1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993-2014 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21 - structure the opcode space into opcode+flag.
22 - merge with glibc's regex.[ch].
23 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
24 need to modify the compiled regexp so that re_match can be reentrant.
25 - get rid of on_failure_jump_smart by doing the optimization in re_comp
26 rather than at run-time, so that re_match can be reentrant.
29 /* AIX requires this to be the first thing in the file. */
30 #if defined _AIX && !defined REGEX_MALLOC
34 /* Ignore some GCC warnings for now. This section should go away
35 once the Emacs and Gnulib regex code is merged. */
36 #if 4 < __GNUC__ + (5 <= __GNUC_MINOR__) || defined __clang__
37 # pragma GCC diagnostic ignored "-Wstrict-overflow"
39 # pragma GCC diagnostic ignored "-Wunused-function"
40 # pragma GCC diagnostic ignored "-Wunused-macros"
41 # pragma GCC diagnostic ignored "-Wunused-result"
42 # pragma GCC diagnostic ignored "-Wunused-variable"
46 #if 4 < __GNUC__ + (6 <= __GNUC_MINOR__) && ! defined __clang__
47 # pragma GCC diagnostic ignored "-Wunused-but-set-variable"
55 /* We need this for `regex.h', and perhaps for the Emacs include files. */
56 # include <sys/types.h>
59 /* Whether to use ISO C Amendment 1 wide char functions.
60 Those should not be used for Emacs since it uses its own. */
62 #define WIDE_CHAR_SUPPORT 1
64 #define WIDE_CHAR_SUPPORT \
65 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
68 /* For platform which support the ISO C amendment 1 functionality we
69 support user defined character classes. */
71 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
77 /* We have to keep the namespace clean. */
78 # define regfree(preg) __regfree (preg)
79 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
80 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
81 # define regerror(err_code, preg, errbuf, errbuf_size) \
82 __regerror (err_code, preg, errbuf, errbuf_size)
83 # define re_set_registers(bu, re, nu, st, en) \
84 __re_set_registers (bu, re, nu, st, en)
85 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
86 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
87 # define re_match(bufp, string, size, pos, regs) \
88 __re_match (bufp, string, size, pos, regs)
89 # define re_search(bufp, string, size, startpos, range, regs) \
90 __re_search (bufp, string, size, startpos, range, regs)
91 # define re_compile_pattern(pattern, length, bufp) \
92 __re_compile_pattern (pattern, length, bufp)
93 # define re_set_syntax(syntax) __re_set_syntax (syntax)
94 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
95 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
96 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
98 /* Make sure we call libc's function even if the user overrides them. */
99 # define btowc __btowc
100 # define iswctype __iswctype
101 # define wctype __wctype
103 # define WEAK_ALIAS(a,b) weak_alias (a, b)
105 /* We are also using some library internals. */
106 # include <locale/localeinfo.h>
107 # include <locale/elem-hash.h>
108 # include <langinfo.h>
110 # define WEAK_ALIAS(a,b)
113 /* This is for other GNU distributions with internationalized messages. */
114 #if HAVE_LIBINTL_H || defined _LIBC
115 # include <libintl.h>
117 # define gettext(msgid) (msgid)
121 /* This define is so xgettext can find the internationalizable
123 # define gettext_noop(String) String
126 /* The `emacs' switch turns on certain matching commands
127 that make sense only in Emacs. */
131 # include "character.h"
135 # include "category.h"
137 /* Make syntax table lookup grant data in gl_state. */
138 # define SYNTAX(c) syntax_property (c, 1)
143 # define malloc xmalloc
147 # define realloc xrealloc
153 /* Converts the pointer to the char to BEG-based offset from the start. */
154 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
155 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
157 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
158 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
159 # define RE_STRING_CHAR(p, multibyte) \
160 (multibyte ? (STRING_CHAR (p)) : (*(p)))
161 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
162 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
164 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
166 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
168 /* Set C a (possibly converted to multibyte) character before P. P
169 points into a string which is the virtual concatenation of STR1
170 (which ends at END1) or STR2 (which ends at END2). */
171 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
173 if (target_multibyte) \
175 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
176 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
177 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
178 c = STRING_CHAR (dtemp); \
182 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
183 (c) = RE_CHAR_TO_MULTIBYTE (c); \
187 /* Set C a (possibly converted to multibyte) character at P, and set
188 LEN to the byte length of that character. */
189 # define GET_CHAR_AFTER(c, p, len) \
191 if (target_multibyte) \
192 (c) = STRING_CHAR_AND_LENGTH (p, len); \
197 (c) = RE_CHAR_TO_MULTIBYTE (c); \
201 #else /* not emacs */
203 /* If we are not linking with Emacs proper,
204 we can't use the relocating allocator
205 even if config.h says that we can. */
210 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
213 xmalloc (size_t size
)
215 void *val
= malloc (size
);
218 write (2, "virtual memory exhausted\n", 25);
225 xrealloc (void *block
, size_t size
)
228 /* We must call malloc explicitly when BLOCK is 0, since some
229 reallocs don't do this. */
233 val
= realloc (block
, size
);
236 write (2, "virtual memory exhausted\n", 25);
245 # define malloc xmalloc
249 # define realloc xrealloc
251 # include <stdbool.h>
254 /* Define the syntax stuff for \<, \>, etc. */
256 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
257 enum syntaxcode
{ Swhitespace
= 0, Sword
= 1, Ssymbol
= 2 };
259 /* Dummy macros for non-Emacs environments. */
260 # define MAX_MULTIBYTE_LENGTH 1
261 # define RE_MULTIBYTE_P(x) 0
262 # define RE_TARGET_MULTIBYTE_P(x) 0
263 # define WORD_BOUNDARY_P(c1, c2) (0)
264 # define BYTES_BY_CHAR_HEAD(p) (1)
265 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
266 # define STRING_CHAR(p) (*(p))
267 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
268 # define CHAR_STRING(c, s) (*(s) = (c), 1)
269 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
270 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
271 # define RE_CHAR_TO_MULTIBYTE(c) (c)
272 # define RE_CHAR_TO_UNIBYTE(c) (c)
273 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
274 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
275 # define GET_CHAR_AFTER(c, p, len) \
277 # define CHAR_BYTE8_P(c) (0)
278 # define CHAR_LEADING_CODE(c) (c)
280 #endif /* not emacs */
283 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
284 # define RE_TRANSLATE_P(TBL) (TBL)
287 /* Get the interface, including the syntax bits. */
290 /* isalpha etc. are used for the character classes. */
295 /* 1 if C is an ASCII character. */
296 # define IS_REAL_ASCII(c) ((c) < 0200)
298 /* 1 if C is a unibyte character. */
299 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
301 /* The Emacs definitions should not be directly affected by locales. */
303 /* In Emacs, these are only used for single-byte characters. */
304 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
305 # define ISCNTRL(c) ((c) < ' ')
306 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
307 || ((c) >= 'a' && (c) <= 'f') \
308 || ((c) >= 'A' && (c) <= 'F'))
310 /* This is only used for single-byte characters. */
311 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
313 /* The rest must handle multibyte characters. */
315 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
316 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
319 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
320 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
323 # define ISALNUM(c) (IS_REAL_ASCII (c) \
324 ? (((c) >= 'a' && (c) <= 'z') \
325 || ((c) >= 'A' && (c) <= 'Z') \
326 || ((c) >= '0' && (c) <= '9')) \
327 : SYNTAX (c) == Sword)
329 # define ISALPHA(c) (IS_REAL_ASCII (c) \
330 ? (((c) >= 'a' && (c) <= 'z') \
331 || ((c) >= 'A' && (c) <= 'Z')) \
332 : SYNTAX (c) == Sword)
334 # define ISLOWER(c) lowercasep (c)
336 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
337 ? ((c) > ' ' && (c) < 0177 \
338 && !(((c) >= 'a' && (c) <= 'z') \
339 || ((c) >= 'A' && (c) <= 'Z') \
340 || ((c) >= '0' && (c) <= '9'))) \
341 : SYNTAX (c) != Sword)
343 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
345 # define ISUPPER(c) uppercasep (c)
347 # define ISWORD(c) (SYNTAX (c) == Sword)
349 #else /* not emacs */
351 /* 1 if C is an ASCII character. */
352 # define IS_REAL_ASCII(c) ((c) < 0200)
354 /* This distinction is not meaningful, except in Emacs. */
355 # define ISUNIBYTE(c) 1
358 # define ISBLANK(c) isblank (c)
360 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
363 # define ISGRAPH(c) isgraph (c)
365 # define ISGRAPH(c) (isprint (c) && !isspace (c))
368 /* Solaris defines ISPRINT so we must undefine it first. */
370 # define ISPRINT(c) isprint (c)
371 # define ISDIGIT(c) isdigit (c)
372 # define ISALNUM(c) isalnum (c)
373 # define ISALPHA(c) isalpha (c)
374 # define ISCNTRL(c) iscntrl (c)
375 # define ISLOWER(c) islower (c)
376 # define ISPUNCT(c) ispunct (c)
377 # define ISSPACE(c) isspace (c)
378 # define ISUPPER(c) isupper (c)
379 # define ISXDIGIT(c) isxdigit (c)
381 # define ISWORD(c) ISALPHA (c)
384 # define TOLOWER(c) _tolower (c)
386 # define TOLOWER(c) tolower (c)
389 /* How many characters in the character set. */
390 # define CHAR_SET_SIZE 256
394 extern char *re_syntax_table
;
396 # else /* not SYNTAX_TABLE */
398 static char re_syntax_table
[CHAR_SET_SIZE
];
401 init_syntax_once (void)
409 memset (re_syntax_table
, 0, sizeof re_syntax_table
);
411 for (c
= 0; c
< CHAR_SET_SIZE
; ++c
)
413 re_syntax_table
[c
] = Sword
;
415 re_syntax_table
['_'] = Ssymbol
;
420 # endif /* not SYNTAX_TABLE */
422 # define SYNTAX(c) re_syntax_table[(c)]
424 #endif /* not emacs */
426 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
428 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
429 use `alloca' instead of `malloc'. This is because using malloc in
430 re_search* or re_match* could cause memory leaks when C-g is used in
431 Emacs; also, malloc is slower and causes storage fragmentation. On
432 the other hand, malloc is more portable, and easier to debug.
434 Because we sometimes use alloca, some routines have to be macros,
435 not functions -- `alloca'-allocated space disappears at the end of the
436 function it is called in. */
440 # define REGEX_ALLOCATE malloc
441 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
442 # define REGEX_FREE free
444 #else /* not REGEX_MALLOC */
446 /* Emacs already defines alloca, sometimes. */
449 /* Make alloca work the best possible way. */
451 # define alloca __builtin_alloca
452 # else /* not __GNUC__ */
453 # ifdef HAVE_ALLOCA_H
455 # endif /* HAVE_ALLOCA_H */
456 # endif /* not __GNUC__ */
458 # endif /* not alloca */
461 # define REGEX_USE_SAFE_ALLOCA USE_SAFE_ALLOCA
462 # define REGEX_SAFE_FREE() SAFE_FREE ()
463 # define REGEX_ALLOCATE SAFE_ALLOCA
465 # define REGEX_ALLOCATE alloca
468 /* Assumes a `char *destination' variable. */
469 # define REGEX_REALLOCATE(source, osize, nsize) \
470 (destination = REGEX_ALLOCATE (nsize), \
471 memcpy (destination, source, osize))
473 /* No need to do anything to free, after alloca. */
474 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
476 #endif /* not REGEX_MALLOC */
478 #ifndef REGEX_USE_SAFE_ALLOCA
479 # define REGEX_USE_SAFE_ALLOCA ((void) 0)
480 # define REGEX_SAFE_FREE() ((void) 0)
483 /* Define how to allocate the failure stack. */
485 #if defined REL_ALLOC && defined REGEX_MALLOC
487 # define REGEX_ALLOCATE_STACK(size) \
488 r_alloc (&failure_stack_ptr, (size))
489 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
490 r_re_alloc (&failure_stack_ptr, (nsize))
491 # define REGEX_FREE_STACK(ptr) \
492 r_alloc_free (&failure_stack_ptr)
494 #else /* not using relocating allocator */
496 # define REGEX_ALLOCATE_STACK(size) REGEX_ALLOCATE (size)
497 # define REGEX_REALLOCATE_STACK(source, o, n) REGEX_REALLOCATE (source, o, n)
498 # define REGEX_FREE_STACK(ptr) REGEX_FREE (ptr)
500 #endif /* not using relocating allocator */
503 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
504 `string1' or just past its end. This works if PTR is NULL, which is
506 #define FIRST_STRING_P(ptr) \
507 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
509 /* (Re)Allocate N items of type T using malloc, or fail. */
510 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
511 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
512 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
514 #define BYTEWIDTH 8 /* In bits. */
516 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
521 # define max(a, b) ((a) > (b) ? (a) : (b))
522 # define min(a, b) ((a) < (b) ? (a) : (b))
525 /* Type of source-pattern and string chars. */
527 typedef unsigned char re_char
;
528 typedef const re_char const_re_char
;
530 typedef const unsigned char re_char
;
531 typedef re_char const_re_char
;
534 typedef char boolean
;
536 static regoff_t
re_match_2_internal (struct re_pattern_buffer
*bufp
,
537 re_char
*string1
, size_t size1
,
538 re_char
*string2
, size_t size2
,
540 struct re_registers
*regs
,
543 /* These are the command codes that appear in compiled regular
544 expressions. Some opcodes are followed by argument bytes. A
545 command code can specify any interpretation whatsoever for its
546 arguments. Zero bytes may appear in the compiled regular expression. */
552 /* Succeed right away--no more backtracking. */
555 /* Followed by one byte giving n, then by n literal bytes. */
558 /* Matches any (more or less) character. */
561 /* Matches any one char belonging to specified set. First
562 following byte is number of bitmap bytes. Then come bytes
563 for a bitmap saying which chars are in. Bits in each byte
564 are ordered low-bit-first. A character is in the set if its
565 bit is 1. A character too large to have a bit in the map is
566 automatically not in the set.
568 If the length byte has the 0x80 bit set, then that stuff
569 is followed by a range table:
570 2 bytes of flags for character sets (low 8 bits, high 8 bits)
571 See RANGE_TABLE_WORK_BITS below.
572 2 bytes, the number of pairs that follow (upto 32767)
573 pairs, each 2 multibyte characters,
574 each multibyte character represented as 3 bytes. */
577 /* Same parameters as charset, but match any character that is
578 not one of those specified. */
581 /* Start remembering the text that is matched, for storing in a
582 register. Followed by one byte with the register number, in
583 the range 0 to one less than the pattern buffer's re_nsub
587 /* Stop remembering the text that is matched and store it in a
588 memory register. Followed by one byte with the register
589 number, in the range 0 to one less than `re_nsub' in the
593 /* Match a duplicate of something remembered. Followed by one
594 byte containing the register number. */
597 /* Fail unless at beginning of line. */
600 /* Fail unless at end of line. */
603 /* Succeeds if at beginning of buffer (if emacs) or at beginning
604 of string to be matched (if not). */
607 /* Analogously, for end of buffer/string. */
610 /* Followed by two byte relative address to which to jump. */
613 /* Followed by two-byte relative address of place to resume at
614 in case of failure. */
617 /* Like on_failure_jump, but pushes a placeholder instead of the
618 current string position when executed. */
619 on_failure_keep_string_jump
,
621 /* Just like `on_failure_jump', except that it checks that we
622 don't get stuck in an infinite loop (matching an empty string
624 on_failure_jump_loop
,
626 /* Just like `on_failure_jump_loop', except that it checks for
627 a different kind of loop (the kind that shows up with non-greedy
628 operators). This operation has to be immediately preceded
630 on_failure_jump_nastyloop
,
632 /* A smart `on_failure_jump' used for greedy * and + operators.
633 It analyzes the loop before which it is put and if the
634 loop does not require backtracking, it changes itself to
635 `on_failure_keep_string_jump' and short-circuits the loop,
636 else it just defaults to changing itself into `on_failure_jump'.
637 It assumes that it is pointing to just past a `jump'. */
638 on_failure_jump_smart
,
640 /* Followed by two-byte relative address and two-byte number n.
641 After matching N times, jump to the address upon failure.
642 Does not work if N starts at 0: use on_failure_jump_loop
646 /* Followed by two-byte relative address, and two-byte number n.
647 Jump to the address N times, then fail. */
650 /* Set the following two-byte relative address to the
651 subsequent two-byte number. The address *includes* the two
655 wordbeg
, /* Succeeds if at word beginning. */
656 wordend
, /* Succeeds if at word end. */
658 wordbound
, /* Succeeds if at a word boundary. */
659 notwordbound
, /* Succeeds if not at a word boundary. */
661 symbeg
, /* Succeeds if at symbol beginning. */
662 symend
, /* Succeeds if at symbol end. */
664 /* Matches any character whose syntax is specified. Followed by
665 a byte which contains a syntax code, e.g., Sword. */
668 /* Matches any character whose syntax is not that specified. */
672 ,before_dot
, /* Succeeds if before point. */
673 at_dot
, /* Succeeds if at point. */
674 after_dot
, /* Succeeds if after point. */
676 /* Matches any character whose category-set contains the specified
677 category. The operator is followed by a byte which contains a
678 category code (mnemonic ASCII character). */
681 /* Matches any character whose category-set does not contain the
682 specified category. The operator is followed by a byte which
683 contains the category code (mnemonic ASCII character). */
688 /* Common operations on the compiled pattern. */
690 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
692 #define STORE_NUMBER(destination, number) \
694 (destination)[0] = (number) & 0377; \
695 (destination)[1] = (number) >> 8; \
698 /* Same as STORE_NUMBER, except increment DESTINATION to
699 the byte after where the number is stored. Therefore, DESTINATION
700 must be an lvalue. */
702 #define STORE_NUMBER_AND_INCR(destination, number) \
704 STORE_NUMBER (destination, number); \
705 (destination) += 2; \
708 /* Put into DESTINATION a number stored in two contiguous bytes starting
711 #define EXTRACT_NUMBER(destination, source) \
712 ((destination) = extract_number (source))
715 extract_number (re_char
*source
)
717 unsigned leading_byte
= SIGN_EXTEND_CHAR (source
[1]);
718 return (leading_byte
<< 8) + source
[0];
721 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
722 SOURCE must be an lvalue. */
724 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
725 ((destination) = extract_number_and_incr (&source))
728 extract_number_and_incr (re_char
**source
)
730 int num
= extract_number (*source
);
735 /* Store a multibyte character in three contiguous bytes starting
736 DESTINATION, and increment DESTINATION to the byte after where the
737 character is stored. Therefore, DESTINATION must be an lvalue. */
739 #define STORE_CHARACTER_AND_INCR(destination, character) \
741 (destination)[0] = (character) & 0377; \
742 (destination)[1] = ((character) >> 8) & 0377; \
743 (destination)[2] = (character) >> 16; \
744 (destination) += 3; \
747 /* Put into DESTINATION a character stored in three contiguous bytes
748 starting at SOURCE. */
750 #define EXTRACT_CHARACTER(destination, source) \
752 (destination) = ((source)[0] \
753 | ((source)[1] << 8) \
754 | ((source)[2] << 16)); \
758 /* Macros for charset. */
760 /* Size of bitmap of charset P in bytes. P is a start of charset,
761 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
762 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
764 /* Nonzero if charset P has range table. */
765 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
767 /* Return the address of range table of charset P. But not the start
768 of table itself, but the before where the number of ranges is
769 stored. `2 +' means to skip re_opcode_t and size of bitmap,
770 and the 2 bytes of flags at the start of the range table. */
771 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
774 /* Extract the bit flags that start a range table. */
775 #define CHARSET_RANGE_TABLE_BITS(p) \
776 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
777 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
780 /* Return the address of end of RANGE_TABLE. COUNT is number of
781 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
782 is start of range and end of range. `* 3' is size of each start
784 #define CHARSET_RANGE_TABLE_END(range_table, count) \
785 ((range_table) + (count) * 2 * 3)
787 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
788 COUNT is number of ranges in RANGE_TABLE. */
789 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
792 re_wchar_t range_start, range_end; \
794 re_char *range_table_end \
795 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
797 for (rtp = (range_table); rtp < range_table_end; rtp += 2 * 3) \
799 EXTRACT_CHARACTER (range_start, rtp); \
800 EXTRACT_CHARACTER (range_end, rtp + 3); \
802 if (range_start <= (c) && (c) <= range_end) \
811 /* Test if C is in range table of CHARSET. The flag NOT is negated if
812 C is listed in it. */
813 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
816 /* Number of ranges in range table. */ \
818 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
820 EXTRACT_NUMBER_AND_INCR (count, range_table); \
821 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
825 /* If DEBUG is defined, Regex prints many voluminous messages about what
826 it is doing (if the variable `debug' is nonzero). If linked with the
827 main program in `iregex.c', you can enter patterns and strings
828 interactively. And if linked with the main program in `main.c' and
829 the other test files, you can run the already-written tests. */
833 /* We use standard I/O for debugging. */
836 /* It is useful to test things that ``must'' be true when debugging. */
839 static int debug
= -100000;
841 # define DEBUG_STATEMENT(e) e
842 # define DEBUG_PRINT(...) if (debug > 0) printf (__VA_ARGS__)
843 # define DEBUG_COMPILES_ARGUMENTS
844 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
845 if (debug > 0) print_partial_compiled_pattern (s, e)
846 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
847 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
850 /* Print the fastmap in human-readable form. */
853 print_fastmap (char *fastmap
)
855 unsigned was_a_range
= 0;
858 while (i
< (1 << BYTEWIDTH
))
864 while (i
< (1 << BYTEWIDTH
) && fastmap
[i
])
880 /* Print a compiled pattern string in human-readable form, starting at
881 the START pointer into it and ending just before the pointer END. */
884 print_partial_compiled_pattern (re_char
*start
, re_char
*end
)
892 fprintf (stderr
, "(null)\n");
896 /* Loop over pattern commands. */
899 fprintf (stderr
, "%td:\t", p
- start
);
901 switch ((re_opcode_t
) *p
++)
904 fprintf (stderr
, "/no_op");
908 fprintf (stderr
, "/succeed");
913 fprintf (stderr
, "/exactn/%d", mcnt
);
916 fprintf (stderr
, "/%c", *p
++);
922 fprintf (stderr
, "/start_memory/%d", *p
++);
926 fprintf (stderr
, "/stop_memory/%d", *p
++);
930 fprintf (stderr
, "/duplicate/%d", *p
++);
934 fprintf (stderr
, "/anychar");
940 register int c
, last
= -100;
941 register int in_range
= 0;
942 int length
= CHARSET_BITMAP_SIZE (p
- 1);
943 int has_range_table
= CHARSET_RANGE_TABLE_EXISTS_P (p
- 1);
945 fprintf (stderr
, "/charset [%s",
946 (re_opcode_t
) *(p
- 1) == charset_not
? "^" : "");
949 fprintf (stderr
, " !extends past end of pattern! ");
951 for (c
= 0; c
< 256; c
++)
953 && (p
[1 + (c
/8)] & (1 << (c
% 8))))
955 /* Are we starting a range? */
956 if (last
+ 1 == c
&& ! in_range
)
958 fprintf (stderr
, "-");
961 /* Have we broken a range? */
962 else if (last
+ 1 != c
&& in_range
)
964 fprintf (stderr
, "%c", last
);
969 fprintf (stderr
, "%c", c
);
975 fprintf (stderr
, "%c", last
);
977 fprintf (stderr
, "]");
984 fprintf (stderr
, "has-range-table");
986 /* ??? Should print the range table; for now, just skip it. */
987 p
+= 2; /* skip range table bits */
988 EXTRACT_NUMBER_AND_INCR (count
, p
);
989 p
= CHARSET_RANGE_TABLE_END (p
, count
);
995 fprintf (stderr
, "/begline");
999 fprintf (stderr
, "/endline");
1002 case on_failure_jump
:
1003 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1004 fprintf (stderr
, "/on_failure_jump to %td", p
+ mcnt
- start
);
1007 case on_failure_keep_string_jump
:
1008 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1009 fprintf (stderr
, "/on_failure_keep_string_jump to %td",
1013 case on_failure_jump_nastyloop
:
1014 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1015 fprintf (stderr
, "/on_failure_jump_nastyloop to %td",
1019 case on_failure_jump_loop
:
1020 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1021 fprintf (stderr
, "/on_failure_jump_loop to %td",
1025 case on_failure_jump_smart
:
1026 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1027 fprintf (stderr
, "/on_failure_jump_smart to %td",
1032 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1033 fprintf (stderr
, "/jump to %td", p
+ mcnt
- start
);
1037 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1038 EXTRACT_NUMBER_AND_INCR (mcnt2
, p
);
1039 fprintf (stderr
, "/succeed_n to %td, %d times",
1040 p
- 2 + mcnt
- start
, mcnt2
);
1044 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1045 EXTRACT_NUMBER_AND_INCR (mcnt2
, p
);
1046 fprintf (stderr
, "/jump_n to %td, %d times",
1047 p
- 2 + mcnt
- start
, mcnt2
);
1051 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
1052 EXTRACT_NUMBER_AND_INCR (mcnt2
, p
);
1053 fprintf (stderr
, "/set_number_at location %td to %d",
1054 p
- 2 + mcnt
- start
, mcnt2
);
1058 fprintf (stderr
, "/wordbound");
1062 fprintf (stderr
, "/notwordbound");
1066 fprintf (stderr
, "/wordbeg");
1070 fprintf (stderr
, "/wordend");
1074 fprintf (stderr
, "/symbeg");
1078 fprintf (stderr
, "/symend");
1082 fprintf (stderr
, "/syntaxspec");
1084 fprintf (stderr
, "/%d", mcnt
);
1088 fprintf (stderr
, "/notsyntaxspec");
1090 fprintf (stderr
, "/%d", mcnt
);
1095 fprintf (stderr
, "/before_dot");
1099 fprintf (stderr
, "/at_dot");
1103 fprintf (stderr
, "/after_dot");
1107 fprintf (stderr
, "/categoryspec");
1109 fprintf (stderr
, "/%d", mcnt
);
1112 case notcategoryspec
:
1113 fprintf (stderr
, "/notcategoryspec");
1115 fprintf (stderr
, "/%d", mcnt
);
1120 fprintf (stderr
, "/begbuf");
1124 fprintf (stderr
, "/endbuf");
1128 fprintf (stderr
, "?%d", *(p
-1));
1131 fprintf (stderr
, "\n");
1134 fprintf (stderr
, "%td:\tend of pattern.\n", p
- start
);
1139 print_compiled_pattern (struct re_pattern_buffer
*bufp
)
1141 re_char
*buffer
= bufp
->buffer
;
1143 print_partial_compiled_pattern (buffer
, buffer
+ bufp
->used
);
1144 printf ("%ld bytes used/%ld bytes allocated.\n",
1145 bufp
->used
, bufp
->allocated
);
1147 if (bufp
->fastmap_accurate
&& bufp
->fastmap
)
1149 printf ("fastmap: ");
1150 print_fastmap (bufp
->fastmap
);
1153 printf ("re_nsub: %zu\t", bufp
->re_nsub
);
1154 printf ("regs_alloc: %d\t", bufp
->regs_allocated
);
1155 printf ("can_be_null: %d\t", bufp
->can_be_null
);
1156 printf ("no_sub: %d\t", bufp
->no_sub
);
1157 printf ("not_bol: %d\t", bufp
->not_bol
);
1158 printf ("not_eol: %d\t", bufp
->not_eol
);
1159 printf ("syntax: %lx\n", bufp
->syntax
);
1161 /* Perhaps we should print the translate table? */
1166 print_double_string (re_char
*where
, re_char
*string1
, ssize_t size1
,
1167 re_char
*string2
, ssize_t size2
)
1175 if (FIRST_STRING_P (where
))
1177 for (this_char
= where
- string1
; this_char
< size1
; this_char
++)
1178 putchar (string1
[this_char
]);
1183 for (this_char
= where
- string2
; this_char
< size2
; this_char
++)
1184 putchar (string2
[this_char
]);
1188 #else /* not DEBUG */
1193 # define DEBUG_STATEMENT(e)
1194 # define DEBUG_PRINT(...)
1195 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1196 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1198 #endif /* not DEBUG */
1200 /* Use this to suppress gcc's `...may be used before initialized' warnings. */
1202 # define IF_LINT(Code) Code
1204 # define IF_LINT(Code) /* empty */
1207 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1208 also be assigned to arbitrarily: each pattern buffer stores its own
1209 syntax, so it can be changed between regex compilations. */
1210 /* This has no initializer because initialized variables in Emacs
1211 become read-only after dumping. */
1212 reg_syntax_t re_syntax_options
;
1215 /* Specify the precise syntax of regexps for compilation. This provides
1216 for compatibility for various utilities which historically have
1217 different, incompatible syntaxes.
1219 The argument SYNTAX is a bit mask comprised of the various bits
1220 defined in regex.h. We return the old syntax. */
1223 re_set_syntax (reg_syntax_t syntax
)
1225 reg_syntax_t ret
= re_syntax_options
;
1227 re_syntax_options
= syntax
;
1230 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1232 /* Regexp to use to replace spaces, or NULL meaning don't. */
1233 static const_re_char
*whitespace_regexp
;
1236 re_set_whitespace_regexp (const char *regexp
)
1238 whitespace_regexp
= (const_re_char
*) regexp
;
1240 WEAK_ALIAS (__re_set_syntax
, re_set_syntax
)
1242 /* This table gives an error message for each of the error codes listed
1243 in regex.h. Obviously the order here has to be same as there.
1244 POSIX doesn't require that we do anything for REG_NOERROR,
1245 but why not be nice? */
1247 static const char *re_error_msgid
[] =
1249 gettext_noop ("Success"), /* REG_NOERROR */
1250 gettext_noop ("No match"), /* REG_NOMATCH */
1251 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1252 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1253 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1254 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1255 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1256 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1257 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1258 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1259 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1260 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1261 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1262 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1263 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1264 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1265 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1266 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1269 /* Avoiding alloca during matching, to placate r_alloc. */
1271 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1272 searching and matching functions should not call alloca. On some
1273 systems, alloca is implemented in terms of malloc, and if we're
1274 using the relocating allocator routines, then malloc could cause a
1275 relocation, which might (if the strings being searched are in the
1276 ralloc heap) shift the data out from underneath the regexp
1279 Here's another reason to avoid allocation: Emacs
1280 processes input from X in a signal handler; processing X input may
1281 call malloc; if input arrives while a matching routine is calling
1282 malloc, then we're scrod. But Emacs can't just block input while
1283 calling matching routines; then we don't notice interrupts when
1284 they come in. So, Emacs blocks input around all regexp calls
1285 except the matching calls, which it leaves unprotected, in the
1286 faith that they will not malloc. */
1288 /* Normally, this is fine. */
1289 #define MATCH_MAY_ALLOCATE
1291 /* The match routines may not allocate if (1) they would do it with malloc
1292 and (2) it's not safe for them to use malloc.
1293 Note that if REL_ALLOC is defined, matching would not use malloc for the
1294 failure stack, but we would still use it for the register vectors;
1295 so REL_ALLOC should not affect this. */
1296 #if defined REGEX_MALLOC && defined emacs
1297 # undef MATCH_MAY_ALLOCATE
1301 /* Failure stack declarations and macros; both re_compile_fastmap and
1302 re_match_2 use a failure stack. These have to be macros because of
1303 REGEX_ALLOCATE_STACK. */
1306 /* Approximate number of failure points for which to initially allocate space
1307 when matching. If this number is exceeded, we allocate more
1308 space, so it is not a hard limit. */
1309 #ifndef INIT_FAILURE_ALLOC
1310 # define INIT_FAILURE_ALLOC 20
1313 /* Roughly the maximum number of failure points on the stack. Would be
1314 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1315 This is a variable only so users of regex can assign to it; we never
1316 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1317 before using it, so it should probably be a byte-count instead. */
1318 # if defined MATCH_MAY_ALLOCATE
1319 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1320 whose default stack limit is 2mb. In order for a larger
1321 value to work reliably, you have to try to make it accord
1322 with the process stack limit. */
1323 size_t re_max_failures
= 40000;
1325 size_t re_max_failures
= 4000;
1328 union fail_stack_elt
1331 /* This should be the biggest `int' that's no bigger than a pointer. */
1335 typedef union fail_stack_elt fail_stack_elt_t
;
1339 fail_stack_elt_t
*stack
;
1341 size_t avail
; /* Offset of next open position. */
1342 size_t frame
; /* Offset of the cur constructed frame. */
1345 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1348 /* Define macros to initialize and free the failure stack.
1349 Do `return -2' if the alloc fails. */
1351 #ifdef MATCH_MAY_ALLOCATE
1352 # define INIT_FAIL_STACK() \
1354 fail_stack.stack = \
1355 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1356 * sizeof (fail_stack_elt_t)); \
1358 if (fail_stack.stack == NULL) \
1361 fail_stack.size = INIT_FAILURE_ALLOC; \
1362 fail_stack.avail = 0; \
1363 fail_stack.frame = 0; \
1366 # define INIT_FAIL_STACK() \
1368 fail_stack.avail = 0; \
1369 fail_stack.frame = 0; \
1372 # define RETALLOC_IF(addr, n, t) \
1373 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
1377 /* Double the size of FAIL_STACK, up to a limit
1378 which allows approximately `re_max_failures' items.
1380 Return 1 if succeeds, and 0 if either ran out of memory
1381 allocating space for it or it was already too large.
1383 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1385 /* Factor to increase the failure stack size by
1386 when we increase it.
1387 This used to be 2, but 2 was too wasteful
1388 because the old discarded stacks added up to as much space
1389 were as ultimate, maximum-size stack. */
1390 #define FAIL_STACK_GROWTH_FACTOR 4
1392 #define GROW_FAIL_STACK(fail_stack) \
1393 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1394 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1396 : ((fail_stack).stack \
1397 = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1398 (fail_stack).size * sizeof (fail_stack_elt_t), \
1399 min (re_max_failures * TYPICAL_FAILURE_SIZE, \
1400 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1401 * FAIL_STACK_GROWTH_FACTOR))), \
1403 (fail_stack).stack == NULL \
1405 : ((fail_stack).size \
1406 = (min (re_max_failures * TYPICAL_FAILURE_SIZE, \
1407 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1408 * FAIL_STACK_GROWTH_FACTOR)) \
1409 / sizeof (fail_stack_elt_t)), \
1413 /* Push a pointer value onto the failure stack.
1414 Assumes the variable `fail_stack'. Probably should only
1415 be called from within `PUSH_FAILURE_POINT'. */
1416 #define PUSH_FAILURE_POINTER(item) \
1417 fail_stack.stack[fail_stack.avail++].pointer = (item)
1419 /* This pushes an integer-valued item onto the failure stack.
1420 Assumes the variable `fail_stack'. Probably should only
1421 be called from within `PUSH_FAILURE_POINT'. */
1422 #define PUSH_FAILURE_INT(item) \
1423 fail_stack.stack[fail_stack.avail++].integer = (item)
1425 /* These POP... operations complement the PUSH... operations.
1426 All assume that `fail_stack' is nonempty. */
1427 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1428 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1430 /* Individual items aside from the registers. */
1431 #define NUM_NONREG_ITEMS 3
1433 /* Used to examine the stack (to detect infinite loops). */
1434 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1435 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1436 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1437 #define TOP_FAILURE_HANDLE() fail_stack.frame
1440 #define ENSURE_FAIL_STACK(space) \
1441 while (REMAINING_AVAIL_SLOTS <= space) { \
1442 if (!GROW_FAIL_STACK (fail_stack)) \
1444 DEBUG_PRINT ("\n Doubled stack; size now: %zd\n", (fail_stack).size);\
1445 DEBUG_PRINT (" slots available: %zd\n", REMAINING_AVAIL_SLOTS);\
1448 /* Push register NUM onto the stack. */
1449 #define PUSH_FAILURE_REG(num) \
1451 char *destination; \
1453 ENSURE_FAIL_STACK(3); \
1454 DEBUG_PRINT (" Push reg %ld (spanning %p -> %p)\n", \
1455 n, regstart[n], regend[n]); \
1456 PUSH_FAILURE_POINTER (regstart[n]); \
1457 PUSH_FAILURE_POINTER (regend[n]); \
1458 PUSH_FAILURE_INT (n); \
1461 /* Change the counter's value to VAL, but make sure that it will
1462 be reset when backtracking. */
1463 #define PUSH_NUMBER(ptr,val) \
1465 char *destination; \
1467 ENSURE_FAIL_STACK(3); \
1468 EXTRACT_NUMBER (c, ptr); \
1469 DEBUG_PRINT (" Push number %p = %d -> %d\n", ptr, c, val); \
1470 PUSH_FAILURE_INT (c); \
1471 PUSH_FAILURE_POINTER (ptr); \
1472 PUSH_FAILURE_INT (-1); \
1473 STORE_NUMBER (ptr, val); \
1476 /* Pop a saved register off the stack. */
1477 #define POP_FAILURE_REG_OR_COUNT() \
1479 long pfreg = POP_FAILURE_INT (); \
1482 /* It's a counter. */ \
1483 /* Here, we discard `const', making re_match non-reentrant. */ \
1484 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1485 pfreg = POP_FAILURE_INT (); \
1486 STORE_NUMBER (ptr, pfreg); \
1487 DEBUG_PRINT (" Pop counter %p = %ld\n", ptr, pfreg); \
1491 regend[pfreg] = POP_FAILURE_POINTER (); \
1492 regstart[pfreg] = POP_FAILURE_POINTER (); \
1493 DEBUG_PRINT (" Pop reg %ld (spanning %p -> %p)\n", \
1494 pfreg, regstart[pfreg], regend[pfreg]); \
1498 /* Check that we are not stuck in an infinite loop. */
1499 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1501 ssize_t failure = TOP_FAILURE_HANDLE (); \
1502 /* Check for infinite matching loops */ \
1503 while (failure > 0 \
1504 && (FAILURE_STR (failure) == string_place \
1505 || FAILURE_STR (failure) == NULL)) \
1507 assert (FAILURE_PAT (failure) >= bufp->buffer \
1508 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1509 if (FAILURE_PAT (failure) == pat_cur) \
1514 DEBUG_PRINT (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1515 failure = NEXT_FAILURE_HANDLE(failure); \
1517 DEBUG_PRINT (" Other string: %p\n", FAILURE_STR (failure)); \
1520 /* Push the information about the state we will need
1521 if we ever fail back to it.
1523 Requires variables fail_stack, regstart, regend and
1524 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1527 Does `return FAILURE_CODE' if runs out of memory. */
1529 #define PUSH_FAILURE_POINT(pattern, string_place) \
1531 char *destination; \
1532 /* Must be int, so when we don't save any registers, the arithmetic \
1533 of 0 + -1 isn't done as unsigned. */ \
1535 DEBUG_STATEMENT (nfailure_points_pushed++); \
1536 DEBUG_PRINT ("\nPUSH_FAILURE_POINT:\n"); \
1537 DEBUG_PRINT (" Before push, next avail: %zd\n", (fail_stack).avail); \
1538 DEBUG_PRINT (" size: %zd\n", (fail_stack).size);\
1540 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1542 DEBUG_PRINT ("\n"); \
1544 DEBUG_PRINT (" Push frame index: %zd\n", fail_stack.frame); \
1545 PUSH_FAILURE_INT (fail_stack.frame); \
1547 DEBUG_PRINT (" Push string %p: `", string_place); \
1548 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1549 DEBUG_PRINT ("'\n"); \
1550 PUSH_FAILURE_POINTER (string_place); \
1552 DEBUG_PRINT (" Push pattern %p: ", pattern); \
1553 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1554 PUSH_FAILURE_POINTER (pattern); \
1556 /* Close the frame by moving the frame pointer past it. */ \
1557 fail_stack.frame = fail_stack.avail; \
1560 /* Estimate the size of data pushed by a typical failure stack entry.
1561 An estimate is all we need, because all we use this for
1562 is to choose a limit for how big to make the failure stack. */
1563 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1564 #define TYPICAL_FAILURE_SIZE 20
1566 /* How many items can still be added to the stack without overflowing it. */
1567 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1570 /* Pops what PUSH_FAIL_STACK pushes.
1572 We restore into the parameters, all of which should be lvalues:
1573 STR -- the saved data position.
1574 PAT -- the saved pattern position.
1575 REGSTART, REGEND -- arrays of string positions.
1577 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1578 `pend', `string1', `size1', `string2', and `size2'. */
1580 #define POP_FAILURE_POINT(str, pat) \
1582 assert (!FAIL_STACK_EMPTY ()); \
1584 /* Remove failure points and point to how many regs pushed. */ \
1585 DEBUG_PRINT ("POP_FAILURE_POINT:\n"); \
1586 DEBUG_PRINT (" Before pop, next avail: %zd\n", fail_stack.avail); \
1587 DEBUG_PRINT (" size: %zd\n", fail_stack.size); \
1589 /* Pop the saved registers. */ \
1590 while (fail_stack.frame < fail_stack.avail) \
1591 POP_FAILURE_REG_OR_COUNT (); \
1593 pat = POP_FAILURE_POINTER (); \
1594 DEBUG_PRINT (" Popping pattern %p: ", pat); \
1595 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1597 /* If the saved string location is NULL, it came from an \
1598 on_failure_keep_string_jump opcode, and we want to throw away the \
1599 saved NULL, thus retaining our current position in the string. */ \
1600 str = POP_FAILURE_POINTER (); \
1601 DEBUG_PRINT (" Popping string %p: `", str); \
1602 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1603 DEBUG_PRINT ("'\n"); \
1605 fail_stack.frame = POP_FAILURE_INT (); \
1606 DEBUG_PRINT (" Popping frame index: %zd\n", fail_stack.frame); \
1608 assert (fail_stack.avail >= 0); \
1609 assert (fail_stack.frame <= fail_stack.avail); \
1611 DEBUG_STATEMENT (nfailure_points_popped++); \
1612 } while (0) /* POP_FAILURE_POINT */
1616 /* Registers are set to a sentinel when they haven't yet matched. */
1617 #define REG_UNSET(e) ((e) == NULL)
1619 /* Subroutine declarations and macros for regex_compile. */
1621 static reg_errcode_t
regex_compile (re_char
*pattern
, size_t size
,
1622 reg_syntax_t syntax
,
1623 struct re_pattern_buffer
*bufp
);
1624 static void store_op1 (re_opcode_t op
, unsigned char *loc
, int arg
);
1625 static void store_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
);
1626 static void insert_op1 (re_opcode_t op
, unsigned char *loc
,
1627 int arg
, unsigned char *end
);
1628 static void insert_op2 (re_opcode_t op
, unsigned char *loc
,
1629 int arg1
, int arg2
, unsigned char *end
);
1630 static boolean
at_begline_loc_p (re_char
*pattern
, re_char
*p
,
1631 reg_syntax_t syntax
);
1632 static boolean
at_endline_loc_p (re_char
*p
, re_char
*pend
,
1633 reg_syntax_t syntax
);
1634 static re_char
*skip_one_char (re_char
*p
);
1635 static int analyze_first (re_char
*p
, re_char
*pend
,
1636 char *fastmap
, const int multibyte
);
1638 /* Fetch the next character in the uncompiled pattern, with no
1640 #define PATFETCH(c) \
1643 if (p == pend) return REG_EEND; \
1644 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1649 /* If `translate' is non-null, return translate[D], else just D. We
1650 cast the subscript to translate because some data is declared as
1651 `char *', to avoid warnings when a string constant is passed. But
1652 when we use a character as a subscript we must make it unsigned. */
1654 # define TRANSLATE(d) \
1655 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1659 /* Macros for outputting the compiled pattern into `buffer'. */
1661 /* If the buffer isn't allocated when it comes in, use this. */
1662 #define INIT_BUF_SIZE 32
1664 /* Make sure we have at least N more bytes of space in buffer. */
1665 #define GET_BUFFER_SPACE(n) \
1666 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1669 /* Make sure we have one more byte of buffer space and then add C to it. */
1670 #define BUF_PUSH(c) \
1672 GET_BUFFER_SPACE (1); \
1673 *b++ = (unsigned char) (c); \
1677 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1678 #define BUF_PUSH_2(c1, c2) \
1680 GET_BUFFER_SPACE (2); \
1681 *b++ = (unsigned char) (c1); \
1682 *b++ = (unsigned char) (c2); \
1686 /* Store a jump with opcode OP at LOC to location TO. We store a
1687 relative address offset by the three bytes the jump itself occupies. */
1688 #define STORE_JUMP(op, loc, to) \
1689 store_op1 (op, loc, (to) - (loc) - 3)
1691 /* Likewise, for a two-argument jump. */
1692 #define STORE_JUMP2(op, loc, to, arg) \
1693 store_op2 (op, loc, (to) - (loc) - 3, arg)
1695 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1696 #define INSERT_JUMP(op, loc, to) \
1697 insert_op1 (op, loc, (to) - (loc) - 3, b)
1699 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1700 #define INSERT_JUMP2(op, loc, to, arg) \
1701 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1704 /* This is not an arbitrary limit: the arguments which represent offsets
1705 into the pattern are two bytes long. So if 2^15 bytes turns out to
1706 be too small, many things would have to change. */
1707 # define MAX_BUF_SIZE (1L << 15)
1709 /* Extend the buffer by twice its current size via realloc and
1710 reset the pointers that pointed into the old block to point to the
1711 correct places in the new one. If extending the buffer results in it
1712 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1713 #if __BOUNDED_POINTERS__
1714 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1715 # define MOVE_BUFFER_POINTER(P) \
1716 (__ptrlow (P) = new_buffer + (__ptrlow (P) - old_buffer), \
1717 SET_HIGH_BOUND (P), \
1718 __ptrvalue (P) = new_buffer + (__ptrvalue (P) - old_buffer))
1719 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1722 SET_HIGH_BOUND (b); \
1723 SET_HIGH_BOUND (begalt); \
1724 if (fixup_alt_jump) \
1725 SET_HIGH_BOUND (fixup_alt_jump); \
1727 SET_HIGH_BOUND (laststart); \
1728 if (pending_exact) \
1729 SET_HIGH_BOUND (pending_exact); \
1732 # define MOVE_BUFFER_POINTER(P) ((P) = new_buffer + ((P) - old_buffer))
1733 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1735 #define EXTEND_BUFFER() \
1737 unsigned char *old_buffer = bufp->buffer; \
1738 if (bufp->allocated == MAX_BUF_SIZE) \
1740 bufp->allocated <<= 1; \
1741 if (bufp->allocated > MAX_BUF_SIZE) \
1742 bufp->allocated = MAX_BUF_SIZE; \
1743 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1744 if (bufp->buffer == NULL) \
1745 return REG_ESPACE; \
1746 /* If the buffer moved, move all the pointers into it. */ \
1747 if (old_buffer != bufp->buffer) \
1749 unsigned char *new_buffer = bufp->buffer; \
1750 MOVE_BUFFER_POINTER (b); \
1751 MOVE_BUFFER_POINTER (begalt); \
1752 if (fixup_alt_jump) \
1753 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1755 MOVE_BUFFER_POINTER (laststart); \
1756 if (pending_exact) \
1757 MOVE_BUFFER_POINTER (pending_exact); \
1759 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1763 /* Since we have one byte reserved for the register number argument to
1764 {start,stop}_memory, the maximum number of groups we can report
1765 things about is what fits in that byte. */
1766 #define MAX_REGNUM 255
1768 /* But patterns can have more than `MAX_REGNUM' registers. We just
1769 ignore the excess. */
1770 typedef int regnum_t
;
1773 /* Macros for the compile stack. */
1775 /* Since offsets can go either forwards or backwards, this type needs to
1776 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1777 /* int may be not enough when sizeof(int) == 2. */
1778 typedef long pattern_offset_t
;
1782 pattern_offset_t begalt_offset
;
1783 pattern_offset_t fixup_alt_jump
;
1784 pattern_offset_t laststart_offset
;
1786 } compile_stack_elt_t
;
1791 compile_stack_elt_t
*stack
;
1793 size_t avail
; /* Offset of next open position. */
1794 } compile_stack_type
;
1797 #define INIT_COMPILE_STACK_SIZE 32
1799 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1800 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1802 /* The next available element. */
1803 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1805 /* Explicit quit checking is needed for Emacs, which uses polling to
1806 process input events. */
1808 # define IMMEDIATE_QUIT_CHECK \
1810 if (immediate_quit) QUIT; \
1813 # define IMMEDIATE_QUIT_CHECK ((void)0)
1816 /* Structure to manage work area for range table. */
1817 struct range_table_work_area
1819 int *table
; /* actual work area. */
1820 int allocated
; /* allocated size for work area in bytes. */
1821 int used
; /* actually used size in words. */
1822 int bits
; /* flag to record character classes */
1827 /* Make sure that WORK_AREA can hold more N multibyte characters.
1828 This is used only in set_image_of_range and set_image_of_range_1.
1829 It expects WORK_AREA to be a pointer.
1830 If it can't get the space, it returns from the surrounding function. */
1832 #define EXTEND_RANGE_TABLE(work_area, n) \
1834 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1836 extend_range_table_work_area (&work_area); \
1837 if ((work_area).table == 0) \
1838 return (REG_ESPACE); \
1842 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1843 (work_area).bits |= (bit)
1845 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1846 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1848 EXTEND_RANGE_TABLE ((work_area), 2); \
1849 (work_area).table[(work_area).used++] = (range_start); \
1850 (work_area).table[(work_area).used++] = (range_end); \
1855 /* Free allocated memory for WORK_AREA. */
1856 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1858 if ((work_area).table) \
1859 free ((work_area).table); \
1862 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1863 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1864 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1865 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1867 /* Bits used to implement the multibyte-part of the various character classes
1868 such as [:alnum:] in a charset's range table. */
1869 #define BIT_WORD 0x1
1870 #define BIT_LOWER 0x2
1871 #define BIT_PUNCT 0x4
1872 #define BIT_SPACE 0x8
1873 #define BIT_UPPER 0x10
1874 #define BIT_MULTIBYTE 0x20
1877 /* Set the bit for character C in a list. */
1878 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1883 /* Store characters in the range FROM to TO in the bitmap at B (for
1884 ASCII and unibyte characters) and WORK_AREA (for multibyte
1885 characters) while translating them and paying attention to the
1886 continuity of translated characters.
1888 Implementation note: It is better to implement these fairly big
1889 macros by a function, but it's not that easy because macros called
1890 in this macro assume various local variables already declared. */
1892 /* Both FROM and TO are ASCII characters. */
1894 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1898 for (C0 = (FROM); C0 <= (TO); C0++) \
1900 C1 = TRANSLATE (C0); \
1901 if (! ASCII_CHAR_P (C1)) \
1903 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1904 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1907 SET_LIST_BIT (C1); \
1912 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
1914 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1916 int C0, C1, C2, I; \
1917 int USED = RANGE_TABLE_WORK_USED (work_area); \
1919 for (C0 = (FROM); C0 <= (TO); C0++) \
1921 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
1922 if (CHAR_BYTE8_P (C1)) \
1923 SET_LIST_BIT (C0); \
1926 C2 = TRANSLATE (C1); \
1928 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
1930 SET_LIST_BIT (C1); \
1931 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1933 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1934 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1936 if (C2 >= from - 1 && C2 <= to + 1) \
1938 if (C2 == from - 1) \
1939 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1940 else if (C2 == to + 1) \
1941 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1946 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
1952 /* Both FROM and TO are multibyte characters. */
1954 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
1956 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
1958 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
1959 for (C0 = (FROM); C0 <= (TO); C0++) \
1961 C1 = TRANSLATE (C0); \
1962 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
1963 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
1964 SET_LIST_BIT (C2); \
1965 if (C1 >= (FROM) && C1 <= (TO)) \
1967 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1969 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1970 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1972 if (C1 >= from - 1 && C1 <= to + 1) \
1974 if (C1 == from - 1) \
1975 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1976 else if (C1 == to + 1) \
1977 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1982 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1988 /* Get the next unsigned number in the uncompiled pattern. */
1989 #define GET_INTERVAL_COUNT(num) \
1992 FREE_STACK_RETURN (REG_EBRACE); \
1996 while ('0' <= c && c <= '9') \
2000 if (RE_DUP_MAX / 10 - (RE_DUP_MAX % 10 < c - '0') < num) \
2001 FREE_STACK_RETURN (REG_BADBR); \
2002 num = num * 10 + c - '0'; \
2004 FREE_STACK_RETURN (REG_EBRACE); \
2010 #if ! WIDE_CHAR_SUPPORT
2012 /* Map a string to the char class it names (if any). */
2014 re_wctype (const_re_char
*str
)
2016 const char *string
= (const char *) str
;
2017 if (STREQ (string
, "alnum")) return RECC_ALNUM
;
2018 else if (STREQ (string
, "alpha")) return RECC_ALPHA
;
2019 else if (STREQ (string
, "word")) return RECC_WORD
;
2020 else if (STREQ (string
, "ascii")) return RECC_ASCII
;
2021 else if (STREQ (string
, "nonascii")) return RECC_NONASCII
;
2022 else if (STREQ (string
, "graph")) return RECC_GRAPH
;
2023 else if (STREQ (string
, "lower")) return RECC_LOWER
;
2024 else if (STREQ (string
, "print")) return RECC_PRINT
;
2025 else if (STREQ (string
, "punct")) return RECC_PUNCT
;
2026 else if (STREQ (string
, "space")) return RECC_SPACE
;
2027 else if (STREQ (string
, "upper")) return RECC_UPPER
;
2028 else if (STREQ (string
, "unibyte")) return RECC_UNIBYTE
;
2029 else if (STREQ (string
, "multibyte")) return RECC_MULTIBYTE
;
2030 else if (STREQ (string
, "digit")) return RECC_DIGIT
;
2031 else if (STREQ (string
, "xdigit")) return RECC_XDIGIT
;
2032 else if (STREQ (string
, "cntrl")) return RECC_CNTRL
;
2033 else if (STREQ (string
, "blank")) return RECC_BLANK
;
2037 /* True if CH is in the char class CC. */
2039 re_iswctype (int ch
, re_wctype_t cc
)
2043 case RECC_ALNUM
: return ISALNUM (ch
) != 0;
2044 case RECC_ALPHA
: return ISALPHA (ch
) != 0;
2045 case RECC_BLANK
: return ISBLANK (ch
) != 0;
2046 case RECC_CNTRL
: return ISCNTRL (ch
) != 0;
2047 case RECC_DIGIT
: return ISDIGIT (ch
) != 0;
2048 case RECC_GRAPH
: return ISGRAPH (ch
) != 0;
2049 case RECC_LOWER
: return ISLOWER (ch
) != 0;
2050 case RECC_PRINT
: return ISPRINT (ch
) != 0;
2051 case RECC_PUNCT
: return ISPUNCT (ch
) != 0;
2052 case RECC_SPACE
: return ISSPACE (ch
) != 0;
2053 case RECC_UPPER
: return ISUPPER (ch
) != 0;
2054 case RECC_XDIGIT
: return ISXDIGIT (ch
) != 0;
2055 case RECC_ASCII
: return IS_REAL_ASCII (ch
) != 0;
2056 case RECC_NONASCII
: return !IS_REAL_ASCII (ch
);
2057 case RECC_UNIBYTE
: return ISUNIBYTE (ch
) != 0;
2058 case RECC_MULTIBYTE
: return !ISUNIBYTE (ch
);
2059 case RECC_WORD
: return ISWORD (ch
) != 0;
2060 case RECC_ERROR
: return false;
2066 /* Return a bit-pattern to use in the range-table bits to match multibyte
2067 chars of class CC. */
2069 re_wctype_to_bit (re_wctype_t cc
)
2073 case RECC_NONASCII
: case RECC_PRINT
: case RECC_GRAPH
:
2074 case RECC_MULTIBYTE
: return BIT_MULTIBYTE
;
2075 case RECC_ALPHA
: case RECC_ALNUM
: case RECC_WORD
: return BIT_WORD
;
2076 case RECC_LOWER
: return BIT_LOWER
;
2077 case RECC_UPPER
: return BIT_UPPER
;
2078 case RECC_PUNCT
: return BIT_PUNCT
;
2079 case RECC_SPACE
: return BIT_SPACE
;
2080 case RECC_ASCII
: case RECC_DIGIT
: case RECC_XDIGIT
: case RECC_CNTRL
:
2081 case RECC_BLANK
: case RECC_UNIBYTE
: case RECC_ERROR
: return 0;
2088 /* Filling in the work area of a range. */
2090 /* Actually extend the space in WORK_AREA. */
2093 extend_range_table_work_area (struct range_table_work_area
*work_area
)
2095 work_area
->allocated
+= 16 * sizeof (int);
2096 work_area
->table
= realloc (work_area
->table
, work_area
->allocated
);
2102 /* Carefully find the ranges of codes that are equivalent
2103 under case conversion to the range start..end when passed through
2104 TRANSLATE. Handle the case where non-letters can come in between
2105 two upper-case letters (which happens in Latin-1).
2106 Also handle the case of groups of more than 2 case-equivalent chars.
2108 The basic method is to look at consecutive characters and see
2109 if they can form a run that can be handled as one.
2111 Returns -1 if successful, REG_ESPACE if ran out of space. */
2114 set_image_of_range_1 (struct range_table_work_area
*work_area
,
2115 re_wchar_t start
, re_wchar_t end
,
2116 RE_TRANSLATE_TYPE translate
)
2118 /* `one_case' indicates a character, or a run of characters,
2119 each of which is an isolate (no case-equivalents).
2120 This includes all ASCII non-letters.
2122 `two_case' indicates a character, or a run of characters,
2123 each of which has two case-equivalent forms.
2124 This includes all ASCII letters.
2126 `strange' indicates a character that has more than one
2129 enum case_type
{one_case
, two_case
, strange
};
2131 /* Describe the run that is in progress,
2132 which the next character can try to extend.
2133 If run_type is strange, that means there really is no run.
2134 If run_type is one_case, then run_start...run_end is the run.
2135 If run_type is two_case, then the run is run_start...run_end,
2136 and the case-equivalents end at run_eqv_end. */
2138 enum case_type run_type
= strange
;
2139 int run_start
, run_end
, run_eqv_end
;
2141 Lisp_Object eqv_table
;
2143 if (!RE_TRANSLATE_P (translate
))
2145 EXTEND_RANGE_TABLE (work_area
, 2);
2146 work_area
->table
[work_area
->used
++] = (start
);
2147 work_area
->table
[work_area
->used
++] = (end
);
2151 eqv_table
= XCHAR_TABLE (translate
)->extras
[2];
2153 for (; start
<= end
; start
++)
2155 enum case_type this_type
;
2156 int eqv
= RE_TRANSLATE (eqv_table
, start
);
2157 int minchar
, maxchar
;
2159 /* Classify this character */
2161 this_type
= one_case
;
2162 else if (RE_TRANSLATE (eqv_table
, eqv
) == start
)
2163 this_type
= two_case
;
2165 this_type
= strange
;
2168 minchar
= start
, maxchar
= eqv
;
2170 minchar
= eqv
, maxchar
= start
;
2172 /* Can this character extend the run in progress? */
2173 if (this_type
== strange
|| this_type
!= run_type
2174 || !(minchar
== run_end
+ 1
2175 && (run_type
== two_case
2176 ? maxchar
== run_eqv_end
+ 1 : 1)))
2179 Record each of its equivalent ranges. */
2180 if (run_type
== one_case
)
2182 EXTEND_RANGE_TABLE (work_area
, 2);
2183 work_area
->table
[work_area
->used
++] = run_start
;
2184 work_area
->table
[work_area
->used
++] = run_end
;
2186 else if (run_type
== two_case
)
2188 EXTEND_RANGE_TABLE (work_area
, 4);
2189 work_area
->table
[work_area
->used
++] = run_start
;
2190 work_area
->table
[work_area
->used
++] = run_end
;
2191 work_area
->table
[work_area
->used
++]
2192 = RE_TRANSLATE (eqv_table
, run_start
);
2193 work_area
->table
[work_area
->used
++]
2194 = RE_TRANSLATE (eqv_table
, run_end
);
2199 if (this_type
== strange
)
2201 /* For a strange character, add each of its equivalents, one
2202 by one. Don't start a range. */
2205 EXTEND_RANGE_TABLE (work_area
, 2);
2206 work_area
->table
[work_area
->used
++] = eqv
;
2207 work_area
->table
[work_area
->used
++] = eqv
;
2208 eqv
= RE_TRANSLATE (eqv_table
, eqv
);
2210 while (eqv
!= start
);
2213 /* Add this char to the run, or start a new run. */
2214 else if (run_type
== strange
)
2216 /* Initialize a new range. */
2217 run_type
= this_type
;
2220 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2224 /* Extend a running range. */
2226 run_eqv_end
= RE_TRANSLATE (eqv_table
, run_end
);
2230 /* If a run is still in progress at the end, finish it now
2231 by recording its equivalent ranges. */
2232 if (run_type
== one_case
)
2234 EXTEND_RANGE_TABLE (work_area
, 2);
2235 work_area
->table
[work_area
->used
++] = run_start
;
2236 work_area
->table
[work_area
->used
++] = run_end
;
2238 else if (run_type
== two_case
)
2240 EXTEND_RANGE_TABLE (work_area
, 4);
2241 work_area
->table
[work_area
->used
++] = run_start
;
2242 work_area
->table
[work_area
->used
++] = run_end
;
2243 work_area
->table
[work_area
->used
++]
2244 = RE_TRANSLATE (eqv_table
, run_start
);
2245 work_area
->table
[work_area
->used
++]
2246 = RE_TRANSLATE (eqv_table
, run_end
);
2254 /* Record the image of the range start..end when passed through
2255 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2256 and is not even necessarily contiguous.
2257 Normally we approximate it with the smallest contiguous range that contains
2258 all the chars we need. However, for Latin-1 we go to extra effort
2261 This function is not called for ASCII ranges.
2263 Returns -1 if successful, REG_ESPACE if ran out of space. */
2266 set_image_of_range (struct range_table_work_area
*work_area
,
2267 re_wchar_t start
, re_wchar_t end
,
2268 RE_TRANSLATE_TYPE translate
)
2270 re_wchar_t cmin
, cmax
;
2273 /* For Latin-1 ranges, use set_image_of_range_1
2274 to get proper handling of ranges that include letters and nonletters.
2275 For a range that includes the whole of Latin-1, this is not necessary.
2276 For other character sets, we don't bother to get this right. */
2277 if (RE_TRANSLATE_P (translate
) && start
< 04400
2278 && !(start
< 04200 && end
>= 04377))
2285 tem
= set_image_of_range_1 (work_area
, start
, newend
, translate
);
2295 EXTEND_RANGE_TABLE (work_area
, 2);
2296 work_area
->table
[work_area
->used
++] = (start
);
2297 work_area
->table
[work_area
->used
++] = (end
);
2299 cmin
= -1, cmax
= -1;
2301 if (RE_TRANSLATE_P (translate
))
2305 for (ch
= start
; ch
<= end
; ch
++)
2307 re_wchar_t c
= TRANSLATE (ch
);
2308 if (! (start
<= c
&& c
<= end
))
2314 cmin
= min (cmin
, c
);
2315 cmax
= max (cmax
, c
);
2322 EXTEND_RANGE_TABLE (work_area
, 2);
2323 work_area
->table
[work_area
->used
++] = (cmin
);
2324 work_area
->table
[work_area
->used
++] = (cmax
);
2332 #ifndef MATCH_MAY_ALLOCATE
2334 /* If we cannot allocate large objects within re_match_2_internal,
2335 we make the fail stack and register vectors global.
2336 The fail stack, we grow to the maximum size when a regexp
2338 The register vectors, we adjust in size each time we
2339 compile a regexp, according to the number of registers it needs. */
2341 static fail_stack_type fail_stack
;
2343 /* Size with which the following vectors are currently allocated.
2344 That is so we can make them bigger as needed,
2345 but never make them smaller. */
2346 static int regs_allocated_size
;
2348 static re_char
** regstart
, ** regend
;
2349 static re_char
**best_regstart
, **best_regend
;
2351 /* Make the register vectors big enough for NUM_REGS registers,
2352 but don't make them smaller. */
2355 regex_grow_registers (int num_regs
)
2357 if (num_regs
> regs_allocated_size
)
2359 RETALLOC_IF (regstart
, num_regs
, re_char
*);
2360 RETALLOC_IF (regend
, num_regs
, re_char
*);
2361 RETALLOC_IF (best_regstart
, num_regs
, re_char
*);
2362 RETALLOC_IF (best_regend
, num_regs
, re_char
*);
2364 regs_allocated_size
= num_regs
;
2368 #endif /* not MATCH_MAY_ALLOCATE */
2370 static boolean
group_in_compile_stack (compile_stack_type compile_stack
,
2373 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2374 Returns one of error codes defined in `regex.h', or zero for success.
2376 Assumes the `allocated' (and perhaps `buffer') and `translate'
2377 fields are set in BUFP on entry.
2379 If it succeeds, results are put in BUFP (if it returns an error, the
2380 contents of BUFP are undefined):
2381 `buffer' is the compiled pattern;
2382 `syntax' is set to SYNTAX;
2383 `used' is set to the length of the compiled pattern;
2384 `fastmap_accurate' is zero;
2385 `re_nsub' is the number of subexpressions in PATTERN;
2386 `not_bol' and `not_eol' are zero;
2388 The `fastmap' field is neither examined nor set. */
2390 /* Insert the `jump' from the end of last alternative to "here".
2391 The space for the jump has already been allocated. */
2392 #define FIXUP_ALT_JUMP() \
2394 if (fixup_alt_jump) \
2395 STORE_JUMP (jump, fixup_alt_jump, b); \
2399 /* Return, freeing storage we allocated. */
2400 #define FREE_STACK_RETURN(value) \
2402 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2403 free (compile_stack.stack); \
2407 static reg_errcode_t
2408 regex_compile (const_re_char
*pattern
, size_t size
, reg_syntax_t syntax
,
2409 struct re_pattern_buffer
*bufp
)
2411 /* We fetch characters from PATTERN here. */
2412 register re_wchar_t c
, c1
;
2414 /* Points to the end of the buffer, where we should append. */
2415 register unsigned char *b
;
2417 /* Keeps track of unclosed groups. */
2418 compile_stack_type compile_stack
;
2420 /* Points to the current (ending) position in the pattern. */
2422 /* `const' makes AIX compiler fail. */
2423 unsigned char *p
= pattern
;
2425 re_char
*p
= pattern
;
2427 re_char
*pend
= pattern
+ size
;
2429 /* How to translate the characters in the pattern. */
2430 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
2432 /* Address of the count-byte of the most recently inserted `exactn'
2433 command. This makes it possible to tell if a new exact-match
2434 character can be added to that command or if the character requires
2435 a new `exactn' command. */
2436 unsigned char *pending_exact
= 0;
2438 /* Address of start of the most recently finished expression.
2439 This tells, e.g., postfix * where to find the start of its
2440 operand. Reset at the beginning of groups and alternatives. */
2441 unsigned char *laststart
= 0;
2443 /* Address of beginning of regexp, or inside of last group. */
2444 unsigned char *begalt
;
2446 /* Place in the uncompiled pattern (i.e., the {) to
2447 which to go back if the interval is invalid. */
2448 re_char
*beg_interval
;
2450 /* Address of the place where a forward jump should go to the end of
2451 the containing expression. Each alternative of an `or' -- except the
2452 last -- ends with a forward jump of this sort. */
2453 unsigned char *fixup_alt_jump
= 0;
2455 /* Work area for range table of charset. */
2456 struct range_table_work_area range_table_work
;
2458 /* If the object matched can contain multibyte characters. */
2459 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
2461 /* Nonzero if we have pushed down into a subpattern. */
2462 int in_subpattern
= 0;
2464 /* These hold the values of p, pattern, and pend from the main
2465 pattern when we have pushed into a subpattern. */
2466 re_char
*main_p
IF_LINT (= NULL
);
2467 re_char
*main_pattern
IF_LINT (= NULL
);
2468 re_char
*main_pend
IF_LINT (= NULL
);
2472 DEBUG_PRINT ("\nCompiling pattern: ");
2475 unsigned debug_count
;
2477 for (debug_count
= 0; debug_count
< size
; debug_count
++)
2478 putchar (pattern
[debug_count
]);
2483 /* Initialize the compile stack. */
2484 compile_stack
.stack
= TALLOC (INIT_COMPILE_STACK_SIZE
, compile_stack_elt_t
);
2485 if (compile_stack
.stack
== NULL
)
2488 compile_stack
.size
= INIT_COMPILE_STACK_SIZE
;
2489 compile_stack
.avail
= 0;
2491 range_table_work
.table
= 0;
2492 range_table_work
.allocated
= 0;
2494 /* Initialize the pattern buffer. */
2495 bufp
->syntax
= syntax
;
2496 bufp
->fastmap_accurate
= 0;
2497 bufp
->not_bol
= bufp
->not_eol
= 0;
2498 bufp
->used_syntax
= 0;
2500 /* Set `used' to zero, so that if we return an error, the pattern
2501 printer (for debugging) will think there's no pattern. We reset it
2505 /* Always count groups, whether or not bufp->no_sub is set. */
2508 #if !defined emacs && !defined SYNTAX_TABLE
2509 /* Initialize the syntax table. */
2510 init_syntax_once ();
2513 if (bufp
->allocated
== 0)
2516 { /* If zero allocated, but buffer is non-null, try to realloc
2517 enough space. This loses if buffer's address is bogus, but
2518 that is the user's responsibility. */
2519 RETALLOC (bufp
->buffer
, INIT_BUF_SIZE
, unsigned char);
2522 { /* Caller did not allocate a buffer. Do it for them. */
2523 bufp
->buffer
= TALLOC (INIT_BUF_SIZE
, unsigned char);
2525 if (!bufp
->buffer
) FREE_STACK_RETURN (REG_ESPACE
);
2527 bufp
->allocated
= INIT_BUF_SIZE
;
2530 begalt
= b
= bufp
->buffer
;
2532 /* Loop through the uncompiled pattern until we're at the end. */
2537 /* If this is the end of an included regexp,
2538 pop back to the main regexp and try again. */
2542 pattern
= main_pattern
;
2547 /* If this is the end of the main regexp, we are done. */
2559 /* If there's no special whitespace regexp, treat
2560 spaces normally. And don't try to do this recursively. */
2561 if (!whitespace_regexp
|| in_subpattern
)
2564 /* Peek past following spaces. */
2571 /* If the spaces are followed by a repetition op,
2572 treat them normally. */
2574 && (*p1
== '*' || *p1
== '+' || *p1
== '?'
2575 || (*p1
== '\\' && p1
+ 1 != pend
&& p1
[1] == '{')))
2578 /* Replace the spaces with the whitespace regexp. */
2582 main_pattern
= pattern
;
2583 p
= pattern
= whitespace_regexp
;
2584 pend
= p
+ strlen ((const char *) p
);
2590 if ( /* If at start of pattern, it's an operator. */
2592 /* If context independent, it's an operator. */
2593 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2594 /* Otherwise, depends on what's come before. */
2595 || at_begline_loc_p (pattern
, p
, syntax
))
2596 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? begbuf
: begline
);
2605 if ( /* If at end of pattern, it's an operator. */
2607 /* If context independent, it's an operator. */
2608 || syntax
& RE_CONTEXT_INDEP_ANCHORS
2609 /* Otherwise, depends on what's next. */
2610 || at_endline_loc_p (p
, pend
, syntax
))
2611 BUF_PUSH ((syntax
& RE_NO_NEWLINE_ANCHOR
) ? endbuf
: endline
);
2620 if ((syntax
& RE_BK_PLUS_QM
)
2621 || (syntax
& RE_LIMITED_OPS
))
2625 /* If there is no previous pattern... */
2628 if (syntax
& RE_CONTEXT_INVALID_OPS
)
2629 FREE_STACK_RETURN (REG_BADRPT
);
2630 else if (!(syntax
& RE_CONTEXT_INDEP_OPS
))
2635 /* 1 means zero (many) matches is allowed. */
2636 boolean zero_times_ok
= 0, many_times_ok
= 0;
2639 /* If there is a sequence of repetition chars, collapse it
2640 down to just one (the right one). We can't combine
2641 interval operators with these because of, e.g., `a{2}*',
2642 which should only match an even number of `a's. */
2646 if ((syntax
& RE_FRUGAL
)
2647 && c
== '?' && (zero_times_ok
|| many_times_ok
))
2651 zero_times_ok
|= c
!= '+';
2652 many_times_ok
|= c
!= '?';
2658 || (!(syntax
& RE_BK_PLUS_QM
)
2659 && (*p
== '+' || *p
== '?')))
2661 else if (syntax
& RE_BK_PLUS_QM
&& *p
== '\\')
2664 FREE_STACK_RETURN (REG_EESCAPE
);
2665 if (p
[1] == '+' || p
[1] == '?')
2666 PATFETCH (c
); /* Gobble up the backslash. */
2672 /* If we get here, we found another repeat character. */
2676 /* Star, etc. applied to an empty pattern is equivalent
2677 to an empty pattern. */
2678 if (!laststart
|| laststart
== b
)
2681 /* Now we know whether or not zero matches is allowed
2682 and also whether or not two or more matches is allowed. */
2687 boolean simple
= skip_one_char (laststart
) == b
;
2688 size_t startoffset
= 0;
2690 /* Check if the loop can match the empty string. */
2691 (simple
|| !analyze_first (laststart
, b
, NULL
, 0))
2692 ? on_failure_jump
: on_failure_jump_loop
;
2693 assert (skip_one_char (laststart
) <= b
);
2695 if (!zero_times_ok
&& simple
)
2696 { /* Since simple * loops can be made faster by using
2697 on_failure_keep_string_jump, we turn simple P+
2698 into PP* if P is simple. */
2699 unsigned char *p1
, *p2
;
2700 startoffset
= b
- laststart
;
2701 GET_BUFFER_SPACE (startoffset
);
2702 p1
= b
; p2
= laststart
;
2708 GET_BUFFER_SPACE (6);
2711 STORE_JUMP (ofj
, b
, b
+ 6);
2713 /* Simple * loops can use on_failure_keep_string_jump
2714 depending on what follows. But since we don't know
2715 that yet, we leave the decision up to
2716 on_failure_jump_smart. */
2717 INSERT_JUMP (simple
? on_failure_jump_smart
: ofj
,
2718 laststart
+ startoffset
, b
+ 6);
2720 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
2725 /* A simple ? pattern. */
2726 assert (zero_times_ok
);
2727 GET_BUFFER_SPACE (3);
2728 INSERT_JUMP (on_failure_jump
, laststart
, b
+ 3);
2732 else /* not greedy */
2733 { /* I wish the greedy and non-greedy cases could be merged. */
2735 GET_BUFFER_SPACE (7); /* We might use less. */
2738 boolean emptyp
= analyze_first (laststart
, b
, NULL
, 0);
2740 /* The non-greedy multiple match looks like
2741 a repeat..until: we only need a conditional jump
2742 at the end of the loop. */
2743 if (emptyp
) BUF_PUSH (no_op
);
2744 STORE_JUMP (emptyp
? on_failure_jump_nastyloop
2745 : on_failure_jump
, b
, laststart
);
2749 /* The repeat...until naturally matches one or more.
2750 To also match zero times, we need to first jump to
2751 the end of the loop (its conditional jump). */
2752 INSERT_JUMP (jump
, laststart
, b
);
2758 /* non-greedy a?? */
2759 INSERT_JUMP (jump
, laststart
, b
+ 3);
2761 INSERT_JUMP (on_failure_jump
, laststart
, laststart
+ 6);
2780 CLEAR_RANGE_TABLE_WORK_USED (range_table_work
);
2782 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2784 /* Ensure that we have enough space to push a charset: the
2785 opcode, the length count, and the bitset; 34 bytes in all. */
2786 GET_BUFFER_SPACE (34);
2790 /* We test `*p == '^' twice, instead of using an if
2791 statement, so we only need one BUF_PUSH. */
2792 BUF_PUSH (*p
== '^' ? charset_not
: charset
);
2796 /* Remember the first position in the bracket expression. */
2799 /* Push the number of bytes in the bitmap. */
2800 BUF_PUSH ((1 << BYTEWIDTH
) / BYTEWIDTH
);
2802 /* Clear the whole map. */
2803 memset (b
, 0, (1 << BYTEWIDTH
) / BYTEWIDTH
);
2805 /* charset_not matches newline according to a syntax bit. */
2806 if ((re_opcode_t
) b
[-2] == charset_not
2807 && (syntax
& RE_HAT_LISTS_NOT_NEWLINE
))
2808 SET_LIST_BIT ('\n');
2810 /* Read in characters and ranges, setting map bits. */
2813 boolean escaped_char
= false;
2814 const unsigned char *p2
= p
;
2817 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2819 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2820 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2821 So the translation is done later in a loop. Example:
2822 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2825 /* \ might escape characters inside [...] and [^...]. */
2826 if ((syntax
& RE_BACKSLASH_ESCAPE_IN_LISTS
) && c
== '\\')
2828 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
2831 escaped_char
= true;
2835 /* Could be the end of the bracket expression. If it's
2836 not (i.e., when the bracket expression is `[]' so
2837 far), the ']' character bit gets set way below. */
2838 if (c
== ']' && p2
!= p1
)
2842 /* See if we're at the beginning of a possible character
2845 if (!escaped_char
&&
2846 syntax
& RE_CHAR_CLASSES
&& c
== '[' && *p
== ':')
2848 /* Leave room for the null. */
2849 unsigned char str
[CHAR_CLASS_MAX_LENGTH
+ 1];
2850 const unsigned char *class_beg
;
2856 /* If pattern is `[[:'. */
2857 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2862 if ((c
== ':' && *p
== ']') || p
== pend
)
2864 if (c1
< CHAR_CLASS_MAX_LENGTH
)
2867 /* This is in any case an invalid class name. */
2872 /* If isn't a word bracketed by `[:' and `:]':
2873 undo the ending character, the letters, and
2874 leave the leading `:' and `[' (but set bits for
2876 if (c
== ':' && *p
== ']')
2878 re_wctype_t cc
= re_wctype (str
);
2881 FREE_STACK_RETURN (REG_ECTYPE
);
2883 /* Throw away the ] at the end of the character
2887 if (p
== pend
) FREE_STACK_RETURN (REG_EBRACK
);
2890 for (ch
= 0; ch
< (1 << BYTEWIDTH
); ++ch
)
2891 if (re_iswctype (btowc (ch
), cc
))
2894 if (c
< (1 << BYTEWIDTH
))
2898 /* Most character classes in a multibyte match
2899 just set a flag. Exceptions are is_blank,
2900 is_digit, is_cntrl, and is_xdigit, since
2901 they can only match ASCII characters. We
2902 don't need to handle them for multibyte.
2903 They are distinguished by a negative wctype. */
2905 /* Setup the gl_state object to its buffer-defined
2906 value. This hardcodes the buffer-global
2907 syntax-table for ASCII chars, while the other chars
2908 will obey syntax-table properties. It's not ideal,
2909 but it's the way it's been done until now. */
2910 SETUP_BUFFER_SYNTAX_TABLE ();
2912 for (ch
= 0; ch
< 256; ++ch
)
2914 c
= RE_CHAR_TO_MULTIBYTE (ch
);
2915 if (! CHAR_BYTE8_P (c
)
2916 && re_iswctype (c
, cc
))
2922 if (ASCII_CHAR_P (c1
))
2924 else if ((c1
= RE_CHAR_TO_UNIBYTE (c1
)) >= 0)
2928 SET_RANGE_TABLE_WORK_AREA_BIT
2929 (range_table_work
, re_wctype_to_bit (cc
));
2931 /* In most cases the matching rule for char classes
2932 only uses the syntax table for multibyte chars,
2933 so that the content of the syntax-table it is not
2934 hardcoded in the range_table. SPACE and WORD are
2935 the two exceptions. */
2936 if ((1 << cc
) & ((1 << RECC_SPACE
) | (1 << RECC_WORD
)))
2937 bufp
->used_syntax
= 1;
2939 /* Repeat the loop. */
2944 /* Go back to right after the "[:". */
2948 /* Because the `:' may starts the range, we
2949 can't simply set bit and repeat the loop.
2950 Instead, just set it to C and handle below. */
2955 if (p
< pend
&& p
[0] == '-' && p
[1] != ']')
2958 /* Discard the `-'. */
2961 /* Fetch the character which ends the range. */
2964 if (CHAR_BYTE8_P (c1
)
2965 && ! ASCII_CHAR_P (c
) && ! CHAR_BYTE8_P (c
))
2966 /* Treat the range from a multibyte character to
2967 raw-byte character as empty. */
2972 /* Range from C to C. */
2977 if (syntax
& RE_NO_EMPTY_RANGES
)
2978 FREE_STACK_RETURN (REG_ERANGEX
);
2979 /* Else, repeat the loop. */
2984 /* Set the range into bitmap */
2985 for (; c
<= c1
; c
++)
2988 if (ch
< (1 << BYTEWIDTH
))
2995 SETUP_ASCII_RANGE (range_table_work
, c
, ch
);
2997 if (CHAR_BYTE8_P (c1
))
2998 c
= BYTE8_TO_CHAR (128);
3002 if (CHAR_BYTE8_P (c
))
3004 c
= CHAR_TO_BYTE8 (c
);
3005 c1
= CHAR_TO_BYTE8 (c1
);
3006 for (; c
<= c1
; c
++)
3011 SETUP_MULTIBYTE_RANGE (range_table_work
, c
, c1
);
3015 SETUP_UNIBYTE_RANGE (range_table_work
, c
, c1
);
3022 /* Discard any (non)matching list bytes that are all 0 at the
3023 end of the map. Decrease the map-length byte too. */
3024 while ((int) b
[-1] > 0 && b
[b
[-1] - 1] == 0)
3028 /* Build real range table from work area. */
3029 if (RANGE_TABLE_WORK_USED (range_table_work
)
3030 || RANGE_TABLE_WORK_BITS (range_table_work
))
3033 int used
= RANGE_TABLE_WORK_USED (range_table_work
);
3035 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3036 bytes for flags, two for COUNT, and three bytes for
3038 GET_BUFFER_SPACE (4 + used
* 3);
3040 /* Indicate the existence of range table. */
3041 laststart
[1] |= 0x80;
3043 /* Store the character class flag bits into the range table.
3044 If not in emacs, these flag bits are always 0. */
3045 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) & 0xff;
3046 *b
++ = RANGE_TABLE_WORK_BITS (range_table_work
) >> 8;
3048 STORE_NUMBER_AND_INCR (b
, used
/ 2);
3049 for (i
= 0; i
< used
; i
++)
3050 STORE_CHARACTER_AND_INCR
3051 (b
, RANGE_TABLE_WORK_ELT (range_table_work
, i
));
3058 if (syntax
& RE_NO_BK_PARENS
)
3065 if (syntax
& RE_NO_BK_PARENS
)
3072 if (syntax
& RE_NEWLINE_ALT
)
3079 if (syntax
& RE_NO_BK_VBAR
)
3086 if (syntax
& RE_INTERVALS
&& syntax
& RE_NO_BK_BRACES
)
3087 goto handle_interval
;
3093 if (p
== pend
) FREE_STACK_RETURN (REG_EESCAPE
);
3095 /* Do not translate the character after the \, so that we can
3096 distinguish, e.g., \B from \b, even if we normally would
3097 translate, e.g., B to b. */
3103 if (syntax
& RE_NO_BK_PARENS
)
3104 goto normal_backslash
;
3109 regnum_t regnum
= 0;
3112 /* Look for a special (?...) construct */
3113 if ((syntax
& RE_SHY_GROUPS
) && *p
== '?')
3115 PATFETCH (c
); /* Gobble up the '?'. */
3121 case ':': shy
= 1; break;
3123 /* An explicitly specified regnum must start
3126 FREE_STACK_RETURN (REG_BADPAT
);
3127 case '1': case '2': case '3': case '4':
3128 case '5': case '6': case '7': case '8': case '9':
3129 regnum
= 10*regnum
+ (c
- '0'); break;
3131 /* Only (?:...) is supported right now. */
3132 FREE_STACK_RETURN (REG_BADPAT
);
3139 regnum
= ++bufp
->re_nsub
;
3141 { /* It's actually not shy, but explicitly numbered. */
3143 if (regnum
> bufp
->re_nsub
)
3144 bufp
->re_nsub
= regnum
;
3145 else if (regnum
> bufp
->re_nsub
3146 /* Ideally, we'd want to check that the specified
3147 group can't have matched (i.e. all subgroups
3148 using the same regnum are in other branches of
3149 OR patterns), but we don't currently keep track
3150 of enough info to do that easily. */
3151 || group_in_compile_stack (compile_stack
, regnum
))
3152 FREE_STACK_RETURN (REG_BADPAT
);
3155 /* It's really shy. */
3156 regnum
= - bufp
->re_nsub
;
3158 if (COMPILE_STACK_FULL
)
3160 RETALLOC (compile_stack
.stack
, compile_stack
.size
<< 1,
3161 compile_stack_elt_t
);
3162 if (compile_stack
.stack
== NULL
) return REG_ESPACE
;
3164 compile_stack
.size
<<= 1;
3167 /* These are the values to restore when we hit end of this
3168 group. They are all relative offsets, so that if the
3169 whole pattern moves because of realloc, they will still
3171 COMPILE_STACK_TOP
.begalt_offset
= begalt
- bufp
->buffer
;
3172 COMPILE_STACK_TOP
.fixup_alt_jump
3173 = fixup_alt_jump
? fixup_alt_jump
- bufp
->buffer
+ 1 : 0;
3174 COMPILE_STACK_TOP
.laststart_offset
= b
- bufp
->buffer
;
3175 COMPILE_STACK_TOP
.regnum
= regnum
;
3177 /* Do not push a start_memory for groups beyond the last one
3178 we can represent in the compiled pattern. */
3179 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3180 BUF_PUSH_2 (start_memory
, regnum
);
3182 compile_stack
.avail
++;
3187 /* If we've reached MAX_REGNUM groups, then this open
3188 won't actually generate any code, so we'll have to
3189 clear pending_exact explicitly. */
3195 if (syntax
& RE_NO_BK_PARENS
) goto normal_backslash
;
3197 if (COMPILE_STACK_EMPTY
)
3199 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3200 goto normal_backslash
;
3202 FREE_STACK_RETURN (REG_ERPAREN
);
3208 /* See similar code for backslashed left paren above. */
3209 if (COMPILE_STACK_EMPTY
)
3211 if (syntax
& RE_UNMATCHED_RIGHT_PAREN_ORD
)
3214 FREE_STACK_RETURN (REG_ERPAREN
);
3217 /* Since we just checked for an empty stack above, this
3218 ``can't happen''. */
3219 assert (compile_stack
.avail
!= 0);
3221 /* We don't just want to restore into `regnum', because
3222 later groups should continue to be numbered higher,
3223 as in `(ab)c(de)' -- the second group is #2. */
3226 compile_stack
.avail
--;
3227 begalt
= bufp
->buffer
+ COMPILE_STACK_TOP
.begalt_offset
;
3229 = COMPILE_STACK_TOP
.fixup_alt_jump
3230 ? bufp
->buffer
+ COMPILE_STACK_TOP
.fixup_alt_jump
- 1
3232 laststart
= bufp
->buffer
+ COMPILE_STACK_TOP
.laststart_offset
;
3233 regnum
= COMPILE_STACK_TOP
.regnum
;
3234 /* If we've reached MAX_REGNUM groups, then this open
3235 won't actually generate any code, so we'll have to
3236 clear pending_exact explicitly. */
3239 /* We're at the end of the group, so now we know how many
3240 groups were inside this one. */
3241 if (regnum
<= MAX_REGNUM
&& regnum
> 0)
3242 BUF_PUSH_2 (stop_memory
, regnum
);
3247 case '|': /* `\|'. */
3248 if (syntax
& RE_LIMITED_OPS
|| syntax
& RE_NO_BK_VBAR
)
3249 goto normal_backslash
;
3251 if (syntax
& RE_LIMITED_OPS
)
3254 /* Insert before the previous alternative a jump which
3255 jumps to this alternative if the former fails. */
3256 GET_BUFFER_SPACE (3);
3257 INSERT_JUMP (on_failure_jump
, begalt
, b
+ 6);
3261 /* The alternative before this one has a jump after it
3262 which gets executed if it gets matched. Adjust that
3263 jump so it will jump to this alternative's analogous
3264 jump (put in below, which in turn will jump to the next
3265 (if any) alternative's such jump, etc.). The last such
3266 jump jumps to the correct final destination. A picture:
3272 If we are at `b', then fixup_alt_jump right now points to a
3273 three-byte space after `a'. We'll put in the jump, set
3274 fixup_alt_jump to right after `b', and leave behind three
3275 bytes which we'll fill in when we get to after `c'. */
3279 /* Mark and leave space for a jump after this alternative,
3280 to be filled in later either by next alternative or
3281 when know we're at the end of a series of alternatives. */
3283 GET_BUFFER_SPACE (3);
3292 /* If \{ is a literal. */
3293 if (!(syntax
& RE_INTERVALS
)
3294 /* If we're at `\{' and it's not the open-interval
3296 || (syntax
& RE_NO_BK_BRACES
))
3297 goto normal_backslash
;
3301 /* If got here, then the syntax allows intervals. */
3303 /* At least (most) this many matches must be made. */
3304 int lower_bound
= 0, upper_bound
= -1;
3308 GET_INTERVAL_COUNT (lower_bound
);
3311 GET_INTERVAL_COUNT (upper_bound
);
3313 /* Interval such as `{1}' => match exactly once. */
3314 upper_bound
= lower_bound
;
3317 || (0 <= upper_bound
&& upper_bound
< lower_bound
))
3318 FREE_STACK_RETURN (REG_BADBR
);
3320 if (!(syntax
& RE_NO_BK_BRACES
))
3323 FREE_STACK_RETURN (REG_BADBR
);
3325 FREE_STACK_RETURN (REG_EESCAPE
);
3330 FREE_STACK_RETURN (REG_BADBR
);
3332 /* We just parsed a valid interval. */
3334 /* If it's invalid to have no preceding re. */
3337 if (syntax
& RE_CONTEXT_INVALID_OPS
)
3338 FREE_STACK_RETURN (REG_BADRPT
);
3339 else if (syntax
& RE_CONTEXT_INDEP_OPS
)
3342 goto unfetch_interval
;
3345 if (upper_bound
== 0)
3346 /* If the upper bound is zero, just drop the sub pattern
3349 else if (lower_bound
== 1 && upper_bound
== 1)
3350 /* Just match it once: nothing to do here. */
3353 /* Otherwise, we have a nontrivial interval. When
3354 we're all done, the pattern will look like:
3355 set_number_at <jump count> <upper bound>
3356 set_number_at <succeed_n count> <lower bound>
3357 succeed_n <after jump addr> <succeed_n count>
3359 jump_n <succeed_n addr> <jump count>
3360 (The upper bound and `jump_n' are omitted if
3361 `upper_bound' is 1, though.) */
3363 { /* If the upper bound is > 1, we need to insert
3364 more at the end of the loop. */
3365 unsigned int nbytes
= (upper_bound
< 0 ? 3
3366 : upper_bound
> 1 ? 5 : 0);
3367 unsigned int startoffset
= 0;
3369 GET_BUFFER_SPACE (20); /* We might use less. */
3371 if (lower_bound
== 0)
3373 /* A succeed_n that starts with 0 is really a
3374 a simple on_failure_jump_loop. */
3375 INSERT_JUMP (on_failure_jump_loop
, laststart
,
3381 /* Initialize lower bound of the `succeed_n', even
3382 though it will be set during matching by its
3383 attendant `set_number_at' (inserted next),
3384 because `re_compile_fastmap' needs to know.
3385 Jump to the `jump_n' we might insert below. */
3386 INSERT_JUMP2 (succeed_n
, laststart
,
3391 /* Code to initialize the lower bound. Insert
3392 before the `succeed_n'. The `5' is the last two
3393 bytes of this `set_number_at', plus 3 bytes of
3394 the following `succeed_n'. */
3395 insert_op2 (set_number_at
, laststart
, 5, lower_bound
, b
);
3400 if (upper_bound
< 0)
3402 /* A negative upper bound stands for infinity,
3403 in which case it degenerates to a plain jump. */
3404 STORE_JUMP (jump
, b
, laststart
+ startoffset
);
3407 else if (upper_bound
> 1)
3408 { /* More than one repetition is allowed, so
3409 append a backward jump to the `succeed_n'
3410 that starts this interval.
3412 When we've reached this during matching,
3413 we'll have matched the interval once, so
3414 jump back only `upper_bound - 1' times. */
3415 STORE_JUMP2 (jump_n
, b
, laststart
+ startoffset
,
3419 /* The location we want to set is the second
3420 parameter of the `jump_n'; that is `b-2' as
3421 an absolute address. `laststart' will be
3422 the `set_number_at' we're about to insert;
3423 `laststart+3' the number to set, the source
3424 for the relative address. But we are
3425 inserting into the middle of the pattern --
3426 so everything is getting moved up by 5.
3427 Conclusion: (b - 2) - (laststart + 3) + 5,
3428 i.e., b - laststart.
3430 We insert this at the beginning of the loop
3431 so that if we fail during matching, we'll
3432 reinitialize the bounds. */
3433 insert_op2 (set_number_at
, laststart
, b
- laststart
,
3434 upper_bound
- 1, b
);
3439 beg_interval
= NULL
;
3444 /* If an invalid interval, match the characters as literals. */
3445 assert (beg_interval
);
3447 beg_interval
= NULL
;
3449 /* normal_char and normal_backslash need `c'. */
3452 if (!(syntax
& RE_NO_BK_BRACES
))
3454 assert (p
> pattern
&& p
[-1] == '\\');
3455 goto normal_backslash
;
3461 /* There is no way to specify the before_dot and after_dot
3462 operators. rms says this is ok. --karl */
3471 BUF_PUSH_2 (syntaxspec
, syntax_spec_code
[c
]);
3477 BUF_PUSH_2 (notsyntaxspec
, syntax_spec_code
[c
]);
3483 BUF_PUSH_2 (categoryspec
, c
);
3489 BUF_PUSH_2 (notcategoryspec
, c
);
3495 if (syntax
& RE_NO_GNU_OPS
)
3498 BUF_PUSH_2 (syntaxspec
, Sword
);
3503 if (syntax
& RE_NO_GNU_OPS
)
3506 BUF_PUSH_2 (notsyntaxspec
, Sword
);
3511 if (syntax
& RE_NO_GNU_OPS
)
3518 if (syntax
& RE_NO_GNU_OPS
)
3525 if (syntax
& RE_NO_GNU_OPS
)
3534 FREE_STACK_RETURN (REG_BADPAT
);
3538 if (syntax
& RE_NO_GNU_OPS
)
3540 BUF_PUSH (wordbound
);
3544 if (syntax
& RE_NO_GNU_OPS
)
3546 BUF_PUSH (notwordbound
);
3550 if (syntax
& RE_NO_GNU_OPS
)
3556 if (syntax
& RE_NO_GNU_OPS
)
3561 case '1': case '2': case '3': case '4': case '5':
3562 case '6': case '7': case '8': case '9':
3566 if (syntax
& RE_NO_BK_REFS
)
3567 goto normal_backslash
;
3571 if (reg
> bufp
->re_nsub
|| reg
< 1
3572 /* Can't back reference to a subexp before its end. */
3573 || group_in_compile_stack (compile_stack
, reg
))
3574 FREE_STACK_RETURN (REG_ESUBREG
);
3577 BUF_PUSH_2 (duplicate
, reg
);
3584 if (syntax
& RE_BK_PLUS_QM
)
3587 goto normal_backslash
;
3591 /* You might think it would be useful for \ to mean
3592 not to translate; but if we don't translate it
3593 it will never match anything. */
3600 /* Expects the character in `c'. */
3602 /* If no exactn currently being built. */
3605 /* If last exactn not at current position. */
3606 || pending_exact
+ *pending_exact
+ 1 != b
3608 /* We have only one byte following the exactn for the count. */
3609 || *pending_exact
>= (1 << BYTEWIDTH
) - MAX_MULTIBYTE_LENGTH
3611 /* If followed by a repetition operator. */
3612 || (p
!= pend
&& (*p
== '*' || *p
== '^'))
3613 || ((syntax
& RE_BK_PLUS_QM
)
3614 ? p
+ 1 < pend
&& *p
== '\\' && (p
[1] == '+' || p
[1] == '?')
3615 : p
!= pend
&& (*p
== '+' || *p
== '?'))
3616 || ((syntax
& RE_INTERVALS
)
3617 && ((syntax
& RE_NO_BK_BRACES
)
3618 ? p
!= pend
&& *p
== '{'
3619 : p
+ 1 < pend
&& p
[0] == '\\' && p
[1] == '{')))
3621 /* Start building a new exactn. */
3625 BUF_PUSH_2 (exactn
, 0);
3626 pending_exact
= b
- 1;
3629 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH
);
3636 len
= CHAR_STRING (c
, b
);
3641 c1
= RE_CHAR_TO_MULTIBYTE (c
);
3642 if (! CHAR_BYTE8_P (c1
))
3644 re_wchar_t c2
= TRANSLATE (c1
);
3646 if (c1
!= c2
&& (c1
= RE_CHAR_TO_UNIBYTE (c2
)) >= 0)
3652 (*pending_exact
) += len
;
3657 } /* while p != pend */
3660 /* Through the pattern now. */
3664 if (!COMPILE_STACK_EMPTY
)
3665 FREE_STACK_RETURN (REG_EPAREN
);
3667 /* If we don't want backtracking, force success
3668 the first time we reach the end of the compiled pattern. */
3669 if (syntax
& RE_NO_POSIX_BACKTRACKING
)
3672 /* We have succeeded; set the length of the buffer. */
3673 bufp
->used
= b
- bufp
->buffer
;
3678 re_compile_fastmap (bufp
);
3679 DEBUG_PRINT ("\nCompiled pattern: \n");
3680 print_compiled_pattern (bufp
);
3685 #ifndef MATCH_MAY_ALLOCATE
3686 /* Initialize the failure stack to the largest possible stack. This
3687 isn't necessary unless we're trying to avoid calling alloca in
3688 the search and match routines. */
3690 int num_regs
= bufp
->re_nsub
+ 1;
3692 if (fail_stack
.size
< re_max_failures
* TYPICAL_FAILURE_SIZE
)
3694 fail_stack
.size
= re_max_failures
* TYPICAL_FAILURE_SIZE
;
3695 falk_stack
.stack
= realloc (fail_stack
.stack
,
3696 fail_stack
.size
* sizeof *falk_stack
.stack
);
3699 regex_grow_registers (num_regs
);
3701 #endif /* not MATCH_MAY_ALLOCATE */
3703 FREE_STACK_RETURN (REG_NOERROR
);
3704 } /* regex_compile */
3706 /* Subroutines for `regex_compile'. */
3708 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3711 store_op1 (re_opcode_t op
, unsigned char *loc
, int arg
)
3713 *loc
= (unsigned char) op
;
3714 STORE_NUMBER (loc
+ 1, arg
);
3718 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3721 store_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
)
3723 *loc
= (unsigned char) op
;
3724 STORE_NUMBER (loc
+ 1, arg1
);
3725 STORE_NUMBER (loc
+ 3, arg2
);
3729 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3730 for OP followed by two-byte integer parameter ARG. */
3733 insert_op1 (re_opcode_t op
, unsigned char *loc
, int arg
, unsigned char *end
)
3735 register unsigned char *pfrom
= end
;
3736 register unsigned char *pto
= end
+ 3;
3738 while (pfrom
!= loc
)
3741 store_op1 (op
, loc
, arg
);
3745 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3748 insert_op2 (re_opcode_t op
, unsigned char *loc
, int arg1
, int arg2
, unsigned char *end
)
3750 register unsigned char *pfrom
= end
;
3751 register unsigned char *pto
= end
+ 5;
3753 while (pfrom
!= loc
)
3756 store_op2 (op
, loc
, arg1
, arg2
);
3760 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3761 after an alternative or a begin-subexpression. We assume there is at
3762 least one character before the ^. */
3765 at_begline_loc_p (const_re_char
*pattern
, const_re_char
*p
, reg_syntax_t syntax
)
3767 re_char
*prev
= p
- 2;
3768 boolean odd_backslashes
;
3770 /* After a subexpression? */
3772 odd_backslashes
= (syntax
& RE_NO_BK_PARENS
) == 0;
3774 /* After an alternative? */
3775 else if (*prev
== '|')
3776 odd_backslashes
= (syntax
& RE_NO_BK_VBAR
) == 0;
3778 /* After a shy subexpression? */
3779 else if (*prev
== ':' && (syntax
& RE_SHY_GROUPS
))
3781 /* Skip over optional regnum. */
3782 while (prev
- 1 >= pattern
&& prev
[-1] >= '0' && prev
[-1] <= '9')
3785 if (!(prev
- 2 >= pattern
3786 && prev
[-1] == '?' && prev
[-2] == '('))
3789 odd_backslashes
= (syntax
& RE_NO_BK_PARENS
) == 0;
3794 /* Count the number of preceding backslashes. */
3796 while (prev
- 1 >= pattern
&& prev
[-1] == '\\')
3798 return (p
- prev
) & odd_backslashes
;
3802 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3803 at least one character after the $, i.e., `P < PEND'. */
3806 at_endline_loc_p (const_re_char
*p
, const_re_char
*pend
, reg_syntax_t syntax
)
3809 boolean next_backslash
= *next
== '\\';
3810 re_char
*next_next
= p
+ 1 < pend
? p
+ 1 : 0;
3813 /* Before a subexpression? */
3814 (syntax
& RE_NO_BK_PARENS
? *next
== ')'
3815 : next_backslash
&& next_next
&& *next_next
== ')')
3816 /* Before an alternative? */
3817 || (syntax
& RE_NO_BK_VBAR
? *next
== '|'
3818 : next_backslash
&& next_next
&& *next_next
== '|');
3822 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3823 false if it's not. */
3826 group_in_compile_stack (compile_stack_type compile_stack
, regnum_t regnum
)
3828 ssize_t this_element
;
3830 for (this_element
= compile_stack
.avail
- 1;
3833 if (compile_stack
.stack
[this_element
].regnum
== regnum
)
3840 If fastmap is non-NULL, go through the pattern and fill fastmap
3841 with all the possible leading chars. If fastmap is NULL, don't
3842 bother filling it up (obviously) and only return whether the
3843 pattern could potentially match the empty string.
3845 Return 1 if p..pend might match the empty string.
3846 Return 0 if p..pend matches at least one char.
3847 Return -1 if fastmap was not updated accurately. */
3850 analyze_first (const_re_char
*p
, const_re_char
*pend
, char *fastmap
,
3851 const int multibyte
)
3856 /* If all elements for base leading-codes in fastmap is set, this
3857 flag is set true. */
3858 boolean match_any_multibyte_characters
= false;
3862 /* The loop below works as follows:
3863 - It has a working-list kept in the PATTERN_STACK and which basically
3864 starts by only containing a pointer to the first operation.
3865 - If the opcode we're looking at is a match against some set of
3866 chars, then we add those chars to the fastmap and go on to the
3867 next work element from the worklist (done via `break').
3868 - If the opcode is a control operator on the other hand, we either
3869 ignore it (if it's meaningless at this point, such as `start_memory')
3870 or execute it (if it's a jump). If the jump has several destinations
3871 (i.e. `on_failure_jump'), then we push the other destination onto the
3873 We guarantee termination by ignoring backward jumps (more or less),
3874 so that `p' is monotonically increasing. More to the point, we
3875 never set `p' (or push) anything `<= p1'. */
3879 /* `p1' is used as a marker of how far back a `on_failure_jump'
3880 can go without being ignored. It is normally equal to `p'
3881 (which prevents any backward `on_failure_jump') except right
3882 after a plain `jump', to allow patterns such as:
3885 10: on_failure_jump 3
3886 as used for the *? operator. */
3895 /* If the first character has to match a backreference, that means
3896 that the group was empty (since it already matched). Since this
3897 is the only case that interests us here, we can assume that the
3898 backreference must match the empty string. */
3903 /* Following are the cases which match a character. These end
3909 /* If multibyte is nonzero, the first byte of each
3910 character is an ASCII or a leading code. Otherwise,
3911 each byte is a character. Thus, this works in both
3916 /* For the case of matching this unibyte regex
3917 against multibyte, we must set a leading code of
3918 the corresponding multibyte character. */
3919 int c
= RE_CHAR_TO_MULTIBYTE (p
[1]);
3921 fastmap
[CHAR_LEADING_CODE (c
)] = 1;
3928 /* We could put all the chars except for \n (and maybe \0)
3929 but we don't bother since it is generally not worth it. */
3930 if (!fastmap
) break;
3935 if (!fastmap
) break;
3937 /* Chars beyond end of bitmap are possible matches. */
3938 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
;
3939 j
< (1 << BYTEWIDTH
); j
++)
3945 if (!fastmap
) break;
3946 not = (re_opcode_t
) *(p
- 1) == charset_not
;
3947 for (j
= CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
- 1, p
++;
3949 if (!!(p
[j
/ BYTEWIDTH
] & (1 << (j
% BYTEWIDTH
))) ^ not)
3953 if (/* Any leading code can possibly start a character
3954 which doesn't match the specified set of characters. */
3957 /* If we can match a character class, we can match any
3958 multibyte characters. */
3959 (CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3960 && CHARSET_RANGE_TABLE_BITS (&p
[-2]) != 0))
3963 if (match_any_multibyte_characters
== false)
3965 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
3966 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
3968 match_any_multibyte_characters
= true;
3972 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p
[-2])
3973 && match_any_multibyte_characters
== false)
3975 /* Set fastmap[I] to 1 where I is a leading code of each
3976 multibyte character in the range table. */
3978 unsigned char lc1
, lc2
;
3980 /* Make P points the range table. `+ 2' is to skip flag
3981 bits for a character class. */
3982 p
+= CHARSET_BITMAP_SIZE (&p
[-2]) + 2;
3984 /* Extract the number of ranges in range table into COUNT. */
3985 EXTRACT_NUMBER_AND_INCR (count
, p
);
3986 for (; count
> 0; count
--, p
+= 3)
3988 /* Extract the start and end of each range. */
3989 EXTRACT_CHARACTER (c
, p
);
3990 lc1
= CHAR_LEADING_CODE (c
);
3992 EXTRACT_CHARACTER (c
, p
);
3993 lc2
= CHAR_LEADING_CODE (c
);
3994 for (j
= lc1
; j
<= lc2
; j
++)
4003 if (!fastmap
) break;
4005 not = (re_opcode_t
)p
[-1] == notsyntaxspec
;
4007 for (j
= 0; j
< (1 << BYTEWIDTH
); j
++)
4008 if ((SYNTAX (j
) == (enum syntaxcode
) k
) ^ not)
4012 /* This match depends on text properties. These end with
4013 aborting optimizations. */
4017 case notcategoryspec
:
4018 if (!fastmap
) break;
4019 not = (re_opcode_t
)p
[-1] == notcategoryspec
;
4021 for (j
= (1 << BYTEWIDTH
); j
>= 0; j
--)
4022 if ((CHAR_HAS_CATEGORY (j
, k
)) ^ not)
4025 /* Any leading code can possibly start a character which
4026 has or doesn't has the specified category. */
4027 if (match_any_multibyte_characters
== false)
4029 for (j
= MIN_MULTIBYTE_LEADING_CODE
;
4030 j
<= MAX_MULTIBYTE_LEADING_CODE
; j
++)
4032 match_any_multibyte_characters
= true;
4036 /* All cases after this match the empty string. These end with
4058 EXTRACT_NUMBER_AND_INCR (j
, p
);
4060 /* Backward jumps can only go back to code that we've already
4061 visited. `re_compile' should make sure this is true. */
4066 case on_failure_jump
:
4067 case on_failure_keep_string_jump
:
4068 case on_failure_jump_loop
:
4069 case on_failure_jump_nastyloop
:
4070 case on_failure_jump_smart
:
4076 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4077 to jump back to "just after here". */
4080 case on_failure_jump
:
4081 case on_failure_keep_string_jump
:
4082 case on_failure_jump_nastyloop
:
4083 case on_failure_jump_loop
:
4084 case on_failure_jump_smart
:
4085 EXTRACT_NUMBER_AND_INCR (j
, p
);
4087 ; /* Backward jump to be ignored. */
4089 { /* We have to look down both arms.
4090 We first go down the "straight" path so as to minimize
4091 stack usage when going through alternatives. */
4092 int r
= analyze_first (p
, pend
, fastmap
, multibyte
);
4100 /* This code simply does not properly handle forward jump_n. */
4101 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
); assert (j
< 0));
4103 /* jump_n can either jump or fall through. The (backward) jump
4104 case has already been handled, so we only need to look at the
4105 fallthrough case. */
4109 /* If N == 0, it should be an on_failure_jump_loop instead. */
4110 DEBUG_STATEMENT (EXTRACT_NUMBER (j
, p
+ 2); assert (j
> 0));
4112 /* We only care about one iteration of the loop, so we don't
4113 need to consider the case where this behaves like an
4130 abort (); /* We have listed all the cases. */
4133 /* Getting here means we have found the possible starting
4134 characters for one path of the pattern -- and that the empty
4135 string does not match. We need not follow this path further. */
4139 /* We reached the end without matching anything. */
4142 } /* analyze_first */
4144 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4145 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4146 characters can start a string that matches the pattern. This fastmap
4147 is used by re_search to skip quickly over impossible starting points.
4149 Character codes above (1 << BYTEWIDTH) are not represented in the
4150 fastmap, but the leading codes are represented. Thus, the fastmap
4151 indicates which character sets could start a match.
4153 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4154 area as BUFP->fastmap.
4156 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4159 Returns 0 if we succeed, -2 if an internal error. */
4162 re_compile_fastmap (struct re_pattern_buffer
*bufp
)
4164 char *fastmap
= bufp
->fastmap
;
4167 assert (fastmap
&& bufp
->buffer
);
4169 memset (fastmap
, 0, 1 << BYTEWIDTH
); /* Assume nothing's valid. */
4170 bufp
->fastmap_accurate
= 1; /* It will be when we're done. */
4172 analysis
= analyze_first (bufp
->buffer
, bufp
->buffer
+ bufp
->used
,
4173 fastmap
, RE_MULTIBYTE_P (bufp
));
4174 bufp
->can_be_null
= (analysis
!= 0);
4176 } /* re_compile_fastmap */
4178 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4179 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4180 this memory for recording register information. STARTS and ENDS
4181 must be allocated using the malloc library routine, and must each
4182 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4184 If NUM_REGS == 0, then subsequent matches should allocate their own
4187 Unless this function is called, the first search or match using
4188 PATTERN_BUFFER will allocate its own register data, without
4189 freeing the old data. */
4192 re_set_registers (struct re_pattern_buffer
*bufp
, struct re_registers
*regs
, unsigned int num_regs
, regoff_t
*starts
, regoff_t
*ends
)
4196 bufp
->regs_allocated
= REGS_REALLOCATE
;
4197 regs
->num_regs
= num_regs
;
4198 regs
->start
= starts
;
4203 bufp
->regs_allocated
= REGS_UNALLOCATED
;
4205 regs
->start
= regs
->end
= 0;
4208 WEAK_ALIAS (__re_set_registers
, re_set_registers
)
4210 /* Searching routines. */
4212 /* Like re_search_2, below, but only one string is specified, and
4213 doesn't let you say where to stop matching. */
4216 re_search (struct re_pattern_buffer
*bufp
, const char *string
, size_t size
,
4217 ssize_t startpos
, ssize_t range
, struct re_registers
*regs
)
4219 return re_search_2 (bufp
, NULL
, 0, string
, size
, startpos
, range
,
4222 WEAK_ALIAS (__re_search
, re_search
)
4224 /* Head address of virtual concatenation of string. */
4225 #define HEAD_ADDR_VSTRING(P) \
4226 (((P) >= size1 ? string2 : string1))
4228 /* Address of POS in the concatenation of virtual string. */
4229 #define POS_ADDR_VSTRING(POS) \
4230 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4232 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4233 virtual concatenation of STRING1 and STRING2, starting first at index
4234 STARTPOS, then at STARTPOS + 1, and so on.
4236 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4238 RANGE is how far to scan while trying to match. RANGE = 0 means try
4239 only at STARTPOS; in general, the last start tried is STARTPOS +
4242 In REGS, return the indices of the virtual concatenation of STRING1
4243 and STRING2 that matched the entire BUFP->buffer and its contained
4246 Do not consider matching one past the index STOP in the virtual
4247 concatenation of STRING1 and STRING2.
4249 We return either the position in the strings at which the match was
4250 found, -1 if no match, or -2 if error (such as failure
4254 re_search_2 (struct re_pattern_buffer
*bufp
, const char *str1
, size_t size1
,
4255 const char *str2
, size_t size2
, ssize_t startpos
, ssize_t range
,
4256 struct re_registers
*regs
, ssize_t stop
)
4259 re_char
*string1
= (re_char
*) str1
;
4260 re_char
*string2
= (re_char
*) str2
;
4261 register char *fastmap
= bufp
->fastmap
;
4262 register RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4263 size_t total_size
= size1
+ size2
;
4264 ssize_t endpos
= startpos
+ range
;
4265 boolean anchored_start
;
4266 /* Nonzero if we are searching multibyte string. */
4267 const boolean multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4269 /* Check for out-of-range STARTPOS. */
4270 if (startpos
< 0 || startpos
> total_size
)
4273 /* Fix up RANGE if it might eventually take us outside
4274 the virtual concatenation of STRING1 and STRING2.
4275 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4277 range
= 0 - startpos
;
4278 else if (endpos
> total_size
)
4279 range
= total_size
- startpos
;
4281 /* If the search isn't to be a backwards one, don't waste time in a
4282 search for a pattern anchored at beginning of buffer. */
4283 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == begbuf
&& range
> 0)
4292 /* In a forward search for something that starts with \=.
4293 don't keep searching past point. */
4294 if (bufp
->used
> 0 && (re_opcode_t
) bufp
->buffer
[0] == at_dot
&& range
> 0)
4296 range
= PT_BYTE
- BEGV_BYTE
- startpos
;
4302 /* Update the fastmap now if not correct already. */
4303 if (fastmap
&& !bufp
->fastmap_accurate
)
4304 re_compile_fastmap (bufp
);
4306 /* See whether the pattern is anchored. */
4307 anchored_start
= (bufp
->buffer
[0] == begline
);
4310 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4312 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos
));
4314 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4318 /* Loop through the string, looking for a place to start matching. */
4321 /* If the pattern is anchored,
4322 skip quickly past places we cannot match.
4323 We don't bother to treat startpos == 0 specially
4324 because that case doesn't repeat. */
4325 if (anchored_start
&& startpos
> 0)
4327 if (! ((startpos
<= size1
? string1
[startpos
- 1]
4328 : string2
[startpos
- size1
- 1])
4333 /* If a fastmap is supplied, skip quickly over characters that
4334 cannot be the start of a match. If the pattern can match the
4335 null string, however, we don't need to skip characters; we want
4336 the first null string. */
4337 if (fastmap
&& startpos
< total_size
&& !bufp
->can_be_null
)
4339 register re_char
*d
;
4340 register re_wchar_t buf_ch
;
4342 d
= POS_ADDR_VSTRING (startpos
);
4344 if (range
> 0) /* Searching forwards. */
4346 ssize_t irange
= range
, lim
= 0;
4348 if (startpos
< size1
&& startpos
+ range
>= size1
)
4349 lim
= range
- (size1
- startpos
);
4351 /* Written out as an if-else to avoid testing `translate'
4353 if (RE_TRANSLATE_P (translate
))
4360 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4361 buf_ch
= RE_TRANSLATE (translate
, buf_ch
);
4362 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4365 range
-= buf_charlen
;
4371 register re_wchar_t ch
, translated
;
4374 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4375 translated
= RE_TRANSLATE (translate
, ch
);
4376 if (translated
!= ch
4377 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4379 if (fastmap
[buf_ch
])
4392 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
4393 if (fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4395 range
-= buf_charlen
;
4399 while (range
> lim
&& !fastmap
[*d
])
4405 startpos
+= irange
- range
;
4407 else /* Searching backwards. */
4411 buf_ch
= STRING_CHAR (d
);
4412 buf_ch
= TRANSLATE (buf_ch
);
4413 if (! fastmap
[CHAR_LEADING_CODE (buf_ch
)])
4418 register re_wchar_t ch
, translated
;
4421 ch
= RE_CHAR_TO_MULTIBYTE (buf_ch
);
4422 translated
= TRANSLATE (ch
);
4423 if (translated
!= ch
4424 && (ch
= RE_CHAR_TO_UNIBYTE (translated
)) >= 0)
4426 if (! fastmap
[TRANSLATE (buf_ch
)])
4432 /* If can't match the null string, and that's all we have left, fail. */
4433 if (range
>= 0 && startpos
== total_size
&& fastmap
4434 && !bufp
->can_be_null
)
4437 val
= re_match_2_internal (bufp
, string1
, size1
, string2
, size2
,
4438 startpos
, regs
, stop
);
4451 /* Update STARTPOS to the next character boundary. */
4454 re_char
*p
= POS_ADDR_VSTRING (startpos
);
4455 int len
= BYTES_BY_CHAR_HEAD (*p
);
4473 /* Update STARTPOS to the previous character boundary. */
4476 re_char
*p
= POS_ADDR_VSTRING (startpos
) + 1;
4478 re_char
*phead
= HEAD_ADDR_VSTRING (startpos
);
4480 /* Find the head of multibyte form. */
4481 PREV_CHAR_BOUNDARY (p
, phead
);
4482 range
+= p0
- 1 - p
;
4486 startpos
-= p0
- 1 - p
;
4492 WEAK_ALIAS (__re_search_2
, re_search_2
)
4494 /* Declarations and macros for re_match_2. */
4496 static int bcmp_translate (re_char
*s1
, re_char
*s2
,
4497 register ssize_t len
,
4498 RE_TRANSLATE_TYPE translate
,
4499 const int multibyte
);
4501 /* This converts PTR, a pointer into one of the search strings `string1'
4502 and `string2' into an offset from the beginning of that string. */
4503 #define POINTER_TO_OFFSET(ptr) \
4504 (FIRST_STRING_P (ptr) \
4506 : (ptr) - string2 + (ptrdiff_t) size1)
4508 /* Call before fetching a character with *d. This switches over to
4509 string2 if necessary.
4510 Check re_match_2_internal for a discussion of why end_match_2 might
4511 not be within string2 (but be equal to end_match_1 instead). */
4512 #define PREFETCH() \
4515 /* End of string2 => fail. */ \
4516 if (dend == end_match_2) \
4518 /* End of string1 => advance to string2. */ \
4520 dend = end_match_2; \
4523 /* Call before fetching a char with *d if you already checked other limits.
4524 This is meant for use in lookahead operations like wordend, etc..
4525 where we might need to look at parts of the string that might be
4526 outside of the LIMITs (i.e past `stop'). */
4527 #define PREFETCH_NOLIMIT() \
4531 dend = end_match_2; \
4534 /* Test if at very beginning or at very end of the virtual concatenation
4535 of `string1' and `string2'. If only one string, it's `string2'. */
4536 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4537 #define AT_STRINGS_END(d) ((d) == end2)
4539 /* Disabled due to a compiler bug -- see comment at case wordbound */
4541 /* The comment at case wordbound is following one, but we don't use
4542 AT_WORD_BOUNDARY anymore to support multibyte form.
4544 The DEC Alpha C compiler 3.x generates incorrect code for the
4545 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4546 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4547 macro and introducing temporary variables works around the bug. */
4550 /* Test if D points to a character which is word-constituent. We have
4551 two special cases to check for: if past the end of string1, look at
4552 the first character in string2; and if before the beginning of
4553 string2, look at the last character in string1. */
4554 #define WORDCHAR_P(d) \
4555 (SYNTAX ((d) == end1 ? *string2 \
4556 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4559 /* Test if the character before D and the one at D differ with respect
4560 to being word-constituent. */
4561 #define AT_WORD_BOUNDARY(d) \
4562 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4563 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4566 /* Free everything we malloc. */
4567 #ifdef MATCH_MAY_ALLOCATE
4568 # define FREE_VAR(var) \
4576 # define FREE_VARIABLES() \
4578 REGEX_FREE_STACK (fail_stack.stack); \
4579 FREE_VAR (regstart); \
4580 FREE_VAR (regend); \
4581 FREE_VAR (best_regstart); \
4582 FREE_VAR (best_regend); \
4583 REGEX_SAFE_FREE (); \
4586 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4587 #endif /* not MATCH_MAY_ALLOCATE */
4590 /* Optimization routines. */
4592 /* If the operation is a match against one or more chars,
4593 return a pointer to the next operation, else return NULL. */
4595 skip_one_char (const_re_char
*p
)
4608 if (CHARSET_RANGE_TABLE_EXISTS_P (p
- 1))
4611 p
= CHARSET_RANGE_TABLE (p
- 1);
4612 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4613 p
= CHARSET_RANGE_TABLE_END (p
, mcnt
);
4616 p
+= 1 + CHARSET_BITMAP_SIZE (p
- 1);
4623 case notcategoryspec
:
4635 /* Jump over non-matching operations. */
4637 skip_noops (const_re_char
*p
, const_re_char
*pend
)
4651 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
4662 /* Non-zero if "p1 matches something" implies "p2 fails". */
4664 mutually_exclusive_p (struct re_pattern_buffer
*bufp
, const_re_char
*p1
,
4668 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4669 unsigned char *pend
= bufp
->buffer
+ bufp
->used
;
4671 assert (p1
>= bufp
->buffer
&& p1
< pend
4672 && p2
>= bufp
->buffer
&& p2
<= pend
);
4674 /* Skip over open/close-group commands.
4675 If what follows this loop is a ...+ construct,
4676 look at what begins its body, since we will have to
4677 match at least one of that. */
4678 p2
= skip_noops (p2
, pend
);
4679 /* The same skip can be done for p1, except that this function
4680 is only used in the case where p1 is a simple match operator. */
4681 /* p1 = skip_noops (p1, pend); */
4683 assert (p1
>= bufp
->buffer
&& p1
< pend
4684 && p2
>= bufp
->buffer
&& p2
<= pend
);
4686 op2
= p2
== pend
? succeed
: *p2
;
4692 /* If we're at the end of the pattern, we can change. */
4693 if (skip_one_char (p1
))
4695 DEBUG_PRINT (" End of pattern: fast loop.\n");
4703 register re_wchar_t c
4704 = (re_opcode_t
) *p2
== endline
? '\n'
4705 : RE_STRING_CHAR (p2
+ 2, multibyte
);
4707 if ((re_opcode_t
) *p1
== exactn
)
4709 if (c
!= RE_STRING_CHAR (p1
+ 2, multibyte
))
4711 DEBUG_PRINT (" '%c' != '%c' => fast loop.\n", c
, p1
[2]);
4716 else if ((re_opcode_t
) *p1
== charset
4717 || (re_opcode_t
) *p1
== charset_not
)
4719 int not = (re_opcode_t
) *p1
== charset_not
;
4721 /* Test if C is listed in charset (or charset_not)
4723 if (! multibyte
|| IS_REAL_ASCII (c
))
4725 if (c
< CHARSET_BITMAP_SIZE (p1
) * BYTEWIDTH
4726 && p1
[2 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
4729 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1
))
4730 CHARSET_LOOKUP_RANGE_TABLE (not, c
, p1
);
4732 /* `not' is equal to 1 if c would match, which means
4733 that we can't change to pop_failure_jump. */
4736 DEBUG_PRINT (" No match => fast loop.\n");
4740 else if ((re_opcode_t
) *p1
== anychar
4743 DEBUG_PRINT (" . != \\n => fast loop.\n");
4751 if ((re_opcode_t
) *p1
== exactn
)
4752 /* Reuse the code above. */
4753 return mutually_exclusive_p (bufp
, p2
, p1
);
4755 /* It is hard to list up all the character in charset
4756 P2 if it includes multibyte character. Give up in
4758 else if (!multibyte
|| !CHARSET_RANGE_TABLE_EXISTS_P (p2
))
4760 /* Now, we are sure that P2 has no range table.
4761 So, for the size of bitmap in P2, `p2[1]' is
4762 enough. But P1 may have range table, so the
4763 size of bitmap table of P1 is extracted by
4764 using macro `CHARSET_BITMAP_SIZE'.
4766 In a multibyte case, we know that all the character
4767 listed in P2 is ASCII. In a unibyte case, P1 has only a
4768 bitmap table. So, in both cases, it is enough to test
4769 only the bitmap table of P1. */
4771 if ((re_opcode_t
) *p1
== charset
)
4774 /* We win if the charset inside the loop
4775 has no overlap with the one after the loop. */
4778 && idx
< CHARSET_BITMAP_SIZE (p1
));
4780 if ((p2
[2 + idx
] & p1
[2 + idx
]) != 0)
4784 || idx
== CHARSET_BITMAP_SIZE (p1
))
4786 DEBUG_PRINT (" No match => fast loop.\n");
4790 else if ((re_opcode_t
) *p1
== charset_not
)
4793 /* We win if the charset_not inside the loop lists
4794 every character listed in the charset after. */
4795 for (idx
= 0; idx
< (int) p2
[1]; idx
++)
4796 if (! (p2
[2 + idx
] == 0
4797 || (idx
< CHARSET_BITMAP_SIZE (p1
)
4798 && ((p2
[2 + idx
] & ~ p1
[2 + idx
]) == 0))))
4803 DEBUG_PRINT (" No match => fast loop.\n");
4816 /* Reuse the code above. */
4817 return mutually_exclusive_p (bufp
, p2
, p1
);
4819 /* When we have two charset_not, it's very unlikely that
4820 they don't overlap. The union of the two sets of excluded
4821 chars should cover all possible chars, which, as a matter of
4822 fact, is virtually impossible in multibyte buffers. */
4828 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == Sword
);
4830 return ((re_opcode_t
) *p1
== syntaxspec
4831 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4833 return ((re_opcode_t
) *p1
== syntaxspec
&& p1
[1] == p2
[1]);
4836 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == Sword
);
4838 return ((re_opcode_t
) *p1
== notsyntaxspec
4839 && (p1
[1] == Ssymbol
|| p1
[1] == Sword
));
4841 return ((re_opcode_t
) *p1
== notsyntaxspec
&& p1
[1] == p2
[1]);
4844 return (((re_opcode_t
) *p1
== notsyntaxspec
4845 || (re_opcode_t
) *p1
== syntaxspec
)
4850 return ((re_opcode_t
) *p1
== notcategoryspec
&& p1
[1] == p2
[1]);
4851 case notcategoryspec
:
4852 return ((re_opcode_t
) *p1
== categoryspec
&& p1
[1] == p2
[1]);
4864 /* Matching routines. */
4866 #ifndef emacs /* Emacs never uses this. */
4867 /* re_match is like re_match_2 except it takes only a single string. */
4870 re_match (struct re_pattern_buffer
*bufp
, const char *string
,
4871 size_t size
, ssize_t pos
, struct re_registers
*regs
)
4873 regoff_t result
= re_match_2_internal (bufp
, NULL
, 0, (re_char
*) string
,
4874 size
, pos
, regs
, size
);
4877 WEAK_ALIAS (__re_match
, re_match
)
4878 #endif /* not emacs */
4881 /* In Emacs, this is the string or buffer in which we
4882 are matching. It is used for looking up syntax properties. */
4883 Lisp_Object re_match_object
;
4886 /* re_match_2 matches the compiled pattern in BUFP against the
4887 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4888 and SIZE2, respectively). We start matching at POS, and stop
4891 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4892 store offsets for the substring each group matched in REGS. See the
4893 documentation for exactly how many groups we fill.
4895 We return -1 if no match, -2 if an internal error (such as the
4896 failure stack overflowing). Otherwise, we return the length of the
4897 matched substring. */
4900 re_match_2 (struct re_pattern_buffer
*bufp
, const char *string1
,
4901 size_t size1
, const char *string2
, size_t size2
, ssize_t pos
,
4902 struct re_registers
*regs
, ssize_t stop
)
4908 gl_state
.object
= re_match_object
; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4909 charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos
));
4910 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object
, charpos
, 1);
4913 result
= re_match_2_internal (bufp
, (re_char
*) string1
, size1
,
4914 (re_char
*) string2
, size2
,
4918 WEAK_ALIAS (__re_match_2
, re_match_2
)
4921 /* This is a separate function so that we can force an alloca cleanup
4924 re_match_2_internal (struct re_pattern_buffer
*bufp
, const_re_char
*string1
,
4925 size_t size1
, const_re_char
*string2
, size_t size2
,
4926 ssize_t pos
, struct re_registers
*regs
, ssize_t stop
)
4928 /* General temporaries. */
4932 /* Just past the end of the corresponding string. */
4933 re_char
*end1
, *end2
;
4935 /* Pointers into string1 and string2, just past the last characters in
4936 each to consider matching. */
4937 re_char
*end_match_1
, *end_match_2
;
4939 /* Where we are in the data, and the end of the current string. */
4942 /* Used sometimes to remember where we were before starting matching
4943 an operator so that we can go back in case of failure. This "atomic"
4944 behavior of matching opcodes is indispensable to the correctness
4945 of the on_failure_keep_string_jump optimization. */
4948 /* Where we are in the pattern, and the end of the pattern. */
4949 re_char
*p
= bufp
->buffer
;
4950 re_char
*pend
= p
+ bufp
->used
;
4952 /* We use this to map every character in the string. */
4953 RE_TRANSLATE_TYPE translate
= bufp
->translate
;
4955 /* Nonzero if BUFP is setup from a multibyte regex. */
4956 const boolean multibyte
= RE_MULTIBYTE_P (bufp
);
4958 /* Nonzero if STRING1/STRING2 are multibyte. */
4959 const boolean target_multibyte
= RE_TARGET_MULTIBYTE_P (bufp
);
4961 /* Failure point stack. Each place that can handle a failure further
4962 down the line pushes a failure point on this stack. It consists of
4963 regstart, and regend for all registers corresponding to
4964 the subexpressions we're currently inside, plus the number of such
4965 registers, and, finally, two char *'s. The first char * is where
4966 to resume scanning the pattern; the second one is where to resume
4967 scanning the strings. */
4968 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4969 fail_stack_type fail_stack
;
4971 #ifdef DEBUG_COMPILES_ARGUMENTS
4972 unsigned nfailure_points_pushed
= 0, nfailure_points_popped
= 0;
4975 #if defined REL_ALLOC && defined REGEX_MALLOC
4976 /* This holds the pointer to the failure stack, when
4977 it is allocated relocatably. */
4978 fail_stack_elt_t
*failure_stack_ptr
;
4981 /* We fill all the registers internally, independent of what we
4982 return, for use in backreferences. The number here includes
4983 an element for register zero. */
4984 size_t num_regs
= bufp
->re_nsub
+ 1;
4986 /* Information on the contents of registers. These are pointers into
4987 the input strings; they record just what was matched (on this
4988 attempt) by a subexpression part of the pattern, that is, the
4989 regnum-th regstart pointer points to where in the pattern we began
4990 matching and the regnum-th regend points to right after where we
4991 stopped matching the regnum-th subexpression. (The zeroth register
4992 keeps track of what the whole pattern matches.) */
4993 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4994 re_char
**regstart
, **regend
;
4997 /* The following record the register info as found in the above
4998 variables when we find a match better than any we've seen before.
4999 This happens as we backtrack through the failure points, which in
5000 turn happens only if we have not yet matched the entire string. */
5001 unsigned best_regs_set
= false;
5002 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5003 re_char
**best_regstart
, **best_regend
;
5006 /* Logically, this is `best_regend[0]'. But we don't want to have to
5007 allocate space for that if we're not allocating space for anything
5008 else (see below). Also, we never need info about register 0 for
5009 any of the other register vectors, and it seems rather a kludge to
5010 treat `best_regend' differently than the rest. So we keep track of
5011 the end of the best match so far in a separate variable. We
5012 initialize this to NULL so that when we backtrack the first time
5013 and need to test it, it's not garbage. */
5014 re_char
*match_end
= NULL
;
5016 #ifdef DEBUG_COMPILES_ARGUMENTS
5017 /* Counts the total number of registers pushed. */
5018 unsigned num_regs_pushed
= 0;
5021 DEBUG_PRINT ("\n\nEntering re_match_2.\n");
5023 REGEX_USE_SAFE_ALLOCA
;
5027 #ifdef MATCH_MAY_ALLOCATE
5028 /* Do not bother to initialize all the register variables if there are
5029 no groups in the pattern, as it takes a fair amount of time. If
5030 there are groups, we include space for register 0 (the whole
5031 pattern), even though we never use it, since it simplifies the
5032 array indexing. We should fix this. */
5035 regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5036 regend
= REGEX_TALLOC (num_regs
, re_char
*);
5037 best_regstart
= REGEX_TALLOC (num_regs
, re_char
*);
5038 best_regend
= REGEX_TALLOC (num_regs
, re_char
*);
5040 if (!(regstart
&& regend
&& best_regstart
&& best_regend
))
5048 /* We must initialize all our variables to NULL, so that
5049 `FREE_VARIABLES' doesn't try to free them. */
5050 regstart
= regend
= best_regstart
= best_regend
= NULL
;
5052 #endif /* MATCH_MAY_ALLOCATE */
5054 /* The starting position is bogus. */
5055 if (pos
< 0 || pos
> size1
+ size2
)
5061 /* Initialize subexpression text positions to -1 to mark ones that no
5062 start_memory/stop_memory has been seen for. Also initialize the
5063 register information struct. */
5064 for (reg
= 1; reg
< num_regs
; reg
++)
5065 regstart
[reg
] = regend
[reg
] = NULL
;
5067 /* We move `string1' into `string2' if the latter's empty -- but not if
5068 `string1' is null. */
5069 if (size2
== 0 && string1
!= NULL
)
5076 end1
= string1
+ size1
;
5077 end2
= string2
+ size2
;
5079 /* `p' scans through the pattern as `d' scans through the data.
5080 `dend' is the end of the input string that `d' points within. `d'
5081 is advanced into the following input string whenever necessary, but
5082 this happens before fetching; therefore, at the beginning of the
5083 loop, `d' can be pointing at the end of a string, but it cannot
5087 /* Only match within string2. */
5088 d
= string2
+ pos
- size1
;
5089 dend
= end_match_2
= string2
+ stop
- size1
;
5090 end_match_1
= end1
; /* Just to give it a value. */
5096 /* Only match within string1. */
5097 end_match_1
= string1
+ stop
;
5099 When we reach end_match_1, PREFETCH normally switches to string2.
5100 But in the present case, this means that just doing a PREFETCH
5101 makes us jump from `stop' to `gap' within the string.
5102 What we really want here is for the search to stop as
5103 soon as we hit end_match_1. That's why we set end_match_2
5104 to end_match_1 (since PREFETCH fails as soon as we hit
5106 end_match_2
= end_match_1
;
5109 { /* It's important to use this code when stop == size so that
5110 moving `d' from end1 to string2 will not prevent the d == dend
5111 check from catching the end of string. */
5113 end_match_2
= string2
+ stop
- size1
;
5119 DEBUG_PRINT ("The compiled pattern is: ");
5120 DEBUG_PRINT_COMPILED_PATTERN (bufp
, p
, pend
);
5121 DEBUG_PRINT ("The string to match is: `");
5122 DEBUG_PRINT_DOUBLE_STRING (d
, string1
, size1
, string2
, size2
);
5123 DEBUG_PRINT ("'\n");
5125 /* This loops over pattern commands. It exits by returning from the
5126 function if the match is complete, or it drops through if the match
5127 fails at this starting point in the input data. */
5130 DEBUG_PRINT ("\n%p: ", p
);
5136 /* End of pattern means we might have succeeded. */
5137 DEBUG_PRINT ("end of pattern ... ");
5139 /* If we haven't matched the entire string, and we want the
5140 longest match, try backtracking. */
5141 if (d
!= end_match_2
)
5143 /* 1 if this match ends in the same string (string1 or string2)
5144 as the best previous match. */
5145 boolean same_str_p
= (FIRST_STRING_P (match_end
)
5146 == FIRST_STRING_P (d
));
5147 /* 1 if this match is the best seen so far. */
5148 boolean best_match_p
;
5150 /* AIX compiler got confused when this was combined
5151 with the previous declaration. */
5153 best_match_p
= d
> match_end
;
5155 best_match_p
= !FIRST_STRING_P (d
);
5157 DEBUG_PRINT ("backtracking.\n");
5159 if (!FAIL_STACK_EMPTY ())
5160 { /* More failure points to try. */
5162 /* If exceeds best match so far, save it. */
5163 if (!best_regs_set
|| best_match_p
)
5165 best_regs_set
= true;
5168 DEBUG_PRINT ("\nSAVING match as best so far.\n");
5170 for (reg
= 1; reg
< num_regs
; reg
++)
5172 best_regstart
[reg
] = regstart
[reg
];
5173 best_regend
[reg
] = regend
[reg
];
5179 /* If no failure points, don't restore garbage. And if
5180 last match is real best match, don't restore second
5182 else if (best_regs_set
&& !best_match_p
)
5185 /* Restore best match. It may happen that `dend ==
5186 end_match_1' while the restored d is in string2.
5187 For example, the pattern `x.*y.*z' against the
5188 strings `x-' and `y-z-', if the two strings are
5189 not consecutive in memory. */
5190 DEBUG_PRINT ("Restoring best registers.\n");
5193 dend
= ((d
>= string1
&& d
<= end1
)
5194 ? end_match_1
: end_match_2
);
5196 for (reg
= 1; reg
< num_regs
; reg
++)
5198 regstart
[reg
] = best_regstart
[reg
];
5199 regend
[reg
] = best_regend
[reg
];
5202 } /* d != end_match_2 */
5205 DEBUG_PRINT ("Accepting match.\n");
5207 /* If caller wants register contents data back, do it. */
5208 if (regs
&& !bufp
->no_sub
)
5210 /* Have the register data arrays been allocated? */
5211 if (bufp
->regs_allocated
== REGS_UNALLOCATED
)
5212 { /* No. So allocate them with malloc. We need one
5213 extra element beyond `num_regs' for the `-1' marker
5215 regs
->num_regs
= max (RE_NREGS
, num_regs
+ 1);
5216 regs
->start
= TALLOC (regs
->num_regs
, regoff_t
);
5217 regs
->end
= TALLOC (regs
->num_regs
, regoff_t
);
5218 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5223 bufp
->regs_allocated
= REGS_REALLOCATE
;
5225 else if (bufp
->regs_allocated
== REGS_REALLOCATE
)
5226 { /* Yes. If we need more elements than were already
5227 allocated, reallocate them. If we need fewer, just
5229 if (regs
->num_regs
< num_regs
+ 1)
5231 regs
->num_regs
= num_regs
+ 1;
5232 RETALLOC (regs
->start
, regs
->num_regs
, regoff_t
);
5233 RETALLOC (regs
->end
, regs
->num_regs
, regoff_t
);
5234 if (regs
->start
== NULL
|| regs
->end
== NULL
)
5243 /* These braces fend off a "empty body in an else-statement"
5244 warning under GCC when assert expands to nothing. */
5245 assert (bufp
->regs_allocated
== REGS_FIXED
);
5248 /* Convert the pointer data in `regstart' and `regend' to
5249 indices. Register zero has to be set differently,
5250 since we haven't kept track of any info for it. */
5251 if (regs
->num_regs
> 0)
5253 regs
->start
[0] = pos
;
5254 regs
->end
[0] = POINTER_TO_OFFSET (d
);
5257 /* Go through the first `min (num_regs, regs->num_regs)'
5258 registers, since that is all we initialized. */
5259 for (reg
= 1; reg
< min (num_regs
, regs
->num_regs
); reg
++)
5261 if (REG_UNSET (regstart
[reg
]) || REG_UNSET (regend
[reg
]))
5262 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5265 regs
->start
[reg
] = POINTER_TO_OFFSET (regstart
[reg
]);
5266 regs
->end
[reg
] = POINTER_TO_OFFSET (regend
[reg
]);
5270 /* If the regs structure we return has more elements than
5271 were in the pattern, set the extra elements to -1. If
5272 we (re)allocated the registers, this is the case,
5273 because we always allocate enough to have at least one
5275 for (reg
= num_regs
; reg
< regs
->num_regs
; reg
++)
5276 regs
->start
[reg
] = regs
->end
[reg
] = -1;
5277 } /* regs && !bufp->no_sub */
5279 DEBUG_PRINT ("%u failure points pushed, %u popped (%u remain).\n",
5280 nfailure_points_pushed
, nfailure_points_popped
,
5281 nfailure_points_pushed
- nfailure_points_popped
);
5282 DEBUG_PRINT ("%u registers pushed.\n", num_regs_pushed
);
5284 dcnt
= POINTER_TO_OFFSET (d
) - pos
;
5286 DEBUG_PRINT ("Returning %td from re_match_2.\n", dcnt
);
5292 /* Otherwise match next pattern command. */
5295 /* Ignore these. Used to ignore the n of succeed_n's which
5296 currently have n == 0. */
5298 DEBUG_PRINT ("EXECUTING no_op.\n");
5302 DEBUG_PRINT ("EXECUTING succeed.\n");
5305 /* Match the next n pattern characters exactly. The following
5306 byte in the pattern defines n, and the n bytes after that
5307 are the characters to match. */
5310 DEBUG_PRINT ("EXECUTING exactn %d.\n", mcnt
);
5312 /* Remember the start point to rollback upon failure. */
5316 /* This is written out as an if-else so we don't waste time
5317 testing `translate' inside the loop. */
5318 if (RE_TRANSLATE_P (translate
))
5322 if (RE_TRANSLATE (translate
, *d
) != *p
++)
5342 /* The cost of testing `translate' is comparatively small. */
5343 if (target_multibyte
)
5346 int pat_charlen
, buf_charlen
;
5351 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5354 pat_ch
= RE_CHAR_TO_MULTIBYTE (*p
);
5357 buf_ch
= STRING_CHAR_AND_LENGTH (d
, buf_charlen
);
5359 if (TRANSLATE (buf_ch
) != pat_ch
)
5367 mcnt
-= pat_charlen
;
5379 pat_ch
= STRING_CHAR_AND_LENGTH (p
, pat_charlen
);
5380 pat_ch
= RE_CHAR_TO_UNIBYTE (pat_ch
);
5387 buf_ch
= RE_CHAR_TO_MULTIBYTE (*d
);
5388 if (! CHAR_BYTE8_P (buf_ch
))
5390 buf_ch
= TRANSLATE (buf_ch
);
5391 buf_ch
= RE_CHAR_TO_UNIBYTE (buf_ch
);
5397 if (buf_ch
!= pat_ch
)
5410 /* Match any character except possibly a newline or a null. */
5416 DEBUG_PRINT ("EXECUTING anychar.\n");
5419 buf_ch
= RE_STRING_CHAR_AND_LENGTH (d
, buf_charlen
,
5421 buf_ch
= TRANSLATE (buf_ch
);
5423 if ((!(bufp
->syntax
& RE_DOT_NEWLINE
)
5425 || ((bufp
->syntax
& RE_DOT_NOT_NULL
)
5426 && buf_ch
== '\000'))
5429 DEBUG_PRINT (" Matched `%d'.\n", *d
);
5438 register unsigned int c
;
5439 boolean
not = (re_opcode_t
) *(p
- 1) == charset_not
;
5442 /* Start of actual range_table, or end of bitmap if there is no
5444 re_char
*range_table
IF_LINT (= NULL
);
5446 /* Nonzero if there is a range table. */
5447 int range_table_exists
;
5449 /* Number of ranges of range table. This is not included
5450 in the initial byte-length of the command. */
5453 /* Whether matching against a unibyte character. */
5454 boolean unibyte_char
= false;
5456 DEBUG_PRINT ("EXECUTING charset%s.\n", not ? "_not" : "");
5458 range_table_exists
= CHARSET_RANGE_TABLE_EXISTS_P (&p
[-1]);
5460 if (range_table_exists
)
5462 range_table
= CHARSET_RANGE_TABLE (&p
[-1]); /* Past the bitmap. */
5463 EXTRACT_NUMBER_AND_INCR (count
, range_table
);
5467 c
= RE_STRING_CHAR_AND_LENGTH (d
, len
, target_multibyte
);
5468 if (target_multibyte
)
5473 c1
= RE_CHAR_TO_UNIBYTE (c
);
5476 unibyte_char
= true;
5482 int c1
= RE_CHAR_TO_MULTIBYTE (c
);
5484 if (! CHAR_BYTE8_P (c1
))
5486 c1
= TRANSLATE (c1
);
5487 c1
= RE_CHAR_TO_UNIBYTE (c1
);
5490 unibyte_char
= true;
5495 unibyte_char
= true;
5498 if (unibyte_char
&& c
< (1 << BYTEWIDTH
))
5499 { /* Lookup bitmap. */
5500 /* Cast to `unsigned' instead of `unsigned char' in
5501 case the bit list is a full 32 bytes long. */
5502 if (c
< (unsigned) (CHARSET_BITMAP_SIZE (&p
[-1]) * BYTEWIDTH
)
5503 && p
[1 + c
/ BYTEWIDTH
] & (1 << (c
% BYTEWIDTH
)))
5507 else if (range_table_exists
)
5509 int class_bits
= CHARSET_RANGE_TABLE_BITS (&p
[-1]);
5511 if ( (class_bits
& BIT_LOWER
&& ISLOWER (c
))
5512 | (class_bits
& BIT_MULTIBYTE
)
5513 | (class_bits
& BIT_PUNCT
&& ISPUNCT (c
))
5514 | (class_bits
& BIT_SPACE
&& ISSPACE (c
))
5515 | (class_bits
& BIT_UPPER
&& ISUPPER (c
))
5516 | (class_bits
& BIT_WORD
&& ISWORD (c
)))
5519 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c
, range_table
, count
);
5523 if (range_table_exists
)
5524 p
= CHARSET_RANGE_TABLE_END (range_table
, count
);
5526 p
+= CHARSET_BITMAP_SIZE (&p
[-1]) + 1;
5528 if (!not) goto fail
;
5535 /* The beginning of a group is represented by start_memory.
5536 The argument is the register number. The text
5537 matched within the group is recorded (in the internal
5538 registers data structure) under the register number. */
5540 DEBUG_PRINT ("EXECUTING start_memory %d:\n", *p
);
5542 /* In case we need to undo this operation (via backtracking). */
5543 PUSH_FAILURE_REG (*p
);
5546 regend
[*p
] = NULL
; /* probably unnecessary. -sm */
5547 DEBUG_PRINT (" regstart: %td\n", POINTER_TO_OFFSET (regstart
[*p
]));
5549 /* Move past the register number and inner group count. */
5554 /* The stop_memory opcode represents the end of a group. Its
5555 argument is the same as start_memory's: the register number. */
5557 DEBUG_PRINT ("EXECUTING stop_memory %d:\n", *p
);
5559 assert (!REG_UNSET (regstart
[*p
]));
5560 /* Strictly speaking, there should be code such as:
5562 assert (REG_UNSET (regend[*p]));
5563 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5565 But the only info to be pushed is regend[*p] and it is known to
5566 be UNSET, so there really isn't anything to push.
5567 Not pushing anything, on the other hand deprives us from the
5568 guarantee that regend[*p] is UNSET since undoing this operation
5569 will not reset its value properly. This is not important since
5570 the value will only be read on the next start_memory or at
5571 the very end and both events can only happen if this stop_memory
5575 DEBUG_PRINT (" regend: %td\n", POINTER_TO_OFFSET (regend
[*p
]));
5577 /* Move past the register number and the inner group count. */
5582 /* \<digit> has been turned into a `duplicate' command which is
5583 followed by the numeric value of <digit> as the register number. */
5586 register re_char
*d2
, *dend2
;
5587 int regno
= *p
++; /* Get which register to match against. */
5588 DEBUG_PRINT ("EXECUTING duplicate %d.\n", regno
);
5590 /* Can't back reference a group which we've never matched. */
5591 if (REG_UNSET (regstart
[regno
]) || REG_UNSET (regend
[regno
]))
5594 /* Where in input to try to start matching. */
5595 d2
= regstart
[regno
];
5597 /* Remember the start point to rollback upon failure. */
5600 /* Where to stop matching; if both the place to start and
5601 the place to stop matching are in the same string, then
5602 set to the place to stop, otherwise, for now have to use
5603 the end of the first string. */
5605 dend2
= ((FIRST_STRING_P (regstart
[regno
])
5606 == FIRST_STRING_P (regend
[regno
]))
5607 ? regend
[regno
] : end_match_1
);
5612 /* If necessary, advance to next segment in register
5616 if (dend2
== end_match_2
) break;
5617 if (dend2
== regend
[regno
]) break;
5619 /* End of string1 => advance to string2. */
5621 dend2
= regend
[regno
];
5623 /* At end of register contents => success */
5624 if (d2
== dend2
) break;
5626 /* If necessary, advance to next segment in data. */
5629 /* How many characters left in this segment to match. */
5632 /* Want how many consecutive characters we can match in
5633 one shot, so, if necessary, adjust the count. */
5634 if (dcnt
> dend2
- d2
)
5637 /* Compare that many; failure if mismatch, else move
5639 if (RE_TRANSLATE_P (translate
)
5640 ? bcmp_translate (d
, d2
, dcnt
, translate
, target_multibyte
)
5641 : memcmp (d
, d2
, dcnt
))
5646 d
+= dcnt
, d2
+= dcnt
;
5652 /* begline matches the empty string at the beginning of the string
5653 (unless `not_bol' is set in `bufp'), and after newlines. */
5655 DEBUG_PRINT ("EXECUTING begline.\n");
5657 if (AT_STRINGS_BEG (d
))
5659 if (!bufp
->not_bol
) break;
5664 GET_CHAR_BEFORE_2 (c
, d
, string1
, end1
, string2
, end2
);
5668 /* In all other cases, we fail. */
5672 /* endline is the dual of begline. */
5674 DEBUG_PRINT ("EXECUTING endline.\n");
5676 if (AT_STRINGS_END (d
))
5678 if (!bufp
->not_eol
) break;
5682 PREFETCH_NOLIMIT ();
5689 /* Match at the very beginning of the data. */
5691 DEBUG_PRINT ("EXECUTING begbuf.\n");
5692 if (AT_STRINGS_BEG (d
))
5697 /* Match at the very end of the data. */
5699 DEBUG_PRINT ("EXECUTING endbuf.\n");
5700 if (AT_STRINGS_END (d
))
5705 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5706 pushes NULL as the value for the string on the stack. Then
5707 `POP_FAILURE_POINT' will keep the current value for the
5708 string, instead of restoring it. To see why, consider
5709 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5710 then the . fails against the \n. But the next thing we want
5711 to do is match the \n against the \n; if we restored the
5712 string value, we would be back at the foo.
5714 Because this is used only in specific cases, we don't need to
5715 check all the things that `on_failure_jump' does, to make
5716 sure the right things get saved on the stack. Hence we don't
5717 share its code. The only reason to push anything on the
5718 stack at all is that otherwise we would have to change
5719 `anychar's code to do something besides goto fail in this
5720 case; that seems worse than this. */
5721 case on_failure_keep_string_jump
:
5722 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5723 DEBUG_PRINT ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5726 PUSH_FAILURE_POINT (p
- 3, NULL
);
5729 /* A nasty loop is introduced by the non-greedy *? and +?.
5730 With such loops, the stack only ever contains one failure point
5731 at a time, so that a plain on_failure_jump_loop kind of
5732 cycle detection cannot work. Worse yet, such a detection
5733 can not only fail to detect a cycle, but it can also wrongly
5734 detect a cycle (between different instantiations of the same
5736 So the method used for those nasty loops is a little different:
5737 We use a special cycle-detection-stack-frame which is pushed
5738 when the on_failure_jump_nastyloop failure-point is *popped*.
5739 This special frame thus marks the beginning of one iteration
5740 through the loop and we can hence easily check right here
5741 whether something matched between the beginning and the end of
5743 case on_failure_jump_nastyloop
:
5744 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5745 DEBUG_PRINT ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5748 assert ((re_opcode_t
)p
[-4] == no_op
);
5751 CHECK_INFINITE_LOOP (p
- 4, d
);
5753 /* If there's a cycle, just continue without pushing
5754 this failure point. The failure point is the "try again"
5755 option, which shouldn't be tried.
5756 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5757 PUSH_FAILURE_POINT (p
- 3, d
);
5761 /* Simple loop detecting on_failure_jump: just check on the
5762 failure stack if the same spot was already hit earlier. */
5763 case on_failure_jump_loop
:
5765 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5766 DEBUG_PRINT ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5770 CHECK_INFINITE_LOOP (p
- 3, d
);
5772 /* If there's a cycle, get out of the loop, as if the matching
5773 had failed. We used to just `goto fail' here, but that was
5774 aborting the search a bit too early: we want to keep the
5775 empty-loop-match and keep matching after the loop.
5776 We want (x?)*y\1z to match both xxyz and xxyxz. */
5779 PUSH_FAILURE_POINT (p
- 3, d
);
5784 /* Uses of on_failure_jump:
5786 Each alternative starts with an on_failure_jump that points
5787 to the beginning of the next alternative. Each alternative
5788 except the last ends with a jump that in effect jumps past
5789 the rest of the alternatives. (They really jump to the
5790 ending jump of the following alternative, because tensioning
5791 these jumps is a hassle.)
5793 Repeats start with an on_failure_jump that points past both
5794 the repetition text and either the following jump or
5795 pop_failure_jump back to this on_failure_jump. */
5796 case on_failure_jump
:
5797 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5798 DEBUG_PRINT ("EXECUTING on_failure_jump %d (to %p):\n",
5801 PUSH_FAILURE_POINT (p
-3, d
);
5804 /* This operation is used for greedy *.
5805 Compare the beginning of the repeat with what in the
5806 pattern follows its end. If we can establish that there
5807 is nothing that they would both match, i.e., that we
5808 would have to backtrack because of (as in, e.g., `a*a')
5809 then we can use a non-backtracking loop based on
5810 on_failure_keep_string_jump instead of on_failure_jump. */
5811 case on_failure_jump_smart
:
5812 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5813 DEBUG_PRINT ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5816 re_char
*p1
= p
; /* Next operation. */
5817 /* Here, we discard `const', making re_match non-reentrant. */
5818 unsigned char *p2
= (unsigned char*) p
+ mcnt
; /* Jump dest. */
5819 unsigned char *p3
= (unsigned char*) p
- 3; /* opcode location. */
5821 p
-= 3; /* Reset so that we will re-execute the
5822 instruction once it's been changed. */
5824 EXTRACT_NUMBER (mcnt
, p2
- 2);
5826 /* Ensure this is a indeed the trivial kind of loop
5827 we are expecting. */
5828 assert (skip_one_char (p1
) == p2
- 3);
5829 assert ((re_opcode_t
) p2
[-3] == jump
&& p2
+ mcnt
== p
);
5830 DEBUG_STATEMENT (debug
+= 2);
5831 if (mutually_exclusive_p (bufp
, p1
, p2
))
5833 /* Use a fast `on_failure_keep_string_jump' loop. */
5834 DEBUG_PRINT (" smart exclusive => fast loop.\n");
5835 *p3
= (unsigned char) on_failure_keep_string_jump
;
5836 STORE_NUMBER (p2
- 2, mcnt
+ 3);
5840 /* Default to a safe `on_failure_jump' loop. */
5841 DEBUG_PRINT (" smart default => slow loop.\n");
5842 *p3
= (unsigned char) on_failure_jump
;
5844 DEBUG_STATEMENT (debug
-= 2);
5848 /* Unconditionally jump (without popping any failure points). */
5851 IMMEDIATE_QUIT_CHECK
;
5852 EXTRACT_NUMBER_AND_INCR (mcnt
, p
); /* Get the amount to jump. */
5853 DEBUG_PRINT ("EXECUTING jump %d ", mcnt
);
5854 p
+= mcnt
; /* Do the jump. */
5855 DEBUG_PRINT ("(to %p).\n", p
);
5859 /* Have to succeed matching what follows at least n times.
5860 After that, handle like `on_failure_jump'. */
5862 /* Signedness doesn't matter since we only compare MCNT to 0. */
5863 EXTRACT_NUMBER (mcnt
, p
+ 2);
5864 DEBUG_PRINT ("EXECUTING succeed_n %d.\n", mcnt
);
5866 /* Originally, mcnt is how many times we HAVE to succeed. */
5869 /* Here, we discard `const', making re_match non-reentrant. */
5870 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5873 PUSH_NUMBER (p2
, mcnt
);
5876 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5881 /* Signedness doesn't matter since we only compare MCNT to 0. */
5882 EXTRACT_NUMBER (mcnt
, p
+ 2);
5883 DEBUG_PRINT ("EXECUTING jump_n %d.\n", mcnt
);
5885 /* Originally, this is how many times we CAN jump. */
5888 /* Here, we discard `const', making re_match non-reentrant. */
5889 unsigned char *p2
= (unsigned char*) p
+ 2; /* counter loc. */
5891 PUSH_NUMBER (p2
, mcnt
);
5892 goto unconditional_jump
;
5894 /* If don't have to jump any more, skip over the rest of command. */
5901 unsigned char *p2
; /* Location of the counter. */
5902 DEBUG_PRINT ("EXECUTING set_number_at.\n");
5904 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5905 /* Here, we discard `const', making re_match non-reentrant. */
5906 p2
= (unsigned char*) p
+ mcnt
;
5907 /* Signedness doesn't matter since we only copy MCNT's bits. */
5908 EXTRACT_NUMBER_AND_INCR (mcnt
, p
);
5909 DEBUG_PRINT (" Setting %p to %d.\n", p2
, mcnt
);
5910 PUSH_NUMBER (p2
, mcnt
);
5917 boolean
not = (re_opcode_t
) *(p
- 1) == notwordbound
;
5918 DEBUG_PRINT ("EXECUTING %swordbound.\n", not ? "not" : "");
5920 /* We SUCCEED (or FAIL) in one of the following cases: */
5922 /* Case 1: D is at the beginning or the end of string. */
5923 if (AT_STRINGS_BEG (d
) || AT_STRINGS_END (d
))
5927 /* C1 is the character before D, S1 is the syntax of C1, C2
5928 is the character at D, and S2 is the syntax of C2. */
5933 ssize_t offset
= PTR_TO_OFFSET (d
- 1);
5934 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5935 UPDATE_SYNTAX_TABLE (charpos
);
5937 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5940 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
5942 PREFETCH_NOLIMIT ();
5943 GET_CHAR_AFTER (c2
, d
, dummy
);
5946 if (/* Case 2: Only one of S1 and S2 is Sword. */
5947 ((s1
== Sword
) != (s2
== Sword
))
5948 /* Case 3: Both of S1 and S2 are Sword, and macro
5949 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5950 || ((s1
== Sword
) && WORD_BOUNDARY_P (c1
, c2
)))
5960 DEBUG_PRINT ("EXECUTING wordbeg.\n");
5962 /* We FAIL in one of the following cases: */
5964 /* Case 1: D is at the end of string. */
5965 if (AT_STRINGS_END (d
))
5969 /* C1 is the character before D, S1 is the syntax of C1, C2
5970 is the character at D, and S2 is the syntax of C2. */
5975 ssize_t offset
= PTR_TO_OFFSET (d
);
5976 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
5977 UPDATE_SYNTAX_TABLE (charpos
);
5980 GET_CHAR_AFTER (c2
, d
, dummy
);
5983 /* Case 2: S2 is not Sword. */
5987 /* Case 3: D is not at the beginning of string ... */
5988 if (!AT_STRINGS_BEG (d
))
5990 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
5992 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
5996 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5998 if ((s1
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6005 DEBUG_PRINT ("EXECUTING wordend.\n");
6007 /* We FAIL in one of the following cases: */
6009 /* Case 1: D is at the beginning of string. */
6010 if (AT_STRINGS_BEG (d
))
6014 /* C1 is the character before D, S1 is the syntax of C1, C2
6015 is the character at D, and S2 is the syntax of C2. */
6020 ssize_t offset
= PTR_TO_OFFSET (d
) - 1;
6021 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6022 UPDATE_SYNTAX_TABLE (charpos
);
6024 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6027 /* Case 2: S1 is not Sword. */
6031 /* Case 3: D is not at the end of string ... */
6032 if (!AT_STRINGS_END (d
))
6034 PREFETCH_NOLIMIT ();
6035 GET_CHAR_AFTER (c2
, d
, dummy
);
6037 UPDATE_SYNTAX_TABLE_FORWARD (charpos
);
6041 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6043 if ((s2
== Sword
) && !WORD_BOUNDARY_P (c1
, c2
))
6050 DEBUG_PRINT ("EXECUTING symbeg.\n");
6052 /* We FAIL in one of the following cases: */
6054 /* Case 1: D is at the end of string. */
6055 if (AT_STRINGS_END (d
))
6059 /* C1 is the character before D, S1 is the syntax of C1, C2
6060 is the character at D, and S2 is the syntax of C2. */
6064 ssize_t offset
= PTR_TO_OFFSET (d
);
6065 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6066 UPDATE_SYNTAX_TABLE (charpos
);
6069 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6072 /* Case 2: S2 is neither Sword nor Ssymbol. */
6073 if (s2
!= Sword
&& s2
!= Ssymbol
)
6076 /* Case 3: D is not at the beginning of string ... */
6077 if (!AT_STRINGS_BEG (d
))
6079 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6081 UPDATE_SYNTAX_TABLE_BACKWARD (charpos
- 1);
6085 /* ... and S1 is Sword or Ssymbol. */
6086 if (s1
== Sword
|| s1
== Ssymbol
)
6093 DEBUG_PRINT ("EXECUTING symend.\n");
6095 /* We FAIL in one of the following cases: */
6097 /* Case 1: D is at the beginning of string. */
6098 if (AT_STRINGS_BEG (d
))
6102 /* C1 is the character before D, S1 is the syntax of C1, C2
6103 is the character at D, and S2 is the syntax of C2. */
6107 ssize_t offset
= PTR_TO_OFFSET (d
) - 1;
6108 ssize_t charpos
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6109 UPDATE_SYNTAX_TABLE (charpos
);
6111 GET_CHAR_BEFORE_2 (c1
, d
, string1
, end1
, string2
, end2
);
6114 /* Case 2: S1 is neither Ssymbol nor Sword. */
6115 if (s1
!= Sword
&& s1
!= Ssymbol
)
6118 /* Case 3: D is not at the end of string ... */
6119 if (!AT_STRINGS_END (d
))
6121 PREFETCH_NOLIMIT ();
6122 c2
= RE_STRING_CHAR (d
, target_multibyte
);
6124 UPDATE_SYNTAX_TABLE_FORWARD (charpos
+ 1);
6128 /* ... and S2 is Sword or Ssymbol. */
6129 if (s2
== Sword
|| s2
== Ssymbol
)
6138 boolean
not = (re_opcode_t
) *(p
- 1) == notsyntaxspec
;
6140 DEBUG_PRINT ("EXECUTING %ssyntaxspec %d.\n", not ? "not" : "",
6145 ssize_t offset
= PTR_TO_OFFSET (d
);
6146 ssize_t pos1
= SYNTAX_TABLE_BYTE_TO_CHAR (offset
);
6147 UPDATE_SYNTAX_TABLE (pos1
);
6154 GET_CHAR_AFTER (c
, d
, len
);
6155 if ((SYNTAX (c
) != (enum syntaxcode
) mcnt
) ^ not)
6164 DEBUG_PRINT ("EXECUTING before_dot.\n");
6165 if (PTR_BYTE_POS (d
) >= PT_BYTE
)
6170 DEBUG_PRINT ("EXECUTING at_dot.\n");
6171 if (PTR_BYTE_POS (d
) != PT_BYTE
)
6176 DEBUG_PRINT ("EXECUTING after_dot.\n");
6177 if (PTR_BYTE_POS (d
) <= PT_BYTE
)
6182 case notcategoryspec
:
6184 boolean
not = (re_opcode_t
) *(p
- 1) == notcategoryspec
;
6186 DEBUG_PRINT ("EXECUTING %scategoryspec %d.\n",
6187 not ? "not" : "", mcnt
);
6193 GET_CHAR_AFTER (c
, d
, len
);
6194 if ((!CHAR_HAS_CATEGORY (c
, mcnt
)) ^ not)
6206 continue; /* Successfully executed one pattern command; keep going. */
6209 /* We goto here if a matching operation fails. */
6211 IMMEDIATE_QUIT_CHECK
;
6212 if (!FAIL_STACK_EMPTY ())
6215 /* A restart point is known. Restore to that state. */
6216 DEBUG_PRINT ("\nFAIL:\n");
6217 POP_FAILURE_POINT (str
, pat
);
6220 case on_failure_keep_string_jump
:
6221 assert (str
== NULL
);
6222 goto continue_failure_jump
;
6224 case on_failure_jump_nastyloop
:
6225 assert ((re_opcode_t
)pat
[-2] == no_op
);
6226 PUSH_FAILURE_POINT (pat
- 2, str
);
6229 case on_failure_jump_loop
:
6230 case on_failure_jump
:
6233 continue_failure_jump
:
6234 EXTRACT_NUMBER_AND_INCR (mcnt
, pat
);
6239 /* A special frame used for nastyloops. */
6246 assert (p
>= bufp
->buffer
&& p
<= pend
);
6248 if (d
>= string1
&& d
<= end1
)
6252 break; /* Matching at this starting point really fails. */
6256 goto restore_best_regs
;
6260 return -1; /* Failure to match. */
6263 /* Subroutine definitions for re_match_2. */
6265 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6266 bytes; nonzero otherwise. */
6269 bcmp_translate (const_re_char
*s1
, const_re_char
*s2
, register ssize_t len
,
6270 RE_TRANSLATE_TYPE translate
, const int target_multibyte
)
6272 register re_char
*p1
= s1
, *p2
= s2
;
6273 re_char
*p1_end
= s1
+ len
;
6274 re_char
*p2_end
= s2
+ len
;
6276 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6277 different lengths, but relying on a single `len' would break this. -sm */
6278 while (p1
< p1_end
&& p2
< p2_end
)
6280 int p1_charlen
, p2_charlen
;
6281 re_wchar_t p1_ch
, p2_ch
;
6283 GET_CHAR_AFTER (p1_ch
, p1
, p1_charlen
);
6284 GET_CHAR_AFTER (p2_ch
, p2
, p2_charlen
);
6286 if (RE_TRANSLATE (translate
, p1_ch
)
6287 != RE_TRANSLATE (translate
, p2_ch
))
6290 p1
+= p1_charlen
, p2
+= p2_charlen
;
6293 if (p1
!= p1_end
|| p2
!= p2_end
)
6299 /* Entry points for GNU code. */
6301 /* re_compile_pattern is the GNU regular expression compiler: it
6302 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6303 Returns 0 if the pattern was valid, otherwise an error string.
6305 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6306 are set in BUFP on entry.
6308 We call regex_compile to do the actual compilation. */
6311 re_compile_pattern (const char *pattern
, size_t length
,
6312 struct re_pattern_buffer
*bufp
)
6316 /* GNU code is written to assume at least RE_NREGS registers will be set
6317 (and at least one extra will be -1). */
6318 bufp
->regs_allocated
= REGS_UNALLOCATED
;
6320 /* And GNU code determines whether or not to get register information
6321 by passing null for the REGS argument to re_match, etc., not by
6325 ret
= regex_compile ((re_char
*) pattern
, length
, re_syntax_options
, bufp
);
6329 return gettext (re_error_msgid
[(int) ret
]);
6331 WEAK_ALIAS (__re_compile_pattern
, re_compile_pattern
)
6333 /* Entry points compatible with 4.2 BSD regex library. We don't define
6334 them unless specifically requested. */
6336 #if defined _REGEX_RE_COMP || defined _LIBC
6338 /* BSD has one and only one pattern buffer. */
6339 static struct re_pattern_buffer re_comp_buf
;
6343 /* Make these definitions weak in libc, so POSIX programs can redefine
6344 these names if they don't use our functions, and still use
6345 regcomp/regexec below without link errors. */
6348 re_comp (const char *s
)
6354 if (!re_comp_buf
.buffer
)
6355 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6356 return (char *) gettext ("No previous regular expression");
6360 if (!re_comp_buf
.buffer
)
6362 re_comp_buf
.buffer
= malloc (200);
6363 if (re_comp_buf
.buffer
== NULL
)
6364 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6365 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6366 re_comp_buf
.allocated
= 200;
6368 re_comp_buf
.fastmap
= malloc (1 << BYTEWIDTH
);
6369 if (re_comp_buf
.fastmap
== NULL
)
6370 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6371 return (char *) gettext (re_error_msgid
[(int) REG_ESPACE
]);
6374 /* Since `re_exec' always passes NULL for the `regs' argument, we
6375 don't need to initialize the pattern buffer fields which affect it. */
6377 ret
= regex_compile (s
, strlen (s
), re_syntax_options
, &re_comp_buf
);
6382 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6383 return (char *) gettext (re_error_msgid
[(int) ret
]);
6391 re_exec (const char *s
)
6393 const size_t len
= strlen (s
);
6394 return re_search (&re_comp_buf
, s
, len
, 0, len
, 0) >= 0;
6396 #endif /* _REGEX_RE_COMP */
6398 /* POSIX.2 functions. Don't define these for Emacs. */
6402 /* regcomp takes a regular expression as a string and compiles it.
6404 PREG is a regex_t *. We do not expect any fields to be initialized,
6405 since POSIX says we shouldn't. Thus, we set
6407 `buffer' to the compiled pattern;
6408 `used' to the length of the compiled pattern;
6409 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6410 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6411 RE_SYNTAX_POSIX_BASIC;
6412 `fastmap' to an allocated space for the fastmap;
6413 `fastmap_accurate' to zero;
6414 `re_nsub' to the number of subexpressions in PATTERN.
6416 PATTERN is the address of the pattern string.
6418 CFLAGS is a series of bits which affect compilation.
6420 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6421 use POSIX basic syntax.
6423 If REG_NEWLINE is set, then . and [^...] don't match newline.
6424 Also, regexec will try a match beginning after every newline.
6426 If REG_ICASE is set, then we considers upper- and lowercase
6427 versions of letters to be equivalent when matching.
6429 If REG_NOSUB is set, then when PREG is passed to regexec, that
6430 routine will report only success or failure, and nothing about the
6433 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6434 the return codes and their meanings.) */
6437 regcomp (regex_t
*_Restrict_ preg
, const char *_Restrict_ pattern
,
6442 = (cflags
& REG_EXTENDED
) ?
6443 RE_SYNTAX_POSIX_EXTENDED
: RE_SYNTAX_POSIX_BASIC
;
6445 /* regex_compile will allocate the space for the compiled pattern. */
6447 preg
->allocated
= 0;
6450 /* Try to allocate space for the fastmap. */
6451 preg
->fastmap
= malloc (1 << BYTEWIDTH
);
6453 if (cflags
& REG_ICASE
)
6457 preg
->translate
= malloc (CHAR_SET_SIZE
* sizeof *preg
->translate
);
6458 if (preg
->translate
== NULL
)
6459 return (int) REG_ESPACE
;
6461 /* Map uppercase characters to corresponding lowercase ones. */
6462 for (i
= 0; i
< CHAR_SET_SIZE
; i
++)
6463 preg
->translate
[i
] = ISUPPER (i
) ? TOLOWER (i
) : i
;
6466 preg
->translate
= NULL
;
6468 /* If REG_NEWLINE is set, newlines are treated differently. */
6469 if (cflags
& REG_NEWLINE
)
6470 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6471 syntax
&= ~RE_DOT_NEWLINE
;
6472 syntax
|= RE_HAT_LISTS_NOT_NEWLINE
;
6475 syntax
|= RE_NO_NEWLINE_ANCHOR
;
6477 preg
->no_sub
= !!(cflags
& REG_NOSUB
);
6479 /* POSIX says a null character in the pattern terminates it, so we
6480 can use strlen here in compiling the pattern. */
6481 ret
= regex_compile ((re_char
*) pattern
, strlen (pattern
), syntax
, preg
);
6483 /* POSIX doesn't distinguish between an unmatched open-group and an
6484 unmatched close-group: both are REG_EPAREN. */
6485 if (ret
== REG_ERPAREN
)
6488 if (ret
== REG_NOERROR
&& preg
->fastmap
)
6489 { /* Compute the fastmap now, since regexec cannot modify the pattern
6491 re_compile_fastmap (preg
);
6492 if (preg
->can_be_null
)
6493 { /* The fastmap can't be used anyway. */
6494 free (preg
->fastmap
);
6495 preg
->fastmap
= NULL
;
6500 WEAK_ALIAS (__regcomp
, regcomp
)
6503 /* regexec searches for a given pattern, specified by PREG, in the
6506 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6507 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6508 least NMATCH elements, and we set them to the offsets of the
6509 corresponding matched substrings.
6511 EFLAGS specifies `execution flags' which affect matching: if
6512 REG_NOTBOL is set, then ^ does not match at the beginning of the
6513 string; if REG_NOTEOL is set, then $ does not match at the end.
6515 We return 0 if we find a match and REG_NOMATCH if not. */
6518 regexec (const regex_t
*_Restrict_ preg
, const char *_Restrict_ string
,
6519 size_t nmatch
, regmatch_t pmatch
[_Restrict_arr_
], int eflags
)
6522 struct re_registers regs
;
6523 regex_t private_preg
;
6524 size_t len
= strlen (string
);
6525 boolean want_reg_info
= !preg
->no_sub
&& nmatch
> 0 && pmatch
;
6527 private_preg
= *preg
;
6529 private_preg
.not_bol
= !!(eflags
& REG_NOTBOL
);
6530 private_preg
.not_eol
= !!(eflags
& REG_NOTEOL
);
6532 /* The user has told us exactly how many registers to return
6533 information about, via `nmatch'. We have to pass that on to the
6534 matching routines. */
6535 private_preg
.regs_allocated
= REGS_FIXED
;
6539 regs
.num_regs
= nmatch
;
6540 regs
.start
= TALLOC (nmatch
* 2, regoff_t
);
6541 if (regs
.start
== NULL
)
6543 regs
.end
= regs
.start
+ nmatch
;
6546 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6547 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6548 was a little bit longer but still only matching the real part.
6549 This works because the `endline' will check for a '\n' and will find a
6550 '\0', correctly deciding that this is not the end of a line.
6551 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6552 a convenient '\0' there. For all we know, the string could be preceded
6553 by '\n' which would throw things off. */
6555 /* Perform the searching operation. */
6556 ret
= re_search (&private_preg
, string
, len
,
6557 /* start: */ 0, /* range: */ len
,
6558 want_reg_info
? ®s
: 0);
6560 /* Copy the register information to the POSIX structure. */
6567 for (r
= 0; r
< nmatch
; r
++)
6569 pmatch
[r
].rm_so
= regs
.start
[r
];
6570 pmatch
[r
].rm_eo
= regs
.end
[r
];
6574 /* If we needed the temporary register info, free the space now. */
6578 /* We want zero return to mean success, unlike `re_search'. */
6579 return ret
>= 0 ? REG_NOERROR
: REG_NOMATCH
;
6581 WEAK_ALIAS (__regexec
, regexec
)
6584 /* Returns a message corresponding to an error code, ERR_CODE, returned
6585 from either regcomp or regexec. We don't use PREG here.
6587 ERR_CODE was previously called ERRCODE, but that name causes an
6588 error with msvc8 compiler. */
6591 regerror (int err_code
, const regex_t
*preg
, char *errbuf
, size_t errbuf_size
)
6597 || err_code
>= (sizeof (re_error_msgid
) / sizeof (re_error_msgid
[0])))
6598 /* Only error codes returned by the rest of the code should be passed
6599 to this routine. If we are given anything else, or if other regex
6600 code generates an invalid error code, then the program has a bug.
6601 Dump core so we can fix it. */
6604 msg
= gettext (re_error_msgid
[err_code
]);
6606 msg_size
= strlen (msg
) + 1; /* Includes the null. */
6608 if (errbuf_size
!= 0)
6610 if (msg_size
> errbuf_size
)
6612 memcpy (errbuf
, msg
, errbuf_size
- 1);
6613 errbuf
[errbuf_size
- 1] = 0;
6616 strcpy (errbuf
, msg
);
6621 WEAK_ALIAS (__regerror
, regerror
)
6624 /* Free dynamically allocated space used by PREG. */
6627 regfree (regex_t
*preg
)
6629 free (preg
->buffer
);
6630 preg
->buffer
= NULL
;
6632 preg
->allocated
= 0;
6635 free (preg
->fastmap
);
6636 preg
->fastmap
= NULL
;
6637 preg
->fastmap_accurate
= 0;
6639 free (preg
->translate
);
6640 preg
->translate
= NULL
;
6642 WEAK_ALIAS (__regfree
, regfree
)
6644 #endif /* not emacs */