* lisp/net/ange-ftp.el: Use lexical-binding
[emacs.git] / src / regex.c
blobd3d910daaa310a4b85f8fb0b9c92a1290685c1cc
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
5 Copyright (C) 1993-2017 Free Software Foundation, Inc.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <https://www.gnu.org/licenses/>. */
20 /* TODO:
21 - structure the opcode space into opcode+flag.
22 - merge with glibc's regex.[ch].
23 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
24 need to modify the compiled regexp so that re_match can be reentrant.
25 - get rid of on_failure_jump_smart by doing the optimization in re_comp
26 rather than at run-time, so that re_match can be reentrant.
29 /* AIX requires this to be the first thing in the file. */
30 #if defined _AIX && !defined REGEX_MALLOC
31 #pragma alloca
32 #endif
34 /* Ignore some GCC warnings for now. This section should go away
35 once the Emacs and Gnulib regex code is merged. */
36 #if 4 < __GNUC__ + (5 <= __GNUC_MINOR__) || defined __clang__
37 # pragma GCC diagnostic ignored "-Wstrict-overflow"
38 # ifndef emacs
39 # pragma GCC diagnostic ignored "-Wunused-function"
40 # pragma GCC diagnostic ignored "-Wunused-macros"
41 # pragma GCC diagnostic ignored "-Wunused-result"
42 # pragma GCC diagnostic ignored "-Wunused-variable"
43 # endif
44 #endif
46 #if 4 < __GNUC__ + (6 <= __GNUC_MINOR__) && ! defined __clang__
47 # pragma GCC diagnostic ignored "-Wunused-but-set-variable"
48 #endif
50 #include <config.h>
52 #include <stddef.h>
53 #include <stdlib.h>
55 #ifdef emacs
56 /* We need this for `regex.h', and perhaps for the Emacs include files. */
57 # include <sys/types.h>
58 #endif
60 /* Whether to use ISO C Amendment 1 wide char functions.
61 Those should not be used for Emacs since it uses its own. */
62 #if defined _LIBC
63 #define WIDE_CHAR_SUPPORT 1
64 #else
65 #define WIDE_CHAR_SUPPORT \
66 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
67 #endif
69 /* For platform which support the ISO C amendment 1 functionality we
70 support user defined character classes. */
71 #if WIDE_CHAR_SUPPORT
72 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
73 # include <wchar.h>
74 # include <wctype.h>
75 #endif
77 #ifdef _LIBC
78 /* We have to keep the namespace clean. */
79 # define regfree(preg) __regfree (preg)
80 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
81 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
82 # define regerror(err_code, preg, errbuf, errbuf_size) \
83 __regerror (err_code, preg, errbuf, errbuf_size)
84 # define re_set_registers(bu, re, nu, st, en) \
85 __re_set_registers (bu, re, nu, st, en)
86 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
87 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
88 # define re_match(bufp, string, size, pos, regs) \
89 __re_match (bufp, string, size, pos, regs)
90 # define re_search(bufp, string, size, startpos, range, regs) \
91 __re_search (bufp, string, size, startpos, range, regs)
92 # define re_compile_pattern(pattern, length, bufp) \
93 __re_compile_pattern (pattern, length, bufp)
94 # define re_set_syntax(syntax) __re_set_syntax (syntax)
95 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
96 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
97 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
99 /* Make sure we call libc's function even if the user overrides them. */
100 # define btowc __btowc
101 # define iswctype __iswctype
102 # define wctype __wctype
104 # define WEAK_ALIAS(a,b) weak_alias (a, b)
106 /* We are also using some library internals. */
107 # include <locale/localeinfo.h>
108 # include <locale/elem-hash.h>
109 # include <langinfo.h>
110 #else
111 # define WEAK_ALIAS(a,b)
112 #endif
114 /* This is for other GNU distributions with internationalized messages. */
115 #if HAVE_LIBINTL_H || defined _LIBC
116 # include <libintl.h>
117 #else
118 # define gettext(msgid) (msgid)
119 #endif
121 #ifndef gettext_noop
122 /* This define is so xgettext can find the internationalizable
123 strings. */
124 # define gettext_noop(String) String
125 #endif
127 /* The `emacs' switch turns on certain matching commands
128 that make sense only in Emacs. */
129 #ifdef emacs
131 # include "lisp.h"
132 # include "character.h"
133 # include "buffer.h"
135 # include "syntax.h"
136 # include "category.h"
138 /* Make syntax table lookup grant data in gl_state. */
139 # define SYNTAX(c) syntax_property (c, 1)
141 # ifdef malloc
142 # undef malloc
143 # endif
144 # define malloc xmalloc
145 # ifdef realloc
146 # undef realloc
147 # endif
148 # define realloc xrealloc
149 # ifdef free
150 # undef free
151 # endif
152 # define free xfree
154 /* Converts the pointer to the char to BEG-based offset from the start. */
155 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
156 /* Strings are 0-indexed, buffers are 1-indexed; we pun on the boolean
157 result to get the right base index. */
158 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
160 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
161 # define RE_TARGET_MULTIBYTE_P(bufp) ((bufp)->target_multibyte)
162 # define RE_STRING_CHAR(p, multibyte) \
163 (multibyte ? (STRING_CHAR (p)) : (*(p)))
164 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) \
165 (multibyte ? (STRING_CHAR_AND_LENGTH (p, len)) : ((len) = 1, *(p)))
167 # define RE_CHAR_TO_MULTIBYTE(c) UNIBYTE_TO_CHAR (c)
169 # define RE_CHAR_TO_UNIBYTE(c) CHAR_TO_BYTE_SAFE (c)
171 /* Set C a (possibly converted to multibyte) character before P. P
172 points into a string which is the virtual concatenation of STR1
173 (which ends at END1) or STR2 (which ends at END2). */
174 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
175 do { \
176 if (target_multibyte) \
178 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
179 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
180 while (dtemp-- > dlimit && !CHAR_HEAD_P (*dtemp)); \
181 c = STRING_CHAR (dtemp); \
183 else \
185 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
186 (c) = RE_CHAR_TO_MULTIBYTE (c); \
188 } while (0)
190 /* Set C a (possibly converted to multibyte) character at P, and set
191 LEN to the byte length of that character. */
192 # define GET_CHAR_AFTER(c, p, len) \
193 do { \
194 if (target_multibyte) \
195 (c) = STRING_CHAR_AND_LENGTH (p, len); \
196 else \
198 (c) = *p; \
199 len = 1; \
200 (c) = RE_CHAR_TO_MULTIBYTE (c); \
202 } while (0)
204 #else /* not emacs */
206 /* If we are not linking with Emacs proper,
207 we can't use the relocating allocator
208 even if config.h says that we can. */
209 # undef REL_ALLOC
211 # include <unistd.h>
213 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
215 static void *
216 xmalloc (size_t size)
218 void *val = malloc (size);
219 if (!val && size)
221 write (STDERR_FILENO, "virtual memory exhausted\n", 25);
222 exit (1);
224 return val;
227 static void *
228 xrealloc (void *block, size_t size)
230 void *val;
231 /* We must call malloc explicitly when BLOCK is 0, since some
232 reallocs don't do this. */
233 if (! block)
234 val = malloc (size);
235 else
236 val = realloc (block, size);
237 if (!val && size)
239 write (STDERR_FILENO, "virtual memory exhausted\n", 25);
240 exit (1);
242 return val;
245 # ifdef malloc
246 # undef malloc
247 # endif
248 # define malloc xmalloc
249 # ifdef realloc
250 # undef realloc
251 # endif
252 # define realloc xrealloc
254 # include <stdbool.h>
255 # include <string.h>
257 /* Define the syntax stuff for \<, \>, etc. */
259 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
260 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
262 /* Dummy macros for non-Emacs environments. */
263 # define MAX_MULTIBYTE_LENGTH 1
264 # define RE_MULTIBYTE_P(x) 0
265 # define RE_TARGET_MULTIBYTE_P(x) 0
266 # define WORD_BOUNDARY_P(c1, c2) (0)
267 # define BYTES_BY_CHAR_HEAD(p) (1)
268 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
269 # define STRING_CHAR(p) (*(p))
270 # define RE_STRING_CHAR(p, multibyte) STRING_CHAR (p)
271 # define CHAR_STRING(c, s) (*(s) = (c), 1)
272 # define STRING_CHAR_AND_LENGTH(p, actual_len) ((actual_len) = 1, *(p))
273 # define RE_STRING_CHAR_AND_LENGTH(p, len, multibyte) STRING_CHAR_AND_LENGTH (p, len)
274 # define RE_CHAR_TO_MULTIBYTE(c) (c)
275 # define RE_CHAR_TO_UNIBYTE(c) (c)
276 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
277 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
278 # define GET_CHAR_AFTER(c, p, len) \
279 (c = *p, len = 1)
280 # define CHAR_BYTE8_P(c) (0)
281 # define CHAR_LEADING_CODE(c) (c)
283 #endif /* not emacs */
285 #ifndef RE_TRANSLATE
286 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
287 # define RE_TRANSLATE_P(TBL) (TBL)
288 #endif
290 /* Get the interface, including the syntax bits. */
291 #include "regex.h"
293 /* isalpha etc. are used for the character classes. */
294 #include <ctype.h>
296 #ifdef emacs
298 /* 1 if C is an ASCII character. */
299 # define IS_REAL_ASCII(c) ((c) < 0200)
301 /* 1 if C is a unibyte character. */
302 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
304 /* The Emacs definitions should not be directly affected by locales. */
306 /* In Emacs, these are only used for single-byte characters. */
307 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
308 # define ISCNTRL(c) ((c) < ' ')
309 # define ISXDIGIT(c) (0 <= char_hexdigit (c))
311 /* The rest must handle multibyte characters. */
313 # define ISBLANK(c) (IS_REAL_ASCII (c) \
314 ? ((c) == ' ' || (c) == '\t') \
315 : blankp (c))
317 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
318 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0240) \
319 : graphicp (c))
321 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
322 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
323 : printablep (c))
325 # define ISALNUM(c) (IS_REAL_ASCII (c) \
326 ? (((c) >= 'a' && (c) <= 'z') \
327 || ((c) >= 'A' && (c) <= 'Z') \
328 || ((c) >= '0' && (c) <= '9')) \
329 : alphanumericp (c))
331 # define ISALPHA(c) (IS_REAL_ASCII (c) \
332 ? (((c) >= 'a' && (c) <= 'z') \
333 || ((c) >= 'A' && (c) <= 'Z')) \
334 : alphabeticp (c))
336 # define ISLOWER(c) lowercasep (c)
338 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
339 ? ((c) > ' ' && (c) < 0177 \
340 && !(((c) >= 'a' && (c) <= 'z') \
341 || ((c) >= 'A' && (c) <= 'Z') \
342 || ((c) >= '0' && (c) <= '9'))) \
343 : SYNTAX (c) != Sword)
345 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
347 # define ISUPPER(c) uppercasep (c)
349 # define ISWORD(c) (SYNTAX (c) == Sword)
351 #else /* not emacs */
353 /* 1 if C is an ASCII character. */
354 # define IS_REAL_ASCII(c) ((c) < 0200)
356 /* This distinction is not meaningful, except in Emacs. */
357 # define ISUNIBYTE(c) 1
359 # ifdef isblank
360 # define ISBLANK(c) isblank (c)
361 # else
362 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
363 # endif
364 # ifdef isgraph
365 # define ISGRAPH(c) isgraph (c)
366 # else
367 # define ISGRAPH(c) (isprint (c) && !isspace (c))
368 # endif
370 /* Solaris defines ISPRINT so we must undefine it first. */
371 # undef ISPRINT
372 # define ISPRINT(c) isprint (c)
373 # define ISDIGIT(c) isdigit (c)
374 # define ISALNUM(c) isalnum (c)
375 # define ISALPHA(c) isalpha (c)
376 # define ISCNTRL(c) iscntrl (c)
377 # define ISLOWER(c) islower (c)
378 # define ISPUNCT(c) ispunct (c)
379 # define ISSPACE(c) isspace (c)
380 # define ISUPPER(c) isupper (c)
381 # define ISXDIGIT(c) isxdigit (c)
383 # define ISWORD(c) ISALPHA (c)
385 # ifdef _tolower
386 # define TOLOWER(c) _tolower (c)
387 # else
388 # define TOLOWER(c) tolower (c)
389 # endif
391 /* How many characters in the character set. */
392 # define CHAR_SET_SIZE 256
394 # ifdef SYNTAX_TABLE
396 extern char *re_syntax_table;
398 # else /* not SYNTAX_TABLE */
400 static char re_syntax_table[CHAR_SET_SIZE];
402 static void
403 init_syntax_once (void)
405 register int c;
406 static int done = 0;
408 if (done)
409 return;
411 memset (re_syntax_table, 0, sizeof re_syntax_table);
413 for (c = 0; c < CHAR_SET_SIZE; ++c)
414 if (ISALNUM (c))
415 re_syntax_table[c] = Sword;
417 re_syntax_table['_'] = Ssymbol;
419 done = 1;
422 # endif /* not SYNTAX_TABLE */
424 # define SYNTAX(c) re_syntax_table[(c)]
426 #endif /* not emacs */
428 #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
430 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
431 use `alloca' instead of `malloc'. This is because using malloc in
432 re_search* or re_match* could cause memory leaks when C-g is used
433 in Emacs (note that SAFE_ALLOCA could also call malloc, but does so
434 via `record_xmalloc' which uses `unwind_protect' to ensure the
435 memory is freed even in case of non-local exits); also, malloc is
436 slower and causes storage fragmentation. On the other hand, malloc
437 is more portable, and easier to debug.
439 Because we sometimes use alloca, some routines have to be macros,
440 not functions -- `alloca'-allocated space disappears at the end of the
441 function it is called in. */
443 #ifdef REGEX_MALLOC
445 # define REGEX_ALLOCATE malloc
446 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
447 # define REGEX_FREE free
449 #else /* not REGEX_MALLOC */
451 # ifdef emacs
452 /* This may be adjusted in main(), if the stack is successfully grown. */
453 ptrdiff_t emacs_re_safe_alloca = MAX_ALLOCA;
454 /* Like USE_SAFE_ALLOCA, but use emacs_re_safe_alloca. */
455 # define REGEX_USE_SAFE_ALLOCA \
456 ptrdiff_t sa_avail = emacs_re_safe_alloca; \
457 ptrdiff_t sa_count = SPECPDL_INDEX (); bool sa_must_free = false
459 # define REGEX_SAFE_FREE() SAFE_FREE ()
460 # define REGEX_ALLOCATE SAFE_ALLOCA
461 # else
462 # include <alloca.h>
463 # define REGEX_ALLOCATE alloca
464 # endif
466 /* Assumes a `char *destination' variable. */
467 # define REGEX_REALLOCATE(source, osize, nsize) \
468 (destination = REGEX_ALLOCATE (nsize), \
469 memcpy (destination, source, osize))
471 /* No need to do anything to free, after alloca. */
472 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
474 #endif /* not REGEX_MALLOC */
476 #ifndef REGEX_USE_SAFE_ALLOCA
477 # define REGEX_USE_SAFE_ALLOCA ((void) 0)
478 # define REGEX_SAFE_FREE() ((void) 0)
479 #endif
481 /* Define how to allocate the failure stack. */
483 #if defined REL_ALLOC && defined REGEX_MALLOC
485 # define REGEX_ALLOCATE_STACK(size) \
486 r_alloc (&failure_stack_ptr, (size))
487 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
488 r_re_alloc (&failure_stack_ptr, (nsize))
489 # define REGEX_FREE_STACK(ptr) \
490 r_alloc_free (&failure_stack_ptr)
492 #else /* not using relocating allocator */
494 # define REGEX_ALLOCATE_STACK(size) REGEX_ALLOCATE (size)
495 # define REGEX_REALLOCATE_STACK(source, o, n) REGEX_REALLOCATE (source, o, n)
496 # define REGEX_FREE_STACK(ptr) REGEX_FREE (ptr)
498 #endif /* not using relocating allocator */
501 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
502 `string1' or just past its end. This works if PTR is NULL, which is
503 a good thing. */
504 #define FIRST_STRING_P(ptr) \
505 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
507 /* (Re)Allocate N items of type T using malloc, or fail. */
508 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
509 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
510 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
512 #define BYTEWIDTH 8 /* In bits. */
514 #ifndef emacs
515 # undef max
516 # undef min
517 # define max(a, b) ((a) > (b) ? (a) : (b))
518 # define min(a, b) ((a) < (b) ? (a) : (b))
519 #endif
521 /* Type of source-pattern and string chars. */
522 typedef const unsigned char re_char;
524 typedef char boolean;
526 static regoff_t re_match_2_internal (struct re_pattern_buffer *bufp,
527 re_char *string1, size_t size1,
528 re_char *string2, size_t size2,
529 ssize_t pos,
530 struct re_registers *regs,
531 ssize_t stop);
533 /* These are the command codes that appear in compiled regular
534 expressions. Some opcodes are followed by argument bytes. A
535 command code can specify any interpretation whatsoever for its
536 arguments. Zero bytes may appear in the compiled regular expression. */
538 typedef enum
540 no_op = 0,
542 /* Succeed right away--no more backtracking. */
543 succeed,
545 /* Followed by one byte giving n, then by n literal bytes. */
546 exactn,
548 /* Matches any (more or less) character. */
549 anychar,
551 /* Matches any one char belonging to specified set. First
552 following byte is number of bitmap bytes. Then come bytes
553 for a bitmap saying which chars are in. Bits in each byte
554 are ordered low-bit-first. A character is in the set if its
555 bit is 1. A character too large to have a bit in the map is
556 automatically not in the set.
558 If the length byte has the 0x80 bit set, then that stuff
559 is followed by a range table:
560 2 bytes of flags for character sets (low 8 bits, high 8 bits)
561 See RANGE_TABLE_WORK_BITS below.
562 2 bytes, the number of pairs that follow (upto 32767)
563 pairs, each 2 multibyte characters,
564 each multibyte character represented as 3 bytes. */
565 charset,
567 /* Same parameters as charset, but match any character that is
568 not one of those specified. */
569 charset_not,
571 /* Start remembering the text that is matched, for storing in a
572 register. Followed by one byte with the register number, in
573 the range 0 to one less than the pattern buffer's re_nsub
574 field. */
575 start_memory,
577 /* Stop remembering the text that is matched and store it in a
578 memory register. Followed by one byte with the register
579 number, in the range 0 to one less than `re_nsub' in the
580 pattern buffer. */
581 stop_memory,
583 /* Match a duplicate of something remembered. Followed by one
584 byte containing the register number. */
585 duplicate,
587 /* Fail unless at beginning of line. */
588 begline,
590 /* Fail unless at end of line. */
591 endline,
593 /* Succeeds if at beginning of buffer (if emacs) or at beginning
594 of string to be matched (if not). */
595 begbuf,
597 /* Analogously, for end of buffer/string. */
598 endbuf,
600 /* Followed by two byte relative address to which to jump. */
601 jump,
603 /* Followed by two-byte relative address of place to resume at
604 in case of failure. */
605 on_failure_jump,
607 /* Like on_failure_jump, but pushes a placeholder instead of the
608 current string position when executed. */
609 on_failure_keep_string_jump,
611 /* Just like `on_failure_jump', except that it checks that we
612 don't get stuck in an infinite loop (matching an empty string
613 indefinitely). */
614 on_failure_jump_loop,
616 /* Just like `on_failure_jump_loop', except that it checks for
617 a different kind of loop (the kind that shows up with non-greedy
618 operators). This operation has to be immediately preceded
619 by a `no_op'. */
620 on_failure_jump_nastyloop,
622 /* A smart `on_failure_jump' used for greedy * and + operators.
623 It analyzes the loop before which it is put and if the
624 loop does not require backtracking, it changes itself to
625 `on_failure_keep_string_jump' and short-circuits the loop,
626 else it just defaults to changing itself into `on_failure_jump'.
627 It assumes that it is pointing to just past a `jump'. */
628 on_failure_jump_smart,
630 /* Followed by two-byte relative address and two-byte number n.
631 After matching N times, jump to the address upon failure.
632 Does not work if N starts at 0: use on_failure_jump_loop
633 instead. */
634 succeed_n,
636 /* Followed by two-byte relative address, and two-byte number n.
637 Jump to the address N times, then fail. */
638 jump_n,
640 /* Set the following two-byte relative address to the
641 subsequent two-byte number. The address *includes* the two
642 bytes of number. */
643 set_number_at,
645 wordbeg, /* Succeeds if at word beginning. */
646 wordend, /* Succeeds if at word end. */
648 wordbound, /* Succeeds if at a word boundary. */
649 notwordbound, /* Succeeds if not at a word boundary. */
651 symbeg, /* Succeeds if at symbol beginning. */
652 symend, /* Succeeds if at symbol end. */
654 /* Matches any character whose syntax is specified. Followed by
655 a byte which contains a syntax code, e.g., Sword. */
656 syntaxspec,
658 /* Matches any character whose syntax is not that specified. */
659 notsyntaxspec
661 #ifdef emacs
662 , at_dot, /* Succeeds if at point. */
664 /* Matches any character whose category-set contains the specified
665 category. The operator is followed by a byte which contains a
666 category code (mnemonic ASCII character). */
667 categoryspec,
669 /* Matches any character whose category-set does not contain the
670 specified category. The operator is followed by a byte which
671 contains the category code (mnemonic ASCII character). */
672 notcategoryspec
673 #endif /* emacs */
674 } re_opcode_t;
676 /* Common operations on the compiled pattern. */
678 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
680 #define STORE_NUMBER(destination, number) \
681 do { \
682 (destination)[0] = (number) & 0377; \
683 (destination)[1] = (number) >> 8; \
684 } while (0)
686 /* Same as STORE_NUMBER, except increment DESTINATION to
687 the byte after where the number is stored. Therefore, DESTINATION
688 must be an lvalue. */
690 #define STORE_NUMBER_AND_INCR(destination, number) \
691 do { \
692 STORE_NUMBER (destination, number); \
693 (destination) += 2; \
694 } while (0)
696 /* Put into DESTINATION a number stored in two contiguous bytes starting
697 at SOURCE. */
699 #define EXTRACT_NUMBER(destination, source) \
700 ((destination) = extract_number (source))
702 static int
703 extract_number (re_char *source)
705 unsigned leading_byte = SIGN_EXTEND_CHAR (source[1]);
706 return (leading_byte << 8) + source[0];
709 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
710 SOURCE must be an lvalue. */
712 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
713 ((destination) = extract_number_and_incr (&source))
715 static int
716 extract_number_and_incr (re_char **source)
718 int num = extract_number (*source);
719 *source += 2;
720 return num;
723 /* Store a multibyte character in three contiguous bytes starting
724 DESTINATION, and increment DESTINATION to the byte after where the
725 character is stored. Therefore, DESTINATION must be an lvalue. */
727 #define STORE_CHARACTER_AND_INCR(destination, character) \
728 do { \
729 (destination)[0] = (character) & 0377; \
730 (destination)[1] = ((character) >> 8) & 0377; \
731 (destination)[2] = (character) >> 16; \
732 (destination) += 3; \
733 } while (0)
735 /* Put into DESTINATION a character stored in three contiguous bytes
736 starting at SOURCE. */
738 #define EXTRACT_CHARACTER(destination, source) \
739 do { \
740 (destination) = ((source)[0] \
741 | ((source)[1] << 8) \
742 | ((source)[2] << 16)); \
743 } while (0)
746 /* Macros for charset. */
748 /* Size of bitmap of charset P in bytes. P is a start of charset,
749 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
750 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
752 /* Nonzero if charset P has range table. */
753 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
755 /* Return the address of range table of charset P. But not the start
756 of table itself, but the before where the number of ranges is
757 stored. `2 +' means to skip re_opcode_t and size of bitmap,
758 and the 2 bytes of flags at the start of the range table. */
759 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
761 #ifdef emacs
762 /* Extract the bit flags that start a range table. */
763 #define CHARSET_RANGE_TABLE_BITS(p) \
764 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
765 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
766 #endif
768 /* Return the address of end of RANGE_TABLE. COUNT is number of
769 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
770 is start of range and end of range. `* 3' is size of each start
771 and end. */
772 #define CHARSET_RANGE_TABLE_END(range_table, count) \
773 ((range_table) + (count) * 2 * 3)
775 /* If DEBUG is defined, Regex prints many voluminous messages about what
776 it is doing (if the variable `debug' is nonzero). If linked with the
777 main program in `iregex.c', you can enter patterns and strings
778 interactively. And if linked with the main program in `main.c' and
779 the other test files, you can run the already-written tests. */
781 #ifdef DEBUG
783 /* We use standard I/O for debugging. */
784 # include <stdio.h>
786 /* It is useful to test things that ``must'' be true when debugging. */
787 # include <assert.h>
789 static int debug = -100000;
791 # define DEBUG_STATEMENT(e) e
792 # define DEBUG_PRINT(...) if (debug > 0) printf (__VA_ARGS__)
793 # define DEBUG_COMPILES_ARGUMENTS
794 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
795 if (debug > 0) print_partial_compiled_pattern (s, e)
796 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
797 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
800 /* Print the fastmap in human-readable form. */
802 static void
803 print_fastmap (char *fastmap)
805 unsigned was_a_range = 0;
806 unsigned i = 0;
808 while (i < (1 << BYTEWIDTH))
810 if (fastmap[i++])
812 was_a_range = 0;
813 putchar (i - 1);
814 while (i < (1 << BYTEWIDTH) && fastmap[i])
816 was_a_range = 1;
817 i++;
819 if (was_a_range)
821 printf ("-");
822 putchar (i - 1);
826 putchar ('\n');
830 /* Print a compiled pattern string in human-readable form, starting at
831 the START pointer into it and ending just before the pointer END. */
833 static void
834 print_partial_compiled_pattern (re_char *start, re_char *end)
836 int mcnt, mcnt2;
837 re_char *p = start;
838 re_char *pend = end;
840 if (start == NULL)
842 fprintf (stderr, "(null)\n");
843 return;
846 /* Loop over pattern commands. */
847 while (p < pend)
849 fprintf (stderr, "%td:\t", p - start);
851 switch ((re_opcode_t) *p++)
853 case no_op:
854 fprintf (stderr, "/no_op");
855 break;
857 case succeed:
858 fprintf (stderr, "/succeed");
859 break;
861 case exactn:
862 mcnt = *p++;
863 fprintf (stderr, "/exactn/%d", mcnt);
866 fprintf (stderr, "/%c", *p++);
868 while (--mcnt);
869 break;
871 case start_memory:
872 fprintf (stderr, "/start_memory/%d", *p++);
873 break;
875 case stop_memory:
876 fprintf (stderr, "/stop_memory/%d", *p++);
877 break;
879 case duplicate:
880 fprintf (stderr, "/duplicate/%d", *p++);
881 break;
883 case anychar:
884 fprintf (stderr, "/anychar");
885 break;
887 case charset:
888 case charset_not:
890 register int c, last = -100;
891 register int in_range = 0;
892 int length = CHARSET_BITMAP_SIZE (p - 1);
893 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
895 fprintf (stderr, "/charset [%s",
896 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
898 if (p + *p >= pend)
899 fprintf (stderr, " !extends past end of pattern! ");
901 for (c = 0; c < 256; c++)
902 if (c / 8 < length
903 && (p[1 + (c/8)] & (1 << (c % 8))))
905 /* Are we starting a range? */
906 if (last + 1 == c && ! in_range)
908 fprintf (stderr, "-");
909 in_range = 1;
911 /* Have we broken a range? */
912 else if (last + 1 != c && in_range)
914 fprintf (stderr, "%c", last);
915 in_range = 0;
918 if (! in_range)
919 fprintf (stderr, "%c", c);
921 last = c;
924 if (in_range)
925 fprintf (stderr, "%c", last);
927 fprintf (stderr, "]");
929 p += 1 + length;
931 if (has_range_table)
933 int count;
934 fprintf (stderr, "has-range-table");
936 /* ??? Should print the range table; for now, just skip it. */
937 p += 2; /* skip range table bits */
938 EXTRACT_NUMBER_AND_INCR (count, p);
939 p = CHARSET_RANGE_TABLE_END (p, count);
942 break;
944 case begline:
945 fprintf (stderr, "/begline");
946 break;
948 case endline:
949 fprintf (stderr, "/endline");
950 break;
952 case on_failure_jump:
953 EXTRACT_NUMBER_AND_INCR (mcnt, p);
954 fprintf (stderr, "/on_failure_jump to %td", p + mcnt - start);
955 break;
957 case on_failure_keep_string_jump:
958 EXTRACT_NUMBER_AND_INCR (mcnt, p);
959 fprintf (stderr, "/on_failure_keep_string_jump to %td",
960 p + mcnt - start);
961 break;
963 case on_failure_jump_nastyloop:
964 EXTRACT_NUMBER_AND_INCR (mcnt, p);
965 fprintf (stderr, "/on_failure_jump_nastyloop to %td",
966 p + mcnt - start);
967 break;
969 case on_failure_jump_loop:
970 EXTRACT_NUMBER_AND_INCR (mcnt, p);
971 fprintf (stderr, "/on_failure_jump_loop to %td",
972 p + mcnt - start);
973 break;
975 case on_failure_jump_smart:
976 EXTRACT_NUMBER_AND_INCR (mcnt, p);
977 fprintf (stderr, "/on_failure_jump_smart to %td",
978 p + mcnt - start);
979 break;
981 case jump:
982 EXTRACT_NUMBER_AND_INCR (mcnt, p);
983 fprintf (stderr, "/jump to %td", p + mcnt - start);
984 break;
986 case succeed_n:
987 EXTRACT_NUMBER_AND_INCR (mcnt, p);
988 EXTRACT_NUMBER_AND_INCR (mcnt2, p);
989 fprintf (stderr, "/succeed_n to %td, %d times",
990 p - 2 + mcnt - start, mcnt2);
991 break;
993 case jump_n:
994 EXTRACT_NUMBER_AND_INCR (mcnt, p);
995 EXTRACT_NUMBER_AND_INCR (mcnt2, p);
996 fprintf (stderr, "/jump_n to %td, %d times",
997 p - 2 + mcnt - start, mcnt2);
998 break;
1000 case set_number_at:
1001 EXTRACT_NUMBER_AND_INCR (mcnt, p);
1002 EXTRACT_NUMBER_AND_INCR (mcnt2, p);
1003 fprintf (stderr, "/set_number_at location %td to %d",
1004 p - 2 + mcnt - start, mcnt2);
1005 break;
1007 case wordbound:
1008 fprintf (stderr, "/wordbound");
1009 break;
1011 case notwordbound:
1012 fprintf (stderr, "/notwordbound");
1013 break;
1015 case wordbeg:
1016 fprintf (stderr, "/wordbeg");
1017 break;
1019 case wordend:
1020 fprintf (stderr, "/wordend");
1021 break;
1023 case symbeg:
1024 fprintf (stderr, "/symbeg");
1025 break;
1027 case symend:
1028 fprintf (stderr, "/symend");
1029 break;
1031 case syntaxspec:
1032 fprintf (stderr, "/syntaxspec");
1033 mcnt = *p++;
1034 fprintf (stderr, "/%d", mcnt);
1035 break;
1037 case notsyntaxspec:
1038 fprintf (stderr, "/notsyntaxspec");
1039 mcnt = *p++;
1040 fprintf (stderr, "/%d", mcnt);
1041 break;
1043 # ifdef emacs
1044 case at_dot:
1045 fprintf (stderr, "/at_dot");
1046 break;
1048 case categoryspec:
1049 fprintf (stderr, "/categoryspec");
1050 mcnt = *p++;
1051 fprintf (stderr, "/%d", mcnt);
1052 break;
1054 case notcategoryspec:
1055 fprintf (stderr, "/notcategoryspec");
1056 mcnt = *p++;
1057 fprintf (stderr, "/%d", mcnt);
1058 break;
1059 # endif /* emacs */
1061 case begbuf:
1062 fprintf (stderr, "/begbuf");
1063 break;
1065 case endbuf:
1066 fprintf (stderr, "/endbuf");
1067 break;
1069 default:
1070 fprintf (stderr, "?%d", *(p-1));
1073 fprintf (stderr, "\n");
1076 fprintf (stderr, "%td:\tend of pattern.\n", p - start);
1080 static void
1081 print_compiled_pattern (struct re_pattern_buffer *bufp)
1083 re_char *buffer = bufp->buffer;
1085 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1086 printf ("%ld bytes used/%ld bytes allocated.\n",
1087 bufp->used, bufp->allocated);
1089 if (bufp->fastmap_accurate && bufp->fastmap)
1091 printf ("fastmap: ");
1092 print_fastmap (bufp->fastmap);
1095 printf ("re_nsub: %zu\t", bufp->re_nsub);
1096 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1097 printf ("can_be_null: %d\t", bufp->can_be_null);
1098 printf ("no_sub: %d\t", bufp->no_sub);
1099 printf ("not_bol: %d\t", bufp->not_bol);
1100 printf ("not_eol: %d\t", bufp->not_eol);
1101 #ifndef emacs
1102 printf ("syntax: %lx\n", bufp->syntax);
1103 #endif
1104 fflush (stdout);
1105 /* Perhaps we should print the translate table? */
1109 static void
1110 print_double_string (re_char *where, re_char *string1, ssize_t size1,
1111 re_char *string2, ssize_t size2)
1113 ssize_t this_char;
1115 if (where == NULL)
1116 printf ("(null)");
1117 else
1119 if (FIRST_STRING_P (where))
1121 for (this_char = where - string1; this_char < size1; this_char++)
1122 putchar (string1[this_char]);
1124 where = string2;
1127 for (this_char = where - string2; this_char < size2; this_char++)
1128 putchar (string2[this_char]);
1132 #else /* not DEBUG */
1134 # undef assert
1135 # define assert(e)
1137 # define DEBUG_STATEMENT(e)
1138 # define DEBUG_PRINT(...)
1139 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1140 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1142 #endif /* not DEBUG */
1144 #ifndef emacs
1146 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1147 also be assigned to arbitrarily: each pattern buffer stores its own
1148 syntax, so it can be changed between regex compilations. */
1149 /* This has no initializer because initialized variables in Emacs
1150 become read-only after dumping. */
1151 reg_syntax_t re_syntax_options;
1154 /* Specify the precise syntax of regexps for compilation. This provides
1155 for compatibility for various utilities which historically have
1156 different, incompatible syntaxes.
1158 The argument SYNTAX is a bit mask comprised of the various bits
1159 defined in regex.h. We return the old syntax. */
1161 reg_syntax_t
1162 re_set_syntax (reg_syntax_t syntax)
1164 reg_syntax_t ret = re_syntax_options;
1166 re_syntax_options = syntax;
1167 return ret;
1169 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1171 #endif
1173 /* This table gives an error message for each of the error codes listed
1174 in regex.h. Obviously the order here has to be same as there.
1175 POSIX doesn't require that we do anything for REG_NOERROR,
1176 but why not be nice? */
1178 static const char *re_error_msgid[] =
1180 gettext_noop ("Success"), /* REG_NOERROR */
1181 gettext_noop ("No match"), /* REG_NOMATCH */
1182 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1183 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1184 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1185 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1186 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1187 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1188 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1189 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1190 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1191 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1192 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1193 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1194 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1195 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1196 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1197 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1200 /* Whether to allocate memory during matching. */
1202 /* Define MATCH_MAY_ALLOCATE to allow the searching and matching
1203 functions allocate memory for the failure stack and registers.
1204 Normally should be defined, because otherwise searching and
1205 matching routines will have much smaller memory resources at their
1206 disposal, and therefore might fail to handle complex regexps.
1207 Therefore undefine MATCH_MAY_ALLOCATE only in the following
1208 exceptional situations:
1210 . When running on a system where memory is at premium.
1211 . When alloca cannot be used at all, perhaps due to bugs in
1212 its implementation, or its being unavailable, or due to a
1213 very small stack size. This requires to define REGEX_MALLOC
1214 to use malloc instead, which in turn could lead to memory
1215 leaks if search is interrupted by a signal. (For these
1216 reasons, defining REGEX_MALLOC when building Emacs
1217 automatically undefines MATCH_MAY_ALLOCATE, but outside
1218 Emacs you may not care about memory leaks.) If you want to
1219 prevent the memory leaks, undefine MATCH_MAY_ALLOCATE.
1220 . When code that calls the searching and matching functions
1221 cannot allow memory allocation, for whatever reasons. */
1223 /* Normally, this is fine. */
1224 #define MATCH_MAY_ALLOCATE
1226 /* The match routines may not allocate if (1) they would do it with malloc
1227 and (2) it's not safe for them to use malloc.
1228 Note that if REL_ALLOC is defined, matching would not use malloc for the
1229 failure stack, but we would still use it for the register vectors;
1230 so REL_ALLOC should not affect this. */
1231 #if defined REGEX_MALLOC && defined emacs
1232 # undef MATCH_MAY_ALLOCATE
1233 #endif
1236 /* Failure stack declarations and macros; both re_compile_fastmap and
1237 re_match_2 use a failure stack. These have to be macros because of
1238 REGEX_ALLOCATE_STACK. */
1241 /* Approximate number of failure points for which to initially allocate space
1242 when matching. If this number is exceeded, we allocate more
1243 space, so it is not a hard limit. */
1244 #ifndef INIT_FAILURE_ALLOC
1245 # define INIT_FAILURE_ALLOC 20
1246 #endif
1248 /* Roughly the maximum number of failure points on the stack. Would be
1249 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1250 This is a variable only so users of regex can assign to it; we never
1251 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1252 before using it, so it should probably be a byte-count instead. */
1253 # if defined MATCH_MAY_ALLOCATE
1254 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1255 whose default stack limit is 2mb. In order for a larger
1256 value to work reliably, you have to try to make it accord
1257 with the process stack limit. */
1258 size_t emacs_re_max_failures = 40000;
1259 # else
1260 size_t emacs_re_max_failures = 4000;
1261 # endif
1263 union fail_stack_elt
1265 re_char *pointer;
1266 /* This should be the biggest `int' that's no bigger than a pointer. */
1267 long integer;
1270 typedef union fail_stack_elt fail_stack_elt_t;
1272 typedef struct
1274 fail_stack_elt_t *stack;
1275 size_t size;
1276 size_t avail; /* Offset of next open position. */
1277 size_t frame; /* Offset of the cur constructed frame. */
1278 } fail_stack_type;
1280 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1283 /* Define macros to initialize and free the failure stack.
1284 Do `return -2' if the alloc fails. */
1286 #ifdef MATCH_MAY_ALLOCATE
1287 # define INIT_FAIL_STACK() \
1288 do { \
1289 fail_stack.stack = \
1290 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1291 * sizeof (fail_stack_elt_t)); \
1293 if (fail_stack.stack == NULL) \
1294 return -2; \
1296 fail_stack.size = INIT_FAILURE_ALLOC; \
1297 fail_stack.avail = 0; \
1298 fail_stack.frame = 0; \
1299 } while (0)
1300 #else
1301 # define INIT_FAIL_STACK() \
1302 do { \
1303 fail_stack.avail = 0; \
1304 fail_stack.frame = 0; \
1305 } while (0)
1307 # define RETALLOC_IF(addr, n, t) \
1308 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
1309 #endif
1312 /* Double the size of FAIL_STACK, up to a limit
1313 which allows approximately `emacs_re_max_failures' items.
1315 Return 1 if succeeds, and 0 if either ran out of memory
1316 allocating space for it or it was already too large.
1318 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1320 /* Factor to increase the failure stack size by
1321 when we increase it.
1322 This used to be 2, but 2 was too wasteful
1323 because the old discarded stacks added up to as much space
1324 were as ultimate, maximum-size stack. */
1325 #define FAIL_STACK_GROWTH_FACTOR 4
1327 #define GROW_FAIL_STACK(fail_stack) \
1328 (((fail_stack).size >= emacs_re_max_failures * TYPICAL_FAILURE_SIZE) \
1329 ? 0 \
1330 : ((fail_stack).stack \
1331 = REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1332 (fail_stack).size * sizeof (fail_stack_elt_t), \
1333 min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
1334 ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR)) \
1335 * sizeof (fail_stack_elt_t)), \
1337 (fail_stack).stack == NULL \
1338 ? 0 \
1339 : ((fail_stack).size \
1340 = (min (emacs_re_max_failures * TYPICAL_FAILURE_SIZE, \
1341 ((fail_stack).size * FAIL_STACK_GROWTH_FACTOR))), \
1342 1)))
1345 /* Push a pointer value onto the failure stack.
1346 Assumes the variable `fail_stack'. Probably should only
1347 be called from within `PUSH_FAILURE_POINT'. */
1348 #define PUSH_FAILURE_POINTER(item) \
1349 fail_stack.stack[fail_stack.avail++].pointer = (item)
1351 /* This pushes an integer-valued item onto the failure stack.
1352 Assumes the variable `fail_stack'. Probably should only
1353 be called from within `PUSH_FAILURE_POINT'. */
1354 #define PUSH_FAILURE_INT(item) \
1355 fail_stack.stack[fail_stack.avail++].integer = (item)
1357 /* These POP... operations complement the PUSH... operations.
1358 All assume that `fail_stack' is nonempty. */
1359 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1360 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1362 /* Individual items aside from the registers. */
1363 #define NUM_NONREG_ITEMS 3
1365 /* Used to examine the stack (to detect infinite loops). */
1366 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1367 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1368 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1369 #define TOP_FAILURE_HANDLE() fail_stack.frame
1372 #define ENSURE_FAIL_STACK(space) \
1373 while (REMAINING_AVAIL_SLOTS <= space) { \
1374 if (!GROW_FAIL_STACK (fail_stack)) \
1375 return -2; \
1376 DEBUG_PRINT ("\n Doubled stack; size now: %zd\n", (fail_stack).size);\
1377 DEBUG_PRINT (" slots available: %zd\n", REMAINING_AVAIL_SLOTS);\
1380 /* Push register NUM onto the stack. */
1381 #define PUSH_FAILURE_REG(num) \
1382 do { \
1383 char *destination; \
1384 long n = num; \
1385 ENSURE_FAIL_STACK(3); \
1386 DEBUG_PRINT (" Push reg %ld (spanning %p -> %p)\n", \
1387 n, regstart[n], regend[n]); \
1388 PUSH_FAILURE_POINTER (regstart[n]); \
1389 PUSH_FAILURE_POINTER (regend[n]); \
1390 PUSH_FAILURE_INT (n); \
1391 } while (0)
1393 /* Change the counter's value to VAL, but make sure that it will
1394 be reset when backtracking. */
1395 #define PUSH_NUMBER(ptr,val) \
1396 do { \
1397 char *destination; \
1398 int c; \
1399 ENSURE_FAIL_STACK(3); \
1400 EXTRACT_NUMBER (c, ptr); \
1401 DEBUG_PRINT (" Push number %p = %d -> %d\n", ptr, c, val); \
1402 PUSH_FAILURE_INT (c); \
1403 PUSH_FAILURE_POINTER (ptr); \
1404 PUSH_FAILURE_INT (-1); \
1405 STORE_NUMBER (ptr, val); \
1406 } while (0)
1408 /* Pop a saved register off the stack. */
1409 #define POP_FAILURE_REG_OR_COUNT() \
1410 do { \
1411 long pfreg = POP_FAILURE_INT (); \
1412 if (pfreg == -1) \
1414 /* It's a counter. */ \
1415 /* Here, we discard `const', making re_match non-reentrant. */ \
1416 unsigned char *ptr = (unsigned char *) POP_FAILURE_POINTER (); \
1417 pfreg = POP_FAILURE_INT (); \
1418 STORE_NUMBER (ptr, pfreg); \
1419 DEBUG_PRINT (" Pop counter %p = %ld\n", ptr, pfreg); \
1421 else \
1423 regend[pfreg] = POP_FAILURE_POINTER (); \
1424 regstart[pfreg] = POP_FAILURE_POINTER (); \
1425 DEBUG_PRINT (" Pop reg %ld (spanning %p -> %p)\n", \
1426 pfreg, regstart[pfreg], regend[pfreg]); \
1428 } while (0)
1430 /* Check that we are not stuck in an infinite loop. */
1431 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1432 do { \
1433 ssize_t failure = TOP_FAILURE_HANDLE (); \
1434 /* Check for infinite matching loops */ \
1435 while (failure > 0 \
1436 && (FAILURE_STR (failure) == string_place \
1437 || FAILURE_STR (failure) == NULL)) \
1439 assert (FAILURE_PAT (failure) >= bufp->buffer \
1440 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1441 if (FAILURE_PAT (failure) == pat_cur) \
1443 cycle = 1; \
1444 break; \
1446 DEBUG_PRINT (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1447 failure = NEXT_FAILURE_HANDLE(failure); \
1449 DEBUG_PRINT (" Other string: %p\n", FAILURE_STR (failure)); \
1450 } while (0)
1452 /* Push the information about the state we will need
1453 if we ever fail back to it.
1455 Requires variables fail_stack, regstart, regend and
1456 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1457 declared.
1459 Does `return FAILURE_CODE' if runs out of memory. */
1461 #define PUSH_FAILURE_POINT(pattern, string_place) \
1462 do { \
1463 char *destination; \
1464 /* Must be int, so when we don't save any registers, the arithmetic \
1465 of 0 + -1 isn't done as unsigned. */ \
1467 DEBUG_STATEMENT (nfailure_points_pushed++); \
1468 DEBUG_PRINT ("\nPUSH_FAILURE_POINT:\n"); \
1469 DEBUG_PRINT (" Before push, next avail: %zd\n", (fail_stack).avail); \
1470 DEBUG_PRINT (" size: %zd\n", (fail_stack).size);\
1472 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1474 DEBUG_PRINT ("\n"); \
1476 DEBUG_PRINT (" Push frame index: %zd\n", fail_stack.frame); \
1477 PUSH_FAILURE_INT (fail_stack.frame); \
1479 DEBUG_PRINT (" Push string %p: \"", string_place); \
1480 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1481 DEBUG_PRINT ("\"\n"); \
1482 PUSH_FAILURE_POINTER (string_place); \
1484 DEBUG_PRINT (" Push pattern %p: ", pattern); \
1485 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1486 PUSH_FAILURE_POINTER (pattern); \
1488 /* Close the frame by moving the frame pointer past it. */ \
1489 fail_stack.frame = fail_stack.avail; \
1490 } while (0)
1492 /* Estimate the size of data pushed by a typical failure stack entry.
1493 An estimate is all we need, because all we use this for
1494 is to choose a limit for how big to make the failure stack. */
1495 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1496 #define TYPICAL_FAILURE_SIZE 20
1498 /* How many items can still be added to the stack without overflowing it. */
1499 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1502 /* Pops what PUSH_FAIL_STACK pushes.
1504 We restore into the parameters, all of which should be lvalues:
1505 STR -- the saved data position.
1506 PAT -- the saved pattern position.
1507 REGSTART, REGEND -- arrays of string positions.
1509 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1510 `pend', `string1', `size1', `string2', and `size2'. */
1512 #define POP_FAILURE_POINT(str, pat) \
1513 do { \
1514 assert (!FAIL_STACK_EMPTY ()); \
1516 /* Remove failure points and point to how many regs pushed. */ \
1517 DEBUG_PRINT ("POP_FAILURE_POINT:\n"); \
1518 DEBUG_PRINT (" Before pop, next avail: %zd\n", fail_stack.avail); \
1519 DEBUG_PRINT (" size: %zd\n", fail_stack.size); \
1521 /* Pop the saved registers. */ \
1522 while (fail_stack.frame < fail_stack.avail) \
1523 POP_FAILURE_REG_OR_COUNT (); \
1525 pat = POP_FAILURE_POINTER (); \
1526 DEBUG_PRINT (" Popping pattern %p: ", pat); \
1527 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1529 /* If the saved string location is NULL, it came from an \
1530 on_failure_keep_string_jump opcode, and we want to throw away the \
1531 saved NULL, thus retaining our current position in the string. */ \
1532 str = POP_FAILURE_POINTER (); \
1533 DEBUG_PRINT (" Popping string %p: \"", str); \
1534 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1535 DEBUG_PRINT ("\"\n"); \
1537 fail_stack.frame = POP_FAILURE_INT (); \
1538 DEBUG_PRINT (" Popping frame index: %zd\n", fail_stack.frame); \
1540 assert (fail_stack.avail >= 0); \
1541 assert (fail_stack.frame <= fail_stack.avail); \
1543 DEBUG_STATEMENT (nfailure_points_popped++); \
1544 } while (0) /* POP_FAILURE_POINT */
1548 /* Registers are set to a sentinel when they haven't yet matched. */
1549 #define REG_UNSET(e) ((e) == NULL)
1551 /* Subroutine declarations and macros for regex_compile. */
1553 static reg_errcode_t regex_compile (re_char *pattern, size_t size,
1554 #ifdef emacs
1555 bool posix_backtracking,
1556 const char *whitespace_regexp,
1557 #else
1558 reg_syntax_t syntax,
1559 #endif
1560 struct re_pattern_buffer *bufp);
1561 static void store_op1 (re_opcode_t op, unsigned char *loc, int arg);
1562 static void store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2);
1563 static void insert_op1 (re_opcode_t op, unsigned char *loc,
1564 int arg, unsigned char *end);
1565 static void insert_op2 (re_opcode_t op, unsigned char *loc,
1566 int arg1, int arg2, unsigned char *end);
1567 static boolean at_begline_loc_p (re_char *pattern, re_char *p,
1568 reg_syntax_t syntax);
1569 static boolean at_endline_loc_p (re_char *p, re_char *pend,
1570 reg_syntax_t syntax);
1571 static re_char *skip_one_char (re_char *p);
1572 static int analyze_first (re_char *p, re_char *pend,
1573 char *fastmap, const int multibyte);
1575 /* Fetch the next character in the uncompiled pattern, with no
1576 translation. */
1577 #define PATFETCH(c) \
1578 do { \
1579 int len; \
1580 if (p == pend) return REG_EEND; \
1581 c = RE_STRING_CHAR_AND_LENGTH (p, len, multibyte); \
1582 p += len; \
1583 } while (0)
1586 /* If `translate' is non-null, return translate[D], else just D. We
1587 cast the subscript to translate because some data is declared as
1588 `char *', to avoid warnings when a string constant is passed. But
1589 when we use a character as a subscript we must make it unsigned. */
1590 #ifndef TRANSLATE
1591 # define TRANSLATE(d) \
1592 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1593 #endif
1596 /* Macros for outputting the compiled pattern into `buffer'. */
1598 /* If the buffer isn't allocated when it comes in, use this. */
1599 #define INIT_BUF_SIZE 32
1601 /* Make sure we have at least N more bytes of space in buffer. */
1602 #define GET_BUFFER_SPACE(n) \
1603 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1604 EXTEND_BUFFER ()
1606 /* Make sure we have one more byte of buffer space and then add C to it. */
1607 #define BUF_PUSH(c) \
1608 do { \
1609 GET_BUFFER_SPACE (1); \
1610 *b++ = (unsigned char) (c); \
1611 } while (0)
1614 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1615 #define BUF_PUSH_2(c1, c2) \
1616 do { \
1617 GET_BUFFER_SPACE (2); \
1618 *b++ = (unsigned char) (c1); \
1619 *b++ = (unsigned char) (c2); \
1620 } while (0)
1623 /* Store a jump with opcode OP at LOC to location TO. We store a
1624 relative address offset by the three bytes the jump itself occupies. */
1625 #define STORE_JUMP(op, loc, to) \
1626 store_op1 (op, loc, (to) - (loc) - 3)
1628 /* Likewise, for a two-argument jump. */
1629 #define STORE_JUMP2(op, loc, to, arg) \
1630 store_op2 (op, loc, (to) - (loc) - 3, arg)
1632 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1633 #define INSERT_JUMP(op, loc, to) \
1634 insert_op1 (op, loc, (to) - (loc) - 3, b)
1636 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1637 #define INSERT_JUMP2(op, loc, to, arg) \
1638 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1641 /* This is not an arbitrary limit: the arguments which represent offsets
1642 into the pattern are two bytes long. So if 2^15 bytes turns out to
1643 be too small, many things would have to change. */
1644 # define MAX_BUF_SIZE (1L << 15)
1646 /* Extend the buffer by twice its current size via realloc and
1647 reset the pointers that pointed into the old block to point to the
1648 correct places in the new one. If extending the buffer results in it
1649 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1650 #define EXTEND_BUFFER() \
1651 do { \
1652 unsigned char *old_buffer = bufp->buffer; \
1653 if (bufp->allocated == MAX_BUF_SIZE) \
1654 return REG_ESIZE; \
1655 bufp->allocated <<= 1; \
1656 if (bufp->allocated > MAX_BUF_SIZE) \
1657 bufp->allocated = MAX_BUF_SIZE; \
1658 ptrdiff_t b_off = b - old_buffer; \
1659 ptrdiff_t begalt_off = begalt - old_buffer; \
1660 bool fixup_alt_jump_set = !!fixup_alt_jump; \
1661 bool laststart_set = !!laststart; \
1662 bool pending_exact_set = !!pending_exact; \
1663 ptrdiff_t fixup_alt_jump_off, laststart_off, pending_exact_off; \
1664 if (fixup_alt_jump_set) fixup_alt_jump_off = fixup_alt_jump - old_buffer; \
1665 if (laststart_set) laststart_off = laststart - old_buffer; \
1666 if (pending_exact_set) pending_exact_off = pending_exact - old_buffer; \
1667 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1668 if (bufp->buffer == NULL) \
1669 return REG_ESPACE; \
1670 unsigned char *new_buffer = bufp->buffer; \
1671 b = new_buffer + b_off; \
1672 begalt = new_buffer + begalt_off; \
1673 if (fixup_alt_jump_set) fixup_alt_jump = new_buffer + fixup_alt_jump_off; \
1674 if (laststart_set) laststart = new_buffer + laststart_off; \
1675 if (pending_exact_set) pending_exact = new_buffer + pending_exact_off; \
1676 } while (0)
1679 /* Since we have one byte reserved for the register number argument to
1680 {start,stop}_memory, the maximum number of groups we can report
1681 things about is what fits in that byte. */
1682 #define MAX_REGNUM 255
1684 /* But patterns can have more than `MAX_REGNUM' registers. We just
1685 ignore the excess. */
1686 typedef int regnum_t;
1689 /* Macros for the compile stack. */
1691 /* Since offsets can go either forwards or backwards, this type needs to
1692 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1693 /* int may be not enough when sizeof(int) == 2. */
1694 typedef long pattern_offset_t;
1696 typedef struct
1698 pattern_offset_t begalt_offset;
1699 pattern_offset_t fixup_alt_jump;
1700 pattern_offset_t laststart_offset;
1701 regnum_t regnum;
1702 } compile_stack_elt_t;
1705 typedef struct
1707 compile_stack_elt_t *stack;
1708 size_t size;
1709 size_t avail; /* Offset of next open position. */
1710 } compile_stack_type;
1713 #define INIT_COMPILE_STACK_SIZE 32
1715 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1716 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1718 /* The next available element. */
1719 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1721 /* Explicit quit checking is needed for Emacs, which uses polling to
1722 process input events. */
1723 #ifndef emacs
1724 static void maybe_quit (void) {}
1725 #endif
1727 /* Structure to manage work area for range table. */
1728 struct range_table_work_area
1730 int *table; /* actual work area. */
1731 int allocated; /* allocated size for work area in bytes. */
1732 int used; /* actually used size in words. */
1733 int bits; /* flag to record character classes */
1736 #ifdef emacs
1738 /* Make sure that WORK_AREA can hold more N multibyte characters.
1739 This is used only in set_image_of_range and set_image_of_range_1.
1740 It expects WORK_AREA to be a pointer.
1741 If it can't get the space, it returns from the surrounding function. */
1743 #define EXTEND_RANGE_TABLE(work_area, n) \
1744 do { \
1745 if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \
1747 extend_range_table_work_area (&work_area); \
1748 if ((work_area).table == 0) \
1749 return (REG_ESPACE); \
1751 } while (0)
1753 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1754 (work_area).bits |= (bit)
1756 /* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */
1757 #define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \
1758 do { \
1759 EXTEND_RANGE_TABLE ((work_area), 2); \
1760 (work_area).table[(work_area).used++] = (range_start); \
1761 (work_area).table[(work_area).used++] = (range_end); \
1762 } while (0)
1764 #endif /* emacs */
1766 /* Free allocated memory for WORK_AREA. */
1767 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1768 do { \
1769 if ((work_area).table) \
1770 free ((work_area).table); \
1771 } while (0)
1773 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1774 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1775 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1776 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1778 /* Bits used to implement the multibyte-part of the various character classes
1779 such as [:alnum:] in a charset's range table. The code currently assumes
1780 that only the low 16 bits are used. */
1781 #define BIT_WORD 0x1
1782 #define BIT_LOWER 0x2
1783 #define BIT_PUNCT 0x4
1784 #define BIT_SPACE 0x8
1785 #define BIT_UPPER 0x10
1786 #define BIT_MULTIBYTE 0x20
1787 #define BIT_ALPHA 0x40
1788 #define BIT_ALNUM 0x80
1789 #define BIT_GRAPH 0x100
1790 #define BIT_PRINT 0x200
1791 #define BIT_BLANK 0x400
1794 /* Set the bit for character C in a list. */
1795 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1798 #ifdef emacs
1800 /* Store characters in the range FROM to TO in the bitmap at B (for
1801 ASCII and unibyte characters) and WORK_AREA (for multibyte
1802 characters) while translating them and paying attention to the
1803 continuity of translated characters.
1805 Implementation note: It is better to implement these fairly big
1806 macros by a function, but it's not that easy because macros called
1807 in this macro assume various local variables already declared. */
1809 /* Both FROM and TO are ASCII characters. */
1811 #define SETUP_ASCII_RANGE(work_area, FROM, TO) \
1812 do { \
1813 int C0, C1; \
1815 for (C0 = (FROM); C0 <= (TO); C0++) \
1817 C1 = TRANSLATE (C0); \
1818 if (! ASCII_CHAR_P (C1)) \
1820 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1821 if ((C1 = RE_CHAR_TO_UNIBYTE (C1)) < 0) \
1822 C1 = C0; \
1824 SET_LIST_BIT (C1); \
1826 } while (0)
1829 /* Both FROM and TO are unibyte characters (0x80..0xFF). */
1831 #define SETUP_UNIBYTE_RANGE(work_area, FROM, TO) \
1832 do { \
1833 int C0, C1, C2, I; \
1834 int USED = RANGE_TABLE_WORK_USED (work_area); \
1836 for (C0 = (FROM); C0 <= (TO); C0++) \
1838 C1 = RE_CHAR_TO_MULTIBYTE (C0); \
1839 if (CHAR_BYTE8_P (C1)) \
1840 SET_LIST_BIT (C0); \
1841 else \
1843 C2 = TRANSLATE (C1); \
1844 if (C2 == C1 \
1845 || (C1 = RE_CHAR_TO_UNIBYTE (C2)) < 0) \
1846 C1 = C0; \
1847 SET_LIST_BIT (C1); \
1848 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1850 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1851 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1853 if (C2 >= from - 1 && C2 <= to + 1) \
1855 if (C2 == from - 1) \
1856 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1857 else if (C2 == to + 1) \
1858 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1859 break; \
1862 if (I < USED) \
1863 SET_RANGE_TABLE_WORK_AREA ((work_area), C2, C2); \
1866 } while (0)
1869 /* Both FROM and TO are multibyte characters. */
1871 #define SETUP_MULTIBYTE_RANGE(work_area, FROM, TO) \
1872 do { \
1873 int C0, C1, C2, I, USED = RANGE_TABLE_WORK_USED (work_area); \
1875 SET_RANGE_TABLE_WORK_AREA ((work_area), (FROM), (TO)); \
1876 for (C0 = (FROM); C0 <= (TO); C0++) \
1878 C1 = TRANSLATE (C0); \
1879 if ((C2 = RE_CHAR_TO_UNIBYTE (C1)) >= 0 \
1880 || (C1 != C0 && (C2 = RE_CHAR_TO_UNIBYTE (C0)) >= 0)) \
1881 SET_LIST_BIT (C2); \
1882 if (C1 >= (FROM) && C1 <= (TO)) \
1883 continue; \
1884 for (I = RANGE_TABLE_WORK_USED (work_area) - 2; I >= USED; I -= 2) \
1886 int from = RANGE_TABLE_WORK_ELT (work_area, I); \
1887 int to = RANGE_TABLE_WORK_ELT (work_area, I + 1); \
1889 if (C1 >= from - 1 && C1 <= to + 1) \
1891 if (C1 == from - 1) \
1892 RANGE_TABLE_WORK_ELT (work_area, I)--; \
1893 else if (C1 == to + 1) \
1894 RANGE_TABLE_WORK_ELT (work_area, I + 1)++; \
1895 break; \
1898 if (I < USED) \
1899 SET_RANGE_TABLE_WORK_AREA ((work_area), C1, C1); \
1901 } while (0)
1903 #endif /* emacs */
1905 /* Get the next unsigned number in the uncompiled pattern. */
1906 #define GET_INTERVAL_COUNT(num) \
1907 do { \
1908 if (p == pend) \
1909 FREE_STACK_RETURN (REG_EBRACE); \
1910 else \
1912 PATFETCH (c); \
1913 while ('0' <= c && c <= '9') \
1915 if (num < 0) \
1916 num = 0; \
1917 if (RE_DUP_MAX / 10 - (RE_DUP_MAX % 10 < c - '0') < num) \
1918 FREE_STACK_RETURN (REG_BADBR); \
1919 num = num * 10 + c - '0'; \
1920 if (p == pend) \
1921 FREE_STACK_RETURN (REG_EBRACE); \
1922 PATFETCH (c); \
1925 } while (0)
1927 #if ! WIDE_CHAR_SUPPORT
1929 /* Parse a character class, i.e. string such as "[:name:]". *strp
1930 points to the string to be parsed and limit is length, in bytes, of
1931 that string.
1933 If *strp point to a string that begins with "[:name:]", where name is
1934 a non-empty sequence of lower case letters, *strp will be advanced past the
1935 closing square bracket and RECC_* constant which maps to the name will be
1936 returned. If name is not a valid character class name zero, or RECC_ERROR,
1937 is returned.
1939 Otherwise, if *strp doesn't begin with "[:name:]", -1 is returned.
1941 The function can be used on ASCII and multibyte (UTF-8-encoded) strings.
1943 re_wctype_t
1944 re_wctype_parse (const unsigned char **strp, unsigned limit)
1946 const char *beg = (const char *)*strp, *it;
1948 if (limit < 4 || beg[0] != '[' || beg[1] != ':')
1949 return -1;
1951 beg += 2; /* skip opening "[:" */
1952 limit -= 3; /* opening "[:" and half of closing ":]"; --limit handles rest */
1953 for (it = beg; it[0] != ':' || it[1] != ']'; ++it)
1954 if (!--limit)
1955 return -1;
1957 *strp = (const unsigned char *)(it + 2);
1959 /* Sort tests in the length=five case by frequency the classes to minimize
1960 number of times we fail the comparison. The frequencies of character class
1961 names used in Emacs sources as of 2016-07-27:
1963 $ find \( -name \*.c -o -name \*.el \) -exec grep -h '\[:[a-z]*:]' {} + |
1964 sed 's/]/]\n/g' |grep -o '\[:[a-z]*:]' |sort |uniq -c |sort -nr
1965 213 [:alnum:]
1966 104 [:alpha:]
1967 62 [:space:]
1968 39 [:digit:]
1969 36 [:blank:]
1970 26 [:word:]
1971 26 [:upper:]
1972 21 [:lower:]
1973 10 [:xdigit:]
1974 10 [:punct:]
1975 10 [:ascii:]
1976 4 [:nonascii:]
1977 4 [:graph:]
1978 2 [:print:]
1979 2 [:cntrl:]
1980 1 [:ff:]
1982 If you update this list, consider also updating chain of or'ed conditions
1983 in execute_charset function.
1986 switch (it - beg) {
1987 case 4:
1988 if (!memcmp (beg, "word", 4)) return RECC_WORD;
1989 break;
1990 case 5:
1991 if (!memcmp (beg, "alnum", 5)) return RECC_ALNUM;
1992 if (!memcmp (beg, "alpha", 5)) return RECC_ALPHA;
1993 if (!memcmp (beg, "space", 5)) return RECC_SPACE;
1994 if (!memcmp (beg, "digit", 5)) return RECC_DIGIT;
1995 if (!memcmp (beg, "blank", 5)) return RECC_BLANK;
1996 if (!memcmp (beg, "upper", 5)) return RECC_UPPER;
1997 if (!memcmp (beg, "lower", 5)) return RECC_LOWER;
1998 if (!memcmp (beg, "punct", 5)) return RECC_PUNCT;
1999 if (!memcmp (beg, "ascii", 5)) return RECC_ASCII;
2000 if (!memcmp (beg, "graph", 5)) return RECC_GRAPH;
2001 if (!memcmp (beg, "print", 5)) return RECC_PRINT;
2002 if (!memcmp (beg, "cntrl", 5)) return RECC_CNTRL;
2003 break;
2004 case 6:
2005 if (!memcmp (beg, "xdigit", 6)) return RECC_XDIGIT;
2006 break;
2007 case 7:
2008 if (!memcmp (beg, "unibyte", 7)) return RECC_UNIBYTE;
2009 break;
2010 case 8:
2011 if (!memcmp (beg, "nonascii", 8)) return RECC_NONASCII;
2012 break;
2013 case 9:
2014 if (!memcmp (beg, "multibyte", 9)) return RECC_MULTIBYTE;
2015 break;
2018 return RECC_ERROR;
2021 /* True if CH is in the char class CC. */
2022 boolean
2023 re_iswctype (int ch, re_wctype_t cc)
2025 switch (cc)
2027 case RECC_ALNUM: return ISALNUM (ch) != 0;
2028 case RECC_ALPHA: return ISALPHA (ch) != 0;
2029 case RECC_BLANK: return ISBLANK (ch) != 0;
2030 case RECC_CNTRL: return ISCNTRL (ch) != 0;
2031 case RECC_DIGIT: return ISDIGIT (ch) != 0;
2032 case RECC_GRAPH: return ISGRAPH (ch) != 0;
2033 case RECC_LOWER: return ISLOWER (ch) != 0;
2034 case RECC_PRINT: return ISPRINT (ch) != 0;
2035 case RECC_PUNCT: return ISPUNCT (ch) != 0;
2036 case RECC_SPACE: return ISSPACE (ch) != 0;
2037 case RECC_UPPER: return ISUPPER (ch) != 0;
2038 case RECC_XDIGIT: return ISXDIGIT (ch) != 0;
2039 case RECC_ASCII: return IS_REAL_ASCII (ch) != 0;
2040 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2041 case RECC_UNIBYTE: return ISUNIBYTE (ch) != 0;
2042 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2043 case RECC_WORD: return ISWORD (ch) != 0;
2044 case RECC_ERROR: return false;
2045 default:
2046 abort ();
2050 /* Return a bit-pattern to use in the range-table bits to match multibyte
2051 chars of class CC. */
2052 static int
2053 re_wctype_to_bit (re_wctype_t cc)
2055 switch (cc)
2057 case RECC_NONASCII:
2058 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2059 case RECC_ALPHA: return BIT_ALPHA;
2060 case RECC_ALNUM: return BIT_ALNUM;
2061 case RECC_WORD: return BIT_WORD;
2062 case RECC_LOWER: return BIT_LOWER;
2063 case RECC_UPPER: return BIT_UPPER;
2064 case RECC_PUNCT: return BIT_PUNCT;
2065 case RECC_SPACE: return BIT_SPACE;
2066 case RECC_GRAPH: return BIT_GRAPH;
2067 case RECC_PRINT: return BIT_PRINT;
2068 case RECC_BLANK: return BIT_BLANK;
2069 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2070 case RECC_UNIBYTE: case RECC_ERROR: return 0;
2071 default:
2072 abort ();
2075 #endif
2077 /* Filling in the work area of a range. */
2079 /* Actually extend the space in WORK_AREA. */
2081 static void
2082 extend_range_table_work_area (struct range_table_work_area *work_area)
2084 work_area->allocated += 16 * sizeof (int);
2085 work_area->table = realloc (work_area->table, work_area->allocated);
2088 #if 0
2089 #ifdef emacs
2091 /* Carefully find the ranges of codes that are equivalent
2092 under case conversion to the range start..end when passed through
2093 TRANSLATE. Handle the case where non-letters can come in between
2094 two upper-case letters (which happens in Latin-1).
2095 Also handle the case of groups of more than 2 case-equivalent chars.
2097 The basic method is to look at consecutive characters and see
2098 if they can form a run that can be handled as one.
2100 Returns -1 if successful, REG_ESPACE if ran out of space. */
2102 static int
2103 set_image_of_range_1 (struct range_table_work_area *work_area,
2104 re_wchar_t start, re_wchar_t end,
2105 RE_TRANSLATE_TYPE translate)
2107 /* `one_case' indicates a character, or a run of characters,
2108 each of which is an isolate (no case-equivalents).
2109 This includes all ASCII non-letters.
2111 `two_case' indicates a character, or a run of characters,
2112 each of which has two case-equivalent forms.
2113 This includes all ASCII letters.
2115 `strange' indicates a character that has more than one
2116 case-equivalent. */
2118 enum case_type {one_case, two_case, strange};
2120 /* Describe the run that is in progress,
2121 which the next character can try to extend.
2122 If run_type is strange, that means there really is no run.
2123 If run_type is one_case, then run_start...run_end is the run.
2124 If run_type is two_case, then the run is run_start...run_end,
2125 and the case-equivalents end at run_eqv_end. */
2127 enum case_type run_type = strange;
2128 int run_start, run_end, run_eqv_end;
2130 Lisp_Object eqv_table;
2132 if (!RE_TRANSLATE_P (translate))
2134 EXTEND_RANGE_TABLE (work_area, 2);
2135 work_area->table[work_area->used++] = (start);
2136 work_area->table[work_area->used++] = (end);
2137 return -1;
2140 eqv_table = XCHAR_TABLE (translate)->extras[2];
2142 for (; start <= end; start++)
2144 enum case_type this_type;
2145 int eqv = RE_TRANSLATE (eqv_table, start);
2146 int minchar, maxchar;
2148 /* Classify this character */
2149 if (eqv == start)
2150 this_type = one_case;
2151 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2152 this_type = two_case;
2153 else
2154 this_type = strange;
2156 if (start < eqv)
2157 minchar = start, maxchar = eqv;
2158 else
2159 minchar = eqv, maxchar = start;
2161 /* Can this character extend the run in progress? */
2162 if (this_type == strange || this_type != run_type
2163 || !(minchar == run_end + 1
2164 && (run_type == two_case
2165 ? maxchar == run_eqv_end + 1 : 1)))
2167 /* No, end the run.
2168 Record each of its equivalent ranges. */
2169 if (run_type == one_case)
2171 EXTEND_RANGE_TABLE (work_area, 2);
2172 work_area->table[work_area->used++] = run_start;
2173 work_area->table[work_area->used++] = run_end;
2175 else if (run_type == two_case)
2177 EXTEND_RANGE_TABLE (work_area, 4);
2178 work_area->table[work_area->used++] = run_start;
2179 work_area->table[work_area->used++] = run_end;
2180 work_area->table[work_area->used++]
2181 = RE_TRANSLATE (eqv_table, run_start);
2182 work_area->table[work_area->used++]
2183 = RE_TRANSLATE (eqv_table, run_end);
2185 run_type = strange;
2188 if (this_type == strange)
2190 /* For a strange character, add each of its equivalents, one
2191 by one. Don't start a range. */
2194 EXTEND_RANGE_TABLE (work_area, 2);
2195 work_area->table[work_area->used++] = eqv;
2196 work_area->table[work_area->used++] = eqv;
2197 eqv = RE_TRANSLATE (eqv_table, eqv);
2199 while (eqv != start);
2202 /* Add this char to the run, or start a new run. */
2203 else if (run_type == strange)
2205 /* Initialize a new range. */
2206 run_type = this_type;
2207 run_start = start;
2208 run_end = start;
2209 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2211 else
2213 /* Extend a running range. */
2214 run_end = minchar;
2215 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2219 /* If a run is still in progress at the end, finish it now
2220 by recording its equivalent ranges. */
2221 if (run_type == one_case)
2223 EXTEND_RANGE_TABLE (work_area, 2);
2224 work_area->table[work_area->used++] = run_start;
2225 work_area->table[work_area->used++] = run_end;
2227 else if (run_type == two_case)
2229 EXTEND_RANGE_TABLE (work_area, 4);
2230 work_area->table[work_area->used++] = run_start;
2231 work_area->table[work_area->used++] = run_end;
2232 work_area->table[work_area->used++]
2233 = RE_TRANSLATE (eqv_table, run_start);
2234 work_area->table[work_area->used++]
2235 = RE_TRANSLATE (eqv_table, run_end);
2238 return -1;
2241 #endif /* emacs */
2243 /* Record the image of the range start..end when passed through
2244 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2245 and is not even necessarily contiguous.
2246 Normally we approximate it with the smallest contiguous range that contains
2247 all the chars we need. However, for Latin-1 we go to extra effort
2248 to do a better job.
2250 This function is not called for ASCII ranges.
2252 Returns -1 if successful, REG_ESPACE if ran out of space. */
2254 static int
2255 set_image_of_range (struct range_table_work_area *work_area,
2256 re_wchar_t start, re_wchar_t end,
2257 RE_TRANSLATE_TYPE translate)
2259 re_wchar_t cmin, cmax;
2261 #ifdef emacs
2262 /* For Latin-1 ranges, use set_image_of_range_1
2263 to get proper handling of ranges that include letters and nonletters.
2264 For a range that includes the whole of Latin-1, this is not necessary.
2265 For other character sets, we don't bother to get this right. */
2266 if (RE_TRANSLATE_P (translate) && start < 04400
2267 && !(start < 04200 && end >= 04377))
2269 int newend;
2270 int tem;
2271 newend = end;
2272 if (newend > 04377)
2273 newend = 04377;
2274 tem = set_image_of_range_1 (work_area, start, newend, translate);
2275 if (tem > 0)
2276 return tem;
2278 start = 04400;
2279 if (end < 04400)
2280 return -1;
2282 #endif
2284 EXTEND_RANGE_TABLE (work_area, 2);
2285 work_area->table[work_area->used++] = (start);
2286 work_area->table[work_area->used++] = (end);
2288 cmin = -1, cmax = -1;
2290 if (RE_TRANSLATE_P (translate))
2292 int ch;
2294 for (ch = start; ch <= end; ch++)
2296 re_wchar_t c = TRANSLATE (ch);
2297 if (! (start <= c && c <= end))
2299 if (cmin == -1)
2300 cmin = c, cmax = c;
2301 else
2303 cmin = min (cmin, c);
2304 cmax = max (cmax, c);
2309 if (cmin != -1)
2311 EXTEND_RANGE_TABLE (work_area, 2);
2312 work_area->table[work_area->used++] = (cmin);
2313 work_area->table[work_area->used++] = (cmax);
2317 return -1;
2319 #endif /* 0 */
2321 #ifndef MATCH_MAY_ALLOCATE
2323 /* If we cannot allocate large objects within re_match_2_internal,
2324 we make the fail stack and register vectors global.
2325 The fail stack, we grow to the maximum size when a regexp
2326 is compiled.
2327 The register vectors, we adjust in size each time we
2328 compile a regexp, according to the number of registers it needs. */
2330 static fail_stack_type fail_stack;
2332 /* Size with which the following vectors are currently allocated.
2333 That is so we can make them bigger as needed,
2334 but never make them smaller. */
2335 static int regs_allocated_size;
2337 static re_char ** regstart, ** regend;
2338 static re_char **best_regstart, **best_regend;
2340 /* Make the register vectors big enough for NUM_REGS registers,
2341 but don't make them smaller. */
2343 static
2344 regex_grow_registers (int num_regs)
2346 if (num_regs > regs_allocated_size)
2348 RETALLOC_IF (regstart, num_regs, re_char *);
2349 RETALLOC_IF (regend, num_regs, re_char *);
2350 RETALLOC_IF (best_regstart, num_regs, re_char *);
2351 RETALLOC_IF (best_regend, num_regs, re_char *);
2353 regs_allocated_size = num_regs;
2357 #endif /* not MATCH_MAY_ALLOCATE */
2359 static boolean group_in_compile_stack (compile_stack_type compile_stack,
2360 regnum_t regnum);
2362 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2363 Returns one of error codes defined in `regex.h', or zero for success.
2365 If WHITESPACE_REGEXP is given (only #ifdef emacs), it is used instead of
2366 a space character in PATTERN.
2368 Assumes the `allocated' (and perhaps `buffer') and `translate'
2369 fields are set in BUFP on entry.
2371 If it succeeds, results are put in BUFP (if it returns an error, the
2372 contents of BUFP are undefined):
2373 `buffer' is the compiled pattern;
2374 `syntax' is set to SYNTAX;
2375 `used' is set to the length of the compiled pattern;
2376 `fastmap_accurate' is zero;
2377 `re_nsub' is the number of subexpressions in PATTERN;
2378 `not_bol' and `not_eol' are zero;
2380 The `fastmap' field is neither examined nor set. */
2382 /* Insert the `jump' from the end of last alternative to "here".
2383 The space for the jump has already been allocated. */
2384 #define FIXUP_ALT_JUMP() \
2385 do { \
2386 if (fixup_alt_jump) \
2387 STORE_JUMP (jump, fixup_alt_jump, b); \
2388 } while (0)
2391 /* Return, freeing storage we allocated. */
2392 #define FREE_STACK_RETURN(value) \
2393 do { \
2394 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2395 free (compile_stack.stack); \
2396 return value; \
2397 } while (0)
2399 static reg_errcode_t
2400 regex_compile (re_char *pattern, size_t size,
2401 #ifdef emacs
2402 # define syntax RE_SYNTAX_EMACS
2403 bool posix_backtracking,
2404 const char *whitespace_regexp,
2405 #else
2406 reg_syntax_t syntax,
2407 # define posix_backtracking (!(syntax & RE_NO_POSIX_BACKTRACKING))
2408 #endif
2409 struct re_pattern_buffer *bufp)
2411 /* We fetch characters from PATTERN here. */
2412 register re_wchar_t c, c1;
2414 /* Points to the end of the buffer, where we should append. */
2415 register unsigned char *b;
2417 /* Keeps track of unclosed groups. */
2418 compile_stack_type compile_stack;
2420 /* Points to the current (ending) position in the pattern. */
2421 #ifdef AIX
2422 /* `const' makes AIX compiler fail. */
2423 unsigned char *p = pattern;
2424 #else
2425 re_char *p = pattern;
2426 #endif
2427 re_char *pend = pattern + size;
2429 /* How to translate the characters in the pattern. */
2430 RE_TRANSLATE_TYPE translate = bufp->translate;
2432 /* Address of the count-byte of the most recently inserted `exactn'
2433 command. This makes it possible to tell if a new exact-match
2434 character can be added to that command or if the character requires
2435 a new `exactn' command. */
2436 unsigned char *pending_exact = 0;
2438 /* Address of start of the most recently finished expression.
2439 This tells, e.g., postfix * where to find the start of its
2440 operand. Reset at the beginning of groups and alternatives. */
2441 unsigned char *laststart = 0;
2443 /* Address of beginning of regexp, or inside of last group. */
2444 unsigned char *begalt;
2446 /* Place in the uncompiled pattern (i.e., the {) to
2447 which to go back if the interval is invalid. */
2448 re_char *beg_interval;
2450 /* Address of the place where a forward jump should go to the end of
2451 the containing expression. Each alternative of an `or' -- except the
2452 last -- ends with a forward jump of this sort. */
2453 unsigned char *fixup_alt_jump = 0;
2455 /* Work area for range table of charset. */
2456 struct range_table_work_area range_table_work;
2458 /* If the object matched can contain multibyte characters. */
2459 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2461 #ifdef emacs
2462 /* Nonzero if we have pushed down into a subpattern. */
2463 int in_subpattern = 0;
2465 /* These hold the values of p, pattern, and pend from the main
2466 pattern when we have pushed into a subpattern. */
2467 re_char *main_p;
2468 re_char *main_pattern;
2469 re_char *main_pend;
2470 #endif
2472 #ifdef DEBUG
2473 debug++;
2474 DEBUG_PRINT ("\nCompiling pattern: ");
2475 if (debug > 0)
2477 unsigned debug_count;
2479 for (debug_count = 0; debug_count < size; debug_count++)
2480 putchar (pattern[debug_count]);
2481 putchar ('\n');
2483 #endif /* DEBUG */
2485 /* Initialize the compile stack. */
2486 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2487 if (compile_stack.stack == NULL)
2488 return REG_ESPACE;
2490 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2491 compile_stack.avail = 0;
2493 range_table_work.table = 0;
2494 range_table_work.allocated = 0;
2496 /* Initialize the pattern buffer. */
2497 #ifndef emacs
2498 bufp->syntax = syntax;
2499 #endif
2500 bufp->fastmap_accurate = 0;
2501 bufp->not_bol = bufp->not_eol = 0;
2502 bufp->used_syntax = 0;
2504 /* Set `used' to zero, so that if we return an error, the pattern
2505 printer (for debugging) will think there's no pattern. We reset it
2506 at the end. */
2507 bufp->used = 0;
2509 /* Always count groups, whether or not bufp->no_sub is set. */
2510 bufp->re_nsub = 0;
2512 #if !defined emacs && !defined SYNTAX_TABLE
2513 /* Initialize the syntax table. */
2514 init_syntax_once ();
2515 #endif
2517 if (bufp->allocated == 0)
2519 if (bufp->buffer)
2520 { /* If zero allocated, but buffer is non-null, try to realloc
2521 enough space. This loses if buffer's address is bogus, but
2522 that is the user's responsibility. */
2523 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2525 else
2526 { /* Caller did not allocate a buffer. Do it for them. */
2527 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2529 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2531 bufp->allocated = INIT_BUF_SIZE;
2534 begalt = b = bufp->buffer;
2536 /* Loop through the uncompiled pattern until we're at the end. */
2537 while (1)
2539 if (p == pend)
2541 #ifdef emacs
2542 /* If this is the end of an included regexp,
2543 pop back to the main regexp and try again. */
2544 if (in_subpattern)
2546 in_subpattern = 0;
2547 pattern = main_pattern;
2548 p = main_p;
2549 pend = main_pend;
2550 continue;
2552 #endif
2553 /* If this is the end of the main regexp, we are done. */
2554 break;
2557 PATFETCH (c);
2559 switch (c)
2561 #ifdef emacs
2562 case ' ':
2564 re_char *p1 = p;
2566 /* If there's no special whitespace regexp, treat
2567 spaces normally. And don't try to do this recursively. */
2568 if (!whitespace_regexp || in_subpattern)
2569 goto normal_char;
2571 /* Peek past following spaces. */
2572 while (p1 != pend)
2574 if (*p1 != ' ')
2575 break;
2576 p1++;
2578 /* If the spaces are followed by a repetition op,
2579 treat them normally. */
2580 if (p1 != pend
2581 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2582 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2583 goto normal_char;
2585 /* Replace the spaces with the whitespace regexp. */
2586 in_subpattern = 1;
2587 main_p = p1;
2588 main_pend = pend;
2589 main_pattern = pattern;
2590 p = pattern = (re_char *) whitespace_regexp;
2591 pend = p + strlen (whitespace_regexp);
2592 break;
2594 #endif
2596 case '^':
2598 if ( /* If at start of pattern, it's an operator. */
2599 p == pattern + 1
2600 /* If context independent, it's an operator. */
2601 || syntax & RE_CONTEXT_INDEP_ANCHORS
2602 /* Otherwise, depends on what's come before. */
2603 || at_begline_loc_p (pattern, p, syntax))
2604 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2605 else
2606 goto normal_char;
2608 break;
2611 case '$':
2613 if ( /* If at end of pattern, it's an operator. */
2614 p == pend
2615 /* If context independent, it's an operator. */
2616 || syntax & RE_CONTEXT_INDEP_ANCHORS
2617 /* Otherwise, depends on what's next. */
2618 || at_endline_loc_p (p, pend, syntax))
2619 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2620 else
2621 goto normal_char;
2623 break;
2626 case '+':
2627 case '?':
2628 if ((syntax & RE_BK_PLUS_QM)
2629 || (syntax & RE_LIMITED_OPS))
2630 goto normal_char;
2631 FALLTHROUGH;
2632 case '*':
2633 handle_plus:
2634 /* If there is no previous pattern... */
2635 if (!laststart)
2637 if (syntax & RE_CONTEXT_INVALID_OPS)
2638 FREE_STACK_RETURN (REG_BADRPT);
2639 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2640 goto normal_char;
2644 /* 1 means zero (many) matches is allowed. */
2645 boolean zero_times_ok = 0, many_times_ok = 0;
2646 boolean greedy = 1;
2648 /* If there is a sequence of repetition chars, collapse it
2649 down to just one (the right one). We can't combine
2650 interval operators with these because of, e.g., `a{2}*',
2651 which should only match an even number of `a's. */
2653 for (;;)
2655 if ((syntax & RE_FRUGAL)
2656 && c == '?' && (zero_times_ok || many_times_ok))
2657 greedy = 0;
2658 else
2660 zero_times_ok |= c != '+';
2661 many_times_ok |= c != '?';
2664 if (p == pend)
2665 break;
2666 else if (*p == '*'
2667 || (!(syntax & RE_BK_PLUS_QM)
2668 && (*p == '+' || *p == '?')))
2670 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2672 if (p+1 == pend)
2673 FREE_STACK_RETURN (REG_EESCAPE);
2674 if (p[1] == '+' || p[1] == '?')
2675 PATFETCH (c); /* Gobble up the backslash. */
2676 else
2677 break;
2679 else
2680 break;
2681 /* If we get here, we found another repeat character. */
2682 PATFETCH (c);
2685 /* Star, etc. applied to an empty pattern is equivalent
2686 to an empty pattern. */
2687 if (!laststart || laststart == b)
2688 break;
2690 /* Now we know whether or not zero matches is allowed
2691 and also whether or not two or more matches is allowed. */
2692 if (greedy)
2694 if (many_times_ok)
2696 boolean simple = skip_one_char (laststart) == b;
2697 size_t startoffset = 0;
2698 re_opcode_t ofj =
2699 /* Check if the loop can match the empty string. */
2700 (simple || !analyze_first (laststart, b, NULL, 0))
2701 ? on_failure_jump : on_failure_jump_loop;
2702 assert (skip_one_char (laststart) <= b);
2704 if (!zero_times_ok && simple)
2705 { /* Since simple * loops can be made faster by using
2706 on_failure_keep_string_jump, we turn simple P+
2707 into PP* if P is simple. */
2708 unsigned char *p1, *p2;
2709 startoffset = b - laststart;
2710 GET_BUFFER_SPACE (startoffset);
2711 p1 = b; p2 = laststart;
2712 while (p2 < p1)
2713 *b++ = *p2++;
2714 zero_times_ok = 1;
2717 GET_BUFFER_SPACE (6);
2718 if (!zero_times_ok)
2719 /* A + loop. */
2720 STORE_JUMP (ofj, b, b + 6);
2721 else
2722 /* Simple * loops can use on_failure_keep_string_jump
2723 depending on what follows. But since we don't know
2724 that yet, we leave the decision up to
2725 on_failure_jump_smart. */
2726 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2727 laststart + startoffset, b + 6);
2728 b += 3;
2729 STORE_JUMP (jump, b, laststart + startoffset);
2730 b += 3;
2732 else
2734 /* A simple ? pattern. */
2735 assert (zero_times_ok);
2736 GET_BUFFER_SPACE (3);
2737 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2738 b += 3;
2741 else /* not greedy */
2742 { /* I wish the greedy and non-greedy cases could be merged. */
2744 GET_BUFFER_SPACE (7); /* We might use less. */
2745 if (many_times_ok)
2747 boolean emptyp = analyze_first (laststart, b, NULL, 0);
2749 /* The non-greedy multiple match looks like
2750 a repeat..until: we only need a conditional jump
2751 at the end of the loop. */
2752 if (emptyp) BUF_PUSH (no_op);
2753 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2754 : on_failure_jump, b, laststart);
2755 b += 3;
2756 if (zero_times_ok)
2758 /* The repeat...until naturally matches one or more.
2759 To also match zero times, we need to first jump to
2760 the end of the loop (its conditional jump). */
2761 INSERT_JUMP (jump, laststart, b);
2762 b += 3;
2765 else
2767 /* non-greedy a?? */
2768 INSERT_JUMP (jump, laststart, b + 3);
2769 b += 3;
2770 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2771 b += 3;
2775 pending_exact = 0;
2776 break;
2779 case '.':
2780 laststart = b;
2781 BUF_PUSH (anychar);
2782 break;
2785 case '[':
2787 re_char *p1;
2789 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2791 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2793 /* Ensure that we have enough space to push a charset: the
2794 opcode, the length count, and the bitset; 34 bytes in all. */
2795 GET_BUFFER_SPACE (34);
2797 laststart = b;
2799 /* We test `*p == '^' twice, instead of using an if
2800 statement, so we only need one BUF_PUSH. */
2801 BUF_PUSH (*p == '^' ? charset_not : charset);
2802 if (*p == '^')
2803 p++;
2805 /* Remember the first position in the bracket expression. */
2806 p1 = p;
2808 /* Push the number of bytes in the bitmap. */
2809 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2811 /* Clear the whole map. */
2812 memset (b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
2814 /* charset_not matches newline according to a syntax bit. */
2815 if ((re_opcode_t) b[-2] == charset_not
2816 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2817 SET_LIST_BIT ('\n');
2819 /* Read in characters and ranges, setting map bits. */
2820 for (;;)
2822 boolean escaped_char = false;
2823 const unsigned char *p2 = p;
2824 re_wctype_t cc;
2825 re_wchar_t ch;
2827 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2829 /* See if we're at the beginning of a possible character
2830 class. */
2831 if (syntax & RE_CHAR_CLASSES &&
2832 (cc = re_wctype_parse(&p, pend - p)) != -1)
2834 if (cc == 0)
2835 FREE_STACK_RETURN (REG_ECTYPE);
2837 if (p == pend)
2838 FREE_STACK_RETURN (REG_EBRACK);
2840 #ifndef emacs
2841 for (ch = 0; ch < (1 << BYTEWIDTH); ++ch)
2842 if (re_iswctype (btowc (ch), cc))
2844 c = TRANSLATE (ch);
2845 if (c < (1 << BYTEWIDTH))
2846 SET_LIST_BIT (c);
2848 #else /* emacs */
2849 /* Most character classes in a multibyte match just set
2850 a flag. Exceptions are is_blank, is_digit, is_cntrl, and
2851 is_xdigit, since they can only match ASCII characters.
2852 We don't need to handle them for multibyte. */
2854 /* Setup the gl_state object to its buffer-defined value.
2855 This hardcodes the buffer-global syntax-table for ASCII
2856 chars, while the other chars will obey syntax-table
2857 properties. It's not ideal, but it's the way it's been
2858 done until now. */
2859 SETUP_BUFFER_SYNTAX_TABLE ();
2861 for (c = 0; c < 0x80; ++c)
2862 if (re_iswctype (c, cc))
2864 SET_LIST_BIT (c);
2865 c1 = TRANSLATE (c);
2866 if (c1 == c)
2867 continue;
2868 if (ASCII_CHAR_P (c1))
2869 SET_LIST_BIT (c1);
2870 else if ((c1 = RE_CHAR_TO_UNIBYTE (c1)) >= 0)
2871 SET_LIST_BIT (c1);
2873 SET_RANGE_TABLE_WORK_AREA_BIT
2874 (range_table_work, re_wctype_to_bit (cc));
2875 #endif /* emacs */
2876 /* In most cases the matching rule for char classes only
2877 uses the syntax table for multibyte chars, so that the
2878 content of the syntax-table is not hardcoded in the
2879 range_table. SPACE and WORD are the two exceptions. */
2880 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2881 bufp->used_syntax = 1;
2883 /* Repeat the loop. */
2884 continue;
2887 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2888 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2889 So the translation is done later in a loop. Example:
2890 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2891 PATFETCH (c);
2893 /* \ might escape characters inside [...] and [^...]. */
2894 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2896 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2898 PATFETCH (c);
2899 escaped_char = true;
2901 else
2903 /* Could be the end of the bracket expression. If it's
2904 not (i.e., when the bracket expression is `[]' so
2905 far), the ']' character bit gets set way below. */
2906 if (c == ']' && p2 != p1)
2907 break;
2910 if (p < pend && p[0] == '-' && p[1] != ']')
2913 /* Discard the `-'. */
2914 PATFETCH (c1);
2916 /* Fetch the character which ends the range. */
2917 PATFETCH (c1);
2918 #ifdef emacs
2919 if (CHAR_BYTE8_P (c1)
2920 && ! ASCII_CHAR_P (c) && ! CHAR_BYTE8_P (c))
2921 /* Treat the range from a multibyte character to
2922 raw-byte character as empty. */
2923 c = c1 + 1;
2924 #endif /* emacs */
2926 else
2927 /* Range from C to C. */
2928 c1 = c;
2930 if (c > c1)
2932 if (syntax & RE_NO_EMPTY_RANGES)
2933 FREE_STACK_RETURN (REG_ERANGEX);
2934 /* Else, repeat the loop. */
2936 else
2938 #ifndef emacs
2939 /* Set the range into bitmap */
2940 for (; c <= c1; c++)
2942 ch = TRANSLATE (c);
2943 if (ch < (1 << BYTEWIDTH))
2944 SET_LIST_BIT (ch);
2946 #else /* emacs */
2947 if (c < 128)
2949 ch = min (127, c1);
2950 SETUP_ASCII_RANGE (range_table_work, c, ch);
2951 c = ch + 1;
2952 if (CHAR_BYTE8_P (c1))
2953 c = BYTE8_TO_CHAR (128);
2955 if (c <= c1)
2957 if (CHAR_BYTE8_P (c))
2959 c = CHAR_TO_BYTE8 (c);
2960 c1 = CHAR_TO_BYTE8 (c1);
2961 for (; c <= c1; c++)
2962 SET_LIST_BIT (c);
2964 else if (multibyte)
2966 SETUP_MULTIBYTE_RANGE (range_table_work, c, c1);
2968 else
2970 SETUP_UNIBYTE_RANGE (range_table_work, c, c1);
2973 #endif /* emacs */
2977 /* Discard any (non)matching list bytes that are all 0 at the
2978 end of the map. Decrease the map-length byte too. */
2979 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
2980 b[-1]--;
2981 b += b[-1];
2983 /* Build real range table from work area. */
2984 if (RANGE_TABLE_WORK_USED (range_table_work)
2985 || RANGE_TABLE_WORK_BITS (range_table_work))
2987 int i;
2988 int used = RANGE_TABLE_WORK_USED (range_table_work);
2990 /* Allocate space for COUNT + RANGE_TABLE. Needs two
2991 bytes for flags, two for COUNT, and three bytes for
2992 each character. */
2993 GET_BUFFER_SPACE (4 + used * 3);
2995 /* Indicate the existence of range table. */
2996 laststart[1] |= 0x80;
2998 /* Store the character class flag bits into the range table.
2999 If not in emacs, these flag bits are always 0. */
3000 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3001 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3003 STORE_NUMBER_AND_INCR (b, used / 2);
3004 for (i = 0; i < used; i++)
3005 STORE_CHARACTER_AND_INCR
3006 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3009 break;
3012 case '(':
3013 if (syntax & RE_NO_BK_PARENS)
3014 goto handle_open;
3015 else
3016 goto normal_char;
3019 case ')':
3020 if (syntax & RE_NO_BK_PARENS)
3021 goto handle_close;
3022 else
3023 goto normal_char;
3026 case '\n':
3027 if (syntax & RE_NEWLINE_ALT)
3028 goto handle_alt;
3029 else
3030 goto normal_char;
3033 case '|':
3034 if (syntax & RE_NO_BK_VBAR)
3035 goto handle_alt;
3036 else
3037 goto normal_char;
3040 case '{':
3041 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3042 goto handle_interval;
3043 else
3044 goto normal_char;
3047 case '\\':
3048 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3050 /* Do not translate the character after the \, so that we can
3051 distinguish, e.g., \B from \b, even if we normally would
3052 translate, e.g., B to b. */
3053 PATFETCH (c);
3055 switch (c)
3057 case '(':
3058 if (syntax & RE_NO_BK_PARENS)
3059 goto normal_backslash;
3061 handle_open:
3063 int shy = 0;
3064 regnum_t regnum = 0;
3065 if (p+1 < pend)
3067 /* Look for a special (?...) construct */
3068 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3070 PATFETCH (c); /* Gobble up the '?'. */
3071 while (!shy)
3073 PATFETCH (c);
3074 switch (c)
3076 case ':': shy = 1; break;
3077 case '0':
3078 /* An explicitly specified regnum must start
3079 with non-0. */
3080 if (regnum == 0)
3081 FREE_STACK_RETURN (REG_BADPAT);
3082 FALLTHROUGH;
3083 case '1': case '2': case '3': case '4':
3084 case '5': case '6': case '7': case '8': case '9':
3085 regnum = 10*regnum + (c - '0'); break;
3086 default:
3087 /* Only (?:...) is supported right now. */
3088 FREE_STACK_RETURN (REG_BADPAT);
3094 if (!shy)
3095 regnum = ++bufp->re_nsub;
3096 else if (regnum)
3097 { /* It's actually not shy, but explicitly numbered. */
3098 shy = 0;
3099 if (regnum > bufp->re_nsub)
3100 bufp->re_nsub = regnum;
3101 else if (regnum > bufp->re_nsub
3102 /* Ideally, we'd want to check that the specified
3103 group can't have matched (i.e. all subgroups
3104 using the same regnum are in other branches of
3105 OR patterns), but we don't currently keep track
3106 of enough info to do that easily. */
3107 || group_in_compile_stack (compile_stack, regnum))
3108 FREE_STACK_RETURN (REG_BADPAT);
3110 else
3111 /* It's really shy. */
3112 regnum = - bufp->re_nsub;
3114 if (COMPILE_STACK_FULL)
3116 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3117 compile_stack_elt_t);
3118 if (compile_stack.stack == NULL) return REG_ESPACE;
3120 compile_stack.size <<= 1;
3123 /* These are the values to restore when we hit end of this
3124 group. They are all relative offsets, so that if the
3125 whole pattern moves because of realloc, they will still
3126 be valid. */
3127 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3128 COMPILE_STACK_TOP.fixup_alt_jump
3129 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3130 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3131 COMPILE_STACK_TOP.regnum = regnum;
3133 /* Do not push a start_memory for groups beyond the last one
3134 we can represent in the compiled pattern. */
3135 if (regnum <= MAX_REGNUM && regnum > 0)
3136 BUF_PUSH_2 (start_memory, regnum);
3138 compile_stack.avail++;
3140 fixup_alt_jump = 0;
3141 laststart = 0;
3142 begalt = b;
3143 /* If we've reached MAX_REGNUM groups, then this open
3144 won't actually generate any code, so we'll have to
3145 clear pending_exact explicitly. */
3146 pending_exact = 0;
3147 break;
3150 case ')':
3151 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3153 if (COMPILE_STACK_EMPTY)
3155 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3156 goto normal_backslash;
3157 else
3158 FREE_STACK_RETURN (REG_ERPAREN);
3161 handle_close:
3162 FIXUP_ALT_JUMP ();
3164 /* See similar code for backslashed left paren above. */
3165 if (COMPILE_STACK_EMPTY)
3167 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3168 goto normal_char;
3169 else
3170 FREE_STACK_RETURN (REG_ERPAREN);
3173 /* Since we just checked for an empty stack above, this
3174 ``can't happen''. */
3175 assert (compile_stack.avail != 0);
3177 /* We don't just want to restore into `regnum', because
3178 later groups should continue to be numbered higher,
3179 as in `(ab)c(de)' -- the second group is #2. */
3180 regnum_t regnum;
3182 compile_stack.avail--;
3183 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3184 fixup_alt_jump
3185 = COMPILE_STACK_TOP.fixup_alt_jump
3186 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3187 : 0;
3188 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3189 regnum = COMPILE_STACK_TOP.regnum;
3190 /* If we've reached MAX_REGNUM groups, then this open
3191 won't actually generate any code, so we'll have to
3192 clear pending_exact explicitly. */
3193 pending_exact = 0;
3195 /* We're at the end of the group, so now we know how many
3196 groups were inside this one. */
3197 if (regnum <= MAX_REGNUM && regnum > 0)
3198 BUF_PUSH_2 (stop_memory, regnum);
3200 break;
3203 case '|': /* `\|'. */
3204 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3205 goto normal_backslash;
3206 handle_alt:
3207 if (syntax & RE_LIMITED_OPS)
3208 goto normal_char;
3210 /* Insert before the previous alternative a jump which
3211 jumps to this alternative if the former fails. */
3212 GET_BUFFER_SPACE (3);
3213 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3214 pending_exact = 0;
3215 b += 3;
3217 /* The alternative before this one has a jump after it
3218 which gets executed if it gets matched. Adjust that
3219 jump so it will jump to this alternative's analogous
3220 jump (put in below, which in turn will jump to the next
3221 (if any) alternative's such jump, etc.). The last such
3222 jump jumps to the correct final destination. A picture:
3223 _____ _____
3224 | | | |
3225 | v | v
3226 a | b | c
3228 If we are at `b', then fixup_alt_jump right now points to a
3229 three-byte space after `a'. We'll put in the jump, set
3230 fixup_alt_jump to right after `b', and leave behind three
3231 bytes which we'll fill in when we get to after `c'. */
3233 FIXUP_ALT_JUMP ();
3235 /* Mark and leave space for a jump after this alternative,
3236 to be filled in later either by next alternative or
3237 when know we're at the end of a series of alternatives. */
3238 fixup_alt_jump = b;
3239 GET_BUFFER_SPACE (3);
3240 b += 3;
3242 laststart = 0;
3243 begalt = b;
3244 break;
3247 case '{':
3248 /* If \{ is a literal. */
3249 if (!(syntax & RE_INTERVALS)
3250 /* If we're at `\{' and it's not the open-interval
3251 operator. */
3252 || (syntax & RE_NO_BK_BRACES))
3253 goto normal_backslash;
3255 handle_interval:
3257 /* If got here, then the syntax allows intervals. */
3259 /* At least (most) this many matches must be made. */
3260 int lower_bound = 0, upper_bound = -1;
3262 beg_interval = p;
3264 GET_INTERVAL_COUNT (lower_bound);
3266 if (c == ',')
3267 GET_INTERVAL_COUNT (upper_bound);
3268 else
3269 /* Interval such as `{1}' => match exactly once. */
3270 upper_bound = lower_bound;
3272 if (lower_bound < 0
3273 || (0 <= upper_bound && upper_bound < lower_bound))
3274 FREE_STACK_RETURN (REG_BADBR);
3276 if (!(syntax & RE_NO_BK_BRACES))
3278 if (c != '\\')
3279 FREE_STACK_RETURN (REG_BADBR);
3280 if (p == pend)
3281 FREE_STACK_RETURN (REG_EESCAPE);
3282 PATFETCH (c);
3285 if (c != '}')
3286 FREE_STACK_RETURN (REG_BADBR);
3288 /* We just parsed a valid interval. */
3290 /* If it's invalid to have no preceding re. */
3291 if (!laststart)
3293 if (syntax & RE_CONTEXT_INVALID_OPS)
3294 FREE_STACK_RETURN (REG_BADRPT);
3295 else if (syntax & RE_CONTEXT_INDEP_OPS)
3296 laststart = b;
3297 else
3298 goto unfetch_interval;
3301 if (upper_bound == 0)
3302 /* If the upper bound is zero, just drop the sub pattern
3303 altogether. */
3304 b = laststart;
3305 else if (lower_bound == 1 && upper_bound == 1)
3306 /* Just match it once: nothing to do here. */
3309 /* Otherwise, we have a nontrivial interval. When
3310 we're all done, the pattern will look like:
3311 set_number_at <jump count> <upper bound>
3312 set_number_at <succeed_n count> <lower bound>
3313 succeed_n <after jump addr> <succeed_n count>
3314 <body of loop>
3315 jump_n <succeed_n addr> <jump count>
3316 (The upper bound and `jump_n' are omitted if
3317 `upper_bound' is 1, though.) */
3318 else
3319 { /* If the upper bound is > 1, we need to insert
3320 more at the end of the loop. */
3321 unsigned int nbytes = (upper_bound < 0 ? 3
3322 : upper_bound > 1 ? 5 : 0);
3323 unsigned int startoffset = 0;
3325 GET_BUFFER_SPACE (20); /* We might use less. */
3327 if (lower_bound == 0)
3329 /* A succeed_n that starts with 0 is really a
3330 a simple on_failure_jump_loop. */
3331 INSERT_JUMP (on_failure_jump_loop, laststart,
3332 b + 3 + nbytes);
3333 b += 3;
3335 else
3337 /* Initialize lower bound of the `succeed_n', even
3338 though it will be set during matching by its
3339 attendant `set_number_at' (inserted next),
3340 because `re_compile_fastmap' needs to know.
3341 Jump to the `jump_n' we might insert below. */
3342 INSERT_JUMP2 (succeed_n, laststart,
3343 b + 5 + nbytes,
3344 lower_bound);
3345 b += 5;
3347 /* Code to initialize the lower bound. Insert
3348 before the `succeed_n'. The `5' is the last two
3349 bytes of this `set_number_at', plus 3 bytes of
3350 the following `succeed_n'. */
3351 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3352 b += 5;
3353 startoffset += 5;
3356 if (upper_bound < 0)
3358 /* A negative upper bound stands for infinity,
3359 in which case it degenerates to a plain jump. */
3360 STORE_JUMP (jump, b, laststart + startoffset);
3361 b += 3;
3363 else if (upper_bound > 1)
3364 { /* More than one repetition is allowed, so
3365 append a backward jump to the `succeed_n'
3366 that starts this interval.
3368 When we've reached this during matching,
3369 we'll have matched the interval once, so
3370 jump back only `upper_bound - 1' times. */
3371 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3372 upper_bound - 1);
3373 b += 5;
3375 /* The location we want to set is the second
3376 parameter of the `jump_n'; that is `b-2' as
3377 an absolute address. `laststart' will be
3378 the `set_number_at' we're about to insert;
3379 `laststart+3' the number to set, the source
3380 for the relative address. But we are
3381 inserting into the middle of the pattern --
3382 so everything is getting moved up by 5.
3383 Conclusion: (b - 2) - (laststart + 3) + 5,
3384 i.e., b - laststart.
3386 We insert this at the beginning of the loop
3387 so that if we fail during matching, we'll
3388 reinitialize the bounds. */
3389 insert_op2 (set_number_at, laststart, b - laststart,
3390 upper_bound - 1, b);
3391 b += 5;
3394 pending_exact = 0;
3395 beg_interval = NULL;
3397 break;
3399 unfetch_interval:
3400 /* If an invalid interval, match the characters as literals. */
3401 assert (beg_interval);
3402 p = beg_interval;
3403 beg_interval = NULL;
3405 /* normal_char and normal_backslash need `c'. */
3406 c = '{';
3408 if (!(syntax & RE_NO_BK_BRACES))
3410 assert (p > pattern && p[-1] == '\\');
3411 goto normal_backslash;
3413 else
3414 goto normal_char;
3416 #ifdef emacs
3417 case '=':
3418 laststart = b;
3419 BUF_PUSH (at_dot);
3420 break;
3422 case 's':
3423 laststart = b;
3424 PATFETCH (c);
3425 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3426 break;
3428 case 'S':
3429 laststart = b;
3430 PATFETCH (c);
3431 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3432 break;
3434 case 'c':
3435 laststart = b;
3436 PATFETCH (c);
3437 BUF_PUSH_2 (categoryspec, c);
3438 break;
3440 case 'C':
3441 laststart = b;
3442 PATFETCH (c);
3443 BUF_PUSH_2 (notcategoryspec, c);
3444 break;
3445 #endif /* emacs */
3448 case 'w':
3449 if (syntax & RE_NO_GNU_OPS)
3450 goto normal_char;
3451 laststart = b;
3452 BUF_PUSH_2 (syntaxspec, Sword);
3453 break;
3456 case 'W':
3457 if (syntax & RE_NO_GNU_OPS)
3458 goto normal_char;
3459 laststart = b;
3460 BUF_PUSH_2 (notsyntaxspec, Sword);
3461 break;
3464 case '<':
3465 if (syntax & RE_NO_GNU_OPS)
3466 goto normal_char;
3467 laststart = b;
3468 BUF_PUSH (wordbeg);
3469 break;
3471 case '>':
3472 if (syntax & RE_NO_GNU_OPS)
3473 goto normal_char;
3474 laststart = b;
3475 BUF_PUSH (wordend);
3476 break;
3478 case '_':
3479 if (syntax & RE_NO_GNU_OPS)
3480 goto normal_char;
3481 laststart = b;
3482 PATFETCH (c);
3483 if (c == '<')
3484 BUF_PUSH (symbeg);
3485 else if (c == '>')
3486 BUF_PUSH (symend);
3487 else
3488 FREE_STACK_RETURN (REG_BADPAT);
3489 break;
3491 case 'b':
3492 if (syntax & RE_NO_GNU_OPS)
3493 goto normal_char;
3494 BUF_PUSH (wordbound);
3495 break;
3497 case 'B':
3498 if (syntax & RE_NO_GNU_OPS)
3499 goto normal_char;
3500 BUF_PUSH (notwordbound);
3501 break;
3503 case '`':
3504 if (syntax & RE_NO_GNU_OPS)
3505 goto normal_char;
3506 BUF_PUSH (begbuf);
3507 break;
3509 case '\'':
3510 if (syntax & RE_NO_GNU_OPS)
3511 goto normal_char;
3512 BUF_PUSH (endbuf);
3513 break;
3515 case '1': case '2': case '3': case '4': case '5':
3516 case '6': case '7': case '8': case '9':
3518 regnum_t reg;
3520 if (syntax & RE_NO_BK_REFS)
3521 goto normal_backslash;
3523 reg = c - '0';
3525 if (reg > bufp->re_nsub || reg < 1
3526 /* Can't back reference to a subexp before its end. */
3527 || group_in_compile_stack (compile_stack, reg))
3528 FREE_STACK_RETURN (REG_ESUBREG);
3530 laststart = b;
3531 BUF_PUSH_2 (duplicate, reg);
3533 break;
3536 case '+':
3537 case '?':
3538 if (syntax & RE_BK_PLUS_QM)
3539 goto handle_plus;
3540 else
3541 goto normal_backslash;
3543 default:
3544 normal_backslash:
3545 /* You might think it would be useful for \ to mean
3546 not to translate; but if we don't translate it
3547 it will never match anything. */
3548 goto normal_char;
3550 break;
3553 default:
3554 /* Expects the character in `c'. */
3555 normal_char:
3556 /* If no exactn currently being built. */
3557 if (!pending_exact
3559 /* If last exactn not at current position. */
3560 || pending_exact + *pending_exact + 1 != b
3562 /* We have only one byte following the exactn for the count. */
3563 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3565 /* If followed by a repetition operator. */
3566 || (p != pend && (*p == '*' || *p == '^'))
3567 || ((syntax & RE_BK_PLUS_QM)
3568 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3569 : p != pend && (*p == '+' || *p == '?'))
3570 || ((syntax & RE_INTERVALS)
3571 && ((syntax & RE_NO_BK_BRACES)
3572 ? p != pend && *p == '{'
3573 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3575 /* Start building a new exactn. */
3577 laststart = b;
3579 BUF_PUSH_2 (exactn, 0);
3580 pending_exact = b - 1;
3583 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3585 int len;
3587 if (multibyte)
3589 c = TRANSLATE (c);
3590 len = CHAR_STRING (c, b);
3591 b += len;
3593 else
3595 c1 = RE_CHAR_TO_MULTIBYTE (c);
3596 if (! CHAR_BYTE8_P (c1))
3598 re_wchar_t c2 = TRANSLATE (c1);
3600 if (c1 != c2 && (c1 = RE_CHAR_TO_UNIBYTE (c2)) >= 0)
3601 c = c1;
3603 *b++ = c;
3604 len = 1;
3606 (*pending_exact) += len;
3609 break;
3610 } /* switch (c) */
3611 } /* while p != pend */
3614 /* Through the pattern now. */
3616 FIXUP_ALT_JUMP ();
3618 if (!COMPILE_STACK_EMPTY)
3619 FREE_STACK_RETURN (REG_EPAREN);
3621 /* If we don't want backtracking, force success
3622 the first time we reach the end of the compiled pattern. */
3623 if (!posix_backtracking)
3624 BUF_PUSH (succeed);
3626 /* We have succeeded; set the length of the buffer. */
3627 bufp->used = b - bufp->buffer;
3629 #ifdef DEBUG
3630 if (debug > 0)
3632 re_compile_fastmap (bufp);
3633 DEBUG_PRINT ("\nCompiled pattern: \n");
3634 print_compiled_pattern (bufp);
3636 debug--;
3637 #endif /* DEBUG */
3639 #ifndef MATCH_MAY_ALLOCATE
3640 /* Initialize the failure stack to the largest possible stack. This
3641 isn't necessary unless we're trying to avoid calling alloca in
3642 the search and match routines. */
3644 int num_regs = bufp->re_nsub + 1;
3646 if (fail_stack.size < emacs_re_max_failures * TYPICAL_FAILURE_SIZE)
3648 fail_stack.size = emacs_re_max_failures * TYPICAL_FAILURE_SIZE;
3649 falk_stack.stack = realloc (fail_stack.stack,
3650 fail_stack.size * sizeof *falk_stack.stack);
3653 regex_grow_registers (num_regs);
3655 #endif /* not MATCH_MAY_ALLOCATE */
3657 FREE_STACK_RETURN (REG_NOERROR);
3659 #ifdef emacs
3660 # undef syntax
3661 #else
3662 # undef posix_backtracking
3663 #endif
3664 } /* regex_compile */
3666 /* Subroutines for `regex_compile'. */
3668 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3670 static void
3671 store_op1 (re_opcode_t op, unsigned char *loc, int arg)
3673 *loc = (unsigned char) op;
3674 STORE_NUMBER (loc + 1, arg);
3678 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3680 static void
3681 store_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2)
3683 *loc = (unsigned char) op;
3684 STORE_NUMBER (loc + 1, arg1);
3685 STORE_NUMBER (loc + 3, arg2);
3689 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3690 for OP followed by two-byte integer parameter ARG. */
3692 static void
3693 insert_op1 (re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
3695 register unsigned char *pfrom = end;
3696 register unsigned char *pto = end + 3;
3698 while (pfrom != loc)
3699 *--pto = *--pfrom;
3701 store_op1 (op, loc, arg);
3705 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3707 static void
3708 insert_op2 (re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
3710 register unsigned char *pfrom = end;
3711 register unsigned char *pto = end + 5;
3713 while (pfrom != loc)
3714 *--pto = *--pfrom;
3716 store_op2 (op, loc, arg1, arg2);
3720 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3721 after an alternative or a begin-subexpression. We assume there is at
3722 least one character before the ^. */
3724 static boolean
3725 at_begline_loc_p (re_char *pattern, re_char *p, reg_syntax_t syntax)
3727 re_char *prev = p - 2;
3728 boolean odd_backslashes;
3730 /* After a subexpression? */
3731 if (*prev == '(')
3732 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3734 /* After an alternative? */
3735 else if (*prev == '|')
3736 odd_backslashes = (syntax & RE_NO_BK_VBAR) == 0;
3738 /* After a shy subexpression? */
3739 else if (*prev == ':' && (syntax & RE_SHY_GROUPS))
3741 /* Skip over optional regnum. */
3742 while (prev - 1 >= pattern && prev[-1] >= '0' && prev[-1] <= '9')
3743 --prev;
3745 if (!(prev - 2 >= pattern
3746 && prev[-1] == '?' && prev[-2] == '('))
3747 return false;
3748 prev -= 2;
3749 odd_backslashes = (syntax & RE_NO_BK_PARENS) == 0;
3751 else
3752 return false;
3754 /* Count the number of preceding backslashes. */
3755 p = prev;
3756 while (prev - 1 >= pattern && prev[-1] == '\\')
3757 --prev;
3758 return (p - prev) & odd_backslashes;
3762 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3763 at least one character after the $, i.e., `P < PEND'. */
3765 static boolean
3766 at_endline_loc_p (re_char *p, re_char *pend, reg_syntax_t syntax)
3768 re_char *next = p;
3769 boolean next_backslash = *next == '\\';
3770 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3772 return
3773 /* Before a subexpression? */
3774 (syntax & RE_NO_BK_PARENS ? *next == ')'
3775 : next_backslash && next_next && *next_next == ')')
3776 /* Before an alternative? */
3777 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3778 : next_backslash && next_next && *next_next == '|');
3782 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3783 false if it's not. */
3785 static boolean
3786 group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
3788 ssize_t this_element;
3790 for (this_element = compile_stack.avail - 1;
3791 this_element >= 0;
3792 this_element--)
3793 if (compile_stack.stack[this_element].regnum == regnum)
3794 return true;
3796 return false;
3799 /* analyze_first.
3800 If fastmap is non-NULL, go through the pattern and fill fastmap
3801 with all the possible leading chars. If fastmap is NULL, don't
3802 bother filling it up (obviously) and only return whether the
3803 pattern could potentially match the empty string.
3805 Return 1 if p..pend might match the empty string.
3806 Return 0 if p..pend matches at least one char.
3807 Return -1 if fastmap was not updated accurately. */
3809 static int
3810 analyze_first (re_char *p, re_char *pend, char *fastmap,
3811 const int multibyte)
3813 int j, k;
3814 boolean not;
3816 /* If all elements for base leading-codes in fastmap is set, this
3817 flag is set true. */
3818 boolean match_any_multibyte_characters = false;
3820 assert (p);
3822 /* The loop below works as follows:
3823 - It has a working-list kept in the PATTERN_STACK and which basically
3824 starts by only containing a pointer to the first operation.
3825 - If the opcode we're looking at is a match against some set of
3826 chars, then we add those chars to the fastmap and go on to the
3827 next work element from the worklist (done via `break').
3828 - If the opcode is a control operator on the other hand, we either
3829 ignore it (if it's meaningless at this point, such as `start_memory')
3830 or execute it (if it's a jump). If the jump has several destinations
3831 (i.e. `on_failure_jump'), then we push the other destination onto the
3832 worklist.
3833 We guarantee termination by ignoring backward jumps (more or less),
3834 so that `p' is monotonically increasing. More to the point, we
3835 never set `p' (or push) anything `<= p1'. */
3837 while (p < pend)
3839 /* `p1' is used as a marker of how far back a `on_failure_jump'
3840 can go without being ignored. It is normally equal to `p'
3841 (which prevents any backward `on_failure_jump') except right
3842 after a plain `jump', to allow patterns such as:
3843 0: jump 10
3844 3..9: <body>
3845 10: on_failure_jump 3
3846 as used for the *? operator. */
3847 re_char *p1 = p;
3849 switch (*p++)
3851 case succeed:
3852 return 1;
3854 case duplicate:
3855 /* If the first character has to match a backreference, that means
3856 that the group was empty (since it already matched). Since this
3857 is the only case that interests us here, we can assume that the
3858 backreference must match the empty string. */
3859 p++;
3860 continue;
3863 /* Following are the cases which match a character. These end
3864 with `break'. */
3866 case exactn:
3867 if (fastmap)
3869 /* If multibyte is nonzero, the first byte of each
3870 character is an ASCII or a leading code. Otherwise,
3871 each byte is a character. Thus, this works in both
3872 cases. */
3873 fastmap[p[1]] = 1;
3874 if (! multibyte)
3876 /* For the case of matching this unibyte regex
3877 against multibyte, we must set a leading code of
3878 the corresponding multibyte character. */
3879 int c = RE_CHAR_TO_MULTIBYTE (p[1]);
3881 fastmap[CHAR_LEADING_CODE (c)] = 1;
3884 break;
3887 case anychar:
3888 /* We could put all the chars except for \n (and maybe \0)
3889 but we don't bother since it is generally not worth it. */
3890 if (!fastmap) break;
3891 return -1;
3894 case charset_not:
3895 if (!fastmap) break;
3897 /* Chars beyond end of bitmap are possible matches. */
3898 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3899 j < (1 << BYTEWIDTH); j++)
3900 fastmap[j] = 1;
3902 FALLTHROUGH;
3903 case charset:
3904 if (!fastmap) break;
3905 not = (re_opcode_t) *(p - 1) == charset_not;
3906 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3907 j >= 0; j--)
3908 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3909 fastmap[j] = 1;
3911 #ifdef emacs
3912 if (/* Any leading code can possibly start a character
3913 which doesn't match the specified set of characters. */
3916 /* If we can match a character class, we can match any
3917 multibyte characters. */
3918 (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3919 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3922 if (match_any_multibyte_characters == false)
3924 for (j = MIN_MULTIBYTE_LEADING_CODE;
3925 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
3926 fastmap[j] = 1;
3927 match_any_multibyte_characters = true;
3931 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3932 && match_any_multibyte_characters == false)
3934 /* Set fastmap[I] to 1 where I is a leading code of each
3935 multibyte character in the range table. */
3936 int c, count;
3937 unsigned char lc1, lc2;
3939 /* Make P points the range table. `+ 2' is to skip flag
3940 bits for a character class. */
3941 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3943 /* Extract the number of ranges in range table into COUNT. */
3944 EXTRACT_NUMBER_AND_INCR (count, p);
3945 for (; count > 0; count--, p += 3)
3947 /* Extract the start and end of each range. */
3948 EXTRACT_CHARACTER (c, p);
3949 lc1 = CHAR_LEADING_CODE (c);
3950 p += 3;
3951 EXTRACT_CHARACTER (c, p);
3952 lc2 = CHAR_LEADING_CODE (c);
3953 for (j = lc1; j <= lc2; j++)
3954 fastmap[j] = 1;
3957 #endif
3958 break;
3960 case syntaxspec:
3961 case notsyntaxspec:
3962 if (!fastmap) break;
3963 #ifndef emacs
3964 not = (re_opcode_t)p[-1] == notsyntaxspec;
3965 k = *p++;
3966 for (j = 0; j < (1 << BYTEWIDTH); j++)
3967 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3968 fastmap[j] = 1;
3969 break;
3970 #else /* emacs */
3971 /* This match depends on text properties. These end with
3972 aborting optimizations. */
3973 return -1;
3975 case categoryspec:
3976 case notcategoryspec:
3977 if (!fastmap) break;
3978 not = (re_opcode_t)p[-1] == notcategoryspec;
3979 k = *p++;
3980 for (j = (1 << BYTEWIDTH); j >= 0; j--)
3981 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
3982 fastmap[j] = 1;
3984 /* Any leading code can possibly start a character which
3985 has or doesn't has the specified category. */
3986 if (match_any_multibyte_characters == false)
3988 for (j = MIN_MULTIBYTE_LEADING_CODE;
3989 j <= MAX_MULTIBYTE_LEADING_CODE; j++)
3990 fastmap[j] = 1;
3991 match_any_multibyte_characters = true;
3993 break;
3995 /* All cases after this match the empty string. These end with
3996 `continue'. */
3998 case at_dot:
3999 #endif /* !emacs */
4000 case no_op:
4001 case begline:
4002 case endline:
4003 case begbuf:
4004 case endbuf:
4005 case wordbound:
4006 case notwordbound:
4007 case wordbeg:
4008 case wordend:
4009 case symbeg:
4010 case symend:
4011 continue;
4014 case jump:
4015 EXTRACT_NUMBER_AND_INCR (j, p);
4016 if (j < 0)
4017 /* Backward jumps can only go back to code that we've already
4018 visited. `re_compile' should make sure this is true. */
4019 break;
4020 p += j;
4021 switch (*p)
4023 case on_failure_jump:
4024 case on_failure_keep_string_jump:
4025 case on_failure_jump_loop:
4026 case on_failure_jump_nastyloop:
4027 case on_failure_jump_smart:
4028 p++;
4029 break;
4030 default:
4031 continue;
4033 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4034 to jump back to "just after here". */
4035 /* Fallthrough */
4037 case on_failure_jump:
4038 case on_failure_keep_string_jump:
4039 case on_failure_jump_nastyloop:
4040 case on_failure_jump_loop:
4041 case on_failure_jump_smart:
4042 EXTRACT_NUMBER_AND_INCR (j, p);
4043 if (p + j <= p1)
4044 ; /* Backward jump to be ignored. */
4045 else
4046 { /* We have to look down both arms.
4047 We first go down the "straight" path so as to minimize
4048 stack usage when going through alternatives. */
4049 int r = analyze_first (p, pend, fastmap, multibyte);
4050 if (r) return r;
4051 p += j;
4053 continue;
4056 case jump_n:
4057 /* This code simply does not properly handle forward jump_n. */
4058 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4059 p += 4;
4060 /* jump_n can either jump or fall through. The (backward) jump
4061 case has already been handled, so we only need to look at the
4062 fallthrough case. */
4063 continue;
4065 case succeed_n:
4066 /* If N == 0, it should be an on_failure_jump_loop instead. */
4067 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4068 p += 4;
4069 /* We only care about one iteration of the loop, so we don't
4070 need to consider the case where this behaves like an
4071 on_failure_jump. */
4072 continue;
4075 case set_number_at:
4076 p += 4;
4077 continue;
4080 case start_memory:
4081 case stop_memory:
4082 p += 1;
4083 continue;
4086 default:
4087 abort (); /* We have listed all the cases. */
4088 } /* switch *p++ */
4090 /* Getting here means we have found the possible starting
4091 characters for one path of the pattern -- and that the empty
4092 string does not match. We need not follow this path further. */
4093 return 0;
4094 } /* while p */
4096 /* We reached the end without matching anything. */
4097 return 1;
4099 } /* analyze_first */
4101 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4102 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4103 characters can start a string that matches the pattern. This fastmap
4104 is used by re_search to skip quickly over impossible starting points.
4106 Character codes above (1 << BYTEWIDTH) are not represented in the
4107 fastmap, but the leading codes are represented. Thus, the fastmap
4108 indicates which character sets could start a match.
4110 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4111 area as BUFP->fastmap.
4113 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4114 the pattern buffer.
4116 Returns 0 if we succeed, -2 if an internal error. */
4119 re_compile_fastmap (struct re_pattern_buffer *bufp)
4121 char *fastmap = bufp->fastmap;
4122 int analysis;
4124 assert (fastmap && bufp->buffer);
4126 memset (fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4127 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4129 analysis = analyze_first (bufp->buffer, bufp->buffer + bufp->used,
4130 fastmap, RE_MULTIBYTE_P (bufp));
4131 bufp->can_be_null = (analysis != 0);
4132 return 0;
4133 } /* re_compile_fastmap */
4135 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4136 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4137 this memory for recording register information. STARTS and ENDS
4138 must be allocated using the malloc library routine, and must each
4139 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4141 If NUM_REGS == 0, then subsequent matches should allocate their own
4142 register data.
4144 Unless this function is called, the first search or match using
4145 PATTERN_BUFFER will allocate its own register data, without
4146 freeing the old data. */
4148 void
4149 re_set_registers (struct re_pattern_buffer *bufp, struct re_registers *regs, unsigned int num_regs, regoff_t *starts, regoff_t *ends)
4151 if (num_regs)
4153 bufp->regs_allocated = REGS_REALLOCATE;
4154 regs->num_regs = num_regs;
4155 regs->start = starts;
4156 regs->end = ends;
4158 else
4160 bufp->regs_allocated = REGS_UNALLOCATED;
4161 regs->num_regs = 0;
4162 regs->start = regs->end = 0;
4165 WEAK_ALIAS (__re_set_registers, re_set_registers)
4167 /* Searching routines. */
4169 /* Like re_search_2, below, but only one string is specified, and
4170 doesn't let you say where to stop matching. */
4172 regoff_t
4173 re_search (struct re_pattern_buffer *bufp, const char *string, size_t size,
4174 ssize_t startpos, ssize_t range, struct re_registers *regs)
4176 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4177 regs, size);
4179 WEAK_ALIAS (__re_search, re_search)
4181 /* Head address of virtual concatenation of string. */
4182 #define HEAD_ADDR_VSTRING(P) \
4183 (((P) >= size1 ? string2 : string1))
4185 /* Address of POS in the concatenation of virtual string. */
4186 #define POS_ADDR_VSTRING(POS) \
4187 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4189 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4190 virtual concatenation of STRING1 and STRING2, starting first at index
4191 STARTPOS, then at STARTPOS + 1, and so on.
4193 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4195 RANGE is how far to scan while trying to match. RANGE = 0 means try
4196 only at STARTPOS; in general, the last start tried is STARTPOS +
4197 RANGE.
4199 In REGS, return the indices of the virtual concatenation of STRING1
4200 and STRING2 that matched the entire BUFP->buffer and its contained
4201 subexpressions.
4203 Do not consider matching one past the index STOP in the virtual
4204 concatenation of STRING1 and STRING2.
4206 We return either the position in the strings at which the match was
4207 found, -1 if no match, or -2 if error (such as failure
4208 stack overflow). */
4210 regoff_t
4211 re_search_2 (struct re_pattern_buffer *bufp, const char *str1, size_t size1,
4212 const char *str2, size_t size2, ssize_t startpos, ssize_t range,
4213 struct re_registers *regs, ssize_t stop)
4215 regoff_t val;
4216 re_char *string1 = (re_char *) str1;
4217 re_char *string2 = (re_char *) str2;
4218 register char *fastmap = bufp->fastmap;
4219 register RE_TRANSLATE_TYPE translate = bufp->translate;
4220 size_t total_size = size1 + size2;
4221 ssize_t endpos = startpos + range;
4222 boolean anchored_start;
4223 /* Nonzero if we are searching multibyte string. */
4224 const boolean multibyte = RE_TARGET_MULTIBYTE_P (bufp);
4226 /* Check for out-of-range STARTPOS. */
4227 if (startpos < 0 || startpos > total_size)
4228 return -1;
4230 /* Fix up RANGE if it might eventually take us outside
4231 the virtual concatenation of STRING1 and STRING2.
4232 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4233 if (endpos < 0)
4234 range = 0 - startpos;
4235 else if (endpos > total_size)
4236 range = total_size - startpos;
4238 /* If the search isn't to be a backwards one, don't waste time in a
4239 search for a pattern anchored at beginning of buffer. */
4240 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4242 if (startpos > 0)
4243 return -1;
4244 else
4245 range = 0;
4248 #ifdef emacs
4249 /* In a forward search for something that starts with \=.
4250 don't keep searching past point. */
4251 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4253 range = PT_BYTE - BEGV_BYTE - startpos;
4254 if (range < 0)
4255 return -1;
4257 #endif /* emacs */
4259 /* Update the fastmap now if not correct already. */
4260 if (fastmap && !bufp->fastmap_accurate)
4261 re_compile_fastmap (bufp);
4263 /* See whether the pattern is anchored. */
4264 anchored_start = (bufp->buffer[0] == begline);
4266 #ifdef emacs
4267 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4269 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4271 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4273 #endif
4275 /* Loop through the string, looking for a place to start matching. */
4276 for (;;)
4278 /* If the pattern is anchored,
4279 skip quickly past places we cannot match.
4280 We don't bother to treat startpos == 0 specially
4281 because that case doesn't repeat. */
4282 if (anchored_start && startpos > 0)
4284 if (! ((startpos <= size1 ? string1[startpos - 1]
4285 : string2[startpos - size1 - 1])
4286 == '\n'))
4287 goto advance;
4290 /* If a fastmap is supplied, skip quickly over characters that
4291 cannot be the start of a match. If the pattern can match the
4292 null string, however, we don't need to skip characters; we want
4293 the first null string. */
4294 if (fastmap && startpos < total_size && !bufp->can_be_null)
4296 register re_char *d;
4297 register re_wchar_t buf_ch;
4299 d = POS_ADDR_VSTRING (startpos);
4301 if (range > 0) /* Searching forwards. */
4303 ssize_t irange = range, lim = 0;
4305 if (startpos < size1 && startpos + range >= size1)
4306 lim = range - (size1 - startpos);
4308 /* Written out as an if-else to avoid testing `translate'
4309 inside the loop. */
4310 if (RE_TRANSLATE_P (translate))
4312 if (multibyte)
4313 while (range > lim)
4315 int buf_charlen;
4317 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4318 buf_ch = RE_TRANSLATE (translate, buf_ch);
4319 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4320 break;
4322 range -= buf_charlen;
4323 d += buf_charlen;
4325 else
4326 while (range > lim)
4328 register re_wchar_t ch, translated;
4330 buf_ch = *d;
4331 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4332 translated = RE_TRANSLATE (translate, ch);
4333 if (translated != ch
4334 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4335 buf_ch = ch;
4336 if (fastmap[buf_ch])
4337 break;
4338 d++;
4339 range--;
4342 else
4344 if (multibyte)
4345 while (range > lim)
4347 int buf_charlen;
4349 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
4350 if (fastmap[CHAR_LEADING_CODE (buf_ch)])
4351 break;
4352 range -= buf_charlen;
4353 d += buf_charlen;
4355 else
4356 while (range > lim && !fastmap[*d])
4358 d++;
4359 range--;
4362 startpos += irange - range;
4364 else /* Searching backwards. */
4366 if (multibyte)
4368 buf_ch = STRING_CHAR (d);
4369 buf_ch = TRANSLATE (buf_ch);
4370 if (! fastmap[CHAR_LEADING_CODE (buf_ch)])
4371 goto advance;
4373 else
4375 register re_wchar_t ch, translated;
4377 buf_ch = *d;
4378 ch = RE_CHAR_TO_MULTIBYTE (buf_ch);
4379 translated = TRANSLATE (ch);
4380 if (translated != ch
4381 && (ch = RE_CHAR_TO_UNIBYTE (translated)) >= 0)
4382 buf_ch = ch;
4383 if (! fastmap[TRANSLATE (buf_ch)])
4384 goto advance;
4389 /* If can't match the null string, and that's all we have left, fail. */
4390 if (range >= 0 && startpos == total_size && fastmap
4391 && !bufp->can_be_null)
4392 return -1;
4394 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4395 startpos, regs, stop);
4397 if (val >= 0)
4398 return startpos;
4400 if (val == -2)
4401 return -2;
4403 advance:
4404 if (!range)
4405 break;
4406 else if (range > 0)
4408 /* Update STARTPOS to the next character boundary. */
4409 if (multibyte)
4411 re_char *p = POS_ADDR_VSTRING (startpos);
4412 int len = BYTES_BY_CHAR_HEAD (*p);
4414 range -= len;
4415 if (range < 0)
4416 break;
4417 startpos += len;
4419 else
4421 range--;
4422 startpos++;
4425 else
4427 range++;
4428 startpos--;
4430 /* Update STARTPOS to the previous character boundary. */
4431 if (multibyte)
4433 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4434 re_char *p0 = p;
4435 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4437 /* Find the head of multibyte form. */
4438 PREV_CHAR_BOUNDARY (p, phead);
4439 range += p0 - 1 - p;
4440 if (range > 0)
4441 break;
4443 startpos -= p0 - 1 - p;
4447 return -1;
4448 } /* re_search_2 */
4449 WEAK_ALIAS (__re_search_2, re_search_2)
4451 /* Declarations and macros for re_match_2. */
4453 static int bcmp_translate (re_char *s1, re_char *s2,
4454 register ssize_t len,
4455 RE_TRANSLATE_TYPE translate,
4456 const int multibyte);
4458 /* This converts PTR, a pointer into one of the search strings `string1'
4459 and `string2' into an offset from the beginning of that string. */
4460 #define POINTER_TO_OFFSET(ptr) \
4461 (FIRST_STRING_P (ptr) \
4462 ? (ptr) - string1 \
4463 : (ptr) - string2 + (ptrdiff_t) size1)
4465 /* Call before fetching a character with *d. This switches over to
4466 string2 if necessary.
4467 Check re_match_2_internal for a discussion of why end_match_2 might
4468 not be within string2 (but be equal to end_match_1 instead). */
4469 #define PREFETCH() \
4470 while (d == dend) \
4472 /* End of string2 => fail. */ \
4473 if (dend == end_match_2) \
4474 goto fail; \
4475 /* End of string1 => advance to string2. */ \
4476 d = string2; \
4477 dend = end_match_2; \
4480 /* Call before fetching a char with *d if you already checked other limits.
4481 This is meant for use in lookahead operations like wordend, etc..
4482 where we might need to look at parts of the string that might be
4483 outside of the LIMITs (i.e past `stop'). */
4484 #define PREFETCH_NOLIMIT() \
4485 if (d == end1) \
4487 d = string2; \
4488 dend = end_match_2; \
4491 /* Test if at very beginning or at very end of the virtual concatenation
4492 of `string1' and `string2'. If only one string, it's `string2'. */
4493 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4494 #define AT_STRINGS_END(d) ((d) == end2)
4496 /* Disabled due to a compiler bug -- see comment at case wordbound */
4498 /* The comment at case wordbound is following one, but we don't use
4499 AT_WORD_BOUNDARY anymore to support multibyte form.
4501 The DEC Alpha C compiler 3.x generates incorrect code for the
4502 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4503 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4504 macro and introducing temporary variables works around the bug. */
4506 #if 0
4507 /* Test if D points to a character which is word-constituent. We have
4508 two special cases to check for: if past the end of string1, look at
4509 the first character in string2; and if before the beginning of
4510 string2, look at the last character in string1. */
4511 #define WORDCHAR_P(d) \
4512 (SYNTAX ((d) == end1 ? *string2 \
4513 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4514 == Sword)
4516 /* Test if the character before D and the one at D differ with respect
4517 to being word-constituent. */
4518 #define AT_WORD_BOUNDARY(d) \
4519 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4520 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4521 #endif
4523 /* Free everything we malloc. */
4524 #ifdef MATCH_MAY_ALLOCATE
4525 # define FREE_VAR(var) \
4526 do { \
4527 if (var) \
4529 REGEX_FREE (var); \
4530 var = NULL; \
4532 } while (0)
4533 # define FREE_VARIABLES() \
4534 do { \
4535 REGEX_FREE_STACK (fail_stack.stack); \
4536 FREE_VAR (regstart); \
4537 FREE_VAR (regend); \
4538 FREE_VAR (best_regstart); \
4539 FREE_VAR (best_regend); \
4540 REGEX_SAFE_FREE (); \
4541 } while (0)
4542 #else
4543 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4544 #endif /* not MATCH_MAY_ALLOCATE */
4547 /* Optimization routines. */
4549 /* If the operation is a match against one or more chars,
4550 return a pointer to the next operation, else return NULL. */
4551 static re_char *
4552 skip_one_char (re_char *p)
4554 switch (*p++)
4556 case anychar:
4557 break;
4559 case exactn:
4560 p += *p + 1;
4561 break;
4563 case charset_not:
4564 case charset:
4565 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4567 int mcnt;
4568 p = CHARSET_RANGE_TABLE (p - 1);
4569 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4570 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4572 else
4573 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4574 break;
4576 case syntaxspec:
4577 case notsyntaxspec:
4578 #ifdef emacs
4579 case categoryspec:
4580 case notcategoryspec:
4581 #endif /* emacs */
4582 p++;
4583 break;
4585 default:
4586 p = NULL;
4588 return p;
4592 /* Jump over non-matching operations. */
4593 static re_char *
4594 skip_noops (re_char *p, re_char *pend)
4596 int mcnt;
4597 while (p < pend)
4599 switch (*p)
4601 case start_memory:
4602 case stop_memory:
4603 p += 2; break;
4604 case no_op:
4605 p += 1; break;
4606 case jump:
4607 p += 1;
4608 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4609 p += mcnt;
4610 break;
4611 default:
4612 return p;
4615 assert (p == pend);
4616 return p;
4619 /* Test if C matches charset op. *PP points to the charset or charset_not
4620 opcode. When the function finishes, *PP will be advanced past that opcode.
4621 C is character to test (possibly after translations) and CORIG is original
4622 character (i.e. without any translations). UNIBYTE denotes whether c is
4623 unibyte or multibyte character. */
4624 static bool
4625 execute_charset (re_char **pp, unsigned c, unsigned corig, bool unibyte)
4627 re_char *p = *pp, *rtp = NULL;
4628 bool not = (re_opcode_t) *p == charset_not;
4630 if (CHARSET_RANGE_TABLE_EXISTS_P (p))
4632 int count;
4633 rtp = CHARSET_RANGE_TABLE (p);
4634 EXTRACT_NUMBER_AND_INCR (count, rtp);
4635 *pp = CHARSET_RANGE_TABLE_END ((rtp), (count));
4637 else
4638 *pp += 2 + CHARSET_BITMAP_SIZE (p);
4640 if (unibyte && c < (1 << BYTEWIDTH))
4641 { /* Lookup bitmap. */
4642 /* Cast to `unsigned' instead of `unsigned char' in
4643 case the bit list is a full 32 bytes long. */
4644 if (c < (unsigned) (CHARSET_BITMAP_SIZE (p) * BYTEWIDTH)
4645 && p[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4646 return !not;
4648 #ifdef emacs
4649 else if (rtp)
4651 int class_bits = CHARSET_RANGE_TABLE_BITS (p);
4652 re_wchar_t range_start, range_end;
4654 /* Sort tests by the most commonly used classes with some adjustment to which
4655 tests are easiest to perform. Take a look at comment in re_wctype_parse
4656 for table with frequencies of character class names. */
4658 if ((class_bits & BIT_MULTIBYTE) ||
4659 (class_bits & BIT_ALNUM && ISALNUM (c)) ||
4660 (class_bits & BIT_ALPHA && ISALPHA (c)) ||
4661 (class_bits & BIT_SPACE && ISSPACE (c)) ||
4662 (class_bits & BIT_BLANK && ISBLANK (c)) ||
4663 (class_bits & BIT_WORD && ISWORD (c)) ||
4664 ((class_bits & BIT_UPPER) &&
4665 (ISUPPER (c) || (corig != c &&
4666 c == downcase (corig) && ISLOWER (c)))) ||
4667 ((class_bits & BIT_LOWER) &&
4668 (ISLOWER (c) || (corig != c &&
4669 c == upcase (corig) && ISUPPER(c)))) ||
4670 (class_bits & BIT_PUNCT && ISPUNCT (c)) ||
4671 (class_bits & BIT_GRAPH && ISGRAPH (c)) ||
4672 (class_bits & BIT_PRINT && ISPRINT (c)))
4673 return !not;
4675 for (p = *pp; rtp < p; rtp += 2 * 3)
4677 EXTRACT_CHARACTER (range_start, rtp);
4678 EXTRACT_CHARACTER (range_end, rtp + 3);
4679 if (range_start <= c && c <= range_end)
4680 return !not;
4683 #endif /* emacs */
4684 return not;
4687 /* Non-zero if "p1 matches something" implies "p2 fails". */
4688 static int
4689 mutually_exclusive_p (struct re_pattern_buffer *bufp, re_char *p1,
4690 re_char *p2)
4692 re_opcode_t op2;
4693 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4694 unsigned char *pend = bufp->buffer + bufp->used;
4696 assert (p1 >= bufp->buffer && p1 < pend
4697 && p2 >= bufp->buffer && p2 <= pend);
4699 /* Skip over open/close-group commands.
4700 If what follows this loop is a ...+ construct,
4701 look at what begins its body, since we will have to
4702 match at least one of that. */
4703 p2 = skip_noops (p2, pend);
4704 /* The same skip can be done for p1, except that this function
4705 is only used in the case where p1 is a simple match operator. */
4706 /* p1 = skip_noops (p1, pend); */
4708 assert (p1 >= bufp->buffer && p1 < pend
4709 && p2 >= bufp->buffer && p2 <= pend);
4711 op2 = p2 == pend ? succeed : *p2;
4713 switch (op2)
4715 case succeed:
4716 case endbuf:
4717 /* If we're at the end of the pattern, we can change. */
4718 if (skip_one_char (p1))
4720 DEBUG_PRINT (" End of pattern: fast loop.\n");
4721 return 1;
4723 break;
4725 case endline:
4726 case exactn:
4728 register re_wchar_t c
4729 = (re_opcode_t) *p2 == endline ? '\n'
4730 : RE_STRING_CHAR (p2 + 2, multibyte);
4732 if ((re_opcode_t) *p1 == exactn)
4734 if (c != RE_STRING_CHAR (p1 + 2, multibyte))
4736 DEBUG_PRINT (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4737 return 1;
4741 else if ((re_opcode_t) *p1 == charset
4742 || (re_opcode_t) *p1 == charset_not)
4744 if (!execute_charset (&p1, c, c, !multibyte || IS_REAL_ASCII (c)))
4746 DEBUG_PRINT (" No match => fast loop.\n");
4747 return 1;
4750 else if ((re_opcode_t) *p1 == anychar
4751 && c == '\n')
4753 DEBUG_PRINT (" . != \\n => fast loop.\n");
4754 return 1;
4757 break;
4759 case charset:
4761 if ((re_opcode_t) *p1 == exactn)
4762 /* Reuse the code above. */
4763 return mutually_exclusive_p (bufp, p2, p1);
4765 /* It is hard to list up all the character in charset
4766 P2 if it includes multibyte character. Give up in
4767 such case. */
4768 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4770 /* Now, we are sure that P2 has no range table.
4771 So, for the size of bitmap in P2, `p2[1]' is
4772 enough. But P1 may have range table, so the
4773 size of bitmap table of P1 is extracted by
4774 using macro `CHARSET_BITMAP_SIZE'.
4776 In a multibyte case, we know that all the character
4777 listed in P2 is ASCII. In a unibyte case, P1 has only a
4778 bitmap table. So, in both cases, it is enough to test
4779 only the bitmap table of P1. */
4781 if ((re_opcode_t) *p1 == charset)
4783 int idx;
4784 /* We win if the charset inside the loop
4785 has no overlap with the one after the loop. */
4786 for (idx = 0;
4787 (idx < (int) p2[1]
4788 && idx < CHARSET_BITMAP_SIZE (p1));
4789 idx++)
4790 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4791 break;
4793 if (idx == p2[1]
4794 || idx == CHARSET_BITMAP_SIZE (p1))
4796 DEBUG_PRINT (" No match => fast loop.\n");
4797 return 1;
4800 else if ((re_opcode_t) *p1 == charset_not)
4802 int idx;
4803 /* We win if the charset_not inside the loop lists
4804 every character listed in the charset after. */
4805 for (idx = 0; idx < (int) p2[1]; idx++)
4806 if (! (p2[2 + idx] == 0
4807 || (idx < CHARSET_BITMAP_SIZE (p1)
4808 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4809 break;
4811 if (idx == p2[1])
4813 DEBUG_PRINT (" No match => fast loop.\n");
4814 return 1;
4819 break;
4821 case charset_not:
4822 switch (*p1)
4824 case exactn:
4825 case charset:
4826 /* Reuse the code above. */
4827 return mutually_exclusive_p (bufp, p2, p1);
4828 case charset_not:
4829 /* When we have two charset_not, it's very unlikely that
4830 they don't overlap. The union of the two sets of excluded
4831 chars should cover all possible chars, which, as a matter of
4832 fact, is virtually impossible in multibyte buffers. */
4833 break;
4835 break;
4837 case wordend:
4838 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4839 case symend:
4840 return ((re_opcode_t) *p1 == syntaxspec
4841 && (p1[1] == Ssymbol || p1[1] == Sword));
4842 case notsyntaxspec:
4843 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4845 case wordbeg:
4846 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4847 case symbeg:
4848 return ((re_opcode_t) *p1 == notsyntaxspec
4849 && (p1[1] == Ssymbol || p1[1] == Sword));
4850 case syntaxspec:
4851 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4853 case wordbound:
4854 return (((re_opcode_t) *p1 == notsyntaxspec
4855 || (re_opcode_t) *p1 == syntaxspec)
4856 && p1[1] == Sword);
4858 #ifdef emacs
4859 case categoryspec:
4860 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4861 case notcategoryspec:
4862 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4863 #endif /* emacs */
4865 default:
4869 /* Safe default. */
4870 return 0;
4874 /* Matching routines. */
4876 #ifndef emacs /* Emacs never uses this. */
4877 /* re_match is like re_match_2 except it takes only a single string. */
4879 regoff_t
4880 re_match (struct re_pattern_buffer *bufp, const char *string,
4881 size_t size, ssize_t pos, struct re_registers *regs)
4883 regoff_t result = re_match_2_internal (bufp, NULL, 0, (re_char *) string,
4884 size, pos, regs, size);
4885 return result;
4887 WEAK_ALIAS (__re_match, re_match)
4888 #endif /* not emacs */
4890 /* re_match_2 matches the compiled pattern in BUFP against the
4891 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4892 and SIZE2, respectively). We start matching at POS, and stop
4893 matching at STOP.
4895 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4896 store offsets for the substring each group matched in REGS. See the
4897 documentation for exactly how many groups we fill.
4899 We return -1 if no match, -2 if an internal error (such as the
4900 failure stack overflowing). Otherwise, we return the length of the
4901 matched substring. */
4903 regoff_t
4904 re_match_2 (struct re_pattern_buffer *bufp, const char *string1,
4905 size_t size1, const char *string2, size_t size2, ssize_t pos,
4906 struct re_registers *regs, ssize_t stop)
4908 regoff_t result;
4910 #ifdef emacs
4911 ssize_t charpos;
4912 gl_state.object = re_match_object; /* Used by SYNTAX_TABLE_BYTE_TO_CHAR. */
4913 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4914 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4915 #endif
4917 result = re_match_2_internal (bufp, (re_char *) string1, size1,
4918 (re_char *) string2, size2,
4919 pos, regs, stop);
4920 return result;
4922 WEAK_ALIAS (__re_match_2, re_match_2)
4925 /* This is a separate function so that we can force an alloca cleanup
4926 afterwards. */
4927 static regoff_t
4928 re_match_2_internal (struct re_pattern_buffer *bufp, re_char *string1,
4929 size_t size1, re_char *string2, size_t size2,
4930 ssize_t pos, struct re_registers *regs, ssize_t stop)
4932 /* General temporaries. */
4933 int mcnt;
4934 size_t reg;
4936 /* Just past the end of the corresponding string. */
4937 re_char *end1, *end2;
4939 /* Pointers into string1 and string2, just past the last characters in
4940 each to consider matching. */
4941 re_char *end_match_1, *end_match_2;
4943 /* Where we are in the data, and the end of the current string. */
4944 re_char *d, *dend;
4946 /* Used sometimes to remember where we were before starting matching
4947 an operator so that we can go back in case of failure. This "atomic"
4948 behavior of matching opcodes is indispensable to the correctness
4949 of the on_failure_keep_string_jump optimization. */
4950 re_char *dfail;
4952 /* Where we are in the pattern, and the end of the pattern. */
4953 re_char *p = bufp->buffer;
4954 re_char *pend = p + bufp->used;
4956 /* We use this to map every character in the string. */
4957 RE_TRANSLATE_TYPE translate = bufp->translate;
4959 /* Nonzero if BUFP is setup from a multibyte regex. */
4960 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4962 /* Nonzero if STRING1/STRING2 are multibyte. */
4963 const boolean target_multibyte = RE_TARGET_MULTIBYTE_P (bufp);
4965 /* Failure point stack. Each place that can handle a failure further
4966 down the line pushes a failure point on this stack. It consists of
4967 regstart, and regend for all registers corresponding to
4968 the subexpressions we're currently inside, plus the number of such
4969 registers, and, finally, two char *'s. The first char * is where
4970 to resume scanning the pattern; the second one is where to resume
4971 scanning the strings. */
4972 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4973 fail_stack_type fail_stack;
4974 #endif
4975 #ifdef DEBUG_COMPILES_ARGUMENTS
4976 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4977 #endif
4979 #if defined REL_ALLOC && defined REGEX_MALLOC
4980 /* This holds the pointer to the failure stack, when
4981 it is allocated relocatably. */
4982 fail_stack_elt_t *failure_stack_ptr;
4983 #endif
4985 /* We fill all the registers internally, independent of what we
4986 return, for use in backreferences. The number here includes
4987 an element for register zero. */
4988 size_t num_regs = bufp->re_nsub + 1;
4990 /* Information on the contents of registers. These are pointers into
4991 the input strings; they record just what was matched (on this
4992 attempt) by a subexpression part of the pattern, that is, the
4993 regnum-th regstart pointer points to where in the pattern we began
4994 matching and the regnum-th regend points to right after where we
4995 stopped matching the regnum-th subexpression. (The zeroth register
4996 keeps track of what the whole pattern matches.) */
4997 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
4998 re_char **regstart, **regend;
4999 #endif
5001 /* The following record the register info as found in the above
5002 variables when we find a match better than any we've seen before.
5003 This happens as we backtrack through the failure points, which in
5004 turn happens only if we have not yet matched the entire string. */
5005 unsigned best_regs_set = false;
5006 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5007 re_char **best_regstart, **best_regend;
5008 #endif
5010 /* Logically, this is `best_regend[0]'. But we don't want to have to
5011 allocate space for that if we're not allocating space for anything
5012 else (see below). Also, we never need info about register 0 for
5013 any of the other register vectors, and it seems rather a kludge to
5014 treat `best_regend' differently than the rest. So we keep track of
5015 the end of the best match so far in a separate variable. We
5016 initialize this to NULL so that when we backtrack the first time
5017 and need to test it, it's not garbage. */
5018 re_char *match_end = NULL;
5020 #ifdef DEBUG_COMPILES_ARGUMENTS
5021 /* Counts the total number of registers pushed. */
5022 unsigned num_regs_pushed = 0;
5023 #endif
5025 DEBUG_PRINT ("\n\nEntering re_match_2.\n");
5027 REGEX_USE_SAFE_ALLOCA;
5029 INIT_FAIL_STACK ();
5031 #ifdef MATCH_MAY_ALLOCATE
5032 /* Do not bother to initialize all the register variables if there are
5033 no groups in the pattern, as it takes a fair amount of time. If
5034 there are groups, we include space for register 0 (the whole
5035 pattern), even though we never use it, since it simplifies the
5036 array indexing. We should fix this. */
5037 if (bufp->re_nsub)
5039 regstart = REGEX_TALLOC (num_regs, re_char *);
5040 regend = REGEX_TALLOC (num_regs, re_char *);
5041 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5042 best_regend = REGEX_TALLOC (num_regs, re_char *);
5044 if (!(regstart && regend && best_regstart && best_regend))
5046 FREE_VARIABLES ();
5047 return -2;
5050 else
5052 /* We must initialize all our variables to NULL, so that
5053 `FREE_VARIABLES' doesn't try to free them. */
5054 regstart = regend = best_regstart = best_regend = NULL;
5056 #endif /* MATCH_MAY_ALLOCATE */
5058 /* The starting position is bogus. */
5059 if (pos < 0 || pos > size1 + size2)
5061 FREE_VARIABLES ();
5062 return -1;
5065 /* Initialize subexpression text positions to -1 to mark ones that no
5066 start_memory/stop_memory has been seen for. Also initialize the
5067 register information struct. */
5068 for (reg = 1; reg < num_regs; reg++)
5069 regstart[reg] = regend[reg] = NULL;
5071 /* We move `string1' into `string2' if the latter's empty -- but not if
5072 `string1' is null. */
5073 if (size2 == 0 && string1 != NULL)
5075 string2 = string1;
5076 size2 = size1;
5077 string1 = 0;
5078 size1 = 0;
5080 end1 = string1 + size1;
5081 end2 = string2 + size2;
5083 /* `p' scans through the pattern as `d' scans through the data.
5084 `dend' is the end of the input string that `d' points within. `d'
5085 is advanced into the following input string whenever necessary, but
5086 this happens before fetching; therefore, at the beginning of the
5087 loop, `d' can be pointing at the end of a string, but it cannot
5088 equal `string2'. */
5089 if (pos >= size1)
5091 /* Only match within string2. */
5092 d = string2 + pos - size1;
5093 dend = end_match_2 = string2 + stop - size1;
5094 end_match_1 = end1; /* Just to give it a value. */
5096 else
5098 if (stop < size1)
5100 /* Only match within string1. */
5101 end_match_1 = string1 + stop;
5102 /* BEWARE!
5103 When we reach end_match_1, PREFETCH normally switches to string2.
5104 But in the present case, this means that just doing a PREFETCH
5105 makes us jump from `stop' to `gap' within the string.
5106 What we really want here is for the search to stop as
5107 soon as we hit end_match_1. That's why we set end_match_2
5108 to end_match_1 (since PREFETCH fails as soon as we hit
5109 end_match_2). */
5110 end_match_2 = end_match_1;
5112 else
5113 { /* It's important to use this code when stop == size so that
5114 moving `d' from end1 to string2 will not prevent the d == dend
5115 check from catching the end of string. */
5116 end_match_1 = end1;
5117 end_match_2 = string2 + stop - size1;
5119 d = string1 + pos;
5120 dend = end_match_1;
5123 DEBUG_PRINT ("The compiled pattern is: ");
5124 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5125 DEBUG_PRINT ("The string to match is: \"");
5126 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5127 DEBUG_PRINT ("\"\n");
5129 /* This loops over pattern commands. It exits by returning from the
5130 function if the match is complete, or it drops through if the match
5131 fails at this starting point in the input data. */
5132 for (;;)
5134 DEBUG_PRINT ("\n%p: ", p);
5136 if (p == pend)
5138 /* End of pattern means we might have succeeded. */
5139 DEBUG_PRINT ("end of pattern ... ");
5141 /* If we haven't matched the entire string, and we want the
5142 longest match, try backtracking. */
5143 if (d != end_match_2)
5145 /* True if this match is the best seen so far. */
5146 bool best_match_p;
5149 /* True if this match ends in the same string (string1
5150 or string2) as the best previous match. */
5151 bool same_str_p = (FIRST_STRING_P (match_end)
5152 == FIRST_STRING_P (d));
5154 /* AIX compiler got confused when this was combined
5155 with the previous declaration. */
5156 if (same_str_p)
5157 best_match_p = d > match_end;
5158 else
5159 best_match_p = !FIRST_STRING_P (d);
5162 DEBUG_PRINT ("backtracking.\n");
5164 if (!FAIL_STACK_EMPTY ())
5165 { /* More failure points to try. */
5167 /* If exceeds best match so far, save it. */
5168 if (!best_regs_set || best_match_p)
5170 best_regs_set = true;
5171 match_end = d;
5173 DEBUG_PRINT ("\nSAVING match as best so far.\n");
5175 for (reg = 1; reg < num_regs; reg++)
5177 best_regstart[reg] = regstart[reg];
5178 best_regend[reg] = regend[reg];
5181 goto fail;
5184 /* If no failure points, don't restore garbage. And if
5185 last match is real best match, don't restore second
5186 best one. */
5187 else if (best_regs_set && !best_match_p)
5189 restore_best_regs:
5190 /* Restore best match. It may happen that `dend ==
5191 end_match_1' while the restored d is in string2.
5192 For example, the pattern `x.*y.*z' against the
5193 strings `x-' and `y-z-', if the two strings are
5194 not consecutive in memory. */
5195 DEBUG_PRINT ("Restoring best registers.\n");
5197 d = match_end;
5198 dend = ((d >= string1 && d <= end1)
5199 ? end_match_1 : end_match_2);
5201 for (reg = 1; reg < num_regs; reg++)
5203 regstart[reg] = best_regstart[reg];
5204 regend[reg] = best_regend[reg];
5207 } /* d != end_match_2 */
5209 succeed_label:
5210 DEBUG_PRINT ("Accepting match.\n");
5212 /* If caller wants register contents data back, do it. */
5213 if (regs && !bufp->no_sub)
5215 /* Have the register data arrays been allocated? */
5216 if (bufp->regs_allocated == REGS_UNALLOCATED)
5217 { /* No. So allocate them with malloc. We need one
5218 extra element beyond `num_regs' for the `-1' marker
5219 GNU code uses. */
5220 regs->num_regs = max (RE_NREGS, num_regs + 1);
5221 regs->start = TALLOC (regs->num_regs, regoff_t);
5222 regs->end = TALLOC (regs->num_regs, regoff_t);
5223 if (regs->start == NULL || regs->end == NULL)
5225 FREE_VARIABLES ();
5226 return -2;
5228 bufp->regs_allocated = REGS_REALLOCATE;
5230 else if (bufp->regs_allocated == REGS_REALLOCATE)
5231 { /* Yes. If we need more elements than were already
5232 allocated, reallocate them. If we need fewer, just
5233 leave it alone. */
5234 if (regs->num_regs < num_regs + 1)
5236 regs->num_regs = num_regs + 1;
5237 RETALLOC (regs->start, regs->num_regs, regoff_t);
5238 RETALLOC (regs->end, regs->num_regs, regoff_t);
5239 if (regs->start == NULL || regs->end == NULL)
5241 FREE_VARIABLES ();
5242 return -2;
5246 else
5248 /* These braces fend off a "empty body in an else-statement"
5249 warning under GCC when assert expands to nothing. */
5250 assert (bufp->regs_allocated == REGS_FIXED);
5253 /* Convert the pointer data in `regstart' and `regend' to
5254 indices. Register zero has to be set differently,
5255 since we haven't kept track of any info for it. */
5256 if (regs->num_regs > 0)
5258 regs->start[0] = pos;
5259 regs->end[0] = POINTER_TO_OFFSET (d);
5262 /* Go through the first `min (num_regs, regs->num_regs)'
5263 registers, since that is all we initialized. */
5264 for (reg = 1; reg < min (num_regs, regs->num_regs); reg++)
5266 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5267 regs->start[reg] = regs->end[reg] = -1;
5268 else
5270 regs->start[reg] = POINTER_TO_OFFSET (regstart[reg]);
5271 regs->end[reg] = POINTER_TO_OFFSET (regend[reg]);
5275 /* If the regs structure we return has more elements than
5276 were in the pattern, set the extra elements to -1. If
5277 we (re)allocated the registers, this is the case,
5278 because we always allocate enough to have at least one
5279 -1 at the end. */
5280 for (reg = num_regs; reg < regs->num_regs; reg++)
5281 regs->start[reg] = regs->end[reg] = -1;
5282 } /* regs && !bufp->no_sub */
5284 DEBUG_PRINT ("%u failure points pushed, %u popped (%u remain).\n",
5285 nfailure_points_pushed, nfailure_points_popped,
5286 nfailure_points_pushed - nfailure_points_popped);
5287 DEBUG_PRINT ("%u registers pushed.\n", num_regs_pushed);
5289 ptrdiff_t dcnt = POINTER_TO_OFFSET (d) - pos;
5291 DEBUG_PRINT ("Returning %td from re_match_2.\n", dcnt);
5293 FREE_VARIABLES ();
5294 return dcnt;
5297 /* Otherwise match next pattern command. */
5298 switch (*p++)
5300 /* Ignore these. Used to ignore the n of succeed_n's which
5301 currently have n == 0. */
5302 case no_op:
5303 DEBUG_PRINT ("EXECUTING no_op.\n");
5304 break;
5306 case succeed:
5307 DEBUG_PRINT ("EXECUTING succeed.\n");
5308 goto succeed_label;
5310 /* Match the next n pattern characters exactly. The following
5311 byte in the pattern defines n, and the n bytes after that
5312 are the characters to match. */
5313 case exactn:
5314 mcnt = *p++;
5315 DEBUG_PRINT ("EXECUTING exactn %d.\n", mcnt);
5317 /* Remember the start point to rollback upon failure. */
5318 dfail = d;
5320 #ifndef emacs
5321 /* This is written out as an if-else so we don't waste time
5322 testing `translate' inside the loop. */
5323 if (RE_TRANSLATE_P (translate))
5326 PREFETCH ();
5327 if (RE_TRANSLATE (translate, *d) != *p++)
5329 d = dfail;
5330 goto fail;
5332 d++;
5334 while (--mcnt);
5335 else
5338 PREFETCH ();
5339 if (*d++ != *p++)
5341 d = dfail;
5342 goto fail;
5345 while (--mcnt);
5346 #else /* emacs */
5347 /* The cost of testing `translate' is comparatively small. */
5348 if (target_multibyte)
5351 int pat_charlen, buf_charlen;
5352 int pat_ch, buf_ch;
5354 PREFETCH ();
5355 if (multibyte)
5356 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5357 else
5359 pat_ch = RE_CHAR_TO_MULTIBYTE (*p);
5360 pat_charlen = 1;
5362 buf_ch = STRING_CHAR_AND_LENGTH (d, buf_charlen);
5364 if (TRANSLATE (buf_ch) != pat_ch)
5366 d = dfail;
5367 goto fail;
5370 p += pat_charlen;
5371 d += buf_charlen;
5372 mcnt -= pat_charlen;
5374 while (mcnt > 0);
5375 else
5378 int pat_charlen;
5379 int pat_ch, buf_ch;
5381 PREFETCH ();
5382 if (multibyte)
5384 pat_ch = STRING_CHAR_AND_LENGTH (p, pat_charlen);
5385 pat_ch = RE_CHAR_TO_UNIBYTE (pat_ch);
5387 else
5389 pat_ch = *p;
5390 pat_charlen = 1;
5392 buf_ch = RE_CHAR_TO_MULTIBYTE (*d);
5393 if (! CHAR_BYTE8_P (buf_ch))
5395 buf_ch = TRANSLATE (buf_ch);
5396 buf_ch = RE_CHAR_TO_UNIBYTE (buf_ch);
5397 if (buf_ch < 0)
5398 buf_ch = *d;
5400 else
5401 buf_ch = *d;
5402 if (buf_ch != pat_ch)
5404 d = dfail;
5405 goto fail;
5407 p += pat_charlen;
5408 d++;
5410 while (--mcnt);
5411 #endif
5412 break;
5415 /* Match any character except possibly a newline or a null. */
5416 case anychar:
5418 int buf_charlen;
5419 re_wchar_t buf_ch;
5420 reg_syntax_t syntax;
5422 DEBUG_PRINT ("EXECUTING anychar.\n");
5424 PREFETCH ();
5425 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, buf_charlen,
5426 target_multibyte);
5427 buf_ch = TRANSLATE (buf_ch);
5429 #ifdef emacs
5430 syntax = RE_SYNTAX_EMACS;
5431 #else
5432 syntax = bufp->syntax;
5433 #endif
5435 if ((!(syntax & RE_DOT_NEWLINE) && buf_ch == '\n')
5436 || ((syntax & RE_DOT_NOT_NULL) && buf_ch == '\000'))
5437 goto fail;
5439 DEBUG_PRINT (" Matched \"%d\".\n", *d);
5440 d += buf_charlen;
5442 break;
5445 case charset:
5446 case charset_not:
5448 register unsigned int c, corig;
5449 int len;
5451 /* Whether matching against a unibyte character. */
5452 boolean unibyte_char = false;
5454 DEBUG_PRINT ("EXECUTING charset%s.\n",
5455 (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
5457 PREFETCH ();
5458 corig = c = RE_STRING_CHAR_AND_LENGTH (d, len, target_multibyte);
5459 if (target_multibyte)
5461 int c1;
5463 c = TRANSLATE (c);
5464 c1 = RE_CHAR_TO_UNIBYTE (c);
5465 if (c1 >= 0)
5467 unibyte_char = true;
5468 c = c1;
5471 else
5473 int c1 = RE_CHAR_TO_MULTIBYTE (c);
5475 if (! CHAR_BYTE8_P (c1))
5477 c1 = TRANSLATE (c1);
5478 c1 = RE_CHAR_TO_UNIBYTE (c1);
5479 if (c1 >= 0)
5481 unibyte_char = true;
5482 c = c1;
5485 else
5486 unibyte_char = true;
5489 p -= 1;
5490 if (!execute_charset (&p, c, corig, unibyte_char))
5491 goto fail;
5493 d += len;
5495 break;
5498 /* The beginning of a group is represented by start_memory.
5499 The argument is the register number. The text
5500 matched within the group is recorded (in the internal
5501 registers data structure) under the register number. */
5502 case start_memory:
5503 DEBUG_PRINT ("EXECUTING start_memory %d:\n", *p);
5505 /* In case we need to undo this operation (via backtracking). */
5506 PUSH_FAILURE_REG (*p);
5508 regstart[*p] = d;
5509 regend[*p] = NULL; /* probably unnecessary. -sm */
5510 DEBUG_PRINT (" regstart: %td\n", POINTER_TO_OFFSET (regstart[*p]));
5512 /* Move past the register number and inner group count. */
5513 p += 1;
5514 break;
5517 /* The stop_memory opcode represents the end of a group. Its
5518 argument is the same as start_memory's: the register number. */
5519 case stop_memory:
5520 DEBUG_PRINT ("EXECUTING stop_memory %d:\n", *p);
5522 assert (!REG_UNSET (regstart[*p]));
5523 /* Strictly speaking, there should be code such as:
5525 assert (REG_UNSET (regend[*p]));
5526 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5528 But the only info to be pushed is regend[*p] and it is known to
5529 be UNSET, so there really isn't anything to push.
5530 Not pushing anything, on the other hand deprives us from the
5531 guarantee that regend[*p] is UNSET since undoing this operation
5532 will not reset its value properly. This is not important since
5533 the value will only be read on the next start_memory or at
5534 the very end and both events can only happen if this stop_memory
5535 is *not* undone. */
5537 regend[*p] = d;
5538 DEBUG_PRINT (" regend: %td\n", POINTER_TO_OFFSET (regend[*p]));
5540 /* Move past the register number and the inner group count. */
5541 p += 1;
5542 break;
5545 /* \<digit> has been turned into a `duplicate' command which is
5546 followed by the numeric value of <digit> as the register number. */
5547 case duplicate:
5549 register re_char *d2, *dend2;
5550 int regno = *p++; /* Get which register to match against. */
5551 DEBUG_PRINT ("EXECUTING duplicate %d.\n", regno);
5553 /* Can't back reference a group which we've never matched. */
5554 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5555 goto fail;
5557 /* Where in input to try to start matching. */
5558 d2 = regstart[regno];
5560 /* Remember the start point to rollback upon failure. */
5561 dfail = d;
5563 /* Where to stop matching; if both the place to start and
5564 the place to stop matching are in the same string, then
5565 set to the place to stop, otherwise, for now have to use
5566 the end of the first string. */
5568 dend2 = ((FIRST_STRING_P (regstart[regno])
5569 == FIRST_STRING_P (regend[regno]))
5570 ? regend[regno] : end_match_1);
5571 for (;;)
5573 ptrdiff_t dcnt;
5575 /* If necessary, advance to next segment in register
5576 contents. */
5577 while (d2 == dend2)
5579 if (dend2 == end_match_2) break;
5580 if (dend2 == regend[regno]) break;
5582 /* End of string1 => advance to string2. */
5583 d2 = string2;
5584 dend2 = regend[regno];
5586 /* At end of register contents => success */
5587 if (d2 == dend2) break;
5589 /* If necessary, advance to next segment in data. */
5590 PREFETCH ();
5592 /* How many characters left in this segment to match. */
5593 dcnt = dend - d;
5595 /* Want how many consecutive characters we can match in
5596 one shot, so, if necessary, adjust the count. */
5597 if (dcnt > dend2 - d2)
5598 dcnt = dend2 - d2;
5600 /* Compare that many; failure if mismatch, else move
5601 past them. */
5602 if (RE_TRANSLATE_P (translate)
5603 ? bcmp_translate (d, d2, dcnt, translate, target_multibyte)
5604 : memcmp (d, d2, dcnt))
5606 d = dfail;
5607 goto fail;
5609 d += dcnt, d2 += dcnt;
5612 break;
5615 /* begline matches the empty string at the beginning of the string
5616 (unless `not_bol' is set in `bufp'), and after newlines. */
5617 case begline:
5618 DEBUG_PRINT ("EXECUTING begline.\n");
5620 if (AT_STRINGS_BEG (d))
5622 if (!bufp->not_bol) break;
5624 else
5626 unsigned c;
5627 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5628 if (c == '\n')
5629 break;
5631 /* In all other cases, we fail. */
5632 goto fail;
5635 /* endline is the dual of begline. */
5636 case endline:
5637 DEBUG_PRINT ("EXECUTING endline.\n");
5639 if (AT_STRINGS_END (d))
5641 if (!bufp->not_eol) break;
5643 else
5645 PREFETCH_NOLIMIT ();
5646 if (*d == '\n')
5647 break;
5649 goto fail;
5652 /* Match at the very beginning of the data. */
5653 case begbuf:
5654 DEBUG_PRINT ("EXECUTING begbuf.\n");
5655 if (AT_STRINGS_BEG (d))
5656 break;
5657 goto fail;
5660 /* Match at the very end of the data. */
5661 case endbuf:
5662 DEBUG_PRINT ("EXECUTING endbuf.\n");
5663 if (AT_STRINGS_END (d))
5664 break;
5665 goto fail;
5668 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5669 pushes NULL as the value for the string on the stack. Then
5670 `POP_FAILURE_POINT' will keep the current value for the
5671 string, instead of restoring it. To see why, consider
5672 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5673 then the . fails against the \n. But the next thing we want
5674 to do is match the \n against the \n; if we restored the
5675 string value, we would be back at the foo.
5677 Because this is used only in specific cases, we don't need to
5678 check all the things that `on_failure_jump' does, to make
5679 sure the right things get saved on the stack. Hence we don't
5680 share its code. The only reason to push anything on the
5681 stack at all is that otherwise we would have to change
5682 `anychar's code to do something besides goto fail in this
5683 case; that seems worse than this. */
5684 case on_failure_keep_string_jump:
5685 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5686 DEBUG_PRINT ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5687 mcnt, p + mcnt);
5689 PUSH_FAILURE_POINT (p - 3, NULL);
5690 break;
5692 /* A nasty loop is introduced by the non-greedy *? and +?.
5693 With such loops, the stack only ever contains one failure point
5694 at a time, so that a plain on_failure_jump_loop kind of
5695 cycle detection cannot work. Worse yet, such a detection
5696 can not only fail to detect a cycle, but it can also wrongly
5697 detect a cycle (between different instantiations of the same
5698 loop).
5699 So the method used for those nasty loops is a little different:
5700 We use a special cycle-detection-stack-frame which is pushed
5701 when the on_failure_jump_nastyloop failure-point is *popped*.
5702 This special frame thus marks the beginning of one iteration
5703 through the loop and we can hence easily check right here
5704 whether something matched between the beginning and the end of
5705 the loop. */
5706 case on_failure_jump_nastyloop:
5707 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5708 DEBUG_PRINT ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5709 mcnt, p + mcnt);
5711 assert ((re_opcode_t)p[-4] == no_op);
5713 int cycle = 0;
5714 CHECK_INFINITE_LOOP (p - 4, d);
5715 if (!cycle)
5716 /* If there's a cycle, just continue without pushing
5717 this failure point. The failure point is the "try again"
5718 option, which shouldn't be tried.
5719 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5720 PUSH_FAILURE_POINT (p - 3, d);
5722 break;
5724 /* Simple loop detecting on_failure_jump: just check on the
5725 failure stack if the same spot was already hit earlier. */
5726 case on_failure_jump_loop:
5727 on_failure:
5728 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5729 DEBUG_PRINT ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5730 mcnt, p + mcnt);
5732 int cycle = 0;
5733 CHECK_INFINITE_LOOP (p - 3, d);
5734 if (cycle)
5735 /* If there's a cycle, get out of the loop, as if the matching
5736 had failed. We used to just `goto fail' here, but that was
5737 aborting the search a bit too early: we want to keep the
5738 empty-loop-match and keep matching after the loop.
5739 We want (x?)*y\1z to match both xxyz and xxyxz. */
5740 p += mcnt;
5741 else
5742 PUSH_FAILURE_POINT (p - 3, d);
5744 break;
5747 /* Uses of on_failure_jump:
5749 Each alternative starts with an on_failure_jump that points
5750 to the beginning of the next alternative. Each alternative
5751 except the last ends with a jump that in effect jumps past
5752 the rest of the alternatives. (They really jump to the
5753 ending jump of the following alternative, because tensioning
5754 these jumps is a hassle.)
5756 Repeats start with an on_failure_jump that points past both
5757 the repetition text and either the following jump or
5758 pop_failure_jump back to this on_failure_jump. */
5759 case on_failure_jump:
5760 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5761 DEBUG_PRINT ("EXECUTING on_failure_jump %d (to %p):\n",
5762 mcnt, p + mcnt);
5764 PUSH_FAILURE_POINT (p -3, d);
5765 break;
5767 /* This operation is used for greedy *.
5768 Compare the beginning of the repeat with what in the
5769 pattern follows its end. If we can establish that there
5770 is nothing that they would both match, i.e., that we
5771 would have to backtrack because of (as in, e.g., `a*a')
5772 then we can use a non-backtracking loop based on
5773 on_failure_keep_string_jump instead of on_failure_jump. */
5774 case on_failure_jump_smart:
5775 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5776 DEBUG_PRINT ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5777 mcnt, p + mcnt);
5779 re_char *p1 = p; /* Next operation. */
5780 /* Here, we discard `const', making re_match non-reentrant. */
5781 unsigned char *p2 = (unsigned char *) p + mcnt; /* Jump dest. */
5782 unsigned char *p3 = (unsigned char *) p - 3; /* opcode location. */
5784 p -= 3; /* Reset so that we will re-execute the
5785 instruction once it's been changed. */
5787 EXTRACT_NUMBER (mcnt, p2 - 2);
5789 /* Ensure this is a indeed the trivial kind of loop
5790 we are expecting. */
5791 assert (skip_one_char (p1) == p2 - 3);
5792 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5793 DEBUG_STATEMENT (debug += 2);
5794 if (mutually_exclusive_p (bufp, p1, p2))
5796 /* Use a fast `on_failure_keep_string_jump' loop. */
5797 DEBUG_PRINT (" smart exclusive => fast loop.\n");
5798 *p3 = (unsigned char) on_failure_keep_string_jump;
5799 STORE_NUMBER (p2 - 2, mcnt + 3);
5801 else
5803 /* Default to a safe `on_failure_jump' loop. */
5804 DEBUG_PRINT (" smart default => slow loop.\n");
5805 *p3 = (unsigned char) on_failure_jump;
5807 DEBUG_STATEMENT (debug -= 2);
5809 break;
5811 /* Unconditionally jump (without popping any failure points). */
5812 case jump:
5813 unconditional_jump:
5814 maybe_quit ();
5815 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5816 DEBUG_PRINT ("EXECUTING jump %d ", mcnt);
5817 p += mcnt; /* Do the jump. */
5818 DEBUG_PRINT ("(to %p).\n", p);
5819 break;
5822 /* Have to succeed matching what follows at least n times.
5823 After that, handle like `on_failure_jump'. */
5824 case succeed_n:
5825 /* Signedness doesn't matter since we only compare MCNT to 0. */
5826 EXTRACT_NUMBER (mcnt, p + 2);
5827 DEBUG_PRINT ("EXECUTING succeed_n %d.\n", mcnt);
5829 /* Originally, mcnt is how many times we HAVE to succeed. */
5830 if (mcnt != 0)
5832 /* Here, we discard `const', making re_match non-reentrant. */
5833 unsigned char *p2 = (unsigned char *) p + 2; /* counter loc. */
5834 mcnt--;
5835 p += 4;
5836 PUSH_NUMBER (p2, mcnt);
5838 else
5839 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5840 goto on_failure;
5841 break;
5843 case jump_n:
5844 /* Signedness doesn't matter since we only compare MCNT to 0. */
5845 EXTRACT_NUMBER (mcnt, p + 2);
5846 DEBUG_PRINT ("EXECUTING jump_n %d.\n", mcnt);
5848 /* Originally, this is how many times we CAN jump. */
5849 if (mcnt != 0)
5851 /* Here, we discard `const', making re_match non-reentrant. */
5852 unsigned char *p2 = (unsigned char *) p + 2; /* counter loc. */
5853 mcnt--;
5854 PUSH_NUMBER (p2, mcnt);
5855 goto unconditional_jump;
5857 /* If don't have to jump any more, skip over the rest of command. */
5858 else
5859 p += 4;
5860 break;
5862 case set_number_at:
5864 unsigned char *p2; /* Location of the counter. */
5865 DEBUG_PRINT ("EXECUTING set_number_at.\n");
5867 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5868 /* Here, we discard `const', making re_match non-reentrant. */
5869 p2 = (unsigned char *) p + mcnt;
5870 /* Signedness doesn't matter since we only copy MCNT's bits. */
5871 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5872 DEBUG_PRINT (" Setting %p to %d.\n", p2, mcnt);
5873 PUSH_NUMBER (p2, mcnt);
5874 break;
5877 case wordbound:
5878 case notwordbound:
5880 boolean not = (re_opcode_t) *(p - 1) == notwordbound;
5881 DEBUG_PRINT ("EXECUTING %swordbound.\n", not ? "not" : "");
5883 /* We SUCCEED (or FAIL) in one of the following cases: */
5885 /* Case 1: D is at the beginning or the end of string. */
5886 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5887 not = !not;
5888 else
5890 /* C1 is the character before D, S1 is the syntax of C1, C2
5891 is the character at D, and S2 is the syntax of C2. */
5892 re_wchar_t c1, c2;
5893 int s1, s2;
5894 int dummy;
5895 #ifdef emacs
5896 ssize_t offset = PTR_TO_OFFSET (d - 1);
5897 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5898 UPDATE_SYNTAX_TABLE_FAST (charpos);
5899 #endif
5900 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5901 s1 = SYNTAX (c1);
5902 #ifdef emacs
5903 UPDATE_SYNTAX_TABLE_FORWARD_FAST (charpos + 1);
5904 #endif
5905 PREFETCH_NOLIMIT ();
5906 GET_CHAR_AFTER (c2, d, dummy);
5907 s2 = SYNTAX (c2);
5909 if (/* Case 2: Only one of S1 and S2 is Sword. */
5910 ((s1 == Sword) != (s2 == Sword))
5911 /* Case 3: Both of S1 and S2 are Sword, and macro
5912 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5913 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5914 not = !not;
5916 if (not)
5917 break;
5918 else
5919 goto fail;
5922 case wordbeg:
5923 DEBUG_PRINT ("EXECUTING wordbeg.\n");
5925 /* We FAIL in one of the following cases: */
5927 /* Case 1: D is at the end of string. */
5928 if (AT_STRINGS_END (d))
5929 goto fail;
5930 else
5932 /* C1 is the character before D, S1 is the syntax of C1, C2
5933 is the character at D, and S2 is the syntax of C2. */
5934 re_wchar_t c1, c2;
5935 int s1, s2;
5936 int dummy;
5937 #ifdef emacs
5938 ssize_t offset = PTR_TO_OFFSET (d);
5939 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5940 UPDATE_SYNTAX_TABLE_FAST (charpos);
5941 #endif
5942 PREFETCH ();
5943 GET_CHAR_AFTER (c2, d, dummy);
5944 s2 = SYNTAX (c2);
5946 /* Case 2: S2 is not Sword. */
5947 if (s2 != Sword)
5948 goto fail;
5950 /* Case 3: D is not at the beginning of string ... */
5951 if (!AT_STRINGS_BEG (d))
5953 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5954 #ifdef emacs
5955 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5956 #endif
5957 s1 = SYNTAX (c1);
5959 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5960 returns 0. */
5961 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5962 goto fail;
5965 break;
5967 case wordend:
5968 DEBUG_PRINT ("EXECUTING wordend.\n");
5970 /* We FAIL in one of the following cases: */
5972 /* Case 1: D is at the beginning of string. */
5973 if (AT_STRINGS_BEG (d))
5974 goto fail;
5975 else
5977 /* C1 is the character before D, S1 is the syntax of C1, C2
5978 is the character at D, and S2 is the syntax of C2. */
5979 re_wchar_t c1, c2;
5980 int s1, s2;
5981 int dummy;
5982 #ifdef emacs
5983 ssize_t offset = PTR_TO_OFFSET (d) - 1;
5984 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5985 UPDATE_SYNTAX_TABLE_FAST (charpos);
5986 #endif
5987 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5988 s1 = SYNTAX (c1);
5990 /* Case 2: S1 is not Sword. */
5991 if (s1 != Sword)
5992 goto fail;
5994 /* Case 3: D is not at the end of string ... */
5995 if (!AT_STRINGS_END (d))
5997 PREFETCH_NOLIMIT ();
5998 GET_CHAR_AFTER (c2, d, dummy);
5999 #ifdef emacs
6000 UPDATE_SYNTAX_TABLE_FORWARD_FAST (charpos);
6001 #endif
6002 s2 = SYNTAX (c2);
6004 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
6005 returns 0. */
6006 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
6007 goto fail;
6010 break;
6012 case symbeg:
6013 DEBUG_PRINT ("EXECUTING symbeg.\n");
6015 /* We FAIL in one of the following cases: */
6017 /* Case 1: D is at the end of string. */
6018 if (AT_STRINGS_END (d))
6019 goto fail;
6020 else
6022 /* C1 is the character before D, S1 is the syntax of C1, C2
6023 is the character at D, and S2 is the syntax of C2. */
6024 re_wchar_t c1, c2;
6025 int s1, s2;
6026 #ifdef emacs
6027 ssize_t offset = PTR_TO_OFFSET (d);
6028 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6029 UPDATE_SYNTAX_TABLE_FAST (charpos);
6030 #endif
6031 PREFETCH ();
6032 c2 = RE_STRING_CHAR (d, target_multibyte);
6033 s2 = SYNTAX (c2);
6035 /* Case 2: S2 is neither Sword nor Ssymbol. */
6036 if (s2 != Sword && s2 != Ssymbol)
6037 goto fail;
6039 /* Case 3: D is not at the beginning of string ... */
6040 if (!AT_STRINGS_BEG (d))
6042 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6043 #ifdef emacs
6044 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6045 #endif
6046 s1 = SYNTAX (c1);
6048 /* ... and S1 is Sword or Ssymbol. */
6049 if (s1 == Sword || s1 == Ssymbol)
6050 goto fail;
6053 break;
6055 case symend:
6056 DEBUG_PRINT ("EXECUTING symend.\n");
6058 /* We FAIL in one of the following cases: */
6060 /* Case 1: D is at the beginning of string. */
6061 if (AT_STRINGS_BEG (d))
6062 goto fail;
6063 else
6065 /* C1 is the character before D, S1 is the syntax of C1, C2
6066 is the character at D, and S2 is the syntax of C2. */
6067 re_wchar_t c1, c2;
6068 int s1, s2;
6069 #ifdef emacs
6070 ssize_t offset = PTR_TO_OFFSET (d) - 1;
6071 ssize_t charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6072 UPDATE_SYNTAX_TABLE_FAST (charpos);
6073 #endif
6074 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6075 s1 = SYNTAX (c1);
6077 /* Case 2: S1 is neither Ssymbol nor Sword. */
6078 if (s1 != Sword && s1 != Ssymbol)
6079 goto fail;
6081 /* Case 3: D is not at the end of string ... */
6082 if (!AT_STRINGS_END (d))
6084 PREFETCH_NOLIMIT ();
6085 c2 = RE_STRING_CHAR (d, target_multibyte);
6086 #ifdef emacs
6087 UPDATE_SYNTAX_TABLE_FORWARD_FAST (charpos + 1);
6088 #endif
6089 s2 = SYNTAX (c2);
6091 /* ... and S2 is Sword or Ssymbol. */
6092 if (s2 == Sword || s2 == Ssymbol)
6093 goto fail;
6096 break;
6098 case syntaxspec:
6099 case notsyntaxspec:
6101 boolean not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6102 mcnt = *p++;
6103 DEBUG_PRINT ("EXECUTING %ssyntaxspec %d.\n", not ? "not" : "",
6104 mcnt);
6105 PREFETCH ();
6106 #ifdef emacs
6108 ssize_t offset = PTR_TO_OFFSET (d);
6109 ssize_t pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6110 UPDATE_SYNTAX_TABLE_FAST (pos1);
6112 #endif
6114 int len;
6115 re_wchar_t c;
6117 GET_CHAR_AFTER (c, d, len);
6118 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6119 goto fail;
6120 d += len;
6123 break;
6125 #ifdef emacs
6126 case at_dot:
6127 DEBUG_PRINT ("EXECUTING at_dot.\n");
6128 if (PTR_BYTE_POS (d) != PT_BYTE)
6129 goto fail;
6130 break;
6132 case categoryspec:
6133 case notcategoryspec:
6135 boolean not = (re_opcode_t) *(p - 1) == notcategoryspec;
6136 mcnt = *p++;
6137 DEBUG_PRINT ("EXECUTING %scategoryspec %d.\n",
6138 not ? "not" : "", mcnt);
6139 PREFETCH ();
6142 int len;
6143 re_wchar_t c;
6144 GET_CHAR_AFTER (c, d, len);
6145 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6146 goto fail;
6147 d += len;
6150 break;
6152 #endif /* emacs */
6154 default:
6155 abort ();
6157 continue; /* Successfully executed one pattern command; keep going. */
6160 /* We goto here if a matching operation fails. */
6161 fail:
6162 maybe_quit ();
6163 if (!FAIL_STACK_EMPTY ())
6165 re_char *str, *pat;
6166 /* A restart point is known. Restore to that state. */
6167 DEBUG_PRINT ("\nFAIL:\n");
6168 POP_FAILURE_POINT (str, pat);
6169 switch (*pat++)
6171 case on_failure_keep_string_jump:
6172 assert (str == NULL);
6173 goto continue_failure_jump;
6175 case on_failure_jump_nastyloop:
6176 assert ((re_opcode_t)pat[-2] == no_op);
6177 PUSH_FAILURE_POINT (pat - 2, str);
6178 FALLTHROUGH;
6179 case on_failure_jump_loop:
6180 case on_failure_jump:
6181 case succeed_n:
6182 d = str;
6183 continue_failure_jump:
6184 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6185 p = pat + mcnt;
6186 break;
6188 case no_op:
6189 /* A special frame used for nastyloops. */
6190 goto fail;
6192 default:
6193 abort ();
6196 assert (p >= bufp->buffer && p <= pend);
6198 if (d >= string1 && d <= end1)
6199 dend = end_match_1;
6201 else
6202 break; /* Matching at this starting point really fails. */
6203 } /* for (;;) */
6205 if (best_regs_set)
6206 goto restore_best_regs;
6208 FREE_VARIABLES ();
6210 return -1; /* Failure to match. */
6213 /* Subroutine definitions for re_match_2. */
6215 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6216 bytes; nonzero otherwise. */
6218 static int
6219 bcmp_translate (re_char *s1, re_char *s2, ssize_t len,
6220 RE_TRANSLATE_TYPE translate, const int target_multibyte)
6222 re_char *p1 = s1, *p2 = s2;
6223 re_char *p1_end = s1 + len;
6224 re_char *p2_end = s2 + len;
6226 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6227 different lengths, but relying on a single `len' would break this. -sm */
6228 while (p1 < p1_end && p2 < p2_end)
6230 int p1_charlen, p2_charlen;
6231 re_wchar_t p1_ch, p2_ch;
6233 GET_CHAR_AFTER (p1_ch, p1, p1_charlen);
6234 GET_CHAR_AFTER (p2_ch, p2, p2_charlen);
6236 if (RE_TRANSLATE (translate, p1_ch)
6237 != RE_TRANSLATE (translate, p2_ch))
6238 return 1;
6240 p1 += p1_charlen, p2 += p2_charlen;
6243 if (p1 != p1_end || p2 != p2_end)
6244 return 1;
6246 return 0;
6249 /* Entry points for GNU code. */
6251 /* re_compile_pattern is the GNU regular expression compiler: it
6252 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6253 Returns 0 if the pattern was valid, otherwise an error string.
6255 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6256 are set in BUFP on entry.
6258 We call regex_compile to do the actual compilation. */
6260 const char *
6261 re_compile_pattern (const char *pattern, size_t length,
6262 #ifdef emacs
6263 bool posix_backtracking, const char *whitespace_regexp,
6264 #endif
6265 struct re_pattern_buffer *bufp)
6267 reg_errcode_t ret;
6269 /* GNU code is written to assume at least RE_NREGS registers will be set
6270 (and at least one extra will be -1). */
6271 bufp->regs_allocated = REGS_UNALLOCATED;
6273 /* And GNU code determines whether or not to get register information
6274 by passing null for the REGS argument to re_match, etc., not by
6275 setting no_sub. */
6276 bufp->no_sub = 0;
6278 ret = regex_compile ((re_char *) pattern, length,
6279 #ifdef emacs
6280 posix_backtracking,
6281 whitespace_regexp,
6282 #else
6283 re_syntax_options,
6284 #endif
6285 bufp);
6287 if (!ret)
6288 return NULL;
6289 return gettext (re_error_msgid[(int) ret]);
6291 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6293 /* Entry points compatible with 4.2 BSD regex library. We don't define
6294 them unless specifically requested. */
6296 #if defined _REGEX_RE_COMP || defined _LIBC
6298 /* BSD has one and only one pattern buffer. */
6299 static struct re_pattern_buffer re_comp_buf;
6301 char *
6302 # ifdef _LIBC
6303 /* Make these definitions weak in libc, so POSIX programs can redefine
6304 these names if they don't use our functions, and still use
6305 regcomp/regexec below without link errors. */
6306 weak_function
6307 # endif
6308 re_comp (const char *s)
6310 reg_errcode_t ret;
6312 if (!s)
6314 if (!re_comp_buf.buffer)
6315 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6316 return (char *) gettext ("No previous regular expression");
6317 return 0;
6320 if (!re_comp_buf.buffer)
6322 re_comp_buf.buffer = malloc (200);
6323 if (re_comp_buf.buffer == NULL)
6324 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6325 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6326 re_comp_buf.allocated = 200;
6328 re_comp_buf.fastmap = malloc (1 << BYTEWIDTH);
6329 if (re_comp_buf.fastmap == NULL)
6330 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6331 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6334 /* Since `re_exec' always passes NULL for the `regs' argument, we
6335 don't need to initialize the pattern buffer fields which affect it. */
6337 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6339 if (!ret)
6340 return NULL;
6342 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6343 return (char *) gettext (re_error_msgid[(int) ret]);
6348 # ifdef _LIBC
6349 weak_function
6350 # endif
6351 re_exec (const char *s)
6353 const size_t len = strlen (s);
6354 return re_search (&re_comp_buf, s, len, 0, len, 0) >= 0;
6356 #endif /* _REGEX_RE_COMP */
6358 /* POSIX.2 functions. Don't define these for Emacs. */
6360 #ifndef emacs
6362 /* regcomp takes a regular expression as a string and compiles it.
6364 PREG is a regex_t *. We do not expect any fields to be initialized,
6365 since POSIX says we shouldn't. Thus, we set
6367 `buffer' to the compiled pattern;
6368 `used' to the length of the compiled pattern;
6369 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6370 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6371 RE_SYNTAX_POSIX_BASIC;
6372 `fastmap' to an allocated space for the fastmap;
6373 `fastmap_accurate' to zero;
6374 `re_nsub' to the number of subexpressions in PATTERN.
6376 PATTERN is the address of the pattern string.
6378 CFLAGS is a series of bits which affect compilation.
6380 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6381 use POSIX basic syntax.
6383 If REG_NEWLINE is set, then . and [^...] don't match newline.
6384 Also, regexec will try a match beginning after every newline.
6386 If REG_ICASE is set, then we considers upper- and lowercase
6387 versions of letters to be equivalent when matching.
6389 If REG_NOSUB is set, then when PREG is passed to regexec, that
6390 routine will report only success or failure, and nothing about the
6391 registers.
6393 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6394 the return codes and their meanings.) */
6396 reg_errcode_t
6397 regcomp (regex_t *_Restrict_ preg, const char *_Restrict_ pattern,
6398 int cflags)
6400 reg_errcode_t ret;
6401 reg_syntax_t syntax
6402 = (cflags & REG_EXTENDED) ?
6403 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6405 /* regex_compile will allocate the space for the compiled pattern. */
6406 preg->buffer = 0;
6407 preg->allocated = 0;
6408 preg->used = 0;
6410 /* Try to allocate space for the fastmap. */
6411 preg->fastmap = malloc (1 << BYTEWIDTH);
6413 if (cflags & REG_ICASE)
6415 unsigned i;
6417 preg->translate = malloc (CHAR_SET_SIZE * sizeof *preg->translate);
6418 if (preg->translate == NULL)
6419 return (int) REG_ESPACE;
6421 /* Map uppercase characters to corresponding lowercase ones. */
6422 for (i = 0; i < CHAR_SET_SIZE; i++)
6423 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6425 else
6426 preg->translate = NULL;
6428 /* If REG_NEWLINE is set, newlines are treated differently. */
6429 if (cflags & REG_NEWLINE)
6430 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6431 syntax &= ~RE_DOT_NEWLINE;
6432 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6434 else
6435 syntax |= RE_NO_NEWLINE_ANCHOR;
6437 preg->no_sub = !!(cflags & REG_NOSUB);
6439 /* POSIX says a null character in the pattern terminates it, so we
6440 can use strlen here in compiling the pattern. */
6441 ret = regex_compile ((re_char *) pattern, strlen (pattern), syntax, preg);
6443 /* POSIX doesn't distinguish between an unmatched open-group and an
6444 unmatched close-group: both are REG_EPAREN. */
6445 if (ret == REG_ERPAREN)
6446 ret = REG_EPAREN;
6448 if (ret == REG_NOERROR && preg->fastmap)
6449 { /* Compute the fastmap now, since regexec cannot modify the pattern
6450 buffer. */
6451 re_compile_fastmap (preg);
6452 if (preg->can_be_null)
6453 { /* The fastmap can't be used anyway. */
6454 free (preg->fastmap);
6455 preg->fastmap = NULL;
6458 return ret;
6460 WEAK_ALIAS (__regcomp, regcomp)
6463 /* regexec searches for a given pattern, specified by PREG, in the
6464 string STRING.
6466 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6467 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6468 least NMATCH elements, and we set them to the offsets of the
6469 corresponding matched substrings.
6471 EFLAGS specifies `execution flags' which affect matching: if
6472 REG_NOTBOL is set, then ^ does not match at the beginning of the
6473 string; if REG_NOTEOL is set, then $ does not match at the end.
6475 We return 0 if we find a match and REG_NOMATCH if not. */
6477 reg_errcode_t
6478 regexec (const regex_t *_Restrict_ preg, const char *_Restrict_ string,
6479 size_t nmatch, regmatch_t pmatch[_Restrict_arr_], int eflags)
6481 regoff_t ret;
6482 struct re_registers regs;
6483 regex_t private_preg;
6484 size_t len = strlen (string);
6485 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6487 private_preg = *preg;
6489 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6490 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6492 /* The user has told us exactly how many registers to return
6493 information about, via `nmatch'. We have to pass that on to the
6494 matching routines. */
6495 private_preg.regs_allocated = REGS_FIXED;
6497 if (want_reg_info)
6499 regs.num_regs = nmatch;
6500 regs.start = TALLOC (nmatch * 2, regoff_t);
6501 if (regs.start == NULL)
6502 return REG_NOMATCH;
6503 regs.end = regs.start + nmatch;
6506 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6507 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6508 was a little bit longer but still only matching the real part.
6509 This works because the `endline' will check for a '\n' and will find a
6510 '\0', correctly deciding that this is not the end of a line.
6511 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6512 a convenient '\0' there. For all we know, the string could be preceded
6513 by '\n' which would throw things off. */
6515 /* Perform the searching operation. */
6516 ret = re_search (&private_preg, string, len,
6517 /* start: */ 0, /* range: */ len,
6518 want_reg_info ? &regs : 0);
6520 /* Copy the register information to the POSIX structure. */
6521 if (want_reg_info)
6523 if (ret >= 0)
6525 unsigned r;
6527 for (r = 0; r < nmatch; r++)
6529 pmatch[r].rm_so = regs.start[r];
6530 pmatch[r].rm_eo = regs.end[r];
6534 /* If we needed the temporary register info, free the space now. */
6535 free (regs.start);
6538 /* We want zero return to mean success, unlike `re_search'. */
6539 return ret >= 0 ? REG_NOERROR : REG_NOMATCH;
6541 WEAK_ALIAS (__regexec, regexec)
6544 /* Returns a message corresponding to an error code, ERR_CODE, returned
6545 from either regcomp or regexec. We don't use PREG here.
6547 ERR_CODE was previously called ERRCODE, but that name causes an
6548 error with msvc8 compiler. */
6550 size_t
6551 regerror (int err_code, const regex_t *preg, char *errbuf, size_t errbuf_size)
6553 const char *msg;
6554 size_t msg_size;
6556 if (err_code < 0
6557 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6558 /* Only error codes returned by the rest of the code should be passed
6559 to this routine. If we are given anything else, or if other regex
6560 code generates an invalid error code, then the program has a bug.
6561 Dump core so we can fix it. */
6562 abort ();
6564 msg = gettext (re_error_msgid[err_code]);
6566 msg_size = strlen (msg) + 1; /* Includes the null. */
6568 if (errbuf_size != 0)
6570 if (msg_size > errbuf_size)
6572 memcpy (errbuf, msg, errbuf_size - 1);
6573 errbuf[errbuf_size - 1] = 0;
6575 else
6576 strcpy (errbuf, msg);
6579 return msg_size;
6581 WEAK_ALIAS (__regerror, regerror)
6584 /* Free dynamically allocated space used by PREG. */
6586 void
6587 regfree (regex_t *preg)
6589 free (preg->buffer);
6590 preg->buffer = NULL;
6592 preg->allocated = 0;
6593 preg->used = 0;
6595 free (preg->fastmap);
6596 preg->fastmap = NULL;
6597 preg->fastmap_accurate = 0;
6599 free (preg->translate);
6600 preg->translate = NULL;
6602 WEAK_ALIAS (__regfree, regfree)
6604 #endif /* not emacs */