1 /* Extended regular expression matching and search library,
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
6 Copyright (C) 1993 Free Software Foundation, Inc.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
22 /* AIX requires this to be the first thing in the file. */
23 #if defined (_AIX) && !defined (REGEX_MALLOC)
30 #if defined (emacs) || defined (CONFIG_BROKETS)
31 /* We use <config.h> instead of "config.h" so that a compilation
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h
33 (which it would do because it found this file in $srcdir). */
40 /* We need this for `regex.h', and perhaps for the Emacs include files. */
41 #include <sys/types.h>
43 /* The `emacs' switch turns on certain matching commands
44 that make sense only in Emacs. */
51 /* Emacs uses `NULL' as a predicate. */
64 /* We used to test for `BSTRING' here, but only GCC and Emacs define
65 `BSTRING', as far as I know, and neither of them use this code. */
66 #if HAVE_STRING_H || STDC_HEADERS
69 #define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
72 #define bcopy(s, d, n) memcpy ((d), (s), (n))
75 #define bzero(s, n) memset ((s), 0, (n))
81 /* Define the syntax stuff for \<, \>, etc. */
83 /* This must be nonzero for the wordchar and notwordchar pattern
84 commands in re_match_2. */
91 extern char *re_syntax_table
;
93 #else /* not SYNTAX_TABLE */
95 /* How many characters in the character set. */
96 #define CHAR_SET_SIZE 256
98 static char re_syntax_table
[CHAR_SET_SIZE
];
109 bzero (re_syntax_table
, sizeof re_syntax_table
);
111 for (c
= 'a'; c
<= 'z'; c
++)
112 re_syntax_table
[c
] = Sword
;
114 for (c
= 'A'; c
<= 'Z'; c
++)
115 re_syntax_table
[c
] = Sword
;
117 for (c
= '0'; c
<= '9'; c
++)
118 re_syntax_table
[c
] = Sword
;
120 re_syntax_table
['_'] = Sword
;
125 #endif /* not SYNTAX_TABLE */
127 #define SYNTAX(c) re_syntax_table[c]
129 #endif /* not emacs */
131 /* Get the interface, including the syntax bits. */
134 /* isalpha etc. are used for the character classes. */
137 /* Jim Meyering writes:
139 "... Some ctype macros are valid only for character codes that
140 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
141 using /bin/cc or gcc but without giving an ansi option). So, all
142 ctype uses should be through macros like ISPRINT... If
143 STDC_HEADERS is defined, then autoconf has verified that the ctype
144 macros don't need to be guarded with references to isascii. ...
145 Defining isascii to 1 should let any compiler worth its salt
146 eliminate the && through constant folding." */
148 #if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
151 #define ISASCII(c) isascii(c)
155 #define ISBLANK(c) (ISASCII (c) && isblank (c))
157 #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
160 #define ISGRAPH(c) (ISASCII (c) && isgraph (c))
162 #define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
165 #define ISPRINT(c) (ISASCII (c) && isprint (c))
166 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
167 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
168 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
169 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
170 #define ISLOWER(c) (ISASCII (c) && islower (c))
171 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
172 #define ISSPACE(c) (ISASCII (c) && isspace (c))
173 #define ISUPPER(c) (ISASCII (c) && isupper (c))
174 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
180 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
181 since ours (we hope) works properly with all combinations of
182 machines, compilers, `char' and `unsigned char' argument types.
183 (Per Bothner suggested the basic approach.) */
184 #undef SIGN_EXTEND_CHAR
186 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
187 #else /* not __STDC__ */
188 /* As in Harbison and Steele. */
189 #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
192 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
193 use `alloca' instead of `malloc'. This is because using malloc in
194 re_search* or re_match* could cause memory leaks when C-g is used in
195 Emacs; also, malloc is slower and causes storage fragmentation. On
196 the other hand, malloc is more portable, and easier to debug.
198 Because we sometimes use alloca, some routines have to be macros,
199 not functions -- `alloca'-allocated space disappears at the end of the
200 function it is called in. */
204 #define REGEX_ALLOCATE malloc
205 #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
207 #else /* not REGEX_MALLOC */
209 /* Emacs already defines alloca, sometimes. */
212 /* Make alloca work the best possible way. */
214 #define alloca __builtin_alloca
215 #else /* not __GNUC__ */
218 #else /* not __GNUC__ or HAVE_ALLOCA_H */
219 #ifndef _AIX /* Already did AIX, up at the top. */
221 #endif /* not _AIX */
222 #endif /* not HAVE_ALLOCA_H */
223 #endif /* not __GNUC__ */
225 #endif /* not alloca */
227 #define REGEX_ALLOCATE alloca
229 /* Assumes a `char *destination' variable. */
230 #define REGEX_REALLOCATE(source, osize, nsize) \
231 (destination = (char *) alloca (nsize), \
232 bcopy (source, destination, osize), \
235 #endif /* not REGEX_MALLOC */
238 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
239 `string1' or just past its end. This works if PTR is NULL, which is
241 #define FIRST_STRING_P(ptr) \
242 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
244 /* (Re)Allocate N items of type T using malloc, or fail. */
245 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
246 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
247 #define RETALLOC_IF(addr, n, t) \
248 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
249 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
251 #define BYTEWIDTH 8 /* In bits. */
253 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
257 #define MAX(a, b) ((a) > (b) ? (a) : (b))
258 #define MIN(a, b) ((a) < (b) ? (a) : (b))
260 typedef char boolean
;
264 static int re_match_2_internal ();
266 /* These are the command codes that appear in compiled regular
267 expressions. Some opcodes are followed by argument bytes. A
268 command code can specify any interpretation whatsoever for its
269 arguments. Zero bytes may appear in the compiled regular expression.
271 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
272 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
273 `exactn' we use here must also be 1. */
279 /* Followed by one byte giving n, then by n literal bytes. */
282 /* Matches any (more or less) character. */
285 /* Matches any one char belonging to specified set. First
286 following byte is number of bitmap bytes. Then come bytes
287 for a bitmap saying which chars are in. Bits in each byte
288 are ordered low-bit-first. A character is in the set if its
289 bit is 1. A character too large to have a bit in the map is
290 automatically not in the set. */
293 /* Same parameters as charset, but match any character that is
294 not one of those specified. */
297 /* Start remembering the text that is matched, for storing in a
298 register. Followed by one byte with the register number, in
299 the range 0 to one less than the pattern buffer's re_nsub
300 field. Then followed by one byte with the number of groups
301 inner to this one. (This last has to be part of the
302 start_memory only because we need it in the on_failure_jump
306 /* Stop remembering the text that is matched and store it in a
307 memory register. Followed by one byte with the register
308 number, in the range 0 to one less than `re_nsub' in the
309 pattern buffer, and one byte with the number of inner groups,
310 just like `start_memory'. (We need the number of inner
311 groups here because we don't have any easy way of finding the
312 corresponding start_memory when we're at a stop_memory.) */
315 /* Match a duplicate of something remembered. Followed by one
316 byte containing the register number. */
319 /* Fail unless at beginning of line. */
322 /* Fail unless at end of line. */
325 /* Succeeds if at beginning of buffer (if emacs) or at beginning
326 of string to be matched (if not). */
329 /* Analogously, for end of buffer/string. */
332 /* Followed by two byte relative address to which to jump. */
335 /* Same as jump, but marks the end of an alternative. */
338 /* Followed by two-byte relative address of place to resume at
339 in case of failure. */
342 /* Like on_failure_jump, but pushes a placeholder instead of the
343 current string position when executed. */
344 on_failure_keep_string_jump
,
346 /* Throw away latest failure point and then jump to following
347 two-byte relative address. */
350 /* Change to pop_failure_jump if know won't have to backtrack to
351 match; otherwise change to jump. This is used to jump
352 back to the beginning of a repeat. If what follows this jump
353 clearly won't match what the repeat does, such that we can be
354 sure that there is no use backtracking out of repetitions
355 already matched, then we change it to a pop_failure_jump.
356 Followed by two-byte address. */
359 /* Jump to following two-byte address, and push a dummy failure
360 point. This failure point will be thrown away if an attempt
361 is made to use it for a failure. A `+' construct makes this
362 before the first repeat. Also used as an intermediary kind
363 of jump when compiling an alternative. */
366 /* Push a dummy failure point and continue. Used at the end of
370 /* Followed by two-byte relative address and two-byte number n.
371 After matching N times, jump to the address upon failure. */
374 /* Followed by two-byte relative address, and two-byte number n.
375 Jump to the address N times, then fail. */
378 /* Set the following two-byte relative address to the
379 subsequent two-byte number. The address *includes* the two
383 wordchar
, /* Matches any word-constituent character. */
384 notwordchar
, /* Matches any char that is not a word-constituent. */
386 wordbeg
, /* Succeeds if at word beginning. */
387 wordend
, /* Succeeds if at word end. */
389 wordbound
, /* Succeeds if at a word boundary. */
390 notwordbound
/* Succeeds if not at a word boundary. */
393 ,before_dot
, /* Succeeds if before point. */
394 at_dot
, /* Succeeds if at point. */
395 after_dot
, /* Succeeds if after point. */
397 /* Matches any character whose syntax is specified. Followed by
398 a byte which contains a syntax code, e.g., Sword. */
401 /* Matches any character whose syntax is not that specified. */
406 /* Common operations on the compiled pattern. */
408 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
410 #define STORE_NUMBER(destination, number) \
412 (destination)[0] = (number) & 0377; \
413 (destination)[1] = (number) >> 8; \
416 /* Same as STORE_NUMBER, except increment DESTINATION to
417 the byte after where the number is stored. Therefore, DESTINATION
418 must be an lvalue. */
420 #define STORE_NUMBER_AND_INCR(destination, number) \
422 STORE_NUMBER (destination, number); \
423 (destination) += 2; \
426 /* Put into DESTINATION a number stored in two contiguous bytes starting
429 #define EXTRACT_NUMBER(destination, source) \
431 (destination) = *(source) & 0377; \
432 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
437 extract_number (dest
, source
)
439 unsigned char *source
;
441 int temp
= SIGN_EXTEND_CHAR (*(source
+ 1));
442 *dest
= *source
& 0377;
446 #ifndef EXTRACT_MACROS /* To debug the macros. */
447 #undef EXTRACT_NUMBER
448 #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
449 #endif /* not EXTRACT_MACROS */
453 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
454 SOURCE must be an lvalue. */
456 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
458 EXTRACT_NUMBER (destination, source); \
464 extract_number_and_incr (destination
, source
)
466 unsigned char **source
;
468 extract_number (destination
, *source
);
472 #ifndef EXTRACT_MACROS
473 #undef EXTRACT_NUMBER_AND_INCR
474 #define EXTRACT_NUMBER_AND_INCR(dest, src) \
475 extract_number_and_incr (&dest, &src)
476 #endif /* not EXTRACT_MACROS */
480 /* If DEBUG is defined, Regex prints many voluminous messages about what
481 it is doing (if the variable `debug' is nonzero). If linked with the
482 main program in `iregex.c', you can enter patterns and strings
483 interactively. And if linked with the main program in `main.c' and
484 the other test files, you can run the already-written tests. */
488 /* We use standard I/O for debugging. */
491 /* It is useful to test things that ``must'' be true when debugging. */
494 static int debug
= 0;
496 #define DEBUG_STATEMENT(e) e
497 #define DEBUG_PRINT1(x) if (debug) printf (x)
498 #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
499 #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
500 #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
501 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
502 if (debug) print_partial_compiled_pattern (s, e)
503 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
504 if (debug) print_double_string (w, s1, sz1, s2, sz2)
507 extern void printchar ();
509 /* Print the fastmap in human-readable form. */
512 print_fastmap (fastmap
)
515 unsigned was_a_range
= 0;
518 while (i
< (1 << BYTEWIDTH
))
524 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
540 /* Print a compiled pattern string in human-readable form, starting at
541 the START pointer into it and ending just before the pointer END. */
544 print_partial_compiled_pattern (start
, end
)
545 unsigned char *start
;
549 unsigned char *p
= start
;
550 unsigned char *pend
= end
;
558 /* Loop over pattern commands. */
561 printf ("%d:\t", p
- start
);
563 switch ((re_opcode_t
) *p
++)
571 printf ("/exactn/%d", mcnt
);
582 printf ("/start_memory/%d/%d", mcnt
, *p
++);
587 printf ("/stop_memory/%d/%d", mcnt
, *p
++);
591 printf ("/duplicate/%d", *p
++);
601 register int c
, last
= -100;
602 register int in_range
= 0;
604 printf ("/charset [%s",
605 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
607 assert (p
+ *p
< pend
);
609 for (c
= 0; c
< 256; c
++)
611 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
613 /* Are we starting a range? */
614 if (last
+ 1 == c
&& ! in_range
)
619 /* Have we broken a range? */
620 else if (last
+ 1 != c
&& in_range
)
649 case on_failure_jump
:
650 extract_number_and_incr (&mcnt
, &p
);
651 printf ("/on_failure_jump to %d", p
+ mcnt
- start
);
654 case on_failure_keep_string_jump
:
655 extract_number_and_incr (&mcnt
, &p
);
656 printf ("/on_failure_keep_string_jump to %d", p
+ mcnt
- start
);
659 case dummy_failure_jump
:
660 extract_number_and_incr (&mcnt
, &p
);
661 printf ("/dummy_failure_jump to %d", p
+ mcnt
- start
);
664 case push_dummy_failure
:
665 printf ("/push_dummy_failure");
669 extract_number_and_incr (&mcnt
, &p
);
670 printf ("/maybe_pop_jump to %d", p
+ mcnt
- start
);
673 case pop_failure_jump
:
674 extract_number_and_incr (&mcnt
, &p
);
675 printf ("/pop_failure_jump to %d", p
+ mcnt
- start
);
679 extract_number_and_incr (&mcnt
, &p
);
680 printf ("/jump_past_alt to %d", p
+ mcnt
- start
);
684 extract_number_and_incr (&mcnt
, &p
);
685 printf ("/jump to %d", p
+ mcnt
- start
);
689 extract_number_and_incr (&mcnt
, &p
);
690 extract_number_and_incr (&mcnt2
, &p
);
691 printf ("/succeed_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
695 extract_number_and_incr (&mcnt
, &p
);
696 extract_number_and_incr (&mcnt2
, &p
);
697 printf ("/jump_n to %d, %d times", p
+ mcnt
- start
, mcnt2
);
701 extract_number_and_incr (&mcnt
, &p
);
702 extract_number_and_incr (&mcnt2
, &p
);
703 printf ("/set_number_at location %d to %d", p
+ mcnt
- start
, mcnt2
);
707 printf ("/wordbound");
711 printf ("/notwordbound");
723 printf ("/before_dot");
731 printf ("/after_dot");
735 printf ("/syntaxspec");
737 printf ("/%d", mcnt
);
741 printf ("/notsyntaxspec");
743 printf ("/%d", mcnt
);
748 printf ("/wordchar");
752 printf ("/notwordchar");
764 printf ("?%d", *(p
-1));
770 printf ("%d:\tend of pattern.\n", p
- start
);
775 print_compiled_pattern (bufp
)
776 struct re_pattern_buffer
*bufp
;
778 unsigned char *buffer
= bufp
->buffer
;
780 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
781 printf ("%d bytes used/%d bytes allocated.\n", bufp
->used
, bufp
->allocated
);
783 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
785 printf ("fastmap: ");
786 print_fastmap (bufp
->fastmap
);
789 printf ("re_nsub: %d\t", bufp
->re_nsub
);
790 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
791 printf ("can_be_null: %d\t", bufp
->can_be_null
);
792 printf ("newline_anchor: %d\n", bufp
->newline_anchor
);
793 printf ("no_sub: %d\t", bufp
->no_sub
);
794 printf ("not_bol: %d\t", bufp
->not_bol
);
795 printf ("not_eol: %d\t", bufp
->not_eol
);
796 printf ("syntax: %d\n", bufp
->syntax
);
797 /* Perhaps we should print the translate table? */
802 print_double_string (where
, string1
, size1
, string2
, size2
)
815 if (FIRST_STRING_P (where
))
817 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
818 printchar (string1
[this_char
]);
823 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
824 printchar (string2
[this_char
]);
828 #else /* not DEBUG */
833 #define DEBUG_STATEMENT(e)
834 #define DEBUG_PRINT1(x)
835 #define DEBUG_PRINT2(x1, x2)
836 #define DEBUG_PRINT3(x1, x2, x3)
837 #define DEBUG_PRINT4(x1, x2, x3, x4)
838 #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
839 #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
841 #endif /* not DEBUG */
843 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
844 also be assigned to arbitrarily: each pattern buffer stores its own
845 syntax, so it can be changed between regex compilations. */
846 reg_syntax_t re_syntax_options
= RE_SYNTAX_EMACS
;
849 /* Specify the precise syntax of regexps for compilation. This provides
850 for compatibility for various utilities which historically have
851 different, incompatible syntaxes.
853 The argument SYNTAX is a bit mask comprised of the various bits
854 defined in regex.h. We return the old syntax. */
857 re_set_syntax (syntax
)
860 reg_syntax_t ret
= re_syntax_options
;
862 re_syntax_options
= syntax
;
866 /* This table gives an error message for each of the error codes listed
867 in regex.h. Obviously the order here has to be same as there. */
869 static const char *re_error_msg
[] =
870 { NULL
, /* REG_NOERROR */
871 "No match", /* REG_NOMATCH */
872 "Invalid regular expression", /* REG_BADPAT */
873 "Invalid collation character", /* REG_ECOLLATE */
874 "Invalid character class name", /* REG_ECTYPE */
875 "Trailing backslash", /* REG_EESCAPE */
876 "Invalid back reference", /* REG_ESUBREG */
877 "Unmatched [ or [^", /* REG_EBRACK */
878 "Unmatched ( or \\(", /* REG_EPAREN */
879 "Unmatched \\{", /* REG_EBRACE */
880 "Invalid content of \\{\\}", /* REG_BADBR */
881 "Invalid range end", /* REG_ERANGE */
882 "Memory exhausted", /* REG_ESPACE */
883 "Invalid preceding regular expression", /* REG_BADRPT */
884 "Premature end of regular expression", /* REG_EEND */
885 "Regular expression too big", /* REG_ESIZE */
886 "Unmatched ) or \\)", /* REG_ERPAREN */
889 /* Avoiding alloca during matching, to placate r_alloc. */
891 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
892 searching and matching functions should not call alloca. On some
893 systems, alloca is implemented in terms of malloc, and if we're
894 using the relocating allocator routines, then malloc could cause a
895 relocation, which might (if the strings being searched are in the
896 ralloc heap) shift the data out from underneath the regexp
899 Here's another reason to avoid allocation: Emacs insists on
900 processing input from X in a signal handler; processing X input may
901 call malloc; if input arrives while a matching routine is calling
902 malloc, then we're scrod. But Emacs can't just block input while
903 calling matching routines; then we don't notice interrupts when
904 they come in. So, Emacs blocks input around all regexp calls
905 except the matching calls, which it leaves unprotected, in the
906 faith that they will not malloc. */
908 /* Normally, this is fine. */
909 #define MATCH_MAY_ALLOCATE
911 /* But under some circumstances, it's not. */
912 #if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA))
913 #undef MATCH_MAY_ALLOCATE
917 /* Failure stack declarations and macros; both re_compile_fastmap and
918 re_match_2 use a failure stack. These have to be macros because of
922 /* Number of failure points for which to initially allocate space
923 when matching. If this number is exceeded, we allocate more
924 space, so it is not a hard limit. */
925 #ifndef INIT_FAILURE_ALLOC
926 #define INIT_FAILURE_ALLOC 5
929 /* Roughly the maximum number of failure points on the stack. Would be
930 exactly that if always used MAX_FAILURE_SPACE each time we failed.
931 This is a variable only so users of regex can assign to it; we never
932 change it ourselves. */
933 int re_max_failures
= 2000;
935 typedef unsigned char *fail_stack_elt_t
;
939 fail_stack_elt_t
*stack
;
941 unsigned avail
; /* Offset of next open position. */
944 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
945 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
946 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
947 #define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
950 /* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
952 #ifdef MATCH_MAY_ALLOCATE
953 #define INIT_FAIL_STACK() \
955 fail_stack.stack = (fail_stack_elt_t *) \
956 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
958 if (fail_stack.stack == NULL) \
961 fail_stack.size = INIT_FAILURE_ALLOC; \
962 fail_stack.avail = 0; \
965 #define INIT_FAIL_STACK() \
967 fail_stack.avail = 0; \
972 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
974 Return 1 if succeeds, and 0 if either ran out of memory
975 allocating space for it or it was already too large.
977 REGEX_REALLOCATE requires `destination' be declared. */
979 #define DOUBLE_FAIL_STACK(fail_stack) \
980 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
982 : ((fail_stack).stack = (fail_stack_elt_t *) \
983 REGEX_REALLOCATE ((fail_stack).stack, \
984 (fail_stack).size * sizeof (fail_stack_elt_t), \
985 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
987 (fail_stack).stack == NULL \
989 : ((fail_stack).size <<= 1, \
993 /* Push PATTERN_OP on FAIL_STACK.
995 Return 1 if was able to do so and 0 if ran out of memory allocating
997 #define PUSH_PATTERN_OP(pattern_op, fail_stack) \
998 ((FAIL_STACK_FULL () \
999 && !DOUBLE_FAIL_STACK (fail_stack)) \
1001 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1004 /* This pushes an item onto the failure stack. Must be a four-byte
1005 value. Assumes the variable `fail_stack'. Probably should only
1006 be called from within `PUSH_FAILURE_POINT'. */
1007 #define PUSH_FAILURE_ITEM(item) \
1008 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
1010 /* The complement operation. Assumes `fail_stack' is nonempty. */
1011 #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
1013 /* Used to omit pushing failure point id's when we're not debugging. */
1015 #define DEBUG_PUSH PUSH_FAILURE_ITEM
1016 #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1018 #define DEBUG_PUSH(item)
1019 #define DEBUG_POP(item_addr)
1023 /* Push the information about the state we will need
1024 if we ever fail back to it.
1026 Requires variables fail_stack, regstart, regend, reg_info, and
1027 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1030 Does `return FAILURE_CODE' if runs out of memory. */
1032 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1034 char *destination; \
1035 /* Must be int, so when we don't save any registers, the arithmetic \
1036 of 0 + -1 isn't done as unsigned. */ \
1039 DEBUG_STATEMENT (failure_id++); \
1040 DEBUG_STATEMENT (nfailure_points_pushed++); \
1041 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1042 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1043 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1045 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1046 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1048 /* Ensure we have enough space allocated for what we will push. */ \
1049 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1051 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1052 return failure_code; \
1054 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1055 (fail_stack).size); \
1056 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1059 /* Push the info, starting with the registers. */ \
1060 DEBUG_PRINT1 ("\n"); \
1062 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1065 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1066 DEBUG_STATEMENT (num_regs_pushed++); \
1068 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1069 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1071 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1072 PUSH_FAILURE_ITEM (regend[this_reg]); \
1074 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1075 DEBUG_PRINT2 (" match_null=%d", \
1076 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1077 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1078 DEBUG_PRINT2 (" matched_something=%d", \
1079 MATCHED_SOMETHING (reg_info[this_reg])); \
1080 DEBUG_PRINT2 (" ever_matched=%d", \
1081 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1082 DEBUG_PRINT1 ("\n"); \
1083 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1086 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1087 PUSH_FAILURE_ITEM (lowest_active_reg); \
1089 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1090 PUSH_FAILURE_ITEM (highest_active_reg); \
1092 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1093 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1094 PUSH_FAILURE_ITEM (pattern_place); \
1096 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1097 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1099 DEBUG_PRINT1 ("'\n"); \
1100 PUSH_FAILURE_ITEM (string_place); \
1102 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1103 DEBUG_PUSH (failure_id); \
1106 /* This is the number of items that are pushed and popped on the stack
1107 for each register. */
1108 #define NUM_REG_ITEMS 3
1110 /* Individual items aside from the registers. */
1112 #define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1114 #define NUM_NONREG_ITEMS 4
1117 /* We push at most this many items on the stack. */
1118 #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1120 /* We actually push this many items. */
1121 #define NUM_FAILURE_ITEMS \
1122 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1125 /* How many items can still be added to the stack without overflowing it. */
1126 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1129 /* Pops what PUSH_FAIL_STACK pushes.
1131 We restore into the parameters, all of which should be lvalues:
1132 STR -- the saved data position.
1133 PAT -- the saved pattern position.
1134 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1135 REGSTART, REGEND -- arrays of string positions.
1136 REG_INFO -- array of information about each subexpression.
1138 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1139 `pend', `string1', `size1', `string2', and `size2'. */
1141 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1143 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1145 const unsigned char *string_temp; \
1147 assert (!FAIL_STACK_EMPTY ()); \
1149 /* Remove failure points and point to how many regs pushed. */ \
1150 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1151 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1152 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1154 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1156 DEBUG_POP (&failure_id); \
1157 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1159 /* If the saved string location is NULL, it came from an \
1160 on_failure_keep_string_jump opcode, and we want to throw away the \
1161 saved NULL, thus retaining our current position in the string. */ \
1162 string_temp = POP_FAILURE_ITEM (); \
1163 if (string_temp != NULL) \
1164 str = (const char *) string_temp; \
1166 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1167 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1168 DEBUG_PRINT1 ("'\n"); \
1170 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1171 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1172 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1174 /* Restore register info. */ \
1175 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1176 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1178 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1179 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1181 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1183 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1185 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1186 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1188 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1189 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1191 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1192 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1195 DEBUG_STATEMENT (nfailure_points_popped++); \
1196 } /* POP_FAILURE_POINT */
1200 /* Structure for per-register (a.k.a. per-group) information.
1201 This must not be longer than one word, because we push this value
1202 onto the failure stack. Other register information, such as the
1203 starting and ending positions (which are addresses), and the list of
1204 inner groups (which is a bits list) are maintained in separate
1207 We are making a (strictly speaking) nonportable assumption here: that
1208 the compiler will pack our bit fields into something that fits into
1209 the type of `word', i.e., is something that fits into one item on the
1213 fail_stack_elt_t word
;
1216 /* This field is one if this group can match the empty string,
1217 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1218 #define MATCH_NULL_UNSET_VALUE 3
1219 unsigned match_null_string_p
: 2;
1220 unsigned is_active
: 1;
1221 unsigned matched_something
: 1;
1222 unsigned ever_matched_something
: 1;
1224 } register_info_type
;
1226 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1227 #define IS_ACTIVE(R) ((R).bits.is_active)
1228 #define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1229 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1232 /* Call this when have matched a real character; it sets `matched' flags
1233 for the subexpressions which we are currently inside. Also records
1234 that those subexprs have matched. */
1235 #define SET_REGS_MATCHED() \
1239 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1241 MATCHED_SOMETHING (reg_info[r]) \
1242 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1249 /* Registers are set to a sentinel when they haven't yet matched. */
1250 #define REG_UNSET_VALUE ((char *) -1)
1251 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1255 /* How do we implement a missing MATCH_MAY_ALLOCATE?
1256 We make the fail stack a global thing, and then grow it to
1257 re_max_failures when we compile. */
1258 #ifndef MATCH_MAY_ALLOCATE
1259 static fail_stack_type fail_stack
;
1261 static const char ** regstart
, ** regend
;
1262 static const char ** old_regstart
, ** old_regend
;
1263 static const char **best_regstart
, **best_regend
;
1264 static register_info_type
*reg_info
;
1265 static const char **reg_dummy
;
1266 static register_info_type
*reg_info_dummy
;
1270 /* Subroutine declarations and macros for regex_compile. */
1272 static void store_op1 (), store_op2 ();
1273 static void insert_op1 (), insert_op2 ();
1274 static boolean
at_begline_loc_p (), at_endline_loc_p ();
1275 static boolean
group_in_compile_stack ();
1276 static reg_errcode_t
compile_range ();
1278 /* Fetch the next character in the uncompiled pattern---translating it
1279 if necessary. Also cast from a signed character in the constant
1280 string passed to us by the user to an unsigned char that we can use
1281 as an array index (in, e.g., `translate'). */
1282 #define PATFETCH(c) \
1283 do {if (p == pend) return REG_EEND; \
1284 c = (unsigned char) *p++; \
1285 if (translate) c = translate[c]; \
1288 /* Fetch the next character in the uncompiled pattern, with no
1290 #define PATFETCH_RAW(c) \
1291 do {if (p == pend) return REG_EEND; \
1292 c = (unsigned char) *p++; \
1295 /* Go backwards one character in the pattern. */
1296 #define PATUNFETCH p--
1299 /* If `translate' is non-null, return translate[D], else just D. We
1300 cast the subscript to translate because some data is declared as
1301 `char *', to avoid warnings when a string constant is passed. But
1302 when we use a character as a subscript we must make it unsigned. */
1303 #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1306 /* Macros for outputting the compiled pattern into `buffer'. */
1308 /* If the buffer isn't allocated when it comes in, use this. */
1309 #define INIT_BUF_SIZE 32
1311 /* Make sure we have at least N more bytes of space in buffer. */
1312 #define GET_BUFFER_SPACE(n) \
1313 while (b - bufp->buffer + (n) > bufp->allocated) \
1316 /* Make sure we have one more byte of buffer space and then add C to it. */
1317 #define BUF_PUSH(c) \
1319 GET_BUFFER_SPACE (1); \
1320 *b++ = (unsigned char) (c); \
1324 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1325 #define BUF_PUSH_2(c1, c2) \
1327 GET_BUFFER_SPACE (2); \
1328 *b++ = (unsigned char) (c1); \
1329 *b++ = (unsigned char) (c2); \
1333 /* As with BUF_PUSH_2, except for three bytes. */
1334 #define BUF_PUSH_3(c1, c2, c3) \
1336 GET_BUFFER_SPACE (3); \
1337 *b++ = (unsigned char) (c1); \
1338 *b++ = (unsigned char) (c2); \
1339 *b++ = (unsigned char) (c3); \
1343 /* Store a jump with opcode OP at LOC to location TO. We store a
1344 relative address offset by the three bytes the jump itself occupies. */
1345 #define STORE_JUMP(op, loc, to) \
1346 store_op1 (op, loc, (to) - (loc) - 3)
1348 /* Likewise, for a two-argument jump. */
1349 #define STORE_JUMP2(op, loc, to, arg) \
1350 store_op2 (op, loc, (to) - (loc) - 3, arg)
1352 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1353 #define INSERT_JUMP(op, loc, to) \
1354 insert_op1 (op, loc, (to) - (loc) - 3, b)
1356 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1357 #define INSERT_JUMP2(op, loc, to, arg) \
1358 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1361 /* This is not an arbitrary limit: the arguments which represent offsets
1362 into the pattern are two bytes long. So if 2^16 bytes turns out to
1363 be too small, many things would have to change. */
1364 #define MAX_BUF_SIZE (1L << 16)
1367 /* Extend the buffer by twice its current size via realloc and
1368 reset the pointers that pointed into the old block to point to the
1369 correct places in the new one. If extending the buffer results in it
1370 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1371 #define EXTEND_BUFFER() \
1373 unsigned char *old_buffer = bufp->buffer; \
1374 if (bufp->allocated == MAX_BUF_SIZE) \
1376 bufp->allocated <<= 1; \
1377 if (bufp->allocated > MAX_BUF_SIZE) \
1378 bufp->allocated = MAX_BUF_SIZE; \
1379 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1380 if (bufp->buffer == NULL) \
1381 return REG_ESPACE; \
1382 /* If the buffer moved, move all the pointers into it. */ \
1383 if (old_buffer != bufp->buffer) \
1385 b = (b - old_buffer) + bufp->buffer; \
1386 begalt = (begalt - old_buffer) + bufp->buffer; \
1387 if (fixup_alt_jump) \
1388 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1390 laststart = (laststart - old_buffer) + bufp->buffer; \
1391 if (pending_exact) \
1392 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1397 /* Since we have one byte reserved for the register number argument to
1398 {start,stop}_memory, the maximum number of groups we can report
1399 things about is what fits in that byte. */
1400 #define MAX_REGNUM 255
1402 /* But patterns can have more than `MAX_REGNUM' registers. We just
1403 ignore the excess. */
1404 typedef unsigned regnum_t
;
1407 /* Macros for the compile stack. */
1409 /* Since offsets can go either forwards or backwards, this type needs to
1410 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1411 typedef int pattern_offset_t
;
1415 pattern_offset_t begalt_offset
;
1416 pattern_offset_t fixup_alt_jump
;
1417 pattern_offset_t inner_group_offset
;
1418 pattern_offset_t laststart_offset
;
1420 } compile_stack_elt_t
;
1425 compile_stack_elt_t
*stack
;
1427 unsigned avail
; /* Offset of next open position. */
1428 } compile_stack_type
;
1431 #define INIT_COMPILE_STACK_SIZE 32
1433 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1434 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1436 /* The next available element. */
1437 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1440 /* Set the bit for character C in a list. */
1441 #define SET_LIST_BIT(c) \
1442 (b[((unsigned char) (c)) / BYTEWIDTH] \
1443 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1446 /* Get the next unsigned number in the uncompiled pattern. */
1447 #define GET_UNSIGNED_NUMBER(num) \
1451 while (ISDIGIT (c)) \
1455 num = num * 10 + c - '0'; \
1463 #define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1465 #define IS_CHAR_CLASS(string) \
1466 (STREQ (string, "alpha") || STREQ (string, "upper") \
1467 || STREQ (string, "lower") || STREQ (string, "digit") \
1468 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1469 || STREQ (string, "space") || STREQ (string, "print") \
1470 || STREQ (string, "punct") || STREQ (string, "graph") \
1471 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1473 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1474 Returns one of error codes defined in `regex.h', or zero for success.
1476 Assumes the `allocated' (and perhaps `buffer') and `translate'
1477 fields are set in BUFP on entry.
1479 If it succeeds, results are put in BUFP (if it returns an error, the
1480 contents of BUFP are undefined):
1481 `buffer' is the compiled pattern;
1482 `syntax' is set to SYNTAX;
1483 `used' is set to the length of the compiled pattern;
1484 `fastmap_accurate' is zero;
1485 `re_nsub' is the number of subexpressions in PATTERN;
1486 `not_bol' and `not_eol' are zero;
1488 The `fastmap' and `newline_anchor' fields are neither
1489 examined nor set. */
1491 static reg_errcode_t
1492 regex_compile (pattern
, size
, syntax
, bufp
)
1493 const char *pattern
;
1495 reg_syntax_t syntax
;
1496 struct re_pattern_buffer
*bufp
;
1498 /* We fetch characters from PATTERN here. Even though PATTERN is
1499 `char *' (i.e., signed), we declare these variables as unsigned, so
1500 they can be reliably used as array indices. */
1501 register unsigned char c
, c1
;
1503 /* A random temporary spot in PATTERN. */
1506 /* Points to the end of the buffer, where we should append. */
1507 register unsigned char *b
;
1509 /* Keeps track of unclosed groups. */
1510 compile_stack_type compile_stack
;
1512 /* Points to the current (ending) position in the pattern. */
1513 const char *p
= pattern
;
1514 const char *pend
= pattern
+ size
;
1516 /* How to translate the characters in the pattern. */
1517 char *translate
= bufp
->translate
;
1519 /* Address of the count-byte of the most recently inserted `exactn'
1520 command. This makes it possible to tell if a new exact-match
1521 character can be added to that command or if the character requires
1522 a new `exactn' command. */
1523 unsigned char *pending_exact
= 0;
1525 /* Address of start of the most recently finished expression.
1526 This tells, e.g., postfix * where to find the start of its
1527 operand. Reset at the beginning of groups and alternatives. */
1528 unsigned char *laststart
= 0;
1530 /* Address of beginning of regexp, or inside of last group. */
1531 unsigned char *begalt
;
1533 /* Place in the uncompiled pattern (i.e., the {) to
1534 which to go back if the interval is invalid. */
1535 const char *beg_interval
;
1537 /* Address of the place where a forward jump should go to the end of
1538 the containing expression. Each alternative of an `or' -- except the
1539 last -- ends with a forward jump of this sort. */
1540 unsigned char *fixup_alt_jump
= 0;
1542 /* Counts open-groups as they are encountered. Remembered for the
1543 matching close-group on the compile stack, so the same register
1544 number is put in the stop_memory as the start_memory. */
1545 regnum_t regnum
= 0;
1548 DEBUG_PRINT1 ("\nCompiling pattern: ");
1551 unsigned debug_count
;
1553 for (debug_count
= 0; debug_count
< size
; debug_count
++)
1554 printchar (pattern
[debug_count
]);
1559 /* Initialize the compile stack. */
1560 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
1561 if (compile_stack
.stack
== NULL
)
1564 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
1565 compile_stack
.avail
= 0;
1567 /* Initialize the pattern buffer. */
1568 bufp
->syntax
= syntax
;
1569 bufp
->fastmap_accurate
= 0;
1570 bufp
->not_bol
= bufp
->not_eol
= 0;
1572 /* Set `used' to zero, so that if we return an error, the pattern
1573 printer (for debugging) will think there's no pattern. We reset it
1577 /* Always count groups, whether or not bufp->no_sub is set. */
1580 #if !defined (emacs) && !defined (SYNTAX_TABLE)
1581 /* Initialize the syntax table. */
1582 init_syntax_once ();
1585 if (bufp
->allocated
== 0)
1588 { /* If zero allocated, but buffer is non-null, try to realloc
1589 enough space. This loses if buffer's address is bogus, but
1590 that is the user's responsibility. */
1591 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
1594 { /* Caller did not allocate a buffer. Do it for them. */
1595 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
1597 if (!bufp
->buffer
) return REG_ESPACE
;
1599 bufp
->allocated
= INIT_BUF_SIZE
;
1602 begalt
= b
= bufp
->buffer
;
1604 /* Loop through the uncompiled pattern until we're at the end. */
1613 if ( /* If at start of pattern, it's an operator. */
1615 /* If context independent, it's an operator. */
1616 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1617 /* Otherwise, depends on what's come before. */
1618 || at_begline_loc_p (pattern
, p
, syntax
))
1628 if ( /* If at end of pattern, it's an operator. */
1630 /* If context independent, it's an operator. */
1631 || syntax
& RE_CONTEXT_INDEP_ANCHORS
1632 /* Otherwise, depends on what's next. */
1633 || at_endline_loc_p (p
, pend
, syntax
))
1643 if ((syntax
& RE_BK_PLUS_QM
)
1644 || (syntax
& RE_LIMITED_OPS
))
1648 /* If there is no previous pattern... */
1651 if (syntax
& RE_CONTEXT_INVALID_OPS
)
1653 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
1658 /* Are we optimizing this jump? */
1659 boolean keep_string_p
= false;
1661 /* 1 means zero (many) matches is allowed. */
1662 char zero_times_ok
= 0, many_times_ok
= 0;
1664 /* If there is a sequence of repetition chars, collapse it
1665 down to just one (the right one). We can't combine
1666 interval operators with these because of, e.g., `a{2}*',
1667 which should only match an even number of `a's. */
1671 zero_times_ok
|= c
!= '+';
1672 many_times_ok
|= c
!= '?';
1680 || (!(syntax
& RE_BK_PLUS_QM
) && (c
== '+' || c
== '?')))
1683 else if (syntax
& RE_BK_PLUS_QM
&& c
== '\\')
1685 if (p
== pend
) return REG_EESCAPE
;
1688 if (!(c1
== '+' || c1
== '?'))
1703 /* If we get here, we found another repeat character. */
1706 /* Star, etc. applied to an empty pattern is equivalent
1707 to an empty pattern. */
1711 /* Now we know whether or not zero matches is allowed
1712 and also whether or not two or more matches is allowed. */
1714 { /* More than one repetition is allowed, so put in at the
1715 end a backward relative jump from `b' to before the next
1716 jump we're going to put in below (which jumps from
1717 laststart to after this jump).
1719 But if we are at the `*' in the exact sequence `.*\n',
1720 insert an unconditional jump backwards to the .,
1721 instead of the beginning of the loop. This way we only
1722 push a failure point once, instead of every time
1723 through the loop. */
1724 assert (p
- 1 > pattern
);
1726 /* Allocate the space for the jump. */
1727 GET_BUFFER_SPACE (3);
1729 /* We know we are not at the first character of the pattern,
1730 because laststart was nonzero. And we've already
1731 incremented `p', by the way, to be the character after
1732 the `*'. Do we have to do something analogous here
1733 for null bytes, because of RE_DOT_NOT_NULL? */
1734 if (TRANSLATE (*(p
- 2)) == TRANSLATE ('.')
1736 && p
< pend
&& TRANSLATE (*p
) == TRANSLATE ('\n')
1737 && !(syntax
& RE_DOT_NEWLINE
))
1738 { /* We have .*\n. */
1739 STORE_JUMP (jump
, b
, laststart
);
1740 keep_string_p
= true;
1743 /* Anything else. */
1744 STORE_JUMP (maybe_pop_jump
, b
, laststart
- 3);
1746 /* We've added more stuff to the buffer. */
1750 /* On failure, jump from laststart to b + 3, which will be the
1751 end of the buffer after this jump is inserted. */
1752 GET_BUFFER_SPACE (3);
1753 INSERT_JUMP (keep_string_p
? on_failure_keep_string_jump
1761 /* At least one repetition is required, so insert a
1762 `dummy_failure_jump' before the initial
1763 `on_failure_jump' instruction of the loop. This
1764 effects a skip over that instruction the first time
1765 we hit that loop. */
1766 GET_BUFFER_SPACE (3);
1767 INSERT_JUMP (dummy_failure_jump
, laststart
, laststart
+ 6);
1782 boolean had_char_class
= false;
1784 if (p
== pend
) return REG_EBRACK
;
1786 /* Ensure that we have enough space to push a charset: the
1787 opcode, the length count, and the bitset; 34 bytes in all. */
1788 GET_BUFFER_SPACE (34);
1792 /* We test `*p == '^' twice, instead of using an if
1793 statement, so we only need one BUF_PUSH. */
1794 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
1798 /* Remember the first position in the bracket expression. */
1801 /* Push the number of bytes in the bitmap. */
1802 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
1804 /* Clear the whole map. */
1805 bzero (b
, (1 << BYTEWIDTH
) / BYTEWIDTH
);
1807 /* charset_not matches newline according to a syntax bit. */
1808 if ((re_opcode_t
) b
[-2] == charset_not
1809 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
1810 SET_LIST_BIT ('\n');
1812 /* Read in characters and ranges, setting map bits. */
1815 if (p
== pend
) return REG_EBRACK
;
1819 /* \ might escape characters inside [...] and [^...]. */
1820 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
1822 if (p
== pend
) return REG_EESCAPE
;
1829 /* Could be the end of the bracket expression. If it's
1830 not (i.e., when the bracket expression is `[]' so
1831 far), the ']' character bit gets set way below. */
1832 if (c
== ']' && p
!= p1
+ 1)
1835 /* Look ahead to see if it's a range when the last thing
1836 was a character class. */
1837 if (had_char_class
&& c
== '-' && *p
!= ']')
1840 /* Look ahead to see if it's a range when the last thing
1841 was a character: if this is a hyphen not at the
1842 beginning or the end of a list, then it's the range
1845 && !(p
- 2 >= pattern
&& p
[-2] == '[')
1846 && !(p
- 3 >= pattern
&& p
[-3] == '[' && p
[-2] == '^')
1850 = compile_range (&p
, pend
, translate
, syntax
, b
);
1851 if (ret
!= REG_NOERROR
) return ret
;
1854 else if (p
[0] == '-' && p
[1] != ']')
1855 { /* This handles ranges made up of characters only. */
1858 /* Move past the `-'. */
1861 ret
= compile_range (&p
, pend
, translate
, syntax
, b
);
1862 if (ret
!= REG_NOERROR
) return ret
;
1865 /* See if we're at the beginning of a possible character
1868 else if (syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
1869 { /* Leave room for the null. */
1870 char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
1875 /* If pattern is `[[:'. */
1876 if (p
== pend
) return REG_EBRACK
;
1881 if (c
== ':' || c
== ']' || p
== pend
1882 || c1
== CHAR_CLASS_MAX_LENGTH
)
1888 /* If isn't a word bracketed by `[:' and:`]':
1889 undo the ending character, the letters, and leave
1890 the leading `:' and `[' (but set bits for them). */
1891 if (c
== ':' && *p
== ']')
1894 boolean is_alnum
= STREQ (str
, "alnum");
1895 boolean is_alpha
= STREQ (str
, "alpha");
1896 boolean is_blank
= STREQ (str
, "blank");
1897 boolean is_cntrl
= STREQ (str
, "cntrl");
1898 boolean is_digit
= STREQ (str
, "digit");
1899 boolean is_graph
= STREQ (str
, "graph");
1900 boolean is_lower
= STREQ (str
, "lower");
1901 boolean is_print
= STREQ (str
, "print");
1902 boolean is_punct
= STREQ (str
, "punct");
1903 boolean is_space
= STREQ (str
, "space");
1904 boolean is_upper
= STREQ (str
, "upper");
1905 boolean is_xdigit
= STREQ (str
, "xdigit");
1907 if (!IS_CHAR_CLASS (str
)) return REG_ECTYPE
;
1909 /* Throw away the ] at the end of the character
1913 if (p
== pend
) return REG_EBRACK
;
1915 for (ch
= 0; ch
< 1 << BYTEWIDTH
; ch
++)
1917 if ( (is_alnum
&& ISALNUM (ch
))
1918 || (is_alpha
&& ISALPHA (ch
))
1919 || (is_blank
&& ISBLANK (ch
))
1920 || (is_cntrl
&& ISCNTRL (ch
))
1921 || (is_digit
&& ISDIGIT (ch
))
1922 || (is_graph
&& ISGRAPH (ch
))
1923 || (is_lower
&& ISLOWER (ch
))
1924 || (is_print
&& ISPRINT (ch
))
1925 || (is_punct
&& ISPUNCT (ch
))
1926 || (is_space
&& ISSPACE (ch
))
1927 || (is_upper
&& ISUPPER (ch
))
1928 || (is_xdigit
&& ISXDIGIT (ch
)))
1931 had_char_class
= true;
1940 had_char_class
= false;
1945 had_char_class
= false;
1950 /* Discard any (non)matching list bytes that are all 0 at the
1951 end of the map. Decrease the map-length byte too. */
1952 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
1960 if (syntax
& RE_NO_BK_PARENS
)
1967 if (syntax
& RE_NO_BK_PARENS
)
1974 if (syntax
& RE_NEWLINE_ALT
)
1981 if (syntax
& RE_NO_BK_VBAR
)
1988 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
1989 goto handle_interval
;
1995 if (p
== pend
) return REG_EESCAPE
;
1997 /* Do not translate the character after the \, so that we can
1998 distinguish, e.g., \B from \b, even if we normally would
1999 translate, e.g., B to b. */
2005 if (syntax
& RE_NO_BK_PARENS
)
2006 goto normal_backslash
;
2012 if (COMPILE_STACK_FULL
)
2014 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
2015 compile_stack_elt_t
);
2016 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
2018 compile_stack
.size
<<= 1;
2021 /* These are the values to restore when we hit end of this
2022 group. They are all relative offsets, so that if the
2023 whole pattern moves because of realloc, they will still
2025 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
2026 COMPILE_STACK_TOP
.fixup_alt_jump
2027 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
2028 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
2029 COMPILE_STACK_TOP
.regnum
= regnum
;
2031 /* We will eventually replace the 0 with the number of
2032 groups inner to this one. But do not push a
2033 start_memory for groups beyond the last one we can
2034 represent in the compiled pattern. */
2035 if (regnum
<= MAX_REGNUM
)
2037 COMPILE_STACK_TOP
.inner_group_offset
= b
- bufp
->buffer
+ 2;
2038 BUF_PUSH_3 (start_memory
, regnum
, 0);
2041 compile_stack
.avail
++;
2046 /* If we've reached MAX_REGNUM groups, then this open
2047 won't actually generate any code, so we'll have to
2048 clear pending_exact explicitly. */
2054 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
2056 if (COMPILE_STACK_EMPTY
)
2057 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2058 goto normal_backslash
;
2064 { /* Push a dummy failure point at the end of the
2065 alternative for a possible future
2066 `pop_failure_jump' to pop. See comments at
2067 `push_dummy_failure' in `re_match_2'. */
2068 BUF_PUSH (push_dummy_failure
);
2070 /* We allocated space for this jump when we assigned
2071 to `fixup_alt_jump', in the `handle_alt' case below. */
2072 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
- 1);
2075 /* See similar code for backslashed left paren above. */
2076 if (COMPILE_STACK_EMPTY
)
2077 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
2082 /* Since we just checked for an empty stack above, this
2083 ``can't happen''. */
2084 assert (compile_stack
.avail
!= 0);
2086 /* We don't just want to restore into `regnum', because
2087 later groups should continue to be numbered higher,
2088 as in `(ab)c(de)' -- the second group is #2. */
2089 regnum_t this_group_regnum
;
2091 compile_stack
.avail
--;
2092 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
2094 = COMPILE_STACK_TOP
.fixup_alt_jump
2095 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
2097 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
2098 this_group_regnum
= COMPILE_STACK_TOP
.regnum
;
2099 /* If we've reached MAX_REGNUM groups, then this open
2100 won't actually generate any code, so we'll have to
2101 clear pending_exact explicitly. */
2104 /* We're at the end of the group, so now we know how many
2105 groups were inside this one. */
2106 if (this_group_regnum
<= MAX_REGNUM
)
2108 unsigned char *inner_group_loc
2109 = bufp
->buffer
+ COMPILE_STACK_TOP
.inner_group_offset
;
2111 *inner_group_loc
= regnum
- this_group_regnum
;
2112 BUF_PUSH_3 (stop_memory
, this_group_regnum
,
2113 regnum
- this_group_regnum
);
2119 case '|': /* `\|'. */
2120 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
2121 goto normal_backslash
;
2123 if (syntax
& RE_LIMITED_OPS
)
2126 /* Insert before the previous alternative a jump which
2127 jumps to this alternative if the former fails. */
2128 GET_BUFFER_SPACE (3);
2129 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
2133 /* The alternative before this one has a jump after it
2134 which gets executed if it gets matched. Adjust that
2135 jump so it will jump to this alternative's analogous
2136 jump (put in below, which in turn will jump to the next
2137 (if any) alternative's such jump, etc.). The last such
2138 jump jumps to the correct final destination. A picture:
2144 If we are at `b', then fixup_alt_jump right now points to a
2145 three-byte space after `a'. We'll put in the jump, set
2146 fixup_alt_jump to right after `b', and leave behind three
2147 bytes which we'll fill in when we get to after `c'. */
2150 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2152 /* Mark and leave space for a jump after this alternative,
2153 to be filled in later either by next alternative or
2154 when know we're at the end of a series of alternatives. */
2156 GET_BUFFER_SPACE (3);
2165 /* If \{ is a literal. */
2166 if (!(syntax
& RE_INTERVALS
)
2167 /* If we're at `\{' and it's not the open-interval
2169 || ((syntax
& RE_INTERVALS
) && (syntax
& RE_NO_BK_BRACES
))
2170 || (p
- 2 == pattern
&& p
== pend
))
2171 goto normal_backslash
;
2175 /* If got here, then the syntax allows intervals. */
2177 /* At least (most) this many matches must be made. */
2178 int lower_bound
= -1, upper_bound
= -1;
2180 beg_interval
= p
- 1;
2184 if (syntax
& RE_NO_BK_BRACES
)
2185 goto unfetch_interval
;
2190 GET_UNSIGNED_NUMBER (lower_bound
);
2194 GET_UNSIGNED_NUMBER (upper_bound
);
2195 if (upper_bound
< 0) upper_bound
= RE_DUP_MAX
;
2198 /* Interval such as `{1}' => match exactly once. */
2199 upper_bound
= lower_bound
;
2201 if (lower_bound
< 0 || upper_bound
> RE_DUP_MAX
2202 || lower_bound
> upper_bound
)
2204 if (syntax
& RE_NO_BK_BRACES
)
2205 goto unfetch_interval
;
2210 if (!(syntax
& RE_NO_BK_BRACES
))
2212 if (c
!= '\\') return REG_EBRACE
;
2219 if (syntax
& RE_NO_BK_BRACES
)
2220 goto unfetch_interval
;
2225 /* We just parsed a valid interval. */
2227 /* If it's invalid to have no preceding re. */
2230 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2232 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
2235 goto unfetch_interval
;
2238 /* If the upper bound is zero, don't want to succeed at
2239 all; jump from `laststart' to `b + 3', which will be
2240 the end of the buffer after we insert the jump. */
2241 if (upper_bound
== 0)
2243 GET_BUFFER_SPACE (3);
2244 INSERT_JUMP (jump
, laststart
, b
+ 3);
2248 /* Otherwise, we have a nontrivial interval. When
2249 we're all done, the pattern will look like:
2250 set_number_at <jump count> <upper bound>
2251 set_number_at <succeed_n count> <lower bound>
2252 succeed_n <after jump addr> <succeed_n count>
2254 jump_n <succeed_n addr> <jump count>
2255 (The upper bound and `jump_n' are omitted if
2256 `upper_bound' is 1, though.) */
2258 { /* If the upper bound is > 1, we need to insert
2259 more at the end of the loop. */
2260 unsigned nbytes
= 10 + (upper_bound
> 1) * 10;
2262 GET_BUFFER_SPACE (nbytes
);
2264 /* Initialize lower bound of the `succeed_n', even
2265 though it will be set during matching by its
2266 attendant `set_number_at' (inserted next),
2267 because `re_compile_fastmap' needs to know.
2268 Jump to the `jump_n' we might insert below. */
2269 INSERT_JUMP2 (succeed_n
, laststart
,
2270 b
+ 5 + (upper_bound
> 1) * 5,
2274 /* Code to initialize the lower bound. Insert
2275 before the `succeed_n'. The `5' is the last two
2276 bytes of this `set_number_at', plus 3 bytes of
2277 the following `succeed_n'. */
2278 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
2281 if (upper_bound
> 1)
2282 { /* More than one repetition is allowed, so
2283 append a backward jump to the `succeed_n'
2284 that starts this interval.
2286 When we've reached this during matching,
2287 we'll have matched the interval once, so
2288 jump back only `upper_bound - 1' times. */
2289 STORE_JUMP2 (jump_n
, b
, laststart
+ 5,
2293 /* The location we want to set is the second
2294 parameter of the `jump_n'; that is `b-2' as
2295 an absolute address. `laststart' will be
2296 the `set_number_at' we're about to insert;
2297 `laststart+3' the number to set, the source
2298 for the relative address. But we are
2299 inserting into the middle of the pattern --
2300 so everything is getting moved up by 5.
2301 Conclusion: (b - 2) - (laststart + 3) + 5,
2302 i.e., b - laststart.
2304 We insert this at the beginning of the loop
2305 so that if we fail during matching, we'll
2306 reinitialize the bounds. */
2307 insert_op2 (set_number_at
, laststart
, b
- laststart
,
2308 upper_bound
- 1, b
);
2313 beg_interval
= NULL
;
2318 /* If an invalid interval, match the characters as literals. */
2319 assert (beg_interval
);
2321 beg_interval
= NULL
;
2323 /* normal_char and normal_backslash need `c'. */
2326 if (!(syntax
& RE_NO_BK_BRACES
))
2328 if (p
> pattern
&& p
[-1] == '\\')
2329 goto normal_backslash
;
2334 /* There is no way to specify the before_dot and after_dot
2335 operators. rms says this is ok. --karl */
2343 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
2349 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
2356 BUF_PUSH (wordchar
);
2362 BUF_PUSH (notwordchar
);
2375 BUF_PUSH (wordbound
);
2379 BUF_PUSH (notwordbound
);
2390 case '1': case '2': case '3': case '4': case '5':
2391 case '6': case '7': case '8': case '9':
2392 if (syntax
& RE_NO_BK_REFS
)
2400 /* Can't back reference to a subexpression if inside of it. */
2401 if (group_in_compile_stack (compile_stack
, c1
))
2405 BUF_PUSH_2 (duplicate
, c1
);
2411 if (syntax
& RE_BK_PLUS_QM
)
2414 goto normal_backslash
;
2418 /* You might think it would be useful for \ to mean
2419 not to translate; but if we don't translate it
2420 it will never match anything. */
2428 /* Expects the character in `c'. */
2430 /* If no exactn currently being built. */
2433 /* If last exactn not at current position. */
2434 || pending_exact
+ *pending_exact
+ 1 != b
2436 /* We have only one byte following the exactn for the count. */
2437 || *pending_exact
== (1 << BYTEWIDTH
) - 1
2439 /* If followed by a repetition operator. */
2440 || *p
== '*' || *p
== '^'
2441 || ((syntax
& RE_BK_PLUS_QM
)
2442 ? *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
2443 : (*p
== '+' || *p
== '?'))
2444 || ((syntax
& RE_INTERVALS
)
2445 && ((syntax
& RE_NO_BK_BRACES
)
2447 : (p
[0] == '\\' && p
[1] == '{'))))
2449 /* Start building a new exactn. */
2453 BUF_PUSH_2 (exactn
, 0);
2454 pending_exact
= b
- 1;
2461 } /* while p != pend */
2464 /* Through the pattern now. */
2467 STORE_JUMP (jump_past_alt
, fixup_alt_jump
, b
);
2469 if (!COMPILE_STACK_EMPTY
)
2472 free (compile_stack
.stack
);
2474 /* We have succeeded; set the length of the buffer. */
2475 bufp
->used
= b
- bufp
->buffer
;
2480 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2481 print_compiled_pattern (bufp
);
2485 #ifndef MATCH_MAY_ALLOCATE
2486 /* Initialize the failure stack to the largest possible stack. This
2487 isn't necessary unless we're trying to avoid calling alloca in
2488 the search and match routines. */
2490 int num_regs
= bufp
->re_nsub
+ 1;
2492 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2493 is strictly greater than re_max_failures, the largest possible stack
2494 is 2 * re_max_failures failure points. */
2495 if (fail_stack
.size
< (2 * re_max_failures
* MAX_FAILURE_ITEMS
))
2497 fail_stack
.size
= (2 * re_max_failures
* MAX_FAILURE_ITEMS
);
2498 if (! fail_stack
.stack
)
2500 (fail_stack_elt_t
*) malloc (fail_stack
.size
2501 * sizeof (fail_stack_elt_t
));
2504 (fail_stack_elt_t
*) realloc (fail_stack
.stack
,
2506 * sizeof (fail_stack_elt_t
)));
2509 /* Initialize some other variables the matcher uses. */
2510 RETALLOC_IF (regstart
, num_regs
, const char *);
2511 RETALLOC_IF (regend
, num_regs
, const char *);
2512 RETALLOC_IF (old_regstart
, num_regs
, const char *);
2513 RETALLOC_IF (old_regend
, num_regs
, const char *);
2514 RETALLOC_IF (best_regstart
, num_regs
, const char *);
2515 RETALLOC_IF (best_regend
, num_regs
, const char *);
2516 RETALLOC_IF (reg_info
, num_regs
, register_info_type
);
2517 RETALLOC_IF (reg_dummy
, num_regs
, const char *);
2518 RETALLOC_IF (reg_info_dummy
, num_regs
, register_info_type
);
2523 } /* regex_compile */
2525 /* Subroutines for `regex_compile'. */
2527 /* Store OP at LOC followed by two-byte integer parameter ARG. */
2530 store_op1 (op
, loc
, arg
)
2535 *loc
= (unsigned char) op
;
2536 STORE_NUMBER (loc
+ 1, arg
);
2540 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
2543 store_op2 (op
, loc
, arg1
, arg2
)
2548 *loc
= (unsigned char) op
;
2549 STORE_NUMBER (loc
+ 1, arg1
);
2550 STORE_NUMBER (loc
+ 3, arg2
);
2554 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
2555 for OP followed by two-byte integer parameter ARG. */
2558 insert_op1 (op
, loc
, arg
, end
)
2564 register unsigned char *pfrom
= end
;
2565 register unsigned char *pto
= end
+ 3;
2567 while (pfrom
!= loc
)
2570 store_op1 (op
, loc
, arg
);
2574 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
2577 insert_op2 (op
, loc
, arg1
, arg2
, end
)
2583 register unsigned char *pfrom
= end
;
2584 register unsigned char *pto
= end
+ 5;
2586 while (pfrom
!= loc
)
2589 store_op2 (op
, loc
, arg1
, arg2
);
2593 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
2594 after an alternative or a begin-subexpression. We assume there is at
2595 least one character before the ^. */
2598 at_begline_loc_p (pattern
, p
, syntax
)
2599 const char *pattern
, *p
;
2600 reg_syntax_t syntax
;
2602 const char *prev
= p
- 2;
2603 boolean prev_prev_backslash
= prev
> pattern
&& prev
[-1] == '\\';
2606 /* After a subexpression? */
2607 (*prev
== '(' && (syntax
& RE_NO_BK_PARENS
|| prev_prev_backslash
))
2608 /* After an alternative? */
2609 || (*prev
== '|' && (syntax
& RE_NO_BK_VBAR
|| prev_prev_backslash
));
2613 /* The dual of at_begline_loc_p. This one is for $. We assume there is
2614 at least one character after the $, i.e., `P < PEND'. */
2617 at_endline_loc_p (p
, pend
, syntax
)
2618 const char *p
, *pend
;
2621 const char *next
= p
;
2622 boolean next_backslash
= *next
== '\\';
2623 const char *next_next
= p
+ 1 < pend
? p
+ 1 : NULL
;
2626 /* Before a subexpression? */
2627 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
2628 : next_backslash
&& next_next
&& *next_next
== ')')
2629 /* Before an alternative? */
2630 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
2631 : next_backslash
&& next_next
&& *next_next
== '|');
2635 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2636 false if it's not. */
2639 group_in_compile_stack (compile_stack
, regnum
)
2640 compile_stack_type compile_stack
;
2645 for (this_element
= compile_stack
.avail
- 1;
2648 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
2655 /* Read the ending character of a range (in a bracket expression) from the
2656 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2657 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2658 Then we set the translation of all bits between the starting and
2659 ending characters (inclusive) in the compiled pattern B.
2661 Return an error code.
2663 We use these short variable names so we can use the same macros as
2664 `regex_compile' itself. */
2666 static reg_errcode_t
2667 compile_range (p_ptr
, pend
, translate
, syntax
, b
)
2668 const char **p_ptr
, *pend
;
2670 reg_syntax_t syntax
;
2675 const char *p
= *p_ptr
;
2676 int range_start
, range_end
;
2681 /* Even though the pattern is a signed `char *', we need to fetch
2682 with unsigned char *'s; if the high bit of the pattern character
2683 is set, the range endpoints will be negative if we fetch using a
2686 We also want to fetch the endpoints without translating them; the
2687 appropriate translation is done in the bit-setting loop below. */
2688 range_start
= ((unsigned char *) p
)[-2];
2689 range_end
= ((unsigned char *) p
)[0];
2691 /* Have to increment the pointer into the pattern string, so the
2692 caller isn't still at the ending character. */
2695 /* If the start is after the end, the range is empty. */
2696 if (range_start
> range_end
)
2697 return syntax
& RE_NO_EMPTY_RANGES
? REG_ERANGE
: REG_NOERROR
;
2699 /* Here we see why `this_char' has to be larger than an `unsigned
2700 char' -- the range is inclusive, so if `range_end' == 0xff
2701 (assuming 8-bit characters), we would otherwise go into an infinite
2702 loop, since all characters <= 0xff. */
2703 for (this_char
= range_start
; this_char
<= range_end
; this_char
++)
2705 SET_LIST_BIT (TRANSLATE (this_char
));
2711 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2712 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2713 characters can start a string that matches the pattern. This fastmap
2714 is used by re_search to skip quickly over impossible starting points.
2716 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2717 area as BUFP->fastmap.
2719 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2722 Returns 0 if we succeed, -2 if an internal error. */
2725 re_compile_fastmap (bufp
)
2726 struct re_pattern_buffer
*bufp
;
2729 #ifdef MATCH_MAY_ALLOCATE
2730 fail_stack_type fail_stack
;
2732 #ifndef REGEX_MALLOC
2735 /* We don't push any register information onto the failure stack. */
2736 unsigned num_regs
= 0;
2738 register char *fastmap
= bufp
->fastmap
;
2739 unsigned char *pattern
= bufp
->buffer
;
2740 unsigned long size
= bufp
->used
;
2741 unsigned char *p
= pattern
;
2742 register unsigned char *pend
= pattern
+ size
;
2744 /* Assume that each path through the pattern can be null until
2745 proven otherwise. We set this false at the bottom of switch
2746 statement, to which we get only if a particular path doesn't
2747 match the empty string. */
2748 boolean path_can_be_null
= true;
2750 /* We aren't doing a `succeed_n' to begin with. */
2751 boolean succeed_n_p
= false;
2753 assert (fastmap
!= NULL
&& p
!= NULL
);
2756 bzero (fastmap
, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
2757 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
2758 bufp
->can_be_null
= 0;
2760 while (p
!= pend
|| !FAIL_STACK_EMPTY ())
2764 bufp
->can_be_null
|= path_can_be_null
;
2766 /* Reset for next path. */
2767 path_can_be_null
= true;
2769 p
= fail_stack
.stack
[--fail_stack
.avail
];
2772 /* We should never be about to go beyond the end of the pattern. */
2775 #ifdef SWITCH_ENUM_BUG
2776 switch ((int) ((re_opcode_t
) *p
++))
2778 switch ((re_opcode_t
) *p
++)
2782 /* I guess the idea here is to simply not bother with a fastmap
2783 if a backreference is used, since it's too hard to figure out
2784 the fastmap for the corresponding group. Setting
2785 `can_be_null' stops `re_search_2' from using the fastmap, so
2786 that is all we do. */
2788 bufp
->can_be_null
= 1;
2792 /* Following are the cases which match a character. These end
2801 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2802 if (p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
)))
2808 /* Chars beyond end of map must be allowed. */
2809 for (j
= *p
* BYTEWIDTH
; j
< (1 << BYTEWIDTH
); j
++)
2812 for (j
= *p
++ * BYTEWIDTH
- 1; j
>= 0; j
--)
2813 if (!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))))
2819 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2820 if (SYNTAX (j
) == Sword
)
2826 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2827 if (SYNTAX (j
) != Sword
)
2833 /* `.' matches anything ... */
2834 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2837 /* ... except perhaps newline. */
2838 if (!(bufp
->syntax
& RE_DOT_NEWLINE
))
2841 /* Return if we have already set `can_be_null'; if we have,
2842 then the fastmap is irrelevant. Something's wrong here. */
2843 else if (bufp
->can_be_null
)
2846 /* Otherwise, have to check alternative paths. */
2853 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2854 if (SYNTAX (j
) == (enum syntaxcode
) k
)
2861 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
2862 if (SYNTAX (j
) != (enum syntaxcode
) k
)
2867 /* All cases after this match the empty string. These end with
2875 #endif /* not emacs */
2887 case push_dummy_failure
:
2892 case pop_failure_jump
:
2893 case maybe_pop_jump
:
2896 case dummy_failure_jump
:
2897 EXTRACT_NUMBER_AND_INCR (j
, p
);
2902 /* Jump backward implies we just went through the body of a
2903 loop and matched nothing. Opcode jumped to should be
2904 `on_failure_jump' or `succeed_n'. Just treat it like an
2905 ordinary jump. For a * loop, it has pushed its failure
2906 point already; if so, discard that as redundant. */
2907 if ((re_opcode_t
) *p
!= on_failure_jump
2908 && (re_opcode_t
) *p
!= succeed_n
)
2912 EXTRACT_NUMBER_AND_INCR (j
, p
);
2915 /* If what's on the stack is where we are now, pop it. */
2916 if (!FAIL_STACK_EMPTY ()
2917 && fail_stack
.stack
[fail_stack
.avail
- 1] == p
)
2923 case on_failure_jump
:
2924 case on_failure_keep_string_jump
:
2925 handle_on_failure_jump
:
2926 EXTRACT_NUMBER_AND_INCR (j
, p
);
2928 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2929 end of the pattern. We don't want to push such a point,
2930 since when we restore it above, entering the switch will
2931 increment `p' past the end of the pattern. We don't need
2932 to push such a point since we obviously won't find any more
2933 fastmap entries beyond `pend'. Such a pattern can match
2934 the null string, though. */
2937 if (!PUSH_PATTERN_OP (p
+ j
, fail_stack
))
2941 bufp
->can_be_null
= 1;
2945 EXTRACT_NUMBER_AND_INCR (k
, p
); /* Skip the n. */
2946 succeed_n_p
= false;
2953 /* Get to the number of times to succeed. */
2956 /* Increment p past the n for when k != 0. */
2957 EXTRACT_NUMBER_AND_INCR (k
, p
);
2961 succeed_n_p
= true; /* Spaghetti code alert. */
2962 goto handle_on_failure_jump
;
2979 abort (); /* We have listed all the cases. */
2982 /* Getting here means we have found the possible starting
2983 characters for one path of the pattern -- and that the empty
2984 string does not match. We need not follow this path further.
2985 Instead, look at the next alternative (remembered on the
2986 stack), or quit if no more. The test at the top of the loop
2987 does these things. */
2988 path_can_be_null
= false;
2992 /* Set `can_be_null' for the last path (also the first path, if the
2993 pattern is empty). */
2994 bufp
->can_be_null
|= path_can_be_null
;
2996 } /* re_compile_fastmap */
2998 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2999 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
3000 this memory for recording register information. STARTS and ENDS
3001 must be allocated using the malloc library routine, and must each
3002 be at least NUM_REGS * sizeof (regoff_t) bytes long.
3004 If NUM_REGS == 0, then subsequent matches should allocate their own
3007 Unless this function is called, the first search or match using
3008 PATTERN_BUFFER will allocate its own register data, without
3009 freeing the old data. */
3012 re_set_registers (bufp
, regs
, num_regs
, starts
, ends
)
3013 struct re_pattern_buffer
*bufp
;
3014 struct re_registers
*regs
;
3016 regoff_t
*starts
, *ends
;
3020 bufp
->regs_allocated
= REGS_REALLOCATE
;
3021 regs
->num_regs
= num_regs
;
3022 regs
->start
= starts
;
3027 bufp
->regs_allocated
= REGS_UNALLOCATED
;
3029 regs
->start
= regs
->end
= (regoff_t
*) 0;
3033 /* Searching routines. */
3035 /* Like re_search_2, below, but only one string is specified, and
3036 doesn't let you say where to stop matching. */
3039 re_search (bufp
, string
, size
, startpos
, range
, regs
)
3040 struct re_pattern_buffer
*bufp
;
3042 int size
, startpos
, range
;
3043 struct re_registers
*regs
;
3045 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
3050 /* Using the compiled pattern in BUFP->buffer, first tries to match the
3051 virtual concatenation of STRING1 and STRING2, starting first at index
3052 STARTPOS, then at STARTPOS + 1, and so on.
3054 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3056 RANGE is how far to scan while trying to match. RANGE = 0 means try
3057 only at STARTPOS; in general, the last start tried is STARTPOS +
3060 In REGS, return the indices of the virtual concatenation of STRING1
3061 and STRING2 that matched the entire BUFP->buffer and its contained
3064 Do not consider matching one past the index STOP in the virtual
3065 concatenation of STRING1 and STRING2.
3067 We return either the position in the strings at which the match was
3068 found, -1 if no match, or -2 if error (such as failure
3072 re_search_2 (bufp
, string1
, size1
, string2
, size2
, startpos
, range
, regs
, stop
)
3073 struct re_pattern_buffer
*bufp
;
3074 const char *string1
, *string2
;
3078 struct re_registers
*regs
;
3082 register char *fastmap
= bufp
->fastmap
;
3083 register char *translate
= bufp
->translate
;
3084 int total_size
= size1
+ size2
;
3085 int endpos
= startpos
+ range
;
3087 /* Check for out-of-range STARTPOS. */
3088 if (startpos
< 0 || startpos
> total_size
)
3091 /* Fix up RANGE if it might eventually take us outside
3092 the virtual concatenation of STRING1 and STRING2. */
3094 range
= -1 - startpos
;
3095 else if (endpos
> total_size
)
3096 range
= total_size
- startpos
;
3098 /* If the search isn't to be a backwards one, don't waste time in a
3099 search for a pattern that must be anchored. */
3100 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
3108 /* Update the fastmap now if not correct already. */
3109 if (fastmap
&& !bufp
->fastmap_accurate
)
3110 if (re_compile_fastmap (bufp
) == -2)
3113 /* Loop through the string, looking for a place to start matching. */
3116 /* If a fastmap is supplied, skip quickly over characters that
3117 cannot be the start of a match. If the pattern can match the
3118 null string, however, we don't need to skip characters; we want
3119 the first null string. */
3120 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
3122 if (range
> 0) /* Searching forwards. */
3124 register const char *d
;
3125 register int lim
= 0;
3128 if (startpos
< size1
&& startpos
+ range
>= size1
)
3129 lim
= range
- (size1
- startpos
);
3131 d
= (startpos
>= size1
? string2
- size1
: string1
) + startpos
;
3133 /* Written out as an if-else to avoid testing `translate'
3137 && !fastmap
[(unsigned char)
3138 translate
[(unsigned char) *d
++]])
3141 while (range
> lim
&& !fastmap
[(unsigned char) *d
++])
3144 startpos
+= irange
- range
;
3146 else /* Searching backwards. */
3148 register char c
= (size1
== 0 || startpos
>= size1
3149 ? string2
[startpos
- size1
]
3150 : string1
[startpos
]);
3152 if (!fastmap
[(unsigned char) TRANSLATE (c
)])
3157 /* If can't match the null string, and that's all we have left, fail. */
3158 if (range
>= 0 && startpos
== total_size
&& fastmap
3159 && !bufp
->can_be_null
)
3162 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3163 startpos
, regs
, stop
);
3189 /* Declarations and macros for re_match_2. */
3191 static int bcmp_translate ();
3192 static boolean
alt_match_null_string_p (),
3193 common_op_match_null_string_p (),
3194 group_match_null_string_p ();
3196 /* This converts PTR, a pointer into one of the search strings `string1'
3197 and `string2' into an offset from the beginning of that string. */
3198 #define POINTER_TO_OFFSET(ptr) \
3199 (FIRST_STRING_P (ptr) \
3200 ? ((regoff_t) ((ptr) - string1)) \
3201 : ((regoff_t) ((ptr) - string2 + size1)))
3203 /* Macros for dealing with the split strings in re_match_2. */
3205 #define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3207 /* Call before fetching a character with *d. This switches over to
3208 string2 if necessary. */
3209 #define PREFETCH() \
3212 /* End of string2 => fail. */ \
3213 if (dend == end_match_2) \
3215 /* End of string1 => advance to string2. */ \
3217 dend = end_match_2; \
3221 /* Test if at very beginning or at very end of the virtual concatenation
3222 of `string1' and `string2'. If only one string, it's `string2'. */
3223 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3224 #define AT_STRINGS_END(d) ((d) == end2)
3227 /* Test if D points to a character which is word-constituent. We have
3228 two special cases to check for: if past the end of string1, look at
3229 the first character in string2; and if before the beginning of
3230 string2, look at the last character in string1. */
3231 #define WORDCHAR_P(d) \
3232 (SYNTAX ((d) == end1 ? *string2 \
3233 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3236 /* Test if the character before D and the one at D differ with respect
3237 to being word-constituent. */
3238 #define AT_WORD_BOUNDARY(d) \
3239 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3240 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
3243 /* Free everything we malloc. */
3244 #ifdef MATCH_MAY_ALLOCATE
3246 #define FREE_VAR(var) if (var) free (var); var = NULL
3247 #define FREE_VARIABLES() \
3249 FREE_VAR (fail_stack.stack); \
3250 FREE_VAR (regstart); \
3251 FREE_VAR (regend); \
3252 FREE_VAR (old_regstart); \
3253 FREE_VAR (old_regend); \
3254 FREE_VAR (best_regstart); \
3255 FREE_VAR (best_regend); \
3256 FREE_VAR (reg_info); \
3257 FREE_VAR (reg_dummy); \
3258 FREE_VAR (reg_info_dummy); \
3260 #else /* not REGEX_MALLOC */
3261 /* This used to do alloca (0), but now we do that in the caller. */
3262 #define FREE_VARIABLES() /* Nothing */
3263 #endif /* not REGEX_MALLOC */
3265 #define FREE_VARIABLES() /* Do nothing! */
3266 #endif /* not MATCH_MAY_ALLOCATE */
3268 /* These values must meet several constraints. They must not be valid
3269 register values; since we have a limit of 255 registers (because
3270 we use only one byte in the pattern for the register number), we can
3271 use numbers larger than 255. They must differ by 1, because of
3272 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3273 be larger than the value for the highest register, so we do not try
3274 to actually save any registers when none are active. */
3275 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3276 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3278 /* Matching routines. */
3280 #ifndef emacs /* Emacs never uses this. */
3281 /* re_match is like re_match_2 except it takes only a single string. */
3284 re_match (bufp
, string
, size
, pos
, regs
)
3285 struct re_pattern_buffer
*bufp
;
3288 struct re_registers
*regs
;
3290 int result
= re_match_2_internal (bufp
, NULL
, 0, string
, size
,
3295 #endif /* not emacs */
3298 /* re_match_2 matches the compiled pattern in BUFP against the
3299 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3300 and SIZE2, respectively). We start matching at POS, and stop
3303 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3304 store offsets for the substring each group matched in REGS. See the
3305 documentation for exactly how many groups we fill.
3307 We return -1 if no match, -2 if an internal error (such as the
3308 failure stack overflowing). Otherwise, we return the length of the
3309 matched substring. */
3312 re_match_2 (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3313 struct re_pattern_buffer
*bufp
;
3314 const char *string1
, *string2
;
3317 struct re_registers
*regs
;
3320 int result
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
3326 /* This is a separate function so that we can force an alloca cleanup
3329 re_match_2_internal (bufp
, string1
, size1
, string2
, size2
, pos
, regs
, stop
)
3330 struct re_pattern_buffer
*bufp
;
3331 const char *string1
, *string2
;
3334 struct re_registers
*regs
;
3337 /* General temporaries. */
3341 /* Just past the end of the corresponding string. */
3342 const char *end1
, *end2
;
3344 /* Pointers into string1 and string2, just past the last characters in
3345 each to consider matching. */
3346 const char *end_match_1
, *end_match_2
;
3348 /* Where we are in the data, and the end of the current string. */
3349 const char *d
, *dend
;
3351 /* Where we are in the pattern, and the end of the pattern. */
3352 unsigned char *p
= bufp
->buffer
;
3353 register unsigned char *pend
= p
+ bufp
->used
;
3355 /* Mark the opcode just after a start_memory, so we can test for an
3356 empty subpattern when we get to the stop_memory. */
3357 unsigned char *just_past_start_mem
= 0;
3359 /* We use this to map every character in the string. */
3360 char *translate
= bufp
->translate
;
3362 /* Failure point stack. Each place that can handle a failure further
3363 down the line pushes a failure point on this stack. It consists of
3364 restart, regend, and reg_info for all registers corresponding to
3365 the subexpressions we're currently inside, plus the number of such
3366 registers, and, finally, two char *'s. The first char * is where
3367 to resume scanning the pattern; the second one is where to resume
3368 scanning the strings. If the latter is zero, the failure point is
3369 a ``dummy''; if a failure happens and the failure point is a dummy,
3370 it gets discarded and the next next one is tried. */
3371 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3372 fail_stack_type fail_stack
;
3375 static unsigned failure_id
= 0;
3376 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
3379 /* We fill all the registers internally, independent of what we
3380 return, for use in backreferences. The number here includes
3381 an element for register zero. */
3382 unsigned num_regs
= bufp
->re_nsub
+ 1;
3384 /* The currently active registers. */
3385 unsigned lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3386 unsigned highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3388 /* Information on the contents of registers. These are pointers into
3389 the input strings; they record just what was matched (on this
3390 attempt) by a subexpression part of the pattern, that is, the
3391 regnum-th regstart pointer points to where in the pattern we began
3392 matching and the regnum-th regend points to right after where we
3393 stopped matching the regnum-th subexpression. (The zeroth register
3394 keeps track of what the whole pattern matches.) */
3395 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3396 const char **regstart
, **regend
;
3399 /* If a group that's operated upon by a repetition operator fails to
3400 match anything, then the register for its start will need to be
3401 restored because it will have been set to wherever in the string we
3402 are when we last see its open-group operator. Similarly for a
3404 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3405 const char **old_regstart
, **old_regend
;
3408 /* The is_active field of reg_info helps us keep track of which (possibly
3409 nested) subexpressions we are currently in. The matched_something
3410 field of reg_info[reg_num] helps us tell whether or not we have
3411 matched any of the pattern so far this time through the reg_num-th
3412 subexpression. These two fields get reset each time through any
3413 loop their register is in. */
3414 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
3415 register_info_type
*reg_info
;
3418 /* The following record the register info as found in the above
3419 variables when we find a match better than any we've seen before.
3420 This happens as we backtrack through the failure points, which in
3421 turn happens only if we have not yet matched the entire string. */
3422 unsigned best_regs_set
= false;
3423 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3424 const char **best_regstart
, **best_regend
;
3427 /* Logically, this is `best_regend[0]'. But we don't want to have to
3428 allocate space for that if we're not allocating space for anything
3429 else (see below). Also, we never need info about register 0 for
3430 any of the other register vectors, and it seems rather a kludge to
3431 treat `best_regend' differently than the rest. So we keep track of
3432 the end of the best match so far in a separate variable. We
3433 initialize this to NULL so that when we backtrack the first time
3434 and need to test it, it's not garbage. */
3435 const char *match_end
= NULL
;
3437 /* Used when we pop values we don't care about. */
3438 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
3439 const char **reg_dummy
;
3440 register_info_type
*reg_info_dummy
;
3444 /* Counts the total number of registers pushed. */
3445 unsigned num_regs_pushed
= 0;
3448 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3452 #ifdef MATCH_MAY_ALLOCATE
3453 /* Do not bother to initialize all the register variables if there are
3454 no groups in the pattern, as it takes a fair amount of time. If
3455 there are groups, we include space for register 0 (the whole
3456 pattern), even though we never use it, since it simplifies the
3457 array indexing. We should fix this. */
3460 regstart
= REGEX_TALLOC (num_regs
, const char *);
3461 regend
= REGEX_TALLOC (num_regs
, const char *);
3462 old_regstart
= REGEX_TALLOC (num_regs
, const char *);
3463 old_regend
= REGEX_TALLOC (num_regs
, const char *);
3464 best_regstart
= REGEX_TALLOC (num_regs
, const char *);
3465 best_regend
= REGEX_TALLOC (num_regs
, const char *);
3466 reg_info
= REGEX_TALLOC (num_regs
, register_info_type
);
3467 reg_dummy
= REGEX_TALLOC (num_regs
, const char *);
3468 reg_info_dummy
= REGEX_TALLOC (num_regs
, register_info_type
);
3470 if (!(regstart
&& regend
&& old_regstart
&& old_regend
&& reg_info
3471 && best_regstart
&& best_regend
&& reg_dummy
&& reg_info_dummy
))
3477 #if defined (REGEX_MALLOC)
3480 /* We must initialize all our variables to NULL, so that
3481 `FREE_VARIABLES' doesn't try to free them. */
3482 regstart
= regend
= old_regstart
= old_regend
= best_regstart
3483 = best_regend
= reg_dummy
= NULL
;
3484 reg_info
= reg_info_dummy
= (register_info_type
*) NULL
;
3486 #endif /* REGEX_MALLOC */
3487 #endif /* MATCH_MAY_ALLOCATE */
3489 /* The starting position is bogus. */
3490 if (pos
< 0 || pos
> size1
+ size2
)
3496 /* Initialize subexpression text positions to -1 to mark ones that no
3497 start_memory/stop_memory has been seen for. Also initialize the
3498 register information struct. */
3499 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3501 regstart
[mcnt
] = regend
[mcnt
]
3502 = old_regstart
[mcnt
] = old_regend
[mcnt
] = REG_UNSET_VALUE
;
3504 REG_MATCH_NULL_STRING_P (reg_info
[mcnt
]) = MATCH_NULL_UNSET_VALUE
;
3505 IS_ACTIVE (reg_info
[mcnt
]) = 0;
3506 MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3507 EVER_MATCHED_SOMETHING (reg_info
[mcnt
]) = 0;
3510 /* We move `string1' into `string2' if the latter's empty -- but not if
3511 `string1' is null. */
3512 if (size2
== 0 && string1
!= NULL
)
3519 end1
= string1
+ size1
;
3520 end2
= string2
+ size2
;
3522 /* Compute where to stop matching, within the two strings. */
3525 end_match_1
= string1
+ stop
;
3526 end_match_2
= string2
;
3531 end_match_2
= string2
+ stop
- size1
;
3534 /* `p' scans through the pattern as `d' scans through the data.
3535 `dend' is the end of the input string that `d' points within. `d'
3536 is advanced into the following input string whenever necessary, but
3537 this happens before fetching; therefore, at the beginning of the
3538 loop, `d' can be pointing at the end of a string, but it cannot
3540 if (size1
> 0 && pos
<= size1
)
3547 d
= string2
+ pos
- size1
;
3551 DEBUG_PRINT1 ("The compiled pattern is: ");
3552 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
3553 DEBUG_PRINT1 ("The string to match is: `");
3554 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
3555 DEBUG_PRINT1 ("'\n");
3557 /* This loops over pattern commands. It exits by returning from the
3558 function if the match is complete, or it drops through if the match
3559 fails at this starting point in the input data. */
3562 DEBUG_PRINT2 ("\n0x%x: ", p
);
3565 { /* End of pattern means we might have succeeded. */
3566 DEBUG_PRINT1 ("end of pattern ... ");
3568 /* If we haven't matched the entire string, and we want the
3569 longest match, try backtracking. */
3570 if (d
!= end_match_2
)
3572 DEBUG_PRINT1 ("backtracking.\n");
3574 if (!FAIL_STACK_EMPTY ())
3575 { /* More failure points to try. */
3576 boolean same_str_p
= (FIRST_STRING_P (match_end
)
3577 == MATCHING_IN_FIRST_STRING
);
3579 /* If exceeds best match so far, save it. */
3581 || (same_str_p
&& d
> match_end
)
3582 || (!same_str_p
&& !MATCHING_IN_FIRST_STRING
))
3584 best_regs_set
= true;
3587 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3589 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3591 best_regstart
[mcnt
] = regstart
[mcnt
];
3592 best_regend
[mcnt
] = regend
[mcnt
];
3598 /* If no failure points, don't restore garbage. */
3599 else if (best_regs_set
)
3602 /* Restore best match. It may happen that `dend ==
3603 end_match_1' while the restored d is in string2.
3604 For example, the pattern `x.*y.*z' against the
3605 strings `x-' and `y-z-', if the two strings are
3606 not consecutive in memory. */
3607 DEBUG_PRINT1 ("Restoring best registers.\n");
3610 dend
= ((d
>= string1
&& d
<= end1
)
3611 ? end_match_1
: end_match_2
);
3613 for (mcnt
= 1; mcnt
< num_regs
; mcnt
++)
3615 regstart
[mcnt
] = best_regstart
[mcnt
];
3616 regend
[mcnt
] = best_regend
[mcnt
];
3619 } /* d != end_match_2 */
3621 DEBUG_PRINT1 ("Accepting match.\n");
3623 /* If caller wants register contents data back, do it. */
3624 if (regs
&& !bufp
->no_sub
)
3626 /* Have the register data arrays been allocated? */
3627 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
3628 { /* No. So allocate them with malloc. We need one
3629 extra element beyond `num_regs' for the `-1' marker
3631 regs
->num_regs
= MAX (RE_NREGS
, num_regs
+ 1);
3632 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
3633 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
3634 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3636 bufp
->regs_allocated
= REGS_REALLOCATE
;
3638 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
3639 { /* Yes. If we need more elements than were already
3640 allocated, reallocate them. If we need fewer, just
3642 if (regs
->num_regs
< num_regs
+ 1)
3644 regs
->num_regs
= num_regs
+ 1;
3645 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
3646 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
3647 if (regs
->start
== NULL
|| regs
->end
== NULL
)
3653 /* These braces fend off a "empty body in an else-statement"
3654 warning under GCC when assert expands to nothing. */
3655 assert (bufp
->regs_allocated
== REGS_FIXED
);
3658 /* Convert the pointer data in `regstart' and `regend' to
3659 indices. Register zero has to be set differently,
3660 since we haven't kept track of any info for it. */
3661 if (regs
->num_regs
> 0)
3663 regs
->start
[0] = pos
;
3664 regs
->end
[0] = (MATCHING_IN_FIRST_STRING
3665 ? ((regoff_t
) (d
- string1
))
3666 : ((regoff_t
) (d
- string2
+ size1
)));
3669 /* Go through the first `min (num_regs, regs->num_regs)'
3670 registers, since that is all we initialized. */
3671 for (mcnt
= 1; mcnt
< MIN (num_regs
, regs
->num_regs
); mcnt
++)
3673 if (REG_UNSET (regstart
[mcnt
]) || REG_UNSET (regend
[mcnt
]))
3674 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3678 = (regoff_t
) POINTER_TO_OFFSET (regstart
[mcnt
]);
3680 = (regoff_t
) POINTER_TO_OFFSET (regend
[mcnt
]);
3684 /* If the regs structure we return has more elements than
3685 were in the pattern, set the extra elements to -1. If
3686 we (re)allocated the registers, this is the case,
3687 because we always allocate enough to have at least one
3689 for (mcnt
= num_regs
; mcnt
< regs
->num_regs
; mcnt
++)
3690 regs
->start
[mcnt
] = regs
->end
[mcnt
] = -1;
3691 } /* regs && !bufp->no_sub */
3694 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3695 nfailure_points_pushed
, nfailure_points_popped
,
3696 nfailure_points_pushed
- nfailure_points_popped
);
3697 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed
);
3699 mcnt
= d
- pos
- (MATCHING_IN_FIRST_STRING
3703 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt
);
3708 /* Otherwise match next pattern command. */
3709 #ifdef SWITCH_ENUM_BUG
3710 switch ((int) ((re_opcode_t
) *p
++))
3712 switch ((re_opcode_t
) *p
++)
3715 /* Ignore these. Used to ignore the n of succeed_n's which
3716 currently have n == 0. */
3718 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3722 /* Match the next n pattern characters exactly. The following
3723 byte in the pattern defines n, and the n bytes after that
3724 are the characters to match. */
3727 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt
);
3729 /* This is written out as an if-else so we don't waste time
3730 testing `translate' inside the loop. */
3736 if (translate
[(unsigned char) *d
++] != (char) *p
++)
3746 if (*d
++ != (char) *p
++) goto fail
;
3750 SET_REGS_MATCHED ();
3754 /* Match any character except possibly a newline or a null. */
3756 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3760 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
) && TRANSLATE (*d
) == '\n')
3761 || (bufp
->syntax
& RE_DOT_NOT_NULL
&& TRANSLATE (*d
) == '\000'))
3764 SET_REGS_MATCHED ();
3765 DEBUG_PRINT2 (" Matched `%d'.\n", *d
);
3773 register unsigned char c
;
3774 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
3776 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3779 c
= TRANSLATE (*d
); /* The character to match. */
3781 /* Cast to `unsigned' instead of `unsigned char' in case the
3782 bit list is a full 32 bytes long. */
3783 if (c
< (unsigned) (*p
* BYTEWIDTH
)
3784 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
3789 if (!not) goto fail
;
3791 SET_REGS_MATCHED ();
3797 /* The beginning of a group is represented by start_memory.
3798 The arguments are the register number in the next byte, and the
3799 number of groups inner to this one in the next. The text
3800 matched within the group is recorded (in the internal
3801 registers data structure) under the register number. */
3803 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p
, p
[1]);
3805 /* Find out if this group can match the empty string. */
3806 p1
= p
; /* To send to group_match_null_string_p. */
3808 if (REG_MATCH_NULL_STRING_P (reg_info
[*p
]) == MATCH_NULL_UNSET_VALUE
)
3809 REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3810 = group_match_null_string_p (&p1
, pend
, reg_info
);
3812 /* Save the position in the string where we were the last time
3813 we were at this open-group operator in case the group is
3814 operated upon by a repetition operator, e.g., with `(a*)*b'
3815 against `ab'; then we want to ignore where we are now in
3816 the string in case this attempt to match fails. */
3817 old_regstart
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3818 ? REG_UNSET (regstart
[*p
]) ? d
: regstart
[*p
]
3820 DEBUG_PRINT2 (" old_regstart: %d\n",
3821 POINTER_TO_OFFSET (old_regstart
[*p
]));
3824 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart
[*p
]));
3826 IS_ACTIVE (reg_info
[*p
]) = 1;
3827 MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3829 /* This is the new highest active register. */
3830 highest_active_reg
= *p
;
3832 /* If nothing was active before, this is the new lowest active
3834 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
3835 lowest_active_reg
= *p
;
3837 /* Move past the register number and inner group count. */
3839 just_past_start_mem
= p
;
3843 /* The stop_memory opcode represents the end of a group. Its
3844 arguments are the same as start_memory's: the register
3845 number, and the number of inner groups. */
3847 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p
, p
[1]);
3849 /* We need to save the string position the last time we were at
3850 this close-group operator in case the group is operated
3851 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3852 against `aba'; then we want to ignore where we are now in
3853 the string in case this attempt to match fails. */
3854 old_regend
[*p
] = REG_MATCH_NULL_STRING_P (reg_info
[*p
])
3855 ? REG_UNSET (regend
[*p
]) ? d
: regend
[*p
]
3857 DEBUG_PRINT2 (" old_regend: %d\n",
3858 POINTER_TO_OFFSET (old_regend
[*p
]));
3861 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend
[*p
]));
3863 /* This register isn't active anymore. */
3864 IS_ACTIVE (reg_info
[*p
]) = 0;
3866 /* If this was the only register active, nothing is active
3868 if (lowest_active_reg
== highest_active_reg
)
3870 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3871 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3874 { /* We must scan for the new highest active register, since
3875 it isn't necessarily one less than now: consider
3876 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3877 new highest active register is 1. */
3878 unsigned char r
= *p
- 1;
3879 while (r
> 0 && !IS_ACTIVE (reg_info
[r
]))
3882 /* If we end up at register zero, that means that we saved
3883 the registers as the result of an `on_failure_jump', not
3884 a `start_memory', and we jumped to past the innermost
3885 `stop_memory'. For example, in ((.)*) we save
3886 registers 1 and 2 as a result of the *, but when we pop
3887 back to the second ), we are at the stop_memory 1.
3888 Thus, nothing is active. */
3891 lowest_active_reg
= NO_LOWEST_ACTIVE_REG
;
3892 highest_active_reg
= NO_HIGHEST_ACTIVE_REG
;
3895 highest_active_reg
= r
;
3898 /* If just failed to match something this time around with a
3899 group that's operated on by a repetition operator, try to
3900 force exit from the ``loop'', and restore the register
3901 information for this group that we had before trying this
3903 if ((!MATCHED_SOMETHING (reg_info
[*p
])
3904 || just_past_start_mem
== p
- 1)
3907 boolean is_a_jump_n
= false;
3911 switch ((re_opcode_t
) *p1
++)
3915 case pop_failure_jump
:
3916 case maybe_pop_jump
:
3918 case dummy_failure_jump
:
3919 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3929 /* If the next operation is a jump backwards in the pattern
3930 to an on_failure_jump right before the start_memory
3931 corresponding to this stop_memory, exit from the loop
3932 by forcing a failure after pushing on the stack the
3933 on_failure_jump's jump in the pattern, and d. */
3934 if (mcnt
< 0 && (re_opcode_t
) *p1
== on_failure_jump
3935 && (re_opcode_t
) p1
[3] == start_memory
&& p1
[4] == *p
)
3937 /* If this group ever matched anything, then restore
3938 what its registers were before trying this last
3939 failed match, e.g., with `(a*)*b' against `ab' for
3940 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3941 against `aba' for regend[3].
3943 Also restore the registers for inner groups for,
3944 e.g., `((a*)(b*))*' against `aba' (register 3 would
3945 otherwise get trashed). */
3947 if (EVER_MATCHED_SOMETHING (reg_info
[*p
]))
3951 EVER_MATCHED_SOMETHING (reg_info
[*p
]) = 0;
3953 /* Restore this and inner groups' (if any) registers. */
3954 for (r
= *p
; r
< *p
+ *(p
+ 1); r
++)
3956 regstart
[r
] = old_regstart
[r
];
3958 /* xx why this test? */
3959 if ((int) old_regend
[r
] >= (int) regstart
[r
])
3960 regend
[r
] = old_regend
[r
];
3964 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
3965 PUSH_FAILURE_POINT (p1
+ mcnt
, d
, -2);
3971 /* Move past the register number and the inner group count. */
3976 /* \<digit> has been turned into a `duplicate' command which is
3977 followed by the numeric value of <digit> as the register number. */
3980 register const char *d2
, *dend2
;
3981 int regno
= *p
++; /* Get which register to match against. */
3982 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno
);
3984 /* Can't back reference a group which we've never matched. */
3985 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
3988 /* Where in input to try to start matching. */
3989 d2
= regstart
[regno
];
3991 /* Where to stop matching; if both the place to start and
3992 the place to stop matching are in the same string, then
3993 set to the place to stop, otherwise, for now have to use
3994 the end of the first string. */
3996 dend2
= ((FIRST_STRING_P (regstart
[regno
])
3997 == FIRST_STRING_P (regend
[regno
]))
3998 ? regend
[regno
] : end_match_1
);
4001 /* If necessary, advance to next segment in register
4005 if (dend2
== end_match_2
) break;
4006 if (dend2
== regend
[regno
]) break;
4008 /* End of string1 => advance to string2. */
4010 dend2
= regend
[regno
];
4012 /* At end of register contents => success */
4013 if (d2
== dend2
) break;
4015 /* If necessary, advance to next segment in data. */
4018 /* How many characters left in this segment to match. */
4021 /* Want how many consecutive characters we can match in
4022 one shot, so, if necessary, adjust the count. */
4023 if (mcnt
> dend2
- d2
)
4026 /* Compare that many; failure if mismatch, else move
4029 ? bcmp_translate (d
, d2
, mcnt
, translate
)
4030 : bcmp (d
, d2
, mcnt
))
4032 d
+= mcnt
, d2
+= mcnt
;
4038 /* begline matches the empty string at the beginning of the string
4039 (unless `not_bol' is set in `bufp'), and, if
4040 `newline_anchor' is set, after newlines. */
4042 DEBUG_PRINT1 ("EXECUTING begline.\n");
4044 if (AT_STRINGS_BEG (d
))
4046 if (!bufp
->not_bol
) break;
4048 else if (d
[-1] == '\n' && bufp
->newline_anchor
)
4052 /* In all other cases, we fail. */
4056 /* endline is the dual of begline. */
4058 DEBUG_PRINT1 ("EXECUTING endline.\n");
4060 if (AT_STRINGS_END (d
))
4062 if (!bufp
->not_eol
) break;
4065 /* We have to ``prefetch'' the next character. */
4066 else if ((d
== end1
? *string2
: *d
) == '\n'
4067 && bufp
->newline_anchor
)
4074 /* Match at the very beginning of the data. */
4076 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
4077 if (AT_STRINGS_BEG (d
))
4082 /* Match at the very end of the data. */
4084 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
4085 if (AT_STRINGS_END (d
))
4090 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4091 pushes NULL as the value for the string on the stack. Then
4092 `pop_failure_point' will keep the current value for the
4093 string, instead of restoring it. To see why, consider
4094 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4095 then the . fails against the \n. But the next thing we want
4096 to do is match the \n against the \n; if we restored the
4097 string value, we would be back at the foo.
4099 Because this is used only in specific cases, we don't need to
4100 check all the things that `on_failure_jump' does, to make
4101 sure the right things get saved on the stack. Hence we don't
4102 share its code. The only reason to push anything on the
4103 stack at all is that otherwise we would have to change
4104 `anychar's code to do something besides goto fail in this
4105 case; that seems worse than this. */
4106 case on_failure_keep_string_jump
:
4107 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4109 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4110 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt
, p
+ mcnt
);
4112 PUSH_FAILURE_POINT (p
+ mcnt
, NULL
, -2);
4116 /* Uses of on_failure_jump:
4118 Each alternative starts with an on_failure_jump that points
4119 to the beginning of the next alternative. Each alternative
4120 except the last ends with a jump that in effect jumps past
4121 the rest of the alternatives. (They really jump to the
4122 ending jump of the following alternative, because tensioning
4123 these jumps is a hassle.)
4125 Repeats start with an on_failure_jump that points past both
4126 the repetition text and either the following jump or
4127 pop_failure_jump back to this on_failure_jump. */
4128 case on_failure_jump
:
4130 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4132 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4133 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt
, p
+ mcnt
);
4135 /* If this on_failure_jump comes right before a group (i.e.,
4136 the original * applied to a group), save the information
4137 for that group and all inner ones, so that if we fail back
4138 to this point, the group's information will be correct.
4139 For example, in \(a*\)*\1, we need the preceding group,
4140 and in \(\(a*\)b*\)\2, we need the inner group. */
4142 /* We can't use `p' to check ahead because we push
4143 a failure point to `p + mcnt' after we do this. */
4146 /* We need to skip no_op's before we look for the
4147 start_memory in case this on_failure_jump is happening as
4148 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4150 while (p1
< pend
&& (re_opcode_t
) *p1
== no_op
)
4153 if (p1
< pend
&& (re_opcode_t
) *p1
== start_memory
)
4155 /* We have a new highest active register now. This will
4156 get reset at the start_memory we are about to get to,
4157 but we will have saved all the registers relevant to
4158 this repetition op, as described above. */
4159 highest_active_reg
= *(p1
+ 1) + *(p1
+ 2);
4160 if (lowest_active_reg
== NO_LOWEST_ACTIVE_REG
)
4161 lowest_active_reg
= *(p1
+ 1);
4164 DEBUG_PRINT1 (":\n");
4165 PUSH_FAILURE_POINT (p
+ mcnt
, d
, -2);
4169 /* A smart repeat ends with `maybe_pop_jump'.
4170 We change it to either `pop_failure_jump' or `jump'. */
4171 case maybe_pop_jump
:
4172 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4173 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt
);
4175 register unsigned char *p2
= p
;
4177 /* Compare the beginning of the repeat with what in the
4178 pattern follows its end. If we can establish that there
4179 is nothing that they would both match, i.e., that we
4180 would have to backtrack because of (as in, e.g., `a*a')
4181 then we can change to pop_failure_jump, because we'll
4182 never have to backtrack.
4184 This is not true in the case of alternatives: in
4185 `(a|ab)*' we do need to backtrack to the `ab' alternative
4186 (e.g., if the string was `ab'). But instead of trying to
4187 detect that here, the alternative has put on a dummy
4188 failure point which is what we will end up popping. */
4190 /* Skip over open/close-group commands.
4191 If what follows this loop is a ...+ construct,
4192 look at what begins its body, since we will have to
4193 match at least one of that. */
4197 && ((re_opcode_t
) *p2
== stop_memory
4198 || (re_opcode_t
) *p2
== start_memory
))
4200 else if (p2
+ 6 < pend
4201 && (re_opcode_t
) *p2
== dummy_failure_jump
)
4208 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4209 to the `maybe_finalize_jump' of this case. Examine what
4212 /* If we're at the end of the pattern, we can change. */
4215 /* Consider what happens when matching ":\(.*\)"
4216 against ":/". I don't really understand this code
4218 p
[-3] = (unsigned char) pop_failure_jump
;
4220 (" End of pattern: change to `pop_failure_jump'.\n");
4223 else if ((re_opcode_t
) *p2
== exactn
4224 || (bufp
->newline_anchor
&& (re_opcode_t
) *p2
== endline
))
4226 register unsigned char c
4227 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4229 if ((re_opcode_t
) p1
[3] == exactn
&& p1
[5] != c
)
4231 p
[-3] = (unsigned char) pop_failure_jump
;
4232 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4236 else if ((re_opcode_t
) p1
[3] == charset
4237 || (re_opcode_t
) p1
[3] == charset_not
)
4239 int not = (re_opcode_t
) p1
[3] == charset_not
;
4241 if (c
< (unsigned char) (p1
[4] * BYTEWIDTH
)
4242 && p1
[5 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4245 /* `not' is equal to 1 if c would match, which means
4246 that we can't change to pop_failure_jump. */
4249 p
[-3] = (unsigned char) pop_failure_jump
;
4250 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4254 else if ((re_opcode_t
) *p2
== charset
)
4256 register unsigned char c
4257 = *p2
== (unsigned char) endline
? '\n' : p2
[2];
4259 if ((re_opcode_t
) p1
[3] == exactn
4260 && ! (p2
[1] * BYTEWIDTH
> p1
[4]
4261 && (p2
[1 + p1
[4] / BYTEWIDTH
]
4262 & (1 << (p1
[4] % BYTEWIDTH
)))))
4264 p
[-3] = (unsigned char) pop_failure_jump
;
4265 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4269 else if ((re_opcode_t
) p1
[3] == charset_not
)
4272 /* We win if the charset_not inside the loop
4273 lists every character listed in the charset after. */
4274 for (idx
= 0; idx
< p2
[1]; idx
++)
4275 if (! (p2
[2 + idx
] == 0
4277 && ((p2
[2 + idx
] & ~ p1
[5 + idx
]) == 0))))
4282 p
[-3] = (unsigned char) pop_failure_jump
;
4283 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4286 else if ((re_opcode_t
) p1
[3] == charset
)
4289 /* We win if the charset inside the loop
4290 has no overlap with the one after the loop. */
4291 for (idx
= 0; idx
< p2
[1] && idx
< p1
[4]; idx
++)
4292 if ((p2
[2 + idx
] & p1
[5 + idx
]) != 0)
4295 if (idx
== p2
[1] || idx
== p1
[4])
4297 p
[-3] = (unsigned char) pop_failure_jump
;
4298 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4303 p
-= 2; /* Point at relative address again. */
4304 if ((re_opcode_t
) p
[-1] != pop_failure_jump
)
4306 p
[-1] = (unsigned char) jump
;
4307 DEBUG_PRINT1 (" Match => jump.\n");
4308 goto unconditional_jump
;
4310 /* Note fall through. */
4313 /* The end of a simple repeat has a pop_failure_jump back to
4314 its matching on_failure_jump, where the latter will push a
4315 failure point. The pop_failure_jump takes off failure
4316 points put on by this pop_failure_jump's matching
4317 on_failure_jump; we got through the pattern to here from the
4318 matching on_failure_jump, so didn't fail. */
4319 case pop_failure_jump
:
4321 /* We need to pass separate storage for the lowest and
4322 highest registers, even though we don't care about the
4323 actual values. Otherwise, we will restore only one
4324 register from the stack, since lowest will == highest in
4325 `pop_failure_point'. */
4326 unsigned dummy_low_reg
, dummy_high_reg
;
4327 unsigned char *pdummy
;
4330 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4331 POP_FAILURE_POINT (sdummy
, pdummy
,
4332 dummy_low_reg
, dummy_high_reg
,
4333 reg_dummy
, reg_dummy
, reg_info_dummy
);
4335 /* Note fall through. */
4338 /* Unconditionally jump (without popping any failure points). */
4341 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
4342 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt
);
4343 p
+= mcnt
; /* Do the jump. */
4344 DEBUG_PRINT2 ("(to 0x%x).\n", p
);
4348 /* We need this opcode so we can detect where alternatives end
4349 in `group_match_null_string_p' et al. */
4351 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4352 goto unconditional_jump
;
4355 /* Normally, the on_failure_jump pushes a failure point, which
4356 then gets popped at pop_failure_jump. We will end up at
4357 pop_failure_jump, also, and with a pattern of, say, `a+', we
4358 are skipping over the on_failure_jump, so we have to push
4359 something meaningless for pop_failure_jump to pop. */
4360 case dummy_failure_jump
:
4361 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4362 /* It doesn't matter what we push for the string here. What
4363 the code at `fail' tests is the value for the pattern. */
4364 PUSH_FAILURE_POINT (0, 0, -2);
4365 goto unconditional_jump
;
4368 /* At the end of an alternative, we need to push a dummy failure
4369 point in case we are followed by a `pop_failure_jump', because
4370 we don't want the failure point for the alternative to be
4371 popped. For example, matching `(a|ab)*' against `aab'
4372 requires that we match the `ab' alternative. */
4373 case push_dummy_failure
:
4374 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4375 /* See comments just above at `dummy_failure_jump' about the
4377 PUSH_FAILURE_POINT (0, 0, -2);
4380 /* Have to succeed matching what follows at least n times.
4381 After that, handle like `on_failure_jump'. */
4383 EXTRACT_NUMBER (mcnt
, p
+ 2);
4384 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt
);
4387 /* Originally, this is how many times we HAVE to succeed. */
4392 STORE_NUMBER_AND_INCR (p
, mcnt
);
4393 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p
, mcnt
);
4397 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p
+2);
4398 p
[2] = (unsigned char) no_op
;
4399 p
[3] = (unsigned char) no_op
;
4405 EXTRACT_NUMBER (mcnt
, p
+ 2);
4406 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt
);
4408 /* Originally, this is how many times we CAN jump. */
4412 STORE_NUMBER (p
+ 2, mcnt
);
4413 goto unconditional_jump
;
4415 /* If don't have to jump any more, skip over the rest of command. */
4422 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4424 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4426 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4427 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1
, mcnt
);
4428 STORE_NUMBER (p1
, mcnt
);
4433 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4434 if (AT_WORD_BOUNDARY (d
))
4439 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4440 if (AT_WORD_BOUNDARY (d
))
4445 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
4446 if (WORDCHAR_P (d
) && (AT_STRINGS_BEG (d
) || !WORDCHAR_P (d
- 1)))
4451 DEBUG_PRINT1 ("EXECUTING wordend.\n");
4452 if (!AT_STRINGS_BEG (d
) && WORDCHAR_P (d
- 1)
4453 && (!WORDCHAR_P (d
) || AT_STRINGS_END (d
)))
4459 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4460 if (PTR_CHAR_POS ((unsigned char *) d
) >= point
)
4465 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4466 if (PTR_CHAR_POS ((unsigned char *) d
) != point
)
4471 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4472 if (PTR_CHAR_POS ((unsigned char *) d
) <= point
)
4475 #if 0 /* not emacs19 */
4477 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4478 if (PTR_CHAR_POS ((unsigned char *) d
) + 1 != point
)
4481 #endif /* not emacs19 */
4484 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt
);
4489 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
4493 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4495 if (SYNTAX (d
[-1]) != (enum syntaxcode
) mcnt
)
4497 SET_REGS_MATCHED ();
4501 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt
);
4503 goto matchnotsyntax
;
4506 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
4510 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4512 if (SYNTAX (d
[-1]) == (enum syntaxcode
) mcnt
)
4514 SET_REGS_MATCHED ();
4517 #else /* not emacs */
4519 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4521 if (!WORDCHAR_P (d
))
4523 SET_REGS_MATCHED ();
4528 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4532 SET_REGS_MATCHED ();
4535 #endif /* not emacs */
4540 continue; /* Successfully executed one pattern command; keep going. */
4543 /* We goto here if a matching operation fails. */
4545 if (!FAIL_STACK_EMPTY ())
4546 { /* A restart point is known. Restore to that state. */
4547 DEBUG_PRINT1 ("\nFAIL:\n");
4548 POP_FAILURE_POINT (d
, p
,
4549 lowest_active_reg
, highest_active_reg
,
4550 regstart
, regend
, reg_info
);
4552 /* If this failure point is a dummy, try the next one. */
4556 /* If we failed to the end of the pattern, don't examine *p. */
4560 boolean is_a_jump_n
= false;
4562 /* If failed to a backwards jump that's part of a repetition
4563 loop, need to pop this failure point and use the next one. */
4564 switch ((re_opcode_t
) *p
)
4568 case maybe_pop_jump
:
4569 case pop_failure_jump
:
4572 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4575 if ((is_a_jump_n
&& (re_opcode_t
) *p1
== succeed_n
)
4577 && (re_opcode_t
) *p1
== on_failure_jump
))
4585 if (d
>= string1
&& d
<= end1
)
4589 break; /* Matching at this starting point really fails. */
4593 goto restore_best_regs
;
4597 return -1; /* Failure to match. */
4600 /* Subroutine definitions for re_match_2. */
4603 /* We are passed P pointing to a register number after a start_memory.
4605 Return true if the pattern up to the corresponding stop_memory can
4606 match the empty string, and false otherwise.
4608 If we find the matching stop_memory, sets P to point to one past its number.
4609 Otherwise, sets P to an undefined byte less than or equal to END.
4611 We don't handle duplicates properly (yet). */
4614 group_match_null_string_p (p
, end
, reg_info
)
4615 unsigned char **p
, *end
;
4616 register_info_type
*reg_info
;
4619 /* Point to after the args to the start_memory. */
4620 unsigned char *p1
= *p
+ 2;
4624 /* Skip over opcodes that can match nothing, and return true or
4625 false, as appropriate, when we get to one that can't, or to the
4626 matching stop_memory. */
4628 switch ((re_opcode_t
) *p1
)
4630 /* Could be either a loop or a series of alternatives. */
4631 case on_failure_jump
:
4633 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4635 /* If the next operation is not a jump backwards in the
4640 /* Go through the on_failure_jumps of the alternatives,
4641 seeing if any of the alternatives cannot match nothing.
4642 The last alternative starts with only a jump,
4643 whereas the rest start with on_failure_jump and end
4644 with a jump, e.g., here is the pattern for `a|b|c':
4646 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4647 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4650 So, we have to first go through the first (n-1)
4651 alternatives and then deal with the last one separately. */
4654 /* Deal with the first (n-1) alternatives, which start
4655 with an on_failure_jump (see above) that jumps to right
4656 past a jump_past_alt. */
4658 while ((re_opcode_t
) p1
[mcnt
-3] == jump_past_alt
)
4660 /* `mcnt' holds how many bytes long the alternative
4661 is, including the ending `jump_past_alt' and
4664 if (!alt_match_null_string_p (p1
, p1
+ mcnt
- 3,
4668 /* Move to right after this alternative, including the
4672 /* Break if it's the beginning of an n-th alternative
4673 that doesn't begin with an on_failure_jump. */
4674 if ((re_opcode_t
) *p1
!= on_failure_jump
)
4677 /* Still have to check that it's not an n-th
4678 alternative that starts with an on_failure_jump. */
4680 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4681 if ((re_opcode_t
) p1
[mcnt
-3] != jump_past_alt
)
4683 /* Get to the beginning of the n-th alternative. */
4689 /* Deal with the last alternative: go back and get number
4690 of the `jump_past_alt' just before it. `mcnt' contains
4691 the length of the alternative. */
4692 EXTRACT_NUMBER (mcnt
, p1
- 2);
4694 if (!alt_match_null_string_p (p1
, p1
+ mcnt
, reg_info
))
4697 p1
+= mcnt
; /* Get past the n-th alternative. */
4703 assert (p1
[1] == **p
);
4709 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4712 } /* while p1 < end */
4715 } /* group_match_null_string_p */
4718 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4719 It expects P to be the first byte of a single alternative and END one
4720 byte past the last. The alternative can contain groups. */
4723 alt_match_null_string_p (p
, end
, reg_info
)
4724 unsigned char *p
, *end
;
4725 register_info_type
*reg_info
;
4728 unsigned char *p1
= p
;
4732 /* Skip over opcodes that can match nothing, and break when we get
4733 to one that can't. */
4735 switch ((re_opcode_t
) *p1
)
4738 case on_failure_jump
:
4740 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4745 if (!common_op_match_null_string_p (&p1
, end
, reg_info
))
4748 } /* while p1 < end */
4751 } /* alt_match_null_string_p */
4754 /* Deals with the ops common to group_match_null_string_p and
4755 alt_match_null_string_p.
4757 Sets P to one after the op and its arguments, if any. */
4760 common_op_match_null_string_p (p
, end
, reg_info
)
4761 unsigned char **p
, *end
;
4762 register_info_type
*reg_info
;
4767 unsigned char *p1
= *p
;
4769 switch ((re_opcode_t
) *p1
++)
4789 assert (reg_no
> 0 && reg_no
<= MAX_REGNUM
);
4790 ret
= group_match_null_string_p (&p1
, end
, reg_info
);
4792 /* Have to set this here in case we're checking a group which
4793 contains a group and a back reference to it. */
4795 if (REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) == MATCH_NULL_UNSET_VALUE
)
4796 REG_MATCH_NULL_STRING_P (reg_info
[reg_no
]) = ret
;
4802 /* If this is an optimized succeed_n for zero times, make the jump. */
4804 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4812 /* Get to the number of times to succeed. */
4814 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4819 EXTRACT_NUMBER_AND_INCR (mcnt
, p1
);
4827 if (!REG_MATCH_NULL_STRING_P (reg_info
[*p1
]))
4835 /* All other opcodes mean we cannot match the empty string. */
4841 } /* common_op_match_null_string_p */
4844 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4845 bytes; nonzero otherwise. */
4848 bcmp_translate (s1
, s2
, len
, translate
)
4849 unsigned char *s1
, *s2
;
4853 register unsigned char *p1
= s1
, *p2
= s2
;
4856 if (translate
[*p1
++] != translate
[*p2
++]) return 1;
4862 /* Entry points for GNU code. */
4864 /* re_compile_pattern is the GNU regular expression compiler: it
4865 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4866 Returns 0 if the pattern was valid, otherwise an error string.
4868 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4869 are set in BUFP on entry.
4871 We call regex_compile to do the actual compilation. */
4874 re_compile_pattern (pattern
, length
, bufp
)
4875 const char *pattern
;
4877 struct re_pattern_buffer
*bufp
;
4881 /* GNU code is written to assume at least RE_NREGS registers will be set
4882 (and at least one extra will be -1). */
4883 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4885 /* And GNU code determines whether or not to get register information
4886 by passing null for the REGS argument to re_match, etc., not by
4890 /* Match anchors at newline. */
4891 bufp
->newline_anchor
= 1;
4893 ret
= regex_compile (pattern
, length
, re_syntax_options
, bufp
);
4895 return re_error_msg
[(int) ret
];
4898 /* Entry points compatible with 4.2 BSD regex library. We don't define
4899 them if this is an Emacs or POSIX compilation. */
4901 #if !defined (emacs) && !defined (_POSIX_SOURCE)
4903 /* BSD has one and only one pattern buffer. */
4904 static struct re_pattern_buffer re_comp_buf
;
4914 if (!re_comp_buf
.buffer
)
4915 return "No previous regular expression";
4919 if (!re_comp_buf
.buffer
)
4921 re_comp_buf
.buffer
= (unsigned char *) malloc (200);
4922 if (re_comp_buf
.buffer
== NULL
)
4923 return "Memory exhausted";
4924 re_comp_buf
.allocated
= 200;
4926 re_comp_buf
.fastmap
= (char *) malloc (1 << BYTEWIDTH
);
4927 if (re_comp_buf
.fastmap
== NULL
)
4928 return "Memory exhausted";
4931 /* Since `re_exec' always passes NULL for the `regs' argument, we
4932 don't need to initialize the pattern buffer fields which affect it. */
4934 /* Match anchors at newlines. */
4935 re_comp_buf
.newline_anchor
= 1;
4937 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
4939 /* Yes, we're discarding `const' here. */
4940 return (char *) re_error_msg
[(int) ret
];
4948 const int len
= strlen (s
);
4950 0 <= re_search (&re_comp_buf
, s
, len
, 0, len
, (struct re_registers
*) 0);
4952 #endif /* not emacs and not _POSIX_SOURCE */
4954 /* POSIX.2 functions. Don't define these for Emacs. */
4958 /* regcomp takes a regular expression as a string and compiles it.
4960 PREG is a regex_t *. We do not expect any fields to be initialized,
4961 since POSIX says we shouldn't. Thus, we set
4963 `buffer' to the compiled pattern;
4964 `used' to the length of the compiled pattern;
4965 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4966 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4967 RE_SYNTAX_POSIX_BASIC;
4968 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4969 `fastmap' and `fastmap_accurate' to zero;
4970 `re_nsub' to the number of subexpressions in PATTERN.
4972 PATTERN is the address of the pattern string.
4974 CFLAGS is a series of bits which affect compilation.
4976 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4977 use POSIX basic syntax.
4979 If REG_NEWLINE is set, then . and [^...] don't match newline.
4980 Also, regexec will try a match beginning after every newline.
4982 If REG_ICASE is set, then we considers upper- and lowercase
4983 versions of letters to be equivalent when matching.
4985 If REG_NOSUB is set, then when PREG is passed to regexec, that
4986 routine will report only success or failure, and nothing about the
4989 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4990 the return codes and their meanings.) */
4993 regcomp (preg
, pattern
, cflags
)
4995 const char *pattern
;
5000 = (cflags
& REG_EXTENDED
) ?
5001 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
5003 /* regex_compile will allocate the space for the compiled pattern. */
5005 preg
->allocated
= 0;
5008 /* Don't bother to use a fastmap when searching. This simplifies the
5009 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5010 characters after newlines into the fastmap. This way, we just try
5014 if (cflags
& REG_ICASE
)
5018 preg
->translate
= (char *) malloc (CHAR_SET_SIZE
);
5019 if (preg
->translate
== NULL
)
5020 return (int) REG_ESPACE
;
5022 /* Map uppercase characters to corresponding lowercase ones. */
5023 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
5024 preg
->translate
[i
] = ISUPPER (i
) ? tolower (i
) : i
;
5027 preg
->translate
= NULL
;
5029 /* If REG_NEWLINE is set, newlines are treated differently. */
5030 if (cflags
& REG_NEWLINE
)
5031 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5032 syntax
&= ~RE_DOT_NEWLINE
;
5033 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
5034 /* It also changes the matching behavior. */
5035 preg
->newline_anchor
= 1;
5038 preg
->newline_anchor
= 0;
5040 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
5042 /* POSIX says a null character in the pattern terminates it, so we
5043 can use strlen here in compiling the pattern. */
5044 ret
= regex_compile (pattern
, strlen (pattern
), syntax
, preg
);
5046 /* POSIX doesn't distinguish between an unmatched open-group and an
5047 unmatched close-group: both are REG_EPAREN. */
5048 if (ret
== REG_ERPAREN
) ret
= REG_EPAREN
;
5054 /* regexec searches for a given pattern, specified by PREG, in the
5057 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5058 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5059 least NMATCH elements, and we set them to the offsets of the
5060 corresponding matched substrings.
5062 EFLAGS specifies `execution flags' which affect matching: if
5063 REG_NOTBOL is set, then ^ does not match at the beginning of the
5064 string; if REG_NOTEOL is set, then $ does not match at the end.
5066 We return 0 if we find a match and REG_NOMATCH if not. */
5069 regexec (preg
, string
, nmatch
, pmatch
, eflags
)
5070 const regex_t
*preg
;
5073 regmatch_t pmatch
[];
5077 struct re_registers regs
;
5078 regex_t private_preg
;
5079 int len
= strlen (string
);
5080 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0;
5082 private_preg
= *preg
;
5084 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
5085 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
5087 /* The user has told us exactly how many registers to return
5088 information about, via `nmatch'. We have to pass that on to the
5089 matching routines. */
5090 private_preg
.regs_allocated
= REGS_FIXED
;
5094 regs
.num_regs
= nmatch
;
5095 regs
.start
= TALLOC (nmatch
, regoff_t
);
5096 regs
.end
= TALLOC (nmatch
, regoff_t
);
5097 if (regs
.start
== NULL
|| regs
.end
== NULL
)
5098 return (int) REG_NOMATCH
;
5101 /* Perform the searching operation. */
5102 ret
= re_search (&private_preg
, string
, len
,
5103 /* start: */ 0, /* range: */ len
,
5104 want_reg_info
? ®s
: (struct re_registers
*) 0);
5106 /* Copy the register information to the POSIX structure. */
5113 for (r
= 0; r
< nmatch
; r
++)
5115 pmatch
[r
].rm_so
= regs
.start
[r
];
5116 pmatch
[r
].rm_eo
= regs
.end
[r
];
5120 /* If we needed the temporary register info, free the space now. */
5125 /* We want zero return to mean success, unlike `re_search'. */
5126 return ret
>= 0 ? (int) REG_NOERROR
: (int) REG_NOMATCH
;
5130 /* Returns a message corresponding to an error code, ERRCODE, returned
5131 from either regcomp or regexec. We don't use PREG here. */
5134 regerror (errcode
, preg
, errbuf
, errbuf_size
)
5136 const regex_t
*preg
;
5144 || errcode
>= (sizeof (re_error_msg
) / sizeof (re_error_msg
[0])))
5145 /* Only error codes returned by the rest of the code should be passed
5146 to this routine. If we are given anything else, or if other regex
5147 code generates an invalid error code, then the program has a bug.
5148 Dump core so we can fix it. */
5151 msg
= re_error_msg
[errcode
];
5153 /* POSIX doesn't require that we do anything in this case, but why
5158 msg_size
= strlen (msg
) + 1; /* Includes the null. */
5160 if (errbuf_size
!= 0)
5162 if (msg_size
> errbuf_size
)
5164 strncpy (errbuf
, msg
, errbuf_size
- 1);
5165 errbuf
[errbuf_size
- 1] = 0;
5168 strcpy (errbuf
, msg
);
5175 /* Free dynamically allocated space used by PREG. */
5181 if (preg
->buffer
!= NULL
)
5182 free (preg
->buffer
);
5183 preg
->buffer
= NULL
;
5185 preg
->allocated
= 0;
5188 if (preg
->fastmap
!= NULL
)
5189 free (preg
->fastmap
);
5190 preg
->fastmap
= NULL
;
5191 preg
->fastmap_accurate
= 0;
5193 if (preg
->translate
!= NULL
)
5194 free (preg
->translate
);
5195 preg
->translate
= NULL
;
5198 #endif /* not emacs */
5202 make-backup-files: t
5204 trim-versions-without-asking: nil