1 /* Dump Emacs in Mach-O format for use on Mac OS X.
2 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4 This file is part of GNU Emacs.
6 GNU Emacs is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
19 /* Contributed by Andrew Choi (akochoi@mac.com). */
21 /* Documentation note.
23 Consult the following documents/files for a description of the
24 Mach-O format: the file loader.h, man pages for Mach-O and ld, old
25 NEXTSTEP documents of the Mach-O format. The tool otool dumps the
26 mach header (-h option) and the load commands (-l option) in a
27 Mach-O file. The tool nm on Mac OS X displays the symbol table in
28 a Mach-O file. For examples of unexec for the Mach-O format, see
29 the file unexnext.c in the GNU Emacs distribution, the file
30 unexdyld.c in the Darwin port of GNU Emacs 20.7, and unexdyld.c in
31 the Darwin port of XEmacs 21.1. Also the Darwin Libc source
32 contains the source code for malloc_freezedry and malloc_jumpstart.
33 Read that to see what they do. This file was written completely
34 from scratch, making use of information from the above sources. */
36 /* The Mac OS X implementation of unexec makes use of Darwin's `zone'
37 memory allocator. All calls to malloc, realloc, and free in Emacs
38 are redirected to unexec_malloc, unexec_realloc, and unexec_free in
39 this file. When temacs is run, all memory requests are handled in
40 the zone EmacsZone. The Darwin memory allocator library calls
41 maintain the data structures to manage this zone. Dumping writes
42 its contents to data segments of the executable file. When emacs
43 is run, the loader recreates the contents of the zone in memory.
44 However since the initialization routine of the zone memory
45 allocator is run again, this `zone' can no longer be used as a
46 heap. That is why emacs uses the ordinary malloc system call to
47 allocate memory. Also, when a block of memory needs to be
48 reallocated and the new size is larger than the old one, a new
49 block must be obtained by malloc and the old contents copied to
52 /* Peculiarity of the Mach-O files generated by ld in Mac OS X
53 (possible causes of future bugs if changed).
55 The file offset of the start of the __TEXT segment is zero. Since
56 the Mach header and load commands are located at the beginning of a
57 Mach-O file, copying the contents of the __TEXT segment from the
58 input file overwrites them in the output file. Despite this,
59 unexec works fine as written below because the segment load command
60 for __TEXT appears, and is therefore processed, before all other
61 load commands except the segment load command for __PAGEZERO, which
64 Although the file offset of the start of the __TEXT segment is
65 zero, none of the sections it contains actually start there. In
66 fact, the earliest one starts a few hundred bytes beyond the end of
67 the last load command. The linker option -headerpad controls the
68 minimum size of this padding. Its setting can be changed in
69 s/darwin.h. A value of 0x690, e.g., leaves room for 30 additional
70 load commands for the newly created __DATA segments (at 56 bytes
71 each). Unexec fails if there is not enough room for these new
74 The __TEXT segment contains the sections __text, __cstring,
75 __picsymbol_stub, and __const and the __DATA segment contains the
76 sections __data, __la_symbol_ptr, __nl_symbol_ptr, __dyld, __bss,
77 and __common. The other segments do not contain any sections.
78 These sections are copied from the input file to the output file,
79 except for __data, __bss, and __common, which are dumped from
80 memory. The types of the sections __bss and __common are changed
81 from S_ZEROFILL to S_REGULAR. Note that the number of sections and
82 their relative order in the input and output files remain
83 unchanged. Otherwise all n_sect fields in the nlist records in the
84 symbol table (specified by the LC_SYMTAB load command) will have to
85 be changed accordingly.
88 /* config.h #define:s malloc/realloc/free and then includes stdlib.h.
89 We want the undefined versions, but if config.h includes stdlib.h
90 with the #define:s in place, the prototypes will be wrong and we get
91 warnings. To prevent that, include stdlib.h before config.h. */
104 #include <sys/types.h>
106 #include <mach/mach.h>
107 #include <mach-o/loader.h>
108 #include <mach-o/reloc.h>
109 #if defined (__ppc__)
110 #include <mach-o/ppc/reloc.h>
112 #ifdef HAVE_MALLOC_MALLOC_H
113 #include <malloc/malloc.h>
115 #include <objc/malloc.h>
121 #define mach_header mach_header_64
122 #define segment_command segment_command_64
123 #undef VM_REGION_BASIC_INFO_COUNT
124 #define VM_REGION_BASIC_INFO_COUNT VM_REGION_BASIC_INFO_COUNT_64
125 #undef VM_REGION_BASIC_INFO
126 #define VM_REGION_BASIC_INFO VM_REGION_BASIC_INFO_64
128 #define LC_SEGMENT LC_SEGMENT_64
129 #define vm_region vm_region_64
130 #define section section_64
132 #define MH_MAGIC MH_MAGIC_64
137 /* Size of buffer used to copy data from the input file to the output
138 file in function unexec_copy. */
139 #define UNEXEC_COPY_BUFSZ 1024
141 /* Regions with memory addresses above this value are assumed to be
142 mapped to dynamically loaded libraries and will not be dumped. */
143 #define VM_DATA_TOP (20 * 1024 * 1024)
145 /* Type of an element on the list of regions to be dumped. */
147 vm_address_t address
;
149 vm_prot_t protection
;
150 vm_prot_t max_protection
;
152 struct region_t
*next
;
155 /* Head and tail of the list of regions to be dumped. */
156 static struct region_t
*region_list_head
= 0;
157 static struct region_t
*region_list_tail
= 0;
159 /* Pointer to array of load commands. */
160 static struct load_command
**lca
;
162 /* Number of load commands. */
165 /* The highest VM address of segments loaded by the input file.
166 Regions with addresses beyond this are assumed to be allocated
167 dynamically and thus require dumping. */
168 static vm_address_t infile_lc_highest_addr
= 0;
170 /* The lowest file offset used by the all sections in the __TEXT
171 segments. This leaves room at the beginning of the file to store
172 the Mach-O header. Check this value against header size to ensure
173 the added load commands for the new __DATA segments did not
174 overwrite any of the sections in the __TEXT segment. */
175 static unsigned long text_seg_lowest_offset
= 0x10000000;
178 static struct mach_header mh
;
180 /* Offset at which the next load command should be written. */
181 static unsigned long curr_header_offset
= sizeof (struct mach_header
);
183 /* Offset at which the next segment should be written. */
184 static unsigned long curr_file_offset
= 0;
186 static unsigned long pagesize
;
187 #define ROUNDUP_TO_PAGE_BOUNDARY(x) (((x) + pagesize - 1) & ~(pagesize - 1))
189 static int infd
, outfd
;
191 static int in_dumped_exec
= 0;
193 static malloc_zone_t
*emacs_zone
;
195 /* file offset of input file's data segment */
196 static off_t data_segment_old_fileoff
= 0;
198 static struct segment_command
*data_segment_scp
;
200 /* Read N bytes from infd into memory starting at address DEST.
201 Return true if successful, false otherwise. */
203 unexec_read (void *dest
, size_t n
)
205 return n
== read (infd
, dest
, n
);
208 /* Write COUNT bytes from memory starting at address SRC to outfd
209 starting at offset DEST. Return true if successful, false
212 unexec_write (off_t dest
, const void *src
, size_t count
)
214 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
217 return write (outfd
, src
, count
) == count
;
220 /* Write COUNT bytes of zeros to outfd starting at offset DEST.
221 Return true if successful, false otherwise. */
223 unexec_write_zero (off_t dest
, size_t count
)
225 char buf
[UNEXEC_COPY_BUFSZ
];
228 memset (buf
, 0, UNEXEC_COPY_BUFSZ
);
229 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
234 bytes
= count
> UNEXEC_COPY_BUFSZ
? UNEXEC_COPY_BUFSZ
: count
;
235 if (write (outfd
, buf
, bytes
) != bytes
)
243 /* Copy COUNT bytes from starting offset SRC in infd to starting
244 offset DEST in outfd. Return true if successful, false
247 unexec_copy (off_t dest
, off_t src
, ssize_t count
)
250 ssize_t bytes_to_read
;
252 char buf
[UNEXEC_COPY_BUFSZ
];
254 if (lseek (infd
, src
, SEEK_SET
) != src
)
257 if (lseek (outfd
, dest
, SEEK_SET
) != dest
)
262 bytes_to_read
= count
> UNEXEC_COPY_BUFSZ
? UNEXEC_COPY_BUFSZ
: count
;
263 bytes_read
= read (infd
, buf
, bytes_to_read
);
266 if (write (outfd
, buf
, bytes_read
) != bytes_read
)
274 /* Debugging and informational messages routines. */
276 static _Noreturn
void
277 unexec_error (const char *format
, ...)
281 va_start (ap
, format
);
282 fprintf (stderr
, "unexec: ");
283 vfprintf (stderr
, format
, ap
);
284 fprintf (stderr
, "\n");
290 print_prot (vm_prot_t prot
)
292 if (prot
== VM_PROT_NONE
)
296 putchar (prot
& VM_PROT_READ
? 'r' : ' ');
297 putchar (prot
& VM_PROT_WRITE
? 'w' : ' ');
298 putchar (prot
& VM_PROT_EXECUTE
? 'x' : ' ');
304 print_region (vm_address_t address
, vm_size_t size
, vm_prot_t prot
,
307 printf ("%#10lx %#8lx ", (long) address
, (long) size
);
310 print_prot (max_prot
);
315 print_region_list (void)
319 printf (" address size prot maxp\n");
321 for (r
= region_list_head
; r
; r
= r
->next
)
322 print_region (r
->address
, r
->size
, r
->protection
, r
->max_protection
);
328 task_t target_task
= mach_task_self ();
329 vm_address_t address
= (vm_address_t
) 0;
331 struct vm_region_basic_info info
;
332 mach_msg_type_number_t info_count
= VM_REGION_BASIC_INFO_COUNT
;
333 mach_port_t object_name
;
335 printf (" address size prot maxp\n");
337 while (vm_region (target_task
, &address
, &size
, VM_REGION_BASIC_INFO
,
338 (vm_region_info_t
) &info
, &info_count
, &object_name
)
339 == KERN_SUCCESS
&& info_count
== VM_REGION_BASIC_INFO_COUNT
)
341 print_region (address
, size
, info
.protection
, info
.max_protection
);
343 if (object_name
!= MACH_PORT_NULL
)
344 mach_port_deallocate (target_task
, object_name
);
350 /* Build the list of regions that need to be dumped. Regions with
351 addresses above VM_DATA_TOP are omitted. Adjacent regions with
352 identical protection are merged. Note that non-writable regions
353 cannot be omitted because they some regions created at run time are
356 build_region_list (void)
358 task_t target_task
= mach_task_self ();
359 vm_address_t address
= (vm_address_t
) 0;
361 struct vm_region_basic_info info
;
362 mach_msg_type_number_t info_count
= VM_REGION_BASIC_INFO_COUNT
;
363 mach_port_t object_name
;
367 printf ("--- List of All Regions ---\n");
368 printf (" address size prot maxp\n");
371 while (vm_region (target_task
, &address
, &size
, VM_REGION_BASIC_INFO
,
372 (vm_region_info_t
) &info
, &info_count
, &object_name
)
373 == KERN_SUCCESS
&& info_count
== VM_REGION_BASIC_INFO_COUNT
)
375 /* Done when we reach addresses of shared libraries, which are
376 loaded in high memory. */
377 if (address
>= VM_DATA_TOP
)
381 print_region (address
, size
, info
.protection
, info
.max_protection
);
384 /* If a region immediately follows the previous one (the one
385 most recently added to the list) and has identical
386 protection, merge it with the latter. Otherwise create a
387 new list element for it. */
389 && info
.protection
== region_list_tail
->protection
390 && info
.max_protection
== region_list_tail
->max_protection
391 && region_list_tail
->address
+ region_list_tail
->size
== address
)
393 region_list_tail
->size
+= size
;
397 r
= malloc (sizeof *r
);
400 unexec_error ("cannot allocate region structure");
402 r
->address
= address
;
404 r
->protection
= info
.protection
;
405 r
->max_protection
= info
.max_protection
;
408 if (region_list_head
== 0)
410 region_list_head
= r
;
411 region_list_tail
= r
;
415 region_list_tail
->next
= r
;
416 region_list_tail
= r
;
419 /* Deallocate (unused) object name returned by
421 if (object_name
!= MACH_PORT_NULL
)
422 mach_port_deallocate (target_task
, object_name
);
428 printf ("--- List of Regions to be Dumped ---\n");
429 print_region_list ();
433 #define MAX_UNEXEC_REGIONS 400
435 static int num_unexec_regions
;
439 } unexec_region_info
;
440 static unexec_region_info unexec_regions
[MAX_UNEXEC_REGIONS
];
443 unexec_regions_recorder (task_t task
, void *rr
, unsigned type
,
444 vm_range_t
*ranges
, unsigned num
)
449 while (num
&& num_unexec_regions
< MAX_UNEXEC_REGIONS
)
451 /* Subtract the size of trailing null bytes from filesize. It
452 can be smaller than vmsize in segment commands. In such a
453 case, trailing bytes are initialized with zeros. */
454 for (p
= ranges
->address
+ ranges
->size
; p
> ranges
->address
; p
--)
455 if (*(((char *) p
)-1))
457 filesize
= p
- ranges
->address
;
459 unexec_regions
[num_unexec_regions
].filesize
= filesize
;
460 unexec_regions
[num_unexec_regions
++].range
= *ranges
;
461 printf ("%#10lx (sz: %#8lx/%#8lx)\n", (long) (ranges
->address
),
462 (long) filesize
, (long) (ranges
->size
));
468 unexec_reader (task_t task
, vm_address_t address
, vm_size_t size
, void **ptr
)
470 *ptr
= (void *) address
;
475 find_emacs_zone_regions (void)
477 num_unexec_regions
= 0;
479 emacs_zone
->introspect
->enumerator (mach_task_self (), 0,
480 MALLOC_PTR_REGION_RANGE_TYPE
481 | MALLOC_ADMIN_REGION_RANGE_TYPE
,
482 (vm_address_t
) emacs_zone
,
484 unexec_regions_recorder
);
486 if (num_unexec_regions
== MAX_UNEXEC_REGIONS
)
487 unexec_error ("find_emacs_zone_regions: too many regions");
491 unexec_regions_sort_compare (const void *a
, const void *b
)
493 vm_address_t aa
= ((unexec_region_info
*) a
)->range
.address
;
494 vm_address_t bb
= ((unexec_region_info
*) b
)->range
.address
;
505 unexec_regions_merge (void)
508 unexec_region_info r
;
511 qsort (unexec_regions
, num_unexec_regions
, sizeof (unexec_regions
[0]),
512 &unexec_regions_sort_compare
);
514 r
= unexec_regions
[0];
515 padsize
= r
.range
.address
& (pagesize
- 1);
518 r
.range
.address
-= padsize
;
519 r
.range
.size
+= padsize
;
520 r
.filesize
+= padsize
;
522 for (i
= 1; i
< num_unexec_regions
; i
++)
524 if (r
.range
.address
+ r
.range
.size
== unexec_regions
[i
].range
.address
525 && r
.range
.size
- r
.filesize
< 2 * pagesize
)
527 r
.filesize
= r
.range
.size
+ unexec_regions
[i
].filesize
;
528 r
.range
.size
+= unexec_regions
[i
].range
.size
;
532 unexec_regions
[n
++] = r
;
533 r
= unexec_regions
[i
];
534 padsize
= r
.range
.address
& (pagesize
- 1);
537 if ((unexec_regions
[n
-1].range
.address
538 + unexec_regions
[n
-1].range
.size
) == r
.range
.address
)
539 unexec_regions
[n
-1].range
.size
-= padsize
;
541 r
.range
.address
-= padsize
;
542 r
.range
.size
+= padsize
;
543 r
.filesize
+= padsize
;
547 unexec_regions
[n
++] = r
;
548 num_unexec_regions
= n
;
552 /* More informational messages routines. */
555 print_load_command_name (int lc
)
561 printf ("LC_SEGMENT ");
563 printf ("LC_SEGMENT_64 ");
566 case LC_LOAD_DYLINKER
:
567 printf ("LC_LOAD_DYLINKER ");
570 printf ("LC_LOAD_DYLIB ");
573 printf ("LC_SYMTAB ");
576 printf ("LC_DYSYMTAB ");
579 printf ("LC_UNIXTHREAD ");
581 case LC_PREBOUND_DYLIB
:
582 printf ("LC_PREBOUND_DYLIB");
584 case LC_TWOLEVEL_HINTS
:
585 printf ("LC_TWOLEVEL_HINTS");
594 printf ("LC_DYLD_INFO ");
596 case LC_DYLD_INFO_ONLY
:
597 printf ("LC_DYLD_INFO_ONLY");
600 #ifdef LC_VERSION_MIN_MACOSX
601 case LC_VERSION_MIN_MACOSX
:
602 printf ("LC_VERSION_MIN_MACOSX");
605 #ifdef LC_FUNCTION_STARTS
606 case LC_FUNCTION_STARTS
:
607 printf ("LC_FUNCTION_STARTS");
616 print_load_command (struct load_command
*lc
)
618 print_load_command_name (lc
->cmd
);
619 printf ("%8d", lc
->cmdsize
);
621 if (lc
->cmd
== LC_SEGMENT
)
623 struct segment_command
*scp
;
624 struct section
*sectp
;
627 scp
= (struct segment_command
*) lc
;
628 printf (" %-16.16s %#10lx %#8lx\n",
629 scp
->segname
, (long) (scp
->vmaddr
), (long) (scp
->vmsize
));
631 sectp
= (struct section
*) (scp
+ 1);
632 for (j
= 0; j
< scp
->nsects
; j
++)
634 printf (" %-16.16s %#10lx %#8lx\n",
635 sectp
->sectname
, (long) (sectp
->addr
), (long) (sectp
->size
));
643 /* Read header and load commands from input file. Store the latter in
644 the global array lca. Store the total number of load commands in
645 global variable nlc. */
647 read_load_commands (void)
651 if (!unexec_read (&mh
, sizeof (struct mach_header
)))
652 unexec_error ("cannot read mach-o header");
654 if (mh
.magic
!= MH_MAGIC
)
655 unexec_error ("input file not in Mach-O format");
657 if (mh
.filetype
!= MH_EXECUTE
)
658 unexec_error ("input Mach-O file is not an executable object file");
661 printf ("--- Header Information ---\n");
662 printf ("Magic = 0x%08x\n", mh
.magic
);
663 printf ("CPUType = %d\n", mh
.cputype
);
664 printf ("CPUSubType = %d\n", mh
.cpusubtype
);
665 printf ("FileType = 0x%x\n", mh
.filetype
);
666 printf ("NCmds = %d\n", mh
.ncmds
);
667 printf ("SizeOfCmds = %d\n", mh
.sizeofcmds
);
668 printf ("Flags = 0x%08x\n", mh
.flags
);
672 lca
= malloc (nlc
* sizeof *lca
);
674 for (i
= 0; i
< nlc
; i
++)
676 struct load_command lc
;
677 /* Load commands are variable-size: so read the command type and
678 size first and then read the rest. */
679 if (!unexec_read (&lc
, sizeof (struct load_command
)))
680 unexec_error ("cannot read load command");
681 lca
[i
] = malloc (lc
.cmdsize
);
682 memcpy (lca
[i
], &lc
, sizeof (struct load_command
));
683 if (!unexec_read (lca
[i
] + 1, lc
.cmdsize
- sizeof (struct load_command
)))
684 unexec_error ("cannot read content of load command");
685 if (lc
.cmd
== LC_SEGMENT
)
687 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
689 if (scp
->vmaddr
+ scp
->vmsize
> infile_lc_highest_addr
)
690 infile_lc_highest_addr
= scp
->vmaddr
+ scp
->vmsize
;
692 if (strncmp (scp
->segname
, SEG_TEXT
, 16) == 0)
694 struct section
*sectp
= (struct section
*) (scp
+ 1);
697 for (j
= 0; j
< scp
->nsects
; j
++)
698 if (sectp
->offset
< text_seg_lowest_offset
)
699 text_seg_lowest_offset
= sectp
->offset
;
704 printf ("Highest address of load commands in input file: %#8lx\n",
705 (unsigned long)infile_lc_highest_addr
);
707 printf ("Lowest offset of all sections in __TEXT segment: %#8lx\n",
708 text_seg_lowest_offset
);
710 printf ("--- List of Load Commands in Input File ---\n");
711 printf ("# cmd cmdsize name address size\n");
713 for (i
= 0; i
< nlc
; i
++)
716 print_load_command (lca
[i
]);
720 /* Copy a LC_SEGMENT load command other than the __DATA segment from
721 the input file to the output file, adjusting the file offset of the
722 segment and the file offsets of sections contained in it. */
724 copy_segment (struct load_command
*lc
)
726 struct segment_command
*scp
= (struct segment_command
*) lc
;
727 unsigned long old_fileoff
= scp
->fileoff
;
728 struct section
*sectp
;
731 scp
->fileoff
= curr_file_offset
;
733 sectp
= (struct section
*) (scp
+ 1);
734 for (j
= 0; j
< scp
->nsects
; j
++)
736 sectp
->offset
+= curr_file_offset
- old_fileoff
;
740 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
741 scp
->segname
, (long) (scp
->fileoff
), (long) (scp
->filesize
),
742 (long) (scp
->vmsize
), (long) (scp
->vmaddr
));
744 if (!unexec_copy (scp
->fileoff
, old_fileoff
, scp
->filesize
))
745 unexec_error ("cannot copy segment from input to output file");
746 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (scp
->filesize
);
748 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
749 unexec_error ("cannot write load command to header");
751 curr_header_offset
+= lc
->cmdsize
;
754 /* Copy a LC_SEGMENT load command for the __DATA segment in the input
755 file to the output file. We assume that only one such segment load
756 command exists in the input file and it contains the sections
757 __data, __bss, __common, __la_symbol_ptr, __nl_symbol_ptr, and
758 __dyld. The first three of these should be dumped from memory and
759 the rest should be copied from the input file. Note that the
760 sections __bss and __common contain no data in the input file
761 because their flag fields have the value S_ZEROFILL. Dumping these
762 from memory makes it necessary to adjust file offset fields in
763 subsequently dumped load commands. Then, create new __DATA segment
764 load commands for regions on the region list other than the one
765 corresponding to the __DATA segment in the input file. */
767 copy_data_segment (struct load_command
*lc
)
769 struct segment_command
*scp
= (struct segment_command
*) lc
;
770 struct section
*sectp
;
772 unsigned long header_offset
, old_file_offset
;
774 /* The new filesize of the segment is set to its vmsize because data
775 blocks for segments must start at region boundaries. Note that
776 this may leave unused locations at the end of the segment data
777 block because the total of the sizes of all sections in the
778 segment is generally smaller than vmsize. */
779 scp
->filesize
= scp
->vmsize
;
781 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
782 scp
->segname
, curr_file_offset
, (long)(scp
->filesize
),
783 (long)(scp
->vmsize
), (long) (scp
->vmaddr
));
785 /* Offsets in the output file for writing the next section structure
786 and segment data block, respectively. */
787 header_offset
= curr_header_offset
+ sizeof (struct segment_command
);
789 sectp
= (struct section
*) (scp
+ 1);
790 for (j
= 0; j
< scp
->nsects
; j
++)
792 old_file_offset
= sectp
->offset
;
793 sectp
->offset
= sectp
->addr
- scp
->vmaddr
+ curr_file_offset
;
794 /* The __data section is dumped from memory. The __bss and
795 __common sections are also dumped from memory but their flag
796 fields require changing (from S_ZEROFILL to S_REGULAR). The
797 other three kinds of sections are just copied from the input
799 if (strncmp (sectp
->sectname
, SECT_DATA
, 16) == 0)
801 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, sectp
->size
))
802 unexec_error ("cannot write section %s", SECT_DATA
);
803 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
804 unexec_error ("cannot write section %s's header", SECT_DATA
);
806 else if (strncmp (sectp
->sectname
, SECT_COMMON
, 16) == 0)
808 sectp
->flags
= S_REGULAR
;
809 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, sectp
->size
))
810 unexec_error ("cannot write section %.16s", sectp
->sectname
);
811 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
812 unexec_error ("cannot write section %.16s's header", sectp
->sectname
);
814 else if (strncmp (sectp
->sectname
, SECT_BSS
, 16) == 0)
816 extern char *my_endbss_static
;
817 unsigned long my_size
;
819 sectp
->flags
= S_REGULAR
;
821 /* Clear uninitialized local variables in statically linked
822 libraries. In particular, function pointers stored by
823 libSystemStub.a, which is introduced in Mac OS X 10.4 for
824 binary compatibility with respect to long double, are
825 cleared so that they will be reinitialized when the
826 dumped binary is executed on other versions of OS. */
827 my_size
= (unsigned long)my_endbss_static
- sectp
->addr
;
828 if (!(sectp
->addr
<= (unsigned long)my_endbss_static
829 && my_size
<= sectp
->size
))
830 unexec_error ("my_endbss_static is not in section %.16s",
832 if (!unexec_write (sectp
->offset
, (void *) sectp
->addr
, my_size
))
833 unexec_error ("cannot write section %.16s", sectp
->sectname
);
834 if (!unexec_write_zero (sectp
->offset
+ my_size
,
835 sectp
->size
- my_size
))
836 unexec_error ("cannot write section %.16s", sectp
->sectname
);
837 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
838 unexec_error ("cannot write section %.16s's header", sectp
->sectname
);
840 else if (strncmp (sectp
->sectname
, "__la_symbol_ptr", 16) == 0
841 || strncmp (sectp
->sectname
, "__nl_symbol_ptr", 16) == 0
842 || strncmp (sectp
->sectname
, "__got", 16) == 0
843 || strncmp (sectp
->sectname
, "__la_sym_ptr2", 16) == 0
844 || strncmp (sectp
->sectname
, "__dyld", 16) == 0
845 || strncmp (sectp
->sectname
, "__const", 16) == 0
846 || strncmp (sectp
->sectname
, "__cfstring", 16) == 0
847 || strncmp (sectp
->sectname
, "__gcc_except_tab", 16) == 0
848 || strncmp (sectp
->sectname
, "__program_vars", 16) == 0
849 || strncmp (sectp
->sectname
, "__mod_init_func", 16) == 0
850 || strncmp (sectp
->sectname
, "__mod_term_func", 16) == 0
851 || strncmp (sectp
->sectname
, "__objc_", 7) == 0)
853 if (!unexec_copy (sectp
->offset
, old_file_offset
, sectp
->size
))
854 unexec_error ("cannot copy section %.16s", sectp
->sectname
);
855 if (!unexec_write (header_offset
, sectp
, sizeof (struct section
)))
856 unexec_error ("cannot write section %.16s's header", sectp
->sectname
);
859 unexec_error ("unrecognized section %.16s in __DATA segment",
862 printf (" section %-16.16s at %#8lx - %#8lx (sz: %#8lx)\n",
863 sectp
->sectname
, (long) (sectp
->offset
),
864 (long) (sectp
->offset
+ sectp
->size
), (long) (sectp
->size
));
866 header_offset
+= sizeof (struct section
);
870 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (scp
->filesize
);
872 if (!unexec_write (curr_header_offset
, scp
, sizeof (struct segment_command
)))
873 unexec_error ("cannot write header of __DATA segment");
874 curr_header_offset
+= lc
->cmdsize
;
876 /* Create new __DATA segment load commands for regions on the region
877 list that do not corresponding to any segment load commands in
880 for (j
= 0; j
< num_unexec_regions
; j
++)
882 struct segment_command sc
;
885 sc
.cmdsize
= sizeof (struct segment_command
);
886 strncpy (sc
.segname
, SEG_DATA
, 16);
887 sc
.vmaddr
= unexec_regions
[j
].range
.address
;
888 sc
.vmsize
= unexec_regions
[j
].range
.size
;
889 sc
.fileoff
= curr_file_offset
;
890 sc
.filesize
= unexec_regions
[j
].filesize
;
891 sc
.maxprot
= VM_PROT_READ
| VM_PROT_WRITE
;
892 sc
.initprot
= VM_PROT_READ
| VM_PROT_WRITE
;
896 printf ("Writing segment %-16.16s @ %#8lx (%#8lx/%#8lx @ %#10lx)\n",
897 sc
.segname
, (long) (sc
.fileoff
), (long) (sc
.filesize
),
898 (long) (sc
.vmsize
), (long) (sc
.vmaddr
));
900 if (!unexec_write (sc
.fileoff
, (void *) sc
.vmaddr
, sc
.filesize
))
901 unexec_error ("cannot write new __DATA segment");
902 curr_file_offset
+= ROUNDUP_TO_PAGE_BOUNDARY (sc
.filesize
);
904 if (!unexec_write (curr_header_offset
, &sc
, sc
.cmdsize
))
905 unexec_error ("cannot write new __DATA segment's header");
906 curr_header_offset
+= sc
.cmdsize
;
911 /* Copy a LC_SYMTAB load command from the input file to the output
912 file, adjusting the file offset fields. */
914 copy_symtab (struct load_command
*lc
, long delta
)
916 struct symtab_command
*stp
= (struct symtab_command
*) lc
;
918 stp
->symoff
+= delta
;
919 stp
->stroff
+= delta
;
921 printf ("Writing LC_SYMTAB command\n");
923 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
924 unexec_error ("cannot write symtab command to header");
926 curr_header_offset
+= lc
->cmdsize
;
929 /* Fix up relocation entries. */
931 unrelocate (const char *name
, off_t reloff
, int nrel
, vm_address_t base
)
933 int i
, unreloc_count
;
934 struct relocation_info reloc_info
;
935 struct scattered_relocation_info
*sc_reloc_info
936 = (struct scattered_relocation_info
*) &reloc_info
;
937 vm_address_t location
;
939 for (unreloc_count
= 0, i
= 0; i
< nrel
; i
++)
941 if (lseek (infd
, reloff
, L_SET
) != reloff
)
942 unexec_error ("unrelocate: %s:%d cannot seek to reloc_info", name
, i
);
943 if (!unexec_read (&reloc_info
, sizeof (reloc_info
)))
944 unexec_error ("unrelocate: %s:%d cannot read reloc_info", name
, i
);
945 reloff
+= sizeof (reloc_info
);
947 if (sc_reloc_info
->r_scattered
== 0)
948 switch (reloc_info
.r_type
)
950 case GENERIC_RELOC_VANILLA
:
951 location
= base
+ reloc_info
.r_address
;
952 if (location
>= data_segment_scp
->vmaddr
953 && location
< (data_segment_scp
->vmaddr
954 + data_segment_scp
->vmsize
))
956 off_t src_off
= data_segment_old_fileoff
957 + (location
- data_segment_scp
->vmaddr
);
958 off_t dst_off
= data_segment_scp
->fileoff
959 + (location
- data_segment_scp
->vmaddr
);
961 if (!unexec_copy (dst_off
, src_off
, 1 << reloc_info
.r_length
))
962 unexec_error ("unrelocate: %s:%d cannot copy original value",
968 unexec_error ("unrelocate: %s:%d cannot handle type = %d",
969 name
, i
, reloc_info
.r_type
);
972 switch (sc_reloc_info
->r_type
)
974 #if defined (__ppc__)
975 case PPC_RELOC_PB_LA_PTR
:
976 /* nothing to do for prebound lazy pointer */
980 unexec_error ("unrelocate: %s:%d cannot handle scattered type = %d",
981 name
, i
, sc_reloc_info
->r_type
);
986 printf ("Fixed up %d/%d %s relocation entries in data segment.\n",
987 unreloc_count
, nrel
, name
);
991 /* Rebase r_address in the relocation table. */
993 rebase_reloc_address (off_t reloff
, int nrel
, long linkedit_delta
, long diff
)
996 struct relocation_info reloc_info
;
997 struct scattered_relocation_info
*sc_reloc_info
998 = (struct scattered_relocation_info
*) &reloc_info
;
1000 for (i
= 0; i
< nrel
; i
++, reloff
+= sizeof (reloc_info
))
1002 if (lseek (infd
, reloff
- linkedit_delta
, L_SET
)
1003 != reloff
- linkedit_delta
)
1004 unexec_error ("rebase_reloc_table: cannot seek to reloc_info");
1005 if (!unexec_read (&reloc_info
, sizeof (reloc_info
)))
1006 unexec_error ("rebase_reloc_table: cannot read reloc_info");
1008 if (sc_reloc_info
->r_scattered
== 0
1009 && reloc_info
.r_type
== GENERIC_RELOC_VANILLA
)
1011 reloc_info
.r_address
-= diff
;
1012 if (!unexec_write (reloff
, &reloc_info
, sizeof (reloc_info
)))
1013 unexec_error ("rebase_reloc_table: cannot write reloc_info");
1019 /* Copy a LC_DYSYMTAB load command from the input file to the output
1020 file, adjusting the file offset fields. */
1022 copy_dysymtab (struct load_command
*lc
, long delta
)
1024 struct dysymtab_command
*dstp
= (struct dysymtab_command
*) lc
;
1033 for (i
= 0; i
< nlc
; i
++)
1034 if (lca
[i
]->cmd
== LC_SEGMENT
)
1036 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
1038 if (scp
->vmaddr
+ scp
->vmsize
> 0x100000000
1039 && (scp
->initprot
& VM_PROT_WRITE
) != 0)
1041 base
= data_segment_scp
->vmaddr
;
1047 /* First writable segment address. */
1048 base
= data_segment_scp
->vmaddr
;
1051 /* First segment address in the file (unless MH_SPLIT_SEGS set). */
1055 unrelocate ("local", dstp
->locreloff
, dstp
->nlocrel
, base
);
1056 unrelocate ("external", dstp
->extreloff
, dstp
->nextrel
, base
);
1058 if (dstp
->nextrel
> 0) {
1059 dstp
->extreloff
+= delta
;
1062 if (dstp
->nlocrel
> 0) {
1063 dstp
->locreloff
+= delta
;
1066 if (dstp
->nindirectsyms
> 0)
1067 dstp
->indirectsymoff
+= delta
;
1069 printf ("Writing LC_DYSYMTAB command\n");
1071 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1072 unexec_error ("cannot write symtab command to header");
1074 curr_header_offset
+= lc
->cmdsize
;
1077 /* Check if the relocation base needs to be changed. */
1080 vm_address_t newbase
= 0;
1083 for (i
= 0; i
< num_unexec_regions
; i
++)
1084 if (unexec_regions
[i
].range
.address
+ unexec_regions
[i
].range
.size
1087 newbase
= data_segment_scp
->vmaddr
;
1093 rebase_reloc_address (dstp
->locreloff
, dstp
->nlocrel
, delta
, newbase
);
1094 rebase_reloc_address (dstp
->extreloff
, dstp
->nextrel
, delta
, newbase
);
1100 /* Copy a LC_TWOLEVEL_HINTS load command from the input file to the output
1101 file, adjusting the file offset fields. */
1103 copy_twolevelhints (struct load_command
*lc
, long delta
)
1105 struct twolevel_hints_command
*tlhp
= (struct twolevel_hints_command
*) lc
;
1107 if (tlhp
->nhints
> 0) {
1108 tlhp
->offset
+= delta
;
1111 printf ("Writing LC_TWOLEVEL_HINTS command\n");
1113 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1114 unexec_error ("cannot write two level hint command to header");
1116 curr_header_offset
+= lc
->cmdsize
;
1120 /* Copy a LC_DYLD_INFO(_ONLY) load command from the input file to the output
1121 file, adjusting the file offset fields. */
1123 copy_dyld_info (struct load_command
*lc
, long delta
)
1125 struct dyld_info_command
*dip
= (struct dyld_info_command
*) lc
;
1127 if (dip
->rebase_off
> 0)
1128 dip
->rebase_off
+= delta
;
1129 if (dip
->bind_off
> 0)
1130 dip
->bind_off
+= delta
;
1131 if (dip
->weak_bind_off
> 0)
1132 dip
->weak_bind_off
+= delta
;
1133 if (dip
->lazy_bind_off
> 0)
1134 dip
->lazy_bind_off
+= delta
;
1135 if (dip
->export_off
> 0)
1136 dip
->export_off
+= delta
;
1138 printf ("Writing ");
1139 print_load_command_name (lc
->cmd
);
1140 printf (" command\n");
1142 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1143 unexec_error ("cannot write dyld info command to header");
1145 curr_header_offset
+= lc
->cmdsize
;
1149 #ifdef LC_FUNCTION_STARTS
1150 /* Copy a LC_FUNCTION_STARTS load command from the input file to the
1151 output file, adjusting the data offset field. */
1153 copy_linkedit_data (struct load_command
*lc
, long delta
)
1155 struct linkedit_data_command
*ldp
= (struct linkedit_data_command
*) lc
;
1157 if (ldp
->dataoff
> 0)
1158 ldp
->dataoff
+= delta
;
1160 printf ("Writing ");
1161 print_load_command_name (lc
->cmd
);
1162 printf (" command\n");
1164 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1165 unexec_error ("cannot write linkedit data command to header");
1167 curr_header_offset
+= lc
->cmdsize
;
1171 /* Copy other kinds of load commands from the input file to the output
1172 file, ones that do not require adjustments of file offsets. */
1174 copy_other (struct load_command
*lc
)
1176 printf ("Writing ");
1177 print_load_command_name (lc
->cmd
);
1178 printf (" command\n");
1180 if (!unexec_write (curr_header_offset
, lc
, lc
->cmdsize
))
1181 unexec_error ("cannot write symtab command to header");
1183 curr_header_offset
+= lc
->cmdsize
;
1186 /* Loop through all load commands and dump them. Then write the Mach
1192 long linkedit_delta
= 0;
1194 printf ("--- Load Commands written to Output File ---\n");
1196 for (i
= 0; i
< nlc
; i
++)
1197 switch (lca
[i
]->cmd
)
1201 struct segment_command
*scp
= (struct segment_command
*) lca
[i
];
1202 if (strncmp (scp
->segname
, SEG_DATA
, 16) == 0)
1204 /* save data segment file offset and segment_command for
1206 if (data_segment_old_fileoff
)
1207 unexec_error ("cannot handle multiple DATA segments"
1209 data_segment_old_fileoff
= scp
->fileoff
;
1210 data_segment_scp
= scp
;
1212 copy_data_segment (lca
[i
]);
1216 if (strncmp (scp
->segname
, SEG_LINKEDIT
, 16) == 0)
1219 unexec_error ("cannot handle multiple LINKEDIT segments"
1221 linkedit_delta
= curr_file_offset
- scp
->fileoff
;
1224 copy_segment (lca
[i
]);
1229 copy_symtab (lca
[i
], linkedit_delta
);
1232 copy_dysymtab (lca
[i
], linkedit_delta
);
1234 case LC_TWOLEVEL_HINTS
:
1235 copy_twolevelhints (lca
[i
], linkedit_delta
);
1239 case LC_DYLD_INFO_ONLY
:
1240 copy_dyld_info (lca
[i
], linkedit_delta
);
1243 #ifdef LC_FUNCTION_STARTS
1244 case LC_FUNCTION_STARTS
:
1245 copy_linkedit_data (lca
[i
], linkedit_delta
);
1249 copy_other (lca
[i
]);
1253 if (curr_header_offset
> text_seg_lowest_offset
)
1254 unexec_error ("not enough room for load commands for new __DATA segments");
1256 printf ("%ld unused bytes follow Mach-O header\n",
1257 text_seg_lowest_offset
- curr_header_offset
);
1259 mh
.sizeofcmds
= curr_header_offset
- sizeof (struct mach_header
);
1260 if (!unexec_write (0, &mh
, sizeof (struct mach_header
)))
1261 unexec_error ("cannot write final header contents");
1264 /* Take a snapshot of Emacs and make a Mach-O format executable file
1265 from it. The file names of the output and input files are outfile
1266 and infile, respectively. The three other parameters are
1269 unexec (const char *outfile
, const char *infile
)
1272 unexec_error ("Unexec from a dumped executable is not supported.");
1274 pagesize
= getpagesize ();
1275 infd
= open (infile
, O_RDONLY
, 0);
1278 unexec_error ("cannot open input file `%s'", infile
);
1281 outfd
= open (outfile
, O_WRONLY
| O_TRUNC
| O_CREAT
, 0755);
1285 unexec_error ("cannot open output file `%s'", outfile
);
1288 build_region_list ();
1289 read_load_commands ();
1291 find_emacs_zone_regions ();
1292 unexec_regions_merge ();
1303 unexec_init_emacs_zone (void)
1305 emacs_zone
= malloc_create_zone (0, 0);
1306 malloc_set_zone_name (emacs_zone
, "EmacsZone");
1309 #ifndef MACOSX_MALLOC_MULT16
1310 #define MACOSX_MALLOC_MULT16 1
1313 typedef struct unexec_malloc_header
{
1318 } unexec_malloc_header_t
;
1320 #if MACOSX_MALLOC_MULT16
1322 #define ptr_in_unexec_regions(p) ((((vm_address_t) (p)) & 8) != 0)
1327 ptr_in_unexec_regions (void *ptr
)
1331 for (i
= 0; i
< num_unexec_regions
; i
++)
1332 if ((vm_address_t
) ptr
- unexec_regions
[i
].range
.address
1333 < unexec_regions
[i
].range
.size
)
1342 unexec_malloc (size_t size
)
1349 #if MACOSX_MALLOC_MULT16
1350 assert (((vm_address_t
) p
% 16) == 0);
1356 unexec_malloc_header_t
*ptr
;
1358 ptr
= (unexec_malloc_header_t
*)
1359 malloc_zone_malloc (emacs_zone
, size
+ sizeof (unexec_malloc_header_t
));
1362 #if MACOSX_MALLOC_MULT16
1363 assert (((vm_address_t
) ptr
% 16) == 8);
1365 return (void *) ptr
;
1370 unexec_realloc (void *old_ptr
, size_t new_size
)
1376 if (ptr_in_unexec_regions (old_ptr
))
1378 size_t old_size
= ((unexec_malloc_header_t
*) old_ptr
)[-1].u
.size
;
1379 size_t size
= new_size
> old_size
? old_size
: new_size
;
1381 p
= malloc (new_size
);
1383 memcpy (p
, old_ptr
, size
);
1387 p
= realloc (old_ptr
, new_size
);
1389 #if MACOSX_MALLOC_MULT16
1390 assert (((vm_address_t
) p
% 16) == 0);
1396 unexec_malloc_header_t
*ptr
;
1398 ptr
= (unexec_malloc_header_t
*)
1399 malloc_zone_realloc (emacs_zone
, (unexec_malloc_header_t
*) old_ptr
- 1,
1400 new_size
+ sizeof (unexec_malloc_header_t
));
1401 ptr
->u
.size
= new_size
;
1403 #if MACOSX_MALLOC_MULT16
1404 assert (((vm_address_t
) ptr
% 16) == 8);
1406 return (void *) ptr
;
1411 unexec_free (void *ptr
)
1417 if (!ptr_in_unexec_regions (ptr
))
1421 malloc_zone_free (emacs_zone
, (unexec_malloc_header_t
*) ptr
- 1);