Merge from Gnulib
[emacs.git] / src / alloc.c
blob5a44d7a9fc25e44e3ae02bf1bc049450ef72bfed
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2017 Free Software
4 Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or (at
11 your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #include <errno.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <limits.h> /* For CHAR_BIT. */
27 #include <signal.h> /* For SIGABRT, SIGDANGER. */
29 #ifdef HAVE_PTHREAD
30 #include <pthread.h>
31 #endif
33 #include "lisp.h"
34 #include "dispextern.h"
35 #include "intervals.h"
36 #include "puresize.h"
37 #include "sheap.h"
38 #include "systime.h"
39 #include "character.h"
40 #include "buffer.h"
41 #include "window.h"
42 #include "keyboard.h"
43 #include "frame.h"
44 #include "blockinput.h"
45 #include "termhooks.h" /* For struct terminal. */
46 #ifdef HAVE_WINDOW_SYSTEM
47 #include TERM_HEADER
48 #endif /* HAVE_WINDOW_SYSTEM */
50 #include <flexmember.h>
51 #include <verify.h>
52 #include <execinfo.h> /* For backtrace. */
54 #ifdef HAVE_LINUX_SYSINFO
55 #include <sys/sysinfo.h>
56 #endif
58 #ifdef MSDOS
59 #include "dosfns.h" /* For dos_memory_info. */
60 #endif
62 #ifdef HAVE_MALLOC_H
63 # include <malloc.h>
64 #endif
66 #if (defined ENABLE_CHECKING \
67 && defined HAVE_VALGRIND_VALGRIND_H \
68 && !defined USE_VALGRIND)
69 # define USE_VALGRIND 1
70 #endif
72 #if USE_VALGRIND
73 #include <valgrind/valgrind.h>
74 #include <valgrind/memcheck.h>
75 static bool valgrind_p;
76 #endif
78 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
79 We turn that on by default when ENABLE_CHECKING is defined;
80 define GC_CHECK_MARKED_OBJECTS to zero to disable. */
82 #if defined ENABLE_CHECKING && !defined GC_CHECK_MARKED_OBJECTS
83 # define GC_CHECK_MARKED_OBJECTS 1
84 #endif
86 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
87 memory. Can do this only if using gmalloc.c and if not checking
88 marked objects. */
90 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
91 || defined HYBRID_MALLOC || GC_CHECK_MARKED_OBJECTS)
92 #undef GC_MALLOC_CHECK
93 #endif
95 #include <unistd.h>
96 #include <fcntl.h>
98 #ifdef USE_GTK
99 # include "gtkutil.h"
100 #endif
101 #ifdef WINDOWSNT
102 #include "w32.h"
103 #include "w32heap.h" /* for sbrk */
104 #endif
106 #ifdef GNU_LINUX
107 /* The address where the heap starts. */
108 void *
109 my_heap_start (void)
111 static void *start;
112 if (! start)
113 start = sbrk (0);
114 return start;
116 #endif
118 #ifdef DOUG_LEA_MALLOC
120 /* Specify maximum number of areas to mmap. It would be nice to use a
121 value that explicitly means "no limit". */
123 #define MMAP_MAX_AREAS 100000000
125 /* A pointer to the memory allocated that copies that static data
126 inside glibc's malloc. */
127 static void *malloc_state_ptr;
129 /* Restore the dumped malloc state. Because malloc can be invoked
130 even before main (e.g. by the dynamic linker), the dumped malloc
131 state must be restored as early as possible using this special hook. */
132 static void
133 malloc_initialize_hook (void)
135 static bool malloc_using_checking;
137 if (! initialized)
139 #ifdef GNU_LINUX
140 my_heap_start ();
141 #endif
142 malloc_using_checking = getenv ("MALLOC_CHECK_") != NULL;
144 else
146 if (!malloc_using_checking)
148 /* Work around a bug in glibc's malloc. MALLOC_CHECK_ must be
149 ignored if the heap to be restored was constructed without
150 malloc checking. Can't use unsetenv, since that calls malloc. */
151 char **p = environ;
152 if (p)
153 for (; *p; p++)
154 if (strncmp (*p, "MALLOC_CHECK_=", 14) == 0)
157 *p = p[1];
158 while (*++p);
160 break;
164 if (malloc_set_state (malloc_state_ptr) != 0)
165 emacs_abort ();
166 # ifndef XMALLOC_OVERRUN_CHECK
167 alloc_unexec_post ();
168 # endif
172 /* Declare the malloc initialization hook, which runs before 'main' starts.
173 EXTERNALLY_VISIBLE works around Bug#22522. */
174 # ifndef __MALLOC_HOOK_VOLATILE
175 # define __MALLOC_HOOK_VOLATILE
176 # endif
177 voidfuncptr __MALLOC_HOOK_VOLATILE __malloc_initialize_hook EXTERNALLY_VISIBLE
178 = malloc_initialize_hook;
180 #endif
182 #if defined DOUG_LEA_MALLOC || !defined CANNOT_DUMP
184 /* Allocator-related actions to do just before and after unexec. */
186 void
187 alloc_unexec_pre (void)
189 # ifdef DOUG_LEA_MALLOC
190 malloc_state_ptr = malloc_get_state ();
191 if (!malloc_state_ptr)
192 fatal ("malloc_get_state: %s", strerror (errno));
193 # endif
194 # ifdef HYBRID_MALLOC
195 bss_sbrk_did_unexec = true;
196 # endif
199 void
200 alloc_unexec_post (void)
202 # ifdef DOUG_LEA_MALLOC
203 free (malloc_state_ptr);
204 # endif
205 # ifdef HYBRID_MALLOC
206 bss_sbrk_did_unexec = false;
207 # endif
209 #endif
211 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
212 to a struct Lisp_String. */
214 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
215 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
216 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
218 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
219 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
220 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
222 /* Default value of gc_cons_threshold (see below). */
224 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
226 /* Global variables. */
227 struct emacs_globals globals;
229 /* Number of bytes of consing done since the last gc. */
231 EMACS_INT consing_since_gc;
233 /* Similar minimum, computed from Vgc_cons_percentage. */
235 EMACS_INT gc_relative_threshold;
237 /* Minimum number of bytes of consing since GC before next GC,
238 when memory is full. */
240 EMACS_INT memory_full_cons_threshold;
242 /* True during GC. */
244 bool gc_in_progress;
246 /* Number of live and free conses etc. */
248 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
249 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
250 static EMACS_INT total_free_floats, total_floats;
252 /* Points to memory space allocated as "spare", to be freed if we run
253 out of memory. We keep one large block, four cons-blocks, and
254 two string blocks. */
256 static char *spare_memory[7];
258 /* Amount of spare memory to keep in large reserve block, or to see
259 whether this much is available when malloc fails on a larger request. */
261 #define SPARE_MEMORY (1 << 14)
263 /* Initialize it to a nonzero value to force it into data space
264 (rather than bss space). That way unexec will remap it into text
265 space (pure), on some systems. We have not implemented the
266 remapping on more recent systems because this is less important
267 nowadays than in the days of small memories and timesharing. */
269 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
270 #define PUREBEG (char *) pure
272 /* Pointer to the pure area, and its size. */
274 static char *purebeg;
275 static ptrdiff_t pure_size;
277 /* Number of bytes of pure storage used before pure storage overflowed.
278 If this is non-zero, this implies that an overflow occurred. */
280 static ptrdiff_t pure_bytes_used_before_overflow;
282 /* Index in pure at which next pure Lisp object will be allocated.. */
284 static ptrdiff_t pure_bytes_used_lisp;
286 /* Number of bytes allocated for non-Lisp objects in pure storage. */
288 static ptrdiff_t pure_bytes_used_non_lisp;
290 /* If nonzero, this is a warning delivered by malloc and not yet
291 displayed. */
293 const char *pending_malloc_warning;
295 #if 0 /* Normally, pointer sanity only on request... */
296 #ifdef ENABLE_CHECKING
297 #define SUSPICIOUS_OBJECT_CHECKING 1
298 #endif
299 #endif
301 /* ... but unconditionally use SUSPICIOUS_OBJECT_CHECKING while the GC
302 bug is unresolved. */
303 #define SUSPICIOUS_OBJECT_CHECKING 1
305 #ifdef SUSPICIOUS_OBJECT_CHECKING
306 struct suspicious_free_record
308 void *suspicious_object;
309 void *backtrace[128];
311 static void *suspicious_objects[32];
312 static int suspicious_object_index;
313 struct suspicious_free_record suspicious_free_history[64] EXTERNALLY_VISIBLE;
314 static int suspicious_free_history_index;
315 /* Find the first currently-monitored suspicious pointer in range
316 [begin,end) or NULL if no such pointer exists. */
317 static void *find_suspicious_object_in_range (void *begin, void *end);
318 static void detect_suspicious_free (void *ptr);
319 #else
320 # define find_suspicious_object_in_range(begin, end) NULL
321 # define detect_suspicious_free(ptr) (void)
322 #endif
324 /* Maximum amount of C stack to save when a GC happens. */
326 #ifndef MAX_SAVE_STACK
327 #define MAX_SAVE_STACK 16000
328 #endif
330 /* Buffer in which we save a copy of the C stack at each GC. */
332 #if MAX_SAVE_STACK > 0
333 static char *stack_copy;
334 static ptrdiff_t stack_copy_size;
336 /* Copy to DEST a block of memory from SRC of size SIZE bytes,
337 avoiding any address sanitization. */
339 static void * ATTRIBUTE_NO_SANITIZE_ADDRESS
340 no_sanitize_memcpy (void *dest, void const *src, size_t size)
342 if (! ADDRESS_SANITIZER)
343 return memcpy (dest, src, size);
344 else
346 size_t i;
347 char *d = dest;
348 char const *s = src;
349 for (i = 0; i < size; i++)
350 d[i] = s[i];
351 return dest;
355 #endif /* MAX_SAVE_STACK > 0 */
357 static void mark_terminals (void);
358 static void gc_sweep (void);
359 static Lisp_Object make_pure_vector (ptrdiff_t);
360 static void mark_buffer (struct buffer *);
362 #if !defined REL_ALLOC || defined SYSTEM_MALLOC || defined HYBRID_MALLOC
363 static void refill_memory_reserve (void);
364 #endif
365 static void compact_small_strings (void);
366 static void free_large_strings (void);
367 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
369 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
370 what memory allocated via lisp_malloc and lisp_align_malloc is intended
371 for what purpose. This enumeration specifies the type of memory. */
373 enum mem_type
375 MEM_TYPE_NON_LISP,
376 MEM_TYPE_BUFFER,
377 MEM_TYPE_CONS,
378 MEM_TYPE_STRING,
379 MEM_TYPE_MISC,
380 MEM_TYPE_SYMBOL,
381 MEM_TYPE_FLOAT,
382 /* Since all non-bool pseudovectors are small enough to be
383 allocated from vector blocks, this memory type denotes
384 large regular vectors and large bool pseudovectors. */
385 MEM_TYPE_VECTORLIKE,
386 /* Special type to denote vector blocks. */
387 MEM_TYPE_VECTOR_BLOCK,
388 /* Special type to denote reserved memory. */
389 MEM_TYPE_SPARE
392 /* A unique object in pure space used to make some Lisp objects
393 on free lists recognizable in O(1). */
395 static Lisp_Object Vdead;
396 #define DEADP(x) EQ (x, Vdead)
398 #ifdef GC_MALLOC_CHECK
400 enum mem_type allocated_mem_type;
402 #endif /* GC_MALLOC_CHECK */
404 /* A node in the red-black tree describing allocated memory containing
405 Lisp data. Each such block is recorded with its start and end
406 address when it is allocated, and removed from the tree when it
407 is freed.
409 A red-black tree is a balanced binary tree with the following
410 properties:
412 1. Every node is either red or black.
413 2. Every leaf is black.
414 3. If a node is red, then both of its children are black.
415 4. Every simple path from a node to a descendant leaf contains
416 the same number of black nodes.
417 5. The root is always black.
419 When nodes are inserted into the tree, or deleted from the tree,
420 the tree is "fixed" so that these properties are always true.
422 A red-black tree with N internal nodes has height at most 2
423 log(N+1). Searches, insertions and deletions are done in O(log N).
424 Please see a text book about data structures for a detailed
425 description of red-black trees. Any book worth its salt should
426 describe them. */
428 struct mem_node
430 /* Children of this node. These pointers are never NULL. When there
431 is no child, the value is MEM_NIL, which points to a dummy node. */
432 struct mem_node *left, *right;
434 /* The parent of this node. In the root node, this is NULL. */
435 struct mem_node *parent;
437 /* Start and end of allocated region. */
438 void *start, *end;
440 /* Node color. */
441 enum {MEM_BLACK, MEM_RED} color;
443 /* Memory type. */
444 enum mem_type type;
447 /* Root of the tree describing allocated Lisp memory. */
449 static struct mem_node *mem_root;
451 /* Lowest and highest known address in the heap. */
453 static void *min_heap_address, *max_heap_address;
455 /* Sentinel node of the tree. */
457 static struct mem_node mem_z;
458 #define MEM_NIL &mem_z
460 static struct mem_node *mem_insert (void *, void *, enum mem_type);
461 static void mem_insert_fixup (struct mem_node *);
462 static void mem_rotate_left (struct mem_node *);
463 static void mem_rotate_right (struct mem_node *);
464 static void mem_delete (struct mem_node *);
465 static void mem_delete_fixup (struct mem_node *);
466 static struct mem_node *mem_find (void *);
468 #ifndef DEADP
469 # define DEADP(x) 0
470 #endif
472 /* Addresses of staticpro'd variables. Initialize it to a nonzero
473 value; otherwise some compilers put it into BSS. */
475 enum { NSTATICS = 2048 };
476 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
478 /* Index of next unused slot in staticvec. */
480 static int staticidx;
482 static void *pure_alloc (size_t, int);
484 /* True if N is a power of 2. N should be positive. */
486 #define POWER_OF_2(n) (((n) & ((n) - 1)) == 0)
488 /* Return X rounded to the next multiple of Y. Y should be positive,
489 and Y - 1 + X should not overflow. Arguments should not have side
490 effects, as they are evaluated more than once. Tune for Y being a
491 power of 2. */
493 #define ROUNDUP(x, y) (POWER_OF_2 (y) \
494 ? ((y) - 1 + (x)) & ~ ((y) - 1) \
495 : ((y) - 1 + (x)) - ((y) - 1 + (x)) % (y))
497 /* Return PTR rounded up to the next multiple of ALIGNMENT. */
499 static void *
500 pointer_align (void *ptr, int alignment)
502 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
505 /* Extract the pointer hidden within A, if A is not a symbol.
506 If A is a symbol, extract the hidden pointer's offset from lispsym,
507 converted to void *. */
509 #define macro_XPNTR_OR_SYMBOL_OFFSET(a) \
510 ((void *) (intptr_t) (USE_LSB_TAG ? XLI (a) - XTYPE (a) : XLI (a) & VALMASK))
512 /* Extract the pointer hidden within A. */
514 #define macro_XPNTR(a) \
515 ((void *) ((intptr_t) XPNTR_OR_SYMBOL_OFFSET (a) \
516 + (SYMBOLP (a) ? (char *) lispsym : NULL)))
518 /* For pointer access, define XPNTR and XPNTR_OR_SYMBOL_OFFSET as
519 functions, as functions are cleaner and can be used in debuggers.
520 Also, define them as macros if being compiled with GCC without
521 optimization, for performance in that case. The macro_* names are
522 private to this section of code. */
524 static ATTRIBUTE_UNUSED void *
525 XPNTR_OR_SYMBOL_OFFSET (Lisp_Object a)
527 return macro_XPNTR_OR_SYMBOL_OFFSET (a);
529 static ATTRIBUTE_UNUSED void *
530 XPNTR (Lisp_Object a)
532 return macro_XPNTR (a);
535 #if DEFINE_KEY_OPS_AS_MACROS
536 # define XPNTR_OR_SYMBOL_OFFSET(a) macro_XPNTR_OR_SYMBOL_OFFSET (a)
537 # define XPNTR(a) macro_XPNTR (a)
538 #endif
540 static void
541 XFLOAT_INIT (Lisp_Object f, double n)
543 XFLOAT (f)->u.data = n;
546 #ifdef DOUG_LEA_MALLOC
547 static bool
548 pointers_fit_in_lispobj_p (void)
550 return (UINTPTR_MAX <= VAL_MAX) || USE_LSB_TAG;
553 static bool
554 mmap_lisp_allowed_p (void)
556 /* If we can't store all memory addresses in our lisp objects, it's
557 risky to let the heap use mmap and give us addresses from all
558 over our address space. We also can't use mmap for lisp objects
559 if we might dump: unexec doesn't preserve the contents of mmapped
560 regions. */
561 return pointers_fit_in_lispobj_p () && !might_dump;
563 #endif
565 /* Head of a circularly-linked list of extant finalizers. */
566 static struct Lisp_Finalizer finalizers;
568 /* Head of a circularly-linked list of finalizers that must be invoked
569 because we deemed them unreachable. This list must be global, and
570 not a local inside garbage_collect_1, in case we GC again while
571 running finalizers. */
572 static struct Lisp_Finalizer doomed_finalizers;
575 /************************************************************************
576 Malloc
577 ************************************************************************/
579 #if defined SIGDANGER || (!defined SYSTEM_MALLOC && !defined HYBRID_MALLOC)
581 /* Function malloc calls this if it finds we are near exhausting storage. */
583 void
584 malloc_warning (const char *str)
586 pending_malloc_warning = str;
589 #endif
591 /* Display an already-pending malloc warning. */
593 void
594 display_malloc_warning (void)
596 call3 (intern ("display-warning"),
597 intern ("alloc"),
598 build_string (pending_malloc_warning),
599 intern ("emergency"));
600 pending_malloc_warning = 0;
603 /* Called if we can't allocate relocatable space for a buffer. */
605 void
606 buffer_memory_full (ptrdiff_t nbytes)
608 /* If buffers use the relocating allocator, no need to free
609 spare_memory, because we may have plenty of malloc space left
610 that we could get, and if we don't, the malloc that fails will
611 itself cause spare_memory to be freed. If buffers don't use the
612 relocating allocator, treat this like any other failing
613 malloc. */
615 #ifndef REL_ALLOC
616 memory_full (nbytes);
617 #else
618 /* This used to call error, but if we've run out of memory, we could
619 get infinite recursion trying to build the string. */
620 xsignal (Qnil, Vmemory_signal_data);
621 #endif
624 /* A common multiple of the positive integers A and B. Ideally this
625 would be the least common multiple, but there's no way to do that
626 as a constant expression in C, so do the best that we can easily do. */
627 #define COMMON_MULTIPLE(a, b) \
628 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
630 #ifndef XMALLOC_OVERRUN_CHECK
631 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
632 #else
634 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
635 around each block.
637 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
638 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
639 block size in little-endian order. The trailer consists of
640 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
642 The header is used to detect whether this block has been allocated
643 through these functions, as some low-level libc functions may
644 bypass the malloc hooks. */
646 #define XMALLOC_OVERRUN_CHECK_SIZE 16
647 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
648 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
650 #define XMALLOC_BASE_ALIGNMENT alignof (max_align_t)
652 #define XMALLOC_HEADER_ALIGNMENT \
653 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
655 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
656 hold a size_t value and (2) the header size is a multiple of the
657 alignment that Emacs needs for C types and for USE_LSB_TAG. */
658 #define XMALLOC_OVERRUN_SIZE_SIZE \
659 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
660 + XMALLOC_HEADER_ALIGNMENT - 1) \
661 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
662 - XMALLOC_OVERRUN_CHECK_SIZE)
664 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
665 { '\x9a', '\x9b', '\xae', '\xaf',
666 '\xbf', '\xbe', '\xce', '\xcf',
667 '\xea', '\xeb', '\xec', '\xed',
668 '\xdf', '\xde', '\x9c', '\x9d' };
670 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
671 { '\xaa', '\xab', '\xac', '\xad',
672 '\xba', '\xbb', '\xbc', '\xbd',
673 '\xca', '\xcb', '\xcc', '\xcd',
674 '\xda', '\xdb', '\xdc', '\xdd' };
676 /* Insert and extract the block size in the header. */
678 static void
679 xmalloc_put_size (unsigned char *ptr, size_t size)
681 int i;
682 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
684 *--ptr = size & ((1 << CHAR_BIT) - 1);
685 size >>= CHAR_BIT;
689 static size_t
690 xmalloc_get_size (unsigned char *ptr)
692 size_t size = 0;
693 int i;
694 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
695 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
697 size <<= CHAR_BIT;
698 size += *ptr++;
700 return size;
704 /* Like malloc, but wraps allocated block with header and trailer. */
706 static void *
707 overrun_check_malloc (size_t size)
709 register unsigned char *val;
710 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
711 emacs_abort ();
713 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
714 if (val)
716 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
717 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
718 xmalloc_put_size (val, size);
719 memcpy (val + size, xmalloc_overrun_check_trailer,
720 XMALLOC_OVERRUN_CHECK_SIZE);
722 return val;
726 /* Like realloc, but checks old block for overrun, and wraps new block
727 with header and trailer. */
729 static void *
730 overrun_check_realloc (void *block, size_t size)
732 register unsigned char *val = (unsigned char *) block;
733 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
734 emacs_abort ();
736 if (val
737 && memcmp (xmalloc_overrun_check_header,
738 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
739 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
741 size_t osize = xmalloc_get_size (val);
742 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
743 XMALLOC_OVERRUN_CHECK_SIZE))
744 emacs_abort ();
745 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
746 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
747 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
750 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
752 if (val)
754 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
755 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
756 xmalloc_put_size (val, size);
757 memcpy (val + size, xmalloc_overrun_check_trailer,
758 XMALLOC_OVERRUN_CHECK_SIZE);
760 return val;
763 /* Like free, but checks block for overrun. */
765 static void
766 overrun_check_free (void *block)
768 unsigned char *val = (unsigned char *) block;
770 if (val
771 && memcmp (xmalloc_overrun_check_header,
772 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
773 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
775 size_t osize = xmalloc_get_size (val);
776 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
777 XMALLOC_OVERRUN_CHECK_SIZE))
778 emacs_abort ();
779 #ifdef XMALLOC_CLEAR_FREE_MEMORY
780 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
781 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
782 #else
783 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
784 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
785 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
786 #endif
789 free (val);
792 #undef malloc
793 #undef realloc
794 #undef free
795 #define malloc overrun_check_malloc
796 #define realloc overrun_check_realloc
797 #define free overrun_check_free
798 #endif
800 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
801 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
802 If that variable is set, block input while in one of Emacs's memory
803 allocation functions. There should be no need for this debugging
804 option, since signal handlers do not allocate memory, but Emacs
805 formerly allocated memory in signal handlers and this compile-time
806 option remains as a way to help debug the issue should it rear its
807 ugly head again. */
808 #ifdef XMALLOC_BLOCK_INPUT_CHECK
809 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
810 static void
811 malloc_block_input (void)
813 if (block_input_in_memory_allocators)
814 block_input ();
816 static void
817 malloc_unblock_input (void)
819 if (block_input_in_memory_allocators)
820 unblock_input ();
822 # define MALLOC_BLOCK_INPUT malloc_block_input ()
823 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
824 #else
825 # define MALLOC_BLOCK_INPUT ((void) 0)
826 # define MALLOC_UNBLOCK_INPUT ((void) 0)
827 #endif
829 #define MALLOC_PROBE(size) \
830 do { \
831 if (profiler_memory_running) \
832 malloc_probe (size); \
833 } while (0)
835 static void *lmalloc (size_t) ATTRIBUTE_MALLOC_SIZE ((1));
836 static void *lrealloc (void *, size_t);
838 /* Like malloc but check for no memory and block interrupt input. */
840 void *
841 xmalloc (size_t size)
843 void *val;
845 MALLOC_BLOCK_INPUT;
846 val = lmalloc (size);
847 MALLOC_UNBLOCK_INPUT;
849 if (!val && size)
850 memory_full (size);
851 MALLOC_PROBE (size);
852 return val;
855 /* Like the above, but zeroes out the memory just allocated. */
857 void *
858 xzalloc (size_t size)
860 void *val;
862 MALLOC_BLOCK_INPUT;
863 val = lmalloc (size);
864 MALLOC_UNBLOCK_INPUT;
866 if (!val && size)
867 memory_full (size);
868 memset (val, 0, size);
869 MALLOC_PROBE (size);
870 return val;
873 /* Like realloc but check for no memory and block interrupt input.. */
875 void *
876 xrealloc (void *block, size_t size)
878 void *val;
880 MALLOC_BLOCK_INPUT;
881 /* We must call malloc explicitly when BLOCK is 0, since some
882 reallocs don't do this. */
883 if (! block)
884 val = lmalloc (size);
885 else
886 val = lrealloc (block, size);
887 MALLOC_UNBLOCK_INPUT;
889 if (!val && size)
890 memory_full (size);
891 MALLOC_PROBE (size);
892 return val;
896 /* Like free but block interrupt input. */
898 void
899 xfree (void *block)
901 if (!block)
902 return;
903 MALLOC_BLOCK_INPUT;
904 free (block);
905 MALLOC_UNBLOCK_INPUT;
906 /* We don't call refill_memory_reserve here
907 because in practice the call in r_alloc_free seems to suffice. */
911 /* Other parts of Emacs pass large int values to allocator functions
912 expecting ptrdiff_t. This is portable in practice, but check it to
913 be safe. */
914 verify (INT_MAX <= PTRDIFF_MAX);
917 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
918 Signal an error on memory exhaustion, and block interrupt input. */
920 void *
921 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
923 eassert (0 <= nitems && 0 < item_size);
924 ptrdiff_t nbytes;
925 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
926 memory_full (SIZE_MAX);
927 return xmalloc (nbytes);
931 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
932 Signal an error on memory exhaustion, and block interrupt input. */
934 void *
935 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
937 eassert (0 <= nitems && 0 < item_size);
938 ptrdiff_t nbytes;
939 if (INT_MULTIPLY_WRAPV (nitems, item_size, &nbytes) || SIZE_MAX < nbytes)
940 memory_full (SIZE_MAX);
941 return xrealloc (pa, nbytes);
945 /* Grow PA, which points to an array of *NITEMS items, and return the
946 location of the reallocated array, updating *NITEMS to reflect its
947 new size. The new array will contain at least NITEMS_INCR_MIN more
948 items, but will not contain more than NITEMS_MAX items total.
949 ITEM_SIZE is the size of each item, in bytes.
951 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
952 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
953 infinity.
955 If PA is null, then allocate a new array instead of reallocating
956 the old one.
958 Block interrupt input as needed. If memory exhaustion occurs, set
959 *NITEMS to zero if PA is null, and signal an error (i.e., do not
960 return).
962 Thus, to grow an array A without saving its old contents, do
963 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
964 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
965 and signals an error, and later this code is reexecuted and
966 attempts to free A. */
968 void *
969 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
970 ptrdiff_t nitems_max, ptrdiff_t item_size)
972 ptrdiff_t n0 = *nitems;
973 eassume (0 < item_size && 0 < nitems_incr_min && 0 <= n0 && -1 <= nitems_max);
975 /* The approximate size to use for initial small allocation
976 requests. This is the largest "small" request for the GNU C
977 library malloc. */
978 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
980 /* If the array is tiny, grow it to about (but no greater than)
981 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%.
982 Adjust the growth according to three constraints: NITEMS_INCR_MIN,
983 NITEMS_MAX, and what the C language can represent safely. */
985 ptrdiff_t n, nbytes;
986 if (INT_ADD_WRAPV (n0, n0 >> 1, &n))
987 n = PTRDIFF_MAX;
988 if (0 <= nitems_max && nitems_max < n)
989 n = nitems_max;
991 ptrdiff_t adjusted_nbytes
992 = ((INT_MULTIPLY_WRAPV (n, item_size, &nbytes) || SIZE_MAX < nbytes)
993 ? min (PTRDIFF_MAX, SIZE_MAX)
994 : nbytes < DEFAULT_MXFAST ? DEFAULT_MXFAST : 0);
995 if (adjusted_nbytes)
997 n = adjusted_nbytes / item_size;
998 nbytes = adjusted_nbytes - adjusted_nbytes % item_size;
1001 if (! pa)
1002 *nitems = 0;
1003 if (n - n0 < nitems_incr_min
1004 && (INT_ADD_WRAPV (n0, nitems_incr_min, &n)
1005 || (0 <= nitems_max && nitems_max < n)
1006 || INT_MULTIPLY_WRAPV (n, item_size, &nbytes)))
1007 memory_full (SIZE_MAX);
1008 pa = xrealloc (pa, nbytes);
1009 *nitems = n;
1010 return pa;
1014 /* Like strdup, but uses xmalloc. */
1016 char *
1017 xstrdup (const char *s)
1019 ptrdiff_t size;
1020 eassert (s);
1021 size = strlen (s) + 1;
1022 return memcpy (xmalloc (size), s, size);
1025 /* Like above, but duplicates Lisp string to C string. */
1027 char *
1028 xlispstrdup (Lisp_Object string)
1030 ptrdiff_t size = SBYTES (string) + 1;
1031 return memcpy (xmalloc (size), SSDATA (string), size);
1034 /* Assign to *PTR a copy of STRING, freeing any storage *PTR formerly
1035 pointed to. If STRING is null, assign it without copying anything.
1036 Allocate before freeing, to avoid a dangling pointer if allocation
1037 fails. */
1039 void
1040 dupstring (char **ptr, char const *string)
1042 char *old = *ptr;
1043 *ptr = string ? xstrdup (string) : 0;
1044 xfree (old);
1048 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
1049 argument is a const pointer. */
1051 void
1052 xputenv (char const *string)
1054 if (putenv ((char *) string) != 0)
1055 memory_full (0);
1058 /* Return a newly allocated memory block of SIZE bytes, remembering
1059 to free it when unwinding. */
1060 void *
1061 record_xmalloc (size_t size)
1063 void *p = xmalloc (size);
1064 record_unwind_protect_ptr (xfree, p);
1065 return p;
1069 /* Like malloc but used for allocating Lisp data. NBYTES is the
1070 number of bytes to allocate, TYPE describes the intended use of the
1071 allocated memory block (for strings, for conses, ...). */
1073 #if ! USE_LSB_TAG
1074 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
1075 #endif
1077 static void *
1078 lisp_malloc (size_t nbytes, enum mem_type type)
1080 register void *val;
1082 MALLOC_BLOCK_INPUT;
1084 #ifdef GC_MALLOC_CHECK
1085 allocated_mem_type = type;
1086 #endif
1088 val = lmalloc (nbytes);
1090 #if ! USE_LSB_TAG
1091 /* If the memory just allocated cannot be addressed thru a Lisp
1092 object's pointer, and it needs to be,
1093 that's equivalent to running out of memory. */
1094 if (val && type != MEM_TYPE_NON_LISP)
1096 Lisp_Object tem;
1097 XSETCONS (tem, (char *) val + nbytes - 1);
1098 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
1100 lisp_malloc_loser = val;
1101 free (val);
1102 val = 0;
1105 #endif
1107 #ifndef GC_MALLOC_CHECK
1108 if (val && type != MEM_TYPE_NON_LISP)
1109 mem_insert (val, (char *) val + nbytes, type);
1110 #endif
1112 MALLOC_UNBLOCK_INPUT;
1113 if (!val && nbytes)
1114 memory_full (nbytes);
1115 MALLOC_PROBE (nbytes);
1116 return val;
1119 /* Free BLOCK. This must be called to free memory allocated with a
1120 call to lisp_malloc. */
1122 static void
1123 lisp_free (void *block)
1125 MALLOC_BLOCK_INPUT;
1126 free (block);
1127 #ifndef GC_MALLOC_CHECK
1128 mem_delete (mem_find (block));
1129 #endif
1130 MALLOC_UNBLOCK_INPUT;
1133 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
1135 /* The entry point is lisp_align_malloc which returns blocks of at most
1136 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
1138 /* Byte alignment of storage blocks. */
1139 #define BLOCK_ALIGN (1 << 10)
1140 verify (POWER_OF_2 (BLOCK_ALIGN));
1142 /* Use aligned_alloc if it or a simple substitute is available.
1143 Address sanitization breaks aligned allocation, as of gcc 4.8.2 and
1144 clang 3.3 anyway. Aligned allocation is incompatible with
1145 unexmacosx.c, so don't use it on Darwin. */
1147 #if ! ADDRESS_SANITIZER && !defined DARWIN_OS
1148 # if (defined HAVE_ALIGNED_ALLOC \
1149 || (defined HYBRID_MALLOC \
1150 ? defined HAVE_POSIX_MEMALIGN \
1151 : !defined SYSTEM_MALLOC && !defined DOUG_LEA_MALLOC))
1152 # define USE_ALIGNED_ALLOC 1
1153 # elif !defined HYBRID_MALLOC && defined HAVE_POSIX_MEMALIGN
1154 # define USE_ALIGNED_ALLOC 1
1155 # define aligned_alloc my_aligned_alloc /* Avoid collision with lisp.h. */
1156 static void *
1157 aligned_alloc (size_t alignment, size_t size)
1159 /* POSIX says the alignment must be a power-of-2 multiple of sizeof (void *).
1160 Verify this for all arguments this function is given. */
1161 verify (BLOCK_ALIGN % sizeof (void *) == 0
1162 && POWER_OF_2 (BLOCK_ALIGN / sizeof (void *)));
1163 verify (GCALIGNMENT % sizeof (void *) == 0
1164 && POWER_OF_2 (GCALIGNMENT / sizeof (void *)));
1165 eassert (alignment == BLOCK_ALIGN || alignment == GCALIGNMENT);
1167 void *p;
1168 return posix_memalign (&p, alignment, size) == 0 ? p : 0;
1170 # endif
1171 #endif
1173 /* Padding to leave at the end of a malloc'd block. This is to give
1174 malloc a chance to minimize the amount of memory wasted to alignment.
1175 It should be tuned to the particular malloc library used.
1176 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
1177 aligned_alloc on the other hand would ideally prefer a value of 4
1178 because otherwise, there's 1020 bytes wasted between each ablocks.
1179 In Emacs, testing shows that those 1020 can most of the time be
1180 efficiently used by malloc to place other objects, so a value of 0 can
1181 still preferable unless you have a lot of aligned blocks and virtually
1182 nothing else. */
1183 #define BLOCK_PADDING 0
1184 #define BLOCK_BYTES \
1185 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1187 /* Internal data structures and constants. */
1189 #define ABLOCKS_SIZE 16
1191 /* An aligned block of memory. */
1192 struct ablock
1194 union
1196 char payload[BLOCK_BYTES];
1197 struct ablock *next_free;
1198 } x;
1200 /* ABASE is the aligned base of the ablocks. It is overloaded to
1201 hold a virtual "busy" field that counts twice the number of used
1202 ablock values in the parent ablocks, plus one if the real base of
1203 the parent ablocks is ABASE (if the "busy" field is even, the
1204 word before the first ablock holds a pointer to the real base).
1205 The first ablock has a "busy" ABASE, and the others have an
1206 ordinary pointer ABASE. To tell the difference, the code assumes
1207 that pointers, when cast to uintptr_t, are at least 2 *
1208 ABLOCKS_SIZE + 1. */
1209 struct ablocks *abase;
1211 /* The padding of all but the last ablock is unused. The padding of
1212 the last ablock in an ablocks is not allocated. */
1213 #if BLOCK_PADDING
1214 char padding[BLOCK_PADDING];
1215 #endif
1218 /* A bunch of consecutive aligned blocks. */
1219 struct ablocks
1221 struct ablock blocks[ABLOCKS_SIZE];
1224 /* Size of the block requested from malloc or aligned_alloc. */
1225 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1227 #define ABLOCK_ABASE(block) \
1228 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1229 ? (struct ablocks *) (block) \
1230 : (block)->abase)
1232 /* Virtual `busy' field. */
1233 #define ABLOCKS_BUSY(a_base) ((a_base)->blocks[0].abase)
1235 /* Pointer to the (not necessarily aligned) malloc block. */
1236 #ifdef USE_ALIGNED_ALLOC
1237 #define ABLOCKS_BASE(abase) (abase)
1238 #else
1239 #define ABLOCKS_BASE(abase) \
1240 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **) (abase))[-1])
1241 #endif
1243 /* The list of free ablock. */
1244 static struct ablock *free_ablock;
1246 /* Allocate an aligned block of nbytes.
1247 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1248 smaller or equal to BLOCK_BYTES. */
1249 static void *
1250 lisp_align_malloc (size_t nbytes, enum mem_type type)
1252 void *base, *val;
1253 struct ablocks *abase;
1255 eassert (nbytes <= BLOCK_BYTES);
1257 MALLOC_BLOCK_INPUT;
1259 #ifdef GC_MALLOC_CHECK
1260 allocated_mem_type = type;
1261 #endif
1263 if (!free_ablock)
1265 int i;
1266 bool aligned;
1268 #ifdef DOUG_LEA_MALLOC
1269 if (!mmap_lisp_allowed_p ())
1270 mallopt (M_MMAP_MAX, 0);
1271 #endif
1273 #ifdef USE_ALIGNED_ALLOC
1274 verify (ABLOCKS_BYTES % BLOCK_ALIGN == 0);
1275 abase = base = aligned_alloc (BLOCK_ALIGN, ABLOCKS_BYTES);
1276 #else
1277 base = malloc (ABLOCKS_BYTES);
1278 abase = pointer_align (base, BLOCK_ALIGN);
1279 #endif
1281 if (base == 0)
1283 MALLOC_UNBLOCK_INPUT;
1284 memory_full (ABLOCKS_BYTES);
1287 aligned = (base == abase);
1288 if (!aligned)
1289 ((void **) abase)[-1] = base;
1291 #ifdef DOUG_LEA_MALLOC
1292 if (!mmap_lisp_allowed_p ())
1293 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1294 #endif
1296 #if ! USE_LSB_TAG
1297 /* If the memory just allocated cannot be addressed thru a Lisp
1298 object's pointer, and it needs to be, that's equivalent to
1299 running out of memory. */
1300 if (type != MEM_TYPE_NON_LISP)
1302 Lisp_Object tem;
1303 char *end = (char *) base + ABLOCKS_BYTES - 1;
1304 XSETCONS (tem, end);
1305 if ((char *) XCONS (tem) != end)
1307 lisp_malloc_loser = base;
1308 free (base);
1309 MALLOC_UNBLOCK_INPUT;
1310 memory_full (SIZE_MAX);
1313 #endif
1315 /* Initialize the blocks and put them on the free list.
1316 If `base' was not properly aligned, we can't use the last block. */
1317 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1319 abase->blocks[i].abase = abase;
1320 abase->blocks[i].x.next_free = free_ablock;
1321 free_ablock = &abase->blocks[i];
1323 intptr_t ialigned = aligned;
1324 ABLOCKS_BUSY (abase) = (struct ablocks *) ialigned;
1326 eassert ((uintptr_t) abase % BLOCK_ALIGN == 0);
1327 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1328 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1329 eassert (ABLOCKS_BASE (abase) == base);
1330 eassert ((intptr_t) ABLOCKS_BUSY (abase) == aligned);
1333 abase = ABLOCK_ABASE (free_ablock);
1334 ABLOCKS_BUSY (abase)
1335 = (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1336 val = free_ablock;
1337 free_ablock = free_ablock->x.next_free;
1339 #ifndef GC_MALLOC_CHECK
1340 if (type != MEM_TYPE_NON_LISP)
1341 mem_insert (val, (char *) val + nbytes, type);
1342 #endif
1344 MALLOC_UNBLOCK_INPUT;
1346 MALLOC_PROBE (nbytes);
1348 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1349 return val;
1352 static void
1353 lisp_align_free (void *block)
1355 struct ablock *ablock = block;
1356 struct ablocks *abase = ABLOCK_ABASE (ablock);
1358 MALLOC_BLOCK_INPUT;
1359 #ifndef GC_MALLOC_CHECK
1360 mem_delete (mem_find (block));
1361 #endif
1362 /* Put on free list. */
1363 ablock->x.next_free = free_ablock;
1364 free_ablock = ablock;
1365 /* Update busy count. */
1366 intptr_t busy = (intptr_t) ABLOCKS_BUSY (abase) - 2;
1367 eassume (0 <= busy && busy <= 2 * ABLOCKS_SIZE - 1);
1368 ABLOCKS_BUSY (abase) = (struct ablocks *) busy;
1370 if (busy < 2)
1371 { /* All the blocks are free. */
1372 int i = 0;
1373 bool aligned = busy;
1374 struct ablock **tem = &free_ablock;
1375 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1377 while (*tem)
1379 if (*tem >= (struct ablock *) abase && *tem < atop)
1381 i++;
1382 *tem = (*tem)->x.next_free;
1384 else
1385 tem = &(*tem)->x.next_free;
1387 eassert ((aligned & 1) == aligned);
1388 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1389 #ifdef USE_POSIX_MEMALIGN
1390 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1391 #endif
1392 free (ABLOCKS_BASE (abase));
1394 MALLOC_UNBLOCK_INPUT;
1397 #if !defined __GNUC__ && !defined __alignof__
1398 # define __alignof__(type) alignof (type)
1399 #endif
1401 /* True if malloc (N) is known to return a multiple of GCALIGNMENT
1402 whenever N is also a multiple. In practice this is true if
1403 __alignof__ (max_align_t) is a multiple as well, assuming
1404 GCALIGNMENT is 8; other values of GCALIGNMENT have not been looked
1405 into. Use __alignof__ if available, as otherwise
1406 MALLOC_IS_GC_ALIGNED would be false on GCC x86 even though the
1407 alignment is OK there.
1409 This is a macro, not an enum constant, for portability to HP-UX
1410 10.20 cc and AIX 3.2.5 xlc. */
1411 #define MALLOC_IS_GC_ALIGNED \
1412 (GCALIGNMENT == 8 && __alignof__ (max_align_t) % GCALIGNMENT == 0)
1414 /* True if a malloc-returned pointer P is suitably aligned for SIZE,
1415 where Lisp alignment may be needed if SIZE is Lisp-aligned. */
1417 static bool
1418 laligned (void *p, size_t size)
1420 return (MALLOC_IS_GC_ALIGNED || (intptr_t) p % GCALIGNMENT == 0
1421 || size % GCALIGNMENT != 0);
1424 /* Like malloc and realloc except that if SIZE is Lisp-aligned, make
1425 sure the result is too, if necessary by reallocating (typically
1426 with larger and larger sizes) until the allocator returns a
1427 Lisp-aligned pointer. Code that needs to allocate C heap memory
1428 for a Lisp object should use one of these functions to obtain a
1429 pointer P; that way, if T is an enum Lisp_Type value and L ==
1430 make_lisp_ptr (P, T), then XPNTR (L) == P and XTYPE (L) == T.
1432 On typical modern platforms these functions' loops do not iterate.
1433 On now-rare (and perhaps nonexistent) platforms, the loops in
1434 theory could repeat forever. If an infinite loop is possible on a
1435 platform, a build would surely loop and the builder can then send
1436 us a bug report. Adding a counter to try to detect any such loop
1437 would complicate the code (and possibly introduce bugs, in code
1438 that's never really exercised) for little benefit. */
1440 static void *
1441 lmalloc (size_t size)
1443 #if USE_ALIGNED_ALLOC
1444 if (! MALLOC_IS_GC_ALIGNED && size % GCALIGNMENT == 0)
1445 return aligned_alloc (GCALIGNMENT, size);
1446 #endif
1448 while (true)
1450 void *p = malloc (size);
1451 if (laligned (p, size))
1452 return p;
1453 free (p);
1454 size_t bigger = size + GCALIGNMENT;
1455 if (size < bigger)
1456 size = bigger;
1460 static void *
1461 lrealloc (void *p, size_t size)
1463 while (true)
1465 p = realloc (p, size);
1466 if (laligned (p, size))
1467 return p;
1468 size_t bigger = size + GCALIGNMENT;
1469 if (size < bigger)
1470 size = bigger;
1475 /***********************************************************************
1476 Interval Allocation
1477 ***********************************************************************/
1479 /* Number of intervals allocated in an interval_block structure.
1480 The 1020 is 1024 minus malloc overhead. */
1482 #define INTERVAL_BLOCK_SIZE \
1483 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1485 /* Intervals are allocated in chunks in the form of an interval_block
1486 structure. */
1488 struct interval_block
1490 /* Place `intervals' first, to preserve alignment. */
1491 struct interval intervals[INTERVAL_BLOCK_SIZE];
1492 struct interval_block *next;
1495 /* Current interval block. Its `next' pointer points to older
1496 blocks. */
1498 static struct interval_block *interval_block;
1500 /* Index in interval_block above of the next unused interval
1501 structure. */
1503 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1505 /* Number of free and live intervals. */
1507 static EMACS_INT total_free_intervals, total_intervals;
1509 /* List of free intervals. */
1511 static INTERVAL interval_free_list;
1513 /* Return a new interval. */
1515 INTERVAL
1516 make_interval (void)
1518 INTERVAL val;
1520 MALLOC_BLOCK_INPUT;
1522 if (interval_free_list)
1524 val = interval_free_list;
1525 interval_free_list = INTERVAL_PARENT (interval_free_list);
1527 else
1529 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1531 struct interval_block *newi
1532 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1534 newi->next = interval_block;
1535 interval_block = newi;
1536 interval_block_index = 0;
1537 total_free_intervals += INTERVAL_BLOCK_SIZE;
1539 val = &interval_block->intervals[interval_block_index++];
1542 MALLOC_UNBLOCK_INPUT;
1544 consing_since_gc += sizeof (struct interval);
1545 intervals_consed++;
1546 total_free_intervals--;
1547 RESET_INTERVAL (val);
1548 val->gcmarkbit = 0;
1549 return val;
1553 /* Mark Lisp objects in interval I. */
1555 static void
1556 mark_interval (INTERVAL i, void *dummy)
1558 /* Intervals should never be shared. So, if extra internal checking is
1559 enabled, GC aborts if it seems to have visited an interval twice. */
1560 eassert (!i->gcmarkbit);
1561 i->gcmarkbit = 1;
1562 mark_object (i->plist);
1565 /* Mark the interval tree rooted in I. */
1567 #define MARK_INTERVAL_TREE(i) \
1568 do { \
1569 if (i && !i->gcmarkbit) \
1570 traverse_intervals_noorder (i, mark_interval, NULL); \
1571 } while (0)
1573 /***********************************************************************
1574 String Allocation
1575 ***********************************************************************/
1577 /* Lisp_Strings are allocated in string_block structures. When a new
1578 string_block is allocated, all the Lisp_Strings it contains are
1579 added to a free-list string_free_list. When a new Lisp_String is
1580 needed, it is taken from that list. During the sweep phase of GC,
1581 string_blocks that are entirely free are freed, except two which
1582 we keep.
1584 String data is allocated from sblock structures. Strings larger
1585 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1586 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1588 Sblocks consist internally of sdata structures, one for each
1589 Lisp_String. The sdata structure points to the Lisp_String it
1590 belongs to. The Lisp_String points back to the `u.data' member of
1591 its sdata structure.
1593 When a Lisp_String is freed during GC, it is put back on
1594 string_free_list, and its `data' member and its sdata's `string'
1595 pointer is set to null. The size of the string is recorded in the
1596 `n.nbytes' member of the sdata. So, sdata structures that are no
1597 longer used, can be easily recognized, and it's easy to compact the
1598 sblocks of small strings which we do in compact_small_strings. */
1600 /* Size in bytes of an sblock structure used for small strings. This
1601 is 8192 minus malloc overhead. */
1603 #define SBLOCK_SIZE 8188
1605 /* Strings larger than this are considered large strings. String data
1606 for large strings is allocated from individual sblocks. */
1608 #define LARGE_STRING_BYTES 1024
1610 /* The SDATA typedef is a struct or union describing string memory
1611 sub-allocated from an sblock. This is where the contents of Lisp
1612 strings are stored. */
1614 struct sdata
1616 /* Back-pointer to the string this sdata belongs to. If null, this
1617 structure is free, and NBYTES (in this structure or in the union below)
1618 contains the string's byte size (the same value that STRING_BYTES
1619 would return if STRING were non-null). If non-null, STRING_BYTES
1620 (STRING) is the size of the data, and DATA contains the string's
1621 contents. */
1622 struct Lisp_String *string;
1624 #ifdef GC_CHECK_STRING_BYTES
1625 ptrdiff_t nbytes;
1626 #endif
1628 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1631 #ifdef GC_CHECK_STRING_BYTES
1633 typedef struct sdata sdata;
1634 #define SDATA_NBYTES(S) (S)->nbytes
1635 #define SDATA_DATA(S) (S)->data
1637 #else
1639 typedef union
1641 struct Lisp_String *string;
1643 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1644 which has a flexible array member. However, if implemented by
1645 giving this union a member of type 'struct sdata', the union
1646 could not be the last (flexible) member of 'struct sblock',
1647 because C99 prohibits a flexible array member from having a type
1648 that is itself a flexible array. So, comment this member out here,
1649 but remember that the option's there when using this union. */
1650 #if 0
1651 struct sdata u;
1652 #endif
1654 /* When STRING is null. */
1655 struct
1657 struct Lisp_String *string;
1658 ptrdiff_t nbytes;
1659 } n;
1660 } sdata;
1662 #define SDATA_NBYTES(S) (S)->n.nbytes
1663 #define SDATA_DATA(S) ((struct sdata *) (S))->data
1665 #endif /* not GC_CHECK_STRING_BYTES */
1667 enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1669 /* Structure describing a block of memory which is sub-allocated to
1670 obtain string data memory for strings. Blocks for small strings
1671 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1672 as large as needed. */
1674 struct sblock
1676 /* Next in list. */
1677 struct sblock *next;
1679 /* Pointer to the next free sdata block. This points past the end
1680 of the sblock if there isn't any space left in this block. */
1681 sdata *next_free;
1683 /* String data. */
1684 sdata data[FLEXIBLE_ARRAY_MEMBER];
1687 /* Number of Lisp strings in a string_block structure. The 1020 is
1688 1024 minus malloc overhead. */
1690 #define STRING_BLOCK_SIZE \
1691 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1693 /* Structure describing a block from which Lisp_String structures
1694 are allocated. */
1696 struct string_block
1698 /* Place `strings' first, to preserve alignment. */
1699 struct Lisp_String strings[STRING_BLOCK_SIZE];
1700 struct string_block *next;
1703 /* Head and tail of the list of sblock structures holding Lisp string
1704 data. We always allocate from current_sblock. The NEXT pointers
1705 in the sblock structures go from oldest_sblock to current_sblock. */
1707 static struct sblock *oldest_sblock, *current_sblock;
1709 /* List of sblocks for large strings. */
1711 static struct sblock *large_sblocks;
1713 /* List of string_block structures. */
1715 static struct string_block *string_blocks;
1717 /* Free-list of Lisp_Strings. */
1719 static struct Lisp_String *string_free_list;
1721 /* Number of live and free Lisp_Strings. */
1723 static EMACS_INT total_strings, total_free_strings;
1725 /* Number of bytes used by live strings. */
1727 static EMACS_INT total_string_bytes;
1729 /* Given a pointer to a Lisp_String S which is on the free-list
1730 string_free_list, return a pointer to its successor in the
1731 free-list. */
1733 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1735 /* Return a pointer to the sdata structure belonging to Lisp string S.
1736 S must be live, i.e. S->data must not be null. S->data is actually
1737 a pointer to the `u.data' member of its sdata structure; the
1738 structure starts at a constant offset in front of that. */
1740 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1743 #ifdef GC_CHECK_STRING_OVERRUN
1745 /* We check for overrun in string data blocks by appending a small
1746 "cookie" after each allocated string data block, and check for the
1747 presence of this cookie during GC. */
1749 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1750 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1751 { '\xde', '\xad', '\xbe', '\xef' };
1753 #else
1754 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1755 #endif
1757 /* Value is the size of an sdata structure large enough to hold NBYTES
1758 bytes of string data. The value returned includes a terminating
1759 NUL byte, the size of the sdata structure, and padding. */
1761 #ifdef GC_CHECK_STRING_BYTES
1763 #define SDATA_SIZE(NBYTES) FLEXSIZEOF (struct sdata, data, (NBYTES) + 1)
1765 #else /* not GC_CHECK_STRING_BYTES */
1767 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1768 less than the size of that member. The 'max' is not needed when
1769 SDATA_DATA_OFFSET is a multiple of FLEXALIGNOF (struct sdata),
1770 because then the alignment code reserves enough space. */
1772 #define SDATA_SIZE(NBYTES) \
1773 ((SDATA_DATA_OFFSET \
1774 + (SDATA_DATA_OFFSET % FLEXALIGNOF (struct sdata) == 0 \
1775 ? NBYTES \
1776 : max (NBYTES, FLEXALIGNOF (struct sdata) - 1)) \
1777 + 1 \
1778 + FLEXALIGNOF (struct sdata) - 1) \
1779 & ~(FLEXALIGNOF (struct sdata) - 1))
1781 #endif /* not GC_CHECK_STRING_BYTES */
1783 /* Extra bytes to allocate for each string. */
1785 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1787 /* Exact bound on the number of bytes in a string, not counting the
1788 terminating null. A string cannot contain more bytes than
1789 STRING_BYTES_BOUND, nor can it be so long that the size_t
1790 arithmetic in allocate_string_data would overflow while it is
1791 calculating a value to be passed to malloc. */
1792 static ptrdiff_t const STRING_BYTES_MAX =
1793 min (STRING_BYTES_BOUND,
1794 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1795 - GC_STRING_EXTRA
1796 - offsetof (struct sblock, data)
1797 - SDATA_DATA_OFFSET)
1798 & ~(sizeof (EMACS_INT) - 1)));
1800 /* Initialize string allocation. Called from init_alloc_once. */
1802 static void
1803 init_strings (void)
1805 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1806 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1810 #ifdef GC_CHECK_STRING_BYTES
1812 static int check_string_bytes_count;
1814 /* Like STRING_BYTES, but with debugging check. Can be
1815 called during GC, so pay attention to the mark bit. */
1817 ptrdiff_t
1818 string_bytes (struct Lisp_String *s)
1820 ptrdiff_t nbytes =
1821 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1823 if (!PURE_P (s) && s->data && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1824 emacs_abort ();
1825 return nbytes;
1828 /* Check validity of Lisp strings' string_bytes member in B. */
1830 static void
1831 check_sblock (struct sblock *b)
1833 sdata *from, *end, *from_end;
1835 end = b->next_free;
1837 for (from = b->data; from < end; from = from_end)
1839 /* Compute the next FROM here because copying below may
1840 overwrite data we need to compute it. */
1841 ptrdiff_t nbytes;
1843 /* Check that the string size recorded in the string is the
1844 same as the one recorded in the sdata structure. */
1845 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1846 : SDATA_NBYTES (from));
1847 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1852 /* Check validity of Lisp strings' string_bytes member. ALL_P
1853 means check all strings, otherwise check only most
1854 recently allocated strings. Used for hunting a bug. */
1856 static void
1857 check_string_bytes (bool all_p)
1859 if (all_p)
1861 struct sblock *b;
1863 for (b = large_sblocks; b; b = b->next)
1865 struct Lisp_String *s = b->data[0].string;
1866 if (s)
1867 string_bytes (s);
1870 for (b = oldest_sblock; b; b = b->next)
1871 check_sblock (b);
1873 else if (current_sblock)
1874 check_sblock (current_sblock);
1877 #else /* not GC_CHECK_STRING_BYTES */
1879 #define check_string_bytes(all) ((void) 0)
1881 #endif /* GC_CHECK_STRING_BYTES */
1883 #ifdef GC_CHECK_STRING_FREE_LIST
1885 /* Walk through the string free list looking for bogus next pointers.
1886 This may catch buffer overrun from a previous string. */
1888 static void
1889 check_string_free_list (void)
1891 struct Lisp_String *s;
1893 /* Pop a Lisp_String off the free-list. */
1894 s = string_free_list;
1895 while (s != NULL)
1897 if ((uintptr_t) s < 1024)
1898 emacs_abort ();
1899 s = NEXT_FREE_LISP_STRING (s);
1902 #else
1903 #define check_string_free_list()
1904 #endif
1906 /* Return a new Lisp_String. */
1908 static struct Lisp_String *
1909 allocate_string (void)
1911 struct Lisp_String *s;
1913 MALLOC_BLOCK_INPUT;
1915 /* If the free-list is empty, allocate a new string_block, and
1916 add all the Lisp_Strings in it to the free-list. */
1917 if (string_free_list == NULL)
1919 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1920 int i;
1922 b->next = string_blocks;
1923 string_blocks = b;
1925 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1927 s = b->strings + i;
1928 /* Every string on a free list should have NULL data pointer. */
1929 s->data = NULL;
1930 NEXT_FREE_LISP_STRING (s) = string_free_list;
1931 string_free_list = s;
1934 total_free_strings += STRING_BLOCK_SIZE;
1937 check_string_free_list ();
1939 /* Pop a Lisp_String off the free-list. */
1940 s = string_free_list;
1941 string_free_list = NEXT_FREE_LISP_STRING (s);
1943 MALLOC_UNBLOCK_INPUT;
1945 --total_free_strings;
1946 ++total_strings;
1947 ++strings_consed;
1948 consing_since_gc += sizeof *s;
1950 #ifdef GC_CHECK_STRING_BYTES
1951 if (!noninteractive)
1953 if (++check_string_bytes_count == 200)
1955 check_string_bytes_count = 0;
1956 check_string_bytes (1);
1958 else
1959 check_string_bytes (0);
1961 #endif /* GC_CHECK_STRING_BYTES */
1963 return s;
1967 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1968 plus a NUL byte at the end. Allocate an sdata structure for S, and
1969 set S->data to its `u.data' member. Store a NUL byte at the end of
1970 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1971 S->data if it was initially non-null. */
1973 void
1974 allocate_string_data (struct Lisp_String *s,
1975 EMACS_INT nchars, EMACS_INT nbytes)
1977 sdata *data, *old_data;
1978 struct sblock *b;
1979 ptrdiff_t needed, old_nbytes;
1981 if (STRING_BYTES_MAX < nbytes)
1982 string_overflow ();
1984 /* Determine the number of bytes needed to store NBYTES bytes
1985 of string data. */
1986 needed = SDATA_SIZE (nbytes);
1987 if (s->data)
1989 old_data = SDATA_OF_STRING (s);
1990 old_nbytes = STRING_BYTES (s);
1992 else
1993 old_data = NULL;
1995 MALLOC_BLOCK_INPUT;
1997 if (nbytes > LARGE_STRING_BYTES)
1999 size_t size = FLEXSIZEOF (struct sblock, data, needed);
2001 #ifdef DOUG_LEA_MALLOC
2002 if (!mmap_lisp_allowed_p ())
2003 mallopt (M_MMAP_MAX, 0);
2004 #endif
2006 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2008 #ifdef DOUG_LEA_MALLOC
2009 if (!mmap_lisp_allowed_p ())
2010 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2011 #endif
2013 data = b->data;
2014 b->next = large_sblocks;
2015 b->next_free = data;
2016 large_sblocks = b;
2018 else if (current_sblock == NULL
2019 || (((char *) current_sblock + SBLOCK_SIZE
2020 - (char *) current_sblock->next_free)
2021 < (needed + GC_STRING_EXTRA)))
2023 /* Not enough room in the current sblock. */
2024 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2025 data = b->data;
2026 b->next = NULL;
2027 b->next_free = data;
2029 if (current_sblock)
2030 current_sblock->next = b;
2031 else
2032 oldest_sblock = b;
2033 current_sblock = b;
2035 else
2037 b = current_sblock;
2038 data = b->next_free;
2041 data->string = s;
2042 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2044 MALLOC_UNBLOCK_INPUT;
2046 s->data = SDATA_DATA (data);
2047 #ifdef GC_CHECK_STRING_BYTES
2048 SDATA_NBYTES (data) = nbytes;
2049 #endif
2050 s->size = nchars;
2051 s->size_byte = nbytes;
2052 s->data[nbytes] = '\0';
2053 #ifdef GC_CHECK_STRING_OVERRUN
2054 memcpy ((char *) data + needed, string_overrun_cookie,
2055 GC_STRING_OVERRUN_COOKIE_SIZE);
2056 #endif
2058 /* Note that Faset may call to this function when S has already data
2059 assigned. In this case, mark data as free by setting it's string
2060 back-pointer to null, and record the size of the data in it. */
2061 if (old_data)
2063 SDATA_NBYTES (old_data) = old_nbytes;
2064 old_data->string = NULL;
2067 consing_since_gc += needed;
2071 /* Sweep and compact strings. */
2073 NO_INLINE /* For better stack traces */
2074 static void
2075 sweep_strings (void)
2077 struct string_block *b, *next;
2078 struct string_block *live_blocks = NULL;
2080 string_free_list = NULL;
2081 total_strings = total_free_strings = 0;
2082 total_string_bytes = 0;
2084 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2085 for (b = string_blocks; b; b = next)
2087 int i, nfree = 0;
2088 struct Lisp_String *free_list_before = string_free_list;
2090 next = b->next;
2092 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2094 struct Lisp_String *s = b->strings + i;
2096 if (s->data)
2098 /* String was not on free-list before. */
2099 if (STRING_MARKED_P (s))
2101 /* String is live; unmark it and its intervals. */
2102 UNMARK_STRING (s);
2104 /* Do not use string_(set|get)_intervals here. */
2105 s->intervals = balance_intervals (s->intervals);
2107 ++total_strings;
2108 total_string_bytes += STRING_BYTES (s);
2110 else
2112 /* String is dead. Put it on the free-list. */
2113 sdata *data = SDATA_OF_STRING (s);
2115 /* Save the size of S in its sdata so that we know
2116 how large that is. Reset the sdata's string
2117 back-pointer so that we know it's free. */
2118 #ifdef GC_CHECK_STRING_BYTES
2119 if (string_bytes (s) != SDATA_NBYTES (data))
2120 emacs_abort ();
2121 #else
2122 data->n.nbytes = STRING_BYTES (s);
2123 #endif
2124 data->string = NULL;
2126 /* Reset the strings's `data' member so that we
2127 know it's free. */
2128 s->data = NULL;
2130 /* Put the string on the free-list. */
2131 NEXT_FREE_LISP_STRING (s) = string_free_list;
2132 string_free_list = s;
2133 ++nfree;
2136 else
2138 /* S was on the free-list before. Put it there again. */
2139 NEXT_FREE_LISP_STRING (s) = string_free_list;
2140 string_free_list = s;
2141 ++nfree;
2145 /* Free blocks that contain free Lisp_Strings only, except
2146 the first two of them. */
2147 if (nfree == STRING_BLOCK_SIZE
2148 && total_free_strings > STRING_BLOCK_SIZE)
2150 lisp_free (b);
2151 string_free_list = free_list_before;
2153 else
2155 total_free_strings += nfree;
2156 b->next = live_blocks;
2157 live_blocks = b;
2161 check_string_free_list ();
2163 string_blocks = live_blocks;
2164 free_large_strings ();
2165 compact_small_strings ();
2167 check_string_free_list ();
2171 /* Free dead large strings. */
2173 static void
2174 free_large_strings (void)
2176 struct sblock *b, *next;
2177 struct sblock *live_blocks = NULL;
2179 for (b = large_sblocks; b; b = next)
2181 next = b->next;
2183 if (b->data[0].string == NULL)
2184 lisp_free (b);
2185 else
2187 b->next = live_blocks;
2188 live_blocks = b;
2192 large_sblocks = live_blocks;
2196 /* Compact data of small strings. Free sblocks that don't contain
2197 data of live strings after compaction. */
2199 static void
2200 compact_small_strings (void)
2202 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2203 to, and TB_END is the end of TB. */
2204 struct sblock *tb = oldest_sblock;
2205 if (tb)
2207 sdata *tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2208 sdata *to = tb->data;
2210 /* Step through the blocks from the oldest to the youngest. We
2211 expect that old blocks will stabilize over time, so that less
2212 copying will happen this way. */
2213 struct sblock *b = tb;
2216 sdata *end = b->next_free;
2217 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2219 for (sdata *from = b->data; from < end; )
2221 /* Compute the next FROM here because copying below may
2222 overwrite data we need to compute it. */
2223 ptrdiff_t nbytes;
2224 struct Lisp_String *s = from->string;
2226 #ifdef GC_CHECK_STRING_BYTES
2227 /* Check that the string size recorded in the string is the
2228 same as the one recorded in the sdata structure. */
2229 if (s && string_bytes (s) != SDATA_NBYTES (from))
2230 emacs_abort ();
2231 #endif /* GC_CHECK_STRING_BYTES */
2233 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
2234 eassert (nbytes <= LARGE_STRING_BYTES);
2236 nbytes = SDATA_SIZE (nbytes);
2237 sdata *from_end = (sdata *) ((char *) from
2238 + nbytes + GC_STRING_EXTRA);
2240 #ifdef GC_CHECK_STRING_OVERRUN
2241 if (memcmp (string_overrun_cookie,
2242 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2243 GC_STRING_OVERRUN_COOKIE_SIZE))
2244 emacs_abort ();
2245 #endif
2247 /* Non-NULL S means it's alive. Copy its data. */
2248 if (s)
2250 /* If TB is full, proceed with the next sblock. */
2251 sdata *to_end = (sdata *) ((char *) to
2252 + nbytes + GC_STRING_EXTRA);
2253 if (to_end > tb_end)
2255 tb->next_free = to;
2256 tb = tb->next;
2257 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
2258 to = tb->data;
2259 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2262 /* Copy, and update the string's `data' pointer. */
2263 if (from != to)
2265 eassert (tb != b || to < from);
2266 memmove (to, from, nbytes + GC_STRING_EXTRA);
2267 to->string->data = SDATA_DATA (to);
2270 /* Advance past the sdata we copied to. */
2271 to = to_end;
2273 from = from_end;
2275 b = b->next;
2277 while (b);
2279 /* The rest of the sblocks following TB don't contain live data, so
2280 we can free them. */
2281 for (b = tb->next; b; )
2283 struct sblock *next = b->next;
2284 lisp_free (b);
2285 b = next;
2288 tb->next_free = to;
2289 tb->next = NULL;
2292 current_sblock = tb;
2295 void
2296 string_overflow (void)
2298 error ("Maximum string size exceeded");
2301 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2302 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2303 LENGTH must be an integer.
2304 INIT must be an integer that represents a character. */)
2305 (Lisp_Object length, Lisp_Object init)
2307 register Lisp_Object val;
2308 int c;
2309 EMACS_INT nbytes;
2311 CHECK_NATNUM (length);
2312 CHECK_CHARACTER (init);
2314 c = XFASTINT (init);
2315 if (ASCII_CHAR_P (c))
2317 nbytes = XINT (length);
2318 val = make_uninit_string (nbytes);
2319 if (nbytes)
2321 memset (SDATA (val), c, nbytes);
2322 SDATA (val)[nbytes] = 0;
2325 else
2327 unsigned char str[MAX_MULTIBYTE_LENGTH];
2328 ptrdiff_t len = CHAR_STRING (c, str);
2329 EMACS_INT string_len = XINT (length);
2330 unsigned char *p, *beg, *end;
2332 if (INT_MULTIPLY_WRAPV (len, string_len, &nbytes))
2333 string_overflow ();
2334 val = make_uninit_multibyte_string (string_len, nbytes);
2335 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2337 /* First time we just copy `str' to the data of `val'. */
2338 if (p == beg)
2339 memcpy (p, str, len);
2340 else
2342 /* Next time we copy largest possible chunk from
2343 initialized to uninitialized part of `val'. */
2344 len = min (p - beg, end - p);
2345 memcpy (p, beg, len);
2348 if (nbytes)
2349 *p = 0;
2352 return val;
2355 /* Fill A with 1 bits if INIT is non-nil, and with 0 bits otherwise.
2356 Return A. */
2358 Lisp_Object
2359 bool_vector_fill (Lisp_Object a, Lisp_Object init)
2361 EMACS_INT nbits = bool_vector_size (a);
2362 if (0 < nbits)
2364 unsigned char *data = bool_vector_uchar_data (a);
2365 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2366 ptrdiff_t nbytes = bool_vector_bytes (nbits);
2367 int last_mask = ~ (~0u << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2368 memset (data, pattern, nbytes - 1);
2369 data[nbytes - 1] = pattern & last_mask;
2371 return a;
2374 /* Return a newly allocated, uninitialized bool vector of size NBITS. */
2376 Lisp_Object
2377 make_uninit_bool_vector (EMACS_INT nbits)
2379 Lisp_Object val;
2380 EMACS_INT words = bool_vector_words (nbits);
2381 EMACS_INT word_bytes = words * sizeof (bits_word);
2382 EMACS_INT needed_elements = ((bool_header_size - header_size + word_bytes
2383 + word_size - 1)
2384 / word_size);
2385 struct Lisp_Bool_Vector *p
2386 = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2387 XSETVECTOR (val, p);
2388 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2389 p->size = nbits;
2391 /* Clear padding at the end. */
2392 if (words)
2393 p->data[words - 1] = 0;
2395 return val;
2398 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2399 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2400 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2401 (Lisp_Object length, Lisp_Object init)
2403 Lisp_Object val;
2405 CHECK_NATNUM (length);
2406 val = make_uninit_bool_vector (XFASTINT (length));
2407 return bool_vector_fill (val, init);
2410 DEFUN ("bool-vector", Fbool_vector, Sbool_vector, 0, MANY, 0,
2411 doc: /* Return a new bool-vector with specified arguments as elements.
2412 Any number of arguments, even zero arguments, are allowed.
2413 usage: (bool-vector &rest OBJECTS) */)
2414 (ptrdiff_t nargs, Lisp_Object *args)
2416 ptrdiff_t i;
2417 Lisp_Object vector;
2419 vector = make_uninit_bool_vector (nargs);
2420 for (i = 0; i < nargs; i++)
2421 bool_vector_set (vector, i, !NILP (args[i]));
2423 return vector;
2426 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2427 of characters from the contents. This string may be unibyte or
2428 multibyte, depending on the contents. */
2430 Lisp_Object
2431 make_string (const char *contents, ptrdiff_t nbytes)
2433 register Lisp_Object val;
2434 ptrdiff_t nchars, multibyte_nbytes;
2436 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2437 &nchars, &multibyte_nbytes);
2438 if (nbytes == nchars || nbytes != multibyte_nbytes)
2439 /* CONTENTS contains no multibyte sequences or contains an invalid
2440 multibyte sequence. We must make unibyte string. */
2441 val = make_unibyte_string (contents, nbytes);
2442 else
2443 val = make_multibyte_string (contents, nchars, nbytes);
2444 return val;
2447 /* Make a unibyte string from LENGTH bytes at CONTENTS. */
2449 Lisp_Object
2450 make_unibyte_string (const char *contents, ptrdiff_t length)
2452 register Lisp_Object val;
2453 val = make_uninit_string (length);
2454 memcpy (SDATA (val), contents, length);
2455 return val;
2459 /* Make a multibyte string from NCHARS characters occupying NBYTES
2460 bytes at CONTENTS. */
2462 Lisp_Object
2463 make_multibyte_string (const char *contents,
2464 ptrdiff_t nchars, ptrdiff_t nbytes)
2466 register Lisp_Object val;
2467 val = make_uninit_multibyte_string (nchars, nbytes);
2468 memcpy (SDATA (val), contents, nbytes);
2469 return val;
2473 /* Make a string from NCHARS characters occupying NBYTES bytes at
2474 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2476 Lisp_Object
2477 make_string_from_bytes (const char *contents,
2478 ptrdiff_t nchars, ptrdiff_t nbytes)
2480 register Lisp_Object val;
2481 val = make_uninit_multibyte_string (nchars, nbytes);
2482 memcpy (SDATA (val), contents, nbytes);
2483 if (SBYTES (val) == SCHARS (val))
2484 STRING_SET_UNIBYTE (val);
2485 return val;
2489 /* Make a string from NCHARS characters occupying NBYTES bytes at
2490 CONTENTS. The argument MULTIBYTE controls whether to label the
2491 string as multibyte. If NCHARS is negative, it counts the number of
2492 characters by itself. */
2494 Lisp_Object
2495 make_specified_string (const char *contents,
2496 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2498 Lisp_Object val;
2500 if (nchars < 0)
2502 if (multibyte)
2503 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2504 nbytes);
2505 else
2506 nchars = nbytes;
2508 val = make_uninit_multibyte_string (nchars, nbytes);
2509 memcpy (SDATA (val), contents, nbytes);
2510 if (!multibyte)
2511 STRING_SET_UNIBYTE (val);
2512 return val;
2516 /* Return a unibyte Lisp_String set up to hold LENGTH characters
2517 occupying LENGTH bytes. */
2519 Lisp_Object
2520 make_uninit_string (EMACS_INT length)
2522 Lisp_Object val;
2524 if (!length)
2525 return empty_unibyte_string;
2526 val = make_uninit_multibyte_string (length, length);
2527 STRING_SET_UNIBYTE (val);
2528 return val;
2532 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2533 which occupy NBYTES bytes. */
2535 Lisp_Object
2536 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2538 Lisp_Object string;
2539 struct Lisp_String *s;
2541 if (nchars < 0)
2542 emacs_abort ();
2543 if (!nbytes)
2544 return empty_multibyte_string;
2546 s = allocate_string ();
2547 s->intervals = NULL;
2548 allocate_string_data (s, nchars, nbytes);
2549 XSETSTRING (string, s);
2550 string_chars_consed += nbytes;
2551 return string;
2554 /* Print arguments to BUF according to a FORMAT, then return
2555 a Lisp_String initialized with the data from BUF. */
2557 Lisp_Object
2558 make_formatted_string (char *buf, const char *format, ...)
2560 va_list ap;
2561 int length;
2563 va_start (ap, format);
2564 length = vsprintf (buf, format, ap);
2565 va_end (ap);
2566 return make_string (buf, length);
2570 /***********************************************************************
2571 Float Allocation
2572 ***********************************************************************/
2574 /* We store float cells inside of float_blocks, allocating a new
2575 float_block with malloc whenever necessary. Float cells reclaimed
2576 by GC are put on a free list to be reallocated before allocating
2577 any new float cells from the latest float_block. */
2579 #define FLOAT_BLOCK_SIZE \
2580 (((BLOCK_BYTES - sizeof (struct float_block *) \
2581 /* The compiler might add padding at the end. */ \
2582 - (sizeof (struct Lisp_Float) - sizeof (bits_word))) * CHAR_BIT) \
2583 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2585 #define GETMARKBIT(block,n) \
2586 (((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2587 >> ((n) % BITS_PER_BITS_WORD)) \
2588 & 1)
2590 #define SETMARKBIT(block,n) \
2591 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2592 |= (bits_word) 1 << ((n) % BITS_PER_BITS_WORD))
2594 #define UNSETMARKBIT(block,n) \
2595 ((block)->gcmarkbits[(n) / BITS_PER_BITS_WORD] \
2596 &= ~((bits_word) 1 << ((n) % BITS_PER_BITS_WORD)))
2598 #define FLOAT_BLOCK(fptr) \
2599 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2601 #define FLOAT_INDEX(fptr) \
2602 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2604 struct float_block
2606 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2607 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2608 bits_word gcmarkbits[1 + FLOAT_BLOCK_SIZE / BITS_PER_BITS_WORD];
2609 struct float_block *next;
2612 #define FLOAT_MARKED_P(fptr) \
2613 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2615 #define FLOAT_MARK(fptr) \
2616 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2618 #define FLOAT_UNMARK(fptr) \
2619 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2621 /* Current float_block. */
2623 static struct float_block *float_block;
2625 /* Index of first unused Lisp_Float in the current float_block. */
2627 static int float_block_index = FLOAT_BLOCK_SIZE;
2629 /* Free-list of Lisp_Floats. */
2631 static struct Lisp_Float *float_free_list;
2633 /* Return a new float object with value FLOAT_VALUE. */
2635 Lisp_Object
2636 make_float (double float_value)
2638 register Lisp_Object val;
2640 MALLOC_BLOCK_INPUT;
2642 if (float_free_list)
2644 /* We use the data field for chaining the free list
2645 so that we won't use the same field that has the mark bit. */
2646 XSETFLOAT (val, float_free_list);
2647 float_free_list = float_free_list->u.chain;
2649 else
2651 if (float_block_index == FLOAT_BLOCK_SIZE)
2653 struct float_block *new
2654 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2655 new->next = float_block;
2656 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2657 float_block = new;
2658 float_block_index = 0;
2659 total_free_floats += FLOAT_BLOCK_SIZE;
2661 XSETFLOAT (val, &float_block->floats[float_block_index]);
2662 float_block_index++;
2665 MALLOC_UNBLOCK_INPUT;
2667 XFLOAT_INIT (val, float_value);
2668 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2669 consing_since_gc += sizeof (struct Lisp_Float);
2670 floats_consed++;
2671 total_free_floats--;
2672 return val;
2677 /***********************************************************************
2678 Cons Allocation
2679 ***********************************************************************/
2681 /* We store cons cells inside of cons_blocks, allocating a new
2682 cons_block with malloc whenever necessary. Cons cells reclaimed by
2683 GC are put on a free list to be reallocated before allocating
2684 any new cons cells from the latest cons_block. */
2686 #define CONS_BLOCK_SIZE \
2687 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2688 /* The compiler might add padding at the end. */ \
2689 - (sizeof (struct Lisp_Cons) - sizeof (bits_word))) * CHAR_BIT) \
2690 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2692 #define CONS_BLOCK(fptr) \
2693 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2695 #define CONS_INDEX(fptr) \
2696 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2698 struct cons_block
2700 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2701 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2702 bits_word gcmarkbits[1 + CONS_BLOCK_SIZE / BITS_PER_BITS_WORD];
2703 struct cons_block *next;
2706 #define CONS_MARKED_P(fptr) \
2707 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2709 #define CONS_MARK(fptr) \
2710 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2712 #define CONS_UNMARK(fptr) \
2713 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2715 /* Current cons_block. */
2717 static struct cons_block *cons_block;
2719 /* Index of first unused Lisp_Cons in the current block. */
2721 static int cons_block_index = CONS_BLOCK_SIZE;
2723 /* Free-list of Lisp_Cons structures. */
2725 static struct Lisp_Cons *cons_free_list;
2727 /* Explicitly free a cons cell by putting it on the free-list. */
2729 void
2730 free_cons (struct Lisp_Cons *ptr)
2732 ptr->u.chain = cons_free_list;
2733 ptr->car = Vdead;
2734 cons_free_list = ptr;
2735 consing_since_gc -= sizeof *ptr;
2736 total_free_conses++;
2739 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2740 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2741 (Lisp_Object car, Lisp_Object cdr)
2743 register Lisp_Object val;
2745 MALLOC_BLOCK_INPUT;
2747 if (cons_free_list)
2749 /* We use the cdr for chaining the free list
2750 so that we won't use the same field that has the mark bit. */
2751 XSETCONS (val, cons_free_list);
2752 cons_free_list = cons_free_list->u.chain;
2754 else
2756 if (cons_block_index == CONS_BLOCK_SIZE)
2758 struct cons_block *new
2759 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2760 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2761 new->next = cons_block;
2762 cons_block = new;
2763 cons_block_index = 0;
2764 total_free_conses += CONS_BLOCK_SIZE;
2766 XSETCONS (val, &cons_block->conses[cons_block_index]);
2767 cons_block_index++;
2770 MALLOC_UNBLOCK_INPUT;
2772 XSETCAR (val, car);
2773 XSETCDR (val, cdr);
2774 eassert (!CONS_MARKED_P (XCONS (val)));
2775 consing_since_gc += sizeof (struct Lisp_Cons);
2776 total_free_conses--;
2777 cons_cells_consed++;
2778 return val;
2781 #ifdef GC_CHECK_CONS_LIST
2782 /* Get an error now if there's any junk in the cons free list. */
2783 void
2784 check_cons_list (void)
2786 struct Lisp_Cons *tail = cons_free_list;
2788 while (tail)
2789 tail = tail->u.chain;
2791 #endif
2793 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2795 Lisp_Object
2796 list1 (Lisp_Object arg1)
2798 return Fcons (arg1, Qnil);
2801 Lisp_Object
2802 list2 (Lisp_Object arg1, Lisp_Object arg2)
2804 return Fcons (arg1, Fcons (arg2, Qnil));
2808 Lisp_Object
2809 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2811 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2815 Lisp_Object
2816 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2818 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2822 Lisp_Object
2823 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2825 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2826 Fcons (arg5, Qnil)))));
2829 /* Make a list of COUNT Lisp_Objects, where ARG is the
2830 first one. Allocate conses from pure space if TYPE
2831 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2833 Lisp_Object
2834 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2836 Lisp_Object (*cons) (Lisp_Object, Lisp_Object);
2837 switch (type)
2839 case CONSTYPE_PURE: cons = pure_cons; break;
2840 case CONSTYPE_HEAP: cons = Fcons; break;
2841 default: emacs_abort ();
2844 eassume (0 < count);
2845 Lisp_Object val = cons (arg, Qnil);
2846 Lisp_Object tail = val;
2848 va_list ap;
2849 va_start (ap, arg);
2850 for (ptrdiff_t i = 1; i < count; i++)
2852 Lisp_Object elem = cons (va_arg (ap, Lisp_Object), Qnil);
2853 XSETCDR (tail, elem);
2854 tail = elem;
2856 va_end (ap);
2858 return val;
2861 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2862 doc: /* Return a newly created list with specified arguments as elements.
2863 Any number of arguments, even zero arguments, are allowed.
2864 usage: (list &rest OBJECTS) */)
2865 (ptrdiff_t nargs, Lisp_Object *args)
2867 register Lisp_Object val;
2868 val = Qnil;
2870 while (nargs > 0)
2872 nargs--;
2873 val = Fcons (args[nargs], val);
2875 return val;
2879 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2880 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2881 (Lisp_Object length, Lisp_Object init)
2883 Lisp_Object val = Qnil;
2884 CHECK_NATNUM (length);
2886 for (EMACS_INT size = XFASTINT (length); 0 < size; size--)
2888 val = Fcons (init, val);
2889 rarely_quit (size);
2892 return val;
2897 /***********************************************************************
2898 Vector Allocation
2899 ***********************************************************************/
2901 /* Sometimes a vector's contents are merely a pointer internally used
2902 in vector allocation code. On the rare platforms where a null
2903 pointer cannot be tagged, represent it with a Lisp 0.
2904 Usually you don't want to touch this. */
2906 static struct Lisp_Vector *
2907 next_vector (struct Lisp_Vector *v)
2909 return XUNTAG (v->contents[0], Lisp_Int0);
2912 static void
2913 set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2915 v->contents[0] = make_lisp_ptr (p, Lisp_Int0);
2918 /* This value is balanced well enough to avoid too much internal overhead
2919 for the most common cases; it's not required to be a power of two, but
2920 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2922 #define VECTOR_BLOCK_SIZE 4096
2924 enum
2926 /* Alignment of struct Lisp_Vector objects. Because pseudovectors
2927 can contain any C type, align at least as strictly as
2928 max_align_t. On x86 and x86-64 this can waste up to 8 bytes
2929 for typical vectors, since alignof (max_align_t) is 16 but
2930 typical vectors need only an alignment of 8. However, it is
2931 not worth the hassle to avoid wasting those bytes. */
2932 vector_alignment = COMMON_MULTIPLE (alignof (max_align_t), GCALIGNMENT),
2934 /* Vector size requests are a multiple of this. */
2935 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2938 /* Verify assumptions described above. */
2939 verify (VECTOR_BLOCK_SIZE % roundup_size == 0);
2940 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2942 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2943 #define vroundup_ct(x) ROUNDUP (x, roundup_size)
2944 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2945 #define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2947 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2949 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2951 /* Size of the minimal vector allocated from block. */
2953 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2955 /* Size of the largest vector allocated from block. */
2957 #define VBLOCK_BYTES_MAX \
2958 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2960 /* We maintain one free list for each possible block-allocated
2961 vector size, and this is the number of free lists we have. */
2963 #define VECTOR_MAX_FREE_LIST_INDEX \
2964 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2966 /* Common shortcut to advance vector pointer over a block data. */
2968 static struct Lisp_Vector *
2969 ADVANCE (struct Lisp_Vector *v, ptrdiff_t nbytes)
2971 void *vv = v;
2972 char *cv = vv;
2973 void *p = cv + nbytes;
2974 return p;
2977 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2979 static ptrdiff_t
2980 VINDEX (ptrdiff_t nbytes)
2982 eassume (VBLOCK_BYTES_MIN <= nbytes);
2983 return (nbytes - VBLOCK_BYTES_MIN) / roundup_size;
2986 /* This internal type is used to maintain the list of large vectors
2987 which are allocated at their own, e.g. outside of vector blocks.
2989 struct large_vector itself cannot contain a struct Lisp_Vector, as
2990 the latter contains a flexible array member and C99 does not allow
2991 such structs to be nested. Instead, each struct large_vector
2992 object LV is followed by a struct Lisp_Vector, which is at offset
2993 large_vector_offset from LV, and whose address is therefore
2994 large_vector_vec (&LV). */
2996 struct large_vector
2998 struct large_vector *next;
3001 enum
3003 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
3006 static struct Lisp_Vector *
3007 large_vector_vec (struct large_vector *p)
3009 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
3012 /* This internal type is used to maintain an underlying storage
3013 for small vectors. */
3015 struct vector_block
3017 char data[VECTOR_BLOCK_BYTES];
3018 struct vector_block *next;
3021 /* Chain of vector blocks. */
3023 static struct vector_block *vector_blocks;
3025 /* Vector free lists, where NTH item points to a chain of free
3026 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
3028 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
3030 /* Singly-linked list of large vectors. */
3032 static struct large_vector *large_vectors;
3034 /* The only vector with 0 slots, allocated from pure space. */
3036 Lisp_Object zero_vector;
3038 /* Number of live vectors. */
3040 static EMACS_INT total_vectors;
3042 /* Total size of live and free vectors, in Lisp_Object units. */
3044 static EMACS_INT total_vector_slots, total_free_vector_slots;
3046 /* Common shortcut to setup vector on a free list. */
3048 static void
3049 setup_on_free_list (struct Lisp_Vector *v, ptrdiff_t nbytes)
3051 eassume (header_size <= nbytes);
3052 ptrdiff_t nwords = (nbytes - header_size) / word_size;
3053 XSETPVECTYPESIZE (v, PVEC_FREE, 0, nwords);
3054 eassert (nbytes % roundup_size == 0);
3055 ptrdiff_t vindex = VINDEX (nbytes);
3056 eassert (vindex < VECTOR_MAX_FREE_LIST_INDEX);
3057 set_next_vector (v, vector_free_lists[vindex]);
3058 vector_free_lists[vindex] = v;
3059 total_free_vector_slots += nbytes / word_size;
3062 /* Get a new vector block. */
3064 static struct vector_block *
3065 allocate_vector_block (void)
3067 struct vector_block *block = xmalloc (sizeof *block);
3069 #ifndef GC_MALLOC_CHECK
3070 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
3071 MEM_TYPE_VECTOR_BLOCK);
3072 #endif
3074 block->next = vector_blocks;
3075 vector_blocks = block;
3076 return block;
3079 /* Called once to initialize vector allocation. */
3081 static void
3082 init_vectors (void)
3084 zero_vector = make_pure_vector (0);
3087 /* Allocate vector from a vector block. */
3089 static struct Lisp_Vector *
3090 allocate_vector_from_block (size_t nbytes)
3092 struct Lisp_Vector *vector;
3093 struct vector_block *block;
3094 size_t index, restbytes;
3096 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3097 eassert (nbytes % roundup_size == 0);
3099 /* First, try to allocate from a free list
3100 containing vectors of the requested size. */
3101 index = VINDEX (nbytes);
3102 if (vector_free_lists[index])
3104 vector = vector_free_lists[index];
3105 vector_free_lists[index] = next_vector (vector);
3106 total_free_vector_slots -= nbytes / word_size;
3107 return vector;
3110 /* Next, check free lists containing larger vectors. Since
3111 we will split the result, we should have remaining space
3112 large enough to use for one-slot vector at least. */
3113 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3114 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3115 if (vector_free_lists[index])
3117 /* This vector is larger than requested. */
3118 vector = vector_free_lists[index];
3119 vector_free_lists[index] = next_vector (vector);
3120 total_free_vector_slots -= nbytes / word_size;
3122 /* Excess bytes are used for the smaller vector,
3123 which should be set on an appropriate free list. */
3124 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3125 eassert (restbytes % roundup_size == 0);
3126 setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
3127 return vector;
3130 /* Finally, need a new vector block. */
3131 block = allocate_vector_block ();
3133 /* New vector will be at the beginning of this block. */
3134 vector = (struct Lisp_Vector *) block->data;
3136 /* If the rest of space from this block is large enough
3137 for one-slot vector at least, set up it on a free list. */
3138 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3139 if (restbytes >= VBLOCK_BYTES_MIN)
3141 eassert (restbytes % roundup_size == 0);
3142 setup_on_free_list (ADVANCE (vector, nbytes), restbytes);
3144 return vector;
3147 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3149 #define VECTOR_IN_BLOCK(vector, block) \
3150 ((char *) (vector) <= (block)->data \
3151 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3153 /* Return the memory footprint of V in bytes. */
3155 static ptrdiff_t
3156 vector_nbytes (struct Lisp_Vector *v)
3158 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
3159 ptrdiff_t nwords;
3161 if (size & PSEUDOVECTOR_FLAG)
3163 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
3165 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
3166 ptrdiff_t word_bytes = (bool_vector_words (bv->size)
3167 * sizeof (bits_word));
3168 ptrdiff_t boolvec_bytes = bool_header_size + word_bytes;
3169 verify (header_size <= bool_header_size);
3170 nwords = (boolvec_bytes - header_size + word_size - 1) / word_size;
3172 else
3173 nwords = ((size & PSEUDOVECTOR_SIZE_MASK)
3174 + ((size & PSEUDOVECTOR_REST_MASK)
3175 >> PSEUDOVECTOR_SIZE_BITS));
3177 else
3178 nwords = size;
3179 return vroundup (header_size + word_size * nwords);
3182 /* Release extra resources still in use by VECTOR, which may be any
3183 vector-like object. */
3185 static void
3186 cleanup_vector (struct Lisp_Vector *vector)
3188 detect_suspicious_free (vector);
3189 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
3190 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
3191 == FONT_OBJECT_MAX))
3193 struct font_driver const *drv = ((struct font *) vector)->driver;
3195 /* The font driver might sometimes be NULL, e.g. if Emacs was
3196 interrupted before it had time to set it up. */
3197 if (drv)
3199 /* Attempt to catch subtle bugs like Bug#16140. */
3200 eassert (valid_font_driver (drv));
3201 drv->close ((struct font *) vector);
3205 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_THREAD))
3206 finalize_one_thread ((struct thread_state *) vector);
3207 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_MUTEX))
3208 finalize_one_mutex ((struct Lisp_Mutex *) vector);
3209 else if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_CONDVAR))
3210 finalize_one_condvar ((struct Lisp_CondVar *) vector);
3213 /* Reclaim space used by unmarked vectors. */
3215 NO_INLINE /* For better stack traces */
3216 static void
3217 sweep_vectors (void)
3219 struct vector_block *block, **bprev = &vector_blocks;
3220 struct large_vector *lv, **lvprev = &large_vectors;
3221 struct Lisp_Vector *vector, *next;
3223 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3224 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3226 /* Looking through vector blocks. */
3228 for (block = vector_blocks; block; block = *bprev)
3230 bool free_this_block = 0;
3231 ptrdiff_t nbytes;
3233 for (vector = (struct Lisp_Vector *) block->data;
3234 VECTOR_IN_BLOCK (vector, block); vector = next)
3236 if (VECTOR_MARKED_P (vector))
3238 VECTOR_UNMARK (vector);
3239 total_vectors++;
3240 nbytes = vector_nbytes (vector);
3241 total_vector_slots += nbytes / word_size;
3242 next = ADVANCE (vector, nbytes);
3244 else
3246 ptrdiff_t total_bytes;
3248 cleanup_vector (vector);
3249 nbytes = vector_nbytes (vector);
3250 total_bytes = nbytes;
3251 next = ADVANCE (vector, nbytes);
3253 /* While NEXT is not marked, try to coalesce with VECTOR,
3254 thus making VECTOR of the largest possible size. */
3256 while (VECTOR_IN_BLOCK (next, block))
3258 if (VECTOR_MARKED_P (next))
3259 break;
3260 cleanup_vector (next);
3261 nbytes = vector_nbytes (next);
3262 total_bytes += nbytes;
3263 next = ADVANCE (next, nbytes);
3266 eassert (total_bytes % roundup_size == 0);
3268 if (vector == (struct Lisp_Vector *) block->data
3269 && !VECTOR_IN_BLOCK (next, block))
3270 /* This block should be freed because all of its
3271 space was coalesced into the only free vector. */
3272 free_this_block = 1;
3273 else
3274 setup_on_free_list (vector, total_bytes);
3278 if (free_this_block)
3280 *bprev = block->next;
3281 #ifndef GC_MALLOC_CHECK
3282 mem_delete (mem_find (block->data));
3283 #endif
3284 xfree (block);
3286 else
3287 bprev = &block->next;
3290 /* Sweep large vectors. */
3292 for (lv = large_vectors; lv; lv = *lvprev)
3294 vector = large_vector_vec (lv);
3295 if (VECTOR_MARKED_P (vector))
3297 VECTOR_UNMARK (vector);
3298 total_vectors++;
3299 if (vector->header.size & PSEUDOVECTOR_FLAG)
3300 total_vector_slots += vector_nbytes (vector) / word_size;
3301 else
3302 total_vector_slots
3303 += header_size / word_size + vector->header.size;
3304 lvprev = &lv->next;
3306 else
3308 *lvprev = lv->next;
3309 lisp_free (lv);
3314 /* Value is a pointer to a newly allocated Lisp_Vector structure
3315 with room for LEN Lisp_Objects. */
3317 static struct Lisp_Vector *
3318 allocate_vectorlike (ptrdiff_t len)
3320 struct Lisp_Vector *p;
3322 MALLOC_BLOCK_INPUT;
3324 if (len == 0)
3325 p = XVECTOR (zero_vector);
3326 else
3328 size_t nbytes = header_size + len * word_size;
3330 #ifdef DOUG_LEA_MALLOC
3331 if (!mmap_lisp_allowed_p ())
3332 mallopt (M_MMAP_MAX, 0);
3333 #endif
3335 if (nbytes <= VBLOCK_BYTES_MAX)
3336 p = allocate_vector_from_block (vroundup (nbytes));
3337 else
3339 struct large_vector *lv
3340 = lisp_malloc ((large_vector_offset + header_size
3341 + len * word_size),
3342 MEM_TYPE_VECTORLIKE);
3343 lv->next = large_vectors;
3344 large_vectors = lv;
3345 p = large_vector_vec (lv);
3348 #ifdef DOUG_LEA_MALLOC
3349 if (!mmap_lisp_allowed_p ())
3350 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3351 #endif
3353 if (find_suspicious_object_in_range (p, (char *) p + nbytes))
3354 emacs_abort ();
3356 consing_since_gc += nbytes;
3357 vector_cells_consed += len;
3360 MALLOC_UNBLOCK_INPUT;
3362 return p;
3366 /* Allocate a vector with LEN slots. */
3368 struct Lisp_Vector *
3369 allocate_vector (EMACS_INT len)
3371 struct Lisp_Vector *v;
3372 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3374 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3375 memory_full (SIZE_MAX);
3376 v = allocate_vectorlike (len);
3377 if (len)
3378 v->header.size = len;
3379 return v;
3383 /* Allocate other vector-like structures. */
3385 struct Lisp_Vector *
3386 allocate_pseudovector (int memlen, int lisplen,
3387 int zerolen, enum pvec_type tag)
3389 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3391 /* Catch bogus values. */
3392 eassert (0 <= tag && tag <= PVEC_FONT);
3393 eassert (0 <= lisplen && lisplen <= zerolen && zerolen <= memlen);
3394 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3395 eassert (lisplen <= PSEUDOVECTOR_SIZE_MASK);
3397 /* Only the first LISPLEN slots will be traced normally by the GC. */
3398 memclear (v->contents, zerolen * word_size);
3399 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3400 return v;
3403 struct buffer *
3404 allocate_buffer (void)
3406 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3408 BUFFER_PVEC_INIT (b);
3409 /* Put B on the chain of all buffers including killed ones. */
3410 b->next = all_buffers;
3411 all_buffers = b;
3412 /* Note that the rest fields of B are not initialized. */
3413 return b;
3417 /* Allocate a record with COUNT slots. COUNT must be positive, and
3418 includes the type slot. */
3420 static struct Lisp_Vector *
3421 allocate_record (EMACS_INT count)
3423 if (count > PSEUDOVECTOR_SIZE_MASK)
3424 error ("Attempt to allocate a record of %"pI"d slots; max is %d",
3425 count, PSEUDOVECTOR_SIZE_MASK);
3426 struct Lisp_Vector *p = allocate_vectorlike (count);
3427 p->header.size = count;
3428 XSETPVECTYPE (p, PVEC_RECORD);
3429 return p;
3433 DEFUN ("make-record", Fmake_record, Smake_record, 3, 3, 0,
3434 doc: /* Create a new record.
3435 TYPE is its type as returned by `type-of'; it should be either a
3436 symbol or a type descriptor. SLOTS is the number of non-type slots,
3437 each initialized to INIT. */)
3438 (Lisp_Object type, Lisp_Object slots, Lisp_Object init)
3440 CHECK_NATNUM (slots);
3441 EMACS_INT size = XFASTINT (slots) + 1;
3442 struct Lisp_Vector *p = allocate_record (size);
3443 p->contents[0] = type;
3444 for (ptrdiff_t i = 1; i < size; i++)
3445 p->contents[i] = init;
3446 return make_lisp_ptr (p, Lisp_Vectorlike);
3450 DEFUN ("record", Frecord, Srecord, 1, MANY, 0,
3451 doc: /* Create a new record.
3452 TYPE is its type as returned by `type-of'; it should be either a
3453 symbol or a type descriptor. SLOTS is used to initialize the record
3454 slots with shallow copies of the arguments.
3455 usage: (record TYPE &rest SLOTS) */)
3456 (ptrdiff_t nargs, Lisp_Object *args)
3458 struct Lisp_Vector *p = allocate_record (nargs);
3459 memcpy (p->contents, args, nargs * sizeof *args);
3460 return make_lisp_ptr (p, Lisp_Vectorlike);
3464 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3465 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3466 See also the function `vector'. */)
3467 (Lisp_Object length, Lisp_Object init)
3469 CHECK_NATNUM (length);
3470 struct Lisp_Vector *p = allocate_vector (XFASTINT (length));
3471 for (ptrdiff_t i = 0; i < XFASTINT (length); i++)
3472 p->contents[i] = init;
3473 return make_lisp_ptr (p, Lisp_Vectorlike);
3476 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3477 doc: /* Return a newly created vector with specified arguments as elements.
3478 Any number of arguments, even zero arguments, are allowed.
3479 usage: (vector &rest OBJECTS) */)
3480 (ptrdiff_t nargs, Lisp_Object *args)
3482 Lisp_Object val = make_uninit_vector (nargs);
3483 struct Lisp_Vector *p = XVECTOR (val);
3484 memcpy (p->contents, args, nargs * sizeof *args);
3485 return val;
3488 void
3489 make_byte_code (struct Lisp_Vector *v)
3491 /* Don't allow the global zero_vector to become a byte code object. */
3492 eassert (0 < v->header.size);
3494 if (v->header.size > 1 && STRINGP (v->contents[1])
3495 && STRING_MULTIBYTE (v->contents[1]))
3496 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3497 earlier because they produced a raw 8-bit string for byte-code
3498 and now such a byte-code string is loaded as multibyte while
3499 raw 8-bit characters converted to multibyte form. Thus, now we
3500 must convert them back to the original unibyte form. */
3501 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3502 XSETPVECTYPE (v, PVEC_COMPILED);
3505 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3506 doc: /* Create a byte-code object with specified arguments as elements.
3507 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3508 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3509 and (optional) INTERACTIVE-SPEC.
3510 The first four arguments are required; at most six have any
3511 significance.
3512 The ARGLIST can be either like the one of `lambda', in which case the arguments
3513 will be dynamically bound before executing the byte code, or it can be an
3514 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3515 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3516 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3517 argument to catch the left-over arguments. If such an integer is used, the
3518 arguments will not be dynamically bound but will be instead pushed on the
3519 stack before executing the byte-code.
3520 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3521 (ptrdiff_t nargs, Lisp_Object *args)
3523 Lisp_Object val = make_uninit_vector (nargs);
3524 struct Lisp_Vector *p = XVECTOR (val);
3526 /* We used to purecopy everything here, if purify-flag was set. This worked
3527 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3528 dangerous, since make-byte-code is used during execution to build
3529 closures, so any closure built during the preload phase would end up
3530 copied into pure space, including its free variables, which is sometimes
3531 just wasteful and other times plainly wrong (e.g. those free vars may want
3532 to be setcar'd). */
3534 memcpy (p->contents, args, nargs * sizeof *args);
3535 make_byte_code (p);
3536 XSETCOMPILED (val, p);
3537 return val;
3542 /***********************************************************************
3543 Symbol Allocation
3544 ***********************************************************************/
3546 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3547 of the required alignment. */
3549 union aligned_Lisp_Symbol
3551 struct Lisp_Symbol s;
3552 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3553 & -GCALIGNMENT];
3556 /* Each symbol_block is just under 1020 bytes long, since malloc
3557 really allocates in units of powers of two and uses 4 bytes for its
3558 own overhead. */
3560 #define SYMBOL_BLOCK_SIZE \
3561 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3563 struct symbol_block
3565 /* Place `symbols' first, to preserve alignment. */
3566 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3567 struct symbol_block *next;
3570 /* Current symbol block and index of first unused Lisp_Symbol
3571 structure in it. */
3573 static struct symbol_block *symbol_block;
3574 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3575 /* Pointer to the first symbol_block that contains pinned symbols.
3576 Tests for 24.4 showed that at dump-time, Emacs contains about 15K symbols,
3577 10K of which are pinned (and all but 250 of them are interned in obarray),
3578 whereas a "typical session" has in the order of 30K symbols.
3579 `symbol_block_pinned' lets mark_pinned_symbols scan only 15K symbols rather
3580 than 30K to find the 10K symbols we need to mark. */
3581 static struct symbol_block *symbol_block_pinned;
3583 /* List of free symbols. */
3585 static struct Lisp_Symbol *symbol_free_list;
3587 static void
3588 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3590 XSYMBOL (sym)->name = name;
3593 void
3594 init_symbol (Lisp_Object val, Lisp_Object name)
3596 struct Lisp_Symbol *p = XSYMBOL (val);
3597 set_symbol_name (val, name);
3598 set_symbol_plist (val, Qnil);
3599 p->redirect = SYMBOL_PLAINVAL;
3600 SET_SYMBOL_VAL (p, Qunbound);
3601 set_symbol_function (val, Qnil);
3602 set_symbol_next (val, NULL);
3603 p->gcmarkbit = false;
3604 p->interned = SYMBOL_UNINTERNED;
3605 p->trapped_write = SYMBOL_UNTRAPPED_WRITE;
3606 p->declared_special = false;
3607 p->pinned = false;
3610 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3611 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3612 Its value is void, and its function definition and property list are nil. */)
3613 (Lisp_Object name)
3615 Lisp_Object val;
3617 CHECK_STRING (name);
3619 MALLOC_BLOCK_INPUT;
3621 if (symbol_free_list)
3623 XSETSYMBOL (val, symbol_free_list);
3624 symbol_free_list = symbol_free_list->next;
3626 else
3628 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3630 struct symbol_block *new
3631 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3632 new->next = symbol_block;
3633 symbol_block = new;
3634 symbol_block_index = 0;
3635 total_free_symbols += SYMBOL_BLOCK_SIZE;
3637 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3638 symbol_block_index++;
3641 MALLOC_UNBLOCK_INPUT;
3643 init_symbol (val, name);
3644 consing_since_gc += sizeof (struct Lisp_Symbol);
3645 symbols_consed++;
3646 total_free_symbols--;
3647 return val;
3652 /***********************************************************************
3653 Marker (Misc) Allocation
3654 ***********************************************************************/
3656 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3657 the required alignment. */
3659 union aligned_Lisp_Misc
3661 union Lisp_Misc m;
3662 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3663 & -GCALIGNMENT];
3666 /* Allocation of markers and other objects that share that structure.
3667 Works like allocation of conses. */
3669 #define MARKER_BLOCK_SIZE \
3670 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3672 struct marker_block
3674 /* Place `markers' first, to preserve alignment. */
3675 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3676 struct marker_block *next;
3679 static struct marker_block *marker_block;
3680 static int marker_block_index = MARKER_BLOCK_SIZE;
3682 static union Lisp_Misc *marker_free_list;
3684 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3686 static Lisp_Object
3687 allocate_misc (enum Lisp_Misc_Type type)
3689 Lisp_Object val;
3691 MALLOC_BLOCK_INPUT;
3693 if (marker_free_list)
3695 XSETMISC (val, marker_free_list);
3696 marker_free_list = marker_free_list->u_free.chain;
3698 else
3700 if (marker_block_index == MARKER_BLOCK_SIZE)
3702 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3703 new->next = marker_block;
3704 marker_block = new;
3705 marker_block_index = 0;
3706 total_free_markers += MARKER_BLOCK_SIZE;
3708 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3709 marker_block_index++;
3712 MALLOC_UNBLOCK_INPUT;
3714 --total_free_markers;
3715 consing_since_gc += sizeof (union Lisp_Misc);
3716 misc_objects_consed++;
3717 XMISCANY (val)->type = type;
3718 XMISCANY (val)->gcmarkbit = 0;
3719 return val;
3722 /* Free a Lisp_Misc object. */
3724 void
3725 free_misc (Lisp_Object misc)
3727 XMISCANY (misc)->type = Lisp_Misc_Free;
3728 XMISC (misc)->u_free.chain = marker_free_list;
3729 marker_free_list = XMISC (misc);
3730 consing_since_gc -= sizeof (union Lisp_Misc);
3731 total_free_markers++;
3734 /* Verify properties of Lisp_Save_Value's representation
3735 that are assumed here and elsewhere. */
3737 verify (SAVE_UNUSED == 0);
3738 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3739 >> SAVE_SLOT_BITS)
3740 == 0);
3742 /* Return Lisp_Save_Value objects for the various combinations
3743 that callers need. */
3745 Lisp_Object
3746 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3748 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3749 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3750 p->save_type = SAVE_TYPE_INT_INT_INT;
3751 p->data[0].integer = a;
3752 p->data[1].integer = b;
3753 p->data[2].integer = c;
3754 return val;
3757 Lisp_Object
3758 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3759 Lisp_Object d)
3761 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3762 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3763 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3764 p->data[0].object = a;
3765 p->data[1].object = b;
3766 p->data[2].object = c;
3767 p->data[3].object = d;
3768 return val;
3771 Lisp_Object
3772 make_save_ptr (void *a)
3774 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3775 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3776 p->save_type = SAVE_POINTER;
3777 p->data[0].pointer = a;
3778 return val;
3781 Lisp_Object
3782 make_save_ptr_int (void *a, ptrdiff_t b)
3784 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3785 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3786 p->save_type = SAVE_TYPE_PTR_INT;
3787 p->data[0].pointer = a;
3788 p->data[1].integer = b;
3789 return val;
3792 Lisp_Object
3793 make_save_ptr_ptr (void *a, void *b)
3795 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3796 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3797 p->save_type = SAVE_TYPE_PTR_PTR;
3798 p->data[0].pointer = a;
3799 p->data[1].pointer = b;
3800 return val;
3803 Lisp_Object
3804 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3806 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3807 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3808 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3809 p->data[0].funcpointer = a;
3810 p->data[1].pointer = b;
3811 p->data[2].object = c;
3812 return val;
3815 /* Return a Lisp_Save_Value object that represents an array A
3816 of N Lisp objects. */
3818 Lisp_Object
3819 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3821 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3822 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3823 p->save_type = SAVE_TYPE_MEMORY;
3824 p->data[0].pointer = a;
3825 p->data[1].integer = n;
3826 return val;
3829 /* Free a Lisp_Save_Value object. Do not use this function
3830 if SAVE contains pointer other than returned by xmalloc. */
3832 void
3833 free_save_value (Lisp_Object save)
3835 xfree (XSAVE_POINTER (save, 0));
3836 free_misc (save);
3839 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3841 Lisp_Object
3842 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3844 register Lisp_Object overlay;
3846 overlay = allocate_misc (Lisp_Misc_Overlay);
3847 OVERLAY_START (overlay) = start;
3848 OVERLAY_END (overlay) = end;
3849 set_overlay_plist (overlay, plist);
3850 XOVERLAY (overlay)->next = NULL;
3851 return overlay;
3854 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3855 doc: /* Return a newly allocated marker which does not point at any place. */)
3856 (void)
3858 register Lisp_Object val;
3859 register struct Lisp_Marker *p;
3861 val = allocate_misc (Lisp_Misc_Marker);
3862 p = XMARKER (val);
3863 p->buffer = 0;
3864 p->bytepos = 0;
3865 p->charpos = 0;
3866 p->next = NULL;
3867 p->insertion_type = 0;
3868 p->need_adjustment = 0;
3869 return val;
3872 /* Return a newly allocated marker which points into BUF
3873 at character position CHARPOS and byte position BYTEPOS. */
3875 Lisp_Object
3876 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3878 Lisp_Object obj;
3879 struct Lisp_Marker *m;
3881 /* No dead buffers here. */
3882 eassert (BUFFER_LIVE_P (buf));
3884 /* Every character is at least one byte. */
3885 eassert (charpos <= bytepos);
3887 obj = allocate_misc (Lisp_Misc_Marker);
3888 m = XMARKER (obj);
3889 m->buffer = buf;
3890 m->charpos = charpos;
3891 m->bytepos = bytepos;
3892 m->insertion_type = 0;
3893 m->need_adjustment = 0;
3894 m->next = BUF_MARKERS (buf);
3895 BUF_MARKERS (buf) = m;
3896 return obj;
3899 /* Put MARKER back on the free list after using it temporarily. */
3901 void
3902 free_marker (Lisp_Object marker)
3904 unchain_marker (XMARKER (marker));
3905 free_misc (marker);
3909 /* Return a newly created vector or string with specified arguments as
3910 elements. If all the arguments are characters that can fit
3911 in a string of events, make a string; otherwise, make a vector.
3913 Any number of arguments, even zero arguments, are allowed. */
3915 Lisp_Object
3916 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3918 ptrdiff_t i;
3920 for (i = 0; i < nargs; i++)
3921 /* The things that fit in a string
3922 are characters that are in 0...127,
3923 after discarding the meta bit and all the bits above it. */
3924 if (!INTEGERP (args[i])
3925 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3926 return Fvector (nargs, args);
3928 /* Since the loop exited, we know that all the things in it are
3929 characters, so we can make a string. */
3931 Lisp_Object result;
3933 result = Fmake_string (make_number (nargs), make_number (0));
3934 for (i = 0; i < nargs; i++)
3936 SSET (result, i, XINT (args[i]));
3937 /* Move the meta bit to the right place for a string char. */
3938 if (XINT (args[i]) & CHAR_META)
3939 SSET (result, i, SREF (result, i) | 0x80);
3942 return result;
3946 #ifdef HAVE_MODULES
3947 /* Create a new module user ptr object. */
3948 Lisp_Object
3949 make_user_ptr (void (*finalizer) (void *), void *p)
3951 Lisp_Object obj;
3952 struct Lisp_User_Ptr *uptr;
3954 obj = allocate_misc (Lisp_Misc_User_Ptr);
3955 uptr = XUSER_PTR (obj);
3956 uptr->finalizer = finalizer;
3957 uptr->p = p;
3958 return obj;
3960 #endif
3962 static void
3963 init_finalizer_list (struct Lisp_Finalizer *head)
3965 head->prev = head->next = head;
3968 /* Insert FINALIZER before ELEMENT. */
3970 static void
3971 finalizer_insert (struct Lisp_Finalizer *element,
3972 struct Lisp_Finalizer *finalizer)
3974 eassert (finalizer->prev == NULL);
3975 eassert (finalizer->next == NULL);
3976 finalizer->next = element;
3977 finalizer->prev = element->prev;
3978 finalizer->prev->next = finalizer;
3979 element->prev = finalizer;
3982 static void
3983 unchain_finalizer (struct Lisp_Finalizer *finalizer)
3985 if (finalizer->prev != NULL)
3987 eassert (finalizer->next != NULL);
3988 finalizer->prev->next = finalizer->next;
3989 finalizer->next->prev = finalizer->prev;
3990 finalizer->prev = finalizer->next = NULL;
3994 static void
3995 mark_finalizer_list (struct Lisp_Finalizer *head)
3997 for (struct Lisp_Finalizer *finalizer = head->next;
3998 finalizer != head;
3999 finalizer = finalizer->next)
4001 finalizer->base.gcmarkbit = true;
4002 mark_object (finalizer->function);
4006 /* Move doomed finalizers to list DEST from list SRC. A doomed
4007 finalizer is one that is not GC-reachable and whose
4008 finalizer->function is non-nil. */
4010 static void
4011 queue_doomed_finalizers (struct Lisp_Finalizer *dest,
4012 struct Lisp_Finalizer *src)
4014 struct Lisp_Finalizer *finalizer = src->next;
4015 while (finalizer != src)
4017 struct Lisp_Finalizer *next = finalizer->next;
4018 if (!finalizer->base.gcmarkbit && !NILP (finalizer->function))
4020 unchain_finalizer (finalizer);
4021 finalizer_insert (dest, finalizer);
4024 finalizer = next;
4028 static Lisp_Object
4029 run_finalizer_handler (Lisp_Object args)
4031 add_to_log ("finalizer failed: %S", args);
4032 return Qnil;
4035 static void
4036 run_finalizer_function (Lisp_Object function)
4038 ptrdiff_t count = SPECPDL_INDEX ();
4040 specbind (Qinhibit_quit, Qt);
4041 internal_condition_case_1 (call0, function, Qt, run_finalizer_handler);
4042 unbind_to (count, Qnil);
4045 static void
4046 run_finalizers (struct Lisp_Finalizer *finalizers)
4048 struct Lisp_Finalizer *finalizer;
4049 Lisp_Object function;
4051 while (finalizers->next != finalizers)
4053 finalizer = finalizers->next;
4054 eassert (finalizer->base.type == Lisp_Misc_Finalizer);
4055 unchain_finalizer (finalizer);
4056 function = finalizer->function;
4057 if (!NILP (function))
4059 finalizer->function = Qnil;
4060 run_finalizer_function (function);
4065 DEFUN ("make-finalizer", Fmake_finalizer, Smake_finalizer, 1, 1, 0,
4066 doc: /* Make a finalizer that will run FUNCTION.
4067 FUNCTION will be called after garbage collection when the returned
4068 finalizer object becomes unreachable. If the finalizer object is
4069 reachable only through references from finalizer objects, it does not
4070 count as reachable for the purpose of deciding whether to run
4071 FUNCTION. FUNCTION will be run once per finalizer object. */)
4072 (Lisp_Object function)
4074 Lisp_Object val = allocate_misc (Lisp_Misc_Finalizer);
4075 struct Lisp_Finalizer *finalizer = XFINALIZER (val);
4076 finalizer->function = function;
4077 finalizer->prev = finalizer->next = NULL;
4078 finalizer_insert (&finalizers, finalizer);
4079 return val;
4083 /************************************************************************
4084 Memory Full Handling
4085 ************************************************************************/
4088 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
4089 there may have been size_t overflow so that malloc was never
4090 called, or perhaps malloc was invoked successfully but the
4091 resulting pointer had problems fitting into a tagged EMACS_INT. In
4092 either case this counts as memory being full even though malloc did
4093 not fail. */
4095 void
4096 memory_full (size_t nbytes)
4098 /* Do not go into hysterics merely because a large request failed. */
4099 bool enough_free_memory = 0;
4100 if (SPARE_MEMORY < nbytes)
4102 void *p;
4104 MALLOC_BLOCK_INPUT;
4105 p = malloc (SPARE_MEMORY);
4106 if (p)
4108 free (p);
4109 enough_free_memory = 1;
4111 MALLOC_UNBLOCK_INPUT;
4114 if (! enough_free_memory)
4116 int i;
4118 Vmemory_full = Qt;
4120 memory_full_cons_threshold = sizeof (struct cons_block);
4122 /* The first time we get here, free the spare memory. */
4123 for (i = 0; i < ARRAYELTS (spare_memory); i++)
4124 if (spare_memory[i])
4126 if (i == 0)
4127 free (spare_memory[i]);
4128 else if (i >= 1 && i <= 4)
4129 lisp_align_free (spare_memory[i]);
4130 else
4131 lisp_free (spare_memory[i]);
4132 spare_memory[i] = 0;
4136 /* This used to call error, but if we've run out of memory, we could
4137 get infinite recursion trying to build the string. */
4138 xsignal (Qnil, Vmemory_signal_data);
4141 /* If we released our reserve (due to running out of memory),
4142 and we have a fair amount free once again,
4143 try to set aside another reserve in case we run out once more.
4145 This is called when a relocatable block is freed in ralloc.c,
4146 and also directly from this file, in case we're not using ralloc.c. */
4148 void
4149 refill_memory_reserve (void)
4151 #if !defined SYSTEM_MALLOC && !defined HYBRID_MALLOC
4152 if (spare_memory[0] == 0)
4153 spare_memory[0] = malloc (SPARE_MEMORY);
4154 if (spare_memory[1] == 0)
4155 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
4156 MEM_TYPE_SPARE);
4157 if (spare_memory[2] == 0)
4158 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
4159 MEM_TYPE_SPARE);
4160 if (spare_memory[3] == 0)
4161 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
4162 MEM_TYPE_SPARE);
4163 if (spare_memory[4] == 0)
4164 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
4165 MEM_TYPE_SPARE);
4166 if (spare_memory[5] == 0)
4167 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
4168 MEM_TYPE_SPARE);
4169 if (spare_memory[6] == 0)
4170 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
4171 MEM_TYPE_SPARE);
4172 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
4173 Vmemory_full = Qnil;
4174 #endif
4177 /************************************************************************
4178 C Stack Marking
4179 ************************************************************************/
4181 /* Conservative C stack marking requires a method to identify possibly
4182 live Lisp objects given a pointer value. We do this by keeping
4183 track of blocks of Lisp data that are allocated in a red-black tree
4184 (see also the comment of mem_node which is the type of nodes in
4185 that tree). Function lisp_malloc adds information for an allocated
4186 block to the red-black tree with calls to mem_insert, and function
4187 lisp_free removes it with mem_delete. Functions live_string_p etc
4188 call mem_find to lookup information about a given pointer in the
4189 tree, and use that to determine if the pointer points into a Lisp
4190 object or not. */
4192 /* Initialize this part of alloc.c. */
4194 static void
4195 mem_init (void)
4197 mem_z.left = mem_z.right = MEM_NIL;
4198 mem_z.parent = NULL;
4199 mem_z.color = MEM_BLACK;
4200 mem_z.start = mem_z.end = NULL;
4201 mem_root = MEM_NIL;
4205 /* Value is a pointer to the mem_node containing START. Value is
4206 MEM_NIL if there is no node in the tree containing START. */
4208 static struct mem_node *
4209 mem_find (void *start)
4211 struct mem_node *p;
4213 if (start < min_heap_address || start > max_heap_address)
4214 return MEM_NIL;
4216 /* Make the search always successful to speed up the loop below. */
4217 mem_z.start = start;
4218 mem_z.end = (char *) start + 1;
4220 p = mem_root;
4221 while (start < p->start || start >= p->end)
4222 p = start < p->start ? p->left : p->right;
4223 return p;
4227 /* Insert a new node into the tree for a block of memory with start
4228 address START, end address END, and type TYPE. Value is a
4229 pointer to the node that was inserted. */
4231 static struct mem_node *
4232 mem_insert (void *start, void *end, enum mem_type type)
4234 struct mem_node *c, *parent, *x;
4236 if (min_heap_address == NULL || start < min_heap_address)
4237 min_heap_address = start;
4238 if (max_heap_address == NULL || end > max_heap_address)
4239 max_heap_address = end;
4241 /* See where in the tree a node for START belongs. In this
4242 particular application, it shouldn't happen that a node is already
4243 present. For debugging purposes, let's check that. */
4244 c = mem_root;
4245 parent = NULL;
4247 while (c != MEM_NIL)
4249 parent = c;
4250 c = start < c->start ? c->left : c->right;
4253 /* Create a new node. */
4254 #ifdef GC_MALLOC_CHECK
4255 x = malloc (sizeof *x);
4256 if (x == NULL)
4257 emacs_abort ();
4258 #else
4259 x = xmalloc (sizeof *x);
4260 #endif
4261 x->start = start;
4262 x->end = end;
4263 x->type = type;
4264 x->parent = parent;
4265 x->left = x->right = MEM_NIL;
4266 x->color = MEM_RED;
4268 /* Insert it as child of PARENT or install it as root. */
4269 if (parent)
4271 if (start < parent->start)
4272 parent->left = x;
4273 else
4274 parent->right = x;
4276 else
4277 mem_root = x;
4279 /* Re-establish red-black tree properties. */
4280 mem_insert_fixup (x);
4282 return x;
4286 /* Re-establish the red-black properties of the tree, and thereby
4287 balance the tree, after node X has been inserted; X is always red. */
4289 static void
4290 mem_insert_fixup (struct mem_node *x)
4292 while (x != mem_root && x->parent->color == MEM_RED)
4294 /* X is red and its parent is red. This is a violation of
4295 red-black tree property #3. */
4297 if (x->parent == x->parent->parent->left)
4299 /* We're on the left side of our grandparent, and Y is our
4300 "uncle". */
4301 struct mem_node *y = x->parent->parent->right;
4303 if (y->color == MEM_RED)
4305 /* Uncle and parent are red but should be black because
4306 X is red. Change the colors accordingly and proceed
4307 with the grandparent. */
4308 x->parent->color = MEM_BLACK;
4309 y->color = MEM_BLACK;
4310 x->parent->parent->color = MEM_RED;
4311 x = x->parent->parent;
4313 else
4315 /* Parent and uncle have different colors; parent is
4316 red, uncle is black. */
4317 if (x == x->parent->right)
4319 x = x->parent;
4320 mem_rotate_left (x);
4323 x->parent->color = MEM_BLACK;
4324 x->parent->parent->color = MEM_RED;
4325 mem_rotate_right (x->parent->parent);
4328 else
4330 /* This is the symmetrical case of above. */
4331 struct mem_node *y = x->parent->parent->left;
4333 if (y->color == MEM_RED)
4335 x->parent->color = MEM_BLACK;
4336 y->color = MEM_BLACK;
4337 x->parent->parent->color = MEM_RED;
4338 x = x->parent->parent;
4340 else
4342 if (x == x->parent->left)
4344 x = x->parent;
4345 mem_rotate_right (x);
4348 x->parent->color = MEM_BLACK;
4349 x->parent->parent->color = MEM_RED;
4350 mem_rotate_left (x->parent->parent);
4355 /* The root may have been changed to red due to the algorithm. Set
4356 it to black so that property #5 is satisfied. */
4357 mem_root->color = MEM_BLACK;
4361 /* (x) (y)
4362 / \ / \
4363 a (y) ===> (x) c
4364 / \ / \
4365 b c a b */
4367 static void
4368 mem_rotate_left (struct mem_node *x)
4370 struct mem_node *y;
4372 /* Turn y's left sub-tree into x's right sub-tree. */
4373 y = x->right;
4374 x->right = y->left;
4375 if (y->left != MEM_NIL)
4376 y->left->parent = x;
4378 /* Y's parent was x's parent. */
4379 if (y != MEM_NIL)
4380 y->parent = x->parent;
4382 /* Get the parent to point to y instead of x. */
4383 if (x->parent)
4385 if (x == x->parent->left)
4386 x->parent->left = y;
4387 else
4388 x->parent->right = y;
4390 else
4391 mem_root = y;
4393 /* Put x on y's left. */
4394 y->left = x;
4395 if (x != MEM_NIL)
4396 x->parent = y;
4400 /* (x) (Y)
4401 / \ / \
4402 (y) c ===> a (x)
4403 / \ / \
4404 a b b c */
4406 static void
4407 mem_rotate_right (struct mem_node *x)
4409 struct mem_node *y = x->left;
4411 x->left = y->right;
4412 if (y->right != MEM_NIL)
4413 y->right->parent = x;
4415 if (y != MEM_NIL)
4416 y->parent = x->parent;
4417 if (x->parent)
4419 if (x == x->parent->right)
4420 x->parent->right = y;
4421 else
4422 x->parent->left = y;
4424 else
4425 mem_root = y;
4427 y->right = x;
4428 if (x != MEM_NIL)
4429 x->parent = y;
4433 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4435 static void
4436 mem_delete (struct mem_node *z)
4438 struct mem_node *x, *y;
4440 if (!z || z == MEM_NIL)
4441 return;
4443 if (z->left == MEM_NIL || z->right == MEM_NIL)
4444 y = z;
4445 else
4447 y = z->right;
4448 while (y->left != MEM_NIL)
4449 y = y->left;
4452 if (y->left != MEM_NIL)
4453 x = y->left;
4454 else
4455 x = y->right;
4457 x->parent = y->parent;
4458 if (y->parent)
4460 if (y == y->parent->left)
4461 y->parent->left = x;
4462 else
4463 y->parent->right = x;
4465 else
4466 mem_root = x;
4468 if (y != z)
4470 z->start = y->start;
4471 z->end = y->end;
4472 z->type = y->type;
4475 if (y->color == MEM_BLACK)
4476 mem_delete_fixup (x);
4478 #ifdef GC_MALLOC_CHECK
4479 free (y);
4480 #else
4481 xfree (y);
4482 #endif
4486 /* Re-establish the red-black properties of the tree, after a
4487 deletion. */
4489 static void
4490 mem_delete_fixup (struct mem_node *x)
4492 while (x != mem_root && x->color == MEM_BLACK)
4494 if (x == x->parent->left)
4496 struct mem_node *w = x->parent->right;
4498 if (w->color == MEM_RED)
4500 w->color = MEM_BLACK;
4501 x->parent->color = MEM_RED;
4502 mem_rotate_left (x->parent);
4503 w = x->parent->right;
4506 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4508 w->color = MEM_RED;
4509 x = x->parent;
4511 else
4513 if (w->right->color == MEM_BLACK)
4515 w->left->color = MEM_BLACK;
4516 w->color = MEM_RED;
4517 mem_rotate_right (w);
4518 w = x->parent->right;
4520 w->color = x->parent->color;
4521 x->parent->color = MEM_BLACK;
4522 w->right->color = MEM_BLACK;
4523 mem_rotate_left (x->parent);
4524 x = mem_root;
4527 else
4529 struct mem_node *w = x->parent->left;
4531 if (w->color == MEM_RED)
4533 w->color = MEM_BLACK;
4534 x->parent->color = MEM_RED;
4535 mem_rotate_right (x->parent);
4536 w = x->parent->left;
4539 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4541 w->color = MEM_RED;
4542 x = x->parent;
4544 else
4546 if (w->left->color == MEM_BLACK)
4548 w->right->color = MEM_BLACK;
4549 w->color = MEM_RED;
4550 mem_rotate_left (w);
4551 w = x->parent->left;
4554 w->color = x->parent->color;
4555 x->parent->color = MEM_BLACK;
4556 w->left->color = MEM_BLACK;
4557 mem_rotate_right (x->parent);
4558 x = mem_root;
4563 x->color = MEM_BLACK;
4567 /* If P is a pointer into a live Lisp string object on the heap,
4568 return the object. Otherwise, return nil. M is a pointer to the
4569 mem_block for P.
4571 This and other *_holding functions look for a pointer anywhere into
4572 the object, not merely for a pointer to the start of the object,
4573 because some compilers sometimes optimize away the latter. See
4574 Bug#28213. */
4576 static Lisp_Object
4577 live_string_holding (struct mem_node *m, void *p)
4579 if (m->type == MEM_TYPE_STRING)
4581 struct string_block *b = m->start;
4582 char *cp = p;
4583 ptrdiff_t offset = cp - (char *) &b->strings[0];
4585 /* P must point into a Lisp_String structure, and it
4586 must not be on the free-list. */
4587 if (0 <= offset && offset < STRING_BLOCK_SIZE * sizeof b->strings[0])
4589 struct Lisp_String *s = p = cp -= offset % sizeof b->strings[0];
4590 if (s->data)
4591 return make_lisp_ptr (s, Lisp_String);
4594 return Qnil;
4597 static bool
4598 live_string_p (struct mem_node *m, void *p)
4600 return !NILP (live_string_holding (m, p));
4603 /* If P is a pointer into a live Lisp cons object on the heap, return
4604 the object. Otherwise, return nil. M is a pointer to the
4605 mem_block for P. */
4607 static Lisp_Object
4608 live_cons_holding (struct mem_node *m, void *p)
4610 if (m->type == MEM_TYPE_CONS)
4612 struct cons_block *b = m->start;
4613 char *cp = p;
4614 ptrdiff_t offset = cp - (char *) &b->conses[0];
4616 /* P must point into a Lisp_Cons, not be
4617 one of the unused cells in the current cons block,
4618 and not be on the free-list. */
4619 if (0 <= offset && offset < CONS_BLOCK_SIZE * sizeof b->conses[0]
4620 && (b != cons_block
4621 || offset / sizeof b->conses[0] < cons_block_index))
4623 struct Lisp_Cons *s = p = cp -= offset % sizeof b->conses[0];
4624 if (!EQ (s->car, Vdead))
4625 return make_lisp_ptr (s, Lisp_Cons);
4628 return Qnil;
4631 static bool
4632 live_cons_p (struct mem_node *m, void *p)
4634 return !NILP (live_cons_holding (m, p));
4638 /* If P is a pointer into a live Lisp symbol object on the heap,
4639 return the object. Otherwise, return nil. M is a pointer to the
4640 mem_block for P. */
4642 static Lisp_Object
4643 live_symbol_holding (struct mem_node *m, void *p)
4645 if (m->type == MEM_TYPE_SYMBOL)
4647 struct symbol_block *b = m->start;
4648 char *cp = p;
4649 ptrdiff_t offset = cp - (char *) &b->symbols[0];
4651 /* P must point into the Lisp_Symbol, not be
4652 one of the unused cells in the current symbol block,
4653 and not be on the free-list. */
4654 if (0 <= offset && offset < SYMBOL_BLOCK_SIZE * sizeof b->symbols[0]
4655 && (b != symbol_block
4656 || offset / sizeof b->symbols[0] < symbol_block_index))
4658 struct Lisp_Symbol *s = p = cp -= offset % sizeof b->symbols[0];
4659 if (!EQ (s->function, Vdead))
4660 return make_lisp_symbol (s);
4663 return Qnil;
4666 static bool
4667 live_symbol_p (struct mem_node *m, void *p)
4669 return !NILP (live_symbol_holding (m, p));
4673 /* Return true if P is a pointer to a live Lisp float on
4674 the heap. M is a pointer to the mem_block for P. */
4676 static bool
4677 live_float_p (struct mem_node *m, void *p)
4679 if (m->type == MEM_TYPE_FLOAT)
4681 struct float_block *b = m->start;
4682 char *cp = p;
4683 ptrdiff_t offset = cp - (char *) &b->floats[0];
4685 /* P must point to the start of a Lisp_Float and not be
4686 one of the unused cells in the current float block. */
4687 return (offset >= 0
4688 && offset % sizeof b->floats[0] == 0
4689 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4690 && (b != float_block
4691 || offset / sizeof b->floats[0] < float_block_index));
4693 else
4694 return 0;
4698 /* If P is a pointer to a live Lisp Misc on the heap, return the object.
4699 Otherwise, return nil. M is a pointer to the mem_block for P. */
4701 static Lisp_Object
4702 live_misc_holding (struct mem_node *m, void *p)
4704 if (m->type == MEM_TYPE_MISC)
4706 struct marker_block *b = m->start;
4707 char *cp = p;
4708 ptrdiff_t offset = cp - (char *) &b->markers[0];
4710 /* P must point into a Lisp_Misc, not be
4711 one of the unused cells in the current misc block,
4712 and not be on the free-list. */
4713 if (0 <= offset && offset < MARKER_BLOCK_SIZE * sizeof b->markers[0]
4714 && (b != marker_block
4715 || offset / sizeof b->markers[0] < marker_block_index))
4717 union Lisp_Misc *s = p = cp -= offset % sizeof b->markers[0];
4718 if (s->u_any.type != Lisp_Misc_Free)
4719 return make_lisp_ptr (s, Lisp_Misc);
4722 return Qnil;
4725 static bool
4726 live_misc_p (struct mem_node *m, void *p)
4728 return !NILP (live_misc_holding (m, p));
4731 /* If P is a pointer to a live vector-like object, return the object.
4732 Otherwise, return nil.
4733 M is a pointer to the mem_block for P. */
4735 static Lisp_Object
4736 live_vector_holding (struct mem_node *m, void *p)
4738 struct Lisp_Vector *vp = p;
4740 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4742 /* This memory node corresponds to a vector block. */
4743 struct vector_block *block = m->start;
4744 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4746 /* P is in the block's allocation range. Scan the block
4747 up to P and see whether P points to the start of some
4748 vector which is not on a free list. FIXME: check whether
4749 some allocation patterns (probably a lot of short vectors)
4750 may cause a substantial overhead of this loop. */
4751 while (VECTOR_IN_BLOCK (vector, block) && vector <= vp)
4753 struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
4754 if (vp < next && !PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4755 return make_lisp_ptr (vector, Lisp_Vectorlike);
4756 vector = next;
4759 else if (m->type == MEM_TYPE_VECTORLIKE)
4761 /* This memory node corresponds to a large vector. */
4762 struct Lisp_Vector *vector = large_vector_vec (m->start);
4763 struct Lisp_Vector *next = ADVANCE (vector, vector_nbytes (vector));
4764 if (vector <= vp && vp < next)
4765 return make_lisp_ptr (vector, Lisp_Vectorlike);
4767 return Qnil;
4770 static bool
4771 live_vector_p (struct mem_node *m, void *p)
4773 return !NILP (live_vector_holding (m, p));
4776 /* If P is a pointer into a live buffer, return the buffer.
4777 Otherwise, return nil. M is a pointer to the mem_block for P. */
4779 static Lisp_Object
4780 live_buffer_holding (struct mem_node *m, void *p)
4782 /* P must point into the block, and the buffer
4783 must not have been killed. */
4784 if (m->type == MEM_TYPE_BUFFER)
4786 struct buffer *b = m->start;
4787 char *cb = m->start;
4788 char *cp = p;
4789 ptrdiff_t offset = cp - cb;
4790 if (0 <= offset && offset < sizeof *b && !NILP (b->name_))
4792 Lisp_Object obj;
4793 XSETBUFFER (obj, b);
4794 return obj;
4797 return Qnil;
4800 static bool
4801 live_buffer_p (struct mem_node *m, void *p)
4803 return !NILP (live_buffer_holding (m, p));
4806 /* Mark OBJ if we can prove it's a Lisp_Object. */
4808 static void
4809 mark_maybe_object (Lisp_Object obj)
4811 #if USE_VALGRIND
4812 if (valgrind_p)
4813 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4814 #endif
4816 if (INTEGERP (obj))
4817 return;
4819 void *po = XPNTR (obj);
4820 struct mem_node *m = mem_find (po);
4822 if (m != MEM_NIL)
4824 bool mark_p = false;
4826 switch (XTYPE (obj))
4828 case Lisp_String:
4829 mark_p = EQ (obj, live_string_holding (m, po));
4830 break;
4832 case Lisp_Cons:
4833 mark_p = EQ (obj, live_cons_holding (m, po));
4834 break;
4836 case Lisp_Symbol:
4837 mark_p = EQ (obj, live_symbol_holding (m, po));
4838 break;
4840 case Lisp_Float:
4841 mark_p = live_float_p (m, po);
4842 break;
4844 case Lisp_Vectorlike:
4845 mark_p = (EQ (obj, live_vector_holding (m, po))
4846 || EQ (obj, live_buffer_holding (m, po)));
4847 break;
4849 case Lisp_Misc:
4850 mark_p = EQ (obj, live_misc_holding (m, po));
4851 break;
4853 default:
4854 break;
4857 if (mark_p)
4858 mark_object (obj);
4862 /* Return true if P can point to Lisp data, and false otherwise.
4863 Symbols are implemented via offsets not pointers, but the offsets
4864 are also multiples of GCALIGNMENT. */
4866 static bool
4867 maybe_lisp_pointer (void *p)
4869 return (uintptr_t) p % GCALIGNMENT == 0;
4872 #ifndef HAVE_MODULES
4873 enum { HAVE_MODULES = false };
4874 #endif
4876 /* If P points to Lisp data, mark that as live if it isn't already
4877 marked. */
4879 static void
4880 mark_maybe_pointer (void *p)
4882 struct mem_node *m;
4884 #if USE_VALGRIND
4885 if (valgrind_p)
4886 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4887 #endif
4889 if (sizeof (Lisp_Object) == sizeof (void *) || !HAVE_MODULES)
4891 if (!maybe_lisp_pointer (p))
4892 return;
4894 else
4896 /* For the wide-int case, also mark emacs_value tagged pointers,
4897 which can be generated by emacs-module.c's value_to_lisp. */
4898 p = (void *) ((uintptr_t) p & ~(GCALIGNMENT - 1));
4901 m = mem_find (p);
4902 if (m != MEM_NIL)
4904 Lisp_Object obj = Qnil;
4906 switch (m->type)
4908 case MEM_TYPE_NON_LISP:
4909 case MEM_TYPE_SPARE:
4910 /* Nothing to do; not a pointer to Lisp memory. */
4911 break;
4913 case MEM_TYPE_BUFFER:
4914 obj = live_buffer_holding (m, p);
4915 break;
4917 case MEM_TYPE_CONS:
4918 obj = live_cons_holding (m, p);
4919 break;
4921 case MEM_TYPE_STRING:
4922 obj = live_string_holding (m, p);
4923 break;
4925 case MEM_TYPE_MISC:
4926 obj = live_misc_holding (m, p);
4927 break;
4929 case MEM_TYPE_SYMBOL:
4930 obj = live_symbol_holding (m, p);
4931 break;
4933 case MEM_TYPE_FLOAT:
4934 if (live_float_p (m, p))
4935 obj = make_lisp_ptr (p, Lisp_Float);
4936 break;
4938 case MEM_TYPE_VECTORLIKE:
4939 case MEM_TYPE_VECTOR_BLOCK:
4940 obj = live_vector_holding (m, p);
4941 break;
4943 default:
4944 emacs_abort ();
4947 if (!NILP (obj))
4948 mark_object (obj);
4953 /* Alignment of pointer values. Use alignof, as it sometimes returns
4954 a smaller alignment than GCC's __alignof__ and mark_memory might
4955 miss objects if __alignof__ were used. */
4956 #define GC_POINTER_ALIGNMENT alignof (void *)
4958 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4959 or END+OFFSET..START. */
4961 static void ATTRIBUTE_NO_SANITIZE_ADDRESS
4962 mark_memory (void *start, void *end)
4964 char *pp;
4966 /* Make START the pointer to the start of the memory region,
4967 if it isn't already. */
4968 if (end < start)
4970 void *tem = start;
4971 start = end;
4972 end = tem;
4975 eassert (((uintptr_t) start) % GC_POINTER_ALIGNMENT == 0);
4977 /* Mark Lisp data pointed to. This is necessary because, in some
4978 situations, the C compiler optimizes Lisp objects away, so that
4979 only a pointer to them remains. Example:
4981 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4984 Lisp_Object obj = build_string ("test");
4985 struct Lisp_String *s = XSTRING (obj);
4986 Fgarbage_collect ();
4987 fprintf (stderr, "test '%s'\n", s->data);
4988 return Qnil;
4991 Here, `obj' isn't really used, and the compiler optimizes it
4992 away. The only reference to the life string is through the
4993 pointer `s'. */
4995 for (pp = start; (void *) pp < end; pp += GC_POINTER_ALIGNMENT)
4997 mark_maybe_pointer (*(void **) pp);
4998 mark_maybe_object (*(Lisp_Object *) pp);
5002 #ifndef HAVE___BUILTIN_UNWIND_INIT
5004 # ifdef GC_SETJMP_WORKS
5005 static void
5006 test_setjmp (void)
5009 # else
5011 static bool setjmp_tested_p;
5012 static int longjmps_done;
5014 # define SETJMP_WILL_LIKELY_WORK "\
5016 Emacs garbage collector has been changed to use conservative stack\n\
5017 marking. Emacs has determined that the method it uses to do the\n\
5018 marking will likely work on your system, but this isn't sure.\n\
5020 If you are a system-programmer, or can get the help of a local wizard\n\
5021 who is, please take a look at the function mark_stack in alloc.c, and\n\
5022 verify that the methods used are appropriate for your system.\n\
5024 Please mail the result to <emacs-devel@gnu.org>.\n\
5027 # define SETJMP_WILL_NOT_WORK "\
5029 Emacs garbage collector has been changed to use conservative stack\n\
5030 marking. Emacs has determined that the default method it uses to do the\n\
5031 marking will not work on your system. We will need a system-dependent\n\
5032 solution for your system.\n\
5034 Please take a look at the function mark_stack in alloc.c, and\n\
5035 try to find a way to make it work on your system.\n\
5037 Note that you may get false negatives, depending on the compiler.\n\
5038 In particular, you need to use -O with GCC for this test.\n\
5040 Please mail the result to <emacs-devel@gnu.org>.\n\
5044 /* Perform a quick check if it looks like setjmp saves registers in a
5045 jmp_buf. Print a message to stderr saying so. When this test
5046 succeeds, this is _not_ a proof that setjmp is sufficient for
5047 conservative stack marking. Only the sources or a disassembly
5048 can prove that. */
5050 static void
5051 test_setjmp (void)
5053 if (setjmp_tested_p)
5054 return;
5055 setjmp_tested_p = true;
5056 char buf[10];
5057 register int x;
5058 sys_jmp_buf jbuf;
5060 /* Arrange for X to be put in a register. */
5061 sprintf (buf, "1");
5062 x = strlen (buf);
5063 x = 2 * x - 1;
5065 sys_setjmp (jbuf);
5066 if (longjmps_done == 1)
5068 /* Came here after the longjmp at the end of the function.
5070 If x == 1, the longjmp has restored the register to its
5071 value before the setjmp, and we can hope that setjmp
5072 saves all such registers in the jmp_buf, although that
5073 isn't sure.
5075 For other values of X, either something really strange is
5076 taking place, or the setjmp just didn't save the register. */
5078 if (x == 1)
5079 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
5080 else
5082 fprintf (stderr, SETJMP_WILL_NOT_WORK);
5083 exit (1);
5087 ++longjmps_done;
5088 x = 2;
5089 if (longjmps_done == 1)
5090 sys_longjmp (jbuf, 1);
5092 # endif /* ! GC_SETJMP_WORKS */
5093 #endif /* ! HAVE___BUILTIN_UNWIND_INIT */
5095 /* The type of an object near the stack top, whose address can be used
5096 as a stack scan limit. */
5097 typedef union
5099 /* Align the stack top properly. Even if !HAVE___BUILTIN_UNWIND_INIT,
5100 jmp_buf may not be aligned enough on darwin-ppc64. */
5101 max_align_t o;
5102 #ifndef HAVE___BUILTIN_UNWIND_INIT
5103 sys_jmp_buf j;
5104 char c;
5105 #endif
5106 } stacktop_sentry;
5108 /* Force callee-saved registers and register windows onto the stack.
5109 Use the platform-defined __builtin_unwind_init if available,
5110 obviating the need for machine dependent methods. */
5111 #ifndef HAVE___BUILTIN_UNWIND_INIT
5112 # ifdef __sparc__
5113 /* This trick flushes the register windows so that all the state of
5114 the process is contained in the stack.
5115 FreeBSD does not have a ta 3 handler, so handle it specially.
5116 FIXME: Code in the Boehm GC suggests flushing (with 'flushrs') is
5117 needed on ia64 too. See mach_dep.c, where it also says inline
5118 assembler doesn't work with relevant proprietary compilers. */
5119 # if defined __sparc64__ && defined __FreeBSD__
5120 # define __builtin_unwind_init() asm ("flushw")
5121 # else
5122 # define __builtin_unwind_init() asm ("ta 3")
5123 # endif
5124 # else
5125 # define __builtin_unwind_init() ((void) 0)
5126 # endif
5127 #endif
5129 /* Yield an address close enough to the top of the stack that the
5130 garbage collector need not scan above it. Callers should be
5131 declared NO_INLINE. */
5132 #ifdef HAVE___BUILTIN_FRAME_ADDRESS
5133 # define NEAR_STACK_TOP(addr) ((void) (addr), __builtin_frame_address (0))
5134 #else
5135 # define NEAR_STACK_TOP(addr) (addr)
5136 #endif
5138 /* Set *P to the address of the top of the stack. This must be a
5139 macro, not a function, so that it is executed in the caller’s
5140 environment. It is not inside a do-while so that its storage
5141 survives the macro. Callers should be declared NO_INLINE. */
5142 #ifdef HAVE___BUILTIN_UNWIND_INIT
5143 # define SET_STACK_TOP_ADDRESS(p) \
5144 stacktop_sentry sentry; \
5145 __builtin_unwind_init (); \
5146 *(p) = NEAR_STACK_TOP (&sentry)
5147 #else
5148 # define SET_STACK_TOP_ADDRESS(p) \
5149 stacktop_sentry sentry; \
5150 __builtin_unwind_init (); \
5151 test_setjmp (); \
5152 sys_setjmp (sentry.j); \
5153 *(p) = NEAR_STACK_TOP (&sentry + (stack_bottom < &sentry.c))
5154 #endif
5156 /* Mark live Lisp objects on the C stack.
5158 There are several system-dependent problems to consider when
5159 porting this to new architectures:
5161 Processor Registers
5163 We have to mark Lisp objects in CPU registers that can hold local
5164 variables or are used to pass parameters.
5166 This code assumes that calling setjmp saves registers we need
5167 to see in a jmp_buf which itself lies on the stack. This doesn't
5168 have to be true! It must be verified for each system, possibly
5169 by taking a look at the source code of setjmp.
5171 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
5172 can use it as a machine independent method to store all registers
5173 to the stack. In this case the macros described in the previous
5174 two paragraphs are not used.
5176 Stack Layout
5178 Architectures differ in the way their processor stack is organized.
5179 For example, the stack might look like this
5181 +----------------+
5182 | Lisp_Object | size = 4
5183 +----------------+
5184 | something else | size = 2
5185 +----------------+
5186 | Lisp_Object | size = 4
5187 +----------------+
5188 | ... |
5190 In such a case, not every Lisp_Object will be aligned equally. To
5191 find all Lisp_Object on the stack it won't be sufficient to walk
5192 the stack in steps of 4 bytes. Instead, two passes will be
5193 necessary, one starting at the start of the stack, and a second
5194 pass starting at the start of the stack + 2. Likewise, if the
5195 minimal alignment of Lisp_Objects on the stack is 1, four passes
5196 would be necessary, each one starting with one byte more offset
5197 from the stack start. */
5199 void
5200 mark_stack (char *bottom, char *end)
5202 /* This assumes that the stack is a contiguous region in memory. If
5203 that's not the case, something has to be done here to iterate
5204 over the stack segments. */
5205 mark_memory (bottom, end);
5207 /* Allow for marking a secondary stack, like the register stack on the
5208 ia64. */
5209 #ifdef GC_MARK_SECONDARY_STACK
5210 GC_MARK_SECONDARY_STACK ();
5211 #endif
5214 /* This is a trampoline function that flushes registers to the stack,
5215 and then calls FUNC. ARG is passed through to FUNC verbatim.
5217 This function must be called whenever Emacs is about to release the
5218 global interpreter lock. This lets the garbage collector easily
5219 find roots in registers on threads that are not actively running
5220 Lisp.
5222 It is invalid to run any Lisp code or to allocate any GC memory
5223 from FUNC. */
5225 NO_INLINE void
5226 flush_stack_call_func (void (*func) (void *arg), void *arg)
5228 void *end;
5229 struct thread_state *self = current_thread;
5230 SET_STACK_TOP_ADDRESS (&end);
5231 self->stack_top = end;
5232 func (arg);
5233 eassert (current_thread == self);
5236 static bool
5237 c_symbol_p (struct Lisp_Symbol *sym)
5239 char *lispsym_ptr = (char *) lispsym;
5240 char *sym_ptr = (char *) sym;
5241 ptrdiff_t lispsym_offset = sym_ptr - lispsym_ptr;
5242 return 0 <= lispsym_offset && lispsym_offset < sizeof lispsym;
5245 /* Determine whether it is safe to access memory at address P. */
5246 static int
5247 valid_pointer_p (void *p)
5249 #ifdef WINDOWSNT
5250 return w32_valid_pointer_p (p, 16);
5251 #else
5253 if (ADDRESS_SANITIZER)
5254 return p ? -1 : 0;
5256 int fd[2];
5258 /* Obviously, we cannot just access it (we would SEGV trying), so we
5259 trick the o/s to tell us whether p is a valid pointer.
5260 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
5261 not validate p in that case. */
5263 if (emacs_pipe (fd) == 0)
5265 bool valid = emacs_write (fd[1], p, 16) == 16;
5266 emacs_close (fd[1]);
5267 emacs_close (fd[0]);
5268 return valid;
5271 return -1;
5272 #endif
5275 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
5276 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
5277 cannot validate OBJ. This function can be quite slow, so its primary
5278 use is the manual debugging. The only exception is print_object, where
5279 we use it to check whether the memory referenced by the pointer of
5280 Lisp_Save_Value object contains valid objects. */
5283 valid_lisp_object_p (Lisp_Object obj)
5285 if (INTEGERP (obj))
5286 return 1;
5288 void *p = XPNTR (obj);
5289 if (PURE_P (p))
5290 return 1;
5292 if (SYMBOLP (obj) && c_symbol_p (p))
5293 return ((char *) p - (char *) lispsym) % sizeof lispsym[0] == 0;
5295 if (p == &buffer_defaults || p == &buffer_local_symbols)
5296 return 2;
5298 struct mem_node *m = mem_find (p);
5300 if (m == MEM_NIL)
5302 int valid = valid_pointer_p (p);
5303 if (valid <= 0)
5304 return valid;
5306 if (SUBRP (obj))
5307 return 1;
5309 return 0;
5312 switch (m->type)
5314 case MEM_TYPE_NON_LISP:
5315 case MEM_TYPE_SPARE:
5316 return 0;
5318 case MEM_TYPE_BUFFER:
5319 return live_buffer_p (m, p) ? 1 : 2;
5321 case MEM_TYPE_CONS:
5322 return live_cons_p (m, p);
5324 case MEM_TYPE_STRING:
5325 return live_string_p (m, p);
5327 case MEM_TYPE_MISC:
5328 return live_misc_p (m, p);
5330 case MEM_TYPE_SYMBOL:
5331 return live_symbol_p (m, p);
5333 case MEM_TYPE_FLOAT:
5334 return live_float_p (m, p);
5336 case MEM_TYPE_VECTORLIKE:
5337 case MEM_TYPE_VECTOR_BLOCK:
5338 return live_vector_p (m, p);
5340 default:
5341 break;
5344 return 0;
5347 /***********************************************************************
5348 Pure Storage Management
5349 ***********************************************************************/
5351 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5352 pointer to it. TYPE is the Lisp type for which the memory is
5353 allocated. TYPE < 0 means it's not used for a Lisp object. */
5355 static void *
5356 pure_alloc (size_t size, int type)
5358 void *result;
5360 again:
5361 if (type >= 0)
5363 /* Allocate space for a Lisp object from the beginning of the free
5364 space with taking account of alignment. */
5365 result = pointer_align (purebeg + pure_bytes_used_lisp, GCALIGNMENT);
5366 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5368 else
5370 /* Allocate space for a non-Lisp object from the end of the free
5371 space. */
5372 pure_bytes_used_non_lisp += size;
5373 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5375 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5377 if (pure_bytes_used <= pure_size)
5378 return result;
5380 /* Don't allocate a large amount here,
5381 because it might get mmap'd and then its address
5382 might not be usable. */
5383 purebeg = xmalloc (10000);
5384 pure_size = 10000;
5385 pure_bytes_used_before_overflow += pure_bytes_used - size;
5386 pure_bytes_used = 0;
5387 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5388 goto again;
5392 #ifndef CANNOT_DUMP
5394 /* Print a warning if PURESIZE is too small. */
5396 void
5397 check_pure_size (void)
5399 if (pure_bytes_used_before_overflow)
5400 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5401 " bytes needed)"),
5402 pure_bytes_used + pure_bytes_used_before_overflow);
5404 #endif
5407 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5408 the non-Lisp data pool of the pure storage, and return its start
5409 address. Return NULL if not found. */
5411 static char *
5412 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5414 int i;
5415 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5416 const unsigned char *p;
5417 char *non_lisp_beg;
5419 if (pure_bytes_used_non_lisp <= nbytes)
5420 return NULL;
5422 /* Set up the Boyer-Moore table. */
5423 skip = nbytes + 1;
5424 for (i = 0; i < 256; i++)
5425 bm_skip[i] = skip;
5427 p = (const unsigned char *) data;
5428 while (--skip > 0)
5429 bm_skip[*p++] = skip;
5431 last_char_skip = bm_skip['\0'];
5433 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5434 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5436 /* See the comments in the function `boyer_moore' (search.c) for the
5437 use of `infinity'. */
5438 infinity = pure_bytes_used_non_lisp + 1;
5439 bm_skip['\0'] = infinity;
5441 p = (const unsigned char *) non_lisp_beg + nbytes;
5442 start = 0;
5445 /* Check the last character (== '\0'). */
5448 start += bm_skip[*(p + start)];
5450 while (start <= start_max);
5452 if (start < infinity)
5453 /* Couldn't find the last character. */
5454 return NULL;
5456 /* No less than `infinity' means we could find the last
5457 character at `p[start - infinity]'. */
5458 start -= infinity;
5460 /* Check the remaining characters. */
5461 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5462 /* Found. */
5463 return non_lisp_beg + start;
5465 start += last_char_skip;
5467 while (start <= start_max);
5469 return NULL;
5473 /* Return a string allocated in pure space. DATA is a buffer holding
5474 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5475 means make the result string multibyte.
5477 Must get an error if pure storage is full, since if it cannot hold
5478 a large string it may be able to hold conses that point to that
5479 string; then the string is not protected from gc. */
5481 Lisp_Object
5482 make_pure_string (const char *data,
5483 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5485 Lisp_Object string;
5486 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5487 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5488 if (s->data == NULL)
5490 s->data = pure_alloc (nbytes + 1, -1);
5491 memcpy (s->data, data, nbytes);
5492 s->data[nbytes] = '\0';
5494 s->size = nchars;
5495 s->size_byte = multibyte ? nbytes : -1;
5496 s->intervals = NULL;
5497 XSETSTRING (string, s);
5498 return string;
5501 /* Return a string allocated in pure space. Do not
5502 allocate the string data, just point to DATA. */
5504 Lisp_Object
5505 make_pure_c_string (const char *data, ptrdiff_t nchars)
5507 Lisp_Object string;
5508 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5509 s->size = nchars;
5510 s->size_byte = -1;
5511 s->data = (unsigned char *) data;
5512 s->intervals = NULL;
5513 XSETSTRING (string, s);
5514 return string;
5517 static Lisp_Object purecopy (Lisp_Object obj);
5519 /* Return a cons allocated from pure space. Give it pure copies
5520 of CAR as car and CDR as cdr. */
5522 Lisp_Object
5523 pure_cons (Lisp_Object car, Lisp_Object cdr)
5525 Lisp_Object new;
5526 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5527 XSETCONS (new, p);
5528 XSETCAR (new, purecopy (car));
5529 XSETCDR (new, purecopy (cdr));
5530 return new;
5534 /* Value is a float object with value NUM allocated from pure space. */
5536 static Lisp_Object
5537 make_pure_float (double num)
5539 Lisp_Object new;
5540 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5541 XSETFLOAT (new, p);
5542 XFLOAT_INIT (new, num);
5543 return new;
5547 /* Return a vector with room for LEN Lisp_Objects allocated from
5548 pure space. */
5550 static Lisp_Object
5551 make_pure_vector (ptrdiff_t len)
5553 Lisp_Object new;
5554 size_t size = header_size + len * word_size;
5555 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5556 XSETVECTOR (new, p);
5557 XVECTOR (new)->header.size = len;
5558 return new;
5561 /* Copy all contents and parameters of TABLE to a new table allocated
5562 from pure space, return the purified table. */
5563 static struct Lisp_Hash_Table *
5564 purecopy_hash_table (struct Lisp_Hash_Table *table)
5566 eassert (NILP (table->weak));
5567 eassert (table->pure);
5569 struct Lisp_Hash_Table *pure = pure_alloc (sizeof *pure, Lisp_Vectorlike);
5570 struct hash_table_test pure_test = table->test;
5572 /* Purecopy the hash table test. */
5573 pure_test.name = purecopy (table->test.name);
5574 pure_test.user_hash_function = purecopy (table->test.user_hash_function);
5575 pure_test.user_cmp_function = purecopy (table->test.user_cmp_function);
5577 pure->header = table->header;
5578 pure->weak = purecopy (Qnil);
5579 pure->hash = purecopy (table->hash);
5580 pure->next = purecopy (table->next);
5581 pure->index = purecopy (table->index);
5582 pure->count = table->count;
5583 pure->next_free = table->next_free;
5584 pure->pure = table->pure;
5585 pure->rehash_threshold = table->rehash_threshold;
5586 pure->rehash_size = table->rehash_size;
5587 pure->key_and_value = purecopy (table->key_and_value);
5588 pure->test = pure_test;
5590 return pure;
5593 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5594 doc: /* Make a copy of object OBJ in pure storage.
5595 Recursively copies contents of vectors and cons cells.
5596 Does not copy symbols. Copies strings without text properties. */)
5597 (register Lisp_Object obj)
5599 if (NILP (Vpurify_flag))
5600 return obj;
5601 else if (MARKERP (obj) || OVERLAYP (obj) || SYMBOLP (obj))
5602 /* Can't purify those. */
5603 return obj;
5604 else
5605 return purecopy (obj);
5608 /* Pinned objects are marked before every GC cycle. */
5609 static struct pinned_object
5611 Lisp_Object object;
5612 struct pinned_object *next;
5613 } *pinned_objects;
5615 static Lisp_Object
5616 purecopy (Lisp_Object obj)
5618 if (INTEGERP (obj)
5619 || (! SYMBOLP (obj) && PURE_P (XPNTR_OR_SYMBOL_OFFSET (obj)))
5620 || SUBRP (obj))
5621 return obj; /* Already pure. */
5623 if (STRINGP (obj) && XSTRING (obj)->intervals)
5624 message_with_string ("Dropping text-properties while making string `%s' pure",
5625 obj, true);
5627 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5629 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5630 if (!NILP (tmp))
5631 return tmp;
5634 if (CONSP (obj))
5635 obj = pure_cons (XCAR (obj), XCDR (obj));
5636 else if (FLOATP (obj))
5637 obj = make_pure_float (XFLOAT_DATA (obj));
5638 else if (STRINGP (obj))
5639 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5640 SBYTES (obj),
5641 STRING_MULTIBYTE (obj));
5642 else if (HASH_TABLE_P (obj))
5644 struct Lisp_Hash_Table *table = XHASH_TABLE (obj);
5645 /* Do not purify hash tables which haven't been defined with
5646 :purecopy as non-nil or are weak - they aren't guaranteed to
5647 not change. */
5648 if (!NILP (table->weak) || !table->pure)
5650 /* Instead, add the hash table to the list of pinned objects,
5651 so that it will be marked during GC. */
5652 struct pinned_object *o = xmalloc (sizeof *o);
5653 o->object = obj;
5654 o->next = pinned_objects;
5655 pinned_objects = o;
5656 return obj; /* Don't hash cons it. */
5659 struct Lisp_Hash_Table *h = purecopy_hash_table (table);
5660 XSET_HASH_TABLE (obj, h);
5662 else if (COMPILEDP (obj) || VECTORP (obj) || RECORDP (obj))
5664 struct Lisp_Vector *objp = XVECTOR (obj);
5665 ptrdiff_t nbytes = vector_nbytes (objp);
5666 struct Lisp_Vector *vec = pure_alloc (nbytes, Lisp_Vectorlike);
5667 register ptrdiff_t i;
5668 ptrdiff_t size = ASIZE (obj);
5669 if (size & PSEUDOVECTOR_FLAG)
5670 size &= PSEUDOVECTOR_SIZE_MASK;
5671 memcpy (vec, objp, nbytes);
5672 for (i = 0; i < size; i++)
5673 vec->contents[i] = purecopy (vec->contents[i]);
5674 XSETVECTOR (obj, vec);
5676 else if (SYMBOLP (obj))
5678 if (!XSYMBOL (obj)->pinned && !c_symbol_p (XSYMBOL (obj)))
5679 { /* We can't purify them, but they appear in many pure objects.
5680 Mark them as `pinned' so we know to mark them at every GC cycle. */
5681 XSYMBOL (obj)->pinned = true;
5682 symbol_block_pinned = symbol_block;
5684 /* Don't hash-cons it. */
5685 return obj;
5687 else
5689 AUTO_STRING (fmt, "Don't know how to purify: %S");
5690 Fsignal (Qerror, list1 (CALLN (Fformat, fmt, obj)));
5693 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5694 Fputhash (obj, obj, Vpurify_flag);
5696 return obj;
5701 /***********************************************************************
5702 Protection from GC
5703 ***********************************************************************/
5705 /* Put an entry in staticvec, pointing at the variable with address
5706 VARADDRESS. */
5708 void
5709 staticpro (Lisp_Object *varaddress)
5711 if (staticidx >= NSTATICS)
5712 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5713 staticvec[staticidx++] = varaddress;
5717 /***********************************************************************
5718 Protection from GC
5719 ***********************************************************************/
5721 /* Temporarily prevent garbage collection. */
5723 ptrdiff_t
5724 inhibit_garbage_collection (void)
5726 ptrdiff_t count = SPECPDL_INDEX ();
5728 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5729 return count;
5732 /* Used to avoid possible overflows when
5733 converting from C to Lisp integers. */
5735 static Lisp_Object
5736 bounded_number (EMACS_INT number)
5738 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5741 /* Calculate total bytes of live objects. */
5743 static size_t
5744 total_bytes_of_live_objects (void)
5746 size_t tot = 0;
5747 tot += total_conses * sizeof (struct Lisp_Cons);
5748 tot += total_symbols * sizeof (struct Lisp_Symbol);
5749 tot += total_markers * sizeof (union Lisp_Misc);
5750 tot += total_string_bytes;
5751 tot += total_vector_slots * word_size;
5752 tot += total_floats * sizeof (struct Lisp_Float);
5753 tot += total_intervals * sizeof (struct interval);
5754 tot += total_strings * sizeof (struct Lisp_String);
5755 return tot;
5758 #ifdef HAVE_WINDOW_SYSTEM
5760 /* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5761 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5763 static Lisp_Object
5764 compact_font_cache_entry (Lisp_Object entry)
5766 Lisp_Object tail, *prev = &entry;
5768 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5770 bool drop = 0;
5771 Lisp_Object obj = XCAR (tail);
5773 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5774 if (CONSP (obj) && GC_FONT_SPEC_P (XCAR (obj))
5775 && !VECTOR_MARKED_P (GC_XFONT_SPEC (XCAR (obj)))
5776 /* Don't use VECTORP here, as that calls ASIZE, which could
5777 hit assertion violation during GC. */
5778 && (VECTORLIKEP (XCDR (obj))
5779 && ! (gc_asize (XCDR (obj)) & PSEUDOVECTOR_FLAG)))
5781 ptrdiff_t i, size = gc_asize (XCDR (obj));
5782 Lisp_Object obj_cdr = XCDR (obj);
5784 /* If font-spec is not marked, most likely all font-entities
5785 are not marked too. But we must be sure that nothing is
5786 marked within OBJ before we really drop it. */
5787 for (i = 0; i < size; i++)
5789 Lisp_Object objlist;
5791 if (VECTOR_MARKED_P (GC_XFONT_ENTITY (AREF (obj_cdr, i))))
5792 break;
5794 objlist = AREF (AREF (obj_cdr, i), FONT_OBJLIST_INDEX);
5795 for (; CONSP (objlist); objlist = XCDR (objlist))
5797 Lisp_Object val = XCAR (objlist);
5798 struct font *font = GC_XFONT_OBJECT (val);
5800 if (!NILP (AREF (val, FONT_TYPE_INDEX))
5801 && VECTOR_MARKED_P(font))
5802 break;
5804 if (CONSP (objlist))
5806 /* Found a marked font, bail out. */
5807 break;
5811 if (i == size)
5813 /* No marked fonts were found, so this entire font
5814 entity can be dropped. */
5815 drop = 1;
5818 if (drop)
5819 *prev = XCDR (tail);
5820 else
5821 prev = xcdr_addr (tail);
5823 return entry;
5826 /* Compact font caches on all terminals and mark
5827 everything which is still here after compaction. */
5829 static void
5830 compact_font_caches (void)
5832 struct terminal *t;
5834 for (t = terminal_list; t; t = t->next_terminal)
5836 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5837 /* Inhibit compacting the caches if the user so wishes. Some of
5838 the users don't mind a larger memory footprint, but do mind
5839 slower redisplay. */
5840 if (!inhibit_compacting_font_caches
5841 && CONSP (cache))
5843 Lisp_Object entry;
5845 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5846 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5848 mark_object (cache);
5852 #else /* not HAVE_WINDOW_SYSTEM */
5854 #define compact_font_caches() (void)(0)
5856 #endif /* HAVE_WINDOW_SYSTEM */
5858 /* Remove (MARKER . DATA) entries with unmarked MARKER
5859 from buffer undo LIST and return changed list. */
5861 static Lisp_Object
5862 compact_undo_list (Lisp_Object list)
5864 Lisp_Object tail, *prev = &list;
5866 for (tail = list; CONSP (tail); tail = XCDR (tail))
5868 if (CONSP (XCAR (tail))
5869 && MARKERP (XCAR (XCAR (tail)))
5870 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5871 *prev = XCDR (tail);
5872 else
5873 prev = xcdr_addr (tail);
5875 return list;
5878 static void
5879 mark_pinned_objects (void)
5881 for (struct pinned_object *pobj = pinned_objects; pobj; pobj = pobj->next)
5882 mark_object (pobj->object);
5885 static void
5886 mark_pinned_symbols (void)
5888 struct symbol_block *sblk;
5889 int lim = (symbol_block_pinned == symbol_block
5890 ? symbol_block_index : SYMBOL_BLOCK_SIZE);
5892 for (sblk = symbol_block_pinned; sblk; sblk = sblk->next)
5894 union aligned_Lisp_Symbol *sym = sblk->symbols, *end = sym + lim;
5895 for (; sym < end; ++sym)
5896 if (sym->s.pinned)
5897 mark_object (make_lisp_symbol (&sym->s));
5899 lim = SYMBOL_BLOCK_SIZE;
5903 /* Subroutine of Fgarbage_collect that does most of the work. It is a
5904 separate function so that we could limit mark_stack in searching
5905 the stack frames below this function, thus avoiding the rare cases
5906 where mark_stack finds values that look like live Lisp objects on
5907 portions of stack that couldn't possibly contain such live objects.
5908 For more details of this, see the discussion at
5909 https://lists.gnu.org/archive/html/emacs-devel/2014-05/msg00270.html. */
5910 static Lisp_Object
5911 garbage_collect_1 (void *end)
5913 struct buffer *nextb;
5914 char stack_top_variable;
5915 ptrdiff_t i;
5916 bool message_p;
5917 ptrdiff_t count = SPECPDL_INDEX ();
5918 struct timespec start;
5919 Lisp_Object retval = Qnil;
5920 size_t tot_before = 0;
5922 /* Can't GC if pure storage overflowed because we can't determine
5923 if something is a pure object or not. */
5924 if (pure_bytes_used_before_overflow)
5925 return Qnil;
5927 /* Record this function, so it appears on the profiler's backtraces. */
5928 record_in_backtrace (QAutomatic_GC, 0, 0);
5930 check_cons_list ();
5932 /* Don't keep undo information around forever.
5933 Do this early on, so it is no problem if the user quits. */
5934 FOR_EACH_BUFFER (nextb)
5935 compact_buffer (nextb);
5937 if (profiler_memory_running)
5938 tot_before = total_bytes_of_live_objects ();
5940 start = current_timespec ();
5942 /* In case user calls debug_print during GC,
5943 don't let that cause a recursive GC. */
5944 consing_since_gc = 0;
5946 /* Save what's currently displayed in the echo area. Don't do that
5947 if we are GC'ing because we've run out of memory, since
5948 push_message will cons, and we might have no memory for that. */
5949 if (NILP (Vmemory_full))
5951 message_p = push_message ();
5952 record_unwind_protect_void (pop_message_unwind);
5954 else
5955 message_p = false;
5957 /* Save a copy of the contents of the stack, for debugging. */
5958 #if MAX_SAVE_STACK > 0
5959 if (NILP (Vpurify_flag))
5961 char *stack;
5962 ptrdiff_t stack_size;
5963 if (&stack_top_variable < stack_bottom)
5965 stack = &stack_top_variable;
5966 stack_size = stack_bottom - &stack_top_variable;
5968 else
5970 stack = stack_bottom;
5971 stack_size = &stack_top_variable - stack_bottom;
5973 if (stack_size <= MAX_SAVE_STACK)
5975 if (stack_copy_size < stack_size)
5977 stack_copy = xrealloc (stack_copy, stack_size);
5978 stack_copy_size = stack_size;
5980 no_sanitize_memcpy (stack_copy, stack, stack_size);
5983 #endif /* MAX_SAVE_STACK > 0 */
5985 if (garbage_collection_messages)
5986 message1_nolog ("Garbage collecting...");
5988 block_input ();
5990 shrink_regexp_cache ();
5992 gc_in_progress = 1;
5994 /* Mark all the special slots that serve as the roots of accessibility. */
5996 mark_buffer (&buffer_defaults);
5997 mark_buffer (&buffer_local_symbols);
5999 for (i = 0; i < ARRAYELTS (lispsym); i++)
6000 mark_object (builtin_lisp_symbol (i));
6002 for (i = 0; i < staticidx; i++)
6003 mark_object (*staticvec[i]);
6005 mark_pinned_objects ();
6006 mark_pinned_symbols ();
6007 mark_terminals ();
6008 mark_kboards ();
6009 mark_threads ();
6011 #ifdef USE_GTK
6012 xg_mark_data ();
6013 #endif
6015 #ifdef HAVE_WINDOW_SYSTEM
6016 mark_fringe_data ();
6017 #endif
6019 #ifdef HAVE_MODULES
6020 mark_modules ();
6021 #endif
6023 /* Everything is now marked, except for the data in font caches,
6024 undo lists, and finalizers. The first two are compacted by
6025 removing an items which aren't reachable otherwise. */
6027 compact_font_caches ();
6029 FOR_EACH_BUFFER (nextb)
6031 if (!EQ (BVAR (nextb, undo_list), Qt))
6032 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
6033 /* Now that we have stripped the elements that need not be
6034 in the undo_list any more, we can finally mark the list. */
6035 mark_object (BVAR (nextb, undo_list));
6038 /* Now pre-sweep finalizers. Here, we add any unmarked finalizers
6039 to doomed_finalizers so we can run their associated functions
6040 after GC. It's important to scan finalizers at this stage so
6041 that we can be sure that unmarked finalizers are really
6042 unreachable except for references from their associated functions
6043 and from other finalizers. */
6045 queue_doomed_finalizers (&doomed_finalizers, &finalizers);
6046 mark_finalizer_list (&doomed_finalizers);
6048 gc_sweep ();
6050 /* Clear the mark bits that we set in certain root slots. */
6051 VECTOR_UNMARK (&buffer_defaults);
6052 VECTOR_UNMARK (&buffer_local_symbols);
6054 check_cons_list ();
6056 gc_in_progress = 0;
6058 unblock_input ();
6060 consing_since_gc = 0;
6061 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
6062 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
6064 gc_relative_threshold = 0;
6065 if (FLOATP (Vgc_cons_percentage))
6066 { /* Set gc_cons_combined_threshold. */
6067 double tot = total_bytes_of_live_objects ();
6069 tot *= XFLOAT_DATA (Vgc_cons_percentage);
6070 if (0 < tot)
6072 if (tot < TYPE_MAXIMUM (EMACS_INT))
6073 gc_relative_threshold = tot;
6074 else
6075 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
6079 if (garbage_collection_messages && NILP (Vmemory_full))
6081 if (message_p || minibuf_level > 0)
6082 restore_message ();
6083 else
6084 message1_nolog ("Garbage collecting...done");
6087 unbind_to (count, Qnil);
6089 Lisp_Object total[] = {
6090 list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
6091 bounded_number (total_conses),
6092 bounded_number (total_free_conses)),
6093 list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
6094 bounded_number (total_symbols),
6095 bounded_number (total_free_symbols)),
6096 list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
6097 bounded_number (total_markers),
6098 bounded_number (total_free_markers)),
6099 list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
6100 bounded_number (total_strings),
6101 bounded_number (total_free_strings)),
6102 list3 (Qstring_bytes, make_number (1),
6103 bounded_number (total_string_bytes)),
6104 list3 (Qvectors,
6105 make_number (header_size + sizeof (Lisp_Object)),
6106 bounded_number (total_vectors)),
6107 list4 (Qvector_slots, make_number (word_size),
6108 bounded_number (total_vector_slots),
6109 bounded_number (total_free_vector_slots)),
6110 list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
6111 bounded_number (total_floats),
6112 bounded_number (total_free_floats)),
6113 list4 (Qintervals, make_number (sizeof (struct interval)),
6114 bounded_number (total_intervals),
6115 bounded_number (total_free_intervals)),
6116 list3 (Qbuffers, make_number (sizeof (struct buffer)),
6117 bounded_number (total_buffers)),
6119 #ifdef DOUG_LEA_MALLOC
6120 list4 (Qheap, make_number (1024),
6121 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
6122 bounded_number ((mallinfo ().fordblks + 1023) >> 10)),
6123 #endif
6125 retval = CALLMANY (Flist, total);
6127 /* GC is complete: now we can run our finalizer callbacks. */
6128 run_finalizers (&doomed_finalizers);
6130 if (!NILP (Vpost_gc_hook))
6132 ptrdiff_t gc_count = inhibit_garbage_collection ();
6133 safe_run_hooks (Qpost_gc_hook);
6134 unbind_to (gc_count, Qnil);
6137 /* Accumulate statistics. */
6138 if (FLOATP (Vgc_elapsed))
6140 struct timespec since_start = timespec_sub (current_timespec (), start);
6141 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
6142 + timespectod (since_start));
6145 gcs_done++;
6147 /* Collect profiling data. */
6148 if (profiler_memory_running)
6150 size_t swept = 0;
6151 size_t tot_after = total_bytes_of_live_objects ();
6152 if (tot_before > tot_after)
6153 swept = tot_before - tot_after;
6154 malloc_probe (swept);
6157 return retval;
6160 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
6161 doc: /* Reclaim storage for Lisp objects no longer needed.
6162 Garbage collection happens automatically if you cons more than
6163 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
6164 `garbage-collect' normally returns a list with info on amount of space in use,
6165 where each entry has the form (NAME SIZE USED FREE), where:
6166 - NAME is a symbol describing the kind of objects this entry represents,
6167 - SIZE is the number of bytes used by each one,
6168 - USED is the number of those objects that were found live in the heap,
6169 - FREE is the number of those objects that are not live but that Emacs
6170 keeps around for future allocations (maybe because it does not know how
6171 to return them to the OS).
6172 However, if there was overflow in pure space, `garbage-collect'
6173 returns nil, because real GC can't be done.
6174 See Info node `(elisp)Garbage Collection'. */
6175 attributes: noinline)
6176 (void)
6178 void *end;
6179 SET_STACK_TOP_ADDRESS (&end);
6180 return garbage_collect_1 (end);
6183 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
6184 only interesting objects referenced from glyphs are strings. */
6186 static void
6187 mark_glyph_matrix (struct glyph_matrix *matrix)
6189 struct glyph_row *row = matrix->rows;
6190 struct glyph_row *end = row + matrix->nrows;
6192 for (; row < end; ++row)
6193 if (row->enabled_p)
6195 int area;
6196 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
6198 struct glyph *glyph = row->glyphs[area];
6199 struct glyph *end_glyph = glyph + row->used[area];
6201 for (; glyph < end_glyph; ++glyph)
6202 if (STRINGP (glyph->object)
6203 && !STRING_MARKED_P (XSTRING (glyph->object)))
6204 mark_object (glyph->object);
6209 /* Mark reference to a Lisp_Object.
6210 If the object referred to has not been seen yet, recursively mark
6211 all the references contained in it. */
6213 #define LAST_MARKED_SIZE 500
6214 Lisp_Object last_marked[LAST_MARKED_SIZE] EXTERNALLY_VISIBLE;
6215 static int last_marked_index;
6217 /* For debugging--call abort when we cdr down this many
6218 links of a list, in mark_object. In debugging,
6219 the call to abort will hit a breakpoint.
6220 Normally this is zero and the check never goes off. */
6221 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
6223 static void
6224 mark_vectorlike (struct Lisp_Vector *ptr)
6226 ptrdiff_t size = ptr->header.size;
6227 ptrdiff_t i;
6229 eassert (!VECTOR_MARKED_P (ptr));
6230 VECTOR_MARK (ptr); /* Else mark it. */
6231 if (size & PSEUDOVECTOR_FLAG)
6232 size &= PSEUDOVECTOR_SIZE_MASK;
6234 /* Note that this size is not the memory-footprint size, but only
6235 the number of Lisp_Object fields that we should trace.
6236 The distinction is used e.g. by Lisp_Process which places extra
6237 non-Lisp_Object fields at the end of the structure... */
6238 for (i = 0; i < size; i++) /* ...and then mark its elements. */
6239 mark_object (ptr->contents[i]);
6242 /* Like mark_vectorlike but optimized for char-tables (and
6243 sub-char-tables) assuming that the contents are mostly integers or
6244 symbols. */
6246 static void
6247 mark_char_table (struct Lisp_Vector *ptr, enum pvec_type pvectype)
6249 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6250 /* Consult the Lisp_Sub_Char_Table layout before changing this. */
6251 int i, idx = (pvectype == PVEC_SUB_CHAR_TABLE ? SUB_CHAR_TABLE_OFFSET : 0);
6253 eassert (!VECTOR_MARKED_P (ptr));
6254 VECTOR_MARK (ptr);
6255 for (i = idx; i < size; i++)
6257 Lisp_Object val = ptr->contents[i];
6259 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
6260 continue;
6261 if (SUB_CHAR_TABLE_P (val))
6263 if (! VECTOR_MARKED_P (XVECTOR (val)))
6264 mark_char_table (XVECTOR (val), PVEC_SUB_CHAR_TABLE);
6266 else
6267 mark_object (val);
6271 NO_INLINE /* To reduce stack depth in mark_object. */
6272 static Lisp_Object
6273 mark_compiled (struct Lisp_Vector *ptr)
6275 int i, size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
6277 VECTOR_MARK (ptr);
6278 for (i = 0; i < size; i++)
6279 if (i != COMPILED_CONSTANTS)
6280 mark_object (ptr->contents[i]);
6281 return size > COMPILED_CONSTANTS ? ptr->contents[COMPILED_CONSTANTS] : Qnil;
6284 /* Mark the chain of overlays starting at PTR. */
6286 static void
6287 mark_overlay (struct Lisp_Overlay *ptr)
6289 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
6291 ptr->gcmarkbit = 1;
6292 /* These two are always markers and can be marked fast. */
6293 XMARKER (ptr->start)->gcmarkbit = 1;
6294 XMARKER (ptr->end)->gcmarkbit = 1;
6295 mark_object (ptr->plist);
6299 /* Mark Lisp_Objects and special pointers in BUFFER. */
6301 static void
6302 mark_buffer (struct buffer *buffer)
6304 /* This is handled much like other pseudovectors... */
6305 mark_vectorlike ((struct Lisp_Vector *) buffer);
6307 /* ...but there are some buffer-specific things. */
6309 MARK_INTERVAL_TREE (buffer_intervals (buffer));
6311 /* For now, we just don't mark the undo_list. It's done later in
6312 a special way just before the sweep phase, and after stripping
6313 some of its elements that are not needed any more. */
6315 mark_overlay (buffer->overlays_before);
6316 mark_overlay (buffer->overlays_after);
6318 /* If this is an indirect buffer, mark its base buffer. */
6319 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
6320 mark_buffer (buffer->base_buffer);
6323 /* Mark Lisp faces in the face cache C. */
6325 NO_INLINE /* To reduce stack depth in mark_object. */
6326 static void
6327 mark_face_cache (struct face_cache *c)
6329 if (c)
6331 int i, j;
6332 for (i = 0; i < c->used; ++i)
6334 struct face *face = FACE_FROM_ID_OR_NULL (c->f, i);
6336 if (face)
6338 if (face->font && !VECTOR_MARKED_P (face->font))
6339 mark_vectorlike ((struct Lisp_Vector *) face->font);
6341 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
6342 mark_object (face->lface[j]);
6348 NO_INLINE /* To reduce stack depth in mark_object. */
6349 static void
6350 mark_localized_symbol (struct Lisp_Symbol *ptr)
6352 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6353 Lisp_Object where = blv->where;
6354 /* If the value is set up for a killed buffer or deleted
6355 frame, restore its global binding. If the value is
6356 forwarded to a C variable, either it's not a Lisp_Object
6357 var, or it's staticpro'd already. */
6358 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6359 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6360 swap_in_global_binding (ptr);
6361 mark_object (blv->where);
6362 mark_object (blv->valcell);
6363 mark_object (blv->defcell);
6366 NO_INLINE /* To reduce stack depth in mark_object. */
6367 static void
6368 mark_save_value (struct Lisp_Save_Value *ptr)
6370 /* If `save_type' is zero, `data[0].pointer' is the address
6371 of a memory area containing `data[1].integer' potential
6372 Lisp_Objects. */
6373 if (ptr->save_type == SAVE_TYPE_MEMORY)
6375 Lisp_Object *p = ptr->data[0].pointer;
6376 ptrdiff_t nelt;
6377 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6378 mark_maybe_object (*p);
6380 else
6382 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6383 int i;
6384 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6385 if (save_type (ptr, i) == SAVE_OBJECT)
6386 mark_object (ptr->data[i].object);
6390 /* Remove killed buffers or items whose car is a killed buffer from
6391 LIST, and mark other items. Return changed LIST, which is marked. */
6393 static Lisp_Object
6394 mark_discard_killed_buffers (Lisp_Object list)
6396 Lisp_Object tail, *prev = &list;
6398 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
6399 tail = XCDR (tail))
6401 Lisp_Object tem = XCAR (tail);
6402 if (CONSP (tem))
6403 tem = XCAR (tem);
6404 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
6405 *prev = XCDR (tail);
6406 else
6408 CONS_MARK (XCONS (tail));
6409 mark_object (XCAR (tail));
6410 prev = xcdr_addr (tail);
6413 mark_object (tail);
6414 return list;
6417 /* Determine type of generic Lisp_Object and mark it accordingly.
6419 This function implements a straightforward depth-first marking
6420 algorithm and so the recursion depth may be very high (a few
6421 tens of thousands is not uncommon). To minimize stack usage,
6422 a few cold paths are moved out to NO_INLINE functions above.
6423 In general, inlining them doesn't help you to gain more speed. */
6425 void
6426 mark_object (Lisp_Object arg)
6428 register Lisp_Object obj;
6429 void *po;
6430 #if GC_CHECK_MARKED_OBJECTS
6431 struct mem_node *m;
6432 #endif
6433 ptrdiff_t cdr_count = 0;
6435 obj = arg;
6436 loop:
6438 po = XPNTR (obj);
6439 if (PURE_P (po))
6440 return;
6442 last_marked[last_marked_index++] = obj;
6443 if (last_marked_index == LAST_MARKED_SIZE)
6444 last_marked_index = 0;
6446 /* Perform some sanity checks on the objects marked here. Abort if
6447 we encounter an object we know is bogus. This increases GC time
6448 by ~80%. */
6449 #if GC_CHECK_MARKED_OBJECTS
6451 /* Check that the object pointed to by PO is known to be a Lisp
6452 structure allocated from the heap. */
6453 #define CHECK_ALLOCATED() \
6454 do { \
6455 m = mem_find (po); \
6456 if (m == MEM_NIL) \
6457 emacs_abort (); \
6458 } while (0)
6460 /* Check that the object pointed to by PO is live, using predicate
6461 function LIVEP. */
6462 #define CHECK_LIVE(LIVEP) \
6463 do { \
6464 if (!LIVEP (m, po)) \
6465 emacs_abort (); \
6466 } while (0)
6468 /* Check both of the above conditions, for non-symbols. */
6469 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
6470 do { \
6471 CHECK_ALLOCATED (); \
6472 CHECK_LIVE (LIVEP); \
6473 } while (0) \
6475 /* Check both of the above conditions, for symbols. */
6476 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() \
6477 do { \
6478 if (!c_symbol_p (ptr)) \
6480 CHECK_ALLOCATED (); \
6481 CHECK_LIVE (live_symbol_p); \
6483 } while (0) \
6485 #else /* not GC_CHECK_MARKED_OBJECTS */
6487 #define CHECK_LIVE(LIVEP) ((void) 0)
6488 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) ((void) 0)
6489 #define CHECK_ALLOCATED_AND_LIVE_SYMBOL() ((void) 0)
6491 #endif /* not GC_CHECK_MARKED_OBJECTS */
6493 switch (XTYPE (obj))
6495 case Lisp_String:
6497 register struct Lisp_String *ptr = XSTRING (obj);
6498 if (STRING_MARKED_P (ptr))
6499 break;
6500 CHECK_ALLOCATED_AND_LIVE (live_string_p);
6501 MARK_STRING (ptr);
6502 MARK_INTERVAL_TREE (ptr->intervals);
6503 #ifdef GC_CHECK_STRING_BYTES
6504 /* Check that the string size recorded in the string is the
6505 same as the one recorded in the sdata structure. */
6506 string_bytes (ptr);
6507 #endif /* GC_CHECK_STRING_BYTES */
6509 break;
6511 case Lisp_Vectorlike:
6513 register struct Lisp_Vector *ptr = XVECTOR (obj);
6515 if (VECTOR_MARKED_P (ptr))
6516 break;
6518 #if GC_CHECK_MARKED_OBJECTS
6519 m = mem_find (po);
6520 if (m == MEM_NIL && !SUBRP (obj) && !main_thread_p (po))
6521 emacs_abort ();
6522 #endif /* GC_CHECK_MARKED_OBJECTS */
6524 enum pvec_type pvectype
6525 = PSEUDOVECTOR_TYPE (ptr);
6527 if (pvectype != PVEC_SUBR
6528 && pvectype != PVEC_BUFFER
6529 && !main_thread_p (po))
6530 CHECK_LIVE (live_vector_p);
6532 switch (pvectype)
6534 case PVEC_BUFFER:
6535 #if GC_CHECK_MARKED_OBJECTS
6537 struct buffer *b;
6538 FOR_EACH_BUFFER (b)
6539 if (b == po)
6540 break;
6541 if (b == NULL)
6542 emacs_abort ();
6544 #endif /* GC_CHECK_MARKED_OBJECTS */
6545 mark_buffer ((struct buffer *) ptr);
6546 break;
6548 case PVEC_COMPILED:
6549 /* Although we could treat this just like a vector, mark_compiled
6550 returns the COMPILED_CONSTANTS element, which is marked at the
6551 next iteration of goto-loop here. This is done to avoid a few
6552 recursive calls to mark_object. */
6553 obj = mark_compiled (ptr);
6554 if (!NILP (obj))
6555 goto loop;
6556 break;
6558 case PVEC_FRAME:
6560 struct frame *f = (struct frame *) ptr;
6562 mark_vectorlike (ptr);
6563 mark_face_cache (f->face_cache);
6564 #ifdef HAVE_WINDOW_SYSTEM
6565 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6567 struct font *font = FRAME_FONT (f);
6569 if (font && !VECTOR_MARKED_P (font))
6570 mark_vectorlike ((struct Lisp_Vector *) font);
6572 #endif
6574 break;
6576 case PVEC_WINDOW:
6578 struct window *w = (struct window *) ptr;
6580 mark_vectorlike (ptr);
6582 /* Mark glyph matrices, if any. Marking window
6583 matrices is sufficient because frame matrices
6584 use the same glyph memory. */
6585 if (w->current_matrix)
6587 mark_glyph_matrix (w->current_matrix);
6588 mark_glyph_matrix (w->desired_matrix);
6591 /* Filter out killed buffers from both buffer lists
6592 in attempt to help GC to reclaim killed buffers faster.
6593 We can do it elsewhere for live windows, but this is the
6594 best place to do it for dead windows. */
6595 wset_prev_buffers
6596 (w, mark_discard_killed_buffers (w->prev_buffers));
6597 wset_next_buffers
6598 (w, mark_discard_killed_buffers (w->next_buffers));
6600 break;
6602 case PVEC_HASH_TABLE:
6604 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6606 mark_vectorlike (ptr);
6607 mark_object (h->test.name);
6608 mark_object (h->test.user_hash_function);
6609 mark_object (h->test.user_cmp_function);
6610 /* If hash table is not weak, mark all keys and values.
6611 For weak tables, mark only the vector. */
6612 if (NILP (h->weak))
6613 mark_object (h->key_and_value);
6614 else
6615 VECTOR_MARK (XVECTOR (h->key_and_value));
6617 break;
6619 case PVEC_CHAR_TABLE:
6620 case PVEC_SUB_CHAR_TABLE:
6621 mark_char_table (ptr, (enum pvec_type) pvectype);
6622 break;
6624 case PVEC_BOOL_VECTOR:
6625 /* No Lisp_Objects to mark in a bool vector. */
6626 VECTOR_MARK (ptr);
6627 break;
6629 case PVEC_SUBR:
6630 break;
6632 case PVEC_FREE:
6633 emacs_abort ();
6635 default:
6636 mark_vectorlike (ptr);
6639 break;
6641 case Lisp_Symbol:
6643 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6644 nextsym:
6645 if (ptr->gcmarkbit)
6646 break;
6647 CHECK_ALLOCATED_AND_LIVE_SYMBOL ();
6648 ptr->gcmarkbit = 1;
6649 /* Attempt to catch bogus objects. */
6650 eassert (valid_lisp_object_p (ptr->function));
6651 mark_object (ptr->function);
6652 mark_object (ptr->plist);
6653 switch (ptr->redirect)
6655 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6656 case SYMBOL_VARALIAS:
6658 Lisp_Object tem;
6659 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6660 mark_object (tem);
6661 break;
6663 case SYMBOL_LOCALIZED:
6664 mark_localized_symbol (ptr);
6665 break;
6666 case SYMBOL_FORWARDED:
6667 /* If the value is forwarded to a buffer or keyboard field,
6668 these are marked when we see the corresponding object.
6669 And if it's forwarded to a C variable, either it's not
6670 a Lisp_Object var, or it's staticpro'd already. */
6671 break;
6672 default: emacs_abort ();
6674 if (!PURE_P (XSTRING (ptr->name)))
6675 MARK_STRING (XSTRING (ptr->name));
6676 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6677 /* Inner loop to mark next symbol in this bucket, if any. */
6678 po = ptr = ptr->next;
6679 if (ptr)
6680 goto nextsym;
6682 break;
6684 case Lisp_Misc:
6685 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6687 if (XMISCANY (obj)->gcmarkbit)
6688 break;
6690 switch (XMISCTYPE (obj))
6692 case Lisp_Misc_Marker:
6693 /* DO NOT mark thru the marker's chain.
6694 The buffer's markers chain does not preserve markers from gc;
6695 instead, markers are removed from the chain when freed by gc. */
6696 XMISCANY (obj)->gcmarkbit = 1;
6697 break;
6699 case Lisp_Misc_Save_Value:
6700 XMISCANY (obj)->gcmarkbit = 1;
6701 mark_save_value (XSAVE_VALUE (obj));
6702 break;
6704 case Lisp_Misc_Overlay:
6705 mark_overlay (XOVERLAY (obj));
6706 break;
6708 case Lisp_Misc_Finalizer:
6709 XMISCANY (obj)->gcmarkbit = true;
6710 mark_object (XFINALIZER (obj)->function);
6711 break;
6713 #ifdef HAVE_MODULES
6714 case Lisp_Misc_User_Ptr:
6715 XMISCANY (obj)->gcmarkbit = true;
6716 break;
6717 #endif
6719 default:
6720 emacs_abort ();
6722 break;
6724 case Lisp_Cons:
6726 register struct Lisp_Cons *ptr = XCONS (obj);
6727 if (CONS_MARKED_P (ptr))
6728 break;
6729 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6730 CONS_MARK (ptr);
6731 /* If the cdr is nil, avoid recursion for the car. */
6732 if (EQ (ptr->u.cdr, Qnil))
6734 obj = ptr->car;
6735 cdr_count = 0;
6736 goto loop;
6738 mark_object (ptr->car);
6739 obj = ptr->u.cdr;
6740 cdr_count++;
6741 if (cdr_count == mark_object_loop_halt)
6742 emacs_abort ();
6743 goto loop;
6746 case Lisp_Float:
6747 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6748 FLOAT_MARK (XFLOAT (obj));
6749 break;
6751 case_Lisp_Int:
6752 break;
6754 default:
6755 emacs_abort ();
6758 #undef CHECK_LIVE
6759 #undef CHECK_ALLOCATED
6760 #undef CHECK_ALLOCATED_AND_LIVE
6762 /* Mark the Lisp pointers in the terminal objects.
6763 Called by Fgarbage_collect. */
6765 static void
6766 mark_terminals (void)
6768 struct terminal *t;
6769 for (t = terminal_list; t; t = t->next_terminal)
6771 eassert (t->name != NULL);
6772 #ifdef HAVE_WINDOW_SYSTEM
6773 /* If a terminal object is reachable from a stacpro'ed object,
6774 it might have been marked already. Make sure the image cache
6775 gets marked. */
6776 mark_image_cache (t->image_cache);
6777 #endif /* HAVE_WINDOW_SYSTEM */
6778 if (!VECTOR_MARKED_P (t))
6779 mark_vectorlike ((struct Lisp_Vector *)t);
6785 /* Value is non-zero if OBJ will survive the current GC because it's
6786 either marked or does not need to be marked to survive. */
6788 bool
6789 survives_gc_p (Lisp_Object obj)
6791 bool survives_p;
6793 switch (XTYPE (obj))
6795 case_Lisp_Int:
6796 survives_p = 1;
6797 break;
6799 case Lisp_Symbol:
6800 survives_p = XSYMBOL (obj)->gcmarkbit;
6801 break;
6803 case Lisp_Misc:
6804 survives_p = XMISCANY (obj)->gcmarkbit;
6805 break;
6807 case Lisp_String:
6808 survives_p = STRING_MARKED_P (XSTRING (obj));
6809 break;
6811 case Lisp_Vectorlike:
6812 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6813 break;
6815 case Lisp_Cons:
6816 survives_p = CONS_MARKED_P (XCONS (obj));
6817 break;
6819 case Lisp_Float:
6820 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6821 break;
6823 default:
6824 emacs_abort ();
6827 return survives_p || PURE_P (XPNTR (obj));
6833 NO_INLINE /* For better stack traces */
6834 static void
6835 sweep_conses (void)
6837 struct cons_block *cblk;
6838 struct cons_block **cprev = &cons_block;
6839 int lim = cons_block_index;
6840 EMACS_INT num_free = 0, num_used = 0;
6842 cons_free_list = 0;
6844 for (cblk = cons_block; cblk; cblk = *cprev)
6846 int i = 0;
6847 int this_free = 0;
6848 int ilim = (lim + BITS_PER_BITS_WORD - 1) / BITS_PER_BITS_WORD;
6850 /* Scan the mark bits an int at a time. */
6851 for (i = 0; i < ilim; i++)
6853 if (cblk->gcmarkbits[i] == BITS_WORD_MAX)
6855 /* Fast path - all cons cells for this int are marked. */
6856 cblk->gcmarkbits[i] = 0;
6857 num_used += BITS_PER_BITS_WORD;
6859 else
6861 /* Some cons cells for this int are not marked.
6862 Find which ones, and free them. */
6863 int start, pos, stop;
6865 start = i * BITS_PER_BITS_WORD;
6866 stop = lim - start;
6867 if (stop > BITS_PER_BITS_WORD)
6868 stop = BITS_PER_BITS_WORD;
6869 stop += start;
6871 for (pos = start; pos < stop; pos++)
6873 if (!CONS_MARKED_P (&cblk->conses[pos]))
6875 this_free++;
6876 cblk->conses[pos].u.chain = cons_free_list;
6877 cons_free_list = &cblk->conses[pos];
6878 cons_free_list->car = Vdead;
6880 else
6882 num_used++;
6883 CONS_UNMARK (&cblk->conses[pos]);
6889 lim = CONS_BLOCK_SIZE;
6890 /* If this block contains only free conses and we have already
6891 seen more than two blocks worth of free conses then deallocate
6892 this block. */
6893 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6895 *cprev = cblk->next;
6896 /* Unhook from the free list. */
6897 cons_free_list = cblk->conses[0].u.chain;
6898 lisp_align_free (cblk);
6900 else
6902 num_free += this_free;
6903 cprev = &cblk->next;
6906 total_conses = num_used;
6907 total_free_conses = num_free;
6910 NO_INLINE /* For better stack traces */
6911 static void
6912 sweep_floats (void)
6914 register struct float_block *fblk;
6915 struct float_block **fprev = &float_block;
6916 register int lim = float_block_index;
6917 EMACS_INT num_free = 0, num_used = 0;
6919 float_free_list = 0;
6921 for (fblk = float_block; fblk; fblk = *fprev)
6923 register int i;
6924 int this_free = 0;
6925 for (i = 0; i < lim; i++)
6926 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6928 this_free++;
6929 fblk->floats[i].u.chain = float_free_list;
6930 float_free_list = &fblk->floats[i];
6932 else
6934 num_used++;
6935 FLOAT_UNMARK (&fblk->floats[i]);
6937 lim = FLOAT_BLOCK_SIZE;
6938 /* If this block contains only free floats and we have already
6939 seen more than two blocks worth of free floats then deallocate
6940 this block. */
6941 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6943 *fprev = fblk->next;
6944 /* Unhook from the free list. */
6945 float_free_list = fblk->floats[0].u.chain;
6946 lisp_align_free (fblk);
6948 else
6950 num_free += this_free;
6951 fprev = &fblk->next;
6954 total_floats = num_used;
6955 total_free_floats = num_free;
6958 NO_INLINE /* For better stack traces */
6959 static void
6960 sweep_intervals (void)
6962 register struct interval_block *iblk;
6963 struct interval_block **iprev = &interval_block;
6964 register int lim = interval_block_index;
6965 EMACS_INT num_free = 0, num_used = 0;
6967 interval_free_list = 0;
6969 for (iblk = interval_block; iblk; iblk = *iprev)
6971 register int i;
6972 int this_free = 0;
6974 for (i = 0; i < lim; i++)
6976 if (!iblk->intervals[i].gcmarkbit)
6978 set_interval_parent (&iblk->intervals[i], interval_free_list);
6979 interval_free_list = &iblk->intervals[i];
6980 this_free++;
6982 else
6984 num_used++;
6985 iblk->intervals[i].gcmarkbit = 0;
6988 lim = INTERVAL_BLOCK_SIZE;
6989 /* If this block contains only free intervals and we have already
6990 seen more than two blocks worth of free intervals then
6991 deallocate this block. */
6992 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6994 *iprev = iblk->next;
6995 /* Unhook from the free list. */
6996 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6997 lisp_free (iblk);
6999 else
7001 num_free += this_free;
7002 iprev = &iblk->next;
7005 total_intervals = num_used;
7006 total_free_intervals = num_free;
7009 NO_INLINE /* For better stack traces */
7010 static void
7011 sweep_symbols (void)
7013 struct symbol_block *sblk;
7014 struct symbol_block **sprev = &symbol_block;
7015 int lim = symbol_block_index;
7016 EMACS_INT num_free = 0, num_used = ARRAYELTS (lispsym);
7018 symbol_free_list = NULL;
7020 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7021 lispsym[i].s.gcmarkbit = 0;
7023 for (sblk = symbol_block; sblk; sblk = *sprev)
7025 int this_free = 0;
7026 union aligned_Lisp_Symbol *sym = sblk->symbols;
7027 union aligned_Lisp_Symbol *end = sym + lim;
7029 for (; sym < end; ++sym)
7031 if (!sym->s.gcmarkbit)
7033 if (sym->s.redirect == SYMBOL_LOCALIZED)
7035 xfree (SYMBOL_BLV (&sym->s));
7036 /* At every GC we sweep all symbol_blocks and rebuild the
7037 symbol_free_list, so those symbols which stayed unused
7038 between the two will be re-swept.
7039 So we have to make sure we don't re-free this blv next
7040 time we sweep this symbol_block (bug#29066). */
7041 sym->s.redirect = SYMBOL_PLAINVAL;
7043 sym->s.next = symbol_free_list;
7044 symbol_free_list = &sym->s;
7045 symbol_free_list->function = Vdead;
7046 ++this_free;
7048 else
7050 ++num_used;
7051 sym->s.gcmarkbit = 0;
7052 /* Attempt to catch bogus objects. */
7053 eassert (valid_lisp_object_p (sym->s.function));
7057 lim = SYMBOL_BLOCK_SIZE;
7058 /* If this block contains only free symbols and we have already
7059 seen more than two blocks worth of free symbols then deallocate
7060 this block. */
7061 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
7063 *sprev = sblk->next;
7064 /* Unhook from the free list. */
7065 symbol_free_list = sblk->symbols[0].s.next;
7066 lisp_free (sblk);
7068 else
7070 num_free += this_free;
7071 sprev = &sblk->next;
7074 total_symbols = num_used;
7075 total_free_symbols = num_free;
7078 NO_INLINE /* For better stack traces. */
7079 static void
7080 sweep_misc (void)
7082 register struct marker_block *mblk;
7083 struct marker_block **mprev = &marker_block;
7084 register int lim = marker_block_index;
7085 EMACS_INT num_free = 0, num_used = 0;
7087 /* Put all unmarked misc's on free list. For a marker, first
7088 unchain it from the buffer it points into. */
7090 marker_free_list = 0;
7092 for (mblk = marker_block; mblk; mblk = *mprev)
7094 register int i;
7095 int this_free = 0;
7097 for (i = 0; i < lim; i++)
7099 if (!mblk->markers[i].m.u_any.gcmarkbit)
7101 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
7102 unchain_marker (&mblk->markers[i].m.u_marker);
7103 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_Finalizer)
7104 unchain_finalizer (&mblk->markers[i].m.u_finalizer);
7105 #ifdef HAVE_MODULES
7106 else if (mblk->markers[i].m.u_any.type == Lisp_Misc_User_Ptr)
7108 struct Lisp_User_Ptr *uptr = &mblk->markers[i].m.u_user_ptr;
7109 if (uptr->finalizer)
7110 uptr->finalizer (uptr->p);
7112 #endif
7113 /* Set the type of the freed object to Lisp_Misc_Free.
7114 We could leave the type alone, since nobody checks it,
7115 but this might catch bugs faster. */
7116 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
7117 mblk->markers[i].m.u_free.chain = marker_free_list;
7118 marker_free_list = &mblk->markers[i].m;
7119 this_free++;
7121 else
7123 num_used++;
7124 mblk->markers[i].m.u_any.gcmarkbit = 0;
7127 lim = MARKER_BLOCK_SIZE;
7128 /* If this block contains only free markers and we have already
7129 seen more than two blocks worth of free markers then deallocate
7130 this block. */
7131 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
7133 *mprev = mblk->next;
7134 /* Unhook from the free list. */
7135 marker_free_list = mblk->markers[0].m.u_free.chain;
7136 lisp_free (mblk);
7138 else
7140 num_free += this_free;
7141 mprev = &mblk->next;
7145 total_markers = num_used;
7146 total_free_markers = num_free;
7149 NO_INLINE /* For better stack traces */
7150 static void
7151 sweep_buffers (void)
7153 register struct buffer *buffer, **bprev = &all_buffers;
7155 total_buffers = 0;
7156 for (buffer = all_buffers; buffer; buffer = *bprev)
7157 if (!VECTOR_MARKED_P (buffer))
7159 *bprev = buffer->next;
7160 lisp_free (buffer);
7162 else
7164 VECTOR_UNMARK (buffer);
7165 /* Do not use buffer_(set|get)_intervals here. */
7166 buffer->text->intervals = balance_intervals (buffer->text->intervals);
7167 total_buffers++;
7168 bprev = &buffer->next;
7172 /* Sweep: find all structures not marked, and free them. */
7173 static void
7174 gc_sweep (void)
7176 /* Remove or mark entries in weak hash tables.
7177 This must be done before any object is unmarked. */
7178 sweep_weak_hash_tables ();
7180 sweep_strings ();
7181 check_string_bytes (!noninteractive);
7182 sweep_conses ();
7183 sweep_floats ();
7184 sweep_intervals ();
7185 sweep_symbols ();
7186 sweep_misc ();
7187 sweep_buffers ();
7188 sweep_vectors ();
7189 check_string_bytes (!noninteractive);
7192 DEFUN ("memory-info", Fmemory_info, Smemory_info, 0, 0, 0,
7193 doc: /* Return a list of (TOTAL-RAM FREE-RAM TOTAL-SWAP FREE-SWAP).
7194 All values are in Kbytes. If there is no swap space,
7195 last two values are zero. If the system is not supported
7196 or memory information can't be obtained, return nil. */)
7197 (void)
7199 #if defined HAVE_LINUX_SYSINFO
7200 struct sysinfo si;
7201 uintmax_t units;
7203 if (sysinfo (&si))
7204 return Qnil;
7205 #ifdef LINUX_SYSINFO_UNIT
7206 units = si.mem_unit;
7207 #else
7208 units = 1;
7209 #endif
7210 return list4i ((uintmax_t) si.totalram * units / 1024,
7211 (uintmax_t) si.freeram * units / 1024,
7212 (uintmax_t) si.totalswap * units / 1024,
7213 (uintmax_t) si.freeswap * units / 1024);
7214 #elif defined WINDOWSNT
7215 unsigned long long totalram, freeram, totalswap, freeswap;
7217 if (w32_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7218 return list4i ((uintmax_t) totalram / 1024,
7219 (uintmax_t) freeram / 1024,
7220 (uintmax_t) totalswap / 1024,
7221 (uintmax_t) freeswap / 1024);
7222 else
7223 return Qnil;
7224 #elif defined MSDOS
7225 unsigned long totalram, freeram, totalswap, freeswap;
7227 if (dos_memory_info (&totalram, &freeram, &totalswap, &freeswap) == 0)
7228 return list4i ((uintmax_t) totalram / 1024,
7229 (uintmax_t) freeram / 1024,
7230 (uintmax_t) totalswap / 1024,
7231 (uintmax_t) freeswap / 1024);
7232 else
7233 return Qnil;
7234 #else /* not HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7235 /* FIXME: add more systems. */
7236 return Qnil;
7237 #endif /* HAVE_LINUX_SYSINFO, not WINDOWSNT, not MSDOS */
7240 /* Debugging aids. */
7242 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
7243 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
7244 This may be helpful in debugging Emacs's memory usage.
7245 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
7246 (void)
7248 Lisp_Object end;
7250 #if defined HAVE_NS || defined __APPLE__ || !HAVE_SBRK
7251 /* Avoid warning. sbrk has no relation to memory allocated anyway. */
7252 XSETINT (end, 0);
7253 #else
7254 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
7255 #endif
7257 return end;
7260 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
7261 doc: /* Return a list of counters that measure how much consing there has been.
7262 Each of these counters increments for a certain kind of object.
7263 The counters wrap around from the largest positive integer to zero.
7264 Garbage collection does not decrease them.
7265 The elements of the value are as follows:
7266 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
7267 All are in units of 1 = one object consed
7268 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
7269 objects consed.
7270 MISCS include overlays, markers, and some internal types.
7271 Frames, windows, buffers, and subprocesses count as vectors
7272 (but the contents of a buffer's text do not count here). */)
7273 (void)
7275 return listn (CONSTYPE_HEAP, 8,
7276 bounded_number (cons_cells_consed),
7277 bounded_number (floats_consed),
7278 bounded_number (vector_cells_consed),
7279 bounded_number (symbols_consed),
7280 bounded_number (string_chars_consed),
7281 bounded_number (misc_objects_consed),
7282 bounded_number (intervals_consed),
7283 bounded_number (strings_consed));
7286 static bool
7287 symbol_uses_obj (Lisp_Object symbol, Lisp_Object obj)
7289 struct Lisp_Symbol *sym = XSYMBOL (symbol);
7290 Lisp_Object val = find_symbol_value (symbol);
7291 return (EQ (val, obj)
7292 || EQ (sym->function, obj)
7293 || (!NILP (sym->function)
7294 && COMPILEDP (sym->function)
7295 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
7296 || (!NILP (val)
7297 && COMPILEDP (val)
7298 && EQ (AREF (val, COMPILED_BYTECODE), obj)));
7301 /* Find at most FIND_MAX symbols which have OBJ as their value or
7302 function. This is used in gdbinit's `xwhichsymbols' command. */
7304 Lisp_Object
7305 which_symbols (Lisp_Object obj, EMACS_INT find_max)
7307 struct symbol_block *sblk;
7308 ptrdiff_t gc_count = inhibit_garbage_collection ();
7309 Lisp_Object found = Qnil;
7311 if (! DEADP (obj))
7313 for (int i = 0; i < ARRAYELTS (lispsym); i++)
7315 Lisp_Object sym = builtin_lisp_symbol (i);
7316 if (symbol_uses_obj (sym, obj))
7318 found = Fcons (sym, found);
7319 if (--find_max == 0)
7320 goto out;
7324 for (sblk = symbol_block; sblk; sblk = sblk->next)
7326 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
7327 int bn;
7329 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
7331 if (sblk == symbol_block && bn >= symbol_block_index)
7332 break;
7334 Lisp_Object sym = make_lisp_symbol (&aligned_sym->s);
7335 if (symbol_uses_obj (sym, obj))
7337 found = Fcons (sym, found);
7338 if (--find_max == 0)
7339 goto out;
7345 out:
7346 unbind_to (gc_count, Qnil);
7347 return found;
7350 #ifdef SUSPICIOUS_OBJECT_CHECKING
7352 static void *
7353 find_suspicious_object_in_range (void *begin, void *end)
7355 char *begin_a = begin;
7356 char *end_a = end;
7357 int i;
7359 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7361 char *suspicious_object = suspicious_objects[i];
7362 if (begin_a <= suspicious_object && suspicious_object < end_a)
7363 return suspicious_object;
7366 return NULL;
7369 static void
7370 note_suspicious_free (void *ptr)
7372 struct suspicious_free_record *rec;
7374 rec = &suspicious_free_history[suspicious_free_history_index++];
7375 if (suspicious_free_history_index ==
7376 ARRAYELTS (suspicious_free_history))
7378 suspicious_free_history_index = 0;
7381 memset (rec, 0, sizeof (*rec));
7382 rec->suspicious_object = ptr;
7383 backtrace (&rec->backtrace[0], ARRAYELTS (rec->backtrace));
7386 static void
7387 detect_suspicious_free (void *ptr)
7389 int i;
7391 eassert (ptr != NULL);
7393 for (i = 0; i < ARRAYELTS (suspicious_objects); ++i)
7394 if (suspicious_objects[i] == ptr)
7396 note_suspicious_free (ptr);
7397 suspicious_objects[i] = NULL;
7401 #endif /* SUSPICIOUS_OBJECT_CHECKING */
7403 DEFUN ("suspicious-object", Fsuspicious_object, Ssuspicious_object, 1, 1, 0,
7404 doc: /* Return OBJ, maybe marking it for extra scrutiny.
7405 If Emacs is compiled with suspicious object checking, capture
7406 a stack trace when OBJ is freed in order to help track down
7407 garbage collection bugs. Otherwise, do nothing and return OBJ. */)
7408 (Lisp_Object obj)
7410 #ifdef SUSPICIOUS_OBJECT_CHECKING
7411 /* Right now, we care only about vectors. */
7412 if (VECTORLIKEP (obj))
7414 suspicious_objects[suspicious_object_index++] = XVECTOR (obj);
7415 if (suspicious_object_index == ARRAYELTS (suspicious_objects))
7416 suspicious_object_index = 0;
7418 #endif
7419 return obj;
7422 #ifdef ENABLE_CHECKING
7424 bool suppress_checking;
7426 void
7427 die (const char *msg, const char *file, int line)
7429 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
7430 file, line, msg);
7431 terminate_due_to_signal (SIGABRT, INT_MAX);
7434 #endif /* ENABLE_CHECKING */
7436 #if defined (ENABLE_CHECKING) && USE_STACK_LISP_OBJECTS
7438 /* Stress alloca with inconveniently sized requests and check
7439 whether all allocated areas may be used for Lisp_Object. */
7441 NO_INLINE static void
7442 verify_alloca (void)
7444 int i;
7445 enum { ALLOCA_CHECK_MAX = 256 };
7446 /* Start from size of the smallest Lisp object. */
7447 for (i = sizeof (struct Lisp_Cons); i <= ALLOCA_CHECK_MAX; i++)
7449 void *ptr = alloca (i);
7450 make_lisp_ptr (ptr, Lisp_Cons);
7454 #else /* not ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7456 #define verify_alloca() ((void) 0)
7458 #endif /* ENABLE_CHECKING && USE_STACK_LISP_OBJECTS */
7460 /* Initialization. */
7462 void
7463 init_alloc_once (void)
7465 /* Even though Qt's contents are not set up, its address is known. */
7466 Vpurify_flag = Qt;
7468 purebeg = PUREBEG;
7469 pure_size = PURESIZE;
7471 verify_alloca ();
7472 init_finalizer_list (&finalizers);
7473 init_finalizer_list (&doomed_finalizers);
7475 mem_init ();
7476 Vdead = make_pure_string ("DEAD", 4, 4, 0);
7478 #ifdef DOUG_LEA_MALLOC
7479 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
7480 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
7481 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
7482 #endif
7483 init_strings ();
7484 init_vectors ();
7486 refill_memory_reserve ();
7487 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
7490 void
7491 init_alloc (void)
7493 Vgc_elapsed = make_float (0.0);
7494 gcs_done = 0;
7496 #if USE_VALGRIND
7497 valgrind_p = RUNNING_ON_VALGRIND != 0;
7498 #endif
7501 void
7502 syms_of_alloc (void)
7504 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
7505 doc: /* Number of bytes of consing between garbage collections.
7506 Garbage collection can happen automatically once this many bytes have been
7507 allocated since the last garbage collection. All data types count.
7509 Garbage collection happens automatically only when `eval' is called.
7511 By binding this temporarily to a large number, you can effectively
7512 prevent garbage collection during a part of the program.
7513 See also `gc-cons-percentage'. */);
7515 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
7516 doc: /* Portion of the heap used for allocation.
7517 Garbage collection can happen automatically once this portion of the heap
7518 has been allocated since the last garbage collection.
7519 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
7520 Vgc_cons_percentage = make_float (0.1);
7522 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
7523 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
7525 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
7526 doc: /* Number of cons cells that have been consed so far. */);
7528 DEFVAR_INT ("floats-consed", floats_consed,
7529 doc: /* Number of floats that have been consed so far. */);
7531 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
7532 doc: /* Number of vector cells that have been consed so far. */);
7534 DEFVAR_INT ("symbols-consed", symbols_consed,
7535 doc: /* Number of symbols that have been consed so far. */);
7536 symbols_consed += ARRAYELTS (lispsym);
7538 DEFVAR_INT ("string-chars-consed", string_chars_consed,
7539 doc: /* Number of string characters that have been consed so far. */);
7541 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
7542 doc: /* Number of miscellaneous objects that have been consed so far.
7543 These include markers and overlays, plus certain objects not visible
7544 to users. */);
7546 DEFVAR_INT ("intervals-consed", intervals_consed,
7547 doc: /* Number of intervals that have been consed so far. */);
7549 DEFVAR_INT ("strings-consed", strings_consed,
7550 doc: /* Number of strings that have been consed so far. */);
7552 DEFVAR_LISP ("purify-flag", Vpurify_flag,
7553 doc: /* Non-nil means loading Lisp code in order to dump an executable.
7554 This means that certain objects should be allocated in shared (pure) space.
7555 It can also be set to a hash-table, in which case this table is used to
7556 do hash-consing of the objects allocated to pure space. */);
7558 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
7559 doc: /* Non-nil means display messages at start and end of garbage collection. */);
7560 garbage_collection_messages = 0;
7562 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
7563 doc: /* Hook run after garbage collection has finished. */);
7564 Vpost_gc_hook = Qnil;
7565 DEFSYM (Qpost_gc_hook, "post-gc-hook");
7567 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
7568 doc: /* Precomputed `signal' argument for memory-full error. */);
7569 /* We build this in advance because if we wait until we need it, we might
7570 not be able to allocate the memory to hold it. */
7571 Vmemory_signal_data
7572 = listn (CONSTYPE_PURE, 2, Qerror,
7573 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
7575 DEFVAR_LISP ("memory-full", Vmemory_full,
7576 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
7577 Vmemory_full = Qnil;
7579 DEFSYM (Qconses, "conses");
7580 DEFSYM (Qsymbols, "symbols");
7581 DEFSYM (Qmiscs, "miscs");
7582 DEFSYM (Qstrings, "strings");
7583 DEFSYM (Qvectors, "vectors");
7584 DEFSYM (Qfloats, "floats");
7585 DEFSYM (Qintervals, "intervals");
7586 DEFSYM (Qbuffers, "buffers");
7587 DEFSYM (Qstring_bytes, "string-bytes");
7588 DEFSYM (Qvector_slots, "vector-slots");
7589 DEFSYM (Qheap, "heap");
7590 DEFSYM (QAutomatic_GC, "Automatic GC");
7592 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
7593 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
7595 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
7596 doc: /* Accumulated time elapsed in garbage collections.
7597 The time is in seconds as a floating point value. */);
7598 DEFVAR_INT ("gcs-done", gcs_done,
7599 doc: /* Accumulated number of garbage collections done. */);
7601 defsubr (&Scons);
7602 defsubr (&Slist);
7603 defsubr (&Svector);
7604 defsubr (&Srecord);
7605 defsubr (&Sbool_vector);
7606 defsubr (&Smake_byte_code);
7607 defsubr (&Smake_list);
7608 defsubr (&Smake_vector);
7609 defsubr (&Smake_record);
7610 defsubr (&Smake_string);
7611 defsubr (&Smake_bool_vector);
7612 defsubr (&Smake_symbol);
7613 defsubr (&Smake_marker);
7614 defsubr (&Smake_finalizer);
7615 defsubr (&Spurecopy);
7616 defsubr (&Sgarbage_collect);
7617 defsubr (&Smemory_limit);
7618 defsubr (&Smemory_info);
7619 defsubr (&Smemory_use_counts);
7620 defsubr (&Ssuspicious_object);
7623 /* When compiled with GCC, GDB might say "No enum type named
7624 pvec_type" if we don't have at least one symbol with that type, and
7625 then xbacktrace could fail. Similarly for the other enums and
7626 their values. Some non-GCC compilers don't like these constructs. */
7627 #ifdef __GNUC__
7628 union
7630 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
7631 enum char_table_specials char_table_specials;
7632 enum char_bits char_bits;
7633 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
7634 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
7635 enum Lisp_Bits Lisp_Bits;
7636 enum Lisp_Compiled Lisp_Compiled;
7637 enum maxargs maxargs;
7638 enum MAX_ALLOCA MAX_ALLOCA;
7639 enum More_Lisp_Bits More_Lisp_Bits;
7640 enum pvec_type pvec_type;
7641 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
7642 #endif /* __GNUC__ */