* lisp/env.el (env--substitute-vars-regexp): Don't use rx (for bootstrap).
[emacs.git] / src / alloc.c
blob808557dd70fbb835f2021b0ec12008dccc015f04
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
23 #define LISP_INLINE EXTERN_INLINE
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
48 #include <verify.h>
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
65 #include <unistd.h>
66 #ifndef HAVE_UNISTD_H
67 extern void *sbrk ();
68 #endif
70 #include <fcntl.h>
72 #ifdef USE_GTK
73 # include "gtkutil.h"
74 #endif
75 #ifdef WINDOWSNT
76 #include "w32.h"
77 #include "w32heap.h" /* for sbrk */
78 #endif
80 #ifdef DOUG_LEA_MALLOC
82 #include <malloc.h>
84 /* Specify maximum number of areas to mmap. It would be nice to use a
85 value that explicitly means "no limit". */
87 #define MMAP_MAX_AREAS 100000000
89 #endif /* not DOUG_LEA_MALLOC */
91 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
92 to a struct Lisp_String. */
94 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
95 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
96 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
98 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
99 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
100 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
102 /* Default value of gc_cons_threshold (see below). */
104 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
106 /* Global variables. */
107 struct emacs_globals globals;
109 /* Number of bytes of consing done since the last gc. */
111 EMACS_INT consing_since_gc;
113 /* Similar minimum, computed from Vgc_cons_percentage. */
115 EMACS_INT gc_relative_threshold;
117 /* Minimum number of bytes of consing since GC before next GC,
118 when memory is full. */
120 EMACS_INT memory_full_cons_threshold;
122 /* True during GC. */
124 bool gc_in_progress;
126 /* True means abort if try to GC.
127 This is for code which is written on the assumption that
128 no GC will happen, so as to verify that assumption. */
130 bool abort_on_gc;
132 /* Number of live and free conses etc. */
134 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
135 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
136 static EMACS_INT total_free_floats, total_floats;
138 /* Points to memory space allocated as "spare", to be freed if we run
139 out of memory. We keep one large block, four cons-blocks, and
140 two string blocks. */
142 static char *spare_memory[7];
144 /* Amount of spare memory to keep in large reserve block, or to see
145 whether this much is available when malloc fails on a larger request. */
147 #define SPARE_MEMORY (1 << 14)
149 /* Initialize it to a nonzero value to force it into data space
150 (rather than bss space). That way unexec will remap it into text
151 space (pure), on some systems. We have not implemented the
152 remapping on more recent systems because this is less important
153 nowadays than in the days of small memories and timesharing. */
155 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
156 #define PUREBEG (char *) pure
158 /* Pointer to the pure area, and its size. */
160 static char *purebeg;
161 static ptrdiff_t pure_size;
163 /* Number of bytes of pure storage used before pure storage overflowed.
164 If this is non-zero, this implies that an overflow occurred. */
166 static ptrdiff_t pure_bytes_used_before_overflow;
168 /* True if P points into pure space. */
170 #define PURE_POINTER_P(P) \
171 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
173 /* Index in pure at which next pure Lisp object will be allocated.. */
175 static ptrdiff_t pure_bytes_used_lisp;
177 /* Number of bytes allocated for non-Lisp objects in pure storage. */
179 static ptrdiff_t pure_bytes_used_non_lisp;
181 /* If nonzero, this is a warning delivered by malloc and not yet
182 displayed. */
184 const char *pending_malloc_warning;
186 /* Maximum amount of C stack to save when a GC happens. */
188 #ifndef MAX_SAVE_STACK
189 #define MAX_SAVE_STACK 16000
190 #endif
192 /* Buffer in which we save a copy of the C stack at each GC. */
194 #if MAX_SAVE_STACK > 0
195 static char *stack_copy;
196 static ptrdiff_t stack_copy_size;
197 #endif
199 static Lisp_Object Qconses;
200 static Lisp_Object Qsymbols;
201 static Lisp_Object Qmiscs;
202 static Lisp_Object Qstrings;
203 static Lisp_Object Qvectors;
204 static Lisp_Object Qfloats;
205 static Lisp_Object Qintervals;
206 static Lisp_Object Qbuffers;
207 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
208 static Lisp_Object Qgc_cons_threshold;
209 Lisp_Object Qautomatic_gc;
210 Lisp_Object Qchar_table_extra_slots;
212 /* Hook run after GC has finished. */
214 static Lisp_Object Qpost_gc_hook;
216 static void mark_terminals (void);
217 static void gc_sweep (void);
218 static Lisp_Object make_pure_vector (ptrdiff_t);
219 static void mark_buffer (struct buffer *);
221 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
222 static void refill_memory_reserve (void);
223 #endif
224 static void compact_small_strings (void);
225 static void free_large_strings (void);
226 static void free_misc (Lisp_Object);
227 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
229 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
230 what memory allocated via lisp_malloc and lisp_align_malloc is intended
231 for what purpose. This enumeration specifies the type of memory. */
233 enum mem_type
235 MEM_TYPE_NON_LISP,
236 MEM_TYPE_BUFFER,
237 MEM_TYPE_CONS,
238 MEM_TYPE_STRING,
239 MEM_TYPE_MISC,
240 MEM_TYPE_SYMBOL,
241 MEM_TYPE_FLOAT,
242 /* Since all non-bool pseudovectors are small enough to be
243 allocated from vector blocks, this memory type denotes
244 large regular vectors and large bool pseudovectors. */
245 MEM_TYPE_VECTORLIKE,
246 /* Special type to denote vector blocks. */
247 MEM_TYPE_VECTOR_BLOCK,
248 /* Special type to denote reserved memory. */
249 MEM_TYPE_SPARE
252 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
254 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
255 #include <stdio.h> /* For fprintf. */
256 #endif
258 /* A unique object in pure space used to make some Lisp objects
259 on free lists recognizable in O(1). */
261 static Lisp_Object Vdead;
262 #define DEADP(x) EQ (x, Vdead)
264 #ifdef GC_MALLOC_CHECK
266 enum mem_type allocated_mem_type;
268 #endif /* GC_MALLOC_CHECK */
270 /* A node in the red-black tree describing allocated memory containing
271 Lisp data. Each such block is recorded with its start and end
272 address when it is allocated, and removed from the tree when it
273 is freed.
275 A red-black tree is a balanced binary tree with the following
276 properties:
278 1. Every node is either red or black.
279 2. Every leaf is black.
280 3. If a node is red, then both of its children are black.
281 4. Every simple path from a node to a descendant leaf contains
282 the same number of black nodes.
283 5. The root is always black.
285 When nodes are inserted into the tree, or deleted from the tree,
286 the tree is "fixed" so that these properties are always true.
288 A red-black tree with N internal nodes has height at most 2
289 log(N+1). Searches, insertions and deletions are done in O(log N).
290 Please see a text book about data structures for a detailed
291 description of red-black trees. Any book worth its salt should
292 describe them. */
294 struct mem_node
296 /* Children of this node. These pointers are never NULL. When there
297 is no child, the value is MEM_NIL, which points to a dummy node. */
298 struct mem_node *left, *right;
300 /* The parent of this node. In the root node, this is NULL. */
301 struct mem_node *parent;
303 /* Start and end of allocated region. */
304 void *start, *end;
306 /* Node color. */
307 enum {MEM_BLACK, MEM_RED} color;
309 /* Memory type. */
310 enum mem_type type;
313 /* Base address of stack. Set in main. */
315 Lisp_Object *stack_base;
317 /* Root of the tree describing allocated Lisp memory. */
319 static struct mem_node *mem_root;
321 /* Lowest and highest known address in the heap. */
323 static void *min_heap_address, *max_heap_address;
325 /* Sentinel node of the tree. */
327 static struct mem_node mem_z;
328 #define MEM_NIL &mem_z
330 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
331 static void lisp_free (void *);
332 static void mark_stack (void);
333 static bool live_vector_p (struct mem_node *, void *);
334 static bool live_buffer_p (struct mem_node *, void *);
335 static bool live_string_p (struct mem_node *, void *);
336 static bool live_cons_p (struct mem_node *, void *);
337 static bool live_symbol_p (struct mem_node *, void *);
338 static bool live_float_p (struct mem_node *, void *);
339 static bool live_misc_p (struct mem_node *, void *);
340 static void mark_maybe_object (Lisp_Object);
341 static void mark_memory (void *, void *);
342 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
343 static void mem_init (void);
344 static struct mem_node *mem_insert (void *, void *, enum mem_type);
345 static void mem_insert_fixup (struct mem_node *);
346 static void mem_rotate_left (struct mem_node *);
347 static void mem_rotate_right (struct mem_node *);
348 static void mem_delete (struct mem_node *);
349 static void mem_delete_fixup (struct mem_node *);
350 static struct mem_node *mem_find (void *);
351 #endif
354 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
355 static void check_gcpros (void);
356 #endif
358 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
360 #ifndef DEADP
361 # define DEADP(x) 0
362 #endif
364 /* Recording what needs to be marked for gc. */
366 struct gcpro *gcprolist;
368 /* Addresses of staticpro'd variables. Initialize it to a nonzero
369 value; otherwise some compilers put it into BSS. */
371 #define NSTATICS 0x800
372 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
374 /* Index of next unused slot in staticvec. */
376 static int staticidx;
378 static void *pure_alloc (size_t, int);
381 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
382 ALIGNMENT must be a power of 2. */
384 #define ALIGN(ptr, ALIGNMENT) \
385 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
386 & ~ ((ALIGNMENT) - 1)))
390 /************************************************************************
391 Malloc
392 ************************************************************************/
394 /* Function malloc calls this if it finds we are near exhausting storage. */
396 void
397 malloc_warning (const char *str)
399 pending_malloc_warning = str;
403 /* Display an already-pending malloc warning. */
405 void
406 display_malloc_warning (void)
408 call3 (intern ("display-warning"),
409 intern ("alloc"),
410 build_string (pending_malloc_warning),
411 intern ("emergency"));
412 pending_malloc_warning = 0;
415 /* Called if we can't allocate relocatable space for a buffer. */
417 void
418 buffer_memory_full (ptrdiff_t nbytes)
420 /* If buffers use the relocating allocator, no need to free
421 spare_memory, because we may have plenty of malloc space left
422 that we could get, and if we don't, the malloc that fails will
423 itself cause spare_memory to be freed. If buffers don't use the
424 relocating allocator, treat this like any other failing
425 malloc. */
427 #ifndef REL_ALLOC
428 memory_full (nbytes);
429 #endif
431 /* This used to call error, but if we've run out of memory, we could
432 get infinite recursion trying to build the string. */
433 xsignal (Qnil, Vmemory_signal_data);
436 /* A common multiple of the positive integers A and B. Ideally this
437 would be the least common multiple, but there's no way to do that
438 as a constant expression in C, so do the best that we can easily do. */
439 #define COMMON_MULTIPLE(a, b) \
440 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
442 #ifndef XMALLOC_OVERRUN_CHECK
443 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
444 #else
446 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
447 around each block.
449 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
450 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
451 block size in little-endian order. The trailer consists of
452 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
454 The header is used to detect whether this block has been allocated
455 through these functions, as some low-level libc functions may
456 bypass the malloc hooks. */
458 #define XMALLOC_OVERRUN_CHECK_SIZE 16
459 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
460 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
462 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
463 hold a size_t value and (2) the header size is a multiple of the
464 alignment that Emacs needs for C types and for USE_LSB_TAG. */
465 #define XMALLOC_BASE_ALIGNMENT \
466 alignof (union { long double d; intmax_t i; void *p; })
468 #if USE_LSB_TAG
469 # define XMALLOC_HEADER_ALIGNMENT \
470 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
471 #else
472 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
473 #endif
474 #define XMALLOC_OVERRUN_SIZE_SIZE \
475 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
476 + XMALLOC_HEADER_ALIGNMENT - 1) \
477 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
478 - XMALLOC_OVERRUN_CHECK_SIZE)
480 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
481 { '\x9a', '\x9b', '\xae', '\xaf',
482 '\xbf', '\xbe', '\xce', '\xcf',
483 '\xea', '\xeb', '\xec', '\xed',
484 '\xdf', '\xde', '\x9c', '\x9d' };
486 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
487 { '\xaa', '\xab', '\xac', '\xad',
488 '\xba', '\xbb', '\xbc', '\xbd',
489 '\xca', '\xcb', '\xcc', '\xcd',
490 '\xda', '\xdb', '\xdc', '\xdd' };
492 /* Insert and extract the block size in the header. */
494 static void
495 xmalloc_put_size (unsigned char *ptr, size_t size)
497 int i;
498 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
500 *--ptr = size & ((1 << CHAR_BIT) - 1);
501 size >>= CHAR_BIT;
505 static size_t
506 xmalloc_get_size (unsigned char *ptr)
508 size_t size = 0;
509 int i;
510 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
511 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
513 size <<= CHAR_BIT;
514 size += *ptr++;
516 return size;
520 /* Like malloc, but wraps allocated block with header and trailer. */
522 static void *
523 overrun_check_malloc (size_t size)
525 register unsigned char *val;
526 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
527 emacs_abort ();
529 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
530 if (val)
532 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
533 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
534 xmalloc_put_size (val, size);
535 memcpy (val + size, xmalloc_overrun_check_trailer,
536 XMALLOC_OVERRUN_CHECK_SIZE);
538 return val;
542 /* Like realloc, but checks old block for overrun, and wraps new block
543 with header and trailer. */
545 static void *
546 overrun_check_realloc (void *block, size_t size)
548 register unsigned char *val = (unsigned char *) block;
549 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
550 emacs_abort ();
552 if (val
553 && memcmp (xmalloc_overrun_check_header,
554 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
555 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
557 size_t osize = xmalloc_get_size (val);
558 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
559 XMALLOC_OVERRUN_CHECK_SIZE))
560 emacs_abort ();
561 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
562 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
563 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
566 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
568 if (val)
570 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
571 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
572 xmalloc_put_size (val, size);
573 memcpy (val + size, xmalloc_overrun_check_trailer,
574 XMALLOC_OVERRUN_CHECK_SIZE);
576 return val;
579 /* Like free, but checks block for overrun. */
581 static void
582 overrun_check_free (void *block)
584 unsigned char *val = (unsigned char *) block;
586 if (val
587 && memcmp (xmalloc_overrun_check_header,
588 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
589 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
591 size_t osize = xmalloc_get_size (val);
592 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
593 XMALLOC_OVERRUN_CHECK_SIZE))
594 emacs_abort ();
595 #ifdef XMALLOC_CLEAR_FREE_MEMORY
596 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
597 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
598 #else
599 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
600 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
601 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
602 #endif
605 free (val);
608 #undef malloc
609 #undef realloc
610 #undef free
611 #define malloc overrun_check_malloc
612 #define realloc overrun_check_realloc
613 #define free overrun_check_free
614 #endif
616 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
617 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
618 If that variable is set, block input while in one of Emacs's memory
619 allocation functions. There should be no need for this debugging
620 option, since signal handlers do not allocate memory, but Emacs
621 formerly allocated memory in signal handlers and this compile-time
622 option remains as a way to help debug the issue should it rear its
623 ugly head again. */
624 #ifdef XMALLOC_BLOCK_INPUT_CHECK
625 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
626 static void
627 malloc_block_input (void)
629 if (block_input_in_memory_allocators)
630 block_input ();
632 static void
633 malloc_unblock_input (void)
635 if (block_input_in_memory_allocators)
636 unblock_input ();
638 # define MALLOC_BLOCK_INPUT malloc_block_input ()
639 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
640 #else
641 # define MALLOC_BLOCK_INPUT ((void) 0)
642 # define MALLOC_UNBLOCK_INPUT ((void) 0)
643 #endif
645 #define MALLOC_PROBE(size) \
646 do { \
647 if (profiler_memory_running) \
648 malloc_probe (size); \
649 } while (0)
652 /* Like malloc but check for no memory and block interrupt input.. */
654 void *
655 xmalloc (size_t size)
657 void *val;
659 MALLOC_BLOCK_INPUT;
660 val = malloc (size);
661 MALLOC_UNBLOCK_INPUT;
663 if (!val && size)
664 memory_full (size);
665 MALLOC_PROBE (size);
666 return val;
669 /* Like the above, but zeroes out the memory just allocated. */
671 void *
672 xzalloc (size_t size)
674 void *val;
676 MALLOC_BLOCK_INPUT;
677 val = malloc (size);
678 MALLOC_UNBLOCK_INPUT;
680 if (!val && size)
681 memory_full (size);
682 memset (val, 0, size);
683 MALLOC_PROBE (size);
684 return val;
687 /* Like realloc but check for no memory and block interrupt input.. */
689 void *
690 xrealloc (void *block, size_t size)
692 void *val;
694 MALLOC_BLOCK_INPUT;
695 /* We must call malloc explicitly when BLOCK is 0, since some
696 reallocs don't do this. */
697 if (! block)
698 val = malloc (size);
699 else
700 val = realloc (block, size);
701 MALLOC_UNBLOCK_INPUT;
703 if (!val && size)
704 memory_full (size);
705 MALLOC_PROBE (size);
706 return val;
710 /* Like free but block interrupt input. */
712 void
713 xfree (void *block)
715 if (!block)
716 return;
717 MALLOC_BLOCK_INPUT;
718 free (block);
719 MALLOC_UNBLOCK_INPUT;
720 /* We don't call refill_memory_reserve here
721 because in practice the call in r_alloc_free seems to suffice. */
725 /* Other parts of Emacs pass large int values to allocator functions
726 expecting ptrdiff_t. This is portable in practice, but check it to
727 be safe. */
728 verify (INT_MAX <= PTRDIFF_MAX);
731 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
732 Signal an error on memory exhaustion, and block interrupt input. */
734 void *
735 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
737 eassert (0 <= nitems && 0 < item_size);
738 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
739 memory_full (SIZE_MAX);
740 return xmalloc (nitems * item_size);
744 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
745 Signal an error on memory exhaustion, and block interrupt input. */
747 void *
748 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
750 eassert (0 <= nitems && 0 < item_size);
751 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
752 memory_full (SIZE_MAX);
753 return xrealloc (pa, nitems * item_size);
757 /* Grow PA, which points to an array of *NITEMS items, and return the
758 location of the reallocated array, updating *NITEMS to reflect its
759 new size. The new array will contain at least NITEMS_INCR_MIN more
760 items, but will not contain more than NITEMS_MAX items total.
761 ITEM_SIZE is the size of each item, in bytes.
763 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
764 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
765 infinity.
767 If PA is null, then allocate a new array instead of reallocating
768 the old one. Thus, to grow an array A without saving its old
769 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
770 &NITEMS, ...).
772 Block interrupt input as needed. If memory exhaustion occurs, set
773 *NITEMS to zero if PA is null, and signal an error (i.e., do not
774 return). */
776 void *
777 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
778 ptrdiff_t nitems_max, ptrdiff_t item_size)
780 /* The approximate size to use for initial small allocation
781 requests. This is the largest "small" request for the GNU C
782 library malloc. */
783 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
785 /* If the array is tiny, grow it to about (but no greater than)
786 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
787 ptrdiff_t n = *nitems;
788 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
789 ptrdiff_t half_again = n >> 1;
790 ptrdiff_t incr_estimate = max (tiny_max, half_again);
792 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
793 NITEMS_MAX, and what the C language can represent safely. */
794 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
795 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
796 ? nitems_max : C_language_max);
797 ptrdiff_t nitems_incr_max = n_max - n;
798 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
800 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
801 if (! pa)
802 *nitems = 0;
803 if (nitems_incr_max < incr)
804 memory_full (SIZE_MAX);
805 n += incr;
806 pa = xrealloc (pa, n * item_size);
807 *nitems = n;
808 return pa;
812 /* Like strdup, but uses xmalloc. */
814 char *
815 xstrdup (const char *s)
817 size_t len = strlen (s) + 1;
818 char *p = xmalloc (len);
819 memcpy (p, s, len);
820 return p;
824 /* Unwind for SAFE_ALLOCA */
826 Lisp_Object
827 safe_alloca_unwind (Lisp_Object arg)
829 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
831 p->dogc = 0;
832 xfree (p->pointer);
833 p->pointer = 0;
834 free_misc (arg);
835 return Qnil;
838 /* Return a newly allocated memory block of SIZE bytes, remembering
839 to free it when unwinding. */
840 void *
841 record_xmalloc (size_t size)
843 void *p = xmalloc (size);
844 record_unwind_protect (safe_alloca_unwind, make_save_value (p, 0));
845 return p;
849 /* Like malloc but used for allocating Lisp data. NBYTES is the
850 number of bytes to allocate, TYPE describes the intended use of the
851 allocated memory block (for strings, for conses, ...). */
853 #if ! USE_LSB_TAG
854 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
855 #endif
857 static void *
858 lisp_malloc (size_t nbytes, enum mem_type type)
860 register void *val;
862 MALLOC_BLOCK_INPUT;
864 #ifdef GC_MALLOC_CHECK
865 allocated_mem_type = type;
866 #endif
868 val = malloc (nbytes);
870 #if ! USE_LSB_TAG
871 /* If the memory just allocated cannot be addressed thru a Lisp
872 object's pointer, and it needs to be,
873 that's equivalent to running out of memory. */
874 if (val && type != MEM_TYPE_NON_LISP)
876 Lisp_Object tem;
877 XSETCONS (tem, (char *) val + nbytes - 1);
878 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
880 lisp_malloc_loser = val;
881 free (val);
882 val = 0;
885 #endif
887 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
888 if (val && type != MEM_TYPE_NON_LISP)
889 mem_insert (val, (char *) val + nbytes, type);
890 #endif
892 MALLOC_UNBLOCK_INPUT;
893 if (!val && nbytes)
894 memory_full (nbytes);
895 MALLOC_PROBE (nbytes);
896 return val;
899 /* Free BLOCK. This must be called to free memory allocated with a
900 call to lisp_malloc. */
902 static void
903 lisp_free (void *block)
905 MALLOC_BLOCK_INPUT;
906 free (block);
907 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
908 mem_delete (mem_find (block));
909 #endif
910 MALLOC_UNBLOCK_INPUT;
913 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
915 /* The entry point is lisp_align_malloc which returns blocks of at most
916 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
918 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
919 #define USE_POSIX_MEMALIGN 1
920 #endif
922 /* BLOCK_ALIGN has to be a power of 2. */
923 #define BLOCK_ALIGN (1 << 10)
925 /* Padding to leave at the end of a malloc'd block. This is to give
926 malloc a chance to minimize the amount of memory wasted to alignment.
927 It should be tuned to the particular malloc library used.
928 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
929 posix_memalign on the other hand would ideally prefer a value of 4
930 because otherwise, there's 1020 bytes wasted between each ablocks.
931 In Emacs, testing shows that those 1020 can most of the time be
932 efficiently used by malloc to place other objects, so a value of 0 can
933 still preferable unless you have a lot of aligned blocks and virtually
934 nothing else. */
935 #define BLOCK_PADDING 0
936 #define BLOCK_BYTES \
937 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
939 /* Internal data structures and constants. */
941 #define ABLOCKS_SIZE 16
943 /* An aligned block of memory. */
944 struct ablock
946 union
948 char payload[BLOCK_BYTES];
949 struct ablock *next_free;
950 } x;
951 /* `abase' is the aligned base of the ablocks. */
952 /* It is overloaded to hold the virtual `busy' field that counts
953 the number of used ablock in the parent ablocks.
954 The first ablock has the `busy' field, the others have the `abase'
955 field. To tell the difference, we assume that pointers will have
956 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
957 is used to tell whether the real base of the parent ablocks is `abase'
958 (if not, the word before the first ablock holds a pointer to the
959 real base). */
960 struct ablocks *abase;
961 /* The padding of all but the last ablock is unused. The padding of
962 the last ablock in an ablocks is not allocated. */
963 #if BLOCK_PADDING
964 char padding[BLOCK_PADDING];
965 #endif
968 /* A bunch of consecutive aligned blocks. */
969 struct ablocks
971 struct ablock blocks[ABLOCKS_SIZE];
974 /* Size of the block requested from malloc or posix_memalign. */
975 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
977 #define ABLOCK_ABASE(block) \
978 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
979 ? (struct ablocks *)(block) \
980 : (block)->abase)
982 /* Virtual `busy' field. */
983 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
985 /* Pointer to the (not necessarily aligned) malloc block. */
986 #ifdef USE_POSIX_MEMALIGN
987 #define ABLOCKS_BASE(abase) (abase)
988 #else
989 #define ABLOCKS_BASE(abase) \
990 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
991 #endif
993 /* The list of free ablock. */
994 static struct ablock *free_ablock;
996 /* Allocate an aligned block of nbytes.
997 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
998 smaller or equal to BLOCK_BYTES. */
999 static void *
1000 lisp_align_malloc (size_t nbytes, enum mem_type type)
1002 void *base, *val;
1003 struct ablocks *abase;
1005 eassert (nbytes <= BLOCK_BYTES);
1007 MALLOC_BLOCK_INPUT;
1009 #ifdef GC_MALLOC_CHECK
1010 allocated_mem_type = type;
1011 #endif
1013 if (!free_ablock)
1015 int i;
1016 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1018 #ifdef DOUG_LEA_MALLOC
1019 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1020 because mapped region contents are not preserved in
1021 a dumped Emacs. */
1022 mallopt (M_MMAP_MAX, 0);
1023 #endif
1025 #ifdef USE_POSIX_MEMALIGN
1027 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1028 if (err)
1029 base = NULL;
1030 abase = base;
1032 #else
1033 base = malloc (ABLOCKS_BYTES);
1034 abase = ALIGN (base, BLOCK_ALIGN);
1035 #endif
1037 if (base == 0)
1039 MALLOC_UNBLOCK_INPUT;
1040 memory_full (ABLOCKS_BYTES);
1043 aligned = (base == abase);
1044 if (!aligned)
1045 ((void**)abase)[-1] = base;
1047 #ifdef DOUG_LEA_MALLOC
1048 /* Back to a reasonable maximum of mmap'ed areas. */
1049 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1050 #endif
1052 #if ! USE_LSB_TAG
1053 /* If the memory just allocated cannot be addressed thru a Lisp
1054 object's pointer, and it needs to be, that's equivalent to
1055 running out of memory. */
1056 if (type != MEM_TYPE_NON_LISP)
1058 Lisp_Object tem;
1059 char *end = (char *) base + ABLOCKS_BYTES - 1;
1060 XSETCONS (tem, end);
1061 if ((char *) XCONS (tem) != end)
1063 lisp_malloc_loser = base;
1064 free (base);
1065 MALLOC_UNBLOCK_INPUT;
1066 memory_full (SIZE_MAX);
1069 #endif
1071 /* Initialize the blocks and put them on the free list.
1072 If `base' was not properly aligned, we can't use the last block. */
1073 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1075 abase->blocks[i].abase = abase;
1076 abase->blocks[i].x.next_free = free_ablock;
1077 free_ablock = &abase->blocks[i];
1079 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1081 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1082 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1083 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1084 eassert (ABLOCKS_BASE (abase) == base);
1085 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1088 abase = ABLOCK_ABASE (free_ablock);
1089 ABLOCKS_BUSY (abase) =
1090 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1091 val = free_ablock;
1092 free_ablock = free_ablock->x.next_free;
1094 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1095 if (type != MEM_TYPE_NON_LISP)
1096 mem_insert (val, (char *) val + nbytes, type);
1097 #endif
1099 MALLOC_UNBLOCK_INPUT;
1101 MALLOC_PROBE (nbytes);
1103 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1104 return val;
1107 static void
1108 lisp_align_free (void *block)
1110 struct ablock *ablock = block;
1111 struct ablocks *abase = ABLOCK_ABASE (ablock);
1113 MALLOC_BLOCK_INPUT;
1114 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1115 mem_delete (mem_find (block));
1116 #endif
1117 /* Put on free list. */
1118 ablock->x.next_free = free_ablock;
1119 free_ablock = ablock;
1120 /* Update busy count. */
1121 ABLOCKS_BUSY (abase)
1122 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1124 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1125 { /* All the blocks are free. */
1126 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1127 struct ablock **tem = &free_ablock;
1128 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1130 while (*tem)
1132 if (*tem >= (struct ablock *) abase && *tem < atop)
1134 i++;
1135 *tem = (*tem)->x.next_free;
1137 else
1138 tem = &(*tem)->x.next_free;
1140 eassert ((aligned & 1) == aligned);
1141 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1142 #ifdef USE_POSIX_MEMALIGN
1143 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1144 #endif
1145 free (ABLOCKS_BASE (abase));
1147 MALLOC_UNBLOCK_INPUT;
1151 /***********************************************************************
1152 Interval Allocation
1153 ***********************************************************************/
1155 /* Number of intervals allocated in an interval_block structure.
1156 The 1020 is 1024 minus malloc overhead. */
1158 #define INTERVAL_BLOCK_SIZE \
1159 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1161 /* Intervals are allocated in chunks in form of an interval_block
1162 structure. */
1164 struct interval_block
1166 /* Place `intervals' first, to preserve alignment. */
1167 struct interval intervals[INTERVAL_BLOCK_SIZE];
1168 struct interval_block *next;
1171 /* Current interval block. Its `next' pointer points to older
1172 blocks. */
1174 static struct interval_block *interval_block;
1176 /* Index in interval_block above of the next unused interval
1177 structure. */
1179 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1181 /* Number of free and live intervals. */
1183 static EMACS_INT total_free_intervals, total_intervals;
1185 /* List of free intervals. */
1187 static INTERVAL interval_free_list;
1189 /* Return a new interval. */
1191 INTERVAL
1192 make_interval (void)
1194 INTERVAL val;
1196 MALLOC_BLOCK_INPUT;
1198 if (interval_free_list)
1200 val = interval_free_list;
1201 interval_free_list = INTERVAL_PARENT (interval_free_list);
1203 else
1205 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1207 struct interval_block *newi
1208 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1210 newi->next = interval_block;
1211 interval_block = newi;
1212 interval_block_index = 0;
1213 total_free_intervals += INTERVAL_BLOCK_SIZE;
1215 val = &interval_block->intervals[interval_block_index++];
1218 MALLOC_UNBLOCK_INPUT;
1220 consing_since_gc += sizeof (struct interval);
1221 intervals_consed++;
1222 total_free_intervals--;
1223 RESET_INTERVAL (val);
1224 val->gcmarkbit = 0;
1225 return val;
1229 /* Mark Lisp objects in interval I. */
1231 static void
1232 mark_interval (register INTERVAL i, Lisp_Object dummy)
1234 /* Intervals should never be shared. So, if extra internal checking is
1235 enabled, GC aborts if it seems to have visited an interval twice. */
1236 eassert (!i->gcmarkbit);
1237 i->gcmarkbit = 1;
1238 mark_object (i->plist);
1241 /* Mark the interval tree rooted in I. */
1243 #define MARK_INTERVAL_TREE(i) \
1244 do { \
1245 if (i && !i->gcmarkbit) \
1246 traverse_intervals_noorder (i, mark_interval, Qnil); \
1247 } while (0)
1249 /***********************************************************************
1250 String Allocation
1251 ***********************************************************************/
1253 /* Lisp_Strings are allocated in string_block structures. When a new
1254 string_block is allocated, all the Lisp_Strings it contains are
1255 added to a free-list string_free_list. When a new Lisp_String is
1256 needed, it is taken from that list. During the sweep phase of GC,
1257 string_blocks that are entirely free are freed, except two which
1258 we keep.
1260 String data is allocated from sblock structures. Strings larger
1261 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1262 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1264 Sblocks consist internally of sdata structures, one for each
1265 Lisp_String. The sdata structure points to the Lisp_String it
1266 belongs to. The Lisp_String points back to the `u.data' member of
1267 its sdata structure.
1269 When a Lisp_String is freed during GC, it is put back on
1270 string_free_list, and its `data' member and its sdata's `string'
1271 pointer is set to null. The size of the string is recorded in the
1272 `u.nbytes' member of the sdata. So, sdata structures that are no
1273 longer used, can be easily recognized, and it's easy to compact the
1274 sblocks of small strings which we do in compact_small_strings. */
1276 /* Size in bytes of an sblock structure used for small strings. This
1277 is 8192 minus malloc overhead. */
1279 #define SBLOCK_SIZE 8188
1281 /* Strings larger than this are considered large strings. String data
1282 for large strings is allocated from individual sblocks. */
1284 #define LARGE_STRING_BYTES 1024
1286 /* Structure describing string memory sub-allocated from an sblock.
1287 This is where the contents of Lisp strings are stored. */
1289 struct sdata
1291 /* Back-pointer to the string this sdata belongs to. If null, this
1292 structure is free, and the NBYTES member of the union below
1293 contains the string's byte size (the same value that STRING_BYTES
1294 would return if STRING were non-null). If non-null, STRING_BYTES
1295 (STRING) is the size of the data, and DATA contains the string's
1296 contents. */
1297 struct Lisp_String *string;
1299 #ifdef GC_CHECK_STRING_BYTES
1301 ptrdiff_t nbytes;
1302 unsigned char data[1];
1304 #define SDATA_NBYTES(S) (S)->nbytes
1305 #define SDATA_DATA(S) (S)->data
1306 #define SDATA_SELECTOR(member) member
1308 #else /* not GC_CHECK_STRING_BYTES */
1310 union
1312 /* When STRING is non-null. */
1313 unsigned char data[1];
1315 /* When STRING is null. */
1316 ptrdiff_t nbytes;
1317 } u;
1319 #define SDATA_NBYTES(S) (S)->u.nbytes
1320 #define SDATA_DATA(S) (S)->u.data
1321 #define SDATA_SELECTOR(member) u.member
1323 #endif /* not GC_CHECK_STRING_BYTES */
1325 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1329 /* Structure describing a block of memory which is sub-allocated to
1330 obtain string data memory for strings. Blocks for small strings
1331 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1332 as large as needed. */
1334 struct sblock
1336 /* Next in list. */
1337 struct sblock *next;
1339 /* Pointer to the next free sdata block. This points past the end
1340 of the sblock if there isn't any space left in this block. */
1341 struct sdata *next_free;
1343 /* Start of data. */
1344 struct sdata first_data;
1347 /* Number of Lisp strings in a string_block structure. The 1020 is
1348 1024 minus malloc overhead. */
1350 #define STRING_BLOCK_SIZE \
1351 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1353 /* Structure describing a block from which Lisp_String structures
1354 are allocated. */
1356 struct string_block
1358 /* Place `strings' first, to preserve alignment. */
1359 struct Lisp_String strings[STRING_BLOCK_SIZE];
1360 struct string_block *next;
1363 /* Head and tail of the list of sblock structures holding Lisp string
1364 data. We always allocate from current_sblock. The NEXT pointers
1365 in the sblock structures go from oldest_sblock to current_sblock. */
1367 static struct sblock *oldest_sblock, *current_sblock;
1369 /* List of sblocks for large strings. */
1371 static struct sblock *large_sblocks;
1373 /* List of string_block structures. */
1375 static struct string_block *string_blocks;
1377 /* Free-list of Lisp_Strings. */
1379 static struct Lisp_String *string_free_list;
1381 /* Number of live and free Lisp_Strings. */
1383 static EMACS_INT total_strings, total_free_strings;
1385 /* Number of bytes used by live strings. */
1387 static EMACS_INT total_string_bytes;
1389 /* Given a pointer to a Lisp_String S which is on the free-list
1390 string_free_list, return a pointer to its successor in the
1391 free-list. */
1393 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1395 /* Return a pointer to the sdata structure belonging to Lisp string S.
1396 S must be live, i.e. S->data must not be null. S->data is actually
1397 a pointer to the `u.data' member of its sdata structure; the
1398 structure starts at a constant offset in front of that. */
1400 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1403 #ifdef GC_CHECK_STRING_OVERRUN
1405 /* We check for overrun in string data blocks by appending a small
1406 "cookie" after each allocated string data block, and check for the
1407 presence of this cookie during GC. */
1409 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1410 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1411 { '\xde', '\xad', '\xbe', '\xef' };
1413 #else
1414 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1415 #endif
1417 /* Value is the size of an sdata structure large enough to hold NBYTES
1418 bytes of string data. The value returned includes a terminating
1419 NUL byte, the size of the sdata structure, and padding. */
1421 #ifdef GC_CHECK_STRING_BYTES
1423 #define SDATA_SIZE(NBYTES) \
1424 ((SDATA_DATA_OFFSET \
1425 + (NBYTES) + 1 \
1426 + sizeof (ptrdiff_t) - 1) \
1427 & ~(sizeof (ptrdiff_t) - 1))
1429 #else /* not GC_CHECK_STRING_BYTES */
1431 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1432 less than the size of that member. The 'max' is not needed when
1433 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1434 alignment code reserves enough space. */
1436 #define SDATA_SIZE(NBYTES) \
1437 ((SDATA_DATA_OFFSET \
1438 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1439 ? NBYTES \
1440 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1441 + 1 \
1442 + sizeof (ptrdiff_t) - 1) \
1443 & ~(sizeof (ptrdiff_t) - 1))
1445 #endif /* not GC_CHECK_STRING_BYTES */
1447 /* Extra bytes to allocate for each string. */
1449 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1451 /* Exact bound on the number of bytes in a string, not counting the
1452 terminating null. A string cannot contain more bytes than
1453 STRING_BYTES_BOUND, nor can it be so long that the size_t
1454 arithmetic in allocate_string_data would overflow while it is
1455 calculating a value to be passed to malloc. */
1456 static ptrdiff_t const STRING_BYTES_MAX =
1457 min (STRING_BYTES_BOUND,
1458 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1459 - GC_STRING_EXTRA
1460 - offsetof (struct sblock, first_data)
1461 - SDATA_DATA_OFFSET)
1462 & ~(sizeof (EMACS_INT) - 1)));
1464 /* Initialize string allocation. Called from init_alloc_once. */
1466 static void
1467 init_strings (void)
1469 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1470 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1474 #ifdef GC_CHECK_STRING_BYTES
1476 static int check_string_bytes_count;
1478 /* Like STRING_BYTES, but with debugging check. Can be
1479 called during GC, so pay attention to the mark bit. */
1481 ptrdiff_t
1482 string_bytes (struct Lisp_String *s)
1484 ptrdiff_t nbytes =
1485 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1487 if (!PURE_POINTER_P (s)
1488 && s->data
1489 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1490 emacs_abort ();
1491 return nbytes;
1494 /* Check validity of Lisp strings' string_bytes member in B. */
1496 static void
1497 check_sblock (struct sblock *b)
1499 struct sdata *from, *end, *from_end;
1501 end = b->next_free;
1503 for (from = &b->first_data; from < end; from = from_end)
1505 /* Compute the next FROM here because copying below may
1506 overwrite data we need to compute it. */
1507 ptrdiff_t nbytes;
1509 /* Check that the string size recorded in the string is the
1510 same as the one recorded in the sdata structure. */
1511 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1512 : SDATA_NBYTES (from));
1513 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1518 /* Check validity of Lisp strings' string_bytes member. ALL_P
1519 means check all strings, otherwise check only most
1520 recently allocated strings. Used for hunting a bug. */
1522 static void
1523 check_string_bytes (bool all_p)
1525 if (all_p)
1527 struct sblock *b;
1529 for (b = large_sblocks; b; b = b->next)
1531 struct Lisp_String *s = b->first_data.string;
1532 if (s)
1533 string_bytes (s);
1536 for (b = oldest_sblock; b; b = b->next)
1537 check_sblock (b);
1539 else if (current_sblock)
1540 check_sblock (current_sblock);
1543 #else /* not GC_CHECK_STRING_BYTES */
1545 #define check_string_bytes(all) ((void) 0)
1547 #endif /* GC_CHECK_STRING_BYTES */
1549 #ifdef GC_CHECK_STRING_FREE_LIST
1551 /* Walk through the string free list looking for bogus next pointers.
1552 This may catch buffer overrun from a previous string. */
1554 static void
1555 check_string_free_list (void)
1557 struct Lisp_String *s;
1559 /* Pop a Lisp_String off the free-list. */
1560 s = string_free_list;
1561 while (s != NULL)
1563 if ((uintptr_t) s < 1024)
1564 emacs_abort ();
1565 s = NEXT_FREE_LISP_STRING (s);
1568 #else
1569 #define check_string_free_list()
1570 #endif
1572 /* Return a new Lisp_String. */
1574 static struct Lisp_String *
1575 allocate_string (void)
1577 struct Lisp_String *s;
1579 MALLOC_BLOCK_INPUT;
1581 /* If the free-list is empty, allocate a new string_block, and
1582 add all the Lisp_Strings in it to the free-list. */
1583 if (string_free_list == NULL)
1585 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1586 int i;
1588 b->next = string_blocks;
1589 string_blocks = b;
1591 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1593 s = b->strings + i;
1594 /* Every string on a free list should have NULL data pointer. */
1595 s->data = NULL;
1596 NEXT_FREE_LISP_STRING (s) = string_free_list;
1597 string_free_list = s;
1600 total_free_strings += STRING_BLOCK_SIZE;
1603 check_string_free_list ();
1605 /* Pop a Lisp_String off the free-list. */
1606 s = string_free_list;
1607 string_free_list = NEXT_FREE_LISP_STRING (s);
1609 MALLOC_UNBLOCK_INPUT;
1611 --total_free_strings;
1612 ++total_strings;
1613 ++strings_consed;
1614 consing_since_gc += sizeof *s;
1616 #ifdef GC_CHECK_STRING_BYTES
1617 if (!noninteractive)
1619 if (++check_string_bytes_count == 200)
1621 check_string_bytes_count = 0;
1622 check_string_bytes (1);
1624 else
1625 check_string_bytes (0);
1627 #endif /* GC_CHECK_STRING_BYTES */
1629 return s;
1633 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1634 plus a NUL byte at the end. Allocate an sdata structure for S, and
1635 set S->data to its `u.data' member. Store a NUL byte at the end of
1636 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1637 S->data if it was initially non-null. */
1639 void
1640 allocate_string_data (struct Lisp_String *s,
1641 EMACS_INT nchars, EMACS_INT nbytes)
1643 struct sdata *data, *old_data;
1644 struct sblock *b;
1645 ptrdiff_t needed, old_nbytes;
1647 if (STRING_BYTES_MAX < nbytes)
1648 string_overflow ();
1650 /* Determine the number of bytes needed to store NBYTES bytes
1651 of string data. */
1652 needed = SDATA_SIZE (nbytes);
1653 if (s->data)
1655 old_data = SDATA_OF_STRING (s);
1656 old_nbytes = STRING_BYTES (s);
1658 else
1659 old_data = NULL;
1661 MALLOC_BLOCK_INPUT;
1663 if (nbytes > LARGE_STRING_BYTES)
1665 size_t size = offsetof (struct sblock, first_data) + needed;
1667 #ifdef DOUG_LEA_MALLOC
1668 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1669 because mapped region contents are not preserved in
1670 a dumped Emacs.
1672 In case you think of allowing it in a dumped Emacs at the
1673 cost of not being able to re-dump, there's another reason:
1674 mmap'ed data typically have an address towards the top of the
1675 address space, which won't fit into an EMACS_INT (at least on
1676 32-bit systems with the current tagging scheme). --fx */
1677 mallopt (M_MMAP_MAX, 0);
1678 #endif
1680 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1682 #ifdef DOUG_LEA_MALLOC
1683 /* Back to a reasonable maximum of mmap'ed areas. */
1684 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1685 #endif
1687 b->next_free = &b->first_data;
1688 b->first_data.string = NULL;
1689 b->next = large_sblocks;
1690 large_sblocks = b;
1692 else if (current_sblock == NULL
1693 || (((char *) current_sblock + SBLOCK_SIZE
1694 - (char *) current_sblock->next_free)
1695 < (needed + GC_STRING_EXTRA)))
1697 /* Not enough room in the current sblock. */
1698 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1699 b->next_free = &b->first_data;
1700 b->first_data.string = NULL;
1701 b->next = NULL;
1703 if (current_sblock)
1704 current_sblock->next = b;
1705 else
1706 oldest_sblock = b;
1707 current_sblock = b;
1709 else
1710 b = current_sblock;
1712 data = b->next_free;
1713 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1715 MALLOC_UNBLOCK_INPUT;
1717 data->string = s;
1718 s->data = SDATA_DATA (data);
1719 #ifdef GC_CHECK_STRING_BYTES
1720 SDATA_NBYTES (data) = nbytes;
1721 #endif
1722 s->size = nchars;
1723 s->size_byte = nbytes;
1724 s->data[nbytes] = '\0';
1725 #ifdef GC_CHECK_STRING_OVERRUN
1726 memcpy ((char *) data + needed, string_overrun_cookie,
1727 GC_STRING_OVERRUN_COOKIE_SIZE);
1728 #endif
1730 /* Note that Faset may call to this function when S has already data
1731 assigned. In this case, mark data as free by setting it's string
1732 back-pointer to null, and record the size of the data in it. */
1733 if (old_data)
1735 SDATA_NBYTES (old_data) = old_nbytes;
1736 old_data->string = NULL;
1739 consing_since_gc += needed;
1743 /* Sweep and compact strings. */
1745 static void
1746 sweep_strings (void)
1748 struct string_block *b, *next;
1749 struct string_block *live_blocks = NULL;
1751 string_free_list = NULL;
1752 total_strings = total_free_strings = 0;
1753 total_string_bytes = 0;
1755 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1756 for (b = string_blocks; b; b = next)
1758 int i, nfree = 0;
1759 struct Lisp_String *free_list_before = string_free_list;
1761 next = b->next;
1763 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1765 struct Lisp_String *s = b->strings + i;
1767 if (s->data)
1769 /* String was not on free-list before. */
1770 if (STRING_MARKED_P (s))
1772 /* String is live; unmark it and its intervals. */
1773 UNMARK_STRING (s);
1775 /* Do not use string_(set|get)_intervals here. */
1776 s->intervals = balance_intervals (s->intervals);
1778 ++total_strings;
1779 total_string_bytes += STRING_BYTES (s);
1781 else
1783 /* String is dead. Put it on the free-list. */
1784 struct sdata *data = SDATA_OF_STRING (s);
1786 /* Save the size of S in its sdata so that we know
1787 how large that is. Reset the sdata's string
1788 back-pointer so that we know it's free. */
1789 #ifdef GC_CHECK_STRING_BYTES
1790 if (string_bytes (s) != SDATA_NBYTES (data))
1791 emacs_abort ();
1792 #else
1793 data->u.nbytes = STRING_BYTES (s);
1794 #endif
1795 data->string = NULL;
1797 /* Reset the strings's `data' member so that we
1798 know it's free. */
1799 s->data = NULL;
1801 /* Put the string on the free-list. */
1802 NEXT_FREE_LISP_STRING (s) = string_free_list;
1803 string_free_list = s;
1804 ++nfree;
1807 else
1809 /* S was on the free-list before. Put it there again. */
1810 NEXT_FREE_LISP_STRING (s) = string_free_list;
1811 string_free_list = s;
1812 ++nfree;
1816 /* Free blocks that contain free Lisp_Strings only, except
1817 the first two of them. */
1818 if (nfree == STRING_BLOCK_SIZE
1819 && total_free_strings > STRING_BLOCK_SIZE)
1821 lisp_free (b);
1822 string_free_list = free_list_before;
1824 else
1826 total_free_strings += nfree;
1827 b->next = live_blocks;
1828 live_blocks = b;
1832 check_string_free_list ();
1834 string_blocks = live_blocks;
1835 free_large_strings ();
1836 compact_small_strings ();
1838 check_string_free_list ();
1842 /* Free dead large strings. */
1844 static void
1845 free_large_strings (void)
1847 struct sblock *b, *next;
1848 struct sblock *live_blocks = NULL;
1850 for (b = large_sblocks; b; b = next)
1852 next = b->next;
1854 if (b->first_data.string == NULL)
1855 lisp_free (b);
1856 else
1858 b->next = live_blocks;
1859 live_blocks = b;
1863 large_sblocks = live_blocks;
1867 /* Compact data of small strings. Free sblocks that don't contain
1868 data of live strings after compaction. */
1870 static void
1871 compact_small_strings (void)
1873 struct sblock *b, *tb, *next;
1874 struct sdata *from, *to, *end, *tb_end;
1875 struct sdata *to_end, *from_end;
1877 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1878 to, and TB_END is the end of TB. */
1879 tb = oldest_sblock;
1880 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1881 to = &tb->first_data;
1883 /* Step through the blocks from the oldest to the youngest. We
1884 expect that old blocks will stabilize over time, so that less
1885 copying will happen this way. */
1886 for (b = oldest_sblock; b; b = b->next)
1888 end = b->next_free;
1889 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1891 for (from = &b->first_data; from < end; from = from_end)
1893 /* Compute the next FROM here because copying below may
1894 overwrite data we need to compute it. */
1895 ptrdiff_t nbytes;
1896 struct Lisp_String *s = from->string;
1898 #ifdef GC_CHECK_STRING_BYTES
1899 /* Check that the string size recorded in the string is the
1900 same as the one recorded in the sdata structure. */
1901 if (s && string_bytes (s) != SDATA_NBYTES (from))
1902 emacs_abort ();
1903 #endif /* GC_CHECK_STRING_BYTES */
1905 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1906 eassert (nbytes <= LARGE_STRING_BYTES);
1908 nbytes = SDATA_SIZE (nbytes);
1909 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1911 #ifdef GC_CHECK_STRING_OVERRUN
1912 if (memcmp (string_overrun_cookie,
1913 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1914 GC_STRING_OVERRUN_COOKIE_SIZE))
1915 emacs_abort ();
1916 #endif
1918 /* Non-NULL S means it's alive. Copy its data. */
1919 if (s)
1921 /* If TB is full, proceed with the next sblock. */
1922 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1923 if (to_end > tb_end)
1925 tb->next_free = to;
1926 tb = tb->next;
1927 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1928 to = &tb->first_data;
1929 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1932 /* Copy, and update the string's `data' pointer. */
1933 if (from != to)
1935 eassert (tb != b || to < from);
1936 memmove (to, from, nbytes + GC_STRING_EXTRA);
1937 to->string->data = SDATA_DATA (to);
1940 /* Advance past the sdata we copied to. */
1941 to = to_end;
1946 /* The rest of the sblocks following TB don't contain live data, so
1947 we can free them. */
1948 for (b = tb->next; b; b = next)
1950 next = b->next;
1951 lisp_free (b);
1954 tb->next_free = to;
1955 tb->next = NULL;
1956 current_sblock = tb;
1959 void
1960 string_overflow (void)
1962 error ("Maximum string size exceeded");
1965 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1966 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1967 LENGTH must be an integer.
1968 INIT must be an integer that represents a character. */)
1969 (Lisp_Object length, Lisp_Object init)
1971 register Lisp_Object val;
1972 register unsigned char *p, *end;
1973 int c;
1974 EMACS_INT nbytes;
1976 CHECK_NATNUM (length);
1977 CHECK_CHARACTER (init);
1979 c = XFASTINT (init);
1980 if (ASCII_CHAR_P (c))
1982 nbytes = XINT (length);
1983 val = make_uninit_string (nbytes);
1984 p = SDATA (val);
1985 end = p + SCHARS (val);
1986 while (p != end)
1987 *p++ = c;
1989 else
1991 unsigned char str[MAX_MULTIBYTE_LENGTH];
1992 int len = CHAR_STRING (c, str);
1993 EMACS_INT string_len = XINT (length);
1995 if (string_len > STRING_BYTES_MAX / len)
1996 string_overflow ();
1997 nbytes = len * string_len;
1998 val = make_uninit_multibyte_string (string_len, nbytes);
1999 p = SDATA (val);
2000 end = p + nbytes;
2001 while (p != end)
2003 memcpy (p, str, len);
2004 p += len;
2008 *p = 0;
2009 return val;
2013 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2014 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2015 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2016 (Lisp_Object length, Lisp_Object init)
2018 register Lisp_Object val;
2019 struct Lisp_Bool_Vector *p;
2020 ptrdiff_t length_in_chars;
2021 EMACS_INT length_in_elts;
2022 int bits_per_value;
2023 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2024 / word_size);
2026 CHECK_NATNUM (length);
2028 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2030 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2032 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2034 /* No Lisp_Object to trace in there. */
2035 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2037 p = XBOOL_VECTOR (val);
2038 p->size = XFASTINT (length);
2040 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2041 / BOOL_VECTOR_BITS_PER_CHAR);
2042 if (length_in_chars)
2044 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2046 /* Clear any extraneous bits in the last byte. */
2047 p->data[length_in_chars - 1]
2048 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2051 return val;
2055 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2056 of characters from the contents. This string may be unibyte or
2057 multibyte, depending on the contents. */
2059 Lisp_Object
2060 make_string (const char *contents, ptrdiff_t nbytes)
2062 register Lisp_Object val;
2063 ptrdiff_t nchars, multibyte_nbytes;
2065 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2066 &nchars, &multibyte_nbytes);
2067 if (nbytes == nchars || nbytes != multibyte_nbytes)
2068 /* CONTENTS contains no multibyte sequences or contains an invalid
2069 multibyte sequence. We must make unibyte string. */
2070 val = make_unibyte_string (contents, nbytes);
2071 else
2072 val = make_multibyte_string (contents, nchars, nbytes);
2073 return val;
2077 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2079 Lisp_Object
2080 make_unibyte_string (const char *contents, ptrdiff_t length)
2082 register Lisp_Object val;
2083 val = make_uninit_string (length);
2084 memcpy (SDATA (val), contents, length);
2085 return val;
2089 /* Make a multibyte string from NCHARS characters occupying NBYTES
2090 bytes at CONTENTS. */
2092 Lisp_Object
2093 make_multibyte_string (const char *contents,
2094 ptrdiff_t nchars, ptrdiff_t nbytes)
2096 register Lisp_Object val;
2097 val = make_uninit_multibyte_string (nchars, nbytes);
2098 memcpy (SDATA (val), contents, nbytes);
2099 return val;
2103 /* Make a string from NCHARS characters occupying NBYTES bytes at
2104 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2106 Lisp_Object
2107 make_string_from_bytes (const char *contents,
2108 ptrdiff_t nchars, ptrdiff_t nbytes)
2110 register Lisp_Object val;
2111 val = make_uninit_multibyte_string (nchars, nbytes);
2112 memcpy (SDATA (val), contents, nbytes);
2113 if (SBYTES (val) == SCHARS (val))
2114 STRING_SET_UNIBYTE (val);
2115 return val;
2119 /* Make a string from NCHARS characters occupying NBYTES bytes at
2120 CONTENTS. The argument MULTIBYTE controls whether to label the
2121 string as multibyte. If NCHARS is negative, it counts the number of
2122 characters by itself. */
2124 Lisp_Object
2125 make_specified_string (const char *contents,
2126 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2128 Lisp_Object val;
2130 if (nchars < 0)
2132 if (multibyte)
2133 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2134 nbytes);
2135 else
2136 nchars = nbytes;
2138 val = make_uninit_multibyte_string (nchars, nbytes);
2139 memcpy (SDATA (val), contents, nbytes);
2140 if (!multibyte)
2141 STRING_SET_UNIBYTE (val);
2142 return val;
2146 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2147 occupying LENGTH bytes. */
2149 Lisp_Object
2150 make_uninit_string (EMACS_INT length)
2152 Lisp_Object val;
2154 if (!length)
2155 return empty_unibyte_string;
2156 val = make_uninit_multibyte_string (length, length);
2157 STRING_SET_UNIBYTE (val);
2158 return val;
2162 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2163 which occupy NBYTES bytes. */
2165 Lisp_Object
2166 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2168 Lisp_Object string;
2169 struct Lisp_String *s;
2171 if (nchars < 0)
2172 emacs_abort ();
2173 if (!nbytes)
2174 return empty_multibyte_string;
2176 s = allocate_string ();
2177 s->intervals = NULL;
2178 allocate_string_data (s, nchars, nbytes);
2179 XSETSTRING (string, s);
2180 string_chars_consed += nbytes;
2181 return string;
2184 /* Print arguments to BUF according to a FORMAT, then return
2185 a Lisp_String initialized with the data from BUF. */
2187 Lisp_Object
2188 make_formatted_string (char *buf, const char *format, ...)
2190 va_list ap;
2191 int length;
2193 va_start (ap, format);
2194 length = vsprintf (buf, format, ap);
2195 va_end (ap);
2196 return make_string (buf, length);
2200 /***********************************************************************
2201 Float Allocation
2202 ***********************************************************************/
2204 /* We store float cells inside of float_blocks, allocating a new
2205 float_block with malloc whenever necessary. Float cells reclaimed
2206 by GC are put on a free list to be reallocated before allocating
2207 any new float cells from the latest float_block. */
2209 #define FLOAT_BLOCK_SIZE \
2210 (((BLOCK_BYTES - sizeof (struct float_block *) \
2211 /* The compiler might add padding at the end. */ \
2212 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2213 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2215 #define GETMARKBIT(block,n) \
2216 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2217 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2218 & 1)
2220 #define SETMARKBIT(block,n) \
2221 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2222 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2224 #define UNSETMARKBIT(block,n) \
2225 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2226 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2228 #define FLOAT_BLOCK(fptr) \
2229 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2231 #define FLOAT_INDEX(fptr) \
2232 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2234 struct float_block
2236 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2237 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2238 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2239 struct float_block *next;
2242 #define FLOAT_MARKED_P(fptr) \
2243 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2245 #define FLOAT_MARK(fptr) \
2246 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2248 #define FLOAT_UNMARK(fptr) \
2249 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2251 /* Current float_block. */
2253 static struct float_block *float_block;
2255 /* Index of first unused Lisp_Float in the current float_block. */
2257 static int float_block_index = FLOAT_BLOCK_SIZE;
2259 /* Free-list of Lisp_Floats. */
2261 static struct Lisp_Float *float_free_list;
2263 /* Return a new float object with value FLOAT_VALUE. */
2265 Lisp_Object
2266 make_float (double float_value)
2268 register Lisp_Object val;
2270 MALLOC_BLOCK_INPUT;
2272 if (float_free_list)
2274 /* We use the data field for chaining the free list
2275 so that we won't use the same field that has the mark bit. */
2276 XSETFLOAT (val, float_free_list);
2277 float_free_list = float_free_list->u.chain;
2279 else
2281 if (float_block_index == FLOAT_BLOCK_SIZE)
2283 struct float_block *new
2284 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2285 new->next = float_block;
2286 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2287 float_block = new;
2288 float_block_index = 0;
2289 total_free_floats += FLOAT_BLOCK_SIZE;
2291 XSETFLOAT (val, &float_block->floats[float_block_index]);
2292 float_block_index++;
2295 MALLOC_UNBLOCK_INPUT;
2297 XFLOAT_INIT (val, float_value);
2298 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2299 consing_since_gc += sizeof (struct Lisp_Float);
2300 floats_consed++;
2301 total_free_floats--;
2302 return val;
2307 /***********************************************************************
2308 Cons Allocation
2309 ***********************************************************************/
2311 /* We store cons cells inside of cons_blocks, allocating a new
2312 cons_block with malloc whenever necessary. Cons cells reclaimed by
2313 GC are put on a free list to be reallocated before allocating
2314 any new cons cells from the latest cons_block. */
2316 #define CONS_BLOCK_SIZE \
2317 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2318 /* The compiler might add padding at the end. */ \
2319 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2320 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2322 #define CONS_BLOCK(fptr) \
2323 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2325 #define CONS_INDEX(fptr) \
2326 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2328 struct cons_block
2330 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2331 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2332 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2333 struct cons_block *next;
2336 #define CONS_MARKED_P(fptr) \
2337 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2339 #define CONS_MARK(fptr) \
2340 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2342 #define CONS_UNMARK(fptr) \
2343 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2345 /* Current cons_block. */
2347 static struct cons_block *cons_block;
2349 /* Index of first unused Lisp_Cons in the current block. */
2351 static int cons_block_index = CONS_BLOCK_SIZE;
2353 /* Free-list of Lisp_Cons structures. */
2355 static struct Lisp_Cons *cons_free_list;
2357 /* Explicitly free a cons cell by putting it on the free-list. */
2359 void
2360 free_cons (struct Lisp_Cons *ptr)
2362 ptr->u.chain = cons_free_list;
2363 #if GC_MARK_STACK
2364 ptr->car = Vdead;
2365 #endif
2366 cons_free_list = ptr;
2367 consing_since_gc -= sizeof *ptr;
2368 total_free_conses++;
2371 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2372 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2373 (Lisp_Object car, Lisp_Object cdr)
2375 register Lisp_Object val;
2377 MALLOC_BLOCK_INPUT;
2379 if (cons_free_list)
2381 /* We use the cdr for chaining the free list
2382 so that we won't use the same field that has the mark bit. */
2383 XSETCONS (val, cons_free_list);
2384 cons_free_list = cons_free_list->u.chain;
2386 else
2388 if (cons_block_index == CONS_BLOCK_SIZE)
2390 struct cons_block *new
2391 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2392 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2393 new->next = cons_block;
2394 cons_block = new;
2395 cons_block_index = 0;
2396 total_free_conses += CONS_BLOCK_SIZE;
2398 XSETCONS (val, &cons_block->conses[cons_block_index]);
2399 cons_block_index++;
2402 MALLOC_UNBLOCK_INPUT;
2404 XSETCAR (val, car);
2405 XSETCDR (val, cdr);
2406 eassert (!CONS_MARKED_P (XCONS (val)));
2407 consing_since_gc += sizeof (struct Lisp_Cons);
2408 total_free_conses--;
2409 cons_cells_consed++;
2410 return val;
2413 #ifdef GC_CHECK_CONS_LIST
2414 /* Get an error now if there's any junk in the cons free list. */
2415 void
2416 check_cons_list (void)
2418 struct Lisp_Cons *tail = cons_free_list;
2420 while (tail)
2421 tail = tail->u.chain;
2423 #endif
2425 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2427 Lisp_Object
2428 list1 (Lisp_Object arg1)
2430 return Fcons (arg1, Qnil);
2433 Lisp_Object
2434 list2 (Lisp_Object arg1, Lisp_Object arg2)
2436 return Fcons (arg1, Fcons (arg2, Qnil));
2440 Lisp_Object
2441 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2443 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2447 Lisp_Object
2448 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2450 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2454 Lisp_Object
2455 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2457 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2458 Fcons (arg5, Qnil)))));
2461 /* Make a list of COUNT Lisp_Objects, where ARG is the
2462 first one. Allocate conses from pure space if TYPE
2463 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2465 Lisp_Object
2466 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2468 va_list ap;
2469 ptrdiff_t i;
2470 Lisp_Object val, *objp;
2472 /* Change to SAFE_ALLOCA if you hit this eassert. */
2473 eassert (count <= MAX_ALLOCA / word_size);
2475 objp = alloca (count * word_size);
2476 objp[0] = arg;
2477 va_start (ap, arg);
2478 for (i = 1; i < count; i++)
2479 objp[i] = va_arg (ap, Lisp_Object);
2480 va_end (ap);
2482 for (val = Qnil, i = count - 1; i >= 0; i--)
2484 if (type == CONSTYPE_PURE)
2485 val = pure_cons (objp[i], val);
2486 else if (type == CONSTYPE_HEAP)
2487 val = Fcons (objp[i], val);
2488 else
2489 emacs_abort ();
2491 return val;
2494 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2495 doc: /* Return a newly created list with specified arguments as elements.
2496 Any number of arguments, even zero arguments, are allowed.
2497 usage: (list &rest OBJECTS) */)
2498 (ptrdiff_t nargs, Lisp_Object *args)
2500 register Lisp_Object val;
2501 val = Qnil;
2503 while (nargs > 0)
2505 nargs--;
2506 val = Fcons (args[nargs], val);
2508 return val;
2512 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2513 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2514 (register Lisp_Object length, Lisp_Object init)
2516 register Lisp_Object val;
2517 register EMACS_INT size;
2519 CHECK_NATNUM (length);
2520 size = XFASTINT (length);
2522 val = Qnil;
2523 while (size > 0)
2525 val = Fcons (init, val);
2526 --size;
2528 if (size > 0)
2530 val = Fcons (init, val);
2531 --size;
2533 if (size > 0)
2535 val = Fcons (init, val);
2536 --size;
2538 if (size > 0)
2540 val = Fcons (init, val);
2541 --size;
2543 if (size > 0)
2545 val = Fcons (init, val);
2546 --size;
2552 QUIT;
2555 return val;
2560 /***********************************************************************
2561 Vector Allocation
2562 ***********************************************************************/
2564 /* This value is balanced well enough to avoid too much internal overhead
2565 for the most common cases; it's not required to be a power of two, but
2566 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2568 #define VECTOR_BLOCK_SIZE 4096
2570 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2571 enum
2573 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2576 /* ROUNDUP_SIZE must be a power of 2. */
2577 verify ((roundup_size & (roundup_size - 1)) == 0);
2579 /* Verify assumptions described above. */
2580 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2581 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2583 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2585 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2587 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2589 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2591 /* Size of the minimal vector allocated from block. */
2593 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2595 /* Size of the largest vector allocated from block. */
2597 #define VBLOCK_BYTES_MAX \
2598 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2600 /* We maintain one free list for each possible block-allocated
2601 vector size, and this is the number of free lists we have. */
2603 #define VECTOR_MAX_FREE_LIST_INDEX \
2604 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2606 /* Common shortcut to advance vector pointer over a block data. */
2608 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2610 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2612 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2614 /* When V is on the free list, first word after header is used as a pointer
2615 to next vector on the free list. It might be done in a better way with:
2617 (*(struct Lisp_Vector **)&(v->contents[0]))
2619 but this breaks GCC's strict-aliasing rules (which looks more relaxed
2620 for char and void pointers). */
2622 #define NEXT_IN_FREE_LIST(v) \
2623 (*(struct Lisp_Vector **)((char *) v + header_size))
2625 /* Common shortcut to setup vector on a free list. */
2627 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2628 do { \
2629 (tmp) = ((nbytes - header_size) / word_size); \
2630 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2631 eassert ((nbytes) % roundup_size == 0); \
2632 (tmp) = VINDEX (nbytes); \
2633 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2634 NEXT_IN_FREE_LIST (v) = vector_free_lists[tmp]; \
2635 vector_free_lists[tmp] = (v); \
2636 total_free_vector_slots += (nbytes) / word_size; \
2637 } while (0)
2639 /* This internal type is used to maintain the list of large vectors
2640 which are allocated at their own, e.g. outside of vector blocks. */
2642 struct large_vector
2644 union {
2645 struct large_vector *vector;
2646 #if USE_LSB_TAG
2647 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2648 unsigned char c[vroundup (sizeof (struct large_vector *))];
2649 #endif
2650 } next;
2651 struct Lisp_Vector v;
2654 /* This internal type is used to maintain an underlying storage
2655 for small vectors. */
2657 struct vector_block
2659 char data[VECTOR_BLOCK_BYTES];
2660 struct vector_block *next;
2663 /* Chain of vector blocks. */
2665 static struct vector_block *vector_blocks;
2667 /* Vector free lists, where NTH item points to a chain of free
2668 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2670 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2672 /* Singly-linked list of large vectors. */
2674 static struct large_vector *large_vectors;
2676 /* The only vector with 0 slots, allocated from pure space. */
2678 Lisp_Object zero_vector;
2680 /* Number of live vectors. */
2682 static EMACS_INT total_vectors;
2684 /* Total size of live and free vectors, in Lisp_Object units. */
2686 static EMACS_INT total_vector_slots, total_free_vector_slots;
2688 /* Get a new vector block. */
2690 static struct vector_block *
2691 allocate_vector_block (void)
2693 struct vector_block *block = xmalloc (sizeof *block);
2695 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2696 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2697 MEM_TYPE_VECTOR_BLOCK);
2698 #endif
2700 block->next = vector_blocks;
2701 vector_blocks = block;
2702 return block;
2705 /* Called once to initialize vector allocation. */
2707 static void
2708 init_vectors (void)
2710 zero_vector = make_pure_vector (0);
2713 /* Allocate vector from a vector block. */
2715 static struct Lisp_Vector *
2716 allocate_vector_from_block (size_t nbytes)
2718 struct Lisp_Vector *vector;
2719 struct vector_block *block;
2720 size_t index, restbytes;
2722 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2723 eassert (nbytes % roundup_size == 0);
2725 /* First, try to allocate from a free list
2726 containing vectors of the requested size. */
2727 index = VINDEX (nbytes);
2728 if (vector_free_lists[index])
2730 vector = vector_free_lists[index];
2731 vector_free_lists[index] = NEXT_IN_FREE_LIST (vector);
2732 total_free_vector_slots -= nbytes / word_size;
2733 return vector;
2736 /* Next, check free lists containing larger vectors. Since
2737 we will split the result, we should have remaining space
2738 large enough to use for one-slot vector at least. */
2739 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2740 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2741 if (vector_free_lists[index])
2743 /* This vector is larger than requested. */
2744 vector = vector_free_lists[index];
2745 vector_free_lists[index] = NEXT_IN_FREE_LIST (vector);
2746 total_free_vector_slots -= nbytes / word_size;
2748 /* Excess bytes are used for the smaller vector,
2749 which should be set on an appropriate free list. */
2750 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2751 eassert (restbytes % roundup_size == 0);
2752 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2753 return vector;
2756 /* Finally, need a new vector block. */
2757 block = allocate_vector_block ();
2759 /* New vector will be at the beginning of this block. */
2760 vector = (struct Lisp_Vector *) block->data;
2762 /* If the rest of space from this block is large enough
2763 for one-slot vector at least, set up it on a free list. */
2764 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2765 if (restbytes >= VBLOCK_BYTES_MIN)
2767 eassert (restbytes % roundup_size == 0);
2768 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2770 return vector;
2773 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2775 #define VECTOR_IN_BLOCK(vector, block) \
2776 ((char *) (vector) <= (block)->data \
2777 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2779 /* Return the memory footprint of V in bytes. */
2781 static ptrdiff_t
2782 vector_nbytes (struct Lisp_Vector *v)
2784 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2786 if (size & PSEUDOVECTOR_FLAG)
2788 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2789 size = (bool_header_size
2790 + (((struct Lisp_Bool_Vector *) v)->size
2791 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2792 / BOOL_VECTOR_BITS_PER_CHAR);
2793 else
2794 size = (header_size
2795 + ((size & PSEUDOVECTOR_SIZE_MASK)
2796 + ((size & PSEUDOVECTOR_REST_MASK)
2797 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2799 else
2800 size = header_size + size * word_size;
2801 return vroundup (size);
2804 /* Reclaim space used by unmarked vectors. */
2806 static void
2807 sweep_vectors (void)
2809 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2810 struct large_vector *lv, **lvprev = &large_vectors;
2811 struct Lisp_Vector *vector, *next;
2813 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2814 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2816 /* Looking through vector blocks. */
2818 for (block = vector_blocks; block; block = *bprev)
2820 bool free_this_block = 0;
2821 ptrdiff_t nbytes;
2823 for (vector = (struct Lisp_Vector *) block->data;
2824 VECTOR_IN_BLOCK (vector, block); vector = next)
2826 if (VECTOR_MARKED_P (vector))
2828 VECTOR_UNMARK (vector);
2829 total_vectors++;
2830 nbytes = vector_nbytes (vector);
2831 total_vector_slots += nbytes / word_size;
2832 next = ADVANCE (vector, nbytes);
2834 else
2836 ptrdiff_t total_bytes;
2838 nbytes = vector_nbytes (vector);
2839 total_bytes = nbytes;
2840 next = ADVANCE (vector, nbytes);
2842 /* While NEXT is not marked, try to coalesce with VECTOR,
2843 thus making VECTOR of the largest possible size. */
2845 while (VECTOR_IN_BLOCK (next, block))
2847 if (VECTOR_MARKED_P (next))
2848 break;
2849 nbytes = vector_nbytes (next);
2850 total_bytes += nbytes;
2851 next = ADVANCE (next, nbytes);
2854 eassert (total_bytes % roundup_size == 0);
2856 if (vector == (struct Lisp_Vector *) block->data
2857 && !VECTOR_IN_BLOCK (next, block))
2858 /* This block should be freed because all of it's
2859 space was coalesced into the only free vector. */
2860 free_this_block = 1;
2861 else
2863 int tmp;
2864 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2869 if (free_this_block)
2871 *bprev = block->next;
2872 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2873 mem_delete (mem_find (block->data));
2874 #endif
2875 xfree (block);
2877 else
2878 bprev = &block->next;
2881 /* Sweep large vectors. */
2883 for (lv = large_vectors; lv; lv = *lvprev)
2885 vector = &lv->v;
2886 if (VECTOR_MARKED_P (vector))
2888 VECTOR_UNMARK (vector);
2889 total_vectors++;
2890 if (vector->header.size & PSEUDOVECTOR_FLAG)
2892 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2894 /* All non-bool pseudovectors are small enough to be allocated
2895 from vector blocks. This code should be redesigned if some
2896 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2897 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2899 total_vector_slots
2900 += (bool_header_size
2901 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2902 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2904 else
2905 total_vector_slots
2906 += header_size / word_size + vector->header.size;
2907 lvprev = &lv->next.vector;
2909 else
2911 *lvprev = lv->next.vector;
2912 lisp_free (lv);
2917 /* Value is a pointer to a newly allocated Lisp_Vector structure
2918 with room for LEN Lisp_Objects. */
2920 static struct Lisp_Vector *
2921 allocate_vectorlike (ptrdiff_t len)
2923 struct Lisp_Vector *p;
2925 MALLOC_BLOCK_INPUT;
2927 if (len == 0)
2928 p = XVECTOR (zero_vector);
2929 else
2931 size_t nbytes = header_size + len * word_size;
2933 #ifdef DOUG_LEA_MALLOC
2934 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2935 because mapped region contents are not preserved in
2936 a dumped Emacs. */
2937 mallopt (M_MMAP_MAX, 0);
2938 #endif
2940 if (nbytes <= VBLOCK_BYTES_MAX)
2941 p = allocate_vector_from_block (vroundup (nbytes));
2942 else
2944 struct large_vector *lv
2945 = lisp_malloc (sizeof (*lv) + (len - 1) * word_size,
2946 MEM_TYPE_VECTORLIKE);
2947 lv->next.vector = large_vectors;
2948 large_vectors = lv;
2949 p = &lv->v;
2952 #ifdef DOUG_LEA_MALLOC
2953 /* Back to a reasonable maximum of mmap'ed areas. */
2954 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2955 #endif
2957 consing_since_gc += nbytes;
2958 vector_cells_consed += len;
2961 MALLOC_UNBLOCK_INPUT;
2963 return p;
2967 /* Allocate a vector with LEN slots. */
2969 struct Lisp_Vector *
2970 allocate_vector (EMACS_INT len)
2972 struct Lisp_Vector *v;
2973 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2975 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2976 memory_full (SIZE_MAX);
2977 v = allocate_vectorlike (len);
2978 v->header.size = len;
2979 return v;
2983 /* Allocate other vector-like structures. */
2985 struct Lisp_Vector *
2986 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2988 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2989 int i;
2991 /* Catch bogus values. */
2992 eassert (tag <= PVEC_FONT);
2993 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2994 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2996 /* Only the first lisplen slots will be traced normally by the GC. */
2997 for (i = 0; i < lisplen; ++i)
2998 v->contents[i] = Qnil;
3000 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3001 return v;
3004 struct buffer *
3005 allocate_buffer (void)
3007 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3009 BUFFER_PVEC_INIT (b);
3010 /* Put B on the chain of all buffers including killed ones. */
3011 b->next = all_buffers;
3012 all_buffers = b;
3013 /* Note that the rest fields of B are not initialized. */
3014 return b;
3017 struct Lisp_Hash_Table *
3018 allocate_hash_table (void)
3020 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3023 struct window *
3024 allocate_window (void)
3026 struct window *w;
3028 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3029 /* Users assumes that non-Lisp data is zeroed. */
3030 memset (&w->current_matrix, 0,
3031 sizeof (*w) - offsetof (struct window, current_matrix));
3032 return w;
3035 struct terminal *
3036 allocate_terminal (void)
3038 struct terminal *t;
3040 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3041 /* Users assumes that non-Lisp data is zeroed. */
3042 memset (&t->next_terminal, 0,
3043 sizeof (*t) - offsetof (struct terminal, next_terminal));
3044 return t;
3047 struct frame *
3048 allocate_frame (void)
3050 struct frame *f;
3052 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3053 /* Users assumes that non-Lisp data is zeroed. */
3054 memset (&f->face_cache, 0,
3055 sizeof (*f) - offsetof (struct frame, face_cache));
3056 return f;
3059 struct Lisp_Process *
3060 allocate_process (void)
3062 struct Lisp_Process *p;
3064 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3065 /* Users assumes that non-Lisp data is zeroed. */
3066 memset (&p->pid, 0,
3067 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3068 return p;
3071 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3072 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3073 See also the function `vector'. */)
3074 (register Lisp_Object length, Lisp_Object init)
3076 Lisp_Object vector;
3077 register ptrdiff_t sizei;
3078 register ptrdiff_t i;
3079 register struct Lisp_Vector *p;
3081 CHECK_NATNUM (length);
3083 p = allocate_vector (XFASTINT (length));
3084 sizei = XFASTINT (length);
3085 for (i = 0; i < sizei; i++)
3086 p->contents[i] = init;
3088 XSETVECTOR (vector, p);
3089 return vector;
3093 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3094 doc: /* Return a newly created vector with specified arguments as elements.
3095 Any number of arguments, even zero arguments, are allowed.
3096 usage: (vector &rest OBJECTS) */)
3097 (ptrdiff_t nargs, Lisp_Object *args)
3099 register Lisp_Object len, val;
3100 ptrdiff_t i;
3101 register struct Lisp_Vector *p;
3103 XSETFASTINT (len, nargs);
3104 val = Fmake_vector (len, Qnil);
3105 p = XVECTOR (val);
3106 for (i = 0; i < nargs; i++)
3107 p->contents[i] = args[i];
3108 return val;
3111 void
3112 make_byte_code (struct Lisp_Vector *v)
3114 if (v->header.size > 1 && STRINGP (v->contents[1])
3115 && STRING_MULTIBYTE (v->contents[1]))
3116 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3117 earlier because they produced a raw 8-bit string for byte-code
3118 and now such a byte-code string is loaded as multibyte while
3119 raw 8-bit characters converted to multibyte form. Thus, now we
3120 must convert them back to the original unibyte form. */
3121 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3122 XSETPVECTYPE (v, PVEC_COMPILED);
3125 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3126 doc: /* Create a byte-code object with specified arguments as elements.
3127 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3128 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3129 and (optional) INTERACTIVE-SPEC.
3130 The first four arguments are required; at most six have any
3131 significance.
3132 The ARGLIST can be either like the one of `lambda', in which case the arguments
3133 will be dynamically bound before executing the byte code, or it can be an
3134 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3135 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3136 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3137 argument to catch the left-over arguments. If such an integer is used, the
3138 arguments will not be dynamically bound but will be instead pushed on the
3139 stack before executing the byte-code.
3140 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3141 (ptrdiff_t nargs, Lisp_Object *args)
3143 register Lisp_Object len, val;
3144 ptrdiff_t i;
3145 register struct Lisp_Vector *p;
3147 /* We used to purecopy everything here, if purify-flag was set. This worked
3148 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3149 dangerous, since make-byte-code is used during execution to build
3150 closures, so any closure built during the preload phase would end up
3151 copied into pure space, including its free variables, which is sometimes
3152 just wasteful and other times plainly wrong (e.g. those free vars may want
3153 to be setcar'd). */
3155 XSETFASTINT (len, nargs);
3156 val = Fmake_vector (len, Qnil);
3158 p = XVECTOR (val);
3159 for (i = 0; i < nargs; i++)
3160 p->contents[i] = args[i];
3161 make_byte_code (p);
3162 XSETCOMPILED (val, p);
3163 return val;
3168 /***********************************************************************
3169 Symbol Allocation
3170 ***********************************************************************/
3172 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3173 of the required alignment if LSB tags are used. */
3175 union aligned_Lisp_Symbol
3177 struct Lisp_Symbol s;
3178 #if USE_LSB_TAG
3179 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3180 & -GCALIGNMENT];
3181 #endif
3184 /* Each symbol_block is just under 1020 bytes long, since malloc
3185 really allocates in units of powers of two and uses 4 bytes for its
3186 own overhead. */
3188 #define SYMBOL_BLOCK_SIZE \
3189 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3191 struct symbol_block
3193 /* Place `symbols' first, to preserve alignment. */
3194 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3195 struct symbol_block *next;
3198 /* Current symbol block and index of first unused Lisp_Symbol
3199 structure in it. */
3201 static struct symbol_block *symbol_block;
3202 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3204 /* List of free symbols. */
3206 static struct Lisp_Symbol *symbol_free_list;
3208 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3209 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3210 Its value and function definition are void, and its property list is nil. */)
3211 (Lisp_Object name)
3213 register Lisp_Object val;
3214 register struct Lisp_Symbol *p;
3216 CHECK_STRING (name);
3218 MALLOC_BLOCK_INPUT;
3220 if (symbol_free_list)
3222 XSETSYMBOL (val, symbol_free_list);
3223 symbol_free_list = symbol_free_list->next;
3225 else
3227 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3229 struct symbol_block *new
3230 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3231 new->next = symbol_block;
3232 symbol_block = new;
3233 symbol_block_index = 0;
3234 total_free_symbols += SYMBOL_BLOCK_SIZE;
3236 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3237 symbol_block_index++;
3240 MALLOC_UNBLOCK_INPUT;
3242 p = XSYMBOL (val);
3243 set_symbol_name (val, name);
3244 set_symbol_plist (val, Qnil);
3245 p->redirect = SYMBOL_PLAINVAL;
3246 SET_SYMBOL_VAL (p, Qunbound);
3247 set_symbol_function (val, Qunbound);
3248 set_symbol_next (val, NULL);
3249 p->gcmarkbit = 0;
3250 p->interned = SYMBOL_UNINTERNED;
3251 p->constant = 0;
3252 p->declared_special = 0;
3253 consing_since_gc += sizeof (struct Lisp_Symbol);
3254 symbols_consed++;
3255 total_free_symbols--;
3256 return val;
3261 /***********************************************************************
3262 Marker (Misc) Allocation
3263 ***********************************************************************/
3265 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3266 the required alignment when LSB tags are used. */
3268 union aligned_Lisp_Misc
3270 union Lisp_Misc m;
3271 #if USE_LSB_TAG
3272 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3273 & -GCALIGNMENT];
3274 #endif
3277 /* Allocation of markers and other objects that share that structure.
3278 Works like allocation of conses. */
3280 #define MARKER_BLOCK_SIZE \
3281 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3283 struct marker_block
3285 /* Place `markers' first, to preserve alignment. */
3286 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3287 struct marker_block *next;
3290 static struct marker_block *marker_block;
3291 static int marker_block_index = MARKER_BLOCK_SIZE;
3293 static union Lisp_Misc *marker_free_list;
3295 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3297 static Lisp_Object
3298 allocate_misc (enum Lisp_Misc_Type type)
3300 Lisp_Object val;
3302 MALLOC_BLOCK_INPUT;
3304 if (marker_free_list)
3306 XSETMISC (val, marker_free_list);
3307 marker_free_list = marker_free_list->u_free.chain;
3309 else
3311 if (marker_block_index == MARKER_BLOCK_SIZE)
3313 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3314 new->next = marker_block;
3315 marker_block = new;
3316 marker_block_index = 0;
3317 total_free_markers += MARKER_BLOCK_SIZE;
3319 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3320 marker_block_index++;
3323 MALLOC_UNBLOCK_INPUT;
3325 --total_free_markers;
3326 consing_since_gc += sizeof (union Lisp_Misc);
3327 misc_objects_consed++;
3328 XMISCTYPE (val) = type;
3329 XMISCANY (val)->gcmarkbit = 0;
3330 return val;
3333 /* Free a Lisp_Misc object */
3335 static void
3336 free_misc (Lisp_Object misc)
3338 XMISCTYPE (misc) = Lisp_Misc_Free;
3339 XMISC (misc)->u_free.chain = marker_free_list;
3340 marker_free_list = XMISC (misc);
3341 consing_since_gc -= sizeof (union Lisp_Misc);
3342 total_free_markers++;
3345 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3346 INTEGER. This is used to package C values to call record_unwind_protect.
3347 The unwind function can get the C values back using XSAVE_VALUE. */
3349 Lisp_Object
3350 make_save_value (void *pointer, ptrdiff_t integer)
3352 register Lisp_Object val;
3353 register struct Lisp_Save_Value *p;
3355 val = allocate_misc (Lisp_Misc_Save_Value);
3356 p = XSAVE_VALUE (val);
3357 p->pointer = pointer;
3358 p->integer = integer;
3359 p->dogc = 0;
3360 return val;
3363 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3365 Lisp_Object
3366 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3368 register Lisp_Object overlay;
3370 overlay = allocate_misc (Lisp_Misc_Overlay);
3371 OVERLAY_START (overlay) = start;
3372 OVERLAY_END (overlay) = end;
3373 set_overlay_plist (overlay, plist);
3374 XOVERLAY (overlay)->next = NULL;
3375 return overlay;
3378 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3379 doc: /* Return a newly allocated marker which does not point at any place. */)
3380 (void)
3382 register Lisp_Object val;
3383 register struct Lisp_Marker *p;
3385 val = allocate_misc (Lisp_Misc_Marker);
3386 p = XMARKER (val);
3387 p->buffer = 0;
3388 p->bytepos = 0;
3389 p->charpos = 0;
3390 p->next = NULL;
3391 p->insertion_type = 0;
3392 return val;
3395 /* Return a newly allocated marker which points into BUF
3396 at character position CHARPOS and byte position BYTEPOS. */
3398 Lisp_Object
3399 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3401 Lisp_Object obj;
3402 struct Lisp_Marker *m;
3404 /* No dead buffers here. */
3405 eassert (BUFFER_LIVE_P (buf));
3407 /* Every character is at least one byte. */
3408 eassert (charpos <= bytepos);
3410 obj = allocate_misc (Lisp_Misc_Marker);
3411 m = XMARKER (obj);
3412 m->buffer = buf;
3413 m->charpos = charpos;
3414 m->bytepos = bytepos;
3415 m->insertion_type = 0;
3416 m->next = BUF_MARKERS (buf);
3417 BUF_MARKERS (buf) = m;
3418 return obj;
3421 /* Put MARKER back on the free list after using it temporarily. */
3423 void
3424 free_marker (Lisp_Object marker)
3426 unchain_marker (XMARKER (marker));
3427 free_misc (marker);
3431 /* Return a newly created vector or string with specified arguments as
3432 elements. If all the arguments are characters that can fit
3433 in a string of events, make a string; otherwise, make a vector.
3435 Any number of arguments, even zero arguments, are allowed. */
3437 Lisp_Object
3438 make_event_array (register int nargs, Lisp_Object *args)
3440 int i;
3442 for (i = 0; i < nargs; i++)
3443 /* The things that fit in a string
3444 are characters that are in 0...127,
3445 after discarding the meta bit and all the bits above it. */
3446 if (!INTEGERP (args[i])
3447 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3448 return Fvector (nargs, args);
3450 /* Since the loop exited, we know that all the things in it are
3451 characters, so we can make a string. */
3453 Lisp_Object result;
3455 result = Fmake_string (make_number (nargs), make_number (0));
3456 for (i = 0; i < nargs; i++)
3458 SSET (result, i, XINT (args[i]));
3459 /* Move the meta bit to the right place for a string char. */
3460 if (XINT (args[i]) & CHAR_META)
3461 SSET (result, i, SREF (result, i) | 0x80);
3464 return result;
3470 /************************************************************************
3471 Memory Full Handling
3472 ************************************************************************/
3475 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3476 there may have been size_t overflow so that malloc was never
3477 called, or perhaps malloc was invoked successfully but the
3478 resulting pointer had problems fitting into a tagged EMACS_INT. In
3479 either case this counts as memory being full even though malloc did
3480 not fail. */
3482 void
3483 memory_full (size_t nbytes)
3485 /* Do not go into hysterics merely because a large request failed. */
3486 bool enough_free_memory = 0;
3487 if (SPARE_MEMORY < nbytes)
3489 void *p;
3491 MALLOC_BLOCK_INPUT;
3492 p = malloc (SPARE_MEMORY);
3493 if (p)
3495 free (p);
3496 enough_free_memory = 1;
3498 MALLOC_UNBLOCK_INPUT;
3501 if (! enough_free_memory)
3503 int i;
3505 Vmemory_full = Qt;
3507 memory_full_cons_threshold = sizeof (struct cons_block);
3509 /* The first time we get here, free the spare memory. */
3510 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3511 if (spare_memory[i])
3513 if (i == 0)
3514 free (spare_memory[i]);
3515 else if (i >= 1 && i <= 4)
3516 lisp_align_free (spare_memory[i]);
3517 else
3518 lisp_free (spare_memory[i]);
3519 spare_memory[i] = 0;
3523 /* This used to call error, but if we've run out of memory, we could
3524 get infinite recursion trying to build the string. */
3525 xsignal (Qnil, Vmemory_signal_data);
3528 /* If we released our reserve (due to running out of memory),
3529 and we have a fair amount free once again,
3530 try to set aside another reserve in case we run out once more.
3532 This is called when a relocatable block is freed in ralloc.c,
3533 and also directly from this file, in case we're not using ralloc.c. */
3535 void
3536 refill_memory_reserve (void)
3538 #ifndef SYSTEM_MALLOC
3539 if (spare_memory[0] == 0)
3540 spare_memory[0] = malloc (SPARE_MEMORY);
3541 if (spare_memory[1] == 0)
3542 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3543 MEM_TYPE_SPARE);
3544 if (spare_memory[2] == 0)
3545 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3546 MEM_TYPE_SPARE);
3547 if (spare_memory[3] == 0)
3548 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3549 MEM_TYPE_SPARE);
3550 if (spare_memory[4] == 0)
3551 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3552 MEM_TYPE_SPARE);
3553 if (spare_memory[5] == 0)
3554 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3555 MEM_TYPE_SPARE);
3556 if (spare_memory[6] == 0)
3557 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3558 MEM_TYPE_SPARE);
3559 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3560 Vmemory_full = Qnil;
3561 #endif
3564 /************************************************************************
3565 C Stack Marking
3566 ************************************************************************/
3568 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3570 /* Conservative C stack marking requires a method to identify possibly
3571 live Lisp objects given a pointer value. We do this by keeping
3572 track of blocks of Lisp data that are allocated in a red-black tree
3573 (see also the comment of mem_node which is the type of nodes in
3574 that tree). Function lisp_malloc adds information for an allocated
3575 block to the red-black tree with calls to mem_insert, and function
3576 lisp_free removes it with mem_delete. Functions live_string_p etc
3577 call mem_find to lookup information about a given pointer in the
3578 tree, and use that to determine if the pointer points to a Lisp
3579 object or not. */
3581 /* Initialize this part of alloc.c. */
3583 static void
3584 mem_init (void)
3586 mem_z.left = mem_z.right = MEM_NIL;
3587 mem_z.parent = NULL;
3588 mem_z.color = MEM_BLACK;
3589 mem_z.start = mem_z.end = NULL;
3590 mem_root = MEM_NIL;
3594 /* Value is a pointer to the mem_node containing START. Value is
3595 MEM_NIL if there is no node in the tree containing START. */
3597 static struct mem_node *
3598 mem_find (void *start)
3600 struct mem_node *p;
3602 if (start < min_heap_address || start > max_heap_address)
3603 return MEM_NIL;
3605 /* Make the search always successful to speed up the loop below. */
3606 mem_z.start = start;
3607 mem_z.end = (char *) start + 1;
3609 p = mem_root;
3610 while (start < p->start || start >= p->end)
3611 p = start < p->start ? p->left : p->right;
3612 return p;
3616 /* Insert a new node into the tree for a block of memory with start
3617 address START, end address END, and type TYPE. Value is a
3618 pointer to the node that was inserted. */
3620 static struct mem_node *
3621 mem_insert (void *start, void *end, enum mem_type type)
3623 struct mem_node *c, *parent, *x;
3625 if (min_heap_address == NULL || start < min_heap_address)
3626 min_heap_address = start;
3627 if (max_heap_address == NULL || end > max_heap_address)
3628 max_heap_address = end;
3630 /* See where in the tree a node for START belongs. In this
3631 particular application, it shouldn't happen that a node is already
3632 present. For debugging purposes, let's check that. */
3633 c = mem_root;
3634 parent = NULL;
3636 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3638 while (c != MEM_NIL)
3640 if (start >= c->start && start < c->end)
3641 emacs_abort ();
3642 parent = c;
3643 c = start < c->start ? c->left : c->right;
3646 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3648 while (c != MEM_NIL)
3650 parent = c;
3651 c = start < c->start ? c->left : c->right;
3654 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3656 /* Create a new node. */
3657 #ifdef GC_MALLOC_CHECK
3658 x = malloc (sizeof *x);
3659 if (x == NULL)
3660 emacs_abort ();
3661 #else
3662 x = xmalloc (sizeof *x);
3663 #endif
3664 x->start = start;
3665 x->end = end;
3666 x->type = type;
3667 x->parent = parent;
3668 x->left = x->right = MEM_NIL;
3669 x->color = MEM_RED;
3671 /* Insert it as child of PARENT or install it as root. */
3672 if (parent)
3674 if (start < parent->start)
3675 parent->left = x;
3676 else
3677 parent->right = x;
3679 else
3680 mem_root = x;
3682 /* Re-establish red-black tree properties. */
3683 mem_insert_fixup (x);
3685 return x;
3689 /* Re-establish the red-black properties of the tree, and thereby
3690 balance the tree, after node X has been inserted; X is always red. */
3692 static void
3693 mem_insert_fixup (struct mem_node *x)
3695 while (x != mem_root && x->parent->color == MEM_RED)
3697 /* X is red and its parent is red. This is a violation of
3698 red-black tree property #3. */
3700 if (x->parent == x->parent->parent->left)
3702 /* We're on the left side of our grandparent, and Y is our
3703 "uncle". */
3704 struct mem_node *y = x->parent->parent->right;
3706 if (y->color == MEM_RED)
3708 /* Uncle and parent are red but should be black because
3709 X is red. Change the colors accordingly and proceed
3710 with the grandparent. */
3711 x->parent->color = MEM_BLACK;
3712 y->color = MEM_BLACK;
3713 x->parent->parent->color = MEM_RED;
3714 x = x->parent->parent;
3716 else
3718 /* Parent and uncle have different colors; parent is
3719 red, uncle is black. */
3720 if (x == x->parent->right)
3722 x = x->parent;
3723 mem_rotate_left (x);
3726 x->parent->color = MEM_BLACK;
3727 x->parent->parent->color = MEM_RED;
3728 mem_rotate_right (x->parent->parent);
3731 else
3733 /* This is the symmetrical case of above. */
3734 struct mem_node *y = x->parent->parent->left;
3736 if (y->color == MEM_RED)
3738 x->parent->color = MEM_BLACK;
3739 y->color = MEM_BLACK;
3740 x->parent->parent->color = MEM_RED;
3741 x = x->parent->parent;
3743 else
3745 if (x == x->parent->left)
3747 x = x->parent;
3748 mem_rotate_right (x);
3751 x->parent->color = MEM_BLACK;
3752 x->parent->parent->color = MEM_RED;
3753 mem_rotate_left (x->parent->parent);
3758 /* The root may have been changed to red due to the algorithm. Set
3759 it to black so that property #5 is satisfied. */
3760 mem_root->color = MEM_BLACK;
3764 /* (x) (y)
3765 / \ / \
3766 a (y) ===> (x) c
3767 / \ / \
3768 b c a b */
3770 static void
3771 mem_rotate_left (struct mem_node *x)
3773 struct mem_node *y;
3775 /* Turn y's left sub-tree into x's right sub-tree. */
3776 y = x->right;
3777 x->right = y->left;
3778 if (y->left != MEM_NIL)
3779 y->left->parent = x;
3781 /* Y's parent was x's parent. */
3782 if (y != MEM_NIL)
3783 y->parent = x->parent;
3785 /* Get the parent to point to y instead of x. */
3786 if (x->parent)
3788 if (x == x->parent->left)
3789 x->parent->left = y;
3790 else
3791 x->parent->right = y;
3793 else
3794 mem_root = y;
3796 /* Put x on y's left. */
3797 y->left = x;
3798 if (x != MEM_NIL)
3799 x->parent = y;
3803 /* (x) (Y)
3804 / \ / \
3805 (y) c ===> a (x)
3806 / \ / \
3807 a b b c */
3809 static void
3810 mem_rotate_right (struct mem_node *x)
3812 struct mem_node *y = x->left;
3814 x->left = y->right;
3815 if (y->right != MEM_NIL)
3816 y->right->parent = x;
3818 if (y != MEM_NIL)
3819 y->parent = x->parent;
3820 if (x->parent)
3822 if (x == x->parent->right)
3823 x->parent->right = y;
3824 else
3825 x->parent->left = y;
3827 else
3828 mem_root = y;
3830 y->right = x;
3831 if (x != MEM_NIL)
3832 x->parent = y;
3836 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3838 static void
3839 mem_delete (struct mem_node *z)
3841 struct mem_node *x, *y;
3843 if (!z || z == MEM_NIL)
3844 return;
3846 if (z->left == MEM_NIL || z->right == MEM_NIL)
3847 y = z;
3848 else
3850 y = z->right;
3851 while (y->left != MEM_NIL)
3852 y = y->left;
3855 if (y->left != MEM_NIL)
3856 x = y->left;
3857 else
3858 x = y->right;
3860 x->parent = y->parent;
3861 if (y->parent)
3863 if (y == y->parent->left)
3864 y->parent->left = x;
3865 else
3866 y->parent->right = x;
3868 else
3869 mem_root = x;
3871 if (y != z)
3873 z->start = y->start;
3874 z->end = y->end;
3875 z->type = y->type;
3878 if (y->color == MEM_BLACK)
3879 mem_delete_fixup (x);
3881 #ifdef GC_MALLOC_CHECK
3882 free (y);
3883 #else
3884 xfree (y);
3885 #endif
3889 /* Re-establish the red-black properties of the tree, after a
3890 deletion. */
3892 static void
3893 mem_delete_fixup (struct mem_node *x)
3895 while (x != mem_root && x->color == MEM_BLACK)
3897 if (x == x->parent->left)
3899 struct mem_node *w = x->parent->right;
3901 if (w->color == MEM_RED)
3903 w->color = MEM_BLACK;
3904 x->parent->color = MEM_RED;
3905 mem_rotate_left (x->parent);
3906 w = x->parent->right;
3909 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3911 w->color = MEM_RED;
3912 x = x->parent;
3914 else
3916 if (w->right->color == MEM_BLACK)
3918 w->left->color = MEM_BLACK;
3919 w->color = MEM_RED;
3920 mem_rotate_right (w);
3921 w = x->parent->right;
3923 w->color = x->parent->color;
3924 x->parent->color = MEM_BLACK;
3925 w->right->color = MEM_BLACK;
3926 mem_rotate_left (x->parent);
3927 x = mem_root;
3930 else
3932 struct mem_node *w = x->parent->left;
3934 if (w->color == MEM_RED)
3936 w->color = MEM_BLACK;
3937 x->parent->color = MEM_RED;
3938 mem_rotate_right (x->parent);
3939 w = x->parent->left;
3942 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3944 w->color = MEM_RED;
3945 x = x->parent;
3947 else
3949 if (w->left->color == MEM_BLACK)
3951 w->right->color = MEM_BLACK;
3952 w->color = MEM_RED;
3953 mem_rotate_left (w);
3954 w = x->parent->left;
3957 w->color = x->parent->color;
3958 x->parent->color = MEM_BLACK;
3959 w->left->color = MEM_BLACK;
3960 mem_rotate_right (x->parent);
3961 x = mem_root;
3966 x->color = MEM_BLACK;
3970 /* Value is non-zero if P is a pointer to a live Lisp string on
3971 the heap. M is a pointer to the mem_block for P. */
3973 static bool
3974 live_string_p (struct mem_node *m, void *p)
3976 if (m->type == MEM_TYPE_STRING)
3978 struct string_block *b = (struct string_block *) m->start;
3979 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3981 /* P must point to the start of a Lisp_String structure, and it
3982 must not be on the free-list. */
3983 return (offset >= 0
3984 && offset % sizeof b->strings[0] == 0
3985 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3986 && ((struct Lisp_String *) p)->data != NULL);
3988 else
3989 return 0;
3993 /* Value is non-zero if P is a pointer to a live Lisp cons on
3994 the heap. M is a pointer to the mem_block for P. */
3996 static bool
3997 live_cons_p (struct mem_node *m, void *p)
3999 if (m->type == MEM_TYPE_CONS)
4001 struct cons_block *b = (struct cons_block *) m->start;
4002 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4004 /* P must point to the start of a Lisp_Cons, not be
4005 one of the unused cells in the current cons block,
4006 and not be on the free-list. */
4007 return (offset >= 0
4008 && offset % sizeof b->conses[0] == 0
4009 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4010 && (b != cons_block
4011 || offset / sizeof b->conses[0] < cons_block_index)
4012 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4014 else
4015 return 0;
4019 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4020 the heap. M is a pointer to the mem_block for P. */
4022 static bool
4023 live_symbol_p (struct mem_node *m, void *p)
4025 if (m->type == MEM_TYPE_SYMBOL)
4027 struct symbol_block *b = (struct symbol_block *) m->start;
4028 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4030 /* P must point to the start of a Lisp_Symbol, not be
4031 one of the unused cells in the current symbol block,
4032 and not be on the free-list. */
4033 return (offset >= 0
4034 && offset % sizeof b->symbols[0] == 0
4035 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4036 && (b != symbol_block
4037 || offset / sizeof b->symbols[0] < symbol_block_index)
4038 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4040 else
4041 return 0;
4045 /* Value is non-zero if P is a pointer to a live Lisp float on
4046 the heap. M is a pointer to the mem_block for P. */
4048 static bool
4049 live_float_p (struct mem_node *m, void *p)
4051 if (m->type == MEM_TYPE_FLOAT)
4053 struct float_block *b = (struct float_block *) m->start;
4054 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4056 /* P must point to the start of a Lisp_Float and not be
4057 one of the unused cells in the current float block. */
4058 return (offset >= 0
4059 && offset % sizeof b->floats[0] == 0
4060 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4061 && (b != float_block
4062 || offset / sizeof b->floats[0] < float_block_index));
4064 else
4065 return 0;
4069 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4070 the heap. M is a pointer to the mem_block for P. */
4072 static bool
4073 live_misc_p (struct mem_node *m, void *p)
4075 if (m->type == MEM_TYPE_MISC)
4077 struct marker_block *b = (struct marker_block *) m->start;
4078 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4080 /* P must point to the start of a Lisp_Misc, not be
4081 one of the unused cells in the current misc block,
4082 and not be on the free-list. */
4083 return (offset >= 0
4084 && offset % sizeof b->markers[0] == 0
4085 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4086 && (b != marker_block
4087 || offset / sizeof b->markers[0] < marker_block_index)
4088 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4090 else
4091 return 0;
4095 /* Value is non-zero if P is a pointer to a live vector-like object.
4096 M is a pointer to the mem_block for P. */
4098 static bool
4099 live_vector_p (struct mem_node *m, void *p)
4101 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4103 /* This memory node corresponds to a vector block. */
4104 struct vector_block *block = (struct vector_block *) m->start;
4105 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4107 /* P is in the block's allocation range. Scan the block
4108 up to P and see whether P points to the start of some
4109 vector which is not on a free list. FIXME: check whether
4110 some allocation patterns (probably a lot of short vectors)
4111 may cause a substantial overhead of this loop. */
4112 while (VECTOR_IN_BLOCK (vector, block)
4113 && vector <= (struct Lisp_Vector *) p)
4115 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4116 return 1;
4117 else
4118 vector = ADVANCE (vector, vector_nbytes (vector));
4121 else if (m->type == MEM_TYPE_VECTORLIKE
4122 && (char *) p == ((char *) m->start
4123 + offsetof (struct large_vector, v)))
4124 /* This memory node corresponds to a large vector. */
4125 return 1;
4126 return 0;
4130 /* Value is non-zero if P is a pointer to a live buffer. M is a
4131 pointer to the mem_block for P. */
4133 static bool
4134 live_buffer_p (struct mem_node *m, void *p)
4136 /* P must point to the start of the block, and the buffer
4137 must not have been killed. */
4138 return (m->type == MEM_TYPE_BUFFER
4139 && p == m->start
4140 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4143 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4145 #if GC_MARK_STACK
4147 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4149 /* Array of objects that are kept alive because the C stack contains
4150 a pattern that looks like a reference to them . */
4152 #define MAX_ZOMBIES 10
4153 static Lisp_Object zombies[MAX_ZOMBIES];
4155 /* Number of zombie objects. */
4157 static EMACS_INT nzombies;
4159 /* Number of garbage collections. */
4161 static EMACS_INT ngcs;
4163 /* Average percentage of zombies per collection. */
4165 static double avg_zombies;
4167 /* Max. number of live and zombie objects. */
4169 static EMACS_INT max_live, max_zombies;
4171 /* Average number of live objects per GC. */
4173 static double avg_live;
4175 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4176 doc: /* Show information about live and zombie objects. */)
4177 (void)
4179 Lisp_Object args[8], zombie_list = Qnil;
4180 EMACS_INT i;
4181 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4182 zombie_list = Fcons (zombies[i], zombie_list);
4183 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4184 args[1] = make_number (ngcs);
4185 args[2] = make_float (avg_live);
4186 args[3] = make_float (avg_zombies);
4187 args[4] = make_float (avg_zombies / avg_live / 100);
4188 args[5] = make_number (max_live);
4189 args[6] = make_number (max_zombies);
4190 args[7] = zombie_list;
4191 return Fmessage (8, args);
4194 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4197 /* Mark OBJ if we can prove it's a Lisp_Object. */
4199 static void
4200 mark_maybe_object (Lisp_Object obj)
4202 void *po;
4203 struct mem_node *m;
4205 if (INTEGERP (obj))
4206 return;
4208 po = (void *) XPNTR (obj);
4209 m = mem_find (po);
4211 if (m != MEM_NIL)
4213 bool mark_p = 0;
4215 switch (XTYPE (obj))
4217 case Lisp_String:
4218 mark_p = (live_string_p (m, po)
4219 && !STRING_MARKED_P ((struct Lisp_String *) po));
4220 break;
4222 case Lisp_Cons:
4223 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4224 break;
4226 case Lisp_Symbol:
4227 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4228 break;
4230 case Lisp_Float:
4231 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4232 break;
4234 case Lisp_Vectorlike:
4235 /* Note: can't check BUFFERP before we know it's a
4236 buffer because checking that dereferences the pointer
4237 PO which might point anywhere. */
4238 if (live_vector_p (m, po))
4239 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4240 else if (live_buffer_p (m, po))
4241 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4242 break;
4244 case Lisp_Misc:
4245 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4246 break;
4248 default:
4249 break;
4252 if (mark_p)
4254 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4255 if (nzombies < MAX_ZOMBIES)
4256 zombies[nzombies] = obj;
4257 ++nzombies;
4258 #endif
4259 mark_object (obj);
4265 /* If P points to Lisp data, mark that as live if it isn't already
4266 marked. */
4268 static void
4269 mark_maybe_pointer (void *p)
4271 struct mem_node *m;
4273 /* Quickly rule out some values which can't point to Lisp data.
4274 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4275 Otherwise, assume that Lisp data is aligned on even addresses. */
4276 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4277 return;
4279 m = mem_find (p);
4280 if (m != MEM_NIL)
4282 Lisp_Object obj = Qnil;
4284 switch (m->type)
4286 case MEM_TYPE_NON_LISP:
4287 case MEM_TYPE_SPARE:
4288 /* Nothing to do; not a pointer to Lisp memory. */
4289 break;
4291 case MEM_TYPE_BUFFER:
4292 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4293 XSETVECTOR (obj, p);
4294 break;
4296 case MEM_TYPE_CONS:
4297 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4298 XSETCONS (obj, p);
4299 break;
4301 case MEM_TYPE_STRING:
4302 if (live_string_p (m, p)
4303 && !STRING_MARKED_P ((struct Lisp_String *) p))
4304 XSETSTRING (obj, p);
4305 break;
4307 case MEM_TYPE_MISC:
4308 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4309 XSETMISC (obj, p);
4310 break;
4312 case MEM_TYPE_SYMBOL:
4313 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4314 XSETSYMBOL (obj, p);
4315 break;
4317 case MEM_TYPE_FLOAT:
4318 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4319 XSETFLOAT (obj, p);
4320 break;
4322 case MEM_TYPE_VECTORLIKE:
4323 case MEM_TYPE_VECTOR_BLOCK:
4324 if (live_vector_p (m, p))
4326 Lisp_Object tem;
4327 XSETVECTOR (tem, p);
4328 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4329 obj = tem;
4331 break;
4333 default:
4334 emacs_abort ();
4337 if (!NILP (obj))
4338 mark_object (obj);
4343 /* Alignment of pointer values. Use alignof, as it sometimes returns
4344 a smaller alignment than GCC's __alignof__ and mark_memory might
4345 miss objects if __alignof__ were used. */
4346 #define GC_POINTER_ALIGNMENT alignof (void *)
4348 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4349 not suffice, which is the typical case. A host where a Lisp_Object is
4350 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4351 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4352 suffice to widen it to to a Lisp_Object and check it that way. */
4353 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4354 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4355 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4356 nor mark_maybe_object can follow the pointers. This should not occur on
4357 any practical porting target. */
4358 # error "MSB type bits straddle pointer-word boundaries"
4359 # endif
4360 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4361 pointer words that hold pointers ORed with type bits. */
4362 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4363 #else
4364 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4365 words that hold unmodified pointers. */
4366 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4367 #endif
4369 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4370 or END+OFFSET..START. */
4372 static void
4373 mark_memory (void *start, void *end)
4374 #if defined (__clang__) && defined (__has_feature)
4375 #if __has_feature(address_sanitizer)
4376 /* Do not allow -faddress-sanitizer to check this function, since it
4377 crosses the function stack boundary, and thus would yield many
4378 false positives. */
4379 __attribute__((no_address_safety_analysis))
4380 #endif
4381 #endif
4383 void **pp;
4384 int i;
4386 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4387 nzombies = 0;
4388 #endif
4390 /* Make START the pointer to the start of the memory region,
4391 if it isn't already. */
4392 if (end < start)
4394 void *tem = start;
4395 start = end;
4396 end = tem;
4399 /* Mark Lisp data pointed to. This is necessary because, in some
4400 situations, the C compiler optimizes Lisp objects away, so that
4401 only a pointer to them remains. Example:
4403 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4406 Lisp_Object obj = build_string ("test");
4407 struct Lisp_String *s = XSTRING (obj);
4408 Fgarbage_collect ();
4409 fprintf (stderr, "test `%s'\n", s->data);
4410 return Qnil;
4413 Here, `obj' isn't really used, and the compiler optimizes it
4414 away. The only reference to the life string is through the
4415 pointer `s'. */
4417 for (pp = start; (void *) pp < end; pp++)
4418 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4420 void *p = *(void **) ((char *) pp + i);
4421 mark_maybe_pointer (p);
4422 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4423 mark_maybe_object (XIL ((intptr_t) p));
4427 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4428 the GCC system configuration. In gcc 3.2, the only systems for
4429 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4430 by others?) and ns32k-pc532-min. */
4432 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4434 static bool setjmp_tested_p;
4435 static int longjmps_done;
4437 #define SETJMP_WILL_LIKELY_WORK "\
4439 Emacs garbage collector has been changed to use conservative stack\n\
4440 marking. Emacs has determined that the method it uses to do the\n\
4441 marking will likely work on your system, but this isn't sure.\n\
4443 If you are a system-programmer, or can get the help of a local wizard\n\
4444 who is, please take a look at the function mark_stack in alloc.c, and\n\
4445 verify that the methods used are appropriate for your system.\n\
4447 Please mail the result to <emacs-devel@gnu.org>.\n\
4450 #define SETJMP_WILL_NOT_WORK "\
4452 Emacs garbage collector has been changed to use conservative stack\n\
4453 marking. Emacs has determined that the default method it uses to do the\n\
4454 marking will not work on your system. We will need a system-dependent\n\
4455 solution for your system.\n\
4457 Please take a look at the function mark_stack in alloc.c, and\n\
4458 try to find a way to make it work on your system.\n\
4460 Note that you may get false negatives, depending on the compiler.\n\
4461 In particular, you need to use -O with GCC for this test.\n\
4463 Please mail the result to <emacs-devel@gnu.org>.\n\
4467 /* Perform a quick check if it looks like setjmp saves registers in a
4468 jmp_buf. Print a message to stderr saying so. When this test
4469 succeeds, this is _not_ a proof that setjmp is sufficient for
4470 conservative stack marking. Only the sources or a disassembly
4471 can prove that. */
4473 static void
4474 test_setjmp (void)
4476 char buf[10];
4477 register int x;
4478 sys_jmp_buf jbuf;
4480 /* Arrange for X to be put in a register. */
4481 sprintf (buf, "1");
4482 x = strlen (buf);
4483 x = 2 * x - 1;
4485 sys_setjmp (jbuf);
4486 if (longjmps_done == 1)
4488 /* Came here after the longjmp at the end of the function.
4490 If x == 1, the longjmp has restored the register to its
4491 value before the setjmp, and we can hope that setjmp
4492 saves all such registers in the jmp_buf, although that
4493 isn't sure.
4495 For other values of X, either something really strange is
4496 taking place, or the setjmp just didn't save the register. */
4498 if (x == 1)
4499 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4500 else
4502 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4503 exit (1);
4507 ++longjmps_done;
4508 x = 2;
4509 if (longjmps_done == 1)
4510 sys_longjmp (jbuf, 1);
4513 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4516 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4518 /* Abort if anything GCPRO'd doesn't survive the GC. */
4520 static void
4521 check_gcpros (void)
4523 struct gcpro *p;
4524 ptrdiff_t i;
4526 for (p = gcprolist; p; p = p->next)
4527 for (i = 0; i < p->nvars; ++i)
4528 if (!survives_gc_p (p->var[i]))
4529 /* FIXME: It's not necessarily a bug. It might just be that the
4530 GCPRO is unnecessary or should release the object sooner. */
4531 emacs_abort ();
4534 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4536 static void
4537 dump_zombies (void)
4539 int i;
4541 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4542 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4544 fprintf (stderr, " %d = ", i);
4545 debug_print (zombies[i]);
4549 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4552 /* Mark live Lisp objects on the C stack.
4554 There are several system-dependent problems to consider when
4555 porting this to new architectures:
4557 Processor Registers
4559 We have to mark Lisp objects in CPU registers that can hold local
4560 variables or are used to pass parameters.
4562 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4563 something that either saves relevant registers on the stack, or
4564 calls mark_maybe_object passing it each register's contents.
4566 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4567 implementation assumes that calling setjmp saves registers we need
4568 to see in a jmp_buf which itself lies on the stack. This doesn't
4569 have to be true! It must be verified for each system, possibly
4570 by taking a look at the source code of setjmp.
4572 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4573 can use it as a machine independent method to store all registers
4574 to the stack. In this case the macros described in the previous
4575 two paragraphs are not used.
4577 Stack Layout
4579 Architectures differ in the way their processor stack is organized.
4580 For example, the stack might look like this
4582 +----------------+
4583 | Lisp_Object | size = 4
4584 +----------------+
4585 | something else | size = 2
4586 +----------------+
4587 | Lisp_Object | size = 4
4588 +----------------+
4589 | ... |
4591 In such a case, not every Lisp_Object will be aligned equally. To
4592 find all Lisp_Object on the stack it won't be sufficient to walk
4593 the stack in steps of 4 bytes. Instead, two passes will be
4594 necessary, one starting at the start of the stack, and a second
4595 pass starting at the start of the stack + 2. Likewise, if the
4596 minimal alignment of Lisp_Objects on the stack is 1, four passes
4597 would be necessary, each one starting with one byte more offset
4598 from the stack start. */
4600 static void
4601 mark_stack (void)
4603 void *end;
4605 #ifdef HAVE___BUILTIN_UNWIND_INIT
4606 /* Force callee-saved registers and register windows onto the stack.
4607 This is the preferred method if available, obviating the need for
4608 machine dependent methods. */
4609 __builtin_unwind_init ();
4610 end = &end;
4611 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4612 #ifndef GC_SAVE_REGISTERS_ON_STACK
4613 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4614 union aligned_jmpbuf {
4615 Lisp_Object o;
4616 sys_jmp_buf j;
4617 } j;
4618 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4619 #endif
4620 /* This trick flushes the register windows so that all the state of
4621 the process is contained in the stack. */
4622 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4623 needed on ia64 too. See mach_dep.c, where it also says inline
4624 assembler doesn't work with relevant proprietary compilers. */
4625 #ifdef __sparc__
4626 #if defined (__sparc64__) && defined (__FreeBSD__)
4627 /* FreeBSD does not have a ta 3 handler. */
4628 asm ("flushw");
4629 #else
4630 asm ("ta 3");
4631 #endif
4632 #endif
4634 /* Save registers that we need to see on the stack. We need to see
4635 registers used to hold register variables and registers used to
4636 pass parameters. */
4637 #ifdef GC_SAVE_REGISTERS_ON_STACK
4638 GC_SAVE_REGISTERS_ON_STACK (end);
4639 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4641 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4642 setjmp will definitely work, test it
4643 and print a message with the result
4644 of the test. */
4645 if (!setjmp_tested_p)
4647 setjmp_tested_p = 1;
4648 test_setjmp ();
4650 #endif /* GC_SETJMP_WORKS */
4652 sys_setjmp (j.j);
4653 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4654 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4655 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4657 /* This assumes that the stack is a contiguous region in memory. If
4658 that's not the case, something has to be done here to iterate
4659 over the stack segments. */
4660 mark_memory (stack_base, end);
4662 /* Allow for marking a secondary stack, like the register stack on the
4663 ia64. */
4664 #ifdef GC_MARK_SECONDARY_STACK
4665 GC_MARK_SECONDARY_STACK ();
4666 #endif
4668 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4669 check_gcpros ();
4670 #endif
4673 #endif /* GC_MARK_STACK != 0 */
4676 /* Determine whether it is safe to access memory at address P. */
4677 static int
4678 valid_pointer_p (void *p)
4680 #ifdef WINDOWSNT
4681 return w32_valid_pointer_p (p, 16);
4682 #else
4683 int fd[2];
4685 /* Obviously, we cannot just access it (we would SEGV trying), so we
4686 trick the o/s to tell us whether p is a valid pointer.
4687 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4688 not validate p in that case. */
4690 if (pipe (fd) == 0)
4692 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4693 emacs_close (fd[1]);
4694 emacs_close (fd[0]);
4695 return valid;
4698 return -1;
4699 #endif
4702 /* Return 2 if OBJ is a killed or special buffer object.
4703 Return 1 if OBJ is a valid lisp object.
4704 Return 0 if OBJ is NOT a valid lisp object.
4705 Return -1 if we cannot validate OBJ.
4706 This function can be quite slow,
4707 so it should only be used in code for manual debugging. */
4710 valid_lisp_object_p (Lisp_Object obj)
4712 void *p;
4713 #if GC_MARK_STACK
4714 struct mem_node *m;
4715 #endif
4717 if (INTEGERP (obj))
4718 return 1;
4720 p = (void *) XPNTR (obj);
4721 if (PURE_POINTER_P (p))
4722 return 1;
4724 if (p == &buffer_defaults || p == &buffer_local_symbols)
4725 return 2;
4727 #if !GC_MARK_STACK
4728 return valid_pointer_p (p);
4729 #else
4731 m = mem_find (p);
4733 if (m == MEM_NIL)
4735 int valid = valid_pointer_p (p);
4736 if (valid <= 0)
4737 return valid;
4739 if (SUBRP (obj))
4740 return 1;
4742 return 0;
4745 switch (m->type)
4747 case MEM_TYPE_NON_LISP:
4748 case MEM_TYPE_SPARE:
4749 return 0;
4751 case MEM_TYPE_BUFFER:
4752 return live_buffer_p (m, p) ? 1 : 2;
4754 case MEM_TYPE_CONS:
4755 return live_cons_p (m, p);
4757 case MEM_TYPE_STRING:
4758 return live_string_p (m, p);
4760 case MEM_TYPE_MISC:
4761 return live_misc_p (m, p);
4763 case MEM_TYPE_SYMBOL:
4764 return live_symbol_p (m, p);
4766 case MEM_TYPE_FLOAT:
4767 return live_float_p (m, p);
4769 case MEM_TYPE_VECTORLIKE:
4770 case MEM_TYPE_VECTOR_BLOCK:
4771 return live_vector_p (m, p);
4773 default:
4774 break;
4777 return 0;
4778 #endif
4784 /***********************************************************************
4785 Pure Storage Management
4786 ***********************************************************************/
4788 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4789 pointer to it. TYPE is the Lisp type for which the memory is
4790 allocated. TYPE < 0 means it's not used for a Lisp object. */
4792 static void *
4793 pure_alloc (size_t size, int type)
4795 void *result;
4796 #if USE_LSB_TAG
4797 size_t alignment = GCALIGNMENT;
4798 #else
4799 size_t alignment = alignof (EMACS_INT);
4801 /* Give Lisp_Floats an extra alignment. */
4802 if (type == Lisp_Float)
4803 alignment = alignof (struct Lisp_Float);
4804 #endif
4806 again:
4807 if (type >= 0)
4809 /* Allocate space for a Lisp object from the beginning of the free
4810 space with taking account of alignment. */
4811 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4812 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4814 else
4816 /* Allocate space for a non-Lisp object from the end of the free
4817 space. */
4818 pure_bytes_used_non_lisp += size;
4819 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4821 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4823 if (pure_bytes_used <= pure_size)
4824 return result;
4826 /* Don't allocate a large amount here,
4827 because it might get mmap'd and then its address
4828 might not be usable. */
4829 purebeg = xmalloc (10000);
4830 pure_size = 10000;
4831 pure_bytes_used_before_overflow += pure_bytes_used - size;
4832 pure_bytes_used = 0;
4833 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4834 goto again;
4838 /* Print a warning if PURESIZE is too small. */
4840 void
4841 check_pure_size (void)
4843 if (pure_bytes_used_before_overflow)
4844 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4845 " bytes needed)"),
4846 pure_bytes_used + pure_bytes_used_before_overflow);
4850 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4851 the non-Lisp data pool of the pure storage, and return its start
4852 address. Return NULL if not found. */
4854 static char *
4855 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4857 int i;
4858 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4859 const unsigned char *p;
4860 char *non_lisp_beg;
4862 if (pure_bytes_used_non_lisp <= nbytes)
4863 return NULL;
4865 /* Set up the Boyer-Moore table. */
4866 skip = nbytes + 1;
4867 for (i = 0; i < 256; i++)
4868 bm_skip[i] = skip;
4870 p = (const unsigned char *) data;
4871 while (--skip > 0)
4872 bm_skip[*p++] = skip;
4874 last_char_skip = bm_skip['\0'];
4876 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4877 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4879 /* See the comments in the function `boyer_moore' (search.c) for the
4880 use of `infinity'. */
4881 infinity = pure_bytes_used_non_lisp + 1;
4882 bm_skip['\0'] = infinity;
4884 p = (const unsigned char *) non_lisp_beg + nbytes;
4885 start = 0;
4888 /* Check the last character (== '\0'). */
4891 start += bm_skip[*(p + start)];
4893 while (start <= start_max);
4895 if (start < infinity)
4896 /* Couldn't find the last character. */
4897 return NULL;
4899 /* No less than `infinity' means we could find the last
4900 character at `p[start - infinity]'. */
4901 start -= infinity;
4903 /* Check the remaining characters. */
4904 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4905 /* Found. */
4906 return non_lisp_beg + start;
4908 start += last_char_skip;
4910 while (start <= start_max);
4912 return NULL;
4916 /* Return a string allocated in pure space. DATA is a buffer holding
4917 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4918 means make the result string multibyte.
4920 Must get an error if pure storage is full, since if it cannot hold
4921 a large string it may be able to hold conses that point to that
4922 string; then the string is not protected from gc. */
4924 Lisp_Object
4925 make_pure_string (const char *data,
4926 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4928 Lisp_Object string;
4929 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4930 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4931 if (s->data == NULL)
4933 s->data = pure_alloc (nbytes + 1, -1);
4934 memcpy (s->data, data, nbytes);
4935 s->data[nbytes] = '\0';
4937 s->size = nchars;
4938 s->size_byte = multibyte ? nbytes : -1;
4939 s->intervals = NULL;
4940 XSETSTRING (string, s);
4941 return string;
4944 /* Return a string allocated in pure space. Do not
4945 allocate the string data, just point to DATA. */
4947 Lisp_Object
4948 make_pure_c_string (const char *data, ptrdiff_t nchars)
4950 Lisp_Object string;
4951 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4952 s->size = nchars;
4953 s->size_byte = -1;
4954 s->data = (unsigned char *) data;
4955 s->intervals = NULL;
4956 XSETSTRING (string, s);
4957 return string;
4960 /* Return a cons allocated from pure space. Give it pure copies
4961 of CAR as car and CDR as cdr. */
4963 Lisp_Object
4964 pure_cons (Lisp_Object car, Lisp_Object cdr)
4966 Lisp_Object new;
4967 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
4968 XSETCONS (new, p);
4969 XSETCAR (new, Fpurecopy (car));
4970 XSETCDR (new, Fpurecopy (cdr));
4971 return new;
4975 /* Value is a float object with value NUM allocated from pure space. */
4977 static Lisp_Object
4978 make_pure_float (double num)
4980 Lisp_Object new;
4981 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
4982 XSETFLOAT (new, p);
4983 XFLOAT_INIT (new, num);
4984 return new;
4988 /* Return a vector with room for LEN Lisp_Objects allocated from
4989 pure space. */
4991 static Lisp_Object
4992 make_pure_vector (ptrdiff_t len)
4994 Lisp_Object new;
4995 size_t size = header_size + len * word_size;
4996 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
4997 XSETVECTOR (new, p);
4998 XVECTOR (new)->header.size = len;
4999 return new;
5003 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5004 doc: /* Make a copy of object OBJ in pure storage.
5005 Recursively copies contents of vectors and cons cells.
5006 Does not copy symbols. Copies strings without text properties. */)
5007 (register Lisp_Object obj)
5009 if (NILP (Vpurify_flag))
5010 return obj;
5012 if (PURE_POINTER_P (XPNTR (obj)))
5013 return obj;
5015 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5017 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5018 if (!NILP (tmp))
5019 return tmp;
5022 if (CONSP (obj))
5023 obj = pure_cons (XCAR (obj), XCDR (obj));
5024 else if (FLOATP (obj))
5025 obj = make_pure_float (XFLOAT_DATA (obj));
5026 else if (STRINGP (obj))
5027 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5028 SBYTES (obj),
5029 STRING_MULTIBYTE (obj));
5030 else if (COMPILEDP (obj) || VECTORP (obj))
5032 register struct Lisp_Vector *vec;
5033 register ptrdiff_t i;
5034 ptrdiff_t size;
5036 size = ASIZE (obj);
5037 if (size & PSEUDOVECTOR_FLAG)
5038 size &= PSEUDOVECTOR_SIZE_MASK;
5039 vec = XVECTOR (make_pure_vector (size));
5040 for (i = 0; i < size; i++)
5041 vec->contents[i] = Fpurecopy (AREF (obj, i));
5042 if (COMPILEDP (obj))
5044 XSETPVECTYPE (vec, PVEC_COMPILED);
5045 XSETCOMPILED (obj, vec);
5047 else
5048 XSETVECTOR (obj, vec);
5050 else if (MARKERP (obj))
5051 error ("Attempt to copy a marker to pure storage");
5052 else
5053 /* Not purified, don't hash-cons. */
5054 return obj;
5056 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5057 Fputhash (obj, obj, Vpurify_flag);
5059 return obj;
5064 /***********************************************************************
5065 Protection from GC
5066 ***********************************************************************/
5068 /* Put an entry in staticvec, pointing at the variable with address
5069 VARADDRESS. */
5071 void
5072 staticpro (Lisp_Object *varaddress)
5074 staticvec[staticidx++] = varaddress;
5075 if (staticidx >= NSTATICS)
5076 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5080 /***********************************************************************
5081 Protection from GC
5082 ***********************************************************************/
5084 /* Temporarily prevent garbage collection. */
5086 ptrdiff_t
5087 inhibit_garbage_collection (void)
5089 ptrdiff_t count = SPECPDL_INDEX ();
5091 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5092 return count;
5095 /* Used to avoid possible overflows when
5096 converting from C to Lisp integers. */
5098 static Lisp_Object
5099 bounded_number (EMACS_INT number)
5101 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5104 /* Calculate total bytes of live objects. */
5106 static size_t
5107 total_bytes_of_live_objects (void)
5109 size_t tot = 0;
5110 tot += total_conses * sizeof (struct Lisp_Cons);
5111 tot += total_symbols * sizeof (struct Lisp_Symbol);
5112 tot += total_markers * sizeof (union Lisp_Misc);
5113 tot += total_string_bytes;
5114 tot += total_vector_slots * word_size;
5115 tot += total_floats * sizeof (struct Lisp_Float);
5116 tot += total_intervals * sizeof (struct interval);
5117 tot += total_strings * sizeof (struct Lisp_String);
5118 return tot;
5121 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5122 doc: /* Reclaim storage for Lisp objects no longer needed.
5123 Garbage collection happens automatically if you cons more than
5124 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5125 `garbage-collect' normally returns a list with info on amount of space in use,
5126 where each entry has the form (NAME SIZE USED FREE), where:
5127 - NAME is a symbol describing the kind of objects this entry represents,
5128 - SIZE is the number of bytes used by each one,
5129 - USED is the number of those objects that were found live in the heap,
5130 - FREE is the number of those objects that are not live but that Emacs
5131 keeps around for future allocations (maybe because it does not know how
5132 to return them to the OS).
5133 However, if there was overflow in pure space, `garbage-collect'
5134 returns nil, because real GC can't be done.
5135 See Info node `(elisp)Garbage Collection'. */)
5136 (void)
5138 struct specbinding *bind;
5139 struct buffer *nextb;
5140 char stack_top_variable;
5141 ptrdiff_t i;
5142 bool message_p;
5143 ptrdiff_t count = SPECPDL_INDEX ();
5144 EMACS_TIME start;
5145 Lisp_Object retval = Qnil;
5146 size_t tot_before = 0;
5147 struct backtrace backtrace;
5149 if (abort_on_gc)
5150 emacs_abort ();
5152 /* Can't GC if pure storage overflowed because we can't determine
5153 if something is a pure object or not. */
5154 if (pure_bytes_used_before_overflow)
5155 return Qnil;
5157 /* Record this function, so it appears on the profiler's backtraces. */
5158 backtrace.next = backtrace_list;
5159 backtrace.function = Qautomatic_gc;
5160 backtrace.args = &Qnil;
5161 backtrace.nargs = 0;
5162 backtrace.debug_on_exit = 0;
5163 backtrace_list = &backtrace;
5165 check_cons_list ();
5167 /* Don't keep undo information around forever.
5168 Do this early on, so it is no problem if the user quits. */
5169 FOR_EACH_BUFFER (nextb)
5170 compact_buffer (nextb);
5172 if (profiler_memory_running)
5173 tot_before = total_bytes_of_live_objects ();
5175 start = current_emacs_time ();
5177 /* In case user calls debug_print during GC,
5178 don't let that cause a recursive GC. */
5179 consing_since_gc = 0;
5181 /* Save what's currently displayed in the echo area. */
5182 message_p = push_message ();
5183 record_unwind_protect (pop_message_unwind, Qnil);
5185 /* Save a copy of the contents of the stack, for debugging. */
5186 #if MAX_SAVE_STACK > 0
5187 if (NILP (Vpurify_flag))
5189 char *stack;
5190 ptrdiff_t stack_size;
5191 if (&stack_top_variable < stack_bottom)
5193 stack = &stack_top_variable;
5194 stack_size = stack_bottom - &stack_top_variable;
5196 else
5198 stack = stack_bottom;
5199 stack_size = &stack_top_variable - stack_bottom;
5201 if (stack_size <= MAX_SAVE_STACK)
5203 if (stack_copy_size < stack_size)
5205 stack_copy = xrealloc (stack_copy, stack_size);
5206 stack_copy_size = stack_size;
5208 memcpy (stack_copy, stack, stack_size);
5211 #endif /* MAX_SAVE_STACK > 0 */
5213 if (garbage_collection_messages)
5214 message1_nolog ("Garbage collecting...");
5216 block_input ();
5218 shrink_regexp_cache ();
5220 gc_in_progress = 1;
5222 /* Mark all the special slots that serve as the roots of accessibility. */
5224 mark_buffer (&buffer_defaults);
5225 mark_buffer (&buffer_local_symbols);
5227 for (i = 0; i < staticidx; i++)
5228 mark_object (*staticvec[i]);
5230 for (bind = specpdl; bind != specpdl_ptr; bind++)
5232 mark_object (bind->symbol);
5233 mark_object (bind->old_value);
5235 mark_terminals ();
5236 mark_kboards ();
5238 #ifdef USE_GTK
5239 xg_mark_data ();
5240 #endif
5242 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5243 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5244 mark_stack ();
5245 #else
5247 register struct gcpro *tail;
5248 for (tail = gcprolist; tail; tail = tail->next)
5249 for (i = 0; i < tail->nvars; i++)
5250 mark_object (tail->var[i]);
5252 mark_byte_stack ();
5254 struct catchtag *catch;
5255 struct handler *handler;
5257 for (catch = catchlist; catch; catch = catch->next)
5259 mark_object (catch->tag);
5260 mark_object (catch->val);
5262 for (handler = handlerlist; handler; handler = handler->next)
5264 mark_object (handler->handler);
5265 mark_object (handler->var);
5268 mark_backtrace ();
5269 #endif
5271 #ifdef HAVE_WINDOW_SYSTEM
5272 mark_fringe_data ();
5273 #endif
5275 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5276 mark_stack ();
5277 #endif
5279 /* Everything is now marked, except for the things that require special
5280 finalization, i.e. the undo_list.
5281 Look thru every buffer's undo list
5282 for elements that update markers that were not marked,
5283 and delete them. */
5284 FOR_EACH_BUFFER (nextb)
5286 /* If a buffer's undo list is Qt, that means that undo is
5287 turned off in that buffer. Calling truncate_undo_list on
5288 Qt tends to return NULL, which effectively turns undo back on.
5289 So don't call truncate_undo_list if undo_list is Qt. */
5290 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5292 Lisp_Object tail, prev;
5293 tail = nextb->INTERNAL_FIELD (undo_list);
5294 prev = Qnil;
5295 while (CONSP (tail))
5297 if (CONSP (XCAR (tail))
5298 && MARKERP (XCAR (XCAR (tail)))
5299 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5301 if (NILP (prev))
5302 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5303 else
5305 tail = XCDR (tail);
5306 XSETCDR (prev, tail);
5309 else
5311 prev = tail;
5312 tail = XCDR (tail);
5316 /* Now that we have stripped the elements that need not be in the
5317 undo_list any more, we can finally mark the list. */
5318 mark_object (nextb->INTERNAL_FIELD (undo_list));
5321 gc_sweep ();
5323 /* Clear the mark bits that we set in certain root slots. */
5325 unmark_byte_stack ();
5326 VECTOR_UNMARK (&buffer_defaults);
5327 VECTOR_UNMARK (&buffer_local_symbols);
5329 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5330 dump_zombies ();
5331 #endif
5333 unblock_input ();
5335 check_cons_list ();
5337 gc_in_progress = 0;
5339 consing_since_gc = 0;
5340 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5341 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5343 gc_relative_threshold = 0;
5344 if (FLOATP (Vgc_cons_percentage))
5345 { /* Set gc_cons_combined_threshold. */
5346 double tot = total_bytes_of_live_objects ();
5348 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5349 if (0 < tot)
5351 if (tot < TYPE_MAXIMUM (EMACS_INT))
5352 gc_relative_threshold = tot;
5353 else
5354 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5358 if (garbage_collection_messages)
5360 if (message_p || minibuf_level > 0)
5361 restore_message ();
5362 else
5363 message1_nolog ("Garbage collecting...done");
5366 unbind_to (count, Qnil);
5368 Lisp_Object total[11];
5369 int total_size = 10;
5371 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5372 bounded_number (total_conses),
5373 bounded_number (total_free_conses));
5375 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5376 bounded_number (total_symbols),
5377 bounded_number (total_free_symbols));
5379 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5380 bounded_number (total_markers),
5381 bounded_number (total_free_markers));
5383 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5384 bounded_number (total_strings),
5385 bounded_number (total_free_strings));
5387 total[4] = list3 (Qstring_bytes, make_number (1),
5388 bounded_number (total_string_bytes));
5390 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5391 bounded_number (total_vectors));
5393 total[6] = list4 (Qvector_slots, make_number (word_size),
5394 bounded_number (total_vector_slots),
5395 bounded_number (total_free_vector_slots));
5397 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5398 bounded_number (total_floats),
5399 bounded_number (total_free_floats));
5401 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5402 bounded_number (total_intervals),
5403 bounded_number (total_free_intervals));
5405 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5406 bounded_number (total_buffers));
5408 #ifdef DOUG_LEA_MALLOC
5409 total_size++;
5410 total[10] = list4 (Qheap, make_number (1024),
5411 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5412 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5413 #endif
5414 retval = Flist (total_size, total);
5417 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5419 /* Compute average percentage of zombies. */
5420 double nlive
5421 = (total_conses + total_symbols + total_markers + total_strings
5422 + total_vectors + total_floats + total_intervals + total_buffers);
5424 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5425 max_live = max (nlive, max_live);
5426 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5427 max_zombies = max (nzombies, max_zombies);
5428 ++ngcs;
5430 #endif
5432 if (!NILP (Vpost_gc_hook))
5434 ptrdiff_t gc_count = inhibit_garbage_collection ();
5435 safe_run_hooks (Qpost_gc_hook);
5436 unbind_to (gc_count, Qnil);
5439 /* Accumulate statistics. */
5440 if (FLOATP (Vgc_elapsed))
5442 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5443 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5444 + EMACS_TIME_TO_DOUBLE (since_start));
5447 gcs_done++;
5449 /* Collect profiling data. */
5450 if (profiler_memory_running)
5452 size_t swept = 0;
5453 size_t tot_after = total_bytes_of_live_objects ();
5454 if (tot_before > tot_after)
5455 swept = tot_before - tot_after;
5456 malloc_probe (swept);
5459 backtrace_list = backtrace.next;
5460 return retval;
5464 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5465 only interesting objects referenced from glyphs are strings. */
5467 static void
5468 mark_glyph_matrix (struct glyph_matrix *matrix)
5470 struct glyph_row *row = matrix->rows;
5471 struct glyph_row *end = row + matrix->nrows;
5473 for (; row < end; ++row)
5474 if (row->enabled_p)
5476 int area;
5477 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5479 struct glyph *glyph = row->glyphs[area];
5480 struct glyph *end_glyph = glyph + row->used[area];
5482 for (; glyph < end_glyph; ++glyph)
5483 if (STRINGP (glyph->object)
5484 && !STRING_MARKED_P (XSTRING (glyph->object)))
5485 mark_object (glyph->object);
5491 /* Mark Lisp faces in the face cache C. */
5493 static void
5494 mark_face_cache (struct face_cache *c)
5496 if (c)
5498 int i, j;
5499 for (i = 0; i < c->used; ++i)
5501 struct face *face = FACE_FROM_ID (c->f, i);
5503 if (face)
5505 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5506 mark_object (face->lface[j]);
5514 /* Mark reference to a Lisp_Object.
5515 If the object referred to has not been seen yet, recursively mark
5516 all the references contained in it. */
5518 #define LAST_MARKED_SIZE 500
5519 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5520 static int last_marked_index;
5522 /* For debugging--call abort when we cdr down this many
5523 links of a list, in mark_object. In debugging,
5524 the call to abort will hit a breakpoint.
5525 Normally this is zero and the check never goes off. */
5526 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5528 static void
5529 mark_vectorlike (struct Lisp_Vector *ptr)
5531 ptrdiff_t size = ptr->header.size;
5532 ptrdiff_t i;
5534 eassert (!VECTOR_MARKED_P (ptr));
5535 VECTOR_MARK (ptr); /* Else mark it. */
5536 if (size & PSEUDOVECTOR_FLAG)
5537 size &= PSEUDOVECTOR_SIZE_MASK;
5539 /* Note that this size is not the memory-footprint size, but only
5540 the number of Lisp_Object fields that we should trace.
5541 The distinction is used e.g. by Lisp_Process which places extra
5542 non-Lisp_Object fields at the end of the structure... */
5543 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5544 mark_object (ptr->contents[i]);
5547 /* Like mark_vectorlike but optimized for char-tables (and
5548 sub-char-tables) assuming that the contents are mostly integers or
5549 symbols. */
5551 static void
5552 mark_char_table (struct Lisp_Vector *ptr)
5554 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5555 int i;
5557 eassert (!VECTOR_MARKED_P (ptr));
5558 VECTOR_MARK (ptr);
5559 for (i = 0; i < size; i++)
5561 Lisp_Object val = ptr->contents[i];
5563 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5564 continue;
5565 if (SUB_CHAR_TABLE_P (val))
5567 if (! VECTOR_MARKED_P (XVECTOR (val)))
5568 mark_char_table (XVECTOR (val));
5570 else
5571 mark_object (val);
5575 /* Mark the chain of overlays starting at PTR. */
5577 static void
5578 mark_overlay (struct Lisp_Overlay *ptr)
5580 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5582 ptr->gcmarkbit = 1;
5583 mark_object (ptr->start);
5584 mark_object (ptr->end);
5585 mark_object (ptr->plist);
5589 /* Mark Lisp_Objects and special pointers in BUFFER. */
5591 static void
5592 mark_buffer (struct buffer *buffer)
5594 /* This is handled much like other pseudovectors... */
5595 mark_vectorlike ((struct Lisp_Vector *) buffer);
5597 /* ...but there are some buffer-specific things. */
5599 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5601 /* For now, we just don't mark the undo_list. It's done later in
5602 a special way just before the sweep phase, and after stripping
5603 some of its elements that are not needed any more. */
5605 mark_overlay (buffer->overlays_before);
5606 mark_overlay (buffer->overlays_after);
5608 /* If this is an indirect buffer, mark its base buffer. */
5609 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5610 mark_buffer (buffer->base_buffer);
5613 /* Remove killed buffers or items whose car is a killed buffer from
5614 LIST, and mark other items. Return changed LIST, which is marked. */
5616 static Lisp_Object
5617 mark_discard_killed_buffers (Lisp_Object list)
5619 Lisp_Object tail, *prev = &list;
5621 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5622 tail = XCDR (tail))
5624 Lisp_Object tem = XCAR (tail);
5625 if (CONSP (tem))
5626 tem = XCAR (tem);
5627 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5628 *prev = XCDR (tail);
5629 else
5631 CONS_MARK (XCONS (tail));
5632 mark_object (XCAR (tail));
5633 prev = &XCDR_AS_LVALUE (tail);
5636 mark_object (tail);
5637 return list;
5640 /* Determine type of generic Lisp_Object and mark it accordingly. */
5642 void
5643 mark_object (Lisp_Object arg)
5645 register Lisp_Object obj = arg;
5646 #ifdef GC_CHECK_MARKED_OBJECTS
5647 void *po;
5648 struct mem_node *m;
5649 #endif
5650 ptrdiff_t cdr_count = 0;
5652 loop:
5654 if (PURE_POINTER_P (XPNTR (obj)))
5655 return;
5657 last_marked[last_marked_index++] = obj;
5658 if (last_marked_index == LAST_MARKED_SIZE)
5659 last_marked_index = 0;
5661 /* Perform some sanity checks on the objects marked here. Abort if
5662 we encounter an object we know is bogus. This increases GC time
5663 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5664 #ifdef GC_CHECK_MARKED_OBJECTS
5666 po = (void *) XPNTR (obj);
5668 /* Check that the object pointed to by PO is known to be a Lisp
5669 structure allocated from the heap. */
5670 #define CHECK_ALLOCATED() \
5671 do { \
5672 m = mem_find (po); \
5673 if (m == MEM_NIL) \
5674 emacs_abort (); \
5675 } while (0)
5677 /* Check that the object pointed to by PO is live, using predicate
5678 function LIVEP. */
5679 #define CHECK_LIVE(LIVEP) \
5680 do { \
5681 if (!LIVEP (m, po)) \
5682 emacs_abort (); \
5683 } while (0)
5685 /* Check both of the above conditions. */
5686 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5687 do { \
5688 CHECK_ALLOCATED (); \
5689 CHECK_LIVE (LIVEP); \
5690 } while (0) \
5692 #else /* not GC_CHECK_MARKED_OBJECTS */
5694 #define CHECK_LIVE(LIVEP) (void) 0
5695 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5697 #endif /* not GC_CHECK_MARKED_OBJECTS */
5699 switch (XTYPE (obj))
5701 case Lisp_String:
5703 register struct Lisp_String *ptr = XSTRING (obj);
5704 if (STRING_MARKED_P (ptr))
5705 break;
5706 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5707 MARK_STRING (ptr);
5708 MARK_INTERVAL_TREE (ptr->intervals);
5709 #ifdef GC_CHECK_STRING_BYTES
5710 /* Check that the string size recorded in the string is the
5711 same as the one recorded in the sdata structure. */
5712 string_bytes (ptr);
5713 #endif /* GC_CHECK_STRING_BYTES */
5715 break;
5717 case Lisp_Vectorlike:
5719 register struct Lisp_Vector *ptr = XVECTOR (obj);
5720 register ptrdiff_t pvectype;
5722 if (VECTOR_MARKED_P (ptr))
5723 break;
5725 #ifdef GC_CHECK_MARKED_OBJECTS
5726 m = mem_find (po);
5727 if (m == MEM_NIL && !SUBRP (obj))
5728 emacs_abort ();
5729 #endif /* GC_CHECK_MARKED_OBJECTS */
5731 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5732 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5733 >> PSEUDOVECTOR_AREA_BITS);
5734 else
5735 pvectype = PVEC_NORMAL_VECTOR;
5737 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5738 CHECK_LIVE (live_vector_p);
5740 switch (pvectype)
5742 case PVEC_BUFFER:
5743 #ifdef GC_CHECK_MARKED_OBJECTS
5745 struct buffer *b;
5746 FOR_EACH_BUFFER (b)
5747 if (b == po)
5748 break;
5749 if (b == NULL)
5750 emacs_abort ();
5752 #endif /* GC_CHECK_MARKED_OBJECTS */
5753 mark_buffer ((struct buffer *) ptr);
5754 break;
5756 case PVEC_COMPILED:
5757 { /* We could treat this just like a vector, but it is better
5758 to save the COMPILED_CONSTANTS element for last and avoid
5759 recursion there. */
5760 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5761 int i;
5763 VECTOR_MARK (ptr);
5764 for (i = 0; i < size; i++)
5765 if (i != COMPILED_CONSTANTS)
5766 mark_object (ptr->contents[i]);
5767 if (size > COMPILED_CONSTANTS)
5769 obj = ptr->contents[COMPILED_CONSTANTS];
5770 goto loop;
5773 break;
5775 case PVEC_FRAME:
5776 mark_vectorlike (ptr);
5777 mark_face_cache (((struct frame *) ptr)->face_cache);
5778 break;
5780 case PVEC_WINDOW:
5782 struct window *w = (struct window *) ptr;
5783 bool leaf = NILP (w->hchild) && NILP (w->vchild);
5785 mark_vectorlike (ptr);
5787 /* Mark glyphs for leaf windows. Marking window
5788 matrices is sufficient because frame matrices
5789 use the same glyph memory. */
5790 if (leaf && w->current_matrix)
5792 mark_glyph_matrix (w->current_matrix);
5793 mark_glyph_matrix (w->desired_matrix);
5796 /* Filter out killed buffers from both buffer lists
5797 in attempt to help GC to reclaim killed buffers faster.
5798 We can do it elsewhere for live windows, but this is the
5799 best place to do it for dead windows. */
5800 wset_prev_buffers
5801 (w, mark_discard_killed_buffers (w->prev_buffers));
5802 wset_next_buffers
5803 (w, mark_discard_killed_buffers (w->next_buffers));
5805 break;
5807 case PVEC_HASH_TABLE:
5809 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5811 mark_vectorlike (ptr);
5812 mark_object (h->test.name);
5813 mark_object (h->test.user_hash_function);
5814 mark_object (h->test.user_cmp_function);
5815 /* If hash table is not weak, mark all keys and values.
5816 For weak tables, mark only the vector. */
5817 if (NILP (h->weak))
5818 mark_object (h->key_and_value);
5819 else
5820 VECTOR_MARK (XVECTOR (h->key_and_value));
5822 break;
5824 case PVEC_CHAR_TABLE:
5825 mark_char_table (ptr);
5826 break;
5828 case PVEC_BOOL_VECTOR:
5829 /* No Lisp_Objects to mark in a bool vector. */
5830 VECTOR_MARK (ptr);
5831 break;
5833 case PVEC_SUBR:
5834 break;
5836 case PVEC_FREE:
5837 emacs_abort ();
5839 default:
5840 mark_vectorlike (ptr);
5843 break;
5845 case Lisp_Symbol:
5847 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5848 struct Lisp_Symbol *ptrx;
5850 if (ptr->gcmarkbit)
5851 break;
5852 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5853 ptr->gcmarkbit = 1;
5854 mark_object (ptr->function);
5855 mark_object (ptr->plist);
5856 switch (ptr->redirect)
5858 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5859 case SYMBOL_VARALIAS:
5861 Lisp_Object tem;
5862 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5863 mark_object (tem);
5864 break;
5866 case SYMBOL_LOCALIZED:
5868 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5869 Lisp_Object where = blv->where;
5870 /* If the value is set up for a killed buffer or deleted
5871 frame, restore it's global binding. If the value is
5872 forwarded to a C variable, either it's not a Lisp_Object
5873 var, or it's staticpro'd already. */
5874 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5875 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5876 swap_in_global_binding (ptr);
5877 mark_object (blv->where);
5878 mark_object (blv->valcell);
5879 mark_object (blv->defcell);
5880 break;
5882 case SYMBOL_FORWARDED:
5883 /* If the value is forwarded to a buffer or keyboard field,
5884 these are marked when we see the corresponding object.
5885 And if it's forwarded to a C variable, either it's not
5886 a Lisp_Object var, or it's staticpro'd already. */
5887 break;
5888 default: emacs_abort ();
5890 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5891 MARK_STRING (XSTRING (ptr->name));
5892 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5894 ptr = ptr->next;
5895 if (ptr)
5897 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5898 XSETSYMBOL (obj, ptrx);
5899 goto loop;
5902 break;
5904 case Lisp_Misc:
5905 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5907 if (XMISCANY (obj)->gcmarkbit)
5908 break;
5910 switch (XMISCTYPE (obj))
5912 case Lisp_Misc_Marker:
5913 /* DO NOT mark thru the marker's chain.
5914 The buffer's markers chain does not preserve markers from gc;
5915 instead, markers are removed from the chain when freed by gc. */
5916 XMISCANY (obj)->gcmarkbit = 1;
5917 break;
5919 case Lisp_Misc_Save_Value:
5920 XMISCANY (obj)->gcmarkbit = 1;
5921 #if GC_MARK_STACK
5923 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5924 /* If DOGC is set, POINTER is the address of a memory
5925 area containing INTEGER potential Lisp_Objects. */
5926 if (ptr->dogc)
5928 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5929 ptrdiff_t nelt;
5930 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5931 mark_maybe_object (*p);
5934 #endif
5935 break;
5937 case Lisp_Misc_Overlay:
5938 mark_overlay (XOVERLAY (obj));
5939 break;
5941 default:
5942 emacs_abort ();
5944 break;
5946 case Lisp_Cons:
5948 register struct Lisp_Cons *ptr = XCONS (obj);
5949 if (CONS_MARKED_P (ptr))
5950 break;
5951 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5952 CONS_MARK (ptr);
5953 /* If the cdr is nil, avoid recursion for the car. */
5954 if (EQ (ptr->u.cdr, Qnil))
5956 obj = ptr->car;
5957 cdr_count = 0;
5958 goto loop;
5960 mark_object (ptr->car);
5961 obj = ptr->u.cdr;
5962 cdr_count++;
5963 if (cdr_count == mark_object_loop_halt)
5964 emacs_abort ();
5965 goto loop;
5968 case Lisp_Float:
5969 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5970 FLOAT_MARK (XFLOAT (obj));
5971 break;
5973 case_Lisp_Int:
5974 break;
5976 default:
5977 emacs_abort ();
5980 #undef CHECK_LIVE
5981 #undef CHECK_ALLOCATED
5982 #undef CHECK_ALLOCATED_AND_LIVE
5984 /* Mark the Lisp pointers in the terminal objects.
5985 Called by Fgarbage_collect. */
5987 static void
5988 mark_terminals (void)
5990 struct terminal *t;
5991 for (t = terminal_list; t; t = t->next_terminal)
5993 eassert (t->name != NULL);
5994 #ifdef HAVE_WINDOW_SYSTEM
5995 /* If a terminal object is reachable from a stacpro'ed object,
5996 it might have been marked already. Make sure the image cache
5997 gets marked. */
5998 mark_image_cache (t->image_cache);
5999 #endif /* HAVE_WINDOW_SYSTEM */
6000 if (!VECTOR_MARKED_P (t))
6001 mark_vectorlike ((struct Lisp_Vector *)t);
6007 /* Value is non-zero if OBJ will survive the current GC because it's
6008 either marked or does not need to be marked to survive. */
6010 bool
6011 survives_gc_p (Lisp_Object obj)
6013 bool survives_p;
6015 switch (XTYPE (obj))
6017 case_Lisp_Int:
6018 survives_p = 1;
6019 break;
6021 case Lisp_Symbol:
6022 survives_p = XSYMBOL (obj)->gcmarkbit;
6023 break;
6025 case Lisp_Misc:
6026 survives_p = XMISCANY (obj)->gcmarkbit;
6027 break;
6029 case Lisp_String:
6030 survives_p = STRING_MARKED_P (XSTRING (obj));
6031 break;
6033 case Lisp_Vectorlike:
6034 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6035 break;
6037 case Lisp_Cons:
6038 survives_p = CONS_MARKED_P (XCONS (obj));
6039 break;
6041 case Lisp_Float:
6042 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6043 break;
6045 default:
6046 emacs_abort ();
6049 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6054 /* Sweep: find all structures not marked, and free them. */
6056 static void
6057 gc_sweep (void)
6059 /* Remove or mark entries in weak hash tables.
6060 This must be done before any object is unmarked. */
6061 sweep_weak_hash_tables ();
6063 sweep_strings ();
6064 check_string_bytes (!noninteractive);
6066 /* Put all unmarked conses on free list */
6068 register struct cons_block *cblk;
6069 struct cons_block **cprev = &cons_block;
6070 register int lim = cons_block_index;
6071 EMACS_INT num_free = 0, num_used = 0;
6073 cons_free_list = 0;
6075 for (cblk = cons_block; cblk; cblk = *cprev)
6077 register int i = 0;
6078 int this_free = 0;
6079 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6081 /* Scan the mark bits an int at a time. */
6082 for (i = 0; i < ilim; i++)
6084 if (cblk->gcmarkbits[i] == -1)
6086 /* Fast path - all cons cells for this int are marked. */
6087 cblk->gcmarkbits[i] = 0;
6088 num_used += BITS_PER_INT;
6090 else
6092 /* Some cons cells for this int are not marked.
6093 Find which ones, and free them. */
6094 int start, pos, stop;
6096 start = i * BITS_PER_INT;
6097 stop = lim - start;
6098 if (stop > BITS_PER_INT)
6099 stop = BITS_PER_INT;
6100 stop += start;
6102 for (pos = start; pos < stop; pos++)
6104 if (!CONS_MARKED_P (&cblk->conses[pos]))
6106 this_free++;
6107 cblk->conses[pos].u.chain = cons_free_list;
6108 cons_free_list = &cblk->conses[pos];
6109 #if GC_MARK_STACK
6110 cons_free_list->car = Vdead;
6111 #endif
6113 else
6115 num_used++;
6116 CONS_UNMARK (&cblk->conses[pos]);
6122 lim = CONS_BLOCK_SIZE;
6123 /* If this block contains only free conses and we have already
6124 seen more than two blocks worth of free conses then deallocate
6125 this block. */
6126 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6128 *cprev = cblk->next;
6129 /* Unhook from the free list. */
6130 cons_free_list = cblk->conses[0].u.chain;
6131 lisp_align_free (cblk);
6133 else
6135 num_free += this_free;
6136 cprev = &cblk->next;
6139 total_conses = num_used;
6140 total_free_conses = num_free;
6143 /* Put all unmarked floats on free list */
6145 register struct float_block *fblk;
6146 struct float_block **fprev = &float_block;
6147 register int lim = float_block_index;
6148 EMACS_INT num_free = 0, num_used = 0;
6150 float_free_list = 0;
6152 for (fblk = float_block; fblk; fblk = *fprev)
6154 register int i;
6155 int this_free = 0;
6156 for (i = 0; i < lim; i++)
6157 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6159 this_free++;
6160 fblk->floats[i].u.chain = float_free_list;
6161 float_free_list = &fblk->floats[i];
6163 else
6165 num_used++;
6166 FLOAT_UNMARK (&fblk->floats[i]);
6168 lim = FLOAT_BLOCK_SIZE;
6169 /* If this block contains only free floats and we have already
6170 seen more than two blocks worth of free floats then deallocate
6171 this block. */
6172 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6174 *fprev = fblk->next;
6175 /* Unhook from the free list. */
6176 float_free_list = fblk->floats[0].u.chain;
6177 lisp_align_free (fblk);
6179 else
6181 num_free += this_free;
6182 fprev = &fblk->next;
6185 total_floats = num_used;
6186 total_free_floats = num_free;
6189 /* Put all unmarked intervals on free list */
6191 register struct interval_block *iblk;
6192 struct interval_block **iprev = &interval_block;
6193 register int lim = interval_block_index;
6194 EMACS_INT num_free = 0, num_used = 0;
6196 interval_free_list = 0;
6198 for (iblk = interval_block; iblk; iblk = *iprev)
6200 register int i;
6201 int this_free = 0;
6203 for (i = 0; i < lim; i++)
6205 if (!iblk->intervals[i].gcmarkbit)
6207 set_interval_parent (&iblk->intervals[i], interval_free_list);
6208 interval_free_list = &iblk->intervals[i];
6209 this_free++;
6211 else
6213 num_used++;
6214 iblk->intervals[i].gcmarkbit = 0;
6217 lim = INTERVAL_BLOCK_SIZE;
6218 /* If this block contains only free intervals and we have already
6219 seen more than two blocks worth of free intervals then
6220 deallocate this block. */
6221 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6223 *iprev = iblk->next;
6224 /* Unhook from the free list. */
6225 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6226 lisp_free (iblk);
6228 else
6230 num_free += this_free;
6231 iprev = &iblk->next;
6234 total_intervals = num_used;
6235 total_free_intervals = num_free;
6238 /* Put all unmarked symbols on free list */
6240 register struct symbol_block *sblk;
6241 struct symbol_block **sprev = &symbol_block;
6242 register int lim = symbol_block_index;
6243 EMACS_INT num_free = 0, num_used = 0;
6245 symbol_free_list = NULL;
6247 for (sblk = symbol_block; sblk; sblk = *sprev)
6249 int this_free = 0;
6250 union aligned_Lisp_Symbol *sym = sblk->symbols;
6251 union aligned_Lisp_Symbol *end = sym + lim;
6253 for (; sym < end; ++sym)
6255 /* Check if the symbol was created during loadup. In such a case
6256 it might be pointed to by pure bytecode which we don't trace,
6257 so we conservatively assume that it is live. */
6258 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6260 if (!sym->s.gcmarkbit && !pure_p)
6262 if (sym->s.redirect == SYMBOL_LOCALIZED)
6263 xfree (SYMBOL_BLV (&sym->s));
6264 sym->s.next = symbol_free_list;
6265 symbol_free_list = &sym->s;
6266 #if GC_MARK_STACK
6267 symbol_free_list->function = Vdead;
6268 #endif
6269 ++this_free;
6271 else
6273 ++num_used;
6274 if (!pure_p)
6275 UNMARK_STRING (XSTRING (sym->s.name));
6276 sym->s.gcmarkbit = 0;
6280 lim = SYMBOL_BLOCK_SIZE;
6281 /* If this block contains only free symbols and we have already
6282 seen more than two blocks worth of free symbols then deallocate
6283 this block. */
6284 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6286 *sprev = sblk->next;
6287 /* Unhook from the free list. */
6288 symbol_free_list = sblk->symbols[0].s.next;
6289 lisp_free (sblk);
6291 else
6293 num_free += this_free;
6294 sprev = &sblk->next;
6297 total_symbols = num_used;
6298 total_free_symbols = num_free;
6301 /* Put all unmarked misc's on free list.
6302 For a marker, first unchain it from the buffer it points into. */
6304 register struct marker_block *mblk;
6305 struct marker_block **mprev = &marker_block;
6306 register int lim = marker_block_index;
6307 EMACS_INT num_free = 0, num_used = 0;
6309 marker_free_list = 0;
6311 for (mblk = marker_block; mblk; mblk = *mprev)
6313 register int i;
6314 int this_free = 0;
6316 for (i = 0; i < lim; i++)
6318 if (!mblk->markers[i].m.u_any.gcmarkbit)
6320 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6321 unchain_marker (&mblk->markers[i].m.u_marker);
6322 /* Set the type of the freed object to Lisp_Misc_Free.
6323 We could leave the type alone, since nobody checks it,
6324 but this might catch bugs faster. */
6325 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6326 mblk->markers[i].m.u_free.chain = marker_free_list;
6327 marker_free_list = &mblk->markers[i].m;
6328 this_free++;
6330 else
6332 num_used++;
6333 mblk->markers[i].m.u_any.gcmarkbit = 0;
6336 lim = MARKER_BLOCK_SIZE;
6337 /* If this block contains only free markers and we have already
6338 seen more than two blocks worth of free markers then deallocate
6339 this block. */
6340 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6342 *mprev = mblk->next;
6343 /* Unhook from the free list. */
6344 marker_free_list = mblk->markers[0].m.u_free.chain;
6345 lisp_free (mblk);
6347 else
6349 num_free += this_free;
6350 mprev = &mblk->next;
6354 total_markers = num_used;
6355 total_free_markers = num_free;
6358 /* Free all unmarked buffers */
6360 register struct buffer *buffer, **bprev = &all_buffers;
6362 total_buffers = 0;
6363 for (buffer = all_buffers; buffer; buffer = *bprev)
6364 if (!VECTOR_MARKED_P (buffer))
6366 *bprev = buffer->next;
6367 lisp_free (buffer);
6369 else
6371 VECTOR_UNMARK (buffer);
6372 /* Do not use buffer_(set|get)_intervals here. */
6373 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6374 total_buffers++;
6375 bprev = &buffer->next;
6379 sweep_vectors ();
6380 check_string_bytes (!noninteractive);
6386 /* Debugging aids. */
6388 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6389 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6390 This may be helpful in debugging Emacs's memory usage.
6391 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6392 (void)
6394 Lisp_Object end;
6396 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6398 return end;
6401 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6402 doc: /* Return a list of counters that measure how much consing there has been.
6403 Each of these counters increments for a certain kind of object.
6404 The counters wrap around from the largest positive integer to zero.
6405 Garbage collection does not decrease them.
6406 The elements of the value are as follows:
6407 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6408 All are in units of 1 = one object consed
6409 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6410 objects consed.
6411 MISCS include overlays, markers, and some internal types.
6412 Frames, windows, buffers, and subprocesses count as vectors
6413 (but the contents of a buffer's text do not count here). */)
6414 (void)
6416 return listn (CONSTYPE_HEAP, 8,
6417 bounded_number (cons_cells_consed),
6418 bounded_number (floats_consed),
6419 bounded_number (vector_cells_consed),
6420 bounded_number (symbols_consed),
6421 bounded_number (string_chars_consed),
6422 bounded_number (misc_objects_consed),
6423 bounded_number (intervals_consed),
6424 bounded_number (strings_consed));
6427 /* Find at most FIND_MAX symbols which have OBJ as their value or
6428 function. This is used in gdbinit's `xwhichsymbols' command. */
6430 Lisp_Object
6431 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6433 struct symbol_block *sblk;
6434 ptrdiff_t gc_count = inhibit_garbage_collection ();
6435 Lisp_Object found = Qnil;
6437 if (! DEADP (obj))
6439 for (sblk = symbol_block; sblk; sblk = sblk->next)
6441 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6442 int bn;
6444 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6446 struct Lisp_Symbol *sym = &aligned_sym->s;
6447 Lisp_Object val;
6448 Lisp_Object tem;
6450 if (sblk == symbol_block && bn >= symbol_block_index)
6451 break;
6453 XSETSYMBOL (tem, sym);
6454 val = find_symbol_value (tem);
6455 if (EQ (val, obj)
6456 || EQ (sym->function, obj)
6457 || (!NILP (sym->function)
6458 && COMPILEDP (sym->function)
6459 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6460 || (!NILP (val)
6461 && COMPILEDP (val)
6462 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6464 found = Fcons (tem, found);
6465 if (--find_max == 0)
6466 goto out;
6472 out:
6473 unbind_to (gc_count, Qnil);
6474 return found;
6477 #ifdef ENABLE_CHECKING
6479 bool suppress_checking;
6481 void
6482 die (const char *msg, const char *file, int line)
6484 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6485 file, line, msg);
6486 terminate_due_to_signal (SIGABRT, INT_MAX);
6488 #endif
6490 /* Initialization */
6492 void
6493 init_alloc_once (void)
6495 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6496 purebeg = PUREBEG;
6497 pure_size = PURESIZE;
6499 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6500 mem_init ();
6501 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6502 #endif
6504 #ifdef DOUG_LEA_MALLOC
6505 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6506 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6507 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6508 #endif
6509 init_strings ();
6510 init_vectors ();
6512 refill_memory_reserve ();
6513 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6516 void
6517 init_alloc (void)
6519 gcprolist = 0;
6520 byte_stack_list = 0;
6521 #if GC_MARK_STACK
6522 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6523 setjmp_tested_p = longjmps_done = 0;
6524 #endif
6525 #endif
6526 Vgc_elapsed = make_float (0.0);
6527 gcs_done = 0;
6530 void
6531 syms_of_alloc (void)
6533 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6534 doc: /* Number of bytes of consing between garbage collections.
6535 Garbage collection can happen automatically once this many bytes have been
6536 allocated since the last garbage collection. All data types count.
6538 Garbage collection happens automatically only when `eval' is called.
6540 By binding this temporarily to a large number, you can effectively
6541 prevent garbage collection during a part of the program.
6542 See also `gc-cons-percentage'. */);
6544 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6545 doc: /* Portion of the heap used for allocation.
6546 Garbage collection can happen automatically once this portion of the heap
6547 has been allocated since the last garbage collection.
6548 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6549 Vgc_cons_percentage = make_float (0.1);
6551 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6552 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6554 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6555 doc: /* Number of cons cells that have been consed so far. */);
6557 DEFVAR_INT ("floats-consed", floats_consed,
6558 doc: /* Number of floats that have been consed so far. */);
6560 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6561 doc: /* Number of vector cells that have been consed so far. */);
6563 DEFVAR_INT ("symbols-consed", symbols_consed,
6564 doc: /* Number of symbols that have been consed so far. */);
6566 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6567 doc: /* Number of string characters that have been consed so far. */);
6569 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6570 doc: /* Number of miscellaneous objects that have been consed so far.
6571 These include markers and overlays, plus certain objects not visible
6572 to users. */);
6574 DEFVAR_INT ("intervals-consed", intervals_consed,
6575 doc: /* Number of intervals that have been consed so far. */);
6577 DEFVAR_INT ("strings-consed", strings_consed,
6578 doc: /* Number of strings that have been consed so far. */);
6580 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6581 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6582 This means that certain objects should be allocated in shared (pure) space.
6583 It can also be set to a hash-table, in which case this table is used to
6584 do hash-consing of the objects allocated to pure space. */);
6586 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6587 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6588 garbage_collection_messages = 0;
6590 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6591 doc: /* Hook run after garbage collection has finished. */);
6592 Vpost_gc_hook = Qnil;
6593 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6595 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6596 doc: /* Precomputed `signal' argument for memory-full error. */);
6597 /* We build this in advance because if we wait until we need it, we might
6598 not be able to allocate the memory to hold it. */
6599 Vmemory_signal_data
6600 = listn (CONSTYPE_PURE, 2, Qerror,
6601 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6603 DEFVAR_LISP ("memory-full", Vmemory_full,
6604 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6605 Vmemory_full = Qnil;
6607 DEFSYM (Qconses, "conses");
6608 DEFSYM (Qsymbols, "symbols");
6609 DEFSYM (Qmiscs, "miscs");
6610 DEFSYM (Qstrings, "strings");
6611 DEFSYM (Qvectors, "vectors");
6612 DEFSYM (Qfloats, "floats");
6613 DEFSYM (Qintervals, "intervals");
6614 DEFSYM (Qbuffers, "buffers");
6615 DEFSYM (Qstring_bytes, "string-bytes");
6616 DEFSYM (Qvector_slots, "vector-slots");
6617 DEFSYM (Qheap, "heap");
6618 DEFSYM (Qautomatic_gc, "Automatic GC");
6620 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6621 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6623 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6624 doc: /* Accumulated time elapsed in garbage collections.
6625 The time is in seconds as a floating point value. */);
6626 DEFVAR_INT ("gcs-done", gcs_done,
6627 doc: /* Accumulated number of garbage collections done. */);
6629 defsubr (&Scons);
6630 defsubr (&Slist);
6631 defsubr (&Svector);
6632 defsubr (&Smake_byte_code);
6633 defsubr (&Smake_list);
6634 defsubr (&Smake_vector);
6635 defsubr (&Smake_string);
6636 defsubr (&Smake_bool_vector);
6637 defsubr (&Smake_symbol);
6638 defsubr (&Smake_marker);
6639 defsubr (&Spurecopy);
6640 defsubr (&Sgarbage_collect);
6641 defsubr (&Smemory_limit);
6642 defsubr (&Smemory_use_counts);
6644 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6645 defsubr (&Sgc_status);
6646 #endif
6649 /* When compiled with GCC, GDB might say "No enum type named
6650 pvec_type" if we don't have at least one symbol with that type, and
6651 then xbacktrace could fail. Similarly for the other enums and
6652 their values. Some non-GCC compilers don't like these constructs. */
6653 #ifdef __GNUC__
6654 union
6656 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6657 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6658 enum char_bits char_bits;
6659 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6660 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6661 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6662 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6663 enum Lisp_Bits Lisp_Bits;
6664 enum Lisp_Compiled Lisp_Compiled;
6665 enum maxargs maxargs;
6666 enum MAX_ALLOCA MAX_ALLOCA;
6667 enum More_Lisp_Bits More_Lisp_Bits;
6668 enum pvec_type pvec_type;
6669 #if USE_LSB_TAG
6670 enum lsb_bits lsb_bits;
6671 #endif
6672 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6673 #endif /* __GNUC__ */