1 /* Random utility Lisp functions.
2 Copyright (C) 1985-1987, 1993-1995, 1997-2012
3 Free Software Foundation, Inc.
5 This file is part of GNU Emacs.
7 GNU Emacs is free software: you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation, either version 3 of the License, or
10 (at your option) any later version.
12 GNU Emacs is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
30 #include "character.h"
35 #include "intervals.h"
38 #include "blockinput.h"
40 #if defined (HAVE_X_WINDOWS)
43 #endif /* HAVE_MENUS */
45 Lisp_Object Qstring_lessp
;
46 static Lisp_Object Qprovide
, Qrequire
;
47 static Lisp_Object Qyes_or_no_p_history
;
48 Lisp_Object Qcursor_in_echo_area
;
49 static Lisp_Object Qwidget_type
;
50 static Lisp_Object Qcodeset
, Qdays
, Qmonths
, Qpaper
;
52 static Lisp_Object Qmd5
, Qsha1
, Qsha224
, Qsha256
, Qsha384
, Qsha512
;
54 static int internal_equal (Lisp_Object
, Lisp_Object
, int, int);
60 DEFUN ("identity", Fidentity
, Sidentity
, 1, 1, 0,
61 doc
: /* Return the argument unchanged. */)
67 DEFUN ("random", Frandom
, Srandom
, 0, 1, 0,
68 doc
: /* Return a pseudo-random number.
69 All integers representable in Lisp are equally likely.
70 On most systems, this is 29 bits' worth.
71 With positive integer LIMIT, return random number in interval [0,LIMIT).
72 With argument t, set the random number seed from the current time and pid.
73 Other values of LIMIT are ignored. */)
77 Lisp_Object lispy_val
;
81 EMACS_TIME t
= current_emacs_time ();
82 seed_random (getpid () ^ EMACS_SECS (t
) ^ EMACS_NSECS (t
));
85 if (NATNUMP (limit
) && XFASTINT (limit
) != 0)
87 /* Try to take our random number from the higher bits of VAL,
88 not the lower, since (says Gentzel) the low bits of `random'
89 are less random than the higher ones. We do this by using the
90 quotient rather than the remainder. At the high end of the RNG
91 it's possible to get a quotient larger than n; discarding
92 these values eliminates the bias that would otherwise appear
93 when using a large n. */
94 EMACS_INT denominator
= (INTMASK
+ 1) / XFASTINT (limit
);
96 val
= get_random () / denominator
;
97 while (val
>= XFASTINT (limit
));
101 XSETINT (lispy_val
, val
);
105 /* Heuristic on how many iterations of a tight loop can be safely done
106 before it's time to do a QUIT. This must be a power of 2. */
107 enum { QUIT_COUNT_HEURISTIC
= 1 << 16 };
109 /* Random data-structure functions */
111 DEFUN ("length", Flength
, Slength
, 1, 1, 0,
112 doc
: /* Return the length of vector, list or string SEQUENCE.
113 A byte-code function object is also allowed.
114 If the string contains multibyte characters, this is not necessarily
115 the number of bytes in the string; it is the number of characters.
116 To get the number of bytes, use `string-bytes'. */)
117 (register Lisp_Object sequence
)
119 register Lisp_Object val
;
121 if (STRINGP (sequence
))
122 XSETFASTINT (val
, SCHARS (sequence
));
123 else if (VECTORP (sequence
))
124 XSETFASTINT (val
, ASIZE (sequence
));
125 else if (CHAR_TABLE_P (sequence
))
126 XSETFASTINT (val
, MAX_CHAR
);
127 else if (BOOL_VECTOR_P (sequence
))
128 XSETFASTINT (val
, XBOOL_VECTOR (sequence
)->size
);
129 else if (COMPILEDP (sequence
))
130 XSETFASTINT (val
, ASIZE (sequence
) & PSEUDOVECTOR_SIZE_MASK
);
131 else if (CONSP (sequence
))
138 if ((i
& (QUIT_COUNT_HEURISTIC
- 1)) == 0)
140 if (MOST_POSITIVE_FIXNUM
< i
)
141 error ("List too long");
144 sequence
= XCDR (sequence
);
146 while (CONSP (sequence
));
148 CHECK_LIST_END (sequence
, sequence
);
150 val
= make_number (i
);
152 else if (NILP (sequence
))
153 XSETFASTINT (val
, 0);
155 wrong_type_argument (Qsequencep
, sequence
);
160 /* This does not check for quits. That is safe since it must terminate. */
162 DEFUN ("safe-length", Fsafe_length
, Ssafe_length
, 1, 1, 0,
163 doc
: /* Return the length of a list, but avoid error or infinite loop.
164 This function never gets an error. If LIST is not really a list,
165 it returns 0. If LIST is circular, it returns a finite value
166 which is at least the number of distinct elements. */)
169 Lisp_Object tail
, halftail
;
174 return make_number (0);
176 /* halftail is used to detect circular lists. */
177 for (tail
= halftail
= list
; ; )
182 if (EQ (tail
, halftail
))
185 if ((lolen
& 1) == 0)
187 halftail
= XCDR (halftail
);
188 if ((lolen
& (QUIT_COUNT_HEURISTIC
- 1)) == 0)
192 hilen
+= UINTMAX_MAX
+ 1.0;
197 /* If the length does not fit into a fixnum, return a float.
198 On all known practical machines this returns an upper bound on
200 return hilen
? make_float (hilen
+ lolen
) : make_fixnum_or_float (lolen
);
203 DEFUN ("string-bytes", Fstring_bytes
, Sstring_bytes
, 1, 1, 0,
204 doc
: /* Return the number of bytes in STRING.
205 If STRING is multibyte, this may be greater than the length of STRING. */)
208 CHECK_STRING (string
);
209 return make_number (SBYTES (string
));
212 DEFUN ("string-equal", Fstring_equal
, Sstring_equal
, 2, 2, 0,
213 doc
: /* Return t if two strings have identical contents.
214 Case is significant, but text properties are ignored.
215 Symbols are also allowed; their print names are used instead. */)
216 (register Lisp_Object s1
, Lisp_Object s2
)
219 s1
= SYMBOL_NAME (s1
);
221 s2
= SYMBOL_NAME (s2
);
225 if (SCHARS (s1
) != SCHARS (s2
)
226 || SBYTES (s1
) != SBYTES (s2
)
227 || memcmp (SDATA (s1
), SDATA (s2
), SBYTES (s1
)))
232 DEFUN ("compare-strings", Fcompare_strings
, Scompare_strings
, 6, 7, 0,
233 doc
: /* Compare the contents of two strings, converting to multibyte if needed.
234 In string STR1, skip the first START1 characters and stop at END1.
235 In string STR2, skip the first START2 characters and stop at END2.
236 END1 and END2 default to the full lengths of the respective strings.
238 Case is significant in this comparison if IGNORE-CASE is nil.
239 Unibyte strings are converted to multibyte for comparison.
241 The value is t if the strings (or specified portions) match.
242 If string STR1 is less, the value is a negative number N;
243 - 1 - N is the number of characters that match at the beginning.
244 If string STR1 is greater, the value is a positive number N;
245 N - 1 is the number of characters that match at the beginning. */)
246 (Lisp_Object str1
, Lisp_Object start1
, Lisp_Object end1
, Lisp_Object str2
, Lisp_Object start2
, Lisp_Object end2
, Lisp_Object ignore_case
)
248 register ptrdiff_t end1_char
, end2_char
;
249 register ptrdiff_t i1
, i1_byte
, i2
, i2_byte
;
254 start1
= make_number (0);
256 start2
= make_number (0);
257 CHECK_NATNUM (start1
);
258 CHECK_NATNUM (start2
);
264 end1_char
= SCHARS (str1
);
265 if (! NILP (end1
) && end1_char
> XINT (end1
))
266 end1_char
= XINT (end1
);
267 if (end1_char
< XINT (start1
))
268 args_out_of_range (str1
, start1
);
270 end2_char
= SCHARS (str2
);
271 if (! NILP (end2
) && end2_char
> XINT (end2
))
272 end2_char
= XINT (end2
);
273 if (end2_char
< XINT (start2
))
274 args_out_of_range (str2
, start2
);
279 i1_byte
= string_char_to_byte (str1
, i1
);
280 i2_byte
= string_char_to_byte (str2
, i2
);
282 while (i1
< end1_char
&& i2
< end2_char
)
284 /* When we find a mismatch, we must compare the
285 characters, not just the bytes. */
288 if (STRING_MULTIBYTE (str1
))
289 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c1
, str1
, i1
, i1_byte
);
292 c1
= SREF (str1
, i1
++);
293 MAKE_CHAR_MULTIBYTE (c1
);
296 if (STRING_MULTIBYTE (str2
))
297 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c2
, str2
, i2
, i2_byte
);
300 c2
= SREF (str2
, i2
++);
301 MAKE_CHAR_MULTIBYTE (c2
);
307 if (! NILP (ignore_case
))
311 tem
= Fupcase (make_number (c1
));
313 tem
= Fupcase (make_number (c2
));
320 /* Note that I1 has already been incremented
321 past the character that we are comparing;
322 hence we don't add or subtract 1 here. */
324 return make_number (- i1
+ XINT (start1
));
326 return make_number (i1
- XINT (start1
));
330 return make_number (i1
- XINT (start1
) + 1);
332 return make_number (- i1
+ XINT (start1
) - 1);
337 DEFUN ("string-lessp", Fstring_lessp
, Sstring_lessp
, 2, 2, 0,
338 doc
: /* Return t if first arg string is less than second in lexicographic order.
340 Symbols are also allowed; their print names are used instead. */)
341 (register Lisp_Object s1
, Lisp_Object s2
)
343 register ptrdiff_t end
;
344 register ptrdiff_t i1
, i1_byte
, i2
, i2_byte
;
347 s1
= SYMBOL_NAME (s1
);
349 s2
= SYMBOL_NAME (s2
);
353 i1
= i1_byte
= i2
= i2_byte
= 0;
356 if (end
> SCHARS (s2
))
361 /* When we find a mismatch, we must compare the
362 characters, not just the bytes. */
365 FETCH_STRING_CHAR_ADVANCE (c1
, s1
, i1
, i1_byte
);
366 FETCH_STRING_CHAR_ADVANCE (c2
, s2
, i2
, i2_byte
);
369 return c1
< c2
? Qt
: Qnil
;
371 return i1
< SCHARS (s2
) ? Qt
: Qnil
;
374 static Lisp_Object
concat (ptrdiff_t nargs
, Lisp_Object
*args
,
375 enum Lisp_Type target_type
, int last_special
);
379 concat2 (Lisp_Object s1
, Lisp_Object s2
)
384 return concat (2, args
, Lisp_String
, 0);
389 concat3 (Lisp_Object s1
, Lisp_Object s2
, Lisp_Object s3
)
395 return concat (3, args
, Lisp_String
, 0);
398 DEFUN ("append", Fappend
, Sappend
, 0, MANY
, 0,
399 doc
: /* Concatenate all the arguments and make the result a list.
400 The result is a list whose elements are the elements of all the arguments.
401 Each argument may be a list, vector or string.
402 The last argument is not copied, just used as the tail of the new list.
403 usage: (append &rest SEQUENCES) */)
404 (ptrdiff_t nargs
, Lisp_Object
*args
)
406 return concat (nargs
, args
, Lisp_Cons
, 1);
409 DEFUN ("concat", Fconcat
, Sconcat
, 0, MANY
, 0,
410 doc
: /* Concatenate all the arguments and make the result a string.
411 The result is a string whose elements are the elements of all the arguments.
412 Each argument may be a string or a list or vector of characters (integers).
413 usage: (concat &rest SEQUENCES) */)
414 (ptrdiff_t nargs
, Lisp_Object
*args
)
416 return concat (nargs
, args
, Lisp_String
, 0);
419 DEFUN ("vconcat", Fvconcat
, Svconcat
, 0, MANY
, 0,
420 doc
: /* Concatenate all the arguments and make the result a vector.
421 The result is a vector whose elements are the elements of all the arguments.
422 Each argument may be a list, vector or string.
423 usage: (vconcat &rest SEQUENCES) */)
424 (ptrdiff_t nargs
, Lisp_Object
*args
)
426 return concat (nargs
, args
, Lisp_Vectorlike
, 0);
430 DEFUN ("copy-sequence", Fcopy_sequence
, Scopy_sequence
, 1, 1, 0,
431 doc
: /* Return a copy of a list, vector, string or char-table.
432 The elements of a list or vector are not copied; they are shared
433 with the original. */)
436 if (NILP (arg
)) return arg
;
438 if (CHAR_TABLE_P (arg
))
440 return copy_char_table (arg
);
443 if (BOOL_VECTOR_P (arg
))
446 ptrdiff_t size_in_chars
447 = ((XBOOL_VECTOR (arg
)->size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
448 / BOOL_VECTOR_BITS_PER_CHAR
);
450 val
= Fmake_bool_vector (Flength (arg
), Qnil
);
451 memcpy (XBOOL_VECTOR (val
)->data
, XBOOL_VECTOR (arg
)->data
,
456 if (!CONSP (arg
) && !VECTORP (arg
) && !STRINGP (arg
))
457 wrong_type_argument (Qsequencep
, arg
);
459 return concat (1, &arg
, CONSP (arg
) ? Lisp_Cons
: XTYPE (arg
), 0);
462 /* This structure holds information of an argument of `concat' that is
463 a string and has text properties to be copied. */
466 ptrdiff_t argnum
; /* refer to ARGS (arguments of `concat') */
467 ptrdiff_t from
; /* refer to ARGS[argnum] (argument string) */
468 ptrdiff_t to
; /* refer to VAL (the target string) */
472 concat (ptrdiff_t nargs
, Lisp_Object
*args
,
473 enum Lisp_Type target_type
, int last_special
)
476 register Lisp_Object tail
;
477 register Lisp_Object
this;
479 ptrdiff_t toindex_byte
= 0;
480 register EMACS_INT result_len
;
481 register EMACS_INT result_len_byte
;
483 Lisp_Object last_tail
;
486 /* When we make a multibyte string, we can't copy text properties
487 while concatenating each string because the length of resulting
488 string can't be decided until we finish the whole concatenation.
489 So, we record strings that have text properties to be copied
490 here, and copy the text properties after the concatenation. */
491 struct textprop_rec
*textprops
= NULL
;
492 /* Number of elements in textprops. */
493 ptrdiff_t num_textprops
= 0;
498 /* In append, the last arg isn't treated like the others */
499 if (last_special
&& nargs
> 0)
502 last_tail
= args
[nargs
];
507 /* Check each argument. */
508 for (argnum
= 0; argnum
< nargs
; argnum
++)
511 if (!(CONSP (this) || NILP (this) || VECTORP (this) || STRINGP (this)
512 || COMPILEDP (this) || BOOL_VECTOR_P (this)))
513 wrong_type_argument (Qsequencep
, this);
516 /* Compute total length in chars of arguments in RESULT_LEN.
517 If desired output is a string, also compute length in bytes
518 in RESULT_LEN_BYTE, and determine in SOME_MULTIBYTE
519 whether the result should be a multibyte string. */
523 for (argnum
= 0; argnum
< nargs
; argnum
++)
527 len
= XFASTINT (Flength (this));
528 if (target_type
== Lisp_String
)
530 /* We must count the number of bytes needed in the string
531 as well as the number of characters. */
535 ptrdiff_t this_len_byte
;
537 if (VECTORP (this) || COMPILEDP (this))
538 for (i
= 0; i
< len
; i
++)
541 CHECK_CHARACTER (ch
);
543 this_len_byte
= CHAR_BYTES (c
);
544 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
546 result_len_byte
+= this_len_byte
;
547 if (! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
550 else if (BOOL_VECTOR_P (this) && XBOOL_VECTOR (this)->size
> 0)
551 wrong_type_argument (Qintegerp
, Faref (this, make_number (0)));
552 else if (CONSP (this))
553 for (; CONSP (this); this = XCDR (this))
556 CHECK_CHARACTER (ch
);
558 this_len_byte
= CHAR_BYTES (c
);
559 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
561 result_len_byte
+= this_len_byte
;
562 if (! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
565 else if (STRINGP (this))
567 if (STRING_MULTIBYTE (this))
570 this_len_byte
= SBYTES (this);
573 this_len_byte
= count_size_as_multibyte (SDATA (this),
575 if (STRING_BYTES_BOUND
- result_len_byte
< this_len_byte
)
577 result_len_byte
+= this_len_byte
;
582 if (MOST_POSITIVE_FIXNUM
< result_len
)
583 memory_full (SIZE_MAX
);
586 if (! some_multibyte
)
587 result_len_byte
= result_len
;
589 /* Create the output object. */
590 if (target_type
== Lisp_Cons
)
591 val
= Fmake_list (make_number (result_len
), Qnil
);
592 else if (target_type
== Lisp_Vectorlike
)
593 val
= Fmake_vector (make_number (result_len
), Qnil
);
594 else if (some_multibyte
)
595 val
= make_uninit_multibyte_string (result_len
, result_len_byte
);
597 val
= make_uninit_string (result_len
);
599 /* In `append', if all but last arg are nil, return last arg. */
600 if (target_type
== Lisp_Cons
&& EQ (val
, Qnil
))
603 /* Copy the contents of the args into the result. */
605 tail
= val
, toindex
= -1; /* -1 in toindex is flag we are making a list */
607 toindex
= 0, toindex_byte
= 0;
611 SAFE_NALLOCA (textprops
, 1, nargs
);
613 for (argnum
= 0; argnum
< nargs
; argnum
++)
616 ptrdiff_t thisleni
= 0;
617 register ptrdiff_t thisindex
= 0;
618 register ptrdiff_t thisindex_byte
= 0;
622 thislen
= Flength (this), thisleni
= XINT (thislen
);
624 /* Between strings of the same kind, copy fast. */
625 if (STRINGP (this) && STRINGP (val
)
626 && STRING_MULTIBYTE (this) == some_multibyte
)
628 ptrdiff_t thislen_byte
= SBYTES (this);
630 memcpy (SDATA (val
) + toindex_byte
, SDATA (this), SBYTES (this));
631 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
633 textprops
[num_textprops
].argnum
= argnum
;
634 textprops
[num_textprops
].from
= 0;
635 textprops
[num_textprops
++].to
= toindex
;
637 toindex_byte
+= thislen_byte
;
640 /* Copy a single-byte string to a multibyte string. */
641 else if (STRINGP (this) && STRINGP (val
))
643 if (! NULL_INTERVAL_P (STRING_INTERVALS (this)))
645 textprops
[num_textprops
].argnum
= argnum
;
646 textprops
[num_textprops
].from
= 0;
647 textprops
[num_textprops
++].to
= toindex
;
649 toindex_byte
+= copy_text (SDATA (this),
650 SDATA (val
) + toindex_byte
,
651 SCHARS (this), 0, 1);
655 /* Copy element by element. */
658 register Lisp_Object elt
;
660 /* Fetch next element of `this' arg into `elt', or break if
661 `this' is exhausted. */
662 if (NILP (this)) break;
664 elt
= XCAR (this), this = XCDR (this);
665 else if (thisindex
>= thisleni
)
667 else if (STRINGP (this))
670 if (STRING_MULTIBYTE (this))
671 FETCH_STRING_CHAR_ADVANCE_NO_CHECK (c
, this,
676 c
= SREF (this, thisindex
); thisindex
++;
677 if (some_multibyte
&& !ASCII_CHAR_P (c
))
678 c
= BYTE8_TO_CHAR (c
);
680 XSETFASTINT (elt
, c
);
682 else if (BOOL_VECTOR_P (this))
685 byte
= XBOOL_VECTOR (this)->data
[thisindex
/ BOOL_VECTOR_BITS_PER_CHAR
];
686 if (byte
& (1 << (thisindex
% BOOL_VECTOR_BITS_PER_CHAR
)))
694 elt
= AREF (this, thisindex
);
698 /* Store this element into the result. */
705 else if (VECTORP (val
))
707 ASET (val
, toindex
, elt
);
713 CHECK_CHARACTER (elt
);
716 toindex_byte
+= CHAR_STRING (c
, SDATA (val
) + toindex_byte
);
718 SSET (val
, toindex_byte
++, c
);
724 XSETCDR (prev
, last_tail
);
726 if (num_textprops
> 0)
729 ptrdiff_t last_to_end
= -1;
731 for (argnum
= 0; argnum
< num_textprops
; argnum
++)
733 this = args
[textprops
[argnum
].argnum
];
734 props
= text_property_list (this,
736 make_number (SCHARS (this)),
738 /* If successive arguments have properties, be sure that the
739 value of `composition' property be the copy. */
740 if (last_to_end
== textprops
[argnum
].to
)
741 make_composition_value_copy (props
);
742 add_text_properties_from_list (val
, props
,
743 make_number (textprops
[argnum
].to
));
744 last_to_end
= textprops
[argnum
].to
+ SCHARS (this);
752 static Lisp_Object string_char_byte_cache_string
;
753 static ptrdiff_t string_char_byte_cache_charpos
;
754 static ptrdiff_t string_char_byte_cache_bytepos
;
757 clear_string_char_byte_cache (void)
759 string_char_byte_cache_string
= Qnil
;
762 /* Return the byte index corresponding to CHAR_INDEX in STRING. */
765 string_char_to_byte (Lisp_Object string
, ptrdiff_t char_index
)
768 ptrdiff_t best_below
, best_below_byte
;
769 ptrdiff_t best_above
, best_above_byte
;
771 best_below
= best_below_byte
= 0;
772 best_above
= SCHARS (string
);
773 best_above_byte
= SBYTES (string
);
774 if (best_above
== best_above_byte
)
777 if (EQ (string
, string_char_byte_cache_string
))
779 if (string_char_byte_cache_charpos
< char_index
)
781 best_below
= string_char_byte_cache_charpos
;
782 best_below_byte
= string_char_byte_cache_bytepos
;
786 best_above
= string_char_byte_cache_charpos
;
787 best_above_byte
= string_char_byte_cache_bytepos
;
791 if (char_index
- best_below
< best_above
- char_index
)
793 unsigned char *p
= SDATA (string
) + best_below_byte
;
795 while (best_below
< char_index
)
797 p
+= BYTES_BY_CHAR_HEAD (*p
);
800 i_byte
= p
- SDATA (string
);
804 unsigned char *p
= SDATA (string
) + best_above_byte
;
806 while (best_above
> char_index
)
809 while (!CHAR_HEAD_P (*p
)) p
--;
812 i_byte
= p
- SDATA (string
);
815 string_char_byte_cache_bytepos
= i_byte
;
816 string_char_byte_cache_charpos
= char_index
;
817 string_char_byte_cache_string
= string
;
822 /* Return the character index corresponding to BYTE_INDEX in STRING. */
825 string_byte_to_char (Lisp_Object string
, ptrdiff_t byte_index
)
828 ptrdiff_t best_below
, best_below_byte
;
829 ptrdiff_t best_above
, best_above_byte
;
831 best_below
= best_below_byte
= 0;
832 best_above
= SCHARS (string
);
833 best_above_byte
= SBYTES (string
);
834 if (best_above
== best_above_byte
)
837 if (EQ (string
, string_char_byte_cache_string
))
839 if (string_char_byte_cache_bytepos
< byte_index
)
841 best_below
= string_char_byte_cache_charpos
;
842 best_below_byte
= string_char_byte_cache_bytepos
;
846 best_above
= string_char_byte_cache_charpos
;
847 best_above_byte
= string_char_byte_cache_bytepos
;
851 if (byte_index
- best_below_byte
< best_above_byte
- byte_index
)
853 unsigned char *p
= SDATA (string
) + best_below_byte
;
854 unsigned char *pend
= SDATA (string
) + byte_index
;
858 p
+= BYTES_BY_CHAR_HEAD (*p
);
862 i_byte
= p
- SDATA (string
);
866 unsigned char *p
= SDATA (string
) + best_above_byte
;
867 unsigned char *pbeg
= SDATA (string
) + byte_index
;
872 while (!CHAR_HEAD_P (*p
)) p
--;
876 i_byte
= p
- SDATA (string
);
879 string_char_byte_cache_bytepos
= i_byte
;
880 string_char_byte_cache_charpos
= i
;
881 string_char_byte_cache_string
= string
;
886 /* Convert STRING to a multibyte string. */
889 string_make_multibyte (Lisp_Object string
)
896 if (STRING_MULTIBYTE (string
))
899 nbytes
= count_size_as_multibyte (SDATA (string
),
901 /* If all the chars are ASCII, they won't need any more bytes
902 once converted. In that case, we can return STRING itself. */
903 if (nbytes
== SBYTES (string
))
906 SAFE_ALLOCA (buf
, unsigned char *, nbytes
);
907 copy_text (SDATA (string
), buf
, SBYTES (string
),
910 ret
= make_multibyte_string ((char *) buf
, SCHARS (string
), nbytes
);
917 /* Convert STRING (if unibyte) to a multibyte string without changing
918 the number of characters. Characters 0200 trough 0237 are
919 converted to eight-bit characters. */
922 string_to_multibyte (Lisp_Object string
)
929 if (STRING_MULTIBYTE (string
))
932 nbytes
= count_size_as_multibyte (SDATA (string
), SBYTES (string
));
933 /* If all the chars are ASCII, they won't need any more bytes once
935 if (nbytes
== SBYTES (string
))
936 return make_multibyte_string (SSDATA (string
), nbytes
, nbytes
);
938 SAFE_ALLOCA (buf
, unsigned char *, nbytes
);
939 memcpy (buf
, SDATA (string
), SBYTES (string
));
940 str_to_multibyte (buf
, nbytes
, SBYTES (string
));
942 ret
= make_multibyte_string ((char *) buf
, SCHARS (string
), nbytes
);
949 /* Convert STRING to a single-byte string. */
952 string_make_unibyte (Lisp_Object string
)
959 if (! STRING_MULTIBYTE (string
))
962 nchars
= SCHARS (string
);
964 SAFE_ALLOCA (buf
, unsigned char *, nchars
);
965 copy_text (SDATA (string
), buf
, SBYTES (string
),
968 ret
= make_unibyte_string ((char *) buf
, nchars
);
974 DEFUN ("string-make-multibyte", Fstring_make_multibyte
, Sstring_make_multibyte
,
976 doc
: /* Return the multibyte equivalent of STRING.
977 If STRING is unibyte and contains non-ASCII characters, the function
978 `unibyte-char-to-multibyte' is used to convert each unibyte character
979 to a multibyte character. In this case, the returned string is a
980 newly created string with no text properties. If STRING is multibyte
981 or entirely ASCII, it is returned unchanged. In particular, when
982 STRING is unibyte and entirely ASCII, the returned string is unibyte.
983 \(When the characters are all ASCII, Emacs primitives will treat the
984 string the same way whether it is unibyte or multibyte.) */)
987 CHECK_STRING (string
);
989 return string_make_multibyte (string
);
992 DEFUN ("string-make-unibyte", Fstring_make_unibyte
, Sstring_make_unibyte
,
994 doc
: /* Return the unibyte equivalent of STRING.
995 Multibyte character codes are converted to unibyte according to
996 `nonascii-translation-table' or, if that is nil, `nonascii-insert-offset'.
997 If the lookup in the translation table fails, this function takes just
998 the low 8 bits of each character. */)
1001 CHECK_STRING (string
);
1003 return string_make_unibyte (string
);
1006 DEFUN ("string-as-unibyte", Fstring_as_unibyte
, Sstring_as_unibyte
,
1008 doc
: /* Return a unibyte string with the same individual bytes as STRING.
1009 If STRING is unibyte, the result is STRING itself.
1010 Otherwise it is a newly created string, with no text properties.
1011 If STRING is multibyte and contains a character of charset
1012 `eight-bit', it is converted to the corresponding single byte. */)
1013 (Lisp_Object string
)
1015 CHECK_STRING (string
);
1017 if (STRING_MULTIBYTE (string
))
1019 ptrdiff_t bytes
= SBYTES (string
);
1020 unsigned char *str
= xmalloc (bytes
);
1022 memcpy (str
, SDATA (string
), bytes
);
1023 bytes
= str_as_unibyte (str
, bytes
);
1024 string
= make_unibyte_string ((char *) str
, bytes
);
1030 DEFUN ("string-as-multibyte", Fstring_as_multibyte
, Sstring_as_multibyte
,
1032 doc
: /* Return a multibyte string with the same individual bytes as STRING.
1033 If STRING is multibyte, the result is STRING itself.
1034 Otherwise it is a newly created string, with no text properties.
1036 If STRING is unibyte and contains an individual 8-bit byte (i.e. not
1037 part of a correct utf-8 sequence), it is converted to the corresponding
1038 multibyte character of charset `eight-bit'.
1039 See also `string-to-multibyte'.
1041 Beware, this often doesn't really do what you think it does.
1042 It is similar to (decode-coding-string STRING 'utf-8-emacs).
1043 If you're not sure, whether to use `string-as-multibyte' or
1044 `string-to-multibyte', use `string-to-multibyte'. */)
1045 (Lisp_Object string
)
1047 CHECK_STRING (string
);
1049 if (! STRING_MULTIBYTE (string
))
1051 Lisp_Object new_string
;
1052 ptrdiff_t nchars
, nbytes
;
1054 parse_str_as_multibyte (SDATA (string
),
1057 new_string
= make_uninit_multibyte_string (nchars
, nbytes
);
1058 memcpy (SDATA (new_string
), SDATA (string
), SBYTES (string
));
1059 if (nbytes
!= SBYTES (string
))
1060 str_as_multibyte (SDATA (new_string
), nbytes
,
1061 SBYTES (string
), NULL
);
1062 string
= new_string
;
1063 STRING_SET_INTERVALS (string
, NULL_INTERVAL
);
1068 DEFUN ("string-to-multibyte", Fstring_to_multibyte
, Sstring_to_multibyte
,
1070 doc
: /* Return a multibyte string with the same individual chars as STRING.
1071 If STRING is multibyte, the result is STRING itself.
1072 Otherwise it is a newly created string, with no text properties.
1074 If STRING is unibyte and contains an 8-bit byte, it is converted to
1075 the corresponding multibyte character of charset `eight-bit'.
1077 This differs from `string-as-multibyte' by converting each byte of a correct
1078 utf-8 sequence to an eight-bit character, not just bytes that don't form a
1079 correct sequence. */)
1080 (Lisp_Object string
)
1082 CHECK_STRING (string
);
1084 return string_to_multibyte (string
);
1087 DEFUN ("string-to-unibyte", Fstring_to_unibyte
, Sstring_to_unibyte
,
1089 doc
: /* Return a unibyte string with the same individual chars as STRING.
1090 If STRING is unibyte, the result is STRING itself.
1091 Otherwise it is a newly created string, with no text properties,
1092 where each `eight-bit' character is converted to the corresponding byte.
1093 If STRING contains a non-ASCII, non-`eight-bit' character,
1094 an error is signaled. */)
1095 (Lisp_Object string
)
1097 CHECK_STRING (string
);
1099 if (STRING_MULTIBYTE (string
))
1101 ptrdiff_t chars
= SCHARS (string
);
1102 unsigned char *str
= xmalloc (chars
);
1103 ptrdiff_t converted
= str_to_unibyte (SDATA (string
), str
, chars
, 0);
1105 if (converted
< chars
)
1106 error ("Can't convert the %"pD
"dth character to unibyte", converted
);
1107 string
= make_unibyte_string ((char *) str
, chars
);
1114 DEFUN ("copy-alist", Fcopy_alist
, Scopy_alist
, 1, 1, 0,
1115 doc
: /* Return a copy of ALIST.
1116 This is an alist which represents the same mapping from objects to objects,
1117 but does not share the alist structure with ALIST.
1118 The objects mapped (cars and cdrs of elements of the alist)
1119 are shared, however.
1120 Elements of ALIST that are not conses are also shared. */)
1123 register Lisp_Object tem
;
1128 alist
= concat (1, &alist
, Lisp_Cons
, 0);
1129 for (tem
= alist
; CONSP (tem
); tem
= XCDR (tem
))
1131 register Lisp_Object car
;
1135 XSETCAR (tem
, Fcons (XCAR (car
), XCDR (car
)));
1140 DEFUN ("substring", Fsubstring
, Ssubstring
, 2, 3, 0,
1141 doc
: /* Return a new string whose contents are a substring of STRING.
1142 The returned string consists of the characters between index FROM
1143 \(inclusive) and index TO (exclusive) of STRING. FROM and TO are
1144 zero-indexed: 0 means the first character of STRING. Negative values
1145 are counted from the end of STRING. If TO is nil, the substring runs
1146 to the end of STRING.
1148 The STRING argument may also be a vector. In that case, the return
1149 value is a new vector that contains the elements between index FROM
1150 \(inclusive) and index TO (exclusive) of that vector argument. */)
1151 (Lisp_Object string
, register Lisp_Object from
, Lisp_Object to
)
1155 EMACS_INT from_char
, to_char
;
1157 CHECK_VECTOR_OR_STRING (string
);
1158 CHECK_NUMBER (from
);
1160 if (STRINGP (string
))
1161 size
= SCHARS (string
);
1163 size
= ASIZE (string
);
1171 to_char
= XINT (to
);
1176 from_char
= XINT (from
);
1179 if (!(0 <= from_char
&& from_char
<= to_char
&& to_char
<= size
))
1180 args_out_of_range_3 (string
, make_number (from_char
),
1181 make_number (to_char
));
1183 if (STRINGP (string
))
1186 (NILP (to
) ? SBYTES (string
) : string_char_to_byte (string
, to_char
));
1187 ptrdiff_t from_byte
= string_char_to_byte (string
, from_char
);
1188 res
= make_specified_string (SSDATA (string
) + from_byte
,
1189 to_char
- from_char
, to_byte
- from_byte
,
1190 STRING_MULTIBYTE (string
));
1191 copy_text_properties (make_number (from_char
), make_number (to_char
),
1192 string
, make_number (0), res
, Qnil
);
1195 res
= Fvector (to_char
- from_char
, aref_addr (string
, from_char
));
1201 DEFUN ("substring-no-properties", Fsubstring_no_properties
, Ssubstring_no_properties
, 1, 3, 0,
1202 doc
: /* Return a substring of STRING, without text properties.
1203 It starts at index FROM and ends before TO.
1204 TO may be nil or omitted; then the substring runs to the end of STRING.
1205 If FROM is nil or omitted, the substring starts at the beginning of STRING.
1206 If FROM or TO is negative, it counts from the end.
1208 With one argument, just copy STRING without its properties. */)
1209 (Lisp_Object string
, register Lisp_Object from
, Lisp_Object to
)
1212 EMACS_INT from_char
, to_char
;
1213 ptrdiff_t from_byte
, to_byte
;
1215 CHECK_STRING (string
);
1217 size
= SCHARS (string
);
1223 CHECK_NUMBER (from
);
1224 from_char
= XINT (from
);
1234 to_char
= XINT (to
);
1239 if (!(0 <= from_char
&& from_char
<= to_char
&& to_char
<= size
))
1240 args_out_of_range_3 (string
, make_number (from_char
),
1241 make_number (to_char
));
1243 from_byte
= NILP (from
) ? 0 : string_char_to_byte (string
, from_char
);
1245 NILP (to
) ? SBYTES (string
) : string_char_to_byte (string
, to_char
);
1246 return make_specified_string (SSDATA (string
) + from_byte
,
1247 to_char
- from_char
, to_byte
- from_byte
,
1248 STRING_MULTIBYTE (string
));
1251 /* Extract a substring of STRING, giving start and end positions
1252 both in characters and in bytes. */
1255 substring_both (Lisp_Object string
, ptrdiff_t from
, ptrdiff_t from_byte
,
1256 ptrdiff_t to
, ptrdiff_t to_byte
)
1261 CHECK_VECTOR_OR_STRING (string
);
1263 size
= STRINGP (string
) ? SCHARS (string
) : ASIZE (string
);
1265 if (!(0 <= from
&& from
<= to
&& to
<= size
))
1266 args_out_of_range_3 (string
, make_number (from
), make_number (to
));
1268 if (STRINGP (string
))
1270 res
= make_specified_string (SSDATA (string
) + from_byte
,
1271 to
- from
, to_byte
- from_byte
,
1272 STRING_MULTIBYTE (string
));
1273 copy_text_properties (make_number (from
), make_number (to
),
1274 string
, make_number (0), res
, Qnil
);
1277 res
= Fvector (to
- from
, aref_addr (string
, from
));
1282 DEFUN ("nthcdr", Fnthcdr
, Snthcdr
, 2, 2, 0,
1283 doc
: /* Take cdr N times on LIST, return the result. */)
1284 (Lisp_Object n
, Lisp_Object list
)
1289 for (i
= 0; i
< num
&& !NILP (list
); i
++)
1292 CHECK_LIST_CONS (list
, list
);
1298 DEFUN ("nth", Fnth
, Snth
, 2, 2, 0,
1299 doc
: /* Return the Nth element of LIST.
1300 N counts from zero. If LIST is not that long, nil is returned. */)
1301 (Lisp_Object n
, Lisp_Object list
)
1303 return Fcar (Fnthcdr (n
, list
));
1306 DEFUN ("elt", Felt
, Selt
, 2, 2, 0,
1307 doc
: /* Return element of SEQUENCE at index N. */)
1308 (register Lisp_Object sequence
, Lisp_Object n
)
1311 if (CONSP (sequence
) || NILP (sequence
))
1312 return Fcar (Fnthcdr (n
, sequence
));
1314 /* Faref signals a "not array" error, so check here. */
1315 CHECK_ARRAY (sequence
, Qsequencep
);
1316 return Faref (sequence
, n
);
1319 DEFUN ("member", Fmember
, Smember
, 2, 2, 0,
1320 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `equal'.
1321 The value is actually the tail of LIST whose car is ELT. */)
1322 (register Lisp_Object elt
, Lisp_Object list
)
1324 register Lisp_Object tail
;
1325 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
1327 register Lisp_Object tem
;
1328 CHECK_LIST_CONS (tail
, list
);
1330 if (! NILP (Fequal (elt
, tem
)))
1337 DEFUN ("memq", Fmemq
, Smemq
, 2, 2, 0,
1338 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `eq'.
1339 The value is actually the tail of LIST whose car is ELT. */)
1340 (register Lisp_Object elt
, Lisp_Object list
)
1344 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1348 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1352 if (!CONSP (list
) || EQ (XCAR (list
), elt
))
1363 DEFUN ("memql", Fmemql
, Smemql
, 2, 2, 0,
1364 doc
: /* Return non-nil if ELT is an element of LIST. Comparison done with `eql'.
1365 The value is actually the tail of LIST whose car is ELT. */)
1366 (register Lisp_Object elt
, Lisp_Object list
)
1368 register Lisp_Object tail
;
1371 return Fmemq (elt
, list
);
1373 for (tail
= list
; CONSP (tail
); tail
= XCDR (tail
))
1375 register Lisp_Object tem
;
1376 CHECK_LIST_CONS (tail
, list
);
1378 if (FLOATP (tem
) && internal_equal (elt
, tem
, 0, 0))
1385 DEFUN ("assq", Fassq
, Sassq
, 2, 2, 0,
1386 doc
: /* Return non-nil if KEY is `eq' to the car of an element of LIST.
1387 The value is actually the first element of LIST whose car is KEY.
1388 Elements of LIST that are not conses are ignored. */)
1389 (Lisp_Object key
, Lisp_Object list
)
1394 || (CONSP (XCAR (list
))
1395 && EQ (XCAR (XCAR (list
)), key
)))
1400 || (CONSP (XCAR (list
))
1401 && EQ (XCAR (XCAR (list
)), key
)))
1406 || (CONSP (XCAR (list
))
1407 && EQ (XCAR (XCAR (list
)), key
)))
1417 /* Like Fassq but never report an error and do not allow quits.
1418 Use only on lists known never to be circular. */
1421 assq_no_quit (Lisp_Object key
, Lisp_Object list
)
1424 && (!CONSP (XCAR (list
))
1425 || !EQ (XCAR (XCAR (list
)), key
)))
1428 return CAR_SAFE (list
);
1431 DEFUN ("assoc", Fassoc
, Sassoc
, 2, 2, 0,
1432 doc
: /* Return non-nil if KEY is `equal' to the car of an element of LIST.
1433 The value is actually the first element of LIST whose car equals KEY. */)
1434 (Lisp_Object key
, Lisp_Object list
)
1441 || (CONSP (XCAR (list
))
1442 && (car
= XCAR (XCAR (list
)),
1443 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1448 || (CONSP (XCAR (list
))
1449 && (car
= XCAR (XCAR (list
)),
1450 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1455 || (CONSP (XCAR (list
))
1456 && (car
= XCAR (XCAR (list
)),
1457 EQ (car
, key
) || !NILP (Fequal (car
, key
)))))
1467 /* Like Fassoc but never report an error and do not allow quits.
1468 Use only on lists known never to be circular. */
1471 assoc_no_quit (Lisp_Object key
, Lisp_Object list
)
1474 && (!CONSP (XCAR (list
))
1475 || (!EQ (XCAR (XCAR (list
)), key
)
1476 && NILP (Fequal (XCAR (XCAR (list
)), key
)))))
1479 return CONSP (list
) ? XCAR (list
) : Qnil
;
1482 DEFUN ("rassq", Frassq
, Srassq
, 2, 2, 0,
1483 doc
: /* Return non-nil if KEY is `eq' to the cdr of an element of LIST.
1484 The value is actually the first element of LIST whose cdr is KEY. */)
1485 (register Lisp_Object key
, Lisp_Object list
)
1490 || (CONSP (XCAR (list
))
1491 && EQ (XCDR (XCAR (list
)), key
)))
1496 || (CONSP (XCAR (list
))
1497 && EQ (XCDR (XCAR (list
)), key
)))
1502 || (CONSP (XCAR (list
))
1503 && EQ (XCDR (XCAR (list
)), key
)))
1513 DEFUN ("rassoc", Frassoc
, Srassoc
, 2, 2, 0,
1514 doc
: /* Return non-nil if KEY is `equal' to the cdr of an element of LIST.
1515 The value is actually the first element of LIST whose cdr equals KEY. */)
1516 (Lisp_Object key
, Lisp_Object list
)
1523 || (CONSP (XCAR (list
))
1524 && (cdr
= XCDR (XCAR (list
)),
1525 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1530 || (CONSP (XCAR (list
))
1531 && (cdr
= XCDR (XCAR (list
)),
1532 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1537 || (CONSP (XCAR (list
))
1538 && (cdr
= XCDR (XCAR (list
)),
1539 EQ (cdr
, key
) || !NILP (Fequal (cdr
, key
)))))
1549 DEFUN ("delq", Fdelq
, Sdelq
, 2, 2, 0,
1550 doc
: /* Delete by side effect any occurrences of ELT as a member of LIST.
1551 The modified LIST is returned. Comparison is done with `eq'.
1552 If the first member of LIST is ELT, there is no way to remove it by side effect;
1553 therefore, write `(setq foo (delq element foo))'
1554 to be sure of changing the value of `foo'. */)
1555 (register Lisp_Object elt
, Lisp_Object list
)
1557 register Lisp_Object tail
, prev
;
1558 register Lisp_Object tem
;
1562 while (!NILP (tail
))
1564 CHECK_LIST_CONS (tail
, list
);
1571 Fsetcdr (prev
, XCDR (tail
));
1581 DEFUN ("delete", Fdelete
, Sdelete
, 2, 2, 0,
1582 doc
: /* Delete by side effect any occurrences of ELT as a member of SEQ.
1583 SEQ must be a list, a vector, or a string.
1584 The modified SEQ is returned. Comparison is done with `equal'.
1585 If SEQ is not a list, or the first member of SEQ is ELT, deleting it
1586 is not a side effect; it is simply using a different sequence.
1587 Therefore, write `(setq foo (delete element foo))'
1588 to be sure of changing the value of `foo'. */)
1589 (Lisp_Object elt
, Lisp_Object seq
)
1595 for (i
= n
= 0; i
< ASIZE (seq
); ++i
)
1596 if (NILP (Fequal (AREF (seq
, i
), elt
)))
1599 if (n
!= ASIZE (seq
))
1601 struct Lisp_Vector
*p
= allocate_vector (n
);
1603 for (i
= n
= 0; i
< ASIZE (seq
); ++i
)
1604 if (NILP (Fequal (AREF (seq
, i
), elt
)))
1605 p
->contents
[n
++] = AREF (seq
, i
);
1607 XSETVECTOR (seq
, p
);
1610 else if (STRINGP (seq
))
1612 ptrdiff_t i
, ibyte
, nchars
, nbytes
, cbytes
;
1615 for (i
= nchars
= nbytes
= ibyte
= 0;
1617 ++i
, ibyte
+= cbytes
)
1619 if (STRING_MULTIBYTE (seq
))
1621 c
= STRING_CHAR (SDATA (seq
) + ibyte
);
1622 cbytes
= CHAR_BYTES (c
);
1630 if (!INTEGERP (elt
) || c
!= XINT (elt
))
1637 if (nchars
!= SCHARS (seq
))
1641 tem
= make_uninit_multibyte_string (nchars
, nbytes
);
1642 if (!STRING_MULTIBYTE (seq
))
1643 STRING_SET_UNIBYTE (tem
);
1645 for (i
= nchars
= nbytes
= ibyte
= 0;
1647 ++i
, ibyte
+= cbytes
)
1649 if (STRING_MULTIBYTE (seq
))
1651 c
= STRING_CHAR (SDATA (seq
) + ibyte
);
1652 cbytes
= CHAR_BYTES (c
);
1660 if (!INTEGERP (elt
) || c
!= XINT (elt
))
1662 unsigned char *from
= SDATA (seq
) + ibyte
;
1663 unsigned char *to
= SDATA (tem
) + nbytes
;
1669 for (n
= cbytes
; n
--; )
1679 Lisp_Object tail
, prev
;
1681 for (tail
= seq
, prev
= Qnil
; CONSP (tail
); tail
= XCDR (tail
))
1683 CHECK_LIST_CONS (tail
, seq
);
1685 if (!NILP (Fequal (elt
, XCAR (tail
))))
1690 Fsetcdr (prev
, XCDR (tail
));
1701 DEFUN ("nreverse", Fnreverse
, Snreverse
, 1, 1, 0,
1702 doc
: /* Reverse LIST by modifying cdr pointers.
1703 Return the reversed list. */)
1706 register Lisp_Object prev
, tail
, next
;
1708 if (NILP (list
)) return list
;
1711 while (!NILP (tail
))
1714 CHECK_LIST_CONS (tail
, list
);
1716 Fsetcdr (tail
, prev
);
1723 DEFUN ("reverse", Freverse
, Sreverse
, 1, 1, 0,
1724 doc
: /* Reverse LIST, copying. Return the reversed list.
1725 See also the function `nreverse', which is used more often. */)
1730 for (new = Qnil
; CONSP (list
); list
= XCDR (list
))
1733 new = Fcons (XCAR (list
), new);
1735 CHECK_LIST_END (list
, list
);
1739 Lisp_Object
merge (Lisp_Object org_l1
, Lisp_Object org_l2
, Lisp_Object pred
);
1741 DEFUN ("sort", Fsort
, Ssort
, 2, 2, 0,
1742 doc
: /* Sort LIST, stably, comparing elements using PREDICATE.
1743 Returns the sorted list. LIST is modified by side effects.
1744 PREDICATE is called with two elements of LIST, and should return non-nil
1745 if the first element should sort before the second. */)
1746 (Lisp_Object list
, Lisp_Object predicate
)
1748 Lisp_Object front
, back
;
1749 register Lisp_Object len
, tem
;
1750 struct gcpro gcpro1
, gcpro2
;
1754 len
= Flength (list
);
1755 length
= XINT (len
);
1759 XSETINT (len
, (length
/ 2) - 1);
1760 tem
= Fnthcdr (len
, list
);
1762 Fsetcdr (tem
, Qnil
);
1764 GCPRO2 (front
, back
);
1765 front
= Fsort (front
, predicate
);
1766 back
= Fsort (back
, predicate
);
1768 return merge (front
, back
, predicate
);
1772 merge (Lisp_Object org_l1
, Lisp_Object org_l2
, Lisp_Object pred
)
1775 register Lisp_Object tail
;
1777 register Lisp_Object l1
, l2
;
1778 struct gcpro gcpro1
, gcpro2
, gcpro3
, gcpro4
;
1785 /* It is sufficient to protect org_l1 and org_l2.
1786 When l1 and l2 are updated, we copy the new values
1787 back into the org_ vars. */
1788 GCPRO4 (org_l1
, org_l2
, pred
, value
);
1808 tem
= call2 (pred
, Fcar (l2
), Fcar (l1
));
1824 Fsetcdr (tail
, tem
);
1830 /* This does not check for quits. That is safe since it must terminate. */
1832 DEFUN ("plist-get", Fplist_get
, Splist_get
, 2, 2, 0,
1833 doc
: /* Extract a value from a property list.
1834 PLIST is a property list, which is a list of the form
1835 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1836 corresponding to the given PROP, or nil if PROP is not one of the
1837 properties on the list. This function never signals an error. */)
1838 (Lisp_Object plist
, Lisp_Object prop
)
1840 Lisp_Object tail
, halftail
;
1842 /* halftail is used to detect circular lists. */
1843 tail
= halftail
= plist
;
1844 while (CONSP (tail
) && CONSP (XCDR (tail
)))
1846 if (EQ (prop
, XCAR (tail
)))
1847 return XCAR (XCDR (tail
));
1849 tail
= XCDR (XCDR (tail
));
1850 halftail
= XCDR (halftail
);
1851 if (EQ (tail
, halftail
))
1854 #if 0 /* Unsafe version. */
1855 /* This function can be called asynchronously
1856 (setup_coding_system). Don't QUIT in that case. */
1857 if (!interrupt_input_blocked
)
1865 DEFUN ("get", Fget
, Sget
, 2, 2, 0,
1866 doc
: /* Return the value of SYMBOL's PROPNAME property.
1867 This is the last value stored with `(put SYMBOL PROPNAME VALUE)'. */)
1868 (Lisp_Object symbol
, Lisp_Object propname
)
1870 CHECK_SYMBOL (symbol
);
1871 return Fplist_get (SVAR (XSYMBOL (symbol
), plist
), propname
);
1874 DEFUN ("plist-put", Fplist_put
, Splist_put
, 3, 3, 0,
1875 doc
: /* Change value in PLIST of PROP to VAL.
1876 PLIST is a property list, which is a list of the form
1877 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP is a symbol and VAL is any object.
1878 If PROP is already a property on the list, its value is set to VAL,
1879 otherwise the new PROP VAL pair is added. The new plist is returned;
1880 use `(setq x (plist-put x prop val))' to be sure to use the new value.
1881 The PLIST is modified by side effects. */)
1882 (Lisp_Object plist
, register Lisp_Object prop
, Lisp_Object val
)
1884 register Lisp_Object tail
, prev
;
1885 Lisp_Object newcell
;
1887 for (tail
= plist
; CONSP (tail
) && CONSP (XCDR (tail
));
1888 tail
= XCDR (XCDR (tail
)))
1890 if (EQ (prop
, XCAR (tail
)))
1892 Fsetcar (XCDR (tail
), val
);
1899 newcell
= Fcons (prop
, Fcons (val
, NILP (prev
) ? plist
: XCDR (XCDR (prev
))));
1903 Fsetcdr (XCDR (prev
), newcell
);
1907 DEFUN ("put", Fput
, Sput
, 3, 3, 0,
1908 doc
: /* Store SYMBOL's PROPNAME property with value VALUE.
1909 It can be retrieved with `(get SYMBOL PROPNAME)'. */)
1910 (Lisp_Object symbol
, Lisp_Object propname
, Lisp_Object value
)
1912 CHECK_SYMBOL (symbol
);
1913 SVAR (XSYMBOL (symbol
), plist
)
1914 = Fplist_put (SVAR (XSYMBOL (symbol
), plist
), propname
, value
);
1918 DEFUN ("lax-plist-get", Flax_plist_get
, Slax_plist_get
, 2, 2, 0,
1919 doc
: /* Extract a value from a property list, comparing with `equal'.
1920 PLIST is a property list, which is a list of the form
1921 \(PROP1 VALUE1 PROP2 VALUE2...). This function returns the value
1922 corresponding to the given PROP, or nil if PROP is not
1923 one of the properties on the list. */)
1924 (Lisp_Object plist
, Lisp_Object prop
)
1929 CONSP (tail
) && CONSP (XCDR (tail
));
1930 tail
= XCDR (XCDR (tail
)))
1932 if (! NILP (Fequal (prop
, XCAR (tail
))))
1933 return XCAR (XCDR (tail
));
1938 CHECK_LIST_END (tail
, prop
);
1943 DEFUN ("lax-plist-put", Flax_plist_put
, Slax_plist_put
, 3, 3, 0,
1944 doc
: /* Change value in PLIST of PROP to VAL, comparing with `equal'.
1945 PLIST is a property list, which is a list of the form
1946 \(PROP1 VALUE1 PROP2 VALUE2 ...). PROP and VAL are any objects.
1947 If PROP is already a property on the list, its value is set to VAL,
1948 otherwise the new PROP VAL pair is added. The new plist is returned;
1949 use `(setq x (lax-plist-put x prop val))' to be sure to use the new value.
1950 The PLIST is modified by side effects. */)
1951 (Lisp_Object plist
, register Lisp_Object prop
, Lisp_Object val
)
1953 register Lisp_Object tail
, prev
;
1954 Lisp_Object newcell
;
1956 for (tail
= plist
; CONSP (tail
) && CONSP (XCDR (tail
));
1957 tail
= XCDR (XCDR (tail
)))
1959 if (! NILP (Fequal (prop
, XCAR (tail
))))
1961 Fsetcar (XCDR (tail
), val
);
1968 newcell
= Fcons (prop
, Fcons (val
, Qnil
));
1972 Fsetcdr (XCDR (prev
), newcell
);
1976 DEFUN ("eql", Feql
, Seql
, 2, 2, 0,
1977 doc
: /* Return t if the two args are the same Lisp object.
1978 Floating-point numbers of equal value are `eql', but they may not be `eq'. */)
1979 (Lisp_Object obj1
, Lisp_Object obj2
)
1982 return internal_equal (obj1
, obj2
, 0, 0) ? Qt
: Qnil
;
1984 return EQ (obj1
, obj2
) ? Qt
: Qnil
;
1987 DEFUN ("equal", Fequal
, Sequal
, 2, 2, 0,
1988 doc
: /* Return t if two Lisp objects have similar structure and contents.
1989 They must have the same data type.
1990 Conses are compared by comparing the cars and the cdrs.
1991 Vectors and strings are compared element by element.
1992 Numbers are compared by value, but integers cannot equal floats.
1993 (Use `=' if you want integers and floats to be able to be equal.)
1994 Symbols must match exactly. */)
1995 (register Lisp_Object o1
, Lisp_Object o2
)
1997 return internal_equal (o1
, o2
, 0, 0) ? Qt
: Qnil
;
2000 DEFUN ("equal-including-properties", Fequal_including_properties
, Sequal_including_properties
, 2, 2, 0,
2001 doc
: /* Return t if two Lisp objects have similar structure and contents.
2002 This is like `equal' except that it compares the text properties
2003 of strings. (`equal' ignores text properties.) */)
2004 (register Lisp_Object o1
, Lisp_Object o2
)
2006 return internal_equal (o1
, o2
, 0, 1) ? Qt
: Qnil
;
2009 /* DEPTH is current depth of recursion. Signal an error if it
2011 PROPS, if non-nil, means compare string text properties too. */
2014 internal_equal (register Lisp_Object o1
, register Lisp_Object o2
, int depth
, int props
)
2017 error ("Stack overflow in equal");
2023 if (XTYPE (o1
) != XTYPE (o2
))
2032 d1
= extract_float (o1
);
2033 d2
= extract_float (o2
);
2034 /* If d is a NaN, then d != d. Two NaNs should be `equal' even
2035 though they are not =. */
2036 return d1
== d2
|| (d1
!= d1
&& d2
!= d2
);
2040 if (!internal_equal (XCAR (o1
), XCAR (o2
), depth
+ 1, props
))
2047 if (XMISCTYPE (o1
) != XMISCTYPE (o2
))
2051 if (!internal_equal (OVERLAY_START (o1
), OVERLAY_START (o2
),
2053 || !internal_equal (OVERLAY_END (o1
), OVERLAY_END (o2
),
2056 o1
= MVAR (XOVERLAY (o1
), plist
);
2057 o2
= MVAR (XOVERLAY (o2
), plist
);
2062 return (XMARKER (o1
)->buffer
== XMARKER (o2
)->buffer
2063 && (XMARKER (o1
)->buffer
== 0
2064 || XMARKER (o1
)->bytepos
== XMARKER (o2
)->bytepos
));
2068 case Lisp_Vectorlike
:
2071 ptrdiff_t size
= ASIZE (o1
);
2072 /* Pseudovectors have the type encoded in the size field, so this test
2073 actually checks that the objects have the same type as well as the
2075 if (ASIZE (o2
) != size
)
2077 /* Boolvectors are compared much like strings. */
2078 if (BOOL_VECTOR_P (o1
))
2080 if (XBOOL_VECTOR (o1
)->size
!= XBOOL_VECTOR (o2
)->size
)
2082 if (memcmp (XBOOL_VECTOR (o1
)->data
, XBOOL_VECTOR (o2
)->data
,
2083 ((XBOOL_VECTOR (o1
)->size
2084 + BOOL_VECTOR_BITS_PER_CHAR
- 1)
2085 / BOOL_VECTOR_BITS_PER_CHAR
)))
2089 if (WINDOW_CONFIGURATIONP (o1
))
2090 return compare_window_configurations (o1
, o2
, 0);
2092 /* Aside from them, only true vectors, char-tables, compiled
2093 functions, and fonts (font-spec, font-entity, font-object)
2094 are sensible to compare, so eliminate the others now. */
2095 if (size
& PSEUDOVECTOR_FLAG
)
2097 if (!(size
& ((PVEC_COMPILED
| PVEC_CHAR_TABLE
2098 | PVEC_SUB_CHAR_TABLE
| PVEC_FONT
)
2099 << PSEUDOVECTOR_SIZE_BITS
)))
2101 size
&= PSEUDOVECTOR_SIZE_MASK
;
2103 for (i
= 0; i
< size
; i
++)
2108 if (!internal_equal (v1
, v2
, depth
+ 1, props
))
2116 if (SCHARS (o1
) != SCHARS (o2
))
2118 if (SBYTES (o1
) != SBYTES (o2
))
2120 if (memcmp (SDATA (o1
), SDATA (o2
), SBYTES (o1
)))
2122 if (props
&& !compare_string_intervals (o1
, o2
))
2134 DEFUN ("fillarray", Ffillarray
, Sfillarray
, 2, 2, 0,
2135 doc
: /* Store each element of ARRAY with ITEM.
2136 ARRAY is a vector, string, char-table, or bool-vector. */)
2137 (Lisp_Object array
, Lisp_Object item
)
2139 register ptrdiff_t size
, idx
;
2141 if (VECTORP (array
))
2143 register Lisp_Object
*p
= XVECTOR (array
)->contents
;
2144 size
= ASIZE (array
);
2145 for (idx
= 0; idx
< size
; idx
++)
2148 else if (CHAR_TABLE_P (array
))
2152 for (i
= 0; i
< (1 << CHARTAB_SIZE_BITS_0
); i
++)
2153 XCHAR_TABLE (array
)->contents
[i
] = item
;
2154 XCHAR_TABLE (array
)->defalt
= item
;
2156 else if (STRINGP (array
))
2158 register unsigned char *p
= SDATA (array
);
2160 CHECK_CHARACTER (item
);
2161 charval
= XFASTINT (item
);
2162 size
= SCHARS (array
);
2163 if (STRING_MULTIBYTE (array
))
2165 unsigned char str
[MAX_MULTIBYTE_LENGTH
];
2166 int len
= CHAR_STRING (charval
, str
);
2167 ptrdiff_t size_byte
= SBYTES (array
);
2169 if (INT_MULTIPLY_OVERFLOW (SCHARS (array
), len
)
2170 || SCHARS (array
) * len
!= size_byte
)
2171 error ("Attempt to change byte length of a string");
2172 for (idx
= 0; idx
< size_byte
; idx
++)
2173 *p
++ = str
[idx
% len
];
2176 for (idx
= 0; idx
< size
; idx
++)
2179 else if (BOOL_VECTOR_P (array
))
2181 register unsigned char *p
= XBOOL_VECTOR (array
)->data
;
2183 ((XBOOL_VECTOR (array
)->size
+ BOOL_VECTOR_BITS_PER_CHAR
- 1)
2184 / BOOL_VECTOR_BITS_PER_CHAR
);
2188 memset (p
, ! NILP (item
) ? -1 : 0, size
);
2190 /* Clear any extraneous bits in the last byte. */
2191 p
[size
- 1] &= (1 << (size
% BOOL_VECTOR_BITS_PER_CHAR
)) - 1;
2195 wrong_type_argument (Qarrayp
, array
);
2199 DEFUN ("clear-string", Fclear_string
, Sclear_string
,
2201 doc
: /* Clear the contents of STRING.
2202 This makes STRING unibyte and may change its length. */)
2203 (Lisp_Object string
)
2206 CHECK_STRING (string
);
2207 len
= SBYTES (string
);
2208 memset (SDATA (string
), 0, len
);
2209 STRING_SET_CHARS (string
, len
);
2210 STRING_SET_UNIBYTE (string
);
2216 nconc2 (Lisp_Object s1
, Lisp_Object s2
)
2218 Lisp_Object args
[2];
2221 return Fnconc (2, args
);
2224 DEFUN ("nconc", Fnconc
, Snconc
, 0, MANY
, 0,
2225 doc
: /* Concatenate any number of lists by altering them.
2226 Only the last argument is not altered, and need not be a list.
2227 usage: (nconc &rest LISTS) */)
2228 (ptrdiff_t nargs
, Lisp_Object
*args
)
2231 register Lisp_Object tail
, tem
, val
;
2235 for (argnum
= 0; argnum
< nargs
; argnum
++)
2238 if (NILP (tem
)) continue;
2243 if (argnum
+ 1 == nargs
) break;
2245 CHECK_LIST_CONS (tem
, tem
);
2254 tem
= args
[argnum
+ 1];
2255 Fsetcdr (tail
, tem
);
2257 args
[argnum
+ 1] = tail
;
2263 /* This is the guts of all mapping functions.
2264 Apply FN to each element of SEQ, one by one,
2265 storing the results into elements of VALS, a C vector of Lisp_Objects.
2266 LENI is the length of VALS, which should also be the length of SEQ. */
2269 mapcar1 (EMACS_INT leni
, Lisp_Object
*vals
, Lisp_Object fn
, Lisp_Object seq
)
2271 register Lisp_Object tail
;
2273 register EMACS_INT i
;
2274 struct gcpro gcpro1
, gcpro2
, gcpro3
;
2278 /* Don't let vals contain any garbage when GC happens. */
2279 for (i
= 0; i
< leni
; i
++)
2282 GCPRO3 (dummy
, fn
, seq
);
2284 gcpro1
.nvars
= leni
;
2288 /* We need not explicitly protect `tail' because it is used only on lists, and
2289 1) lists are not relocated and 2) the list is marked via `seq' so will not
2292 if (VECTORP (seq
) || COMPILEDP (seq
))
2294 for (i
= 0; i
< leni
; i
++)
2296 dummy
= call1 (fn
, AREF (seq
, i
));
2301 else if (BOOL_VECTOR_P (seq
))
2303 for (i
= 0; i
< leni
; i
++)
2306 byte
= XBOOL_VECTOR (seq
)->data
[i
/ BOOL_VECTOR_BITS_PER_CHAR
];
2307 dummy
= (byte
& (1 << (i
% BOOL_VECTOR_BITS_PER_CHAR
))) ? Qt
: Qnil
;
2308 dummy
= call1 (fn
, dummy
);
2313 else if (STRINGP (seq
))
2317 for (i
= 0, i_byte
= 0; i
< leni
;)
2320 ptrdiff_t i_before
= i
;
2322 FETCH_STRING_CHAR_ADVANCE (c
, seq
, i
, i_byte
);
2323 XSETFASTINT (dummy
, c
);
2324 dummy
= call1 (fn
, dummy
);
2326 vals
[i_before
] = dummy
;
2329 else /* Must be a list, since Flength did not get an error */
2332 for (i
= 0; i
< leni
&& CONSP (tail
); i
++)
2334 dummy
= call1 (fn
, XCAR (tail
));
2344 DEFUN ("mapconcat", Fmapconcat
, Smapconcat
, 3, 3, 0,
2345 doc
: /* Apply FUNCTION to each element of SEQUENCE, and concat the results as strings.
2346 In between each pair of results, stick in SEPARATOR. Thus, " " as
2347 SEPARATOR results in spaces between the values returned by FUNCTION.
2348 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2349 (Lisp_Object function
, Lisp_Object sequence
, Lisp_Object separator
)
2352 register EMACS_INT leni
;
2355 register Lisp_Object
*args
;
2356 struct gcpro gcpro1
;
2360 len
= Flength (sequence
);
2361 if (CHAR_TABLE_P (sequence
))
2362 wrong_type_argument (Qlistp
, sequence
);
2364 nargs
= leni
+ leni
- 1;
2365 if (nargs
< 0) return empty_unibyte_string
;
2367 SAFE_ALLOCA_LISP (args
, nargs
);
2370 mapcar1 (leni
, args
, function
, sequence
);
2373 for (i
= leni
- 1; i
> 0; i
--)
2374 args
[i
+ i
] = args
[i
];
2376 for (i
= 1; i
< nargs
; i
+= 2)
2377 args
[i
] = separator
;
2379 ret
= Fconcat (nargs
, args
);
2385 DEFUN ("mapcar", Fmapcar
, Smapcar
, 2, 2, 0,
2386 doc
: /* Apply FUNCTION to each element of SEQUENCE, and make a list of the results.
2387 The result is a list just as long as SEQUENCE.
2388 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2389 (Lisp_Object function
, Lisp_Object sequence
)
2391 register Lisp_Object len
;
2392 register EMACS_INT leni
;
2393 register Lisp_Object
*args
;
2397 len
= Flength (sequence
);
2398 if (CHAR_TABLE_P (sequence
))
2399 wrong_type_argument (Qlistp
, sequence
);
2400 leni
= XFASTINT (len
);
2402 SAFE_ALLOCA_LISP (args
, leni
);
2404 mapcar1 (leni
, args
, function
, sequence
);
2406 ret
= Flist (leni
, args
);
2412 DEFUN ("mapc", Fmapc
, Smapc
, 2, 2, 0,
2413 doc
: /* Apply FUNCTION to each element of SEQUENCE for side effects only.
2414 Unlike `mapcar', don't accumulate the results. Return SEQUENCE.
2415 SEQUENCE may be a list, a vector, a bool-vector, or a string. */)
2416 (Lisp_Object function
, Lisp_Object sequence
)
2418 register EMACS_INT leni
;
2420 leni
= XFASTINT (Flength (sequence
));
2421 if (CHAR_TABLE_P (sequence
))
2422 wrong_type_argument (Qlistp
, sequence
);
2423 mapcar1 (leni
, 0, function
, sequence
);
2428 /* This is how C code calls `yes-or-no-p' and allows the user
2431 Anything that calls this function must protect from GC! */
2434 do_yes_or_no_p (Lisp_Object prompt
)
2436 return call1 (intern ("yes-or-no-p"), prompt
);
2439 /* Anything that calls this function must protect from GC! */
2441 DEFUN ("yes-or-no-p", Fyes_or_no_p
, Syes_or_no_p
, 1, 1, 0,
2442 doc
: /* Ask user a yes-or-no question. Return t if answer is yes.
2443 PROMPT is the string to display to ask the question. It should end in
2444 a space; `yes-or-no-p' adds \"(yes or no) \" to it.
2446 The user must confirm the answer with RET, and can edit it until it
2449 Under a windowing system a dialog box will be used if `last-nonmenu-event'
2450 is nil, and `use-dialog-box' is non-nil. */)
2451 (Lisp_Object prompt
)
2453 register Lisp_Object ans
;
2454 Lisp_Object args
[2];
2455 struct gcpro gcpro1
;
2457 CHECK_STRING (prompt
);
2460 if (FRAME_WINDOW_P (SELECTED_FRAME ())
2461 && (NILP (last_nonmenu_event
) || CONSP (last_nonmenu_event
))
2465 Lisp_Object pane
, menu
, obj
;
2466 redisplay_preserve_echo_area (4);
2467 pane
= Fcons (Fcons (build_string ("Yes"), Qt
),
2468 Fcons (Fcons (build_string ("No"), Qnil
),
2471 menu
= Fcons (prompt
, pane
);
2472 obj
= Fx_popup_dialog (Qt
, menu
, Qnil
);
2476 #endif /* HAVE_MENUS */
2479 args
[1] = build_string ("(yes or no) ");
2480 prompt
= Fconcat (2, args
);
2486 ans
= Fdowncase (Fread_from_minibuffer (prompt
, Qnil
, Qnil
, Qnil
,
2487 Qyes_or_no_p_history
, Qnil
,
2489 if (SCHARS (ans
) == 3 && !strcmp (SSDATA (ans
), "yes"))
2494 if (SCHARS (ans
) == 2 && !strcmp (SSDATA (ans
), "no"))
2502 message ("Please answer yes or no.");
2503 Fsleep_for (make_number (2), Qnil
);
2507 DEFUN ("load-average", Fload_average
, Sload_average
, 0, 1, 0,
2508 doc
: /* Return list of 1 minute, 5 minute and 15 minute load averages.
2510 Each of the three load averages is multiplied by 100, then converted
2513 When USE-FLOATS is non-nil, floats will be used instead of integers.
2514 These floats are not multiplied by 100.
2516 If the 5-minute or 15-minute load averages are not available, return a
2517 shortened list, containing only those averages which are available.
2519 An error is thrown if the load average can't be obtained. In some
2520 cases making it work would require Emacs being installed setuid or
2521 setgid so that it can read kernel information, and that usually isn't
2523 (Lisp_Object use_floats
)
2526 int loads
= getloadavg (load_ave
, 3);
2527 Lisp_Object ret
= Qnil
;
2530 error ("load-average not implemented for this operating system");
2534 Lisp_Object load
= (NILP (use_floats
)
2535 ? make_number (100.0 * load_ave
[loads
])
2536 : make_float (load_ave
[loads
]));
2537 ret
= Fcons (load
, ret
);
2543 static Lisp_Object Qsubfeatures
;
2545 DEFUN ("featurep", Ffeaturep
, Sfeaturep
, 1, 2, 0,
2546 doc
: /* Return t if FEATURE is present in this Emacs.
2548 Use this to conditionalize execution of lisp code based on the
2549 presence or absence of Emacs or environment extensions.
2550 Use `provide' to declare that a feature is available. This function
2551 looks at the value of the variable `features'. The optional argument
2552 SUBFEATURE can be used to check a specific subfeature of FEATURE. */)
2553 (Lisp_Object feature
, Lisp_Object subfeature
)
2555 register Lisp_Object tem
;
2556 CHECK_SYMBOL (feature
);
2557 tem
= Fmemq (feature
, Vfeatures
);
2558 if (!NILP (tem
) && !NILP (subfeature
))
2559 tem
= Fmember (subfeature
, Fget (feature
, Qsubfeatures
));
2560 return (NILP (tem
)) ? Qnil
: Qt
;
2563 DEFUN ("provide", Fprovide
, Sprovide
, 1, 2, 0,
2564 doc
: /* Announce that FEATURE is a feature of the current Emacs.
2565 The optional argument SUBFEATURES should be a list of symbols listing
2566 particular subfeatures supported in this version of FEATURE. */)
2567 (Lisp_Object feature
, Lisp_Object subfeatures
)
2569 register Lisp_Object tem
;
2570 CHECK_SYMBOL (feature
);
2571 CHECK_LIST (subfeatures
);
2572 if (!NILP (Vautoload_queue
))
2573 Vautoload_queue
= Fcons (Fcons (make_number (0), Vfeatures
),
2575 tem
= Fmemq (feature
, Vfeatures
);
2577 Vfeatures
= Fcons (feature
, Vfeatures
);
2578 if (!NILP (subfeatures
))
2579 Fput (feature
, Qsubfeatures
, subfeatures
);
2580 LOADHIST_ATTACH (Fcons (Qprovide
, feature
));
2582 /* Run any load-hooks for this file. */
2583 tem
= Fassq (feature
, Vafter_load_alist
);
2585 Fprogn (XCDR (tem
));
2590 /* `require' and its subroutines. */
2592 /* List of features currently being require'd, innermost first. */
2594 static Lisp_Object require_nesting_list
;
2597 require_unwind (Lisp_Object old_value
)
2599 return require_nesting_list
= old_value
;
2602 DEFUN ("require", Frequire
, Srequire
, 1, 3, 0,
2603 doc
: /* If feature FEATURE is not loaded, load it from FILENAME.
2604 If FEATURE is not a member of the list `features', then the feature
2605 is not loaded; so load the file FILENAME.
2606 If FILENAME is omitted, the printname of FEATURE is used as the file name,
2607 and `load' will try to load this name appended with the suffix `.elc' or
2608 `.el', in that order. The name without appended suffix will not be used.
2609 See `get-load-suffixes' for the complete list of suffixes.
2610 If the optional third argument NOERROR is non-nil,
2611 then return nil if the file is not found instead of signaling an error.
2612 Normally the return value is FEATURE.
2613 The normal messages at start and end of loading FILENAME are suppressed. */)
2614 (Lisp_Object feature
, Lisp_Object filename
, Lisp_Object noerror
)
2616 register Lisp_Object tem
;
2617 struct gcpro gcpro1
, gcpro2
;
2618 int from_file
= load_in_progress
;
2620 CHECK_SYMBOL (feature
);
2622 /* Record the presence of `require' in this file
2623 even if the feature specified is already loaded.
2624 But not more than once in any file,
2625 and not when we aren't loading or reading from a file. */
2627 for (tem
= Vcurrent_load_list
; CONSP (tem
); tem
= XCDR (tem
))
2628 if (NILP (XCDR (tem
)) && STRINGP (XCAR (tem
)))
2633 tem
= Fcons (Qrequire
, feature
);
2634 if (NILP (Fmember (tem
, Vcurrent_load_list
)))
2635 LOADHIST_ATTACH (tem
);
2637 tem
= Fmemq (feature
, Vfeatures
);
2641 ptrdiff_t count
= SPECPDL_INDEX ();
2644 /* This is to make sure that loadup.el gives a clear picture
2645 of what files are preloaded and when. */
2646 if (! NILP (Vpurify_flag
))
2647 error ("(require %s) while preparing to dump",
2648 SDATA (SYMBOL_NAME (feature
)));
2650 /* A certain amount of recursive `require' is legitimate,
2651 but if we require the same feature recursively 3 times,
2653 tem
= require_nesting_list
;
2654 while (! NILP (tem
))
2656 if (! NILP (Fequal (feature
, XCAR (tem
))))
2661 error ("Recursive `require' for feature `%s'",
2662 SDATA (SYMBOL_NAME (feature
)));
2664 /* Update the list for any nested `require's that occur. */
2665 record_unwind_protect (require_unwind
, require_nesting_list
);
2666 require_nesting_list
= Fcons (feature
, require_nesting_list
);
2668 /* Value saved here is to be restored into Vautoload_queue */
2669 record_unwind_protect (un_autoload
, Vautoload_queue
);
2670 Vautoload_queue
= Qt
;
2672 /* Load the file. */
2673 GCPRO2 (feature
, filename
);
2674 tem
= Fload (NILP (filename
) ? Fsymbol_name (feature
) : filename
,
2675 noerror
, Qt
, Qnil
, (NILP (filename
) ? Qt
: Qnil
));
2678 /* If load failed entirely, return nil. */
2680 return unbind_to (count
, Qnil
);
2682 tem
= Fmemq (feature
, Vfeatures
);
2684 error ("Required feature `%s' was not provided",
2685 SDATA (SYMBOL_NAME (feature
)));
2687 /* Once loading finishes, don't undo it. */
2688 Vautoload_queue
= Qt
;
2689 feature
= unbind_to (count
, feature
);
2695 /* Primitives for work of the "widget" library.
2696 In an ideal world, this section would not have been necessary.
2697 However, lisp function calls being as slow as they are, it turns
2698 out that some functions in the widget library (wid-edit.el) are the
2699 bottleneck of Widget operation. Here is their translation to C,
2700 for the sole reason of efficiency. */
2702 DEFUN ("plist-member", Fplist_member
, Splist_member
, 2, 2, 0,
2703 doc
: /* Return non-nil if PLIST has the property PROP.
2704 PLIST is a property list, which is a list of the form
2705 \(PROP1 VALUE1 PROP2 VALUE2 ...\). PROP is a symbol.
2706 Unlike `plist-get', this allows you to distinguish between a missing
2707 property and a property with the value nil.
2708 The value is actually the tail of PLIST whose car is PROP. */)
2709 (Lisp_Object plist
, Lisp_Object prop
)
2711 while (CONSP (plist
) && !EQ (XCAR (plist
), prop
))
2714 plist
= XCDR (plist
);
2715 plist
= CDR (plist
);
2720 DEFUN ("widget-put", Fwidget_put
, Swidget_put
, 3, 3, 0,
2721 doc
: /* In WIDGET, set PROPERTY to VALUE.
2722 The value can later be retrieved with `widget-get'. */)
2723 (Lisp_Object widget
, Lisp_Object property
, Lisp_Object value
)
2725 CHECK_CONS (widget
);
2726 XSETCDR (widget
, Fplist_put (XCDR (widget
), property
, value
));
2730 DEFUN ("widget-get", Fwidget_get
, Swidget_get
, 2, 2, 0,
2731 doc
: /* In WIDGET, get the value of PROPERTY.
2732 The value could either be specified when the widget was created, or
2733 later with `widget-put'. */)
2734 (Lisp_Object widget
, Lisp_Object property
)
2742 CHECK_CONS (widget
);
2743 tmp
= Fplist_member (XCDR (widget
), property
);
2749 tmp
= XCAR (widget
);
2752 widget
= Fget (tmp
, Qwidget_type
);
2756 DEFUN ("widget-apply", Fwidget_apply
, Swidget_apply
, 2, MANY
, 0,
2757 doc
: /* Apply the value of WIDGET's PROPERTY to the widget itself.
2758 ARGS are passed as extra arguments to the function.
2759 usage: (widget-apply WIDGET PROPERTY &rest ARGS) */)
2760 (ptrdiff_t nargs
, Lisp_Object
*args
)
2762 /* This function can GC. */
2763 Lisp_Object newargs
[3];
2764 struct gcpro gcpro1
, gcpro2
;
2767 newargs
[0] = Fwidget_get (args
[0], args
[1]);
2768 newargs
[1] = args
[0];
2769 newargs
[2] = Flist (nargs
- 2, args
+ 2);
2770 GCPRO2 (newargs
[0], newargs
[2]);
2771 result
= Fapply (3, newargs
);
2776 #ifdef HAVE_LANGINFO_CODESET
2777 #include <langinfo.h>
2780 DEFUN ("locale-info", Flocale_info
, Slocale_info
, 1, 1, 0,
2781 doc
: /* Access locale data ITEM for the current C locale, if available.
2782 ITEM should be one of the following:
2784 `codeset', returning the character set as a string (locale item CODESET);
2786 `days', returning a 7-element vector of day names (locale items DAY_n);
2788 `months', returning a 12-element vector of month names (locale items MON_n);
2790 `paper', returning a list (WIDTH HEIGHT) for the default paper size,
2791 both measured in millimeters (locale items PAPER_WIDTH, PAPER_HEIGHT).
2793 If the system can't provide such information through a call to
2794 `nl_langinfo', or if ITEM isn't from the list above, return nil.
2796 See also Info node `(libc)Locales'.
2798 The data read from the system are decoded using `locale-coding-system'. */)
2802 #ifdef HAVE_LANGINFO_CODESET
2804 if (EQ (item
, Qcodeset
))
2806 str
= nl_langinfo (CODESET
);
2807 return build_string (str
);
2810 else if (EQ (item
, Qdays
)) /* e.g. for calendar-day-name-array */
2812 Lisp_Object v
= Fmake_vector (make_number (7), Qnil
);
2813 const int days
[7] = {DAY_1
, DAY_2
, DAY_3
, DAY_4
, DAY_5
, DAY_6
, DAY_7
};
2815 struct gcpro gcpro1
;
2817 synchronize_system_time_locale ();
2818 for (i
= 0; i
< 7; i
++)
2820 str
= nl_langinfo (days
[i
]);
2821 val
= build_unibyte_string (str
);
2822 /* Fixme: Is this coding system necessarily right, even if
2823 it is consistent with CODESET? If not, what to do? */
2824 Faset (v
, make_number (i
),
2825 code_convert_string_norecord (val
, Vlocale_coding_system
,
2833 else if (EQ (item
, Qmonths
)) /* e.g. for calendar-month-name-array */
2835 Lisp_Object v
= Fmake_vector (make_number (12), Qnil
);
2836 const int months
[12] = {MON_1
, MON_2
, MON_3
, MON_4
, MON_5
, MON_6
, MON_7
,
2837 MON_8
, MON_9
, MON_10
, MON_11
, MON_12
};
2839 struct gcpro gcpro1
;
2841 synchronize_system_time_locale ();
2842 for (i
= 0; i
< 12; i
++)
2844 str
= nl_langinfo (months
[i
]);
2845 val
= build_unibyte_string (str
);
2846 Faset (v
, make_number (i
),
2847 code_convert_string_norecord (val
, Vlocale_coding_system
, 0));
2853 /* LC_PAPER stuff isn't defined as accessible in glibc as of 2.3.1,
2854 but is in the locale files. This could be used by ps-print. */
2856 else if (EQ (item
, Qpaper
))
2858 return list2 (make_number (nl_langinfo (PAPER_WIDTH
)),
2859 make_number (nl_langinfo (PAPER_HEIGHT
)));
2861 #endif /* PAPER_WIDTH */
2862 #endif /* HAVE_LANGINFO_CODESET*/
2866 /* base64 encode/decode functions (RFC 2045).
2867 Based on code from GNU recode. */
2869 #define MIME_LINE_LENGTH 76
2871 #define IS_ASCII(Character) \
2873 #define IS_BASE64(Character) \
2874 (IS_ASCII (Character) && base64_char_to_value[Character] >= 0)
2875 #define IS_BASE64_IGNORABLE(Character) \
2876 ((Character) == ' ' || (Character) == '\t' || (Character) == '\n' \
2877 || (Character) == '\f' || (Character) == '\r')
2879 /* Used by base64_decode_1 to retrieve a non-base64-ignorable
2880 character or return retval if there are no characters left to
2882 #define READ_QUADRUPLET_BYTE(retval) \
2887 if (nchars_return) \
2888 *nchars_return = nchars; \
2893 while (IS_BASE64_IGNORABLE (c))
2895 /* Table of characters coding the 64 values. */
2896 static const char base64_value_to_char
[64] =
2898 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', /* 0- 9 */
2899 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', /* 10-19 */
2900 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', /* 20-29 */
2901 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', /* 30-39 */
2902 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', /* 40-49 */
2903 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', /* 50-59 */
2904 '8', '9', '+', '/' /* 60-63 */
2907 /* Table of base64 values for first 128 characters. */
2908 static const short base64_char_to_value
[128] =
2910 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0- 9 */
2911 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 10- 19 */
2912 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 20- 29 */
2913 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 30- 39 */
2914 -1, -1, -1, 62, -1, -1, -1, 63, 52, 53, /* 40- 49 */
2915 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, /* 50- 59 */
2916 -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, /* 60- 69 */
2917 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 70- 79 */
2918 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, /* 80- 89 */
2919 25, -1, -1, -1, -1, -1, -1, 26, 27, 28, /* 90- 99 */
2920 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, /* 100-109 */
2921 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, /* 110-119 */
2922 49, 50, 51, -1, -1, -1, -1, -1 /* 120-127 */
2925 /* The following diagram shows the logical steps by which three octets
2926 get transformed into four base64 characters.
2928 .--------. .--------. .--------.
2929 |aaaaaabb| |bbbbcccc| |ccdddddd|
2930 `--------' `--------' `--------'
2932 .--------+--------+--------+--------.
2933 |00aaaaaa|00bbbbbb|00cccccc|00dddddd|
2934 `--------+--------+--------+--------'
2936 .--------+--------+--------+--------.
2937 |AAAAAAAA|BBBBBBBB|CCCCCCCC|DDDDDDDD|
2938 `--------+--------+--------+--------'
2940 The octets are divided into 6 bit chunks, which are then encoded into
2941 base64 characters. */
2944 static ptrdiff_t base64_encode_1 (const char *, char *, ptrdiff_t, int, int);
2945 static ptrdiff_t base64_decode_1 (const char *, char *, ptrdiff_t, int,
2948 DEFUN ("base64-encode-region", Fbase64_encode_region
, Sbase64_encode_region
,
2950 doc
: /* Base64-encode the region between BEG and END.
2951 Return the length of the encoded text.
2952 Optional third argument NO-LINE-BREAK means do not break long lines
2953 into shorter lines. */)
2954 (Lisp_Object beg
, Lisp_Object end
, Lisp_Object no_line_break
)
2957 ptrdiff_t allength
, length
;
2958 ptrdiff_t ibeg
, iend
, encoded_length
;
2959 ptrdiff_t old_pos
= PT
;
2962 validate_region (&beg
, &end
);
2964 ibeg
= CHAR_TO_BYTE (XFASTINT (beg
));
2965 iend
= CHAR_TO_BYTE (XFASTINT (end
));
2966 move_gap_both (XFASTINT (beg
), ibeg
);
2968 /* We need to allocate enough room for encoding the text.
2969 We need 33 1/3% more space, plus a newline every 76
2970 characters, and then we round up. */
2971 length
= iend
- ibeg
;
2972 allength
= length
+ length
/3 + 1;
2973 allength
+= allength
/ MIME_LINE_LENGTH
+ 1 + 6;
2975 SAFE_ALLOCA (encoded
, char *, allength
);
2976 encoded_length
= base64_encode_1 ((char *) BYTE_POS_ADDR (ibeg
),
2977 encoded
, length
, NILP (no_line_break
),
2978 !NILP (BVAR (current_buffer
, enable_multibyte_characters
)));
2979 if (encoded_length
> allength
)
2982 if (encoded_length
< 0)
2984 /* The encoding wasn't possible. */
2986 error ("Multibyte character in data for base64 encoding");
2989 /* Now we have encoded the region, so we insert the new contents
2990 and delete the old. (Insert first in order to preserve markers.) */
2991 SET_PT_BOTH (XFASTINT (beg
), ibeg
);
2992 insert (encoded
, encoded_length
);
2994 del_range_byte (ibeg
+ encoded_length
, iend
+ encoded_length
, 1);
2996 /* If point was outside of the region, restore it exactly; else just
2997 move to the beginning of the region. */
2998 if (old_pos
>= XFASTINT (end
))
2999 old_pos
+= encoded_length
- (XFASTINT (end
) - XFASTINT (beg
));
3000 else if (old_pos
> XFASTINT (beg
))
3001 old_pos
= XFASTINT (beg
);
3004 /* We return the length of the encoded text. */
3005 return make_number (encoded_length
);
3008 DEFUN ("base64-encode-string", Fbase64_encode_string
, Sbase64_encode_string
,
3010 doc
: /* Base64-encode STRING and return the result.
3011 Optional second argument NO-LINE-BREAK means do not break long lines
3012 into shorter lines. */)
3013 (Lisp_Object string
, Lisp_Object no_line_break
)
3015 ptrdiff_t allength
, length
, encoded_length
;
3017 Lisp_Object encoded_string
;
3020 CHECK_STRING (string
);
3022 /* We need to allocate enough room for encoding the text.
3023 We need 33 1/3% more space, plus a newline every 76
3024 characters, and then we round up. */
3025 length
= SBYTES (string
);
3026 allength
= length
+ length
/3 + 1;
3027 allength
+= allength
/ MIME_LINE_LENGTH
+ 1 + 6;
3029 /* We need to allocate enough room for decoding the text. */
3030 SAFE_ALLOCA (encoded
, char *, allength
);
3032 encoded_length
= base64_encode_1 (SSDATA (string
),
3033 encoded
, length
, NILP (no_line_break
),
3034 STRING_MULTIBYTE (string
));
3035 if (encoded_length
> allength
)
3038 if (encoded_length
< 0)
3040 /* The encoding wasn't possible. */
3042 error ("Multibyte character in data for base64 encoding");
3045 encoded_string
= make_unibyte_string (encoded
, encoded_length
);
3048 return encoded_string
;
3052 base64_encode_1 (const char *from
, char *to
, ptrdiff_t length
,
3053 int line_break
, int multibyte
)
3066 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3067 if (CHAR_BYTE8_P (c
))
3068 c
= CHAR_TO_BYTE8 (c
);
3076 /* Wrap line every 76 characters. */
3080 if (counter
< MIME_LINE_LENGTH
/ 4)
3089 /* Process first byte of a triplet. */
3091 *e
++ = base64_value_to_char
[0x3f & c
>> 2];
3092 value
= (0x03 & c
) << 4;
3094 /* Process second byte of a triplet. */
3098 *e
++ = base64_value_to_char
[value
];
3106 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3107 if (CHAR_BYTE8_P (c
))
3108 c
= CHAR_TO_BYTE8 (c
);
3116 *e
++ = base64_value_to_char
[value
| (0x0f & c
>> 4)];
3117 value
= (0x0f & c
) << 2;
3119 /* Process third byte of a triplet. */
3123 *e
++ = base64_value_to_char
[value
];
3130 c
= STRING_CHAR_AND_LENGTH ((unsigned char *) from
+ i
, bytes
);
3131 if (CHAR_BYTE8_P (c
))
3132 c
= CHAR_TO_BYTE8 (c
);
3140 *e
++ = base64_value_to_char
[value
| (0x03 & c
>> 6)];
3141 *e
++ = base64_value_to_char
[0x3f & c
];
3148 DEFUN ("base64-decode-region", Fbase64_decode_region
, Sbase64_decode_region
,
3150 doc
: /* Base64-decode the region between BEG and END.
3151 Return the length of the decoded text.
3152 If the region can't be decoded, signal an error and don't modify the buffer. */)
3153 (Lisp_Object beg
, Lisp_Object end
)
3155 ptrdiff_t ibeg
, iend
, length
, allength
;
3157 ptrdiff_t old_pos
= PT
;
3158 ptrdiff_t decoded_length
;
3159 ptrdiff_t inserted_chars
;
3160 int multibyte
= !NILP (BVAR (current_buffer
, enable_multibyte_characters
));
3163 validate_region (&beg
, &end
);
3165 ibeg
= CHAR_TO_BYTE (XFASTINT (beg
));
3166 iend
= CHAR_TO_BYTE (XFASTINT (end
));
3168 length
= iend
- ibeg
;
3170 /* We need to allocate enough room for decoding the text. If we are
3171 working on a multibyte buffer, each decoded code may occupy at
3173 allength
= multibyte
? length
* 2 : length
;
3174 SAFE_ALLOCA (decoded
, char *, allength
);
3176 move_gap_both (XFASTINT (beg
), ibeg
);
3177 decoded_length
= base64_decode_1 ((char *) BYTE_POS_ADDR (ibeg
),
3179 multibyte
, &inserted_chars
);
3180 if (decoded_length
> allength
)
3183 if (decoded_length
< 0)
3185 /* The decoding wasn't possible. */
3187 error ("Invalid base64 data");
3190 /* Now we have decoded the region, so we insert the new contents
3191 and delete the old. (Insert first in order to preserve markers.) */
3192 TEMP_SET_PT_BOTH (XFASTINT (beg
), ibeg
);
3193 insert_1_both (decoded
, inserted_chars
, decoded_length
, 0, 1, 0);
3196 /* Delete the original text. */
3197 del_range_both (PT
, PT_BYTE
, XFASTINT (end
) + inserted_chars
,
3198 iend
+ decoded_length
, 1);
3200 /* If point was outside of the region, restore it exactly; else just
3201 move to the beginning of the region. */
3202 if (old_pos
>= XFASTINT (end
))
3203 old_pos
+= inserted_chars
- (XFASTINT (end
) - XFASTINT (beg
));
3204 else if (old_pos
> XFASTINT (beg
))
3205 old_pos
= XFASTINT (beg
);
3206 SET_PT (old_pos
> ZV
? ZV
: old_pos
);
3208 return make_number (inserted_chars
);
3211 DEFUN ("base64-decode-string", Fbase64_decode_string
, Sbase64_decode_string
,
3213 doc
: /* Base64-decode STRING and return the result. */)
3214 (Lisp_Object string
)
3217 ptrdiff_t length
, decoded_length
;
3218 Lisp_Object decoded_string
;
3221 CHECK_STRING (string
);
3223 length
= SBYTES (string
);
3224 /* We need to allocate enough room for decoding the text. */
3225 SAFE_ALLOCA (decoded
, char *, length
);
3227 /* The decoded result should be unibyte. */
3228 decoded_length
= base64_decode_1 (SSDATA (string
), decoded
, length
,
3230 if (decoded_length
> length
)
3232 else if (decoded_length
>= 0)
3233 decoded_string
= make_unibyte_string (decoded
, decoded_length
);
3235 decoded_string
= Qnil
;
3238 if (!STRINGP (decoded_string
))
3239 error ("Invalid base64 data");
3241 return decoded_string
;
3244 /* Base64-decode the data at FROM of LENGTH bytes into TO. If
3245 MULTIBYTE is nonzero, the decoded result should be in multibyte
3246 form. If NCHARS_RETURN is not NULL, store the number of produced
3247 characters in *NCHARS_RETURN. */
3250 base64_decode_1 (const char *from
, char *to
, ptrdiff_t length
,
3251 int multibyte
, ptrdiff_t *nchars_return
)
3253 ptrdiff_t i
= 0; /* Used inside READ_QUADRUPLET_BYTE */
3256 unsigned long value
;
3257 ptrdiff_t nchars
= 0;
3261 /* Process first byte of a quadruplet. */
3263 READ_QUADRUPLET_BYTE (e
-to
);
3267 value
= base64_char_to_value
[c
] << 18;
3269 /* Process second byte of a quadruplet. */
3271 READ_QUADRUPLET_BYTE (-1);
3275 value
|= base64_char_to_value
[c
] << 12;
3277 c
= (unsigned char) (value
>> 16);
3278 if (multibyte
&& c
>= 128)
3279 e
+= BYTE8_STRING (c
, e
);
3284 /* Process third byte of a quadruplet. */
3286 READ_QUADRUPLET_BYTE (-1);
3290 READ_QUADRUPLET_BYTE (-1);
3299 value
|= base64_char_to_value
[c
] << 6;
3301 c
= (unsigned char) (0xff & value
>> 8);
3302 if (multibyte
&& c
>= 128)
3303 e
+= BYTE8_STRING (c
, e
);
3308 /* Process fourth byte of a quadruplet. */
3310 READ_QUADRUPLET_BYTE (-1);
3317 value
|= base64_char_to_value
[c
];
3319 c
= (unsigned char) (0xff & value
);
3320 if (multibyte
&& c
>= 128)
3321 e
+= BYTE8_STRING (c
, e
);
3330 /***********************************************************************
3332 ***** Hash Tables *****
3334 ***********************************************************************/
3336 /* Implemented by gerd@gnu.org. This hash table implementation was
3337 inspired by CMUCL hash tables. */
3341 1. For small tables, association lists are probably faster than
3342 hash tables because they have lower overhead.
3344 For uses of hash tables where the O(1) behavior of table
3345 operations is not a requirement, it might therefore be a good idea
3346 not to hash. Instead, we could just do a linear search in the
3347 key_and_value vector of the hash table. This could be done
3348 if a `:linear-search t' argument is given to make-hash-table. */
3351 /* The list of all weak hash tables. Don't staticpro this one. */
3353 static struct Lisp_Hash_Table
*weak_hash_tables
;
3355 /* Various symbols. */
3357 static Lisp_Object Qhash_table_p
, Qkey
, Qvalue
;
3358 Lisp_Object Qeq
, Qeql
, Qequal
;
3359 Lisp_Object QCtest
, QCsize
, QCrehash_size
, QCrehash_threshold
, QCweakness
;
3360 static Lisp_Object Qhash_table_test
, Qkey_or_value
, Qkey_and_value
;
3362 /* Function prototypes. */
3364 static struct Lisp_Hash_Table
*check_hash_table (Lisp_Object
);
3365 static ptrdiff_t get_key_arg (Lisp_Object
, ptrdiff_t, Lisp_Object
*, char *);
3366 static void maybe_resize_hash_table (struct Lisp_Hash_Table
*);
3367 static int sweep_weak_table (struct Lisp_Hash_Table
*, int);
3371 /***********************************************************************
3373 ***********************************************************************/
3375 /* If OBJ is a Lisp hash table, return a pointer to its struct
3376 Lisp_Hash_Table. Otherwise, signal an error. */
3378 static struct Lisp_Hash_Table
*
3379 check_hash_table (Lisp_Object obj
)
3381 CHECK_HASH_TABLE (obj
);
3382 return XHASH_TABLE (obj
);
3386 /* Value is the next integer I >= N, N >= 0 which is "almost" a prime
3387 number. A number is "almost" a prime number if it is not divisible
3388 by any integer in the range 2 .. (NEXT_ALMOST_PRIME_LIMIT - 1). */
3391 next_almost_prime (EMACS_INT n
)
3393 verify (NEXT_ALMOST_PRIME_LIMIT
== 11);
3394 for (n
|= 1; ; n
+= 2)
3395 if (n
% 3 != 0 && n
% 5 != 0 && n
% 7 != 0)
3400 /* Find KEY in ARGS which has size NARGS. Don't consider indices for
3401 which USED[I] is non-zero. If found at index I in ARGS, set
3402 USED[I] and USED[I + 1] to 1, and return I + 1. Otherwise return
3403 0. This function is used to extract a keyword/argument pair from
3404 a DEFUN parameter list. */
3407 get_key_arg (Lisp_Object key
, ptrdiff_t nargs
, Lisp_Object
*args
, char *used
)
3411 for (i
= 1; i
< nargs
; i
++)
3412 if (!used
[i
- 1] && EQ (args
[i
- 1], key
))
3423 /* Return a Lisp vector which has the same contents as VEC but has
3424 at least INCR_MIN more entries, where INCR_MIN is positive.
3425 If NITEMS_MAX is not -1, do not grow the vector to be any larger
3426 than NITEMS_MAX. Entries in the resulting
3427 vector that are not copied from VEC are set to nil. */
3430 larger_vector (Lisp_Object vec
, ptrdiff_t incr_min
, ptrdiff_t nitems_max
)
3432 struct Lisp_Vector
*v
;
3433 ptrdiff_t i
, incr
, incr_max
, old_size
, new_size
;
3434 ptrdiff_t C_language_max
= min (PTRDIFF_MAX
, SIZE_MAX
) / sizeof *v
->contents
;
3435 ptrdiff_t n_max
= (0 <= nitems_max
&& nitems_max
< C_language_max
3436 ? nitems_max
: C_language_max
);
3437 eassert (VECTORP (vec
));
3438 eassert (0 < incr_min
&& -1 <= nitems_max
);
3439 old_size
= ASIZE (vec
);
3440 incr_max
= n_max
- old_size
;
3441 incr
= max (incr_min
, min (old_size
>> 1, incr_max
));
3442 if (incr_max
< incr
)
3443 memory_full (SIZE_MAX
);
3444 new_size
= old_size
+ incr
;
3445 v
= allocate_vector (new_size
);
3446 memcpy (v
->contents
, XVECTOR (vec
)->contents
, old_size
* sizeof *v
->contents
);
3447 for (i
= old_size
; i
< new_size
; ++i
)
3448 v
->contents
[i
] = Qnil
;
3449 XSETVECTOR (vec
, v
);
3454 /***********************************************************************
3456 ***********************************************************************/
3458 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3459 HASH2 in hash table H using `eql'. Value is non-zero if KEY1 and
3460 KEY2 are the same. */
3463 cmpfn_eql (struct Lisp_Hash_Table
*h
,
3464 Lisp_Object key1
, EMACS_UINT hash1
,
3465 Lisp_Object key2
, EMACS_UINT hash2
)
3467 return (FLOATP (key1
)
3469 && XFLOAT_DATA (key1
) == XFLOAT_DATA (key2
));
3473 /* Compare KEY1 which has hash code HASH1 and KEY2 with hash code
3474 HASH2 in hash table H using `equal'. Value is non-zero if KEY1 and
3475 KEY2 are the same. */
3478 cmpfn_equal (struct Lisp_Hash_Table
*h
,
3479 Lisp_Object key1
, EMACS_UINT hash1
,
3480 Lisp_Object key2
, EMACS_UINT hash2
)
3482 return hash1
== hash2
&& !NILP (Fequal (key1
, key2
));
3486 /* Compare KEY1 which has hash code HASH1, and KEY2 with hash code
3487 HASH2 in hash table H using H->user_cmp_function. Value is non-zero
3488 if KEY1 and KEY2 are the same. */
3491 cmpfn_user_defined (struct Lisp_Hash_Table
*h
,
3492 Lisp_Object key1
, EMACS_UINT hash1
,
3493 Lisp_Object key2
, EMACS_UINT hash2
)
3497 Lisp_Object args
[3];
3499 args
[0] = h
->user_cmp_function
;
3502 return !NILP (Ffuncall (3, args
));
3509 /* Value is a hash code for KEY for use in hash table H which uses
3510 `eq' to compare keys. The hash code returned is guaranteed to fit
3511 in a Lisp integer. */
3514 hashfn_eq (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3516 EMACS_UINT hash
= XUINT (key
) ^ XTYPE (key
);
3517 eassert ((hash
& ~INTMASK
) == 0);
3522 /* Value is a hash code for KEY for use in hash table H which uses
3523 `eql' to compare keys. The hash code returned is guaranteed to fit
3524 in a Lisp integer. */
3527 hashfn_eql (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3531 hash
= sxhash (key
, 0);
3533 hash
= XUINT (key
) ^ XTYPE (key
);
3534 eassert ((hash
& ~INTMASK
) == 0);
3539 /* Value is a hash code for KEY for use in hash table H which uses
3540 `equal' to compare keys. The hash code returned is guaranteed to fit
3541 in a Lisp integer. */
3544 hashfn_equal (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3546 EMACS_UINT hash
= sxhash (key
, 0);
3547 eassert ((hash
& ~INTMASK
) == 0);
3552 /* Value is a hash code for KEY for use in hash table H which uses as
3553 user-defined function to compare keys. The hash code returned is
3554 guaranteed to fit in a Lisp integer. */
3557 hashfn_user_defined (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3559 Lisp_Object args
[2], hash
;
3561 args
[0] = h
->user_hash_function
;
3563 hash
= Ffuncall (2, args
);
3564 if (!INTEGERP (hash
))
3565 signal_error ("Invalid hash code returned from user-supplied hash function", hash
);
3566 return XUINT (hash
);
3569 /* An upper bound on the size of a hash table index. It must fit in
3570 ptrdiff_t and be a valid Emacs fixnum. */
3571 #define INDEX_SIZE_BOUND \
3572 ((ptrdiff_t) min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX / sizeof (Lisp_Object)))
3574 /* Create and initialize a new hash table.
3576 TEST specifies the test the hash table will use to compare keys.
3577 It must be either one of the predefined tests `eq', `eql' or
3578 `equal' or a symbol denoting a user-defined test named TEST with
3579 test and hash functions USER_TEST and USER_HASH.
3581 Give the table initial capacity SIZE, SIZE >= 0, an integer.
3583 If REHASH_SIZE is an integer, it must be > 0, and this hash table's
3584 new size when it becomes full is computed by adding REHASH_SIZE to
3585 its old size. If REHASH_SIZE is a float, it must be > 1.0, and the
3586 table's new size is computed by multiplying its old size with
3589 REHASH_THRESHOLD must be a float <= 1.0, and > 0. The table will
3590 be resized when the ratio of (number of entries in the table) /
3591 (table size) is >= REHASH_THRESHOLD.
3593 WEAK specifies the weakness of the table. If non-nil, it must be
3594 one of the symbols `key', `value', `key-or-value', or `key-and-value'. */
3597 make_hash_table (Lisp_Object test
, Lisp_Object size
, Lisp_Object rehash_size
,
3598 Lisp_Object rehash_threshold
, Lisp_Object weak
,
3599 Lisp_Object user_test
, Lisp_Object user_hash
)
3601 struct Lisp_Hash_Table
*h
;
3603 EMACS_INT index_size
, sz
;
3607 /* Preconditions. */
3608 eassert (SYMBOLP (test
));
3609 eassert (INTEGERP (size
) && XINT (size
) >= 0);
3610 eassert ((INTEGERP (rehash_size
) && XINT (rehash_size
) > 0)
3611 || (FLOATP (rehash_size
) && 1 < XFLOAT_DATA (rehash_size
)));
3612 eassert (FLOATP (rehash_threshold
)
3613 && 0 < XFLOAT_DATA (rehash_threshold
)
3614 && XFLOAT_DATA (rehash_threshold
) <= 1.0);
3616 if (XFASTINT (size
) == 0)
3617 size
= make_number (1);
3619 sz
= XFASTINT (size
);
3620 index_float
= sz
/ XFLOAT_DATA (rehash_threshold
);
3621 index_size
= (index_float
< INDEX_SIZE_BOUND
+ 1
3622 ? next_almost_prime (index_float
)
3623 : INDEX_SIZE_BOUND
+ 1);
3624 if (INDEX_SIZE_BOUND
< max (index_size
, 2 * sz
))
3625 error ("Hash table too large");
3627 /* Allocate a table and initialize it. */
3628 h
= allocate_hash_table ();
3630 /* Initialize hash table slots. */
3632 if (EQ (test
, Qeql
))
3634 h
->cmpfn
= cmpfn_eql
;
3635 h
->hashfn
= hashfn_eql
;
3637 else if (EQ (test
, Qeq
))
3640 h
->hashfn
= hashfn_eq
;
3642 else if (EQ (test
, Qequal
))
3644 h
->cmpfn
= cmpfn_equal
;
3645 h
->hashfn
= hashfn_equal
;
3649 h
->user_cmp_function
= user_test
;
3650 h
->user_hash_function
= user_hash
;
3651 h
->cmpfn
= cmpfn_user_defined
;
3652 h
->hashfn
= hashfn_user_defined
;
3656 h
->rehash_threshold
= rehash_threshold
;
3657 h
->rehash_size
= rehash_size
;
3659 h
->key_and_value
= Fmake_vector (make_number (2 * sz
), Qnil
);
3660 h
->hash
= Fmake_vector (size
, Qnil
);
3661 h
->next
= Fmake_vector (size
, Qnil
);
3662 h
->index
= Fmake_vector (make_number (index_size
), Qnil
);
3664 /* Set up the free list. */
3665 for (i
= 0; i
< sz
- 1; ++i
)
3666 set_hash_next (h
, i
, make_number (i
+ 1));
3667 h
->next_free
= make_number (0);
3669 XSET_HASH_TABLE (table
, h
);
3670 eassert (HASH_TABLE_P (table
));
3671 eassert (XHASH_TABLE (table
) == h
);
3673 /* Maybe add this hash table to the list of all weak hash tables. */
3675 h
->next_weak
= NULL
;
3678 h
->next_weak
= weak_hash_tables
;
3679 weak_hash_tables
= h
;
3686 /* Return a copy of hash table H1. Keys and values are not copied,
3687 only the table itself is. */
3690 copy_hash_table (struct Lisp_Hash_Table
*h1
)
3693 struct Lisp_Hash_Table
*h2
;
3694 struct Lisp_Vector
*next
;
3696 h2
= allocate_hash_table ();
3697 next
= h2
->header
.next
.vector
;
3698 memcpy (h2
, h1
, sizeof *h2
);
3699 h2
->header
.next
.vector
= next
;
3700 h2
->key_and_value
= Fcopy_sequence (h1
->key_and_value
);
3701 h2
->hash
= Fcopy_sequence (h1
->hash
);
3702 h2
->next
= Fcopy_sequence (h1
->next
);
3703 h2
->index
= Fcopy_sequence (h1
->index
);
3704 XSET_HASH_TABLE (table
, h2
);
3706 /* Maybe add this hash table to the list of all weak hash tables. */
3707 if (!NILP (h2
->weak
))
3709 h2
->next_weak
= weak_hash_tables
;
3710 weak_hash_tables
= h2
;
3717 /* Resize hash table H if it's too full. If H cannot be resized
3718 because it's already too large, throw an error. */
3721 maybe_resize_hash_table (struct Lisp_Hash_Table
*h
)
3723 if (NILP (h
->next_free
))
3725 ptrdiff_t old_size
= HASH_TABLE_SIZE (h
);
3726 EMACS_INT new_size
, index_size
, nsize
;
3730 if (INTEGERP (h
->rehash_size
))
3731 new_size
= old_size
+ XFASTINT (h
->rehash_size
);
3734 double float_new_size
= old_size
* XFLOAT_DATA (h
->rehash_size
);
3735 if (float_new_size
< INDEX_SIZE_BOUND
+ 1)
3737 new_size
= float_new_size
;
3738 if (new_size
<= old_size
)
3739 new_size
= old_size
+ 1;
3742 new_size
= INDEX_SIZE_BOUND
+ 1;
3744 index_float
= new_size
/ XFLOAT_DATA (h
->rehash_threshold
);
3745 index_size
= (index_float
< INDEX_SIZE_BOUND
+ 1
3746 ? next_almost_prime (index_float
)
3747 : INDEX_SIZE_BOUND
+ 1);
3748 nsize
= max (index_size
, 2 * new_size
);
3749 if (INDEX_SIZE_BOUND
< nsize
)
3750 error ("Hash table too large to resize");
3752 #ifdef ENABLE_CHECKING
3753 if (HASH_TABLE_P (Vpurify_flag
)
3754 && XHASH_TABLE (Vpurify_flag
) == h
)
3756 Lisp_Object args
[2];
3757 args
[0] = build_string ("Growing hash table to: %d");
3758 args
[1] = make_number (new_size
);
3763 h
->key_and_value
= larger_vector (h
->key_and_value
,
3764 2 * (new_size
- old_size
), -1);
3765 h
->next
= larger_vector (h
->next
, new_size
- old_size
, -1);
3766 h
->hash
= larger_vector (h
->hash
, new_size
- old_size
, -1);
3767 h
->index
= Fmake_vector (make_number (index_size
), Qnil
);
3769 /* Update the free list. Do it so that new entries are added at
3770 the end of the free list. This makes some operations like
3772 for (i
= old_size
; i
< new_size
- 1; ++i
)
3773 set_hash_next (h
, i
, make_number (i
+ 1));
3775 if (!NILP (h
->next_free
))
3777 Lisp_Object last
, next
;
3779 last
= h
->next_free
;
3780 while (next
= HASH_NEXT (h
, XFASTINT (last
)),
3784 set_hash_next (h
, XFASTINT (last
), make_number (old_size
));
3787 XSETFASTINT (h
->next_free
, old_size
);
3790 for (i
= 0; i
< old_size
; ++i
)
3791 if (!NILP (HASH_HASH (h
, i
)))
3793 EMACS_UINT hash_code
= XUINT (HASH_HASH (h
, i
));
3794 ptrdiff_t start_of_bucket
= hash_code
% ASIZE (h
->index
);
3795 set_hash_next (h
, i
, HASH_INDEX (h
, start_of_bucket
));
3796 set_hash_index (h
, start_of_bucket
, make_number (i
));
3802 /* Lookup KEY in hash table H. If HASH is non-null, return in *HASH
3803 the hash code of KEY. Value is the index of the entry in H
3804 matching KEY, or -1 if not found. */
3807 hash_lookup (struct Lisp_Hash_Table
*h
, Lisp_Object key
, EMACS_UINT
*hash
)
3809 EMACS_UINT hash_code
;
3810 ptrdiff_t start_of_bucket
;
3813 hash_code
= h
->hashfn (h
, key
);
3817 start_of_bucket
= hash_code
% ASIZE (h
->index
);
3818 idx
= HASH_INDEX (h
, start_of_bucket
);
3820 /* We need not gcpro idx since it's either an integer or nil. */
3823 ptrdiff_t i
= XFASTINT (idx
);
3824 if (EQ (key
, HASH_KEY (h
, i
))
3826 && h
->cmpfn (h
, key
, hash_code
,
3827 HASH_KEY (h
, i
), XUINT (HASH_HASH (h
, i
)))))
3829 idx
= HASH_NEXT (h
, i
);
3832 return NILP (idx
) ? -1 : XFASTINT (idx
);
3836 /* Put an entry into hash table H that associates KEY with VALUE.
3837 HASH is a previously computed hash code of KEY.
3838 Value is the index of the entry in H matching KEY. */
3841 hash_put (struct Lisp_Hash_Table
*h
, Lisp_Object key
, Lisp_Object value
,
3844 ptrdiff_t start_of_bucket
, i
;
3846 eassert ((hash
& ~INTMASK
) == 0);
3848 /* Increment count after resizing because resizing may fail. */
3849 maybe_resize_hash_table (h
);
3852 /* Store key/value in the key_and_value vector. */
3853 i
= XFASTINT (h
->next_free
);
3854 h
->next_free
= HASH_NEXT (h
, i
);
3855 set_hash_key (h
, i
, key
);
3856 set_hash_value (h
, i
, value
);
3858 /* Remember its hash code. */
3859 set_hash_hash (h
, i
, make_number (hash
));
3861 /* Add new entry to its collision chain. */
3862 start_of_bucket
= hash
% ASIZE (h
->index
);
3863 set_hash_next (h
, i
, HASH_INDEX (h
, start_of_bucket
));
3864 set_hash_index (h
, start_of_bucket
, make_number (i
));
3869 /* Remove the entry matching KEY from hash table H, if there is one. */
3872 hash_remove_from_table (struct Lisp_Hash_Table
*h
, Lisp_Object key
)
3874 EMACS_UINT hash_code
;
3875 ptrdiff_t start_of_bucket
;
3876 Lisp_Object idx
, prev
;
3878 hash_code
= h
->hashfn (h
, key
);
3879 start_of_bucket
= hash_code
% ASIZE (h
->index
);
3880 idx
= HASH_INDEX (h
, start_of_bucket
);
3883 /* We need not gcpro idx, prev since they're either integers or nil. */
3886 ptrdiff_t i
= XFASTINT (idx
);
3888 if (EQ (key
, HASH_KEY (h
, i
))
3890 && h
->cmpfn (h
, key
, hash_code
,
3891 HASH_KEY (h
, i
), XUINT (HASH_HASH (h
, i
)))))
3893 /* Take entry out of collision chain. */
3895 set_hash_index (h
, start_of_bucket
, HASH_NEXT (h
, i
));
3897 set_hash_next (h
, XFASTINT (prev
), HASH_NEXT (h
, i
));
3899 /* Clear slots in key_and_value and add the slots to
3901 set_hash_key (h
, i
, Qnil
);
3902 set_hash_value (h
, i
, Qnil
);
3903 set_hash_hash (h
, i
, Qnil
);
3904 set_hash_next (h
, i
, h
->next_free
);
3905 h
->next_free
= make_number (i
);
3907 eassert (h
->count
>= 0);
3913 idx
= HASH_NEXT (h
, i
);
3919 /* Clear hash table H. */
3922 hash_clear (struct Lisp_Hash_Table
*h
)
3926 ptrdiff_t i
, size
= HASH_TABLE_SIZE (h
);
3928 for (i
= 0; i
< size
; ++i
)
3930 set_hash_next (h
, i
, i
< size
- 1 ? make_number (i
+ 1) : Qnil
);
3931 set_hash_key (h
, i
, Qnil
);
3932 set_hash_value (h
, i
, Qnil
);
3933 set_hash_hash (h
, i
, Qnil
);
3936 for (i
= 0; i
< ASIZE (h
->index
); ++i
)
3937 ASET (h
->index
, i
, Qnil
);
3939 h
->next_free
= make_number (0);
3946 /************************************************************************
3948 ************************************************************************/
3950 /* Sweep weak hash table H. REMOVE_ENTRIES_P non-zero means remove
3951 entries from the table that don't survive the current GC.
3952 REMOVE_ENTRIES_P zero means mark entries that are in use. Value is
3953 non-zero if anything was marked. */
3956 sweep_weak_table (struct Lisp_Hash_Table
*h
, int remove_entries_p
)
3958 ptrdiff_t bucket
, n
;
3961 n
= ASIZE (h
->index
) & ~ARRAY_MARK_FLAG
;
3964 for (bucket
= 0; bucket
< n
; ++bucket
)
3966 Lisp_Object idx
, next
, prev
;
3968 /* Follow collision chain, removing entries that
3969 don't survive this garbage collection. */
3971 for (idx
= HASH_INDEX (h
, bucket
); !NILP (idx
); idx
= next
)
3973 ptrdiff_t i
= XFASTINT (idx
);
3974 int key_known_to_survive_p
= survives_gc_p (HASH_KEY (h
, i
));
3975 int value_known_to_survive_p
= survives_gc_p (HASH_VALUE (h
, i
));
3978 if (EQ (h
->weak
, Qkey
))
3979 remove_p
= !key_known_to_survive_p
;
3980 else if (EQ (h
->weak
, Qvalue
))
3981 remove_p
= !value_known_to_survive_p
;
3982 else if (EQ (h
->weak
, Qkey_or_value
))
3983 remove_p
= !(key_known_to_survive_p
|| value_known_to_survive_p
);
3984 else if (EQ (h
->weak
, Qkey_and_value
))
3985 remove_p
= !(key_known_to_survive_p
&& value_known_to_survive_p
);
3989 next
= HASH_NEXT (h
, i
);
3991 if (remove_entries_p
)
3995 /* Take out of collision chain. */
3997 set_hash_index (h
, bucket
, next
);
3999 set_hash_next (h
, XFASTINT (prev
), next
);
4001 /* Add to free list. */
4002 set_hash_next (h
, i
, h
->next_free
);
4005 /* Clear key, value, and hash. */
4006 set_hash_key (h
, i
, Qnil
);
4007 set_hash_value (h
, i
, Qnil
);
4008 set_hash_hash (h
, i
, Qnil
);
4021 /* Make sure key and value survive. */
4022 if (!key_known_to_survive_p
)
4024 mark_object (HASH_KEY (h
, i
));
4028 if (!value_known_to_survive_p
)
4030 mark_object (HASH_VALUE (h
, i
));
4041 /* Remove elements from weak hash tables that don't survive the
4042 current garbage collection. Remove weak tables that don't survive
4043 from Vweak_hash_tables. Called from gc_sweep. */
4046 sweep_weak_hash_tables (void)
4048 struct Lisp_Hash_Table
*h
, *used
, *next
;
4051 /* Mark all keys and values that are in use. Keep on marking until
4052 there is no more change. This is necessary for cases like
4053 value-weak table A containing an entry X -> Y, where Y is used in a
4054 key-weak table B, Z -> Y. If B comes after A in the list of weak
4055 tables, X -> Y might be removed from A, although when looking at B
4056 one finds that it shouldn't. */
4060 for (h
= weak_hash_tables
; h
; h
= h
->next_weak
)
4062 if (h
->header
.size
& ARRAY_MARK_FLAG
)
4063 marked
|= sweep_weak_table (h
, 0);
4068 /* Remove tables and entries that aren't used. */
4069 for (h
= weak_hash_tables
, used
= NULL
; h
; h
= next
)
4071 next
= h
->next_weak
;
4073 if (h
->header
.size
& ARRAY_MARK_FLAG
)
4075 /* TABLE is marked as used. Sweep its contents. */
4077 sweep_weak_table (h
, 1);
4079 /* Add table to the list of used weak hash tables. */
4080 h
->next_weak
= used
;
4085 weak_hash_tables
= used
;
4090 /***********************************************************************
4091 Hash Code Computation
4092 ***********************************************************************/
4094 /* Maximum depth up to which to dive into Lisp structures. */
4096 #define SXHASH_MAX_DEPTH 3
4098 /* Maximum length up to which to take list and vector elements into
4101 #define SXHASH_MAX_LEN 7
4103 /* Combine two integers X and Y for hashing. The result might not fit
4104 into a Lisp integer. */
4106 #define SXHASH_COMBINE(X, Y) \
4107 ((((EMACS_UINT) (X) << 4) + ((EMACS_UINT) (X) >> (BITS_PER_EMACS_INT - 4))) \
4110 /* Hash X, returning a value that fits into a Lisp integer. */
4111 #define SXHASH_REDUCE(X) \
4112 ((((X) ^ (X) >> (BITS_PER_EMACS_INT - FIXNUM_BITS))) & INTMASK)
4114 /* Return a hash for string PTR which has length LEN. The hash value
4115 can be any EMACS_UINT value. */
4118 hash_string (char const *ptr
, ptrdiff_t len
)
4120 char const *p
= ptr
;
4121 char const *end
= p
+ len
;
4123 EMACS_UINT hash
= 0;
4128 hash
= SXHASH_COMBINE (hash
, c
);
4134 /* Return a hash for string PTR which has length LEN. The hash
4135 code returned is guaranteed to fit in a Lisp integer. */
4138 sxhash_string (char const *ptr
, ptrdiff_t len
)
4140 EMACS_UINT hash
= hash_string (ptr
, len
);
4141 return SXHASH_REDUCE (hash
);
4144 /* Return a hash for the floating point value VAL. */
4147 sxhash_float (double val
)
4149 EMACS_UINT hash
= 0;
4151 WORDS_PER_DOUBLE
= (sizeof val
/ sizeof hash
4152 + (sizeof val
% sizeof hash
!= 0))
4156 EMACS_UINT word
[WORDS_PER_DOUBLE
];
4160 memset (&u
.val
+ 1, 0, sizeof u
- sizeof u
.val
);
4161 for (i
= 0; i
< WORDS_PER_DOUBLE
; i
++)
4162 hash
= SXHASH_COMBINE (hash
, u
.word
[i
]);
4163 return SXHASH_REDUCE (hash
);
4166 /* Return a hash for list LIST. DEPTH is the current depth in the
4167 list. We don't recurse deeper than SXHASH_MAX_DEPTH in it. */
4170 sxhash_list (Lisp_Object list
, int depth
)
4172 EMACS_UINT hash
= 0;
4175 if (depth
< SXHASH_MAX_DEPTH
)
4177 CONSP (list
) && i
< SXHASH_MAX_LEN
;
4178 list
= XCDR (list
), ++i
)
4180 EMACS_UINT hash2
= sxhash (XCAR (list
), depth
+ 1);
4181 hash
= SXHASH_COMBINE (hash
, hash2
);
4186 EMACS_UINT hash2
= sxhash (list
, depth
+ 1);
4187 hash
= SXHASH_COMBINE (hash
, hash2
);
4190 return SXHASH_REDUCE (hash
);
4194 /* Return a hash for vector VECTOR. DEPTH is the current depth in
4195 the Lisp structure. */
4198 sxhash_vector (Lisp_Object vec
, int depth
)
4200 EMACS_UINT hash
= ASIZE (vec
);
4203 n
= min (SXHASH_MAX_LEN
, ASIZE (vec
));
4204 for (i
= 0; i
< n
; ++i
)
4206 EMACS_UINT hash2
= sxhash (AREF (vec
, i
), depth
+ 1);
4207 hash
= SXHASH_COMBINE (hash
, hash2
);
4210 return SXHASH_REDUCE (hash
);
4213 /* Return a hash for bool-vector VECTOR. */
4216 sxhash_bool_vector (Lisp_Object vec
)
4218 EMACS_UINT hash
= XBOOL_VECTOR (vec
)->size
;
4221 n
= min (SXHASH_MAX_LEN
, XBOOL_VECTOR (vec
)->header
.size
);
4222 for (i
= 0; i
< n
; ++i
)
4223 hash
= SXHASH_COMBINE (hash
, XBOOL_VECTOR (vec
)->data
[i
]);
4225 return SXHASH_REDUCE (hash
);
4229 /* Return a hash code for OBJ. DEPTH is the current depth in the Lisp
4230 structure. Value is an unsigned integer clipped to INTMASK. */
4233 sxhash (Lisp_Object obj
, int depth
)
4237 if (depth
> SXHASH_MAX_DEPTH
)
4240 switch (XTYPE (obj
))
4251 obj
= SYMBOL_NAME (obj
);
4255 hash
= sxhash_string (SSDATA (obj
), SBYTES (obj
));
4258 /* This can be everything from a vector to an overlay. */
4259 case Lisp_Vectorlike
:
4261 /* According to the CL HyperSpec, two arrays are equal only if
4262 they are `eq', except for strings and bit-vectors. In
4263 Emacs, this works differently. We have to compare element
4265 hash
= sxhash_vector (obj
, depth
);
4266 else if (BOOL_VECTOR_P (obj
))
4267 hash
= sxhash_bool_vector (obj
);
4269 /* Others are `equal' if they are `eq', so let's take their
4275 hash
= sxhash_list (obj
, depth
);
4279 hash
= sxhash_float (XFLOAT_DATA (obj
));
4291 /***********************************************************************
4293 ***********************************************************************/
4296 DEFUN ("sxhash", Fsxhash
, Ssxhash
, 1, 1, 0,
4297 doc
: /* Compute a hash code for OBJ and return it as integer. */)
4300 EMACS_UINT hash
= sxhash (obj
, 0);
4301 return make_number (hash
);
4305 DEFUN ("make-hash-table", Fmake_hash_table
, Smake_hash_table
, 0, MANY
, 0,
4306 doc
: /* Create and return a new hash table.
4308 Arguments are specified as keyword/argument pairs. The following
4309 arguments are defined:
4311 :test TEST -- TEST must be a symbol that specifies how to compare
4312 keys. Default is `eql'. Predefined are the tests `eq', `eql', and
4313 `equal'. User-supplied test and hash functions can be specified via
4314 `define-hash-table-test'.
4316 :size SIZE -- A hint as to how many elements will be put in the table.
4319 :rehash-size REHASH-SIZE - Indicates how to expand the table when it
4320 fills up. If REHASH-SIZE is an integer, increase the size by that
4321 amount. If it is a float, it must be > 1.0, and the new size is the
4322 old size multiplied by that factor. Default is 1.5.
4324 :rehash-threshold THRESHOLD -- THRESHOLD must a float > 0, and <= 1.0.
4325 Resize the hash table when the ratio (number of entries / table size)
4326 is greater than or equal to THRESHOLD. Default is 0.8.
4328 :weakness WEAK -- WEAK must be one of nil, t, `key', `value',
4329 `key-or-value', or `key-and-value'. If WEAK is not nil, the table
4330 returned is a weak table. Key/value pairs are removed from a weak
4331 hash table when there are no non-weak references pointing to their
4332 key, value, one of key or value, or both key and value, depending on
4333 WEAK. WEAK t is equivalent to `key-and-value'. Default value of WEAK
4336 usage: (make-hash-table &rest KEYWORD-ARGS) */)
4337 (ptrdiff_t nargs
, Lisp_Object
*args
)
4339 Lisp_Object test
, size
, rehash_size
, rehash_threshold
, weak
;
4340 Lisp_Object user_test
, user_hash
;
4344 /* The vector `used' is used to keep track of arguments that
4345 have been consumed. */
4346 used
= alloca (nargs
* sizeof *used
);
4347 memset (used
, 0, nargs
* sizeof *used
);
4349 /* See if there's a `:test TEST' among the arguments. */
4350 i
= get_key_arg (QCtest
, nargs
, args
, used
);
4351 test
= i
? args
[i
] : Qeql
;
4352 if (!EQ (test
, Qeq
) && !EQ (test
, Qeql
) && !EQ (test
, Qequal
))
4354 /* See if it is a user-defined test. */
4357 prop
= Fget (test
, Qhash_table_test
);
4358 if (!CONSP (prop
) || !CONSP (XCDR (prop
)))
4359 signal_error ("Invalid hash table test", test
);
4360 user_test
= XCAR (prop
);
4361 user_hash
= XCAR (XCDR (prop
));
4364 user_test
= user_hash
= Qnil
;
4366 /* See if there's a `:size SIZE' argument. */
4367 i
= get_key_arg (QCsize
, nargs
, args
, used
);
4368 size
= i
? args
[i
] : Qnil
;
4370 size
= make_number (DEFAULT_HASH_SIZE
);
4371 else if (!INTEGERP (size
) || XINT (size
) < 0)
4372 signal_error ("Invalid hash table size", size
);
4374 /* Look for `:rehash-size SIZE'. */
4375 i
= get_key_arg (QCrehash_size
, nargs
, args
, used
);
4376 rehash_size
= i
? args
[i
] : make_float (DEFAULT_REHASH_SIZE
);
4377 if (! ((INTEGERP (rehash_size
) && 0 < XINT (rehash_size
))
4378 || (FLOATP (rehash_size
) && 1 < XFLOAT_DATA (rehash_size
))))
4379 signal_error ("Invalid hash table rehash size", rehash_size
);
4381 /* Look for `:rehash-threshold THRESHOLD'. */
4382 i
= get_key_arg (QCrehash_threshold
, nargs
, args
, used
);
4383 rehash_threshold
= i
? args
[i
] : make_float (DEFAULT_REHASH_THRESHOLD
);
4384 if (! (FLOATP (rehash_threshold
)
4385 && 0 < XFLOAT_DATA (rehash_threshold
)
4386 && XFLOAT_DATA (rehash_threshold
) <= 1))
4387 signal_error ("Invalid hash table rehash threshold", rehash_threshold
);
4389 /* Look for `:weakness WEAK'. */
4390 i
= get_key_arg (QCweakness
, nargs
, args
, used
);
4391 weak
= i
? args
[i
] : Qnil
;
4393 weak
= Qkey_and_value
;
4396 && !EQ (weak
, Qvalue
)
4397 && !EQ (weak
, Qkey_or_value
)
4398 && !EQ (weak
, Qkey_and_value
))
4399 signal_error ("Invalid hash table weakness", weak
);
4401 /* Now, all args should have been used up, or there's a problem. */
4402 for (i
= 0; i
< nargs
; ++i
)
4404 signal_error ("Invalid argument list", args
[i
]);
4406 return make_hash_table (test
, size
, rehash_size
, rehash_threshold
, weak
,
4407 user_test
, user_hash
);
4411 DEFUN ("copy-hash-table", Fcopy_hash_table
, Scopy_hash_table
, 1, 1, 0,
4412 doc
: /* Return a copy of hash table TABLE. */)
4415 return copy_hash_table (check_hash_table (table
));
4419 DEFUN ("hash-table-count", Fhash_table_count
, Shash_table_count
, 1, 1, 0,
4420 doc
: /* Return the number of elements in TABLE. */)
4423 return make_number (check_hash_table (table
)->count
);
4427 DEFUN ("hash-table-rehash-size", Fhash_table_rehash_size
,
4428 Shash_table_rehash_size
, 1, 1, 0,
4429 doc
: /* Return the current rehash size of TABLE. */)
4432 return check_hash_table (table
)->rehash_size
;
4436 DEFUN ("hash-table-rehash-threshold", Fhash_table_rehash_threshold
,
4437 Shash_table_rehash_threshold
, 1, 1, 0,
4438 doc
: /* Return the current rehash threshold of TABLE. */)
4441 return check_hash_table (table
)->rehash_threshold
;
4445 DEFUN ("hash-table-size", Fhash_table_size
, Shash_table_size
, 1, 1, 0,
4446 doc
: /* Return the size of TABLE.
4447 The size can be used as an argument to `make-hash-table' to create
4448 a hash table than can hold as many elements as TABLE holds
4449 without need for resizing. */)
4452 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4453 return make_number (HASH_TABLE_SIZE (h
));
4457 DEFUN ("hash-table-test", Fhash_table_test
, Shash_table_test
, 1, 1, 0,
4458 doc
: /* Return the test TABLE uses. */)
4461 return check_hash_table (table
)->test
;
4465 DEFUN ("hash-table-weakness", Fhash_table_weakness
, Shash_table_weakness
,
4467 doc
: /* Return the weakness of TABLE. */)
4470 return check_hash_table (table
)->weak
;
4474 DEFUN ("hash-table-p", Fhash_table_p
, Shash_table_p
, 1, 1, 0,
4475 doc
: /* Return t if OBJ is a Lisp hash table object. */)
4478 return HASH_TABLE_P (obj
) ? Qt
: Qnil
;
4482 DEFUN ("clrhash", Fclrhash
, Sclrhash
, 1, 1, 0,
4483 doc
: /* Clear hash table TABLE and return it. */)
4486 hash_clear (check_hash_table (table
));
4487 /* Be compatible with XEmacs. */
4492 DEFUN ("gethash", Fgethash
, Sgethash
, 2, 3, 0,
4493 doc
: /* Look up KEY in TABLE and return its associated value.
4494 If KEY is not found, return DFLT which defaults to nil. */)
4495 (Lisp_Object key
, Lisp_Object table
, Lisp_Object dflt
)
4497 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4498 ptrdiff_t i
= hash_lookup (h
, key
, NULL
);
4499 return i
>= 0 ? HASH_VALUE (h
, i
) : dflt
;
4503 DEFUN ("puthash", Fputhash
, Sputhash
, 3, 3, 0,
4504 doc
: /* Associate KEY with VALUE in hash table TABLE.
4505 If KEY is already present in table, replace its current value with
4506 VALUE. In any case, return VALUE. */)
4507 (Lisp_Object key
, Lisp_Object value
, Lisp_Object table
)
4509 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4513 i
= hash_lookup (h
, key
, &hash
);
4515 set_hash_value (h
, i
, value
);
4517 hash_put (h
, key
, value
, hash
);
4523 DEFUN ("remhash", Fremhash
, Sremhash
, 2, 2, 0,
4524 doc
: /* Remove KEY from TABLE. */)
4525 (Lisp_Object key
, Lisp_Object table
)
4527 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4528 hash_remove_from_table (h
, key
);
4533 DEFUN ("maphash", Fmaphash
, Smaphash
, 2, 2, 0,
4534 doc
: /* Call FUNCTION for all entries in hash table TABLE.
4535 FUNCTION is called with two arguments, KEY and VALUE. */)
4536 (Lisp_Object function
, Lisp_Object table
)
4538 struct Lisp_Hash_Table
*h
= check_hash_table (table
);
4539 Lisp_Object args
[3];
4542 for (i
= 0; i
< HASH_TABLE_SIZE (h
); ++i
)
4543 if (!NILP (HASH_HASH (h
, i
)))
4546 args
[1] = HASH_KEY (h
, i
);
4547 args
[2] = HASH_VALUE (h
, i
);
4555 DEFUN ("define-hash-table-test", Fdefine_hash_table_test
,
4556 Sdefine_hash_table_test
, 3, 3, 0,
4557 doc
: /* Define a new hash table test with name NAME, a symbol.
4559 In hash tables created with NAME specified as test, use TEST to
4560 compare keys, and HASH for computing hash codes of keys.
4562 TEST must be a function taking two arguments and returning non-nil if
4563 both arguments are the same. HASH must be a function taking one
4564 argument and return an integer that is the hash code of the argument.
4565 Hash code computation should use the whole value range of integers,
4566 including negative integers. */)
4567 (Lisp_Object name
, Lisp_Object test
, Lisp_Object hash
)
4569 return Fput (name
, Qhash_table_test
, list2 (test
, hash
));
4574 /************************************************************************
4575 MD5, SHA-1, and SHA-2
4576 ************************************************************************/
4583 /* ALGORITHM is a symbol: md5, sha1, sha224 and so on. */
4586 secure_hash (Lisp_Object algorithm
, Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object coding_system
, Lisp_Object noerror
, Lisp_Object binary
)
4590 EMACS_INT start_char
= 0, end_char
= 0;
4591 ptrdiff_t start_byte
, end_byte
;
4592 register EMACS_INT b
, e
;
4593 register struct buffer
*bp
;
4596 void *(*hash_func
) (const char *, size_t, void *);
4599 CHECK_SYMBOL (algorithm
);
4601 if (STRINGP (object
))
4603 if (NILP (coding_system
))
4605 /* Decide the coding-system to encode the data with. */
4607 if (STRING_MULTIBYTE (object
))
4608 /* use default, we can't guess correct value */
4609 coding_system
= preferred_coding_system ();
4611 coding_system
= Qraw_text
;
4614 if (NILP (Fcoding_system_p (coding_system
)))
4616 /* Invalid coding system. */
4618 if (!NILP (noerror
))
4619 coding_system
= Qraw_text
;
4621 xsignal1 (Qcoding_system_error
, coding_system
);
4624 if (STRING_MULTIBYTE (object
))
4625 object
= code_convert_string (object
, coding_system
, Qnil
, 1, 0, 1);
4627 size
= SCHARS (object
);
4631 CHECK_NUMBER (start
);
4633 start_char
= XINT (start
);
4645 end_char
= XINT (end
);
4651 if (!(0 <= start_char
&& start_char
<= end_char
&& end_char
<= size
))
4652 args_out_of_range_3 (object
, make_number (start_char
),
4653 make_number (end_char
));
4655 start_byte
= NILP (start
) ? 0 : string_char_to_byte (object
, start_char
);
4657 NILP (end
) ? SBYTES (object
) : string_char_to_byte (object
, end_char
);
4661 struct buffer
*prev
= current_buffer
;
4663 record_unwind_protect (Fset_buffer
, Fcurrent_buffer ());
4665 CHECK_BUFFER (object
);
4667 bp
= XBUFFER (object
);
4668 if (bp
!= current_buffer
)
4669 set_buffer_internal (bp
);
4675 CHECK_NUMBER_COERCE_MARKER (start
);
4683 CHECK_NUMBER_COERCE_MARKER (end
);
4688 temp
= b
, b
= e
, e
= temp
;
4690 if (!(BEGV
<= b
&& e
<= ZV
))
4691 args_out_of_range (start
, end
);
4693 if (NILP (coding_system
))
4695 /* Decide the coding-system to encode the data with.
4696 See fileio.c:Fwrite-region */
4698 if (!NILP (Vcoding_system_for_write
))
4699 coding_system
= Vcoding_system_for_write
;
4702 int force_raw_text
= 0;
4704 coding_system
= BVAR (XBUFFER (object
), buffer_file_coding_system
);
4705 if (NILP (coding_system
)
4706 || NILP (Flocal_variable_p (Qbuffer_file_coding_system
, Qnil
)))
4708 coding_system
= Qnil
;
4709 if (NILP (BVAR (current_buffer
, enable_multibyte_characters
)))
4713 if (NILP (coding_system
) && !NILP (Fbuffer_file_name (object
)))
4715 /* Check file-coding-system-alist. */
4716 Lisp_Object args
[4], val
;
4718 args
[0] = Qwrite_region
; args
[1] = start
; args
[2] = end
;
4719 args
[3] = Fbuffer_file_name (object
);
4720 val
= Ffind_operation_coding_system (4, args
);
4721 if (CONSP (val
) && !NILP (XCDR (val
)))
4722 coding_system
= XCDR (val
);
4725 if (NILP (coding_system
)
4726 && !NILP (BVAR (XBUFFER (object
), buffer_file_coding_system
)))
4728 /* If we still have not decided a coding system, use the
4729 default value of buffer-file-coding-system. */
4730 coding_system
= BVAR (XBUFFER (object
), buffer_file_coding_system
);
4734 && !NILP (Ffboundp (Vselect_safe_coding_system_function
)))
4735 /* Confirm that VAL can surely encode the current region. */
4736 coding_system
= call4 (Vselect_safe_coding_system_function
,
4737 make_number (b
), make_number (e
),
4738 coding_system
, Qnil
);
4741 coding_system
= Qraw_text
;
4744 if (NILP (Fcoding_system_p (coding_system
)))
4746 /* Invalid coding system. */
4748 if (!NILP (noerror
))
4749 coding_system
= Qraw_text
;
4751 xsignal1 (Qcoding_system_error
, coding_system
);
4755 object
= make_buffer_string (b
, e
, 0);
4756 if (prev
!= current_buffer
)
4757 set_buffer_internal (prev
);
4758 /* Discard the unwind protect for recovering the current
4762 if (STRING_MULTIBYTE (object
))
4763 object
= code_convert_string (object
, coding_system
, Qnil
, 1, 0, 0);
4765 end_byte
= SBYTES (object
);
4768 if (EQ (algorithm
, Qmd5
))
4770 digest_size
= MD5_DIGEST_SIZE
;
4771 hash_func
= md5_buffer
;
4773 else if (EQ (algorithm
, Qsha1
))
4775 digest_size
= SHA1_DIGEST_SIZE
;
4776 hash_func
= sha1_buffer
;
4778 else if (EQ (algorithm
, Qsha224
))
4780 digest_size
= SHA224_DIGEST_SIZE
;
4781 hash_func
= sha224_buffer
;
4783 else if (EQ (algorithm
, Qsha256
))
4785 digest_size
= SHA256_DIGEST_SIZE
;
4786 hash_func
= sha256_buffer
;
4788 else if (EQ (algorithm
, Qsha384
))
4790 digest_size
= SHA384_DIGEST_SIZE
;
4791 hash_func
= sha384_buffer
;
4793 else if (EQ (algorithm
, Qsha512
))
4795 digest_size
= SHA512_DIGEST_SIZE
;
4796 hash_func
= sha512_buffer
;
4799 error ("Invalid algorithm arg: %s", SDATA (Fsymbol_name (algorithm
)));
4801 /* allocate 2 x digest_size so that it can be re-used to hold the
4803 digest
= make_uninit_string (digest_size
* 2);
4805 hash_func (SSDATA (object
) + start_byte
,
4806 end_byte
- start_byte
,
4811 unsigned char *p
= SDATA (digest
);
4812 for (i
= digest_size
- 1; i
>= 0; i
--)
4814 static char const hexdigit
[16] = "0123456789abcdef";
4816 p
[2 * i
] = hexdigit
[p_i
>> 4];
4817 p
[2 * i
+ 1] = hexdigit
[p_i
& 0xf];
4822 return make_unibyte_string (SSDATA (digest
), digest_size
);
4825 DEFUN ("md5", Fmd5
, Smd5
, 1, 5, 0,
4826 doc
: /* Return MD5 message digest of OBJECT, a buffer or string.
4828 A message digest is a cryptographic checksum of a document, and the
4829 algorithm to calculate it is defined in RFC 1321.
4831 The two optional arguments START and END are character positions
4832 specifying for which part of OBJECT the message digest should be
4833 computed. If nil or omitted, the digest is computed for the whole
4836 The MD5 message digest is computed from the result of encoding the
4837 text in a coding system, not directly from the internal Emacs form of
4838 the text. The optional fourth argument CODING-SYSTEM specifies which
4839 coding system to encode the text with. It should be the same coding
4840 system that you used or will use when actually writing the text into a
4843 If CODING-SYSTEM is nil or omitted, the default depends on OBJECT. If
4844 OBJECT is a buffer, the default for CODING-SYSTEM is whatever coding
4845 system would be chosen by default for writing this text into a file.
4847 If OBJECT is a string, the most preferred coding system (see the
4848 command `prefer-coding-system') is used.
4850 If NOERROR is non-nil, silently assume the `raw-text' coding if the
4851 guesswork fails. Normally, an error is signaled in such case. */)
4852 (Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object coding_system
, Lisp_Object noerror
)
4854 return secure_hash (Qmd5
, object
, start
, end
, coding_system
, noerror
, Qnil
);
4857 DEFUN ("secure-hash", Fsecure_hash
, Ssecure_hash
, 2, 5, 0,
4858 doc
: /* Return the secure hash of OBJECT, a buffer or string.
4859 ALGORITHM is a symbol specifying the hash to use:
4860 md5, sha1, sha224, sha256, sha384 or sha512.
4862 The two optional arguments START and END are positions specifying for
4863 which part of OBJECT to compute the hash. If nil or omitted, uses the
4866 If BINARY is non-nil, returns a string in binary form. */)
4867 (Lisp_Object algorithm
, Lisp_Object object
, Lisp_Object start
, Lisp_Object end
, Lisp_Object binary
)
4869 return secure_hash (algorithm
, object
, start
, end
, Qnil
, Qnil
, binary
);
4875 DEFSYM (Qmd5
, "md5");
4876 DEFSYM (Qsha1
, "sha1");
4877 DEFSYM (Qsha224
, "sha224");
4878 DEFSYM (Qsha256
, "sha256");
4879 DEFSYM (Qsha384
, "sha384");
4880 DEFSYM (Qsha512
, "sha512");
4882 /* Hash table stuff. */
4883 DEFSYM (Qhash_table_p
, "hash-table-p");
4885 DEFSYM (Qeql
, "eql");
4886 DEFSYM (Qequal
, "equal");
4887 DEFSYM (QCtest
, ":test");
4888 DEFSYM (QCsize
, ":size");
4889 DEFSYM (QCrehash_size
, ":rehash-size");
4890 DEFSYM (QCrehash_threshold
, ":rehash-threshold");
4891 DEFSYM (QCweakness
, ":weakness");
4892 DEFSYM (Qkey
, "key");
4893 DEFSYM (Qvalue
, "value");
4894 DEFSYM (Qhash_table_test
, "hash-table-test");
4895 DEFSYM (Qkey_or_value
, "key-or-value");
4896 DEFSYM (Qkey_and_value
, "key-and-value");
4899 defsubr (&Smake_hash_table
);
4900 defsubr (&Scopy_hash_table
);
4901 defsubr (&Shash_table_count
);
4902 defsubr (&Shash_table_rehash_size
);
4903 defsubr (&Shash_table_rehash_threshold
);
4904 defsubr (&Shash_table_size
);
4905 defsubr (&Shash_table_test
);
4906 defsubr (&Shash_table_weakness
);
4907 defsubr (&Shash_table_p
);
4908 defsubr (&Sclrhash
);
4909 defsubr (&Sgethash
);
4910 defsubr (&Sputhash
);
4911 defsubr (&Sremhash
);
4912 defsubr (&Smaphash
);
4913 defsubr (&Sdefine_hash_table_test
);
4915 DEFSYM (Qstring_lessp
, "string-lessp");
4916 DEFSYM (Qprovide
, "provide");
4917 DEFSYM (Qrequire
, "require");
4918 DEFSYM (Qyes_or_no_p_history
, "yes-or-no-p-history");
4919 DEFSYM (Qcursor_in_echo_area
, "cursor-in-echo-area");
4920 DEFSYM (Qwidget_type
, "widget-type");
4922 staticpro (&string_char_byte_cache_string
);
4923 string_char_byte_cache_string
= Qnil
;
4925 require_nesting_list
= Qnil
;
4926 staticpro (&require_nesting_list
);
4928 Fset (Qyes_or_no_p_history
, Qnil
);
4930 DEFVAR_LISP ("features", Vfeatures
,
4931 doc
: /* A list of symbols which are the features of the executing Emacs.
4932 Used by `featurep' and `require', and altered by `provide'. */);
4933 Vfeatures
= Fcons (intern_c_string ("emacs"), Qnil
);
4934 DEFSYM (Qsubfeatures
, "subfeatures");
4936 #ifdef HAVE_LANGINFO_CODESET
4937 DEFSYM (Qcodeset
, "codeset");
4938 DEFSYM (Qdays
, "days");
4939 DEFSYM (Qmonths
, "months");
4940 DEFSYM (Qpaper
, "paper");
4941 #endif /* HAVE_LANGINFO_CODESET */
4943 DEFVAR_BOOL ("use-dialog-box", use_dialog_box
,
4944 doc
: /* Non-nil means mouse commands use dialog boxes to ask questions.
4945 This applies to `y-or-n-p' and `yes-or-no-p' questions asked by commands
4946 invoked by mouse clicks and mouse menu items.
4948 On some platforms, file selection dialogs are also enabled if this is
4952 DEFVAR_BOOL ("use-file-dialog", use_file_dialog
,
4953 doc
: /* Non-nil means mouse commands use a file dialog to ask for files.
4954 This applies to commands from menus and tool bar buttons even when
4955 they are initiated from the keyboard. If `use-dialog-box' is nil,
4956 that disables the use of a file dialog, regardless of the value of
4958 use_file_dialog
= 1;
4960 defsubr (&Sidentity
);
4963 defsubr (&Ssafe_length
);
4964 defsubr (&Sstring_bytes
);
4965 defsubr (&Sstring_equal
);
4966 defsubr (&Scompare_strings
);
4967 defsubr (&Sstring_lessp
);
4970 defsubr (&Svconcat
);
4971 defsubr (&Scopy_sequence
);
4972 defsubr (&Sstring_make_multibyte
);
4973 defsubr (&Sstring_make_unibyte
);
4974 defsubr (&Sstring_as_multibyte
);
4975 defsubr (&Sstring_as_unibyte
);
4976 defsubr (&Sstring_to_multibyte
);
4977 defsubr (&Sstring_to_unibyte
);
4978 defsubr (&Scopy_alist
);
4979 defsubr (&Ssubstring
);
4980 defsubr (&Ssubstring_no_properties
);
4993 defsubr (&Snreverse
);
4994 defsubr (&Sreverse
);
4996 defsubr (&Splist_get
);
4998 defsubr (&Splist_put
);
5000 defsubr (&Slax_plist_get
);
5001 defsubr (&Slax_plist_put
);
5004 defsubr (&Sequal_including_properties
);
5005 defsubr (&Sfillarray
);
5006 defsubr (&Sclear_string
);
5010 defsubr (&Smapconcat
);
5011 defsubr (&Syes_or_no_p
);
5012 defsubr (&Sload_average
);
5013 defsubr (&Sfeaturep
);
5014 defsubr (&Srequire
);
5015 defsubr (&Sprovide
);
5016 defsubr (&Splist_member
);
5017 defsubr (&Swidget_put
);
5018 defsubr (&Swidget_get
);
5019 defsubr (&Swidget_apply
);
5020 defsubr (&Sbase64_encode_region
);
5021 defsubr (&Sbase64_decode_region
);
5022 defsubr (&Sbase64_encode_string
);
5023 defsubr (&Sbase64_decode_string
);
5025 defsubr (&Ssecure_hash
);
5026 defsubr (&Slocale_info
);