1 ;;; solar.el --- calendar functions for solar events
3 ;; Copyright (C) 1992, 1993, 1995, 1997, 2001, 2002, 2003, 2004, 2005,
4 ;; 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
6 ;; Author: Edward M. Reingold <reingold@cs.uiuc.edu>
7 ;; Denis B. Roegel <Denis.Roegel@loria.fr>
8 ;; Maintainer: Glenn Morris <rgm@gnu.org>
10 ;; Human-Keywords: sunrise, sunset, equinox, solstice, calendar, diary, holidays
12 ;; This file is part of GNU Emacs.
14 ;; GNU Emacs is free software: you can redistribute it and/or modify
15 ;; it under the terms of the GNU General Public License as published by
16 ;; the Free Software Foundation, either version 3 of the License, or
17 ;; (at your option) any later version.
19 ;; GNU Emacs is distributed in the hope that it will be useful,
20 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
21 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 ;; GNU General Public License for more details.
24 ;; You should have received a copy of the GNU General Public License
25 ;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
29 ;; See calendar.el. This file implements features that deal with
30 ;; times of day, sunrise/sunset, and equinoxes/solstices.
32 ;; Based on the ``Almanac for Computers 1984,'' prepared by the Nautical
33 ;; Almanac Office, United States Naval Observatory, Washington, 1984, on
34 ;; ``Astronomical Formulae for Calculators,'' 3rd ed., by Jean Meeus,
35 ;; Willmann-Bell, Inc., 1985, on ``Astronomical Algorithms'' by Jean Meeus,
36 ;; Willmann-Bell, Inc., 1991, and on ``Planetary Programs and Tables from
37 ;; -4000 to +2800'' by Pierre Bretagnon and Jean-Louis Simon, Willmann-Bell,
42 ;; 1. Sunrise/sunset times will be accurate to the minute for years
43 ;; 1951--2050. For other years the times will be within +/- 2 minutes.
45 ;; 2. Equinox/solstice times will be accurate to the minute for years
46 ;; 1951--2050. For other years the times will be within +/- 1 minute.
52 ;; calendar-astro-to-absolute and v versa are cal-autoloads.
53 ;;;(require 'cal-julian)
56 (defcustom calendar-time-display-form
57 '(12-hours ":" minutes am-pm
58 (if time-zone
" (") time-zone
(if time-zone
")"))
59 "The pseudo-pattern that governs the way a time of day is formatted.
61 A pseudo-pattern is a list of expressions that can involve the keywords
62 `12-hours', `24-hours', and `minutes', all numbers in string form,
63 and `am-pm' and `time-zone', both alphabetic strings.
67 '(24-hours \":\" minutes
68 (if time-zone \" (\") time-zone (if time-zone \")\"))
70 would give military-style times like `21:07 (UTC)'."
74 (defcustom calendar-latitude nil
75 "Latitude of `calendar-location-name' in degrees.
76 The value can be either a decimal fraction (one place of accuracy is
77 sufficient), + north, - south, such as 40.7 for New York City, or the value
78 can be a vector [degrees minutes north/south] such as [40 50 north] for New
81 This variable should be set in `site-start'.el."
82 :type
'(choice (const nil
)
84 (vector :value
[0 0 north
]
85 (integer :tag
"Degrees")
86 (integer :tag
"Minutes")
87 (choice :tag
"Position"
92 (defcustom calendar-longitude nil
93 "Longitude of `calendar-location-name' in degrees.
94 The value can be either a decimal fraction (one place of accuracy is
95 sufficient), + east, - west, such as -73.9 for New York City, or the value
96 can be a vector [degrees minutes east/west] such as [73 55 west] for New
99 This variable should be set in `site-start'.el."
100 :type
'(choice (const nil
)
101 (number :tag
"Exact")
102 (vector :value
[0 0 west
]
103 (integer :tag
"Degrees")
104 (integer :tag
"Minutes")
105 (choice :tag
"Position"
110 (defcustom calendar-location-name
111 '(let ((float-output-format "%.1f"))
113 (if (numberp calendar-latitude
)
114 (abs calendar-latitude
)
115 (+ (aref calendar-latitude
0)
116 (/ (aref calendar-latitude
1) 60.0)))
117 (if (numberp calendar-latitude
)
118 (if (> calendar-latitude
0) "N" "S")
119 (if (eq (aref calendar-latitude
2) 'north
) "N" "S"))
120 (if (numberp calendar-longitude
)
121 (abs calendar-longitude
)
122 (+ (aref calendar-longitude
0)
123 (/ (aref calendar-longitude
1) 60.0)))
124 (if (numberp calendar-longitude
)
125 (if (> calendar-longitude
0) "E" "W")
126 (if (eq (aref calendar-longitude
2) 'east
) "E" "W"))))
127 "Expression evaluating to the name of the calendar location.
128 For example, \"New York City\". The default value is just the
129 variable `calendar-latitude' paired with the variable `calendar-longitude'.
131 This variable should be set in `site-start'.el."
135 (defcustom solar-error
0.5
136 "Tolerance (in minutes) for sunrise/sunset calculations.
138 A larger value makes the calculations for sunrise/sunset faster, but less
139 accurate. The default is half a minute (30 seconds), so that sunrise/sunset
140 times will be correct to the minute.
142 It is useless to set the value smaller than 4*delta, where delta is the
143 accuracy in the longitude of the sun (given by the function
144 `solar-ecliptic-coordinates') in degrees since (delta/360) x (86400/60) = 4 x
145 delta. At present, delta = 0.01 degrees, so the value of the variable
146 `solar-error' should be at least 0.04 minutes (about 2.5 seconds)."
150 (defcustom solar-n-hemi-seasons
151 '("Vernal Equinox" "Summer Solstice" "Autumnal Equinox" "Winter Solstice")
152 "List of season changes for the northern hemisphere."
154 (string :tag
"Vernal Equinox")
155 (string :tag
"Summer Solstice")
156 (string :tag
"Autumnal Equinox")
157 (string :tag
"Winter Solstice"))
160 (defcustom solar-s-hemi-seasons
161 '("Autumnal Equinox" "Winter Solstice" "Vernal Equinox" "Summer Solstice")
162 "List of season changes for the southern hemisphere."
164 (string :tag
"Autumnal Equinox")
165 (string :tag
"Winter Solstice")
166 (string :tag
"Vernal Equinox")
167 (string :tag
"Summer Solstice"))
170 ;;; End of user options.
172 (defvar solar-sidereal-time-greenwich-midnight nil
173 "Sidereal time at Greenwich at midnight (universal time).")
175 (defvar solar-northern-spring-or-summer-season nil
176 "Non-nil if northern spring or summer and nil otherwise.
177 Needed for polar areas, in order to know whether the day lasts 0 or 24 hours.")
180 (defsubst calendar-latitude
()
181 "Ensure the variable `calendar-latitude' is a signed decimal fraction."
182 (if (numberp calendar-latitude
)
184 (let ((lat (+ (aref calendar-latitude
0)
185 (/ (aref calendar-latitude
1) 60.0))))
186 (if (eq (aref calendar-latitude
2) 'north
)
190 (defsubst calendar-longitude
()
191 "Ensure the variable `calendar-longitude' is a signed decimal fraction."
192 (if (numberp calendar-longitude
)
194 (let ((long (+ (aref calendar-longitude
0)
195 (/ (aref calendar-longitude
1) 60.0))))
196 (if (eq (aref calendar-longitude
2) 'east
)
200 (defun solar-get-number (prompt)
201 "Return a number from the minibuffer, prompting with PROMPT.
202 Returns nil if nothing was entered."
203 (let ((x (read-string prompt
"")))
204 (unless (string-equal x
"")
205 (string-to-number x
))))
207 (defun solar-setup ()
208 "Prompt for `calendar-longitude', `calendar-latitude', `calendar-time-zone'."
210 (or calendar-longitude
211 (setq calendar-longitude
213 "Enter longitude (decimal fraction; + east, - west): ")))
214 (or calendar-latitude
215 (setq calendar-latitude
217 "Enter latitude (decimal fraction; + north, - south): ")))
218 (or calendar-time-zone
219 (setq calendar-time-zone
221 "Enter difference from Coordinated Universal Time (in minutes): ")
224 (defun solar-sin-degrees (x)
225 "Return sin of X degrees."
226 (sin (degrees-to-radians (mod x
360.0))))
228 (defun solar-cosine-degrees (x)
229 "Return cosine of X degrees."
230 (cos (degrees-to-radians (mod x
360.0))))
232 (defun solar-tangent-degrees (x)
233 "Return tangent of X degrees."
234 (tan (degrees-to-radians (mod x
360.0))))
236 (defun solar-xy-to-quadrant (x y
)
237 "Determine the quadrant of the point X, Y."
242 (defun solar-degrees-to-quadrant (angle)
243 "Determine the quadrant of ANGLE degrees."
244 (1+ (floor (mod angle
360) 90)))
246 (defun solar-arctan (x quad
)
247 "Arctangent of X in quadrant QUAD."
248 (let ((deg (radians-to-degrees (atan x
))))
249 (cond ((= quad
2) (+ deg
180))
250 ((= quad
3) (+ deg
180))
251 ((= quad
4) (+ deg
360))
254 (defun solar-atn2 (x y
)
255 "Arctangent of point X, Y."
258 (solar-arctan (/ y x
) (solar-xy-to-quadrant x y
))))
260 (defun solar-arccos (x)
262 (let ((y (sqrt (- 1 (* x x
)))))
265 (defun solar-arcsin (y)
267 (let ((x (sqrt (- 1 (* y y
)))))
270 (defsubst solar-degrees-to-hours
(degrees)
271 "Convert DEGREES to hours."
274 (defsubst solar-hours-to-days
(hour)
275 "Convert HOUR to decimal fraction of a day."
278 (defun solar-right-ascension (longitude obliquity
)
279 "Right ascension of the sun, in hours, given LONGITUDE and OBLIQUITY.
280 Both arguments are in degrees."
281 (solar-degrees-to-hours
283 (* (solar-cosine-degrees obliquity
) (solar-tangent-degrees longitude
))
284 (solar-degrees-to-quadrant longitude
))))
286 (defun solar-declination (longitude obliquity
)
287 "Declination of the sun, in degrees, given LONGITUDE and OBLIQUITY.
288 Both arguments are in degrees."
290 (* (solar-sin-degrees obliquity
)
291 (solar-sin-degrees longitude
))))
293 (defun solar-ecliptic-coordinates (time sunrise-flag
)
294 "Return solar longitude, ecliptic inclination, equation of time, nutation.
295 Values are for TIME in Julian centuries of Ephemeris Time since
296 January 1st, 2000, at 12 ET. Longitude and inclination are in
297 degrees, equation of time in hours, and nutation in seconds of longitude.
298 If SUNRISE-FLAG is non-nil, only calculate longitude and inclination."
299 (let* ((l (+ 280.46645
301 (* 0.0003032 time time
))) ; sun mean longitude
303 (* 481267.8813 time
))) ; moon mean longitude
306 (* -
0.0001559 time time
)
307 (* -
0.00000048 time time time
))) ; sun mean anomaly
308 (i (+ 23.43929111 (* -
0.013004167 time
)
309 (* -
0.00000016389 time time
)
310 (* 0.0000005036 time time time
))) ; mean inclination
313 (* -
0.000014 time time
))
314 (solar-sin-degrees m
))
315 (* (+ 0.019993 (* -
0.000101 time
))
316 (solar-sin-degrees (* 2 m
)))
318 (solar-sin-degrees (* 3 m
))))) ; center equation
319 (L (+ l c
)) ; total longitude
320 ;; Longitude of moon's ascending node on the ecliptic.
323 ;; nut = nutation in longitude, measured in seconds of angle.
324 (nut (unless sunrise-flag
325 (+ (* -
17.20 (solar-sin-degrees omega
))
326 (* -
1.32 (solar-sin-degrees (* 2 l
)))
327 (* -
0.23 (solar-sin-degrees (* 2 ml
)))
328 (* 0.21 (solar-sin-degrees (* 2 omega
))))))
329 (ecc (unless sunrise-flag
; eccentricity of earth's orbit
331 (* -
0.000042037 time
)
332 (* -
0.0000001236 time time
))))
333 (app (+ L
; apparent longitude of sun
336 (solar-sin-degrees omega
))))
337 (y (unless sunrise-flag
338 (* (solar-tangent-degrees (/ i
2))
339 (solar-tangent-degrees (/ i
2)))))
340 ;; Equation of time, in hours.
341 (time-eq (unless sunrise-flag
342 (/ (* 12 (+ (* y
(solar-sin-degrees (* 2 l
)))
343 (* -
2 ecc
(solar-sin-degrees m
))
344 (* 4 ecc y
(solar-sin-degrees m
)
345 (solar-cosine-degrees (* 2 l
)))
346 (* -
0.5 y y
(solar-sin-degrees (* 4 l
)))
347 (* -
1.25 ecc ecc
(solar-sin-degrees (* 2 m
)))))
349 (list app i time-eq nut
)))
351 (defun solar-ephemeris-correction (year)
352 "Ephemeris time minus Universal Time during Gregorian YEAR.
353 Result is in days. For the years 1800-1987, the maximum error is
354 1.9 seconds. For the other years, the maximum error is about 30 seconds."
355 (cond ((and (<= 1988 year
) (< year
2020))
356 (/ (+ year -
2000 67.0) 60.0 60.0 24.0))
357 ((and (<= 1900 year
) (< year
1988))
358 (let* ((theta (/ (- (calendar-astro-from-absolute
359 (calendar-absolute-from-gregorian
361 (calendar-astro-from-absolute
362 (calendar-absolute-from-gregorian
365 (theta2 (* theta theta
))
366 (theta3 (* theta2 theta
))
367 (theta4 (* theta2 theta2
))
368 (theta5 (* theta3 theta2
)))
375 (* 0.677066 theta3 theta3
)
376 (* -
0.212591 theta4 theta3
))))
377 ((and (<= 1800 year
) (< year
1900))
378 (let* ((theta (/ (- (calendar-astro-from-absolute
379 (calendar-absolute-from-gregorian
381 (calendar-astro-from-absolute
382 (calendar-absolute-from-gregorian
385 (theta2 (* theta theta
))
386 (theta3 (* theta2 theta
))
387 (theta4 (* theta2 theta2
))
388 (theta5 (* theta3 theta2
)))
395 (* 31.332267 theta3 theta3
)
396 (* 38.291999 theta4 theta3
)
397 (* 28.316289 theta4 theta4
)
398 (* 11.636204 theta4 theta5
)
399 (* 2.043794 theta5 theta5
))))
400 ((and (<= 1620 year
) (< year
1800))
401 (let ((x (/ (- year
1600) 10.0)))
402 (/ (+ (* 2.19167 x x
) (* -
40.675 x
) 196.58333) 60.0 60.0 24.0)))
403 (t (let* ((tmp (- (calendar-astro-from-absolute
404 (calendar-absolute-from-gregorian
407 (second (- (/ (* tmp tmp
) 41048480.0) 15)))
408 (/ second
60.0 60.0 24.0)))))
410 (defun solar-ephemeris-time (time)
411 "Ephemeris Time at moment TIME.
412 TIME is a pair with the first component being the number of Julian centuries
413 elapsed at 0 Universal Time, and the second component being the universal
414 time. For instance, the pair corresponding to November 28, 1995 at 16 UT is
415 \(-0.040945 16), -0.040945 being the number of Julian centuries elapsed between
416 Jan 1, 2000 at 12 UT and November 28, 1995 at 0 UT.
418 Result is in Julian centuries of ephemeris time."
419 (let* ((t0 (car time
))
421 (t1 (+ t0
(/ (/ ut
24.0) 36525)))
422 (y (+ 2000 (* 100 t1
)))
423 (dt (* 86400 (solar-ephemeris-correction (floor y
)))))
424 (+ t1
(/ (/ dt
86400) 36525))))
426 (defun solar-equatorial-coordinates (time sunrise-flag
)
427 "Right ascension (in hours) and declination (in degrees) of the sun at TIME.
428 TIME is a pair with the first component being the number of
429 Julian centuries elapsed at 0 Universal Time, and the second
430 component being the universal time. For instance, the pair
431 corresponding to November 28, 1995 at 16 UT is (-0.040945 16),
432 -0.040945 being the number of Julian centuries elapsed between
433 Jan 1, 2000 at 12 UT and November 28, 1995 at 0 UT. SUNRISE-FLAG is passed
434 to `solar-ecliptic-coordinates'."
435 (let ((ec (solar-ecliptic-coordinates (solar-ephemeris-time time
)
437 (list (solar-right-ascension (car ec
) (cadr ec
))
438 (solar-declination (car ec
) (cadr ec
)))))
440 (defun solar-horizontal-coordinates (time latitude longitude sunrise-flag
)
441 "Azimuth and height of the sun at TIME, LATITUDE, and LONGITUDE.
442 TIME is a pair with the first component being the number of
443 Julian centuries elapsed at 0 Universal Time, and the second
444 component being the universal time. For instance, the pair
445 corresponding to November 28, 1995 at 16 UT is (-0.040945 16),
446 -0.040945 being the number of Julian centuries elapsed between
447 Jan 1, 2000 at 12 UT and November 28, 1995 at 0 UT. SUNRISE-FLAG
448 is passed to `solar-ecliptic-coordinates'. Azimuth and
449 height (between -180 and 180) are both in degrees."
450 (let* ((ut (cadr time
))
451 (ec (solar-equatorial-coordinates time sunrise-flag
))
452 (st (+ solar-sidereal-time-greenwich-midnight
453 (* ut
1.00273790935)))
454 ;; Hour angle (in degrees).
455 (ah (- (* st
15) (* 15 (car ec
)) (* -
1 (calendar-longitude))))
457 (azimuth (solar-atn2 (- (* (solar-cosine-degrees ah
)
458 (solar-sin-degrees latitude
))
459 (* (solar-tangent-degrees de
)
460 (solar-cosine-degrees latitude
)))
461 (solar-sin-degrees ah
)))
462 (height (solar-arcsin
463 (+ (* (solar-sin-degrees latitude
) (solar-sin-degrees de
))
464 (* (solar-cosine-degrees latitude
)
465 (solar-cosine-degrees de
)
466 (solar-cosine-degrees ah
))))))
467 (if (> height
180) (setq height
(- height
360)))
468 (list azimuth height
)))
470 (defun solar-moment (direction latitude longitude time height
)
471 "Sunrise/sunset at location.
472 Sunrise if DIRECTION =-1 or sunset if =1 at LATITUDE, LONGITUDE, with midday
475 TIME is a pair with the first component being the number of Julian centuries
476 elapsed at 0 Universal Time, and the second component being the universal
477 time. For instance, the pair corresponding to November 28, 1995 at 16 UT is
478 \(-0.040945 16), -0.040945 being the number of Julian centuries elapsed between
479 Jan 1, 2000 at 12 UT and November 28, 1995 at 0 UT.
481 HEIGHT is the angle the center of the sun has over the horizon for the contact
482 we are trying to find. For sunrise and sunset, it is usually -0.61 degrees,
483 accounting for the edge of the sun being on the horizon.
486 (let* ((ut (cadr time
))
487 (possible t
) ; we assume that rise or set are possible
488 (utmin (+ ut
(* direction
12.0)))
489 (utmax ut
) ; the time searched is between utmin and utmax
490 ;; utmin and utmax are in hours.
491 (utmoment-old 0.0) ; rise or set approximation
492 (utmoment 1.0) ; rise or set approximation
493 (hut 0) ; sun height at utmoment
495 (hmin (cadr (solar-horizontal-coordinates (list t0 utmin
)
496 latitude longitude t
)))
497 (hmax (cadr (solar-horizontal-coordinates (list t0 utmax
)
498 latitude longitude t
))))
499 ;; -0.61 degrees is the height of the middle of the sun, when it
503 (while ;;; (< i 20) ; we perform a simple dichotomy
504 ;;; (> (abs (- hut height)) epsilon)
505 (>= (abs (- utmoment utmoment-old
))
507 (setq utmoment-old utmoment
508 utmoment
(/ (+ utmin utmax
) 2)
509 hut
(cadr (solar-horizontal-coordinates
510 (list t0 utmoment
) latitude longitude t
)))
511 (if (< hut height
) (setq utmin utmoment
))
512 (if (> hut height
) (setq utmax utmoment
)))
513 (setq possible nil
)) ; the sun never rises
514 (setq possible nil
)) ; the sun never sets
515 (if possible utmoment
)))
517 (defun solar-sunrise-and-sunset (time latitude longitude height
)
518 "Sunrise, sunset and length of day.
519 Parameters are the midday TIME and the LATITUDE, LONGITUDE of the location.
521 TIME is a pair with the first component being the number of Julian centuries
522 elapsed at 0 Universal Time, and the second component being the universal
523 time. For instance, the pair corresponding to November 28, 1995 at 16 UT is
524 \(-0.040945 16), -0.040945 being the number of Julian centuries elapsed between
525 Jan 1, 2000 at 12 UT and November 28, 1995 at 0 UT.
527 HEIGHT is the angle the center of the sun has over the horizon for the contact
528 we are trying to find. For sunrise and sunset, it is usually -0.61 degrees,
529 accounting for the edge of the sun being on the horizon.
531 Coordinates are included because this function is called with latitude=1
532 degrees to find out if polar regions have 24 hours of sun or only night."
533 (let ((rise-time (solar-moment -
1 latitude longitude time height
))
534 (set-time (solar-moment 1 latitude longitude time height
))
536 (if (not (and rise-time set-time
))
537 (if (or (and (> latitude
0)
538 solar-northern-spring-or-summer-season
)
540 (not solar-northern-spring-or-summer-season
)))
543 (setq day-length
(- set-time rise-time
)))
544 (list (if rise-time
(+ rise-time
(/ calendar-time-zone
60.0)) nil
)
545 (if set-time
(+ set-time
(/ calendar-time-zone
60.0)) nil
)
548 (defun solar-time-string (time time-zone
)
549 "Printable form for decimal fraction TIME in TIME-ZONE.
550 Format used is given by `calendar-time-display-form'."
551 (let* ((time (round (* 60 time
)))
552 (24-hours (/ time
60))
553 (minutes (format "%02d" (% time
60)))
554 (12-hours (format "%d" (1+ (%
(+ 24-hours
11) 12))))
555 (am-pm (if (>= 24-hours
12) "pm" "am"))
556 (24-hours (format "%02d" 24-hours
)))
557 (mapconcat 'eval calendar-time-display-form
"")))
559 (defun solar-daylight (time)
560 "Printable form for TIME expressed in hours."
563 (floor (* 60 (- time
(floor time
))))))
565 (defun solar-julian-ut-centuries (date)
566 "Number of Julian centuries since 1 Jan, 2000 at noon UT for Gregorian DATE."
567 (/ (- (calendar-absolute-from-gregorian date
)
568 (calendar-absolute-from-gregorian '(1 1.5 2000)))
571 (defun solar-date-to-et (date ut
)
572 "Ephemeris Time at Gregorian DATE at Universal Time UT (in hours).
573 Expressed in Julian centuries of Ephemeris Time."
574 (solar-ephemeris-time (list (solar-julian-ut-centuries date
) ut
)))
576 (defun solar-time-equation (date ut
)
577 "Equation of time expressed in hours at Gregorian DATE at Universal time UT."
578 (nth 2 (solar-ecliptic-coordinates (solar-date-to-et date ut
) nil
)))
580 (defun solar-exact-local-noon (date)
581 "Date and Universal Time of local noon at *local date* DATE.
582 The date may be different from the one asked for, but it will be the right
583 local date. The second component of date should be an integer."
585 (ut (- 12.0 (/ (calendar-longitude) 15)))
586 (te (solar-time-equation date ut
)))
589 (setq nd
(list (car date
) (1+ (cadr date
))
593 (setq nd
(list (car date
) (1- (cadr date
))
596 (setq nd
(calendar-gregorian-from-absolute ; date standardization
597 (calendar-absolute-from-gregorian nd
)))
600 (defun solar-sidereal-time (t0)
601 "Sidereal time (in hours) in Greenwich at T0 Julian centuries.
602 T0 must correspond to 0 hours UT."
603 (let* ((mean-sid-time (+ 6.6973746
605 (* 0.0000258622 t0 t0
)
606 (* -
0.0000000017222 t0 t0 t0
)))
607 (et (solar-ephemeris-time (list t0
0.0)))
608 (nut-i (solar-ecliptic-coordinates et nil
))
609 (nut (nth 3 nut-i
)) ; nutation
610 (i (cadr nut-i
))) ; inclination
611 (mod (+ (mod (+ mean-sid-time
612 (/ (/ (* nut
(solar-cosine-degrees i
)) 15) 3600)) 24.0)
616 (defun solar-sunrise-sunset (date)
617 "List of *local* times of sunrise, sunset, and daylight on Gregorian DATE.
618 Corresponding value is nil if there is no sunrise/sunset."
619 ;; First, get the exact moment of local noon.
620 (let* ((exact-local-noon (solar-exact-local-noon date
))
621 ;; Get the time from the 2000 epoch.
622 (t0 (solar-julian-ut-centuries (car exact-local-noon
)))
623 ;; Store the sidereal time at Greenwich at midnight of UT time.
624 ;; Find if summer or winter slightly above the equator.
626 (progn (setq solar-sidereal-time-greenwich-midnight
627 (solar-sidereal-time t0
))
628 (solar-sunrise-and-sunset
629 (list t0
(cadr exact-local-noon
))
631 (calendar-longitude) 0)))
632 ;; Store the spring/summer information, compute sunrise and
633 ;; sunset (two first components of rise-set). Length of day
634 ;; is the third component (it is only the difference between
635 ;; sunset and sunrise when there is a sunset and a sunrise)
638 (setq solar-northern-spring-or-summer-season
639 (> (nth 2 equator-rise-set
) 12))
640 (solar-sunrise-and-sunset
641 (list t0
(cadr exact-local-noon
))
643 (calendar-longitude) -
0.61)))
644 (rise-time (car rise-set
))
645 (adj-rise (if rise-time
(dst-adjust-time date rise-time
)))
646 (set-time (cadr rise-set
))
647 (adj-set (if set-time
(dst-adjust-time date set-time
)))
648 (length (nth 2 rise-set
)))
650 (and rise-time
(calendar-date-equal date
(car adj-rise
)) (cdr adj-rise
))
651 (and set-time
(calendar-date-equal date
(car adj-set
)) (cdr adj-set
))
652 (solar-daylight length
))))
654 (defun solar-sunrise-sunset-string (date &optional nolocation
)
655 "String of *local* times of sunrise, sunset, and daylight on Gregorian DATE.
656 Optional NOLOCATION non-nil means do not print the location."
657 (let ((l (solar-sunrise-sunset date
)))
659 "%s, %s%s (%s hours daylight)"
661 (concat "Sunrise " (apply 'solar-time-string
(car l
)))
664 (concat "sunset " (apply 'solar-time-string
(cadr l
)))
667 (format " at %s" (eval calendar-location-name
)))
670 (defconst solar-data-list
671 '((403406 4.721964 1.621043)
672 (195207 5.937458 62830.348067)
673 (119433 1.115589 62830.821524)
674 (112392 5.781616 62829.634302)
675 (3891 5.5474 125660.5691)
676 (2819 1.5120 125660.984)
677 (1721 4.1897 62832.4766)
679 (660 5.415 125659.31)
682 (314 5.198 777137.715)
683 (268 5.989 78604.191)
685 (234 1.423 39302.098)
687 (132 2.317 115067.698)
688 (129 3.193 15774.337)
721 "Data used for calculation of solar longitude.")
723 (defun solar-longitude (d)
724 "Longitude of sun on astronomical (Julian) day number D.
725 Accuracy is about 0.0006 degree (about 365.25*24*60*0.0006/360 = 1 minutes).
726 The values of `calendar-daylight-savings-starts',
727 `calendar-daylight-savings-starts-time', `calendar-daylight-savings-ends',
728 `calendar-daylight-savings-ends-time', `calendar-daylight-time-offset', and
729 `calendar-time-zone' are used to interpret local time."
730 (let* ((a-d (calendar-astro-to-absolute d
))
731 ;; Get Universal Time.
732 (date (calendar-astro-from-absolute
734 (if (dst-in-effect a-d
)
735 (/ calendar-daylight-time-offset
24.0 60.0) 0)
736 (/ calendar-time-zone
60.0 24.0))))
737 ;; Get Ephemeris Time.
738 (date (+ date
(solar-ephemeris-correction
739 (calendar-extract-year
740 (calendar-gregorian-from-absolute
742 (calendar-astro-to-absolute
744 (U (/ (- date
2451545) 3652500))
758 (* 0.0000001 (- (* 17 (cos (+ 3.10 (* 62830.14 U
)))) 973)))
759 (A1 (mod (+ 2.18 (* U
(+ -
3375.70 (* 0.36 U
)))) (* 2 pi
)))
760 (A2 (mod (+ 3.51 (* U
(+ 125666.39 (* 0.10 U
)))) (* 2 pi
)))
761 (nutation (* -
0.0000001 (+ (* 834 (sin A1
)) (* 64 (sin A2
))))))
762 (mod (radians-to-degrees (+ longitude aberration nutation
)) 360.0)))
764 (defun solar-date-next-longitude (d l
)
765 "First time after day D when solar longitude is a multiple of L degrees.
766 D is a Julian day number. L must be an integer divisor of 360.
767 The result is for `calendar-location-name', and is in local time
768 \(including any daylight saving rules) expressed in astronomical (Julian)
769 day numbers. The values of `calendar-daylight-savings-starts',
770 `calendar-daylight-savings-starts-time', `calendar-daylight-savings-ends',
771 `calendar-daylight-savings-ends-time', `calendar-daylight-time-offset',
772 and `calendar-time-zone' are used to interpret local time."
775 (start-long (solar-longitude d
))
776 (next (mod (* l
(1+ (floor (/ start-long l
)))) 360))
777 (end (+ d
(* (/ l
360.0) 400)))
778 (end-long (solar-longitude end
)))
779 (while ; bisection search for nearest minute
780 (< 0.00001 (- end start
))
782 ;; start-long <= next < end-long when next != 0
783 ;; when next = 0, we look for the discontinuity (start-long is near 360
784 ;; and end-long is small (less than l).
785 (setq d
(/ (+ start end
) 2.0)
786 long
(solar-longitude d
))
787 (if (or (and (not (zerop next
)) (< long next
))
788 (and (zerop next
) (< l long
)))
793 (/ (+ start end
) 2.0)))
795 ;; FIXME but there already is solar-sunrise-sunset.
797 (defun sunrise-sunset (&optional arg
)
798 "Local time of sunrise and sunset for today. Accurate to a few seconds.
799 If called with an optional prefix argument ARG, prompt for date.
800 If called with an optional double prefix argument, prompt for
801 longitude, latitude, time zone, and date, and always use standard time.
803 This function is suitable for execution in a .emacs file."
805 (or arg
(setq arg
1))
807 (not (and calendar-latitude calendar-longitude calendar-time-zone
)))
809 (let* ((calendar-longitude
810 (if (< arg
16) calendar-longitude
812 "Enter longitude (decimal fraction; + east, - west): ")))
814 (if (< arg
16) calendar-latitude
816 "Enter latitude (decimal fraction; + north, - south): ")))
818 (if (< arg
16) calendar-time-zone
820 "Enter difference from Coordinated Universal Time (in minutes): ")))
821 (calendar-location-name
822 (if (< arg
16) calendar-location-name
823 (let ((float-output-format "%.1f"))
825 (if (numberp calendar-latitude
)
826 (abs calendar-latitude
)
827 (+ (aref calendar-latitude
0)
828 (/ (aref calendar-latitude
1) 60.0)))
829 (if (numberp calendar-latitude
)
830 (if (> calendar-latitude
0) "N" "S")
831 (if (eq (aref calendar-latitude
2) 'north
) "N" "S"))
832 (if (numberp calendar-longitude
)
833 (abs calendar-longitude
)
834 (+ (aref calendar-longitude
0)
835 (/ (aref calendar-longitude
1) 60.0)))
836 (if (numberp calendar-longitude
)
837 (if (> calendar-longitude
0) "E" "W")
838 (if (eq (aref calendar-longitude
2) 'east
)
840 (calendar-standard-time-zone-name
841 (if (< arg
16) calendar-standard-time-zone-name
842 (cond ((zerop calendar-time-zone
) "UTC")
843 ((< calendar-time-zone
0)
844 (format "UTC%dmin" calendar-time-zone
))
845 (t (format "UTC+%dmin" calendar-time-zone
)))))
846 (calendar-daylight-savings-starts
847 (if (< arg
16) calendar-daylight-savings-starts
))
848 (calendar-daylight-savings-ends
849 (if (< arg
16) calendar-daylight-savings-ends
))
850 (date (if (< arg
4) (calendar-current-date) (calendar-read-date)))
851 (date-string (calendar-date-string date t
))
852 (time-string (solar-sunrise-sunset-string date
))
853 (msg (format "%s: %s" date-string time-string
))
854 (one-window (one-window-p t
)))
855 (if (<= (length msg
) (frame-width))
857 (with-output-to-temp-buffer "*temp*"
858 (princ (concat date-string
"\n" time-string
)))
860 (substitute-command-keys
863 "Type \\[delete-other-windows] to remove temp window."
864 "Type \\[switch-to-buffer] RET to remove temp window.")
865 "Type \\[switch-to-buffer-other-window] RET to restore old \
866 contents of temp window."))))))
869 (defun calendar-sunrise-sunset (&optional event
)
870 "Local time of sunrise and sunset for date under cursor.
871 Accurate to a few seconds."
872 (interactive (list last-nonmenu-event
))
873 (or (and calendar-latitude calendar-longitude calendar-time-zone
)
875 (let ((date (calendar-cursor-to-date t event
)))
877 (calendar-date-string date t t
)
878 (solar-sunrise-sunset-string date
))))
881 (defun calendar-sunrise-sunset-month (&optional event
)
882 "Local time of sunrise and sunset for month under cursor or at EVENT."
883 (interactive (list last-nonmenu-event
))
884 (or (and calendar-latitude calendar-longitude calendar-time-zone
)
886 (let* ((date (calendar-cursor-to-date t event
))
889 (last (calendar-last-day-of-month month year
))
890 (title (format "Sunrise/sunset times for %s %d at %s"
891 (calendar-month-name month
) year
892 (eval calendar-location-name
))))
893 (calendar-in-read-only-buffer solar-sunrises-buffer
894 (calendar-set-mode-line title
)
895 (insert title
":\n\n")
897 (setq date
(list month
(1+ i
) year
))
898 (insert (format "%s %2d: " (calendar-month-name month t
) (1+ i
))
899 (solar-sunrise-sunset-string date t
) "\n")))))
903 ;; To be called from diary-list-sexp-entries, where DATE is bound.
905 (defun diary-sunrise-sunset ()
906 "Local time of sunrise and sunset as a diary entry.
907 Accurate to a few seconds."
908 (or (and calendar-latitude calendar-longitude calendar-time-zone
)
910 (solar-sunrise-sunset-string date
))
912 ;; From Meeus, 1991, page 167.
913 (defconst solar-seasons-data
914 '((485 324.96 1934.136)
915 (203 337.23 32964.467)
917 (182 27.85 445267.112)
918 (156 73.14 45036.886)
919 (136 171.52 22518.443)
920 (77 222.54 65928.934)
923 (58 119.81 33718.147)
926 (45 247.54 29929.562)
927 (44 325.15 31555.956)
929 (18 155.12 67555.328)
931 (16 198.04 62894.029)
932 (14 199.76 31436.921)
934 (12 287.11 31931.756)
935 (12 320.81 34777.259)
938 "Data for solar equinox/solstice calculations.")
940 (defun solar-equinoxes/solstices
(k year
)
941 "Date of equinox/solstice K for YEAR.
942 K=0, spring equinox; K=1, summer solstice; K=2, fall equinox;
943 K=3, winter solstice. RESULT is a Gregorian local date.
944 Accurate to within a minute between 1951 and 2050."
945 (let* ((JDE0 (solar-mean-equinoxes/solstices k year
))
946 (T (/ (- JDE0
2451545.0) 36525))
947 (W (- (* 35999.373 T
) 2.47))
948 (Delta-lambda (+ 1 (* 0.0334 (solar-cosine-degrees W
))
949 (* 0.0007 (solar-cosine-degrees (* 2 W
)))))
950 (S (apply '+ (mapcar (lambda(x)
951 (* (car x
) (solar-cosine-degrees
952 (+ (* (nth 2 x
) T
) (cadr x
)))))
953 solar-seasons-data
)))
954 (JDE (+ JDE0
(/ (* 0.00001 S
) Delta-lambda
)))
955 ;; Ephemeris time correction.
956 (correction (+ 102.3 (* 123.5 T
) (* 32.5 T T
)))
957 (JD (- JDE
(/ correction
86400)))
958 (date (calendar-gregorian-from-absolute (floor (- JD
1721424.5))))
959 (time (- (- JD
0.5) (floor (- JD
0.5)))))
960 (list (car date
) (+ (cadr date
) time
961 (/ (/ calendar-time-zone
60.0) 24.0))
964 ;; From Meeus, 1991, page 166.
965 (defun solar-mean-equinoxes/solstices
(k year
)
966 "Julian day of mean equinox/solstice K for YEAR.
967 K=0, spring equinox; K=1, summer solstice; K=2, fall equinox; K=3, winter
968 solstice. These formulae are only to be used between 1000 BC and 3000 AD."
969 (let ((y (/ year
1000.0))
970 (z (/ (- year
2000) 1000.0)))
971 (if (< year
1000) ; actually between -1000 and 1000
972 (cond ((= k
0) (+ 1721139.29189
976 (* -
0.00071 y y y y
)))
977 ((= k
1) (+ 1721233.25401
981 (* 0.00025 y y y y
)))
982 ((= k
2) (+ 1721325.70455
986 (* 0.00074 y y y y
)))
987 ((= k
3) (+ 1721414.39987
991 (* -
0.00006 y y y y
))))
992 ; actually between 1000 and 3000
993 (cond ((= k
0) (+ 2451623.80984
997 (* -
0.00057 z z z z
)))
998 ((= k
1) (+ 2451716.56767
1002 (* -
0.00030 z z z z
)))
1003 ((= k
2) (+ 2451810.21715
1007 (* 0.00078 z z z z
)))
1008 ((= k
3) (+ 2451900.05952
1012 (* 0.00032 z z z z
)))))))
1014 (defvar displayed-month
) ; from calendar-generate
1015 (defvar displayed-year
)
1017 ;;;###holiday-autoload
1018 (defun solar-equinoxes-solstices ()
1019 "Local date and time of equinoxes and solstices, if visible in the calendar.
1020 Requires floating point."
1021 (let* ((m displayed-month
)
1023 (calendar-standard-time-zone-name
1024 (if calendar-time-zone calendar-standard-time-zone-name
"UTC"))
1025 (calendar-daylight-savings-starts
1026 (if calendar-time-zone calendar-daylight-savings-starts
))
1027 (calendar-daylight-savings-ends
1028 (if calendar-time-zone calendar-daylight-savings-ends
))
1029 (calendar-time-zone (if calendar-time-zone calendar-time-zone
0))
1031 (calendar-increment-month m y
(cond ((= 1 (% m
3)) -
1)
1035 (d0 (solar-equinoxes/solstices k y
))
1036 (d1 (list (car d0
) (floor (cadr d0
)) (nth 2 d0
)))
1037 (h0 (* 24 (- (cadr d0
) (floor (cadr d0
)))))
1038 (adj (dst-adjust-time d1 h0
))
1041 (/ (cadr adj
) 24.0))
1043 ;; The following is nearly as accurate, but not quite:
1044 ;; (d0 (solar-date-next-longitude
1045 ;; (calendar-astro-from-absolute
1046 ;; (calendar-absolute-from-gregorian
1047 ;; (list (+ 3 (* k 3)) 15 y)))
1049 ;; (abs-day (calendar-astro-to-absolute d)))
1050 (abs-day (calendar-absolute-from-gregorian d
)))
1052 (list (calendar-gregorian-from-absolute (floor abs-day
))
1054 (nth k
(if (and calendar-latitude
1055 (< (calendar-latitude) 0))
1056 solar-s-hemi-seasons
1057 solar-n-hemi-seasons
))
1059 (* 24 (- abs-day
(floor abs-day
)))
1060 (if (dst-in-effect abs-day
)
1061 calendar-daylight-time-zone-name
1062 calendar-standard-time-zone-name
)))))))
1067 ;; arch-tag: bc0ff693-df58-4666-bde4-2a7837ccb8fe
1068 ;;; solar.el ends here