Merge from gnulib
[emacs.git] / lib / sha512.c
blobf48e74bd0c1f90acd15a6f57ea93106f006ca716
1 /* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or
2 memory blocks according to the NIST specification FIPS-180-2.
4 Copyright (C) 2005-2006, 2008-2015 Free Software Foundation, Inc.
6 This program is free software: you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation, either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19 /* Written by David Madore, considerably copypasting from
20 Scott G. Miller's sha1.c
23 #include <config.h>
25 #if HAVE_OPENSSL_SHA512
26 # define GL_OPENSSL_INLINE _GL_EXTERN_INLINE
27 #endif
28 #include "sha512.h"
30 #include <stdalign.h>
31 #include <stdint.h>
32 #include <stdlib.h>
33 #include <string.h>
35 #if USE_UNLOCKED_IO
36 # include "unlocked-io.h"
37 #endif
39 #ifdef WORDS_BIGENDIAN
40 # define SWAP(n) (n)
41 #else
42 # define SWAP(n) \
43 u64or (u64or (u64or (u64shl (n, 56), \
44 u64shl (u64and (n, u64lo (0x0000ff00)), 40)), \
45 u64or (u64shl (u64and (n, u64lo (0x00ff0000)), 24), \
46 u64shl (u64and (n, u64lo (0xff000000)), 8))), \
47 u64or (u64or (u64and (u64shr (n, 8), u64lo (0xff000000)), \
48 u64and (u64shr (n, 24), u64lo (0x00ff0000))), \
49 u64or (u64and (u64shr (n, 40), u64lo (0x0000ff00)), \
50 u64shr (n, 56))))
51 #endif
53 #define BLOCKSIZE 32768
54 #if BLOCKSIZE % 128 != 0
55 # error "invalid BLOCKSIZE"
56 #endif
58 #if ! HAVE_OPENSSL_SHA512
59 /* This array contains the bytes used to pad the buffer to the next
60 128-byte boundary. */
61 static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ };
65 Takes a pointer to a 512 bit block of data (eight 64 bit ints) and
66 initializes it to the start constants of the SHA512 algorithm. This
67 must be called before using hash in the call to sha512_hash
69 void
70 sha512_init_ctx (struct sha512_ctx *ctx)
72 ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908);
73 ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b);
74 ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b);
75 ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1);
76 ctx->state[4] = u64hilo (0x510e527f, 0xade682d1);
77 ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f);
78 ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b);
79 ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179);
81 ctx->total[0] = ctx->total[1] = u64lo (0);
82 ctx->buflen = 0;
85 void
86 sha384_init_ctx (struct sha512_ctx *ctx)
88 ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8);
89 ctx->state[1] = u64hilo (0x629a292a, 0x367cd507);
90 ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17);
91 ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939);
92 ctx->state[4] = u64hilo (0x67332667, 0xffc00b31);
93 ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511);
94 ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7);
95 ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4);
97 ctx->total[0] = ctx->total[1] = u64lo (0);
98 ctx->buflen = 0;
101 /* Copy the value from V into the memory location pointed to by *CP,
102 If your architecture allows unaligned access, this is equivalent to
103 * (__typeof__ (v) *) cp = v */
104 static void
105 set_uint64 (char *cp, u64 v)
107 memcpy (cp, &v, sizeof v);
110 /* Put result from CTX in first 64 bytes following RESBUF.
111 The result must be in little endian byte order. */
112 void *
113 sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
115 int i;
116 char *r = resbuf;
118 for (i = 0; i < 8; i++)
119 set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
121 return resbuf;
124 void *
125 sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
127 int i;
128 char *r = resbuf;
130 for (i = 0; i < 6; i++)
131 set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
133 return resbuf;
136 /* Process the remaining bytes in the internal buffer and the usual
137 prolog according to the standard and write the result to RESBUF. */
138 static void
139 sha512_conclude_ctx (struct sha512_ctx *ctx)
141 /* Take yet unprocessed bytes into account. */
142 size_t bytes = ctx->buflen;
143 size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8;
145 /* Now count remaining bytes. */
146 ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes));
147 if (u64lt (ctx->total[0], u64lo (bytes)))
148 ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
150 /* Put the 128-bit file length in *bits* at the end of the buffer.
151 Use set_uint64 rather than a simple assignment, to avoid risk of
152 unaligned access. */
153 set_uint64 ((char *) &ctx->buffer[size - 2],
154 SWAP (u64or (u64shl (ctx->total[1], 3),
155 u64shr (ctx->total[0], 61))));
156 set_uint64 ((char *) &ctx->buffer[size - 1],
157 SWAP (u64shl (ctx->total[0], 3)));
159 memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes);
161 /* Process last bytes. */
162 sha512_process_block (ctx->buffer, size * 8, ctx);
165 void *
166 sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
168 sha512_conclude_ctx (ctx);
169 return sha512_read_ctx (ctx, resbuf);
172 void *
173 sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
175 sha512_conclude_ctx (ctx);
176 return sha384_read_ctx (ctx, resbuf);
178 #endif
180 /* Compute SHA512 message digest for bytes read from STREAM. The
181 resulting message digest number will be written into the 64 bytes
182 beginning at RESBLOCK. */
184 sha512_stream (FILE *stream, void *resblock)
186 struct sha512_ctx ctx;
187 size_t sum;
189 char *buffer = malloc (BLOCKSIZE + 72);
190 if (!buffer)
191 return 1;
193 /* Initialize the computation context. */
194 sha512_init_ctx (&ctx);
196 /* Iterate over full file contents. */
197 while (1)
199 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
200 computation function processes the whole buffer so that with the
201 next round of the loop another block can be read. */
202 size_t n;
203 sum = 0;
205 /* Read block. Take care for partial reads. */
206 while (1)
208 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
210 sum += n;
212 if (sum == BLOCKSIZE)
213 break;
215 if (n == 0)
217 /* Check for the error flag IFF N == 0, so that we don't
218 exit the loop after a partial read due to e.g., EAGAIN
219 or EWOULDBLOCK. */
220 if (ferror (stream))
222 free (buffer);
223 return 1;
225 goto process_partial_block;
228 /* We've read at least one byte, so ignore errors. But always
229 check for EOF, since feof may be true even though N > 0.
230 Otherwise, we could end up calling fread after EOF. */
231 if (feof (stream))
232 goto process_partial_block;
235 /* Process buffer with BLOCKSIZE bytes. Note that
236 BLOCKSIZE % 128 == 0
238 sha512_process_block (buffer, BLOCKSIZE, &ctx);
241 process_partial_block:;
243 /* Process any remaining bytes. */
244 if (sum > 0)
245 sha512_process_bytes (buffer, sum, &ctx);
247 /* Construct result in desired memory. */
248 sha512_finish_ctx (&ctx, resblock);
249 free (buffer);
250 return 0;
253 /* FIXME: Avoid code duplication */
255 sha384_stream (FILE *stream, void *resblock)
257 struct sha512_ctx ctx;
258 size_t sum;
260 char *buffer = malloc (BLOCKSIZE + 72);
261 if (!buffer)
262 return 1;
264 /* Initialize the computation context. */
265 sha384_init_ctx (&ctx);
267 /* Iterate over full file contents. */
268 while (1)
270 /* We read the file in blocks of BLOCKSIZE bytes. One call of the
271 computation function processes the whole buffer so that with the
272 next round of the loop another block can be read. */
273 size_t n;
274 sum = 0;
276 /* Read block. Take care for partial reads. */
277 while (1)
279 n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
281 sum += n;
283 if (sum == BLOCKSIZE)
284 break;
286 if (n == 0)
288 /* Check for the error flag IFF N == 0, so that we don't
289 exit the loop after a partial read due to e.g., EAGAIN
290 or EWOULDBLOCK. */
291 if (ferror (stream))
293 free (buffer);
294 return 1;
296 goto process_partial_block;
299 /* We've read at least one byte, so ignore errors. But always
300 check for EOF, since feof may be true even though N > 0.
301 Otherwise, we could end up calling fread after EOF. */
302 if (feof (stream))
303 goto process_partial_block;
306 /* Process buffer with BLOCKSIZE bytes. Note that
307 BLOCKSIZE % 128 == 0
309 sha512_process_block (buffer, BLOCKSIZE, &ctx);
312 process_partial_block:;
314 /* Process any remaining bytes. */
315 if (sum > 0)
316 sha512_process_bytes (buffer, sum, &ctx);
318 /* Construct result in desired memory. */
319 sha384_finish_ctx (&ctx, resblock);
320 free (buffer);
321 return 0;
324 #if ! HAVE_OPENSSL_SHA512
325 /* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The
326 result is always in little endian byte order, so that a byte-wise
327 output yields to the wanted ASCII representation of the message
328 digest. */
329 void *
330 sha512_buffer (const char *buffer, size_t len, void *resblock)
332 struct sha512_ctx ctx;
334 /* Initialize the computation context. */
335 sha512_init_ctx (&ctx);
337 /* Process whole buffer but last len % 128 bytes. */
338 sha512_process_bytes (buffer, len, &ctx);
340 /* Put result in desired memory area. */
341 return sha512_finish_ctx (&ctx, resblock);
344 void *
345 sha384_buffer (const char *buffer, size_t len, void *resblock)
347 struct sha512_ctx ctx;
349 /* Initialize the computation context. */
350 sha384_init_ctx (&ctx);
352 /* Process whole buffer but last len % 128 bytes. */
353 sha512_process_bytes (buffer, len, &ctx);
355 /* Put result in desired memory area. */
356 return sha384_finish_ctx (&ctx, resblock);
359 void
360 sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
362 /* When we already have some bits in our internal buffer concatenate
363 both inputs first. */
364 if (ctx->buflen != 0)
366 size_t left_over = ctx->buflen;
367 size_t add = 256 - left_over > len ? len : 256 - left_over;
369 memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
370 ctx->buflen += add;
372 if (ctx->buflen > 128)
374 sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);
376 ctx->buflen &= 127;
377 /* The regions in the following copy operation cannot overlap. */
378 memcpy (ctx->buffer,
379 &((char *) ctx->buffer)[(left_over + add) & ~127],
380 ctx->buflen);
383 buffer = (const char *) buffer + add;
384 len -= add;
387 /* Process available complete blocks. */
388 if (len >= 128)
390 #if !_STRING_ARCH_unaligned
391 # define UNALIGNED_P(p) ((uintptr_t) (p) % alignof (u64) != 0)
392 if (UNALIGNED_P (buffer))
393 while (len > 128)
395 sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx);
396 buffer = (const char *) buffer + 128;
397 len -= 128;
399 else
400 #endif
402 sha512_process_block (buffer, len & ~127, ctx);
403 buffer = (const char *) buffer + (len & ~127);
404 len &= 127;
408 /* Move remaining bytes in internal buffer. */
409 if (len > 0)
411 size_t left_over = ctx->buflen;
413 memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
414 left_over += len;
415 if (left_over >= 128)
417 sha512_process_block (ctx->buffer, 128, ctx);
418 left_over -= 128;
419 memcpy (ctx->buffer, &ctx->buffer[16], left_over);
421 ctx->buflen = left_over;
425 /* --- Code below is the primary difference between sha1.c and sha512.c --- */
427 /* SHA512 round constants */
428 #define K(I) sha512_round_constants[I]
429 static u64 const sha512_round_constants[80] = {
430 u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd),
431 u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc),
432 u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019),
433 u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118),
434 u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe),
435 u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2),
436 u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1),
437 u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694),
438 u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3),
439 u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65),
440 u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483),
441 u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5),
442 u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210),
443 u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4),
444 u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725),
445 u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70),
446 u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926),
447 u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df),
448 u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8),
449 u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b),
450 u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001),
451 u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30),
452 u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910),
453 u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8),
454 u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53),
455 u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8),
456 u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb),
457 u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3),
458 u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60),
459 u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec),
460 u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9),
461 u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b),
462 u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207),
463 u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178),
464 u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6),
465 u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b),
466 u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493),
467 u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c),
468 u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a),
469 u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817),
472 /* Round functions. */
473 #define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B)))
474 #define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G)))
476 /* Process LEN bytes of BUFFER, accumulating context into CTX.
477 It is assumed that LEN % 128 == 0.
478 Most of this code comes from GnuPG's cipher/sha1.c. */
480 void
481 sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
483 u64 const *words = buffer;
484 u64 const *endp = words + len / sizeof (u64);
485 u64 x[16];
486 u64 a = ctx->state[0];
487 u64 b = ctx->state[1];
488 u64 c = ctx->state[2];
489 u64 d = ctx->state[3];
490 u64 e = ctx->state[4];
491 u64 f = ctx->state[5];
492 u64 g = ctx->state[6];
493 u64 h = ctx->state[7];
494 u64 lolen = u64size (len);
496 /* First increment the byte count. FIPS PUB 180-2 specifies the possible
497 length of the file up to 2^128 bits. Here we only compute the
498 number of bytes. Do a double word increment. */
499 ctx->total[0] = u64plus (ctx->total[0], lolen);
500 ctx->total[1] = u64plus (ctx->total[1],
501 u64plus (u64size (len >> 31 >> 31 >> 2),
502 u64lo (u64lt (ctx->total[0], lolen))));
504 #define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7)))
505 #define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6)))
506 #define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25)))
507 #define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23)))
509 #define M(I) (x[(I) & 15] \
510 = u64plus (x[(I) & 15], \
511 u64plus (S1 (x[((I) - 2) & 15]), \
512 u64plus (x[((I) - 7) & 15], \
513 S0 (x[((I) - 15) & 15])))))
515 #define R(A, B, C, D, E, F, G, H, K, M) \
516 do \
518 u64 t0 = u64plus (SS0 (A), F2 (A, B, C)); \
519 u64 t1 = \
520 u64plus (H, u64plus (SS1 (E), \
521 u64plus (F1 (E, F, G), u64plus (K, M)))); \
522 D = u64plus (D, t1); \
523 H = u64plus (t0, t1); \
525 while (0)
527 while (words < endp)
529 int t;
530 /* FIXME: see sha1.c for a better implementation. */
531 for (t = 0; t < 16; t++)
533 x[t] = SWAP (*words);
534 words++;
537 R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
538 R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
539 R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
540 R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
541 R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
542 R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
543 R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
544 R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
545 R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
546 R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
547 R( g, h, a, b, c, d, e, f, K(10), x[10] );
548 R( f, g, h, a, b, c, d, e, K(11), x[11] );
549 R( e, f, g, h, a, b, c, d, K(12), x[12] );
550 R( d, e, f, g, h, a, b, c, K(13), x[13] );
551 R( c, d, e, f, g, h, a, b, K(14), x[14] );
552 R( b, c, d, e, f, g, h, a, K(15), x[15] );
553 R( a, b, c, d, e, f, g, h, K(16), M(16) );
554 R( h, a, b, c, d, e, f, g, K(17), M(17) );
555 R( g, h, a, b, c, d, e, f, K(18), M(18) );
556 R( f, g, h, a, b, c, d, e, K(19), M(19) );
557 R( e, f, g, h, a, b, c, d, K(20), M(20) );
558 R( d, e, f, g, h, a, b, c, K(21), M(21) );
559 R( c, d, e, f, g, h, a, b, K(22), M(22) );
560 R( b, c, d, e, f, g, h, a, K(23), M(23) );
561 R( a, b, c, d, e, f, g, h, K(24), M(24) );
562 R( h, a, b, c, d, e, f, g, K(25), M(25) );
563 R( g, h, a, b, c, d, e, f, K(26), M(26) );
564 R( f, g, h, a, b, c, d, e, K(27), M(27) );
565 R( e, f, g, h, a, b, c, d, K(28), M(28) );
566 R( d, e, f, g, h, a, b, c, K(29), M(29) );
567 R( c, d, e, f, g, h, a, b, K(30), M(30) );
568 R( b, c, d, e, f, g, h, a, K(31), M(31) );
569 R( a, b, c, d, e, f, g, h, K(32), M(32) );
570 R( h, a, b, c, d, e, f, g, K(33), M(33) );
571 R( g, h, a, b, c, d, e, f, K(34), M(34) );
572 R( f, g, h, a, b, c, d, e, K(35), M(35) );
573 R( e, f, g, h, a, b, c, d, K(36), M(36) );
574 R( d, e, f, g, h, a, b, c, K(37), M(37) );
575 R( c, d, e, f, g, h, a, b, K(38), M(38) );
576 R( b, c, d, e, f, g, h, a, K(39), M(39) );
577 R( a, b, c, d, e, f, g, h, K(40), M(40) );
578 R( h, a, b, c, d, e, f, g, K(41), M(41) );
579 R( g, h, a, b, c, d, e, f, K(42), M(42) );
580 R( f, g, h, a, b, c, d, e, K(43), M(43) );
581 R( e, f, g, h, a, b, c, d, K(44), M(44) );
582 R( d, e, f, g, h, a, b, c, K(45), M(45) );
583 R( c, d, e, f, g, h, a, b, K(46), M(46) );
584 R( b, c, d, e, f, g, h, a, K(47), M(47) );
585 R( a, b, c, d, e, f, g, h, K(48), M(48) );
586 R( h, a, b, c, d, e, f, g, K(49), M(49) );
587 R( g, h, a, b, c, d, e, f, K(50), M(50) );
588 R( f, g, h, a, b, c, d, e, K(51), M(51) );
589 R( e, f, g, h, a, b, c, d, K(52), M(52) );
590 R( d, e, f, g, h, a, b, c, K(53), M(53) );
591 R( c, d, e, f, g, h, a, b, K(54), M(54) );
592 R( b, c, d, e, f, g, h, a, K(55), M(55) );
593 R( a, b, c, d, e, f, g, h, K(56), M(56) );
594 R( h, a, b, c, d, e, f, g, K(57), M(57) );
595 R( g, h, a, b, c, d, e, f, K(58), M(58) );
596 R( f, g, h, a, b, c, d, e, K(59), M(59) );
597 R( e, f, g, h, a, b, c, d, K(60), M(60) );
598 R( d, e, f, g, h, a, b, c, K(61), M(61) );
599 R( c, d, e, f, g, h, a, b, K(62), M(62) );
600 R( b, c, d, e, f, g, h, a, K(63), M(63) );
601 R( a, b, c, d, e, f, g, h, K(64), M(64) );
602 R( h, a, b, c, d, e, f, g, K(65), M(65) );
603 R( g, h, a, b, c, d, e, f, K(66), M(66) );
604 R( f, g, h, a, b, c, d, e, K(67), M(67) );
605 R( e, f, g, h, a, b, c, d, K(68), M(68) );
606 R( d, e, f, g, h, a, b, c, K(69), M(69) );
607 R( c, d, e, f, g, h, a, b, K(70), M(70) );
608 R( b, c, d, e, f, g, h, a, K(71), M(71) );
609 R( a, b, c, d, e, f, g, h, K(72), M(72) );
610 R( h, a, b, c, d, e, f, g, K(73), M(73) );
611 R( g, h, a, b, c, d, e, f, K(74), M(74) );
612 R( f, g, h, a, b, c, d, e, K(75), M(75) );
613 R( e, f, g, h, a, b, c, d, K(76), M(76) );
614 R( d, e, f, g, h, a, b, c, K(77), M(77) );
615 R( c, d, e, f, g, h, a, b, K(78), M(78) );
616 R( b, c, d, e, f, g, h, a, K(79), M(79) );
618 a = ctx->state[0] = u64plus (ctx->state[0], a);
619 b = ctx->state[1] = u64plus (ctx->state[1], b);
620 c = ctx->state[2] = u64plus (ctx->state[2], c);
621 d = ctx->state[3] = u64plus (ctx->state[3], d);
622 e = ctx->state[4] = u64plus (ctx->state[4], e);
623 f = ctx->state[5] = u64plus (ctx->state[5], f);
624 g = ctx->state[6] = u64plus (ctx->state[6], g);
625 h = ctx->state[7] = u64plus (ctx->state[7], h);
628 #endif