-black tree properties. */
4280 mem_insert_fixup (x
);
4286 /* Re-establish the red-black properties of the tree, and thereby
4287 balance the tree, after node X has been inserted; X is always red. */
4290 mem_insert_fixup (struct mem_node
*x
)
4292 while (x
!= mem_root
&& x
->parent
->color
== MEM_RED
)
4294 /* X is red and its parent is red. This is a violation of
4295 red-black tree property #3. */
4297 if (x
->parent
== x
->parent
->parent
->left
)
4299 /* We're on the left side of our grandparent, and Y is our
4301 struct mem_node
*y
= x
->parent
->parent
->right
;
4303 if (y
->color
== MEM_RED
)
4305 /* Uncle and parent are red but should be black because
4306 X is red. Change the colors accordingly and proceed
4307 with the grandparent. */
4308 x
->parent
->color
= MEM_BLACK
;
4309 y
->color
= MEM_BLACK
;
4310 x
->parent
->parent
->color
= MEM_RED
;
4311 x
= x
->parent
->parent
;
4315 /* Parent and uncle have different colors; parent is
4316 red, uncle is black. */
4317 if (x
== x
->parent
->right
)
4320 mem_rotate_left (x
);
4323 x
->parent
->color
= MEM_BLACK
;
4324 x
->parent
->parent
->color
= MEM_RED
;
4325 mem_rotate_right (x
->parent
->parent
);
4330 /* This is the symmetrical case of above. */
4331 struct mem_node
*y
= x
->parent
->parent
->left
;
4333 if (y
->color
== MEM_RED
)
4335 x
->parent
->color
= MEM_BLACK
;
4336 y
->color
= MEM_BLACK
;
4337 x
->parent
->parent
->color
= MEM_RED
;
4338 x
= x
->parent
->parent
;
4342 if (x
== x
->parent
->left
)
4345 mem_rotate_right (x
);
4348 x
->parent
->color
= MEM_BLACK
;
4349 x
->parent
->parent
->color
= MEM_RED
;
4350 mem_rotate_left (x
->parent
->parent
);
4355 /* The root may have been changed to red due to the algorithm. Set
4356 it to black so that property #5 is satisfied. */
4357 mem_root
->color
= MEM_BLACK
;
4368 mem_rotate_left (struct mem_node
*x
)
4372 /* Turn y's left sub-tree into x's right sub-tree. */
4375 if (y
->left
!= MEM_NIL
)
4376 y
->left
->parent
= x
;
4378 /* Y's parent was x's parent. */
4380 y
->parent
= x
->parent
;
4382 /* Get the parent to point to y instead of x. */
4385 if (x
== x
->parent
->left
)
4386 x
->parent
->left
= y
;
4388 x
->parent
->right
= y
;
4393 /* Put x on y's left. */
4407 mem_rotate_right (struct mem_node
*x
)
4409 struct mem_node
*y
= x
->left
;
4412 if (y
->right
!= MEM_NIL
)
4413 y
->right
->parent
= x
;
4416 y
->parent
= x
->parent
;
4419 if (x
== x
->parent
->right
)
4420 x
->parent
->right
= y
;
4422 x
->parent
->left
= y
;
4433 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4436 mem_delete (struct mem_node
*z
)
4438 struct mem_node
*x
, *y
;
4440 if (!z
|| z
== MEM_NIL
)
4443 if (z
->left
== MEM_NIL
|| z
->right
== MEM_NIL
)
4448 while (y
->left
!= MEM_NIL
)
4452 if (y
->left
!= MEM_NIL
)
4457 x
->parent
= y
->parent
;
4460 if (y
== y
->parent
->left
)
4461 y
->parent
->left
= x
;
4463 y
->parent
->right
= x
;
4470 z
->start
= y
->start
;
4475 if (y
->color
== MEM_BLACK
)
4476 mem_delete_fixup (x
);
4478 #ifdef GC_MALLOC_CHECK
4486 /* Re-establish the red-black properties of the tree, after a
4490 mem_delete_fixup (struct mem_node
*x
)
4492 while (x
!= mem_root
&& x
->color
== MEM_BLACK
)
4494 if (x
== x
->parent
->left
)
4496 struct mem_node
*w
= x
->parent
->right
;
4498 if (w
->color
== MEM_RED
)
4500 w
->color
= MEM_BLACK
;
4501 x
->parent
->color
= MEM_RED
;
4502 mem_rotate_left (x
->parent
);
4503 w
= x
->parent
->right
;
4506 if (w
->left
->color
== MEM_BLACK
&& w
->right
->color
== MEM_BLACK
)
4513 if (w
->right
->color
== MEM_BLACK
)
4515 w
->left
->color
= MEM_BLACK
;
4517 mem_rotate_right (w
);
4518 w
= x
->parent
->right
;
4520 w
->color
= x
->parent
->color
;
4521 x
->parent
->color
= MEM_BLACK
;
4522 w
->right
->color
= MEM_BLACK
;
4523 mem_rotate_left (x
->parent
);
4529 struct mem_node
*w
= x
->parent
->left
;
4531 if (w
->color
== MEM_RED
)
4533 w
->color
= MEM_BLACK
;
4534 x
->parent
->color
= MEM_RED
;
4535 mem_rotate_right (x
->parent
);
4536 w
= x
->parent
->left
;
4539 if (w
->right
->color
== MEM_BLACK
&& w
->left
->color
== MEM_BLACK
)
4546 if (w
->left
->color
== MEM_BLACK
)
4548 w
->right
->color
= MEM_BLACK
;
4550 mem_rotate_left (w
);
4551 w
= x
->parent
->left
;
4554 w
->color
= x
->parent
->color
;
4555 x
->parent
->color
= MEM_BLACK
;
4556 w
->left
->color
= MEM_BLACK
;
4557 mem_rotate_right (x
->parent
);
4563 x
->color
= MEM_BLACK
;
4567 /* If P is a pointer into a live Lisp string object on the heap,
4568 return the object. Otherwise, return nil. M is a pointer to the
4571 This and other *_holding functions look for a pointer anywhere into
4572 the object, not merely for a pointer to the start of the object,
4573 because some compilers sometimes optimize away the latter. See
4577 live_string_holding (struct mem_node
*m
, void *p
)
4579 if (m
->type
== MEM_TYPE_STRING
)
4581 struct string_block
*b
= m
->start
;
4583 ptrdiff_t offset
= cp
- (char *) &b
->strings
[0];
4585 /* P must point into a Lisp_String structure, and it
4586 must not be on the free-list. */
4587 if (0 <= offset
&& offset
< STRING_BLOCK_SIZE
* sizeof b
->strings
[0])
4589 struct Lisp_String
*s
= p
= cp
-= offset
% sizeof b
->strings
[0];
4591 return make_lisp_ptr (s
, Lisp_String
);
4598 live_string_p (struct mem_node
*m
, void *p
)
4600 return !NILP (live_string_holding (m
, p
));
4603 /* If P is a pointer into a live Lisp cons object on the heap, return
4604 the object. Otherwise, return nil. M is a pointer to the
4608 live_cons_holding (struct mem_node
*m
, void *p
)
4610 if (m
->type
== MEM_TYPE_CONS
)
4612 struct cons_block
*b
= m
->start
;
4614 ptrdiff_t offset
= cp
- (char *) &b
->conses
[0];
4616 /* P must point into a Lisp_Cons, not be
4617 one of the unused cells in the current cons block,
4618 and not be on the free-list. */
4619 if (0 <= offset
&& offset
< CONS_BLOCK_SIZE
* sizeof b
->conses
[0]
4621 || offset
/ sizeof b
->conses
[0] < cons_block_index
))
4623 struct Lisp_Cons
*s
= p
= cp
-= offset
% sizeof b
->conses
[0];
4624 if (!EQ (s
->car
, Vdead
))
4625 return make_lisp_ptr (s
, Lisp_Cons
);
4632 live_cons_p (struct mem_node
*m
, void *p
)
4634 return !NILP (live_cons_holding (m
, p
));
4638 /* If P is a pointer into a live Lisp symbol object on the heap,
4639 return the object. Otherwise, return nil. M is a pointer to the
4643 live_symbol_holding (struct mem_node
*m
, void *p
)
4645 if (m
->type
== MEM_TYPE_SYMBOL
)
4647 struct symbol_block
*b
= m
->start
;
4649 ptrdiff_t offset
= cp
- (char *) &b
->symbols
[0];
4651 /* P must point into the Lisp_Symbol, not be
4652 one of the unused cells in the current symbol block,
4653 and not be on the free-list. */
4654 if (0 <= offset
&& offset
< SYMBOL_BLOCK_SIZE
* sizeof b
->symbols
[0]
4655 && (b
!= symbol_block
4656 || offset
/ sizeof b
->symbols
[0] < symbol_block_index
))
4658 struct Lisp_Symbol
*s
= p
= cp
-= offset
% sizeof b
->symbols
[0];
4659 if (!EQ (s
->function
, Vdead
))
4660 return make_lisp_symbol (s
);
4667 live_symbol_p (struct mem_node
*m
, void *p
)
4669 return !NILP (live_symbol_holding (m
, p
));
4673 /* Return true if P is a pointer to a live Lisp float on
4674 the heap. M is a pointer to the mem_block for P. */
4677 live_float_p (struct mem_node
*m
, void *p
)
4679 if (m
->type
== MEM_TYPE_FLOAT
)
4681 struct float_block
*b
= m
->start
;
4683 ptrdiff_t offset
= cp
- (char *) &b
->floats
[0];
4685 /* P must point to the start of a Lisp_Float and not be
4686 one of the unused cells in the current float block. */
4688 && offset
% sizeof b
->floats
[0] == 0
4689 && offset
< (FLOAT_BLOCK_SIZE
* sizeof b
->floats
[0])
4690 && (b
!= float_block
4691 || offset
/ sizeof b
->floats
[0] < float_block_index
));
4698 /* If P is a pointer to a live Lisp Misc on the heap, return the object.
4699 Otherwise, return nil. M is a pointer to the mem_block for P. */
4702 live_misc_holding (struct mem_node
*m
, void *p
)
4704 if (m
->type
== MEM_TYPE_MISC
)
4706 struct marker_block
*b
= m
->start
;
4708 ptrdiff_t offset
= cp
- (char *) &b
->markers
[0];
4710 /* P must point into a Lisp_Misc, not be
4711 one of the unused cells in the current misc block,
4712 and not be on the free-list. */
4713 if (0 <= offset
&& offset
< MARKER_BLOCK_SIZE
* sizeof b
->markers
[0]
4714 && (b
!= marker_block
4715 || offset
/ sizeof b
->markers
[0] < marker_block_index
))
4717 union Lisp_Misc
*s
= p
= cp
-= offset
% sizeof b
->markers
[0];
4718 if (s
->u_any
.type
!= Lisp_Misc_Free
)
4719 return make_lisp_ptr (s
, Lisp_Misc
);
4726 live_misc_p (struct mem_node
*m
, void *p
)
4728 return !NILP (live_misc_holding (m
, p
));
4731 /* If P is a pointer to a live vector-like object, return the object.
4732 Otherwise, return nil.
4733 M is a pointer to the mem_block for P. */
4736 live_vector_holding (struct mem_node
*m
, void *p
)
4738 struct Lisp_Vector
*vp
= p
;
4740 if (m
->type
== MEM_TYPE_VECTOR_BLOCK
)
4742 /* This memory node corresponds to a vector block. */
4743 struct vector_block
*block
= m
->start
;
4744 struct Lisp_Vector
*vector
= (struct Lisp_Vector
*) block
->data
;
4746 /* P is in the block's allocation range. Scan the block
4747 up to P and see whether P points to the start of some
4748 vector which is not on a free list. FIXME: check whether
4749 some allocation patterns (probably a lot of short vectors)
4750 may cause a substantial overhead of this loop. */
4751 while (VECTOR_IN_BLOCK (vector
, block
) && vector
<= vp
)
4753 struct Lisp_Vector
*next
= ADVANCE (vector
, vector_nbytes (vector
));
4754 if (vp
< next
&& !PSEUDOVECTOR_TYPEP (&vector
->header
, PVEC_FREE
))
4755 return make_lisp_ptr (vector
, Lisp_Vectorlike
);
4759 else if (m
->type
== MEM_TYPE_VECTORLIKE
)
4761 /* This memory node corresponds to a large vector. */
4762 struct Lisp_Vector
*vector
= large_vector_vec (m
->start
);
4763 struct Lisp_Vector
*next
= ADVANCE (vector
, vector_nbytes (vector
));
4764 if (vector
<= vp
&& vp
< next
)
4765 return make_lisp_ptr (vector
, Lisp_Vectorlike
);
4771 live_vector_p (struct mem_node
*m
, void *p
)
4773 return !NILP (live_vector_holding (m
, p
));
4776 /* If P is a pointer into a live buffer, return the buffer.
4777 Otherwise, return nil. M is a pointer to the mem_block for P. */
4780 live_buffer_holding (struct mem_node
*m
, void *p
)
4782 /* P must point into the block, and the buffer
4783 must not have been killed. */
4784 if (m
->type
== MEM_TYPE_BUFFER
)
4786 struct buffer
*b
= m
->start
;
4787 char *cb
= m
->start
;
4789 ptrdiff_t offset
= cp
- cb
;
4790 if (0 <= offset
&& offset
< sizeof *b
&& !NILP (b
->name_
))
4793 XSETBUFFER (obj
, b
);
4801 live_buffer_p (struct mem_node
*m
, void *p
)
4803 return !NILP (live_buffer_holding (m
, p
));
4806 /* Mark OBJ if we can prove it's a Lisp_Object. */
4809 mark_maybe_object (Lisp_Object obj
)
4813 VALGRIND_MAKE_MEM_DEFINED (&obj
, sizeof (obj
));
4819 void *po
= XPNTR (obj
);
4820 struct mem_node
*m
= mem_find (po
);
4824 bool mark_p
= false;
4826 switch (XTYPE (obj
))
4829 mark_p
= EQ (obj
, live_string_holding (m
, po
));
4833 mark_p
= EQ (obj
, live_cons_holding (m
, po
));
4837 mark_p
= EQ (obj
, live_symbol_holding (m
, po
));
4841 mark_p
= live_float_p (m
, po
);
4844 case Lisp_Vectorlike
:
4845 mark_p
= (EQ (obj
, live_vector_holding (m
, po
))
4846 || EQ (obj
, live_buffer_holding (m
, po
)));
4850 mark_p
= EQ (obj
, live_misc_holding (m
, po
));
4862 /* Return true if P can point to Lisp data, and false otherwise.
4863 Symbols are implemented via offsets not pointers, but the offsets
4864 are also multiples of GCALIGNMENT. */
4867 maybe_lisp_pointer (void *p
)
4869 return (uintptr_t) p
% GCALIGNMENT
== 0;
4872 #ifndef HAVE_MODULES
4873 enum { HAVE_MODULES
= false };
4876 /* If P points to Lisp data, mark that as live if it isn't already
4880 mark_maybe_pointer (void *p
)
4886 VALGRIND_MAKE_MEM_DEFINED (&p
, sizeof (p
));
4889 if (sizeof (Lisp_Object
) == sizeof (void *) || !HAVE_MODULES
)
4891 if (!maybe_lisp_pointer (p
))
4896 /* For the wide-int case, also mark emacs_value tagged pointers,
4897 which can be generated by emacs-module.c's value_to_lisp. */
4898 p
= (void *) ((uintptr_t) p
& ~(GCALIGNMENT
- 1));
4904 Lisp_Object obj
= Qnil
;
4908 case MEM_TYPE_NON_LISP
:
4909 case MEM_TYPE_SPARE
:
4910 /* Nothing to do; not a pointer to Lisp memory. */
4913 case MEM_TYPE_BUFFER
:
4914 obj
= live_buffer_holding (m
, p
);
4918 obj
= live_cons_holding (m
, p
);
4921 case MEM_TYPE_STRING
:
4922 obj
= live_string_holding (m
, p
);
4926 obj
= live_misc_holding (m
, p
);
4929 case MEM_TYPE_SYMBOL
:
4930 obj
= live_symbol_holding (m
, p
);
4933 case MEM_TYPE_FLOAT
:
4934 if (live_float_p (m
, p
))
4935 obj
= make_lisp_ptr (p
, Lisp_Float
);
4938 case MEM_TYPE_VECTORLIKE
:
4939 case MEM_TYPE_VECTOR_BLOCK
:
4940 obj
= live_vector_holding (m
, p
);
4953 /* Alignment of pointer values. Use alignof, as it sometimes returns
4954 a smaller alignment than GCC's __alignof__ and mark_memory might
4955 miss objects if __alignof__ were used. */
4956 #define GC_POINTER_ALIGNMENT alignof (void *)
4958 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4959 or END+OFFSET..START. */
4961 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4962 mark_memory (void *start
, void *end
)
4966 /* Make START the pointer to the start of the memory region,
4967 if it isn't already. */
4975 eassert (((uintptr_t) start
) % GC_POINTER_ALIGNMENT
== 0);
4977 /* Mark Lisp data pointed to. This is necessary because, in some
4978 situations, the C compiler optimizes Lisp objects away, so that
4979 only a pointer to them remains. Example:
4981 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4984 Lisp_Object obj = build_string ("test");
4985 struct Lisp_String *s = XSTRING (obj);
4986 Fgarbage_collect ();
4987 fprintf (stderr, "test '%s'\n", s->data);
4991 Here, `obj' isn't really used, and the compiler optimizes it
4992 away. The only reference to the life string is through the
4995 for (pp
= start
; (void *) pp
< end
; pp
+= GC_POINTER_ALIGNMENT
)
4997 mark_maybe_pointer (*(void **) pp
);
4998 mark_maybe_object (*(Lisp_Object
*) pp
);
5002 #ifndef HAVE___BUILTIN_UNWIND_INIT
5004 # ifdef GC_SETJMP_WORKS
5011 static bool setjmp_tested_p
;
5012 static int longjmps_done
;
5014 # define SETJMP_WILL_LIKELY_WORK "\
5016 Emacs garbage collector has been changed to use conservative stack\n\
5017 marking. Emacs has determined that the method it uses to do the\n\
5018 marking will likely work on your system, but this isn't sure.\n\
5020 If you are a system-programmer, or can get the help of a local wizard\n\
5021 who is, please take a look at the function mark_stack in alloc.c, and\n\
5022 verify that the methods used are appropriate for your system.\n\
5024 Please mail the result to <emacs-devel@gnu.org>.\n\
5027 # define SETJMP_WILL_NOT_WORK "\
5029 Emacs garbage collector has been changed to use conservative stack\n\
5030 marking. Emacs has determined that the default method it uses to do the\n\
5031 marking will not work on your system. We will need a system-dependent\n\
5032 solution for your system.\n\
5034 Please take a look at the function mark_stack in alloc.c, and\n\
5035 try to find a way to make it work on your system.\n\
5037 Note that you may get false negatives, depending on the compiler.\n\
5038 In particular, you need to use -O with GCC for this test.\n\
5040 Please mail the result to <emacs-devel@gnu.org>.\n\
5044 /* Perform a quick check if it looks like setjmp saves registers in a
5045 jmp_buf. Print a message to stderr saying so. When this test
5046 succeeds, this is _not_ a proof that setjmp is sufficient for
5047 conservative stack marking. Only the sources or a disassembly
5053 if (setjmp_tested_p
)
5055 setjmp_tested_p
= true;
5060 /* Arrange for X to be put in a register. */
5066 if (longjmps_done
== 1)
5068 /* Came here after the longjmp at the end of the function.
5070 If x == 1, the longjmp has restored the register to its
5071 value before the setjmp, and we can hope that setjmp
5072 saves all such registers in the jmp_buf, although that
5075 For other values of X, either something really strange is
5076 taking place, or the setjmp just didn't save the register. */
5079 fprintf (stderr
, SETJMP_WILL_LIKELY_WORK
);
5082 fprintf (stderr
, SETJMP_WILL_NOT_WORK
);
5089 if (longjmps_done
== 1)
5090 sys_longjmp (jbuf
, 1);
5092 # endif /* ! GC_SETJMP_WORKS */
5093 #endif /* ! HAVE___BUILTIN_UNWIND_INIT */
5095 /* The type of an object near the stack top, whose address can be used
5096 as a stack scan limit. */
5099 /* Align the stack top properly. Even if !HAVE___BUILTIN_UNWIND_INIT,
5100 jmp_buf may not be aligned enough on darwin-ppc64. */
5102 #ifndef HAVE___BUILTIN_UNWIND_INIT
5108 /* Force callee-saved registers and register windows onto the stack.
5109 Use the platform-defined __builtin_unwind_init if available,
5110 obviating the need for machine dependent methods. */
5111 #ifndef HAVE___BUILTIN_UNWIND_INIT
5113 /* This trick flushes the register windows so that all the state of
5114 the process is contained in the stack.
5115 FreeBSD does not have a ta 3 handler, so handle it specially.
5116 FIXME: Code in the Boehm GC suggests flushing (with 'flushrs') is
5117 needed on ia64 too. See mach_dep.c, where it also says inline
5118 assembler doesn't work with relevant proprietary compilers. */
5119 # if defined __sparc64__ && defined __FreeBSD__
5120 # define __builtin_unwind_init() asm ("flushw")
5122 # define __builtin_unwind_init() asm ("ta 3")
5125 # define __builtin_unwind_init() ((void) 0)
5129 /* Yield an address close enough to the top of the stack that the
5130 garbage collector need not scan above it. Callers should be
5131 declared NO_INLINE. */
5132 #ifdef HAVE___BUILTIN_FRAME_ADDRESS
5133 # define NEAR_STACK_TOP(addr) ((void) (addr), __builtin_frame_address (0))
5135 # define NEAR_STACK_TOP(addr) (addr)
5138 /* Set *P to the address of the top of the stack. This must be a
5139 macro, not a function, so that it is executed in the caller’s
5140 environment. It is not inside a do-while so that its storage
5141 survives the macro. Callers should be declared NO_INLINE. */
5142 #ifdef HAVE___BUILTIN_UNWIND_INIT
5143 # define SET_STACK_TOP_ADDRESS(p) \
5144 stacktop_sentry sentry; \
5145 __builtin_unwind_init (); \
5146 *(p) = NEAR_STACK_TOP (&sentry)
5148 # define SET_STACK_TOP_ADDRESS(p) \
5149 stacktop_sentry sentry; \
5150 __builtin_unwind_init (); \
5152 sys_setjmp (sentry.j); \
5153 *(p) = NEAR_STACK_TOP (&sentry + (stack_bottom < &sentry.c))
5156 /* Mark live Lisp objects on the C stack.
5158 There are several system-dependent problems to consider when
5159 porting this to new architectures:
5163 We have to mark Lisp objects in CPU registers that can hold local
5164 variables or are used to pass parameters.
5166 This code assumes that calling setjmp saves registers we need
5167 to see in a jmp_buf which itself lies on the stack. This doesn't
5168 have to be true! It must be verified for each system, possibly
5169 by taking a look at the source code of setjmp.
5171 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5172 can use it as a machine independent method to store all registers
5173 to the stack. In this case the macros described in the previous
5174 two paragraphs are not used.
5178 Architectures differ in the way their processor stack is organized.
5179 For example, the stack might look like this
5182 | Lisp_Object | size = 4
5184 | something else | size = 2
5186 | Lisp_Object | size = 4
5190 In such a case, not every Lisp_Object will be aligned equally. To
5191 find all Lisp_Object on the stack it won't be sufficient to walk
5192 the stack in steps of 4 bytes. Instead, two passes will be
5193 necessary, one starting at the start of the stack, and a second
5194 pass starting at the start of the stack + 2. Likewise, if the
5195 minimal alignment of Lisp_Objects on the stack is 1, four passes
5196 would be necessary, each one starting with one byte more offset
5197 from the stack start. */
5200 mark_stack (char *bottom
, char *end
)
5202 /* This assumes that the stack is a contiguous region in memory. If
5203 that's not the case, something has to be done here to iterate
5204 over the stack segments. */
5205 mark_memory (bottom
, end
);
5207 /* Allow for marking a secondary stack, like the register stack on the
5209 #ifdef GC_MARK_SECONDARY_STACK
5210 GC_MARK_SECONDARY_STACK ();
5214 /* This is a trampoline function that flushes registers to the stack,
5215 and then calls FUNC. ARG is passed through to FUNC verbatim.
5217 This function must be called whenever Emacs is about to release the
5218 global interpreter lock. This lets the garbage collector easily
5219 find roots in registers on threads that are not actively running
5222 It is invalid to run any Lisp code or to allocate any GC memory
5226 flush_stack_call_func (void (*func
) (void *arg
), void *arg
)
5229 struct thread_state
*self
= current_thread
;
5230 SET_STACK_TOP_ADDRESS (&end
);
5231 self
->stack_top
= end
;
5233 eassert (current_thread
== self
);
5237 c_symbol_p (struct Lisp_Symbol
*sym
)
5239 char *lispsym_ptr
= (char *) lispsym
;
5240 char *sym_ptr
= (char *) sym
;
5241 ptrdiff_t lispsym_offset
= sym_ptr
- lispsym_ptr
;
5242 return 0 <= lispsym_offset
&& lispsym_offset
< sizeof lispsym
;
5245 /* Determine whether it is safe to access memory at address P. */
5247 valid_pointer_p (void *p
)
5250 return w32_valid_pointer_p (p
, 16);
5253 if (ADDRESS_SANITIZER
)
5258 /* Obviously, we cannot just access it (we would SEGV trying), so we
5259 trick the o/s to tell us whether p is a valid pointer.
5260 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5261 not validate p in that case. */
5263 if (emacs_pipe (fd
) == 0)
5265 bool valid
= emacs_write (fd
[1], p
, 16) == 16;
5266 emacs_close (fd
[1]);
5267 emacs_close (fd
[0]);
5275 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5276 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5277 cannot validate OBJ. This function can be quite slow, so its primary
5278 use is the manual debugging. The only exception is print_object, where
5279 we use it to check whether the memory referenced by the pointer of
5280 Lisp_Save_Value object contains valid objects. */
5283 valid_lisp_object_p (Lisp_Object obj
)
5288 void *p
= XPNTR (obj
);
5292 if (SYMBOLP (obj
) && c_symbol_p (p
))
5293 return ((char *) p
- (char *) lispsym
) % sizeof lispsym
[0] == 0;
5295 if (p
== &buffer_defaults
|| p
== &buffer_local_symbols
)
5298 struct mem_node
*m
= mem_find (p
);
5302 int valid
= valid_pointer_p (p
);
5314 case MEM_TYPE_NON_LISP
:
5315 case MEM_TYPE_SPARE
:
5318 case MEM_TYPE_BUFFER
:
5319 return live_buffer_p (m
, p
) ? 1 : 2;
5322 return live_cons_p (m
, p
);
5324 case MEM_TYPE_STRING
:
5325 return live_string_p (m
, p
);
5328 return live_misc_p (m
, p
);
5330 case MEM_TYPE_SYMBOL
:
5331 return live_symbol_p (m
, p
);
5333 case MEM_TYPE_FLOAT
:
5334 return live_float_p (m
, p
);
5336 case MEM_TYPE_VECTORLIKE
:
5337 case MEM_TYPE_VECTOR_BLOCK
:
5338 return live_vector_p (m
, p
);
5347 /***********************************************************************
5348 Pure Storage Management
5349 ***********************************************************************/
5351 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5352 pointer to it. TYPE is the Lisp type for which the memory is
5353 allocated. TYPE < 0 means it's not used for a Lisp object. */
5356 pure_alloc (size_t size
, int type
)
5363 /* Allocate space for a Lisp object from the beginning of the free
5364 space with taking account of alignment. */
5365 result
= pointer_align (purebeg
+ pure_bytes_used_lisp
, GCALIGNMENT
);
5366 pure_bytes_used_lisp
= ((char *)result
- (char *)purebeg
) + size
;
5370 /* Allocate space for a non-Lisp object from the end of the free
5372 pure_bytes_used_non_lisp
+= size
;
5373 result
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5375 pure_bytes_used
= pure_bytes_used_lisp
+ pure_bytes_used_non_lisp
;
5377 if (pure_bytes_used
<= pure_size
)
5380 /* Don't allocate a large amount here,
5381 because it might get mmap'd and then its address
5382 might not be usable. */
5383 purebeg
= xmalloc (10000);
5385 pure_bytes_used_before_overflow
+= pure_bytes_used
- size
;
5386 pure_bytes_used
= 0;
5387 pure_bytes_used_lisp
= pure_bytes_used_non_lisp
= 0;
5394 /* Print a warning if PURESIZE is too small. */
5397 check_pure_size (void)
5399 if (pure_bytes_used_before_overflow
)
5400 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI
"d"
5402 pure_bytes_used
+ pure_bytes_used_before_overflow
);
5407 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5408 the non-Lisp data pool of the pure storage, and return its start
5409 address. Return NULL if not found. */
5412 find_string_data_in_pure (const char *data
, ptrdiff_t nbytes
)
5415 ptrdiff_t skip
, bm_skip
[256], last_char_skip
, infinity
, start
, start_max
;
5416 const unsigned char *p
;
5419 if (pure_bytes_used_non_lisp
<= nbytes
)
5422 /* Set up the Boyer-Moore table. */
5424 for (i
= 0; i
< 256; i
++)
5427 p
= (const unsigned char *) data
;
5429 bm_skip
[*p
++] = skip
;
5431 last_char_skip
= bm_skip
['\0'];
5433 non_lisp_beg
= purebeg
+ pure_size
- pure_bytes_used_non_lisp
;
5434 start_max
= pure_bytes_used_non_lisp
- (nbytes
+ 1);
5436 /* See the comments in the function `boyer_moore' (search.c) for the
5437 use of `infinity'. */
5438 infinity
= pure_bytes_used_non_lisp
+ 1;
5439 bm_skip
['\0'] = infinity
;
5441 p
= (const unsigned char *) non_lisp_beg
+ nbytes
;
5445 /* Check the last character (== '\0'). */
5448 start
+= bm_skip
[*(p
+ start
)];
5450 while (start
<= start_max
);
5452 if (start
< infinity
)
5453 /* Couldn't find the last character. */
5456 /* No less than `infinity' means we could find the last
5457 character at `p[start - infinity]'. */
5460 /* Check the remaining characters. */
5461 if (memcmp (data
, non_lisp_beg
+ start
, nbytes
) == 0)
5463 return non_lisp_beg
+ start
;
5465 start
+= last_char_skip
;
5467 while (start
<= start_max
);
5473 /* Return a string allocated in pure space. DATA is a buffer holding
5474 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5475 means make the result string multibyte.
5477 Must get an error if pure storage is full, since if it cannot hold
5478 a large string it may be able to hold conses that point to that
5479 string; then the string is not protected from gc. */
5482 make_pure_string (const char *data
,
5483 ptrdiff_t nchars
, ptrdiff_t nbytes
, bool multibyte
)
5486 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5487 s
->data
= (unsigned char *) find_string_data_in_pure (data
, nbytes
);
5488 if (s
->data
== NULL
)
5490 s
->data
= pure_alloc (nbytes
+ 1, -1);
5491 memcpy (s
->data
, data
, nbytes
);
5492 s
->data
[nbytes
] = '\0';
5495 s
->size_byte
= multibyte
? nbytes
: -1;
5496 s
->intervals
= NULL
;
5497 XSETSTRING (string
, s
);
5501 /* Return a string allocated in pure space. Do not
5502 allocate the string data, just point to DATA. */
5505 make_pure_c_string (const char *data
, ptrdiff_t nchars
)
5508 struct Lisp_String
*s
= pure_alloc (sizeof *s
, Lisp_String
);
5511 s
->data
= (unsigned char *) data
;
5512 s
->intervals
= NULL
;
5513 XSETSTRING (string
, s
);
5517 static Lisp_Object
purecopy (Lisp_Object obj
);
5519 /* Return a cons allocated from pure space. Give it pure copies
5520 of CAR as car and CDR as cdr. */
5523 pure_cons (Lisp_Object car
, Lisp_Object cdr
)
5526 struct Lisp_Cons
*p
= pure_alloc (sizeof *p
, Lisp_Cons
);
5528 XSETCAR (new, purecopy (car
));
5529 XSETCDR (new, purecopy (cdr
));
5534 /* Value is a float object with value NUM allocated from pure space. */
5537 make_pure_float (double num
)
5540 struct Lisp_Float
*p
= pure_alloc (sizeof *p
, Lisp_Float
);
5542 XFLOAT_INIT (new, num
);
5547 /* Return a vector with room for LEN Lisp_Objects allocated from
5551 make_pure_vector (ptrdiff_t len
)
5554 size_t size
= header_size
+ len
* word_size
;
5555 struct Lisp_Vector
*p
= pure_alloc (size
, Lisp_Vectorlike
);
5556 XSETVECTOR (new, p
);
5557 XVECTOR (new)->header
.size
= len
;
5561 /* Copy all contents and parameters of TABLE to a new table allocated
5562 from pure space, return the purified table. */
5563 static struct Lisp_Hash_Table
*
5564 purecopy_hash_table (struct Lisp_Hash_Table
*table
)
5566 eassert (NILP (table
->weak
));
5567 eassert (table
->pure
);
5569 struct Lisp_Hash_Table
*pure
= pure_alloc (sizeof *pure
, Lisp_Vectorlike
);
5570 struct hash_table_test pure_test
= table
->test
;
5572 /* Purecopy the hash table test. */
5573 pure_test
.name
= purecopy (table
->test
.name
);
5574 pure_test
.user_hash_function
= purecopy (table
->test
.user_hash_function
);
5575 pure_test
.user_cmp_function
= purecopy (table
->test
.user_cmp_function
);
5577 pure
->header
= table
->header
;
5578 pure
->weak
= purecopy (Qnil
);
5579 pure
->hash
= purecopy (table
->hash
);
5580 pure
->next
= purecopy (table
->next
);
5581 pure
->index
= purecopy (table
->index
);
5582 pure
->count
= table
->count
;
5583 pure
->next_free
= table
->next_free
;
5584 pure
->pure
= table
->pure
;
5585 pure
->rehash_threshold
= table
->rehash_threshold
;
5586 pure
->rehash_size
= table
->rehash_size
;
5587 pure
->key_and_value
= purecopy (table
->key_and_value
);
5588 pure
->test
= pure_test
;
5593 DEFUN ("purecopy", Fpurecopy
, Spurecopy
, 1, 1, 0,
5594 doc
: /* Make a copy of object OBJ in pure storage.
5595 Recursively copies contents of vectors and cons cells.
5596 Does not copy symbols. Copies strings without text properties. */)
5597 (register Lisp_Object obj
)
5599 if (NILP (Vpurify_flag
))
5601 else if (MARKERP (obj
) || OVERLAYP (obj
) || SYMBOLP (obj
))
5602 /* Can't purify those. */
5605 return purecopy (obj
);
5608 /* Pinned objects are marked before every GC cycle. */
5609 static struct pinned_object
5612 struct pinned_object
*next
;
5616 purecopy (Lisp_Object obj
)
5619 || (! SYMBOLP (obj
) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj
)))
5621 return obj
; /* Already pure. */
5623 if (STRINGP (obj
) && XSTRING (obj
)->intervals
)
5624 message_with_string ("Dropping text-properties while making string `%s' pure",
5627 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5629 Lisp_Object tmp
= Fgethash (obj
, Vpurify_flag
, Qnil
);
5635 obj
= pure_cons (XCAR (obj
), XCDR (obj
));
5636 else if (FLOATP (obj
))
5637 obj
= make_pure_float (XFLOAT_DATA (obj
));
5638 else if (STRINGP (obj
))
5639 obj
= make_pure_string (SSDATA (obj
), SCHARS (obj
),
5641 STRING_MULTIBYTE (obj
));
5642 else if (HASH_TABLE_P (obj
))
5644 struct Lisp_Hash_Table
*table
= XHASH_TABLE (obj
);
5645 /* Do not purify hash tables which haven't been defined with
5646 :purecopy as non-nil or are weak - they aren't guaranteed to
5648 if (!NILP (table
->weak
) || !table
->pure
)
5650 /* Instead, add the hash table to the list of pinned objects,
5651 so that it will be marked during GC. */
5652 struct pinned_object
*o
= xmalloc (sizeof *o
);
5654 o
->next
= pinned_objects
;
5656 return obj
; /* Don't hash cons it. */
5659 struct Lisp_Hash_Table
*h
= purecopy_hash_table (table
);
5660 XSET_HASH_TABLE (obj
, h
);
5662 else if (COMPILEDP (obj
) || VECTORP (obj
) || RECORDP (obj
))
5664 struct Lisp_Vector
*objp
= XVECTOR (obj
);
5665 ptrdiff_t nbytes
= vector_nbytes (objp
);
5666 struct Lisp_Vector
*vec
= pure_alloc (nbytes
, Lisp_Vectorlike
);
5667 register ptrdiff_t i
;
5668 ptrdiff_t size
= ASIZE (obj
);
5669 if (size
& PSEUDOVECTOR_FLAG
)
5670 size
&= PSEUDOVECTOR_SIZE_MASK
;
5671 memcpy (vec
, objp
, nbytes
);
5672 for (i
= 0; i
< size
; i
++)
5673 vec
->contents
[i
] = purecopy (vec
->contents
[i
]);
5674 XSETVECTOR (obj
, vec
);
5676 else if (SYMBOLP (obj
))
5678 if (!XSYMBOL (obj
)->pinned
&& !c_symbol_p (XSYMBOL (obj
)))
5679 { /* We can't purify them, but they appear in many pure objects.
5680 Mark them as `pinned' so we know to mark them at every GC cycle. */
5681 XSYMBOL (obj
)->pinned
= true;
5682 symbol_block_pinned
= symbol_block
;
5684 /* Don't hash-cons it. */
5689 AUTO_STRING (fmt
, "Don't know how to purify: %S");
5690 Fsignal (Qerror
, list1 (CALLN (Fformat
, fmt
, obj
)));
5693 if (HASH_TABLE_P (Vpurify_flag
)) /* Hash consing. */
5694 Fputhash (obj
, obj
, Vpurify_flag
);
5701 /***********************************************************************
5703 ***********************************************************************/
5705 /* Put an entry in staticvec, pointing at the variable with address
5709 staticpro (Lisp_Object
*varaddress
)
5711 if (staticidx
>= NSTATICS
)
5712 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5713 staticvec
[staticidx
++] = varaddress
;
5717 /***********************************************************************
5719 ***********************************************************************/
5721 /* Temporarily prevent garbage collection. */
5724 inhibit_garbage_collection (void)
5726 ptrdiff_t count
= SPECPDL_INDEX ();
5728 specbind (Qgc_cons_threshold
, make_number (MOST_POSITIVE_FIXNUM
));
5732 /* Used to avoid possible overflows when
5733 converting from C to Lisp integers. */
5736 bounded_number (EMACS_INT number
)
5738 return make_number (min (MOST_POSITIVE_FIXNUM
, number
));
5741 /* Calculate total bytes of live objects. */
5744 total_bytes_of_live_objects (void)
5747 tot
+= total_conses
* sizeof (struct Lisp_Cons
);
5748 tot
+= total_symbols
* sizeof (struct Lisp_Symbol
);
5749 tot
+= total_markers
* sizeof (union Lisp_Misc
);
5750 tot
+= total_string_bytes
;
5751 tot
+= total_vector_slots
* word_size
;
5752 tot
+= total_floats
* sizeof (struct Lisp_Float
);
5753 tot
+= total_intervals
* sizeof (struct interval
);
5754 tot
+= total_strings
* sizeof (struct Lisp_String
);
5758 #ifdef HAVE_WINDOW_SYSTEM
5760 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5761 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5764 compact_font_cache_entry (Lisp_Object entry
)
5766 Lisp_Object tail
, *prev
= &entry
;
5768 for (tail
= entry
; CONSP (tail
); tail
= XCDR (tail
))
5771 Lisp_Object obj
= XCAR (tail
);
5773 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5774 if (CONSP (obj
) && GC_FONT_SPEC_P (XCAR (obj
))
5775 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj
)))
5776 /* Don't use VECTORP here, as that calls ASIZE, which could
5777 hit assertion violation during GC. */
5778 && (VECTORLIKEP (XCDR (obj
))
5779 && ! (gc_asize (XCDR (obj
)) & PSEUDOVECTOR_FLAG
)))
5781 ptrdiff_t i
, size
= gc_asize (XCDR (obj
));
5782 Lisp_Object obj_cdr
= XCDR (obj
);
5784 /* If font-spec is not marked, most likely all font-entities
5785 are not marked too. But we must be sure that nothing is
5786 marked within OBJ before we really drop it. */
5787 for (i
= 0; i
< size
; i
++)
5789 Lisp_Object objlist
;
5791 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr
, i
))))
5794 objlist
= AREF (AREF (obj_cdr
, i
), FONT_OBJLIST_INDEX
);
5795 for (; CONSP (objlist
); objlist
= XCDR (objlist
))
5797 Lisp_Object val
= XCAR (objlist
);
5798 struct font
*font
= GC_XFONT_OBJECT (val
);
5800 if (!NILP (AREF (val
, FONT_TYPE_INDEX
))
5801 && VECTOR_MARKED_P(font
))
5804 if (CONSP (objlist
))
5806 /* Found a marked font, bail out. */
5813 /* No marked fonts were found, so this entire font
5814 entity can be dropped. */
5819 *prev
= XCDR (tail
);
5821 prev
= xcdr_addr (tail
);
5826 /* Compact font caches on all terminals and mark
5827 everything which is still here after compaction. */
5830 compact_font_caches (void)
5834 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
5836 Lisp_Object cache
= TERMINAL_FONT_CACHE (t
);
5837 /* Inhibit compacting the caches if the user so wishes. Some of
5838 the users don't mind a larger memory footprint, but do mind
5839 slower redisplay. */
5840 if (!inhibit_compacting_font_caches
5845 for (entry
= XCDR (cache
); CONSP (entry
); entry
= XCDR (entry
))
5846 XSETCAR (entry
, compact_font_cache_entry (XCAR (entry
)));
5848 mark_object (cache
);
5852 #else /* not HAVE_WINDOW_SYSTEM */
5854 #define compact_font_caches() (void)(0)
5856 #endif /* HAVE_WINDOW_SYSTEM */
5858 /* Remove (MARKER . DATA) entries with unmarked MARKER
5859 from buffer undo LIST and return changed list. */
5862 compact_undo_list (Lisp_Object list
)
5864 Lisp_Object tail
, *prev
= &list
;
5866 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
5868 if (CONSP (XCAR (tail
))
5869 && MARKERP (XCAR (XCAR (tail
)))
5870 && !XMARKER (XCAR (XCAR (tail
)))->gcmarkbit
)
5871 *prev
= XCDR (tail
);
5873 prev
= xcdr_addr (tail
);
5879 mark_pinned_objects (void)
5881 for (struct pinned_object
*pobj
= pinned_objects
; pobj
; pobj
= pobj
->next
)
5882 mark_object (pobj
->object
);
5886 mark_pinned_symbols (void)
5888 struct symbol_block
*sblk
;
5889 int lim
= (symbol_block_pinned
== symbol_block
5890 ? symbol_block_index
: SYMBOL_BLOCK_SIZE
);
5892 for (sblk
= symbol_block_pinned
; sblk
; sblk
= sblk
->next
)
5894 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
, *end
= sym
+ lim
;
5895 for (; sym
< end
; ++sym
)
5897 mark_object (make_lisp_symbol (&sym
->s
));
5899 lim
= SYMBOL_BLOCK_SIZE
;
5903 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5904 separate function so that we could limit mark_stack in searching
5905 the stack frames below this function, thus avoiding the rare cases
5906 where mark_stack finds values that look like live Lisp objects on
5907 portions of stack that couldn't possibly contain such live objects.
5908 For more details of this, see the discussion at
5909 https://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5911 garbage_collect_1 (void *end
)
5913 struct buffer
*nextb
;
5914 char stack_top_variable
;
5917 ptrdiff_t count
= SPECPDL_INDEX ();
5918 struct timespec start
;
5919 Lisp_Object retval
= Qnil
;
5920 size_t tot_before
= 0;
5922 /* Can't GC if pure storage overflowed because we can't determine
5923 if something is a pure object or not. */
5924 if (pure_bytes_used_before_overflow
)
5927 /* Record this function, so it appears on the profiler's backtraces. */
5928 record_in_backtrace (QAutomatic_GC
, 0, 0);
5932 /* Don't keep undo information around forever.
5933 Do this early on, so it is no problem if the user quits. */
5934 FOR_EACH_BUFFER (nextb
)
5935 compact_buffer (nextb
);
5937 if (profiler_memory_running
)
5938 tot_before
= total_bytes_of_live_objects ();
5940 start
= current_timespec ();
5942 /* In case user calls debug_print during GC,
5943 don't let that cause a recursive GC. */
5944 consing_since_gc
= 0;
5946 /* Save what's currently displayed in the echo area. Don't do that
5947 if we are GC'ing because we've run out of memory, since
5948 push_message will cons, and we might have no memory for that. */
5949 if (NILP (Vmemory_full
))
5951 message_p
= push_message ();
5952 record_unwind_protect_void (pop_message_unwind
);
5957 /* Save a copy of the contents of the stack, for debugging. */
5958 #if MAX_SAVE_STACK > 0
5959 if (NILP (Vpurify_flag
))
5962 ptrdiff_t stack_size
;
5963 if (&stack_top_variable
< stack_bottom
)
5965 stack
= &stack_top_variable
;
5966 stack_size
= stack_bottom
- &stack_top_variable
;
5970 stack
= stack_bottom
;
5971 stack_size
= &stack_top_variable
- stack_bottom
;
5973 if (stack_size
<= MAX_SAVE_STACK
)
5975 if (stack_copy_size
< stack_size
)
5977 stack_copy
= xrealloc (stack_copy
, stack_size
);
5978 stack_copy_size
= stack_size
;
5980 no_sanitize_memcpy (stack_copy
, stack
, stack_size
);
5983 #endif /* MAX_SAVE_STACK > 0 */
5985 if (garbage_collection_messages
)
5986 message1_nolog ("Garbage collecting...");
5990 shrink_regexp_cache ();
5994 /* Mark all the special slots that serve as the roots of accessibility. */
5996 mark_buffer (&buffer_defaults
);
5997 mark_buffer (&buffer_local_symbols
);
5999 for (i
= 0; i
< ARRAYELTS (lispsym
); i
++)
6000 mark_object (builtin_lisp_symbol (i
));
6002 for (i
= 0; i
< staticidx
; i
++)
6003 mark_object (*staticvec
[i
]);
6005 mark_pinned_objects ();
6006 mark_pinned_symbols ();
6015 #ifdef HAVE_WINDOW_SYSTEM
6016 mark_fringe_data ();
6023 /* Everything is now marked, except for the data in font caches,
6024 undo lists, and finalizers. The first two are compacted by
6025 removing an items which aren't reachable otherwise. */
6027 compact_font_caches ();
6029 FOR_EACH_BUFFER (nextb
)
6031 if (!EQ (BVAR (nextb
, undo_list
), Qt
))
6032 bset_undo_list (nextb
, compact_undo_list (BVAR (nextb
, undo_list
)));
6033 /* Now that we have stripped the elements that need not be
6034 in the undo_list any more, we can finally mark the list. */
6035 mark_object (BVAR (nextb
, undo_list
));
6038 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
6039 to doomed_finalizers so we can run their associated functions
6040 after GC. It's important to scan finalizers at this stage so
6041 that we can be sure that unmarked finalizers are really
6042 unreachable except for references from their associated functions
6043 and from other finalizers. */
6045 queue_doomed_finalizers (&doomed_finalizers
, &finalizers
);
6046 mark_finalizer_list (&doomed_finalizers
);
6050 /* Clear the mark bits that we set in certain root slots. */
6051 VECTOR_UNMARK (&buffer_defaults
);
6052 VECTOR_UNMARK (&buffer_local_symbols
);
6060 consing_since_gc
= 0;
6061 if (gc_cons_threshold
< GC_DEFAULT_THRESHOLD
/ 10)
6062 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
/ 10;
6064 gc_relative_threshold
= 0;
6065 if (FLOATP (Vgc_cons_percentage
))
6066 { /* Set gc_cons_combined_threshold. */
6067 double tot
= total_bytes_of_live_objects ();
6069 tot
*= XFLOAT_DATA (Vgc_cons_percentage
);
6072 if (tot
< TYPE_MAXIMUM (EMACS_INT
))
6073 gc_relative_threshold
= tot
;
6075 gc_relative_threshold
= TYPE_MAXIMUM (EMACS_INT
);
6079 if (garbage_collection_messages
&& NILP (Vmemory_full
))
6081 if (message_p
|| minibuf_level
> 0)
6084 message1_nolog ("Garbage collecting...done");
6087 unbind_to (count
, Qnil
);
6089 Lisp_Object total
[] = {
6090 list4 (Qconses
, make_number (sizeof (struct Lisp_Cons
)),
6091 bounded_number (total_conses
),
6092 bounded_number (total_free_conses
)),
6093 list4 (Qsymbols
, make_number (sizeof (struct Lisp_Symbol
)),
6094 bounded_number (total_symbols
),
6095 bounded_number (total_free_symbols
)),
6096 list4 (Qmiscs
, make_number (sizeof (union Lisp_Misc
)),
6097 bounded_number (total_markers
),
6098 bounded_number (total_free_markers
)),
6099 list4 (Qstrings
, make_number (sizeof (struct Lisp_String
)),
6100 bounded_number (total_strings
),
6101 bounded_number (total_free_strings
)),
6102 list3 (Qstring_bytes
, make_number (1),
6103 bounded_number (total_string_bytes
)),
6105 make_number (header_size
+ sizeof (Lisp_Object
)),
6106 bounded_number (total_vectors
)),
6107 list4 (Qvector_slots
, make_number (word_size
),
6108 bounded_number (total_vector_slots
),
6109 bounded_number (total_free_vector_slots
)),
6110 list4 (Qfloats
, make_number (sizeof (struct Lisp_Float
)),
6111 bounded_number (total_floats
),
6112 bounded_number (total_free_floats
)),
6113 list4 (Qintervals
, make_number (sizeof (struct interval
)),
6114 bounded_number (total_intervals
),
6115 bounded_number (total_free_intervals
)),
6116 list3 (Qbuffers
, make_number (sizeof (struct buffer
)),
6117 bounded_number (total_buffers
)),
6119 #ifdef DOUG_LEA_MALLOC
6120 list4 (Qheap
, make_number (1024),
6121 bounded_number ((mallinfo ().uordblks
+ 1023) >> 10),
6122 bounded_number ((mallinfo ().fordblks
+ 1023) >> 10)),
6125 retval
= CALLMANY (Flist
, total
);
6127 /* GC is complete: now we can run our finalizer callbacks. */
6128 run_finalizers (&doomed_finalizers
);
6130 if (!NILP (Vpost_gc_hook
))
6132 ptrdiff_t gc_count
= inhibit_garbage_collection ();
6133 safe_run_hooks (Qpost_gc_hook
);
6134 unbind_to (gc_count
, Qnil
);
6137 /* Accumulate statistics. */
6138 if (FLOATP (Vgc_elapsed
))
6140 struct timespec since_start
= timespec_sub (current_timespec (), start
);
6141 Vgc_elapsed
= make_float (XFLOAT_DATA (Vgc_elapsed
)
6142 + timespectod (since_start
));
6147 /* Collect profiling data. */
6148 if (profiler_memory_running
)
6151 size_t tot_after
= total_bytes_of_live_objects ();
6152 if (tot_before
> tot_after
)
6153 swept
= tot_before
- tot_after
;
6154 malloc_probe (swept
);
6160 DEFUN ("garbage-collect", Fgarbage_collect
, Sgarbage_collect
, 0, 0, "",
6161 doc
: /* Reclaim storage for Lisp objects no longer needed.
6162 Garbage collection happens automatically if you cons more than
6163 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
6164 `garbage-collect' normally returns a list with info on amount of space in use,
6165 where each entry has the form (NAME SIZE USED FREE), where:
6166 - NAME is a symbol describing the kind of objects this entry represents,
6167 - SIZE is the number of bytes used by each one,
6168 - USED is the number of those objects that were found live in the heap,
6169 - FREE is the number of those objects that are not live but that Emacs
6170 keeps around for future allocations (maybe because it does not know how
6171 to return them to the OS).
6172 However, if there was overflow in pure space, `garbage-collect'
6173 returns nil, because real GC can't be done.
6174 See Info node `(elisp)Garbage Collection'. */
6175 attributes
: noinline
)
6179 SET_STACK_TOP_ADDRESS (&end
);
6180 return garbage_collect_1 (end
);
6183 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
6184 only interesting objects referenced from glyphs are strings. */
6187 mark_glyph_matrix (struct glyph_matrix
*matrix
)
6189 struct glyph_row
*row
= matrix
->rows
;
6190 struct glyph_row
*end
= row
+ matrix
->nrows
;
6192 for (; row
< end
; ++row
)
6196 for (area
= LEFT_MARGIN_AREA
; area
< LAST_AREA
; ++area
)
6198 struct glyph
*glyph
= row
->glyphs
[area
];
6199 struct glyph
*end_glyph
= glyph
+ row
->used
[area
];
6201 for (; glyph
< end_glyph
; ++glyph
)
6202 if (STRINGP (glyph
->object
)
6203 && !STRING_MARKED_P (XSTRING (glyph
->object
)))
6204 mark_object (glyph
->object
);
6209 /* Mark reference to a Lisp_Object.
6210 If the object referred to has not been seen yet, recursively mark
6211 all the references contained in it. */
6213 #define LAST_MARKED_SIZE 500
6214 Lisp_Object last_marked
[LAST_MARKED_SIZE
] EXTERNALLY_VISIBLE
;
6215 static int last_marked_index
;
6217 /* For debugging--call abort when we cdr down this many
6218 links of a list, in mark_object. In debugging,
6219 the call to abort will hit a breakpoint.
6220 Normally this is zero and the check never goes off. */
6221 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE
;
6224 mark_vectorlike (struct Lisp_Vector
*ptr
)
6226 ptrdiff_t size
= ptr
->header
.size
;
6229 eassert (!VECTOR_MARKED_P (ptr
));
6230 VECTOR_MARK (ptr
); /* Else mark it. */
6231 if (size
& PSEUDOVECTOR_FLAG
)
6232 size
&= PSEUDOVECTOR_SIZE_MASK
;
6234 /* Note that this size is not the memory-footprint size, but only
6235 the number of Lisp_Object fields that we should trace.
6236 The distinction is used e.g. by Lisp_Process which places extra
6237 non-Lisp_Object fields at the end of the structure... */
6238 for (i
= 0; i
< size
; i
++) /* ...and then mark its elements. */
6239 mark_object (ptr
->contents
[i
]);
6242 /* Like mark_vectorlike but optimized for char-tables (and
6243 sub-char-tables) assuming that the contents are mostly integers or
6247 mark_char_table (struct Lisp_Vector
*ptr
, enum pvec_type pvectype
)
6249 int size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
6250 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6251 int i
, idx
= (pvectype
== PVEC_SUB_CHAR_TABLE
? SUB_CHAR_TABLE_OFFSET
: 0);
6253 eassert (!VECTOR_MARKED_P (ptr
));
6255 for (i
= idx
; i
< size
; i
++)
6257 Lisp_Object val
= ptr
->contents
[i
];
6259 if (INTEGERP (val
) || (SYMBOLP (val
) && XSYMBOL (val
)->gcmarkbit
))
6261 if (SUB_CHAR_TABLE_P (val
))
6263 if (! VECTOR_MARKED_P (XVECTOR (val
)))
6264 mark_char_table (XVECTOR (val
), PVEC_SUB_CHAR_TABLE
);
6271 NO_INLINE
/* To reduce stack depth in mark_object. */
6273 mark_compiled (struct Lisp_Vector
*ptr
)
6275 int i
, size
= ptr
->header
.size
& PSEUDOVECTOR_SIZE_MASK
;
6278 for (i
= 0; i
< size
; i
++)
6279 if (i
!= COMPILED_CONSTANTS
)
6280 mark_object (ptr
->contents
[i
]);
6281 return size
> COMPILED_CONSTANTS
? ptr
->contents
[COMPILED_CONSTANTS
] : Qnil
;
6284 /* Mark the chain of overlays starting at PTR. */
6287 mark_overlay (struct Lisp_Overlay
*ptr
)
6289 for (; ptr
&& !ptr
->gcmarkbit
; ptr
= ptr
->next
)
6292 /* These two are always markers and can be marked fast. */
6293 XMARKER (ptr
->start
)->gcmarkbit
= 1;
6294 XMARKER (ptr
->end
)->gcmarkbit
= 1;
6295 mark_object (ptr
->plist
);
6299 /* Mark Lisp_Objects and special pointers in BUFFER. */
6302 mark_buffer (struct buffer
*buffer
)
6304 /* This is handled much like other pseudovectors... */
6305 mark_vectorlike ((struct Lisp_Vector
*) buffer
);
6307 /* ...but there are some buffer-specific things. */
6309 MARK_INTERVAL_TREE (buffer_intervals (buffer
));
6311 /* For now, we just don't mark the undo_list. It's done later in
6312 a special way just before the sweep phase, and after stripping
6313 some of its elements that are not needed any more. */
6315 mark_overlay (buffer
->overlays_before
);
6316 mark_overlay (buffer
->overlays_after
);
6318 /* If this is an indirect buffer, mark its base buffer. */
6319 if (buffer
->base_buffer
&& !VECTOR_MARKED_P (buffer
->base_buffer
))
6320 mark_buffer (buffer
->base_buffer
);
6323 /* Mark Lisp faces in the face cache C. */
6325 NO_INLINE
/* To reduce stack depth in mark_object. */
6327 mark_face_cache (struct face_cache
*c
)
6332 for (i
= 0; i
< c
->used
; ++i
)
6334 struct face
*face
= FACE_FROM_ID_OR_NULL (c
->f
, i
);
6338 if (face
->font
&& !VECTOR_MARKED_P (face
->font
))
6339 mark_vectorlike ((struct Lisp_Vector
*) face
->font
);
6341 for (j
= 0; j
< LFACE_VECTOR_SIZE
; ++j
)
6342 mark_object (face
->lface
[j
]);
6348 NO_INLINE
/* To reduce stack depth in mark_object. */
6350 mark_localized_symbol (struct Lisp_Symbol
*ptr
)
6352 struct Lisp_Buffer_Local_Value
*blv
= SYMBOL_BLV (ptr
);
6353 Lisp_Object where
= blv
->where
;
6354 /* If the value is set up for a killed buffer or deleted
6355 frame, restore its global binding. If the value is
6356 forwarded to a C variable, either it's not a Lisp_Object
6357 var, or it's staticpro'd already. */
6358 if ((BUFFERP (where
) && !BUFFER_LIVE_P (XBUFFER (where
)))
6359 || (FRAMEP (where
) && !FRAME_LIVE_P (XFRAME (where
))))
6360 swap_in_global_binding (ptr
);
6361 mark_object (blv
->where
);
6362 mark_object (blv
->valcell
);
6363 mark_object (blv
->defcell
);
6366 NO_INLINE
/* To reduce stack depth in mark_object. */
6368 mark_save_value (struct Lisp_Save_Value
*ptr
)
6370 /* If `save_type' is zero, `data[0].pointer' is the address
6371 of a memory area containing `data[1].integer' potential
6373 if (ptr
->save_type
== SAVE_TYPE_MEMORY
)
6375 Lisp_Object
*p
= ptr
->data
[0].pointer
;
6377 for (nelt
= ptr
->data
[1].integer
; nelt
> 0; nelt
--, p
++)
6378 mark_maybe_object (*p
);
6382 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6384 for (i
= 0; i
< SAVE_VALUE_SLOTS
; i
++)
6385 if (save_type (ptr
, i
) == SAVE_OBJECT
)
6386 mark_object (ptr
->data
[i
].object
);
6390 /* Remove killed buffers or items whose car is a killed buffer from
6391 LIST, and mark other items. Return changed LIST, which is marked. */
6394 mark_discard_killed_buffers (Lisp_Object list
)
6396 Lisp_Object tail
, *prev
= &list
;
6398 for (tail
= list
; CONSP (tail
) && !CONS_MARKED_P (XCONS (tail
));
6401 Lisp_Object tem
= XCAR (tail
);
6404 if (BUFFERP (tem
) && !BUFFER_LIVE_P (XBUFFER (tem
)))
6405 *prev
= XCDR (tail
);
6408 CONS_MARK (XCONS (tail
));
6409 mark_object (XCAR (tail
));
6410 prev
= xcdr_addr (tail
);
6417 /* Determine type of generic Lisp_Object and mark it accordingly.
6419 This function implements a straightforward depth-first marking
6420 algorithm and so the recursion depth may be very high (a few
6421 tens of thousands is not uncommon). To minimize stack usage,
6422 a few cold paths are moved out to NO_INLINE functions above.
6423 In general, inlining them doesn't help you to gain more speed. */
6426 mark_object (Lisp_Object arg
)
6428 register Lisp_Object obj
;
6430 #if GC_CHECK_MARKED_OBJECTS
6433 ptrdiff_t cdr_count
= 0;
6442 last_marked
[last_marked_index
++] = obj
;
6443 if (last_marked_index
== LAST_MARKED_SIZE
)
6444 last_marked_index
= 0;
6446 /* Perform some sanity checks on the objects marked here. Abort if
6447 we encounter an object we know is bogus. This increases GC time
6449 #if GC_CHECK_MARKED_OBJECTS
6451 /* Check that the object pointed to by PO is known to be a Lisp
6452 structure allocated from the heap. */
6453 #define CHECK_ALLOCATED() \
6455 m = mem_find (po); \
6460 /* Check that the object pointed to by PO is live, using predicate
6462 #define CHECK_LIVE(LIVEP) \
6464 if (!LIVEP (m, po)) \
6468 /* Check both of the above conditions, for non-symbols. */
6469 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6471 CHECK_ALLOCATED (); \
6472 CHECK_LIVE (LIVEP); \
6475 /* Check both of the above conditions, for symbols. */
6476 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6478 if (!c_symbol_p (ptr)) \
6480 CHECK_ALLOCATED (); \
6481 CHECK_LIVE (live_symbol_p); \
6485 #else /* not GC_CHECK_MARKED_OBJECTS */
6487 #define CHECK_LIVE(LIVEP) ((void) 0)
6488 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6489 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6491 #endif /* not GC_CHECK_MARKED_OBJECTS */
6493 switch (XTYPE (obj
))
6497 register struct Lisp_String
*ptr
= XSTRING (obj
);
6498 if (STRING_MARKED_P (ptr
))
6500 CHECK_ALLOCATED_AND_LIVE (live_string_p
);
6502 MARK_INTERVAL_TREE (ptr
->intervals
);
6503 #ifdef GC_CHECK_STRING_BYTES
6504 /* Check that the string size recorded in the string is the
6505 same as the one recorded in the sdata structure. */
6507 #endif /* GC_CHECK_STRING_BYTES */
6511 case Lisp_Vectorlike
:
6513 register struct Lisp_Vector
*ptr
= XVECTOR (obj
);
6515 if (VECTOR_MARKED_P (ptr
))
6518 #if GC_CHECK_MARKED_OBJECTS
6520 if (m
== MEM_NIL
&& !SUBRP (obj
) && !main_thread_p (po
))
6522 #endif /* GC_CHECK_MARKED_OBJECTS */
6524 enum pvec_type pvectype
6525 = PSEUDOVECTOR_TYPE (ptr
);
6527 if (pvectype
!= PVEC_SUBR
6528 && pvectype
!= PVEC_BUFFER
6529 && !main_thread_p (po
))
6530 CHECK_LIVE (live_vector_p
);
6535 #if GC_CHECK_MARKED_OBJECTS
6544 #endif /* GC_CHECK_MARKED_OBJECTS */
6545 mark_buffer ((struct buffer
*) ptr
);
6549 /* Although we could treat this just like a vector, mark_compiled
6550 returns the COMPILED_CONSTANTS element, which is marked at the
6551 next iteration of goto-loop here. This is done to avoid a few
6552 recursive calls to mark_object. */
6553 obj
= mark_compiled (ptr
);
6560 struct frame
*f
= (struct frame
*) ptr
;
6562 mark_vectorlike (ptr
);
6563 mark_face_cache (f
->face_cache
);
6564 #ifdef HAVE_WINDOW_SYSTEM
6565 if (FRAME_WINDOW_P (f
) && FRAME_X_OUTPUT (f
))
6567 struct font
*font
= FRAME_FONT (f
);
6569 if (font
&& !VECTOR_MARKED_P (font
))
6570 mark_vectorlike ((struct Lisp_Vector
*) font
);
6578 struct window
*w
= (struct window
*) ptr
;
6580 mark_vectorlike (ptr
);
6582 /* Mark glyph matrices, if any. Marking window
6583 matrices is sufficient because frame matrices
6584 use the same glyph memory. */
6585 if (w
->current_matrix
)
6587 mark_glyph_matrix (w
->current_matrix
);
6588 mark_glyph_matrix (w
->desired_matrix
);
6591 /* Filter out killed buffers from both buffer lists
6592 in attempt to help GC to reclaim killed buffers faster.
6593 We can do it elsewhere for live windows, but this is the
6594 best place to do it for dead windows. */
6596 (w
, mark_discard_killed_buffers (w
->prev_buffers
));
6598 (w
, mark_discard_killed_buffers (w
->next_buffers
));
6602 case PVEC_HASH_TABLE
:
6604 struct Lisp_Hash_Table
*h
= (struct Lisp_Hash_Table
*) ptr
;
6606 mark_vectorlike (ptr
);
6607 mark_object (h
->test
.name
);
6608 mark_object (h
->test
.user_hash_function
);
6609 mark_object (h
->test
.user_cmp_function
);
6610 /* If hash table is not weak, mark all keys and values.
6611 For weak tables, mark only the vector. */
6613 mark_object (h
->key_and_value
);
6615 VECTOR_MARK (XVECTOR (h
->key_and_value
));
6619 case PVEC_CHAR_TABLE
:
6620 case PVEC_SUB_CHAR_TABLE
:
6621 mark_char_table (ptr
, (enum pvec_type
) pvectype
);
6624 case PVEC_BOOL_VECTOR
:
6625 /* No Lisp_Objects to mark in a bool vector. */
6636 mark_vectorlike (ptr
);
6643 register struct Lisp_Symbol
*ptr
= XSYMBOL (obj
);
6647 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6649 /* Attempt to catch bogus objects. */
6650 eassert (valid_lisp_object_p (ptr
->function
));
6651 mark_object (ptr
->function
);
6652 mark_object (ptr
->plist
);
6653 switch (ptr
->redirect
)
6655 case SYMBOL_PLAINVAL
: mark_object (SYMBOL_VAL (ptr
)); break;
6656 case SYMBOL_VARALIAS
:
6659 XSETSYMBOL (tem
, SYMBOL_ALIAS (ptr
));
6663 case SYMBOL_LOCALIZED
:
6664 mark_localized_symbol (ptr
);
6666 case SYMBOL_FORWARDED
:
6667 /* If the value is forwarded to a buffer or keyboard field,
6668 these are marked when we see the corresponding object.
6669 And if it's forwarded to a C variable, either it's not
6670 a Lisp_Object var, or it's staticpro'd already. */
6672 default: emacs_abort ();
6674 if (!PURE_P (XSTRING (ptr
->name
)))
6675 MARK_STRING (XSTRING (ptr
->name
));
6676 MARK_INTERVAL_TREE (string_intervals (ptr
->name
));
6677 /* Inner loop to mark next symbol in this bucket, if any. */
6678 po
= ptr
= ptr
->next
;
6685 CHECK_ALLOCATED_AND_LIVE (live_misc_p
);
6687 if (XMISCANY (obj
)->gcmarkbit
)
6690 switch (XMISCTYPE (obj
))
6692 case Lisp_Misc_Marker
:
6693 /* DO NOT mark thru the marker's chain.
6694 The buffer's markers chain does not preserve markers from gc;
6695 instead, markers are removed from the chain when freed by gc. */
6696 XMISCANY (obj
)->gcmarkbit
= 1;
6699 case Lisp_Misc_Save_Value
:
6700 XMISCANY (obj
)->gcmarkbit
= 1;
6701 mark_save_value (XSAVE_VALUE (obj
));
6704 case Lisp_Misc_Overlay
:
6705 mark_overlay (XOVERLAY (obj
));
6708 case Lisp_Misc_Finalizer
:
6709 XMISCANY (obj
)->gcmarkbit
= true;
6710 mark_object (XFINALIZER (obj
)->function
);
6714 case Lisp_Misc_User_Ptr
:
6715 XMISCANY (obj
)->gcmarkbit
= true;
6726 register struct Lisp_Cons
*ptr
= XCONS (obj
);
6727 if (CONS_MARKED_P (ptr
))
6729 CHECK_ALLOCATED_AND_LIVE (live_cons_p
);
6731 /* If the cdr is nil, avoid recursion for the car. */
6732 if (EQ (ptr
->u
.cdr
, Qnil
))
6738 mark_object (ptr
->car
);
6741 if (cdr_count
== mark_object_loop_halt
)
6747 CHECK_ALLOCATED_AND_LIVE (live_float_p
);
6748 FLOAT_MARK (XFLOAT (obj
));
6759 #undef CHECK_ALLOCATED
6760 #undef CHECK_ALLOCATED_AND_LIVE
6762 /* Mark the Lisp pointers in the terminal objects.
6763 Called by Fgarbage_collect. */
6766 mark_terminals (void)
6769 for (t
= terminal_list
; t
; t
= t
->next_terminal
)
6771 eassert (t
->name
!= NULL
);
6772 #ifdef HAVE_WINDOW_SYSTEM
6773 /* If a terminal object is reachable from a stacpro'ed object,
6774 it might have been marked already. Make sure the image cache
6776 mark_image_cache (t
->image_cache
);
6777 #endif /* HAVE_WINDOW_SYSTEM */
6778 if (!VECTOR_MARKED_P (t
))
6779 mark_vectorlike ((struct Lisp_Vector
*)t
);
6785 /* Value is non-zero if OBJ will survive the current GC because it's
6786 either marked or does not need to be marked to survive. */
6789 survives_gc_p (Lisp_Object obj
)
6793 switch (XTYPE (obj
))
6800 survives_p
= XSYMBOL (obj
)->gcmarkbit
;
6804 survives_p
= XMISCANY (obj
)->gcmarkbit
;
6808 survives_p
= STRING_MARKED_P (XSTRING (obj
));
6811 case Lisp_Vectorlike
:
6812 survives_p
= SUBRP (obj
) || VECTOR_MARKED_P (XVECTOR (obj
));
6816 survives_p
= CONS_MARKED_P (XCONS (obj
));
6820 survives_p
= FLOAT_MARKED_P (XFLOAT (obj
));
6827 return survives_p
|| PURE_P (XPNTR (obj
));
6833 NO_INLINE
/* For better stack traces */
6837 struct cons_block
*cblk
;
6838 struct cons_block
**cprev
= &cons_block
;
6839 int lim
= cons_block_index
;
6840 EMACS_INT num_free
= 0, num_used
= 0;
6844 for (cblk
= cons_block
; cblk
; cblk
= *cprev
)
6848 int ilim
= (lim
+ BITS_PER_BITS_WORD
- 1) / BITS_PER_BITS_WORD
;
6850 /* Scan the mark bits an int at a time. */
6851 for (i
= 0; i
< ilim
; i
++)
6853 if (cblk
->gcmarkbits
[i
] == BITS_WORD_MAX
)
6855 /* Fast path - all cons cells for this int are marked. */
6856 cblk
->gcmarkbits
[i
] = 0;
6857 num_used
+= BITS_PER_BITS_WORD
;
6861 /* Some cons cells for this int are not marked.
6862 Find which ones, and free them. */
6863 int start
, pos
, stop
;
6865 start
= i
* BITS_PER_BITS_WORD
;
6867 if (stop
> BITS_PER_BITS_WORD
)
6868 stop
= BITS_PER_BITS_WORD
;
6871 for (pos
= start
; pos
< stop
; pos
++)
6873 if (!CONS_MARKED_P (&cblk
->conses
[pos
]))
6876 cblk
->conses
[pos
].u
.chain
= cons_free_list
;
6877 cons_free_list
= &cblk
->conses
[pos
];
6878 cons_free_list
->car
= Vdead
;
6883 CONS_UNMARK (&cblk
->conses
[pos
]);
6889 lim
= CONS_BLOCK_SIZE
;
6890 /* If this block contains only free conses and we have already
6891 seen more than two blocks worth of free conses then deallocate
6893 if (this_free
== CONS_BLOCK_SIZE
&& num_free
> CONS_BLOCK_SIZE
)
6895 *cprev
= cblk
->next
;
6896 /* Unhook from the free list. */
6897 cons_free_list
= cblk
->conses
[0].u
.chain
;
6898 lisp_align_free (cblk
);
6902 num_free
+= this_free
;
6903 cprev
= &cblk
->next
;
6906 total_conses
= num_used
;
6907 total_free_conses
= num_free
;
6910 NO_INLINE
/* For better stack traces */
6914 register struct float_block
*fblk
;
6915 struct float_block
**fprev
= &float_block
;
6916 register int lim
= float_block_index
;
6917 EMACS_INT num_free
= 0, num_used
= 0;
6919 float_free_list
= 0;
6921 for (fblk
= float_block
; fblk
; fblk
= *fprev
)
6925 for (i
= 0; i
< lim
; i
++)
6926 if (!FLOAT_MARKED_P (&fblk
->floats
[i
]))
6929 fblk
->floats
[i
].u
.chain
= float_free_list
;
6930 float_free_list
= &fblk
->floats
[i
];
6935 FLOAT_UNMARK (&fblk
->floats
[i
]);
6937 lim
= FLOAT_BLOCK_SIZE
;
6938 /* If this block contains only free floats and we have already
6939 seen more than two blocks worth of free floats then deallocate
6941 if (this_free
== FLOAT_BLOCK_SIZE
&& num_free
> FLOAT_BLOCK_SIZE
)
6943 *fprev
= fblk
->next
;
6944 /* Unhook from the free list. */
6945 float_free_list
= fblk
->floats
[0].u
.chain
;
6946 lisp_align_free (fblk
);
6950 num_free
+= this_free
;
6951 fprev
= &fblk
->next
;
6954 total_floats
= num_used
;
6955 total_free_floats
= num_free
;
6958 NO_INLINE
/* For better stack traces */
6960 sweep_intervals (void)
6962 register struct interval_block
*iblk
;
6963 struct interval_block
**iprev
= &interval_block
;
6964 register int lim
= interval_block_index
;
6965 EMACS_INT num_free
= 0, num_used
= 0;
6967 interval_free_list
= 0;
6969 for (iblk
= interval_block
; iblk
; iblk
= *iprev
)
6974 for (i
= 0; i
< lim
; i
++)
6976 if (!iblk
->intervals
[i
].gcmarkbit
)
6978 set_interval_parent (&iblk
->intervals
[i
], interval_free_list
);
6979 interval_free_list
= &iblk
->intervals
[i
];
6985 iblk
->intervals
[i
].gcmarkbit
= 0;
6988 lim
= INTERVAL_BLOCK_SIZE
;
6989 /* If this block contains only free intervals and we have already
6990 seen more than two blocks worth of free intervals then
6991 deallocate this block. */
6992 if (this_free
== INTERVAL_BLOCK_SIZE
&& num_free
> INTERVAL_BLOCK_SIZE
)
6994 *iprev
= iblk
->next
;
6995 /* Unhook from the free list. */
6996 interval_free_list
= INTERVAL_PARENT (&iblk
->intervals
[0]);
7001 num_free
+= this_free
;
7002 iprev
= &iblk
->next
;
7005 total_intervals
= num_used
;
7006 total_free_intervals
= num_free
;
7009 NO_INLINE
/* For better stack traces */
7011 sweep_symbols (void)
7013 struct symbol_block
*sblk
;
7014 struct symbol_block
**sprev
= &symbol_block
;
7015 int lim
= symbol_block_index
;
7016 EMACS_INT num_free
= 0, num_used
= ARRAYELTS (lispsym
);
7018 symbol_free_list
= NULL
;
7020 for (int i
= 0; i
< ARRAYELTS (lispsym
); i
++)
7021 lispsym
[i
].s
.gcmarkbit
= 0;
7023 for (sblk
= symbol_block
; sblk
; sblk
= *sprev
)
7026 union aligned_Lisp_Symbol
*sym
= sblk
->symbols
;
7027 union aligned_Lisp_Symbol
*end
= sym
+ lim
;
7029 for (; sym
< end
; ++sym
)
7031 if (!sym
->s
.gcmarkbit
)
7033 if (sym
->s
.redirect
== SYMBOL_LOCALIZED
)
7035 xfree (SYMBOL_BLV (&sym
->s
));
7036 /* At every GC we sweep all symbol_blocks and rebuild the
7037 symbol_free_list, so those symbols which stayed unused
7038 between the two will be re-swept.
7039 So we have to make sure we don't re-free this blv next
7040 time we sweep this symbol_block (bug#29066). */
7041 sym
->s
.redirect
= SYMBOL_PLAINVAL
;
7043 sym
->s
.next
= symbol_free_list
;
7044 symbol_free_list
= &sym
->s
;
7045 symbol_free_list
->function
= Vdead
;
7051 sym
->s
.gcmarkbit
= 0;
7052 /* Attempt to catch bogus objects. */
7053 eassert (valid_lisp_object_p (sym
->s
.function
));
7057 lim
= SYMBOL_BLOCK_SIZE
;
7058 /* If this block contains only free symbols and we have already
7059 seen more than two blocks worth of free symbols then deallocate
7061 if (this_free
== SYMBOL_BLOCK_SIZE
&& num_free
> SYMBOL_BLOCK_SIZE
)
7063 *sprev
= sblk
->next
;
7064 /* Unhook from the free list. */
7065 symbol_free_list
= sblk
->symbols
[0].s
.next
;
7070 num_free
+= this_free
;
7071 sprev
= &sblk
->next
;
7074 total_symbols
= num_used
;
7075 total_free_symbols
= num_free
;
7078 NO_INLINE
/* For better stack traces. */
7082 register struct marker_block
*mblk
;
7083 struct marker_block
**mprev
= &marker_block
;
7084 register int lim
= marker_block_index
;
7085 EMACS_INT num_free
= 0, num_used
= 0;
7087 /* Put all unmarked misc's on free list. For a marker, first
7088 unchain it from the buffer it points into. */
7090 marker_free_list
= 0;
7092 for (mblk
= marker_block
; mblk
; mblk
= *mprev
)
7097 for (i
= 0; i
< lim
; i
++)
7099 if (!mblk
->markers
[i
].m
.u_any
.gcmarkbit
)
7101 if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Marker
)
7102 unchain_marker (&mblk
->markers
[i
].m
.u_marker
);
7103 else if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_Finalizer
)
7104 unchain_finalizer (&mblk
->markers
[i
].m
.u_finalizer
);
7106 else if (mblk
->markers
[i
].m
.u_any
.type
== Lisp_Misc_User_Ptr
)
7108 struct Lisp_User_Ptr
*uptr
= &mblk
->markers
[i
].m
.u_user_ptr
;
7109 if (uptr
->finalizer
)
7110 uptr
->finalizer (uptr
->p
);
7113 /* Set the type of the freed object to Lisp_Misc_Free.
7114 We could leave the type alone, since nobody checks it,
7115 but this might catch bugs faster. */
7116 mblk
->markers
[i
].m
.u_marker
.type
= Lisp_Misc_Free
;
7117 mblk
->markers
[i
].m
.u_free
.chain
= marker_free_list
;
7118 marker_free_list
= &mblk
->markers
[i
].m
;
7124 mblk
->markers
[i
].m
.u_any
.gcmarkbit
= 0;
7127 lim
= MARKER_BLOCK_SIZE
;
7128 /* If this block contains only free markers and we have already
7129 seen more than two blocks worth of free markers then deallocate
7131 if (this_free
== MARKER_BLOCK_SIZE
&& num_free
> MARKER_BLOCK_SIZE
)
7133 *mprev
= mblk
->next
;
7134 /* Unhook from the free list. */
7135 marker_free_list
= mblk
->markers
[0].m
.u_free
.chain
;
7140 num_free
+= this_free
;
7141 mprev
= &mblk
->next
;
7145 total_markers
= num_used
;
7146 total_free_markers
= num_free
;
7149 NO_INLINE
/* For better stack traces */
7151 sweep_buffers (void)
7153 register struct buffer
*buffer
, **bprev
= &all_buffers
;
7156 for (buffer
= all_buffers
; buffer
; buffer
= *bprev
)
7157 if (!VECTOR_MARKED_P (buffer
))
7159 *bprev
= buffer
->next
;
7164 VECTOR_UNMARK (buffer
);
7165 /* Do not use buffer_(set|get)_intervals here. */
7166 buffer
->text
->intervals
= balance_intervals (buffer
->text
->intervals
);
7168 bprev
= &buffer
->next
;
7172 /* Sweep: find all structures not marked, and free them. */
7176 /* Remove or mark entries in weak hash tables.
7177 This must be done before any object is unmarked. */
7178 sweep_weak_hash_tables ();
7181 check_string_bytes (!noninteractive
);
7189 check_string_bytes (!noninteractive
);
7192 DEFUN ("memory-info", Fmemory_info
, Smemory_info
, 0, 0, 0,
7193 doc
: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
7194 All values are in Kbytes. If there is no swap space,
7195 last two values are zero. If the system is not supported
7196 or memory information can't be obtained, return nil. */)
7199 #if defined HAVE_LINUX_SYSINFO
7205 #ifdef LINUX_SYSINFO_UNIT
7206 units
= si
.mem_unit
;
7210 return list4i ((uintmax_t) si
.totalram
* units
/ 1024,
7211 (uintmax_t) si
.freeram
* units
/ 1024,
7212 (uintmax_t) si
.totalswap
* units
/ 1024,
7213 (uintmax_t) si
.freeswap
* units
/ 1024);
7214 #elif defined WINDOWSNT
7215 unsigned long long totalram
, freeram
, totalswap
, freeswap
;
7217 if (w32_memory_info (&totalram
, &freeram
, &totalswap
, &freeswap
) == 0)
7218 return list4i ((uintmax_t) totalram
/ 1024,
7219 (uintmax_t) freeram
/ 1024,
7220 (uintmax_t) totalswap
/ 1024,
7221 (uintmax_t) freeswap
/ 1024);
7225 unsigned long totalram
, freeram
, totalswap
, freeswap
;
7227 if (dos_memory_info (&totalram
, &freeram
, &totalswap
, &freeswap
) == 0)
7228 return list4i ((uintmax_t) totalram
/ 1024,
7229 (uintmax_t) freeram
/ 1024,
7230 (uintmax_t) totalswap
/ 1024,
7231 (uintmax_t) freeswap
/ 1024);
7234 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7235 /* FIXME: add more systems. */
7237 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7240 /* Debugging aids. */
7242 DEFUN ("memory-limit", Fmemory_limit
, Smemory_limit
, 0, 0, 0,
7243 doc
: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7244 This may be helpful in debugging Emacs's memory usage.
7245 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7250 #if defined HAVE_NS || defined __APPLE__ || !HAVE_SBRK
7251 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7254 XSETINT (end
, (intptr_t) (char *) sbrk (0) / 1024);
7260 DEFUN ("memory-use-counts", Fmemory_use_counts
, Smemory_use_counts
, 0, 0, 0,
7261 doc
: /* Return a list of counters that measure how much consing there has been.
7262 Each of these counters increments for a certain kind of object.
7263 The counters wrap around from the largest positive integer to zero.
7264 Garbage collection does not decrease them.
7265 The elements of the value are as follows:
7266 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7267 All are in units of 1 = one object consed
7268 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7270 MISCS include overlays, markers, and some internal types.
7271 Frames, windows, buffers, and subprocesses count as vectors
7272 (but the contents of a buffer's text do not count here). */)
7275 return listn (CONSTYPE_HEAP
, 8,
7276 bounded_number (cons_cells_consed
),
7277 bounded_number (floats_consed
),
7278 bounded_number (vector_cells_consed
),
7279 bounded_number (symbols_consed
),
7280 bounded_number (string_chars_consed
),
7281 bounded_number (misc_objects_consed
),
7282 bounded_number (intervals_consed
),
7283 bounded_number (strings_consed
));
7287 symbol_uses_obj (Lisp_Object symbol
, Lisp_Object obj
)
7289 struct Lisp_Symbol
*sym
= XSYMBOL (symbol
);
7290 Lisp_Object val
= find_symbol_value (symbol
);
7291 return (EQ (val
, obj
)
7292 || EQ (sym
->function
, obj
)
7293 || (!NILP (sym
->function
)
7294 && COMPILEDP (sym
->function
)
7295 && EQ (AREF (sym
->function
, COMPILED_BYTECODE
), obj
))
7298 && EQ (AREF (val
, COMPILED_BYTECODE
), obj
)));
7301 /* Find at most FIND_MAX symbols which have OBJ as their value or
7302 function. This is used in gdbinit's `xwhichsymbols' command. */
7305 which_symbols (Lisp_Object obj
, EMACS_INT find_max
)
7307 struct symbol_block
*sblk
;
7308 ptrdiff_t gc_count
= inhibit_garbage_collection ();
7309 Lisp_Object found
= Qnil
;
7313 for (int i
= 0; i
< ARRAYELTS (lispsym
); i
++)
7315 Lisp_Object sym
= builtin_lisp_symbol (i
);
7316 if (symbol_uses_obj (sym
, obj
))
7318 found
= Fcons (sym
, found
);
7319 if (--find_max
== 0)
7324 for (sblk
= symbol_block
; sblk
; sblk
= sblk
->next
)
7326 union aligned_Lisp_Symbol
*aligned_sym
= sblk
->symbols
;
7329 for (bn
= 0; bn
< SYMBOL_BLOCK_SIZE
; bn
++, aligned_sym
++)
7331 if (sblk
== symbol_block
&& bn
>= symbol_block_index
)
7334 Lisp_Object sym
= make_lisp_symbol (&aligned_sym
->s
);
7335 if (symbol_uses_obj (sym
, obj
))
7337 found
= Fcons (sym
, found
);
7338 if (--find_max
== 0)
7346 unbind_to (gc_count
, Qnil
);
7350 #ifdef SUSPICIOUS_OBJECT_CHECKING
7353 find_suspicious_object_in_range (void *begin
, void *end
)
7355 char *begin_a
= begin
;
7359 for (i
= 0; i
< ARRAYELTS (suspicious_objects
); ++i
)
7361 char *suspicious_object
= suspicious_objects
[i
];
7362 if (begin_a
<= suspicious_object
&& suspicious_object
< end_a
)
7363 return suspicious_object
;
7370 note_suspicious_free (void *ptr
)
7372 struct suspicious_free_record
*rec
;
7374 rec
= &suspicious_free_history
[suspicious_free_history_index
++];
7375 if (suspicious_free_history_index
==
7376 ARRAYELTS (suspicious_free_history
))
7378 suspicious_free_history_index
= 0;
7381 memset (rec
, 0, sizeof (*rec
));
7382 rec
->suspicious_object
= ptr
;
7383 backtrace (&rec
->backtrace
[0], ARRAYELTS (rec
->backtrace
));
7387 detect_suspicious_free (void *ptr
)
7391 eassert (ptr
!= NULL
);
7393 for (i
= 0; i
< ARRAYELTS (suspicious_objects
); ++i
)
7394 if (suspicious_objects
[i
] == ptr
)
7396 note_suspicious_free (ptr
);
7397 suspicious_objects
[i
] = NULL
;
7401 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7403 DEFUN ("suspicious-object", Fsuspicious_object
, Ssuspicious_object
, 1, 1, 0,
7404 doc
: /* Return OBJ, maybe marking it for extra scrutiny.
7405 If Emacs is compiled with suspicious object checking, capture
7406 a stack trace when OBJ is freed in order to help track down
7407 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7410 #ifdef SUSPICIOUS_OBJECT_CHECKING
7411 /* Right now, we care only about vectors. */
7412 if (VECTORLIKEP (obj
))
7414 suspicious_objects
[suspicious_object_index
++] = XVECTOR (obj
);
7415 if (suspicious_object_index
== ARRAYELTS (suspicious_objects
))
7416 suspicious_object_index
= 0;
7422 #ifdef ENABLE_CHECKING
7424 bool suppress_checking
;
7427 die (const char *msg
, const char *file
, int line
)
7429 fprintf (stderr
, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7431 terminate_due_to_signal (SIGABRT
, INT_MAX
);
7434 #endif /* ENABLE_CHECKING */
7436 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7438 /* Stress alloca with inconveniently sized requests and check
7439 whether all allocated areas may be used for Lisp_Object. */
7441 NO_INLINE
static void
7442 verify_alloca (void)
7445 enum { ALLOCA_CHECK_MAX
= 256 };
7446 /* Start from size of the smallest Lisp object. */
7447 for (i
= sizeof (struct Lisp_Cons
); i
<= ALLOCA_CHECK_MAX
; i
++)
7449 void *ptr
= alloca (i
);
7450 make_lisp_ptr (ptr
, Lisp_Cons
);
7454 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7456 #define verify_alloca() ((void) 0)
7458 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7460 /* Initialization. */
7463 init_alloc_once (void)
7465 /* Even though Qt's contents are not set up, its address is known. */
7469 pure_size
= PURESIZE
;
7472 init_finalizer_list (&finalizers
);
7473 init_finalizer_list (&doomed_finalizers
);
7476 Vdead
= make_pure_string ("DEAD", 4, 4, 0);
7478 #ifdef DOUG_LEA_MALLOC
7479 mallopt (M_TRIM_THRESHOLD
, 128 * 1024); /* Trim threshold. */
7480 mallopt (M_MMAP_THRESHOLD
, 64 * 1024); /* Mmap threshold. */
7481 mallopt (M_MMAP_MAX
, MMAP_MAX_AREAS
); /* Max. number of mmap'ed areas. */
7486 refill_memory_reserve ();
7487 gc_cons_threshold
= GC_DEFAULT_THRESHOLD
;
7493 Vgc_elapsed
= make_float (0.0);
7497 valgrind_p
= RUNNING_ON_VALGRIND
!= 0;
7502 syms_of_alloc (void)
7504 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold
,
7505 doc
: /* Number of bytes of consing between garbage collections.
7506 Garbage collection can happen automatically once this many bytes have been
7507 allocated since the last garbage collection. All data types count.
7509 Garbage collection happens automatically only when `eval' is called.
7511 By binding this temporarily to a large number, you can effectively
7512 prevent garbage collection during a part of the program.
7513 See also `gc-cons-percentage'. */);
7515 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage
,
7516 doc
: /* Portion of the heap used for allocation.
7517 Garbage collection can happen automatically once this portion of the heap
7518 has been allocated since the last garbage collection.
7519 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7520 Vgc_cons_percentage
= make_float (0.1);
7522 DEFVAR_INT ("pure-bytes-used", pure_bytes_used
,
7523 doc
: /* Number of bytes of shareable Lisp data allocated so far. */);
7525 DEFVAR_INT ("cons-cells-consed", cons_cells_consed
,
7526 doc
: /* Number of cons cells that have been consed so far. */);
7528 DEFVAR_INT ("floats-consed", floats_consed
,
7529 doc
: /* Number of floats that have been consed so far. */);
7531 DEFVAR_INT ("vector-cells-consed", vector_cells_consed
,
7532 doc
: /* Number of vector cells that have been consed so far. */);
7534 DEFVAR_INT ("symbols-consed", symbols_consed
,
7535 doc
: /* Number of symbols that have been consed so far. */);
7536 symbols_consed
+= ARRAYELTS (lispsym
);
7538 DEFVAR_INT ("string-chars-consed", string_chars_consed
,
7539 doc
: /* Number of string characters that have been consed so far. */);
7541 DEFVAR_INT ("misc-objects-consed", misc_objects_consed
,
7542 doc
: /* Number of miscellaneous objects that have been consed so far.
7543 These include markers and overlays, plus certain objects not visible
7546 DEFVAR_INT ("intervals-consed", intervals_consed
,
7547 doc
: /* Number of intervals that have been consed so far. */);
7549 DEFVAR_INT ("strings-consed", strings_consed
,
7550 doc
: /* Number of strings that have been consed so far. */);
7552 DEFVAR_LISP ("purify-flag", Vpurify_flag
,
7553 doc
: /* Non-nil means loading Lisp code in order to dump an executable.
7554 This means that certain objects should be allocated in shared (pure) space.
7555 It can also be set to a hash-table, in which case this table is used to
7556 do hash-consing of the objects allocated to pure space. */);
7558 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages
,
7559 doc
: /* Non-nil means display messages at start and end of garbage collection. */);
7560 garbage_collection_messages
= 0;
7562 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook
,
7563 doc
: /* Hook run after garbage collection has finished. */);
7564 Vpost_gc_hook
= Qnil
;
7565 DEFSYM (Qpost_gc_hook
, "post-gc-hook");
7567 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data
,
7568 doc
: /* Precomputed `signal' argument for memory-full error. */);
7569 /* We build this in advance because if we wait until we need it, we might
7570 not be able to allocate the memory to hold it. */
7572 = listn (CONSTYPE_PURE
, 2, Qerror
,
7573 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7575 DEFVAR_LISP ("memory-full", Vmemory_full
,
7576 doc
: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7577 Vmemory_full
= Qnil
;
7579 DEFSYM (Qconses
, "conses");
7580 DEFSYM (Qsymbols
, "symbols");
7581 DEFSYM (Qmiscs
, "miscs");
7582 DEFSYM (Qstrings
, "strings");
7583 DEFSYM (Qvectors
, "vectors");
7584 DEFSYM (Qfloats
, "floats");
7585 DEFSYM (Qintervals
, "intervals");
7586 DEFSYM (Qbuffers
, "buffers");
7587 DEFSYM (Qstring_bytes
, "string-bytes");
7588 DEFSYM (Qvector_slots
, "vector-slots");
7589 DEFSYM (Qheap
, "heap");
7590 DEFSYM (QAutomatic_GC
, "Automatic GC");
7592 DEFSYM (Qgc_cons_threshold
, "gc-cons-threshold");
7593 DEFSYM (Qchar_table_extra_slots
, "char-table-extra-slots");
7595 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed
,
7596 doc
: /* Accumulated time elapsed in garbage collections.
7597 The time is in seconds as a floating point value. */);
7598 DEFVAR_INT ("gcs-done", gcs_done
,
7599 doc
: /* Accumulated number of garbage collections done. */);
7605 defsubr (&Sbool_vector
);
7606 defsubr (&Smake_byte_code
);
7607 defsubr (&Smake_list
);
7608 defsubr (&Smake_vector
);
7609 defsubr (&Smake_record
);
7610 defsubr (&Smake_string
);
7611 defsubr (&Smake_bool_vector
);
7612 defsubr (&Smake_symbol
);
7613 defsubr (&Smake_marker
);
7614 defsubr (&Smake_finalizer
);
7615 defsubr (&Spurecopy
);
7616 defsubr (&Sgarbage_collect
);
7617 defsubr (&Smemory_limit
);
7618 defsubr (&Smemory_info
);
7619 defsubr (&Smemory_use_counts
);
7620 defsubr (&Ssuspicious_object
);
7623 /* When compiled with GCC, GDB might say "No enum type named
7624 pvec_type" if we don't have at least one symbol with that type, and
7625 then xbacktrace could fail. Similarly for the other enums and
7626 their values. Some non-GCC compilers don't like these constructs. */
7630 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS
;
7631 enum char_table_specials char_table_specials
;
7632 enum char_bits char_bits
;
7633 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE
;
7634 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE
;
7635 enum Lisp_Bits Lisp_Bits
;
7636 enum Lisp_Compiled Lisp_Compiled
;
7637 enum maxargs maxargs
;
7638 enum MAX_ALLOCA MAX_ALLOCA
;
7639 enum More_Lisp_Bits More_Lisp_Bits
;
7640 enum pvec_type pvec_type
;
7641 } const EXTERNALLY_VISIBLE gdb_make_enums_visible
= {0};
7642 #endif /* __GNUC__ */