Fix Bug#23186
[emacs.git] / doc / lispref / numbers.texi
blob28eb6b18afa6300dd6a6cc36b85f00eb2231da0c
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990-1995, 1998-1999, 2001-2016 Free Software
4 @c Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @node Numbers
7 @chapter Numbers
8 @cindex integers
9 @cindex numbers
11   GNU Emacs supports two numeric data types: @dfn{integers} and
12 @dfn{floating-point numbers}.  Integers are whole numbers such as
13 @minus{}3, 0, 7, 13, and 511.  Floating-point numbers are numbers with
14 fractional parts, such as @minus{}4.5, 0.0, and 2.71828.  They can
15 also be expressed in exponential notation: @samp{1.5e2} is the same as
16 @samp{150.0}; here, @samp{e2} stands for ten to the second power, and
17 that is multiplied by 1.5.  Integer computations are exact, though
18 they may overflow.  Floating-point computations often involve rounding
19 errors, as the numbers have a fixed amount of precision.
21 @menu
22 * Integer Basics::            Representation and range of integers.
23 * Float Basics::              Representation and range of floating point.
24 * Predicates on Numbers::     Testing for numbers.
25 * Comparison of Numbers::     Equality and inequality predicates.
26 * Numeric Conversions::       Converting float to integer and vice versa.
27 * Arithmetic Operations::     How to add, subtract, multiply and divide.
28 * Rounding Operations::       Explicitly rounding floating-point numbers.
29 * Bitwise Operations::        Logical and, or, not, shifting.
30 * Math Functions::            Trig, exponential and logarithmic functions.
31 * Random Numbers::            Obtaining random integers, predictable or not.
32 @end menu
34 @node Integer Basics
35 @section Integer Basics
37   The range of values for an integer depends on the machine.  The
38 minimum range is @minus{}536,870,912 to 536,870,911 (30 bits; i.e.,
39 @ifnottex
40 @minus{}2**29
41 @end ifnottex
42 @tex
43 @math{-2^{29}}
44 @end tex
46 @ifnottex
47 2**29 @minus{} 1),
48 @end ifnottex
49 @tex
50 @math{2^{29}-1}),
51 @end tex
52 but many machines provide a wider range.  Many examples in this
53 chapter assume the minimum integer width of 30 bits.
54 @cindex overflow
56   The Lisp reader reads an integer as a sequence of digits with optional
57 initial sign and optional final period.  An integer that is out of the
58 Emacs range is treated as a floating-point number.
60 @example
61  1               ; @r{The integer 1.}
62  1.              ; @r{The integer 1.}
63 +1               ; @r{Also the integer 1.}
64 -1               ; @r{The integer @minus{}1.}
65  9000000000000000000
66                  ; @r{The floating-point number 9e18.}
67  0               ; @r{The integer 0.}
68 -0               ; @r{The integer 0.}
69 @end example
71 @cindex integers in specific radix
72 @cindex radix for reading an integer
73 @cindex base for reading an integer
74 @cindex hex numbers
75 @cindex octal numbers
76 @cindex reading numbers in hex, octal, and binary
77   The syntax for integers in bases other than 10 uses @samp{#}
78 followed by a letter that specifies the radix: @samp{b} for binary,
79 @samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
80 specify radix @var{radix}.  Case is not significant for the letter
81 that specifies the radix.  Thus, @samp{#b@var{integer}} reads
82 @var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
83 @var{integer} in radix @var{radix}.  Allowed values of @var{radix} run
84 from 2 to 36.  For example:
86 @example
87 #b101100 @result{} 44
88 #o54 @result{} 44
89 #x2c @result{} 44
90 #24r1k @result{} 44
91 @end example
93   To understand how various functions work on integers, especially the
94 bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
95 view the numbers in their binary form.
97   In 30-bit binary, the decimal integer 5 looks like this:
99 @example
100 0000...000101 (30 bits total)
101 @end example
103 @noindent
104 (The @samp{...} stands for enough bits to fill out a 30-bit word; in
105 this case, @samp{...} stands for twenty 0 bits.  Later examples also
106 use the @samp{...} notation to make binary integers easier to read.)
108   The integer @minus{}1 looks like this:
110 @example
111 1111...111111 (30 bits total)
112 @end example
114 @noindent
115 @cindex two's complement
116 @minus{}1 is represented as 30 ones.  (This is called @dfn{two's
117 complement} notation.)
119   Subtracting 4 from @minus{}1 returns the negative integer @minus{}5.
120 In binary, the decimal integer 4 is 100.  Consequently,
121 @minus{}5 looks like this:
123 @example
124 1111...111011 (30 bits total)
125 @end example
127   In this implementation, the largest 30-bit binary integer is
128 536,870,911 in decimal.  In binary, it looks like this:
130 @example
131 0111...111111 (30 bits total)
132 @end example
134   Since the arithmetic functions do not check whether integers go
135 outside their range, when you add 1 to 536,870,911, the value is the
136 negative integer @minus{}536,870,912:
138 @example
139 (+ 1 536870911)
140      @result{} -536870912
141      @result{} 1000...000000 (30 bits total)
142 @end example
144   Many of the functions described in this chapter accept markers for
145 arguments in place of numbers.  (@xref{Markers}.)  Since the actual
146 arguments to such functions may be either numbers or markers, we often
147 give these arguments the name @var{number-or-marker}.  When the argument
148 value is a marker, its position value is used and its buffer is ignored.
150 @cindex largest Lisp integer
151 @cindex maximum Lisp integer
152 @defvar most-positive-fixnum
153 The value of this variable is the largest integer that Emacs Lisp can
154 handle.  Typical values are
155 @ifnottex
156 2**29 @minus{} 1
157 @end ifnottex
158 @tex
159 @math{2^{29}-1}
160 @end tex
161 on 32-bit and
162 @ifnottex
163 2**61 @minus{} 1
164 @end ifnottex
165 @tex
166 @math{2^{61}-1}
167 @end tex
168 on 64-bit platforms.
169 @end defvar
171 @cindex smallest Lisp integer
172 @cindex minimum Lisp integer
173 @defvar most-negative-fixnum
174 The value of this variable is the smallest integer that Emacs Lisp can
175 handle.  It is negative.  Typical values are
176 @ifnottex
177 @minus{}2**29
178 @end ifnottex
179 @tex
180 @math{-2^{29}}
181 @end tex
182 on 32-bit and
183 @ifnottex
184 @minus{}2**61
185 @end ifnottex
186 @tex
187 @math{-2^{61}}
188 @end tex
189 on 64-bit platforms.
190 @end defvar
192   In Emacs Lisp, text characters are represented by integers.  Any
193 integer between zero and the value of @code{(max-char)}, inclusive, is
194 considered to be valid as a character.  @xref{Character Codes}.
196 @node Float Basics
197 @section Floating-Point Basics
199 @cindex @acronym{IEEE} floating point
200   Floating-point numbers are useful for representing numbers that are
201 not integral.  The range of floating-point numbers is
202 the same as the range of the C data type @code{double} on the machine
203 you are using.  On all computers currently supported by Emacs, this is
204 double-precision @acronym{IEEE} floating point.
206   The read syntax for floating-point numbers requires either a decimal
207 point, an exponent, or both.  Optional signs (@samp{+} or @samp{-})
208 precede the number and its exponent.  For example, @samp{1500.0},
209 @samp{+15e2}, @samp{15.0e+2}, @samp{+1500000e-3}, and @samp{.15e4} are
210 five ways of writing a floating-point number whose value is 1500.
211 They are all equivalent.  Like Common Lisp, Emacs Lisp requires at
212 least one digit after any decimal point in a floating-point number;
213 @samp{1500.} is an integer, not a floating-point number.
215   Emacs Lisp treats @code{-0.0} as numerically equal to ordinary zero
216 with respect to @code{equal} and @code{=}.  This follows the
217 @acronym{IEEE} floating-point standard, which says @code{-0.0} and
218 @code{0.0} are numerically equal even though other operations can
219 distinguish them.
221 @cindex positive infinity
222 @cindex negative infinity
223 @cindex infinity
224 @cindex NaN
225   The @acronym{IEEE} floating-point standard supports positive
226 infinity and negative infinity as floating-point values.  It also
227 provides for a class of values called NaN, or ``not a number'';
228 numerical functions return such values in cases where there is no
229 correct answer.  For example, @code{(/ 0.0 0.0)} returns a NaN@.
230 Although NaN values carry a sign, for practical purposes there is no other
231 significant difference between different NaN values in Emacs Lisp.
233 Here are read syntaxes for these special floating-point values:
235 @table @asis
236 @item infinity
237 @samp{1.0e+INF} and @samp{-1.0e+INF}
238 @item not-a-number
239 @samp{0.0e+NaN} and @samp{-0.0e+NaN}
240 @end table
242   The following functions are specialized for handling floating-point
243 numbers:
245 @defun isnan x
246 This predicate returns @code{t} if its floating-point argument is a NaN,
247 @code{nil} otherwise.
248 @end defun
250 @defun frexp x
251 This function returns a cons cell @code{(@var{s} . @var{e})},
252 where @var{s} and @var{e} are respectively the significand and
253 exponent of the floating-point number @var{x}.
255 If @var{x} is finite, then @var{s} is a floating-point number between 0.5
256 (inclusive) and 1.0 (exclusive), @var{e} is an integer, and
257 @ifnottex
258 @var{x} = @var{s} * 2**@var{e}.
259 @end ifnottex
260 @tex
261 @math{x = s 2^e}.
262 @end tex
263 If @var{x} is zero or infinity, then @var{s} is the same as @var{x}.
264 If @var{x} is a NaN, then @var{s} is also a NaN@.
265 If @var{x} is zero, then @var{e} is 0.
266 @end defun
268 @defun ldexp s e
269 Given a numeric significand @var{s} and an integer exponent @var{e},
270 this function returns the floating point number
271 @ifnottex
272 @var{s} * 2**@var{e}.
273 @end ifnottex
274 @tex
275 @math{s 2^e}.
276 @end tex
277 @end defun
279 @defun copysign x1 x2
280 This function copies the sign of @var{x2} to the value of @var{x1},
281 and returns the result.  @var{x1} and @var{x2} must be floating point.
282 @end defun
284 @defun logb x
285 This function returns the binary exponent of @var{x}.  More
286 precisely, the value is the logarithm base 2 of @math{|x|}, rounded
287 down to an integer.
289 @example
290 (logb 10)
291      @result{} 3
292 (logb 10.0e20)
293      @result{} 69
294 @end example
295 @end defun
297 @node Predicates on Numbers
298 @section Type Predicates for Numbers
299 @cindex predicates for numbers
301   The functions in this section test for numbers, or for a specific
302 type of number.  The functions @code{integerp} and @code{floatp} can
303 take any type of Lisp object as argument (they would not be of much
304 use otherwise), but the @code{zerop} predicate requires a number as
305 its argument.  See also @code{integer-or-marker-p} and
306 @code{number-or-marker-p}, in @ref{Predicates on Markers}.
308 @defun floatp object
309 This predicate tests whether its argument is floating point
310 and returns @code{t} if so, @code{nil} otherwise.
311 @end defun
313 @defun integerp object
314 This predicate tests whether its argument is an integer, and returns
315 @code{t} if so, @code{nil} otherwise.
316 @end defun
318 @defun numberp object
319 This predicate tests whether its argument is a number (either integer or
320 floating point), and returns @code{t} if so, @code{nil} otherwise.
321 @end defun
323 @defun natnump object
324 @cindex natural numbers
325 This predicate (whose name comes from the phrase ``natural number'')
326 tests to see whether its argument is a nonnegative integer, and
327 returns @code{t} if so, @code{nil} otherwise.  0 is considered
328 non-negative.
330 @findex wholenump
331 @code{wholenump} is a synonym for @code{natnump}.
332 @end defun
334 @defun zerop number
335 This predicate tests whether its argument is zero, and returns @code{t}
336 if so, @code{nil} otherwise.  The argument must be a number.
338 @code{(zerop x)} is equivalent to @code{(= x 0)}.
339 @end defun
341 @node Comparison of Numbers
342 @section Comparison of Numbers
343 @cindex number comparison
344 @cindex comparing numbers
346   To test numbers for numerical equality, you should normally use
347 @code{=}, not @code{eq}.  There can be many distinct floating-point
348 objects with the same numeric value.  If you use @code{eq} to
349 compare them, then you test whether two values are the same
350 @emph{object}.  By contrast, @code{=} compares only the numeric values
351 of the objects.
353   In Emacs Lisp, each integer is a unique Lisp object.
354 Therefore, @code{eq} is equivalent to @code{=} where integers are
355 concerned.  It is sometimes convenient to use @code{eq} for comparing
356 an unknown value with an integer, because @code{eq} does not report an
357 error if the unknown value is not a number---it accepts arguments of
358 any type.  By contrast, @code{=} signals an error if the arguments are
359 not numbers or markers.  However, it is better programming practice to
360 use @code{=} if you can, even for comparing integers.
362   Sometimes it is useful to compare numbers with @code{equal}, which
363 treats two numbers as equal if they have the same data type (both
364 integers, or both floating point) and the same value.  By contrast,
365 @code{=} can treat an integer and a floating-point number as equal.
366 @xref{Equality Predicates}.
368   There is another wrinkle: because floating-point arithmetic is not
369 exact, it is often a bad idea to check for equality of floating-point
370 values.  Usually it is better to test for approximate equality.
371 Here's a function to do this:
373 @example
374 (defvar fuzz-factor 1.0e-6)
375 (defun approx-equal (x y)
376   (or (= x y)
377       (< (/ (abs (- x y))
378             (max (abs x) (abs y)))
379          fuzz-factor)))
380 @end example
382 @cindex CL note---integers vrs @code{eq}
383 @quotation
384 @b{Common Lisp note:} Comparing numbers in Common Lisp always requires
385 @code{=} because Common Lisp implements multi-word integers, and two
386 distinct integer objects can have the same numeric value.  Emacs Lisp
387 can have just one integer object for any given value because it has a
388 limited range of integers.
389 @end quotation
391 @defun = number-or-marker &rest number-or-markers
392 This function tests whether all its arguments are numerically equal,
393 and returns @code{t} if so, @code{nil} otherwise.
394 @end defun
396 @defun eql value1 value2
397 This function acts like @code{eq} except when both arguments are
398 numbers.  It compares numbers by type and numeric value, so that
399 @code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
400 @code{(eql 1 1)} both return @code{t}.
401 @end defun
403 @defun /= number-or-marker1 number-or-marker2
404 This function tests whether its arguments are numerically equal, and
405 returns @code{t} if they are not, and @code{nil} if they are.
406 @end defun
408 @defun <  number-or-marker &rest number-or-markers
409 This function tests whether each argument is strictly less than the
410 following argument.  It returns @code{t} if so, @code{nil} otherwise.
411 @end defun
413 @defun <= number-or-marker &rest number-or-markers
414 This function tests whether each argument is less than or equal to
415 the following argument.  It returns @code{t} if so, @code{nil} otherwise.
416 @end defun
418 @defun > number-or-marker &rest number-or-markers
419 This function tests whether each argument is strictly greater than
420 the following argument.  It returns @code{t} if so, @code{nil} otherwise.
421 @end defun
423 @defun >= number-or-marker &rest number-or-markers
424 This function tests whether each argument is greater than or equal to
425 the following argument.  It returns @code{t} if so, @code{nil} otherwise.
426 @end defun
428 @defun max number-or-marker &rest numbers-or-markers
429 This function returns the largest of its arguments.
430 If any of the arguments is floating point, the value is returned
431 as floating point, even if it was given as an integer.
433 @example
434 (max 20)
435      @result{} 20
436 (max 1 2.5)
437      @result{} 2.5
438 (max 1 3 2.5)
439      @result{} 3.0
440 @end example
441 @end defun
443 @defun min number-or-marker &rest numbers-or-markers
444 This function returns the smallest of its arguments.
445 If any of the arguments is floating point, the value is returned
446 as floating point, even if it was given as an integer.
448 @example
449 (min -4 1)
450      @result{} -4
451 @end example
452 @end defun
454 @defun abs number
455 This function returns the absolute value of @var{number}.
456 @end defun
458 @node Numeric Conversions
459 @section Numeric Conversions
460 @cindex rounding in conversions
461 @cindex number conversions
462 @cindex converting numbers
464 To convert an integer to floating point, use the function @code{float}.
466 @defun float number
467 This returns @var{number} converted to floating point.
468 If @var{number} is already floating point, @code{float} returns
469 it unchanged.
470 @end defun
472   There are four functions to convert floating-point numbers to
473 integers; they differ in how they round.  All accept an argument
474 @var{number} and an optional argument @var{divisor}.  Both arguments
475 may be integers or floating-point numbers.  @var{divisor} may also be
476 @code{nil}.  If @var{divisor} is @code{nil} or omitted, these
477 functions convert @var{number} to an integer, or return it unchanged
478 if it already is an integer.  If @var{divisor} is non-@code{nil}, they
479 divide @var{number} by @var{divisor} and convert the result to an
480 integer.  If @var{divisor} is zero (whether integer or
481 floating point), Emacs signals an @code{arith-error} error.
483 @defun truncate number &optional divisor
484 This returns @var{number}, converted to an integer by rounding towards
485 zero.
487 @example
488 (truncate 1.2)
489      @result{} 1
490 (truncate 1.7)
491      @result{} 1
492 (truncate -1.2)
493      @result{} -1
494 (truncate -1.7)
495      @result{} -1
496 @end example
497 @end defun
499 @defun floor number &optional divisor
500 This returns @var{number}, converted to an integer by rounding downward
501 (towards negative infinity).
503 If @var{divisor} is specified, this uses the kind of division
504 operation that corresponds to @code{mod}, rounding downward.
506 @example
507 (floor 1.2)
508      @result{} 1
509 (floor 1.7)
510      @result{} 1
511 (floor -1.2)
512      @result{} -2
513 (floor -1.7)
514      @result{} -2
515 (floor 5.99 3)
516      @result{} 1
517 @end example
518 @end defun
520 @defun ceiling number &optional divisor
521 This returns @var{number}, converted to an integer by rounding upward
522 (towards positive infinity).
524 @example
525 (ceiling 1.2)
526      @result{} 2
527 (ceiling 1.7)
528      @result{} 2
529 (ceiling -1.2)
530      @result{} -1
531 (ceiling -1.7)
532      @result{} -1
533 @end example
534 @end defun
536 @defun round number &optional divisor
537 This returns @var{number}, converted to an integer by rounding towards the
538 nearest integer.  Rounding a value equidistant between two integers
539 returns the even integer.
541 @example
542 (round 1.2)
543      @result{} 1
544 (round 1.7)
545      @result{} 2
546 (round -1.2)
547      @result{} -1
548 (round -1.7)
549      @result{} -2
550 @end example
551 @end defun
553 @node Arithmetic Operations
554 @section Arithmetic Operations
555 @cindex arithmetic operations
557   Emacs Lisp provides the traditional four arithmetic operations
558 (addition, subtraction, multiplication, and division), as well as
559 remainder and modulus functions, and functions to add or subtract 1.
560 Except for @code{%}, each of these functions accepts both integer and
561 floating-point arguments, and returns a floating-point number if any
562 argument is floating point.
564   Emacs Lisp arithmetic functions do not check for integer overflow.
565 Thus @code{(1+ 536870911)} may evaluate to
566 @minus{}536870912, depending on your hardware.
568 @defun 1+ number-or-marker
569 This function returns @var{number-or-marker} plus 1.
570 For example,
572 @example
573 (setq foo 4)
574      @result{} 4
575 (1+ foo)
576      @result{} 5
577 @end example
579 This function is not analogous to the C operator @code{++}---it does not
580 increment a variable.  It just computes a sum.  Thus, if we continue,
582 @example
584      @result{} 4
585 @end example
587 If you want to increment the variable, you must use @code{setq},
588 like this:
590 @example
591 (setq foo (1+ foo))
592      @result{} 5
593 @end example
594 @end defun
596 @defun 1- number-or-marker
597 This function returns @var{number-or-marker} minus 1.
598 @end defun
600 @defun + &rest numbers-or-markers
601 This function adds its arguments together.  When given no arguments,
602 @code{+} returns 0.
604 @example
606      @result{} 0
607 (+ 1)
608      @result{} 1
609 (+ 1 2 3 4)
610      @result{} 10
611 @end example
612 @end defun
614 @defun - &optional number-or-marker &rest more-numbers-or-markers
615 The @code{-} function serves two purposes: negation and subtraction.
616 When @code{-} has a single argument, the value is the negative of the
617 argument.  When there are multiple arguments, @code{-} subtracts each of
618 the @var{more-numbers-or-markers} from @var{number-or-marker},
619 cumulatively.  If there are no arguments, the result is 0.
621 @example
622 (- 10 1 2 3 4)
623      @result{} 0
624 (- 10)
625      @result{} -10
627      @result{} 0
628 @end example
629 @end defun
631 @defun * &rest numbers-or-markers
632 This function multiplies its arguments together, and returns the
633 product.  When given no arguments, @code{*} returns 1.
635 @example
637      @result{} 1
638 (* 1)
639      @result{} 1
640 (* 1 2 3 4)
641      @result{} 24
642 @end example
643 @end defun
645 @defun / number &rest divisors
646 With one or more @var{divisors}, this function divides @var{number}
647 by each divisor in @var{divisors} in turn, and returns the quotient.
648 With no @var{divisors}, this function returns 1/@var{number}, i.e.,
649 the multiplicative inverse of @var{number}.  Each argument may be a
650 number or a marker.
652 If all the arguments are integers, the result is an integer, obtained
653 by rounding the quotient towards zero after each division.
655 @example
656 @group
657 (/ 6 2)
658      @result{} 3
659 @end group
660 @group
661 (/ 5 2)
662      @result{} 2
663 @end group
664 @group
665 (/ 5.0 2)
666      @result{} 2.5
667 @end group
668 @group
669 (/ 5 2.0)
670      @result{} 2.5
671 @end group
672 @group
673 (/ 5.0 2.0)
674      @result{} 2.5
675 @end group
676 @group
677 (/ 4.0)
678      @result{} 0.25
679 @end group
680 @group
681 (/ 4)
682      @result{} 0
683 @end group
684 @group
685 (/ 25 3 2)
686      @result{} 4
687 @end group
688 @group
689 (/ -17 6)
690      @result{} -2
691 @end group
692 @end example
694 @cindex @code{arith-error} in division
695 If you divide an integer by the integer 0, Emacs signals an
696 @code{arith-error} error (@pxref{Errors}).  Floating-point division of
697 a nonzero number by zero yields either positive or negative infinity
698 (@pxref{Float Basics}).
699 @end defun
701 @defun % dividend divisor
702 @cindex remainder
703 This function returns the integer remainder after division of @var{dividend}
704 by @var{divisor}.  The arguments must be integers or markers.
706 For any two integers @var{dividend} and @var{divisor},
708 @example
709 @group
710 (+ (% @var{dividend} @var{divisor})
711    (* (/ @var{dividend} @var{divisor}) @var{divisor}))
712 @end group
713 @end example
715 @noindent
716 always equals @var{dividend} if @var{divisor} is nonzero.
718 @example
719 (% 9 4)
720      @result{} 1
721 (% -9 4)
722      @result{} -1
723 (% 9 -4)
724      @result{} 1
725 (% -9 -4)
726      @result{} -1
727 @end example
728 @end defun
730 @defun mod dividend divisor
731 @cindex modulus
732 This function returns the value of @var{dividend} modulo @var{divisor};
733 in other words, the remainder after division of @var{dividend}
734 by @var{divisor}, but with the same sign as @var{divisor}.
735 The arguments must be numbers or markers.
737 Unlike @code{%}, @code{mod} permits floating-point arguments; it
738 rounds the quotient downward (towards minus infinity) to an integer,
739 and uses that quotient to compute the remainder.
741 If @var{divisor} is zero, @code{mod} signals an @code{arith-error}
742 error if both arguments are integers, and returns a NaN otherwise.
744 @example
745 @group
746 (mod 9 4)
747      @result{} 1
748 @end group
749 @group
750 (mod -9 4)
751      @result{} 3
752 @end group
753 @group
754 (mod 9 -4)
755      @result{} -3
756 @end group
757 @group
758 (mod -9 -4)
759      @result{} -1
760 @end group
761 @group
762 (mod 5.5 2.5)
763      @result{} .5
764 @end group
765 @end example
767 For any two numbers @var{dividend} and @var{divisor},
769 @example
770 @group
771 (+ (mod @var{dividend} @var{divisor})
772    (* (floor @var{dividend} @var{divisor}) @var{divisor}))
773 @end group
774 @end example
776 @noindent
777 always equals @var{dividend}, subject to rounding error if either
778 argument is floating point and to an @code{arith-error} if @var{dividend} is an
779 integer and @var{divisor} is 0.  For @code{floor}, see @ref{Numeric
780 Conversions}.
781 @end defun
783 @node Rounding Operations
784 @section Rounding Operations
785 @cindex rounding without conversion
787 The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
788 @code{ftruncate} take a floating-point argument and return a floating-point
789 result whose value is a nearby integer.  @code{ffloor} returns the
790 nearest integer below; @code{fceiling}, the nearest integer above;
791 @code{ftruncate}, the nearest integer in the direction towards zero;
792 @code{fround}, the nearest integer.
794 @defun ffloor float
795 This function rounds @var{float} to the next lower integral value, and
796 returns that value as a floating-point number.
797 @end defun
799 @defun fceiling float
800 This function rounds @var{float} to the next higher integral value, and
801 returns that value as a floating-point number.
802 @end defun
804 @defun ftruncate float
805 This function rounds @var{float} towards zero to an integral value, and
806 returns that value as a floating-point number.
807 @end defun
809 @defun fround float
810 This function rounds @var{float} to the nearest integral value,
811 and returns that value as a floating-point number.
812 Rounding a value equidistant between two integers returns the even integer.
813 @end defun
815 @node Bitwise Operations
816 @section Bitwise Operations on Integers
817 @cindex bitwise arithmetic
818 @cindex logical arithmetic
820   In a computer, an integer is represented as a binary number, a
821 sequence of @dfn{bits} (digits which are either zero or one).  A bitwise
822 operation acts on the individual bits of such a sequence.  For example,
823 @dfn{shifting} moves the whole sequence left or right one or more places,
824 reproducing the same pattern moved over.
826   The bitwise operations in Emacs Lisp apply only to integers.
828 @defun lsh integer1 count
829 @cindex logical shift
830 @code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
831 bits in @var{integer1} to the left @var{count} places, or to the right
832 if @var{count} is negative, bringing zeros into the vacated bits.  If
833 @var{count} is negative, @code{lsh} shifts zeros into the leftmost
834 (most-significant) bit, producing a positive result even if
835 @var{integer1} is negative.  Contrast this with @code{ash}, below.
837 Here are two examples of @code{lsh}, shifting a pattern of bits one
838 place to the left.  We show only the low-order eight bits of the binary
839 pattern; the rest are all zero.
841 @example
842 @group
843 (lsh 5 1)
844      @result{} 10
845 ;; @r{Decimal 5 becomes decimal 10.}
846 00000101 @result{} 00001010
848 (lsh 7 1)
849      @result{} 14
850 ;; @r{Decimal 7 becomes decimal 14.}
851 00000111 @result{} 00001110
852 @end group
853 @end example
855 @noindent
856 As the examples illustrate, shifting the pattern of bits one place to
857 the left produces a number that is twice the value of the previous
858 number.
860 Shifting a pattern of bits two places to the left produces results
861 like this (with 8-bit binary numbers):
863 @example
864 @group
865 (lsh 3 2)
866      @result{} 12
867 ;; @r{Decimal 3 becomes decimal 12.}
868 00000011 @result{} 00001100
869 @end group
870 @end example
872 On the other hand, shifting one place to the right looks like this:
874 @example
875 @group
876 (lsh 6 -1)
877      @result{} 3
878 ;; @r{Decimal 6 becomes decimal 3.}
879 00000110 @result{} 00000011
880 @end group
882 @group
883 (lsh 5 -1)
884      @result{} 2
885 ;; @r{Decimal 5 becomes decimal 2.}
886 00000101 @result{} 00000010
887 @end group
888 @end example
890 @noindent
891 As the example illustrates, shifting one place to the right divides the
892 value of a positive integer by two, rounding downward.
894 The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
895 not check for overflow, so shifting left can discard significant bits
896 and change the sign of the number.  For example, left shifting
897 536,870,911 produces @minus{}2 in the 30-bit implementation:
899 @example
900 (lsh 536870911 1)          ; @r{left shift}
901      @result{} -2
902 @end example
904 In binary, the argument looks like this:
906 @example
907 @group
908 ;; @r{Decimal 536,870,911}
909 0111...111111 (30 bits total)
910 @end group
911 @end example
913 @noindent
914 which becomes the following when left shifted:
916 @example
917 @group
918 ;; @r{Decimal @minus{}2}
919 1111...111110 (30 bits total)
920 @end group
921 @end example
922 @end defun
924 @defun ash integer1 count
925 @cindex arithmetic shift
926 @code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
927 to the left @var{count} places, or to the right if @var{count}
928 is negative.
930 @code{ash} gives the same results as @code{lsh} except when
931 @var{integer1} and @var{count} are both negative.  In that case,
932 @code{ash} puts ones in the empty bit positions on the left, while
933 @code{lsh} puts zeros in those bit positions.
935 Thus, with @code{ash}, shifting the pattern of bits one place to the right
936 looks like this:
938 @example
939 @group
940 (ash -6 -1) @result{} -3
941 ;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
942 1111...111010 (30 bits total)
943      @result{}
944 1111...111101 (30 bits total)
945 @end group
946 @end example
948 In contrast, shifting the pattern of bits one place to the right with
949 @code{lsh} looks like this:
951 @example
952 @group
953 (lsh -6 -1) @result{} 536870909
954 ;; @r{Decimal @minus{}6 becomes decimal 536,870,909.}
955 1111...111010 (30 bits total)
956      @result{}
957 0111...111101 (30 bits total)
958 @end group
959 @end example
961 Here are other examples:
963 @c !!! Check if lined up in smallbook format!  XDVI shows problem
964 @c     with smallbook but not with regular book! --rjc 16mar92
965 @smallexample
966 @group
967                    ;  @r{       30-bit binary values}
969 (lsh 5 2)          ;   5  =  @r{0000...000101}
970      @result{} 20         ;      =  @r{0000...010100}
971 @end group
972 @group
973 (ash 5 2)
974      @result{} 20
975 (lsh -5 2)         ;  -5  =  @r{1111...111011}
976      @result{} -20        ;      =  @r{1111...101100}
977 (ash -5 2)
978      @result{} -20
979 @end group
980 @group
981 (lsh 5 -2)         ;   5  =  @r{0000...000101}
982      @result{} 1          ;      =  @r{0000...000001}
983 @end group
984 @group
985 (ash 5 -2)
986      @result{} 1
987 @end group
988 @group
989 (lsh -5 -2)        ;  -5  =  @r{1111...111011}
990      @result{} 268435454
991                    ;      =  @r{0011...111110}
992 @end group
993 @group
994 (ash -5 -2)        ;  -5  =  @r{1111...111011}
995      @result{} -2         ;      =  @r{1111...111110}
996 @end group
997 @end smallexample
998 @end defun
1000 @defun logand &rest ints-or-markers
1001 This function returns the bitwise AND of the arguments: the @var{n}th
1002 bit is 1 in the result if, and only if, the @var{n}th bit is 1 in all
1003 the arguments.
1005 For example, using 4-bit binary numbers, the bitwise AND of 13 and
1006 12 is 12: 1101 combined with 1100 produces 1100.
1007 In both the binary numbers, the leftmost two bits are both 1
1008 so the leftmost two bits of the returned value are both 1.
1009 However, for the rightmost two bits, each is 0 in at least one of
1010 the arguments, so the rightmost two bits of the returned value are both 0.
1012 @noindent
1013 Therefore,
1015 @example
1016 @group
1017 (logand 13 12)
1018      @result{} 12
1019 @end group
1020 @end example
1022 If @code{logand} is not passed any argument, it returns a value of
1023 @minus{}1.  This number is an identity element for @code{logand}
1024 because its binary representation consists entirely of ones.  If
1025 @code{logand} is passed just one argument, it returns that argument.
1027 @smallexample
1028 @group
1029                    ; @r{       30-bit binary values}
1031 (logand 14 13)     ; 14  =  @r{0000...001110}
1032                    ; 13  =  @r{0000...001101}
1033      @result{} 12         ; 12  =  @r{0000...001100}
1034 @end group
1036 @group
1037 (logand 14 13 4)   ; 14  =  @r{0000...001110}
1038                    ; 13  =  @r{0000...001101}
1039                    ;  4  =  @r{0000...000100}
1040      @result{} 4          ;  4  =  @r{0000...000100}
1041 @end group
1043 @group
1044 (logand)
1045      @result{} -1         ; -1  =  @r{1111...111111}
1046 @end group
1047 @end smallexample
1048 @end defun
1050 @defun logior &rest ints-or-markers
1051 This function returns the bitwise inclusive OR of its arguments: the @var{n}th
1052 bit is 1 in the result if, and only if, the @var{n}th bit is 1 in at
1053 least one of the arguments.  If there are no arguments, the result is 0,
1054 which is an identity element for this operation.  If @code{logior} is
1055 passed just one argument, it returns that argument.
1057 @smallexample
1058 @group
1059                    ; @r{       30-bit binary values}
1061 (logior 12 5)      ; 12  =  @r{0000...001100}
1062                    ;  5  =  @r{0000...000101}
1063      @result{} 13         ; 13  =  @r{0000...001101}
1064 @end group
1066 @group
1067 (logior 12 5 7)    ; 12  =  @r{0000...001100}
1068                    ;  5  =  @r{0000...000101}
1069                    ;  7  =  @r{0000...000111}
1070      @result{} 15         ; 15  =  @r{0000...001111}
1071 @end group
1072 @end smallexample
1073 @end defun
1075 @defun logxor &rest ints-or-markers
1076 This function returns the bitwise exclusive OR of its arguments: the
1077 @var{n}th bit is 1 in the result if, and only if, the @var{n}th bit is
1078 1 in an odd number of the arguments.  If there are no arguments, the
1079 result is 0, which is an identity element for this operation.  If
1080 @code{logxor} is passed just one argument, it returns that argument.
1082 @smallexample
1083 @group
1084                    ; @r{       30-bit binary values}
1086 (logxor 12 5)      ; 12  =  @r{0000...001100}
1087                    ;  5  =  @r{0000...000101}
1088      @result{} 9          ;  9  =  @r{0000...001001}
1089 @end group
1091 @group
1092 (logxor 12 5 7)    ; 12  =  @r{0000...001100}
1093                    ;  5  =  @r{0000...000101}
1094                    ;  7  =  @r{0000...000111}
1095      @result{} 14         ; 14  =  @r{0000...001110}
1096 @end group
1097 @end smallexample
1098 @end defun
1100 @defun lognot integer
1101 This function returns the bitwise complement of its argument: the @var{n}th
1102 bit is one in the result if, and only if, the @var{n}th bit is zero in
1103 @var{integer}, and vice-versa.
1105 @example
1106 (lognot 5)
1107      @result{} -6
1108 ;;  5  =  @r{0000...000101} (30 bits total)
1109 ;; @r{becomes}
1110 ;; -6  =  @r{1111...111010} (30 bits total)
1111 @end example
1112 @end defun
1114 @node Math Functions
1115 @section Standard Mathematical Functions
1116 @cindex transcendental functions
1117 @cindex mathematical functions
1118 @cindex floating-point functions
1120   These mathematical functions allow integers as well as floating-point
1121 numbers as arguments.
1123 @defun sin arg
1124 @defunx cos arg
1125 @defunx tan arg
1126 These are the basic trigonometric functions, with argument @var{arg}
1127 measured in radians.
1128 @end defun
1130 @defun asin arg
1131 The value of @code{(asin @var{arg})} is a number between
1132 @ifnottex
1133 @minus{}pi/2
1134 @end ifnottex
1135 @tex
1136 @math{-\pi/2}
1137 @end tex
1139 @ifnottex
1140 pi/2
1141 @end ifnottex
1142 @tex
1143 @math{\pi/2}
1144 @end tex
1145 (inclusive) whose sine is @var{arg}.  If @var{arg} is out of range
1146 (outside [@minus{}1, 1]), @code{asin} returns a NaN.
1147 @end defun
1149 @defun acos arg
1150 The value of @code{(acos @var{arg})} is a number between 0 and
1151 @ifnottex
1153 @end ifnottex
1154 @tex
1155 @math{\pi}
1156 @end tex
1157 (inclusive) whose cosine is @var{arg}.  If @var{arg} is out of range
1158 (outside [@minus{}1, 1]), @code{acos} returns a NaN.
1159 @end defun
1161 @defun atan y &optional x
1162 The value of @code{(atan @var{y})} is a number between
1163 @ifnottex
1164 @minus{}pi/2
1165 @end ifnottex
1166 @tex
1167 @math{-\pi/2}
1168 @end tex
1170 @ifnottex
1171 pi/2
1172 @end ifnottex
1173 @tex
1174 @math{\pi/2}
1175 @end tex
1176 (exclusive) whose tangent is @var{y}.  If the optional second
1177 argument @var{x} is given, the value of @code{(atan y x)} is the
1178 angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1179 @code{X} axis.
1180 @end defun
1182 @defun exp arg
1183 This is the exponential function; it returns @math{e} to the power
1184 @var{arg}.
1185 @end defun
1187 @defun log arg &optional base
1188 This function returns the logarithm of @var{arg}, with base
1189 @var{base}.  If you don't specify @var{base}, the natural base
1190 @math{e} is used.  If @var{arg} or @var{base} is negative, @code{log}
1191 returns a NaN.
1192 @end defun
1194 @defun expt x y
1195 This function returns @var{x} raised to power @var{y}.  If both
1196 arguments are integers and @var{y} is positive, the result is an
1197 integer; in this case, overflow causes truncation, so watch out.
1198 If @var{x} is a finite negative number and @var{y} is a finite
1199 non-integer, @code{expt} returns a NaN.
1200 @end defun
1202 @defun sqrt arg
1203 This returns the square root of @var{arg}.  If @var{arg} is finite
1204 and less than zero, @code{sqrt} returns a NaN.
1205 @end defun
1207 In addition, Emacs defines the following common mathematical
1208 constants:
1210 @defvar float-e
1211 The mathematical constant @math{e} (2.71828@dots{}).
1212 @end defvar
1214 @defvar float-pi
1215 The mathematical constant @math{pi} (3.14159@dots{}).
1216 @end defvar
1218 @node Random Numbers
1219 @section Random Numbers
1220 @cindex random numbers
1222   A deterministic computer program cannot generate true random
1223 numbers.  For most purposes, @dfn{pseudo-random numbers} suffice.  A
1224 series of pseudo-random numbers is generated in a deterministic
1225 fashion.  The numbers are not truly random, but they have certain
1226 properties that mimic a random series.  For example, all possible
1227 values occur equally often in a pseudo-random series.
1229 @cindex seed, for random number generation
1230   Pseudo-random numbers are generated from a @dfn{seed value}.  Starting from
1231 any given seed, the @code{random} function always generates the same
1232 sequence of numbers.  By default, Emacs initializes the random seed at
1233 startup, in such a way that the sequence of values of @code{random}
1234 (with overwhelming likelihood) differs in each Emacs run.
1236   Sometimes you want the random number sequence to be repeatable.  For
1237 example, when debugging a program whose behavior depends on the random
1238 number sequence, it is helpful to get the same behavior in each
1239 program run.  To make the sequence repeat, execute @code{(random "")}.
1240 This sets the seed to a constant value for your particular Emacs
1241 executable (though it may differ for other Emacs builds).  You can use
1242 other strings to choose various seed values.
1244 @defun random &optional limit
1245 This function returns a pseudo-random integer.  Repeated calls return a
1246 series of pseudo-random integers.
1248 If @var{limit} is a positive integer, the value is chosen to be
1249 nonnegative and less than @var{limit}.  Otherwise, the value might be
1250 any integer representable in Lisp, i.e., an integer between
1251 @code{most-negative-fixnum} and @code{most-positive-fixnum}
1252 (@pxref{Integer Basics}).
1254 If @var{limit} is @code{t}, it means to choose a new seed as if Emacs
1255 were restarting, typically from the system entropy.  On systems
1256 lacking entropy pools, choose the seed from less-random volatile data
1257 such as the current time.
1259 If @var{limit} is a string, it means to choose a new seed based on the
1260 string's contents.
1262 @end defun