1 /* Random utility Lisp functions.
3 Copyright (C) 1985-1987, 1993-1995, 1997-2013 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
29 #include "character.h"
34 #include "intervals.h"
37 #include "blockinput.h"
39 #if defined (HAVE_X_WINDOWS)
42 #endif /* HAVE_MENUS */
44 Lisp_Object Qstring_lessp
;
45 static Lisp_Object Qprovide
, Qrequire
;
46 static Lisp_Object Qyes_or_no_p_history
;
47 Lisp_Object Qcursor_in_echo_area
;
48 static Lisp_Object Qwidget_type
;
49 static Lisp_Object Qcodeset
, Qdays
, Qmonths
, Qpaper
;
51 static Lisp_Object Qmd5
, Qsha1
, Qsha224
, Qsha256
, Qsha384
, Qsha512
;
53 static bool internal_equal (Lisp_Object
, Lisp_Object
, int, bool);
55 DEFUN ("identity", Fidentity
, Sidentity
, 1, 1, 0,
56 doc
: /* Return the argument unchanged. */)
62 DEFUN ("random", Frandom
, Srandom
, 0, 1, 0,
63 doc
: /* Return a pseudo-random number.
64 All integers representable in Lisp, i.e. between `most-negative-fixnum'
65 and `most-positive-fixnum', inclusive, are equally likely.
67 With positive integer LIMIT, return random number in interval [0,LIMIT).
68 With argument t, set the random number seed from the current time and pid.
69 With a string argument, set the seed based on the string's contents.
70 Other values of LIMIT are ignored.
72 See Info node `(elisp)Random Numbers' for more details. */)
79 else if (STRINGP (limit
))
80 seed_random (SSDATA (limit
), SBYTES (limit
));
83 if (NATNUMP (limit
) && XFASTINT (limit
) != 0)
84 val
%= XFASTINT (limit
);
85 return make_number (val
);
88 /* Heuristic on how many iterations of a tight loop can be safely done
89 before it's time to do a QUIT. This must be a power of 2. */
90 enum { QUIT_COUNT_HEURISTIC
= 1 << 16 };
92 /* Random data-structure functions. */
95 CHECK_LIST_END (Lisp_Object x
, Lisp_Object y
)
97 CHECK_TYPE (NILP (x
), Qlistp
, y
);
100 DEFUN ("length", Flength
, Slength
, 1, 1, 0,
101 doc
: /* Return the length of vector, list or string SEQUENCE.
102 A byte-code function object is also allowed.
103 If the string contains multibyte characters, this is not necessarily
104 the number of bytes in the string; it is the number of characters.
105 To get the number of bytes, use `string-bytes'. */)
106 (register Lisp_Object sequence
)
108 register Lisp_Object val
;
110 if (STRINGP (sequence
))
111 XSETFASTINT (val
, SCHARS (sequence
));
112 else if (VECTORP (sequence
))
113 XSETFASTINT (val
, ASIZE (sequence
));
114 else if (CHAR_TABLE_P (sequence
))
115 XSETFASTINT (val
, MAX_CHAR
);
116 else if (BOOL_VECTOR_P (sequence
))
117 XSETFASTINT (val
, bool_vector_size (sequence
));
118 else if (COMPILEDP (sequence
))
119 XSETFASTINT (val
, ASIZE (sequence
) & PSEUDOVECTOR_SIZE_MASK
);
120 else if (CONSP (sequence
))
127 if ((i
& (QUIT_COUNT_HEURISTIC
- 1)) == 0)
129 if (MOST_POSITIVE_FIXNUM
< i
)
130 error ("List too long");
133 sequence
= XCDR (sequence
);
135 while (CONSP (sequence
));
137 CHECK_LIST_END (sequence
, sequence
);
139 val
= make_number (i
);
141 else if (NILP (sequence
))
142 XSETFASTINT (val
, 0);
144 wrong_type_argument (Qsequencep
, sequence
);
149 DEFUN ("safe-length", Fsafe_length
, Ssafe_length
, 1, 1, 0,
150 doc
: /* Return the length of a list, but avoid error or infinite loop.
151 This function never gets an error. If LIST is not really a list,
152 it returns 0. If LIST is circular, it returns a finite value
153 which is at least the number of distinct elements. */)
156 Lisp_Object tail
, halftail
;
161 return make_number (0);
163 /* halftail is used to detect circular lists. */
164 for (tail
= halftail
= list
; ; )
169 if (EQ (tail
, halftail
))
172 if ((lolen
& 1) == 0)
174 halftail
= XCDR (halftail
);
175 if ((lolen
& (QUIT_COUNT_HEURISTIC
- 1)) == 0)
179 hilen
+= UINTMAX_MAX
+ 1.0;
184 /* If the length does not fit into a fixnum, return a float.
185 On all known practical machines this returns an upper bound on
187 return hilen
? make_float (hilen
+ lolen
) : make_fixnum_or_float (lolen
);
190 DEFUN ("string-bytes", Fstring_bytes
, Sstring_bytes
, 1, 1, 0,
191 doc
: /* Return the number of bytes in STRING.
192 If STRING is multibyte, this may be greater than the length of STRING. */)
195 CHECK_STRING (string
);
196 return make_number (SBYTES (string
));
199 DEFUN ("string-equal", Fstring_equal
, Sstring_equal
, 2, 2, 0,
200 doc
: /* Return t if two strings have identical contents.
201 Case is significant, but text properties are ignored.
202 Symbols are also allowed; their print names are used instead. */)
203 (register Lisp_Object s1
, Lisp_Object s2
)
206 s1
= SYMBOL_NAME (s1
);
208 s2
= SYMBOL_NAME (s2
);
212 if (SCHARS (s1
) != SCHARS (s2
)
213 || SBYTES (s1
) != SBYTES (s2
)
214 || memcmp (SDATA (s1
), SDATA (s2
), SBYTES (s1
)))
219 DEFUN ("compare-strings", Fcompare_strings
, Scompare_strings
, 6, 7, 0,
220 doc
: /* Compare the contents of two strings, converting to multibyte if needed.
221 The arguments START1, END1, START2, and END2, if non-nil, are
222 positions specifying which parts of STR1 or STR2 to compare. In
223 string STR1, compare the part between START1 (inclusive) and END1
224 \(exclusive). If START1 is nil, it defaults to 0, the beginning of
225 the string; if END1 is nil, it defaults to the length of the string.
226 Likewise, in string STR2, compare the part between START2 and END2.
228 The strings are compared by the numeric values of their characters.
229 For instance, STR1 is "less than" STR2 if its first differing
230 character has a smaller numeric value. If IGNORE-CASE is non-nil,
231 characters are converted to lower-case before comparing them. Unibyte
232 strings are converted to multibyte for comparison.
234 The value is t if the strings (or specified portions) match.
235 If string STR1 is less, the value is a negative number N;
236 - 1 - N is the number of characters that match at the beginning.
237 If string STR1 is greater, the value is a positive number N;
238 N - 1 is the number of characters that match at the beginning. */)
239 (Lisp_Object str1
, Lisp_Object start1
, Lisp_Object end1
, Lisp_Object str2
, Lisp_Object start2
, Lisp_Object end2
, Lisp_Object ignore_case
)
241 register ptrdiff_t end1_char
, end2_char
;
242 register ptrdiff_t i1
, i1_byte
, i2
, i2_byte
;
247 start1
= make_number (0);
249 start2
= make_number (0);
250 CHECK_NATNUM (start1
);
251 CHECK_NATNUM (start2
);
257 end1_char
= SCHARS (str1
);
258 if (! NILP (end1
) && end1_char
> XINT (end1
))
259 end1_char
= XINT (end1
);
260 if (end1_char
< XINT (start1
))
261 args_out_of_range (str1
, start1
);
263 end2_char
= SCHARS (str2
);
264 if (! NILP (end2
) && end2_char
> XINT (end2
))
265 end2_char
= XINT (end2
);
266 if (end2_char
< XINT (start2
))
267 args_out_of_range (str2
, start2
);
272 i1_byte
= string_char_to_byte (str1
, i1
);
273 i2_byte
= string_char_to_byte (str2
, i2
);
275 while (i1
< end1_char
&& i2
< end2_char
)
277 /* When we find a mismatch, we must compare the
278 characters, not just the bytes. */
281 if (STRING_MULTIBYTE (str1
))
282 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1
, str1
, i1
, i1_byte
);
285 c1
= SREF (str1
, i1
++);
286 MAKE_CHAR_MULTIBYTE (c1
);
289 if (STRING_MULTIBYTE (str2
))
290 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2
, str2
, i2
, i2_byte
);
293 c2
= SREF (str2
, i2
++);
294 MAKE_CHAR_MULTIBYTE (c2
);
300 if (! NILP (ignore_case
))
304 tem
= Fupcase (make_number (c1
));
306 tem
= Fupcase (make_number (c2
));
313 /* Note that I1 has already been incremented
314 past the character that we are comparing;
315 hence we don't add or subtract 1 here. */
317 return make_number (- i1
+ XINT (start1
));
319 return make_number (i1
- XINT (start1
));
323 return make_number (i1
- XINT (start1
) + 1);
325 return make_number (- i1
+ XINT (start1
) - 1);
330 DEFUN ("string-lessp", Fstring_lessp
, Sstring_lessp
, 2, 2, 0,
331 doc
: /* Return t if first arg string is less than second in lexicographic order.
333 Symbols are also allowed; their print names are used instead. */)
334 (register Lisp_Object s1
, Lisp_Object s2
)
336 register ptrdiff_t end
;
337 register ptrdiff_t i1
, i1_byte
, i2
, i2_byte
;
340 s1
= SYMBOL_NAME (s1
);
342 s2
= SYMBOL_NAME (s2
);
346 i1
= i1_byte
= i2
= i2_byte
= 0;
349 if (end
> SCHARS (s2
))
354 /* When we find a mismatch, we must compare the
355 characters, not just the bytes. */
358 FETCH_STRING_CHAR_ADVANCE (c1
, s1
, i1
, i1_byte
);
359 FETCH_STRING_CHAR_ADVANCE (c2
, s2
, i2
, i2_byte
);
362 return c1
< c2
? Qt
: Qnil
;
364 return i1
< SCHARS (s2
) ? Qt
: Qnil
;
367 static Lisp_Object
concat (ptrdiff_t nargs
, Lisp_Object
*args
,
368 enum Lisp_Type target_type
, bool last_special
);
372 concat2 (Lisp_Object s1
, Lisp_Object s2
)
377 return concat (2, args
, Lisp_String
, 0);
382 concat3 (Lisp_Object s1
, Lisp_Object s2
, Lisp_Object s3
)
388 return concat (3, args
, Lisp_String
, 0);
391 DEFUN ("append", Fappend
, Sappend
, 0, MANY
, 0,
392 doc
: /* Concatenate all the arguments and make the result a list.
393 The result is a list whose elements are the elements of all the arguments.
394 Each argument may be a list, vector or string.
395 The last argument is not copied, just used as the tail of the new list.
396 usage: (append &rest SEQUENCES) */)
397 (ptrdiff_t nargs
, Lisp_Object
*args
)
399 return concat (nargs
, args
, Lisp_Cons
, 1);
402 DEFUN ("concat", Fconcat
, Sconcat
, 0, MANY
, 0,
403 doc
: /* Concatenate all the arguments and make the result a string.
404 The result is a string whose elements are the elements of all the arguments.
405 Each argument may be a string or a list or vector of characters (integers).
406 usage: (concat &rest SEQUENCES) */)
407 (ptrdiff_t nargs
, Lisp_Object
*args
)
409 return concat (nargs
, args
, Lisp_String
, 0);
412 DEFUN ("vconcat", Fvconcat
, Svconcat
, 0, MANY
, 0,
413 doc
: /* Concatenate all the arguments and make the result a vector.
414 The result is a vector whose elements are the elements of all the arguments.
415 Each argument may be a list, vector or string.
416 usage: (vconcat &rest SEQUENCES) */)
417 (ptrdiff_t nargs
, Lisp_Object
*args
)
419 return concat (nargs
, args
, Lisp_Vectorlike
, 0);
423 DEFUN ("copy-sequence", Fcopy_sequence
, Scopy_sequence
, 1, 1, 0,
424 doc
: /* Return a copy of a list, vector, string or char-table.
425 The elements of a list or vector are not copied; they are shared
426 with the original. */)
429 if (NILP (arg
)) return arg
;
431 if (CHAR_TABLE_P (arg
))
433 return copy_char_table (arg
);
436 if (BOOL_VECTOR_P (arg
))
439 ptrdiff_t size_in_chars
440 = ((bool_vector_size (arg
) + BOOL_VECTOR_BITS_PER_CHAR
- 1)
441 / BOOL_VECTOR_BITS_PER_CHAR
);
443 val
= Fmake_bool_vector (Flength (arg
), Qnil
);
444 memcpy (XBOOL_VECTOR (val
)->data
, XBOOL_VECTOR (arg
)->data
,
449 if (!CONSP (arg
) && !VECTORP (arg
) && !STRINGP (arg
))
450 wrong_type_argument (Qsequencep
, arg
);
452 return concat (1, &arg
, XTYPE (arg
), 0);
455 /* This structure holds information of an argument of `concat' that is
456 a string and has text properties to be copied. */
459 ptrdiff_t argnum
; /* refer to ARGS (arguments of `concat') */
460 ptrdiff_t from
; /* refer to ARGS[argnum] (argument string) */
461 ptrdiff_t to
; /* refer to VAL (the target string) */
465 concat (ptrdiff_t nargs
, Lisp_Object
*args
,
466 enum Lisp_Type target_type
, bool last_special
)
472 ptrdiff_t toindex_byte
= 0;
473 EMACS_INT result_len
;
474 EMACS_INT result_len_byte
;
476 Lisp_Object last_tail
;
479 /* When we make a multibyte string, we can't copy text properties
480 while concatenating each string because the length of resulting
481 string can't be decided until we finish the whole concatenation.
482 So, we record strings that have text properties to be copied
483 here, and copy the text properties after the concatenation. */
484 struct textprop_rec
*textprops
= NULL
;
485 /* Number of elements in textprops. */
486 ptrdiff_t num_textprops
= 0;
491 /* In append, the last arg isn't treated like the others */
492 if (last_special
&& nargs
> 0)
495 last_tail
= args
[nargs
];
500 /* Check each argument. */
501 for (argnum
= 0; argnum
< nargs
; argnum
++)
504 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
505 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
506 wrong_type_argument (Qsequencep
, this);
509 /* Compute total length in chars of arguments in RESULT_LEN.
510 If desired output is a string, also compute length in bytes
511 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
512 whether the result should be a multibyte string. */
516 for (argnum
= 0; argnum
< nargs
; argnum
++)
520 len
= XFASTINT (Flength (this));
521 if (target_type
== Lisp_String
)
523 /* We must count the number of bytes needed in the string
524 as well as the number of characters. */
528 ptrdiff_t this_len_byte
;
530 if (VECTORP (this) || COMPILEDP (this))
531 for (i
= 0; i
< len
; i
++)
534 CHECK_CHARACTER (ch
);
536 this_len_byte
= CHAR_BYTES (c
);
537 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
539 result_len_byte
+= this_len_byte
;
540 if (! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
543 else if (BOOL_VECTOR_P (this) && bool_vector_size (this) > 0)
544 wrong_type_argument (Qintegerp
, Faref (this, make_number (0)));
545 else if (CONSP (this))
546 for (; CONSP (this); this = XCDR (this))
549 CHECK_CHARACTER (ch
);
551 this_len_byte
= CHAR_BYTES (c
);
552 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
554 result_len_byte
+= this_len_byte
;
555 if (! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
558 else if (STRINGP (this))
560 if (STRING_MULTIBYTE (this))
563 this_len_byte
= SBYTES (this);
566 this_len_byte
= count_size_as_multibyte (SDATA (this),
568 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
570 result_len_byte
+= this_len_byte
;
575 if (MOST_POSITIVE_FIXNUM
< result_len
)
576 memory_full (SIZE_MAX
);
579 if (! some_multibyte
)
580 result_len_byte
= result_len
;
582 /* Create the output object. */
583 if (target_type
== Lisp_Cons
)
584 val
= Fmake_list (make_number (result_len
), Qnil
);
585 else if (target_type
== Lisp_Vectorlike
)
586 val
= Fmake_vector (make_number (result_len
), Qnil
);
587 else if (some_multibyte
)
588 val
= make_uninit_multibyte_string (result_len
, result_len_byte
);
590 val
= make_uninit_string (result_len
);
592 /* In `append', if all but last arg are nil, return last arg. */
593 if (target_type
== Lisp_Cons
&& EQ (val
, Qnil
))
596 /* Copy the contents of the args into the result. */
598 tail
= val
, toindex
= -1; /* -1 in toindex is flag we are making a list */
600 toindex
= 0, toindex_byte
= 0;
604 SAFE_NALLOCA (textprops
, 1, nargs
);
606 for (argnum
= 0; argnum
< nargs
; argnum
++)
609 ptrdiff_t thisleni
= 0;
610 register ptrdiff_t thisindex
= 0;
611 register ptrdiff_t thisindex_byte
= 0;
615 thislen
= Flength (this), thisleni
= XINT (thislen
);
617 /* Between strings of the same kind, copy fast. */
618 if (STRINGP (this) && STRINGP (val
)
619 && STRING_MULTIBYTE (this) == some_multibyte
)
621 ptrdiff_t thislen_byte
= SBYTES (this);
623 memcpy (SDATA (val
) + toindex_byte
, SDATA (this), SBYTES (this));
624 if (string_intervals (this))
626 textprops
[num_textprops
].argnum
= argnum
;
627 textprops
[num_textprops
].from
= 0;
628 textprops
[num_textprops
++].to
= toindex
;
630 toindex_byte
+= thislen_byte
;
633 /* Copy a single-byte string to a multibyte string. */
634 else if (STRINGP (this) && STRINGP (val
))
636 if (string_intervals (this))
638 textprops
[num_textprops
].argnum
= argnum
;
639 textprops
[num_textprops
].from
= 0;
640 textprops
[num_textprops
++].to
= toindex
;
642 toindex_byte
+= copy_text (SDATA (this),
643 SDATA (val
) + toindex_byte
,
644 SCHARS (this), 0, 1);
648 /* Copy element by element. */
651 register Lisp_Object elt
;
653 /* Fetch next element of `this' arg into `elt', or break if
654 `this' is exhausted. */
655 if (NILP (this)) break;
657 elt
= XCAR (this), this = XCDR (this);
658 else if (thisindex
>= thisleni
)
660 else if (STRINGP (this))
663 if (STRING_MULTIBYTE (this))
664 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c
, this,
669 c
= SREF (this, thisindex
); thisindex
++;
670 if (some_multibyte
&& !ASCII_CHAR_P (c
))
671 c
= BYTE8_TO_CHAR (c
);
673 XSETFASTINT (elt
, c
);
675 else if (BOOL_VECTOR_P (this))
678 byte
= XBOOL_VECTOR (this)->data
[thisindex
/ BOOL_VECTOR_BITS_PER_CHAR
];
679 if (byte
& (1 << (thisindex
% BOOL_VECTOR_BITS_PER_CHAR
)))
687 elt
= AREF (this, thisindex
);
691 /* Store this element into the result. */
698 else if (VECTORP (val
))
700 ASET (val
, toindex
, elt
);
706 CHECK_CHARACTER (elt
);
709 toindex_byte
+= CHAR_STRING (c
, SDATA (val
) + toindex_byte
);
711 SSET (val
, toindex_byte
++, c
);
717 XSETCDR (prev
, last_tail
);
719 if (num_textprops
> 0)
722 ptrdiff_t last_to_end
= -1;
724 for (argnum
= 0; argnum
< num_textprops
; argnum
++)
726 this = args
[textprops
[argnum
].argnum
];
727 props
= text_property_list (this,
729 make_number (SCHARS (this)),
731 /* If successive arguments have properties, be sure that the
732 value of `composition' property be the copy. */
733 if (last_to_end
== textprops
[argnum
].to
)
734 make_composition_value_copy (props
);
735 add_text_properties_from_list (val
, props
,
736 make_number (textprops
[argnum
].to
));
737 last_to_end
= textprops
[argnum
].to
+ SCHARS (this);
745 static Lisp_Object string_char_byte_cache_string
;
746 static ptrdiff_t string_char_byte_cache_charpos
;
747 static ptrdiff_t string_char_byte_cache_bytepos
;
750 clear_string_char_byte_cache (void)
752 string_char_byte_cache_string
= Qnil
;
755 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
758 string_char_to_byte (Lisp_Object string
, ptrdiff_t char_index
)
761 ptrdiff_t best_below
, best_below_byte
;
762 ptrdiff_t best_above
, best_above_byte
;
764 best_below
= best_below_byte
= 0;
765 best_above
= SCHARS (string
);
766 best_above_byte
= SBYTES (string
);
767 if (best_above
== best_above_byte
)
770 if (EQ (string
, string_char_byte_cache_string
))
772 if (string_char_byte_cache_charpos
< char_index
)
774 best_below
= string_char_byte_cache_charpos
;
775 best_below_byte
= string_char_byte_cache_bytepos
;
779 best_above
= string_char_byte_cache_charpos
;
780 best_above_byte
= string_char_byte_cache_bytepos
;
784 if (char_index
- best_below
< best_above
- char_index
)
786 unsigned char *p
= SDATA (string
) + best_below_byte
;
788 while (best_below
< char_index
)
790 p
+= BYTES_BY_CHAR_HEAD (*p
);
793 i_byte
= p
- SDATA (string
);
797 unsigned char *p
= SDATA (string
) + best_above_byte
;
799 while (best_above
> char_index
)
802 while (!CHAR_HEAD_P (*p
)) p
--;
805 i_byte
= p
- SDATA (string
);
808 string_char_byte_cache_bytepos
= i_byte
;
809 string_char_byte_cache_charpos
= char_index
;
810 string_char_byte_cache_string
= string
;
815 /* Return the character index corresponding to BYTE_INDEX in STRING. */
818 string_byte_to_char (Lisp_Object string
, ptrdiff_t byte_index
)
821 ptrdiff_t best_below
, best_below_byte
;
822 ptrdiff_t best_above
, best_above_byte
;
824 best_below
= best_below_byte
= 0;
825 best_above
= SCHARS (string
);
826 best_above_byte
= SBYTES (string
);
827 if (best_above
== best_above_byte
)
830 if (EQ (string
, string_char_byte_cache_string
))
832 if (string_char_byte_cache_bytepos
< byte_index
)
834 best_below
= string_char_byte_cache_charpos
;
835 best_below_byte
= string_char_byte_cache_bytepos
;
839 best_above
= string_char_byte_cache_charpos
;
840 best_above_byte
= string_char_byte_cache_bytepos
;
844 if (byte_index
- best_below_byte
< best_above_byte
- byte_index
)
846 unsigned char *p
= SDATA (string
) + best_below_byte
;
847 unsigned char *pend
= SDATA (string
) + byte_index
;
851 p
+= BYTES_BY_CHAR_HEAD (*p
);
855 i_byte
= p
- SDATA (string
);
859 unsigned char *p
= SDATA (string
) + best_above_byte
;
860 unsigned char *pbeg
= SDATA (string
) + byte_index
;
865 while (!CHAR_HEAD_P (*p
)) p
--;
869 i_byte
= p
- SDATA (string
);
872 string_char_byte_cache_bytepos
= i_byte
;
873 string_char_byte_cache_charpos
= i
;
874 string_char_byte_cache_string
= string
;
879 /* Convert STRING to a multibyte string. */
882 string_make_multibyte (Lisp_Object string
)
889 if (STRING_MULTIBYTE (string
))
892 nbytes
= count_size_as_multibyte (SDATA (string
),
894 /* If all the chars are ASCII, they won't need any more bytes
895 once converted. In that case, we can return STRING itself. */
896 if (nbytes
== SBYTES (string
))
899 buf
= SAFE_ALLOCA (nbytes
);
900 copy_text (SDATA (string
), buf
, SBYTES (string
),
903 ret
= make_multibyte_string ((char *) buf
, SCHARS (string
), nbytes
);
910 /* Convert STRING (if unibyte) to a multibyte string without changing
911 the number of characters. Characters 0200 trough 0237 are
912 converted to eight-bit characters. */
915 string_to_multibyte (Lisp_Object string
)
922 if (STRING_MULTIBYTE (string
))
925 nbytes
= count_size_as_multibyte (SDATA (string
), SBYTES (string
));
926 /* If all the chars are ASCII, they won't need any more bytes once
928 if (nbytes
== SBYTES (string
))
929 return make_multibyte_string (SSDATA (string
), nbytes
, nbytes
);
931 buf
= SAFE_ALLOCA (nbytes
);
932 memcpy (buf
, SDATA (string
), SBYTES (string
));
933 str_to_multibyte (buf
, nbytes
, SBYTES (string
));
935 ret
= make_multibyte_string ((char *) buf
, SCHARS (string
), nbytes
);
942 /* Convert STRING to a single-byte string. */
945 string_make_unibyte (Lisp_Object string
)
952 if (! STRING_MULTIBYTE (string
))
955 nchars
= SCHARS (string
);
957 buf
= SAFE_ALLOCA (nchars
);
958 copy_text (SDATA (string
), buf
, SBYTES (string
),
961 ret
= make_unibyte_string ((char *) buf
, nchars
);
967 DEFUN ("string-make-multibyte", Fstring_make_multibyte
, Sstring_make_multibyte
,
969 doc
: /* Return the multibyte equivalent of STRING.
970 If STRING is unibyte and contains non-ASCII characters, the function
971 `unibyte-char-to-multibyte' is used to convert each unibyte character
972 to a multibyte character. In this case, the returned string is a
973 newly created string with no text properties. If STRING is multibyte
974 or entirely ASCII, it is returned unchanged. In particular, when
975 STRING is unibyte and entirely ASCII, the returned string is unibyte.
976 \(When the characters are all ASCII, Emacs primitives will treat the
977 string the same way whether it is unibyte or multibyte.) */)
980 CHECK_STRING (string
);
982 return string_make_multibyte (string
);
985 DEFUN ("string-make-unibyte", Fstring_make_unibyte
, Sstring_make_unibyte
,
987 doc
: /* Return the unibyte equivalent of STRING.
988 Multibyte character codes are converted to unibyte according to
989 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
990 If the lookup in the translation table fails, this function takes just
991 the low 8 bits of each character. */)
994 CHECK_STRING (string
);
996 return string_make_unibyte (string
);
999 DEFUN ("string-as-unibyte", Fstring_as_unibyte
, Sstring_as_unibyte
,
1001 doc
: /* Return a unibyte string with the same individual bytes as STRING.
1002 If STRING is unibyte, the result is STRING itself.
1003 Otherwise it is a newly created string, with no text properties.
1004 If STRING is multibyte and contains a character of charset
1005 `eight-bit', it is converted to the corresponding single byte. */)
1006 (Lisp_Object string
)
1008 CHECK_STRING (string
);
1010 if (STRING_MULTIBYTE (string
))
1012 unsigned char *str
= (unsigned char *) xlispstrdup (string
);
1013 ptrdiff_t bytes
= str_as_unibyte (str
, SBYTES (string
));
1015 string
= make_unibyte_string ((char *) str
, bytes
);
1021 DEFUN ("string-as-multibyte", Fstring_as_multibyte
, Sstring_as_multibyte
,
1023 doc
: /* Return a multibyte string with the same individual bytes as STRING.
1024 If STRING is multibyte, the result is STRING itself.
1025 Otherwise it is a newly created string, with no text properties.
1027 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1028 part of a correct utf-8 sequence), it is converted to the corresponding
1029 multibyte character of charset `eight-bit'.
1030 See also `string-to-multibyte'.
1032 Beware, this often doesn't really do what you think it does.
1033 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1034 If you're not sure, whether to use `string-as-multibyte' or
1035 `string-to-multibyte', use `string-to-multibyte'. */)
1036 (Lisp_Object string
)
1038 CHECK_STRING (string
);
1040 if (! STRING_MULTIBYTE (string
))
1042 Lisp_Object new_string
;
1043 ptrdiff_t nchars
, nbytes
;
1045 parse_str_as_multibyte (SDATA (string
),
1048 new_string
= make_uninit_multibyte_string (nchars
, nbytes
);
1049 memcpy (SDATA (new_string
), SDATA (string
), SBYTES (string
));
1050 if (nbytes
!= SBYTES (string
))
1051 str_as_multibyte (SDATA (new_string
), nbytes
,
1052 SBYTES (string
), NULL
);
1053 string
= new_string
;
1054 set_string_intervals (string
, NULL
);
1059 DEFUN ("string-to-multibyte", Fstring_to_multibyte
, Sstring_to_multibyte
,
1061 doc
: /* Return a multibyte string with the same individual chars as STRING.
1062 If STRING is multibyte, the result is STRING itself.
1063 Otherwise it is a newly created string, with no text properties.
1065 If STRING is unibyte and contains an 8-bit byte, it is converted to
1066 the corresponding multibyte character of charset `eight-bit'.
1068 This differs from `string-as-multibyte' by converting each byte of a correct
1069 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1070 correct sequence. */)
1071 (Lisp_Object string
)
1073 CHECK_STRING (string
);
1075 return string_to_multibyte (string
);
1078 DEFUN ("string-to-unibyte", Fstring_to_unibyte
, Sstring_to_unibyte
,
1080 doc
: /* Return a unibyte string with the same individual chars as STRING.
1081 If STRING is unibyte, the result is STRING itself.
1082 Otherwise it is a newly created string, with no text properties,
1083 where each `eight-bit' character is converted to the corresponding byte.
1084 If STRING contains a non-ASCII, non-`eight-bit' character,
1085 an error is signaled. */)
1086 (Lisp_Object string
)
1088 CHECK_STRING (string
);
1090 if (STRING_MULTIBYTE (string
))
1092 ptrdiff_t chars
= SCHARS (string
);
1093 unsigned char *str
= xmalloc (chars
);
1094 ptrdiff_t converted
= str_to_unibyte (SDATA (string
), str
, chars
);
1096 if (converted
< chars
)
1097 error ("Can't convert the %"pD
"dth character to unibyte", converted
);
1098 string
= make_unibyte_string ((char *) str
, chars
);
1105 DEFUN ("copy-alist", Fcopy_alist
, Scopy_alist
, 1, 1, 0,
1106 doc
: /* Return a copy of ALIST.
1107 This is an alist which represents the same mapping from objects to objects,
1108 but does not share the alist structure with ALIST.
1109 The objects mapped (cars and cdrs of elements of the alist)
1110 are shared, however.
1111 Elements of ALIST that are not conses are also shared. */)
1114 register Lisp_Object tem
;
1119 alist
= concat (1, &alist
, Lisp_Cons
, 0);
1120 for (tem
= alist
; CONSP (tem
); tem
= XCDR (tem
))
1122 register Lisp_Object car
;
1126 XSETCAR (tem
, Fcons (XCAR (car
), XCDR (car
)));
1131 DEFUN ("substring", Fsubstring
, Ssubstring
, 2, 3, 0,
1132 doc
: /* Return a new string whose contents are a substring of STRING.
1133 The returned string consists of the characters between index FROM
1134 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1135 zero-indexed: 0 means the first character of STRING. Negative values
1136 are counted from the end of STRING. If TO is nil, the substring runs
1137 to the end of STRING.
1139 The STRING argument may also be a vector. In that case, the return
1140 value is a new vector that contains the elements between index FROM
1141 \(inclusive) and index TO (exclusive) of that vector argument. */)
1142 (Lisp_Object string
, register Lisp_Object from
, Lisp_Object to
)
1146 EMACS_INT from_char
, to_char
;
1148 CHECK_VECTOR_OR_STRING (string
);
1149 CHECK_NUMBER (from
);
1151 if (STRINGP (string
))
1152 size
= SCHARS (string
);
1154 size
= ASIZE (string
);
1162 to_char
= XINT (to
);
1167 from_char
= XINT (from
);
1170 if (!(0 <= from_char
&& from_char
<= to_char
&& to_char
<= size
))
1171 args_out_of_range_3 (string
, make_number (from_char
),
1172 make_number (to_char
));
1174 if (STRINGP (string
))
1177 (NILP (to
) ? SBYTES (string
) : string_char_to_byte (string
, to_char
));
1178 ptrdiff_t from_byte
= string_char_to_byte (string
, from_char
);
1179 res
= make_specified_string (SSDATA (string
) + from_byte
,
1180 to_char
- from_char
, to_byte
- from_byte
,
1181 STRING_MULTIBYTE (string
));
1182 copy_text_properties (make_number (from_char
), make_number (to_char
),
1183 string
, make_number (0), res
, Qnil
);
1186 res
= Fvector (to_char
- from_char
, aref_addr (string
, from_char
));
1192 DEFUN ("substring-no-properties", Fsubstring_no_properties
, Ssubstring_no_properties
, 1, 3, 0,
1193 doc
: /* Return a substring of STRING, without text properties.
1194 It starts at index FROM and ends before TO.
1195 TO may be nil or omitted; then the substring runs to the end of STRING.
1196 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1197 If FROM or TO is negative, it counts from the end.
1199 With one argument, just copy STRING without its properties. */)
1200 (Lisp_Object string
, register Lisp_Object from
, Lisp_Object to
)
1203 EMACS_INT from_char
, to_char
;
1204 ptrdiff_t from_byte
, to_byte
;
1206 CHECK_STRING (string
);
1208 size
= SCHARS (string
);
1214 CHECK_NUMBER (from
);
1215 from_char
= XINT (from
);
1225 to_char
= XINT (to
);
1230 if (!(0 <= from_char
&& from_char
<= to_char
&& to_char
<= size
))
1231 args_out_of_range_3 (string
, make_number (from_char
),
1232 make_number (to_char
));
1234 from_byte
= NILP (from
) ? 0 : string_char_to_byte (string
, from_char
);
1236 NILP (to
) ? SBYTES (string
) : string_char_to_byte (string
, to_char
);
1237 return make_specified_string (SSDATA (string
) + from_byte
,
1238 to_char
- from_char
, to_byte
- from_byte
,
1239 STRING_MULTIBYTE (string
));
1242 /* Extract a substring of STRING, giving start and end positions
1243 both in characters and in bytes. */
1246 substring_both (Lisp_Object string
, ptrdiff_t from
, ptrdiff_t from_byte
,
1247 ptrdiff_t to
, ptrdiff_t to_byte
)
1252 CHECK_VECTOR_OR_STRING (string
);
1254 size
= STRINGP (string
) ? SCHARS (string
) : ASIZE (string
);
1256 if (!(0 <= from
&& from
<= to
&& to
<= size
))
1257 args_out_of_range_3 (string
, make_number (from
), make_number (to
));
1259 if (STRINGP (string
))
1261 res
= make_specified_string (SSDATA (string
) + from_byte
,
1262 to
- from
, to_byte
- from_byte
,
1263 STRING_MULTIBYTE (string
));
1264 copy_text_properties (make_number (from
), make_number (to
),
1265 string
, make_number (0), res
, Qnil
);
1268 res
= Fvector (to
- from
, aref_addr (string
, from
));
1273 DEFUN ("nthcdr", Fnthcdr
, Snthcdr
, 2, 2, 0,
1274 doc
: /* Take cdr N times on LIST, return the result. */)
1275 (Lisp_Object n
, Lisp_Object list
)
1280 for (i
= 0; i
< num
&& !NILP (list
); i
++)
1283 CHECK_LIST_CONS (list
, list
);
1289 DEFUN ("nth", Fnth
, Snth
, 2, 2, 0,
1290 doc
: /* Return the Nth element of LIST.
1291 N counts from zero. If LIST is not that long, nil is returned. */)
1292 (Lisp_Object n
, Lisp_Object list
)
1294 return Fcar (Fnthcdr (n
, list
));
1297 DEFUN ("elt", Felt
, Selt
, 2, 2, 0,
1298 doc
: /* Return element of SEQUENCE at index N. */)
1299 (register Lisp_Object sequence
, Lisp_Object n
)
1302 if (CONSP (sequence
) || NILP (sequence
))
1303 return Fcar (Fnthcdr (n
, sequence
));
1305 /* Faref signals a "not array" error, so check here. */
1306 CHECK_ARRAY (sequence
, Qsequencep
);
1307 return Faref (sequence
, n
);
1310 DEFUN ("member", Fmember
, Smember
, 2, 2, 0,
1311 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1312 The value is actually the tail of LIST whose car is ELT. */)
1313 (register Lisp_Object elt
, Lisp_Object list
)
1315 register Lisp_Object tail
;
1316 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
1318 register Lisp_Object tem
;
1319 CHECK_LIST_CONS (tail
, list
);
1321 if (! NILP (Fequal (elt
, tem
)))
1328 DEFUN ("memq", Fmemq
, Smemq
, 2, 2, 0,
1329 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1330 The value is actually the tail of LIST whose car is ELT. */)
1331 (register Lisp_Object elt
, Lisp_Object list
)
1335 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1339 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1343 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1354 DEFUN ("memql", Fmemql
, Smemql
, 2, 2, 0,
1355 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1356 The value is actually the tail of LIST whose car is ELT. */)
1357 (register Lisp_Object elt
, Lisp_Object list
)
1359 register Lisp_Object tail
;
1362 return Fmemq (elt
, list
);
1364 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
1366 register Lisp_Object tem
;
1367 CHECK_LIST_CONS (tail
, list
);
1369 if (FLOATP (tem
) && internal_equal (elt
, tem
, 0, 0))
1376 DEFUN ("assq", Fassq
, Sassq
, 2, 2, 0,
1377 doc
: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1378 The value is actually the first element of LIST whose car is KEY.
1379 Elements of LIST that are not conses are ignored. */)
1380 (Lisp_Object key
, Lisp_Object list
)
1385 || (CONSP (XCAR (list
))
1386 && EQ (XCAR (XCAR (list
)), key
)))
1391 || (CONSP (XCAR (list
))
1392 && EQ (XCAR (XCAR (list
)), key
)))
1397 || (CONSP (XCAR (list
))
1398 && EQ (XCAR (XCAR (list
)), key
)))
1408 /* Like Fassq but never report an error and do not allow quits.
1409 Use only on lists known never to be circular. */
1412 assq_no_quit (Lisp_Object key
, Lisp_Object list
)
1415 && (!CONSP (XCAR (list
))
1416 || !EQ (XCAR (XCAR (list
)), key
)))
1419 return CAR_SAFE (list
);
1422 DEFUN ("assoc", Fassoc
, Sassoc
, 2, 2, 0,
1423 doc
: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1424 The value is actually the first element of LIST whose car equals KEY. */)
1425 (Lisp_Object key
, Lisp_Object list
)
1432 || (CONSP (XCAR (list
))
1433 && (car
= XCAR (XCAR (list
)),
1434 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1439 || (CONSP (XCAR (list
))
1440 && (car
= XCAR (XCAR (list
)),
1441 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1446 || (CONSP (XCAR (list
))
1447 && (car
= XCAR (XCAR (list
)),
1448 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1458 /* Like Fassoc but never report an error and do not allow quits.
1459 Use only on lists known never to be circular. */
1462 assoc_no_quit (Lisp_Object key
, Lisp_Object list
)
1465 && (!CONSP (XCAR (list
))
1466 || (!EQ (XCAR (XCAR (list
)), key
)
1467 && NILP (Fequal (XCAR (XCAR (list
)), key
)))))
1470 return CONSP (list
) ? XCAR (list
) : Qnil
;
1473 DEFUN ("rassq", Frassq
, Srassq
, 2, 2, 0,
1474 doc
: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1475 The value is actually the first element of LIST whose cdr is KEY. */)
1476 (register Lisp_Object key
, Lisp_Object list
)
1481 || (CONSP (XCAR (list
))
1482 && EQ (XCDR (XCAR (list
)), key
)))
1487 || (CONSP (XCAR (list
))
1488 && EQ (XCDR (XCAR (list
)), key
)))
1493 || (CONSP (XCAR (list
))
1494 && EQ (XCDR (XCAR (list
)), key
)))
1504 DEFUN ("rassoc", Frassoc
, Srassoc
, 2, 2, 0,
1505 doc
: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1506 The value is actually the first element of LIST whose cdr equals KEY. */)
1507 (Lisp_Object key
, Lisp_Object list
)
1514 || (CONSP (XCAR (list
))
1515 && (cdr
= XCDR (XCAR (list
)),
1516 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1521 || (CONSP (XCAR (list
))
1522 && (cdr
= XCDR (XCAR (list
)),
1523 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1528 || (CONSP (XCAR (list
))
1529 && (cdr
= XCDR (XCAR (list
)),
1530 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1540 DEFUN ("delq", Fdelq
, Sdelq
, 2, 2, 0,
1541 doc
: /* Delete members of LIST which are `eq' to ELT, and return the result.
1542 More precisely, this function skips any members `eq' to ELT at the
1543 front of LIST, then removes members `eq' to ELT from the remaining
1544 sublist by modifying its list structure, then returns the resulting
1547 Write `(setq foo (delq element foo))' to be sure of correctly changing
1548 the value of a list `foo'. */)
1549 (register Lisp_Object elt
, Lisp_Object list
)
1551 register Lisp_Object tail
, prev
;
1552 register Lisp_Object tem
;
1556 while (CONSP (tail
))
1558 CHECK_LIST_CONS (tail
, list
);
1565 Fsetcdr (prev
, XCDR (tail
));
1575 DEFUN ("delete", Fdelete
, Sdelete
, 2, 2, 0,
1576 doc
: /* Delete members of SEQ which are `equal' to ELT, and return the result.
1577 SEQ must be a sequence (i.e. a list, a vector, or a string).
1578 The return value is a sequence of the same type.
1580 If SEQ is a list, this behaves like `delq', except that it compares
1581 with `equal' instead of `eq'. In particular, it may remove elements
1582 by altering the list structure.
1584 If SEQ is not a list, deletion is never performed destructively;
1585 instead this function creates and returns a new vector or string.
1587 Write `(setq foo (delete element foo))' to be sure of correctly
1588 changing the value of a sequence `foo'. */)
1589 (Lisp_Object elt
, Lisp_Object seq
)
1595 for (i
= n
= 0; i
< ASIZE (seq
); ++i
)
1596 if (NILP (Fequal (AREF (seq
, i
), elt
)))
1599 if (n
!= ASIZE (seq
))
1601 struct Lisp_Vector
*p
= allocate_vector (n
);
1603 for (i
= n
= 0; i
< ASIZE (seq
); ++i
)
1604 if (NILP (Fequal (AREF (seq
, i
), elt
)))
1605 p
->u
.contents
[n
++] = AREF (seq
, i
);
1607 XSETVECTOR (seq
, p
);
1610 else if (STRINGP (seq
))
1612 ptrdiff_t i
, ibyte
, nchars
, nbytes
, cbytes
;
1615 for (i
= nchars
= nbytes
= ibyte
= 0;
1617 ++i
, ibyte
+= cbytes
)
1619 if (STRING_MULTIBYTE (seq
))
1621 c
= STRING_CHAR (SDATA (seq
) + ibyte
);
1622 cbytes
= CHAR_BYTES (c
);
1630 if (!INTEGERP (elt
) || c
!= XINT (elt
))
1637 if (nchars
!= SCHARS (seq
))
1641 tem
= make_uninit_multibyte_string (nchars
, nbytes
);
1642 if (!STRING_MULTIBYTE (seq
))
1643 STRING_SET_UNIBYTE (tem
);
1645 for (i
= nchars
= nbytes
= ibyte
= 0;
1647 ++i
, ibyte
+= cbytes
)
1649 if (STRING_MULTIBYTE (seq
))
1651 c
= STRING_CHAR (SDATA (seq
) + ibyte
);
1652 cbytes
= CHAR_BYTES (c
);
1660 if (!INTEGERP (elt
) || c
!= XINT (elt
))
1662 unsigned char *from
= SDATA (seq
) + ibyte
;
1663 unsigned char *to
= SDATA (tem
) + nbytes
;
1669 for (n
= cbytes
; n
--; )
1679 Lisp_Object tail
, prev
;
1681 for (tail
= seq
, prev
= Qnil
; CONSP (tail
); tail
= XCDR (tail
))
1683 CHECK_LIST_CONS (tail
, seq
);
1685 if (!NILP (Fequal (elt
, XCAR (tail
))))
1690 Fsetcdr (prev
, XCDR (tail
));
1701 DEFUN ("nreverse", Fnreverse
, Snreverse
, 1, 1, 0,
1702 doc
: /* Reverse LIST by modifying cdr pointers.
1703 Return the reversed list. Expects a properly nil-terminated list. */)
1706 register Lisp_Object prev
, tail
, next
;
1708 if (NILP (list
)) return list
;
1711 while (!NILP (tail
))
1714 CHECK_LIST_CONS (tail
, tail
);
1716 Fsetcdr (tail
, prev
);
1723 DEFUN ("reverse", Freverse
, Sreverse
, 1, 1, 0,
1724 doc
: /* Reverse LIST, copying. Return the reversed list.
1725 See also the function `nreverse', which is used more often. */)
1730 for (new = Qnil
; CONSP (list
); list
= XCDR (list
))
1733 new = Fcons (XCAR (list
), new);
1735 CHECK_LIST_END (list
, list
);
1739 DEFUN ("sort", Fsort
, Ssort
, 2, 2, 0,
1740 doc
: /* Sort LIST, stably, comparing elements using PREDICATE.
1741 Returns the sorted list. LIST is modified by side effects.
1742 PREDICATE is called with two elements of LIST, and should return non-nil
1743 if the first element should sort before the second. */)
1744 (Lisp_Object list
, Lisp_Object predicate
)
1746 Lisp_Object front
, back
;
1747 register Lisp_Object len
, tem
;
1748 struct gcpro gcpro1
, gcpro2
;
1752 len
= Flength (list
);
1753 length
= XINT (len
);
1757 XSETINT (len
, (length
/ 2) - 1);
1758 tem
= Fnthcdr (len
, list
);
1760 Fsetcdr (tem
, Qnil
);
1762 GCPRO2 (front
, back
);
1763 front
= Fsort (front
, predicate
);
1764 back
= Fsort (back
, predicate
);
1766 return merge (front
, back
, predicate
);
1770 merge (Lisp_Object org_l1
, Lisp_Object org_l2
, Lisp_Object pred
)
1773 register Lisp_Object tail
;
1775 register Lisp_Object l1
, l2
;
1776 struct gcpro gcpro1
, gcpro2
, gcpro3
, gcpro4
;
1783 /* It is sufficient to protect org_l1 and org_l2.
1784 When l1 and l2 are updated, we copy the new values
1785 back into the org_ vars. */
1786 GCPRO4 (org_l1
, org_l2
, pred
, value
);
1806 tem
= call2 (pred
, Fcar (l2
), Fcar (l1
));
1822 Fsetcdr (tail
, tem
);
1828 /* This does not check for quits. That is safe since it must terminate. */
1830 DEFUN ("plist-get", Fplist_get
, Splist_get
, 2, 2, 0,
1831 doc
: /* Extract a value from a property list.
1832 PLIST is a property list, which is a list of the form
1833 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1834 corresponding to the given PROP, or nil if PROP is not one of the
1835 properties on the list. This function never signals an error. */)
1836 (Lisp_Object plist
, Lisp_Object prop
)
1838 Lisp_Object tail
, halftail
;
1840 /* halftail is used to detect circular lists. */
1841 tail
= halftail
= plist
;
1842 while (CONSP (tail
) && CONSP (XCDR (tail
)))
1844 if (EQ (prop
, XCAR (tail
)))
1845 return XCAR (XCDR (tail
));
1847 tail
= XCDR (XCDR (tail
));
1848 halftail
= XCDR (halftail
);
1849 if (EQ (tail
, halftail
))
1856 DEFUN ("get", Fget
, Sget
, 2, 2, 0,
1857 doc
: /* Return the value of SYMBOL's PROPNAME property.
1858 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1859 (Lisp_Object symbol
, Lisp_Object propname
)
1861 CHECK_SYMBOL (symbol
);
1862 return Fplist_get (XSYMBOL (symbol
)->plist
, propname
);
1865 DEFUN ("plist-put", Fplist_put
, Splist_put
, 3, 3, 0,
1866 doc
: /* Change value in PLIST of PROP to VAL.
1867 PLIST is a property list, which is a list of the form
1868 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1869 If PROP is already a property on the list, its value is set to VAL,
1870 otherwise the new PROP VAL pair is added. The new plist is returned;
1871 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1872 The PLIST is modified by side effects. */)
1873 (Lisp_Object plist
, register Lisp_Object prop
, Lisp_Object val
)
1875 register Lisp_Object tail
, prev
;
1876 Lisp_Object newcell
;
1878 for (tail
= plist
; CONSP (tail
) && CONSP (XCDR (tail
));
1879 tail
= XCDR (XCDR (tail
)))
1881 if (EQ (prop
, XCAR (tail
)))
1883 Fsetcar (XCDR (tail
), val
);
1890 newcell
= Fcons (prop
, Fcons (val
, NILP (prev
) ? plist
: XCDR (XCDR (prev
))));
1894 Fsetcdr (XCDR (prev
), newcell
);
1898 DEFUN ("put", Fput
, Sput
, 3, 3, 0,
1899 doc
: /* Store SYMBOL's PROPNAME property with value VALUE.
1900 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1901 (Lisp_Object symbol
, Lisp_Object propname
, Lisp_Object value
)
1903 CHECK_SYMBOL (symbol
);
1905 (symbol
, Fplist_put (XSYMBOL (symbol
)->plist
, propname
, value
));
1909 DEFUN ("lax-plist-get", Flax_plist_get
, Slax_plist_get
, 2, 2, 0,
1910 doc
: /* Extract a value from a property list, comparing with `equal'.
1911 PLIST is a property list, which is a list of the form
1912 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1913 corresponding to the given PROP, or nil if PROP is not
1914 one of the properties on the list. */)
1915 (Lisp_Object plist
, Lisp_Object prop
)
1920 CONSP (tail
) && CONSP (XCDR (tail
));
1921 tail
= XCDR (XCDR (tail
)))
1923 if (! NILP (Fequal (prop
, XCAR (tail
))))
1924 return XCAR (XCDR (tail
));
1929 CHECK_LIST_END (tail
, prop
);
1934 DEFUN ("lax-plist-put", Flax_plist_put
, Slax_plist_put
, 3, 3, 0,
1935 doc
: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1936 PLIST is a property list, which is a list of the form
1937 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1938 If PROP is already a property on the list, its value is set to VAL,
1939 otherwise the new PROP VAL pair is added. The new plist is returned;
1940 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1941 The PLIST is modified by side effects. */)
1942 (Lisp_Object plist
, register Lisp_Object prop
, Lisp_Object val
)
1944 register Lisp_Object tail
, prev
;
1945 Lisp_Object newcell
;
1947 for (tail
= plist
; CONSP (tail
) && CONSP (XCDR (tail
));
1948 tail
= XCDR (XCDR (tail
)))
1950 if (! NILP (Fequal (prop
, XCAR (tail
))))
1952 Fsetcar (XCDR (tail
), val
);
1959 newcell
= list2 (prop
, val
);
1963 Fsetcdr (XCDR (prev
), newcell
);
1967 DEFUN ("eql", Feql
, Seql
, 2, 2, 0,
1968 doc
: /* Return t if the two args are the same Lisp object.
1969 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1970 (Lisp_Object obj1
, Lisp_Object obj2
)
1973 return internal_equal (obj1
, obj2
, 0, 0) ? Qt
: Qnil
;
1975 return EQ (obj1
, obj2
) ? Qt
: Qnil
;
1978 DEFUN ("equal", Fequal
, Sequal
, 2, 2, 0,
1979 doc
: /* Return t if two Lisp objects have similar structure and contents.
1980 They must have the same data type.
1981 Conses are compared by comparing the cars and the cdrs.
1982 Vectors and strings are compared element by element.
1983 Numbers are compared by value, but integers cannot equal floats.
1984 (Use `=' if you want integers and floats to be able to be equal.)
1985 Symbols must match exactly. */)
1986 (register Lisp_Object o1
, Lisp_Object o2
)
1988 return internal_equal (o1
, o2
, 0, 0) ? Qt
: Qnil
;
1991 DEFUN ("equal-including-properties", Fequal_including_properties
, Sequal_including_properties
, 2, 2, 0,
1992 doc
: /* Return t if two Lisp objects have similar structure and contents.
1993 This is like `equal' except that it compares the text properties
1994 of strings. (`equal' ignores text properties.) */)
1995 (register Lisp_Object o1
, Lisp_Object o2
)
1997 return internal_equal (o1
, o2
, 0, 1) ? Qt
: Qnil
;
2000 /* DEPTH is current depth of recursion. Signal an error if it
2002 PROPS means compare string text properties too. */
2005 internal_equal (Lisp_Object o1
, Lisp_Object o2
, int depth
, bool props
)
2008 error ("Stack overflow in equal");
2014 if (XTYPE (o1
) != XTYPE (o2
))
2023 d1
= extract_float (o1
);
2024 d2
= extract_float (o2
);
2025 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2026 though they are not =. */
2027 return d1
== d2
|| (d1
!= d1
&& d2
!= d2
);
2031 if (!internal_equal (XCAR (o1
), XCAR (o2
), depth
+ 1, props
))
2038 if (XMISCTYPE (o1
) != XMISCTYPE (o2
))
2042 if (!internal_equal (OVERLAY_START (o1
), OVERLAY_START (o2
),
2044 || !internal_equal (OVERLAY_END (o1
), OVERLAY_END (o2
),
2047 o1
= XOVERLAY (o1
)->plist
;
2048 o2
= XOVERLAY (o2
)->plist
;
2053 return (XMARKER (o1
)->buffer
== XMARKER (o2
)->buffer
2054 && (XMARKER (o1
)->buffer
== 0
2055 || XMARKER (o1
)->bytepos
== XMARKER (o2
)->bytepos
));
2059 case Lisp_Vectorlike
:
2062 ptrdiff_t size
= ASIZE (o1
);
2063 /* Pseudovectors have the type encoded in the size field, so this test
2064 actually checks that the objects have the same type as well as the
2066 if (ASIZE (o2
) != size
)
2068 /* Boolvectors are compared much like strings. */
2069 if (BOOL_VECTOR_P (o1
))
2071 EMACS_INT size
= bool_vector_size (o1
);
2072 if (size
!= bool_vector_size (o2
))
2074 if (memcmp (XBOOL_VECTOR (o1
)->data
, XBOOL_VECTOR (o2
)->data
,
2075 ((size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
2076 / BOOL_VECTOR_BITS_PER_CHAR
)))
2080 if (WINDOW_CONFIGURATIONP (o1
))
2081 return compare_window_configurations (o1
, o2
, 0);
2083 /* Aside from them, only true vectors, char-tables, compiled
2084 functions, and fonts (font-spec, font-entity, font-object)
2085 are sensible to compare, so eliminate the others now. */
2086 if (size
& PSEUDOVECTOR_FLAG
)
2088 if (((size
& PVEC_TYPE_MASK
) >> PSEUDOVECTOR_AREA_BITS
)
2091 size
&= PSEUDOVECTOR_SIZE_MASK
;
2093 for (i
= 0; i
< size
; i
++)
2098 if (!internal_equal (v1
, v2
, depth
+ 1, props
))
2106 if (SCHARS (o1
) != SCHARS (o2
))
2108 if (SBYTES (o1
) != SBYTES (o2
))
2110 if (memcmp (SDATA (o1
), SDATA (o2
), SBYTES (o1
)))
2112 if (props
&& !compare_string_intervals (o1
, o2
))
2124 DEFUN ("fillarray", Ffillarray
, Sfillarray
, 2, 2, 0,
2125 doc
: /* Store each element of ARRAY with ITEM.
2126 ARRAY is a vector, string, char-table, or bool-vector. */)
2127 (Lisp_Object array
, Lisp_Object item
)
2129 register ptrdiff_t size
, idx
;
2131 if (VECTORP (array
))
2132 for (idx
= 0, size
= ASIZE (array
); idx
< size
; idx
++)
2133 ASET (array
, idx
, item
);
2134 else if (CHAR_TABLE_P (array
))
2138 for (i
= 0; i
< (1 << CHARTAB_SIZE_BITS_0
); i
++)
2139 set_char_table_contents (array
, i
, item
);
2140 set_char_table_defalt (array
, item
);
2142 else if (STRINGP (array
))
2144 register unsigned char *p
= SDATA (array
);
2146 CHECK_CHARACTER (item
);
2147 charval
= XFASTINT (item
);
2148 size
= SCHARS (array
);
2149 if (STRING_MULTIBYTE (array
))
2151 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2152 int len
= CHAR_STRING (charval
, str
);
2153 ptrdiff_t size_byte
= SBYTES (array
);
2155 if (INT_MULTIPLY_OVERFLOW (SCHARS (array
), len
)
2156 || SCHARS (array
) * len
!= size_byte
)
2157 error ("Attempt to change byte length of a string");
2158 for (idx
= 0; idx
< size_byte
; idx
++)
2159 *p
++ = str
[idx
% len
];
2162 for (idx
= 0; idx
< size
; idx
++)
2165 else if (BOOL_VECTOR_P (array
))
2167 unsigned char *p
= XBOOL_VECTOR (array
)->data
;
2168 size
= ((bool_vector_size (array
) + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2169 / BOOL_VECTOR_BITS_PER_CHAR
);
2173 memset (p
, ! NILP (item
) ? -1 : 0, size
);
2175 /* Clear any extraneous bits in the last byte. */
2176 p
[size
- 1] &= (1 << (size
% BOOL_VECTOR_BITS_PER_CHAR
)) - 1;
2180 wrong_type_argument (Qarrayp
, array
);
2184 DEFUN ("clear-string", Fclear_string
, Sclear_string
,
2186 doc
: /* Clear the contents of STRING.
2187 This makes STRING unibyte and may change its length. */)
2188 (Lisp_Object string
)
2191 CHECK_STRING (string
);
2192 len
= SBYTES (string
);
2193 memset (SDATA (string
), 0, len
);
2194 STRING_SET_CHARS (string
, len
);
2195 STRING_SET_UNIBYTE (string
);
2201 nconc2 (Lisp_Object s1
, Lisp_Object s2
)
2203 Lisp_Object args
[2];
2206 return Fnconc (2, args
);
2209 DEFUN ("nconc", Fnconc
, Snconc
, 0, MANY
, 0,
2210 doc
: /* Concatenate any number of lists by altering them.
2211 Only the last argument is not altered, and need not be a list.
2212 usage: (nconc &rest LISTS) */)
2213 (ptrdiff_t nargs
, Lisp_Object
*args
)
2216 register Lisp_Object tail
, tem
, val
;
2220 for (argnum
= 0; argnum
< nargs
; argnum
++)
2223 if (NILP (tem
)) continue;
2228 if (argnum
+ 1 == nargs
) break;
2230 CHECK_LIST_CONS (tem
, tem
);
2239 tem
= args
[argnum
+ 1];
2240 Fsetcdr (tail
, tem
);
2242 args
[argnum
+ 1] = tail
;
2248 /* This is the guts of all mapping functions.
2249 Apply FN to each element of SEQ, one by one,
2250 storing the results into elements of VALS, a C vector of Lisp_Objects.
2251 LENI is the length of VALS, which should also be the length of SEQ. */
2254 mapcar1 (EMACS_INT leni
, Lisp_Object
*vals
, Lisp_Object fn
, Lisp_Object seq
)
2256 register Lisp_Object tail
;
2258 register EMACS_INT i
;
2259 struct gcpro gcpro1
, gcpro2
, gcpro3
;
2263 /* Don't let vals contain any garbage when GC happens. */
2264 for (i
= 0; i
< leni
; i
++)
2267 GCPRO3 (dummy
, fn
, seq
);
2269 gcpro1
.nvars
= leni
;
2273 /* We need not explicitly protect `tail' because it is used only on lists, and
2274 1) lists are not relocated and 2) the list is marked via `seq' so will not
2277 if (VECTORP (seq
) || COMPILEDP (seq
))
2279 for (i
= 0; i
< leni
; i
++)
2281 dummy
= call1 (fn
, AREF (seq
, i
));
2286 else if (BOOL_VECTOR_P (seq
))
2288 for (i
= 0; i
< leni
; i
++)
2291 byte
= XBOOL_VECTOR (seq
)->data
[i
/ BOOL_VECTOR_BITS_PER_CHAR
];
2292 dummy
= (byte
& (1 << (i
% BOOL_VECTOR_BITS_PER_CHAR
))) ? Qt
: Qnil
;
2293 dummy
= call1 (fn
, dummy
);
2298 else if (STRINGP (seq
))
2302 for (i
= 0, i_byte
= 0; i
< leni
;)
2305 ptrdiff_t i_before
= i
;
2307 FETCH_STRING_CHAR_ADVANCE (c
, seq
, i
, i_byte
);
2308 XSETFASTINT (dummy
, c
);
2309 dummy
= call1 (fn
, dummy
);
2311 vals
[i_before
] = dummy
;
2314 else /* Must be a list, since Flength did not get an error */
2317 for (i
= 0; i
< leni
&& CONSP (tail
); i
++)
2319 dummy
= call1 (fn
, XCAR (tail
));
2329 DEFUN ("mapconcat", Fmapconcat
, Smapconcat
, 3, 3, 0,
2330 doc
: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2331 In between each pair of results, stick in SEPARATOR. Thus, " " as
2332 SEPARATOR results in spaces between the values returned by FUNCTION.
2333 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2334 (Lisp_Object function
, Lisp_Object sequence
, Lisp_Object separator
)
2337 register EMACS_INT leni
;
2340 register Lisp_Object
*args
;
2341 struct gcpro gcpro1
;
2345 len
= Flength (sequence
);
2346 if (CHAR_TABLE_P (sequence
))
2347 wrong_type_argument (Qlistp
, sequence
);
2349 nargs
= leni
+ leni
- 1;
2350 if (nargs
< 0) return empty_unibyte_string
;
2352 SAFE_ALLOCA_LISP (args
, nargs
);
2355 mapcar1 (leni
, args
, function
, sequence
);
2358 for (i
= leni
- 1; i
> 0; i
--)
2359 args
[i
+ i
] = args
[i
];
2361 for (i
= 1; i
< nargs
; i
+= 2)
2362 args
[i
] = separator
;
2364 ret
= Fconcat (nargs
, args
);
2370 DEFUN ("mapcar", Fmapcar
, Smapcar
, 2, 2, 0,
2371 doc
: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2372 The result is a list just as long as SEQUENCE.
2373 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2374 (Lisp_Object function
, Lisp_Object sequence
)
2376 register Lisp_Object len
;
2377 register EMACS_INT leni
;
2378 register Lisp_Object
*args
;
2382 len
= Flength (sequence
);
2383 if (CHAR_TABLE_P (sequence
))
2384 wrong_type_argument (Qlistp
, sequence
);
2385 leni
= XFASTINT (len
);
2387 SAFE_ALLOCA_LISP (args
, leni
);
2389 mapcar1 (leni
, args
, function
, sequence
);
2391 ret
= Flist (leni
, args
);
2397 DEFUN ("mapc", Fmapc
, Smapc
, 2, 2, 0,
2398 doc
: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2399 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2400 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2401 (Lisp_Object function
, Lisp_Object sequence
)
2403 register EMACS_INT leni
;
2405 leni
= XFASTINT (Flength (sequence
));
2406 if (CHAR_TABLE_P (sequence
))
2407 wrong_type_argument (Qlistp
, sequence
);
2408 mapcar1 (leni
, 0, function
, sequence
);
2413 /* This is how C code calls `yes-or-no-p' and allows the user
2416 Anything that calls this function must protect from GC! */
2419 do_yes_or_no_p (Lisp_Object prompt
)
2421 return call1 (intern ("yes-or-no-p"), prompt
);
2424 /* Anything that calls this function must protect from GC! */
2426 DEFUN ("yes-or-no-p", Fyes_or_no_p
, Syes_or_no_p
, 1, 1, 0,
2427 doc
: /* Ask user a yes-or-no question. Return t if answer is yes.
2428 PROMPT is the string to display to ask the question. It should end in
2429 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2431 The user must confirm the answer with RET, and can edit it until it
2434 If dialog boxes are supported, a dialog box will be used
2435 if `last-nonmenu-event' is nil, and `use-dialog-box' is non-nil. */)
2436 (Lisp_Object prompt
)
2438 register Lisp_Object ans
;
2439 Lisp_Object args
[2];
2440 struct gcpro gcpro1
;
2442 CHECK_STRING (prompt
);
2445 if ((NILP (last_nonmenu_event
) || CONSP (last_nonmenu_event
))
2448 Lisp_Object pane
, menu
, obj
;
2449 redisplay_preserve_echo_area (4);
2450 pane
= list2 (Fcons (build_string ("Yes"), Qt
),
2451 Fcons (build_string ("No"), Qnil
));
2453 menu
= Fcons (prompt
, pane
);
2454 obj
= Fx_popup_dialog (Qt
, menu
, Qnil
);
2458 #endif /* HAVE_MENUS */
2461 args
[1] = build_string ("(yes or no) ");
2462 prompt
= Fconcat (2, args
);
2468 ans
= Fdowncase (Fread_from_minibuffer (prompt
, Qnil
, Qnil
, Qnil
,
2469 Qyes_or_no_p_history
, Qnil
,
2471 if (SCHARS (ans
) == 3 && !strcmp (SSDATA (ans
), "yes"))
2476 if (SCHARS (ans
) == 2 && !strcmp (SSDATA (ans
), "no"))
2484 message1 ("Please answer yes or no.");
2485 Fsleep_for (make_number (2), Qnil
);
2489 DEFUN ("load-average", Fload_average
, Sload_average
, 0, 1, 0,
2490 doc
: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2492 Each of the three load averages is multiplied by 100, then converted
2495 When USE-FLOATS is non-nil, floats will be used instead of integers.
2496 These floats are not multiplied by 100.
2498 If the 5-minute or 15-minute load averages are not available, return a
2499 shortened list, containing only those averages which are available.
2501 An error is thrown if the load average can't be obtained. In some
2502 cases making it work would require Emacs being installed setuid or
2503 setgid so that it can read kernel information, and that usually isn't
2505 (Lisp_Object use_floats
)
2508 int loads
= getloadavg (load_ave
, 3);
2509 Lisp_Object ret
= Qnil
;
2512 error ("load-average not implemented for this operating system");
2516 Lisp_Object load
= (NILP (use_floats
)
2517 ? make_number (100.0 * load_ave
[loads
])
2518 : make_float (load_ave
[loads
]));
2519 ret
= Fcons (load
, ret
);
2525 static Lisp_Object Qsubfeatures
;
2527 DEFUN ("featurep", Ffeaturep
, Sfeaturep
, 1, 2, 0,
2528 doc
: /* Return t if FEATURE is present in this Emacs.
2530 Use this to conditionalize execution of lisp code based on the
2531 presence or absence of Emacs or environment extensions.
2532 Use `provide' to declare that a feature is available. This function
2533 looks at the value of the variable `features'. The optional argument
2534 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2535 (Lisp_Object feature
, Lisp_Object subfeature
)
2537 register Lisp_Object tem
;
2538 CHECK_SYMBOL (feature
);
2539 tem
= Fmemq (feature
, Vfeatures
);
2540 if (!NILP (tem
) && !NILP (subfeature
))
2541 tem
= Fmember (subfeature
, Fget (feature
, Qsubfeatures
));
2542 return (NILP (tem
)) ? Qnil
: Qt
;
2545 static Lisp_Object Qfuncall
;
2547 DEFUN ("provide", Fprovide
, Sprovide
, 1, 2, 0,
2548 doc
: /* Announce that FEATURE is a feature of the current Emacs.
2549 The optional argument SUBFEATURES should be a list of symbols listing
2550 particular subfeatures supported in this version of FEATURE. */)
2551 (Lisp_Object feature
, Lisp_Object subfeatures
)
2553 register Lisp_Object tem
;
2554 CHECK_SYMBOL (feature
);
2555 CHECK_LIST (subfeatures
);
2556 if (!NILP (Vautoload_queue
))
2557 Vautoload_queue
= Fcons (Fcons (make_number (0), Vfeatures
),
2559 tem
= Fmemq (feature
, Vfeatures
);
2561 Vfeatures
= Fcons (feature
, Vfeatures
);
2562 if (!NILP (subfeatures
))
2563 Fput (feature
, Qsubfeatures
, subfeatures
);
2564 LOADHIST_ATTACH (Fcons (Qprovide
, feature
));
2566 /* Run any load-hooks for this file. */
2567 tem
= Fassq (feature
, Vafter_load_alist
);
2569 Fmapc (Qfuncall
, XCDR (tem
));
2574 /* `require' and its subroutines. */
2576 /* List of features currently being require'd, innermost first. */
2578 static Lisp_Object require_nesting_list
;
2581 require_unwind (Lisp_Object old_value
)
2583 require_nesting_list
= old_value
;
2586 DEFUN ("require", Frequire
, Srequire
, 1, 3, 0,
2587 doc
: /* If feature FEATURE is not loaded, load it from FILENAME.
2588 If FEATURE is not a member of the list `features', then the feature
2589 is not loaded; so load the file FILENAME.
2590 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2591 and `load' will try to load this name appended with the suffix `.elc' or
2592 `.el', in that order. The name without appended suffix will not be used.
2593 See `get-load-suffixes' for the complete list of suffixes.
2594 If the optional third argument NOERROR is non-nil,
2595 then return nil if the file is not found instead of signaling an error.
2596 Normally the return value is FEATURE.
2597 The normal messages at start and end of loading FILENAME are suppressed. */)
2598 (Lisp_Object feature
, Lisp_Object filename
, Lisp_Object noerror
)
2601 struct gcpro gcpro1
, gcpro2
;
2602 bool from_file
= load_in_progress
;
2604 CHECK_SYMBOL (feature
);
2606 /* Record the presence of `require' in this file
2607 even if the feature specified is already loaded.
2608 But not more than once in any file,
2609 and not when we aren't loading or reading from a file. */
2611 for (tem
= Vcurrent_load_list
; CONSP (tem
); tem
= XCDR (tem
))
2612 if (NILP (XCDR (tem
)) && STRINGP (XCAR (tem
)))
2617 tem
= Fcons (Qrequire
, feature
);
2618 if (NILP (Fmember (tem
, Vcurrent_load_list
)))
2619 LOADHIST_ATTACH (tem
);
2621 tem
= Fmemq (feature
, Vfeatures
);
2625 ptrdiff_t count
= SPECPDL_INDEX ();
2628 /* This is to make sure that loadup.el gives a clear picture
2629 of what files are preloaded and when. */
2630 if (! NILP (Vpurify_flag
))
2631 error ("(require %s) while preparing to dump",
2632 SDATA (SYMBOL_NAME (feature
)));
2634 /* A certain amount of recursive `require' is legitimate,
2635 but if we require the same feature recursively 3 times,
2637 tem
= require_nesting_list
;
2638 while (! NILP (tem
))
2640 if (! NILP (Fequal (feature
, XCAR (tem
))))
2645 error ("Recursive `require' for feature `%s'",
2646 SDATA (SYMBOL_NAME (feature
)));
2648 /* Update the list for any nested `require's that occur. */
2649 record_unwind_protect (require_unwind
, require_nesting_list
);
2650 require_nesting_list
= Fcons (feature
, require_nesting_list
);
2652 /* Value saved here is to be restored into Vautoload_queue */
2653 record_unwind_protect (un_autoload
, Vautoload_queue
);
2654 Vautoload_queue
= Qt
;
2656 /* Load the file. */
2657 GCPRO2 (feature
, filename
);
2658 tem
= Fload (NILP (filename
) ? Fsymbol_name (feature
) : filename
,
2659 noerror
, Qt
, Qnil
, (NILP (filename
) ? Qt
: Qnil
));
2662 /* If load failed entirely, return nil. */
2664 return unbind_to (count
, Qnil
);
2666 tem
= Fmemq (feature
, Vfeatures
);
2668 error ("Required feature `%s' was not provided",
2669 SDATA (SYMBOL_NAME (feature
)));
2671 /* Once loading finishes, don't undo it. */
2672 Vautoload_queue
= Qt
;
2673 feature
= unbind_to (count
, feature
);
2679 /* Primitives for work of the "widget" library.
2680 In an ideal world, this section would not have been necessary.
2681 However, lisp function calls being as slow as they are, it turns
2682 out that some functions in the widget library (wid-edit.el) are the
2683 bottleneck of Widget operation. Here is their translation to C,
2684 for the sole reason of efficiency. */
2686 DEFUN ("plist-member", Fplist_member
, Splist_member
, 2, 2, 0,
2687 doc
: /* Return non-nil if PLIST has the property PROP.
2688 PLIST is a property list, which is a list of the form
2689 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2690 Unlike `plist-get', this allows you to distinguish between a missing
2691 property and a property with the value nil.
2692 The value is actually the tail of PLIST whose car is PROP. */)
2693 (Lisp_Object plist
, Lisp_Object prop
)
2695 while (CONSP (plist
) && !EQ (XCAR (plist
), prop
))
2698 plist
= XCDR (plist
);
2699 plist
= CDR (plist
);
2704 DEFUN ("widget-put", Fwidget_put
, Swidget_put
, 3, 3, 0,
2705 doc
: /* In WIDGET, set PROPERTY to VALUE.
2706 The value can later be retrieved with `widget-get'. */)
2707 (Lisp_Object widget
, Lisp_Object property
, Lisp_Object value
)
2709 CHECK_CONS (widget
);
2710 XSETCDR (widget
, Fplist_put (XCDR (widget
), property
, value
));
2714 DEFUN ("widget-get", Fwidget_get
, Swidget_get
, 2, 2, 0,
2715 doc
: /* In WIDGET, get the value of PROPERTY.
2716 The value could either be specified when the widget was created, or
2717 later with `widget-put'. */)
2718 (Lisp_Object widget
, Lisp_Object property
)
2726 CHECK_CONS (widget
);
2727 tmp
= Fplist_member (XCDR (widget
), property
);
2733 tmp
= XCAR (widget
);
2736 widget
= Fget (tmp
, Qwidget_type
);
2740 DEFUN ("widget-apply", Fwidget_apply
, Swidget_apply
, 2, MANY
, 0,
2741 doc
: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2742 ARGS are passed as extra arguments to the function.
2743 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2744 (ptrdiff_t nargs
, Lisp_Object
*args
)
2746 /* This function can GC. */
2747 Lisp_Object newargs
[3];
2748 struct gcpro gcpro1
, gcpro2
;
2751 newargs
[0] = Fwidget_get (args
[0], args
[1]);
2752 newargs
[1] = args
[0];
2753 newargs
[2] = Flist (nargs
- 2, args
+ 2);
2754 GCPRO2 (newargs
[0], newargs
[2]);
2755 result
= Fapply (3, newargs
);
2760 #ifdef HAVE_LANGINFO_CODESET
2761 #include <langinfo.h>
2764 DEFUN ("locale-info", Flocale_info
, Slocale_info
, 1, 1, 0,
2765 doc
: /* Access locale data ITEM for the current C locale, if available.
2766 ITEM should be one of the following:
2768 `codeset', returning the character set as a string (locale item CODESET);
2770 `days', returning a 7-element vector of day names (locale items DAY_n);
2772 `months', returning a 12-element vector of month names (locale items MON_n);
2774 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2775 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2777 If the system can't provide such information through a call to
2778 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2780 See also Info node `(libc)Locales'.
2782 The data read from the system are decoded using `locale-coding-system'. */)
2786 #ifdef HAVE_LANGINFO_CODESET
2788 if (EQ (item
, Qcodeset
))
2790 str
= nl_langinfo (CODESET
);
2791 return build_string (str
);
2794 else if (EQ (item
, Qdays
)) /* e.g. for calendar-day-name-array */
2796 Lisp_Object v
= Fmake_vector (make_number (7), Qnil
);
2797 const int days
[7] = {DAY_1
, DAY_2
, DAY_3
, DAY_4
, DAY_5
, DAY_6
, DAY_7
};
2799 struct gcpro gcpro1
;
2801 synchronize_system_time_locale ();
2802 for (i
= 0; i
< 7; i
++)
2804 str
= nl_langinfo (days
[i
]);
2805 val
= build_unibyte_string (str
);
2806 /* Fixme: Is this coding system necessarily right, even if
2807 it is consistent with CODESET? If not, what to do? */
2808 ASET (v
, i
, code_convert_string_norecord (val
, Vlocale_coding_system
,
2816 else if (EQ (item
, Qmonths
)) /* e.g. for calendar-month-name-array */
2818 Lisp_Object v
= Fmake_vector (make_number (12), Qnil
);
2819 const int months
[12] = {MON_1
, MON_2
, MON_3
, MON_4
, MON_5
, MON_6
, MON_7
,
2820 MON_8
, MON_9
, MON_10
, MON_11
, MON_12
};
2822 struct gcpro gcpro1
;
2824 synchronize_system_time_locale ();
2825 for (i
= 0; i
< 12; i
++)
2827 str
= nl_langinfo (months
[i
]);
2828 val
= build_unibyte_string (str
);
2829 ASET (v
, i
, code_convert_string_norecord (val
, Vlocale_coding_system
,
2836 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2837 but is in the locale files. This could be used by ps-print. */
2839 else if (EQ (item
, Qpaper
))
2840 return list2i (nl_langinfo (PAPER_WIDTH
), nl_langinfo (PAPER_HEIGHT
));
2841 #endif /* PAPER_WIDTH */
2842 #endif /* HAVE_LANGINFO_CODESET*/
2846 /* base64 encode/decode functions (RFC 2045).
2847 Based on code from GNU recode. */
2849 #define MIME_LINE_LENGTH 76
2851 #define IS_ASCII(Character) \
2853 #define IS_BASE64(Character) \
2854 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2855 #define IS_BASE64_IGNORABLE(Character) \
2856 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2857 || (Character) == '\f' || (Character) == '\r')
2859 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2860 character or return retval if there are no characters left to
2862 #define READ_QUADRUPLET_BYTE(retval) \
2867 if (nchars_return) \
2868 *nchars_return = nchars; \
2873 while (IS_BASE64_IGNORABLE (c))
2875 /* Table of characters coding the 64 values. */
2876 static const char base64_value_to_char
[64] =
2878 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2879 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2880 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2881 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2882 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2883 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2884 '8', '9', '+', '/' /* 60-63 */
2887 /* Table of base64 values for first 128 characters. */
2888 static const short base64_char_to_value
[128] =
2890 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2891 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2892 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2893 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2894 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2895 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2896 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2897 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2898 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2899 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2900 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2901 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2902 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2905 /* The following diagram shows the logical steps by which three octets
2906 get transformed into four base64 characters.
2908 .--------. .--------. .--------.
2909 |aaaaaabb| |bbbbcccc| |ccdddddd|
2910 `--------' `--------' `--------'
2912 .--------+--------+--------+--------.
2913 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2914 `--------+--------+--------+--------'
2916 .--------+--------+--------+--------.
2917 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2918 `--------+--------+--------+--------'
2920 The octets are divided into 6 bit chunks, which are then encoded into
2921 base64 characters. */
2924 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, bool, bool);
2925 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, bool,
2928 DEFUN ("base64-encode-region", Fbase64_encode_region
, Sbase64_encode_region
,
2930 doc
: /* Base64-encode the region between BEG and END.
2931 Return the length of the encoded text.
2932 Optional third argument NO-LINE-BREAK means do not break long lines
2933 into shorter lines. */)
2934 (Lisp_Object beg
, Lisp_Object end
, Lisp_Object no_line_break
)
2937 ptrdiff_t allength
, length
;
2938 ptrdiff_t ibeg
, iend
, encoded_length
;
2939 ptrdiff_t old_pos
= PT
;
2942 validate_region (&beg
, &end
);
2944 ibeg
= CHAR_TO_BYTE (XFASTINT (beg
));
2945 iend
= CHAR_TO_BYTE (XFASTINT (end
));
2946 move_gap_both (XFASTINT (beg
), ibeg
);
2948 /* We need to allocate enough room for encoding the text.
2949 We need 33 1/3% more space, plus a newline every 76
2950 characters, and then we round up. */
2951 length
= iend
- ibeg
;
2952 allength
= length
+ length
/3 + 1;
2953 allength
+= allength
/ MIME_LINE_LENGTH
+ 1 + 6;
2955 encoded
= SAFE_ALLOCA (allength
);
2956 encoded_length
= base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg
),
2957 encoded
, length
, NILP (no_line_break
),
2958 !NILP (BVAR (current_buffer
, enable_multibyte_characters
)));
2959 if (encoded_length
> allength
)
2962 if (encoded_length
< 0)
2964 /* The encoding wasn't possible. */
2966 error ("Multibyte character in data for base64 encoding");
2969 /* Now we have encoded the region, so we insert the new contents
2970 and delete the old. (Insert first in order to preserve markers.) */
2971 SET_PT_BOTH (XFASTINT (beg
), ibeg
);
2972 insert (encoded
, encoded_length
);
2974 del_range_byte (ibeg
+ encoded_length
, iend
+ encoded_length
, 1);
2976 /* If point was outside of the region, restore it exactly; else just
2977 move to the beginning of the region. */
2978 if (old_pos
>= XFASTINT (end
))
2979 old_pos
+= encoded_length
- (XFASTINT (end
) - XFASTINT (beg
));
2980 else if (old_pos
> XFASTINT (beg
))
2981 old_pos
= XFASTINT (beg
);
2984 /* We return the length of the encoded text. */
2985 return make_number (encoded_length
);
2988 DEFUN ("base64-encode-string", Fbase64_encode_string
, Sbase64_encode_string
,
2990 doc
: /* Base64-encode STRING and return the result.
2991 Optional second argument NO-LINE-BREAK means do not break long lines
2992 into shorter lines. */)
2993 (Lisp_Object string
, Lisp_Object no_line_break
)
2995 ptrdiff_t allength
, length
, encoded_length
;
2997 Lisp_Object encoded_string
;
3000 CHECK_STRING (string
);
3002 /* We need to allocate enough room for encoding the text.
3003 We need 33 1/3% more space, plus a newline every 76
3004 characters, and then we round up. */
3005 length
= SBYTES (string
);
3006 allength
= length
+ length
/3 + 1;
3007 allength
+= allength
/ MIME_LINE_LENGTH
+ 1 + 6;
3009 /* We need to allocate enough room for decoding the text. */
3010 encoded
= SAFE_ALLOCA (allength
);
3012 encoded_length
= base64_encode_1 (SSDATA (string
),
3013 encoded
, length
, NILP (no_line_break
),
3014 STRING_MULTIBYTE (string
));
3015 if (encoded_length
> allength
)
3018 if (encoded_length
< 0)
3020 /* The encoding wasn't possible. */
3022 error ("Multibyte character in data for base64 encoding");
3025 encoded_string
= make_unibyte_string (encoded
, encoded_length
);
3028 return encoded_string
;
3032 base64_encode_1 (const char *from
, char *to
, ptrdiff_t length
,
3033 bool line_break
, bool multibyte
)
3046 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3047 if (CHAR_BYTE8_P (c
))
3048 c
= CHAR_TO_BYTE8 (c
);
3056 /* Wrap line every 76 characters. */
3060 if (counter
< MIME_LINE_LENGTH
/ 4)
3069 /* Process first byte of a triplet. */
3071 *e
++ = base64_value_to_char
[0x3f & c
>> 2];
3072 value
= (0x03 & c
) << 4;
3074 /* Process second byte of a triplet. */
3078 *e
++ = base64_value_to_char
[value
];
3086 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3087 if (CHAR_BYTE8_P (c
))
3088 c
= CHAR_TO_BYTE8 (c
);
3096 *e
++ = base64_value_to_char
[value
| (0x0f & c
>> 4)];
3097 value
= (0x0f & c
) << 2;
3099 /* Process third byte of a triplet. */
3103 *e
++ = base64_value_to_char
[value
];
3110 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3111 if (CHAR_BYTE8_P (c
))
3112 c
= CHAR_TO_BYTE8 (c
);
3120 *e
++ = base64_value_to_char
[value
| (0x03 & c
>> 6)];
3121 *e
++ = base64_value_to_char
[0x3f & c
];
3128 DEFUN ("base64-decode-region", Fbase64_decode_region
, Sbase64_decode_region
,
3130 doc
: /* Base64-decode the region between BEG and END.
3131 Return the length of the decoded text.
3132 If the region can't be decoded, signal an error and don't modify the buffer. */)
3133 (Lisp_Object beg
, Lisp_Object end
)
3135 ptrdiff_t ibeg
, iend
, length
, allength
;
3137 ptrdiff_t old_pos
= PT
;
3138 ptrdiff_t decoded_length
;
3139 ptrdiff_t inserted_chars
;
3140 bool multibyte
= !NILP (BVAR (current_buffer
, enable_multibyte_characters
));
3143 validate_region (&beg
, &end
);
3145 ibeg
= CHAR_TO_BYTE (XFASTINT (beg
));
3146 iend
= CHAR_TO_BYTE (XFASTINT (end
));
3148 length
= iend
- ibeg
;
3150 /* We need to allocate enough room for decoding the text. If we are
3151 working on a multibyte buffer, each decoded code may occupy at
3153 allength
= multibyte
? length
* 2 : length
;
3154 decoded
= SAFE_ALLOCA (allength
);
3156 move_gap_both (XFASTINT (beg
), ibeg
);
3157 decoded_length
= base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg
),
3159 multibyte
, &inserted_chars
);
3160 if (decoded_length
> allength
)
3163 if (decoded_length
< 0)
3165 /* The decoding wasn't possible. */
3167 error ("Invalid base64 data");
3170 /* Now we have decoded the region, so we insert the new contents
3171 and delete the old. (Insert first in order to preserve markers.) */
3172 TEMP_SET_PT_BOTH (XFASTINT (beg
), ibeg
);
3173 insert_1_both (decoded
, inserted_chars
, decoded_length
, 0, 1, 0);
3176 /* Delete the original text. */
3177 del_range_both (PT
, PT_BYTE
, XFASTINT (end
) + inserted_chars
,
3178 iend
+ decoded_length
, 1);
3180 /* If point was outside of the region, restore it exactly; else just
3181 move to the beginning of the region. */
3182 if (old_pos
>= XFASTINT (end
))
3183 old_pos
+= inserted_chars
- (XFASTINT (end
) - XFASTINT (beg
));
3184 else if (old_pos
> XFASTINT (beg
))
3185 old_pos
= XFASTINT (beg
);
3186 SET_PT (old_pos
> ZV
? ZV
: old_pos
);
3188 return make_number (inserted_chars
);
3191 DEFUN ("base64-decode-string", Fbase64_decode_string
, Sbase64_decode_string
,
3193 doc
: /* Base64-decode STRING and return the result. */)
3194 (Lisp_Object string
)
3197 ptrdiff_t length
, decoded_length
;
3198 Lisp_Object decoded_string
;
3201 CHECK_STRING (string
);
3203 length
= SBYTES (string
);
3204 /* We need to allocate enough room for decoding the text. */
3205 decoded
= SAFE_ALLOCA (length
);
3207 /* The decoded result should be unibyte. */
3208 decoded_length
= base64_decode_1 (SSDATA (string
), decoded
, length
,
3210 if (decoded_length
> length
)
3212 else if (decoded_length
>= 0)
3213 decoded_string
= make_unibyte_string (decoded
, decoded_length
);
3215 decoded_string
= Qnil
;
3218 if (!STRINGP (decoded_string
))
3219 error ("Invalid base64 data");
3221 return decoded_string
;
3224 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3225 MULTIBYTE, the decoded result should be in multibyte
3226 form. If NCHARS_RETURN is not NULL, store the number of produced
3227 characters in *NCHARS_RETURN. */
3230 base64_decode_1 (const char *from
, char *to
, ptrdiff_t length
,
3231 bool multibyte
, ptrdiff_t *nchars_return
)
3233 ptrdiff_t i
= 0; /* Used inside READ_QUADRUPLET_BYTE */
3236 unsigned long value
;
3237 ptrdiff_t nchars
= 0;
3241 /* Process first byte of a quadruplet. */
3243 READ_QUADRUPLET_BYTE (e
-to
);
3247 value
= base64_char_to_value
[c
] << 18;
3249 /* Process second byte of a quadruplet. */
3251 READ_QUADRUPLET_BYTE (-1);
3255 value
|= base64_char_to_value
[c
] << 12;
3257 c
= (unsigned char) (value
>> 16);
3258 if (multibyte
&& c
>= 128)
3259 e
+= BYTE8_STRING (c
, e
);
3264 /* Process third byte of a quadruplet. */
3266 READ_QUADRUPLET_BYTE (-1);
3270 READ_QUADRUPLET_BYTE (-1);
3279 value
|= base64_char_to_value
[c
] << 6;
3281 c
= (unsigned char) (0xff & value
>> 8);
3282 if (multibyte
&& c
>= 128)
3283 e
+= BYTE8_STRING (c
, e
);
3288 /* Process fourth byte of a quadruplet. */
3290 READ_QUADRUPLET_BYTE (-1);
3297 value
|= base64_char_to_value
[c
];
3299 c
= (unsigned char) (0xff & value
);
3300 if (multibyte
&& c
>= 128)
3301 e
+= BYTE8_STRING (c
, e
);
3310 /***********************************************************************
3312 ***** Hash Tables *****
3314 ***********************************************************************/
3316 /* Implemented by gerd@gnu.org. This hash table implementation was
3317 inspired by CMUCL hash tables. */
3321 1. For small tables, association lists are probably faster than
3322 hash tables because they have lower overhead.
3324 For uses of hash tables where the O(1) behavior of table
3325 operations is not a requirement, it might therefore be a good idea
3326 not to hash. Instead, we could just do a linear search in the
3327 key_and_value vector of the hash table. This could be done
3328 if a `:linear-search t' argument is given to make-hash-table. */
3331 /* The list of all weak hash tables. Don't staticpro this one. */
3333 static struct Lisp_Hash_Table
*weak_hash_tables
;
3335 /* Various symbols. */
3337 static Lisp_Object Qhash_table_p
;
3338 static Lisp_Object Qkey
, Qvalue
, Qeql
;
3339 Lisp_Object Qeq
, Qequal
;
3340 Lisp_Object QCtest
, QCsize
, QCrehash_size
, QCrehash_threshold
, QCweakness
;
3341 static Lisp_Object Qhash_table_test
, Qkey_or_value
, Qkey_and_value
;
3344 /***********************************************************************
3346 ***********************************************************************/
3349 CHECK_HASH_TABLE (Lisp_Object x
)
3351 CHECK_TYPE (HASH_TABLE_P (x
), Qhash_table_p
, x
);
3355 set_hash_key_and_value (struct Lisp_Hash_Table
*h
, Lisp_Object key_and_value
)
3357 h
->key_and_value
= key_and_value
;
3360 set_hash_next (struct Lisp_Hash_Table
*h
, Lisp_Object next
)
3365 set_hash_next_slot (struct Lisp_Hash_Table
*h
, ptrdiff_t idx
, Lisp_Object val
)
3367 gc_aset (h
->next
, idx
, val
);
3370 set_hash_hash (struct Lisp_Hash_Table
*h
, Lisp_Object hash
)
3375 set_hash_hash_slot (struct Lisp_Hash_Table
*h
, ptrdiff_t idx
, Lisp_Object val
)
3377 gc_aset (h
->hash
, idx
, val
);
3380 set_hash_index (struct Lisp_Hash_Table
*h
, Lisp_Object index
)
3385 set_hash_index_slot (struct Lisp_Hash_Table
*h
, ptrdiff_t idx
, Lisp_Object val
)
3387 gc_aset (h
->index
, idx
, val
);
3390 /* If OBJ is a Lisp hash table, return a pointer to its struct
3391 Lisp_Hash_Table. Otherwise, signal an error. */
3393 static struct Lisp_Hash_Table
*
3394 check_hash_table (Lisp_Object obj
)
3396 CHECK_HASH_TABLE (obj
);
3397 return XHASH_TABLE (obj
);
3401 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3402 number. A number is "almost" a prime number if it is not divisible
3403 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3406 next_almost_prime (EMACS_INT n
)
3408 verify (NEXT_ALMOST_PRIME_LIMIT
== 11);
3409 for (n
|= 1; ; n
+= 2)
3410 if (n
% 3 != 0 && n
% 5 != 0 && n
% 7 != 0)
3415 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3416 which USED[I] is non-zero. If found at index I in ARGS, set
3417 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3418 0. This function is used to extract a keyword/argument pair from
3419 a DEFUN parameter list. */
3422 get_key_arg (Lisp_Object key
, ptrdiff_t nargs
, Lisp_Object
*args
, char *used
)
3426 for (i
= 1; i
< nargs
; i
++)
3427 if (!used
[i
- 1] && EQ (args
[i
- 1], key
))
3438 /* Return a Lisp vector which has the same contents as VEC but has
3439 at least INCR_MIN more entries, where INCR_MIN is positive.
3440 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3441 than NITEMS_MAX. Entries in the resulting
3442 vector that are not copied from VEC are set to nil. */
3445 larger_vector (Lisp_Object vec
, ptrdiff_t incr_min
, ptrdiff_t nitems_max
)
3447 struct Lisp_Vector
*v
;
3448 ptrdiff_t i
, incr
, incr_max
, old_size
, new_size
;
3449 ptrdiff_t C_language_max
= min (PTRDIFF_MAX
, SIZE_MAX
) / sizeof *v
->u
.contents
;
3450 ptrdiff_t n_max
= (0 <= nitems_max
&& nitems_max
< C_language_max
3451 ? nitems_max
: C_language_max
);
3452 eassert (VECTORP (vec
));
3453 eassert (0 < incr_min
&& -1 <= nitems_max
);
3454 old_size
= ASIZE (vec
);
3455 incr_max
= n_max
- old_size
;
3456 incr
= max (incr_min
, min (old_size
>> 1, incr_max
));
3457 if (incr_max
< incr
)
3458 memory_full (SIZE_MAX
);
3459 new_size
= old_size
+ incr
;
3460 v
= allocate_vector (new_size
);
3461 memcpy (v
->u
.contents
, XVECTOR (vec
)->u
.contents
, old_size
* sizeof *v
->u
.contents
);
3462 for (i
= old_size
; i
< new_size
; ++i
)
3463 v
->u
.contents
[i
] = Qnil
;
3464 XSETVECTOR (vec
, v
);
3469 /***********************************************************************
3471 ***********************************************************************/
3473 static struct hash_table_test hashtest_eq
;
3474 struct hash_table_test hashtest_eql
, hashtest_equal
;
3476 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3477 HASH2 in hash table H using `eql'. Value is true if KEY1 and
3478 KEY2 are the same. */
3481 cmpfn_eql (struct hash_table_test
*ht
,
3485 return (FLOATP (key1
)
3487 && XFLOAT_DATA (key1
) == XFLOAT_DATA (key2
));
3491 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3492 HASH2 in hash table H using `equal'. Value is true if KEY1 and
3493 KEY2 are the same. */
3496 cmpfn_equal (struct hash_table_test
*ht
,
3500 return !NILP (Fequal (key1
, key2
));
3504 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3505 HASH2 in hash table H using H->user_cmp_function. Value is true
3506 if KEY1 and KEY2 are the same. */
3509 cmpfn_user_defined (struct hash_table_test
*ht
,
3513 Lisp_Object args
[3];
3515 args
[0] = ht
->user_cmp_function
;
3518 return !NILP (Ffuncall (3, args
));
3522 /* Value is a hash code for KEY for use in hash table H which uses
3523 `eq' to compare keys. The hash code returned is guaranteed to fit
3524 in a Lisp integer. */
3527 hashfn_eq (struct hash_table_test
*ht
, Lisp_Object key
)
3529 EMACS_UINT hash
= XHASH (key
) ^ XTYPE (key
);
3533 /* Value is a hash code for KEY for use in hash table H which uses
3534 `eql' to compare keys. The hash code returned is guaranteed to fit
3535 in a Lisp integer. */
3538 hashfn_eql (struct hash_table_test
*ht
, Lisp_Object key
)
3542 hash
= sxhash (key
, 0);
3544 hash
= XHASH (key
) ^ XTYPE (key
);
3548 /* Value is a hash code for KEY for use in hash table H which uses
3549 `equal' to compare keys. The hash code returned is guaranteed to fit
3550 in a Lisp integer. */
3553 hashfn_equal (struct hash_table_test
*ht
, Lisp_Object key
)
3555 EMACS_UINT hash
= sxhash (key
, 0);
3559 /* Value is a hash code for KEY for use in hash table H which uses as
3560 user-defined function to compare keys. The hash code returned is
3561 guaranteed to fit in a Lisp integer. */
3564 hashfn_user_defined (struct hash_table_test
*ht
, Lisp_Object key
)
3566 Lisp_Object args
[2], hash
;
3568 args
[0] = ht
->user_hash_function
;
3570 hash
= Ffuncall (2, args
);
3571 return hashfn_eq (ht
, hash
);
3574 /* An upper bound on the size of a hash table index. It must fit in
3575 ptrdiff_t and be a valid Emacs fixnum. */
3576 #define INDEX_SIZE_BOUND \
3577 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / word_size))
3579 /* Create and initialize a new hash table.
3581 TEST specifies the test the hash table will use to compare keys.
3582 It must be either one of the predefined tests `eq', `eql' or
3583 `equal' or a symbol denoting a user-defined test named TEST with
3584 test and hash functions USER_TEST and USER_HASH.
3586 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3588 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3589 new size when it becomes full is computed by adding REHASH_SIZE to
3590 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3591 table's new size is computed by multiplying its old size with
3594 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3595 be resized when the ratio of (number of entries in the table) /
3596 (table size) is >= REHASH_THRESHOLD.
3598 WEAK specifies the weakness of the table. If non-nil, it must be
3599 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3602 make_hash_table (struct hash_table_test test
,
3603 Lisp_Object size
, Lisp_Object rehash_size
,
3604 Lisp_Object rehash_threshold
, Lisp_Object weak
)
3606 struct Lisp_Hash_Table
*h
;
3608 EMACS_INT index_size
, sz
;
3612 /* Preconditions. */
3613 eassert (SYMBOLP (test
.name
));
3614 eassert (INTEGERP (size
) && XINT (size
) >= 0);
3615 eassert ((INTEGERP (rehash_size
) && XINT (rehash_size
) > 0)
3616 || (FLOATP (rehash_size
) && 1 < XFLOAT_DATA (rehash_size
)));
3617 eassert (FLOATP (rehash_threshold
)
3618 && 0 < XFLOAT_DATA (rehash_threshold
)
3619 && XFLOAT_DATA (rehash_threshold
) <= 1.0);
3621 if (XFASTINT (size
) == 0)
3622 size
= make_number (1);
3624 sz
= XFASTINT (size
);
3625 index_float
= sz
/ XFLOAT_DATA (rehash_threshold
);
3626 index_size
= (index_float
< INDEX_SIZE_BOUND
+ 1
3627 ? next_almost_prime (index_float
)
3628 : INDEX_SIZE_BOUND
+ 1);
3629 if (INDEX_SIZE_BOUND
< max (index_size
, 2 * sz
))
3630 error ("Hash table too large");
3632 /* Allocate a table and initialize it. */
3633 h
= allocate_hash_table ();
3635 /* Initialize hash table slots. */
3638 h
->rehash_threshold
= rehash_threshold
;
3639 h
->rehash_size
= rehash_size
;
3641 h
->key_and_value
= Fmake_vector (make_number (2 * sz
), Qnil
);
3642 h
->hash
= Fmake_vector (size
, Qnil
);
3643 h
->next
= Fmake_vector (size
, Qnil
);
3644 h
->index
= Fmake_vector (make_number (index_size
), Qnil
);
3646 /* Set up the free list. */
3647 for (i
= 0; i
< sz
- 1; ++i
)
3648 set_hash_next_slot (h
, i
, make_number (i
+ 1));
3649 h
->next_free
= make_number (0);
3651 XSET_HASH_TABLE (table
, h
);
3652 eassert (HASH_TABLE_P (table
));
3653 eassert (XHASH_TABLE (table
) == h
);
3655 /* Maybe add this hash table to the list of all weak hash tables. */
3657 h
->next_weak
= NULL
;
3660 h
->next_weak
= weak_hash_tables
;
3661 weak_hash_tables
= h
;
3668 /* Return a copy of hash table H1. Keys and values are not copied,
3669 only the table itself is. */
3672 copy_hash_table (struct Lisp_Hash_Table
*h1
)
3675 struct Lisp_Hash_Table
*h2
;
3677 h2
= allocate_hash_table ();
3679 h2
->key_and_value
= Fcopy_sequence (h1
->key_and_value
);
3680 h2
->hash
= Fcopy_sequence (h1
->hash
);
3681 h2
->next
= Fcopy_sequence (h1
->next
);
3682 h2
->index
= Fcopy_sequence (h1
->index
);
3683 XSET_HASH_TABLE (table
, h2
);
3685 /* Maybe add this hash table to the list of all weak hash tables. */
3686 if (!NILP (h2
->weak
))
3688 h2
->next_weak
= weak_hash_tables
;
3689 weak_hash_tables
= h2
;
3696 /* Resize hash table H if it's too full. If H cannot be resized
3697 because it's already too large, throw an error. */
3700 maybe_resize_hash_table (struct Lisp_Hash_Table
*h
)
3702 if (NILP (h
->next_free
))
3704 ptrdiff_t old_size
= HASH_TABLE_SIZE (h
);
3705 EMACS_INT new_size
, index_size
, nsize
;
3709 if (INTEGERP (h
->rehash_size
))
3710 new_size
= old_size
+ XFASTINT (h
->rehash_size
);
3713 double float_new_size
= old_size
* XFLOAT_DATA (h
->rehash_size
);
3714 if (float_new_size
< INDEX_SIZE_BOUND
+ 1)
3716 new_size
= float_new_size
;
3717 if (new_size
<= old_size
)
3718 new_size
= old_size
+ 1;
3721 new_size
= INDEX_SIZE_BOUND
+ 1;
3723 index_float
= new_size
/ XFLOAT_DATA (h
->rehash_threshold
);
3724 index_size
= (index_float
< INDEX_SIZE_BOUND
+ 1
3725 ? next_almost_prime (index_float
)
3726 : INDEX_SIZE_BOUND
+ 1);
3727 nsize
= max (index_size
, 2 * new_size
);
3728 if (INDEX_SIZE_BOUND
< nsize
)
3729 error ("Hash table too large to resize");
3731 #ifdef ENABLE_CHECKING
3732 if (HASH_TABLE_P (Vpurify_flag
)
3733 && XHASH_TABLE (Vpurify_flag
) == h
)
3735 Lisp_Object args
[2];
3736 args
[0] = build_string ("Growing hash table to: %d");
3737 args
[1] = make_number (new_size
);
3742 set_hash_key_and_value (h
, larger_vector (h
->key_and_value
,
3743 2 * (new_size
- old_size
), -1));
3744 set_hash_next (h
, larger_vector (h
->next
, new_size
- old_size
, -1));
3745 set_hash_hash (h
, larger_vector (h
->hash
, new_size
- old_size
, -1));
3746 set_hash_index (h
, Fmake_vector (make_number (index_size
), Qnil
));
3748 /* Update the free list. Do it so that new entries are added at
3749 the end of the free list. This makes some operations like
3751 for (i
= old_size
; i
< new_size
- 1; ++i
)
3752 set_hash_next_slot (h
, i
, make_number (i
+ 1));
3754 if (!NILP (h
->next_free
))
3756 Lisp_Object last
, next
;
3758 last
= h
->next_free
;
3759 while (next
= HASH_NEXT (h
, XFASTINT (last
)),
3763 set_hash_next_slot (h
, XFASTINT (last
), make_number (old_size
));
3766 XSETFASTINT (h
->next_free
, old_size
);
3769 for (i
= 0; i
< old_size
; ++i
)
3770 if (!NILP (HASH_HASH (h
, i
)))
3772 EMACS_UINT hash_code
= XUINT (HASH_HASH (h
, i
));
3773 ptrdiff_t start_of_bucket
= hash_code
% ASIZE (h
->index
);
3774 set_hash_next_slot (h
, i
, HASH_INDEX (h
, start_of_bucket
));
3775 set_hash_index_slot (h
, start_of_bucket
, make_number (i
));
3781 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3782 the hash code of KEY. Value is the index of the entry in H
3783 matching KEY, or -1 if not found. */
3786 hash_lookup (struct Lisp_Hash_Table
*h
, Lisp_Object key
, EMACS_UINT
*hash
)
3788 EMACS_UINT hash_code
;
3789 ptrdiff_t start_of_bucket
;
3792 hash_code
= h
->test
.hashfn (&h
->test
, key
);
3793 eassert ((hash_code
& ~INTMASK
) == 0);
3797 start_of_bucket
= hash_code
% ASIZE (h
->index
);
3798 idx
= HASH_INDEX (h
, start_of_bucket
);
3800 /* We need not gcpro idx since it's either an integer or nil. */
3803 ptrdiff_t i
= XFASTINT (idx
);
3804 if (EQ (key
, HASH_KEY (h
, i
))
3806 && hash_code
== XUINT (HASH_HASH (h
, i
))
3807 && h
->test
.cmpfn (&h
->test
, key
, HASH_KEY (h
, i
))))
3809 idx
= HASH_NEXT (h
, i
);
3812 return NILP (idx
) ? -1 : XFASTINT (idx
);
3816 /* Put an entry into hash table H that associates KEY with VALUE.
3817 HASH is a previously computed hash code of KEY.
3818 Value is the index of the entry in H matching KEY. */
3821 hash_put (struct Lisp_Hash_Table
*h
, Lisp_Object key
, Lisp_Object value
,
3824 ptrdiff_t start_of_bucket
, i
;
3826 eassert ((hash
& ~INTMASK
) == 0);
3828 /* Increment count after resizing because resizing may fail. */
3829 maybe_resize_hash_table (h
);
3832 /* Store key/value in the key_and_value vector. */
3833 i
= XFASTINT (h
->next_free
);
3834 h
->next_free
= HASH_NEXT (h
, i
);
3835 set_hash_key_slot (h
, i
, key
);
3836 set_hash_value_slot (h
, i
, value
);
3838 /* Remember its hash code. */
3839 set_hash_hash_slot (h
, i
, make_number (hash
));
3841 /* Add new entry to its collision chain. */
3842 start_of_bucket
= hash
% ASIZE (h
->index
);
3843 set_hash_next_slot (h
, i
, HASH_INDEX (h
, start_of_bucket
));
3844 set_hash_index_slot (h
, start_of_bucket
, make_number (i
));
3849 /* Remove the entry matching KEY from hash table H, if there is one. */
3852 hash_remove_from_table (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3854 EMACS_UINT hash_code
;
3855 ptrdiff_t start_of_bucket
;
3856 Lisp_Object idx
, prev
;
3858 hash_code
= h
->test
.hashfn (&h
->test
, key
);
3859 eassert ((hash_code
& ~INTMASK
) == 0);
3860 start_of_bucket
= hash_code
% ASIZE (h
->index
);
3861 idx
= HASH_INDEX (h
, start_of_bucket
);
3864 /* We need not gcpro idx, prev since they're either integers or nil. */
3867 ptrdiff_t i
= XFASTINT (idx
);
3869 if (EQ (key
, HASH_KEY (h
, i
))
3871 && hash_code
== XUINT (HASH_HASH (h
, i
))
3872 && h
->test
.cmpfn (&h
->test
, key
, HASH_KEY (h
, i
))))
3874 /* Take entry out of collision chain. */
3876 set_hash_index_slot (h
, start_of_bucket
, HASH_NEXT (h
, i
));
3878 set_hash_next_slot (h
, XFASTINT (prev
), HASH_NEXT (h
, i
));
3880 /* Clear slots in key_and_value and add the slots to
3882 set_hash_key_slot (h
, i
, Qnil
);
3883 set_hash_value_slot (h
, i
, Qnil
);
3884 set_hash_hash_slot (h
, i
, Qnil
);
3885 set_hash_next_slot (h
, i
, h
->next_free
);
3886 h
->next_free
= make_number (i
);
3888 eassert (h
->count
>= 0);
3894 idx
= HASH_NEXT (h
, i
);
3900 /* Clear hash table H. */
3903 hash_clear (struct Lisp_Hash_Table
*h
)
3907 ptrdiff_t i
, size
= HASH_TABLE_SIZE (h
);
3909 for (i
= 0; i
< size
; ++i
)
3911 set_hash_next_slot (h
, i
, i
< size
- 1 ? make_number (i
+ 1) : Qnil
);
3912 set_hash_key_slot (h
, i
, Qnil
);
3913 set_hash_value_slot (h
, i
, Qnil
);
3914 set_hash_hash_slot (h
, i
, Qnil
);
3917 for (i
= 0; i
< ASIZE (h
->index
); ++i
)
3918 ASET (h
->index
, i
, Qnil
);
3920 h
->next_free
= make_number (0);
3927 /************************************************************************
3929 ************************************************************************/
3931 /* Sweep weak hash table H. REMOVE_ENTRIES_P means remove
3932 entries from the table that don't survive the current GC.
3933 !REMOVE_ENTRIES_P means mark entries that are in use. Value is
3934 true if anything was marked. */
3937 sweep_weak_table (struct Lisp_Hash_Table
*h
, bool remove_entries_p
)
3939 ptrdiff_t bucket
, n
;
3942 n
= ASIZE (h
->index
) & ~ARRAY_MARK_FLAG
;
3945 for (bucket
= 0; bucket
< n
; ++bucket
)
3947 Lisp_Object idx
, next
, prev
;
3949 /* Follow collision chain, removing entries that
3950 don't survive this garbage collection. */
3952 for (idx
= HASH_INDEX (h
, bucket
); !NILP (idx
); idx
= next
)
3954 ptrdiff_t i
= XFASTINT (idx
);
3955 bool key_known_to_survive_p
= survives_gc_p (HASH_KEY (h
, i
));
3956 bool value_known_to_survive_p
= survives_gc_p (HASH_VALUE (h
, i
));
3959 if (EQ (h
->weak
, Qkey
))
3960 remove_p
= !key_known_to_survive_p
;
3961 else if (EQ (h
->weak
, Qvalue
))
3962 remove_p
= !value_known_to_survive_p
;
3963 else if (EQ (h
->weak
, Qkey_or_value
))
3964 remove_p
= !(key_known_to_survive_p
|| value_known_to_survive_p
);
3965 else if (EQ (h
->weak
, Qkey_and_value
))
3966 remove_p
= !(key_known_to_survive_p
&& value_known_to_survive_p
);
3970 next
= HASH_NEXT (h
, i
);
3972 if (remove_entries_p
)
3976 /* Take out of collision chain. */
3978 set_hash_index_slot (h
, bucket
, next
);
3980 set_hash_next_slot (h
, XFASTINT (prev
), next
);
3982 /* Add to free list. */
3983 set_hash_next_slot (h
, i
, h
->next_free
);
3986 /* Clear key, value, and hash. */
3987 set_hash_key_slot (h
, i
, Qnil
);
3988 set_hash_value_slot (h
, i
, Qnil
);
3989 set_hash_hash_slot (h
, i
, Qnil
);
4002 /* Make sure key and value survive. */
4003 if (!key_known_to_survive_p
)
4005 mark_object (HASH_KEY (h
, i
));
4009 if (!value_known_to_survive_p
)
4011 mark_object (HASH_VALUE (h
, i
));
4022 /* Remove elements from weak hash tables that don't survive the
4023 current garbage collection. Remove weak tables that don't survive
4024 from Vweak_hash_tables. Called from gc_sweep. */
4027 sweep_weak_hash_tables (void)
4029 struct Lisp_Hash_Table
*h
, *used
, *next
;
4032 /* Mark all keys and values that are in use. Keep on marking until
4033 there is no more change. This is necessary for cases like
4034 value-weak table A containing an entry X -> Y, where Y is used in a
4035 key-weak table B, Z -> Y. If B comes after A in the list of weak
4036 tables, X -> Y might be removed from A, although when looking at B
4037 one finds that it shouldn't. */
4041 for (h
= weak_hash_tables
; h
; h
= h
->next_weak
)
4043 if (h
->header
.size
& ARRAY_MARK_FLAG
)
4044 marked
|= sweep_weak_table (h
, 0);
4049 /* Remove tables and entries that aren't used. */
4050 for (h
= weak_hash_tables
, used
= NULL
; h
; h
= next
)
4052 next
= h
->next_weak
;
4054 if (h
->header
.size
& ARRAY_MARK_FLAG
)
4056 /* TABLE is marked as used. Sweep its contents. */
4058 sweep_weak_table (h
, 1);
4060 /* Add table to the list of used weak hash tables. */
4061 h
->next_weak
= used
;
4066 weak_hash_tables
= used
;
4071 /***********************************************************************
4072 Hash Code Computation
4073 ***********************************************************************/
4075 /* Maximum depth up to which to dive into Lisp structures. */
4077 #define SXHASH_MAX_DEPTH 3
4079 /* Maximum length up to which to take list and vector elements into
4082 #define SXHASH_MAX_LEN 7
4084 /* Return a hash for string PTR which has length LEN. The hash value
4085 can be any EMACS_UINT value. */
4088 hash_string (char const *ptr
, ptrdiff_t len
)
4090 char const *p
= ptr
;
4091 char const *end
= p
+ len
;
4093 EMACS_UINT hash
= 0;
4098 hash
= sxhash_combine (hash
, c
);
4104 /* Return a hash for string PTR which has length LEN. The hash
4105 code returned is guaranteed to fit in a Lisp integer. */
4108 sxhash_string (char const *ptr
, ptrdiff_t len
)
4110 EMACS_UINT hash
= hash_string (ptr
, len
);
4111 return SXHASH_REDUCE (hash
);
4114 /* Return a hash for the floating point value VAL. */
4117 sxhash_float (double val
)
4119 EMACS_UINT hash
= 0;
4121 WORDS_PER_DOUBLE
= (sizeof val
/ sizeof hash
4122 + (sizeof val
% sizeof hash
!= 0))
4126 EMACS_UINT word
[WORDS_PER_DOUBLE
];
4130 memset (&u
.val
+ 1, 0, sizeof u
- sizeof u
.val
);
4131 for (i
= 0; i
< WORDS_PER_DOUBLE
; i
++)
4132 hash
= sxhash_combine (hash
, u
.word
[i
]);
4133 return SXHASH_REDUCE (hash
);
4136 /* Return a hash for list LIST. DEPTH is the current depth in the
4137 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4140 sxhash_list (Lisp_Object list
, int depth
)
4142 EMACS_UINT hash
= 0;
4145 if (depth
< SXHASH_MAX_DEPTH
)
4147 CONSP (list
) && i
< SXHASH_MAX_LEN
;
4148 list
= XCDR (list
), ++i
)
4150 EMACS_UINT hash2
= sxhash (XCAR (list
), depth
+ 1);
4151 hash
= sxhash_combine (hash
, hash2
);
4156 EMACS_UINT hash2
= sxhash (list
, depth
+ 1);
4157 hash
= sxhash_combine (hash
, hash2
);
4160 return SXHASH_REDUCE (hash
);
4164 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4165 the Lisp structure. */
4168 sxhash_vector (Lisp_Object vec
, int depth
)
4170 EMACS_UINT hash
= ASIZE (vec
);
4173 n
= min (SXHASH_MAX_LEN
, ASIZE (vec
));
4174 for (i
= 0; i
< n
; ++i
)
4176 EMACS_UINT hash2
= sxhash (AREF (vec
, i
), depth
+ 1);
4177 hash
= sxhash_combine (hash
, hash2
);
4180 return SXHASH_REDUCE (hash
);
4183 /* Return a hash for bool-vector VECTOR. */
4186 sxhash_bool_vector (Lisp_Object vec
)
4188 EMACS_INT size
= bool_vector_size (vec
);
4189 EMACS_UINT hash
= size
;
4192 n
= min (SXHASH_MAX_LEN
,
4193 ((size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
4194 / BOOL_VECTOR_BITS_PER_CHAR
));
4195 for (i
= 0; i
< n
; ++i
)
4196 hash
= sxhash_combine (hash
, XBOOL_VECTOR (vec
)->data
[i
]);
4198 return SXHASH_REDUCE (hash
);
4202 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4203 structure. Value is an unsigned integer clipped to INTMASK. */
4206 sxhash (Lisp_Object obj
, int depth
)
4210 if (depth
> SXHASH_MAX_DEPTH
)
4213 switch (XTYPE (obj
))
4224 obj
= SYMBOL_NAME (obj
);
4228 hash
= sxhash_string (SSDATA (obj
), SBYTES (obj
));
4231 /* This can be everything from a vector to an overlay. */
4232 case Lisp_Vectorlike
:
4234 /* According to the CL HyperSpec, two arrays are equal only if
4235 they are `eq', except for strings and bit-vectors. In
4236 Emacs, this works differently. We have to compare element
4238 hash
= sxhash_vector (obj
, depth
);
4239 else if (BOOL_VECTOR_P (obj
))
4240 hash
= sxhash_bool_vector (obj
);
4242 /* Others are `equal' if they are `eq', so let's take their
4248 hash
= sxhash_list (obj
, depth
);
4252 hash
= sxhash_float (XFLOAT_DATA (obj
));
4264 /***********************************************************************
4266 ***********************************************************************/
4269 DEFUN ("sxhash", Fsxhash
, Ssxhash
, 1, 1, 0,
4270 doc
: /* Compute a hash code for OBJ and return it as integer. */)
4273 EMACS_UINT hash
= sxhash (obj
, 0);
4274 return make_number (hash
);
4278 DEFUN ("make-hash-table", Fmake_hash_table
, Smake_hash_table
, 0, MANY
, 0,
4279 doc
: /* Create and return a new hash table.
4281 Arguments are specified as keyword/argument pairs. The following
4282 arguments are defined:
4284 :test TEST -- TEST must be a symbol that specifies how to compare
4285 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4286 `equal'. User-supplied test and hash functions can be specified via
4287 `define-hash-table-test'.
4289 :size SIZE -- A hint as to how many elements will be put in the table.
4292 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4293 fills up. If REHASH-SIZE is an integer, increase the size by that
4294 amount. If it is a float, it must be > 1.0, and the new size is the
4295 old size multiplied by that factor. Default is 1.5.
4297 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4298 Resize the hash table when the ratio (number of entries / table size)
4299 is greater than or equal to THRESHOLD. Default is 0.8.
4301 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4302 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4303 returned is a weak table. Key/value pairs are removed from a weak
4304 hash table when there are no non-weak references pointing to their
4305 key, value, one of key or value, or both key and value, depending on
4306 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4309 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4310 (ptrdiff_t nargs
, Lisp_Object
*args
)
4312 Lisp_Object test
, size
, rehash_size
, rehash_threshold
, weak
;
4313 struct hash_table_test testdesc
;
4317 /* The vector `used' is used to keep track of arguments that
4318 have been consumed. */
4319 used
= alloca (nargs
* sizeof *used
);
4320 memset (used
, 0, nargs
* sizeof *used
);
4322 /* See if there's a `:test TEST' among the arguments. */
4323 i
= get_key_arg (QCtest
, nargs
, args
, used
);
4324 test
= i
? args
[i
] : Qeql
;
4326 testdesc
= hashtest_eq
;
4327 else if (EQ (test
, Qeql
))
4328 testdesc
= hashtest_eql
;
4329 else if (EQ (test
, Qequal
))
4330 testdesc
= hashtest_equal
;
4333 /* See if it is a user-defined test. */
4336 prop
= Fget (test
, Qhash_table_test
);
4337 if (!CONSP (prop
) || !CONSP (XCDR (prop
)))
4338 signal_error ("Invalid hash table test", test
);
4339 testdesc
.name
= test
;
4340 testdesc
.user_cmp_function
= XCAR (prop
);
4341 testdesc
.user_hash_function
= XCAR (XCDR (prop
));
4342 testdesc
.hashfn
= hashfn_user_defined
;
4343 testdesc
.cmpfn
= cmpfn_user_defined
;
4346 /* See if there's a `:size SIZE' argument. */
4347 i
= get_key_arg (QCsize
, nargs
, args
, used
);
4348 size
= i
? args
[i
] : Qnil
;
4350 size
= make_number (DEFAULT_HASH_SIZE
);
4351 else if (!INTEGERP (size
) || XINT (size
) < 0)
4352 signal_error ("Invalid hash table size", size
);
4354 /* Look for `:rehash-size SIZE'. */
4355 i
= get_key_arg (QCrehash_size
, nargs
, args
, used
);
4356 rehash_size
= i
? args
[i
] : make_float (DEFAULT_REHASH_SIZE
);
4357 if (! ((INTEGERP (rehash_size
) && 0 < XINT (rehash_size
))
4358 || (FLOATP (rehash_size
) && 1 < XFLOAT_DATA (rehash_size
))))
4359 signal_error ("Invalid hash table rehash size", rehash_size
);
4361 /* Look for `:rehash-threshold THRESHOLD'. */
4362 i
= get_key_arg (QCrehash_threshold
, nargs
, args
, used
);
4363 rehash_threshold
= i
? args
[i
] : make_float (DEFAULT_REHASH_THRESHOLD
);
4364 if (! (FLOATP (rehash_threshold
)
4365 && 0 < XFLOAT_DATA (rehash_threshold
)
4366 && XFLOAT_DATA (rehash_threshold
) <= 1))
4367 signal_error ("Invalid hash table rehash threshold", rehash_threshold
);
4369 /* Look for `:weakness WEAK'. */
4370 i
= get_key_arg (QCweakness
, nargs
, args
, used
);
4371 weak
= i
? args
[i
] : Qnil
;
4373 weak
= Qkey_and_value
;
4376 && !EQ (weak
, Qvalue
)
4377 && !EQ (weak
, Qkey_or_value
)
4378 && !EQ (weak
, Qkey_and_value
))
4379 signal_error ("Invalid hash table weakness", weak
);
4381 /* Now, all args should have been used up, or there's a problem. */
4382 for (i
= 0; i
< nargs
; ++i
)
4384 signal_error ("Invalid argument list", args
[i
]);
4386 return make_hash_table (testdesc
, size
, rehash_size
, rehash_threshold
, weak
);
4390 DEFUN ("copy-hash-table", Fcopy_hash_table
, Scopy_hash_table
, 1, 1, 0,
4391 doc
: /* Return a copy of hash table TABLE. */)
4394 return copy_hash_table (check_hash_table (table
));
4398 DEFUN ("hash-table-count", Fhash_table_count
, Shash_table_count
, 1, 1, 0,
4399 doc
: /* Return the number of elements in TABLE. */)
4402 return make_number (check_hash_table (table
)->count
);
4406 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size
,
4407 Shash_table_rehash_size
, 1, 1, 0,
4408 doc
: /* Return the current rehash size of TABLE. */)
4411 return check_hash_table (table
)->rehash_size
;
4415 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold
,
4416 Shash_table_rehash_threshold
, 1, 1, 0,
4417 doc
: /* Return the current rehash threshold of TABLE. */)
4420 return check_hash_table (table
)->rehash_threshold
;
4424 DEFUN ("hash-table-size", Fhash_table_size
, Shash_table_size
, 1, 1, 0,
4425 doc
: /* Return the size of TABLE.
4426 The size can be used as an argument to `make-hash-table' to create
4427 a hash table than can hold as many elements as TABLE holds
4428 without need for resizing. */)
4431 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4432 return make_number (HASH_TABLE_SIZE (h
));
4436 DEFUN ("hash-table-test", Fhash_table_test
, Shash_table_test
, 1, 1, 0,
4437 doc
: /* Return the test TABLE uses. */)
4440 return check_hash_table (table
)->test
.name
;
4444 DEFUN ("hash-table-weakness", Fhash_table_weakness
, Shash_table_weakness
,
4446 doc
: /* Return the weakness of TABLE. */)
4449 return check_hash_table (table
)->weak
;
4453 DEFUN ("hash-table-p", Fhash_table_p
, Shash_table_p
, 1, 1, 0,
4454 doc
: /* Return t if OBJ is a Lisp hash table object. */)
4457 return HASH_TABLE_P (obj
) ? Qt
: Qnil
;
4461 DEFUN ("clrhash", Fclrhash
, Sclrhash
, 1, 1, 0,
4462 doc
: /* Clear hash table TABLE and return it. */)
4465 hash_clear (check_hash_table (table
));
4466 /* Be compatible with XEmacs. */
4471 DEFUN ("gethash", Fgethash
, Sgethash
, 2, 3, 0,
4472 doc
: /* Look up KEY in TABLE and return its associated value.
4473 If KEY is not found, return DFLT which defaults to nil. */)
4474 (Lisp_Object key
, Lisp_Object table
, Lisp_Object dflt
)
4476 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4477 ptrdiff_t i
= hash_lookup (h
, key
, NULL
);
4478 return i
>= 0 ? HASH_VALUE (h
, i
) : dflt
;
4482 DEFUN ("puthash", Fputhash
, Sputhash
, 3, 3, 0,
4483 doc
: /* Associate KEY with VALUE in hash table TABLE.
4484 If KEY is already present in table, replace its current value with
4485 VALUE. In any case, return VALUE. */)
4486 (Lisp_Object key
, Lisp_Object value
, Lisp_Object table
)
4488 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4492 i
= hash_lookup (h
, key
, &hash
);
4494 set_hash_value_slot (h
, i
, value
);
4496 hash_put (h
, key
, value
, hash
);
4502 DEFUN ("remhash", Fremhash
, Sremhash
, 2, 2, 0,
4503 doc
: /* Remove KEY from TABLE. */)
4504 (Lisp_Object key
, Lisp_Object table
)
4506 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4507 hash_remove_from_table (h
, key
);
4512 DEFUN ("maphash", Fmaphash
, Smaphash
, 2, 2, 0,
4513 doc
: /* Call FUNCTION for all entries in hash table TABLE.
4514 FUNCTION is called with two arguments, KEY and VALUE. */)
4515 (Lisp_Object function
, Lisp_Object table
)
4517 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4518 Lisp_Object args
[3];
4521 for (i
= 0; i
< HASH_TABLE_SIZE (h
); ++i
)
4522 if (!NILP (HASH_HASH (h
, i
)))
4525 args
[1] = HASH_KEY (h
, i
);
4526 args
[2] = HASH_VALUE (h
, i
);
4534 DEFUN ("define-hash-table-test", Fdefine_hash_table_test
,
4535 Sdefine_hash_table_test
, 3, 3, 0,
4536 doc
: /* Define a new hash table test with name NAME, a symbol.
4538 In hash tables created with NAME specified as test, use TEST to
4539 compare keys, and HASH for computing hash codes of keys.
4541 TEST must be a function taking two arguments and returning non-nil if
4542 both arguments are the same. HASH must be a function taking one
4543 argument and returning an object that is the hash code of the argument.
4544 It should be the case that if (eq (funcall HASH x1) (funcall HASH x2))
4545 returns nil, then (funcall TEST x1 x2) also returns nil. */)
4546 (Lisp_Object name
, Lisp_Object test
, Lisp_Object hash
)
4548 return Fput (name
, Qhash_table_test
, list2 (test
, hash
));
4553 /************************************************************************
4554 MD5, SHA-1, and SHA-2
4555 ************************************************************************/
4562 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4565 secure_hash (Lisp_Object algorithm
, Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object coding_system
, Lisp_Object noerror
, Lisp_Object binary
)
4569 EMACS_INT start_char
= 0, end_char
= 0;
4570 ptrdiff_t start_byte
, end_byte
;
4571 register EMACS_INT b
, e
;
4572 register struct buffer
*bp
;
4575 void *(*hash_func
) (const char *, size_t, void *);
4578 CHECK_SYMBOL (algorithm
);
4580 if (STRINGP (object
))
4582 if (NILP (coding_system
))
4584 /* Decide the coding-system to encode the data with. */
4586 if (STRING_MULTIBYTE (object
))
4587 /* use default, we can't guess correct value */
4588 coding_system
= preferred_coding_system ();
4590 coding_system
= Qraw_text
;
4593 if (NILP (Fcoding_system_p (coding_system
)))
4595 /* Invalid coding system. */
4597 if (!NILP (noerror
))
4598 coding_system
= Qraw_text
;
4600 xsignal1 (Qcoding_system_error
, coding_system
);
4603 if (STRING_MULTIBYTE (object
))
4604 object
= code_convert_string (object
, coding_system
, Qnil
, 1, 0, 1);
4606 size
= SCHARS (object
);
4610 CHECK_NUMBER (start
);
4612 start_char
= XINT (start
);
4624 end_char
= XINT (end
);
4630 if (!(0 <= start_char
&& start_char
<= end_char
&& end_char
<= size
))
4631 args_out_of_range_3 (object
, make_number (start_char
),
4632 make_number (end_char
));
4634 start_byte
= NILP (start
) ? 0 : string_char_to_byte (object
, start_char
);
4636 NILP (end
) ? SBYTES (object
) : string_char_to_byte (object
, end_char
);
4640 struct buffer
*prev
= current_buffer
;
4642 record_unwind_current_buffer ();
4644 CHECK_BUFFER (object
);
4646 bp
= XBUFFER (object
);
4647 set_buffer_internal (bp
);
4653 CHECK_NUMBER_COERCE_MARKER (start
);
4661 CHECK_NUMBER_COERCE_MARKER (end
);
4666 temp
= b
, b
= e
, e
= temp
;
4668 if (!(BEGV
<= b
&& e
<= ZV
))
4669 args_out_of_range (start
, end
);
4671 if (NILP (coding_system
))
4673 /* Decide the coding-system to encode the data with.
4674 See fileio.c:Fwrite-region */
4676 if (!NILP (Vcoding_system_for_write
))
4677 coding_system
= Vcoding_system_for_write
;
4680 bool force_raw_text
= 0;
4682 coding_system
= BVAR (XBUFFER (object
), buffer_file_coding_system
);
4683 if (NILP (coding_system
)
4684 || NILP (Flocal_variable_p (Qbuffer_file_coding_system
, Qnil
)))
4686 coding_system
= Qnil
;
4687 if (NILP (BVAR (current_buffer
, enable_multibyte_characters
)))
4691 if (NILP (coding_system
) && !NILP (Fbuffer_file_name (object
)))
4693 /* Check file-coding-system-alist. */
4694 Lisp_Object args
[4], val
;
4696 args
[0] = Qwrite_region
; args
[1] = start
; args
[2] = end
;
4697 args
[3] = Fbuffer_file_name (object
);
4698 val
= Ffind_operation_coding_system (4, args
);
4699 if (CONSP (val
) && !NILP (XCDR (val
)))
4700 coding_system
= XCDR (val
);
4703 if (NILP (coding_system
)
4704 && !NILP (BVAR (XBUFFER (object
), buffer_file_coding_system
)))
4706 /* If we still have not decided a coding system, use the
4707 default value of buffer-file-coding-system. */
4708 coding_system
= BVAR (XBUFFER (object
), buffer_file_coding_system
);
4712 && !NILP (Ffboundp (Vselect_safe_coding_system_function
)))
4713 /* Confirm that VAL can surely encode the current region. */
4714 coding_system
= call4 (Vselect_safe_coding_system_function
,
4715 make_number (b
), make_number (e
),
4716 coding_system
, Qnil
);
4719 coding_system
= Qraw_text
;
4722 if (NILP (Fcoding_system_p (coding_system
)))
4724 /* Invalid coding system. */
4726 if (!NILP (noerror
))
4727 coding_system
= Qraw_text
;
4729 xsignal1 (Qcoding_system_error
, coding_system
);
4733 object
= make_buffer_string (b
, e
, 0);
4734 set_buffer_internal (prev
);
4735 /* Discard the unwind protect for recovering the current
4739 if (STRING_MULTIBYTE (object
))
4740 object
= code_convert_string (object
, coding_system
, Qnil
, 1, 0, 0);
4742 end_byte
= SBYTES (object
);
4745 if (EQ (algorithm
, Qmd5
))
4747 digest_size
= MD5_DIGEST_SIZE
;
4748 hash_func
= md5_buffer
;
4750 else if (EQ (algorithm
, Qsha1
))
4752 digest_size
= SHA1_DIGEST_SIZE
;
4753 hash_func
= sha1_buffer
;
4755 else if (EQ (algorithm
, Qsha224
))
4757 digest_size
= SHA224_DIGEST_SIZE
;
4758 hash_func
= sha224_buffer
;
4760 else if (EQ (algorithm
, Qsha256
))
4762 digest_size
= SHA256_DIGEST_SIZE
;
4763 hash_func
= sha256_buffer
;
4765 else if (EQ (algorithm
, Qsha384
))
4767 digest_size
= SHA384_DIGEST_SIZE
;
4768 hash_func
= sha384_buffer
;
4770 else if (EQ (algorithm
, Qsha512
))
4772 digest_size
= SHA512_DIGEST_SIZE
;
4773 hash_func
= sha512_buffer
;
4776 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm
)));
4778 /* allocate 2 x digest_size so that it can be re-used to hold the
4780 digest
= make_uninit_string (digest_size
* 2);
4782 hash_func (SSDATA (object
) + start_byte
,
4783 end_byte
- start_byte
,
4788 unsigned char *p
= SDATA (digest
);
4789 for (i
= digest_size
- 1; i
>= 0; i
--)
4791 static char const hexdigit
[16] = "0123456789abcdef";
4793 p
[2 * i
] = hexdigit
[p_i
>> 4];
4794 p
[2 * i
+ 1] = hexdigit
[p_i
& 0xf];
4799 return make_unibyte_string (SSDATA (digest
), digest_size
);
4802 DEFUN ("md5", Fmd5
, Smd5
, 1, 5, 0,
4803 doc
: /* Return MD5 message digest of OBJECT, a buffer or string.
4805 A message digest is a cryptographic checksum of a document, and the
4806 algorithm to calculate it is defined in RFC 1321.
4808 The two optional arguments START and END are character positions
4809 specifying for which part of OBJECT the message digest should be
4810 computed. If nil or omitted, the digest is computed for the whole
4813 The MD5 message digest is computed from the result of encoding the
4814 text in a coding system, not directly from the internal Emacs form of
4815 the text. The optional fourth argument CODING-SYSTEM specifies which
4816 coding system to encode the text with. It should be the same coding
4817 system that you used or will use when actually writing the text into a
4820 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4821 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4822 system would be chosen by default for writing this text into a file.
4824 If OBJECT is a string, the most preferred coding system (see the
4825 command `prefer-coding-system') is used.
4827 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4828 guesswork fails. Normally, an error is signaled in such case. */)
4829 (Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object coding_system
, Lisp_Object noerror
)
4831 return secure_hash (Qmd5
, object
, start
, end
, coding_system
, noerror
, Qnil
);
4834 DEFUN ("secure-hash", Fsecure_hash
, Ssecure_hash
, 2, 5, 0,
4835 doc
: /* Return the secure hash of OBJECT, a buffer or string.
4836 ALGORITHM is a symbol specifying the hash to use:
4837 md5, sha1, sha224, sha256, sha384 or sha512.
4839 The two optional arguments START and END are positions specifying for
4840 which part of OBJECT to compute the hash. If nil or omitted, uses the
4843 If BINARY is non-nil, returns a string in binary form. */)
4844 (Lisp_Object algorithm
, Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object binary
)
4846 return secure_hash (algorithm
, object
, start
, end
, Qnil
, Qnil
, binary
);
4852 DEFSYM (Qmd5
, "md5");
4853 DEFSYM (Qsha1
, "sha1");
4854 DEFSYM (Qsha224
, "sha224");
4855 DEFSYM (Qsha256
, "sha256");
4856 DEFSYM (Qsha384
, "sha384");
4857 DEFSYM (Qsha512
, "sha512");
4859 /* Hash table stuff. */
4860 DEFSYM (Qhash_table_p
, "hash-table-p");
4862 DEFSYM (Qeql
, "eql");
4863 DEFSYM (Qequal
, "equal");
4864 DEFSYM (QCtest
, ":test");
4865 DEFSYM (QCsize
, ":size");
4866 DEFSYM (QCrehash_size
, ":rehash-size");
4867 DEFSYM (QCrehash_threshold
, ":rehash-threshold");
4868 DEFSYM (QCweakness
, ":weakness");
4869 DEFSYM (Qkey
, "key");
4870 DEFSYM (Qvalue
, "value");
4871 DEFSYM (Qhash_table_test
, "hash-table-test");
4872 DEFSYM (Qkey_or_value
, "key-or-value");
4873 DEFSYM (Qkey_and_value
, "key-and-value");
4876 defsubr (&Smake_hash_table
);
4877 defsubr (&Scopy_hash_table
);
4878 defsubr (&Shash_table_count
);
4879 defsubr (&Shash_table_rehash_size
);
4880 defsubr (&Shash_table_rehash_threshold
);
4881 defsubr (&Shash_table_size
);
4882 defsubr (&Shash_table_test
);
4883 defsubr (&Shash_table_weakness
);
4884 defsubr (&Shash_table_p
);
4885 defsubr (&Sclrhash
);
4886 defsubr (&Sgethash
);
4887 defsubr (&Sputhash
);
4888 defsubr (&Sremhash
);
4889 defsubr (&Smaphash
);
4890 defsubr (&Sdefine_hash_table_test
);
4892 DEFSYM (Qstring_lessp
, "string-lessp");
4893 DEFSYM (Qprovide
, "provide");
4894 DEFSYM (Qrequire
, "require");
4895 DEFSYM (Qyes_or_no_p_history
, "yes-or-no-p-history");
4896 DEFSYM (Qcursor_in_echo_area
, "cursor-in-echo-area");
4897 DEFSYM (Qwidget_type
, "widget-type");
4899 staticpro (&string_char_byte_cache_string
);
4900 string_char_byte_cache_string
= Qnil
;
4902 require_nesting_list
= Qnil
;
4903 staticpro (&require_nesting_list
);
4905 Fset (Qyes_or_no_p_history
, Qnil
);
4907 DEFVAR_LISP ("features", Vfeatures
,
4908 doc
: /* A list of symbols which are the features of the executing Emacs.
4909 Used by `featurep' and `require', and altered by `provide'. */);
4910 Vfeatures
= list1 (intern_c_string ("emacs"));
4911 DEFSYM (Qsubfeatures
, "subfeatures");
4912 DEFSYM (Qfuncall
, "funcall");
4914 #ifdef HAVE_LANGINFO_CODESET
4915 DEFSYM (Qcodeset
, "codeset");
4916 DEFSYM (Qdays
, "days");
4917 DEFSYM (Qmonths
, "months");
4918 DEFSYM (Qpaper
, "paper");
4919 #endif /* HAVE_LANGINFO_CODESET */
4921 DEFVAR_BOOL ("use-dialog-box", use_dialog_box
,
4922 doc
: /* Non-nil means mouse commands use dialog boxes to ask questions.
4923 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4924 invoked by mouse clicks and mouse menu items.
4926 On some platforms, file selection dialogs are also enabled if this is
4930 DEFVAR_BOOL ("use-file-dialog", use_file_dialog
,
4931 doc
: /* Non-nil means mouse commands use a file dialog to ask for files.
4932 This applies to commands from menus and tool bar buttons even when
4933 they are initiated from the keyboard. If `use-dialog-box' is nil,
4934 that disables the use of a file dialog, regardless of the value of
4936 use_file_dialog
= 1;
4938 defsubr (&Sidentity
);
4941 defsubr (&Ssafe_length
);
4942 defsubr (&Sstring_bytes
);
4943 defsubr (&Sstring_equal
);
4944 defsubr (&Scompare_strings
);
4945 defsubr (&Sstring_lessp
);
4948 defsubr (&Svconcat
);
4949 defsubr (&Scopy_sequence
);
4950 defsubr (&Sstring_make_multibyte
);
4951 defsubr (&Sstring_make_unibyte
);
4952 defsubr (&Sstring_as_multibyte
);
4953 defsubr (&Sstring_as_unibyte
);
4954 defsubr (&Sstring_to_multibyte
);
4955 defsubr (&Sstring_to_unibyte
);
4956 defsubr (&Scopy_alist
);
4957 defsubr (&Ssubstring
);
4958 defsubr (&Ssubstring_no_properties
);
4971 defsubr (&Snreverse
);
4972 defsubr (&Sreverse
);
4974 defsubr (&Splist_get
);
4976 defsubr (&Splist_put
);
4978 defsubr (&Slax_plist_get
);
4979 defsubr (&Slax_plist_put
);
4982 defsubr (&Sequal_including_properties
);
4983 defsubr (&Sfillarray
);
4984 defsubr (&Sclear_string
);
4988 defsubr (&Smapconcat
);
4989 defsubr (&Syes_or_no_p
);
4990 defsubr (&Sload_average
);
4991 defsubr (&Sfeaturep
);
4992 defsubr (&Srequire
);
4993 defsubr (&Sprovide
);
4994 defsubr (&Splist_member
);
4995 defsubr (&Swidget_put
);
4996 defsubr (&Swidget_get
);
4997 defsubr (&Swidget_apply
);
4998 defsubr (&Sbase64_encode_region
);
4999 defsubr (&Sbase64_decode_region
);
5000 defsubr (&Sbase64_encode_string
);
5001 defsubr (&Sbase64_decode_string
);
5003 defsubr (&Ssecure_hash
);
5004 defsubr (&Slocale_info
);
5006 hashtest_eq
.name
= Qeq
;
5007 hashtest_eq
.user_hash_function
= Qnil
;
5008 hashtest_eq
.user_cmp_function
= Qnil
;
5009 hashtest_eq
.cmpfn
= 0;
5010 hashtest_eq
.hashfn
= hashfn_eq
;
5012 hashtest_eql
.name
= Qeql
;
5013 hashtest_eql
.user_hash_function
= Qnil
;
5014 hashtest_eql
.user_cmp_function
= Qnil
;
5015 hashtest_eql
.cmpfn
= cmpfn_eql
;
5016 hashtest_eql
.hashfn
= hashfn_eql
;
5018 hashtest_equal
.name
= Qequal
;
5019 hashtest_equal
.user_hash_function
= Qnil
;
5020 hashtest_equal
.user_cmp_function
= Qnil
;
5021 hashtest_equal
.cmpfn
= cmpfn_equal
;
5022 hashtest_equal
.hashfn
= hashfn_equal
;