Fix ChangeLog typo, mea culpa.
[emacs.git] / lisp / calc / calc-poly.el
blobf268a032d147d70ef643673c112aeae27f8668d1
1 ;;; calc-poly.el --- polynomial functions for Calc
3 ;; Copyright (C) 1990, 1991, 1992, 1993, 2001, 2002, 2003, 2004,
4 ;; 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
6 ;; Author: David Gillespie <daveg@synaptics.com>
7 ;; Maintainer: Jay Belanger <jay.p.belanger@gmail.com>
9 ;; This file is part of GNU Emacs.
11 ;; GNU Emacs is free software: you can redistribute it and/or modify
12 ;; it under the terms of the GNU General Public License as published by
13 ;; the Free Software Foundation, either version 3 of the License, or
14 ;; (at your option) any later version.
16 ;; GNU Emacs is distributed in the hope that it will be useful,
17 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
18 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 ;; GNU General Public License for more details.
21 ;; You should have received a copy of the GNU General Public License
22 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
24 ;;; Commentary:
26 ;;; Code:
28 ;; This file is autoloaded from calc-ext.el.
30 (require 'calc-ext)
31 (require 'calc-macs)
33 (defun calcFunc-pcont (expr &optional var)
34 (cond ((Math-primp expr)
35 (cond ((Math-zerop expr) 1)
36 ((Math-messy-integerp expr) (math-trunc expr))
37 ((Math-objectp expr) expr)
38 ((or (equal expr var) (not var)) 1)
39 (t expr)))
40 ((eq (car expr) '*)
41 (math-mul (calcFunc-pcont (nth 1 expr) var)
42 (calcFunc-pcont (nth 2 expr) var)))
43 ((eq (car expr) '/)
44 (math-div (calcFunc-pcont (nth 1 expr) var)
45 (calcFunc-pcont (nth 2 expr) var)))
46 ((and (eq (car expr) '^) (Math-natnump (nth 2 expr)))
47 (math-pow (calcFunc-pcont (nth 1 expr) var) (nth 2 expr)))
48 ((memq (car expr) '(neg polar))
49 (calcFunc-pcont (nth 1 expr) var))
50 ((consp var)
51 (let ((p (math-is-polynomial expr var)))
52 (if p
53 (let ((lead (nth (1- (length p)) p))
54 (cont (math-poly-gcd-list p)))
55 (if (math-guess-if-neg lead)
56 (math-neg cont)
57 cont))
58 1)))
59 ((memq (car expr) '(+ - cplx sdev))
60 (let ((cont (calcFunc-pcont (nth 1 expr) var)))
61 (if (eq cont 1)
63 (let ((c2 (calcFunc-pcont (nth 2 expr) var)))
64 (if (and (math-negp cont)
65 (if (eq (car expr) '-) (math-posp c2) (math-negp c2)))
66 (math-neg (math-poly-gcd cont c2))
67 (math-poly-gcd cont c2))))))
68 (var expr)
69 (t 1)))
71 (defun calcFunc-pprim (expr &optional var)
72 (let ((cont (calcFunc-pcont expr var)))
73 (if (math-equal-int cont 1)
74 expr
75 (math-poly-div-exact expr cont var))))
77 (defun math-div-poly-const (expr c)
78 (cond ((memq (car-safe expr) '(+ -))
79 (list (car expr)
80 (math-div-poly-const (nth 1 expr) c)
81 (math-div-poly-const (nth 2 expr) c)))
82 (t (math-div expr c))))
84 (defun calcFunc-pdeg (expr &optional var)
85 (if (Math-zerop expr)
86 '(neg (var inf var-inf))
87 (if var
88 (or (math-polynomial-p expr var)
89 (math-reject-arg expr "Expected a polynomial"))
90 (math-poly-degree expr))))
92 (defun math-poly-degree (expr)
93 (cond ((Math-primp expr)
94 (if (eq (car-safe expr) 'var) 1 0))
95 ((eq (car expr) 'neg)
96 (math-poly-degree (nth 1 expr)))
97 ((eq (car expr) '*)
98 (+ (math-poly-degree (nth 1 expr))
99 (math-poly-degree (nth 2 expr))))
100 ((eq (car expr) '/)
101 (- (math-poly-degree (nth 1 expr))
102 (math-poly-degree (nth 2 expr))))
103 ((and (eq (car expr) '^) (natnump (nth 2 expr)))
104 (* (math-poly-degree (nth 1 expr)) (nth 2 expr)))
105 ((memq (car expr) '(+ -))
106 (max (math-poly-degree (nth 1 expr))
107 (math-poly-degree (nth 2 expr))))
108 (t 1)))
110 (defun calcFunc-plead (expr var)
111 (cond ((eq (car-safe expr) '*)
112 (math-mul (calcFunc-plead (nth 1 expr) var)
113 (calcFunc-plead (nth 2 expr) var)))
114 ((eq (car-safe expr) '/)
115 (math-div (calcFunc-plead (nth 1 expr) var)
116 (calcFunc-plead (nth 2 expr) var)))
117 ((and (eq (car-safe expr) '^) (math-natnump (nth 2 expr)))
118 (math-pow (calcFunc-plead (nth 1 expr) var) (nth 2 expr)))
119 ((Math-primp expr)
120 (if (equal expr var)
122 expr))
124 (let ((p (math-is-polynomial expr var)))
125 (if (cdr p)
126 (nth (1- (length p)) p)
127 1)))))
133 ;;; Polynomial quotient, remainder, and GCD.
134 ;;; Originally by Ove Ewerlid (ewerlid@mizar.DoCS.UU.SE).
135 ;;; Modifications and simplifications by daveg.
137 (defvar math-poly-modulus 1)
139 ;;; Return gcd of two polynomials
140 (defun calcFunc-pgcd (pn pd)
141 (if (math-any-floats pn)
142 (math-reject-arg pn "Coefficients must be rational"))
143 (if (math-any-floats pd)
144 (math-reject-arg pd "Coefficients must be rational"))
145 (let ((calc-prefer-frac t)
146 (math-poly-modulus (math-poly-modulus pn pd)))
147 (math-poly-gcd pn pd)))
149 ;;; Return only quotient to top of stack (nil if zero)
151 ;; calc-poly-div-remainder is a local variable for
152 ;; calc-poly-div (in calc-alg.el), but is used by
153 ;; calcFunc-pdiv, which is called by calc-poly-div.
154 (defvar calc-poly-div-remainder)
156 (defun calcFunc-pdiv (pn pd &optional base)
157 (let* ((calc-prefer-frac t)
158 (math-poly-modulus (math-poly-modulus pn pd))
159 (res (math-poly-div pn pd base)))
160 (setq calc-poly-div-remainder (cdr res))
161 (car res)))
163 ;;; Return only remainder to top of stack
164 (defun calcFunc-prem (pn pd &optional base)
165 (let ((calc-prefer-frac t)
166 (math-poly-modulus (math-poly-modulus pn pd)))
167 (cdr (math-poly-div pn pd base))))
169 (defun calcFunc-pdivrem (pn pd &optional base)
170 (let* ((calc-prefer-frac t)
171 (math-poly-modulus (math-poly-modulus pn pd))
172 (res (math-poly-div pn pd base)))
173 (list 'vec (car res) (cdr res))))
175 (defun calcFunc-pdivide (pn pd &optional base)
176 (let* ((calc-prefer-frac t)
177 (math-poly-modulus (math-poly-modulus pn pd))
178 (res (math-poly-div pn pd base)))
179 (math-add (car res) (math-div (cdr res) pd))))
182 ;;; Multiply two terms, expanding out products of sums.
183 (defun math-mul-thru (lhs rhs)
184 (if (memq (car-safe lhs) '(+ -))
185 (list (car lhs)
186 (math-mul-thru (nth 1 lhs) rhs)
187 (math-mul-thru (nth 2 lhs) rhs))
188 (if (memq (car-safe rhs) '(+ -))
189 (list (car rhs)
190 (math-mul-thru lhs (nth 1 rhs))
191 (math-mul-thru lhs (nth 2 rhs)))
192 (math-mul lhs rhs))))
194 (defun math-div-thru (num den)
195 (if (memq (car-safe num) '(+ -))
196 (list (car num)
197 (math-div-thru (nth 1 num) den)
198 (math-div-thru (nth 2 num) den))
199 (math-div num den)))
202 ;;; Sort the terms of a sum into canonical order.
203 (defun math-sort-terms (expr)
204 (if (memq (car-safe expr) '(+ -))
205 (math-list-to-sum
206 (sort (math-sum-to-list expr)
207 (function (lambda (a b) (math-beforep (car a) (car b))))))
208 expr))
210 (defun math-list-to-sum (lst)
211 (if (cdr lst)
212 (list (if (cdr (car lst)) '- '+)
213 (math-list-to-sum (cdr lst))
214 (car (car lst)))
215 (if (cdr (car lst))
216 (math-neg (car (car lst)))
217 (car (car lst)))))
219 (defun math-sum-to-list (tree &optional neg)
220 (cond ((eq (car-safe tree) '+)
221 (nconc (math-sum-to-list (nth 1 tree) neg)
222 (math-sum-to-list (nth 2 tree) neg)))
223 ((eq (car-safe tree) '-)
224 (nconc (math-sum-to-list (nth 1 tree) neg)
225 (math-sum-to-list (nth 2 tree) (not neg))))
226 (t (list (cons tree neg)))))
228 ;;; Check if the polynomial coefficients are modulo forms.
229 (defun math-poly-modulus (expr &optional expr2)
230 (or (math-poly-modulus-rec expr)
231 (and expr2 (math-poly-modulus-rec expr2))
234 (defun math-poly-modulus-rec (expr)
235 (if (and (eq (car-safe expr) 'mod) (Math-natnump (nth 2 expr)))
236 (list 'mod 1 (nth 2 expr))
237 (and (memq (car-safe expr) '(+ - * /))
238 (or (math-poly-modulus-rec (nth 1 expr))
239 (math-poly-modulus-rec (nth 2 expr))))))
242 ;;; Divide two polynomials. Return (quotient . remainder).
243 (defvar math-poly-div-base nil)
244 (defun math-poly-div (u v &optional math-poly-div-base)
245 (if math-poly-div-base
246 (math-do-poly-div u v)
247 (math-do-poly-div (calcFunc-expand u) (calcFunc-expand v))))
249 (defun math-poly-div-exact (u v &optional base)
250 (let ((res (math-poly-div u v base)))
251 (if (eq (cdr res) 0)
252 (car res)
253 (math-reject-arg (list 'vec u v) "Argument is not a polynomial"))))
255 (defun math-do-poly-div (u v)
256 (cond ((math-constp u)
257 (if (math-constp v)
258 (cons (math-div u v) 0)
259 (cons 0 u)))
260 ((math-constp v)
261 (cons (if (eq v 1)
263 (if (memq (car-safe u) '(+ -))
264 (math-add-or-sub (math-poly-div-exact (nth 1 u) v)
265 (math-poly-div-exact (nth 2 u) v)
266 nil (eq (car u) '-))
267 (math-div u v)))
269 ((Math-equal u v)
270 (cons math-poly-modulus 0))
271 ((and (math-atomic-factorp u) (math-atomic-factorp v))
272 (cons (math-simplify (math-div u v)) 0))
274 (let ((base (or math-poly-div-base
275 (math-poly-div-base u v)))
276 vp up res)
277 (if (or (null base)
278 (null (setq vp (math-is-polynomial v base nil 'gen))))
279 (cons 0 u)
280 (setq up (math-is-polynomial u base nil 'gen)
281 res (math-poly-div-coefs up vp))
282 (cons (math-build-polynomial-expr (car res) base)
283 (math-build-polynomial-expr (cdr res) base)))))))
285 (defun math-poly-div-rec (u v)
286 (cond ((math-constp u)
287 (math-div u v))
288 ((math-constp v)
289 (if (eq v 1)
291 (if (memq (car-safe u) '(+ -))
292 (math-add-or-sub (math-poly-div-rec (nth 1 u) v)
293 (math-poly-div-rec (nth 2 u) v)
294 nil (eq (car u) '-))
295 (math-div u v))))
296 ((Math-equal u v) math-poly-modulus)
297 ((and (math-atomic-factorp u) (math-atomic-factorp v))
298 (math-simplify (math-div u v)))
299 (math-poly-div-base
300 (math-div u v))
302 (let ((base (math-poly-div-base u v))
303 vp up res)
304 (if (or (null base)
305 (null (setq vp (math-is-polynomial v base nil 'gen))))
306 (math-div u v)
307 (setq up (math-is-polynomial u base nil 'gen)
308 res (math-poly-div-coefs up vp))
309 (math-add (math-build-polynomial-expr (car res) base)
310 (math-div (math-build-polynomial-expr (cdr res) base)
311 v)))))))
313 ;;; Divide two polynomials in coefficient-list form. Return (quot . rem).
314 (defun math-poly-div-coefs (u v)
315 (cond ((null v) (math-reject-arg nil "Division by zero"))
316 ((< (length u) (length v)) (cons nil u))
317 ((cdr u)
318 (let ((q nil)
319 (urev (reverse u))
320 (vrev (reverse v)))
321 (while
322 (let ((qk (math-poly-div-rec (math-simplify (car urev))
323 (car vrev)))
324 (up urev)
325 (vp vrev))
326 (if (or q (not (math-zerop qk)))
327 (setq q (cons qk q)))
328 (while (setq up (cdr up) vp (cdr vp))
329 (setcar up (math-sub (car up) (math-mul-thru qk (car vp)))))
330 (setq urev (cdr urev))
331 up))
332 (while (and urev (Math-zerop (car urev)))
333 (setq urev (cdr urev)))
334 (cons q (nreverse (mapcar 'math-simplify urev)))))
336 (cons (list (math-poly-div-rec (car u) (car v)))
337 nil))))
339 ;;; Perform a pseudo-division of polynomials. (See Knuth section 4.6.1.)
340 ;;; This returns only the remainder from the pseudo-division.
341 (defun math-poly-pseudo-div (u v)
342 (cond ((null v) nil)
343 ((< (length u) (length v)) u)
344 ((or (cdr u) (cdr v))
345 (let ((urev (reverse u))
346 (vrev (reverse v))
348 (while
349 (let ((vp vrev))
350 (setq up urev)
351 (while (setq up (cdr up) vp (cdr vp))
352 (setcar up (math-sub (math-mul-thru (car vrev) (car up))
353 (math-mul-thru (car urev) (car vp)))))
354 (setq urev (cdr urev))
356 (while up
357 (setcar up (math-mul-thru (car vrev) (car up)))
358 (setq up (cdr up))))
359 (while (and urev (Math-zerop (car urev)))
360 (setq urev (cdr urev)))
361 (nreverse (mapcar 'math-simplify urev))))
362 (t nil)))
364 ;;; Compute the GCD of two multivariate polynomials.
365 (defun math-poly-gcd (u v)
366 (cond ((Math-equal u v) u)
367 ((math-constp u)
368 (if (Math-zerop u)
370 (calcFunc-gcd u (calcFunc-pcont v))))
371 ((math-constp v)
372 (if (Math-zerop v)
374 (calcFunc-gcd v (calcFunc-pcont u))))
376 (let ((base (math-poly-gcd-base u v)))
377 (if base
378 (math-simplify
379 (calcFunc-expand
380 (math-build-polynomial-expr
381 (math-poly-gcd-coefs (math-is-polynomial u base nil 'gen)
382 (math-is-polynomial v base nil 'gen))
383 base)))
384 (calcFunc-gcd (calcFunc-pcont u) (calcFunc-pcont u)))))))
386 (defun math-poly-div-list (lst a)
387 (if (eq a 1)
389 (if (eq a -1)
390 (math-mul-list lst a)
391 (mapcar (function (lambda (x) (math-poly-div-exact x a))) lst))))
393 (defun math-mul-list (lst a)
394 (if (eq a 1)
396 (if (eq a -1)
397 (mapcar 'math-neg lst)
398 (and (not (eq a 0))
399 (mapcar (function (lambda (x) (math-mul x a))) lst)))))
401 ;;; Run GCD on all elements in a list.
402 (defun math-poly-gcd-list (lst)
403 (if (or (memq 1 lst) (memq -1 lst))
404 (math-poly-gcd-frac-list lst)
405 (let ((gcd (car lst)))
406 (while (and (setq lst (cdr lst)) (not (eq gcd 1)))
407 (or (eq (car lst) 0)
408 (setq gcd (math-poly-gcd gcd (car lst)))))
409 (if lst (setq lst (math-poly-gcd-frac-list lst)))
410 gcd)))
412 (defun math-poly-gcd-frac-list (lst)
413 (while (and lst (not (eq (car-safe (car lst)) 'frac)))
414 (setq lst (cdr lst)))
415 (if lst
416 (let ((denom (nth 2 (car lst))))
417 (while (setq lst (cdr lst))
418 (if (eq (car-safe (car lst)) 'frac)
419 (setq denom (calcFunc-lcm denom (nth 2 (car lst))))))
420 (list 'frac 1 denom))
423 ;;; Compute the GCD of two monovariate polynomial lists.
424 ;;; Knuth section 4.6.1, algorithm C.
425 (defun math-poly-gcd-coefs (u v)
426 (let ((d (math-poly-gcd (math-poly-gcd-list u)
427 (math-poly-gcd-list v)))
428 (g 1) (h 1) (z 0) hh r delta ghd)
429 (while (and u v (Math-zerop (car u)) (Math-zerop (car v)))
430 (setq u (cdr u) v (cdr v) z (1+ z)))
431 (or (eq d 1)
432 (setq u (math-poly-div-list u d)
433 v (math-poly-div-list v d)))
434 (while (progn
435 (setq delta (- (length u) (length v)))
436 (if (< delta 0)
437 (setq r u u v v r delta (- delta)))
438 (setq r (math-poly-pseudo-div u v))
439 (cdr r))
440 (setq u v
441 v (math-poly-div-list r (math-mul g (math-pow h delta)))
442 g (nth (1- (length u)) u)
443 h (if (<= delta 1)
444 (math-mul (math-pow g delta) (math-pow h (- 1 delta)))
445 (math-poly-div-exact (math-pow g delta)
446 (math-pow h (1- delta))))))
447 (setq v (if r
448 (list d)
449 (math-mul-list (math-poly-div-list v (math-poly-gcd-list v)) d)))
450 (if (math-guess-if-neg (nth (1- (length v)) v))
451 (setq v (math-mul-list v -1)))
452 (while (>= (setq z (1- z)) 0)
453 (setq v (cons 0 v)))
457 ;;; Return true if is a factor containing no sums or quotients.
458 (defun math-atomic-factorp (expr)
459 (cond ((eq (car-safe expr) '*)
460 (and (math-atomic-factorp (nth 1 expr))
461 (math-atomic-factorp (nth 2 expr))))
462 ((memq (car-safe expr) '(+ - /))
463 nil)
464 ((memq (car-safe expr) '(^ neg))
465 (math-atomic-factorp (nth 1 expr)))
466 (t t)))
468 ;;; Find a suitable base for dividing a by b.
469 ;;; The base must exist in both expressions.
470 ;;; The degree in the numerator must be higher or equal than the
471 ;;; degree in the denominator.
472 ;;; If the above conditions are not met the quotient is just a remainder.
473 ;;; Return nil if this is the case.
475 (defun math-poly-div-base (a b)
476 (let (a-base b-base)
477 (and (setq a-base (math-total-polynomial-base a))
478 (setq b-base (math-total-polynomial-base b))
479 (catch 'return
480 (while a-base
481 (let ((maybe (assoc (car (car a-base)) b-base)))
482 (if maybe
483 (if (>= (nth 1 (car a-base)) (nth 1 maybe))
484 (throw 'return (car (car a-base))))))
485 (setq a-base (cdr a-base)))))))
487 ;;; Same as above but for gcd algorithm.
488 ;;; Here there is no requirement that degree(a) > degree(b).
489 ;;; Take the base that has the highest degree considering both a and b.
490 ;;; ("a^20+b^21+x^3+a+b", "a+b^2+x^5+a^22+b^10") --> (a 22)
492 (defun math-poly-gcd-base (a b)
493 (let (a-base b-base)
494 (and (setq a-base (math-total-polynomial-base a))
495 (setq b-base (math-total-polynomial-base b))
496 (catch 'return
497 (while (and a-base b-base)
498 (if (> (nth 1 (car a-base)) (nth 1 (car b-base)))
499 (if (assoc (car (car a-base)) b-base)
500 (throw 'return (car (car a-base)))
501 (setq a-base (cdr a-base)))
502 (if (assoc (car (car b-base)) a-base)
503 (throw 'return (car (car b-base)))
504 (setq b-base (cdr b-base)))))))))
506 ;;; Sort a list of polynomial bases.
507 (defun math-sort-poly-base-list (lst)
508 (sort lst (function (lambda (a b)
509 (or (> (nth 1 a) (nth 1 b))
510 (and (= (nth 1 a) (nth 1 b))
511 (math-beforep (car a) (car b))))))))
513 ;;; Given an expression find all variables that are polynomial bases.
514 ;;; Return list in the form '( (var1 degree1) (var2 degree2) ... ).
516 ;; The variable math-poly-base-total-base is local to
517 ;; math-total-polynomial-base, but is used by math-polynomial-p1,
518 ;; which is called by math-total-polynomial-base.
519 (defvar math-poly-base-total-base)
521 (defun math-total-polynomial-base (expr)
522 (let ((math-poly-base-total-base nil))
523 (math-polynomial-base expr 'math-polynomial-p1)
524 (math-sort-poly-base-list math-poly-base-total-base)))
526 ;; The variable math-poly-base-top-expr is local to math-polynomial-base
527 ;; in calc-alg.el, but is used by math-polynomial-p1 which is called
528 ;; by math-polynomial-base.
529 (defvar math-poly-base-top-expr)
531 (defun math-polynomial-p1 (subexpr)
532 (or (assoc subexpr math-poly-base-total-base)
533 (memq (car subexpr) '(+ - * / neg))
534 (and (eq (car subexpr) '^) (natnump (nth 2 subexpr)))
535 (let* ((math-poly-base-variable subexpr)
536 (exponent (math-polynomial-p math-poly-base-top-expr subexpr)))
537 (if exponent
538 (setq math-poly-base-total-base (cons (list subexpr exponent)
539 math-poly-base-total-base)))))
540 nil)
542 ;; The variable math-factored-vars is local to calcFunc-factors and
543 ;; calcFunc-factor, but is used by math-factor-expr and
544 ;; math-factor-expr-part, which are called (directly and indirectly) by
545 ;; calcFunc-factor and calcFunc-factors.
546 (defvar math-factored-vars)
548 ;; The variable math-fact-expr is local to calcFunc-factors,
549 ;; calcFunc-factor and math-factor-expr, but is used by math-factor-expr-try
550 ;; and math-factor-expr-part, which are called (directly and indirectly) by
551 ;; calcFunc-factor, calcFunc-factors and math-factor-expr.
552 (defvar math-fact-expr)
554 ;; The variable math-to-list is local to calcFunc-factors and
555 ;; calcFunc-factor, but is used by math-accum-factors, which is
556 ;; called (indirectly) by calcFunc-factors and calcFunc-factor.
557 (defvar math-to-list)
559 (defun calcFunc-factors (math-fact-expr &optional var)
560 (let ((math-factored-vars (if var t nil))
561 (math-to-list t)
562 (calc-prefer-frac t))
563 (or var
564 (setq var (math-polynomial-base math-fact-expr)))
565 (let ((res (math-factor-finish
566 (or (catch 'factor (math-factor-expr-try var))
567 math-fact-expr))))
568 (math-simplify (if (math-vectorp res)
570 (list 'vec (list 'vec res 1)))))))
572 (defun calcFunc-factor (math-fact-expr &optional var)
573 (let ((math-factored-vars nil)
574 (math-to-list nil)
575 (calc-prefer-frac t))
576 (math-simplify (math-factor-finish
577 (if var
578 (let ((math-factored-vars t))
579 (or (catch 'factor (math-factor-expr-try var)) math-fact-expr))
580 (math-factor-expr math-fact-expr))))))
582 (defun math-factor-finish (x)
583 (if (Math-primp x)
585 (if (eq (car x) 'calcFunc-Fac-Prot)
586 (math-factor-finish (nth 1 x))
587 (cons (car x) (mapcar 'math-factor-finish (cdr x))))))
589 (defun math-factor-protect (x)
590 (if (memq (car-safe x) '(+ -))
591 (list 'calcFunc-Fac-Prot x)
594 (defun math-factor-expr (math-fact-expr)
595 (cond ((eq math-factored-vars t) math-fact-expr)
596 ((or (memq (car-safe math-fact-expr) '(* / ^ neg))
597 (assq (car-safe math-fact-expr) calc-tweak-eqn-table))
598 (cons (car math-fact-expr) (mapcar 'math-factor-expr (cdr math-fact-expr))))
599 ((memq (car-safe math-fact-expr) '(+ -))
600 (let* ((math-factored-vars math-factored-vars)
601 (y (catch 'factor (math-factor-expr-part math-fact-expr))))
602 (if y
603 (math-factor-expr y)
604 math-fact-expr)))
605 (t math-fact-expr)))
607 (defun math-factor-expr-part (x) ; uses "expr"
608 (if (memq (car-safe x) '(+ - * / ^ neg))
609 (while (setq x (cdr x))
610 (math-factor-expr-part (car x)))
611 (and (not (Math-objvecp x))
612 (not (assoc x math-factored-vars))
613 (> (math-factor-contains math-fact-expr x) 1)
614 (setq math-factored-vars (cons (list x) math-factored-vars))
615 (math-factor-expr-try x))))
617 ;; The variable math-fet-x is local to math-factor-expr-try, but is
618 ;; used by math-factor-poly-coefs, which is called by math-factor-expr-try.
619 (defvar math-fet-x)
621 (defun math-factor-expr-try (math-fet-x)
622 (if (eq (car-safe math-fact-expr) '*)
623 (let ((res1 (catch 'factor (let ((math-fact-expr (nth 1 math-fact-expr)))
624 (math-factor-expr-try math-fet-x))))
625 (res2 (catch 'factor (let ((math-fact-expr (nth 2 math-fact-expr)))
626 (math-factor-expr-try math-fet-x)))))
627 (and (or res1 res2)
628 (throw 'factor (math-accum-factors (or res1 (nth 1 math-fact-expr)) 1
629 (or res2 (nth 2 math-fact-expr))))))
630 (let* ((p (math-is-polynomial math-fact-expr math-fet-x 30 'gen))
631 (math-poly-modulus (math-poly-modulus math-fact-expr))
632 res)
633 (and (cdr p)
634 (setq res (math-factor-poly-coefs p))
635 (throw 'factor res)))))
637 (defun math-accum-factors (fac pow facs)
638 (if math-to-list
639 (if (math-vectorp fac)
640 (progn
641 (while (setq fac (cdr fac))
642 (setq facs (math-accum-factors (nth 1 (car fac))
643 (* pow (nth 2 (car fac)))
644 facs)))
645 facs)
646 (if (and (eq (car-safe fac) '^) (natnump (nth 2 fac)))
647 (setq pow (* pow (nth 2 fac))
648 fac (nth 1 fac)))
649 (if (eq fac 1)
650 facs
651 (or (math-vectorp facs)
652 (setq facs (if (eq facs 1) '(vec)
653 (list 'vec (list 'vec facs 1)))))
654 (let ((found facs))
655 (while (and (setq found (cdr found))
656 (not (equal fac (nth 1 (car found))))))
657 (if found
658 (progn
659 (setcar (cdr (cdr (car found))) (+ pow (nth 2 (car found))))
660 facs)
661 ;; Put constant term first.
662 (if (and (cdr facs) (Math-ratp (nth 1 (nth 1 facs))))
663 (cons 'vec (cons (nth 1 facs) (cons (list 'vec fac pow)
664 (cdr (cdr facs)))))
665 (cons 'vec (cons (list 'vec fac pow) (cdr facs))))))))
666 (math-mul (math-pow fac pow) (math-factor-protect facs))))
668 (defun math-factor-poly-coefs (p &optional square-free) ; uses "x"
669 (let (t1 t2 temp)
670 (cond ((not (cdr p))
671 (or (car p) 0))
673 ;; Strip off multiples of math-fet-x.
674 ((Math-zerop (car p))
675 (let ((z 0))
676 (while (and p (Math-zerop (car p)))
677 (setq z (1+ z) p (cdr p)))
678 (if (cdr p)
679 (setq p (math-factor-poly-coefs p square-free))
680 (setq p (math-sort-terms (math-factor-expr (car p)))))
681 (math-accum-factors math-fet-x z (math-factor-protect p))))
683 ;; Factor out content.
684 ((and (not square-free)
685 (not (eq 1 (setq t1 (math-mul (math-poly-gcd-list p)
686 (if (math-guess-if-neg
687 (nth (1- (length p)) p))
688 -1 1))))))
689 (math-accum-factors t1 1 (math-factor-poly-coefs
690 (math-poly-div-list p t1) 'cont)))
692 ;; Check if linear in math-fet-x.
693 ((not (cdr (cdr p)))
694 (math-sort-terms
695 (math-add (math-factor-protect
696 (math-sort-terms
697 (math-factor-expr (car p))))
698 (math-mul math-fet-x (math-factor-protect
699 (math-sort-terms
700 (math-factor-expr (nth 1 p))))))))
702 ;; If symbolic coefficients, use FactorRules.
703 ((let ((pp p))
704 (while (and pp (or (Math-ratp (car pp))
705 (and (eq (car (car pp)) 'mod)
706 (Math-integerp (nth 1 (car pp)))
707 (Math-integerp (nth 2 (car pp))))))
708 (setq pp (cdr pp)))
710 (let ((res (math-rewrite
711 (list 'calcFunc-thecoefs math-fet-x (cons 'vec p))
712 '(var FactorRules var-FactorRules))))
713 (or (and (eq (car-safe res) 'calcFunc-thefactors)
714 (= (length res) 3)
715 (math-vectorp (nth 2 res))
716 (let ((facs 1)
717 (vec (nth 2 res)))
718 (while (setq vec (cdr vec))
719 (setq facs (math-accum-factors (car vec) 1 facs)))
720 facs))
721 (math-build-polynomial-expr p math-fet-x))))
723 ;; Check if rational coefficients (i.e., not modulo a prime).
724 ((eq math-poly-modulus 1)
726 ;; Check if there are any squared terms, or a content not = 1.
727 (if (or (eq square-free t)
728 (equal (setq t1 (math-poly-gcd-coefs
729 p (setq t2 (math-poly-deriv-coefs p))))
730 '(1)))
732 ;; We now have a square-free polynomial with integer coefs.
733 ;; For now, we use a kludgey method that finds linear and
734 ;; quadratic terms using floating-point root-finding.
735 (if (setq t1 (let ((calc-symbolic-mode nil))
736 (math-poly-all-roots nil p t)))
737 (let ((roots (car t1))
738 (csign (if (math-negp (nth (1- (length p)) p)) -1 1))
739 (expr 1)
740 (unfac (nth 1 t1))
741 (scale (nth 2 t1)))
742 (while roots
743 (let ((coef0 (car (car roots)))
744 (coef1 (cdr (car roots))))
745 (setq expr (math-accum-factors
746 (if coef1
747 (let ((den (math-lcm-denoms
748 coef0 coef1)))
749 (setq scale (math-div scale den))
750 (math-add
751 (math-add
752 (math-mul den (math-pow math-fet-x 2))
753 (math-mul (math-mul coef1 den)
754 math-fet-x))
755 (math-mul coef0 den)))
756 (let ((den (math-lcm-denoms coef0)))
757 (setq scale (math-div scale den))
758 (math-add (math-mul den math-fet-x)
759 (math-mul coef0 den))))
760 1 expr)
761 roots (cdr roots))))
762 (setq expr (math-accum-factors
763 expr 1
764 (math-mul csign
765 (math-build-polynomial-expr
766 (math-mul-list (nth 1 t1) scale)
767 math-fet-x)))))
768 (math-build-polynomial-expr p math-fet-x)) ; can't factor it.
770 ;; Separate out the squared terms (Knuth exercise 4.6.2-34).
771 ;; This step also divides out the content of the polynomial.
772 (let* ((cabs (math-poly-gcd-list p))
773 (csign (if (math-negp (nth (1- (length p)) p)) -1 1))
774 (t1s (math-mul-list t1 csign))
775 (uu nil)
776 (v (car (math-poly-div-coefs p t1s)))
777 (w (car (math-poly-div-coefs t2 t1s))))
778 (while
779 (not (math-poly-zerop
780 (setq t2 (math-poly-simplify
781 (math-poly-mix
782 w 1 (math-poly-deriv-coefs v) -1)))))
783 (setq t1 (math-poly-gcd-coefs v t2)
784 uu (cons t1 uu)
785 v (car (math-poly-div-coefs v t1))
786 w (car (math-poly-div-coefs t2 t1))))
787 (setq t1 (length uu)
788 t2 (math-accum-factors (math-factor-poly-coefs v t)
789 (1+ t1) 1))
790 (while uu
791 (setq t2 (math-accum-factors (math-factor-poly-coefs
792 (car uu) t)
793 t1 t2)
794 t1 (1- t1)
795 uu (cdr uu)))
796 (math-accum-factors (math-mul cabs csign) 1 t2))))
798 ;; Factoring modulo a prime.
799 ((and (= (length (setq temp (math-poly-gcd-coefs
800 p (math-poly-deriv-coefs p))))
801 (length p)))
802 (setq p (car temp))
803 (while (cdr temp)
804 (setq temp (nthcdr (nth 2 math-poly-modulus) temp)
805 p (cons (car temp) p)))
806 (and (setq temp (math-factor-poly-coefs p))
807 (math-pow temp (nth 2 math-poly-modulus))))
809 (math-reject-arg nil "*Modulo factorization not yet implemented")))))
811 (defun math-poly-deriv-coefs (p)
812 (let ((n 1)
813 (dp nil))
814 (while (setq p (cdr p))
815 (setq dp (cons (math-mul (car p) n) dp)
816 n (1+ n)))
817 (nreverse dp)))
819 (defun math-factor-contains (x a)
820 (if (equal x a)
822 (if (memq (car-safe x) '(+ - * / neg))
823 (let ((sum 0))
824 (while (setq x (cdr x))
825 (setq sum (+ sum (math-factor-contains (car x) a))))
826 sum)
827 (if (and (eq (car-safe x) '^)
828 (natnump (nth 2 x)))
829 (* (math-factor-contains (nth 1 x) a) (nth 2 x))
830 0))))
836 ;;; Merge all quotients and expand/simplify the numerator
837 (defun calcFunc-nrat (expr)
838 (if (math-any-floats expr)
839 (setq expr (calcFunc-pfrac expr)))
840 (if (or (math-vectorp expr)
841 (assq (car-safe expr) calc-tweak-eqn-table))
842 (cons (car expr) (mapcar 'calcFunc-nrat (cdr expr)))
843 (let* ((calc-prefer-frac t)
844 (res (math-to-ratpoly expr))
845 (num (math-simplify (math-sort-terms (calcFunc-expand (car res)))))
846 (den (math-simplify (math-sort-terms (calcFunc-expand (cdr res)))))
847 (g (math-poly-gcd num den)))
848 (or (eq g 1)
849 (let ((num2 (math-poly-div num g))
850 (den2 (math-poly-div den g)))
851 (and (eq (cdr num2) 0) (eq (cdr den2) 0)
852 (setq num (car num2) den (car den2)))))
853 (math-simplify (math-div num den)))))
855 ;;; Returns expressions (num . denom).
856 (defun math-to-ratpoly (expr)
857 (let ((res (math-to-ratpoly-rec expr)))
858 (cons (math-simplify (car res)) (math-simplify (cdr res)))))
860 (defun math-to-ratpoly-rec (expr)
861 (cond ((Math-primp expr)
862 (cons expr 1))
863 ((memq (car expr) '(+ -))
864 (let ((r1 (math-to-ratpoly-rec (nth 1 expr)))
865 (r2 (math-to-ratpoly-rec (nth 2 expr))))
866 (if (equal (cdr r1) (cdr r2))
867 (cons (list (car expr) (car r1) (car r2)) (cdr r1))
868 (if (eq (cdr r1) 1)
869 (cons (list (car expr)
870 (math-mul (car r1) (cdr r2))
871 (car r2))
872 (cdr r2))
873 (if (eq (cdr r2) 1)
874 (cons (list (car expr)
875 (car r1)
876 (math-mul (car r2) (cdr r1)))
877 (cdr r1))
878 (let ((g (math-poly-gcd (cdr r1) (cdr r2))))
879 (let ((d1 (and (not (eq g 1)) (math-poly-div (cdr r1) g)))
880 (d2 (and (not (eq g 1)) (math-poly-div
881 (math-mul (car r1) (cdr r2))
882 g))))
883 (if (and (eq (cdr d1) 0) (eq (cdr d2) 0))
884 (cons (list (car expr) (car d2)
885 (math-mul (car r2) (car d1)))
886 (math-mul (car d1) (cdr r2)))
887 (cons (list (car expr)
888 (math-mul (car r1) (cdr r2))
889 (math-mul (car r2) (cdr r1)))
890 (math-mul (cdr r1) (cdr r2)))))))))))
891 ((eq (car expr) '*)
892 (let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
893 (r2 (math-to-ratpoly-rec (nth 2 expr)))
894 (g (math-mul (math-poly-gcd (car r1) (cdr r2))
895 (math-poly-gcd (cdr r1) (car r2)))))
896 (if (eq g 1)
897 (cons (math-mul (car r1) (car r2))
898 (math-mul (cdr r1) (cdr r2)))
899 (cons (math-poly-div-exact (math-mul (car r1) (car r2)) g)
900 (math-poly-div-exact (math-mul (cdr r1) (cdr r2)) g)))))
901 ((eq (car expr) '/)
902 (let* ((r1 (math-to-ratpoly-rec (nth 1 expr)))
903 (r2 (math-to-ratpoly-rec (nth 2 expr))))
904 (if (and (eq (cdr r1) 1) (eq (cdr r2) 1))
905 (cons (car r1) (car r2))
906 (let ((g (math-mul (math-poly-gcd (car r1) (car r2))
907 (math-poly-gcd (cdr r1) (cdr r2)))))
908 (if (eq g 1)
909 (cons (math-mul (car r1) (cdr r2))
910 (math-mul (cdr r1) (car r2)))
911 (cons (math-poly-div-exact (math-mul (car r1) (cdr r2)) g)
912 (math-poly-div-exact (math-mul (cdr r1) (car r2))
913 g)))))))
914 ((and (eq (car expr) '^) (integerp (nth 2 expr)))
915 (let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
916 (if (> (nth 2 expr) 0)
917 (cons (math-pow (car r1) (nth 2 expr))
918 (math-pow (cdr r1) (nth 2 expr)))
919 (cons (math-pow (cdr r1) (- (nth 2 expr)))
920 (math-pow (car r1) (- (nth 2 expr)))))))
921 ((eq (car expr) 'neg)
922 (let ((r1 (math-to-ratpoly-rec (nth 1 expr))))
923 (cons (math-neg (car r1)) (cdr r1))))
924 (t (cons expr 1))))
927 (defun math-ratpoly-p (expr &optional var)
928 (cond ((equal expr var) 1)
929 ((Math-primp expr) 0)
930 ((memq (car expr) '(+ -))
931 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
933 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
934 (max p1 p2))))
935 ((eq (car expr) '*)
936 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
938 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
939 (+ p1 p2))))
940 ((eq (car expr) 'neg)
941 (math-ratpoly-p (nth 1 expr) var))
942 ((eq (car expr) '/)
943 (let ((p1 (math-ratpoly-p (nth 1 expr) var))
945 (and p1 (setq p2 (math-ratpoly-p (nth 2 expr) var))
946 (- p1 p2))))
947 ((and (eq (car expr) '^)
948 (integerp (nth 2 expr)))
949 (let ((p1 (math-ratpoly-p (nth 1 expr) var)))
950 (and p1 (* p1 (nth 2 expr)))))
951 ((not var) 1)
952 ((math-poly-depends expr var) nil)
953 (t 0)))
956 (defun calcFunc-apart (expr &optional var)
957 (cond ((Math-primp expr) expr)
958 ((eq (car expr) '+)
959 (math-add (calcFunc-apart (nth 1 expr) var)
960 (calcFunc-apart (nth 2 expr) var)))
961 ((eq (car expr) '-)
962 (math-sub (calcFunc-apart (nth 1 expr) var)
963 (calcFunc-apart (nth 2 expr) var)))
964 ((and var (not (math-ratpoly-p expr var)))
965 (math-reject-arg expr "Expected a rational function"))
967 (let* ((calc-prefer-frac t)
968 (rat (math-to-ratpoly expr))
969 (num (car rat))
970 (den (cdr rat)))
971 (or var
972 (setq var (math-polynomial-base den)))
973 (if (not (math-ratpoly-p expr var))
974 (math-reject-arg expr "Expected a rational function")
975 (let* ((qr (math-poly-div num den))
976 (q (car qr))
977 (r (cdr qr)))
978 (math-add q (or (and var
979 (math-expr-contains den var)
980 (math-partial-fractions r den var))
981 (math-div r den)))))))))
984 (defun math-padded-polynomial (expr var deg)
985 "Return a polynomial as list of coefficients.
986 If EXPR is of the form \"a + bx + cx^2 + ...\" in the variable VAR, return
987 the list (a b c ...) with at least DEG elements, else return NIL."
988 (let ((p (math-is-polynomial expr var deg)))
989 (append p (make-list (- deg (length p)) 0))))
991 (defun math-partial-fractions (r den var)
992 "Return R divided by DEN expressed in partial fractions of VAR.
993 All whole factors of DEN have already been split off from R.
994 If no partial fraction representation can be found, return nil."
995 (let* ((fden (calcFunc-factors den var))
996 (tdeg (math-polynomial-p den var))
997 (fp fden)
998 (dlist nil)
999 (eqns 0)
1000 (lz nil)
1001 (tz (make-list (1- tdeg) 0))
1002 (calc-matrix-mode 'scalar))
1003 (and (not (and (= (length fden) 2) (eq (nth 2 (nth 1 fden)) 1)))
1004 (progn
1005 (while (setq fp (cdr fp))
1006 (let ((rpt (nth 2 (car fp)))
1007 (deg (math-polynomial-p (nth 1 (car fp)) var))
1008 dnum dvar deg2)
1009 (while (> rpt 0)
1010 (setq deg2 deg
1011 dnum 0)
1012 (while (> deg2 0)
1013 (setq dvar (append '(vec) lz '(1) tz)
1014 lz (cons 0 lz)
1015 tz (cdr tz)
1016 deg2 (1- deg2)
1017 dnum (math-add dnum (math-mul dvar
1018 (math-pow var deg2)))
1019 dlist (cons (and (= deg2 (1- deg))
1020 (math-pow (nth 1 (car fp)) rpt))
1021 dlist)))
1022 (let ((fpp fden)
1023 (mult 1))
1024 (while (setq fpp (cdr fpp))
1025 (or (eq fpp fp)
1026 (setq mult (math-mul mult
1027 (math-pow (nth 1 (car fpp))
1028 (nth 2 (car fpp)))))))
1029 (setq dnum (math-mul dnum mult)))
1030 (setq eqns (math-add eqns (math-mul dnum
1031 (math-pow
1032 (nth 1 (car fp))
1033 (- (nth 2 (car fp))
1034 rpt))))
1035 rpt (1- rpt)))))
1036 (setq eqns (math-div (cons 'vec (math-padded-polynomial r var tdeg))
1037 (math-transpose
1038 (cons 'vec
1039 (mapcar
1040 (function
1041 (lambda (x)
1042 (cons 'vec (math-padded-polynomial
1043 x var tdeg))))
1044 (cdr eqns))))))
1045 (and (math-vectorp eqns)
1046 (let ((res 0)
1047 (num nil))
1048 (setq eqns (nreverse eqns))
1049 (while eqns
1050 (setq num (cons (car eqns) num)
1051 eqns (cdr eqns))
1052 (if (car dlist)
1053 (setq num (math-build-polynomial-expr
1054 (nreverse num) var)
1055 res (math-add res (math-div num (car dlist)))
1056 num nil))
1057 (setq dlist (cdr dlist)))
1058 (math-normalize res)))))))
1062 (defun math-expand-term (expr)
1063 (cond ((and (eq (car-safe expr) '*)
1064 (memq (car-safe (nth 1 expr)) '(+ -)))
1065 (math-add-or-sub (list '* (nth 1 (nth 1 expr)) (nth 2 expr))
1066 (list '* (nth 2 (nth 1 expr)) (nth 2 expr))
1067 nil (eq (car (nth 1 expr)) '-)))
1068 ((and (eq (car-safe expr) '*)
1069 (memq (car-safe (nth 2 expr)) '(+ -)))
1070 (math-add-or-sub (list '* (nth 1 expr) (nth 1 (nth 2 expr)))
1071 (list '* (nth 1 expr) (nth 2 (nth 2 expr)))
1072 nil (eq (car (nth 2 expr)) '-)))
1073 ((and (eq (car-safe expr) '/)
1074 (memq (car-safe (nth 1 expr)) '(+ -)))
1075 (math-add-or-sub (list '/ (nth 1 (nth 1 expr)) (nth 2 expr))
1076 (list '/ (nth 2 (nth 1 expr)) (nth 2 expr))
1077 nil (eq (car (nth 1 expr)) '-)))
1078 ((and (eq (car-safe expr) '^)
1079 (memq (car-safe (nth 1 expr)) '(+ -))
1080 (integerp (nth 2 expr))
1081 (if (and
1082 (or (math-known-matrixp (nth 1 (nth 1 expr)))
1083 (math-known-matrixp (nth 2 (nth 1 expr)))
1084 (and
1085 calc-matrix-mode
1086 (not (eq calc-matrix-mode 'scalar))
1087 (not (and (math-known-scalarp (nth 1 (nth 1 expr)))
1088 (math-known-scalarp (nth 2 (nth 1 expr)))))))
1089 (> (nth 2 expr) 1))
1090 (if (= (nth 2 expr) 2)
1091 (math-add-or-sub (list '* (nth 1 (nth 1 expr)) (nth 1 expr))
1092 (list '* (nth 2 (nth 1 expr)) (nth 1 expr))
1093 nil (eq (car (nth 1 expr)) '-))
1094 (math-add-or-sub (list '* (nth 1 (nth 1 expr))
1095 (list '^ (nth 1 expr)
1096 (1- (nth 2 expr))))
1097 (list '* (nth 2 (nth 1 expr))
1098 (list '^ (nth 1 expr)
1099 (1- (nth 2 expr))))
1100 nil (eq (car (nth 1 expr)) '-)))
1101 (if (> (nth 2 expr) 0)
1102 (or (and (or (> math-mt-many 500000) (< math-mt-many -500000))
1103 (math-expand-power (nth 1 expr) (nth 2 expr)
1104 nil t))
1105 (list '*
1106 (nth 1 expr)
1107 (list '^ (nth 1 expr) (1- (nth 2 expr)))))
1108 (if (< (nth 2 expr) 0)
1109 (list '/ 1 (list '^ (nth 1 expr) (- (nth 2 expr)))))))))
1110 (t expr)))
1112 (defun calcFunc-expand (expr &optional many)
1113 (math-normalize (math-map-tree 'math-expand-term expr many)))
1115 (defun math-expand-power (x n &optional var else-nil)
1116 (or (and (natnump n)
1117 (memq (car-safe x) '(+ -))
1118 (let ((terms nil)
1119 (cterms nil))
1120 (while (memq (car-safe x) '(+ -))
1121 (setq terms (cons (if (eq (car x) '-)
1122 (math-neg (nth 2 x))
1123 (nth 2 x))
1124 terms)
1125 x (nth 1 x)))
1126 (setq terms (cons x terms))
1127 (if var
1128 (let ((p terms))
1129 (while p
1130 (or (math-expr-contains (car p) var)
1131 (setq terms (delq (car p) terms)
1132 cterms (cons (car p) cterms)))
1133 (setq p (cdr p)))
1134 (if cterms
1135 (setq terms (cons (apply 'calcFunc-add cterms)
1136 terms)))))
1137 (if (= (length terms) 2)
1138 (let ((i 0)
1139 (accum 0))
1140 (while (<= i n)
1141 (setq accum (list '+ accum
1142 (list '* (calcFunc-choose n i)
1143 (list '*
1144 (list '^ (nth 1 terms) i)
1145 (list '^ (car terms)
1146 (- n i)))))
1147 i (1+ i)))
1148 accum)
1149 (if (= n 2)
1150 (let ((accum 0)
1151 (p1 terms)
1153 (while p1
1154 (setq accum (list '+ accum
1155 (list '^ (car p1) 2))
1156 p2 p1)
1157 (while (setq p2 (cdr p2))
1158 (setq accum (list '+ accum
1159 (list '* 2 (list '*
1160 (car p1)
1161 (car p2))))))
1162 (setq p1 (cdr p1)))
1163 accum)
1164 (if (= n 3)
1165 (let ((accum 0)
1166 (p1 terms)
1167 p2 p3)
1168 (while p1
1169 (setq accum (list '+ accum (list '^ (car p1) 3))
1170 p2 p1)
1171 (while (setq p2 (cdr p2))
1172 (setq accum (list '+
1173 (list '+
1174 accum
1175 (list '* 3
1176 (list
1178 (list '^ (car p1) 2)
1179 (car p2))))
1180 (list '* 3
1181 (list
1182 '* (car p1)
1183 (list '^ (car p2) 2))))
1184 p3 p2)
1185 (while (setq p3 (cdr p3))
1186 (setq accum (list '+ accum
1187 (list '* 6
1188 (list '*
1189 (car p1)
1190 (list
1191 '* (car p2)
1192 (car p3))))))))
1193 (setq p1 (cdr p1)))
1194 accum))))))
1195 (and (not else-nil)
1196 (list '^ x n))))
1198 (defun calcFunc-expandpow (x n)
1199 (math-normalize (math-expand-power x n)))
1201 (provide 'calc-poly)
1203 ;; arch-tag: d2566c51-2ccc-45f1-8c50-f3462c2953ff
1204 ;;; calc-poly.el ends here