(vc-workfile-version): Compatibility alias.
[emacs.git] / src / alloc.c
blob8e00733a60ba3f004e1ce5461a68806de8c42ed2
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985, 1986, 1988, 1993, 1994, 1995, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs; see the file COPYING. If not, write to
19 the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include <config.h>
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
26 #ifdef STDC_HEADERS
27 #include <stddef.h> /* For offsetof, used by PSEUDOVECSIZE. */
28 #endif
30 #ifdef ALLOC_DEBUG
31 #undef INLINE
32 #endif
34 /* Note that this declares bzero on OSF/1. How dumb. */
36 #include <signal.h>
38 #ifdef HAVE_GTK_AND_PTHREAD
39 #include <pthread.h>
40 #endif
42 /* This file is part of the core Lisp implementation, and thus must
43 deal with the real data structures. If the Lisp implementation is
44 replaced, this file likely will not be used. */
46 #undef HIDE_LISP_IMPLEMENTATION
47 #include "lisp.h"
48 #include "process.h"
49 #include "intervals.h"
50 #include "puresize.h"
51 #include "buffer.h"
52 #include "window.h"
53 #include "keyboard.h"
54 #include "frame.h"
55 #include "blockinput.h"
56 #include "charset.h"
57 #include "syssignal.h"
58 #include "termhooks.h" /* For struct terminal. */
59 #include <setjmp.h>
61 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
62 memory. Can do this only if using gmalloc.c. */
64 #if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
65 #undef GC_MALLOC_CHECK
66 #endif
68 #ifdef HAVE_UNISTD_H
69 #include <unistd.h>
70 #else
71 extern POINTER_TYPE *sbrk ();
72 #endif
74 #ifdef HAVE_FCNTL_H
75 #define INCLUDED_FCNTL
76 #include <fcntl.h>
77 #endif
78 #ifndef O_WRONLY
79 #define O_WRONLY 1
80 #endif
82 #ifdef WINDOWSNT
83 #include <fcntl.h>
84 #include "w32.h"
85 #endif
87 #ifdef DOUG_LEA_MALLOC
89 #include <malloc.h>
90 /* malloc.h #defines this as size_t, at least in glibc2. */
91 #ifndef __malloc_size_t
92 #define __malloc_size_t int
93 #endif
95 /* Specify maximum number of areas to mmap. It would be nice to use a
96 value that explicitly means "no limit". */
98 #define MMAP_MAX_AREAS 100000000
100 #else /* not DOUG_LEA_MALLOC */
102 /* The following come from gmalloc.c. */
104 #define __malloc_size_t size_t
105 extern __malloc_size_t _bytes_used;
106 extern __malloc_size_t __malloc_extra_blocks;
108 #endif /* not DOUG_LEA_MALLOC */
110 #if ! defined (SYSTEM_MALLOC) && defined (HAVE_GTK_AND_PTHREAD)
112 /* When GTK uses the file chooser dialog, different backends can be loaded
113 dynamically. One such a backend is the Gnome VFS backend that gets loaded
114 if you run Gnome. That backend creates several threads and also allocates
115 memory with malloc.
117 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
118 functions below are called from malloc, there is a chance that one
119 of these threads preempts the Emacs main thread and the hook variables
120 end up in an inconsistent state. So we have a mutex to prevent that (note
121 that the backend handles concurrent access to malloc within its own threads
122 but Emacs code running in the main thread is not included in that control).
124 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
125 happens in one of the backend threads we will have two threads that tries
126 to run Emacs code at once, and the code is not prepared for that.
127 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
129 static pthread_mutex_t alloc_mutex;
131 #define BLOCK_INPUT_ALLOC \
132 do \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 BLOCK_INPUT; \
136 pthread_mutex_lock (&alloc_mutex); \
138 while (0)
139 #define UNBLOCK_INPUT_ALLOC \
140 do \
142 pthread_mutex_unlock (&alloc_mutex); \
143 if (pthread_equal (pthread_self (), main_thread)) \
144 UNBLOCK_INPUT; \
146 while (0)
148 #else /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
150 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
151 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
153 #endif /* SYSTEM_MALLOC || not HAVE_GTK_AND_PTHREAD */
155 /* Value of _bytes_used, when spare_memory was freed. */
157 static __malloc_size_t bytes_used_when_full;
159 static __malloc_size_t bytes_used_when_reconsidered;
161 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
162 to a struct Lisp_String. */
164 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
165 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
166 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
168 #define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
169 #define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
170 #define VECTOR_MARKED_P(V) (((V)->size & ARRAY_MARK_FLAG) != 0)
172 /* Value is the number of bytes/chars of S, a pointer to a struct
173 Lisp_String. This must be used instead of STRING_BYTES (S) or
174 S->size during GC, because S->size contains the mark bit for
175 strings. */
177 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
178 #define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
180 /* Number of bytes of consing done since the last gc. */
182 int consing_since_gc;
184 /* Count the amount of consing of various sorts of space. */
186 EMACS_INT cons_cells_consed;
187 EMACS_INT floats_consed;
188 EMACS_INT vector_cells_consed;
189 EMACS_INT symbols_consed;
190 EMACS_INT string_chars_consed;
191 EMACS_INT misc_objects_consed;
192 EMACS_INT intervals_consed;
193 EMACS_INT strings_consed;
195 /* Minimum number of bytes of consing since GC before next GC. */
197 EMACS_INT gc_cons_threshold;
199 /* Similar minimum, computed from Vgc_cons_percentage. */
201 EMACS_INT gc_relative_threshold;
203 static Lisp_Object Vgc_cons_percentage;
205 /* Minimum number of bytes of consing since GC before next GC,
206 when memory is full. */
208 EMACS_INT memory_full_cons_threshold;
210 /* Nonzero during GC. */
212 int gc_in_progress;
214 /* Nonzero means abort if try to GC.
215 This is for code which is written on the assumption that
216 no GC will happen, so as to verify that assumption. */
218 int abort_on_gc;
220 /* Nonzero means display messages at beginning and end of GC. */
222 int garbage_collection_messages;
224 #ifndef VIRT_ADDR_VARIES
225 extern
226 #endif /* VIRT_ADDR_VARIES */
227 int malloc_sbrk_used;
229 #ifndef VIRT_ADDR_VARIES
230 extern
231 #endif /* VIRT_ADDR_VARIES */
232 int malloc_sbrk_unused;
234 /* Number of live and free conses etc. */
236 static int total_conses, total_markers, total_symbols, total_vector_size;
237 static int total_free_conses, total_free_markers, total_free_symbols;
238 static int total_free_floats, total_floats;
240 /* Points to memory space allocated as "spare", to be freed if we run
241 out of memory. We keep one large block, four cons-blocks, and
242 two string blocks. */
244 char *spare_memory[7];
246 /* Amount of spare memory to keep in large reserve block. */
248 #define SPARE_MEMORY (1 << 14)
250 /* Number of extra blocks malloc should get when it needs more core. */
252 static int malloc_hysteresis;
254 /* Non-nil means defun should do purecopy on the function definition. */
256 Lisp_Object Vpurify_flag;
258 /* Non-nil means we are handling a memory-full error. */
260 Lisp_Object Vmemory_full;
262 #ifndef HAVE_SHM
264 /* Initialize it to a nonzero value to force it into data space
265 (rather than bss space). That way unexec will remap it into text
266 space (pure), on some systems. We have not implemented the
267 remapping on more recent systems because this is less important
268 nowadays than in the days of small memories and timesharing. */
270 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
271 #define PUREBEG (char *) pure
273 #else /* HAVE_SHM */
275 #define pure PURE_SEG_BITS /* Use shared memory segment */
276 #define PUREBEG (char *)PURE_SEG_BITS
278 #endif /* HAVE_SHM */
280 /* Pointer to the pure area, and its size. */
282 static char *purebeg;
283 static size_t pure_size;
285 /* Number of bytes of pure storage used before pure storage overflowed.
286 If this is non-zero, this implies that an overflow occurred. */
288 static size_t pure_bytes_used_before_overflow;
290 /* Value is non-zero if P points into pure space. */
292 #define PURE_POINTER_P(P) \
293 (((PNTR_COMPARISON_TYPE) (P) \
294 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
295 && ((PNTR_COMPARISON_TYPE) (P) \
296 >= (PNTR_COMPARISON_TYPE) purebeg))
298 /* Total number of bytes allocated in pure storage. */
300 EMACS_INT pure_bytes_used;
302 /* Index in pure at which next pure Lisp object will be allocated.. */
304 static EMACS_INT pure_bytes_used_lisp;
306 /* Number of bytes allocated for non-Lisp objects in pure storage. */
308 static EMACS_INT pure_bytes_used_non_lisp;
310 /* If nonzero, this is a warning delivered by malloc and not yet
311 displayed. */
313 char *pending_malloc_warning;
315 /* Pre-computed signal argument for use when memory is exhausted. */
317 Lisp_Object Vmemory_signal_data;
319 /* Maximum amount of C stack to save when a GC happens. */
321 #ifndef MAX_SAVE_STACK
322 #define MAX_SAVE_STACK 16000
323 #endif
325 /* Buffer in which we save a copy of the C stack at each GC. */
327 char *stack_copy;
328 int stack_copy_size;
330 /* Non-zero means ignore malloc warnings. Set during initialization.
331 Currently not used. */
333 int ignore_warnings;
335 Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
337 /* Hook run after GC has finished. */
339 Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
341 Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
342 EMACS_INT gcs_done; /* accumulated GCs */
344 static void mark_buffer P_ ((Lisp_Object));
345 static void mark_terminals P_ ((void));
346 extern void mark_kboards P_ ((void));
347 extern void mark_ttys P_ ((void));
348 extern void mark_backtrace P_ ((void));
349 static void gc_sweep P_ ((void));
350 static void mark_glyph_matrix P_ ((struct glyph_matrix *));
351 static void mark_face_cache P_ ((struct face_cache *));
353 #ifdef HAVE_WINDOW_SYSTEM
354 extern void mark_fringe_data P_ ((void));
355 static void mark_image P_ ((struct image *));
356 static void mark_image_cache P_ ((struct frame *));
357 #endif /* HAVE_WINDOW_SYSTEM */
359 static struct Lisp_String *allocate_string P_ ((void));
360 static void compact_small_strings P_ ((void));
361 static void free_large_strings P_ ((void));
362 static void sweep_strings P_ ((void));
364 extern int message_enable_multibyte;
366 /* When scanning the C stack for live Lisp objects, Emacs keeps track
367 of what memory allocated via lisp_malloc is intended for what
368 purpose. This enumeration specifies the type of memory. */
370 enum mem_type
372 MEM_TYPE_NON_LISP,
373 MEM_TYPE_BUFFER,
374 MEM_TYPE_CONS,
375 MEM_TYPE_STRING,
376 MEM_TYPE_MISC,
377 MEM_TYPE_SYMBOL,
378 MEM_TYPE_FLOAT,
379 /* We used to keep separate mem_types for subtypes of vectors such as
380 process, hash_table, frame, terminal, and window, but we never made
381 use of the distinction, so it only caused source-code complexity
382 and runtime slowdown. Minor but pointless. */
383 MEM_TYPE_VECTORLIKE
386 static POINTER_TYPE *lisp_align_malloc P_ ((size_t, enum mem_type));
387 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
388 void refill_memory_reserve ();
391 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
393 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
394 #include <stdio.h> /* For fprintf. */
395 #endif
397 /* A unique object in pure space used to make some Lisp objects
398 on free lists recognizable in O(1). */
400 Lisp_Object Vdead;
402 #ifdef GC_MALLOC_CHECK
404 enum mem_type allocated_mem_type;
405 int dont_register_blocks;
407 #endif /* GC_MALLOC_CHECK */
409 /* A node in the red-black tree describing allocated memory containing
410 Lisp data. Each such block is recorded with its start and end
411 address when it is allocated, and removed from the tree when it
412 is freed.
414 A red-black tree is a balanced binary tree with the following
415 properties:
417 1. Every node is either red or black.
418 2. Every leaf is black.
419 3. If a node is red, then both of its children are black.
420 4. Every simple path from a node to a descendant leaf contains
421 the same number of black nodes.
422 5. The root is always black.
424 When nodes are inserted into the tree, or deleted from the tree,
425 the tree is "fixed" so that these properties are always true.
427 A red-black tree with N internal nodes has height at most 2
428 log(N+1). Searches, insertions and deletions are done in O(log N).
429 Please see a text book about data structures for a detailed
430 description of red-black trees. Any book worth its salt should
431 describe them. */
433 struct mem_node
435 /* Children of this node. These pointers are never NULL. When there
436 is no child, the value is MEM_NIL, which points to a dummy node. */
437 struct mem_node *left, *right;
439 /* The parent of this node. In the root node, this is NULL. */
440 struct mem_node *parent;
442 /* Start and end of allocated region. */
443 void *start, *end;
445 /* Node color. */
446 enum {MEM_BLACK, MEM_RED} color;
448 /* Memory type. */
449 enum mem_type type;
452 /* Base address of stack. Set in main. */
454 Lisp_Object *stack_base;
456 /* Root of the tree describing allocated Lisp memory. */
458 static struct mem_node *mem_root;
460 /* Lowest and highest known address in the heap. */
462 static void *min_heap_address, *max_heap_address;
464 /* Sentinel node of the tree. */
466 static struct mem_node mem_z;
467 #define MEM_NIL &mem_z
469 static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
470 static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT));
471 static void lisp_free P_ ((POINTER_TYPE *));
472 static void mark_stack P_ ((void));
473 static int live_vector_p P_ ((struct mem_node *, void *));
474 static int live_buffer_p P_ ((struct mem_node *, void *));
475 static int live_string_p P_ ((struct mem_node *, void *));
476 static int live_cons_p P_ ((struct mem_node *, void *));
477 static int live_symbol_p P_ ((struct mem_node *, void *));
478 static int live_float_p P_ ((struct mem_node *, void *));
479 static int live_misc_p P_ ((struct mem_node *, void *));
480 static void mark_maybe_object P_ ((Lisp_Object));
481 static void mark_memory P_ ((void *, void *, int));
482 static void mem_init P_ ((void));
483 static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
484 static void mem_insert_fixup P_ ((struct mem_node *));
485 static void mem_rotate_left P_ ((struct mem_node *));
486 static void mem_rotate_right P_ ((struct mem_node *));
487 static void mem_delete P_ ((struct mem_node *));
488 static void mem_delete_fixup P_ ((struct mem_node *));
489 static INLINE struct mem_node *mem_find P_ ((void *));
492 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
493 static void check_gcpros P_ ((void));
494 #endif
496 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
498 /* Recording what needs to be marked for gc. */
500 struct gcpro *gcprolist;
502 /* Addresses of staticpro'd variables. Initialize it to a nonzero
503 value; otherwise some compilers put it into BSS. */
505 #define NSTATICS 1280
506 Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
508 /* Index of next unused slot in staticvec. */
510 int staticidx = 0;
512 static POINTER_TYPE *pure_alloc P_ ((size_t, int));
515 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
516 ALIGNMENT must be a power of 2. */
518 #define ALIGN(ptr, ALIGNMENT) \
519 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
520 & ~((ALIGNMENT) - 1)))
524 /************************************************************************
525 Malloc
526 ************************************************************************/
528 /* Function malloc calls this if it finds we are near exhausting storage. */
530 void
531 malloc_warning (str)
532 char *str;
534 pending_malloc_warning = str;
538 /* Display an already-pending malloc warning. */
540 void
541 display_malloc_warning ()
543 call3 (intern ("display-warning"),
544 intern ("alloc"),
545 build_string (pending_malloc_warning),
546 intern ("emergency"));
547 pending_malloc_warning = 0;
551 #ifdef DOUG_LEA_MALLOC
552 # define BYTES_USED (mallinfo ().uordblks)
553 #else
554 # define BYTES_USED _bytes_used
555 #endif
557 /* Called if we can't allocate relocatable space for a buffer. */
559 void
560 buffer_memory_full ()
562 /* If buffers use the relocating allocator, no need to free
563 spare_memory, because we may have plenty of malloc space left
564 that we could get, and if we don't, the malloc that fails will
565 itself cause spare_memory to be freed. If buffers don't use the
566 relocating allocator, treat this like any other failing
567 malloc. */
569 #ifndef REL_ALLOC
570 memory_full ();
571 #endif
573 /* This used to call error, but if we've run out of memory, we could
574 get infinite recursion trying to build the string. */
575 xsignal (Qnil, Vmemory_signal_data);
579 #ifdef XMALLOC_OVERRUN_CHECK
581 /* Check for overrun in malloc'ed buffers by wrapping a 16 byte header
582 and a 16 byte trailer around each block.
584 The header consists of 12 fixed bytes + a 4 byte integer contaning the
585 original block size, while the trailer consists of 16 fixed bytes.
587 The header is used to detect whether this block has been allocated
588 through these functions -- as it seems that some low-level libc
589 functions may bypass the malloc hooks.
593 #define XMALLOC_OVERRUN_CHECK_SIZE 16
595 static char xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE-4] =
596 { 0x9a, 0x9b, 0xae, 0xaf,
597 0xbf, 0xbe, 0xce, 0xcf,
598 0xea, 0xeb, 0xec, 0xed };
600 static char xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
601 { 0xaa, 0xab, 0xac, 0xad,
602 0xba, 0xbb, 0xbc, 0xbd,
603 0xca, 0xcb, 0xcc, 0xcd,
604 0xda, 0xdb, 0xdc, 0xdd };
606 /* Macros to insert and extract the block size in the header. */
608 #define XMALLOC_PUT_SIZE(ptr, size) \
609 (ptr[-1] = (size & 0xff), \
610 ptr[-2] = ((size >> 8) & 0xff), \
611 ptr[-3] = ((size >> 16) & 0xff), \
612 ptr[-4] = ((size >> 24) & 0xff))
614 #define XMALLOC_GET_SIZE(ptr) \
615 (size_t)((unsigned)(ptr[-1]) | \
616 ((unsigned)(ptr[-2]) << 8) | \
617 ((unsigned)(ptr[-3]) << 16) | \
618 ((unsigned)(ptr[-4]) << 24))
621 /* The call depth in overrun_check functions. For example, this might happen:
622 xmalloc()
623 overrun_check_malloc()
624 -> malloc -> (via hook)_-> emacs_blocked_malloc
625 -> overrun_check_malloc
626 call malloc (hooks are NULL, so real malloc is called).
627 malloc returns 10000.
628 add overhead, return 10016.
629 <- (back in overrun_check_malloc)
630 add overhead again, return 10032
631 xmalloc returns 10032.
633 (time passes).
635 xfree(10032)
636 overrun_check_free(10032)
637 decrease overhed
638 free(10016) <- crash, because 10000 is the original pointer. */
640 static int check_depth;
642 /* Like malloc, but wraps allocated block with header and trailer. */
644 POINTER_TYPE *
645 overrun_check_malloc (size)
646 size_t size;
648 register unsigned char *val;
649 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
651 val = (unsigned char *) malloc (size + overhead);
652 if (val && check_depth == 1)
654 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
655 val += XMALLOC_OVERRUN_CHECK_SIZE;
656 XMALLOC_PUT_SIZE(val, size);
657 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
659 --check_depth;
660 return (POINTER_TYPE *)val;
664 /* Like realloc, but checks old block for overrun, and wraps new block
665 with header and trailer. */
667 POINTER_TYPE *
668 overrun_check_realloc (block, size)
669 POINTER_TYPE *block;
670 size_t size;
672 register unsigned char *val = (unsigned char *)block;
673 size_t overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_SIZE*2 : 0;
675 if (val
676 && check_depth == 1
677 && bcmp (xmalloc_overrun_check_header,
678 val - XMALLOC_OVERRUN_CHECK_SIZE,
679 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
681 size_t osize = XMALLOC_GET_SIZE (val);
682 if (bcmp (xmalloc_overrun_check_trailer,
683 val + osize,
684 XMALLOC_OVERRUN_CHECK_SIZE))
685 abort ();
686 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
687 val -= XMALLOC_OVERRUN_CHECK_SIZE;
688 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
691 val = (unsigned char *) realloc ((POINTER_TYPE *)val, size + overhead);
693 if (val && check_depth == 1)
695 bcopy (xmalloc_overrun_check_header, val, XMALLOC_OVERRUN_CHECK_SIZE - 4);
696 val += XMALLOC_OVERRUN_CHECK_SIZE;
697 XMALLOC_PUT_SIZE(val, size);
698 bcopy (xmalloc_overrun_check_trailer, val + size, XMALLOC_OVERRUN_CHECK_SIZE);
700 --check_depth;
701 return (POINTER_TYPE *)val;
704 /* Like free, but checks block for overrun. */
706 void
707 overrun_check_free (block)
708 POINTER_TYPE *block;
710 unsigned char *val = (unsigned char *)block;
712 ++check_depth;
713 if (val
714 && check_depth == 1
715 && bcmp (xmalloc_overrun_check_header,
716 val - XMALLOC_OVERRUN_CHECK_SIZE,
717 XMALLOC_OVERRUN_CHECK_SIZE - 4) == 0)
719 size_t osize = XMALLOC_GET_SIZE (val);
720 if (bcmp (xmalloc_overrun_check_trailer,
721 val + osize,
722 XMALLOC_OVERRUN_CHECK_SIZE))
723 abort ();
724 #ifdef XMALLOC_CLEAR_FREE_MEMORY
725 val -= XMALLOC_OVERRUN_CHECK_SIZE;
726 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_SIZE*2);
727 #else
728 bzero (val + osize, XMALLOC_OVERRUN_CHECK_SIZE);
729 val -= XMALLOC_OVERRUN_CHECK_SIZE;
730 bzero (val, XMALLOC_OVERRUN_CHECK_SIZE);
731 #endif
734 free (val);
735 --check_depth;
738 #undef malloc
739 #undef realloc
740 #undef free
741 #define malloc overrun_check_malloc
742 #define realloc overrun_check_realloc
743 #define free overrun_check_free
744 #endif
746 #ifdef SYNC_INPUT
747 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
748 there's no need to block input around malloc. */
749 #define MALLOC_BLOCK_INPUT ((void)0)
750 #define MALLOC_UNBLOCK_INPUT ((void)0)
751 #else
752 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
753 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
754 #endif
756 /* Like malloc but check for no memory and block interrupt input.. */
758 POINTER_TYPE *
759 xmalloc (size)
760 size_t size;
762 register POINTER_TYPE *val;
764 MALLOC_BLOCK_INPUT;
765 val = (POINTER_TYPE *) malloc (size);
766 MALLOC_UNBLOCK_INPUT;
768 if (!val && size)
769 memory_full ();
770 return val;
774 /* Like realloc but check for no memory and block interrupt input.. */
776 POINTER_TYPE *
777 xrealloc (block, size)
778 POINTER_TYPE *block;
779 size_t size;
781 register POINTER_TYPE *val;
783 MALLOC_BLOCK_INPUT;
784 /* We must call malloc explicitly when BLOCK is 0, since some
785 reallocs don't do this. */
786 if (! block)
787 val = (POINTER_TYPE *) malloc (size);
788 else
789 val = (POINTER_TYPE *) realloc (block, size);
790 MALLOC_UNBLOCK_INPUT;
792 if (!val && size) memory_full ();
793 return val;
797 /* Like free but block interrupt input. */
799 void
800 xfree (block)
801 POINTER_TYPE *block;
803 MALLOC_BLOCK_INPUT;
804 free (block);
805 MALLOC_UNBLOCK_INPUT;
806 /* We don't call refill_memory_reserve here
807 because that duplicates doing so in emacs_blocked_free
808 and the criterion should go there. */
812 /* Like strdup, but uses xmalloc. */
814 char *
815 xstrdup (s)
816 const char *s;
818 size_t len = strlen (s) + 1;
819 char *p = (char *) xmalloc (len);
820 bcopy (s, p, len);
821 return p;
825 /* Unwind for SAFE_ALLOCA */
827 Lisp_Object
828 safe_alloca_unwind (arg)
829 Lisp_Object arg;
831 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
833 p->dogc = 0;
834 xfree (p->pointer);
835 p->pointer = 0;
836 free_misc (arg);
837 return Qnil;
841 /* Like malloc but used for allocating Lisp data. NBYTES is the
842 number of bytes to allocate, TYPE describes the intended use of the
843 allcated memory block (for strings, for conses, ...). */
845 #ifndef USE_LSB_TAG
846 static void *lisp_malloc_loser;
847 #endif
849 static POINTER_TYPE *
850 lisp_malloc (nbytes, type)
851 size_t nbytes;
852 enum mem_type type;
854 register void *val;
856 MALLOC_BLOCK_INPUT;
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
862 val = (void *) malloc (nbytes);
864 #ifndef USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
879 #endif
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full ();
889 return val;
892 /* Free BLOCK. This must be called to free memory allocated with a
893 call to lisp_malloc. */
895 static void
896 lisp_free (block)
897 POINTER_TYPE *block;
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
907 /* Allocation of aligned blocks of memory to store Lisp data. */
908 /* The entry point is lisp_align_malloc which returns blocks of at most */
909 /* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
911 /* Use posix_memalloc if the system has it and we're using the system's
912 malloc (because our gmalloc.c routines don't have posix_memalign although
913 its memalloc could be used). */
914 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
915 #define USE_POSIX_MEMALIGN 1
916 #endif
918 /* BLOCK_ALIGN has to be a power of 2. */
919 #define BLOCK_ALIGN (1 << 10)
921 /* Padding to leave at the end of a malloc'd block. This is to give
922 malloc a chance to minimize the amount of memory wasted to alignment.
923 It should be tuned to the particular malloc library used.
924 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
925 posix_memalign on the other hand would ideally prefer a value of 4
926 because otherwise, there's 1020 bytes wasted between each ablocks.
927 In Emacs, testing shows that those 1020 can most of the time be
928 efficiently used by malloc to place other objects, so a value of 0 can
929 still preferable unless you have a lot of aligned blocks and virtually
930 nothing else. */
931 #define BLOCK_PADDING 0
932 #define BLOCK_BYTES \
933 (BLOCK_ALIGN - sizeof (struct ablock *) - BLOCK_PADDING)
935 /* Internal data structures and constants. */
937 #define ABLOCKS_SIZE 16
939 /* An aligned block of memory. */
940 struct ablock
942 union
944 char payload[BLOCK_BYTES];
945 struct ablock *next_free;
946 } x;
947 /* `abase' is the aligned base of the ablocks. */
948 /* It is overloaded to hold the virtual `busy' field that counts
949 the number of used ablock in the parent ablocks.
950 The first ablock has the `busy' field, the others have the `abase'
951 field. To tell the difference, we assume that pointers will have
952 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
953 is used to tell whether the real base of the parent ablocks is `abase'
954 (if not, the word before the first ablock holds a pointer to the
955 real base). */
956 struct ablocks *abase;
957 /* The padding of all but the last ablock is unused. The padding of
958 the last ablock in an ablocks is not allocated. */
959 #if BLOCK_PADDING
960 char padding[BLOCK_PADDING];
961 #endif
964 /* A bunch of consecutive aligned blocks. */
965 struct ablocks
967 struct ablock blocks[ABLOCKS_SIZE];
970 /* Size of the block requested from malloc or memalign. */
971 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
973 #define ABLOCK_ABASE(block) \
974 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
975 ? (struct ablocks *)(block) \
976 : (block)->abase)
978 /* Virtual `busy' field. */
979 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
981 /* Pointer to the (not necessarily aligned) malloc block. */
982 #ifdef USE_POSIX_MEMALIGN
983 #define ABLOCKS_BASE(abase) (abase)
984 #else
985 #define ABLOCKS_BASE(abase) \
986 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
987 #endif
989 /* The list of free ablock. */
990 static struct ablock *free_ablock;
992 /* Allocate an aligned block of nbytes.
993 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
994 smaller or equal to BLOCK_BYTES. */
995 static POINTER_TYPE *
996 lisp_align_malloc (nbytes, type)
997 size_t nbytes;
998 enum mem_type type;
1000 void *base, *val;
1001 struct ablocks *abase;
1003 eassert (nbytes <= BLOCK_BYTES);
1005 MALLOC_BLOCK_INPUT;
1007 #ifdef GC_MALLOC_CHECK
1008 allocated_mem_type = type;
1009 #endif
1011 if (!free_ablock)
1013 int i;
1014 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
1016 #ifdef DOUG_LEA_MALLOC
1017 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1018 because mapped region contents are not preserved in
1019 a dumped Emacs. */
1020 mallopt (M_MMAP_MAX, 0);
1021 #endif
1023 #ifdef USE_POSIX_MEMALIGN
1025 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1026 if (err)
1027 base = NULL;
1028 abase = base;
1030 #else
1031 base = malloc (ABLOCKS_BYTES);
1032 abase = ALIGN (base, BLOCK_ALIGN);
1033 #endif
1035 if (base == 0)
1037 MALLOC_UNBLOCK_INPUT;
1038 memory_full ();
1041 aligned = (base == abase);
1042 if (!aligned)
1043 ((void**)abase)[-1] = base;
1045 #ifdef DOUG_LEA_MALLOC
1046 /* Back to a reasonable maximum of mmap'ed areas. */
1047 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1048 #endif
1050 #ifndef USE_LSB_TAG
1051 /* If the memory just allocated cannot be addressed thru a Lisp
1052 object's pointer, and it needs to be, that's equivalent to
1053 running out of memory. */
1054 if (type != MEM_TYPE_NON_LISP)
1056 Lisp_Object tem;
1057 char *end = (char *) base + ABLOCKS_BYTES - 1;
1058 XSETCONS (tem, end);
1059 if ((char *) XCONS (tem) != end)
1061 lisp_malloc_loser = base;
1062 free (base);
1063 MALLOC_UNBLOCK_INPUT;
1064 memory_full ();
1067 #endif
1069 /* Initialize the blocks and put them on the free list.
1070 Is `base' was not properly aligned, we can't use the last block. */
1071 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1073 abase->blocks[i].abase = abase;
1074 abase->blocks[i].x.next_free = free_ablock;
1075 free_ablock = &abase->blocks[i];
1077 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
1079 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
1080 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1081 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1082 eassert (ABLOCKS_BASE (abase) == base);
1083 eassert (aligned == (long) ABLOCKS_BUSY (abase));
1086 abase = ABLOCK_ABASE (free_ablock);
1087 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
1088 val = free_ablock;
1089 free_ablock = free_ablock->x.next_free;
1091 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1092 if (val && type != MEM_TYPE_NON_LISP)
1093 mem_insert (val, (char *) val + nbytes, type);
1094 #endif
1096 MALLOC_UNBLOCK_INPUT;
1097 if (!val && nbytes)
1098 memory_full ();
1100 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
1101 return val;
1104 static void
1105 lisp_align_free (block)
1106 POINTER_TYPE *block;
1108 struct ablock *ablock = block;
1109 struct ablocks *abase = ABLOCK_ABASE (ablock);
1111 MALLOC_BLOCK_INPUT;
1112 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1113 mem_delete (mem_find (block));
1114 #endif
1115 /* Put on free list. */
1116 ablock->x.next_free = free_ablock;
1117 free_ablock = ablock;
1118 /* Update busy count. */
1119 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
1121 if (2 > (long) ABLOCKS_BUSY (abase))
1122 { /* All the blocks are free. */
1123 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
1124 struct ablock **tem = &free_ablock;
1125 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1127 while (*tem)
1129 if (*tem >= (struct ablock *) abase && *tem < atop)
1131 i++;
1132 *tem = (*tem)->x.next_free;
1134 else
1135 tem = &(*tem)->x.next_free;
1137 eassert ((aligned & 1) == aligned);
1138 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1139 #ifdef USE_POSIX_MEMALIGN
1140 eassert ((unsigned long)ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1141 #endif
1142 free (ABLOCKS_BASE (abase));
1144 MALLOC_UNBLOCK_INPUT;
1147 /* Return a new buffer structure allocated from the heap with
1148 a call to lisp_malloc. */
1150 struct buffer *
1151 allocate_buffer ()
1153 struct buffer *b
1154 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
1155 MEM_TYPE_BUFFER);
1156 return b;
1160 #ifndef SYSTEM_MALLOC
1162 /* Arranging to disable input signals while we're in malloc.
1164 This only works with GNU malloc. To help out systems which can't
1165 use GNU malloc, all the calls to malloc, realloc, and free
1166 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1167 pair; unfortunately, we have no idea what C library functions
1168 might call malloc, so we can't really protect them unless you're
1169 using GNU malloc. Fortunately, most of the major operating systems
1170 can use GNU malloc. */
1172 #ifndef SYNC_INPUT
1173 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1174 there's no need to block input around malloc. */
1176 #ifndef DOUG_LEA_MALLOC
1177 extern void * (*__malloc_hook) P_ ((size_t, const void *));
1178 extern void * (*__realloc_hook) P_ ((void *, size_t, const void *));
1179 extern void (*__free_hook) P_ ((void *, const void *));
1180 /* Else declared in malloc.h, perhaps with an extra arg. */
1181 #endif /* DOUG_LEA_MALLOC */
1182 static void * (*old_malloc_hook) P_ ((size_t, const void *));
1183 static void * (*old_realloc_hook) P_ ((void *, size_t, const void*));
1184 static void (*old_free_hook) P_ ((void*, const void*));
1186 /* This function is used as the hook for free to call. */
1188 static void
1189 emacs_blocked_free (ptr, ptr2)
1190 void *ptr;
1191 const void *ptr2;
1193 BLOCK_INPUT_ALLOC;
1195 #ifdef GC_MALLOC_CHECK
1196 if (ptr)
1198 struct mem_node *m;
1200 m = mem_find (ptr);
1201 if (m == MEM_NIL || m->start != ptr)
1203 fprintf (stderr,
1204 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1205 abort ();
1207 else
1209 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1210 mem_delete (m);
1213 #endif /* GC_MALLOC_CHECK */
1215 __free_hook = old_free_hook;
1216 free (ptr);
1218 /* If we released our reserve (due to running out of memory),
1219 and we have a fair amount free once again,
1220 try to set aside another reserve in case we run out once more. */
1221 if (! NILP (Vmemory_full)
1222 /* Verify there is enough space that even with the malloc
1223 hysteresis this call won't run out again.
1224 The code here is correct as long as SPARE_MEMORY
1225 is substantially larger than the block size malloc uses. */
1226 && (bytes_used_when_full
1227 > ((bytes_used_when_reconsidered = BYTES_USED)
1228 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1229 refill_memory_reserve ();
1231 __free_hook = emacs_blocked_free;
1232 UNBLOCK_INPUT_ALLOC;
1236 /* This function is the malloc hook that Emacs uses. */
1238 static void *
1239 emacs_blocked_malloc (size, ptr)
1240 size_t size;
1241 const void *ptr;
1243 void *value;
1245 BLOCK_INPUT_ALLOC;
1246 __malloc_hook = old_malloc_hook;
1247 #ifdef DOUG_LEA_MALLOC
1248 /* Segfaults on my system. --lorentey */
1249 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1250 #else
1251 __malloc_extra_blocks = malloc_hysteresis;
1252 #endif
1254 value = (void *) malloc (size);
1256 #ifdef GC_MALLOC_CHECK
1258 struct mem_node *m = mem_find (value);
1259 if (m != MEM_NIL)
1261 fprintf (stderr, "Malloc returned %p which is already in use\n",
1262 value);
1263 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1264 m->start, m->end, (char *) m->end - (char *) m->start,
1265 m->type);
1266 abort ();
1269 if (!dont_register_blocks)
1271 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1272 allocated_mem_type = MEM_TYPE_NON_LISP;
1275 #endif /* GC_MALLOC_CHECK */
1277 __malloc_hook = emacs_blocked_malloc;
1278 UNBLOCK_INPUT_ALLOC;
1280 /* fprintf (stderr, "%p malloc\n", value); */
1281 return value;
1285 /* This function is the realloc hook that Emacs uses. */
1287 static void *
1288 emacs_blocked_realloc (ptr, size, ptr2)
1289 void *ptr;
1290 size_t size;
1291 const void *ptr2;
1293 void *value;
1295 BLOCK_INPUT_ALLOC;
1296 __realloc_hook = old_realloc_hook;
1298 #ifdef GC_MALLOC_CHECK
1299 if (ptr)
1301 struct mem_node *m = mem_find (ptr);
1302 if (m == MEM_NIL || m->start != ptr)
1304 fprintf (stderr,
1305 "Realloc of %p which wasn't allocated with malloc\n",
1306 ptr);
1307 abort ();
1310 mem_delete (m);
1313 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1315 /* Prevent malloc from registering blocks. */
1316 dont_register_blocks = 1;
1317 #endif /* GC_MALLOC_CHECK */
1319 value = (void *) realloc (ptr, size);
1321 #ifdef GC_MALLOC_CHECK
1322 dont_register_blocks = 0;
1325 struct mem_node *m = mem_find (value);
1326 if (m != MEM_NIL)
1328 fprintf (stderr, "Realloc returns memory that is already in use\n");
1329 abort ();
1332 /* Can't handle zero size regions in the red-black tree. */
1333 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1336 /* fprintf (stderr, "%p <- realloc\n", value); */
1337 #endif /* GC_MALLOC_CHECK */
1339 __realloc_hook = emacs_blocked_realloc;
1340 UNBLOCK_INPUT_ALLOC;
1342 return value;
1346 #ifdef HAVE_GTK_AND_PTHREAD
1347 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1348 normal malloc. Some thread implementations need this as they call
1349 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1350 calls malloc because it is the first call, and we have an endless loop. */
1352 void
1353 reset_malloc_hooks ()
1355 __free_hook = old_free_hook;
1356 __malloc_hook = old_malloc_hook;
1357 __realloc_hook = old_realloc_hook;
1359 #endif /* HAVE_GTK_AND_PTHREAD */
1362 /* Called from main to set up malloc to use our hooks. */
1364 void
1365 uninterrupt_malloc ()
1367 #ifdef HAVE_GTK_AND_PTHREAD
1368 pthread_mutexattr_t attr;
1370 /* GLIBC has a faster way to do this, but lets keep it portable.
1371 This is according to the Single UNIX Specification. */
1372 pthread_mutexattr_init (&attr);
1373 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1374 pthread_mutex_init (&alloc_mutex, &attr);
1375 #endif /* HAVE_GTK_AND_PTHREAD */
1377 if (__free_hook != emacs_blocked_free)
1378 old_free_hook = __free_hook;
1379 __free_hook = emacs_blocked_free;
1381 if (__malloc_hook != emacs_blocked_malloc)
1382 old_malloc_hook = __malloc_hook;
1383 __malloc_hook = emacs_blocked_malloc;
1385 if (__realloc_hook != emacs_blocked_realloc)
1386 old_realloc_hook = __realloc_hook;
1387 __realloc_hook = emacs_blocked_realloc;
1390 #endif /* not SYNC_INPUT */
1391 #endif /* not SYSTEM_MALLOC */
1395 /***********************************************************************
1396 Interval Allocation
1397 ***********************************************************************/
1399 /* Number of intervals allocated in an interval_block structure.
1400 The 1020 is 1024 minus malloc overhead. */
1402 #define INTERVAL_BLOCK_SIZE \
1403 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1405 /* Intervals are allocated in chunks in form of an interval_block
1406 structure. */
1408 struct interval_block
1410 /* Place `intervals' first, to preserve alignment. */
1411 struct interval intervals[INTERVAL_BLOCK_SIZE];
1412 struct interval_block *next;
1415 /* Current interval block. Its `next' pointer points to older
1416 blocks. */
1418 struct interval_block *interval_block;
1420 /* Index in interval_block above of the next unused interval
1421 structure. */
1423 static int interval_block_index;
1425 /* Number of free and live intervals. */
1427 static int total_free_intervals, total_intervals;
1429 /* List of free intervals. */
1431 INTERVAL interval_free_list;
1433 /* Total number of interval blocks now in use. */
1435 int n_interval_blocks;
1438 /* Initialize interval allocation. */
1440 static void
1441 init_intervals ()
1443 interval_block = NULL;
1444 interval_block_index = INTERVAL_BLOCK_SIZE;
1445 interval_free_list = 0;
1446 n_interval_blocks = 0;
1450 /* Return a new interval. */
1452 INTERVAL
1453 make_interval ()
1455 INTERVAL val;
1457 /* eassert (!handling_signal); */
1459 MALLOC_BLOCK_INPUT;
1461 if (interval_free_list)
1463 val = interval_free_list;
1464 interval_free_list = INTERVAL_PARENT (interval_free_list);
1466 else
1468 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1470 register struct interval_block *newi;
1472 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1473 MEM_TYPE_NON_LISP);
1475 newi->next = interval_block;
1476 interval_block = newi;
1477 interval_block_index = 0;
1478 n_interval_blocks++;
1480 val = &interval_block->intervals[interval_block_index++];
1483 MALLOC_UNBLOCK_INPUT;
1485 consing_since_gc += sizeof (struct interval);
1486 intervals_consed++;
1487 RESET_INTERVAL (val);
1488 val->gcmarkbit = 0;
1489 return val;
1493 /* Mark Lisp objects in interval I. */
1495 static void
1496 mark_interval (i, dummy)
1497 register INTERVAL i;
1498 Lisp_Object dummy;
1500 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1501 i->gcmarkbit = 1;
1502 mark_object (i->plist);
1506 /* Mark the interval tree rooted in TREE. Don't call this directly;
1507 use the macro MARK_INTERVAL_TREE instead. */
1509 static void
1510 mark_interval_tree (tree)
1511 register INTERVAL tree;
1513 /* No need to test if this tree has been marked already; this
1514 function is always called through the MARK_INTERVAL_TREE macro,
1515 which takes care of that. */
1517 traverse_intervals_noorder (tree, mark_interval, Qnil);
1521 /* Mark the interval tree rooted in I. */
1523 #define MARK_INTERVAL_TREE(i) \
1524 do { \
1525 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1526 mark_interval_tree (i); \
1527 } while (0)
1530 #define UNMARK_BALANCE_INTERVALS(i) \
1531 do { \
1532 if (! NULL_INTERVAL_P (i)) \
1533 (i) = balance_intervals (i); \
1534 } while (0)
1537 /* Number support. If NO_UNION_TYPE isn't in effect, we
1538 can't create number objects in macros. */
1539 #ifndef make_number
1540 Lisp_Object
1541 make_number (n)
1542 EMACS_INT n;
1544 Lisp_Object obj;
1545 obj.s.val = n;
1546 obj.s.type = Lisp_Int;
1547 return obj;
1549 #endif
1551 /***********************************************************************
1552 String Allocation
1553 ***********************************************************************/
1555 /* Lisp_Strings are allocated in string_block structures. When a new
1556 string_block is allocated, all the Lisp_Strings it contains are
1557 added to a free-list string_free_list. When a new Lisp_String is
1558 needed, it is taken from that list. During the sweep phase of GC,
1559 string_blocks that are entirely free are freed, except two which
1560 we keep.
1562 String data is allocated from sblock structures. Strings larger
1563 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1564 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1566 Sblocks consist internally of sdata structures, one for each
1567 Lisp_String. The sdata structure points to the Lisp_String it
1568 belongs to. The Lisp_String points back to the `u.data' member of
1569 its sdata structure.
1571 When a Lisp_String is freed during GC, it is put back on
1572 string_free_list, and its `data' member and its sdata's `string'
1573 pointer is set to null. The size of the string is recorded in the
1574 `u.nbytes' member of the sdata. So, sdata structures that are no
1575 longer used, can be easily recognized, and it's easy to compact the
1576 sblocks of small strings which we do in compact_small_strings. */
1578 /* Size in bytes of an sblock structure used for small strings. This
1579 is 8192 minus malloc overhead. */
1581 #define SBLOCK_SIZE 8188
1583 /* Strings larger than this are considered large strings. String data
1584 for large strings is allocated from individual sblocks. */
1586 #define LARGE_STRING_BYTES 1024
1588 /* Structure describing string memory sub-allocated from an sblock.
1589 This is where the contents of Lisp strings are stored. */
1591 struct sdata
1593 /* Back-pointer to the string this sdata belongs to. If null, this
1594 structure is free, and the NBYTES member of the union below
1595 contains the string's byte size (the same value that STRING_BYTES
1596 would return if STRING were non-null). If non-null, STRING_BYTES
1597 (STRING) is the size of the data, and DATA contains the string's
1598 contents. */
1599 struct Lisp_String *string;
1601 #ifdef GC_CHECK_STRING_BYTES
1603 EMACS_INT nbytes;
1604 unsigned char data[1];
1606 #define SDATA_NBYTES(S) (S)->nbytes
1607 #define SDATA_DATA(S) (S)->data
1609 #else /* not GC_CHECK_STRING_BYTES */
1611 union
1613 /* When STRING in non-null. */
1614 unsigned char data[1];
1616 /* When STRING is null. */
1617 EMACS_INT nbytes;
1618 } u;
1621 #define SDATA_NBYTES(S) (S)->u.nbytes
1622 #define SDATA_DATA(S) (S)->u.data
1624 #endif /* not GC_CHECK_STRING_BYTES */
1628 /* Structure describing a block of memory which is sub-allocated to
1629 obtain string data memory for strings. Blocks for small strings
1630 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1631 as large as needed. */
1633 struct sblock
1635 /* Next in list. */
1636 struct sblock *next;
1638 /* Pointer to the next free sdata block. This points past the end
1639 of the sblock if there isn't any space left in this block. */
1640 struct sdata *next_free;
1642 /* Start of data. */
1643 struct sdata first_data;
1646 /* Number of Lisp strings in a string_block structure. The 1020 is
1647 1024 minus malloc overhead. */
1649 #define STRING_BLOCK_SIZE \
1650 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1652 /* Structure describing a block from which Lisp_String structures
1653 are allocated. */
1655 struct string_block
1657 /* Place `strings' first, to preserve alignment. */
1658 struct Lisp_String strings[STRING_BLOCK_SIZE];
1659 struct string_block *next;
1662 /* Head and tail of the list of sblock structures holding Lisp string
1663 data. We always allocate from current_sblock. The NEXT pointers
1664 in the sblock structures go from oldest_sblock to current_sblock. */
1666 static struct sblock *oldest_sblock, *current_sblock;
1668 /* List of sblocks for large strings. */
1670 static struct sblock *large_sblocks;
1672 /* List of string_block structures, and how many there are. */
1674 static struct string_block *string_blocks;
1675 static int n_string_blocks;
1677 /* Free-list of Lisp_Strings. */
1679 static struct Lisp_String *string_free_list;
1681 /* Number of live and free Lisp_Strings. */
1683 static int total_strings, total_free_strings;
1685 /* Number of bytes used by live strings. */
1687 static int total_string_size;
1689 /* Given a pointer to a Lisp_String S which is on the free-list
1690 string_free_list, return a pointer to its successor in the
1691 free-list. */
1693 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1695 /* Return a pointer to the sdata structure belonging to Lisp string S.
1696 S must be live, i.e. S->data must not be null. S->data is actually
1697 a pointer to the `u.data' member of its sdata structure; the
1698 structure starts at a constant offset in front of that. */
1700 #ifdef GC_CHECK_STRING_BYTES
1702 #define SDATA_OF_STRING(S) \
1703 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1704 - sizeof (EMACS_INT)))
1706 #else /* not GC_CHECK_STRING_BYTES */
1708 #define SDATA_OF_STRING(S) \
1709 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1711 #endif /* not GC_CHECK_STRING_BYTES */
1714 #ifdef GC_CHECK_STRING_OVERRUN
1716 /* We check for overrun in string data blocks by appending a small
1717 "cookie" after each allocated string data block, and check for the
1718 presence of this cookie during GC. */
1720 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1721 static char string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1722 { 0xde, 0xad, 0xbe, 0xef };
1724 #else
1725 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1726 #endif
1728 /* Value is the size of an sdata structure large enough to hold NBYTES
1729 bytes of string data. The value returned includes a terminating
1730 NUL byte, the size of the sdata structure, and padding. */
1732 #ifdef GC_CHECK_STRING_BYTES
1734 #define SDATA_SIZE(NBYTES) \
1735 ((sizeof (struct Lisp_String *) \
1736 + (NBYTES) + 1 \
1737 + sizeof (EMACS_INT) \
1738 + sizeof (EMACS_INT) - 1) \
1739 & ~(sizeof (EMACS_INT) - 1))
1741 #else /* not GC_CHECK_STRING_BYTES */
1743 #define SDATA_SIZE(NBYTES) \
1744 ((sizeof (struct Lisp_String *) \
1745 + (NBYTES) + 1 \
1746 + sizeof (EMACS_INT) - 1) \
1747 & ~(sizeof (EMACS_INT) - 1))
1749 #endif /* not GC_CHECK_STRING_BYTES */
1751 /* Extra bytes to allocate for each string. */
1753 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1755 /* Initialize string allocation. Called from init_alloc_once. */
1757 void
1758 init_strings ()
1760 total_strings = total_free_strings = total_string_size = 0;
1761 oldest_sblock = current_sblock = large_sblocks = NULL;
1762 string_blocks = NULL;
1763 n_string_blocks = 0;
1764 string_free_list = NULL;
1765 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1766 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1770 #ifdef GC_CHECK_STRING_BYTES
1772 static int check_string_bytes_count;
1774 void check_string_bytes P_ ((int));
1775 void check_sblock P_ ((struct sblock *));
1777 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1780 /* Like GC_STRING_BYTES, but with debugging check. */
1783 string_bytes (s)
1784 struct Lisp_String *s;
1786 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1787 if (!PURE_POINTER_P (s)
1788 && s->data
1789 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1790 abort ();
1791 return nbytes;
1794 /* Check validity of Lisp strings' string_bytes member in B. */
1796 void
1797 check_sblock (b)
1798 struct sblock *b;
1800 struct sdata *from, *end, *from_end;
1802 end = b->next_free;
1804 for (from = &b->first_data; from < end; from = from_end)
1806 /* Compute the next FROM here because copying below may
1807 overwrite data we need to compute it. */
1808 int nbytes;
1810 /* Check that the string size recorded in the string is the
1811 same as the one recorded in the sdata structure. */
1812 if (from->string)
1813 CHECK_STRING_BYTES (from->string);
1815 if (from->string)
1816 nbytes = GC_STRING_BYTES (from->string);
1817 else
1818 nbytes = SDATA_NBYTES (from);
1820 nbytes = SDATA_SIZE (nbytes);
1821 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1826 /* Check validity of Lisp strings' string_bytes member. ALL_P
1827 non-zero means check all strings, otherwise check only most
1828 recently allocated strings. Used for hunting a bug. */
1830 void
1831 check_string_bytes (all_p)
1832 int all_p;
1834 if (all_p)
1836 struct sblock *b;
1838 for (b = large_sblocks; b; b = b->next)
1840 struct Lisp_String *s = b->first_data.string;
1841 if (s)
1842 CHECK_STRING_BYTES (s);
1845 for (b = oldest_sblock; b; b = b->next)
1846 check_sblock (b);
1848 else
1849 check_sblock (current_sblock);
1852 #endif /* GC_CHECK_STRING_BYTES */
1854 #ifdef GC_CHECK_STRING_FREE_LIST
1856 /* Walk through the string free list looking for bogus next pointers.
1857 This may catch buffer overrun from a previous string. */
1859 static void
1860 check_string_free_list ()
1862 struct Lisp_String *s;
1864 /* Pop a Lisp_String off the free-list. */
1865 s = string_free_list;
1866 while (s != NULL)
1868 if ((unsigned)s < 1024)
1869 abort();
1870 s = NEXT_FREE_LISP_STRING (s);
1873 #else
1874 #define check_string_free_list()
1875 #endif
1877 /* Return a new Lisp_String. */
1879 static struct Lisp_String *
1880 allocate_string ()
1882 struct Lisp_String *s;
1884 /* eassert (!handling_signal); */
1886 MALLOC_BLOCK_INPUT;
1888 /* If the free-list is empty, allocate a new string_block, and
1889 add all the Lisp_Strings in it to the free-list. */
1890 if (string_free_list == NULL)
1892 struct string_block *b;
1893 int i;
1895 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1896 bzero (b, sizeof *b);
1897 b->next = string_blocks;
1898 string_blocks = b;
1899 ++n_string_blocks;
1901 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1903 s = b->strings + i;
1904 NEXT_FREE_LISP_STRING (s) = string_free_list;
1905 string_free_list = s;
1908 total_free_strings += STRING_BLOCK_SIZE;
1911 check_string_free_list ();
1913 /* Pop a Lisp_String off the free-list. */
1914 s = string_free_list;
1915 string_free_list = NEXT_FREE_LISP_STRING (s);
1917 MALLOC_UNBLOCK_INPUT;
1919 /* Probably not strictly necessary, but play it safe. */
1920 bzero (s, sizeof *s);
1922 --total_free_strings;
1923 ++total_strings;
1924 ++strings_consed;
1925 consing_since_gc += sizeof *s;
1927 #ifdef GC_CHECK_STRING_BYTES
1928 if (!noninteractive
1929 #ifdef MAC_OS8
1930 && current_sblock
1931 #endif
1934 if (++check_string_bytes_count == 200)
1936 check_string_bytes_count = 0;
1937 check_string_bytes (1);
1939 else
1940 check_string_bytes (0);
1942 #endif /* GC_CHECK_STRING_BYTES */
1944 return s;
1948 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1949 plus a NUL byte at the end. Allocate an sdata structure for S, and
1950 set S->data to its `u.data' member. Store a NUL byte at the end of
1951 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1952 S->data if it was initially non-null. */
1954 void
1955 allocate_string_data (s, nchars, nbytes)
1956 struct Lisp_String *s;
1957 int nchars, nbytes;
1959 struct sdata *data, *old_data;
1960 struct sblock *b;
1961 int needed, old_nbytes;
1963 /* Determine the number of bytes needed to store NBYTES bytes
1964 of string data. */
1965 needed = SDATA_SIZE (nbytes);
1966 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1967 old_nbytes = GC_STRING_BYTES (s);
1969 MALLOC_BLOCK_INPUT;
1971 if (nbytes > LARGE_STRING_BYTES)
1973 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1975 #ifdef DOUG_LEA_MALLOC
1976 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1977 because mapped region contents are not preserved in
1978 a dumped Emacs.
1980 In case you think of allowing it in a dumped Emacs at the
1981 cost of not being able to re-dump, there's another reason:
1982 mmap'ed data typically have an address towards the top of the
1983 address space, which won't fit into an EMACS_INT (at least on
1984 32-bit systems with the current tagging scheme). --fx */
1985 mallopt (M_MMAP_MAX, 0);
1986 #endif
1988 b = (struct sblock *) lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1990 #ifdef DOUG_LEA_MALLOC
1991 /* Back to a reasonable maximum of mmap'ed areas. */
1992 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1993 #endif
1995 b->next_free = &b->first_data;
1996 b->first_data.string = NULL;
1997 b->next = large_sblocks;
1998 large_sblocks = b;
2000 else if (current_sblock == NULL
2001 || (((char *) current_sblock + SBLOCK_SIZE
2002 - (char *) current_sblock->next_free)
2003 < (needed + GC_STRING_EXTRA)))
2005 /* Not enough room in the current sblock. */
2006 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2007 b->next_free = &b->first_data;
2008 b->first_data.string = NULL;
2009 b->next = NULL;
2011 if (current_sblock)
2012 current_sblock->next = b;
2013 else
2014 oldest_sblock = b;
2015 current_sblock = b;
2017 else
2018 b = current_sblock;
2020 data = b->next_free;
2021 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2023 MALLOC_UNBLOCK_INPUT;
2025 data->string = s;
2026 s->data = SDATA_DATA (data);
2027 #ifdef GC_CHECK_STRING_BYTES
2028 SDATA_NBYTES (data) = nbytes;
2029 #endif
2030 s->size = nchars;
2031 s->size_byte = nbytes;
2032 s->data[nbytes] = '\0';
2033 #ifdef GC_CHECK_STRING_OVERRUN
2034 bcopy (string_overrun_cookie, (char *) data + needed,
2035 GC_STRING_OVERRUN_COOKIE_SIZE);
2036 #endif
2038 /* If S had already data assigned, mark that as free by setting its
2039 string back-pointer to null, and recording the size of the data
2040 in it. */
2041 if (old_data)
2043 SDATA_NBYTES (old_data) = old_nbytes;
2044 old_data->string = NULL;
2047 consing_since_gc += needed;
2051 /* Sweep and compact strings. */
2053 static void
2054 sweep_strings ()
2056 struct string_block *b, *next;
2057 struct string_block *live_blocks = NULL;
2059 string_free_list = NULL;
2060 total_strings = total_free_strings = 0;
2061 total_string_size = 0;
2063 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2064 for (b = string_blocks; b; b = next)
2066 int i, nfree = 0;
2067 struct Lisp_String *free_list_before = string_free_list;
2069 next = b->next;
2071 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2073 struct Lisp_String *s = b->strings + i;
2075 if (s->data)
2077 /* String was not on free-list before. */
2078 if (STRING_MARKED_P (s))
2080 /* String is live; unmark it and its intervals. */
2081 UNMARK_STRING (s);
2083 if (!NULL_INTERVAL_P (s->intervals))
2084 UNMARK_BALANCE_INTERVALS (s->intervals);
2086 ++total_strings;
2087 total_string_size += STRING_BYTES (s);
2089 else
2091 /* String is dead. Put it on the free-list. */
2092 struct sdata *data = SDATA_OF_STRING (s);
2094 /* Save the size of S in its sdata so that we know
2095 how large that is. Reset the sdata's string
2096 back-pointer so that we know it's free. */
2097 #ifdef GC_CHECK_STRING_BYTES
2098 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2099 abort ();
2100 #else
2101 data->u.nbytes = GC_STRING_BYTES (s);
2102 #endif
2103 data->string = NULL;
2105 /* Reset the strings's `data' member so that we
2106 know it's free. */
2107 s->data = NULL;
2109 /* Put the string on the free-list. */
2110 NEXT_FREE_LISP_STRING (s) = string_free_list;
2111 string_free_list = s;
2112 ++nfree;
2115 else
2117 /* S was on the free-list before. Put it there again. */
2118 NEXT_FREE_LISP_STRING (s) = string_free_list;
2119 string_free_list = s;
2120 ++nfree;
2124 /* Free blocks that contain free Lisp_Strings only, except
2125 the first two of them. */
2126 if (nfree == STRING_BLOCK_SIZE
2127 && total_free_strings > STRING_BLOCK_SIZE)
2129 lisp_free (b);
2130 --n_string_blocks;
2131 string_free_list = free_list_before;
2133 else
2135 total_free_strings += nfree;
2136 b->next = live_blocks;
2137 live_blocks = b;
2141 check_string_free_list ();
2143 string_blocks = live_blocks;
2144 free_large_strings ();
2145 compact_small_strings ();
2147 check_string_free_list ();
2151 /* Free dead large strings. */
2153 static void
2154 free_large_strings ()
2156 struct sblock *b, *next;
2157 struct sblock *live_blocks = NULL;
2159 for (b = large_sblocks; b; b = next)
2161 next = b->next;
2163 if (b->first_data.string == NULL)
2164 lisp_free (b);
2165 else
2167 b->next = live_blocks;
2168 live_blocks = b;
2172 large_sblocks = live_blocks;
2176 /* Compact data of small strings. Free sblocks that don't contain
2177 data of live strings after compaction. */
2179 static void
2180 compact_small_strings ()
2182 struct sblock *b, *tb, *next;
2183 struct sdata *from, *to, *end, *tb_end;
2184 struct sdata *to_end, *from_end;
2186 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2187 to, and TB_END is the end of TB. */
2188 tb = oldest_sblock;
2189 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2190 to = &tb->first_data;
2192 /* Step through the blocks from the oldest to the youngest. We
2193 expect that old blocks will stabilize over time, so that less
2194 copying will happen this way. */
2195 for (b = oldest_sblock; b; b = b->next)
2197 end = b->next_free;
2198 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2200 for (from = &b->first_data; from < end; from = from_end)
2202 /* Compute the next FROM here because copying below may
2203 overwrite data we need to compute it. */
2204 int nbytes;
2206 #ifdef GC_CHECK_STRING_BYTES
2207 /* Check that the string size recorded in the string is the
2208 same as the one recorded in the sdata structure. */
2209 if (from->string
2210 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2211 abort ();
2212 #endif /* GC_CHECK_STRING_BYTES */
2214 if (from->string)
2215 nbytes = GC_STRING_BYTES (from->string);
2216 else
2217 nbytes = SDATA_NBYTES (from);
2219 if (nbytes > LARGE_STRING_BYTES)
2220 abort ();
2222 nbytes = SDATA_SIZE (nbytes);
2223 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2225 #ifdef GC_CHECK_STRING_OVERRUN
2226 if (bcmp (string_overrun_cookie,
2227 ((char *) from_end) - GC_STRING_OVERRUN_COOKIE_SIZE,
2228 GC_STRING_OVERRUN_COOKIE_SIZE))
2229 abort ();
2230 #endif
2232 /* FROM->string non-null means it's alive. Copy its data. */
2233 if (from->string)
2235 /* If TB is full, proceed with the next sblock. */
2236 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2237 if (to_end > tb_end)
2239 tb->next_free = to;
2240 tb = tb->next;
2241 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2242 to = &tb->first_data;
2243 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2246 /* Copy, and update the string's `data' pointer. */
2247 if (from != to)
2249 xassert (tb != b || to <= from);
2250 safe_bcopy ((char *) from, (char *) to, nbytes + GC_STRING_EXTRA);
2251 to->string->data = SDATA_DATA (to);
2254 /* Advance past the sdata we copied to. */
2255 to = to_end;
2260 /* The rest of the sblocks following TB don't contain live data, so
2261 we can free them. */
2262 for (b = tb->next; b; b = next)
2264 next = b->next;
2265 lisp_free (b);
2268 tb->next_free = to;
2269 tb->next = NULL;
2270 current_sblock = tb;
2274 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2275 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2276 LENGTH must be an integer.
2277 INIT must be an integer that represents a character. */)
2278 (length, init)
2279 Lisp_Object length, init;
2281 register Lisp_Object val;
2282 register unsigned char *p, *end;
2283 int c, nbytes;
2285 CHECK_NATNUM (length);
2286 CHECK_NUMBER (init);
2288 c = XINT (init);
2289 if (SINGLE_BYTE_CHAR_P (c))
2291 nbytes = XINT (length);
2292 val = make_uninit_string (nbytes);
2293 p = SDATA (val);
2294 end = p + SCHARS (val);
2295 while (p != end)
2296 *p++ = c;
2298 else
2300 unsigned char str[MAX_MULTIBYTE_LENGTH];
2301 int len = CHAR_STRING (c, str);
2303 nbytes = len * XINT (length);
2304 val = make_uninit_multibyte_string (XINT (length), nbytes);
2305 p = SDATA (val);
2306 end = p + nbytes;
2307 while (p != end)
2309 bcopy (str, p, len);
2310 p += len;
2314 *p = 0;
2315 return val;
2319 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2320 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2321 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2322 (length, init)
2323 Lisp_Object length, init;
2325 register Lisp_Object val;
2326 struct Lisp_Bool_Vector *p;
2327 int real_init, i;
2328 int length_in_chars, length_in_elts, bits_per_value;
2330 CHECK_NATNUM (length);
2332 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2334 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2335 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2336 / BOOL_VECTOR_BITS_PER_CHAR);
2338 /* We must allocate one more elements than LENGTH_IN_ELTS for the
2339 slot `size' of the struct Lisp_Bool_Vector. */
2340 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
2342 /* Get rid of any bits that would cause confusion. */
2343 XVECTOR (val)->size = 0; /* No Lisp_Object to trace in there. */
2344 /* Use XVECTOR (val) rather than `p' because p->size is not TRT. */
2345 XSETPVECTYPE (XVECTOR (val), PVEC_BOOL_VECTOR);
2347 p = XBOOL_VECTOR (val);
2348 p->size = XFASTINT (length);
2350 real_init = (NILP (init) ? 0 : -1);
2351 for (i = 0; i < length_in_chars ; i++)
2352 p->data[i] = real_init;
2354 /* Clear the extraneous bits in the last byte. */
2355 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
2356 p->data[length_in_chars - 1]
2357 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
2359 return val;
2363 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2364 of characters from the contents. This string may be unibyte or
2365 multibyte, depending on the contents. */
2367 Lisp_Object
2368 make_string (contents, nbytes)
2369 const char *contents;
2370 int nbytes;
2372 register Lisp_Object val;
2373 int nchars, multibyte_nbytes;
2375 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2376 if (nbytes == nchars || nbytes != multibyte_nbytes)
2377 /* CONTENTS contains no multibyte sequences or contains an invalid
2378 multibyte sequence. We must make unibyte string. */
2379 val = make_unibyte_string (contents, nbytes);
2380 else
2381 val = make_multibyte_string (contents, nchars, nbytes);
2382 return val;
2386 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2388 Lisp_Object
2389 make_unibyte_string (contents, length)
2390 const char *contents;
2391 int length;
2393 register Lisp_Object val;
2394 val = make_uninit_string (length);
2395 bcopy (contents, SDATA (val), length);
2396 STRING_SET_UNIBYTE (val);
2397 return val;
2401 /* Make a multibyte string from NCHARS characters occupying NBYTES
2402 bytes at CONTENTS. */
2404 Lisp_Object
2405 make_multibyte_string (contents, nchars, nbytes)
2406 const char *contents;
2407 int nchars, nbytes;
2409 register Lisp_Object val;
2410 val = make_uninit_multibyte_string (nchars, nbytes);
2411 bcopy (contents, SDATA (val), nbytes);
2412 return val;
2416 /* Make a string from NCHARS characters occupying NBYTES bytes at
2417 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2419 Lisp_Object
2420 make_string_from_bytes (contents, nchars, nbytes)
2421 const char *contents;
2422 int nchars, nbytes;
2424 register Lisp_Object val;
2425 val = make_uninit_multibyte_string (nchars, nbytes);
2426 bcopy (contents, SDATA (val), nbytes);
2427 if (SBYTES (val) == SCHARS (val))
2428 STRING_SET_UNIBYTE (val);
2429 return val;
2433 /* Make a string from NCHARS characters occupying NBYTES bytes at
2434 CONTENTS. The argument MULTIBYTE controls whether to label the
2435 string as multibyte. If NCHARS is negative, it counts the number of
2436 characters by itself. */
2438 Lisp_Object
2439 make_specified_string (contents, nchars, nbytes, multibyte)
2440 const char *contents;
2441 int nchars, nbytes;
2442 int multibyte;
2444 register Lisp_Object val;
2446 if (nchars < 0)
2448 if (multibyte)
2449 nchars = multibyte_chars_in_text (contents, nbytes);
2450 else
2451 nchars = nbytes;
2453 val = make_uninit_multibyte_string (nchars, nbytes);
2454 bcopy (contents, SDATA (val), nbytes);
2455 if (!multibyte)
2456 STRING_SET_UNIBYTE (val);
2457 return val;
2461 /* Make a string from the data at STR, treating it as multibyte if the
2462 data warrants. */
2464 Lisp_Object
2465 build_string (str)
2466 const char *str;
2468 return make_string (str, strlen (str));
2472 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2473 occupying LENGTH bytes. */
2475 Lisp_Object
2476 make_uninit_string (length)
2477 int length;
2479 Lisp_Object val;
2481 if (!length)
2482 return empty_unibyte_string;
2483 val = make_uninit_multibyte_string (length, length);
2484 STRING_SET_UNIBYTE (val);
2485 return val;
2489 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2490 which occupy NBYTES bytes. */
2492 Lisp_Object
2493 make_uninit_multibyte_string (nchars, nbytes)
2494 int nchars, nbytes;
2496 Lisp_Object string;
2497 struct Lisp_String *s;
2499 if (nchars < 0)
2500 abort ();
2501 if (!nbytes)
2502 return empty_multibyte_string;
2504 s = allocate_string ();
2505 allocate_string_data (s, nchars, nbytes);
2506 XSETSTRING (string, s);
2507 string_chars_consed += nbytes;
2508 return string;
2513 /***********************************************************************
2514 Float Allocation
2515 ***********************************************************************/
2517 /* We store float cells inside of float_blocks, allocating a new
2518 float_block with malloc whenever necessary. Float cells reclaimed
2519 by GC are put on a free list to be reallocated before allocating
2520 any new float cells from the latest float_block. */
2522 #define FLOAT_BLOCK_SIZE \
2523 (((BLOCK_BYTES - sizeof (struct float_block *) \
2524 /* The compiler might add padding at the end. */ \
2525 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2526 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2528 #define GETMARKBIT(block,n) \
2529 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2530 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2531 & 1)
2533 #define SETMARKBIT(block,n) \
2534 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2535 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2537 #define UNSETMARKBIT(block,n) \
2538 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2539 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2541 #define FLOAT_BLOCK(fptr) \
2542 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2544 #define FLOAT_INDEX(fptr) \
2545 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2547 struct float_block
2549 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2550 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2551 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2552 struct float_block *next;
2555 #define FLOAT_MARKED_P(fptr) \
2556 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2558 #define FLOAT_MARK(fptr) \
2559 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2561 #define FLOAT_UNMARK(fptr) \
2562 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2564 /* Current float_block. */
2566 struct float_block *float_block;
2568 /* Index of first unused Lisp_Float in the current float_block. */
2570 int float_block_index;
2572 /* Total number of float blocks now in use. */
2574 int n_float_blocks;
2576 /* Free-list of Lisp_Floats. */
2578 struct Lisp_Float *float_free_list;
2581 /* Initialize float allocation. */
2583 void
2584 init_float ()
2586 float_block = NULL;
2587 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2588 float_free_list = 0;
2589 n_float_blocks = 0;
2593 /* Explicitly free a float cell by putting it on the free-list. */
2595 void
2596 free_float (ptr)
2597 struct Lisp_Float *ptr;
2599 ptr->u.chain = float_free_list;
2600 float_free_list = ptr;
2604 /* Return a new float object with value FLOAT_VALUE. */
2606 Lisp_Object
2607 make_float (float_value)
2608 double float_value;
2610 register Lisp_Object val;
2612 /* eassert (!handling_signal); */
2614 MALLOC_BLOCK_INPUT;
2616 if (float_free_list)
2618 /* We use the data field for chaining the free list
2619 so that we won't use the same field that has the mark bit. */
2620 XSETFLOAT (val, float_free_list);
2621 float_free_list = float_free_list->u.chain;
2623 else
2625 if (float_block_index == FLOAT_BLOCK_SIZE)
2627 register struct float_block *new;
2629 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2630 MEM_TYPE_FLOAT);
2631 new->next = float_block;
2632 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2633 float_block = new;
2634 float_block_index = 0;
2635 n_float_blocks++;
2637 XSETFLOAT (val, &float_block->floats[float_block_index]);
2638 float_block_index++;
2641 MALLOC_UNBLOCK_INPUT;
2643 XFLOAT_DATA (val) = float_value;
2644 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2645 consing_since_gc += sizeof (struct Lisp_Float);
2646 floats_consed++;
2647 return val;
2652 /***********************************************************************
2653 Cons Allocation
2654 ***********************************************************************/
2656 /* We store cons cells inside of cons_blocks, allocating a new
2657 cons_block with malloc whenever necessary. Cons cells reclaimed by
2658 GC are put on a free list to be reallocated before allocating
2659 any new cons cells from the latest cons_block. */
2661 #define CONS_BLOCK_SIZE \
2662 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2663 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2665 #define CONS_BLOCK(fptr) \
2666 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2668 #define CONS_INDEX(fptr) \
2669 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2671 struct cons_block
2673 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2674 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2675 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2676 struct cons_block *next;
2679 #define CONS_MARKED_P(fptr) \
2680 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2682 #define CONS_MARK(fptr) \
2683 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2685 #define CONS_UNMARK(fptr) \
2686 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2688 /* Current cons_block. */
2690 struct cons_block *cons_block;
2692 /* Index of first unused Lisp_Cons in the current block. */
2694 int cons_block_index;
2696 /* Free-list of Lisp_Cons structures. */
2698 struct Lisp_Cons *cons_free_list;
2700 /* Total number of cons blocks now in use. */
2702 int n_cons_blocks;
2705 /* Initialize cons allocation. */
2707 void
2708 init_cons ()
2710 cons_block = NULL;
2711 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2712 cons_free_list = 0;
2713 n_cons_blocks = 0;
2717 /* Explicitly free a cons cell by putting it on the free-list. */
2719 void
2720 free_cons (ptr)
2721 struct Lisp_Cons *ptr;
2723 ptr->u.chain = cons_free_list;
2724 #if GC_MARK_STACK
2725 ptr->car = Vdead;
2726 #endif
2727 cons_free_list = ptr;
2730 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2731 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2732 (car, cdr)
2733 Lisp_Object car, cdr;
2735 register Lisp_Object val;
2737 /* eassert (!handling_signal); */
2739 MALLOC_BLOCK_INPUT;
2741 if (cons_free_list)
2743 /* We use the cdr for chaining the free list
2744 so that we won't use the same field that has the mark bit. */
2745 XSETCONS (val, cons_free_list);
2746 cons_free_list = cons_free_list->u.chain;
2748 else
2750 if (cons_block_index == CONS_BLOCK_SIZE)
2752 register struct cons_block *new;
2753 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2754 MEM_TYPE_CONS);
2755 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2756 new->next = cons_block;
2757 cons_block = new;
2758 cons_block_index = 0;
2759 n_cons_blocks++;
2761 XSETCONS (val, &cons_block->conses[cons_block_index]);
2762 cons_block_index++;
2765 MALLOC_UNBLOCK_INPUT;
2767 XSETCAR (val, car);
2768 XSETCDR (val, cdr);
2769 eassert (!CONS_MARKED_P (XCONS (val)));
2770 consing_since_gc += sizeof (struct Lisp_Cons);
2771 cons_cells_consed++;
2772 return val;
2775 /* Get an error now if there's any junk in the cons free list. */
2776 void
2777 check_cons_list ()
2779 #ifdef GC_CHECK_CONS_LIST
2780 struct Lisp_Cons *tail = cons_free_list;
2782 while (tail)
2783 tail = tail->u.chain;
2784 #endif
2787 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2789 Lisp_Object
2790 list1 (arg1)
2791 Lisp_Object arg1;
2793 return Fcons (arg1, Qnil);
2796 Lisp_Object
2797 list2 (arg1, arg2)
2798 Lisp_Object arg1, arg2;
2800 return Fcons (arg1, Fcons (arg2, Qnil));
2804 Lisp_Object
2805 list3 (arg1, arg2, arg3)
2806 Lisp_Object arg1, arg2, arg3;
2808 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2812 Lisp_Object
2813 list4 (arg1, arg2, arg3, arg4)
2814 Lisp_Object arg1, arg2, arg3, arg4;
2816 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2820 Lisp_Object
2821 list5 (arg1, arg2, arg3, arg4, arg5)
2822 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2824 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2825 Fcons (arg5, Qnil)))));
2829 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2830 doc: /* Return a newly created list with specified arguments as elements.
2831 Any number of arguments, even zero arguments, are allowed.
2832 usage: (list &rest OBJECTS) */)
2833 (nargs, args)
2834 int nargs;
2835 register Lisp_Object *args;
2837 register Lisp_Object val;
2838 val = Qnil;
2840 while (nargs > 0)
2842 nargs--;
2843 val = Fcons (args[nargs], val);
2845 return val;
2849 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2850 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2851 (length, init)
2852 register Lisp_Object length, init;
2854 register Lisp_Object val;
2855 register int size;
2857 CHECK_NATNUM (length);
2858 size = XFASTINT (length);
2860 val = Qnil;
2861 while (size > 0)
2863 val = Fcons (init, val);
2864 --size;
2866 if (size > 0)
2868 val = Fcons (init, val);
2869 --size;
2871 if (size > 0)
2873 val = Fcons (init, val);
2874 --size;
2876 if (size > 0)
2878 val = Fcons (init, val);
2879 --size;
2881 if (size > 0)
2883 val = Fcons (init, val);
2884 --size;
2890 QUIT;
2893 return val;
2898 /***********************************************************************
2899 Vector Allocation
2900 ***********************************************************************/
2902 /* Singly-linked list of all vectors. */
2904 struct Lisp_Vector *all_vectors;
2906 /* Total number of vector-like objects now in use. */
2908 int n_vectors;
2911 /* Value is a pointer to a newly allocated Lisp_Vector structure
2912 with room for LEN Lisp_Objects. */
2914 static struct Lisp_Vector *
2915 allocate_vectorlike (len)
2916 EMACS_INT len;
2918 struct Lisp_Vector *p;
2919 size_t nbytes;
2921 MALLOC_BLOCK_INPUT;
2923 #ifdef DOUG_LEA_MALLOC
2924 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2925 because mapped region contents are not preserved in
2926 a dumped Emacs. */
2927 mallopt (M_MMAP_MAX, 0);
2928 #endif
2930 /* This gets triggered by code which I haven't bothered to fix. --Stef */
2931 /* eassert (!handling_signal); */
2933 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2934 p = (struct Lisp_Vector *) lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
2936 #ifdef DOUG_LEA_MALLOC
2937 /* Back to a reasonable maximum of mmap'ed areas. */
2938 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2939 #endif
2941 consing_since_gc += nbytes;
2942 vector_cells_consed += len;
2944 p->next = all_vectors;
2945 all_vectors = p;
2947 MALLOC_UNBLOCK_INPUT;
2949 ++n_vectors;
2950 return p;
2954 /* Allocate a vector with NSLOTS slots. */
2956 struct Lisp_Vector *
2957 allocate_vector (nslots)
2958 EMACS_INT nslots;
2960 struct Lisp_Vector *v = allocate_vectorlike (nslots);
2961 v->size = nslots;
2962 return v;
2966 /* Allocate other vector-like structures. */
2968 static struct Lisp_Vector *
2969 allocate_pseudovector (memlen, lisplen, tag)
2970 int memlen, lisplen;
2971 EMACS_INT tag;
2973 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2974 EMACS_INT i;
2976 /* Only the first lisplen slots will be traced normally by the GC. */
2977 v->size = lisplen;
2978 for (i = 0; i < lisplen; ++i)
2979 v->contents[i] = Qnil;
2981 XSETPVECTYPE (v, tag); /* Add the appropriate tag. */
2982 return v;
2984 #define ALLOCATE_PSEUDOVECTOR(typ,field,tag) \
2985 ((typ*) \
2986 allocate_pseudovector \
2987 (VECSIZE (typ), PSEUDOVECSIZE (typ, field), tag))
2989 struct Lisp_Hash_Table *
2990 allocate_hash_table (void)
2992 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
2996 struct window *
2997 allocate_window ()
2999 return ALLOCATE_PSEUDOVECTOR(struct window, current_matrix, PVEC_WINDOW);
3003 struct terminal *
3004 allocate_terminal ()
3006 struct terminal *t = ALLOCATE_PSEUDOVECTOR (struct terminal,
3007 next_terminal, PVEC_TERMINAL);
3008 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3009 bzero (&(t->next_terminal),
3010 ((char*)(t+1)) - ((char*)&(t->next_terminal)));
3012 return t;
3015 struct frame *
3016 allocate_frame ()
3018 struct frame *f = ALLOCATE_PSEUDOVECTOR (struct frame,
3019 face_cache, PVEC_FRAME);
3020 /* Zero out the non-GC'd fields. FIXME: This should be made unnecessary. */
3021 bzero (&(f->face_cache),
3022 ((char*)(f+1)) - ((char*)&(f->face_cache)));
3023 return f;
3027 struct Lisp_Process *
3028 allocate_process ()
3030 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3034 /* Only used for PVEC_WINDOW_CONFIGURATION. */
3035 struct Lisp_Vector *
3036 allocate_other_vector (len)
3037 EMACS_INT len;
3039 struct Lisp_Vector *v = allocate_vectorlike (len);
3040 EMACS_INT i;
3042 for (i = 0; i < len; ++i)
3043 v->contents[i] = Qnil;
3044 v->size = len;
3046 return v;
3050 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3051 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3052 See also the function `vector'. */)
3053 (length, init)
3054 register Lisp_Object length, init;
3056 Lisp_Object vector;
3057 register EMACS_INT sizei;
3058 register int index;
3059 register struct Lisp_Vector *p;
3061 CHECK_NATNUM (length);
3062 sizei = XFASTINT (length);
3064 p = allocate_vector (sizei);
3065 for (index = 0; index < sizei; index++)
3066 p->contents[index] = init;
3068 XSETVECTOR (vector, p);
3069 return vector;
3073 DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
3074 doc: /* Return a newly created char-table, with purpose PURPOSE.
3075 Each element is initialized to INIT, which defaults to nil.
3076 PURPOSE should be a symbol which has a `char-table-extra-slots' property.
3077 The property's value should be an integer between 0 and 10. */)
3078 (purpose, init)
3079 register Lisp_Object purpose, init;
3081 Lisp_Object vector;
3082 Lisp_Object n;
3083 CHECK_SYMBOL (purpose);
3084 n = Fget (purpose, Qchar_table_extra_slots);
3085 CHECK_NUMBER (n);
3086 if (XINT (n) < 0 || XINT (n) > 10)
3087 args_out_of_range (n, Qnil);
3088 /* Add 2 to the size for the defalt and parent slots. */
3089 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
3090 init);
3091 XSETPVECTYPE (XVECTOR (vector), PVEC_CHAR_TABLE);
3092 XCHAR_TABLE (vector)->top = Qt;
3093 XCHAR_TABLE (vector)->parent = Qnil;
3094 XCHAR_TABLE (vector)->purpose = purpose;
3095 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3096 return vector;
3100 /* Return a newly created sub char table with slots initialized by INIT.
3101 Since a sub char table does not appear as a top level Emacs Lisp
3102 object, we don't need a Lisp interface to make it. */
3104 Lisp_Object
3105 make_sub_char_table (init)
3106 Lisp_Object init;
3108 Lisp_Object vector
3109 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), init);
3110 XSETPVECTYPE (XVECTOR (vector), PVEC_CHAR_TABLE);
3111 XCHAR_TABLE (vector)->top = Qnil;
3112 XCHAR_TABLE (vector)->defalt = Qnil;
3113 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
3114 return vector;
3118 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3119 doc: /* Return a newly created vector with specified arguments as elements.
3120 Any number of arguments, even zero arguments, are allowed.
3121 usage: (vector &rest OBJECTS) */)
3122 (nargs, args)
3123 register int nargs;
3124 Lisp_Object *args;
3126 register Lisp_Object len, val;
3127 register int index;
3128 register struct Lisp_Vector *p;
3130 XSETFASTINT (len, nargs);
3131 val = Fmake_vector (len, Qnil);
3132 p = XVECTOR (val);
3133 for (index = 0; index < nargs; index++)
3134 p->contents[index] = args[index];
3135 return val;
3139 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3140 doc: /* Create a byte-code object with specified arguments as elements.
3141 The arguments should be the arglist, bytecode-string, constant vector,
3142 stack size, (optional) doc string, and (optional) interactive spec.
3143 The first four arguments are required; at most six have any
3144 significance.
3145 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3146 (nargs, args)
3147 register int nargs;
3148 Lisp_Object *args;
3150 register Lisp_Object len, val;
3151 register int index;
3152 register struct Lisp_Vector *p;
3154 XSETFASTINT (len, nargs);
3155 if (!NILP (Vpurify_flag))
3156 val = make_pure_vector ((EMACS_INT) nargs);
3157 else
3158 val = Fmake_vector (len, Qnil);
3160 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
3161 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3162 earlier because they produced a raw 8-bit string for byte-code
3163 and now such a byte-code string is loaded as multibyte while
3164 raw 8-bit characters converted to multibyte form. Thus, now we
3165 must convert them back to the original unibyte form. */
3166 args[1] = Fstring_as_unibyte (args[1]);
3168 p = XVECTOR (val);
3169 for (index = 0; index < nargs; index++)
3171 if (!NILP (Vpurify_flag))
3172 args[index] = Fpurecopy (args[index]);
3173 p->contents[index] = args[index];
3175 XSETPVECTYPE (p, PVEC_COMPILED);
3176 XSETCOMPILED (val, p);
3177 return val;
3182 /***********************************************************************
3183 Symbol Allocation
3184 ***********************************************************************/
3186 /* Each symbol_block is just under 1020 bytes long, since malloc
3187 really allocates in units of powers of two and uses 4 bytes for its
3188 own overhead. */
3190 #define SYMBOL_BLOCK_SIZE \
3191 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
3193 struct symbol_block
3195 /* Place `symbols' first, to preserve alignment. */
3196 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3197 struct symbol_block *next;
3200 /* Current symbol block and index of first unused Lisp_Symbol
3201 structure in it. */
3203 struct symbol_block *symbol_block;
3204 int symbol_block_index;
3206 /* List of free symbols. */
3208 struct Lisp_Symbol *symbol_free_list;
3210 /* Total number of symbol blocks now in use. */
3212 int n_symbol_blocks;
3215 /* Initialize symbol allocation. */
3217 void
3218 init_symbol ()
3220 symbol_block = NULL;
3221 symbol_block_index = SYMBOL_BLOCK_SIZE;
3222 symbol_free_list = 0;
3223 n_symbol_blocks = 0;
3227 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3228 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3229 Its value and function definition are void, and its property list is nil. */)
3230 (name)
3231 Lisp_Object name;
3233 register Lisp_Object val;
3234 register struct Lisp_Symbol *p;
3236 CHECK_STRING (name);
3238 /* eassert (!handling_signal); */
3240 MALLOC_BLOCK_INPUT;
3242 if (symbol_free_list)
3244 XSETSYMBOL (val, symbol_free_list);
3245 symbol_free_list = symbol_free_list->next;
3247 else
3249 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3251 struct symbol_block *new;
3252 new = (struct symbol_block *) lisp_malloc (sizeof *new,
3253 MEM_TYPE_SYMBOL);
3254 new->next = symbol_block;
3255 symbol_block = new;
3256 symbol_block_index = 0;
3257 n_symbol_blocks++;
3259 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
3260 symbol_block_index++;
3263 MALLOC_UNBLOCK_INPUT;
3265 p = XSYMBOL (val);
3266 p->xname = name;
3267 p->plist = Qnil;
3268 p->value = Qunbound;
3269 p->function = Qunbound;
3270 p->next = NULL;
3271 p->gcmarkbit = 0;
3272 p->interned = SYMBOL_UNINTERNED;
3273 p->constant = 0;
3274 p->indirect_variable = 0;
3275 consing_since_gc += sizeof (struct Lisp_Symbol);
3276 symbols_consed++;
3277 return val;
3282 /***********************************************************************
3283 Marker (Misc) Allocation
3284 ***********************************************************************/
3286 /* Allocation of markers and other objects that share that structure.
3287 Works like allocation of conses. */
3289 #define MARKER_BLOCK_SIZE \
3290 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
3292 struct marker_block
3294 /* Place `markers' first, to preserve alignment. */
3295 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
3296 struct marker_block *next;
3299 struct marker_block *marker_block;
3300 int marker_block_index;
3302 union Lisp_Misc *marker_free_list;
3304 /* Total number of marker blocks now in use. */
3306 int n_marker_blocks;
3308 void
3309 init_marker ()
3311 marker_block = NULL;
3312 marker_block_index = MARKER_BLOCK_SIZE;
3313 marker_free_list = 0;
3314 n_marker_blocks = 0;
3317 /* Return a newly allocated Lisp_Misc object, with no substructure. */
3319 Lisp_Object
3320 allocate_misc ()
3322 Lisp_Object val;
3324 /* eassert (!handling_signal); */
3326 MALLOC_BLOCK_INPUT;
3328 if (marker_free_list)
3330 XSETMISC (val, marker_free_list);
3331 marker_free_list = marker_free_list->u_free.chain;
3333 else
3335 if (marker_block_index == MARKER_BLOCK_SIZE)
3337 struct marker_block *new;
3338 new = (struct marker_block *) lisp_malloc (sizeof *new,
3339 MEM_TYPE_MISC);
3340 new->next = marker_block;
3341 marker_block = new;
3342 marker_block_index = 0;
3343 n_marker_blocks++;
3344 total_free_markers += MARKER_BLOCK_SIZE;
3346 XSETMISC (val, &marker_block->markers[marker_block_index]);
3347 marker_block_index++;
3350 MALLOC_UNBLOCK_INPUT;
3352 --total_free_markers;
3353 consing_since_gc += sizeof (union Lisp_Misc);
3354 misc_objects_consed++;
3355 XMARKER (val)->gcmarkbit = 0;
3356 return val;
3359 /* Free a Lisp_Misc object */
3361 void
3362 free_misc (misc)
3363 Lisp_Object misc;
3365 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
3366 XMISC (misc)->u_free.chain = marker_free_list;
3367 marker_free_list = XMISC (misc);
3369 total_free_markers++;
3372 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3373 INTEGER. This is used to package C values to call record_unwind_protect.
3374 The unwind function can get the C values back using XSAVE_VALUE. */
3376 Lisp_Object
3377 make_save_value (pointer, integer)
3378 void *pointer;
3379 int integer;
3381 register Lisp_Object val;
3382 register struct Lisp_Save_Value *p;
3384 val = allocate_misc ();
3385 XMISCTYPE (val) = Lisp_Misc_Save_Value;
3386 p = XSAVE_VALUE (val);
3387 p->pointer = pointer;
3388 p->integer = integer;
3389 p->dogc = 0;
3390 return val;
3393 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3394 doc: /* Return a newly allocated marker which does not point at any place. */)
3397 register Lisp_Object val;
3398 register struct Lisp_Marker *p;
3400 val = allocate_misc ();
3401 XMISCTYPE (val) = Lisp_Misc_Marker;
3402 p = XMARKER (val);
3403 p->buffer = 0;
3404 p->bytepos = 0;
3405 p->charpos = 0;
3406 p->next = NULL;
3407 p->insertion_type = 0;
3408 return val;
3411 /* Put MARKER back on the free list after using it temporarily. */
3413 void
3414 free_marker (marker)
3415 Lisp_Object marker;
3417 unchain_marker (XMARKER (marker));
3418 free_misc (marker);
3422 /* Return a newly created vector or string with specified arguments as
3423 elements. If all the arguments are characters that can fit
3424 in a string of events, make a string; otherwise, make a vector.
3426 Any number of arguments, even zero arguments, are allowed. */
3428 Lisp_Object
3429 make_event_array (nargs, args)
3430 register int nargs;
3431 Lisp_Object *args;
3433 int i;
3435 for (i = 0; i < nargs; i++)
3436 /* The things that fit in a string
3437 are characters that are in 0...127,
3438 after discarding the meta bit and all the bits above it. */
3439 if (!INTEGERP (args[i])
3440 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3441 return Fvector (nargs, args);
3443 /* Since the loop exited, we know that all the things in it are
3444 characters, so we can make a string. */
3446 Lisp_Object result;
3448 result = Fmake_string (make_number (nargs), make_number (0));
3449 for (i = 0; i < nargs; i++)
3451 SSET (result, i, XINT (args[i]));
3452 /* Move the meta bit to the right place for a string char. */
3453 if (XINT (args[i]) & CHAR_META)
3454 SSET (result, i, SREF (result, i) | 0x80);
3457 return result;
3463 /************************************************************************
3464 Memory Full Handling
3465 ************************************************************************/
3468 /* Called if malloc returns zero. */
3470 void
3471 memory_full ()
3473 int i;
3475 Vmemory_full = Qt;
3477 memory_full_cons_threshold = sizeof (struct cons_block);
3479 /* The first time we get here, free the spare memory. */
3480 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3481 if (spare_memory[i])
3483 if (i == 0)
3484 free (spare_memory[i]);
3485 else if (i >= 1 && i <= 4)
3486 lisp_align_free (spare_memory[i]);
3487 else
3488 lisp_free (spare_memory[i]);
3489 spare_memory[i] = 0;
3492 /* Record the space now used. When it decreases substantially,
3493 we can refill the memory reserve. */
3494 #ifndef SYSTEM_MALLOC
3495 bytes_used_when_full = BYTES_USED;
3496 #endif
3498 /* This used to call error, but if we've run out of memory, we could
3499 get infinite recursion trying to build the string. */
3500 xsignal (Qnil, Vmemory_signal_data);
3503 /* If we released our reserve (due to running out of memory),
3504 and we have a fair amount free once again,
3505 try to set aside another reserve in case we run out once more.
3507 This is called when a relocatable block is freed in ralloc.c,
3508 and also directly from this file, in case we're not using ralloc.c. */
3510 void
3511 refill_memory_reserve ()
3513 #ifndef SYSTEM_MALLOC
3514 if (spare_memory[0] == 0)
3515 spare_memory[0] = (char *) malloc ((size_t) SPARE_MEMORY);
3516 if (spare_memory[1] == 0)
3517 spare_memory[1] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3518 MEM_TYPE_CONS);
3519 if (spare_memory[2] == 0)
3520 spare_memory[2] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3521 MEM_TYPE_CONS);
3522 if (spare_memory[3] == 0)
3523 spare_memory[3] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3524 MEM_TYPE_CONS);
3525 if (spare_memory[4] == 0)
3526 spare_memory[4] = (char *) lisp_align_malloc (sizeof (struct cons_block),
3527 MEM_TYPE_CONS);
3528 if (spare_memory[5] == 0)
3529 spare_memory[5] = (char *) lisp_malloc (sizeof (struct string_block),
3530 MEM_TYPE_STRING);
3531 if (spare_memory[6] == 0)
3532 spare_memory[6] = (char *) lisp_malloc (sizeof (struct string_block),
3533 MEM_TYPE_STRING);
3534 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3535 Vmemory_full = Qnil;
3536 #endif
3539 /************************************************************************
3540 C Stack Marking
3541 ************************************************************************/
3543 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3545 /* Conservative C stack marking requires a method to identify possibly
3546 live Lisp objects given a pointer value. We do this by keeping
3547 track of blocks of Lisp data that are allocated in a red-black tree
3548 (see also the comment of mem_node which is the type of nodes in
3549 that tree). Function lisp_malloc adds information for an allocated
3550 block to the red-black tree with calls to mem_insert, and function
3551 lisp_free removes it with mem_delete. Functions live_string_p etc
3552 call mem_find to lookup information about a given pointer in the
3553 tree, and use that to determine if the pointer points to a Lisp
3554 object or not. */
3556 /* Initialize this part of alloc.c. */
3558 static void
3559 mem_init ()
3561 mem_z.left = mem_z.right = MEM_NIL;
3562 mem_z.parent = NULL;
3563 mem_z.color = MEM_BLACK;
3564 mem_z.start = mem_z.end = NULL;
3565 mem_root = MEM_NIL;
3569 /* Value is a pointer to the mem_node containing START. Value is
3570 MEM_NIL if there is no node in the tree containing START. */
3572 static INLINE struct mem_node *
3573 mem_find (start)
3574 void *start;
3576 struct mem_node *p;
3578 if (start < min_heap_address || start > max_heap_address)
3579 return MEM_NIL;
3581 /* Make the search always successful to speed up the loop below. */
3582 mem_z.start = start;
3583 mem_z.end = (char *) start + 1;
3585 p = mem_root;
3586 while (start < p->start || start >= p->end)
3587 p = start < p->start ? p->left : p->right;
3588 return p;
3592 /* Insert a new node into the tree for a block of memory with start
3593 address START, end address END, and type TYPE. Value is a
3594 pointer to the node that was inserted. */
3596 static struct mem_node *
3597 mem_insert (start, end, type)
3598 void *start, *end;
3599 enum mem_type type;
3601 struct mem_node *c, *parent, *x;
3603 if (min_heap_address == NULL || start < min_heap_address)
3604 min_heap_address = start;
3605 if (max_heap_address == NULL || end > max_heap_address)
3606 max_heap_address = end;
3608 /* See where in the tree a node for START belongs. In this
3609 particular application, it shouldn't happen that a node is already
3610 present. For debugging purposes, let's check that. */
3611 c = mem_root;
3612 parent = NULL;
3614 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3616 while (c != MEM_NIL)
3618 if (start >= c->start && start < c->end)
3619 abort ();
3620 parent = c;
3621 c = start < c->start ? c->left : c->right;
3624 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3626 while (c != MEM_NIL)
3628 parent = c;
3629 c = start < c->start ? c->left : c->right;
3632 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3634 /* Create a new node. */
3635 #ifdef GC_MALLOC_CHECK
3636 x = (struct mem_node *) _malloc_internal (sizeof *x);
3637 if (x == NULL)
3638 abort ();
3639 #else
3640 x = (struct mem_node *) xmalloc (sizeof *x);
3641 #endif
3642 x->start = start;
3643 x->end = end;
3644 x->type = type;
3645 x->parent = parent;
3646 x->left = x->right = MEM_NIL;
3647 x->color = MEM_RED;
3649 /* Insert it as child of PARENT or install it as root. */
3650 if (parent)
3652 if (start < parent->start)
3653 parent->left = x;
3654 else
3655 parent->right = x;
3657 else
3658 mem_root = x;
3660 /* Re-establish red-black tree properties. */
3661 mem_insert_fixup (x);
3663 return x;
3667 /* Re-establish the red-black properties of the tree, and thereby
3668 balance the tree, after node X has been inserted; X is always red. */
3670 static void
3671 mem_insert_fixup (x)
3672 struct mem_node *x;
3674 while (x != mem_root && x->parent->color == MEM_RED)
3676 /* X is red and its parent is red. This is a violation of
3677 red-black tree property #3. */
3679 if (x->parent == x->parent->parent->left)
3681 /* We're on the left side of our grandparent, and Y is our
3682 "uncle". */
3683 struct mem_node *y = x->parent->parent->right;
3685 if (y->color == MEM_RED)
3687 /* Uncle and parent are red but should be black because
3688 X is red. Change the colors accordingly and proceed
3689 with the grandparent. */
3690 x->parent->color = MEM_BLACK;
3691 y->color = MEM_BLACK;
3692 x->parent->parent->color = MEM_RED;
3693 x = x->parent->parent;
3695 else
3697 /* Parent and uncle have different colors; parent is
3698 red, uncle is black. */
3699 if (x == x->parent->right)
3701 x = x->parent;
3702 mem_rotate_left (x);
3705 x->parent->color = MEM_BLACK;
3706 x->parent->parent->color = MEM_RED;
3707 mem_rotate_right (x->parent->parent);
3710 else
3712 /* This is the symmetrical case of above. */
3713 struct mem_node *y = x->parent->parent->left;
3715 if (y->color == MEM_RED)
3717 x->parent->color = MEM_BLACK;
3718 y->color = MEM_BLACK;
3719 x->parent->parent->color = MEM_RED;
3720 x = x->parent->parent;
3722 else
3724 if (x == x->parent->left)
3726 x = x->parent;
3727 mem_rotate_right (x);
3730 x->parent->color = MEM_BLACK;
3731 x->parent->parent->color = MEM_RED;
3732 mem_rotate_left (x->parent->parent);
3737 /* The root may have been changed to red due to the algorithm. Set
3738 it to black so that property #5 is satisfied. */
3739 mem_root->color = MEM_BLACK;
3743 /* (x) (y)
3744 / \ / \
3745 a (y) ===> (x) c
3746 / \ / \
3747 b c a b */
3749 static void
3750 mem_rotate_left (x)
3751 struct mem_node *x;
3753 struct mem_node *y;
3755 /* Turn y's left sub-tree into x's right sub-tree. */
3756 y = x->right;
3757 x->right = y->left;
3758 if (y->left != MEM_NIL)
3759 y->left->parent = x;
3761 /* Y's parent was x's parent. */
3762 if (y != MEM_NIL)
3763 y->parent = x->parent;
3765 /* Get the parent to point to y instead of x. */
3766 if (x->parent)
3768 if (x == x->parent->left)
3769 x->parent->left = y;
3770 else
3771 x->parent->right = y;
3773 else
3774 mem_root = y;
3776 /* Put x on y's left. */
3777 y->left = x;
3778 if (x != MEM_NIL)
3779 x->parent = y;
3783 /* (x) (Y)
3784 / \ / \
3785 (y) c ===> a (x)
3786 / \ / \
3787 a b b c */
3789 static void
3790 mem_rotate_right (x)
3791 struct mem_node *x;
3793 struct mem_node *y = x->left;
3795 x->left = y->right;
3796 if (y->right != MEM_NIL)
3797 y->right->parent = x;
3799 if (y != MEM_NIL)
3800 y->parent = x->parent;
3801 if (x->parent)
3803 if (x == x->parent->right)
3804 x->parent->right = y;
3805 else
3806 x->parent->left = y;
3808 else
3809 mem_root = y;
3811 y->right = x;
3812 if (x != MEM_NIL)
3813 x->parent = y;
3817 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3819 static void
3820 mem_delete (z)
3821 struct mem_node *z;
3823 struct mem_node *x, *y;
3825 if (!z || z == MEM_NIL)
3826 return;
3828 if (z->left == MEM_NIL || z->right == MEM_NIL)
3829 y = z;
3830 else
3832 y = z->right;
3833 while (y->left != MEM_NIL)
3834 y = y->left;
3837 if (y->left != MEM_NIL)
3838 x = y->left;
3839 else
3840 x = y->right;
3842 x->parent = y->parent;
3843 if (y->parent)
3845 if (y == y->parent->left)
3846 y->parent->left = x;
3847 else
3848 y->parent->right = x;
3850 else
3851 mem_root = x;
3853 if (y != z)
3855 z->start = y->start;
3856 z->end = y->end;
3857 z->type = y->type;
3860 if (y->color == MEM_BLACK)
3861 mem_delete_fixup (x);
3863 #ifdef GC_MALLOC_CHECK
3864 _free_internal (y);
3865 #else
3866 xfree (y);
3867 #endif
3871 /* Re-establish the red-black properties of the tree, after a
3872 deletion. */
3874 static void
3875 mem_delete_fixup (x)
3876 struct mem_node *x;
3878 while (x != mem_root && x->color == MEM_BLACK)
3880 if (x == x->parent->left)
3882 struct mem_node *w = x->parent->right;
3884 if (w->color == MEM_RED)
3886 w->color = MEM_BLACK;
3887 x->parent->color = MEM_RED;
3888 mem_rotate_left (x->parent);
3889 w = x->parent->right;
3892 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3894 w->color = MEM_RED;
3895 x = x->parent;
3897 else
3899 if (w->right->color == MEM_BLACK)
3901 w->left->color = MEM_BLACK;
3902 w->color = MEM_RED;
3903 mem_rotate_right (w);
3904 w = x->parent->right;
3906 w->color = x->parent->color;
3907 x->parent->color = MEM_BLACK;
3908 w->right->color = MEM_BLACK;
3909 mem_rotate_left (x->parent);
3910 x = mem_root;
3913 else
3915 struct mem_node *w = x->parent->left;
3917 if (w->color == MEM_RED)
3919 w->color = MEM_BLACK;
3920 x->parent->color = MEM_RED;
3921 mem_rotate_right (x->parent);
3922 w = x->parent->left;
3925 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3927 w->color = MEM_RED;
3928 x = x->parent;
3930 else
3932 if (w->left->color == MEM_BLACK)
3934 w->right->color = MEM_BLACK;
3935 w->color = MEM_RED;
3936 mem_rotate_left (w);
3937 w = x->parent->left;
3940 w->color = x->parent->color;
3941 x->parent->color = MEM_BLACK;
3942 w->left->color = MEM_BLACK;
3943 mem_rotate_right (x->parent);
3944 x = mem_root;
3949 x->color = MEM_BLACK;
3953 /* Value is non-zero if P is a pointer to a live Lisp string on
3954 the heap. M is a pointer to the mem_block for P. */
3956 static INLINE int
3957 live_string_p (m, p)
3958 struct mem_node *m;
3959 void *p;
3961 if (m->type == MEM_TYPE_STRING)
3963 struct string_block *b = (struct string_block *) m->start;
3964 int offset = (char *) p - (char *) &b->strings[0];
3966 /* P must point to the start of a Lisp_String structure, and it
3967 must not be on the free-list. */
3968 return (offset >= 0
3969 && offset % sizeof b->strings[0] == 0
3970 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3971 && ((struct Lisp_String *) p)->data != NULL);
3973 else
3974 return 0;
3978 /* Value is non-zero if P is a pointer to a live Lisp cons on
3979 the heap. M is a pointer to the mem_block for P. */
3981 static INLINE int
3982 live_cons_p (m, p)
3983 struct mem_node *m;
3984 void *p;
3986 if (m->type == MEM_TYPE_CONS)
3988 struct cons_block *b = (struct cons_block *) m->start;
3989 int offset = (char *) p - (char *) &b->conses[0];
3991 /* P must point to the start of a Lisp_Cons, not be
3992 one of the unused cells in the current cons block,
3993 and not be on the free-list. */
3994 return (offset >= 0
3995 && offset % sizeof b->conses[0] == 0
3996 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3997 && (b != cons_block
3998 || offset / sizeof b->conses[0] < cons_block_index)
3999 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4001 else
4002 return 0;
4006 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4007 the heap. M is a pointer to the mem_block for P. */
4009 static INLINE int
4010 live_symbol_p (m, p)
4011 struct mem_node *m;
4012 void *p;
4014 if (m->type == MEM_TYPE_SYMBOL)
4016 struct symbol_block *b = (struct symbol_block *) m->start;
4017 int offset = (char *) p - (char *) &b->symbols[0];
4019 /* P must point to the start of a Lisp_Symbol, not be
4020 one of the unused cells in the current symbol block,
4021 and not be on the free-list. */
4022 return (offset >= 0
4023 && offset % sizeof b->symbols[0] == 0
4024 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4025 && (b != symbol_block
4026 || offset / sizeof b->symbols[0] < symbol_block_index)
4027 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4029 else
4030 return 0;
4034 /* Value is non-zero if P is a pointer to a live Lisp float on
4035 the heap. M is a pointer to the mem_block for P. */
4037 static INLINE int
4038 live_float_p (m, p)
4039 struct mem_node *m;
4040 void *p;
4042 if (m->type == MEM_TYPE_FLOAT)
4044 struct float_block *b = (struct float_block *) m->start;
4045 int offset = (char *) p - (char *) &b->floats[0];
4047 /* P must point to the start of a Lisp_Float and not be
4048 one of the unused cells in the current float block. */
4049 return (offset >= 0
4050 && offset % sizeof b->floats[0] == 0
4051 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4052 && (b != float_block
4053 || offset / sizeof b->floats[0] < float_block_index));
4055 else
4056 return 0;
4060 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4061 the heap. M is a pointer to the mem_block for P. */
4063 static INLINE int
4064 live_misc_p (m, p)
4065 struct mem_node *m;
4066 void *p;
4068 if (m->type == MEM_TYPE_MISC)
4070 struct marker_block *b = (struct marker_block *) m->start;
4071 int offset = (char *) p - (char *) &b->markers[0];
4073 /* P must point to the start of a Lisp_Misc, not be
4074 one of the unused cells in the current misc block,
4075 and not be on the free-list. */
4076 return (offset >= 0
4077 && offset % sizeof b->markers[0] == 0
4078 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4079 && (b != marker_block
4080 || offset / sizeof b->markers[0] < marker_block_index)
4081 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
4083 else
4084 return 0;
4088 /* Value is non-zero if P is a pointer to a live vector-like object.
4089 M is a pointer to the mem_block for P. */
4091 static INLINE int
4092 live_vector_p (m, p)
4093 struct mem_node *m;
4094 void *p;
4096 return (p == m->start && m->type == MEM_TYPE_VECTORLIKE);
4100 /* Value is non-zero if P is a pointer to a live buffer. M is a
4101 pointer to the mem_block for P. */
4103 static INLINE int
4104 live_buffer_p (m, p)
4105 struct mem_node *m;
4106 void *p;
4108 /* P must point to the start of the block, and the buffer
4109 must not have been killed. */
4110 return (m->type == MEM_TYPE_BUFFER
4111 && p == m->start
4112 && !NILP (((struct buffer *) p)->name));
4115 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4117 #if GC_MARK_STACK
4119 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4121 /* Array of objects that are kept alive because the C stack contains
4122 a pattern that looks like a reference to them . */
4124 #define MAX_ZOMBIES 10
4125 static Lisp_Object zombies[MAX_ZOMBIES];
4127 /* Number of zombie objects. */
4129 static int nzombies;
4131 /* Number of garbage collections. */
4133 static int ngcs;
4135 /* Average percentage of zombies per collection. */
4137 static double avg_zombies;
4139 /* Max. number of live and zombie objects. */
4141 static int max_live, max_zombies;
4143 /* Average number of live objects per GC. */
4145 static double avg_live;
4147 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4148 doc: /* Show information about live and zombie objects. */)
4151 Lisp_Object args[8], zombie_list = Qnil;
4152 int i;
4153 for (i = 0; i < nzombies; i++)
4154 zombie_list = Fcons (zombies[i], zombie_list);
4155 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4156 args[1] = make_number (ngcs);
4157 args[2] = make_float (avg_live);
4158 args[3] = make_float (avg_zombies);
4159 args[4] = make_float (avg_zombies / avg_live / 100);
4160 args[5] = make_number (max_live);
4161 args[6] = make_number (max_zombies);
4162 args[7] = zombie_list;
4163 return Fmessage (8, args);
4166 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4169 /* Mark OBJ if we can prove it's a Lisp_Object. */
4171 static INLINE void
4172 mark_maybe_object (obj)
4173 Lisp_Object obj;
4175 void *po = (void *) XPNTR (obj);
4176 struct mem_node *m = mem_find (po);
4178 if (m != MEM_NIL)
4180 int mark_p = 0;
4182 switch (XGCTYPE (obj))
4184 case Lisp_String:
4185 mark_p = (live_string_p (m, po)
4186 && !STRING_MARKED_P ((struct Lisp_String *) po));
4187 break;
4189 case Lisp_Cons:
4190 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4191 break;
4193 case Lisp_Symbol:
4194 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4195 break;
4197 case Lisp_Float:
4198 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4199 break;
4201 case Lisp_Vectorlike:
4202 /* Note: can't check GC_BUFFERP before we know it's a
4203 buffer because checking that dereferences the pointer
4204 PO which might point anywhere. */
4205 if (live_vector_p (m, po))
4206 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4207 else if (live_buffer_p (m, po))
4208 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4209 break;
4211 case Lisp_Misc:
4212 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
4213 break;
4215 case Lisp_Int:
4216 case Lisp_Type_Limit:
4217 break;
4220 if (mark_p)
4222 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4223 if (nzombies < MAX_ZOMBIES)
4224 zombies[nzombies] = obj;
4225 ++nzombies;
4226 #endif
4227 mark_object (obj);
4233 /* If P points to Lisp data, mark that as live if it isn't already
4234 marked. */
4236 static INLINE void
4237 mark_maybe_pointer (p)
4238 void *p;
4240 struct mem_node *m;
4242 /* Quickly rule out some values which can't point to Lisp data. */
4243 if ((EMACS_INT) p %
4244 #ifdef USE_LSB_TAG
4245 8 /* USE_LSB_TAG needs Lisp data to be aligned on multiples of 8. */
4246 #else
4247 2 /* We assume that Lisp data is aligned on even addresses. */
4248 #endif
4250 return;
4252 m = mem_find (p);
4253 if (m != MEM_NIL)
4255 Lisp_Object obj = Qnil;
4257 switch (m->type)
4259 case MEM_TYPE_NON_LISP:
4260 /* Nothing to do; not a pointer to Lisp memory. */
4261 break;
4263 case MEM_TYPE_BUFFER:
4264 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
4265 XSETVECTOR (obj, p);
4266 break;
4268 case MEM_TYPE_CONS:
4269 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4270 XSETCONS (obj, p);
4271 break;
4273 case MEM_TYPE_STRING:
4274 if (live_string_p (m, p)
4275 && !STRING_MARKED_P ((struct Lisp_String *) p))
4276 XSETSTRING (obj, p);
4277 break;
4279 case MEM_TYPE_MISC:
4280 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4281 XSETMISC (obj, p);
4282 break;
4284 case MEM_TYPE_SYMBOL:
4285 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4286 XSETSYMBOL (obj, p);
4287 break;
4289 case MEM_TYPE_FLOAT:
4290 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4291 XSETFLOAT (obj, p);
4292 break;
4294 case MEM_TYPE_VECTORLIKE:
4295 if (live_vector_p (m, p))
4297 Lisp_Object tem;
4298 XSETVECTOR (tem, p);
4299 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4300 obj = tem;
4302 break;
4304 default:
4305 abort ();
4308 if (!GC_NILP (obj))
4309 mark_object (obj);
4314 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4315 or END+OFFSET..START. */
4317 static void
4318 mark_memory (start, end, offset)
4319 void *start, *end;
4320 int offset;
4322 Lisp_Object *p;
4323 void **pp;
4325 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4326 nzombies = 0;
4327 #endif
4329 /* Make START the pointer to the start of the memory region,
4330 if it isn't already. */
4331 if (end < start)
4333 void *tem = start;
4334 start = end;
4335 end = tem;
4338 /* Mark Lisp_Objects. */
4339 for (p = (Lisp_Object *) ((char *) start + offset); (void *) p < end; ++p)
4340 mark_maybe_object (*p);
4342 /* Mark Lisp data pointed to. This is necessary because, in some
4343 situations, the C compiler optimizes Lisp objects away, so that
4344 only a pointer to them remains. Example:
4346 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4349 Lisp_Object obj = build_string ("test");
4350 struct Lisp_String *s = XSTRING (obj);
4351 Fgarbage_collect ();
4352 fprintf (stderr, "test `%s'\n", s->data);
4353 return Qnil;
4356 Here, `obj' isn't really used, and the compiler optimizes it
4357 away. The only reference to the life string is through the
4358 pointer `s'. */
4360 for (pp = (void **) ((char *) start + offset); (void *) pp < end; ++pp)
4361 mark_maybe_pointer (*pp);
4364 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4365 the GCC system configuration. In gcc 3.2, the only systems for
4366 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4367 by others?) and ns32k-pc532-min. */
4369 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4371 static int setjmp_tested_p, longjmps_done;
4373 #define SETJMP_WILL_LIKELY_WORK "\
4375 Emacs garbage collector has been changed to use conservative stack\n\
4376 marking. Emacs has determined that the method it uses to do the\n\
4377 marking will likely work on your system, but this isn't sure.\n\
4379 If you are a system-programmer, or can get the help of a local wizard\n\
4380 who is, please take a look at the function mark_stack in alloc.c, and\n\
4381 verify that the methods used are appropriate for your system.\n\
4383 Please mail the result to <emacs-devel@gnu.org>.\n\
4386 #define SETJMP_WILL_NOT_WORK "\
4388 Emacs garbage collector has been changed to use conservative stack\n\
4389 marking. Emacs has determined that the default method it uses to do the\n\
4390 marking will not work on your system. We will need a system-dependent\n\
4391 solution for your system.\n\
4393 Please take a look at the function mark_stack in alloc.c, and\n\
4394 try to find a way to make it work on your system.\n\
4396 Note that you may get false negatives, depending on the compiler.\n\
4397 In particular, you need to use -O with GCC for this test.\n\
4399 Please mail the result to <emacs-devel@gnu.org>.\n\
4403 /* Perform a quick check if it looks like setjmp saves registers in a
4404 jmp_buf. Print a message to stderr saying so. When this test
4405 succeeds, this is _not_ a proof that setjmp is sufficient for
4406 conservative stack marking. Only the sources or a disassembly
4407 can prove that. */
4409 static void
4410 test_setjmp ()
4412 char buf[10];
4413 register int x;
4414 jmp_buf jbuf;
4415 int result = 0;
4417 /* Arrange for X to be put in a register. */
4418 sprintf (buf, "1");
4419 x = strlen (buf);
4420 x = 2 * x - 1;
4422 setjmp (jbuf);
4423 if (longjmps_done == 1)
4425 /* Came here after the longjmp at the end of the function.
4427 If x == 1, the longjmp has restored the register to its
4428 value before the setjmp, and we can hope that setjmp
4429 saves all such registers in the jmp_buf, although that
4430 isn't sure.
4432 For other values of X, either something really strange is
4433 taking place, or the setjmp just didn't save the register. */
4435 if (x == 1)
4436 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4437 else
4439 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4440 exit (1);
4444 ++longjmps_done;
4445 x = 2;
4446 if (longjmps_done == 1)
4447 longjmp (jbuf, 1);
4450 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4453 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4455 /* Abort if anything GCPRO'd doesn't survive the GC. */
4457 static void
4458 check_gcpros ()
4460 struct gcpro *p;
4461 int i;
4463 for (p = gcprolist; p; p = p->next)
4464 for (i = 0; i < p->nvars; ++i)
4465 if (!survives_gc_p (p->var[i]))
4466 /* FIXME: It's not necessarily a bug. It might just be that the
4467 GCPRO is unnecessary or should release the object sooner. */
4468 abort ();
4471 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4473 static void
4474 dump_zombies ()
4476 int i;
4478 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
4479 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4481 fprintf (stderr, " %d = ", i);
4482 debug_print (zombies[i]);
4486 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4489 /* Mark live Lisp objects on the C stack.
4491 There are several system-dependent problems to consider when
4492 porting this to new architectures:
4494 Processor Registers
4496 We have to mark Lisp objects in CPU registers that can hold local
4497 variables or are used to pass parameters.
4499 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4500 something that either saves relevant registers on the stack, or
4501 calls mark_maybe_object passing it each register's contents.
4503 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4504 implementation assumes that calling setjmp saves registers we need
4505 to see in a jmp_buf which itself lies on the stack. This doesn't
4506 have to be true! It must be verified for each system, possibly
4507 by taking a look at the source code of setjmp.
4509 Stack Layout
4511 Architectures differ in the way their processor stack is organized.
4512 For example, the stack might look like this
4514 +----------------+
4515 | Lisp_Object | size = 4
4516 +----------------+
4517 | something else | size = 2
4518 +----------------+
4519 | Lisp_Object | size = 4
4520 +----------------+
4521 | ... |
4523 In such a case, not every Lisp_Object will be aligned equally. To
4524 find all Lisp_Object on the stack it won't be sufficient to walk
4525 the stack in steps of 4 bytes. Instead, two passes will be
4526 necessary, one starting at the start of the stack, and a second
4527 pass starting at the start of the stack + 2. Likewise, if the
4528 minimal alignment of Lisp_Objects on the stack is 1, four passes
4529 would be necessary, each one starting with one byte more offset
4530 from the stack start.
4532 The current code assumes by default that Lisp_Objects are aligned
4533 equally on the stack. */
4535 static void
4536 mark_stack ()
4538 int i;
4539 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4540 union aligned_jmpbuf {
4541 Lisp_Object o;
4542 jmp_buf j;
4543 } j;
4544 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4545 void *end;
4547 /* This trick flushes the register windows so that all the state of
4548 the process is contained in the stack. */
4549 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4550 needed on ia64 too. See mach_dep.c, where it also says inline
4551 assembler doesn't work with relevant proprietary compilers. */
4552 #ifdef sparc
4553 asm ("ta 3");
4554 #endif
4556 /* Save registers that we need to see on the stack. We need to see
4557 registers used to hold register variables and registers used to
4558 pass parameters. */
4559 #ifdef GC_SAVE_REGISTERS_ON_STACK
4560 GC_SAVE_REGISTERS_ON_STACK (end);
4561 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4563 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4564 setjmp will definitely work, test it
4565 and print a message with the result
4566 of the test. */
4567 if (!setjmp_tested_p)
4569 setjmp_tested_p = 1;
4570 test_setjmp ();
4572 #endif /* GC_SETJMP_WORKS */
4574 setjmp (j.j);
4575 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4576 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4578 /* This assumes that the stack is a contiguous region in memory. If
4579 that's not the case, something has to be done here to iterate
4580 over the stack segments. */
4581 #ifndef GC_LISP_OBJECT_ALIGNMENT
4582 #ifdef __GNUC__
4583 #define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4584 #else
4585 #define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4586 #endif
4587 #endif
4588 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4589 mark_memory (stack_base, end, i);
4590 /* Allow for marking a secondary stack, like the register stack on the
4591 ia64. */
4592 #ifdef GC_MARK_SECONDARY_STACK
4593 GC_MARK_SECONDARY_STACK ();
4594 #endif
4596 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4597 check_gcpros ();
4598 #endif
4601 #endif /* GC_MARK_STACK != 0 */
4604 /* Determine whether it is safe to access memory at address P. */
4606 valid_pointer_p (p)
4607 void *p;
4609 #ifdef WINDOWSNT
4610 return w32_valid_pointer_p (p, 16);
4611 #else
4612 int fd;
4614 /* Obviously, we cannot just access it (we would SEGV trying), so we
4615 trick the o/s to tell us whether p is a valid pointer.
4616 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4617 not validate p in that case. */
4619 if ((fd = emacs_open ("__Valid__Lisp__Object__", O_CREAT | O_WRONLY | O_TRUNC, 0666)) >= 0)
4621 int valid = (emacs_write (fd, (char *)p, 16) == 16);
4622 emacs_close (fd);
4623 unlink ("__Valid__Lisp__Object__");
4624 return valid;
4627 return -1;
4628 #endif
4631 /* Return 1 if OBJ is a valid lisp object.
4632 Return 0 if OBJ is NOT a valid lisp object.
4633 Return -1 if we cannot validate OBJ.
4634 This function can be quite slow,
4635 so it should only be used in code for manual debugging. */
4638 valid_lisp_object_p (obj)
4639 Lisp_Object obj;
4641 void *p;
4642 #if GC_MARK_STACK
4643 struct mem_node *m;
4644 #endif
4646 if (INTEGERP (obj))
4647 return 1;
4649 p = (void *) XPNTR (obj);
4650 if (PURE_POINTER_P (p))
4651 return 1;
4653 #if !GC_MARK_STACK
4654 return valid_pointer_p (p);
4655 #else
4657 m = mem_find (p);
4659 if (m == MEM_NIL)
4661 int valid = valid_pointer_p (p);
4662 if (valid <= 0)
4663 return valid;
4665 if (SUBRP (obj))
4666 return 1;
4668 return 0;
4671 switch (m->type)
4673 case MEM_TYPE_NON_LISP:
4674 return 0;
4676 case MEM_TYPE_BUFFER:
4677 return live_buffer_p (m, p);
4679 case MEM_TYPE_CONS:
4680 return live_cons_p (m, p);
4682 case MEM_TYPE_STRING:
4683 return live_string_p (m, p);
4685 case MEM_TYPE_MISC:
4686 return live_misc_p (m, p);
4688 case MEM_TYPE_SYMBOL:
4689 return live_symbol_p (m, p);
4691 case MEM_TYPE_FLOAT:
4692 return live_float_p (m, p);
4694 case MEM_TYPE_VECTORLIKE:
4695 return live_vector_p (m, p);
4697 default:
4698 break;
4701 return 0;
4702 #endif
4708 /***********************************************************************
4709 Pure Storage Management
4710 ***********************************************************************/
4712 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4713 pointer to it. TYPE is the Lisp type for which the memory is
4714 allocated. TYPE < 0 means it's not used for a Lisp object. */
4716 static POINTER_TYPE *
4717 pure_alloc (size, type)
4718 size_t size;
4719 int type;
4721 POINTER_TYPE *result;
4722 #ifdef USE_LSB_TAG
4723 size_t alignment = (1 << GCTYPEBITS);
4724 #else
4725 size_t alignment = sizeof (EMACS_INT);
4727 /* Give Lisp_Floats an extra alignment. */
4728 if (type == Lisp_Float)
4730 #if defined __GNUC__ && __GNUC__ >= 2
4731 alignment = __alignof (struct Lisp_Float);
4732 #else
4733 alignment = sizeof (struct Lisp_Float);
4734 #endif
4736 #endif
4738 again:
4739 if (type >= 0)
4741 /* Allocate space for a Lisp object from the beginning of the free
4742 space with taking account of alignment. */
4743 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4744 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4746 else
4748 /* Allocate space for a non-Lisp object from the end of the free
4749 space. */
4750 pure_bytes_used_non_lisp += size;
4751 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4753 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4755 if (pure_bytes_used <= pure_size)
4756 return result;
4758 /* Don't allocate a large amount here,
4759 because it might get mmap'd and then its address
4760 might not be usable. */
4761 purebeg = (char *) xmalloc (10000);
4762 pure_size = 10000;
4763 pure_bytes_used_before_overflow += pure_bytes_used - size;
4764 pure_bytes_used = 0;
4765 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4766 goto again;
4770 /* Print a warning if PURESIZE is too small. */
4772 void
4773 check_pure_size ()
4775 if (pure_bytes_used_before_overflow)
4776 message ("emacs:0:Pure Lisp storage overflow (approx. %d bytes needed)",
4777 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4781 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4782 the non-Lisp data pool of the pure storage, and return its start
4783 address. Return NULL if not found. */
4785 static char *
4786 find_string_data_in_pure (data, nbytes)
4787 char *data;
4788 int nbytes;
4790 int i, skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4791 unsigned char *p;
4792 char *non_lisp_beg;
4794 if (pure_bytes_used_non_lisp < nbytes + 1)
4795 return NULL;
4797 /* Set up the Boyer-Moore table. */
4798 skip = nbytes + 1;
4799 for (i = 0; i < 256; i++)
4800 bm_skip[i] = skip;
4802 p = (unsigned char *) data;
4803 while (--skip > 0)
4804 bm_skip[*p++] = skip;
4806 last_char_skip = bm_skip['\0'];
4808 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4809 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4811 /* See the comments in the function `boyer_moore' (search.c) for the
4812 use of `infinity'. */
4813 infinity = pure_bytes_used_non_lisp + 1;
4814 bm_skip['\0'] = infinity;
4816 p = (unsigned char *) non_lisp_beg + nbytes;
4817 start = 0;
4820 /* Check the last character (== '\0'). */
4823 start += bm_skip[*(p + start)];
4825 while (start <= start_max);
4827 if (start < infinity)
4828 /* Couldn't find the last character. */
4829 return NULL;
4831 /* No less than `infinity' means we could find the last
4832 character at `p[start - infinity]'. */
4833 start -= infinity;
4835 /* Check the remaining characters. */
4836 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4837 /* Found. */
4838 return non_lisp_beg + start;
4840 start += last_char_skip;
4842 while (start <= start_max);
4844 return NULL;
4848 /* Return a string allocated in pure space. DATA is a buffer holding
4849 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4850 non-zero means make the result string multibyte.
4852 Must get an error if pure storage is full, since if it cannot hold
4853 a large string it may be able to hold conses that point to that
4854 string; then the string is not protected from gc. */
4856 Lisp_Object
4857 make_pure_string (data, nchars, nbytes, multibyte)
4858 char *data;
4859 int nchars, nbytes;
4860 int multibyte;
4862 Lisp_Object string;
4863 struct Lisp_String *s;
4865 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4866 s->data = find_string_data_in_pure (data, nbytes);
4867 if (s->data == NULL)
4869 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4870 bcopy (data, s->data, nbytes);
4871 s->data[nbytes] = '\0';
4873 s->size = nchars;
4874 s->size_byte = multibyte ? nbytes : -1;
4875 s->intervals = NULL_INTERVAL;
4876 XSETSTRING (string, s);
4877 return string;
4881 /* Return a cons allocated from pure space. Give it pure copies
4882 of CAR as car and CDR as cdr. */
4884 Lisp_Object
4885 pure_cons (car, cdr)
4886 Lisp_Object car, cdr;
4888 register Lisp_Object new;
4889 struct Lisp_Cons *p;
4891 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4892 XSETCONS (new, p);
4893 XSETCAR (new, Fpurecopy (car));
4894 XSETCDR (new, Fpurecopy (cdr));
4895 return new;
4899 /* Value is a float object with value NUM allocated from pure space. */
4901 Lisp_Object
4902 make_pure_float (num)
4903 double num;
4905 register Lisp_Object new;
4906 struct Lisp_Float *p;
4908 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4909 XSETFLOAT (new, p);
4910 XFLOAT_DATA (new) = num;
4911 return new;
4915 /* Return a vector with room for LEN Lisp_Objects allocated from
4916 pure space. */
4918 Lisp_Object
4919 make_pure_vector (len)
4920 EMACS_INT len;
4922 Lisp_Object new;
4923 struct Lisp_Vector *p;
4924 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4926 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4927 XSETVECTOR (new, p);
4928 XVECTOR (new)->size = len;
4929 return new;
4933 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4934 doc: /* Make a copy of object OBJ in pure storage.
4935 Recursively copies contents of vectors and cons cells.
4936 Does not copy symbols. Copies strings without text properties. */)
4937 (obj)
4938 register Lisp_Object obj;
4940 if (NILP (Vpurify_flag))
4941 return obj;
4943 if (PURE_POINTER_P (XPNTR (obj)))
4944 return obj;
4946 if (CONSP (obj))
4947 return pure_cons (XCAR (obj), XCDR (obj));
4948 else if (FLOATP (obj))
4949 return make_pure_float (XFLOAT_DATA (obj));
4950 else if (STRINGP (obj))
4951 return make_pure_string (SDATA (obj), SCHARS (obj),
4952 SBYTES (obj),
4953 STRING_MULTIBYTE (obj));
4954 else if (COMPILEDP (obj) || VECTORP (obj))
4956 register struct Lisp_Vector *vec;
4957 register int i;
4958 EMACS_INT size;
4960 size = XVECTOR (obj)->size;
4961 if (size & PSEUDOVECTOR_FLAG)
4962 size &= PSEUDOVECTOR_SIZE_MASK;
4963 vec = XVECTOR (make_pure_vector (size));
4964 for (i = 0; i < size; i++)
4965 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4966 if (COMPILEDP (obj))
4967 XSETCOMPILED (obj, vec);
4968 else
4969 XSETVECTOR (obj, vec);
4970 return obj;
4972 else if (MARKERP (obj))
4973 error ("Attempt to copy a marker to pure storage");
4975 return obj;
4980 /***********************************************************************
4981 Protection from GC
4982 ***********************************************************************/
4984 /* Put an entry in staticvec, pointing at the variable with address
4985 VARADDRESS. */
4987 void
4988 staticpro (varaddress)
4989 Lisp_Object *varaddress;
4991 staticvec[staticidx++] = varaddress;
4992 if (staticidx >= NSTATICS)
4993 abort ();
4996 struct catchtag
4998 Lisp_Object tag;
4999 Lisp_Object val;
5000 struct catchtag *next;
5004 /***********************************************************************
5005 Protection from GC
5006 ***********************************************************************/
5008 /* Temporarily prevent garbage collection. */
5011 inhibit_garbage_collection ()
5013 int count = SPECPDL_INDEX ();
5014 int nbits = min (VALBITS, BITS_PER_INT);
5016 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
5017 return count;
5021 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5022 doc: /* Reclaim storage for Lisp objects no longer needed.
5023 Garbage collection happens automatically if you cons more than
5024 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5025 `garbage-collect' normally returns a list with info on amount of space in use:
5026 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
5027 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
5028 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
5029 (USED-STRINGS . FREE-STRINGS))
5030 However, if there was overflow in pure space, `garbage-collect'
5031 returns nil, because real GC can't be done. */)
5034 register struct specbinding *bind;
5035 struct catchtag *catch;
5036 struct handler *handler;
5037 char stack_top_variable;
5038 register int i;
5039 int message_p;
5040 Lisp_Object total[8];
5041 int count = SPECPDL_INDEX ();
5042 EMACS_TIME t1, t2, t3;
5044 if (abort_on_gc)
5045 abort ();
5047 /* Can't GC if pure storage overflowed because we can't determine
5048 if something is a pure object or not. */
5049 if (pure_bytes_used_before_overflow)
5050 return Qnil;
5052 CHECK_CONS_LIST ();
5054 /* Don't keep undo information around forever.
5055 Do this early on, so it is no problem if the user quits. */
5057 register struct buffer *nextb = all_buffers;
5059 while (nextb)
5061 /* If a buffer's undo list is Qt, that means that undo is
5062 turned off in that buffer. Calling truncate_undo_list on
5063 Qt tends to return NULL, which effectively turns undo back on.
5064 So don't call truncate_undo_list if undo_list is Qt. */
5065 if (! NILP (nextb->name) && ! EQ (nextb->undo_list, Qt))
5066 truncate_undo_list (nextb);
5068 /* Shrink buffer gaps, but skip indirect and dead buffers. */
5069 if (nextb->base_buffer == 0 && !NILP (nextb->name))
5071 /* If a buffer's gap size is more than 10% of the buffer
5072 size, or larger than 2000 bytes, then shrink it
5073 accordingly. Keep a minimum size of 20 bytes. */
5074 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
5076 if (nextb->text->gap_size > size)
5078 struct buffer *save_current = current_buffer;
5079 current_buffer = nextb;
5080 make_gap (-(nextb->text->gap_size - size));
5081 current_buffer = save_current;
5085 nextb = nextb->next;
5089 EMACS_GET_TIME (t1);
5091 /* In case user calls debug_print during GC,
5092 don't let that cause a recursive GC. */
5093 consing_since_gc = 0;
5095 /* Save what's currently displayed in the echo area. */
5096 message_p = push_message ();
5097 record_unwind_protect (pop_message_unwind, Qnil);
5099 /* Save a copy of the contents of the stack, for debugging. */
5100 #if MAX_SAVE_STACK > 0
5101 if (NILP (Vpurify_flag))
5103 i = &stack_top_variable - stack_bottom;
5104 if (i < 0) i = -i;
5105 if (i < MAX_SAVE_STACK)
5107 if (stack_copy == 0)
5108 stack_copy = (char *) xmalloc (stack_copy_size = i);
5109 else if (stack_copy_size < i)
5110 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
5111 if (stack_copy)
5113 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
5114 bcopy (stack_bottom, stack_copy, i);
5115 else
5116 bcopy (&stack_top_variable, stack_copy, i);
5120 #endif /* MAX_SAVE_STACK > 0 */
5122 if (garbage_collection_messages)
5123 message1_nolog ("Garbage collecting...");
5125 BLOCK_INPUT;
5127 shrink_regexp_cache ();
5129 gc_in_progress = 1;
5131 /* clear_marks (); */
5133 /* Mark all the special slots that serve as the roots of accessibility. */
5135 for (i = 0; i < staticidx; i++)
5136 mark_object (*staticvec[i]);
5138 for (bind = specpdl; bind != specpdl_ptr; bind++)
5140 mark_object (bind->symbol);
5141 mark_object (bind->old_value);
5143 mark_terminals ();
5144 mark_kboards ();
5145 mark_ttys ();
5147 #ifdef USE_GTK
5149 extern void xg_mark_data ();
5150 xg_mark_data ();
5152 #endif
5154 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5155 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5156 mark_stack ();
5157 #else
5159 register struct gcpro *tail;
5160 for (tail = gcprolist; tail; tail = tail->next)
5161 for (i = 0; i < tail->nvars; i++)
5162 mark_object (tail->var[i]);
5164 #endif
5166 mark_byte_stack ();
5167 for (catch = catchlist; catch; catch = catch->next)
5169 mark_object (catch->tag);
5170 mark_object (catch->val);
5172 for (handler = handlerlist; handler; handler = handler->next)
5174 mark_object (handler->handler);
5175 mark_object (handler->var);
5177 mark_backtrace ();
5179 #ifdef HAVE_WINDOW_SYSTEM
5180 mark_fringe_data ();
5181 #endif
5183 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5184 mark_stack ();
5185 #endif
5187 /* Everything is now marked, except for the things that require special
5188 finalization, i.e. the undo_list.
5189 Look thru every buffer's undo list
5190 for elements that update markers that were not marked,
5191 and delete them. */
5193 register struct buffer *nextb = all_buffers;
5195 while (nextb)
5197 /* If a buffer's undo list is Qt, that means that undo is
5198 turned off in that buffer. Calling truncate_undo_list on
5199 Qt tends to return NULL, which effectively turns undo back on.
5200 So don't call truncate_undo_list if undo_list is Qt. */
5201 if (! EQ (nextb->undo_list, Qt))
5203 Lisp_Object tail, prev;
5204 tail = nextb->undo_list;
5205 prev = Qnil;
5206 while (CONSP (tail))
5208 if (GC_CONSP (XCAR (tail))
5209 && GC_MARKERP (XCAR (XCAR (tail)))
5210 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5212 if (NILP (prev))
5213 nextb->undo_list = tail = XCDR (tail);
5214 else
5216 tail = XCDR (tail);
5217 XSETCDR (prev, tail);
5220 else
5222 prev = tail;
5223 tail = XCDR (tail);
5227 /* Now that we have stripped the elements that need not be in the
5228 undo_list any more, we can finally mark the list. */
5229 mark_object (nextb->undo_list);
5231 nextb = nextb->next;
5235 gc_sweep ();
5237 /* Clear the mark bits that we set in certain root slots. */
5239 unmark_byte_stack ();
5240 VECTOR_UNMARK (&buffer_defaults);
5241 VECTOR_UNMARK (&buffer_local_symbols);
5243 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5244 dump_zombies ();
5245 #endif
5247 UNBLOCK_INPUT;
5249 CHECK_CONS_LIST ();
5251 /* clear_marks (); */
5252 gc_in_progress = 0;
5254 consing_since_gc = 0;
5255 if (gc_cons_threshold < 10000)
5256 gc_cons_threshold = 10000;
5258 if (FLOATP (Vgc_cons_percentage))
5259 { /* Set gc_cons_combined_threshold. */
5260 EMACS_INT total = 0;
5262 total += total_conses * sizeof (struct Lisp_Cons);
5263 total += total_symbols * sizeof (struct Lisp_Symbol);
5264 total += total_markers * sizeof (union Lisp_Misc);
5265 total += total_string_size;
5266 total += total_vector_size * sizeof (Lisp_Object);
5267 total += total_floats * sizeof (struct Lisp_Float);
5268 total += total_intervals * sizeof (struct interval);
5269 total += total_strings * sizeof (struct Lisp_String);
5271 gc_relative_threshold = total * XFLOAT_DATA (Vgc_cons_percentage);
5273 else
5274 gc_relative_threshold = 0;
5276 if (garbage_collection_messages)
5278 if (message_p || minibuf_level > 0)
5279 restore_message ();
5280 else
5281 message1_nolog ("Garbage collecting...done");
5284 unbind_to (count, Qnil);
5286 total[0] = Fcons (make_number (total_conses),
5287 make_number (total_free_conses));
5288 total[1] = Fcons (make_number (total_symbols),
5289 make_number (total_free_symbols));
5290 total[2] = Fcons (make_number (total_markers),
5291 make_number (total_free_markers));
5292 total[3] = make_number (total_string_size);
5293 total[4] = make_number (total_vector_size);
5294 total[5] = Fcons (make_number (total_floats),
5295 make_number (total_free_floats));
5296 total[6] = Fcons (make_number (total_intervals),
5297 make_number (total_free_intervals));
5298 total[7] = Fcons (make_number (total_strings),
5299 make_number (total_free_strings));
5301 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5303 /* Compute average percentage of zombies. */
5304 double nlive = 0;
5306 for (i = 0; i < 7; ++i)
5307 if (CONSP (total[i]))
5308 nlive += XFASTINT (XCAR (total[i]));
5310 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5311 max_live = max (nlive, max_live);
5312 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5313 max_zombies = max (nzombies, max_zombies);
5314 ++ngcs;
5316 #endif
5318 if (!NILP (Vpost_gc_hook))
5320 int count = inhibit_garbage_collection ();
5321 safe_run_hooks (Qpost_gc_hook);
5322 unbind_to (count, Qnil);
5325 /* Accumulate statistics. */
5326 EMACS_GET_TIME (t2);
5327 EMACS_SUB_TIME (t3, t2, t1);
5328 if (FLOATP (Vgc_elapsed))
5329 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
5330 EMACS_SECS (t3) +
5331 EMACS_USECS (t3) * 1.0e-6);
5332 gcs_done++;
5334 return Flist (sizeof total / sizeof *total, total);
5338 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5339 only interesting objects referenced from glyphs are strings. */
5341 static void
5342 mark_glyph_matrix (matrix)
5343 struct glyph_matrix *matrix;
5345 struct glyph_row *row = matrix->rows;
5346 struct glyph_row *end = row + matrix->nrows;
5348 for (; row < end; ++row)
5349 if (row->enabled_p)
5351 int area;
5352 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5354 struct glyph *glyph = row->glyphs[area];
5355 struct glyph *end_glyph = glyph + row->used[area];
5357 for (; glyph < end_glyph; ++glyph)
5358 if (GC_STRINGP (glyph->object)
5359 && !STRING_MARKED_P (XSTRING (glyph->object)))
5360 mark_object (glyph->object);
5366 /* Mark Lisp faces in the face cache C. */
5368 static void
5369 mark_face_cache (c)
5370 struct face_cache *c;
5372 if (c)
5374 int i, j;
5375 for (i = 0; i < c->used; ++i)
5377 struct face *face = FACE_FROM_ID (c->f, i);
5379 if (face)
5381 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5382 mark_object (face->lface[j]);
5389 #ifdef HAVE_WINDOW_SYSTEM
5391 /* Mark Lisp objects in image IMG. */
5393 static void
5394 mark_image (img)
5395 struct image *img;
5397 mark_object (img->spec);
5399 if (!NILP (img->data.lisp_val))
5400 mark_object (img->data.lisp_val);
5404 /* Mark Lisp objects in image cache of frame F. It's done this way so
5405 that we don't have to include xterm.h here. */
5407 static void
5408 mark_image_cache (f)
5409 struct frame *f;
5411 forall_images_in_image_cache (f, mark_image);
5414 #endif /* HAVE_X_WINDOWS */
5418 /* Mark reference to a Lisp_Object.
5419 If the object referred to has not been seen yet, recursively mark
5420 all the references contained in it. */
5422 #define LAST_MARKED_SIZE 500
5423 Lisp_Object last_marked[LAST_MARKED_SIZE];
5424 int last_marked_index;
5426 /* For debugging--call abort when we cdr down this many
5427 links of a list, in mark_object. In debugging,
5428 the call to abort will hit a breakpoint.
5429 Normally this is zero and the check never goes off. */
5430 int mark_object_loop_halt;
5432 /* Return non-zero if the object was not yet marked. */
5433 static int
5434 mark_vectorlike (ptr)
5435 struct Lisp_Vector *ptr;
5437 register EMACS_INT size = ptr->size;
5438 register int i;
5440 if (VECTOR_MARKED_P (ptr))
5441 return 0; /* Already marked */
5442 VECTOR_MARK (ptr); /* Else mark it */
5443 if (size & PSEUDOVECTOR_FLAG)
5444 size &= PSEUDOVECTOR_SIZE_MASK;
5446 /* Note that this size is not the memory-footprint size, but only
5447 the number of Lisp_Object fields that we should trace.
5448 The distinction is used e.g. by Lisp_Process which places extra
5449 non-Lisp_Object fields at the end of the structure. */
5450 for (i = 0; i < size; i++) /* and then mark its elements */
5451 mark_object (ptr->contents[i]);
5452 return 1;
5455 void
5456 mark_object (arg)
5457 Lisp_Object arg;
5459 register Lisp_Object obj = arg;
5460 #ifdef GC_CHECK_MARKED_OBJECTS
5461 void *po;
5462 struct mem_node *m;
5463 #endif
5464 int cdr_count = 0;
5466 loop:
5468 if (PURE_POINTER_P (XPNTR (obj)))
5469 return;
5471 last_marked[last_marked_index++] = obj;
5472 if (last_marked_index == LAST_MARKED_SIZE)
5473 last_marked_index = 0;
5475 /* Perform some sanity checks on the objects marked here. Abort if
5476 we encounter an object we know is bogus. This increases GC time
5477 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5478 #ifdef GC_CHECK_MARKED_OBJECTS
5480 po = (void *) XPNTR (obj);
5482 /* Check that the object pointed to by PO is known to be a Lisp
5483 structure allocated from the heap. */
5484 #define CHECK_ALLOCATED() \
5485 do { \
5486 m = mem_find (po); \
5487 if (m == MEM_NIL) \
5488 abort (); \
5489 } while (0)
5491 /* Check that the object pointed to by PO is live, using predicate
5492 function LIVEP. */
5493 #define CHECK_LIVE(LIVEP) \
5494 do { \
5495 if (!LIVEP (m, po)) \
5496 abort (); \
5497 } while (0)
5499 /* Check both of the above conditions. */
5500 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5501 do { \
5502 CHECK_ALLOCATED (); \
5503 CHECK_LIVE (LIVEP); \
5504 } while (0) \
5506 #else /* not GC_CHECK_MARKED_OBJECTS */
5508 #define CHECK_ALLOCATED() (void) 0
5509 #define CHECK_LIVE(LIVEP) (void) 0
5510 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5512 #endif /* not GC_CHECK_MARKED_OBJECTS */
5514 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
5516 case Lisp_String:
5518 register struct Lisp_String *ptr = XSTRING (obj);
5519 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5520 MARK_INTERVAL_TREE (ptr->intervals);
5521 MARK_STRING (ptr);
5522 #ifdef GC_CHECK_STRING_BYTES
5523 /* Check that the string size recorded in the string is the
5524 same as the one recorded in the sdata structure. */
5525 CHECK_STRING_BYTES (ptr);
5526 #endif /* GC_CHECK_STRING_BYTES */
5528 break;
5530 case Lisp_Vectorlike:
5531 #ifdef GC_CHECK_MARKED_OBJECTS
5532 m = mem_find (po);
5533 if (m == MEM_NIL && !GC_SUBRP (obj)
5534 && po != &buffer_defaults
5535 && po != &buffer_local_symbols)
5536 abort ();
5537 #endif /* GC_CHECK_MARKED_OBJECTS */
5539 if (GC_BUFFERP (obj))
5541 if (!VECTOR_MARKED_P (XBUFFER (obj)))
5543 #ifdef GC_CHECK_MARKED_OBJECTS
5544 if (po != &buffer_defaults && po != &buffer_local_symbols)
5546 struct buffer *b;
5547 for (b = all_buffers; b && b != po; b = b->next)
5549 if (b == NULL)
5550 abort ();
5552 #endif /* GC_CHECK_MARKED_OBJECTS */
5553 mark_buffer (obj);
5556 else if (GC_SUBRP (obj))
5557 break;
5558 else if (GC_COMPILEDP (obj))
5559 /* We could treat this just like a vector, but it is better to
5560 save the COMPILED_CONSTANTS element for last and avoid
5561 recursion there. */
5563 register struct Lisp_Vector *ptr = XVECTOR (obj);
5564 register EMACS_INT size = ptr->size;
5565 register int i;
5567 if (VECTOR_MARKED_P (ptr))
5568 break; /* Already marked */
5570 CHECK_LIVE (live_vector_p);
5571 VECTOR_MARK (ptr); /* Else mark it */
5572 size &= PSEUDOVECTOR_SIZE_MASK;
5573 for (i = 0; i < size; i++) /* and then mark its elements */
5575 if (i != COMPILED_CONSTANTS)
5576 mark_object (ptr->contents[i]);
5578 obj = ptr->contents[COMPILED_CONSTANTS];
5579 goto loop;
5581 else if (GC_FRAMEP (obj))
5583 register struct frame *ptr = XFRAME (obj);
5584 if (mark_vectorlike (XVECTOR (obj)))
5586 mark_face_cache (ptr->face_cache);
5587 #ifdef HAVE_WINDOW_SYSTEM
5588 mark_image_cache (ptr);
5589 #endif /* HAVE_WINDOW_SYSTEM */
5592 else if (GC_WINDOWP (obj))
5594 register struct Lisp_Vector *ptr = XVECTOR (obj);
5595 struct window *w = XWINDOW (obj);
5596 if (mark_vectorlike (ptr))
5598 /* Mark glyphs for leaf windows. Marking window matrices is
5599 sufficient because frame matrices use the same glyph
5600 memory. */
5601 if (NILP (w->hchild)
5602 && NILP (w->vchild)
5603 && w->current_matrix)
5605 mark_glyph_matrix (w->current_matrix);
5606 mark_glyph_matrix (w->desired_matrix);
5610 else if (GC_HASH_TABLE_P (obj))
5612 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
5613 if (mark_vectorlike ((struct Lisp_Vector *)h))
5614 { /* If hash table is not weak, mark all keys and values.
5615 For weak tables, mark only the vector. */
5616 if (GC_NILP (h->weak))
5617 mark_object (h->key_and_value);
5618 else
5619 VECTOR_MARK (XVECTOR (h->key_and_value));
5622 else
5623 mark_vectorlike (XVECTOR (obj));
5624 break;
5626 case Lisp_Symbol:
5628 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5629 struct Lisp_Symbol *ptrx;
5631 if (ptr->gcmarkbit) break;
5632 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5633 ptr->gcmarkbit = 1;
5634 mark_object (ptr->value);
5635 mark_object (ptr->function);
5636 mark_object (ptr->plist);
5638 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
5639 MARK_STRING (XSTRING (ptr->xname));
5640 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
5642 /* Note that we do not mark the obarray of the symbol.
5643 It is safe not to do so because nothing accesses that
5644 slot except to check whether it is nil. */
5645 ptr = ptr->next;
5646 if (ptr)
5648 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
5649 XSETSYMBOL (obj, ptrx);
5650 goto loop;
5653 break;
5655 case Lisp_Misc:
5656 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5657 if (XMARKER (obj)->gcmarkbit)
5658 break;
5659 XMARKER (obj)->gcmarkbit = 1;
5661 switch (XMISCTYPE (obj))
5663 case Lisp_Misc_Buffer_Local_Value:
5664 case Lisp_Misc_Some_Buffer_Local_Value:
5666 register struct Lisp_Buffer_Local_Value *ptr
5667 = XBUFFER_LOCAL_VALUE (obj);
5668 /* If the cdr is nil, avoid recursion for the car. */
5669 if (EQ (ptr->cdr, Qnil))
5671 obj = ptr->realvalue;
5672 goto loop;
5674 mark_object (ptr->realvalue);
5675 mark_object (ptr->buffer);
5676 mark_object (ptr->frame);
5677 obj = ptr->cdr;
5678 goto loop;
5681 case Lisp_Misc_Marker:
5682 /* DO NOT mark thru the marker's chain.
5683 The buffer's markers chain does not preserve markers from gc;
5684 instead, markers are removed from the chain when freed by gc. */
5685 break;
5687 case Lisp_Misc_Intfwd:
5688 case Lisp_Misc_Boolfwd:
5689 case Lisp_Misc_Objfwd:
5690 case Lisp_Misc_Buffer_Objfwd:
5691 case Lisp_Misc_Kboard_Objfwd:
5692 /* Don't bother with Lisp_Buffer_Objfwd,
5693 since all markable slots in current buffer marked anyway. */
5694 /* Don't need to do Lisp_Objfwd, since the places they point
5695 are protected with staticpro. */
5696 break;
5698 case Lisp_Misc_Save_Value:
5699 #if GC_MARK_STACK
5701 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5702 /* If DOGC is set, POINTER is the address of a memory
5703 area containing INTEGER potential Lisp_Objects. */
5704 if (ptr->dogc)
5706 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5707 int nelt;
5708 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5709 mark_maybe_object (*p);
5712 #endif
5713 break;
5715 case Lisp_Misc_Overlay:
5717 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5718 mark_object (ptr->start);
5719 mark_object (ptr->end);
5720 mark_object (ptr->plist);
5721 if (ptr->next)
5723 XSETMISC (obj, ptr->next);
5724 goto loop;
5727 break;
5729 default:
5730 abort ();
5732 break;
5734 case Lisp_Cons:
5736 register struct Lisp_Cons *ptr = XCONS (obj);
5737 if (CONS_MARKED_P (ptr)) break;
5738 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5739 CONS_MARK (ptr);
5740 /* If the cdr is nil, avoid recursion for the car. */
5741 if (EQ (ptr->u.cdr, Qnil))
5743 obj = ptr->car;
5744 cdr_count = 0;
5745 goto loop;
5747 mark_object (ptr->car);
5748 obj = ptr->u.cdr;
5749 cdr_count++;
5750 if (cdr_count == mark_object_loop_halt)
5751 abort ();
5752 goto loop;
5755 case Lisp_Float:
5756 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5757 FLOAT_MARK (XFLOAT (obj));
5758 break;
5760 case Lisp_Int:
5761 break;
5763 default:
5764 abort ();
5767 #undef CHECK_LIVE
5768 #undef CHECK_ALLOCATED
5769 #undef CHECK_ALLOCATED_AND_LIVE
5772 /* Mark the pointers in a buffer structure. */
5774 static void
5775 mark_buffer (buf)
5776 Lisp_Object buf;
5778 register struct buffer *buffer = XBUFFER (buf);
5779 register Lisp_Object *ptr, tmp;
5780 Lisp_Object base_buffer;
5782 VECTOR_MARK (buffer);
5784 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5786 /* For now, we just don't mark the undo_list. It's done later in
5787 a special way just before the sweep phase, and after stripping
5788 some of its elements that are not needed any more. */
5790 if (buffer->overlays_before)
5792 XSETMISC (tmp, buffer->overlays_before);
5793 mark_object (tmp);
5795 if (buffer->overlays_after)
5797 XSETMISC (tmp, buffer->overlays_after);
5798 mark_object (tmp);
5801 for (ptr = &buffer->name;
5802 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5803 ptr++)
5804 mark_object (*ptr);
5806 /* If this is an indirect buffer, mark its base buffer. */
5807 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5809 XSETBUFFER (base_buffer, buffer->base_buffer);
5810 mark_buffer (base_buffer);
5814 /* Mark the Lisp pointers in the terminal objects.
5815 Called by the Fgarbage_collector. */
5817 static void
5818 mark_terminals (void)
5820 struct terminal *t;
5821 for (t = terminal_list; t; t = t->next_terminal)
5823 eassert (t->name != NULL);
5824 mark_vectorlike ((struct Lisp_Vector *)t);
5830 /* Value is non-zero if OBJ will survive the current GC because it's
5831 either marked or does not need to be marked to survive. */
5834 survives_gc_p (obj)
5835 Lisp_Object obj;
5837 int survives_p;
5839 switch (XGCTYPE (obj))
5841 case Lisp_Int:
5842 survives_p = 1;
5843 break;
5845 case Lisp_Symbol:
5846 survives_p = XSYMBOL (obj)->gcmarkbit;
5847 break;
5849 case Lisp_Misc:
5850 survives_p = XMARKER (obj)->gcmarkbit;
5851 break;
5853 case Lisp_String:
5854 survives_p = STRING_MARKED_P (XSTRING (obj));
5855 break;
5857 case Lisp_Vectorlike:
5858 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5859 break;
5861 case Lisp_Cons:
5862 survives_p = CONS_MARKED_P (XCONS (obj));
5863 break;
5865 case Lisp_Float:
5866 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5867 break;
5869 default:
5870 abort ();
5873 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5878 /* Sweep: find all structures not marked, and free them. */
5880 static void
5881 gc_sweep ()
5883 /* Remove or mark entries in weak hash tables.
5884 This must be done before any object is unmarked. */
5885 sweep_weak_hash_tables ();
5887 sweep_strings ();
5888 #ifdef GC_CHECK_STRING_BYTES
5889 if (!noninteractive)
5890 check_string_bytes (1);
5891 #endif
5893 /* Put all unmarked conses on free list */
5895 register struct cons_block *cblk;
5896 struct cons_block **cprev = &cons_block;
5897 register int lim = cons_block_index;
5898 register int num_free = 0, num_used = 0;
5900 cons_free_list = 0;
5902 for (cblk = cons_block; cblk; cblk = *cprev)
5904 register int i = 0;
5905 int this_free = 0;
5906 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
5908 /* Scan the mark bits an int at a time. */
5909 for (i = 0; i <= ilim; i++)
5911 if (cblk->gcmarkbits[i] == -1)
5913 /* Fast path - all cons cells for this int are marked. */
5914 cblk->gcmarkbits[i] = 0;
5915 num_used += BITS_PER_INT;
5917 else
5919 /* Some cons cells for this int are not marked.
5920 Find which ones, and free them. */
5921 int start, pos, stop;
5923 start = i * BITS_PER_INT;
5924 stop = lim - start;
5925 if (stop > BITS_PER_INT)
5926 stop = BITS_PER_INT;
5927 stop += start;
5929 for (pos = start; pos < stop; pos++)
5931 if (!CONS_MARKED_P (&cblk->conses[pos]))
5933 this_free++;
5934 cblk->conses[pos].u.chain = cons_free_list;
5935 cons_free_list = &cblk->conses[pos];
5936 #if GC_MARK_STACK
5937 cons_free_list->car = Vdead;
5938 #endif
5940 else
5942 num_used++;
5943 CONS_UNMARK (&cblk->conses[pos]);
5949 lim = CONS_BLOCK_SIZE;
5950 /* If this block contains only free conses and we have already
5951 seen more than two blocks worth of free conses then deallocate
5952 this block. */
5953 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5955 *cprev = cblk->next;
5956 /* Unhook from the free list. */
5957 cons_free_list = cblk->conses[0].u.chain;
5958 lisp_align_free (cblk);
5959 n_cons_blocks--;
5961 else
5963 num_free += this_free;
5964 cprev = &cblk->next;
5967 total_conses = num_used;
5968 total_free_conses = num_free;
5971 /* Put all unmarked floats on free list */
5973 register struct float_block *fblk;
5974 struct float_block **fprev = &float_block;
5975 register int lim = float_block_index;
5976 register int num_free = 0, num_used = 0;
5978 float_free_list = 0;
5980 for (fblk = float_block; fblk; fblk = *fprev)
5982 register int i;
5983 int this_free = 0;
5984 for (i = 0; i < lim; i++)
5985 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5987 this_free++;
5988 fblk->floats[i].u.chain = float_free_list;
5989 float_free_list = &fblk->floats[i];
5991 else
5993 num_used++;
5994 FLOAT_UNMARK (&fblk->floats[i]);
5996 lim = FLOAT_BLOCK_SIZE;
5997 /* If this block contains only free floats and we have already
5998 seen more than two blocks worth of free floats then deallocate
5999 this block. */
6000 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6002 *fprev = fblk->next;
6003 /* Unhook from the free list. */
6004 float_free_list = fblk->floats[0].u.chain;
6005 lisp_align_free (fblk);
6006 n_float_blocks--;
6008 else
6010 num_free += this_free;
6011 fprev = &fblk->next;
6014 total_floats = num_used;
6015 total_free_floats = num_free;
6018 /* Put all unmarked intervals on free list */
6020 register struct interval_block *iblk;
6021 struct interval_block **iprev = &interval_block;
6022 register int lim = interval_block_index;
6023 register int num_free = 0, num_used = 0;
6025 interval_free_list = 0;
6027 for (iblk = interval_block; iblk; iblk = *iprev)
6029 register int i;
6030 int this_free = 0;
6032 for (i = 0; i < lim; i++)
6034 if (!iblk->intervals[i].gcmarkbit)
6036 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6037 interval_free_list = &iblk->intervals[i];
6038 this_free++;
6040 else
6042 num_used++;
6043 iblk->intervals[i].gcmarkbit = 0;
6046 lim = INTERVAL_BLOCK_SIZE;
6047 /* If this block contains only free intervals and we have already
6048 seen more than two blocks worth of free intervals then
6049 deallocate this block. */
6050 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6052 *iprev = iblk->next;
6053 /* Unhook from the free list. */
6054 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6055 lisp_free (iblk);
6056 n_interval_blocks--;
6058 else
6060 num_free += this_free;
6061 iprev = &iblk->next;
6064 total_intervals = num_used;
6065 total_free_intervals = num_free;
6068 /* Put all unmarked symbols on free list */
6070 register struct symbol_block *sblk;
6071 struct symbol_block **sprev = &symbol_block;
6072 register int lim = symbol_block_index;
6073 register int num_free = 0, num_used = 0;
6075 symbol_free_list = NULL;
6077 for (sblk = symbol_block; sblk; sblk = *sprev)
6079 int this_free = 0;
6080 struct Lisp_Symbol *sym = sblk->symbols;
6081 struct Lisp_Symbol *end = sym + lim;
6083 for (; sym < end; ++sym)
6085 /* Check if the symbol was created during loadup. In such a case
6086 it might be pointed to by pure bytecode which we don't trace,
6087 so we conservatively assume that it is live. */
6088 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
6090 if (!sym->gcmarkbit && !pure_p)
6092 sym->next = symbol_free_list;
6093 symbol_free_list = sym;
6094 #if GC_MARK_STACK
6095 symbol_free_list->function = Vdead;
6096 #endif
6097 ++this_free;
6099 else
6101 ++num_used;
6102 if (!pure_p)
6103 UNMARK_STRING (XSTRING (sym->xname));
6104 sym->gcmarkbit = 0;
6108 lim = SYMBOL_BLOCK_SIZE;
6109 /* If this block contains only free symbols and we have already
6110 seen more than two blocks worth of free symbols then deallocate
6111 this block. */
6112 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6114 *sprev = sblk->next;
6115 /* Unhook from the free list. */
6116 symbol_free_list = sblk->symbols[0].next;
6117 lisp_free (sblk);
6118 n_symbol_blocks--;
6120 else
6122 num_free += this_free;
6123 sprev = &sblk->next;
6126 total_symbols = num_used;
6127 total_free_symbols = num_free;
6130 /* Put all unmarked misc's on free list.
6131 For a marker, first unchain it from the buffer it points into. */
6133 register struct marker_block *mblk;
6134 struct marker_block **mprev = &marker_block;
6135 register int lim = marker_block_index;
6136 register int num_free = 0, num_used = 0;
6138 marker_free_list = 0;
6140 for (mblk = marker_block; mblk; mblk = *mprev)
6142 register int i;
6143 int this_free = 0;
6145 for (i = 0; i < lim; i++)
6147 if (!mblk->markers[i].u_marker.gcmarkbit)
6149 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
6150 unchain_marker (&mblk->markers[i].u_marker);
6151 /* Set the type of the freed object to Lisp_Misc_Free.
6152 We could leave the type alone, since nobody checks it,
6153 but this might catch bugs faster. */
6154 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
6155 mblk->markers[i].u_free.chain = marker_free_list;
6156 marker_free_list = &mblk->markers[i];
6157 this_free++;
6159 else
6161 num_used++;
6162 mblk->markers[i].u_marker.gcmarkbit = 0;
6165 lim = MARKER_BLOCK_SIZE;
6166 /* If this block contains only free markers and we have already
6167 seen more than two blocks worth of free markers then deallocate
6168 this block. */
6169 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6171 *mprev = mblk->next;
6172 /* Unhook from the free list. */
6173 marker_free_list = mblk->markers[0].u_free.chain;
6174 lisp_free (mblk);
6175 n_marker_blocks--;
6177 else
6179 num_free += this_free;
6180 mprev = &mblk->next;
6184 total_markers = num_used;
6185 total_free_markers = num_free;
6188 /* Free all unmarked buffers */
6190 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6192 while (buffer)
6193 if (!VECTOR_MARKED_P (buffer))
6195 if (prev)
6196 prev->next = buffer->next;
6197 else
6198 all_buffers = buffer->next;
6199 next = buffer->next;
6200 lisp_free (buffer);
6201 buffer = next;
6203 else
6205 VECTOR_UNMARK (buffer);
6206 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6207 prev = buffer, buffer = buffer->next;
6211 /* Free all unmarked vectors */
6213 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
6214 total_vector_size = 0;
6216 while (vector)
6217 if (!VECTOR_MARKED_P (vector))
6219 if (prev)
6220 prev->next = vector->next;
6221 else
6222 all_vectors = vector->next;
6223 next = vector->next;
6224 lisp_free (vector);
6225 n_vectors--;
6226 vector = next;
6229 else
6231 VECTOR_UNMARK (vector);
6232 if (vector->size & PSEUDOVECTOR_FLAG)
6233 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
6234 else
6235 total_vector_size += vector->size;
6236 prev = vector, vector = vector->next;
6240 #ifdef GC_CHECK_STRING_BYTES
6241 if (!noninteractive)
6242 check_string_bytes (1);
6243 #endif
6249 /* Debugging aids. */
6251 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6252 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6253 This may be helpful in debugging Emacs's memory usage.
6254 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6257 Lisp_Object end;
6259 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
6261 return end;
6264 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6265 doc: /* Return a list of counters that measure how much consing there has been.
6266 Each of these counters increments for a certain kind of object.
6267 The counters wrap around from the largest positive integer to zero.
6268 Garbage collection does not decrease them.
6269 The elements of the value are as follows:
6270 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6271 All are in units of 1 = one object consed
6272 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6273 objects consed.
6274 MISCS include overlays, markers, and some internal types.
6275 Frames, windows, buffers, and subprocesses count as vectors
6276 (but the contents of a buffer's text do not count here). */)
6279 Lisp_Object consed[8];
6281 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
6282 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
6283 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
6284 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
6285 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
6286 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
6287 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
6288 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
6290 return Flist (8, consed);
6293 int suppress_checking;
6294 void
6295 die (msg, file, line)
6296 const char *msg;
6297 const char *file;
6298 int line;
6300 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
6301 file, line, msg);
6302 abort ();
6305 /* Initialization */
6307 void
6308 init_alloc_once ()
6310 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6311 purebeg = PUREBEG;
6312 pure_size = PURESIZE;
6313 pure_bytes_used = 0;
6314 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
6315 pure_bytes_used_before_overflow = 0;
6317 /* Initialize the list of free aligned blocks. */
6318 free_ablock = NULL;
6320 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6321 mem_init ();
6322 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6323 #endif
6325 all_vectors = 0;
6326 ignore_warnings = 1;
6327 #ifdef DOUG_LEA_MALLOC
6328 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6329 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6330 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6331 #endif
6332 init_strings ();
6333 init_cons ();
6334 init_symbol ();
6335 init_marker ();
6336 init_float ();
6337 init_intervals ();
6339 #ifdef REL_ALLOC
6340 malloc_hysteresis = 32;
6341 #else
6342 malloc_hysteresis = 0;
6343 #endif
6345 refill_memory_reserve ();
6347 ignore_warnings = 0;
6348 gcprolist = 0;
6349 byte_stack_list = 0;
6350 staticidx = 0;
6351 consing_since_gc = 0;
6352 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
6353 gc_relative_threshold = 0;
6355 #ifdef VIRT_ADDR_VARIES
6356 malloc_sbrk_unused = 1<<22; /* A large number */
6357 malloc_sbrk_used = 100000; /* as reasonable as any number */
6358 #endif /* VIRT_ADDR_VARIES */
6361 void
6362 init_alloc ()
6364 gcprolist = 0;
6365 byte_stack_list = 0;
6366 #if GC_MARK_STACK
6367 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6368 setjmp_tested_p = longjmps_done = 0;
6369 #endif
6370 #endif
6371 Vgc_elapsed = make_float (0.0);
6372 gcs_done = 0;
6375 void
6376 syms_of_alloc ()
6378 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
6379 doc: /* *Number of bytes of consing between garbage collections.
6380 Garbage collection can happen automatically once this many bytes have been
6381 allocated since the last garbage collection. All data types count.
6383 Garbage collection happens automatically only when `eval' is called.
6385 By binding this temporarily to a large number, you can effectively
6386 prevent garbage collection during a part of the program.
6387 See also `gc-cons-percentage'. */);
6389 DEFVAR_LISP ("gc-cons-percentage", &Vgc_cons_percentage,
6390 doc: /* *Portion of the heap used for allocation.
6391 Garbage collection can happen automatically once this portion of the heap
6392 has been allocated since the last garbage collection.
6393 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6394 Vgc_cons_percentage = make_float (0.1);
6396 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
6397 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
6399 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
6400 doc: /* Number of cons cells that have been consed so far. */);
6402 DEFVAR_INT ("floats-consed", &floats_consed,
6403 doc: /* Number of floats that have been consed so far. */);
6405 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
6406 doc: /* Number of vector cells that have been consed so far. */);
6408 DEFVAR_INT ("symbols-consed", &symbols_consed,
6409 doc: /* Number of symbols that have been consed so far. */);
6411 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
6412 doc: /* Number of string characters that have been consed so far. */);
6414 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
6415 doc: /* Number of miscellaneous objects that have been consed so far. */);
6417 DEFVAR_INT ("intervals-consed", &intervals_consed,
6418 doc: /* Number of intervals that have been consed so far. */);
6420 DEFVAR_INT ("strings-consed", &strings_consed,
6421 doc: /* Number of strings that have been consed so far. */);
6423 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
6424 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6425 This means that certain objects should be allocated in shared (pure) space. */);
6427 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
6428 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6429 garbage_collection_messages = 0;
6431 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
6432 doc: /* Hook run after garbage collection has finished. */);
6433 Vpost_gc_hook = Qnil;
6434 Qpost_gc_hook = intern ("post-gc-hook");
6435 staticpro (&Qpost_gc_hook);
6437 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
6438 doc: /* Precomputed `signal' argument for memory-full error. */);
6439 /* We build this in advance because if we wait until we need it, we might
6440 not be able to allocate the memory to hold it. */
6441 Vmemory_signal_data
6442 = list2 (Qerror,
6443 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6445 DEFVAR_LISP ("memory-full", &Vmemory_full,
6446 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6447 Vmemory_full = Qnil;
6449 staticpro (&Qgc_cons_threshold);
6450 Qgc_cons_threshold = intern ("gc-cons-threshold");
6452 staticpro (&Qchar_table_extra_slots);
6453 Qchar_table_extra_slots = intern ("char-table-extra-slots");
6455 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
6456 doc: /* Accumulated time elapsed in garbage collections.
6457 The time is in seconds as a floating point value. */);
6458 DEFVAR_INT ("gcs-done", &gcs_done,
6459 doc: /* Accumulated number of garbage collections done. */);
6461 defsubr (&Scons);
6462 defsubr (&Slist);
6463 defsubr (&Svector);
6464 defsubr (&Smake_byte_code);
6465 defsubr (&Smake_list);
6466 defsubr (&Smake_vector);
6467 defsubr (&Smake_char_table);
6468 defsubr (&Smake_string);
6469 defsubr (&Smake_bool_vector);
6470 defsubr (&Smake_symbol);
6471 defsubr (&Smake_marker);
6472 defsubr (&Spurecopy);
6473 defsubr (&Sgarbage_collect);
6474 defsubr (&Smemory_limit);
6475 defsubr (&Smemory_use_counts);
6477 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6478 defsubr (&Sgc_status);
6479 #endif
6482 /* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
6483 (do not change this comment) */