* xfaces.c (face_at_buffer_position): New arg base_face_id.
[emacs.git] / doc / lispref / lists.texi
blobd38cdc1450565af918efa1cd2a8e95c93654444f
1 @c -*-texinfo-*-
2 @c This is part of the GNU Emacs Lisp Reference Manual.
3 @c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001,
4 @c   2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009  Free Software Foundation, Inc.
5 @c See the file elisp.texi for copying conditions.
6 @setfilename ../../info/lists
7 @node Lists, Sequences Arrays Vectors, Strings and Characters, Top
8 @chapter Lists
9 @cindex lists
10 @cindex element (of list)
12   A @dfn{list} represents a sequence of zero or more elements (which may
13 be any Lisp objects).  The important difference between lists and
14 vectors is that two or more lists can share part of their structure; in
15 addition, you can insert or delete elements in a list without copying
16 the whole list.
18 @menu
19 * Cons Cells::          How lists are made out of cons cells.
20 * List-related Predicates::        Is this object a list?  Comparing two lists.
21 * List Elements::       Extracting the pieces of a list.
22 * Building Lists::      Creating list structure.
23 * List Variables::      Modifying lists stored in variables.
24 * Modifying Lists::     Storing new pieces into an existing list.
25 * Sets And Lists::      A list can represent a finite mathematical set.
26 * Association Lists::   A list can represent a finite relation or mapping.
27 * Rings::               Managing a fixed-size ring of objects.
28 @end menu
30 @node Cons Cells
31 @section Lists and Cons Cells
32 @cindex lists and cons cells
34   Lists in Lisp are not a primitive data type; they are built up from
35 @dfn{cons cells}.  A cons cell is a data object that represents an
36 ordered pair.  That is, it has two slots, and each slot @dfn{holds}, or
37 @dfn{refers to}, some Lisp object.  One slot is known as the @sc{car},
38 and the other is known as the @sc{cdr}.  (These names are traditional;
39 see @ref{Cons Cell Type}.)  @sc{cdr} is pronounced ``could-er.''
41   We say that ``the @sc{car} of this cons cell is'' whatever object
42 its @sc{car} slot currently holds, and likewise for the @sc{cdr}.
44   A list is a series of cons cells ``chained together,'' so that each
45 cell refers to the next one.  There is one cons cell for each element of
46 the list.  By convention, the @sc{car}s of the cons cells hold the
47 elements of the list, and the @sc{cdr}s are used to chain the list: the
48 @sc{cdr} slot of each cons cell refers to the following cons cell.  The
49 @sc{cdr} of the last cons cell is @code{nil}.  This asymmetry between
50 the @sc{car} and the @sc{cdr} is entirely a matter of convention; at the
51 level of cons cells, the @sc{car} and @sc{cdr} slots have the same
52 characteristics.
54 @cindex true list
55   Since @code{nil} is the conventional value to put in the @sc{cdr} of
56 the last cons cell in the list, we call that case a @dfn{true list}.
58   In Lisp, we consider the symbol @code{nil} a list as well as a
59 symbol; it is the list with no elements.  For convenience, the symbol
60 @code{nil} is considered to have @code{nil} as its @sc{cdr} (and also
61 as its @sc{car}).  Therefore, the @sc{cdr} of a true list is always a
62 true list.
64 @cindex dotted list
65 @cindex circular list
66   If the @sc{cdr} of a list's last cons cell is some other value,
67 neither @code{nil} nor another cons cell, we call the structure a
68 @dfn{dotted list}, since its printed representation would use
69 @samp{.}.  There is one other possibility: some cons cell's @sc{cdr}
70 could point to one of the previous cons cells in the list.  We call
71 that structure a @dfn{circular list}.
73   For some purposes, it does not matter whether a list is true,
74 circular or dotted.  If the program doesn't look far enough down the
75 list to see the @sc{cdr} of the final cons cell, it won't care.
76 However, some functions that operate on lists demand true lists and
77 signal errors if given a dotted list.  Most functions that try to find
78 the end of a list enter infinite loops if given a circular list.
80 @cindex list structure
81   Because most cons cells are used as part of lists, the phrase
82 @dfn{list structure} has come to mean any structure made out of cons
83 cells.
85   The @sc{cdr} of any nonempty true list @var{l} is a list containing all the
86 elements of @var{l} except the first.
88   @xref{Cons Cell Type}, for the read and print syntax of cons cells and
89 lists, and for ``box and arrow'' illustrations of lists.
91 @node List-related Predicates
92 @section Predicates on Lists
94   The following predicates test whether a Lisp object is an atom,
95 whether it is a cons cell or is a list, or whether it is the
96 distinguished object @code{nil}.  (Many of these predicates can be
97 defined in terms of the others, but they are used so often that it is
98 worth having all of them.)
100 @defun consp object
101 This function returns @code{t} if @var{object} is a cons cell, @code{nil}
102 otherwise.  @code{nil} is not a cons cell, although it @emph{is} a list.
103 @end defun
105 @defun atom object
106 This function returns @code{t} if @var{object} is an atom, @code{nil}
107 otherwise.  All objects except cons cells are atoms.  The symbol
108 @code{nil} is an atom and is also a list; it is the only Lisp object
109 that is both.
111 @example
112 (atom @var{object}) @equiv{} (not (consp @var{object}))
113 @end example
114 @end defun
116 @defun listp object
117 This function returns @code{t} if @var{object} is a cons cell or
118 @code{nil}.  Otherwise, it returns @code{nil}.
120 @example
121 @group
122 (listp '(1))
123      @result{} t
124 @end group
125 @group
126 (listp '())
127      @result{} t
128 @end group
129 @end example
130 @end defun
132 @defun nlistp object
133 This function is the opposite of @code{listp}: it returns @code{t} if
134 @var{object} is not a list.  Otherwise, it returns @code{nil}.
136 @example
137 (listp @var{object}) @equiv{} (not (nlistp @var{object}))
138 @end example
139 @end defun
141 @defun null object
142 This function returns @code{t} if @var{object} is @code{nil}, and
143 returns @code{nil} otherwise.  This function is identical to @code{not},
144 but as a matter of clarity we use @code{null} when @var{object} is
145 considered a list and @code{not} when it is considered a truth value
146 (see @code{not} in @ref{Combining Conditions}).
148 @example
149 @group
150 (null '(1))
151      @result{} nil
152 @end group
153 @group
154 (null '())
155      @result{} t
156 @end group
157 @end example
158 @end defun
161 @node List Elements
162 @section Accessing Elements of Lists
163 @cindex list elements
165 @defun car cons-cell
166 This function returns the value referred to by the first slot of the
167 cons cell @var{cons-cell}.  In other words, it returns the @sc{car} of
168 @var{cons-cell}.
170 As a special case, if @var{cons-cell} is @code{nil}, this function
171 returns @code{nil}.  Therefore, any list is a valid argument.  An
172 error is signaled if the argument is not a cons cell or @code{nil}.
174 @example
175 @group
176 (car '(a b c))
177      @result{} a
178 @end group
179 @group
180 (car '())
181      @result{} nil
182 @end group
183 @end example
184 @end defun
186 @defun cdr cons-cell
187 This function returns the value referred to by the second slot of the
188 cons cell @var{cons-cell}.  In other words, it returns the @sc{cdr} of
189 @var{cons-cell}.
191 As a special case, if @var{cons-cell} is @code{nil}, this function
192 returns @code{nil}; therefore, any list is a valid argument.  An error
193 is signaled if the argument is not a cons cell or @code{nil}.
195 @example
196 @group
197 (cdr '(a b c))
198      @result{} (b c)
199 @end group
200 @group
201 (cdr '())
202      @result{} nil
203 @end group
204 @end example
205 @end defun
207 @defun car-safe object
208 This function lets you take the @sc{car} of a cons cell while avoiding
209 errors for other data types.  It returns the @sc{car} of @var{object} if
210 @var{object} is a cons cell, @code{nil} otherwise.  This is in contrast
211 to @code{car}, which signals an error if @var{object} is not a list.
213 @example
214 @group
215 (car-safe @var{object})
216 @equiv{}
217 (let ((x @var{object}))
218   (if (consp x)
219       (car x)
220     nil))
221 @end group
222 @end example
223 @end defun
225 @defun cdr-safe object
226 This function lets you take the @sc{cdr} of a cons cell while
227 avoiding errors for other data types.  It returns the @sc{cdr} of
228 @var{object} if @var{object} is a cons cell, @code{nil} otherwise.
229 This is in contrast to @code{cdr}, which signals an error if
230 @var{object} is not a list.
232 @example
233 @group
234 (cdr-safe @var{object})
235 @equiv{}
236 (let ((x @var{object}))
237   (if (consp x)
238       (cdr x)
239     nil))
240 @end group
241 @end example
242 @end defun
244 @defmac pop listname
245 This macro is a way of examining the @sc{car} of a list,
246 and taking it off the list, all at once.
248 It operates on the list which is stored in the symbol @var{listname}.
249 It removes this element from the list by setting @var{listname}
250 to the @sc{cdr} of its old value---but it also returns the @sc{car}
251 of that list, which is the element being removed.
253 @example
255      @result{} (a b c)
256 (pop x)
257      @result{} a
259      @result{} (b c)
260 @end example
261 @end defmac
263 @defun nth n list
264 @anchor{Definition of nth}
265 This function returns the @var{n}th element of @var{list}.  Elements
266 are numbered starting with zero, so the @sc{car} of @var{list} is
267 element number zero.  If the length of @var{list} is @var{n} or less,
268 the value is @code{nil}.
270 If @var{n} is negative, @code{nth} returns the first element of
271 @var{list}.
273 @example
274 @group
275 (nth 2 '(1 2 3 4))
276      @result{} 3
277 @end group
278 @group
279 (nth 10 '(1 2 3 4))
280      @result{} nil
281 @end group
282 @group
283 (nth -3 '(1 2 3 4))
284      @result{} 1
286 (nth n x) @equiv{} (car (nthcdr n x))
287 @end group
288 @end example
290 The function @code{elt} is similar, but applies to any kind of sequence.
291 For historical reasons, it takes its arguments in the opposite order.
292 @xref{Sequence Functions}.
293 @end defun
295 @defun nthcdr n list
296 This function returns the @var{n}th @sc{cdr} of @var{list}.  In other
297 words, it skips past the first @var{n} links of @var{list} and returns
298 what follows.
300 If @var{n} is zero or negative, @code{nthcdr} returns all of
301 @var{list}.  If the length of @var{list} is @var{n} or less,
302 @code{nthcdr} returns @code{nil}.
304 @example
305 @group
306 (nthcdr 1 '(1 2 3 4))
307      @result{} (2 3 4)
308 @end group
309 @group
310 (nthcdr 10 '(1 2 3 4))
311      @result{} nil
312 @end group
313 @group
314 (nthcdr -3 '(1 2 3 4))
315      @result{} (1 2 3 4)
316 @end group
317 @end example
318 @end defun
320 @defun last list &optional n
321 This function returns the last link of @var{list}.  The @code{car} of
322 this link is the list's last element.  If @var{list} is null,
323 @code{nil} is returned.  If @var{n} is non-@code{nil}, the
324 @var{n}th-to-last link is returned instead, or the whole of @var{list}
325 if @var{n} is bigger than @var{list}'s length.
326 @end defun
328 @defun safe-length list
329 @anchor{Definition of safe-length}
330 This function returns the length of @var{list}, with no risk of either
331 an error or an infinite loop.  It generally returns the number of
332 distinct cons cells in the list.  However, for circular lists,
333 the value is just an upper bound; it is often too large.
335 If @var{list} is not @code{nil} or a cons cell, @code{safe-length}
336 returns 0.
337 @end defun
339   The most common way to compute the length of a list, when you are not
340 worried that it may be circular, is with @code{length}.  @xref{Sequence
341 Functions}.
343 @defun caar cons-cell
344 This is the same as @code{(car (car @var{cons-cell}))}.
345 @end defun
347 @defun cadr cons-cell
348 This is the same as @code{(car (cdr @var{cons-cell}))}
349 or @code{(nth 1 @var{cons-cell})}.
350 @end defun
352 @defun cdar cons-cell
353 This is the same as @code{(cdr (car @var{cons-cell}))}.
354 @end defun
356 @defun cddr cons-cell
357 This is the same as @code{(cdr (cdr @var{cons-cell}))}
358 or @code{(nthcdr 2 @var{cons-cell})}.
359 @end defun
361 @defun butlast x &optional n
362 This function returns the list @var{x} with the last element,
363 or the last @var{n} elements, removed.  If @var{n} is greater
364 than zero it makes a copy of the list so as not to damage the
365 original list.  In general, @code{(append (butlast @var{x} @var{n})
366 (last @var{x} @var{n}))} will return a list equal to @var{x}.
367 @end defun
369 @defun nbutlast x &optional n
370 This is a version of @code{butlast} that works by destructively
371 modifying the @code{cdr} of the appropriate element, rather than
372 making a copy of the list.
373 @end defun
375 @node Building Lists
376 @comment  node-name,  next,  previous,  up
377 @section Building Cons Cells and Lists
378 @cindex cons cells
379 @cindex building lists
381   Many functions build lists, as lists reside at the very heart of Lisp.
382 @code{cons} is the fundamental list-building function; however, it is
383 interesting to note that @code{list} is used more times in the source
384 code for Emacs than @code{cons}.
386 @defun cons object1 object2
387 This function is the most basic function for building new list
388 structure.  It creates a new cons cell, making @var{object1} the
389 @sc{car}, and @var{object2} the @sc{cdr}.  It then returns the new
390 cons cell.  The arguments @var{object1} and @var{object2} may be any
391 Lisp objects, but most often @var{object2} is a list.
393 @example
394 @group
395 (cons 1 '(2))
396      @result{} (1 2)
397 @end group
398 @group
399 (cons 1 '())
400      @result{} (1)
401 @end group
402 @group
403 (cons 1 2)
404      @result{} (1 . 2)
405 @end group
406 @end example
408 @cindex consing
409 @code{cons} is often used to add a single element to the front of a
410 list.  This is called @dfn{consing the element onto the list}.
411 @footnote{There is no strictly equivalent way to add an element to
412 the end of a list.  You can use @code{(append @var{listname} (list
413 @var{newelt}))}, which creates a whole new list by copying @var{listname}
414 and adding @var{newelt} to its end.  Or you can use @code{(nconc
415 @var{listname} (list @var{newelt}))}, which modifies @var{listname}
416 by following all the @sc{cdr}s and then replacing the terminating
417 @code{nil}.  Compare this to adding an element to the beginning of a
418 list with @code{cons}, which neither copies nor modifies the list.}
419 For example:
421 @example
422 (setq list (cons newelt list))
423 @end example
425 Note that there is no conflict between the variable named @code{list}
426 used in this example and the function named @code{list} described below;
427 any symbol can serve both purposes.
428 @end defun
430 @defun list &rest objects
431 This function creates a list with @var{objects} as its elements.  The
432 resulting list is always @code{nil}-terminated.  If no @var{objects}
433 are given, the empty list is returned.
435 @example
436 @group
437 (list 1 2 3 4 5)
438      @result{} (1 2 3 4 5)
439 @end group
440 @group
441 (list 1 2 '(3 4 5) 'foo)
442      @result{} (1 2 (3 4 5) foo)
443 @end group
444 @group
445 (list)
446      @result{} nil
447 @end group
448 @end example
449 @end defun
451 @defun make-list length object
452 This function creates a list of @var{length} elements, in which each
453 element is @var{object}.  Compare @code{make-list} with
454 @code{make-string} (@pxref{Creating Strings}).
456 @example
457 @group
458 (make-list 3 'pigs)
459      @result{} (pigs pigs pigs)
460 @end group
461 @group
462 (make-list 0 'pigs)
463      @result{} nil
464 @end group
465 @group
466 (setq l (make-list 3 '(a b))
467      @result{} ((a b) (a b) (a b))
468 (eq (car l) (cadr l))
469      @result{} t
470 @end group
471 @end example
472 @end defun
474 @defun append &rest sequences
475 @cindex copying lists
476 This function returns a list containing all the elements of
477 @var{sequences}.  The @var{sequences} may be lists, vectors,
478 bool-vectors, or strings, but the last one should usually be a list.
479 All arguments except the last one are copied, so none of the arguments
480 is altered.  (See @code{nconc} in @ref{Rearrangement}, for a way to join
481 lists with no copying.)
483 More generally, the final argument to @code{append} may be any Lisp
484 object.  The final argument is not copied or converted; it becomes the
485 @sc{cdr} of the last cons cell in the new list.  If the final argument
486 is itself a list, then its elements become in effect elements of the
487 result list.  If the final element is not a list, the result is a
488 dotted list since its final @sc{cdr} is not @code{nil} as required
489 in a true list.
490 @end defun
492   Here is an example of using @code{append}:
494 @example
495 @group
496 (setq trees '(pine oak))
497      @result{} (pine oak)
498 (setq more-trees (append '(maple birch) trees))
499      @result{} (maple birch pine oak)
500 @end group
502 @group
503 trees
504      @result{} (pine oak)
505 more-trees
506      @result{} (maple birch pine oak)
507 @end group
508 @group
509 (eq trees (cdr (cdr more-trees)))
510      @result{} t
511 @end group
512 @end example
514   You can see how @code{append} works by looking at a box diagram.  The
515 variable @code{trees} is set to the list @code{(pine oak)} and then the
516 variable @code{more-trees} is set to the list @code{(maple birch pine
517 oak)}.  However, the variable @code{trees} continues to refer to the
518 original list:
520 @smallexample
521 @group
522 more-trees                trees
523 |                           |
524 |     --- ---      --- ---   -> --- ---      --- ---
525  --> |   |   |--> |   |   |--> |   |   |--> |   |   |--> nil
526       --- ---      --- ---      --- ---      --- ---
527        |            |            |            |
528        |            |            |            |
529         --> maple    -->birch     --> pine     --> oak
530 @end group
531 @end smallexample
533   An empty sequence contributes nothing to the value returned by
534 @code{append}.  As a consequence of this, a final @code{nil} argument
535 forces a copy of the previous argument:
537 @example
538 @group
539 trees
540      @result{} (pine oak)
541 @end group
542 @group
543 (setq wood (append trees nil))
544      @result{} (pine oak)
545 @end group
546 @group
547 wood
548      @result{} (pine oak)
549 @end group
550 @group
551 (eq wood trees)
552      @result{} nil
553 @end group
554 @end example
556 @noindent
557 This once was the usual way to copy a list, before the function
558 @code{copy-sequence} was invented.  @xref{Sequences Arrays Vectors}.
560   Here we show the use of vectors and strings as arguments to @code{append}:
562 @example
563 @group
564 (append [a b] "cd" nil)
565      @result{} (a b 99 100)
566 @end group
567 @end example
569   With the help of @code{apply} (@pxref{Calling Functions}), we can append
570 all the lists in a list of lists:
572 @example
573 @group
574 (apply 'append '((a b c) nil (x y z) nil))
575      @result{} (a b c x y z)
576 @end group
577 @end example
579   If no @var{sequences} are given, @code{nil} is returned:
581 @example
582 @group
583 (append)
584      @result{} nil
585 @end group
586 @end example
588   Here are some examples where the final argument is not a list:
590 @example
591 (append '(x y) 'z)
592      @result{} (x y . z)
593 (append '(x y) [z])
594      @result{} (x y . [z])
595 @end example
597 @noindent
598 The second example shows that when the final argument is a sequence but
599 not a list, the sequence's elements do not become elements of the
600 resulting list.  Instead, the sequence becomes the final @sc{cdr}, like
601 any other non-list final argument.
603 @defun reverse list
604 This function creates a new list whose elements are the elements of
605 @var{list}, but in reverse order.  The original argument @var{list} is
606 @emph{not} altered.
608 @example
609 @group
610 (setq x '(1 2 3 4))
611      @result{} (1 2 3 4)
612 @end group
613 @group
614 (reverse x)
615      @result{} (4 3 2 1)
617      @result{} (1 2 3 4)
618 @end group
619 @end example
620 @end defun
622 @defun copy-tree tree &optional vecp
623 This function returns a copy of the tree @code{tree}.  If @var{tree} is a
624 cons cell, this makes a new cons cell with the same @sc{car} and
625 @sc{cdr}, then recursively copies the @sc{car} and @sc{cdr} in the
626 same way.
628 Normally, when @var{tree} is anything other than a cons cell,
629 @code{copy-tree} simply returns @var{tree}.  However, if @var{vecp} is
630 non-@code{nil}, it copies vectors too (and operates recursively on
631 their elements).
632 @end defun
634 @defun number-sequence from &optional to separation
635 This returns a list of numbers starting with @var{from} and
636 incrementing by @var{separation}, and ending at or just before
637 @var{to}.  @var{separation} can be positive or negative and defaults
638 to 1.  If @var{to} is @code{nil} or numerically equal to @var{from},
639 the value is the one-element list @code{(@var{from})}.  If @var{to} is
640 less than @var{from} with a positive @var{separation}, or greater than
641 @var{from} with a negative @var{separation}, the value is @code{nil}
642 because those arguments specify an empty sequence.
644 If @var{separation} is 0 and @var{to} is neither @code{nil} nor
645 numerically equal to @var{from}, @code{number-sequence} signals an
646 error, since those arguments specify an infinite sequence.
648 All arguments can be integers or floating point numbers.  However,
649 floating point arguments can be tricky, because floating point
650 arithmetic is inexact.  For instance, depending on the machine, it may
651 quite well happen that @code{(number-sequence 0.4 0.6 0.2)} returns
652 the one element list @code{(0.4)}, whereas
653 @code{(number-sequence 0.4 0.8 0.2)} returns a list with three
654 elements.  The @var{n}th element of the list is computed by the exact
655 formula @code{(+ @var{from} (* @var{n} @var{separation}))}.  Thus, if
656 one wants to make sure that @var{to} is included in the list, one can
657 pass an expression of this exact type for @var{to}.  Alternatively,
658 one can replace @var{to} with a slightly larger value (or a slightly
659 more negative value if @var{separation} is negative).
661 Some examples:
663 @example
664 (number-sequence 4 9)
665      @result{} (4 5 6 7 8 9)
666 (number-sequence 9 4 -1)
667      @result{} (9 8 7 6 5 4)
668 (number-sequence 9 4 -2)
669      @result{} (9 7 5)
670 (number-sequence 8)
671      @result{} (8)
672 (number-sequence 8 5)
673      @result{} nil
674 (number-sequence 5 8 -1)
675      @result{} nil
676 (number-sequence 1.5 6 2)
677      @result{} (1.5 3.5 5.5)
678 @end example
679 @end defun
681 @node List Variables
682 @section Modifying List Variables
684   These functions, and one macro, provide convenient ways
685 to modify a list which is stored in a variable.
687 @defmac push newelt listname
688 This macro provides an alternative way to write
689 @code{(setq @var{listname} (cons @var{newelt} @var{listname}))}.
691 @example
692 (setq l '(a b))
693      @result{} (a b)
694 (push 'c l)
695      @result{} (c a b)
697      @result{} (c a b)
698 @end example
699 @end defmac
701   Two functions modify lists that are the values of variables.
703 @defun add-to-list symbol element &optional append compare-fn
704 This function sets the variable @var{symbol} by consing @var{element}
705 onto the old value, if @var{element} is not already a member of that
706 value.  It returns the resulting list, whether updated or not.  The
707 value of @var{symbol} had better be a list already before the call.
708 @code{add-to-list} uses @var{compare-fn} to compare @var{element}
709 against existing list members; if @var{compare-fn} is @code{nil}, it
710 uses @code{equal}.
712 Normally, if @var{element} is added, it is added to the front of
713 @var{symbol}, but if the optional argument @var{append} is
714 non-@code{nil}, it is added at the end.
716 The argument @var{symbol} is not implicitly quoted; @code{add-to-list}
717 is an ordinary function, like @code{set} and unlike @code{setq}.  Quote
718 the argument yourself if that is what you want.
719 @end defun
721 Here's a scenario showing how to use @code{add-to-list}:
723 @example
724 (setq foo '(a b))
725      @result{} (a b)
727 (add-to-list 'foo 'c)     ;; @r{Add @code{c}.}
728      @result{} (c a b)
730 (add-to-list 'foo 'b)     ;; @r{No effect.}
731      @result{} (c a b)
733 foo                       ;; @r{@code{foo} was changed.}
734      @result{} (c a b)
735 @end example
737   An equivalent expression for @code{(add-to-list '@var{var}
738 @var{value})} is this:
740 @example
741 (or (member @var{value} @var{var})
742     (setq @var{var} (cons @var{value} @var{var})))
743 @end example
745 @defun add-to-ordered-list symbol element &optional order
746 This function sets the variable @var{symbol} by inserting
747 @var{element} into the old value, which must be a list, at the
748 position specified by @var{order}.  If @var{element} is already a
749 member of the list, its position in the list is adjusted according
750 to @var{order}.  Membership is tested using @code{eq}.
751 This function returns the resulting list, whether updated or not.
753 The @var{order} is typically a number (integer or float), and the
754 elements of the list are sorted in non-decreasing numerical order.
756 @var{order} may also be omitted or @code{nil}.  Then the numeric order
757 of @var{element} stays unchanged if it already has one; otherwise,
758 @var{element} has no numeric order.  Elements without a numeric list
759 order are placed at the end of the list, in no particular order.
761 Any other value for @var{order} removes the numeric order of @var{element}
762 if it already has one; otherwise, it is equivalent to @code{nil}.
764 The argument @var{symbol} is not implicitly quoted;
765 @code{add-to-ordered-list} is an ordinary function, like @code{set}
766 and unlike @code{setq}.  Quote the argument yourself if that is what
767 you want.
769 The ordering information is stored in a hash table on @var{symbol}'s
770 @code{list-order} property.
771 @end defun
773 Here's a scenario showing how to use @code{add-to-ordered-list}:
775 @example
776 (setq foo '())
777      @result{} nil
779 (add-to-ordered-list 'foo 'a 1)     ;; @r{Add @code{a}.}
780      @result{} (a)
782 (add-to-ordered-list 'foo 'c 3)     ;; @r{Add @code{c}.}
783      @result{} (a c)
785 (add-to-ordered-list 'foo 'b 2)     ;; @r{Add @code{b}.}
786      @result{} (a b c)
788 (add-to-ordered-list 'foo 'b 4)     ;; @r{Move @code{b}.}
789      @result{} (a c b)
791 (add-to-ordered-list 'foo 'd)       ;; @r{Append @code{d}.}
792      @result{} (a c b d)
794 (add-to-ordered-list 'foo 'e)       ;; @r{Add @code{e}}.
795      @result{} (a c b e d)
797 foo                       ;; @r{@code{foo} was changed.}
798      @result{} (a c b e d)
799 @end example
801 @node Modifying Lists
802 @section Modifying Existing List Structure
803 @cindex destructive list operations
805   You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
806 primitives @code{setcar} and @code{setcdr}.  We call these ``destructive''
807 operations because they change existing list structure.
809 @cindex CL note---@code{rplaca} vs @code{setcar}
810 @quotation
811 @findex rplaca
812 @findex rplacd
813 @b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
814 @code{rplacd} to alter list structure; they change structure the same
815 way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
816 return the cons cell while @code{setcar} and @code{setcdr} return the
817 new @sc{car} or @sc{cdr}.
818 @end quotation
820 @menu
821 * Setcar::          Replacing an element in a list.
822 * Setcdr::          Replacing part of the list backbone.
823                       This can be used to remove or add elements.
824 * Rearrangement::   Reordering the elements in a list; combining lists.
825 @end menu
827 @node Setcar
828 @subsection Altering List Elements with @code{setcar}
830   Changing the @sc{car} of a cons cell is done with @code{setcar}.  When
831 used on a list, @code{setcar} replaces one element of a list with a
832 different element.
834 @defun setcar cons object
835 This function stores @var{object} as the new @sc{car} of @var{cons},
836 replacing its previous @sc{car}.  In other words, it changes the
837 @sc{car} slot of @var{cons} to refer to @var{object}.  It returns the
838 value @var{object}.  For example:
840 @example
841 @group
842 (setq x '(1 2))
843      @result{} (1 2)
844 @end group
845 @group
846 (setcar x 4)
847      @result{} 4
848 @end group
849 @group
851      @result{} (4 2)
852 @end group
853 @end example
854 @end defun
856   When a cons cell is part of the shared structure of several lists,
857 storing a new @sc{car} into the cons changes one element of each of
858 these lists.  Here is an example:
860 @example
861 @group
862 ;; @r{Create two lists that are partly shared.}
863 (setq x1 '(a b c))
864      @result{} (a b c)
865 (setq x2 (cons 'z (cdr x1)))
866      @result{} (z b c)
867 @end group
869 @group
870 ;; @r{Replace the @sc{car} of a shared link.}
871 (setcar (cdr x1) 'foo)
872      @result{} foo
873 x1                           ; @r{Both lists are changed.}
874      @result{} (a foo c)
876      @result{} (z foo c)
877 @end group
879 @group
880 ;; @r{Replace the @sc{car} of a link that is not shared.}
881 (setcar x1 'baz)
882      @result{} baz
883 x1                           ; @r{Only one list is changed.}
884      @result{} (baz foo c)
886      @result{} (z foo c)
887 @end group
888 @end example
890   Here is a graphical depiction of the shared structure of the two lists
891 in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
892 changes them both:
894 @example
895 @group
896         --- ---        --- ---      --- ---
897 x1---> |   |   |----> |   |   |--> |   |   |--> nil
898         --- ---        --- ---      --- ---
899          |        -->   |            |
900          |       |      |            |
901           --> a  |       --> b        --> c
902                  |
903        --- ---   |
904 x2--> |   |   |--
905        --- ---
906         |
907         |
908          --> z
909 @end group
910 @end example
912   Here is an alternative form of box diagram, showing the same relationship:
914 @example
915 @group
917  --------------       --------------       --------------
918 | car   | cdr  |     | car   | cdr  |     | car   | cdr  |
919 |   a   |   o------->|   b   |   o------->|   c   |  nil |
920 |       |      |  -->|       |      |     |       |      |
921  --------------  |    --------------       --------------
922                  |
923 x2:              |
924  --------------  |
925 | car   | cdr  | |
926 |   z   |   o----
927 |       |      |
928  --------------
929 @end group
930 @end example
932 @node Setcdr
933 @subsection Altering the CDR of a List
935   The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
937 @defun setcdr cons object
938 This function stores @var{object} as the new @sc{cdr} of @var{cons},
939 replacing its previous @sc{cdr}.  In other words, it changes the
940 @sc{cdr} slot of @var{cons} to refer to @var{object}.  It returns the
941 value @var{object}.
942 @end defun
944   Here is an example of replacing the @sc{cdr} of a list with a
945 different list.  All but the first element of the list are removed in
946 favor of a different sequence of elements.  The first element is
947 unchanged, because it resides in the @sc{car} of the list, and is not
948 reached via the @sc{cdr}.
950 @example
951 @group
952 (setq x '(1 2 3))
953      @result{} (1 2 3)
954 @end group
955 @group
956 (setcdr x '(4))
957      @result{} (4)
958 @end group
959 @group
961      @result{} (1 4)
962 @end group
963 @end example
965   You can delete elements from the middle of a list by altering the
966 @sc{cdr}s of the cons cells in the list.  For example, here we delete
967 the second element, @code{b}, from the list @code{(a b c)}, by changing
968 the @sc{cdr} of the first cons cell:
970 @example
971 @group
972 (setq x1 '(a b c))
973      @result{} (a b c)
974 (setcdr x1 (cdr (cdr x1)))
975      @result{} (c)
977      @result{} (a c)
978 @end group
979 @end example
981   Here is the result in box notation:
983 @smallexample
984 @group
985                    --------------------
986                   |                    |
987  --------------   |   --------------   |    --------------
988 | car   | cdr  |  |  | car   | cdr  |   -->| car   | cdr  |
989 |   a   |   o-----   |   b   |   o-------->|   c   |  nil |
990 |       |      |     |       |      |      |       |      |
991  --------------       --------------        --------------
992 @end group
993 @end smallexample
995 @noindent
996 The second cons cell, which previously held the element @code{b}, still
997 exists and its @sc{car} is still @code{b}, but it no longer forms part
998 of this list.
1000   It is equally easy to insert a new element by changing @sc{cdr}s:
1002 @example
1003 @group
1004 (setq x1 '(a b c))
1005      @result{} (a b c)
1006 (setcdr x1 (cons 'd (cdr x1)))
1007      @result{} (d b c)
1009      @result{} (a d b c)
1010 @end group
1011 @end example
1013   Here is this result in box notation:
1015 @smallexample
1016 @group
1017  --------------        -------------       -------------
1018 | car  | cdr   |      | car  | cdr  |     | car  | cdr  |
1019 |   a  |   o   |   -->|   b  |   o------->|   c  |  nil |
1020 |      |   |   |  |   |      |      |     |      |      |
1021  --------- | --   |    -------------       -------------
1022            |      |
1023      -----         --------
1024     |                      |
1025     |    ---------------   |
1026     |   | car   | cdr   |  |
1027      -->|   d   |   o------
1028         |       |       |
1029          ---------------
1030 @end group
1031 @end smallexample
1033 @node Rearrangement
1034 @subsection Functions that Rearrange Lists
1035 @cindex rearrangement of lists
1036 @cindex modification of lists
1038   Here are some functions that rearrange lists ``destructively'' by
1039 modifying the @sc{cdr}s of their component cons cells.  We call these
1040 functions ``destructive'' because they chew up the original lists passed
1041 to them as arguments, relinking their cons cells to form a new list that
1042 is the returned value.
1044 @ifnottex
1045   See @code{delq}, in @ref{Sets And Lists}, for another function
1046 that modifies cons cells.
1047 @end ifnottex
1048 @iftex
1049    The function @code{delq} in the following section is another example
1050 of destructive list manipulation.
1051 @end iftex
1053 @defun nconc &rest lists
1054 @cindex concatenating lists
1055 @cindex joining lists
1056 This function returns a list containing all the elements of @var{lists}.
1057 Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
1058 @emph{not} copied.  Instead, the last @sc{cdr} of each of the
1059 @var{lists} is changed to refer to the following list.  The last of the
1060 @var{lists} is not altered.  For example:
1062 @example
1063 @group
1064 (setq x '(1 2 3))
1065      @result{} (1 2 3)
1066 @end group
1067 @group
1068 (nconc x '(4 5))
1069      @result{} (1 2 3 4 5)
1070 @end group
1071 @group
1073      @result{} (1 2 3 4 5)
1074 @end group
1075 @end example
1077    Since the last argument of @code{nconc} is not itself modified, it is
1078 reasonable to use a constant list, such as @code{'(4 5)}, as in the
1079 above example.  For the same reason, the last argument need not be a
1080 list:
1082 @example
1083 @group
1084 (setq x '(1 2 3))
1085      @result{} (1 2 3)
1086 @end group
1087 @group
1088 (nconc x 'z)
1089      @result{} (1 2 3 . z)
1090 @end group
1091 @group
1093      @result{} (1 2 3 . z)
1094 @end group
1095 @end example
1097 However, the other arguments (all but the last) must be lists.
1099 A common pitfall is to use a quoted constant list as a non-last
1100 argument to @code{nconc}.  If you do this, your program will change
1101 each time you run it!  Here is what happens:
1103 @smallexample
1104 @group
1105 (defun add-foo (x)            ; @r{We want this function to add}
1106   (nconc '(foo) x))           ;   @r{@code{foo} to the front of its arg.}
1107 @end group
1109 @group
1110 (symbol-function 'add-foo)
1111      @result{} (lambda (x) (nconc (quote (foo)) x))
1112 @end group
1114 @group
1115 (setq xx (add-foo '(1 2)))    ; @r{It seems to work.}
1116      @result{} (foo 1 2)
1117 @end group
1118 @group
1119 (setq xy (add-foo '(3 4)))    ; @r{What happened?}
1120      @result{} (foo 1 2 3 4)
1121 @end group
1122 @group
1123 (eq xx xy)
1124      @result{} t
1125 @end group
1127 @group
1128 (symbol-function 'add-foo)
1129      @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
1130 @end group
1131 @end smallexample
1132 @end defun
1134 @defun nreverse list
1135 @cindex reversing a list
1136   This function reverses the order of the elements of @var{list}.
1137 Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
1138 the @sc{cdr}s in the cons cells forming the list.  The cons cell that
1139 used to be the last one in @var{list} becomes the first cons cell of the
1140 value.
1142   For example:
1144 @example
1145 @group
1146 (setq x '(a b c))
1147      @result{} (a b c)
1148 @end group
1149 @group
1151      @result{} (a b c)
1152 (nreverse x)
1153      @result{} (c b a)
1154 @end group
1155 @group
1156 ;; @r{The cons cell that was first is now last.}
1158      @result{} (a)
1159 @end group
1160 @end example
1162   To avoid confusion, we usually store the result of @code{nreverse}
1163 back in the same variable which held the original list:
1165 @example
1166 (setq x (nreverse x))
1167 @end example
1169   Here is the @code{nreverse} of our favorite example, @code{(a b c)},
1170 presented graphically:
1172 @smallexample
1173 @group
1174 @r{Original list head:}                       @r{Reversed list:}
1175  -------------        -------------        ------------
1176 | car  | cdr  |      | car  | cdr  |      | car | cdr  |
1177 |   a  |  nil |<--   |   b  |   o  |<--   |   c |   o  |
1178 |      |      |   |  |      |   |  |   |  |     |   |  |
1179  -------------    |   --------- | -    |   -------- | -
1180                   |             |      |            |
1181                    -------------        ------------
1182 @end group
1183 @end smallexample
1184 @end defun
1186 @defun sort list predicate
1187 @cindex stable sort
1188 @cindex sorting lists
1189 This function sorts @var{list} stably, though destructively, and
1190 returns the sorted list.  It compares elements using @var{predicate}.  A
1191 stable sort is one in which elements with equal sort keys maintain their
1192 relative order before and after the sort.  Stability is important when
1193 successive sorts are used to order elements according to different
1194 criteria.
1196 The argument @var{predicate} must be a function that accepts two
1197 arguments.  It is called with two elements of @var{list}.  To get an
1198 increasing order sort, the @var{predicate} should return non-@code{nil} if the
1199 first element is ``less than'' the second, or @code{nil} if not.
1201 The comparison function @var{predicate} must give reliable results for
1202 any given pair of arguments, at least within a single call to
1203 @code{sort}.  It must be @dfn{antisymmetric}; that is, if @var{a} is
1204 less than @var{b}, @var{b} must not be less than @var{a}.  It must be
1205 @dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
1206 is less than @var{c}, then @var{a} must be less than @var{c}.  If you
1207 use a comparison function which does not meet these requirements, the
1208 result of @code{sort} is unpredictable.
1210 The destructive aspect of @code{sort} is that it rearranges the cons
1211 cells forming @var{list} by changing @sc{cdr}s.  A nondestructive sort
1212 function would create new cons cells to store the elements in their
1213 sorted order.  If you wish to make a sorted copy without destroying the
1214 original, copy it first with @code{copy-sequence} and then sort.
1216 Sorting does not change the @sc{car}s of the cons cells in @var{list};
1217 the cons cell that originally contained the element @code{a} in
1218 @var{list} still has @code{a} in its @sc{car} after sorting, but it now
1219 appears in a different position in the list due to the change of
1220 @sc{cdr}s.  For example:
1222 @example
1223 @group
1224 (setq nums '(1 3 2 6 5 4 0))
1225      @result{} (1 3 2 6 5 4 0)
1226 @end group
1227 @group
1228 (sort nums '<)
1229      @result{} (0 1 2 3 4 5 6)
1230 @end group
1231 @group
1232 nums
1233      @result{} (1 2 3 4 5 6)
1234 @end group
1235 @end example
1237 @noindent
1238 @strong{Warning}: Note that the list in @code{nums} no longer contains
1239 0; this is the same cons cell that it was before, but it is no longer
1240 the first one in the list.  Don't assume a variable that formerly held
1241 the argument now holds the entire sorted list!  Instead, save the result
1242 of @code{sort} and use that.  Most often we store the result back into
1243 the variable that held the original list:
1245 @example
1246 (setq nums (sort nums '<))
1247 @end example
1249 @xref{Sorting}, for more functions that perform sorting.
1250 See @code{documentation} in @ref{Accessing Documentation}, for a
1251 useful example of @code{sort}.
1252 @end defun
1254 @node Sets And Lists
1255 @section Using Lists as Sets
1256 @cindex lists as sets
1257 @cindex sets
1259   A list can represent an unordered mathematical set---simply consider a
1260 value an element of a set if it appears in the list, and ignore the
1261 order of the list.  To form the union of two sets, use @code{append} (as
1262 long as you don't mind having duplicate elements).  You can remove
1263 @code{equal} duplicates using @code{delete-dups}.  Other useful
1264 functions for sets include @code{memq} and @code{delq}, and their
1265 @code{equal} versions, @code{member} and @code{delete}.
1267 @cindex CL note---lack @code{union}, @code{intersection}
1268 @quotation
1269 @b{Common Lisp note:} Common Lisp has functions @code{union} (which
1270 avoids duplicate elements) and @code{intersection} for set operations,
1271 but GNU Emacs Lisp does not have them.  You can write them in Lisp if
1272 you wish.
1273 @end quotation
1275 @defun memq object list
1276 @cindex membership in a list
1277 This function tests to see whether @var{object} is a member of
1278 @var{list}.  If it is, @code{memq} returns a list starting with the
1279 first occurrence of @var{object}.  Otherwise, it returns @code{nil}.
1280 The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1281 compare @var{object} against the elements of the list.  For example:
1283 @example
1284 @group
1285 (memq 'b '(a b c b a))
1286      @result{} (b c b a)
1287 @end group
1288 @group
1289 (memq '(2) '((1) (2)))    ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1290      @result{} nil
1291 @end group
1292 @end example
1293 @end defun
1295 @defun delq object list
1296 @cindex deleting list elements
1297 This function destructively removes all elements @code{eq} to
1298 @var{object} from @var{list}.  The letter @samp{q} in @code{delq} says
1299 that it uses @code{eq} to compare @var{object} against the elements of
1300 the list, like @code{memq} and @code{remq}.
1301 @end defun
1303 When @code{delq} deletes elements from the front of the list, it does so
1304 simply by advancing down the list and returning a sublist that starts
1305 after those elements:
1307 @example
1308 @group
1309 (delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1310 @end group
1311 @end example
1313 When an element to be deleted appears in the middle of the list,
1314 removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1316 @example
1317 @group
1318 (setq sample-list '(a b c (4)))
1319      @result{} (a b c (4))
1320 @end group
1321 @group
1322 (delq 'a sample-list)
1323      @result{} (b c (4))
1324 @end group
1325 @group
1326 sample-list
1327      @result{} (a b c (4))
1328 @end group
1329 @group
1330 (delq 'c sample-list)
1331      @result{} (a b (4))
1332 @end group
1333 @group
1334 sample-list
1335      @result{} (a b (4))
1336 @end group
1337 @end example
1339 Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1340 splice out the third element, but @code{(delq 'a sample-list)} does not
1341 splice anything---it just returns a shorter list.  Don't assume that a
1342 variable which formerly held the argument @var{list} now has fewer
1343 elements, or that it still holds the original list!  Instead, save the
1344 result of @code{delq} and use that.  Most often we store the result back
1345 into the variable that held the original list:
1347 @example
1348 (setq flowers (delq 'rose flowers))
1349 @end example
1351 In the following example, the @code{(4)} that @code{delq} attempts to match
1352 and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1354 @example
1355 @group
1356 (delq '(4) sample-list)
1357      @result{} (a c (4))
1358 @end group
1360 If you want to delete elements that are @code{equal} to a given value,
1361 use @code{delete} (see below).
1362 @end example
1364 @defun remq object list
1365 This function returns a copy of @var{list}, with all elements removed
1366 which are @code{eq} to @var{object}.  The letter @samp{q} in @code{remq}
1367 says that it uses @code{eq} to compare @var{object} against the elements
1368 of @code{list}.
1370 @example
1371 @group
1372 (setq sample-list '(a b c a b c))
1373      @result{} (a b c a b c)
1374 @end group
1375 @group
1376 (remq 'a sample-list)
1377      @result{} (b c b c)
1378 @end group
1379 @group
1380 sample-list
1381      @result{} (a b c a b c)
1382 @end group
1383 @end example
1384 @end defun
1386 @defun memql object list
1387 The function @code{memql} tests to see whether @var{object} is a member
1388 of @var{list}, comparing members with @var{object} using @code{eql},
1389 so floating point elements are compared by value.
1390 If @var{object} is a member, @code{memql} returns a list starting with
1391 its first occurrence in @var{list}.  Otherwise, it returns @code{nil}.
1393 Compare this with @code{memq}:
1395 @example
1396 @group
1397 (memql 1.2 '(1.1 1.2 1.3))  ; @r{@code{1.2} and @code{1.2} are @code{eql}.}
1398      @result{} (1.2 1.3)
1399 @end group
1400 @group
1401 (memq 1.2 '(1.1 1.2 1.3))  ; @r{@code{1.2} and @code{1.2} are not @code{eq}.}
1402      @result{} nil
1403 @end group
1404 @end example
1405 @end defun
1407 The following three functions are like @code{memq}, @code{delq} and
1408 @code{remq}, but use @code{equal} rather than @code{eq} to compare
1409 elements.  @xref{Equality Predicates}.
1411 @defun member object list
1412 The function @code{member} tests to see whether @var{object} is a member
1413 of @var{list}, comparing members with @var{object} using @code{equal}.
1414 If @var{object} is a member, @code{member} returns a list starting with
1415 its first occurrence in @var{list}.  Otherwise, it returns @code{nil}.
1417 Compare this with @code{memq}:
1419 @example
1420 @group
1421 (member '(2) '((1) (2)))  ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1422      @result{} ((2))
1423 @end group
1424 @group
1425 (memq '(2) '((1) (2)))    ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1426      @result{} nil
1427 @end group
1428 @group
1429 ;; @r{Two strings with the same contents are @code{equal}.}
1430 (member "foo" '("foo" "bar"))
1431      @result{} ("foo" "bar")
1432 @end group
1433 @end example
1434 @end defun
1436 @defun delete object sequence
1437 If @code{sequence} is a list, this function destructively removes all
1438 elements @code{equal} to @var{object} from @var{sequence}.  For lists,
1439 @code{delete} is to @code{delq} as @code{member} is to @code{memq}: it
1440 uses @code{equal} to compare elements with @var{object}, like
1441 @code{member}; when it finds an element that matches, it cuts the
1442 element out just as @code{delq} would.
1444 If @code{sequence} is a vector or string, @code{delete} returns a copy
1445 of @code{sequence} with all elements @code{equal} to @code{object}
1446 removed.
1448 For example:
1450 @example
1451 @group
1452 (setq l '((2) (1) (2)))
1453 (delete '(2) l)
1454      @result{} ((1))
1456      @result{} ((2) (1))
1457 ;; @r{If you want to change @code{l} reliably,}
1458 ;; @r{write @code{(setq l (delete elt l))}.}
1459 @end group
1460 @group
1461 (setq l '((2) (1) (2)))
1462 (delete '(1) l)
1463      @result{} ((2) (2))
1465      @result{} ((2) (2))
1466 ;; @r{In this case, it makes no difference whether you set @code{l},}
1467 ;; @r{but you should do so for the sake of the other case.}
1468 @end group
1469 @group
1470 (delete '(2) [(2) (1) (2)])
1471      @result{} [(1)]
1472 @end group
1473 @end example
1474 @end defun
1476 @defun remove object sequence
1477 This function is the non-destructive counterpart of @code{delete}.  It
1478 returns a copy of @code{sequence}, a list, vector, or string, with
1479 elements @code{equal} to @code{object} removed.  For example:
1481 @example
1482 @group
1483 (remove '(2) '((2) (1) (2)))
1484      @result{} ((1))
1485 @end group
1486 @group
1487 (remove '(2) [(2) (1) (2)])
1488      @result{} [(1)]
1489 @end group
1490 @end example
1491 @end defun
1493 @quotation
1494 @b{Common Lisp note:} The functions @code{member}, @code{delete} and
1495 @code{remove} in GNU Emacs Lisp are derived from Maclisp, not Common
1496 Lisp.  The Common Lisp versions do not use @code{equal} to compare
1497 elements.
1498 @end quotation
1500 @defun member-ignore-case object list
1501 This function is like @code{member}, except that @var{object} should
1502 be a string and that it ignores differences in letter-case and text
1503 representation: upper-case and lower-case letters are treated as
1504 equal, and unibyte strings are converted to multibyte prior to
1505 comparison.
1506 @end defun
1508 @defun delete-dups list
1509 This function destructively removes all @code{equal} duplicates from
1510 @var{list}, stores the result in @var{list} and returns it.  Of
1511 several @code{equal} occurrences of an element in @var{list},
1512 @code{delete-dups} keeps the first one.
1513 @end defun
1515   See also the function @code{add-to-list}, in @ref{List Variables},
1516 for a way to add an element to a list stored in a variable and used as a
1517 set.
1519 @node Association Lists
1520 @section Association Lists
1521 @cindex association list
1522 @cindex alist
1524   An @dfn{association list}, or @dfn{alist} for short, records a mapping
1525 from keys to values.  It is a list of cons cells called
1526 @dfn{associations}: the @sc{car} of each cons cell is the @dfn{key}, and the
1527 @sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1528 is not related to the term ``key sequence''; it means a value used to
1529 look up an item in a table.  In this case, the table is the alist, and
1530 the alist associations are the items.}
1532   Here is an example of an alist.  The key @code{pine} is associated with
1533 the value @code{cones}; the key @code{oak} is associated with
1534 @code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1536 @example
1537 @group
1538 ((pine . cones)
1539  (oak . acorns)
1540  (maple . seeds))
1541 @end group
1542 @end example
1544   Both the values and the keys in an alist may be any Lisp objects.
1545 For example, in the following alist, the symbol @code{a} is
1546 associated with the number @code{1}, and the string @code{"b"} is
1547 associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1548 the alist element:
1550 @example
1551 ((a . 1) ("b" 2 3))
1552 @end example
1554   Sometimes it is better to design an alist to store the associated
1555 value in the @sc{car} of the @sc{cdr} of the element.  Here is an
1556 example of such an alist:
1558 @example
1559 ((rose red) (lily white) (buttercup yellow))
1560 @end example
1562 @noindent
1563 Here we regard @code{red} as the value associated with @code{rose}.  One
1564 advantage of this kind of alist is that you can store other related
1565 information---even a list of other items---in the @sc{cdr} of the
1566 @sc{cdr}.  One disadvantage is that you cannot use @code{rassq} (see
1567 below) to find the element containing a given value.  When neither of
1568 these considerations is important, the choice is a matter of taste, as
1569 long as you are consistent about it for any given alist.
1571   The same alist shown above could be regarded as having the
1572 associated value in the @sc{cdr} of the element; the value associated
1573 with @code{rose} would be the list @code{(red)}.
1575   Association lists are often used to record information that you might
1576 otherwise keep on a stack, since new associations may be added easily to
1577 the front of the list.  When searching an association list for an
1578 association with a given key, the first one found is returned, if there
1579 is more than one.
1581   In Emacs Lisp, it is @emph{not} an error if an element of an
1582 association list is not a cons cell.  The alist search functions simply
1583 ignore such elements.  Many other versions of Lisp signal errors in such
1584 cases.
1586   Note that property lists are similar to association lists in several
1587 respects.  A property list behaves like an association list in which
1588 each key can occur only once.  @xref{Property Lists}, for a comparison
1589 of property lists and association lists.
1591 @defun assoc key alist
1592 This function returns the first association for @var{key} in
1593 @var{alist}, comparing @var{key} against the alist elements using
1594 @code{equal} (@pxref{Equality Predicates}).  It returns @code{nil} if no
1595 association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1596 For example:
1598 @smallexample
1599 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1600      @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1601 (assoc 'oak trees)
1602      @result{} (oak . acorns)
1603 (cdr (assoc 'oak trees))
1604      @result{} acorns
1605 (assoc 'birch trees)
1606      @result{} nil
1607 @end smallexample
1609 Here is another example, in which the keys and values are not symbols:
1611 @smallexample
1612 (setq needles-per-cluster
1613       '((2 "Austrian Pine" "Red Pine")
1614         (3 "Pitch Pine")
1615         (5 "White Pine")))
1617 (cdr (assoc 3 needles-per-cluster))
1618      @result{} ("Pitch Pine")
1619 (cdr (assoc 2 needles-per-cluster))
1620      @result{} ("Austrian Pine" "Red Pine")
1621 @end smallexample
1622 @end defun
1624   The function @code{assoc-string} is much like @code{assoc} except
1625 that it ignores certain differences between strings.  @xref{Text
1626 Comparison}.
1628 @defun rassoc value alist
1629 This function returns the first association with value @var{value} in
1630 @var{alist}.  It returns @code{nil} if no association in @var{alist} has
1631 a @sc{cdr} @code{equal} to @var{value}.
1633 @code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1634 each @var{alist} association instead of the @sc{car}.  You can think of
1635 this as ``reverse @code{assoc},'' finding the key for a given value.
1636 @end defun
1638 @defun assq key alist
1639 This function is like @code{assoc} in that it returns the first
1640 association for @var{key} in @var{alist}, but it makes the comparison
1641 using @code{eq} instead of @code{equal}.  @code{assq} returns @code{nil}
1642 if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1643 This function is used more often than @code{assoc}, since @code{eq} is
1644 faster than @code{equal} and most alists use symbols as keys.
1645 @xref{Equality Predicates}.
1647 @smallexample
1648 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1649      @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1650 (assq 'pine trees)
1651      @result{} (pine . cones)
1652 @end smallexample
1654 On the other hand, @code{assq} is not usually useful in alists where the
1655 keys may not be symbols:
1657 @smallexample
1658 (setq leaves
1659       '(("simple leaves" . oak)
1660         ("compound leaves" . horsechestnut)))
1662 (assq "simple leaves" leaves)
1663      @result{} nil
1664 (assoc "simple leaves" leaves)
1665      @result{} ("simple leaves" . oak)
1666 @end smallexample
1667 @end defun
1669 @defun rassq value alist
1670 This function returns the first association with value @var{value} in
1671 @var{alist}.  It returns @code{nil} if no association in @var{alist} has
1672 a @sc{cdr} @code{eq} to @var{value}.
1674 @code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1675 each @var{alist} association instead of the @sc{car}.  You can think of
1676 this as ``reverse @code{assq},'' finding the key for a given value.
1678 For example:
1680 @smallexample
1681 (setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1683 (rassq 'acorns trees)
1684      @result{} (oak . acorns)
1685 (rassq 'spores trees)
1686      @result{} nil
1687 @end smallexample
1689 @code{rassq} cannot search for a value stored in the @sc{car}
1690 of the @sc{cdr} of an element:
1692 @smallexample
1693 (setq colors '((rose red) (lily white) (buttercup yellow)))
1695 (rassq 'white colors)
1696      @result{} nil
1697 @end smallexample
1699 In this case, the @sc{cdr} of the association @code{(lily white)} is not
1700 the symbol @code{white}, but rather the list @code{(white)}.  This
1701 becomes clearer if the association is written in dotted pair notation:
1703 @smallexample
1704 (lily white) @equiv{} (lily . (white))
1705 @end smallexample
1706 @end defun
1708 @defun assoc-default key alist &optional test default
1709 This function searches @var{alist} for a match for @var{key}.  For each
1710 element of @var{alist}, it compares the element (if it is an atom) or
1711 the element's @sc{car} (if it is a cons) against @var{key}, by calling
1712 @var{test} with two arguments: the element or its @sc{car}, and
1713 @var{key}.  The arguments are passed in that order so that you can get
1714 useful results using @code{string-match} with an alist that contains
1715 regular expressions (@pxref{Regexp Search}).  If @var{test} is omitted
1716 or @code{nil}, @code{equal} is used for comparison.
1718 If an alist element matches @var{key} by this criterion,
1719 then @code{assoc-default} returns a value based on this element.
1720 If the element is a cons, then the value is the element's @sc{cdr}.
1721 Otherwise, the return value is @var{default}.
1723 If no alist element matches @var{key}, @code{assoc-default} returns
1724 @code{nil}.
1725 @end defun
1727 @defun copy-alist alist
1728 @cindex copying alists
1729 This function returns a two-level deep copy of @var{alist}: it creates a
1730 new copy of each association, so that you can alter the associations of
1731 the new alist without changing the old one.
1733 @smallexample
1734 @group
1735 (setq needles-per-cluster
1736       '((2 . ("Austrian Pine" "Red Pine"))
1737         (3 . ("Pitch Pine"))
1738 @end group
1739         (5 . ("White Pine"))))
1740 @result{}
1741 ((2 "Austrian Pine" "Red Pine")
1742  (3 "Pitch Pine")
1743  (5 "White Pine"))
1745 (setq copy (copy-alist needles-per-cluster))
1746 @result{}
1747 ((2 "Austrian Pine" "Red Pine")
1748  (3 "Pitch Pine")
1749  (5 "White Pine"))
1751 (eq needles-per-cluster copy)
1752      @result{} nil
1753 (equal needles-per-cluster copy)
1754      @result{} t
1755 (eq (car needles-per-cluster) (car copy))
1756      @result{} nil
1757 (cdr (car (cdr needles-per-cluster)))
1758      @result{} ("Pitch Pine")
1759 @group
1760 (eq (cdr (car (cdr needles-per-cluster)))
1761     (cdr (car (cdr copy))))
1762      @result{} t
1763 @end group
1764 @end smallexample
1766   This example shows how @code{copy-alist} makes it possible to change
1767 the associations of one copy without affecting the other:
1769 @smallexample
1770 @group
1771 (setcdr (assq 3 copy) '("Martian Vacuum Pine"))
1772 (cdr (assq 3 needles-per-cluster))
1773      @result{} ("Pitch Pine")
1774 @end group
1775 @end smallexample
1776 @end defun
1778 @defun assq-delete-all key alist
1779 This function deletes from @var{alist} all the elements whose @sc{car}
1780 is @code{eq} to @var{key}, much as if you used @code{delq} to delete
1781 each such element one by one.  It returns the shortened alist, and
1782 often modifies the original list structure of @var{alist}.  For
1783 correct results, use the return value of @code{assq-delete-all} rather
1784 than looking at the saved value of @var{alist}.
1786 @example
1787 (setq alist '((foo 1) (bar 2) (foo 3) (lose 4)))
1788      @result{} ((foo 1) (bar 2) (foo 3) (lose 4))
1789 (assq-delete-all 'foo alist)
1790      @result{} ((bar 2) (lose 4))
1791 alist
1792      @result{} ((foo 1) (bar 2) (lose 4))
1793 @end example
1794 @end defun
1796 @defun rassq-delete-all value alist
1797 This function deletes from @var{alist} all the elements whose @sc{cdr}
1798 is @code{eq} to @var{value}.  It returns the shortened alist, and
1799 often modifies the original list structure of @var{alist}.
1800 @code{rassq-delete-all} is like @code{assq-delete-all} except that it
1801 compares the @sc{cdr} of each @var{alist} association instead of the
1802 @sc{car}.
1803 @end defun
1805 @node Rings
1806 @section Managing a Fixed-Size Ring of Objects
1808 @cindex ring data structure
1809   This section describes functions for operating on rings.  A
1810 @dfn{ring} is a fixed-size data structure that supports insertion,
1811 deletion, rotation, and modulo-indexed reference and traversal.
1813 @defun make-ring size
1814 This returns a new ring capable of holding @var{size} objects.
1815 @var{size} should be an integer.
1816 @end defun
1818 @defun ring-p object
1819 This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
1820 @end defun
1822 @defun ring-size ring
1823 This returns the maximum capacity of the @var{ring}.
1824 @end defun
1826 @defun ring-length ring
1827 This returns the number of objects that @var{ring} currently contains.
1828 The value will never exceed that returned by @code{ring-size}.
1829 @end defun
1831 @defun ring-elements ring
1832 This returns a list of the objects in @var{ring}, in order, newest first.
1833 @end defun
1835 @defun ring-copy ring
1836 This returns a new ring which is a copy of @var{ring}.
1837 The new ring contains the same (@code{eq}) objects as @var{ring}.
1838 @end defun
1840 @defun ring-empty-p ring
1841 This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
1842 @end defun
1844   The newest element in the ring always has index 0.  Higher indices
1845 correspond to older elements.  Indices are computed modulo the ring
1846 length.  Index @minus{}1 corresponds to the oldest element, @minus{}2
1847 to the next-oldest, and so forth.
1849 @defun ring-ref ring index
1850 This returns the object in @var{ring} found at index @var{index}.
1851 @var{index} may be negative or greater than the ring length.  If
1852 @var{ring} is empty, @code{ring-ref} signals an error.
1853 @end defun
1855 @defun ring-insert ring object
1856 This inserts @var{object} into @var{ring}, making it the newest
1857 element, and returns @var{object}.
1859 If the ring is full, insertion removes the oldest element to
1860 make room for the new element.
1861 @end defun
1863 @defun ring-remove ring &optional index
1864 Remove an object from @var{ring}, and return that object.  The
1865 argument @var{index} specifies which item to remove; if it is
1866 @code{nil}, that means to remove the oldest item.  If @var{ring} is
1867 empty, @code{ring-remove} signals an error.
1868 @end defun
1870 @defun ring-insert-at-beginning ring object
1871 This inserts @var{object} into @var{ring}, treating it as the oldest
1872 element.  The return value is not significant.
1874 If the ring is full, this function removes the newest element to make
1875 room for the inserted element.
1876 @end defun
1878 @cindex fifo data structure
1879   If you are careful not to exceed the ring size, you can
1880 use the ring as a first-in-first-out queue.  For example:
1882 @lisp
1883 (let ((fifo (make-ring 5)))
1884   (mapc (lambda (obj) (ring-insert fifo obj))
1885         '(0 one "two"))
1886   (list (ring-remove fifo) t
1887         (ring-remove fifo) t
1888         (ring-remove fifo)))
1889      @result{} (0 t one t "two")
1890 @end lisp
1892 @ignore
1893    arch-tag: 31fb8a4e-4aa8-4a74-a206-aa00451394d4
1894 @end ignore