Fixes: debbugs:12042
[emacs.git] / src / alloc.c
blobd9c56b5c7c8904f4215cd3887eb83c09a2dd6a95
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
6 This file is part of GNU Emacs.
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
21 #include <config.h>
22 #include <stdio.h>
23 #include <limits.h> /* For CHAR_BIT. */
24 #include <setjmp.h>
26 #include <signal.h>
28 #ifdef HAVE_PTHREAD
29 #include <pthread.h>
30 #endif
32 /* This file is part of the core Lisp implementation, and thus must
33 deal with the real data structures. If the Lisp implementation is
34 replaced, this file likely will not be used. */
36 #undef HIDE_LISP_IMPLEMENTATION
37 #include "lisp.h"
38 #include "process.h"
39 #include "intervals.h"
40 #include "puresize.h"
41 #include "character.h"
42 #include "buffer.h"
43 #include "window.h"
44 #include "keyboard.h"
45 #include "frame.h"
46 #include "blockinput.h"
47 #include "syssignal.h"
48 #include "termhooks.h" /* For struct terminal. */
49 #include <setjmp.h>
50 #include <verify.h>
52 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
53 Doable only if GC_MARK_STACK. */
54 #if ! GC_MARK_STACK
55 # undef GC_CHECK_MARKED_OBJECTS
56 #endif
58 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
59 memory. Can do this only if using gmalloc.c and if not checking
60 marked objects. */
62 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
63 || defined GC_CHECK_MARKED_OBJECTS)
64 #undef GC_MALLOC_CHECK
65 #endif
67 #include <unistd.h>
68 #ifndef HAVE_UNISTD_H
69 extern void *sbrk ();
70 #endif
72 #include <fcntl.h>
74 #ifdef WINDOWSNT
75 #include "w32.h"
76 #endif
78 #ifdef DOUG_LEA_MALLOC
80 #include <malloc.h>
82 /* Specify maximum number of areas to mmap. It would be nice to use a
83 value that explicitly means "no limit". */
85 #define MMAP_MAX_AREAS 100000000
87 #else /* not DOUG_LEA_MALLOC */
89 /* The following come from gmalloc.c. */
91 extern size_t _bytes_used;
92 extern size_t __malloc_extra_blocks;
93 extern void *_malloc_internal (size_t);
94 extern void _free_internal (void *);
96 #endif /* not DOUG_LEA_MALLOC */
98 #if ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT
99 #ifdef HAVE_PTHREAD
101 /* When GTK uses the file chooser dialog, different backends can be loaded
102 dynamically. One such a backend is the Gnome VFS backend that gets loaded
103 if you run Gnome. That backend creates several threads and also allocates
104 memory with malloc.
106 Also, gconf and gsettings may create several threads.
108 If Emacs sets malloc hooks (! SYSTEM_MALLOC) and the emacs_blocked_*
109 functions below are called from malloc, there is a chance that one
110 of these threads preempts the Emacs main thread and the hook variables
111 end up in an inconsistent state. So we have a mutex to prevent that (note
112 that the backend handles concurrent access to malloc within its own threads
113 but Emacs code running in the main thread is not included in that control).
115 When UNBLOCK_INPUT is called, reinvoke_input_signal may be called. If this
116 happens in one of the backend threads we will have two threads that tries
117 to run Emacs code at once, and the code is not prepared for that.
118 To prevent that, we only call BLOCK/UNBLOCK from the main thread. */
120 static pthread_mutex_t alloc_mutex;
122 #define BLOCK_INPUT_ALLOC \
123 do \
125 if (pthread_equal (pthread_self (), main_thread)) \
126 BLOCK_INPUT; \
127 pthread_mutex_lock (&alloc_mutex); \
129 while (0)
130 #define UNBLOCK_INPUT_ALLOC \
131 do \
133 pthread_mutex_unlock (&alloc_mutex); \
134 if (pthread_equal (pthread_self (), main_thread)) \
135 UNBLOCK_INPUT; \
137 while (0)
139 #else /* ! defined HAVE_PTHREAD */
141 #define BLOCK_INPUT_ALLOC BLOCK_INPUT
142 #define UNBLOCK_INPUT_ALLOC UNBLOCK_INPUT
144 #endif /* ! defined HAVE_PTHREAD */
145 #endif /* ! defined SYSTEM_MALLOC && ! defined SYNC_INPUT */
147 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
148 to a struct Lisp_String. */
150 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
151 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
152 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
154 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
155 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
156 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
158 /* Value is the number of bytes of S, a pointer to a struct Lisp_String.
159 Be careful during GC, because S->size contains the mark bit for
160 strings. */
162 #define GC_STRING_BYTES(S) (STRING_BYTES (S))
164 /* Default value of gc_cons_threshold (see below). */
166 #define GC_DEFAULT_THRESHOLD (100000 * sizeof (Lisp_Object))
168 /* Global variables. */
169 struct emacs_globals globals;
171 /* Number of bytes of consing done since the last gc. */
173 EMACS_INT consing_since_gc;
175 /* Similar minimum, computed from Vgc_cons_percentage. */
177 EMACS_INT gc_relative_threshold;
179 /* Minimum number of bytes of consing since GC before next GC,
180 when memory is full. */
182 EMACS_INT memory_full_cons_threshold;
184 /* Nonzero during GC. */
186 int gc_in_progress;
188 /* Nonzero means abort if try to GC.
189 This is for code which is written on the assumption that
190 no GC will happen, so as to verify that assumption. */
192 int abort_on_gc;
194 /* Number of live and free conses etc. */
196 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
197 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
198 static EMACS_INT total_free_floats, total_floats;
200 /* Points to memory space allocated as "spare", to be freed if we run
201 out of memory. We keep one large block, four cons-blocks, and
202 two string blocks. */
204 static char *spare_memory[7];
206 /* Amount of spare memory to keep in large reserve block, or to see
207 whether this much is available when malloc fails on a larger request. */
209 #define SPARE_MEMORY (1 << 14)
211 /* Number of extra blocks malloc should get when it needs more core. */
213 static int malloc_hysteresis;
215 /* Initialize it to a nonzero value to force it into data space
216 (rather than bss space). That way unexec will remap it into text
217 space (pure), on some systems. We have not implemented the
218 remapping on more recent systems because this is less important
219 nowadays than in the days of small memories and timesharing. */
221 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
222 #define PUREBEG (char *) pure
224 /* Pointer to the pure area, and its size. */
226 static char *purebeg;
227 static ptrdiff_t pure_size;
229 /* Number of bytes of pure storage used before pure storage overflowed.
230 If this is non-zero, this implies that an overflow occurred. */
232 static ptrdiff_t pure_bytes_used_before_overflow;
234 /* Value is non-zero if P points into pure space. */
236 #define PURE_POINTER_P(P) \
237 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
239 /* Index in pure at which next pure Lisp object will be allocated.. */
241 static ptrdiff_t pure_bytes_used_lisp;
243 /* Number of bytes allocated for non-Lisp objects in pure storage. */
245 static ptrdiff_t pure_bytes_used_non_lisp;
247 /* If nonzero, this is a warning delivered by malloc and not yet
248 displayed. */
250 const char *pending_malloc_warning;
252 /* Maximum amount of C stack to save when a GC happens. */
254 #ifndef MAX_SAVE_STACK
255 #define MAX_SAVE_STACK 16000
256 #endif
258 /* Buffer in which we save a copy of the C stack at each GC. */
260 #if MAX_SAVE_STACK > 0
261 static char *stack_copy;
262 static ptrdiff_t stack_copy_size;
263 #endif
265 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
266 static Lisp_Object Qgc_cons_threshold;
267 Lisp_Object Qchar_table_extra_slots;
269 /* Hook run after GC has finished. */
271 static Lisp_Object Qpost_gc_hook;
273 static void mark_terminals (void);
274 static void gc_sweep (void);
275 static Lisp_Object make_pure_vector (ptrdiff_t);
276 static void mark_glyph_matrix (struct glyph_matrix *);
277 static void mark_face_cache (struct face_cache *);
279 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
280 static void refill_memory_reserve (void);
281 #endif
282 static struct Lisp_String *allocate_string (void);
283 static void compact_small_strings (void);
284 static void free_large_strings (void);
285 static void sweep_strings (void);
286 static void free_misc (Lisp_Object);
287 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
289 /* Handy constants for vectorlike objects. */
290 enum
292 header_size = offsetof (struct Lisp_Vector, contents),
293 bool_header_size = offsetof (struct Lisp_Bool_Vector, data),
294 word_size = sizeof (Lisp_Object)
297 /* When scanning the C stack for live Lisp objects, Emacs keeps track
298 of what memory allocated via lisp_malloc is intended for what
299 purpose. This enumeration specifies the type of memory. */
301 enum mem_type
303 MEM_TYPE_NON_LISP,
304 MEM_TYPE_BUFFER,
305 MEM_TYPE_CONS,
306 MEM_TYPE_STRING,
307 MEM_TYPE_MISC,
308 MEM_TYPE_SYMBOL,
309 MEM_TYPE_FLOAT,
310 /* We used to keep separate mem_types for subtypes of vectors such as
311 process, hash_table, frame, terminal, and window, but we never made
312 use of the distinction, so it only caused source-code complexity
313 and runtime slowdown. Minor but pointless. */
314 MEM_TYPE_VECTORLIKE,
315 /* Special type to denote vector blocks. */
316 MEM_TYPE_VECTOR_BLOCK
319 static void *lisp_malloc (size_t, enum mem_type);
322 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
324 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
325 #include <stdio.h> /* For fprintf. */
326 #endif
328 /* A unique object in pure space used to make some Lisp objects
329 on free lists recognizable in O(1). */
331 static Lisp_Object Vdead;
332 #define DEADP(x) EQ (x, Vdead)
334 #ifdef GC_MALLOC_CHECK
336 enum mem_type allocated_mem_type;
338 #endif /* GC_MALLOC_CHECK */
340 /* A node in the red-black tree describing allocated memory containing
341 Lisp data. Each such block is recorded with its start and end
342 address when it is allocated, and removed from the tree when it
343 is freed.
345 A red-black tree is a balanced binary tree with the following
346 properties:
348 1. Every node is either red or black.
349 2. Every leaf is black.
350 3. If a node is red, then both of its children are black.
351 4. Every simple path from a node to a descendant leaf contains
352 the same number of black nodes.
353 5. The root is always black.
355 When nodes are inserted into the tree, or deleted from the tree,
356 the tree is "fixed" so that these properties are always true.
358 A red-black tree with N internal nodes has height at most 2
359 log(N+1). Searches, insertions and deletions are done in O(log N).
360 Please see a text book about data structures for a detailed
361 description of red-black trees. Any book worth its salt should
362 describe them. */
364 struct mem_node
366 /* Children of this node. These pointers are never NULL. When there
367 is no child, the value is MEM_NIL, which points to a dummy node. */
368 struct mem_node *left, *right;
370 /* The parent of this node. In the root node, this is NULL. */
371 struct mem_node *parent;
373 /* Start and end of allocated region. */
374 void *start, *end;
376 /* Node color. */
377 enum {MEM_BLACK, MEM_RED} color;
379 /* Memory type. */
380 enum mem_type type;
383 /* Base address of stack. Set in main. */
385 Lisp_Object *stack_base;
387 /* Root of the tree describing allocated Lisp memory. */
389 static struct mem_node *mem_root;
391 /* Lowest and highest known address in the heap. */
393 static void *min_heap_address, *max_heap_address;
395 /* Sentinel node of the tree. */
397 static struct mem_node mem_z;
398 #define MEM_NIL &mem_z
400 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
401 static void lisp_free (void *);
402 static void mark_stack (void);
403 static int live_vector_p (struct mem_node *, void *);
404 static int live_buffer_p (struct mem_node *, void *);
405 static int live_string_p (struct mem_node *, void *);
406 static int live_cons_p (struct mem_node *, void *);
407 static int live_symbol_p (struct mem_node *, void *);
408 static int live_float_p (struct mem_node *, void *);
409 static int live_misc_p (struct mem_node *, void *);
410 static void mark_maybe_object (Lisp_Object);
411 static void mark_memory (void *, void *);
412 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
413 static void mem_init (void);
414 static struct mem_node *mem_insert (void *, void *, enum mem_type);
415 static void mem_insert_fixup (struct mem_node *);
416 #endif
417 static void mem_rotate_left (struct mem_node *);
418 static void mem_rotate_right (struct mem_node *);
419 static void mem_delete (struct mem_node *);
420 static void mem_delete_fixup (struct mem_node *);
421 static inline struct mem_node *mem_find (void *);
424 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
425 static void check_gcpros (void);
426 #endif
428 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
430 #ifndef DEADP
431 # define DEADP(x) 0
432 #endif
434 /* Recording what needs to be marked for gc. */
436 struct gcpro *gcprolist;
438 /* Addresses of staticpro'd variables. Initialize it to a nonzero
439 value; otherwise some compilers put it into BSS. */
441 #define NSTATICS 0x650
442 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
444 /* Index of next unused slot in staticvec. */
446 static int staticidx;
448 static void *pure_alloc (size_t, int);
451 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
452 ALIGNMENT must be a power of 2. */
454 #define ALIGN(ptr, ALIGNMENT) \
455 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
456 & ~ ((ALIGNMENT) - 1)))
460 /************************************************************************
461 Malloc
462 ************************************************************************/
464 /* Function malloc calls this if it finds we are near exhausting storage. */
466 void
467 malloc_warning (const char *str)
469 pending_malloc_warning = str;
473 /* Display an already-pending malloc warning. */
475 void
476 display_malloc_warning (void)
478 call3 (intern ("display-warning"),
479 intern ("alloc"),
480 build_string (pending_malloc_warning),
481 intern ("emergency"));
482 pending_malloc_warning = 0;
485 /* Called if we can't allocate relocatable space for a buffer. */
487 void
488 buffer_memory_full (ptrdiff_t nbytes)
490 /* If buffers use the relocating allocator, no need to free
491 spare_memory, because we may have plenty of malloc space left
492 that we could get, and if we don't, the malloc that fails will
493 itself cause spare_memory to be freed. If buffers don't use the
494 relocating allocator, treat this like any other failing
495 malloc. */
497 #ifndef REL_ALLOC
498 memory_full (nbytes);
499 #endif
501 /* This used to call error, but if we've run out of memory, we could
502 get infinite recursion trying to build the string. */
503 xsignal (Qnil, Vmemory_signal_data);
506 /* A common multiple of the positive integers A and B. Ideally this
507 would be the least common multiple, but there's no way to do that
508 as a constant expression in C, so do the best that we can easily do. */
509 #define COMMON_MULTIPLE(a, b) \
510 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
512 #ifndef XMALLOC_OVERRUN_CHECK
513 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
514 #else
516 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
517 around each block.
519 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
520 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
521 block size in little-endian order. The trailer consists of
522 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
524 The header is used to detect whether this block has been allocated
525 through these functions, as some low-level libc functions may
526 bypass the malloc hooks. */
528 #define XMALLOC_OVERRUN_CHECK_SIZE 16
529 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
530 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
532 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
533 hold a size_t value and (2) the header size is a multiple of the
534 alignment that Emacs needs for C types and for USE_LSB_TAG. */
535 #define XMALLOC_BASE_ALIGNMENT \
536 offsetof ( \
537 struct { \
538 union { long double d; intmax_t i; void *p; } u; \
539 char c; \
540 }, \
543 #if USE_LSB_TAG
544 # define XMALLOC_HEADER_ALIGNMENT \
545 COMMON_MULTIPLE (1 << GCTYPEBITS, XMALLOC_BASE_ALIGNMENT)
546 #else
547 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
548 #endif
549 #define XMALLOC_OVERRUN_SIZE_SIZE \
550 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
551 + XMALLOC_HEADER_ALIGNMENT - 1) \
552 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
553 - XMALLOC_OVERRUN_CHECK_SIZE)
555 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
556 { '\x9a', '\x9b', '\xae', '\xaf',
557 '\xbf', '\xbe', '\xce', '\xcf',
558 '\xea', '\xeb', '\xec', '\xed',
559 '\xdf', '\xde', '\x9c', '\x9d' };
561 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
562 { '\xaa', '\xab', '\xac', '\xad',
563 '\xba', '\xbb', '\xbc', '\xbd',
564 '\xca', '\xcb', '\xcc', '\xcd',
565 '\xda', '\xdb', '\xdc', '\xdd' };
567 /* Insert and extract the block size in the header. */
569 static void
570 xmalloc_put_size (unsigned char *ptr, size_t size)
572 int i;
573 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
575 *--ptr = size & ((1 << CHAR_BIT) - 1);
576 size >>= CHAR_BIT;
580 static size_t
581 xmalloc_get_size (unsigned char *ptr)
583 size_t size = 0;
584 int i;
585 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
586 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
588 size <<= CHAR_BIT;
589 size += *ptr++;
591 return size;
595 /* The call depth in overrun_check functions. For example, this might happen:
596 xmalloc()
597 overrun_check_malloc()
598 -> malloc -> (via hook)_-> emacs_blocked_malloc
599 -> overrun_check_malloc
600 call malloc (hooks are NULL, so real malloc is called).
601 malloc returns 10000.
602 add overhead, return 10016.
603 <- (back in overrun_check_malloc)
604 add overhead again, return 10032
605 xmalloc returns 10032.
607 (time passes).
609 xfree(10032)
610 overrun_check_free(10032)
611 decrease overhead
612 free(10016) <- crash, because 10000 is the original pointer. */
614 static ptrdiff_t check_depth;
616 /* Like malloc, but wraps allocated block with header and trailer. */
618 static void *
619 overrun_check_malloc (size_t size)
621 register unsigned char *val;
622 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
623 if (SIZE_MAX - overhead < size)
624 abort ();
626 val = malloc (size + overhead);
627 if (val && check_depth == 1)
629 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
630 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
631 xmalloc_put_size (val, size);
632 memcpy (val + size, xmalloc_overrun_check_trailer,
633 XMALLOC_OVERRUN_CHECK_SIZE);
635 --check_depth;
636 return val;
640 /* Like realloc, but checks old block for overrun, and wraps new block
641 with header and trailer. */
643 static void *
644 overrun_check_realloc (void *block, size_t size)
646 register unsigned char *val = (unsigned char *) block;
647 int overhead = ++check_depth == 1 ? XMALLOC_OVERRUN_CHECK_OVERHEAD : 0;
648 if (SIZE_MAX - overhead < size)
649 abort ();
651 if (val
652 && check_depth == 1
653 && memcmp (xmalloc_overrun_check_header,
654 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
655 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
657 size_t osize = xmalloc_get_size (val);
658 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
659 XMALLOC_OVERRUN_CHECK_SIZE))
660 abort ();
661 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
662 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
663 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
666 val = realloc (val, size + overhead);
668 if (val && check_depth == 1)
670 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
671 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
672 xmalloc_put_size (val, size);
673 memcpy (val + size, xmalloc_overrun_check_trailer,
674 XMALLOC_OVERRUN_CHECK_SIZE);
676 --check_depth;
677 return val;
680 /* Like free, but checks block for overrun. */
682 static void
683 overrun_check_free (void *block)
685 unsigned char *val = (unsigned char *) block;
687 ++check_depth;
688 if (val
689 && check_depth == 1
690 && memcmp (xmalloc_overrun_check_header,
691 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
692 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
694 size_t osize = xmalloc_get_size (val);
695 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
696 XMALLOC_OVERRUN_CHECK_SIZE))
697 abort ();
698 #ifdef XMALLOC_CLEAR_FREE_MEMORY
699 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
700 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
701 #else
702 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
703 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
704 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
705 #endif
708 free (val);
709 --check_depth;
712 #undef malloc
713 #undef realloc
714 #undef free
715 #define malloc overrun_check_malloc
716 #define realloc overrun_check_realloc
717 #define free overrun_check_free
718 #endif
720 #ifdef SYNC_INPUT
721 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
722 there's no need to block input around malloc. */
723 #define MALLOC_BLOCK_INPUT ((void)0)
724 #define MALLOC_UNBLOCK_INPUT ((void)0)
725 #else
726 #define MALLOC_BLOCK_INPUT BLOCK_INPUT
727 #define MALLOC_UNBLOCK_INPUT UNBLOCK_INPUT
728 #endif
730 /* Like malloc but check for no memory and block interrupt input.. */
732 void *
733 xmalloc (size_t size)
735 void *val;
737 MALLOC_BLOCK_INPUT;
738 val = malloc (size);
739 MALLOC_UNBLOCK_INPUT;
741 if (!val && size)
742 memory_full (size);
743 return val;
746 /* Like the above, but zeroes out the memory just allocated. */
748 void *
749 xzalloc (size_t size)
751 void *val;
753 MALLOC_BLOCK_INPUT;
754 val = malloc (size);
755 MALLOC_UNBLOCK_INPUT;
757 if (!val && size)
758 memory_full (size);
759 memset (val, 0, size);
760 return val;
763 /* Like realloc but check for no memory and block interrupt input.. */
765 void *
766 xrealloc (void *block, size_t size)
768 void *val;
770 MALLOC_BLOCK_INPUT;
771 /* We must call malloc explicitly when BLOCK is 0, since some
772 reallocs don't do this. */
773 if (! block)
774 val = malloc (size);
775 else
776 val = realloc (block, size);
777 MALLOC_UNBLOCK_INPUT;
779 if (!val && size)
780 memory_full (size);
781 return val;
785 /* Like free but block interrupt input. */
787 void
788 xfree (void *block)
790 if (!block)
791 return;
792 MALLOC_BLOCK_INPUT;
793 free (block);
794 MALLOC_UNBLOCK_INPUT;
795 /* We don't call refill_memory_reserve here
796 because that duplicates doing so in emacs_blocked_free
797 and the criterion should go there. */
801 /* Other parts of Emacs pass large int values to allocator functions
802 expecting ptrdiff_t. This is portable in practice, but check it to
803 be safe. */
804 verify (INT_MAX <= PTRDIFF_MAX);
807 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
808 Signal an error on memory exhaustion, and block interrupt input. */
810 void *
811 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
813 eassert (0 <= nitems && 0 < item_size);
814 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
815 memory_full (SIZE_MAX);
816 return xmalloc (nitems * item_size);
820 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
821 Signal an error on memory exhaustion, and block interrupt input. */
823 void *
824 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
826 eassert (0 <= nitems && 0 < item_size);
827 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
828 memory_full (SIZE_MAX);
829 return xrealloc (pa, nitems * item_size);
833 /* Grow PA, which points to an array of *NITEMS items, and return the
834 location of the reallocated array, updating *NITEMS to reflect its
835 new size. The new array will contain at least NITEMS_INCR_MIN more
836 items, but will not contain more than NITEMS_MAX items total.
837 ITEM_SIZE is the size of each item, in bytes.
839 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
840 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
841 infinity.
843 If PA is null, then allocate a new array instead of reallocating
844 the old one. Thus, to grow an array A without saving its old
845 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
846 &NITEMS, ...).
848 Block interrupt input as needed. If memory exhaustion occurs, set
849 *NITEMS to zero if PA is null, and signal an error (i.e., do not
850 return). */
852 void *
853 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
854 ptrdiff_t nitems_max, ptrdiff_t item_size)
856 /* The approximate size to use for initial small allocation
857 requests. This is the largest "small" request for the GNU C
858 library malloc. */
859 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
861 /* If the array is tiny, grow it to about (but no greater than)
862 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
863 ptrdiff_t n = *nitems;
864 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
865 ptrdiff_t half_again = n >> 1;
866 ptrdiff_t incr_estimate = max (tiny_max, half_again);
868 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
869 NITEMS_MAX, and what the C language can represent safely. */
870 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
871 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
872 ? nitems_max : C_language_max);
873 ptrdiff_t nitems_incr_max = n_max - n;
874 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
876 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
877 if (! pa)
878 *nitems = 0;
879 if (nitems_incr_max < incr)
880 memory_full (SIZE_MAX);
881 n += incr;
882 pa = xrealloc (pa, n * item_size);
883 *nitems = n;
884 return pa;
888 /* Like strdup, but uses xmalloc. */
890 char *
891 xstrdup (const char *s)
893 size_t len = strlen (s) + 1;
894 char *p = xmalloc (len);
895 memcpy (p, s, len);
896 return p;
900 /* Unwind for SAFE_ALLOCA */
902 Lisp_Object
903 safe_alloca_unwind (Lisp_Object arg)
905 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
907 p->dogc = 0;
908 xfree (p->pointer);
909 p->pointer = 0;
910 free_misc (arg);
911 return Qnil;
915 /* Like malloc but used for allocating Lisp data. NBYTES is the
916 number of bytes to allocate, TYPE describes the intended use of the
917 allocated memory block (for strings, for conses, ...). */
919 #if ! USE_LSB_TAG
920 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
921 #endif
923 static void *
924 lisp_malloc (size_t nbytes, enum mem_type type)
926 register void *val;
928 MALLOC_BLOCK_INPUT;
930 #ifdef GC_MALLOC_CHECK
931 allocated_mem_type = type;
932 #endif
934 val = malloc (nbytes);
936 #if ! USE_LSB_TAG
937 /* If the memory just allocated cannot be addressed thru a Lisp
938 object's pointer, and it needs to be,
939 that's equivalent to running out of memory. */
940 if (val && type != MEM_TYPE_NON_LISP)
942 Lisp_Object tem;
943 XSETCONS (tem, (char *) val + nbytes - 1);
944 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
946 lisp_malloc_loser = val;
947 free (val);
948 val = 0;
951 #endif
953 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
954 if (val && type != MEM_TYPE_NON_LISP)
955 mem_insert (val, (char *) val + nbytes, type);
956 #endif
958 MALLOC_UNBLOCK_INPUT;
959 if (!val && nbytes)
960 memory_full (nbytes);
961 return val;
964 /* Free BLOCK. This must be called to free memory allocated with a
965 call to lisp_malloc. */
967 static void
968 lisp_free (void *block)
970 MALLOC_BLOCK_INPUT;
971 free (block);
972 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
973 mem_delete (mem_find (block));
974 #endif
975 MALLOC_UNBLOCK_INPUT;
978 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
980 /* The entry point is lisp_align_malloc which returns blocks of at most
981 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
983 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
984 #define USE_POSIX_MEMALIGN 1
985 #endif
987 /* BLOCK_ALIGN has to be a power of 2. */
988 #define BLOCK_ALIGN (1 << 10)
990 /* Padding to leave at the end of a malloc'd block. This is to give
991 malloc a chance to minimize the amount of memory wasted to alignment.
992 It should be tuned to the particular malloc library used.
993 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
994 posix_memalign on the other hand would ideally prefer a value of 4
995 because otherwise, there's 1020 bytes wasted between each ablocks.
996 In Emacs, testing shows that those 1020 can most of the time be
997 efficiently used by malloc to place other objects, so a value of 0 can
998 still preferable unless you have a lot of aligned blocks and virtually
999 nothing else. */
1000 #define BLOCK_PADDING 0
1001 #define BLOCK_BYTES \
1002 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
1004 /* Internal data structures and constants. */
1006 #define ABLOCKS_SIZE 16
1008 /* An aligned block of memory. */
1009 struct ablock
1011 union
1013 char payload[BLOCK_BYTES];
1014 struct ablock *next_free;
1015 } x;
1016 /* `abase' is the aligned base of the ablocks. */
1017 /* It is overloaded to hold the virtual `busy' field that counts
1018 the number of used ablock in the parent ablocks.
1019 The first ablock has the `busy' field, the others have the `abase'
1020 field. To tell the difference, we assume that pointers will have
1021 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
1022 is used to tell whether the real base of the parent ablocks is `abase'
1023 (if not, the word before the first ablock holds a pointer to the
1024 real base). */
1025 struct ablocks *abase;
1026 /* The padding of all but the last ablock is unused. The padding of
1027 the last ablock in an ablocks is not allocated. */
1028 #if BLOCK_PADDING
1029 char padding[BLOCK_PADDING];
1030 #endif
1033 /* A bunch of consecutive aligned blocks. */
1034 struct ablocks
1036 struct ablock blocks[ABLOCKS_SIZE];
1039 /* Size of the block requested from malloc or posix_memalign. */
1040 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
1042 #define ABLOCK_ABASE(block) \
1043 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
1044 ? (struct ablocks *)(block) \
1045 : (block)->abase)
1047 /* Virtual `busy' field. */
1048 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
1050 /* Pointer to the (not necessarily aligned) malloc block. */
1051 #ifdef USE_POSIX_MEMALIGN
1052 #define ABLOCKS_BASE(abase) (abase)
1053 #else
1054 #define ABLOCKS_BASE(abase) \
1055 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
1056 #endif
1058 /* The list of free ablock. */
1059 static struct ablock *free_ablock;
1061 /* Allocate an aligned block of nbytes.
1062 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1063 smaller or equal to BLOCK_BYTES. */
1064 static void *
1065 lisp_align_malloc (size_t nbytes, enum mem_type type)
1067 void *base, *val;
1068 struct ablocks *abase;
1070 eassert (nbytes <= BLOCK_BYTES);
1072 MALLOC_BLOCK_INPUT;
1074 #ifdef GC_MALLOC_CHECK
1075 allocated_mem_type = type;
1076 #endif
1078 if (!free_ablock)
1080 int i;
1081 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1083 #ifdef DOUG_LEA_MALLOC
1084 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1085 because mapped region contents are not preserved in
1086 a dumped Emacs. */
1087 mallopt (M_MMAP_MAX, 0);
1088 #endif
1090 #ifdef USE_POSIX_MEMALIGN
1092 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1093 if (err)
1094 base = NULL;
1095 abase = base;
1097 #else
1098 base = malloc (ABLOCKS_BYTES);
1099 abase = ALIGN (base, BLOCK_ALIGN);
1100 #endif
1102 if (base == 0)
1104 MALLOC_UNBLOCK_INPUT;
1105 memory_full (ABLOCKS_BYTES);
1108 aligned = (base == abase);
1109 if (!aligned)
1110 ((void**)abase)[-1] = base;
1112 #ifdef DOUG_LEA_MALLOC
1113 /* Back to a reasonable maximum of mmap'ed areas. */
1114 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1115 #endif
1117 #if ! USE_LSB_TAG
1118 /* If the memory just allocated cannot be addressed thru a Lisp
1119 object's pointer, and it needs to be, that's equivalent to
1120 running out of memory. */
1121 if (type != MEM_TYPE_NON_LISP)
1123 Lisp_Object tem;
1124 char *end = (char *) base + ABLOCKS_BYTES - 1;
1125 XSETCONS (tem, end);
1126 if ((char *) XCONS (tem) != end)
1128 lisp_malloc_loser = base;
1129 free (base);
1130 MALLOC_UNBLOCK_INPUT;
1131 memory_full (SIZE_MAX);
1134 #endif
1136 /* Initialize the blocks and put them on the free list.
1137 If `base' was not properly aligned, we can't use the last block. */
1138 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1140 abase->blocks[i].abase = abase;
1141 abase->blocks[i].x.next_free = free_ablock;
1142 free_ablock = &abase->blocks[i];
1144 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1146 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1147 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1148 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1149 eassert (ABLOCKS_BASE (abase) == base);
1150 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1153 abase = ABLOCK_ABASE (free_ablock);
1154 ABLOCKS_BUSY (abase) =
1155 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1156 val = free_ablock;
1157 free_ablock = free_ablock->x.next_free;
1159 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1160 if (type != MEM_TYPE_NON_LISP)
1161 mem_insert (val, (char *) val + nbytes, type);
1162 #endif
1164 MALLOC_UNBLOCK_INPUT;
1166 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1167 return val;
1170 static void
1171 lisp_align_free (void *block)
1173 struct ablock *ablock = block;
1174 struct ablocks *abase = ABLOCK_ABASE (ablock);
1176 MALLOC_BLOCK_INPUT;
1177 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1178 mem_delete (mem_find (block));
1179 #endif
1180 /* Put on free list. */
1181 ablock->x.next_free = free_ablock;
1182 free_ablock = ablock;
1183 /* Update busy count. */
1184 ABLOCKS_BUSY (abase)
1185 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1187 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1188 { /* All the blocks are free. */
1189 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1190 struct ablock **tem = &free_ablock;
1191 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1193 while (*tem)
1195 if (*tem >= (struct ablock *) abase && *tem < atop)
1197 i++;
1198 *tem = (*tem)->x.next_free;
1200 else
1201 tem = &(*tem)->x.next_free;
1203 eassert ((aligned & 1) == aligned);
1204 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1205 #ifdef USE_POSIX_MEMALIGN
1206 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1207 #endif
1208 free (ABLOCKS_BASE (abase));
1210 MALLOC_UNBLOCK_INPUT;
1214 #ifndef SYSTEM_MALLOC
1216 /* Arranging to disable input signals while we're in malloc.
1218 This only works with GNU malloc. To help out systems which can't
1219 use GNU malloc, all the calls to malloc, realloc, and free
1220 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
1221 pair; unfortunately, we have no idea what C library functions
1222 might call malloc, so we can't really protect them unless you're
1223 using GNU malloc. Fortunately, most of the major operating systems
1224 can use GNU malloc. */
1226 #ifndef SYNC_INPUT
1227 /* When using SYNC_INPUT, we don't call malloc from a signal handler, so
1228 there's no need to block input around malloc. */
1230 #ifndef DOUG_LEA_MALLOC
1231 extern void * (*__malloc_hook) (size_t, const void *);
1232 extern void * (*__realloc_hook) (void *, size_t, const void *);
1233 extern void (*__free_hook) (void *, const void *);
1234 /* Else declared in malloc.h, perhaps with an extra arg. */
1235 #endif /* DOUG_LEA_MALLOC */
1236 static void * (*old_malloc_hook) (size_t, const void *);
1237 static void * (*old_realloc_hook) (void *, size_t, const void*);
1238 static void (*old_free_hook) (void*, const void*);
1240 #ifdef DOUG_LEA_MALLOC
1241 # define BYTES_USED (mallinfo ().uordblks)
1242 #else
1243 # define BYTES_USED _bytes_used
1244 #endif
1246 #ifdef GC_MALLOC_CHECK
1247 static int dont_register_blocks;
1248 #endif
1250 static size_t bytes_used_when_reconsidered;
1252 /* Value of _bytes_used, when spare_memory was freed. */
1254 static size_t bytes_used_when_full;
1256 /* This function is used as the hook for free to call. */
1258 static void
1259 emacs_blocked_free (void *ptr, const void *ptr2)
1261 BLOCK_INPUT_ALLOC;
1263 #ifdef GC_MALLOC_CHECK
1264 if (ptr)
1266 struct mem_node *m;
1268 m = mem_find (ptr);
1269 if (m == MEM_NIL || m->start != ptr)
1271 fprintf (stderr,
1272 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
1273 abort ();
1275 else
1277 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
1278 mem_delete (m);
1281 #endif /* GC_MALLOC_CHECK */
1283 __free_hook = old_free_hook;
1284 free (ptr);
1286 /* If we released our reserve (due to running out of memory),
1287 and we have a fair amount free once again,
1288 try to set aside another reserve in case we run out once more. */
1289 if (! NILP (Vmemory_full)
1290 /* Verify there is enough space that even with the malloc
1291 hysteresis this call won't run out again.
1292 The code here is correct as long as SPARE_MEMORY
1293 is substantially larger than the block size malloc uses. */
1294 && (bytes_used_when_full
1295 > ((bytes_used_when_reconsidered = BYTES_USED)
1296 + max (malloc_hysteresis, 4) * SPARE_MEMORY)))
1297 refill_memory_reserve ();
1299 __free_hook = emacs_blocked_free;
1300 UNBLOCK_INPUT_ALLOC;
1304 /* This function is the malloc hook that Emacs uses. */
1306 static void *
1307 emacs_blocked_malloc (size_t size, const void *ptr)
1309 void *value;
1311 BLOCK_INPUT_ALLOC;
1312 __malloc_hook = old_malloc_hook;
1313 #ifdef DOUG_LEA_MALLOC
1314 /* Segfaults on my system. --lorentey */
1315 /* mallopt (M_TOP_PAD, malloc_hysteresis * 4096); */
1316 #else
1317 __malloc_extra_blocks = malloc_hysteresis;
1318 #endif
1320 value = malloc (size);
1322 #ifdef GC_MALLOC_CHECK
1324 struct mem_node *m = mem_find (value);
1325 if (m != MEM_NIL)
1327 fprintf (stderr, "Malloc returned %p which is already in use\n",
1328 value);
1329 fprintf (stderr, "Region in use is %p...%p, %td bytes, type %d\n",
1330 m->start, m->end, (char *) m->end - (char *) m->start,
1331 m->type);
1332 abort ();
1335 if (!dont_register_blocks)
1337 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1338 allocated_mem_type = MEM_TYPE_NON_LISP;
1341 #endif /* GC_MALLOC_CHECK */
1343 __malloc_hook = emacs_blocked_malloc;
1344 UNBLOCK_INPUT_ALLOC;
1346 /* fprintf (stderr, "%p malloc\n", value); */
1347 return value;
1351 /* This function is the realloc hook that Emacs uses. */
1353 static void *
1354 emacs_blocked_realloc (void *ptr, size_t size, const void *ptr2)
1356 void *value;
1358 BLOCK_INPUT_ALLOC;
1359 __realloc_hook = old_realloc_hook;
1361 #ifdef GC_MALLOC_CHECK
1362 if (ptr)
1364 struct mem_node *m = mem_find (ptr);
1365 if (m == MEM_NIL || m->start != ptr)
1367 fprintf (stderr,
1368 "Realloc of %p which wasn't allocated with malloc\n",
1369 ptr);
1370 abort ();
1373 mem_delete (m);
1376 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1378 /* Prevent malloc from registering blocks. */
1379 dont_register_blocks = 1;
1380 #endif /* GC_MALLOC_CHECK */
1382 value = realloc (ptr, size);
1384 #ifdef GC_MALLOC_CHECK
1385 dont_register_blocks = 0;
1388 struct mem_node *m = mem_find (value);
1389 if (m != MEM_NIL)
1391 fprintf (stderr, "Realloc returns memory that is already in use\n");
1392 abort ();
1395 /* Can't handle zero size regions in the red-black tree. */
1396 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1399 /* fprintf (stderr, "%p <- realloc\n", value); */
1400 #endif /* GC_MALLOC_CHECK */
1402 __realloc_hook = emacs_blocked_realloc;
1403 UNBLOCK_INPUT_ALLOC;
1405 return value;
1409 #ifdef HAVE_PTHREAD
1410 /* Called from Fdump_emacs so that when the dumped Emacs starts, it has a
1411 normal malloc. Some thread implementations need this as they call
1412 malloc before main. The pthread_self call in BLOCK_INPUT_ALLOC then
1413 calls malloc because it is the first call, and we have an endless loop. */
1415 void
1416 reset_malloc_hooks (void)
1418 __free_hook = old_free_hook;
1419 __malloc_hook = old_malloc_hook;
1420 __realloc_hook = old_realloc_hook;
1422 #endif /* HAVE_PTHREAD */
1425 /* Called from main to set up malloc to use our hooks. */
1427 void
1428 uninterrupt_malloc (void)
1430 #ifdef HAVE_PTHREAD
1431 #ifdef DOUG_LEA_MALLOC
1432 pthread_mutexattr_t attr;
1434 /* GLIBC has a faster way to do this, but let's keep it portable.
1435 This is according to the Single UNIX Specification. */
1436 pthread_mutexattr_init (&attr);
1437 pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
1438 pthread_mutex_init (&alloc_mutex, &attr);
1439 #else /* !DOUG_LEA_MALLOC */
1440 /* Some systems such as Solaris 2.6 don't have a recursive mutex,
1441 and the bundled gmalloc.c doesn't require it. */
1442 pthread_mutex_init (&alloc_mutex, NULL);
1443 #endif /* !DOUG_LEA_MALLOC */
1444 #endif /* HAVE_PTHREAD */
1446 if (__free_hook != emacs_blocked_free)
1447 old_free_hook = __free_hook;
1448 __free_hook = emacs_blocked_free;
1450 if (__malloc_hook != emacs_blocked_malloc)
1451 old_malloc_hook = __malloc_hook;
1452 __malloc_hook = emacs_blocked_malloc;
1454 if (__realloc_hook != emacs_blocked_realloc)
1455 old_realloc_hook = __realloc_hook;
1456 __realloc_hook = emacs_blocked_realloc;
1459 #endif /* not SYNC_INPUT */
1460 #endif /* not SYSTEM_MALLOC */
1464 /***********************************************************************
1465 Interval Allocation
1466 ***********************************************************************/
1468 /* Number of intervals allocated in an interval_block structure.
1469 The 1020 is 1024 minus malloc overhead. */
1471 #define INTERVAL_BLOCK_SIZE \
1472 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1474 /* Intervals are allocated in chunks in form of an interval_block
1475 structure. */
1477 struct interval_block
1479 /* Place `intervals' first, to preserve alignment. */
1480 struct interval intervals[INTERVAL_BLOCK_SIZE];
1481 struct interval_block *next;
1484 /* Current interval block. Its `next' pointer points to older
1485 blocks. */
1487 static struct interval_block *interval_block;
1489 /* Index in interval_block above of the next unused interval
1490 structure. */
1492 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1494 /* Number of free and live intervals. */
1496 static EMACS_INT total_free_intervals, total_intervals;
1498 /* List of free intervals. */
1500 static INTERVAL interval_free_list;
1502 /* Return a new interval. */
1504 INTERVAL
1505 make_interval (void)
1507 INTERVAL val;
1509 /* eassert (!handling_signal); */
1511 MALLOC_BLOCK_INPUT;
1513 if (interval_free_list)
1515 val = interval_free_list;
1516 interval_free_list = INTERVAL_PARENT (interval_free_list);
1518 else
1520 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1522 struct interval_block *newi
1523 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1525 newi->next = interval_block;
1526 interval_block = newi;
1527 interval_block_index = 0;
1528 total_free_intervals += INTERVAL_BLOCK_SIZE;
1530 val = &interval_block->intervals[interval_block_index++];
1533 MALLOC_UNBLOCK_INPUT;
1535 consing_since_gc += sizeof (struct interval);
1536 intervals_consed++;
1537 total_free_intervals--;
1538 RESET_INTERVAL (val);
1539 val->gcmarkbit = 0;
1540 return val;
1544 /* Mark Lisp objects in interval I. */
1546 static void
1547 mark_interval (register INTERVAL i, Lisp_Object dummy)
1549 /* Intervals should never be shared. So, if extra internal checking is
1550 enabled, GC aborts if it seems to have visited an interval twice. */
1551 eassert (!i->gcmarkbit);
1552 i->gcmarkbit = 1;
1553 mark_object (i->plist);
1557 /* Mark the interval tree rooted in TREE. Don't call this directly;
1558 use the macro MARK_INTERVAL_TREE instead. */
1560 static void
1561 mark_interval_tree (register INTERVAL tree)
1563 /* No need to test if this tree has been marked already; this
1564 function is always called through the MARK_INTERVAL_TREE macro,
1565 which takes care of that. */
1567 traverse_intervals_noorder (tree, mark_interval, Qnil);
1571 /* Mark the interval tree rooted in I. */
1573 #define MARK_INTERVAL_TREE(i) \
1574 do { \
1575 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1576 mark_interval_tree (i); \
1577 } while (0)
1580 #define UNMARK_BALANCE_INTERVALS(i) \
1581 do { \
1582 if (! NULL_INTERVAL_P (i)) \
1583 (i) = balance_intervals (i); \
1584 } while (0)
1586 /***********************************************************************
1587 String Allocation
1588 ***********************************************************************/
1590 /* Lisp_Strings are allocated in string_block structures. When a new
1591 string_block is allocated, all the Lisp_Strings it contains are
1592 added to a free-list string_free_list. When a new Lisp_String is
1593 needed, it is taken from that list. During the sweep phase of GC,
1594 string_blocks that are entirely free are freed, except two which
1595 we keep.
1597 String data is allocated from sblock structures. Strings larger
1598 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1599 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1601 Sblocks consist internally of sdata structures, one for each
1602 Lisp_String. The sdata structure points to the Lisp_String it
1603 belongs to. The Lisp_String points back to the `u.data' member of
1604 its sdata structure.
1606 When a Lisp_String is freed during GC, it is put back on
1607 string_free_list, and its `data' member and its sdata's `string'
1608 pointer is set to null. The size of the string is recorded in the
1609 `u.nbytes' member of the sdata. So, sdata structures that are no
1610 longer used, can be easily recognized, and it's easy to compact the
1611 sblocks of small strings which we do in compact_small_strings. */
1613 /* Size in bytes of an sblock structure used for small strings. This
1614 is 8192 minus malloc overhead. */
1616 #define SBLOCK_SIZE 8188
1618 /* Strings larger than this are considered large strings. String data
1619 for large strings is allocated from individual sblocks. */
1621 #define LARGE_STRING_BYTES 1024
1623 /* Structure describing string memory sub-allocated from an sblock.
1624 This is where the contents of Lisp strings are stored. */
1626 struct sdata
1628 /* Back-pointer to the string this sdata belongs to. If null, this
1629 structure is free, and the NBYTES member of the union below
1630 contains the string's byte size (the same value that STRING_BYTES
1631 would return if STRING were non-null). If non-null, STRING_BYTES
1632 (STRING) is the size of the data, and DATA contains the string's
1633 contents. */
1634 struct Lisp_String *string;
1636 #ifdef GC_CHECK_STRING_BYTES
1638 ptrdiff_t nbytes;
1639 unsigned char data[1];
1641 #define SDATA_NBYTES(S) (S)->nbytes
1642 #define SDATA_DATA(S) (S)->data
1643 #define SDATA_SELECTOR(member) member
1645 #else /* not GC_CHECK_STRING_BYTES */
1647 union
1649 /* When STRING is non-null. */
1650 unsigned char data[1];
1652 /* When STRING is null. */
1653 ptrdiff_t nbytes;
1654 } u;
1656 #define SDATA_NBYTES(S) (S)->u.nbytes
1657 #define SDATA_DATA(S) (S)->u.data
1658 #define SDATA_SELECTOR(member) u.member
1660 #endif /* not GC_CHECK_STRING_BYTES */
1662 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1666 /* Structure describing a block of memory which is sub-allocated to
1667 obtain string data memory for strings. Blocks for small strings
1668 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1669 as large as needed. */
1671 struct sblock
1673 /* Next in list. */
1674 struct sblock *next;
1676 /* Pointer to the next free sdata block. This points past the end
1677 of the sblock if there isn't any space left in this block. */
1678 struct sdata *next_free;
1680 /* Start of data. */
1681 struct sdata first_data;
1684 /* Number of Lisp strings in a string_block structure. The 1020 is
1685 1024 minus malloc overhead. */
1687 #define STRING_BLOCK_SIZE \
1688 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1690 /* Structure describing a block from which Lisp_String structures
1691 are allocated. */
1693 struct string_block
1695 /* Place `strings' first, to preserve alignment. */
1696 struct Lisp_String strings[STRING_BLOCK_SIZE];
1697 struct string_block *next;
1700 /* Head and tail of the list of sblock structures holding Lisp string
1701 data. We always allocate from current_sblock. The NEXT pointers
1702 in the sblock structures go from oldest_sblock to current_sblock. */
1704 static struct sblock *oldest_sblock, *current_sblock;
1706 /* List of sblocks for large strings. */
1708 static struct sblock *large_sblocks;
1710 /* List of string_block structures. */
1712 static struct string_block *string_blocks;
1714 /* Free-list of Lisp_Strings. */
1716 static struct Lisp_String *string_free_list;
1718 /* Number of live and free Lisp_Strings. */
1720 static EMACS_INT total_strings, total_free_strings;
1722 /* Number of bytes used by live strings. */
1724 static EMACS_INT total_string_bytes;
1726 /* Given a pointer to a Lisp_String S which is on the free-list
1727 string_free_list, return a pointer to its successor in the
1728 free-list. */
1730 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1732 /* Return a pointer to the sdata structure belonging to Lisp string S.
1733 S must be live, i.e. S->data must not be null. S->data is actually
1734 a pointer to the `u.data' member of its sdata structure; the
1735 structure starts at a constant offset in front of that. */
1737 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1740 #ifdef GC_CHECK_STRING_OVERRUN
1742 /* We check for overrun in string data blocks by appending a small
1743 "cookie" after each allocated string data block, and check for the
1744 presence of this cookie during GC. */
1746 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1747 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1748 { '\xde', '\xad', '\xbe', '\xef' };
1750 #else
1751 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1752 #endif
1754 /* Value is the size of an sdata structure large enough to hold NBYTES
1755 bytes of string data. The value returned includes a terminating
1756 NUL byte, the size of the sdata structure, and padding. */
1758 #ifdef GC_CHECK_STRING_BYTES
1760 #define SDATA_SIZE(NBYTES) \
1761 ((SDATA_DATA_OFFSET \
1762 + (NBYTES) + 1 \
1763 + sizeof (ptrdiff_t) - 1) \
1764 & ~(sizeof (ptrdiff_t) - 1))
1766 #else /* not GC_CHECK_STRING_BYTES */
1768 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1769 less than the size of that member. The 'max' is not needed when
1770 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1771 alignment code reserves enough space. */
1773 #define SDATA_SIZE(NBYTES) \
1774 ((SDATA_DATA_OFFSET \
1775 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1776 ? NBYTES \
1777 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1778 + 1 \
1779 + sizeof (ptrdiff_t) - 1) \
1780 & ~(sizeof (ptrdiff_t) - 1))
1782 #endif /* not GC_CHECK_STRING_BYTES */
1784 /* Extra bytes to allocate for each string. */
1786 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1788 /* Exact bound on the number of bytes in a string, not counting the
1789 terminating null. A string cannot contain more bytes than
1790 STRING_BYTES_BOUND, nor can it be so long that the size_t
1791 arithmetic in allocate_string_data would overflow while it is
1792 calculating a value to be passed to malloc. */
1793 #define STRING_BYTES_MAX \
1794 min (STRING_BYTES_BOUND, \
1795 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD \
1796 - GC_STRING_EXTRA \
1797 - offsetof (struct sblock, first_data) \
1798 - SDATA_DATA_OFFSET) \
1799 & ~(sizeof (EMACS_INT) - 1)))
1801 /* Initialize string allocation. Called from init_alloc_once. */
1803 static void
1804 init_strings (void)
1806 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1807 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1811 #ifdef GC_CHECK_STRING_BYTES
1813 static int check_string_bytes_count;
1815 #define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1818 /* Like GC_STRING_BYTES, but with debugging check. */
1820 ptrdiff_t
1821 string_bytes (struct Lisp_String *s)
1823 ptrdiff_t nbytes =
1824 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1826 if (!PURE_POINTER_P (s)
1827 && s->data
1828 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1829 abort ();
1830 return nbytes;
1833 /* Check validity of Lisp strings' string_bytes member in B. */
1835 static void
1836 check_sblock (struct sblock *b)
1838 struct sdata *from, *end, *from_end;
1840 end = b->next_free;
1842 for (from = &b->first_data; from < end; from = from_end)
1844 /* Compute the next FROM here because copying below may
1845 overwrite data we need to compute it. */
1846 ptrdiff_t nbytes;
1848 /* Check that the string size recorded in the string is the
1849 same as the one recorded in the sdata structure. */
1850 if (from->string)
1851 CHECK_STRING_BYTES (from->string);
1853 if (from->string)
1854 nbytes = GC_STRING_BYTES (from->string);
1855 else
1856 nbytes = SDATA_NBYTES (from);
1858 nbytes = SDATA_SIZE (nbytes);
1859 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1864 /* Check validity of Lisp strings' string_bytes member. ALL_P
1865 non-zero means check all strings, otherwise check only most
1866 recently allocated strings. Used for hunting a bug. */
1868 static void
1869 check_string_bytes (int all_p)
1871 if (all_p)
1873 struct sblock *b;
1875 for (b = large_sblocks; b; b = b->next)
1877 struct Lisp_String *s = b->first_data.string;
1878 if (s)
1879 CHECK_STRING_BYTES (s);
1882 for (b = oldest_sblock; b; b = b->next)
1883 check_sblock (b);
1885 else if (current_sblock)
1886 check_sblock (current_sblock);
1889 #endif /* GC_CHECK_STRING_BYTES */
1891 #ifdef GC_CHECK_STRING_FREE_LIST
1893 /* Walk through the string free list looking for bogus next pointers.
1894 This may catch buffer overrun from a previous string. */
1896 static void
1897 check_string_free_list (void)
1899 struct Lisp_String *s;
1901 /* Pop a Lisp_String off the free-list. */
1902 s = string_free_list;
1903 while (s != NULL)
1905 if ((uintptr_t) s < 1024)
1906 abort ();
1907 s = NEXT_FREE_LISP_STRING (s);
1910 #else
1911 #define check_string_free_list()
1912 #endif
1914 /* Return a new Lisp_String. */
1916 static struct Lisp_String *
1917 allocate_string (void)
1919 struct Lisp_String *s;
1921 /* eassert (!handling_signal); */
1923 MALLOC_BLOCK_INPUT;
1925 /* If the free-list is empty, allocate a new string_block, and
1926 add all the Lisp_Strings in it to the free-list. */
1927 if (string_free_list == NULL)
1929 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1930 int i;
1932 b->next = string_blocks;
1933 string_blocks = b;
1935 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1937 s = b->strings + i;
1938 /* Every string on a free list should have NULL data pointer. */
1939 s->data = NULL;
1940 NEXT_FREE_LISP_STRING (s) = string_free_list;
1941 string_free_list = s;
1944 total_free_strings += STRING_BLOCK_SIZE;
1947 check_string_free_list ();
1949 /* Pop a Lisp_String off the free-list. */
1950 s = string_free_list;
1951 string_free_list = NEXT_FREE_LISP_STRING (s);
1953 MALLOC_UNBLOCK_INPUT;
1955 --total_free_strings;
1956 ++total_strings;
1957 ++strings_consed;
1958 consing_since_gc += sizeof *s;
1960 #ifdef GC_CHECK_STRING_BYTES
1961 if (!noninteractive)
1963 if (++check_string_bytes_count == 200)
1965 check_string_bytes_count = 0;
1966 check_string_bytes (1);
1968 else
1969 check_string_bytes (0);
1971 #endif /* GC_CHECK_STRING_BYTES */
1973 return s;
1977 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1978 plus a NUL byte at the end. Allocate an sdata structure for S, and
1979 set S->data to its `u.data' member. Store a NUL byte at the end of
1980 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1981 S->data if it was initially non-null. */
1983 void
1984 allocate_string_data (struct Lisp_String *s,
1985 EMACS_INT nchars, EMACS_INT nbytes)
1987 struct sdata *data, *old_data;
1988 struct sblock *b;
1989 ptrdiff_t needed, old_nbytes;
1991 if (STRING_BYTES_MAX < nbytes)
1992 string_overflow ();
1994 /* Determine the number of bytes needed to store NBYTES bytes
1995 of string data. */
1996 needed = SDATA_SIZE (nbytes);
1997 if (s->data)
1999 old_data = SDATA_OF_STRING (s);
2000 old_nbytes = GC_STRING_BYTES (s);
2002 else
2003 old_data = NULL;
2005 MALLOC_BLOCK_INPUT;
2007 if (nbytes > LARGE_STRING_BYTES)
2009 size_t size = offsetof (struct sblock, first_data) + needed;
2011 #ifdef DOUG_LEA_MALLOC
2012 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2013 because mapped region contents are not preserved in
2014 a dumped Emacs.
2016 In case you think of allowing it in a dumped Emacs at the
2017 cost of not being able to re-dump, there's another reason:
2018 mmap'ed data typically have an address towards the top of the
2019 address space, which won't fit into an EMACS_INT (at least on
2020 32-bit systems with the current tagging scheme). --fx */
2021 mallopt (M_MMAP_MAX, 0);
2022 #endif
2024 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
2026 #ifdef DOUG_LEA_MALLOC
2027 /* Back to a reasonable maximum of mmap'ed areas. */
2028 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2029 #endif
2031 b->next_free = &b->first_data;
2032 b->first_data.string = NULL;
2033 b->next = large_sblocks;
2034 large_sblocks = b;
2036 else if (current_sblock == NULL
2037 || (((char *) current_sblock + SBLOCK_SIZE
2038 - (char *) current_sblock->next_free)
2039 < (needed + GC_STRING_EXTRA)))
2041 /* Not enough room in the current sblock. */
2042 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
2043 b->next_free = &b->first_data;
2044 b->first_data.string = NULL;
2045 b->next = NULL;
2047 if (current_sblock)
2048 current_sblock->next = b;
2049 else
2050 oldest_sblock = b;
2051 current_sblock = b;
2053 else
2054 b = current_sblock;
2056 data = b->next_free;
2057 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
2059 MALLOC_UNBLOCK_INPUT;
2061 data->string = s;
2062 s->data = SDATA_DATA (data);
2063 #ifdef GC_CHECK_STRING_BYTES
2064 SDATA_NBYTES (data) = nbytes;
2065 #endif
2066 s->size = nchars;
2067 s->size_byte = nbytes;
2068 s->data[nbytes] = '\0';
2069 #ifdef GC_CHECK_STRING_OVERRUN
2070 memcpy ((char *) data + needed, string_overrun_cookie,
2071 GC_STRING_OVERRUN_COOKIE_SIZE);
2072 #endif
2074 /* Note that Faset may call to this function when S has already data
2075 assigned. In this case, mark data as free by setting it's string
2076 back-pointer to null, and record the size of the data in it. */
2077 if (old_data)
2079 SDATA_NBYTES (old_data) = old_nbytes;
2080 old_data->string = NULL;
2083 consing_since_gc += needed;
2087 /* Sweep and compact strings. */
2089 static void
2090 sweep_strings (void)
2092 struct string_block *b, *next;
2093 struct string_block *live_blocks = NULL;
2095 string_free_list = NULL;
2096 total_strings = total_free_strings = 0;
2097 total_string_bytes = 0;
2099 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
2100 for (b = string_blocks; b; b = next)
2102 int i, nfree = 0;
2103 struct Lisp_String *free_list_before = string_free_list;
2105 next = b->next;
2107 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
2109 struct Lisp_String *s = b->strings + i;
2111 if (s->data)
2113 /* String was not on free-list before. */
2114 if (STRING_MARKED_P (s))
2116 /* String is live; unmark it and its intervals. */
2117 UNMARK_STRING (s);
2119 if (!NULL_INTERVAL_P (s->intervals))
2120 UNMARK_BALANCE_INTERVALS (s->intervals);
2122 ++total_strings;
2123 total_string_bytes += STRING_BYTES (s);
2125 else
2127 /* String is dead. Put it on the free-list. */
2128 struct sdata *data = SDATA_OF_STRING (s);
2130 /* Save the size of S in its sdata so that we know
2131 how large that is. Reset the sdata's string
2132 back-pointer so that we know it's free. */
2133 #ifdef GC_CHECK_STRING_BYTES
2134 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
2135 abort ();
2136 #else
2137 data->u.nbytes = GC_STRING_BYTES (s);
2138 #endif
2139 data->string = NULL;
2141 /* Reset the strings's `data' member so that we
2142 know it's free. */
2143 s->data = NULL;
2145 /* Put the string on the free-list. */
2146 NEXT_FREE_LISP_STRING (s) = string_free_list;
2147 string_free_list = s;
2148 ++nfree;
2151 else
2153 /* S was on the free-list before. Put it there again. */
2154 NEXT_FREE_LISP_STRING (s) = string_free_list;
2155 string_free_list = s;
2156 ++nfree;
2160 /* Free blocks that contain free Lisp_Strings only, except
2161 the first two of them. */
2162 if (nfree == STRING_BLOCK_SIZE
2163 && total_free_strings > STRING_BLOCK_SIZE)
2165 lisp_free (b);
2166 string_free_list = free_list_before;
2168 else
2170 total_free_strings += nfree;
2171 b->next = live_blocks;
2172 live_blocks = b;
2176 check_string_free_list ();
2178 string_blocks = live_blocks;
2179 free_large_strings ();
2180 compact_small_strings ();
2182 check_string_free_list ();
2186 /* Free dead large strings. */
2188 static void
2189 free_large_strings (void)
2191 struct sblock *b, *next;
2192 struct sblock *live_blocks = NULL;
2194 for (b = large_sblocks; b; b = next)
2196 next = b->next;
2198 if (b->first_data.string == NULL)
2199 lisp_free (b);
2200 else
2202 b->next = live_blocks;
2203 live_blocks = b;
2207 large_sblocks = live_blocks;
2211 /* Compact data of small strings. Free sblocks that don't contain
2212 data of live strings after compaction. */
2214 static void
2215 compact_small_strings (void)
2217 struct sblock *b, *tb, *next;
2218 struct sdata *from, *to, *end, *tb_end;
2219 struct sdata *to_end, *from_end;
2221 /* TB is the sblock we copy to, TO is the sdata within TB we copy
2222 to, and TB_END is the end of TB. */
2223 tb = oldest_sblock;
2224 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2225 to = &tb->first_data;
2227 /* Step through the blocks from the oldest to the youngest. We
2228 expect that old blocks will stabilize over time, so that less
2229 copying will happen this way. */
2230 for (b = oldest_sblock; b; b = b->next)
2232 end = b->next_free;
2233 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
2235 for (from = &b->first_data; from < end; from = from_end)
2237 /* Compute the next FROM here because copying below may
2238 overwrite data we need to compute it. */
2239 ptrdiff_t nbytes;
2241 #ifdef GC_CHECK_STRING_BYTES
2242 /* Check that the string size recorded in the string is the
2243 same as the one recorded in the sdata structure. */
2244 if (from->string
2245 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
2246 abort ();
2247 #endif /* GC_CHECK_STRING_BYTES */
2249 if (from->string)
2250 nbytes = GC_STRING_BYTES (from->string);
2251 else
2252 nbytes = SDATA_NBYTES (from);
2254 if (nbytes > LARGE_STRING_BYTES)
2255 abort ();
2257 nbytes = SDATA_SIZE (nbytes);
2258 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
2260 #ifdef GC_CHECK_STRING_OVERRUN
2261 if (memcmp (string_overrun_cookie,
2262 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
2263 GC_STRING_OVERRUN_COOKIE_SIZE))
2264 abort ();
2265 #endif
2267 /* FROM->string non-null means it's alive. Copy its data. */
2268 if (from->string)
2270 /* If TB is full, proceed with the next sblock. */
2271 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2272 if (to_end > tb_end)
2274 tb->next_free = to;
2275 tb = tb->next;
2276 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
2277 to = &tb->first_data;
2278 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
2281 /* Copy, and update the string's `data' pointer. */
2282 if (from != to)
2284 eassert (tb != b || to < from);
2285 memmove (to, from, nbytes + GC_STRING_EXTRA);
2286 to->string->data = SDATA_DATA (to);
2289 /* Advance past the sdata we copied to. */
2290 to = to_end;
2295 /* The rest of the sblocks following TB don't contain live data, so
2296 we can free them. */
2297 for (b = tb->next; b; b = next)
2299 next = b->next;
2300 lisp_free (b);
2303 tb->next_free = to;
2304 tb->next = NULL;
2305 current_sblock = tb;
2308 void
2309 string_overflow (void)
2311 error ("Maximum string size exceeded");
2314 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
2315 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
2316 LENGTH must be an integer.
2317 INIT must be an integer that represents a character. */)
2318 (Lisp_Object length, Lisp_Object init)
2320 register Lisp_Object val;
2321 register unsigned char *p, *end;
2322 int c;
2323 EMACS_INT nbytes;
2325 CHECK_NATNUM (length);
2326 CHECK_CHARACTER (init);
2328 c = XFASTINT (init);
2329 if (ASCII_CHAR_P (c))
2331 nbytes = XINT (length);
2332 val = make_uninit_string (nbytes);
2333 p = SDATA (val);
2334 end = p + SCHARS (val);
2335 while (p != end)
2336 *p++ = c;
2338 else
2340 unsigned char str[MAX_MULTIBYTE_LENGTH];
2341 int len = CHAR_STRING (c, str);
2342 EMACS_INT string_len = XINT (length);
2344 if (string_len > STRING_BYTES_MAX / len)
2345 string_overflow ();
2346 nbytes = len * string_len;
2347 val = make_uninit_multibyte_string (string_len, nbytes);
2348 p = SDATA (val);
2349 end = p + nbytes;
2350 while (p != end)
2352 memcpy (p, str, len);
2353 p += len;
2357 *p = 0;
2358 return val;
2362 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2363 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2364 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2365 (Lisp_Object length, Lisp_Object init)
2367 register Lisp_Object val;
2368 struct Lisp_Bool_Vector *p;
2369 ptrdiff_t length_in_chars;
2370 EMACS_INT length_in_elts;
2371 int bits_per_value;
2372 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2373 / word_size);
2375 CHECK_NATNUM (length);
2377 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2379 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2381 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2383 /* No Lisp_Object to trace in there. */
2384 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0);
2386 p = XBOOL_VECTOR (val);
2387 p->size = XFASTINT (length);
2389 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2390 / BOOL_VECTOR_BITS_PER_CHAR);
2391 if (length_in_chars)
2393 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2395 /* Clear any extraneous bits in the last byte. */
2396 p->data[length_in_chars - 1]
2397 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2400 return val;
2404 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2405 of characters from the contents. This string may be unibyte or
2406 multibyte, depending on the contents. */
2408 Lisp_Object
2409 make_string (const char *contents, ptrdiff_t nbytes)
2411 register Lisp_Object val;
2412 ptrdiff_t nchars, multibyte_nbytes;
2414 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2415 &nchars, &multibyte_nbytes);
2416 if (nbytes == nchars || nbytes != multibyte_nbytes)
2417 /* CONTENTS contains no multibyte sequences or contains an invalid
2418 multibyte sequence. We must make unibyte string. */
2419 val = make_unibyte_string (contents, nbytes);
2420 else
2421 val = make_multibyte_string (contents, nchars, nbytes);
2422 return val;
2426 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2428 Lisp_Object
2429 make_unibyte_string (const char *contents, ptrdiff_t length)
2431 register Lisp_Object val;
2432 val = make_uninit_string (length);
2433 memcpy (SDATA (val), contents, length);
2434 return val;
2438 /* Make a multibyte string from NCHARS characters occupying NBYTES
2439 bytes at CONTENTS. */
2441 Lisp_Object
2442 make_multibyte_string (const char *contents,
2443 ptrdiff_t nchars, ptrdiff_t nbytes)
2445 register Lisp_Object val;
2446 val = make_uninit_multibyte_string (nchars, nbytes);
2447 memcpy (SDATA (val), contents, nbytes);
2448 return val;
2452 /* Make a string from NCHARS characters occupying NBYTES bytes at
2453 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2455 Lisp_Object
2456 make_string_from_bytes (const char *contents,
2457 ptrdiff_t nchars, ptrdiff_t nbytes)
2459 register Lisp_Object val;
2460 val = make_uninit_multibyte_string (nchars, nbytes);
2461 memcpy (SDATA (val), contents, nbytes);
2462 if (SBYTES (val) == SCHARS (val))
2463 STRING_SET_UNIBYTE (val);
2464 return val;
2468 /* Make a string from NCHARS characters occupying NBYTES bytes at
2469 CONTENTS. The argument MULTIBYTE controls whether to label the
2470 string as multibyte. If NCHARS is negative, it counts the number of
2471 characters by itself. */
2473 Lisp_Object
2474 make_specified_string (const char *contents,
2475 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
2477 register Lisp_Object val;
2479 if (nchars < 0)
2481 if (multibyte)
2482 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2483 nbytes);
2484 else
2485 nchars = nbytes;
2487 val = make_uninit_multibyte_string (nchars, nbytes);
2488 memcpy (SDATA (val), contents, nbytes);
2489 if (!multibyte)
2490 STRING_SET_UNIBYTE (val);
2491 return val;
2495 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2496 occupying LENGTH bytes. */
2498 Lisp_Object
2499 make_uninit_string (EMACS_INT length)
2501 Lisp_Object val;
2503 if (!length)
2504 return empty_unibyte_string;
2505 val = make_uninit_multibyte_string (length, length);
2506 STRING_SET_UNIBYTE (val);
2507 return val;
2511 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2512 which occupy NBYTES bytes. */
2514 Lisp_Object
2515 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2517 Lisp_Object string;
2518 struct Lisp_String *s;
2520 if (nchars < 0)
2521 abort ();
2522 if (!nbytes)
2523 return empty_multibyte_string;
2525 s = allocate_string ();
2526 s->intervals = NULL_INTERVAL;
2527 allocate_string_data (s, nchars, nbytes);
2528 XSETSTRING (string, s);
2529 string_chars_consed += nbytes;
2530 return string;
2533 /* Print arguments to BUF according to a FORMAT, then return
2534 a Lisp_String initialized with the data from BUF. */
2536 Lisp_Object
2537 make_formatted_string (char *buf, const char *format, ...)
2539 va_list ap;
2540 int length;
2542 va_start (ap, format);
2543 length = vsprintf (buf, format, ap);
2544 va_end (ap);
2545 return make_string (buf, length);
2549 /***********************************************************************
2550 Float Allocation
2551 ***********************************************************************/
2553 /* We store float cells inside of float_blocks, allocating a new
2554 float_block with malloc whenever necessary. Float cells reclaimed
2555 by GC are put on a free list to be reallocated before allocating
2556 any new float cells from the latest float_block. */
2558 #define FLOAT_BLOCK_SIZE \
2559 (((BLOCK_BYTES - sizeof (struct float_block *) \
2560 /* The compiler might add padding at the end. */ \
2561 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2562 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2564 #define GETMARKBIT(block,n) \
2565 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2566 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2567 & 1)
2569 #define SETMARKBIT(block,n) \
2570 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2571 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2573 #define UNSETMARKBIT(block,n) \
2574 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2575 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2577 #define FLOAT_BLOCK(fptr) \
2578 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2580 #define FLOAT_INDEX(fptr) \
2581 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2583 struct float_block
2585 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2586 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2587 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2588 struct float_block *next;
2591 #define FLOAT_MARKED_P(fptr) \
2592 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2594 #define FLOAT_MARK(fptr) \
2595 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2597 #define FLOAT_UNMARK(fptr) \
2598 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2600 /* Current float_block. */
2602 static struct float_block *float_block;
2604 /* Index of first unused Lisp_Float in the current float_block. */
2606 static int float_block_index = FLOAT_BLOCK_SIZE;
2608 /* Free-list of Lisp_Floats. */
2610 static struct Lisp_Float *float_free_list;
2612 /* Return a new float object with value FLOAT_VALUE. */
2614 Lisp_Object
2615 make_float (double float_value)
2617 register Lisp_Object val;
2619 /* eassert (!handling_signal); */
2621 MALLOC_BLOCK_INPUT;
2623 if (float_free_list)
2625 /* We use the data field for chaining the free list
2626 so that we won't use the same field that has the mark bit. */
2627 XSETFLOAT (val, float_free_list);
2628 float_free_list = float_free_list->u.chain;
2630 else
2632 if (float_block_index == FLOAT_BLOCK_SIZE)
2634 struct float_block *new
2635 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2636 new->next = float_block;
2637 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2638 float_block = new;
2639 float_block_index = 0;
2640 total_free_floats += FLOAT_BLOCK_SIZE;
2642 XSETFLOAT (val, &float_block->floats[float_block_index]);
2643 float_block_index++;
2646 MALLOC_UNBLOCK_INPUT;
2648 XFLOAT_INIT (val, float_value);
2649 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2650 consing_since_gc += sizeof (struct Lisp_Float);
2651 floats_consed++;
2652 total_free_floats--;
2653 return val;
2658 /***********************************************************************
2659 Cons Allocation
2660 ***********************************************************************/
2662 /* We store cons cells inside of cons_blocks, allocating a new
2663 cons_block with malloc whenever necessary. Cons cells reclaimed by
2664 GC are put on a free list to be reallocated before allocating
2665 any new cons cells from the latest cons_block. */
2667 #define CONS_BLOCK_SIZE \
2668 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2669 /* The compiler might add padding at the end. */ \
2670 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2671 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2673 #define CONS_BLOCK(fptr) \
2674 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2676 #define CONS_INDEX(fptr) \
2677 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2679 struct cons_block
2681 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2682 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2683 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2684 struct cons_block *next;
2687 #define CONS_MARKED_P(fptr) \
2688 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2690 #define CONS_MARK(fptr) \
2691 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2693 #define CONS_UNMARK(fptr) \
2694 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2696 /* Current cons_block. */
2698 static struct cons_block *cons_block;
2700 /* Index of first unused Lisp_Cons in the current block. */
2702 static int cons_block_index = CONS_BLOCK_SIZE;
2704 /* Free-list of Lisp_Cons structures. */
2706 static struct Lisp_Cons *cons_free_list;
2708 /* Explicitly free a cons cell by putting it on the free-list. */
2710 void
2711 free_cons (struct Lisp_Cons *ptr)
2713 ptr->u.chain = cons_free_list;
2714 #if GC_MARK_STACK
2715 ptr->car = Vdead;
2716 #endif
2717 cons_free_list = ptr;
2718 consing_since_gc -= sizeof *ptr;
2719 total_free_conses++;
2722 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2723 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2724 (Lisp_Object car, Lisp_Object cdr)
2726 register Lisp_Object val;
2728 /* eassert (!handling_signal); */
2730 MALLOC_BLOCK_INPUT;
2732 if (cons_free_list)
2734 /* We use the cdr for chaining the free list
2735 so that we won't use the same field that has the mark bit. */
2736 XSETCONS (val, cons_free_list);
2737 cons_free_list = cons_free_list->u.chain;
2739 else
2741 if (cons_block_index == CONS_BLOCK_SIZE)
2743 struct cons_block *new
2744 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2745 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2746 new->next = cons_block;
2747 cons_block = new;
2748 cons_block_index = 0;
2749 total_free_conses += CONS_BLOCK_SIZE;
2751 XSETCONS (val, &cons_block->conses[cons_block_index]);
2752 cons_block_index++;
2755 MALLOC_UNBLOCK_INPUT;
2757 XSETCAR (val, car);
2758 XSETCDR (val, cdr);
2759 eassert (!CONS_MARKED_P (XCONS (val)));
2760 consing_since_gc += sizeof (struct Lisp_Cons);
2761 total_free_conses--;
2762 cons_cells_consed++;
2763 return val;
2766 #ifdef GC_CHECK_CONS_LIST
2767 /* Get an error now if there's any junk in the cons free list. */
2768 void
2769 check_cons_list (void)
2771 struct Lisp_Cons *tail = cons_free_list;
2773 while (tail)
2774 tail = tail->u.chain;
2776 #endif
2778 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2780 Lisp_Object
2781 list1 (Lisp_Object arg1)
2783 return Fcons (arg1, Qnil);
2786 Lisp_Object
2787 list2 (Lisp_Object arg1, Lisp_Object arg2)
2789 return Fcons (arg1, Fcons (arg2, Qnil));
2793 Lisp_Object
2794 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2796 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2800 Lisp_Object
2801 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2803 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2807 Lisp_Object
2808 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2810 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2811 Fcons (arg5, Qnil)))));
2815 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2816 doc: /* Return a newly created list with specified arguments as elements.
2817 Any number of arguments, even zero arguments, are allowed.
2818 usage: (list &rest OBJECTS) */)
2819 (ptrdiff_t nargs, Lisp_Object *args)
2821 register Lisp_Object val;
2822 val = Qnil;
2824 while (nargs > 0)
2826 nargs--;
2827 val = Fcons (args[nargs], val);
2829 return val;
2833 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2834 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2835 (register Lisp_Object length, Lisp_Object init)
2837 register Lisp_Object val;
2838 register EMACS_INT size;
2840 CHECK_NATNUM (length);
2841 size = XFASTINT (length);
2843 val = Qnil;
2844 while (size > 0)
2846 val = Fcons (init, val);
2847 --size;
2849 if (size > 0)
2851 val = Fcons (init, val);
2852 --size;
2854 if (size > 0)
2856 val = Fcons (init, val);
2857 --size;
2859 if (size > 0)
2861 val = Fcons (init, val);
2862 --size;
2864 if (size > 0)
2866 val = Fcons (init, val);
2867 --size;
2873 QUIT;
2876 return val;
2881 /***********************************************************************
2882 Vector Allocation
2883 ***********************************************************************/
2885 /* This value is balanced well enough to avoid too much internal overhead
2886 for the most common cases; it's not required to be a power of two, but
2887 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2889 #define VECTOR_BLOCK_SIZE 4096
2891 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2892 enum
2894 roundup_size = COMMON_MULTIPLE (word_size,
2895 USE_LSB_TAG ? 1 << GCTYPEBITS : 1)
2898 /* ROUNDUP_SIZE must be a power of 2. */
2899 verify ((roundup_size & (roundup_size - 1)) == 0);
2901 /* Verify assumptions described above. */
2902 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2903 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2905 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2907 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2909 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2911 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2913 /* Size of the minimal vector allocated from block. */
2915 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2917 /* Size of the largest vector allocated from block. */
2919 #define VBLOCK_BYTES_MAX \
2920 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2922 /* We maintain one free list for each possible block-allocated
2923 vector size, and this is the number of free lists we have. */
2925 #define VECTOR_MAX_FREE_LIST_INDEX \
2926 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2928 /* Common shortcut to advance vector pointer over a block data. */
2930 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2932 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2934 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2936 /* Common shortcut to setup vector on a free list. */
2938 #define SETUP_ON_FREE_LIST(v, nbytes, index) \
2939 do { \
2940 XSETPVECTYPESIZE (v, PVEC_FREE, nbytes); \
2941 eassert ((nbytes) % roundup_size == 0); \
2942 (index) = VINDEX (nbytes); \
2943 eassert ((index) < VECTOR_MAX_FREE_LIST_INDEX); \
2944 (v)->header.next.vector = vector_free_lists[index]; \
2945 vector_free_lists[index] = (v); \
2946 total_free_vector_slots += (nbytes) / word_size; \
2947 } while (0)
2949 struct vector_block
2951 char data[VECTOR_BLOCK_BYTES];
2952 struct vector_block *next;
2955 /* Chain of vector blocks. */
2957 static struct vector_block *vector_blocks;
2959 /* Vector free lists, where NTH item points to a chain of free
2960 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2962 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2964 /* Singly-linked list of large vectors. */
2966 static struct Lisp_Vector *large_vectors;
2968 /* The only vector with 0 slots, allocated from pure space. */
2970 Lisp_Object zero_vector;
2972 /* Number of live vectors. */
2974 static EMACS_INT total_vectors;
2976 /* Total size of live and free vectors, in Lisp_Object units. */
2978 static EMACS_INT total_vector_slots, total_free_vector_slots;
2980 /* Get a new vector block. */
2982 static struct vector_block *
2983 allocate_vector_block (void)
2985 struct vector_block *block = xmalloc (sizeof *block);
2987 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2988 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2989 MEM_TYPE_VECTOR_BLOCK);
2990 #endif
2992 block->next = vector_blocks;
2993 vector_blocks = block;
2994 return block;
2997 /* Called once to initialize vector allocation. */
2999 static void
3000 init_vectors (void)
3002 zero_vector = make_pure_vector (0);
3005 /* Allocate vector from a vector block. */
3007 static struct Lisp_Vector *
3008 allocate_vector_from_block (size_t nbytes)
3010 struct Lisp_Vector *vector, *rest;
3011 struct vector_block *block;
3012 size_t index, restbytes;
3014 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
3015 eassert (nbytes % roundup_size == 0);
3017 /* First, try to allocate from a free list
3018 containing vectors of the requested size. */
3019 index = VINDEX (nbytes);
3020 if (vector_free_lists[index])
3022 vector = vector_free_lists[index];
3023 vector_free_lists[index] = vector->header.next.vector;
3024 vector->header.next.nbytes = nbytes;
3025 total_free_vector_slots -= nbytes / word_size;
3026 return vector;
3029 /* Next, check free lists containing larger vectors. Since
3030 we will split the result, we should have remaining space
3031 large enough to use for one-slot vector at least. */
3032 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
3033 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
3034 if (vector_free_lists[index])
3036 /* This vector is larger than requested. */
3037 vector = vector_free_lists[index];
3038 vector_free_lists[index] = vector->header.next.vector;
3039 vector->header.next.nbytes = nbytes;
3040 total_free_vector_slots -= nbytes / word_size;
3042 /* Excess bytes are used for the smaller vector,
3043 which should be set on an appropriate free list. */
3044 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
3045 eassert (restbytes % roundup_size == 0);
3046 rest = ADVANCE (vector, nbytes);
3047 SETUP_ON_FREE_LIST (rest, restbytes, index);
3048 return vector;
3051 /* Finally, need a new vector block. */
3052 block = allocate_vector_block ();
3054 /* New vector will be at the beginning of this block. */
3055 vector = (struct Lisp_Vector *) block->data;
3056 vector->header.next.nbytes = nbytes;
3058 /* If the rest of space from this block is large enough
3059 for one-slot vector at least, set up it on a free list. */
3060 restbytes = VECTOR_BLOCK_BYTES - nbytes;
3061 if (restbytes >= VBLOCK_BYTES_MIN)
3063 eassert (restbytes % roundup_size == 0);
3064 rest = ADVANCE (vector, nbytes);
3065 SETUP_ON_FREE_LIST (rest, restbytes, index);
3067 return vector;
3070 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
3072 #define VECTOR_IN_BLOCK(vector, block) \
3073 ((char *) (vector) <= (block)->data \
3074 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
3076 /* Number of bytes used by vector-block-allocated object. This is the only
3077 place where we actually use the `nbytes' field of the vector-header.
3078 I.e. we could get rid of the `nbytes' field by computing it based on the
3079 vector-type. */
3081 #define PSEUDOVECTOR_NBYTES(vector) \
3082 (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) \
3083 ? vector->header.size & PSEUDOVECTOR_SIZE_MASK \
3084 : vector->header.next.nbytes)
3086 /* Reclaim space used by unmarked vectors. */
3088 static void
3089 sweep_vectors (void)
3091 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
3092 struct Lisp_Vector *vector, *next, **vprev = &large_vectors;
3094 total_vectors = total_vector_slots = total_free_vector_slots = 0;
3095 memset (vector_free_lists, 0, sizeof (vector_free_lists));
3097 /* Looking through vector blocks. */
3099 for (block = vector_blocks; block; block = *bprev)
3101 int free_this_block = 0;
3103 for (vector = (struct Lisp_Vector *) block->data;
3104 VECTOR_IN_BLOCK (vector, block); vector = next)
3106 if (VECTOR_MARKED_P (vector))
3108 VECTOR_UNMARK (vector);
3109 total_vectors++;
3110 total_vector_slots += vector->header.next.nbytes / word_size;
3111 next = ADVANCE (vector, vector->header.next.nbytes);
3113 else
3115 ptrdiff_t nbytes = PSEUDOVECTOR_NBYTES (vector);
3116 ptrdiff_t total_bytes = nbytes;
3118 next = ADVANCE (vector, nbytes);
3120 /* While NEXT is not marked, try to coalesce with VECTOR,
3121 thus making VECTOR of the largest possible size. */
3123 while (VECTOR_IN_BLOCK (next, block))
3125 if (VECTOR_MARKED_P (next))
3126 break;
3127 nbytes = PSEUDOVECTOR_NBYTES (next);
3128 total_bytes += nbytes;
3129 next = ADVANCE (next, nbytes);
3132 eassert (total_bytes % roundup_size == 0);
3134 if (vector == (struct Lisp_Vector *) block->data
3135 && !VECTOR_IN_BLOCK (next, block))
3136 /* This block should be freed because all of it's
3137 space was coalesced into the only free vector. */
3138 free_this_block = 1;
3139 else
3141 int tmp;
3142 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
3147 if (free_this_block)
3149 *bprev = block->next;
3150 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
3151 mem_delete (mem_find (block->data));
3152 #endif
3153 xfree (block);
3155 else
3156 bprev = &block->next;
3159 /* Sweep large vectors. */
3161 for (vector = large_vectors; vector; vector = *vprev)
3163 if (VECTOR_MARKED_P (vector))
3165 VECTOR_UNMARK (vector);
3166 total_vectors++;
3167 if (vector->header.size & PSEUDOVECTOR_FLAG)
3169 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
3171 /* All non-bool pseudovectors are small enough to be allocated
3172 from vector blocks. This code should be redesigned if some
3173 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
3174 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
3176 total_vector_slots
3177 += (bool_header_size
3178 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
3179 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
3181 else
3182 total_vector_slots
3183 += header_size / word_size + vector->header.size;
3184 vprev = &vector->header.next.vector;
3186 else
3188 *vprev = vector->header.next.vector;
3189 lisp_free (vector);
3194 /* Value is a pointer to a newly allocated Lisp_Vector structure
3195 with room for LEN Lisp_Objects. */
3197 static struct Lisp_Vector *
3198 allocate_vectorlike (ptrdiff_t len)
3200 struct Lisp_Vector *p;
3202 MALLOC_BLOCK_INPUT;
3204 /* This gets triggered by code which I haven't bothered to fix. --Stef */
3205 /* eassert (!handling_signal); */
3207 if (len == 0)
3208 p = XVECTOR (zero_vector);
3209 else
3211 size_t nbytes = header_size + len * word_size;
3213 #ifdef DOUG_LEA_MALLOC
3214 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3215 because mapped region contents are not preserved in
3216 a dumped Emacs. */
3217 mallopt (M_MMAP_MAX, 0);
3218 #endif
3220 if (nbytes <= VBLOCK_BYTES_MAX)
3221 p = allocate_vector_from_block (vroundup (nbytes));
3222 else
3224 p = lisp_malloc (nbytes, MEM_TYPE_VECTORLIKE);
3225 p->header.next.vector = large_vectors;
3226 large_vectors = p;
3229 #ifdef DOUG_LEA_MALLOC
3230 /* Back to a reasonable maximum of mmap'ed areas. */
3231 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3232 #endif
3234 consing_since_gc += nbytes;
3235 vector_cells_consed += len;
3238 MALLOC_UNBLOCK_INPUT;
3240 return p;
3244 /* Allocate a vector with LEN slots. */
3246 struct Lisp_Vector *
3247 allocate_vector (EMACS_INT len)
3249 struct Lisp_Vector *v;
3250 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3252 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3253 memory_full (SIZE_MAX);
3254 v = allocate_vectorlike (len);
3255 v->header.size = len;
3256 return v;
3260 /* Allocate other vector-like structures. */
3262 struct Lisp_Vector *
3263 allocate_pseudovector (int memlen, int lisplen, int tag)
3265 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3266 int i;
3268 /* Only the first lisplen slots will be traced normally by the GC. */
3269 for (i = 0; i < lisplen; ++i)
3270 v->contents[i] = Qnil;
3272 XSETPVECTYPESIZE (v, tag, lisplen);
3273 return v;
3276 struct buffer *
3277 allocate_buffer (void)
3279 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3281 XSETPVECTYPESIZE (b, PVEC_BUFFER, (offsetof (struct buffer, own_text)
3282 - header_size) / word_size);
3283 /* Note that the fields of B are not initialized. */
3284 return b;
3287 struct Lisp_Hash_Table *
3288 allocate_hash_table (void)
3290 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3293 struct window *
3294 allocate_window (void)
3296 struct window *w;
3298 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3299 /* Users assumes that non-Lisp data is zeroed. */
3300 memset (&w->current_matrix, 0,
3301 sizeof (*w) - offsetof (struct window, current_matrix));
3302 return w;
3305 struct terminal *
3306 allocate_terminal (void)
3308 struct terminal *t;
3310 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3311 /* Users assumes that non-Lisp data is zeroed. */
3312 memset (&t->next_terminal, 0,
3313 sizeof (*t) - offsetof (struct terminal, next_terminal));
3314 return t;
3317 struct frame *
3318 allocate_frame (void)
3320 struct frame *f;
3322 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3323 /* Users assumes that non-Lisp data is zeroed. */
3324 memset (&f->face_cache, 0,
3325 sizeof (*f) - offsetof (struct frame, face_cache));
3326 return f;
3329 struct Lisp_Process *
3330 allocate_process (void)
3332 struct Lisp_Process *p;
3334 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3335 /* Users assumes that non-Lisp data is zeroed. */
3336 memset (&p->pid, 0,
3337 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3338 return p;
3341 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3342 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3343 See also the function `vector'. */)
3344 (register Lisp_Object length, Lisp_Object init)
3346 Lisp_Object vector;
3347 register ptrdiff_t sizei;
3348 register ptrdiff_t i;
3349 register struct Lisp_Vector *p;
3351 CHECK_NATNUM (length);
3353 p = allocate_vector (XFASTINT (length));
3354 sizei = XFASTINT (length);
3355 for (i = 0; i < sizei; i++)
3356 p->contents[i] = init;
3358 XSETVECTOR (vector, p);
3359 return vector;
3363 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3364 doc: /* Return a newly created vector with specified arguments as elements.
3365 Any number of arguments, even zero arguments, are allowed.
3366 usage: (vector &rest OBJECTS) */)
3367 (ptrdiff_t nargs, Lisp_Object *args)
3369 register Lisp_Object len, val;
3370 ptrdiff_t i;
3371 register struct Lisp_Vector *p;
3373 XSETFASTINT (len, nargs);
3374 val = Fmake_vector (len, Qnil);
3375 p = XVECTOR (val);
3376 for (i = 0; i < nargs; i++)
3377 p->contents[i] = args[i];
3378 return val;
3381 void
3382 make_byte_code (struct Lisp_Vector *v)
3384 if (v->header.size > 1 && STRINGP (v->contents[1])
3385 && STRING_MULTIBYTE (v->contents[1]))
3386 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3387 earlier because they produced a raw 8-bit string for byte-code
3388 and now such a byte-code string is loaded as multibyte while
3389 raw 8-bit characters converted to multibyte form. Thus, now we
3390 must convert them back to the original unibyte form. */
3391 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3392 XSETPVECTYPE (v, PVEC_COMPILED);
3395 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3396 doc: /* Create a byte-code object with specified arguments as elements.
3397 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3398 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3399 and (optional) INTERACTIVE-SPEC.
3400 The first four arguments are required; at most six have any
3401 significance.
3402 The ARGLIST can be either like the one of `lambda', in which case the arguments
3403 will be dynamically bound before executing the byte code, or it can be an
3404 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3405 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3406 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3407 argument to catch the left-over arguments. If such an integer is used, the
3408 arguments will not be dynamically bound but will be instead pushed on the
3409 stack before executing the byte-code.
3410 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3411 (ptrdiff_t nargs, Lisp_Object *args)
3413 register Lisp_Object len, val;
3414 ptrdiff_t i;
3415 register struct Lisp_Vector *p;
3417 /* We used to purecopy everything here, if purify-flga was set. This worked
3418 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3419 dangerous, since make-byte-code is used during execution to build
3420 closures, so any closure built during the preload phase would end up
3421 copied into pure space, including its free variables, which is sometimes
3422 just wasteful and other times plainly wrong (e.g. those free vars may want
3423 to be setcar'd). */
3425 XSETFASTINT (len, nargs);
3426 val = Fmake_vector (len, Qnil);
3428 p = XVECTOR (val);
3429 for (i = 0; i < nargs; i++)
3430 p->contents[i] = args[i];
3431 make_byte_code (p);
3432 XSETCOMPILED (val, p);
3433 return val;
3438 /***********************************************************************
3439 Symbol Allocation
3440 ***********************************************************************/
3442 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3443 of the required alignment if LSB tags are used. */
3445 union aligned_Lisp_Symbol
3447 struct Lisp_Symbol s;
3448 #if USE_LSB_TAG
3449 unsigned char c[(sizeof (struct Lisp_Symbol) + (1 << GCTYPEBITS) - 1)
3450 & -(1 << GCTYPEBITS)];
3451 #endif
3454 /* Each symbol_block is just under 1020 bytes long, since malloc
3455 really allocates in units of powers of two and uses 4 bytes for its
3456 own overhead. */
3458 #define SYMBOL_BLOCK_SIZE \
3459 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3461 struct symbol_block
3463 /* Place `symbols' first, to preserve alignment. */
3464 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3465 struct symbol_block *next;
3468 /* Current symbol block and index of first unused Lisp_Symbol
3469 structure in it. */
3471 static struct symbol_block *symbol_block;
3472 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3474 /* List of free symbols. */
3476 static struct Lisp_Symbol *symbol_free_list;
3478 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3479 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3480 Its value and function definition are void, and its property list is nil. */)
3481 (Lisp_Object name)
3483 register Lisp_Object val;
3484 register struct Lisp_Symbol *p;
3486 CHECK_STRING (name);
3488 /* eassert (!handling_signal); */
3490 MALLOC_BLOCK_INPUT;
3492 if (symbol_free_list)
3494 XSETSYMBOL (val, symbol_free_list);
3495 symbol_free_list = symbol_free_list->next;
3497 else
3499 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3501 struct symbol_block *new
3502 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3503 new->next = symbol_block;
3504 symbol_block = new;
3505 symbol_block_index = 0;
3506 total_free_symbols += SYMBOL_BLOCK_SIZE;
3508 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3509 symbol_block_index++;
3512 MALLOC_UNBLOCK_INPUT;
3514 p = XSYMBOL (val);
3515 p->xname = name;
3516 p->plist = Qnil;
3517 p->redirect = SYMBOL_PLAINVAL;
3518 SET_SYMBOL_VAL (p, Qunbound);
3519 p->function = Qunbound;
3520 p->next = NULL;
3521 p->gcmarkbit = 0;
3522 p->interned = SYMBOL_UNINTERNED;
3523 p->constant = 0;
3524 p->declared_special = 0;
3525 consing_since_gc += sizeof (struct Lisp_Symbol);
3526 symbols_consed++;
3527 total_free_symbols--;
3528 return val;
3533 /***********************************************************************
3534 Marker (Misc) Allocation
3535 ***********************************************************************/
3537 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3538 the required alignment when LSB tags are used. */
3540 union aligned_Lisp_Misc
3542 union Lisp_Misc m;
3543 #if USE_LSB_TAG
3544 unsigned char c[(sizeof (union Lisp_Misc) + (1 << GCTYPEBITS) - 1)
3545 & -(1 << GCTYPEBITS)];
3546 #endif
3549 /* Allocation of markers and other objects that share that structure.
3550 Works like allocation of conses. */
3552 #define MARKER_BLOCK_SIZE \
3553 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3555 struct marker_block
3557 /* Place `markers' first, to preserve alignment. */
3558 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3559 struct marker_block *next;
3562 static struct marker_block *marker_block;
3563 static int marker_block_index = MARKER_BLOCK_SIZE;
3565 static union Lisp_Misc *marker_free_list;
3567 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3569 static Lisp_Object
3570 allocate_misc (enum Lisp_Misc_Type type)
3572 Lisp_Object val;
3574 /* eassert (!handling_signal); */
3576 MALLOC_BLOCK_INPUT;
3578 if (marker_free_list)
3580 XSETMISC (val, marker_free_list);
3581 marker_free_list = marker_free_list->u_free.chain;
3583 else
3585 if (marker_block_index == MARKER_BLOCK_SIZE)
3587 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3588 new->next = marker_block;
3589 marker_block = new;
3590 marker_block_index = 0;
3591 total_free_markers += MARKER_BLOCK_SIZE;
3593 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3594 marker_block_index++;
3597 MALLOC_UNBLOCK_INPUT;
3599 --total_free_markers;
3600 consing_since_gc += sizeof (union Lisp_Misc);
3601 misc_objects_consed++;
3602 XMISCTYPE (val) = type;
3603 XMISCANY (val)->gcmarkbit = 0;
3604 return val;
3607 /* Free a Lisp_Misc object */
3609 static void
3610 free_misc (Lisp_Object misc)
3612 XMISCTYPE (misc) = Lisp_Misc_Free;
3613 XMISC (misc)->u_free.chain = marker_free_list;
3614 marker_free_list = XMISC (misc);
3615 consing_since_gc -= sizeof (union Lisp_Misc);
3616 total_free_markers++;
3619 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3620 INTEGER. This is used to package C values to call record_unwind_protect.
3621 The unwind function can get the C values back using XSAVE_VALUE. */
3623 Lisp_Object
3624 make_save_value (void *pointer, ptrdiff_t integer)
3626 register Lisp_Object val;
3627 register struct Lisp_Save_Value *p;
3629 val = allocate_misc (Lisp_Misc_Save_Value);
3630 p = XSAVE_VALUE (val);
3631 p->pointer = pointer;
3632 p->integer = integer;
3633 p->dogc = 0;
3634 return val;
3637 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3639 Lisp_Object
3640 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3642 register Lisp_Object overlay;
3644 overlay = allocate_misc (Lisp_Misc_Overlay);
3645 OVERLAY_START (overlay) = start;
3646 OVERLAY_END (overlay) = end;
3647 OVERLAY_PLIST (overlay) = plist;
3648 XOVERLAY (overlay)->next = NULL;
3649 return overlay;
3652 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3653 doc: /* Return a newly allocated marker which does not point at any place. */)
3654 (void)
3656 register Lisp_Object val;
3657 register struct Lisp_Marker *p;
3659 val = allocate_misc (Lisp_Misc_Marker);
3660 p = XMARKER (val);
3661 p->buffer = 0;
3662 p->bytepos = 0;
3663 p->charpos = 0;
3664 p->next = NULL;
3665 p->insertion_type = 0;
3666 return val;
3669 /* Return a newly allocated marker which points into BUF
3670 at character position CHARPOS and byte position BYTEPOS. */
3672 Lisp_Object
3673 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3675 Lisp_Object obj;
3676 struct Lisp_Marker *m;
3678 /* No dead buffers here. */
3679 eassert (!NILP (BVAR (buf, name)));
3681 /* Every character is at least one byte. */
3682 eassert (charpos <= bytepos);
3684 obj = allocate_misc (Lisp_Misc_Marker);
3685 m = XMARKER (obj);
3686 m->buffer = buf;
3687 m->charpos = charpos;
3688 m->bytepos = bytepos;
3689 m->insertion_type = 0;
3690 m->next = BUF_MARKERS (buf);
3691 BUF_MARKERS (buf) = m;
3692 return obj;
3695 /* Put MARKER back on the free list after using it temporarily. */
3697 void
3698 free_marker (Lisp_Object marker)
3700 unchain_marker (XMARKER (marker));
3701 free_misc (marker);
3705 /* Return a newly created vector or string with specified arguments as
3706 elements. If all the arguments are characters that can fit
3707 in a string of events, make a string; otherwise, make a vector.
3709 Any number of arguments, even zero arguments, are allowed. */
3711 Lisp_Object
3712 make_event_array (register int nargs, Lisp_Object *args)
3714 int i;
3716 for (i = 0; i < nargs; i++)
3717 /* The things that fit in a string
3718 are characters that are in 0...127,
3719 after discarding the meta bit and all the bits above it. */
3720 if (!INTEGERP (args[i])
3721 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3722 return Fvector (nargs, args);
3724 /* Since the loop exited, we know that all the things in it are
3725 characters, so we can make a string. */
3727 Lisp_Object result;
3729 result = Fmake_string (make_number (nargs), make_number (0));
3730 for (i = 0; i < nargs; i++)
3732 SSET (result, i, XINT (args[i]));
3733 /* Move the meta bit to the right place for a string char. */
3734 if (XINT (args[i]) & CHAR_META)
3735 SSET (result, i, SREF (result, i) | 0x80);
3738 return result;
3744 /************************************************************************
3745 Memory Full Handling
3746 ************************************************************************/
3749 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3750 there may have been size_t overflow so that malloc was never
3751 called, or perhaps malloc was invoked successfully but the
3752 resulting pointer had problems fitting into a tagged EMACS_INT. In
3753 either case this counts as memory being full even though malloc did
3754 not fail. */
3756 void
3757 memory_full (size_t nbytes)
3759 /* Do not go into hysterics merely because a large request failed. */
3760 int enough_free_memory = 0;
3761 if (SPARE_MEMORY < nbytes)
3763 void *p;
3765 MALLOC_BLOCK_INPUT;
3766 p = malloc (SPARE_MEMORY);
3767 if (p)
3769 free (p);
3770 enough_free_memory = 1;
3772 MALLOC_UNBLOCK_INPUT;
3775 if (! enough_free_memory)
3777 int i;
3779 Vmemory_full = Qt;
3781 memory_full_cons_threshold = sizeof (struct cons_block);
3783 /* The first time we get here, free the spare memory. */
3784 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3785 if (spare_memory[i])
3787 if (i == 0)
3788 free (spare_memory[i]);
3789 else if (i >= 1 && i <= 4)
3790 lisp_align_free (spare_memory[i]);
3791 else
3792 lisp_free (spare_memory[i]);
3793 spare_memory[i] = 0;
3796 /* Record the space now used. When it decreases substantially,
3797 we can refill the memory reserve. */
3798 #if !defined SYSTEM_MALLOC && !defined SYNC_INPUT
3799 bytes_used_when_full = BYTES_USED;
3800 #endif
3803 /* This used to call error, but if we've run out of memory, we could
3804 get infinite recursion trying to build the string. */
3805 xsignal (Qnil, Vmemory_signal_data);
3808 /* If we released our reserve (due to running out of memory),
3809 and we have a fair amount free once again,
3810 try to set aside another reserve in case we run out once more.
3812 This is called when a relocatable block is freed in ralloc.c,
3813 and also directly from this file, in case we're not using ralloc.c. */
3815 void
3816 refill_memory_reserve (void)
3818 #ifndef SYSTEM_MALLOC
3819 if (spare_memory[0] == 0)
3820 spare_memory[0] = malloc (SPARE_MEMORY);
3821 if (spare_memory[1] == 0)
3822 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3823 MEM_TYPE_CONS);
3824 if (spare_memory[2] == 0)
3825 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3826 MEM_TYPE_CONS);
3827 if (spare_memory[3] == 0)
3828 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3829 MEM_TYPE_CONS);
3830 if (spare_memory[4] == 0)
3831 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3832 MEM_TYPE_CONS);
3833 if (spare_memory[5] == 0)
3834 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3835 MEM_TYPE_STRING);
3836 if (spare_memory[6] == 0)
3837 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3838 MEM_TYPE_STRING);
3839 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3840 Vmemory_full = Qnil;
3841 #endif
3844 /************************************************************************
3845 C Stack Marking
3846 ************************************************************************/
3848 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3850 /* Conservative C stack marking requires a method to identify possibly
3851 live Lisp objects given a pointer value. We do this by keeping
3852 track of blocks of Lisp data that are allocated in a red-black tree
3853 (see also the comment of mem_node which is the type of nodes in
3854 that tree). Function lisp_malloc adds information for an allocated
3855 block to the red-black tree with calls to mem_insert, and function
3856 lisp_free removes it with mem_delete. Functions live_string_p etc
3857 call mem_find to lookup information about a given pointer in the
3858 tree, and use that to determine if the pointer points to a Lisp
3859 object or not. */
3861 /* Initialize this part of alloc.c. */
3863 static void
3864 mem_init (void)
3866 mem_z.left = mem_z.right = MEM_NIL;
3867 mem_z.parent = NULL;
3868 mem_z.color = MEM_BLACK;
3869 mem_z.start = mem_z.end = NULL;
3870 mem_root = MEM_NIL;
3874 /* Value is a pointer to the mem_node containing START. Value is
3875 MEM_NIL if there is no node in the tree containing START. */
3877 static inline struct mem_node *
3878 mem_find (void *start)
3880 struct mem_node *p;
3882 if (start < min_heap_address || start > max_heap_address)
3883 return MEM_NIL;
3885 /* Make the search always successful to speed up the loop below. */
3886 mem_z.start = start;
3887 mem_z.end = (char *) start + 1;
3889 p = mem_root;
3890 while (start < p->start || start >= p->end)
3891 p = start < p->start ? p->left : p->right;
3892 return p;
3896 /* Insert a new node into the tree for a block of memory with start
3897 address START, end address END, and type TYPE. Value is a
3898 pointer to the node that was inserted. */
3900 static struct mem_node *
3901 mem_insert (void *start, void *end, enum mem_type type)
3903 struct mem_node *c, *parent, *x;
3905 if (min_heap_address == NULL || start < min_heap_address)
3906 min_heap_address = start;
3907 if (max_heap_address == NULL || end > max_heap_address)
3908 max_heap_address = end;
3910 /* See where in the tree a node for START belongs. In this
3911 particular application, it shouldn't happen that a node is already
3912 present. For debugging purposes, let's check that. */
3913 c = mem_root;
3914 parent = NULL;
3916 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3918 while (c != MEM_NIL)
3920 if (start >= c->start && start < c->end)
3921 abort ();
3922 parent = c;
3923 c = start < c->start ? c->left : c->right;
3926 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3928 while (c != MEM_NIL)
3930 parent = c;
3931 c = start < c->start ? c->left : c->right;
3934 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3936 /* Create a new node. */
3937 #ifdef GC_MALLOC_CHECK
3938 x = _malloc_internal (sizeof *x);
3939 if (x == NULL)
3940 abort ();
3941 #else
3942 x = xmalloc (sizeof *x);
3943 #endif
3944 x->start = start;
3945 x->end = end;
3946 x->type = type;
3947 x->parent = parent;
3948 x->left = x->right = MEM_NIL;
3949 x->color = MEM_RED;
3951 /* Insert it as child of PARENT or install it as root. */
3952 if (parent)
3954 if (start < parent->start)
3955 parent->left = x;
3956 else
3957 parent->right = x;
3959 else
3960 mem_root = x;
3962 /* Re-establish red-black tree properties. */
3963 mem_insert_fixup (x);
3965 return x;
3969 /* Re-establish the red-black properties of the tree, and thereby
3970 balance the tree, after node X has been inserted; X is always red. */
3972 static void
3973 mem_insert_fixup (struct mem_node *x)
3975 while (x != mem_root && x->parent->color == MEM_RED)
3977 /* X is red and its parent is red. This is a violation of
3978 red-black tree property #3. */
3980 if (x->parent == x->parent->parent->left)
3982 /* We're on the left side of our grandparent, and Y is our
3983 "uncle". */
3984 struct mem_node *y = x->parent->parent->right;
3986 if (y->color == MEM_RED)
3988 /* Uncle and parent are red but should be black because
3989 X is red. Change the colors accordingly and proceed
3990 with the grandparent. */
3991 x->parent->color = MEM_BLACK;
3992 y->color = MEM_BLACK;
3993 x->parent->parent->color = MEM_RED;
3994 x = x->parent->parent;
3996 else
3998 /* Parent and uncle have different colors; parent is
3999 red, uncle is black. */
4000 if (x == x->parent->right)
4002 x = x->parent;
4003 mem_rotate_left (x);
4006 x->parent->color = MEM_BLACK;
4007 x->parent->parent->color = MEM_RED;
4008 mem_rotate_right (x->parent->parent);
4011 else
4013 /* This is the symmetrical case of above. */
4014 struct mem_node *y = x->parent->parent->left;
4016 if (y->color == MEM_RED)
4018 x->parent->color = MEM_BLACK;
4019 y->color = MEM_BLACK;
4020 x->parent->parent->color = MEM_RED;
4021 x = x->parent->parent;
4023 else
4025 if (x == x->parent->left)
4027 x = x->parent;
4028 mem_rotate_right (x);
4031 x->parent->color = MEM_BLACK;
4032 x->parent->parent->color = MEM_RED;
4033 mem_rotate_left (x->parent->parent);
4038 /* The root may have been changed to red due to the algorithm. Set
4039 it to black so that property #5 is satisfied. */
4040 mem_root->color = MEM_BLACK;
4044 /* (x) (y)
4045 / \ / \
4046 a (y) ===> (x) c
4047 / \ / \
4048 b c a b */
4050 static void
4051 mem_rotate_left (struct mem_node *x)
4053 struct mem_node *y;
4055 /* Turn y's left sub-tree into x's right sub-tree. */
4056 y = x->right;
4057 x->right = y->left;
4058 if (y->left != MEM_NIL)
4059 y->left->parent = x;
4061 /* Y's parent was x's parent. */
4062 if (y != MEM_NIL)
4063 y->parent = x->parent;
4065 /* Get the parent to point to y instead of x. */
4066 if (x->parent)
4068 if (x == x->parent->left)
4069 x->parent->left = y;
4070 else
4071 x->parent->right = y;
4073 else
4074 mem_root = y;
4076 /* Put x on y's left. */
4077 y->left = x;
4078 if (x != MEM_NIL)
4079 x->parent = y;
4083 /* (x) (Y)
4084 / \ / \
4085 (y) c ===> a (x)
4086 / \ / \
4087 a b b c */
4089 static void
4090 mem_rotate_right (struct mem_node *x)
4092 struct mem_node *y = x->left;
4094 x->left = y->right;
4095 if (y->right != MEM_NIL)
4096 y->right->parent = x;
4098 if (y != MEM_NIL)
4099 y->parent = x->parent;
4100 if (x->parent)
4102 if (x == x->parent->right)
4103 x->parent->right = y;
4104 else
4105 x->parent->left = y;
4107 else
4108 mem_root = y;
4110 y->right = x;
4111 if (x != MEM_NIL)
4112 x->parent = y;
4116 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4118 static void
4119 mem_delete (struct mem_node *z)
4121 struct mem_node *x, *y;
4123 if (!z || z == MEM_NIL)
4124 return;
4126 if (z->left == MEM_NIL || z->right == MEM_NIL)
4127 y = z;
4128 else
4130 y = z->right;
4131 while (y->left != MEM_NIL)
4132 y = y->left;
4135 if (y->left != MEM_NIL)
4136 x = y->left;
4137 else
4138 x = y->right;
4140 x->parent = y->parent;
4141 if (y->parent)
4143 if (y == y->parent->left)
4144 y->parent->left = x;
4145 else
4146 y->parent->right = x;
4148 else
4149 mem_root = x;
4151 if (y != z)
4153 z->start = y->start;
4154 z->end = y->end;
4155 z->type = y->type;
4158 if (y->color == MEM_BLACK)
4159 mem_delete_fixup (x);
4161 #ifdef GC_MALLOC_CHECK
4162 _free_internal (y);
4163 #else
4164 xfree (y);
4165 #endif
4169 /* Re-establish the red-black properties of the tree, after a
4170 deletion. */
4172 static void
4173 mem_delete_fixup (struct mem_node *x)
4175 while (x != mem_root && x->color == MEM_BLACK)
4177 if (x == x->parent->left)
4179 struct mem_node *w = x->parent->right;
4181 if (w->color == MEM_RED)
4183 w->color = MEM_BLACK;
4184 x->parent->color = MEM_RED;
4185 mem_rotate_left (x->parent);
4186 w = x->parent->right;
4189 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4191 w->color = MEM_RED;
4192 x = x->parent;
4194 else
4196 if (w->right->color == MEM_BLACK)
4198 w->left->color = MEM_BLACK;
4199 w->color = MEM_RED;
4200 mem_rotate_right (w);
4201 w = x->parent->right;
4203 w->color = x->parent->color;
4204 x->parent->color = MEM_BLACK;
4205 w->right->color = MEM_BLACK;
4206 mem_rotate_left (x->parent);
4207 x = mem_root;
4210 else
4212 struct mem_node *w = x->parent->left;
4214 if (w->color == MEM_RED)
4216 w->color = MEM_BLACK;
4217 x->parent->color = MEM_RED;
4218 mem_rotate_right (x->parent);
4219 w = x->parent->left;
4222 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4224 w->color = MEM_RED;
4225 x = x->parent;
4227 else
4229 if (w->left->color == MEM_BLACK)
4231 w->right->color = MEM_BLACK;
4232 w->color = MEM_RED;
4233 mem_rotate_left (w);
4234 w = x->parent->left;
4237 w->color = x->parent->color;
4238 x->parent->color = MEM_BLACK;
4239 w->left->color = MEM_BLACK;
4240 mem_rotate_right (x->parent);
4241 x = mem_root;
4246 x->color = MEM_BLACK;
4250 /* Value is non-zero if P is a pointer to a live Lisp string on
4251 the heap. M is a pointer to the mem_block for P. */
4253 static inline int
4254 live_string_p (struct mem_node *m, void *p)
4256 if (m->type == MEM_TYPE_STRING)
4258 struct string_block *b = (struct string_block *) m->start;
4259 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4261 /* P must point to the start of a Lisp_String structure, and it
4262 must not be on the free-list. */
4263 return (offset >= 0
4264 && offset % sizeof b->strings[0] == 0
4265 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4266 && ((struct Lisp_String *) p)->data != NULL);
4268 else
4269 return 0;
4273 /* Value is non-zero if P is a pointer to a live Lisp cons on
4274 the heap. M is a pointer to the mem_block for P. */
4276 static inline int
4277 live_cons_p (struct mem_node *m, void *p)
4279 if (m->type == MEM_TYPE_CONS)
4281 struct cons_block *b = (struct cons_block *) m->start;
4282 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4284 /* P must point to the start of a Lisp_Cons, not be
4285 one of the unused cells in the current cons block,
4286 and not be on the free-list. */
4287 return (offset >= 0
4288 && offset % sizeof b->conses[0] == 0
4289 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4290 && (b != cons_block
4291 || offset / sizeof b->conses[0] < cons_block_index)
4292 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4294 else
4295 return 0;
4299 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4300 the heap. M is a pointer to the mem_block for P. */
4302 static inline int
4303 live_symbol_p (struct mem_node *m, void *p)
4305 if (m->type == MEM_TYPE_SYMBOL)
4307 struct symbol_block *b = (struct symbol_block *) m->start;
4308 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4310 /* P must point to the start of a Lisp_Symbol, not be
4311 one of the unused cells in the current symbol block,
4312 and not be on the free-list. */
4313 return (offset >= 0
4314 && offset % sizeof b->symbols[0] == 0
4315 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4316 && (b != symbol_block
4317 || offset / sizeof b->symbols[0] < symbol_block_index)
4318 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
4320 else
4321 return 0;
4325 /* Value is non-zero if P is a pointer to a live Lisp float on
4326 the heap. M is a pointer to the mem_block for P. */
4328 static inline int
4329 live_float_p (struct mem_node *m, void *p)
4331 if (m->type == MEM_TYPE_FLOAT)
4333 struct float_block *b = (struct float_block *) m->start;
4334 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4336 /* P must point to the start of a Lisp_Float and not be
4337 one of the unused cells in the current float block. */
4338 return (offset >= 0
4339 && offset % sizeof b->floats[0] == 0
4340 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4341 && (b != float_block
4342 || offset / sizeof b->floats[0] < float_block_index));
4344 else
4345 return 0;
4349 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4350 the heap. M is a pointer to the mem_block for P. */
4352 static inline int
4353 live_misc_p (struct mem_node *m, void *p)
4355 if (m->type == MEM_TYPE_MISC)
4357 struct marker_block *b = (struct marker_block *) m->start;
4358 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4360 /* P must point to the start of a Lisp_Misc, not be
4361 one of the unused cells in the current misc block,
4362 and not be on the free-list. */
4363 return (offset >= 0
4364 && offset % sizeof b->markers[0] == 0
4365 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4366 && (b != marker_block
4367 || offset / sizeof b->markers[0] < marker_block_index)
4368 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4370 else
4371 return 0;
4375 /* Value is non-zero if P is a pointer to a live vector-like object.
4376 M is a pointer to the mem_block for P. */
4378 static inline int
4379 live_vector_p (struct mem_node *m, void *p)
4381 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4383 /* This memory node corresponds to a vector block. */
4384 struct vector_block *block = (struct vector_block *) m->start;
4385 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4387 /* P is in the block's allocation range. Scan the block
4388 up to P and see whether P points to the start of some
4389 vector which is not on a free list. FIXME: check whether
4390 some allocation patterns (probably a lot of short vectors)
4391 may cause a substantial overhead of this loop. */
4392 while (VECTOR_IN_BLOCK (vector, block)
4393 && vector <= (struct Lisp_Vector *) p)
4395 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE))
4396 vector = ADVANCE (vector, (vector->header.size
4397 & PSEUDOVECTOR_SIZE_MASK));
4398 else if (vector == p)
4399 return 1;
4400 else
4401 vector = ADVANCE (vector, vector->header.next.nbytes);
4404 else if (m->type == MEM_TYPE_VECTORLIKE && p == m->start)
4405 /* This memory node corresponds to a large vector. */
4406 return 1;
4407 return 0;
4411 /* Value is non-zero if P is a pointer to a live buffer. M is a
4412 pointer to the mem_block for P. */
4414 static inline int
4415 live_buffer_p (struct mem_node *m, void *p)
4417 /* P must point to the start of the block, and the buffer
4418 must not have been killed. */
4419 return (m->type == MEM_TYPE_BUFFER
4420 && p == m->start
4421 && !NILP (((struct buffer *) p)->BUFFER_INTERNAL_FIELD (name)));
4424 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4426 #if GC_MARK_STACK
4428 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4430 /* Array of objects that are kept alive because the C stack contains
4431 a pattern that looks like a reference to them . */
4433 #define MAX_ZOMBIES 10
4434 static Lisp_Object zombies[MAX_ZOMBIES];
4436 /* Number of zombie objects. */
4438 static EMACS_INT nzombies;
4440 /* Number of garbage collections. */
4442 static EMACS_INT ngcs;
4444 /* Average percentage of zombies per collection. */
4446 static double avg_zombies;
4448 /* Max. number of live and zombie objects. */
4450 static EMACS_INT max_live, max_zombies;
4452 /* Average number of live objects per GC. */
4454 static double avg_live;
4456 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4457 doc: /* Show information about live and zombie objects. */)
4458 (void)
4460 Lisp_Object args[8], zombie_list = Qnil;
4461 EMACS_INT i;
4462 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4463 zombie_list = Fcons (zombies[i], zombie_list);
4464 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4465 args[1] = make_number (ngcs);
4466 args[2] = make_float (avg_live);
4467 args[3] = make_float (avg_zombies);
4468 args[4] = make_float (avg_zombies / avg_live / 100);
4469 args[5] = make_number (max_live);
4470 args[6] = make_number (max_zombies);
4471 args[7] = zombie_list;
4472 return Fmessage (8, args);
4475 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4478 /* Mark OBJ if we can prove it's a Lisp_Object. */
4480 static inline void
4481 mark_maybe_object (Lisp_Object obj)
4483 void *po;
4484 struct mem_node *m;
4486 if (INTEGERP (obj))
4487 return;
4489 po = (void *) XPNTR (obj);
4490 m = mem_find (po);
4492 if (m != MEM_NIL)
4494 int mark_p = 0;
4496 switch (XTYPE (obj))
4498 case Lisp_String:
4499 mark_p = (live_string_p (m, po)
4500 && !STRING_MARKED_P ((struct Lisp_String *) po));
4501 break;
4503 case Lisp_Cons:
4504 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4505 break;
4507 case Lisp_Symbol:
4508 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4509 break;
4511 case Lisp_Float:
4512 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4513 break;
4515 case Lisp_Vectorlike:
4516 /* Note: can't check BUFFERP before we know it's a
4517 buffer because checking that dereferences the pointer
4518 PO which might point anywhere. */
4519 if (live_vector_p (m, po))
4520 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4521 else if (live_buffer_p (m, po))
4522 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4523 break;
4525 case Lisp_Misc:
4526 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4527 break;
4529 default:
4530 break;
4533 if (mark_p)
4535 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4536 if (nzombies < MAX_ZOMBIES)
4537 zombies[nzombies] = obj;
4538 ++nzombies;
4539 #endif
4540 mark_object (obj);
4546 /* If P points to Lisp data, mark that as live if it isn't already
4547 marked. */
4549 static inline void
4550 mark_maybe_pointer (void *p)
4552 struct mem_node *m;
4554 /* Quickly rule out some values which can't point to Lisp data.
4555 USE_LSB_TAG needs Lisp data to be aligned on multiples of 1 << GCTYPEBITS.
4556 Otherwise, assume that Lisp data is aligned on even addresses. */
4557 if ((intptr_t) p % (USE_LSB_TAG ? 1 << GCTYPEBITS : 2))
4558 return;
4560 m = mem_find (p);
4561 if (m != MEM_NIL)
4563 Lisp_Object obj = Qnil;
4565 switch (m->type)
4567 case MEM_TYPE_NON_LISP:
4568 /* Nothing to do; not a pointer to Lisp memory. */
4569 break;
4571 case MEM_TYPE_BUFFER:
4572 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4573 XSETVECTOR (obj, p);
4574 break;
4576 case MEM_TYPE_CONS:
4577 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4578 XSETCONS (obj, p);
4579 break;
4581 case MEM_TYPE_STRING:
4582 if (live_string_p (m, p)
4583 && !STRING_MARKED_P ((struct Lisp_String *) p))
4584 XSETSTRING (obj, p);
4585 break;
4587 case MEM_TYPE_MISC:
4588 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4589 XSETMISC (obj, p);
4590 break;
4592 case MEM_TYPE_SYMBOL:
4593 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4594 XSETSYMBOL (obj, p);
4595 break;
4597 case MEM_TYPE_FLOAT:
4598 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4599 XSETFLOAT (obj, p);
4600 break;
4602 case MEM_TYPE_VECTORLIKE:
4603 case MEM_TYPE_VECTOR_BLOCK:
4604 if (live_vector_p (m, p))
4606 Lisp_Object tem;
4607 XSETVECTOR (tem, p);
4608 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4609 obj = tem;
4611 break;
4613 default:
4614 abort ();
4617 if (!NILP (obj))
4618 mark_object (obj);
4623 /* Alignment of pointer values. Use offsetof, as it sometimes returns
4624 a smaller alignment than GCC's __alignof__ and mark_memory might
4625 miss objects if __alignof__ were used. */
4626 #define GC_POINTER_ALIGNMENT offsetof (struct {char a; void *b;}, b)
4628 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4629 not suffice, which is the typical case. A host where a Lisp_Object is
4630 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4631 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4632 suffice to widen it to to a Lisp_Object and check it that way. */
4633 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4634 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4635 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4636 nor mark_maybe_object can follow the pointers. This should not occur on
4637 any practical porting target. */
4638 # error "MSB type bits straddle pointer-word boundaries"
4639 # endif
4640 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4641 pointer words that hold pointers ORed with type bits. */
4642 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4643 #else
4644 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4645 words that hold unmodified pointers. */
4646 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4647 #endif
4649 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4650 or END+OFFSET..START. */
4652 static void
4653 mark_memory (void *start, void *end)
4654 #if defined (__clang__) && defined (__has_feature)
4655 #if __has_feature(address_sanitizer)
4656 /* Do not allow -faddress-sanitizer to check this function, since it
4657 crosses the function stack boundary, and thus would yield many
4658 false positives. */
4659 __attribute__((no_address_safety_analysis))
4660 #endif
4661 #endif
4663 void **pp;
4664 int i;
4666 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4667 nzombies = 0;
4668 #endif
4670 /* Make START the pointer to the start of the memory region,
4671 if it isn't already. */
4672 if (end < start)
4674 void *tem = start;
4675 start = end;
4676 end = tem;
4679 /* Mark Lisp data pointed to. This is necessary because, in some
4680 situations, the C compiler optimizes Lisp objects away, so that
4681 only a pointer to them remains. Example:
4683 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4686 Lisp_Object obj = build_string ("test");
4687 struct Lisp_String *s = XSTRING (obj);
4688 Fgarbage_collect ();
4689 fprintf (stderr, "test `%s'\n", s->data);
4690 return Qnil;
4693 Here, `obj' isn't really used, and the compiler optimizes it
4694 away. The only reference to the life string is through the
4695 pointer `s'. */
4697 for (pp = start; (void *) pp < end; pp++)
4698 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4700 void *p = *(void **) ((char *) pp + i);
4701 mark_maybe_pointer (p);
4702 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4703 mark_maybe_object (XIL ((intptr_t) p));
4707 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4708 the GCC system configuration. In gcc 3.2, the only systems for
4709 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4710 by others?) and ns32k-pc532-min. */
4712 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4714 static int setjmp_tested_p, longjmps_done;
4716 #define SETJMP_WILL_LIKELY_WORK "\
4718 Emacs garbage collector has been changed to use conservative stack\n\
4719 marking. Emacs has determined that the method it uses to do the\n\
4720 marking will likely work on your system, but this isn't sure.\n\
4722 If you are a system-programmer, or can get the help of a local wizard\n\
4723 who is, please take a look at the function mark_stack in alloc.c, and\n\
4724 verify that the methods used are appropriate for your system.\n\
4726 Please mail the result to <emacs-devel@gnu.org>.\n\
4729 #define SETJMP_WILL_NOT_WORK "\
4731 Emacs garbage collector has been changed to use conservative stack\n\
4732 marking. Emacs has determined that the default method it uses to do the\n\
4733 marking will not work on your system. We will need a system-dependent\n\
4734 solution for your system.\n\
4736 Please take a look at the function mark_stack in alloc.c, and\n\
4737 try to find a way to make it work on your system.\n\
4739 Note that you may get false negatives, depending on the compiler.\n\
4740 In particular, you need to use -O with GCC for this test.\n\
4742 Please mail the result to <emacs-devel@gnu.org>.\n\
4746 /* Perform a quick check if it looks like setjmp saves registers in a
4747 jmp_buf. Print a message to stderr saying so. When this test
4748 succeeds, this is _not_ a proof that setjmp is sufficient for
4749 conservative stack marking. Only the sources or a disassembly
4750 can prove that. */
4752 static void
4753 test_setjmp (void)
4755 char buf[10];
4756 register int x;
4757 jmp_buf jbuf;
4758 int result = 0;
4760 /* Arrange for X to be put in a register. */
4761 sprintf (buf, "1");
4762 x = strlen (buf);
4763 x = 2 * x - 1;
4765 setjmp (jbuf);
4766 if (longjmps_done == 1)
4768 /* Came here after the longjmp at the end of the function.
4770 If x == 1, the longjmp has restored the register to its
4771 value before the setjmp, and we can hope that setjmp
4772 saves all such registers in the jmp_buf, although that
4773 isn't sure.
4775 For other values of X, either something really strange is
4776 taking place, or the setjmp just didn't save the register. */
4778 if (x == 1)
4779 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4780 else
4782 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4783 exit (1);
4787 ++longjmps_done;
4788 x = 2;
4789 if (longjmps_done == 1)
4790 longjmp (jbuf, 1);
4793 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4796 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4798 /* Abort if anything GCPRO'd doesn't survive the GC. */
4800 static void
4801 check_gcpros (void)
4803 struct gcpro *p;
4804 ptrdiff_t i;
4806 for (p = gcprolist; p; p = p->next)
4807 for (i = 0; i < p->nvars; ++i)
4808 if (!survives_gc_p (p->var[i]))
4809 /* FIXME: It's not necessarily a bug. It might just be that the
4810 GCPRO is unnecessary or should release the object sooner. */
4811 abort ();
4814 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4816 static void
4817 dump_zombies (void)
4819 int i;
4821 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4822 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4824 fprintf (stderr, " %d = ", i);
4825 debug_print (zombies[i]);
4829 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4832 /* Mark live Lisp objects on the C stack.
4834 There are several system-dependent problems to consider when
4835 porting this to new architectures:
4837 Processor Registers
4839 We have to mark Lisp objects in CPU registers that can hold local
4840 variables or are used to pass parameters.
4842 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4843 something that either saves relevant registers on the stack, or
4844 calls mark_maybe_object passing it each register's contents.
4846 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4847 implementation assumes that calling setjmp saves registers we need
4848 to see in a jmp_buf which itself lies on the stack. This doesn't
4849 have to be true! It must be verified for each system, possibly
4850 by taking a look at the source code of setjmp.
4852 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4853 can use it as a machine independent method to store all registers
4854 to the stack. In this case the macros described in the previous
4855 two paragraphs are not used.
4857 Stack Layout
4859 Architectures differ in the way their processor stack is organized.
4860 For example, the stack might look like this
4862 +----------------+
4863 | Lisp_Object | size = 4
4864 +----------------+
4865 | something else | size = 2
4866 +----------------+
4867 | Lisp_Object | size = 4
4868 +----------------+
4869 | ... |
4871 In such a case, not every Lisp_Object will be aligned equally. To
4872 find all Lisp_Object on the stack it won't be sufficient to walk
4873 the stack in steps of 4 bytes. Instead, two passes will be
4874 necessary, one starting at the start of the stack, and a second
4875 pass starting at the start of the stack + 2. Likewise, if the
4876 minimal alignment of Lisp_Objects on the stack is 1, four passes
4877 would be necessary, each one starting with one byte more offset
4878 from the stack start. */
4880 static void
4881 mark_stack (void)
4883 void *end;
4885 #ifdef HAVE___BUILTIN_UNWIND_INIT
4886 /* Force callee-saved registers and register windows onto the stack.
4887 This is the preferred method if available, obviating the need for
4888 machine dependent methods. */
4889 __builtin_unwind_init ();
4890 end = &end;
4891 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4892 #ifndef GC_SAVE_REGISTERS_ON_STACK
4893 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4894 union aligned_jmpbuf {
4895 Lisp_Object o;
4896 jmp_buf j;
4897 } j;
4898 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4899 #endif
4900 /* This trick flushes the register windows so that all the state of
4901 the process is contained in the stack. */
4902 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4903 needed on ia64 too. See mach_dep.c, where it also says inline
4904 assembler doesn't work with relevant proprietary compilers. */
4905 #ifdef __sparc__
4906 #if defined (__sparc64__) && defined (__FreeBSD__)
4907 /* FreeBSD does not have a ta 3 handler. */
4908 asm ("flushw");
4909 #else
4910 asm ("ta 3");
4911 #endif
4912 #endif
4914 /* Save registers that we need to see on the stack. We need to see
4915 registers used to hold register variables and registers used to
4916 pass parameters. */
4917 #ifdef GC_SAVE_REGISTERS_ON_STACK
4918 GC_SAVE_REGISTERS_ON_STACK (end);
4919 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4921 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4922 setjmp will definitely work, test it
4923 and print a message with the result
4924 of the test. */
4925 if (!setjmp_tested_p)
4927 setjmp_tested_p = 1;
4928 test_setjmp ();
4930 #endif /* GC_SETJMP_WORKS */
4932 setjmp (j.j);
4933 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4934 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4935 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4937 /* This assumes that the stack is a contiguous region in memory. If
4938 that's not the case, something has to be done here to iterate
4939 over the stack segments. */
4940 mark_memory (stack_base, end);
4942 /* Allow for marking a secondary stack, like the register stack on the
4943 ia64. */
4944 #ifdef GC_MARK_SECONDARY_STACK
4945 GC_MARK_SECONDARY_STACK ();
4946 #endif
4948 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4949 check_gcpros ();
4950 #endif
4953 #endif /* GC_MARK_STACK != 0 */
4956 /* Determine whether it is safe to access memory at address P. */
4957 static int
4958 valid_pointer_p (void *p)
4960 #ifdef WINDOWSNT
4961 return w32_valid_pointer_p (p, 16);
4962 #else
4963 int fd[2];
4965 /* Obviously, we cannot just access it (we would SEGV trying), so we
4966 trick the o/s to tell us whether p is a valid pointer.
4967 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4968 not validate p in that case. */
4970 if (pipe (fd) == 0)
4972 int valid = (emacs_write (fd[1], (char *) p, 16) == 16);
4973 emacs_close (fd[1]);
4974 emacs_close (fd[0]);
4975 return valid;
4978 return -1;
4979 #endif
4982 /* Return 1 if OBJ is a valid lisp object.
4983 Return 0 if OBJ is NOT a valid lisp object.
4984 Return -1 if we cannot validate OBJ.
4985 This function can be quite slow,
4986 so it should only be used in code for manual debugging. */
4989 valid_lisp_object_p (Lisp_Object obj)
4991 void *p;
4992 #if GC_MARK_STACK
4993 struct mem_node *m;
4994 #endif
4996 if (INTEGERP (obj))
4997 return 1;
4999 p = (void *) XPNTR (obj);
5000 if (PURE_POINTER_P (p))
5001 return 1;
5003 #if !GC_MARK_STACK
5004 return valid_pointer_p (p);
5005 #else
5007 m = mem_find (p);
5009 if (m == MEM_NIL)
5011 int valid = valid_pointer_p (p);
5012 if (valid <= 0)
5013 return valid;
5015 if (SUBRP (obj))
5016 return 1;
5018 return 0;
5021 switch (m->type)
5023 case MEM_TYPE_NON_LISP:
5024 return 0;
5026 case MEM_TYPE_BUFFER:
5027 return live_buffer_p (m, p);
5029 case MEM_TYPE_CONS:
5030 return live_cons_p (m, p);
5032 case MEM_TYPE_STRING:
5033 return live_string_p (m, p);
5035 case MEM_TYPE_MISC:
5036 return live_misc_p (m, p);
5038 case MEM_TYPE_SYMBOL:
5039 return live_symbol_p (m, p);
5041 case MEM_TYPE_FLOAT:
5042 return live_float_p (m, p);
5044 case MEM_TYPE_VECTORLIKE:
5045 case MEM_TYPE_VECTOR_BLOCK:
5046 return live_vector_p (m, p);
5048 default:
5049 break;
5052 return 0;
5053 #endif
5059 /***********************************************************************
5060 Pure Storage Management
5061 ***********************************************************************/
5063 /* Allocate room for SIZE bytes from pure Lisp storage and return a
5064 pointer to it. TYPE is the Lisp type for which the memory is
5065 allocated. TYPE < 0 means it's not used for a Lisp object. */
5067 static void *
5068 pure_alloc (size_t size, int type)
5070 void *result;
5071 #if USE_LSB_TAG
5072 size_t alignment = (1 << GCTYPEBITS);
5073 #else
5074 size_t alignment = sizeof (EMACS_INT);
5076 /* Give Lisp_Floats an extra alignment. */
5077 if (type == Lisp_Float)
5079 #if defined __GNUC__ && __GNUC__ >= 2
5080 alignment = __alignof (struct Lisp_Float);
5081 #else
5082 alignment = sizeof (struct Lisp_Float);
5083 #endif
5085 #endif
5087 again:
5088 if (type >= 0)
5090 /* Allocate space for a Lisp object from the beginning of the free
5091 space with taking account of alignment. */
5092 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
5093 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
5095 else
5097 /* Allocate space for a non-Lisp object from the end of the free
5098 space. */
5099 pure_bytes_used_non_lisp += size;
5100 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5102 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5104 if (pure_bytes_used <= pure_size)
5105 return result;
5107 /* Don't allocate a large amount here,
5108 because it might get mmap'd and then its address
5109 might not be usable. */
5110 purebeg = xmalloc (10000);
5111 pure_size = 10000;
5112 pure_bytes_used_before_overflow += pure_bytes_used - size;
5113 pure_bytes_used = 0;
5114 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5115 goto again;
5119 /* Print a warning if PURESIZE is too small. */
5121 void
5122 check_pure_size (void)
5124 if (pure_bytes_used_before_overflow)
5125 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5126 " bytes needed)"),
5127 pure_bytes_used + pure_bytes_used_before_overflow);
5131 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5132 the non-Lisp data pool of the pure storage, and return its start
5133 address. Return NULL if not found. */
5135 static char *
5136 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5138 int i;
5139 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5140 const unsigned char *p;
5141 char *non_lisp_beg;
5143 if (pure_bytes_used_non_lisp <= nbytes)
5144 return NULL;
5146 /* Set up the Boyer-Moore table. */
5147 skip = nbytes + 1;
5148 for (i = 0; i < 256; i++)
5149 bm_skip[i] = skip;
5151 p = (const unsigned char *) data;
5152 while (--skip > 0)
5153 bm_skip[*p++] = skip;
5155 last_char_skip = bm_skip['\0'];
5157 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5158 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5160 /* See the comments in the function `boyer_moore' (search.c) for the
5161 use of `infinity'. */
5162 infinity = pure_bytes_used_non_lisp + 1;
5163 bm_skip['\0'] = infinity;
5165 p = (const unsigned char *) non_lisp_beg + nbytes;
5166 start = 0;
5169 /* Check the last character (== '\0'). */
5172 start += bm_skip[*(p + start)];
5174 while (start <= start_max);
5176 if (start < infinity)
5177 /* Couldn't find the last character. */
5178 return NULL;
5180 /* No less than `infinity' means we could find the last
5181 character at `p[start - infinity]'. */
5182 start -= infinity;
5184 /* Check the remaining characters. */
5185 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5186 /* Found. */
5187 return non_lisp_beg + start;
5189 start += last_char_skip;
5191 while (start <= start_max);
5193 return NULL;
5197 /* Return a string allocated in pure space. DATA is a buffer holding
5198 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5199 non-zero means make the result string multibyte.
5201 Must get an error if pure storage is full, since if it cannot hold
5202 a large string it may be able to hold conses that point to that
5203 string; then the string is not protected from gc. */
5205 Lisp_Object
5206 make_pure_string (const char *data,
5207 ptrdiff_t nchars, ptrdiff_t nbytes, int multibyte)
5209 Lisp_Object string;
5210 struct Lisp_String *s;
5212 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5213 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5214 if (s->data == NULL)
5216 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
5217 memcpy (s->data, data, nbytes);
5218 s->data[nbytes] = '\0';
5220 s->size = nchars;
5221 s->size_byte = multibyte ? nbytes : -1;
5222 s->intervals = NULL_INTERVAL;
5223 XSETSTRING (string, s);
5224 return string;
5227 /* Return a string allocated in pure space. Do not
5228 allocate the string data, just point to DATA. */
5230 Lisp_Object
5231 make_pure_c_string (const char *data, ptrdiff_t nchars)
5233 Lisp_Object string;
5234 struct Lisp_String *s;
5236 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
5237 s->size = nchars;
5238 s->size_byte = -1;
5239 s->data = (unsigned char *) data;
5240 s->intervals = NULL_INTERVAL;
5241 XSETSTRING (string, s);
5242 return string;
5245 /* Return a cons allocated from pure space. Give it pure copies
5246 of CAR as car and CDR as cdr. */
5248 Lisp_Object
5249 pure_cons (Lisp_Object car, Lisp_Object cdr)
5251 register Lisp_Object new;
5252 struct Lisp_Cons *p;
5254 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
5255 XSETCONS (new, p);
5256 XSETCAR (new, Fpurecopy (car));
5257 XSETCDR (new, Fpurecopy (cdr));
5258 return new;
5262 /* Value is a float object with value NUM allocated from pure space. */
5264 static Lisp_Object
5265 make_pure_float (double num)
5267 register Lisp_Object new;
5268 struct Lisp_Float *p;
5270 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
5271 XSETFLOAT (new, p);
5272 XFLOAT_INIT (new, num);
5273 return new;
5277 /* Return a vector with room for LEN Lisp_Objects allocated from
5278 pure space. */
5280 static Lisp_Object
5281 make_pure_vector (ptrdiff_t len)
5283 Lisp_Object new;
5284 struct Lisp_Vector *p;
5285 size_t size = header_size + len * word_size;
5287 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
5288 XSETVECTOR (new, p);
5289 XVECTOR (new)->header.size = len;
5290 return new;
5294 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5295 doc: /* Make a copy of object OBJ in pure storage.
5296 Recursively copies contents of vectors and cons cells.
5297 Does not copy symbols. Copies strings without text properties. */)
5298 (register Lisp_Object obj)
5300 if (NILP (Vpurify_flag))
5301 return obj;
5303 if (PURE_POINTER_P (XPNTR (obj)))
5304 return obj;
5306 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5308 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5309 if (!NILP (tmp))
5310 return tmp;
5313 if (CONSP (obj))
5314 obj = pure_cons (XCAR (obj), XCDR (obj));
5315 else if (FLOATP (obj))
5316 obj = make_pure_float (XFLOAT_DATA (obj));
5317 else if (STRINGP (obj))
5318 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5319 SBYTES (obj),
5320 STRING_MULTIBYTE (obj));
5321 else if (COMPILEDP (obj) || VECTORP (obj))
5323 register struct Lisp_Vector *vec;
5324 register ptrdiff_t i;
5325 ptrdiff_t size;
5327 size = ASIZE (obj);
5328 if (size & PSEUDOVECTOR_FLAG)
5329 size &= PSEUDOVECTOR_SIZE_MASK;
5330 vec = XVECTOR (make_pure_vector (size));
5331 for (i = 0; i < size; i++)
5332 vec->contents[i] = Fpurecopy (AREF (obj, i));
5333 if (COMPILEDP (obj))
5335 XSETPVECTYPE (vec, PVEC_COMPILED);
5336 XSETCOMPILED (obj, vec);
5338 else
5339 XSETVECTOR (obj, vec);
5341 else if (MARKERP (obj))
5342 error ("Attempt to copy a marker to pure storage");
5343 else
5344 /* Not purified, don't hash-cons. */
5345 return obj;
5347 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5348 Fputhash (obj, obj, Vpurify_flag);
5350 return obj;
5355 /***********************************************************************
5356 Protection from GC
5357 ***********************************************************************/
5359 /* Put an entry in staticvec, pointing at the variable with address
5360 VARADDRESS. */
5362 void
5363 staticpro (Lisp_Object *varaddress)
5365 staticvec[staticidx++] = varaddress;
5366 if (staticidx >= NSTATICS)
5367 abort ();
5371 /***********************************************************************
5372 Protection from GC
5373 ***********************************************************************/
5375 /* Temporarily prevent garbage collection. */
5377 ptrdiff_t
5378 inhibit_garbage_collection (void)
5380 ptrdiff_t count = SPECPDL_INDEX ();
5382 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5383 return count;
5386 /* Used to avoid possible overflows when
5387 converting from C to Lisp integers. */
5389 static inline Lisp_Object
5390 bounded_number (EMACS_INT number)
5392 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5395 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5396 doc: /* Reclaim storage for Lisp objects no longer needed.
5397 Garbage collection happens automatically if you cons more than
5398 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5399 `garbage-collect' normally returns a list with info on amount of space in use,
5400 where each entry has the form (NAME SIZE USED FREE), where:
5401 - NAME is a symbol describing the kind of objects this entry represents,
5402 - SIZE is the number of bytes used by each one,
5403 - USED is the number of those objects that were found live in the heap,
5404 - FREE is the number of those objects that are not live but that Emacs
5405 keeps around for future allocations (maybe because it does not know how
5406 to return them to the OS).
5407 However, if there was overflow in pure space, `garbage-collect'
5408 returns nil, because real GC can't be done.
5409 See Info node `(elisp)Garbage Collection'. */)
5410 (void)
5412 register struct specbinding *bind;
5413 register struct buffer *nextb;
5414 char stack_top_variable;
5415 ptrdiff_t i;
5416 int message_p;
5417 Lisp_Object total[11];
5418 ptrdiff_t count = SPECPDL_INDEX ();
5419 EMACS_TIME t1;
5421 if (abort_on_gc)
5422 abort ();
5424 /* Can't GC if pure storage overflowed because we can't determine
5425 if something is a pure object or not. */
5426 if (pure_bytes_used_before_overflow)
5427 return Qnil;
5429 CHECK_CONS_LIST ();
5431 /* Don't keep undo information around forever.
5432 Do this early on, so it is no problem if the user quits. */
5433 FOR_EACH_BUFFER (nextb)
5434 compact_buffer (nextb);
5436 t1 = current_emacs_time ();
5438 /* In case user calls debug_print during GC,
5439 don't let that cause a recursive GC. */
5440 consing_since_gc = 0;
5442 /* Save what's currently displayed in the echo area. */
5443 message_p = push_message ();
5444 record_unwind_protect (pop_message_unwind, Qnil);
5446 /* Save a copy of the contents of the stack, for debugging. */
5447 #if MAX_SAVE_STACK > 0
5448 if (NILP (Vpurify_flag))
5450 char *stack;
5451 ptrdiff_t stack_size;
5452 if (&stack_top_variable < stack_bottom)
5454 stack = &stack_top_variable;
5455 stack_size = stack_bottom - &stack_top_variable;
5457 else
5459 stack = stack_bottom;
5460 stack_size = &stack_top_variable - stack_bottom;
5462 if (stack_size <= MAX_SAVE_STACK)
5464 if (stack_copy_size < stack_size)
5466 stack_copy = xrealloc (stack_copy, stack_size);
5467 stack_copy_size = stack_size;
5469 memcpy (stack_copy, stack, stack_size);
5472 #endif /* MAX_SAVE_STACK > 0 */
5474 if (garbage_collection_messages)
5475 message1_nolog ("Garbage collecting...");
5477 BLOCK_INPUT;
5479 shrink_regexp_cache ();
5481 gc_in_progress = 1;
5483 /* Mark all the special slots that serve as the roots of accessibility. */
5485 for (i = 0; i < staticidx; i++)
5486 mark_object (*staticvec[i]);
5488 for (bind = specpdl; bind != specpdl_ptr; bind++)
5490 mark_object (bind->symbol);
5491 mark_object (bind->old_value);
5493 mark_terminals ();
5494 mark_kboards ();
5495 mark_ttys ();
5497 #ifdef USE_GTK
5499 extern void xg_mark_data (void);
5500 xg_mark_data ();
5502 #endif
5504 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5505 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5506 mark_stack ();
5507 #else
5509 register struct gcpro *tail;
5510 for (tail = gcprolist; tail; tail = tail->next)
5511 for (i = 0; i < tail->nvars; i++)
5512 mark_object (tail->var[i]);
5514 mark_byte_stack ();
5516 struct catchtag *catch;
5517 struct handler *handler;
5519 for (catch = catchlist; catch; catch = catch->next)
5521 mark_object (catch->tag);
5522 mark_object (catch->val);
5524 for (handler = handlerlist; handler; handler = handler->next)
5526 mark_object (handler->handler);
5527 mark_object (handler->var);
5530 mark_backtrace ();
5531 #endif
5533 #ifdef HAVE_WINDOW_SYSTEM
5534 mark_fringe_data ();
5535 #endif
5537 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5538 mark_stack ();
5539 #endif
5541 /* Everything is now marked, except for the things that require special
5542 finalization, i.e. the undo_list.
5543 Look thru every buffer's undo list
5544 for elements that update markers that were not marked,
5545 and delete them. */
5546 FOR_EACH_BUFFER (nextb)
5548 /* If a buffer's undo list is Qt, that means that undo is
5549 turned off in that buffer. Calling truncate_undo_list on
5550 Qt tends to return NULL, which effectively turns undo back on.
5551 So don't call truncate_undo_list if undo_list is Qt. */
5552 if (! EQ (nextb->BUFFER_INTERNAL_FIELD (undo_list), Qt))
5554 Lisp_Object tail, prev;
5555 tail = nextb->BUFFER_INTERNAL_FIELD (undo_list);
5556 prev = Qnil;
5557 while (CONSP (tail))
5559 if (CONSP (XCAR (tail))
5560 && MARKERP (XCAR (XCAR (tail)))
5561 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5563 if (NILP (prev))
5564 nextb->BUFFER_INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5565 else
5567 tail = XCDR (tail);
5568 XSETCDR (prev, tail);
5571 else
5573 prev = tail;
5574 tail = XCDR (tail);
5578 /* Now that we have stripped the elements that need not be in the
5579 undo_list any more, we can finally mark the list. */
5580 mark_object (nextb->BUFFER_INTERNAL_FIELD (undo_list));
5583 gc_sweep ();
5585 /* Clear the mark bits that we set in certain root slots. */
5587 unmark_byte_stack ();
5588 VECTOR_UNMARK (&buffer_defaults);
5589 VECTOR_UNMARK (&buffer_local_symbols);
5591 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5592 dump_zombies ();
5593 #endif
5595 UNBLOCK_INPUT;
5597 CHECK_CONS_LIST ();
5599 gc_in_progress = 0;
5601 consing_since_gc = 0;
5602 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5603 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5605 gc_relative_threshold = 0;
5606 if (FLOATP (Vgc_cons_percentage))
5607 { /* Set gc_cons_combined_threshold. */
5608 double tot = 0;
5610 tot += total_conses * sizeof (struct Lisp_Cons);
5611 tot += total_symbols * sizeof (struct Lisp_Symbol);
5612 tot += total_markers * sizeof (union Lisp_Misc);
5613 tot += total_string_bytes;
5614 tot += total_vector_slots * word_size;
5615 tot += total_floats * sizeof (struct Lisp_Float);
5616 tot += total_intervals * sizeof (struct interval);
5617 tot += total_strings * sizeof (struct Lisp_String);
5619 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5620 if (0 < tot)
5622 if (tot < TYPE_MAXIMUM (EMACS_INT))
5623 gc_relative_threshold = tot;
5624 else
5625 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5629 if (garbage_collection_messages)
5631 if (message_p || minibuf_level > 0)
5632 restore_message ();
5633 else
5634 message1_nolog ("Garbage collecting...done");
5637 unbind_to (count, Qnil);
5639 total[0] = list4 (Qcons, make_number (sizeof (struct Lisp_Cons)),
5640 bounded_number (total_conses),
5641 bounded_number (total_free_conses));
5643 total[1] = list4 (Qsymbol, make_number (sizeof (struct Lisp_Symbol)),
5644 bounded_number (total_symbols),
5645 bounded_number (total_free_symbols));
5647 total[2] = list4 (Qmisc, make_number (sizeof (union Lisp_Misc)),
5648 bounded_number (total_markers),
5649 bounded_number (total_free_markers));
5651 total[3] = list4 (Qstring, make_number (sizeof (struct Lisp_String)),
5652 bounded_number (total_strings),
5653 bounded_number (total_free_strings));
5655 total[4] = list3 (Qstring_bytes, make_number (1),
5656 bounded_number (total_string_bytes));
5658 total[5] = list3 (Qvector, make_number (sizeof (struct Lisp_Vector)),
5659 bounded_number (total_vectors));
5661 total[6] = list4 (Qvector_slots, make_number (word_size),
5662 bounded_number (total_vector_slots),
5663 bounded_number (total_free_vector_slots));
5665 total[7] = list4 (Qfloat, make_number (sizeof (struct Lisp_Float)),
5666 bounded_number (total_floats),
5667 bounded_number (total_free_floats));
5669 total[8] = list4 (Qinterval, make_number (sizeof (struct interval)),
5670 bounded_number (total_intervals),
5671 bounded_number (total_free_intervals));
5673 total[9] = list3 (Qbuffer, make_number (sizeof (struct buffer)),
5674 bounded_number (total_buffers));
5676 total[10] = list4 (Qheap, make_number (1024),
5677 #ifdef DOUG_LEA_MALLOC
5678 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5679 bounded_number ((mallinfo ().fordblks + 1023) >> 10)
5680 #else
5681 Qnil, Qnil
5682 #endif
5685 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5687 /* Compute average percentage of zombies. */
5688 double nlive = 0;
5690 for (i = 0; i < 7; ++i)
5691 if (CONSP (total[i]))
5692 nlive += XFASTINT (XCAR (total[i]));
5694 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5695 max_live = max (nlive, max_live);
5696 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5697 max_zombies = max (nzombies, max_zombies);
5698 ++ngcs;
5700 #endif
5702 if (!NILP (Vpost_gc_hook))
5704 ptrdiff_t gc_count = inhibit_garbage_collection ();
5705 safe_run_hooks (Qpost_gc_hook);
5706 unbind_to (gc_count, Qnil);
5709 /* Accumulate statistics. */
5710 if (FLOATP (Vgc_elapsed))
5712 EMACS_TIME t2 = current_emacs_time ();
5713 EMACS_TIME t3 = sub_emacs_time (t2, t1);
5714 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5715 + EMACS_TIME_TO_DOUBLE (t3));
5718 gcs_done++;
5720 return Flist (sizeof total / sizeof *total, total);
5724 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5725 only interesting objects referenced from glyphs are strings. */
5727 static void
5728 mark_glyph_matrix (struct glyph_matrix *matrix)
5730 struct glyph_row *row = matrix->rows;
5731 struct glyph_row *end = row + matrix->nrows;
5733 for (; row < end; ++row)
5734 if (row->enabled_p)
5736 int area;
5737 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5739 struct glyph *glyph = row->glyphs[area];
5740 struct glyph *end_glyph = glyph + row->used[area];
5742 for (; glyph < end_glyph; ++glyph)
5743 if (STRINGP (glyph->object)
5744 && !STRING_MARKED_P (XSTRING (glyph->object)))
5745 mark_object (glyph->object);
5751 /* Mark Lisp faces in the face cache C. */
5753 static void
5754 mark_face_cache (struct face_cache *c)
5756 if (c)
5758 int i, j;
5759 for (i = 0; i < c->used; ++i)
5761 struct face *face = FACE_FROM_ID (c->f, i);
5763 if (face)
5765 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5766 mark_object (face->lface[j]);
5774 /* Mark reference to a Lisp_Object.
5775 If the object referred to has not been seen yet, recursively mark
5776 all the references contained in it. */
5778 #define LAST_MARKED_SIZE 500
5779 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5780 static int last_marked_index;
5782 /* For debugging--call abort when we cdr down this many
5783 links of a list, in mark_object. In debugging,
5784 the call to abort will hit a breakpoint.
5785 Normally this is zero and the check never goes off. */
5786 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5788 static void
5789 mark_vectorlike (struct Lisp_Vector *ptr)
5791 ptrdiff_t size = ptr->header.size;
5792 ptrdiff_t i;
5794 eassert (!VECTOR_MARKED_P (ptr));
5795 VECTOR_MARK (ptr); /* Else mark it. */
5796 if (size & PSEUDOVECTOR_FLAG)
5797 size &= PSEUDOVECTOR_SIZE_MASK;
5799 /* Note that this size is not the memory-footprint size, but only
5800 the number of Lisp_Object fields that we should trace.
5801 The distinction is used e.g. by Lisp_Process which places extra
5802 non-Lisp_Object fields at the end of the structure... */
5803 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5804 mark_object (ptr->contents[i]);
5807 /* Like mark_vectorlike but optimized for char-tables (and
5808 sub-char-tables) assuming that the contents are mostly integers or
5809 symbols. */
5811 static void
5812 mark_char_table (struct Lisp_Vector *ptr)
5814 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5815 int i;
5817 eassert (!VECTOR_MARKED_P (ptr));
5818 VECTOR_MARK (ptr);
5819 for (i = 0; i < size; i++)
5821 Lisp_Object val = ptr->contents[i];
5823 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5824 continue;
5825 if (SUB_CHAR_TABLE_P (val))
5827 if (! VECTOR_MARKED_P (XVECTOR (val)))
5828 mark_char_table (XVECTOR (val));
5830 else
5831 mark_object (val);
5835 /* Mark the chain of overlays starting at PTR. */
5837 static void
5838 mark_overlay (struct Lisp_Overlay *ptr)
5840 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5842 ptr->gcmarkbit = 1;
5843 mark_object (ptr->start);
5844 mark_object (ptr->end);
5845 mark_object (ptr->plist);
5849 /* Mark Lisp_Objects and special pointers in BUFFER. */
5851 static void
5852 mark_buffer (struct buffer *buffer)
5854 /* This is handled much like other pseudovectors... */
5855 mark_vectorlike ((struct Lisp_Vector *) buffer);
5857 /* ...but there are some buffer-specific things. */
5859 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5861 /* For now, we just don't mark the undo_list. It's done later in
5862 a special way just before the sweep phase, and after stripping
5863 some of its elements that are not needed any more. */
5865 mark_overlay (buffer->overlays_before);
5866 mark_overlay (buffer->overlays_after);
5868 /* If this is an indirect buffer, mark its base buffer. */
5869 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5870 mark_buffer (buffer->base_buffer);
5873 /* Determine type of generic Lisp_Object and mark it accordingly. */
5875 void
5876 mark_object (Lisp_Object arg)
5878 register Lisp_Object obj = arg;
5879 #ifdef GC_CHECK_MARKED_OBJECTS
5880 void *po;
5881 struct mem_node *m;
5882 #endif
5883 ptrdiff_t cdr_count = 0;
5885 loop:
5887 if (PURE_POINTER_P (XPNTR (obj)))
5888 return;
5890 last_marked[last_marked_index++] = obj;
5891 if (last_marked_index == LAST_MARKED_SIZE)
5892 last_marked_index = 0;
5894 /* Perform some sanity checks on the objects marked here. Abort if
5895 we encounter an object we know is bogus. This increases GC time
5896 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5897 #ifdef GC_CHECK_MARKED_OBJECTS
5899 po = (void *) XPNTR (obj);
5901 /* Check that the object pointed to by PO is known to be a Lisp
5902 structure allocated from the heap. */
5903 #define CHECK_ALLOCATED() \
5904 do { \
5905 m = mem_find (po); \
5906 if (m == MEM_NIL) \
5907 abort (); \
5908 } while (0)
5910 /* Check that the object pointed to by PO is live, using predicate
5911 function LIVEP. */
5912 #define CHECK_LIVE(LIVEP) \
5913 do { \
5914 if (!LIVEP (m, po)) \
5915 abort (); \
5916 } while (0)
5918 /* Check both of the above conditions. */
5919 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5920 do { \
5921 CHECK_ALLOCATED (); \
5922 CHECK_LIVE (LIVEP); \
5923 } while (0) \
5925 #else /* not GC_CHECK_MARKED_OBJECTS */
5927 #define CHECK_LIVE(LIVEP) (void) 0
5928 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5930 #endif /* not GC_CHECK_MARKED_OBJECTS */
5932 switch (SWITCH_ENUM_CAST (XTYPE (obj)))
5934 case Lisp_String:
5936 register struct Lisp_String *ptr = XSTRING (obj);
5937 if (STRING_MARKED_P (ptr))
5938 break;
5939 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5940 MARK_STRING (ptr);
5941 MARK_INTERVAL_TREE (ptr->intervals);
5942 #ifdef GC_CHECK_STRING_BYTES
5943 /* Check that the string size recorded in the string is the
5944 same as the one recorded in the sdata structure. */
5945 CHECK_STRING_BYTES (ptr);
5946 #endif /* GC_CHECK_STRING_BYTES */
5948 break;
5950 case Lisp_Vectorlike:
5952 register struct Lisp_Vector *ptr = XVECTOR (obj);
5953 register ptrdiff_t pvectype;
5955 if (VECTOR_MARKED_P (ptr))
5956 break;
5958 #ifdef GC_CHECK_MARKED_OBJECTS
5959 m = mem_find (po);
5960 if (m == MEM_NIL && !SUBRP (obj)
5961 && po != &buffer_defaults
5962 && po != &buffer_local_symbols)
5963 abort ();
5964 #endif /* GC_CHECK_MARKED_OBJECTS */
5966 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5967 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5968 >> PSEUDOVECTOR_SIZE_BITS);
5969 else
5970 pvectype = 0;
5972 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5973 CHECK_LIVE (live_vector_p);
5975 switch (pvectype)
5977 case PVEC_BUFFER:
5978 #ifdef GC_CHECK_MARKED_OBJECTS
5979 if (po != &buffer_defaults && po != &buffer_local_symbols)
5981 struct buffer *b;
5982 FOR_EACH_BUFFER (b)
5983 if (b == po)
5984 break;
5985 if (b == NULL)
5986 abort ();
5988 #endif /* GC_CHECK_MARKED_OBJECTS */
5989 mark_buffer ((struct buffer *) ptr);
5990 break;
5992 case PVEC_COMPILED:
5993 { /* We could treat this just like a vector, but it is better
5994 to save the COMPILED_CONSTANTS element for last and avoid
5995 recursion there. */
5996 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5997 int i;
5999 VECTOR_MARK (ptr);
6000 for (i = 0; i < size; i++)
6001 if (i != COMPILED_CONSTANTS)
6002 mark_object (ptr->contents[i]);
6003 if (size > COMPILED_CONSTANTS)
6005 obj = ptr->contents[COMPILED_CONSTANTS];
6006 goto loop;
6009 break;
6011 case PVEC_FRAME:
6013 mark_vectorlike (ptr);
6014 mark_face_cache (((struct frame *) ptr)->face_cache);
6016 break;
6018 case PVEC_WINDOW:
6020 struct window *w = (struct window *) ptr;
6022 mark_vectorlike (ptr);
6023 /* Mark glyphs for leaf windows. Marking window
6024 matrices is sufficient because frame matrices
6025 use the same glyph memory. */
6026 if (NILP (w->hchild) && NILP (w->vchild) && w->current_matrix)
6028 mark_glyph_matrix (w->current_matrix);
6029 mark_glyph_matrix (w->desired_matrix);
6032 break;
6034 case PVEC_HASH_TABLE:
6036 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6038 mark_vectorlike (ptr);
6039 /* If hash table is not weak, mark all keys and values.
6040 For weak tables, mark only the vector. */
6041 if (NILP (h->weak))
6042 mark_object (h->key_and_value);
6043 else
6044 VECTOR_MARK (XVECTOR (h->key_and_value));
6046 break;
6048 case PVEC_CHAR_TABLE:
6049 mark_char_table (ptr);
6050 break;
6052 case PVEC_BOOL_VECTOR:
6053 /* No Lisp_Objects to mark in a bool vector. */
6054 VECTOR_MARK (ptr);
6055 break;
6057 case PVEC_SUBR:
6058 break;
6060 case PVEC_FREE:
6061 abort ();
6063 default:
6064 mark_vectorlike (ptr);
6067 break;
6069 case Lisp_Symbol:
6071 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6072 struct Lisp_Symbol *ptrx;
6074 if (ptr->gcmarkbit)
6075 break;
6076 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6077 ptr->gcmarkbit = 1;
6078 mark_object (ptr->function);
6079 mark_object (ptr->plist);
6080 switch (ptr->redirect)
6082 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6083 case SYMBOL_VARALIAS:
6085 Lisp_Object tem;
6086 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6087 mark_object (tem);
6088 break;
6090 case SYMBOL_LOCALIZED:
6092 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6093 /* If the value is forwarded to a buffer or keyboard field,
6094 these are marked when we see the corresponding object.
6095 And if it's forwarded to a C variable, either it's not
6096 a Lisp_Object var, or it's staticpro'd already. */
6097 mark_object (blv->where);
6098 mark_object (blv->valcell);
6099 mark_object (blv->defcell);
6100 break;
6102 case SYMBOL_FORWARDED:
6103 /* If the value is forwarded to a buffer or keyboard field,
6104 these are marked when we see the corresponding object.
6105 And if it's forwarded to a C variable, either it's not
6106 a Lisp_Object var, or it's staticpro'd already. */
6107 break;
6108 default: abort ();
6110 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
6111 MARK_STRING (XSTRING (ptr->xname));
6112 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
6114 ptr = ptr->next;
6115 if (ptr)
6117 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6118 XSETSYMBOL (obj, ptrx);
6119 goto loop;
6122 break;
6124 case Lisp_Misc:
6125 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6127 if (XMISCANY (obj)->gcmarkbit)
6128 break;
6130 switch (XMISCTYPE (obj))
6132 case Lisp_Misc_Marker:
6133 /* DO NOT mark thru the marker's chain.
6134 The buffer's markers chain does not preserve markers from gc;
6135 instead, markers are removed from the chain when freed by gc. */
6136 XMISCANY (obj)->gcmarkbit = 1;
6137 break;
6139 case Lisp_Misc_Save_Value:
6140 XMISCANY (obj)->gcmarkbit = 1;
6141 #if GC_MARK_STACK
6143 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6144 /* If DOGC is set, POINTER is the address of a memory
6145 area containing INTEGER potential Lisp_Objects. */
6146 if (ptr->dogc)
6148 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
6149 ptrdiff_t nelt;
6150 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
6151 mark_maybe_object (*p);
6154 #endif
6155 break;
6157 case Lisp_Misc_Overlay:
6158 mark_overlay (XOVERLAY (obj));
6159 break;
6161 default:
6162 abort ();
6164 break;
6166 case Lisp_Cons:
6168 register struct Lisp_Cons *ptr = XCONS (obj);
6169 if (CONS_MARKED_P (ptr))
6170 break;
6171 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6172 CONS_MARK (ptr);
6173 /* If the cdr is nil, avoid recursion for the car. */
6174 if (EQ (ptr->u.cdr, Qnil))
6176 obj = ptr->car;
6177 cdr_count = 0;
6178 goto loop;
6180 mark_object (ptr->car);
6181 obj = ptr->u.cdr;
6182 cdr_count++;
6183 if (cdr_count == mark_object_loop_halt)
6184 abort ();
6185 goto loop;
6188 case Lisp_Float:
6189 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6190 FLOAT_MARK (XFLOAT (obj));
6191 break;
6193 case_Lisp_Int:
6194 break;
6196 default:
6197 abort ();
6200 #undef CHECK_LIVE
6201 #undef CHECK_ALLOCATED
6202 #undef CHECK_ALLOCATED_AND_LIVE
6204 /* Mark the Lisp pointers in the terminal objects.
6205 Called by Fgarbage_collect. */
6207 static void
6208 mark_terminals (void)
6210 struct terminal *t;
6211 for (t = terminal_list; t; t = t->next_terminal)
6213 eassert (t->name != NULL);
6214 #ifdef HAVE_WINDOW_SYSTEM
6215 /* If a terminal object is reachable from a stacpro'ed object,
6216 it might have been marked already. Make sure the image cache
6217 gets marked. */
6218 mark_image_cache (t->image_cache);
6219 #endif /* HAVE_WINDOW_SYSTEM */
6220 if (!VECTOR_MARKED_P (t))
6221 mark_vectorlike ((struct Lisp_Vector *)t);
6227 /* Value is non-zero if OBJ will survive the current GC because it's
6228 either marked or does not need to be marked to survive. */
6231 survives_gc_p (Lisp_Object obj)
6233 int survives_p;
6235 switch (XTYPE (obj))
6237 case_Lisp_Int:
6238 survives_p = 1;
6239 break;
6241 case Lisp_Symbol:
6242 survives_p = XSYMBOL (obj)->gcmarkbit;
6243 break;
6245 case Lisp_Misc:
6246 survives_p = XMISCANY (obj)->gcmarkbit;
6247 break;
6249 case Lisp_String:
6250 survives_p = STRING_MARKED_P (XSTRING (obj));
6251 break;
6253 case Lisp_Vectorlike:
6254 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6255 break;
6257 case Lisp_Cons:
6258 survives_p = CONS_MARKED_P (XCONS (obj));
6259 break;
6261 case Lisp_Float:
6262 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6263 break;
6265 default:
6266 abort ();
6269 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6274 /* Sweep: find all structures not marked, and free them. */
6276 static void
6277 gc_sweep (void)
6279 /* Remove or mark entries in weak hash tables.
6280 This must be done before any object is unmarked. */
6281 sweep_weak_hash_tables ();
6283 sweep_strings ();
6284 #ifdef GC_CHECK_STRING_BYTES
6285 if (!noninteractive)
6286 check_string_bytes (1);
6287 #endif
6289 /* Put all unmarked conses on free list */
6291 register struct cons_block *cblk;
6292 struct cons_block **cprev = &cons_block;
6293 register int lim = cons_block_index;
6294 EMACS_INT num_free = 0, num_used = 0;
6296 cons_free_list = 0;
6298 for (cblk = cons_block; cblk; cblk = *cprev)
6300 register int i = 0;
6301 int this_free = 0;
6302 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6304 /* Scan the mark bits an int at a time. */
6305 for (i = 0; i < ilim; i++)
6307 if (cblk->gcmarkbits[i] == -1)
6309 /* Fast path - all cons cells for this int are marked. */
6310 cblk->gcmarkbits[i] = 0;
6311 num_used += BITS_PER_INT;
6313 else
6315 /* Some cons cells for this int are not marked.
6316 Find which ones, and free them. */
6317 int start, pos, stop;
6319 start = i * BITS_PER_INT;
6320 stop = lim - start;
6321 if (stop > BITS_PER_INT)
6322 stop = BITS_PER_INT;
6323 stop += start;
6325 for (pos = start; pos < stop; pos++)
6327 if (!CONS_MARKED_P (&cblk->conses[pos]))
6329 this_free++;
6330 cblk->conses[pos].u.chain = cons_free_list;
6331 cons_free_list = &cblk->conses[pos];
6332 #if GC_MARK_STACK
6333 cons_free_list->car = Vdead;
6334 #endif
6336 else
6338 num_used++;
6339 CONS_UNMARK (&cblk->conses[pos]);
6345 lim = CONS_BLOCK_SIZE;
6346 /* If this block contains only free conses and we have already
6347 seen more than two blocks worth of free conses then deallocate
6348 this block. */
6349 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6351 *cprev = cblk->next;
6352 /* Unhook from the free list. */
6353 cons_free_list = cblk->conses[0].u.chain;
6354 lisp_align_free (cblk);
6356 else
6358 num_free += this_free;
6359 cprev = &cblk->next;
6362 total_conses = num_used;
6363 total_free_conses = num_free;
6366 /* Put all unmarked floats on free list */
6368 register struct float_block *fblk;
6369 struct float_block **fprev = &float_block;
6370 register int lim = float_block_index;
6371 EMACS_INT num_free = 0, num_used = 0;
6373 float_free_list = 0;
6375 for (fblk = float_block; fblk; fblk = *fprev)
6377 register int i;
6378 int this_free = 0;
6379 for (i = 0; i < lim; i++)
6380 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6382 this_free++;
6383 fblk->floats[i].u.chain = float_free_list;
6384 float_free_list = &fblk->floats[i];
6386 else
6388 num_used++;
6389 FLOAT_UNMARK (&fblk->floats[i]);
6391 lim = FLOAT_BLOCK_SIZE;
6392 /* If this block contains only free floats and we have already
6393 seen more than two blocks worth of free floats then deallocate
6394 this block. */
6395 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6397 *fprev = fblk->next;
6398 /* Unhook from the free list. */
6399 float_free_list = fblk->floats[0].u.chain;
6400 lisp_align_free (fblk);
6402 else
6404 num_free += this_free;
6405 fprev = &fblk->next;
6408 total_floats = num_used;
6409 total_free_floats = num_free;
6412 /* Put all unmarked intervals on free list */
6414 register struct interval_block *iblk;
6415 struct interval_block **iprev = &interval_block;
6416 register int lim = interval_block_index;
6417 EMACS_INT num_free = 0, num_used = 0;
6419 interval_free_list = 0;
6421 for (iblk = interval_block; iblk; iblk = *iprev)
6423 register int i;
6424 int this_free = 0;
6426 for (i = 0; i < lim; i++)
6428 if (!iblk->intervals[i].gcmarkbit)
6430 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
6431 interval_free_list = &iblk->intervals[i];
6432 this_free++;
6434 else
6436 num_used++;
6437 iblk->intervals[i].gcmarkbit = 0;
6440 lim = INTERVAL_BLOCK_SIZE;
6441 /* If this block contains only free intervals and we have already
6442 seen more than two blocks worth of free intervals then
6443 deallocate this block. */
6444 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6446 *iprev = iblk->next;
6447 /* Unhook from the free list. */
6448 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6449 lisp_free (iblk);
6451 else
6453 num_free += this_free;
6454 iprev = &iblk->next;
6457 total_intervals = num_used;
6458 total_free_intervals = num_free;
6461 /* Put all unmarked symbols on free list */
6463 register struct symbol_block *sblk;
6464 struct symbol_block **sprev = &symbol_block;
6465 register int lim = symbol_block_index;
6466 EMACS_INT num_free = 0, num_used = 0;
6468 symbol_free_list = NULL;
6470 for (sblk = symbol_block; sblk; sblk = *sprev)
6472 int this_free = 0;
6473 union aligned_Lisp_Symbol *sym = sblk->symbols;
6474 union aligned_Lisp_Symbol *end = sym + lim;
6476 for (; sym < end; ++sym)
6478 /* Check if the symbol was created during loadup. In such a case
6479 it might be pointed to by pure bytecode which we don't trace,
6480 so we conservatively assume that it is live. */
6481 int pure_p = PURE_POINTER_P (XSTRING (sym->s.xname));
6483 if (!sym->s.gcmarkbit && !pure_p)
6485 if (sym->s.redirect == SYMBOL_LOCALIZED)
6486 xfree (SYMBOL_BLV (&sym->s));
6487 sym->s.next = symbol_free_list;
6488 symbol_free_list = &sym->s;
6489 #if GC_MARK_STACK
6490 symbol_free_list->function = Vdead;
6491 #endif
6492 ++this_free;
6494 else
6496 ++num_used;
6497 if (!pure_p)
6498 UNMARK_STRING (XSTRING (sym->s.xname));
6499 sym->s.gcmarkbit = 0;
6503 lim = SYMBOL_BLOCK_SIZE;
6504 /* If this block contains only free symbols and we have already
6505 seen more than two blocks worth of free symbols then deallocate
6506 this block. */
6507 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6509 *sprev = sblk->next;
6510 /* Unhook from the free list. */
6511 symbol_free_list = sblk->symbols[0].s.next;
6512 lisp_free (sblk);
6514 else
6516 num_free += this_free;
6517 sprev = &sblk->next;
6520 total_symbols = num_used;
6521 total_free_symbols = num_free;
6524 /* Put all unmarked misc's on free list.
6525 For a marker, first unchain it from the buffer it points into. */
6527 register struct marker_block *mblk;
6528 struct marker_block **mprev = &marker_block;
6529 register int lim = marker_block_index;
6530 EMACS_INT num_free = 0, num_used = 0;
6532 marker_free_list = 0;
6534 for (mblk = marker_block; mblk; mblk = *mprev)
6536 register int i;
6537 int this_free = 0;
6539 for (i = 0; i < lim; i++)
6541 if (!mblk->markers[i].m.u_any.gcmarkbit)
6543 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6544 unchain_marker (&mblk->markers[i].m.u_marker);
6545 /* Set the type of the freed object to Lisp_Misc_Free.
6546 We could leave the type alone, since nobody checks it,
6547 but this might catch bugs faster. */
6548 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6549 mblk->markers[i].m.u_free.chain = marker_free_list;
6550 marker_free_list = &mblk->markers[i].m;
6551 this_free++;
6553 else
6555 num_used++;
6556 mblk->markers[i].m.u_any.gcmarkbit = 0;
6559 lim = MARKER_BLOCK_SIZE;
6560 /* If this block contains only free markers and we have already
6561 seen more than two blocks worth of free markers then deallocate
6562 this block. */
6563 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6565 *mprev = mblk->next;
6566 /* Unhook from the free list. */
6567 marker_free_list = mblk->markers[0].m.u_free.chain;
6568 lisp_free (mblk);
6570 else
6572 num_free += this_free;
6573 mprev = &mblk->next;
6577 total_markers = num_used;
6578 total_free_markers = num_free;
6581 /* Free all unmarked buffers */
6583 register struct buffer *buffer = all_buffers, *prev = 0, *next;
6585 total_buffers = 0;
6586 while (buffer)
6587 if (!VECTOR_MARKED_P (buffer))
6589 if (prev)
6590 prev->header.next = buffer->header.next;
6591 else
6592 all_buffers = buffer->header.next.buffer;
6593 next = buffer->header.next.buffer;
6594 lisp_free (buffer);
6595 buffer = next;
6597 else
6599 VECTOR_UNMARK (buffer);
6600 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
6601 total_buffers++;
6602 prev = buffer, buffer = buffer->header.next.buffer;
6606 sweep_vectors ();
6608 #ifdef GC_CHECK_STRING_BYTES
6609 if (!noninteractive)
6610 check_string_bytes (1);
6611 #endif
6617 /* Debugging aids. */
6619 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6620 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6621 This may be helpful in debugging Emacs's memory usage.
6622 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6623 (void)
6625 Lisp_Object end;
6627 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6629 return end;
6632 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6633 doc: /* Return a list of counters that measure how much consing there has been.
6634 Each of these counters increments for a certain kind of object.
6635 The counters wrap around from the largest positive integer to zero.
6636 Garbage collection does not decrease them.
6637 The elements of the value are as follows:
6638 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6639 All are in units of 1 = one object consed
6640 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6641 objects consed.
6642 MISCS include overlays, markers, and some internal types.
6643 Frames, windows, buffers, and subprocesses count as vectors
6644 (but the contents of a buffer's text do not count here). */)
6645 (void)
6647 Lisp_Object consed[8];
6649 consed[0] = bounded_number (cons_cells_consed);
6650 consed[1] = bounded_number (floats_consed);
6651 consed[2] = bounded_number (vector_cells_consed);
6652 consed[3] = bounded_number (symbols_consed);
6653 consed[4] = bounded_number (string_chars_consed);
6654 consed[5] = bounded_number (misc_objects_consed);
6655 consed[6] = bounded_number (intervals_consed);
6656 consed[7] = bounded_number (strings_consed);
6658 return Flist (8, consed);
6661 /* Find at most FIND_MAX symbols which have OBJ as their value or
6662 function. This is used in gdbinit's `xwhichsymbols' command. */
6664 Lisp_Object
6665 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6667 struct symbol_block *sblk;
6668 ptrdiff_t gc_count = inhibit_garbage_collection ();
6669 Lisp_Object found = Qnil;
6671 if (! DEADP (obj))
6673 for (sblk = symbol_block; sblk; sblk = sblk->next)
6675 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6676 int bn;
6678 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6680 struct Lisp_Symbol *sym = &aligned_sym->s;
6681 Lisp_Object val;
6682 Lisp_Object tem;
6684 if (sblk == symbol_block && bn >= symbol_block_index)
6685 break;
6687 XSETSYMBOL (tem, sym);
6688 val = find_symbol_value (tem);
6689 if (EQ (val, obj)
6690 || EQ (sym->function, obj)
6691 || (!NILP (sym->function)
6692 && COMPILEDP (sym->function)
6693 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6694 || (!NILP (val)
6695 && COMPILEDP (val)
6696 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6698 found = Fcons (tem, found);
6699 if (--find_max == 0)
6700 goto out;
6706 out:
6707 unbind_to (gc_count, Qnil);
6708 return found;
6711 #ifdef ENABLE_CHECKING
6712 int suppress_checking;
6714 void
6715 die (const char *msg, const char *file, int line)
6717 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6718 file, line, msg);
6719 abort ();
6721 #endif
6723 /* Initialization */
6725 void
6726 init_alloc_once (void)
6728 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6729 purebeg = PUREBEG;
6730 pure_size = PURESIZE;
6732 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6733 mem_init ();
6734 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6735 #endif
6737 #ifdef DOUG_LEA_MALLOC
6738 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6739 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6740 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6741 #endif
6742 init_strings ();
6743 init_vectors ();
6745 #ifdef REL_ALLOC
6746 malloc_hysteresis = 32;
6747 #else
6748 malloc_hysteresis = 0;
6749 #endif
6751 refill_memory_reserve ();
6752 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6755 void
6756 init_alloc (void)
6758 gcprolist = 0;
6759 byte_stack_list = 0;
6760 #if GC_MARK_STACK
6761 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6762 setjmp_tested_p = longjmps_done = 0;
6763 #endif
6764 #endif
6765 Vgc_elapsed = make_float (0.0);
6766 gcs_done = 0;
6769 void
6770 syms_of_alloc (void)
6772 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6773 doc: /* Number of bytes of consing between garbage collections.
6774 Garbage collection can happen automatically once this many bytes have been
6775 allocated since the last garbage collection. All data types count.
6777 Garbage collection happens automatically only when `eval' is called.
6779 By binding this temporarily to a large number, you can effectively
6780 prevent garbage collection during a part of the program.
6781 See also `gc-cons-percentage'. */);
6783 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6784 doc: /* Portion of the heap used for allocation.
6785 Garbage collection can happen automatically once this portion of the heap
6786 has been allocated since the last garbage collection.
6787 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6788 Vgc_cons_percentage = make_float (0.1);
6790 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6791 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6793 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6794 doc: /* Number of cons cells that have been consed so far. */);
6796 DEFVAR_INT ("floats-consed", floats_consed,
6797 doc: /* Number of floats that have been consed so far. */);
6799 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6800 doc: /* Number of vector cells that have been consed so far. */);
6802 DEFVAR_INT ("symbols-consed", symbols_consed,
6803 doc: /* Number of symbols that have been consed so far. */);
6805 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6806 doc: /* Number of string characters that have been consed so far. */);
6808 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6809 doc: /* Number of miscellaneous objects that have been consed so far.
6810 These include markers and overlays, plus certain objects not visible
6811 to users. */);
6813 DEFVAR_INT ("intervals-consed", intervals_consed,
6814 doc: /* Number of intervals that have been consed so far. */);
6816 DEFVAR_INT ("strings-consed", strings_consed,
6817 doc: /* Number of strings that have been consed so far. */);
6819 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6820 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6821 This means that certain objects should be allocated in shared (pure) space.
6822 It can also be set to a hash-table, in which case this table is used to
6823 do hash-consing of the objects allocated to pure space. */);
6825 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6826 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6827 garbage_collection_messages = 0;
6829 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6830 doc: /* Hook run after garbage collection has finished. */);
6831 Vpost_gc_hook = Qnil;
6832 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6834 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6835 doc: /* Precomputed `signal' argument for memory-full error. */);
6836 /* We build this in advance because if we wait until we need it, we might
6837 not be able to allocate the memory to hold it. */
6838 Vmemory_signal_data
6839 = pure_cons (Qerror,
6840 pure_cons (build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"), Qnil));
6842 DEFVAR_LISP ("memory-full", Vmemory_full,
6843 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6844 Vmemory_full = Qnil;
6846 DEFSYM (Qstring_bytes, "string-bytes");
6847 DEFSYM (Qvector_slots, "vector-slots");
6848 DEFSYM (Qheap, "heap");
6850 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6851 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6853 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6854 doc: /* Accumulated time elapsed in garbage collections.
6855 The time is in seconds as a floating point value. */);
6856 DEFVAR_INT ("gcs-done", gcs_done,
6857 doc: /* Accumulated number of garbage collections done. */);
6859 defsubr (&Scons);
6860 defsubr (&Slist);
6861 defsubr (&Svector);
6862 defsubr (&Smake_byte_code);
6863 defsubr (&Smake_list);
6864 defsubr (&Smake_vector);
6865 defsubr (&Smake_string);
6866 defsubr (&Smake_bool_vector);
6867 defsubr (&Smake_symbol);
6868 defsubr (&Smake_marker);
6869 defsubr (&Spurecopy);
6870 defsubr (&Sgarbage_collect);
6871 defsubr (&Smemory_limit);
6872 defsubr (&Smemory_use_counts);
6874 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6875 defsubr (&Sgc_status);
6876 #endif